/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "contract.h" #include "cpupart_mdb.h" #include "devinfo.h" #include "leaky.h" #include "lgrp.h" #include "list.h" #include "log.h" #include "kgrep.h" #include "kmem.h" #include "bio.h" #include "streams.h" #include "cyclic.h" #include "findstack.h" #include "ndievents.h" #include "mmd.h" #include "net.h" #include "nvpair.h" #include "ctxop.h" #include "tsd.h" #include "thread.h" #include "memory.h" #include "sobj.h" #include "sysevent.h" #include "rctl.h" #include "typegraph.h" #include "ldi.h" #include "vfs.h" #include "zone.h" #include "modhash.h" /* * Surely this is defined somewhere... */ #define NINTR 16 #ifndef STACK_BIAS #define STACK_BIAS 0 #endif static char pstat2ch(uchar_t state) { switch (state) { case SSLEEP: return ('S'); case SRUN: return ('R'); case SZOMB: return ('Z'); case SIDL: return ('I'); case SONPROC: return ('O'); case SSTOP: return ('T'); default: return ('?'); } } #define PS_PRTTHREADS 0x1 #define PS_PRTLWPS 0x2 #define PS_PSARGS 0x4 #define PS_TASKS 0x8 #define PS_PROJECTS 0x10 #define PS_ZONES 0x20 static int ps_threadprint(uintptr_t addr, const void *data, void *private) { const kthread_t *t = (const kthread_t *)data; uint_t prt_flags = *((uint_t *)private); static const mdb_bitmask_t t_state_bits[] = { { "TS_FREE", UINT_MAX, TS_FREE }, { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, { "TS_RUN", TS_RUN, TS_RUN }, { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, { NULL, 0, 0 } }; if (prt_flags & PS_PRTTHREADS) mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); if (prt_flags & PS_PRTLWPS) mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); return (WALK_NEXT); } int ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uint_t prt_flags = 0; proc_t pr; struct pid pid, pgid, sid; sess_t session; cred_t cred; task_t tk; kproject_t pj; zone_t zn; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { mdb_warn("can't walk 'proc'"); return (DCMD_ERR); } return (DCMD_OK); } if (mdb_getopts(argc, argv, 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) return (DCMD_USAGE); if (DCMD_HDRSPEC(flags)) { mdb_printf("%%1s %6s %6s %6s %6s ", "S", "PID", "PPID", "PGID", "SID"); if (prt_flags & PS_TASKS) mdb_printf("%5s ", "TASK"); if (prt_flags & PS_PROJECTS) mdb_printf("%5s ", "PROJ"); if (prt_flags & PS_ZONES) mdb_printf("%5s ", "ZONE"); mdb_printf("%6s %10s %?s %s%\n", "UID", "FLAGS", "ADDR", "NAME"); } mdb_vread(&pr, sizeof (pr), addr); mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); if (prt_flags & (PS_TASKS | PS_PROJECTS)) mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); if (prt_flags & PS_PROJECTS) mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); if (prt_flags & PS_ZONES) mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); mdb_printf("%c %6d %6d %6d %6d ", pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, sid.pid_id); if (prt_flags & PS_TASKS) mdb_printf("%5d ", tk.tk_tkid); if (prt_flags & PS_PROJECTS) mdb_printf("%5d ", pj.kpj_id); if (prt_flags & PS_ZONES) mdb_printf("%5d ", zn.zone_id); mdb_printf("%6d 0x%08x %0?p %s\n", cred.cr_uid, pr.p_flag, addr, (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); if (prt_flags & ~PS_PSARGS) (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); return (DCMD_OK); } #define PG_NEWEST 0x0001 #define PG_OLDEST 0x0002 #define PG_PIPE_OUT 0x0004 typedef struct pgrep_data { uint_t pg_flags; uint_t pg_psflags; uintptr_t pg_xaddr; hrtime_t pg_xstart; const char *pg_pat; #ifndef _KMDB regex_t pg_reg; #endif } pgrep_data_t; /*ARGSUSED*/ static int pgrep_cb(uintptr_t addr, const void *pdata, void *data) { const proc_t *prp = pdata; pgrep_data_t *pgp = data; #ifndef _KMDB regmatch_t pmatch; #endif /* * kmdb doesn't have access to the reg* functions, so we fall back * to strstr. */ #ifdef _KMDB if (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL) return (WALK_NEXT); #else if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) return (WALK_NEXT); #endif if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { hrtime_t start; start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + prp->p_user.u_start.tv_nsec; if (pgp->pg_flags & PG_NEWEST) { if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { pgp->pg_xaddr = addr; pgp->pg_xstart = start; } } else { if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { pgp->pg_xaddr = addr; pgp->pg_xstart = start; } } } else if (pgp->pg_flags & PG_PIPE_OUT) { mdb_printf("%p\n", addr); } else { if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { mdb_warn("can't invoke 'ps'"); return (WALK_DONE); } pgp->pg_psflags &= ~DCMD_LOOPFIRST; } return (WALK_NEXT); } /*ARGSUSED*/ int pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { pgrep_data_t pg; int i; #ifndef _KMDB int err; #endif if (flags & DCMD_ADDRSPEC) return (DCMD_USAGE); pg.pg_flags = 0; pg.pg_xaddr = 0; i = mdb_getopts(argc, argv, 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, NULL); argc -= i; argv += i; if (argc != 1) return (DCMD_USAGE); /* * -n and -o are mutually exclusive. */ if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) return (DCMD_USAGE); if (argv->a_type != MDB_TYPE_STRING) return (DCMD_USAGE); if (flags & DCMD_PIPE_OUT) pg.pg_flags |= PG_PIPE_OUT; pg.pg_pat = argv->a_un.a_str; if (DCMD_HDRSPEC(flags)) pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; else pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; #ifndef _KMDB if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { size_t nbytes; char *buf; nbytes = regerror(err, &pg.pg_reg, NULL, 0); buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); (void) regerror(err, &pg.pg_reg, buf, nbytes); mdb_warn("%s\n", buf); return (DCMD_ERR); } #endif if (mdb_walk("proc", pgrep_cb, &pg) != 0) { mdb_warn("can't walk 'proc'"); return (DCMD_ERR); } if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { if (pg.pg_flags & PG_PIPE_OUT) { mdb_printf("%p\n", pg.pg_xaddr); } else { if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 0, NULL) != 0) { mdb_warn("can't invoke 'ps'"); return (DCMD_ERR); } } } return (DCMD_OK); } int task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { task_t tk; kproject_t pj; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { mdb_warn("can't walk task_cache"); return (DCMD_ERR); } return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) { mdb_printf("%%?s %6s %6s %6s %6s %10s%\n", "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); } if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { mdb_warn("can't read task_t structure at %p", addr); return (DCMD_ERR); } if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { mdb_warn("can't read project_t structure at %p", addr); return (DCMD_ERR); } mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, tk.tk_flags); return (DCMD_OK); } int project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { kproject_t pj; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { mdb_warn("can't walk projects"); return (DCMD_ERR); } return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) { mdb_printf("%%?s %6s %6s %6s%\n", "ADDR", "PROJID", "ZONEID", "REFCNT"); } if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { mdb_warn("can't read kproject_t structure at %p", addr); return (DCMD_ERR); } mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, pj.kpj_count); return (DCMD_OK); } /*ARGSUSED*/ int callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { callout_table_t *co_ktable[CALLOUT_TABLES]; int co_kfanout; callout_table_t co_table; callout_t co_callout; callout_t *co_ptr; int co_id; clock_t lbolt; int i, j, k; const char *lbolt_sym; if ((flags & DCMD_ADDRSPEC) || argc != 0) return (DCMD_USAGE); if (mdb_prop_postmortem) lbolt_sym = "panic_lbolt"; else lbolt_sym = "lbolt"; if (mdb_readvar(&lbolt, lbolt_sym) == -1) { mdb_warn("failed to read '%s'", lbolt_sym); return (DCMD_ERR); } if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { mdb_warn("failed to read callout_fanout"); return (DCMD_ERR); } if (mdb_readvar(&co_ktable, "callout_table") == -1) { mdb_warn("failed to read callout_table"); return (DCMD_ERR); } mdb_printf("%%-24s %-?s %-?s %-?s%\n", "FUNCTION", "ARGUMENT", "ID", "TIME"); for (i = 0; i < CALLOUT_NTYPES; i++) { for (j = 0; j < co_kfanout; j++) { co_id = CALLOUT_TABLE(i, j); if (mdb_vread(&co_table, sizeof (co_table), (uintptr_t)co_ktable[co_id]) == -1) { mdb_warn("failed to read table at %p", (uintptr_t)co_ktable[co_id]); continue; } for (k = 0; k < CALLOUT_BUCKETS; k++) { co_ptr = co_table.ct_idhash[k]; while (co_ptr != NULL) { mdb_vread(&co_callout, sizeof (co_callout), (uintptr_t)co_ptr); mdb_printf("%-24a %0?p %0?lx %?lx " "(T%+ld)\n", co_callout.c_func, co_callout.c_arg, co_callout.c_xid, co_callout.c_runtime, co_callout.c_runtime - lbolt); co_ptr = co_callout.c_idnext; } } } } return (DCMD_OK); } /*ARGSUSED*/ int class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { long num_classes, i; sclass_t *class_tbl; GElf_Sym g_sclass; char class_name[PC_CLNMSZ]; size_t tbl_size; if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { mdb_warn("failed to find symbol sclass\n"); return (DCMD_ERR); } tbl_size = (size_t)g_sclass.st_size; num_classes = tbl_size / (sizeof (sclass_t)); class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { mdb_warn("failed to read sclass"); return (DCMD_ERR); } mdb_printf("%%4s %-10s %-24s %-24s%\n", "SLOT", "NAME", "INIT FCN", "CLASS FCN"); for (i = 0; i < num_classes; i++) { if (mdb_vread(class_name, sizeof (class_name), (uintptr_t)class_tbl[i].cl_name) == -1) (void) strcpy(class_name, "???"); mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, class_tbl[i].cl_init, class_tbl[i].cl_funcs); } return (DCMD_OK); } #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ int vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uintptr_t rootdir; vnode_t vn; char buf[MAXPATHLEN]; uint_t opt_F = FALSE; if (mdb_getopts(argc, argv, 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) return (DCMD_USAGE); if (!(flags & DCMD_ADDRSPEC)) { mdb_warn("expected explicit vnode_t address before ::\n"); return (DCMD_USAGE); } if (mdb_readvar(&rootdir, "rootdir") == -1) { mdb_warn("failed to read rootdir"); return (DCMD_ERR); } if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) return (DCMD_ERR); if (*buf == '\0') { mdb_printf("??\n"); return (DCMD_OK); } mdb_printf("%s", buf); if (opt_F && buf[strlen(buf)-1] != '/' && mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); mdb_printf("\n"); return (DCMD_OK); } int ld_walk_init(mdb_walk_state_t *wsp) { wsp->walk_data = (void *)wsp->walk_addr; return (WALK_NEXT); } int ld_walk_step(mdb_walk_state_t *wsp) { int status; lock_descriptor_t ld; if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { mdb_warn("couldn't read lock_descriptor_t at %p\n", wsp->walk_addr); return (WALK_ERR); } status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); if (status == WALK_ERR) return (WALK_ERR); wsp->walk_addr = (uintptr_t)ld.l_next; if (wsp->walk_addr == (uintptr_t)wsp->walk_data) return (WALK_DONE); return (status); } int lg_walk_init(mdb_walk_state_t *wsp) { GElf_Sym sym; if (mdb_lookup_by_name("lock_graph", &sym) == -1) { mdb_warn("failed to find symbol 'lock_graph'\n"); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)sym.st_value; wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); return (WALK_NEXT); } typedef struct lg_walk_data { uintptr_t startaddr; mdb_walk_cb_t callback; void *data; } lg_walk_data_t; /* * We can't use ::walk lock_descriptor directly, because the head of each graph * is really a dummy lock. Rather than trying to dynamically determine if this * is a dummy node or not, we just filter out the initial element of the * list. */ static int lg_walk_cb(uintptr_t addr, const void *data, void *priv) { lg_walk_data_t *lw = priv; if (addr != lw->startaddr) return (lw->callback(addr, data, lw->data)); return (WALK_NEXT); } int lg_walk_step(mdb_walk_state_t *wsp) { graph_t *graph; lg_walk_data_t lw; if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) return (WALK_DONE); if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { mdb_warn("failed to read graph_t at %p", wsp->walk_addr); return (WALK_ERR); } wsp->walk_addr += sizeof (graph); if (graph == NULL) return (WALK_NEXT); lw.callback = wsp->walk_callback; lw.data = wsp->walk_cbdata; lw.startaddr = (uintptr_t)&(graph->active_locks); if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); return (WALK_ERR); } lw.startaddr = (uintptr_t)&(graph->sleeping_locks); if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); return (WALK_ERR); } return (WALK_NEXT); } /* * The space available for the path corresponding to the locked vnode depends * on whether we are printing 32- or 64-bit addresses. */ #ifdef _LP64 #define LM_VNPATHLEN 20 #else #define LM_VNPATHLEN 30 #endif /*ARGSUSED*/ static int lminfo_cb(uintptr_t addr, const void *data, void *priv) { const lock_descriptor_t *ld = data; char buf[LM_VNPATHLEN]; proc_t p; mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", addr, ld->l_type == F_RDLCK ? "RD" : ld->l_type == F_WRLCK ? "WR" : "??", ld->l_state, ld->l_flock.l_pid, ld->l_flock.l_pid == 0 ? "" : mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? "" : p.p_user.u_comm, ld->l_vnode); mdb_vnode2path((uintptr_t)ld->l_vnode, buf, sizeof (buf)); mdb_printf("%s\n", buf); return (WALK_NEXT); } /*ARGSUSED*/ int lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { if (DCMD_HDRSPEC(flags)) mdb_printf("%%-?s %2s %4s %6s %-16s %-?s %s%\n", "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); } /*ARGSUSED*/ int seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { struct seg s; if (argc != 0) return (DCMD_USAGE); if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { mdb_printf("%%?s %?s %?s %?s %s%\n", "SEG", "BASE", "SIZE", "DATA", "OPS"); } if (mdb_vread(&s, sizeof (s), addr) == -1) { mdb_warn("failed to read seg at %p", addr); return (DCMD_ERR); } mdb_printf("%?p %?p %?lx %?p %a\n", addr, s.s_base, s.s_size, s.s_data, s.s_ops); return (DCMD_OK); } /*ARGSUSED*/ static int pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) { uintptr_t pp = mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); if (pp != NULL) (*nres)++; return (WALK_NEXT); } static int pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) { mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); if (segvn == (uintptr_t)seg->s_ops) { struct segvn_data svn; int nres = 0; (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); if (svn.amp == NULL) { mdb_printf(" %8s", ""); goto drive_on; } /* * We've got an amp for this segment; walk through * the amp, and determine mappings. */ if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, &nres, (uintptr_t)svn.amp) == -1) mdb_warn("failed to walk anon (amp=%p)", svn.amp); mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); drive_on: if (svn.vp != NULL) { char buf[29]; mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); mdb_printf(" %s", buf); } else mdb_printf(" [ anon ]"); } mdb_printf("\n"); return (WALK_NEXT); } static int pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) { mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); if (segvn == (uintptr_t)seg->s_ops) { struct segvn_data svn; (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); if (svn.vp != NULL) { mdb_printf(" %0?p", svn.vp); } else { mdb_printf(" [ anon ]"); } } mdb_printf("\n"); return (WALK_NEXT); } /*ARGSUSED*/ int pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uintptr_t segvn; proc_t proc; uint_t quick = FALSE; mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; GElf_Sym sym; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_getopts(argc, argv, 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) return (DCMD_USAGE); if (mdb_vread(&proc, sizeof (proc), addr) == -1) { mdb_warn("failed to read proc at %p", addr); return (DCMD_ERR); } if (mdb_lookup_by_name("segvn_ops", &sym) == 0) segvn = (uintptr_t)sym.st_value; else segvn = NULL; mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); if (quick) { mdb_printf("VNODE\n"); cb = (mdb_walk_cb_t)pmap_walk_seg_quick; } else { mdb_printf("%8s %s\n", "RES", "PATH"); } if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { mdb_warn("failed to walk segments of as %p", proc.p_as); return (DCMD_ERR); } return (DCMD_OK); } typedef struct anon_walk_data { uintptr_t *aw_levone; uintptr_t *aw_levtwo; int aw_nlevone; int aw_levone_ndx; int aw_levtwo_ndx; struct anon_map aw_amp; struct anon_hdr aw_ahp; } anon_walk_data_t; int anon_walk_init(mdb_walk_state_t *wsp) { anon_walk_data_t *aw; if (wsp->walk_addr == NULL) { mdb_warn("anon walk doesn't support global walks\n"); return (WALK_ERR); } aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { mdb_warn("failed to read anon map at %p", wsp->walk_addr); mdb_free(aw, sizeof (anon_walk_data_t)); return (WALK_ERR); } if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), (uintptr_t)(aw->aw_amp.ahp)) == -1) { mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); mdb_free(aw, sizeof (anon_walk_data_t)); return (WALK_ERR); } if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { aw->aw_nlevone = aw->aw_ahp.size; aw->aw_levtwo = NULL; } else { aw->aw_nlevone = (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; aw->aw_levtwo = mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); } aw->aw_levone = mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); aw->aw_levone_ndx = 0; aw->aw_levtwo_ndx = 0; mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), (uintptr_t)aw->aw_ahp.array_chunk); if (aw->aw_levtwo != NULL) { while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { aw->aw_levone_ndx++; if (aw->aw_levone_ndx == aw->aw_nlevone) { mdb_warn("corrupt anon; couldn't" "find ptr to lev two map"); goto out; } } mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), aw->aw_levone[aw->aw_levone_ndx]); } out: wsp->walk_data = aw; return (0); } int anon_walk_step(mdb_walk_state_t *wsp) { int status; anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; struct anon anon; uintptr_t anonptr; again: /* * Once we've walked through level one, we're done. */ if (aw->aw_levone_ndx == aw->aw_nlevone) return (WALK_DONE); if (aw->aw_levtwo == NULL) { anonptr = aw->aw_levone[aw->aw_levone_ndx]; aw->aw_levone_ndx++; } else { anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; aw->aw_levtwo_ndx++; if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { aw->aw_levtwo_ndx = 0; do { aw->aw_levone_ndx++; if (aw->aw_levone_ndx == aw->aw_nlevone) return (WALK_DONE); } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), aw->aw_levone[aw->aw_levone_ndx]); } } if (anonptr != NULL) { mdb_vread(&anon, sizeof (anon), anonptr); status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); } else goto again; return (status); } void anon_walk_fini(mdb_walk_state_t *wsp) { anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; if (aw->aw_levtwo != NULL) mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); mdb_free(aw, sizeof (anon_walk_data_t)); } /*ARGSUSED*/ int whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) { if ((uintptr_t)f->f_vnode == *target) { mdb_printf("file %p\n", addr); *target = NULL; } return (WALK_NEXT); } /*ARGSUSED*/ int whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) { uintptr_t t = *target; if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { mdb_warn("couldn't file walk proc %p", addr); return (WALK_ERR); } if (t == NULL) mdb_printf("%p\n", addr); return (WALK_NEXT); } /*ARGSUSED*/ int whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uintptr_t target = addr; if (!(flags & DCMD_ADDRSPEC) || addr == NULL) return (DCMD_USAGE); if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { mdb_warn("can't proc walk"); return (DCMD_ERR); } return (DCMD_OK); } typedef struct datafmt { char *hdr1; char *hdr2; char *dashes; char *fmt; } datafmt_t; static datafmt_t kmemfmt[] = { { "cache ", "name ", "-------------------------", "%-25s " }, { " buf", " size", "------", "%6u " }, { " buf", "in use", "------", "%6u " }, { " buf", " total", "------", "%6u " }, { " memory", " in use", "---------", "%9u " }, { " alloc", " succeed", "---------", "%9u " }, { "alloc", " fail", "-----", "%5u " }, { NULL, NULL, NULL, NULL } }; static datafmt_t vmemfmt[] = { { "vmem ", "name ", "-------------------------", "%-*s " }, { " memory", " in use", "---------", "%9llu " }, { " memory", " total", "----------", "%10llu " }, { " memory", " import", "---------", "%9llu " }, { " alloc", " succeed", "---------", "%9llu " }, { "alloc", " fail", "-----", "%5llu " }, { NULL, NULL, NULL, NULL } }; /*ARGSUSED*/ static int kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) { if (ccp->cc_rounds > 0) *avail += ccp->cc_rounds; if (ccp->cc_prounds > 0) *avail += ccp->cc_prounds; return (WALK_NEXT); } /*ARGSUSED*/ static int kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) { *alloc += ccp->cc_alloc; return (WALK_NEXT); } /*ARGSUSED*/ static int kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) { *avail += sp->slab_chunks - sp->slab_refcnt; return (WALK_NEXT); } typedef struct kmastat_vmem { uintptr_t kv_addr; struct kmastat_vmem *kv_next; int kv_meminuse; int kv_alloc; int kv_fail; } kmastat_vmem_t; static int kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) { kmastat_vmem_t *kv; datafmt_t *dfp = kmemfmt; int magsize; int avail, alloc, total; size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * cp->cache_slabsize; mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; magsize = kmem_get_magsize(cp); alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; avail = cp->cache_full.ml_total * magsize; total = cp->cache_buftotal; (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); for (kv = *kvp; kv != NULL; kv = kv->kv_next) { if (kv->kv_addr == (uintptr_t)cp->cache_arena) goto out; } kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); kv->kv_next = *kvp; kv->kv_addr = (uintptr_t)cp->cache_arena; *kvp = kv; out: kv->kv_meminuse += meminuse; kv->kv_alloc += alloc; kv->kv_fail += cp->cache_alloc_fail; mdb_printf((dfp++)->fmt, cp->cache_name); mdb_printf((dfp++)->fmt, cp->cache_bufsize); mdb_printf((dfp++)->fmt, total - avail); mdb_printf((dfp++)->fmt, total); mdb_printf((dfp++)->fmt, meminuse); mdb_printf((dfp++)->fmt, alloc); mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); mdb_printf("\n"); return (WALK_NEXT); } static int kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) { size_t len; while (kv != NULL && kv->kv_addr != addr) kv = kv->kv_next; if (kv == NULL || kv->kv_alloc == 0) return (WALK_NEXT); len = MIN(17, strlen(v->vm_name)); mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 17 - len, "", "", "", "", kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); return (WALK_NEXT); } /*ARGSUSED*/ static int kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) { datafmt_t *dfp = vmemfmt; const vmem_kstat_t *vkp = &v->vm_kstat; uintptr_t paddr; vmem_t parent; int ident = 0; for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { mdb_warn("couldn't trace %p's ancestry", addr); ident = 0; break; } paddr = (uintptr_t)parent.vm_source; } mdb_printf("%*s", ident, ""); mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); mdb_printf("\n"); return (WALK_NEXT); } /*ARGSUSED*/ int kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { kmastat_vmem_t *kv = NULL; datafmt_t *dfp; if (argc != 0) return (DCMD_USAGE); for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->hdr1); mdb_printf("\n"); for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->hdr2); mdb_printf("\n"); for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { mdb_warn("can't walk 'kmem_cache'"); return (DCMD_ERR); } for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { mdb_warn("can't walk 'vmem'"); return (DCMD_ERR); } for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); mdb_printf("\n"); for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->hdr1); mdb_printf("\n"); for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->hdr2); mdb_printf("\n"); for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { mdb_warn("can't walk 'vmem'"); return (DCMD_ERR); } for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); return (DCMD_OK); } /* * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made * up of a set of 'struct seg's. We could just scan each seg en masse, but * unfortunately, a few of the segs are both large and sparse, so we could * spend quite a bit of time scanning VAs which have no backing pages. * * So for the few very sparse segs, we skip the segment itself, and scan * the allocated vmem_segs in the vmem arena which manages that part of kas. * Currently, we do this for: * * SEG VMEM ARENA * kvseg heap_arena * kvseg32 heap32_arena * kvseg_core heap_core_arena * * In addition, we skip the segkpm segment in its entirety, since it is very * sparse, and contains no new kernel data. */ typedef struct kgrep_walk_data { kgrep_cb_func *kg_cb; void *kg_cbdata; uintptr_t kg_kvseg; uintptr_t kg_kvseg32; uintptr_t kg_kvseg_core; uintptr_t kg_segkpm; uintptr_t kg_heap_lp_base; uintptr_t kg_heap_lp_end; } kgrep_walk_data_t; static int kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) { uintptr_t base = (uintptr_t)seg->s_base; if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || addr == kg->kg_kvseg_core) return (WALK_NEXT); if ((uintptr_t)seg->s_ops == kg->kg_segkpm) return (WALK_NEXT); return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); } /*ARGSUSED*/ static int kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) { /* * skip large page heap address range - it is scanned by walking * allocated vmem_segs in the heap_lp_arena */ if (seg->vs_start == kg->kg_heap_lp_base && seg->vs_end == kg->kg_heap_lp_end) return (WALK_NEXT); return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); } /*ARGSUSED*/ static int kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) { return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); } static int kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) { mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; if (strcmp(vmem->vm_name, "heap") != 0 && strcmp(vmem->vm_name, "heap32") != 0 && strcmp(vmem->vm_name, "heap_core") != 0 && strcmp(vmem->vm_name, "heap_lp") != 0) return (WALK_NEXT); if (strcmp(vmem->vm_name, "heap_lp") == 0) walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); return (WALK_ERR); } return (WALK_NEXT); } int kgrep_subr(kgrep_cb_func *cb, void *cbdata) { GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; kgrep_walk_data_t kg; if (mdb_get_state() == MDB_STATE_RUNNING) { mdb_warn("kgrep can only be run on a system " "dump or under kmdb; see dumpadm(1M)\n"); return (DCMD_ERR); } if (mdb_lookup_by_name("kas", &kas) == -1) { mdb_warn("failed to locate 'kas' symbol\n"); return (DCMD_ERR); } if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { mdb_warn("failed to locate 'kvseg' symbol\n"); return (DCMD_ERR); } if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { mdb_warn("failed to locate 'kvseg32' symbol\n"); return (DCMD_ERR); } if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { mdb_warn("failed to locate 'kvseg_core' symbol\n"); return (DCMD_ERR); } if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { mdb_warn("failed to locate 'segkpm_ops' symbol\n"); return (DCMD_ERR); } if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { mdb_warn("failed to read 'heap_lp_base'\n"); return (DCMD_ERR); } if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { mdb_warn("failed to read 'heap_lp_end'\n"); return (DCMD_ERR); } kg.kg_cb = cb; kg.kg_cbdata = cbdata; kg.kg_kvseg = (uintptr_t)kvseg.st_value; kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; kg.kg_segkpm = (uintptr_t)segkpm.st_value; if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, &kg, kas.st_value) == -1) { mdb_warn("failed to walk kas segments"); return (DCMD_ERR); } if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { mdb_warn("failed to walk heap/heap32 vmem arenas"); return (DCMD_ERR); } return (DCMD_OK); } size_t kgrep_subr_pagesize(void) { return (PAGESIZE); } typedef struct file_walk_data { struct uf_entry *fw_flist; int fw_flistsz; int fw_ndx; int fw_nofiles; } file_walk_data_t; int file_walk_init(mdb_walk_state_t *wsp) { file_walk_data_t *fw; proc_t p; if (wsp->walk_addr == NULL) { mdb_warn("file walk doesn't support global walks\n"); return (WALK_ERR); } fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { mdb_free(fw, sizeof (file_walk_data_t)); mdb_warn("failed to read proc structure at %p", wsp->walk_addr); return (WALK_ERR); } if (p.p_user.u_finfo.fi_nfiles == 0) { mdb_free(fw, sizeof (file_walk_data_t)); return (WALK_DONE); } fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); if (mdb_vread(fw->fw_flist, fw->fw_flistsz, (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { mdb_warn("failed to read file array at %p", p.p_user.u_finfo.fi_list); mdb_free(fw->fw_flist, fw->fw_flistsz); mdb_free(fw, sizeof (file_walk_data_t)); return (WALK_ERR); } fw->fw_ndx = 0; wsp->walk_data = fw; return (WALK_NEXT); } int file_walk_step(mdb_walk_state_t *wsp) { file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; struct file file; uintptr_t fp; again: if (fw->fw_ndx == fw->fw_nofiles) return (WALK_DONE); if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) goto again; (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); } int allfile_walk_step(mdb_walk_state_t *wsp) { file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; struct file file; uintptr_t fp; if (fw->fw_ndx == fw->fw_nofiles) return (WALK_DONE); if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); else bzero(&file, sizeof (file)); return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); } void file_walk_fini(mdb_walk_state_t *wsp) { file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; mdb_free(fw->fw_flist, fw->fw_flistsz); mdb_free(fw, sizeof (file_walk_data_t)); } int port_walk_init(mdb_walk_state_t *wsp) { if (wsp->walk_addr == NULL) { mdb_warn("port walk doesn't support global walks\n"); return (WALK_ERR); } if (mdb_layered_walk("file", wsp) == -1) { mdb_warn("couldn't walk 'file'"); return (WALK_ERR); } return (WALK_NEXT); } int port_walk_step(mdb_walk_state_t *wsp) { struct vnode vn; uintptr_t vp; uintptr_t pp; struct port port; vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; if (mdb_vread(&vn, sizeof (vn), vp) == -1) { mdb_warn("failed to read vnode_t at %p", vp); return (WALK_ERR); } if (vn.v_type != VPORT) return (WALK_NEXT); pp = (uintptr_t)vn.v_data; if (mdb_vread(&port, sizeof (port), pp) == -1) { mdb_warn("failed to read port_t at %p", pp); return (WALK_ERR); } return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); } typedef struct portev_walk_data { list_node_t *pev_node; list_node_t *pev_last; size_t pev_offset; } portev_walk_data_t; int portev_walk_init(mdb_walk_state_t *wsp) { portev_walk_data_t *pevd; struct port port; struct vnode vn; struct list *list; uintptr_t vp; if (wsp->walk_addr == NULL) { mdb_warn("portev walk doesn't support global walks\n"); return (WALK_ERR); } pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { mdb_free(pevd, sizeof (portev_walk_data_t)); mdb_warn("failed to read port structure at %p", wsp->walk_addr); return (WALK_ERR); } vp = (uintptr_t)port.port_vnode; if (mdb_vread(&vn, sizeof (vn), vp) == -1) { mdb_free(pevd, sizeof (portev_walk_data_t)); mdb_warn("failed to read vnode_t at %p", vp); return (WALK_ERR); } if (vn.v_type != VPORT) { mdb_free(pevd, sizeof (portev_walk_data_t)); mdb_warn("input address (%p) does not point to an event port", wsp->walk_addr); return (WALK_ERR); } if (port.port_queue.portq_nent == 0) { mdb_free(pevd, sizeof (portev_walk_data_t)); return (WALK_DONE); } list = &port.port_queue.portq_list; pevd->pev_offset = list->list_offset; pevd->pev_last = list->list_head.list_prev; pevd->pev_node = list->list_head.list_next; wsp->walk_data = pevd; return (WALK_NEXT); } int portev_walk_step(mdb_walk_state_t *wsp) { portev_walk_data_t *pevd; struct port_kevent ev; uintptr_t evp; pevd = (portev_walk_data_t *)wsp->walk_data; if (pevd->pev_last == NULL) return (WALK_DONE); if (pevd->pev_node == pevd->pev_last) pevd->pev_last = NULL; /* last round */ evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); if (mdb_vread(&ev, sizeof (ev), evp) == -1) { mdb_warn("failed to read port_kevent at %p", evp); return (WALK_DONE); } pevd->pev_node = ev.portkev_node.list_next; return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); } void portev_walk_fini(mdb_walk_state_t *wsp) { portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; if (pevd != NULL) mdb_free(pevd, sizeof (portev_walk_data_t)); } typedef struct proc_walk_data { uintptr_t *pw_stack; int pw_depth; int pw_max; } proc_walk_data_t; int proc_walk_init(mdb_walk_state_t *wsp) { GElf_Sym sym; proc_walk_data_t *pw; if (wsp->walk_addr == NULL) { if (mdb_lookup_by_name("p0", &sym) == -1) { mdb_warn("failed to read 'practive'"); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)sym.st_value; } pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); if (mdb_readvar(&pw->pw_max, "nproc") == -1) { mdb_warn("failed to read 'nproc'"); mdb_free(pw, sizeof (pw)); return (WALK_ERR); } pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); wsp->walk_data = pw; return (WALK_NEXT); } int proc_walk_step(mdb_walk_state_t *wsp) { proc_walk_data_t *pw = wsp->walk_data; uintptr_t addr = wsp->walk_addr; uintptr_t cld, sib; int status; proc_t pr; if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { mdb_warn("failed to read proc at %p", addr); return (WALK_DONE); } cld = (uintptr_t)pr.p_child; sib = (uintptr_t)pr.p_sibling; if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { pw->pw_depth--; goto sib; } status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); if (status != WALK_NEXT) return (status); if ((wsp->walk_addr = cld) != NULL) { if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { mdb_warn("proc %p has invalid p_child %p; skipping\n", addr, cld); goto sib; } pw->pw_stack[pw->pw_depth++] = addr; if (pw->pw_depth == pw->pw_max) { mdb_warn("depth %d exceeds max depth; try again\n", pw->pw_depth); return (WALK_DONE); } return (WALK_NEXT); } sib: /* * We know that p0 has no siblings, and if another starting proc * was given, we don't want to walk its siblings anyway. */ if (pw->pw_depth == 0) return (WALK_DONE); if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { mdb_warn("proc %p has invalid p_sibling %p; skipping\n", addr, sib); sib = NULL; } if ((wsp->walk_addr = sib) == NULL) { if (pw->pw_depth > 0) { wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; return (WALK_NEXT); } return (WALK_DONE); } return (WALK_NEXT); } void proc_walk_fini(mdb_walk_state_t *wsp) { proc_walk_data_t *pw = wsp->walk_data; mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); mdb_free(pw, sizeof (proc_walk_data_t)); } int task_walk_init(mdb_walk_state_t *wsp) { task_t task; if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { mdb_warn("failed to read task at %p", wsp->walk_addr); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)task.tk_memb_list; wsp->walk_data = task.tk_memb_list; return (WALK_NEXT); } int task_walk_step(mdb_walk_state_t *wsp) { proc_t proc; int status; if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { mdb_warn("failed to read proc at %p", wsp->walk_addr); return (WALK_DONE); } status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); if (proc.p_tasknext == wsp->walk_data) return (WALK_DONE); wsp->walk_addr = (uintptr_t)proc.p_tasknext; return (status); } int project_walk_init(mdb_walk_state_t *wsp) { if (wsp->walk_addr == NULL) { if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { mdb_warn("failed to read 'proj0p'"); return (WALK_ERR); } } wsp->walk_data = (void *)wsp->walk_addr; return (WALK_NEXT); } int project_walk_step(mdb_walk_state_t *wsp) { uintptr_t addr = wsp->walk_addr; kproject_t pj; int status; if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { mdb_warn("failed to read project at %p", addr); return (WALK_DONE); } status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); if (status != WALK_NEXT) return (status); wsp->walk_addr = (uintptr_t)pj.kpj_next; if ((void *)wsp->walk_addr == wsp->walk_data) return (WALK_DONE); return (WALK_NEXT); } static int generic_walk_step(mdb_walk_state_t *wsp) { return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, wsp->walk_cbdata)); } struct aw_info { void *aw_buff; /* buffer to hold the tree's data structure */ avl_tree_t aw_tree; /* copy of avl_tree_t being walked */ }; /* * common code used to find the addr of the the leftmost child below * an AVL node */ static uintptr_t avl_leftmostchild(uintptr_t addr, void * buff, size_t offset, size_t size) { avl_node_t *node = (avl_node_t *)((uintptr_t)buff + offset); for (;;) { addr -= offset; if (mdb_vread(buff, size, addr) == -1) { mdb_warn("read of avl_node_t failed: %p", addr); return ((uintptr_t)-1L); } if (node->avl_child[0] == NULL) break; addr = (uintptr_t)node->avl_child[0]; } return (addr); } /* * initialize a forward walk thru an avl tree. */ int avl_walk_init(mdb_walk_state_t *wsp) { struct aw_info *aw; avl_tree_t *tree; uintptr_t addr; /* * allocate the AVL walk data */ wsp->walk_data = aw = mdb_zalloc(sizeof (struct aw_info), UM_SLEEP); /* * get an mdb copy of the avl_tree_t being walked */ tree = &aw->aw_tree; if (mdb_vread(tree, sizeof (avl_tree_t), wsp->walk_addr) == -1) { mdb_warn("read of avl_tree_t failed: %p", wsp->walk_addr); goto error; } if (tree->avl_size < tree->avl_offset + sizeof (avl_node_t)) { mdb_warn("invalid avl_tree_t at %p, avl_size:%d, avl_offset:%d", wsp->walk_addr, tree->avl_size, tree->avl_offset); goto error; } /* * allocate a buffer to hold the mdb copy of tree's structs * "node" always points at the avl_node_t field inside the struct */ aw->aw_buff = mdb_zalloc(tree->avl_size, UM_SLEEP); /* * get the first avl_node_t address, use same algorithm * as avl_start() -- leftmost child in tree from root */ addr = (uintptr_t)tree->avl_root; if (addr == NULL) { wsp->walk_addr = NULL; return (WALK_NEXT); } addr = avl_leftmostchild(addr, aw->aw_buff, tree->avl_offset, tree->avl_size); if (addr == (uintptr_t)-1L) goto error; wsp->walk_addr = addr; return (WALK_NEXT); error: if (aw->aw_buff != NULL) mdb_free(aw->aw_buff, sizeof (tree->avl_size)); mdb_free(aw, sizeof (struct aw_info)); return (WALK_ERR); } /* * At each step, visit (callback) the current node, then move to the next * in the AVL tree. Uses the same algorithm as avl_walk(). */ int avl_walk_step(mdb_walk_state_t *wsp) { struct aw_info *aw; size_t offset; size_t size; uintptr_t addr; avl_node_t *node; int status; int was_child; /* * don't walk past the end of the tree! */ addr = wsp->walk_addr; if (addr == NULL) return (WALK_DONE); aw = (struct aw_info *)wsp->walk_data; size = aw->aw_tree.avl_size; offset = aw->aw_tree.avl_offset; node = (avl_node_t *)((uintptr_t)aw->aw_buff + offset); /* * must read the current node for the call back to use */ if (mdb_vread(aw->aw_buff, size, addr) == -1) { mdb_warn("read of avl_node_t failed: %p", addr); return (WALK_ERR); } /* * do the call back */ status = wsp->walk_callback(addr, aw->aw_buff, wsp->walk_cbdata); if (status != WALK_NEXT) return (status); /* * move to the next node.... * note we read in new nodes, so the pointer to the buffer is fixed */ /* * if the node has a right child then go to it and then all the way * thru as many left children as possible */ addr = (uintptr_t)node->avl_child[1]; if (addr != NULL) { addr = avl_leftmostchild(addr, aw->aw_buff, offset, size); if (addr == (uintptr_t)-1L) return (WALK_ERR); /* * othewise return to parent nodes, stopping if we ever return from * a left child */ } else { for (;;) { was_child = AVL_XCHILD(node); addr = (uintptr_t)AVL_XPARENT(node); if (addr == NULL) break; addr -= offset; if (was_child == 0) /* stop on return from left child */ break; if (mdb_vread(aw->aw_buff, size, addr) == -1) { mdb_warn("read of avl_node_t failed: %p", addr); return (WALK_ERR); } } } wsp->walk_addr = addr; return (WALK_NEXT); } /* * Release the memory allocated for the walk */ void avl_walk_fini(mdb_walk_state_t *wsp) { struct aw_info *aw; aw = (struct aw_info *)wsp->walk_data; if (aw == NULL) return; if (aw->aw_buff != NULL) mdb_free(aw->aw_buff, aw->aw_tree.avl_size); mdb_free(aw, sizeof (struct aw_info)); } int seg_walk_init(mdb_walk_state_t *wsp) { if (wsp->walk_addr == NULL) { mdb_warn("seg walk must begin at struct as *\n"); return (WALK_ERR); } /* * this is really just a wrapper to AVL tree walk */ wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; return (avl_walk_init(wsp)); } static int cpu_walk_cmp(const void *l, const void *r) { uintptr_t lhs = *((uintptr_t *)l); uintptr_t rhs = *((uintptr_t *)r); cpu_t lcpu, rcpu; (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); if (lcpu.cpu_id < rcpu.cpu_id) return (-1); if (lcpu.cpu_id > rcpu.cpu_id) return (1); return (0); } typedef struct cpu_walk { uintptr_t *cw_array; int cw_ndx; } cpu_walk_t; int cpu_walk_init(mdb_walk_state_t *wsp) { cpu_walk_t *cw; int max_ncpus, i = 0; uintptr_t current, first; cpu_t cpu, panic_cpu; uintptr_t panicstr, addr; GElf_Sym sym; cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { mdb_warn("failed to read 'max_ncpus'"); return (WALK_ERR); } if (mdb_readvar(&panicstr, "panicstr") == -1) { mdb_warn("failed to read 'panicstr'"); return (WALK_ERR); } if (panicstr != NULL) { if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { mdb_warn("failed to find 'panic_cpu'"); return (WALK_ERR); } addr = (uintptr_t)sym.st_value; if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { mdb_warn("failed to read 'panic_cpu'"); return (WALK_ERR); } } /* * Unfortunately, there is no platform-independent way to walk * CPUs in ID order. We therefore loop through in cpu_next order, * building an array of CPU pointers which will subsequently be * sorted. */ cw->cw_array = mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); if (mdb_readvar(&first, "cpu_list") == -1) { mdb_warn("failed to read 'cpu_list'"); return (WALK_ERR); } current = first; do { if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { mdb_warn("failed to read cpu at %p", current); return (WALK_ERR); } if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { cw->cw_array[i++] = addr; } else { cw->cw_array[i++] = current; } } while ((current = (uintptr_t)cpu.cpu_next) != first); qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); wsp->walk_data = cw; return (WALK_NEXT); } int cpu_walk_step(mdb_walk_state_t *wsp) { cpu_walk_t *cw = wsp->walk_data; cpu_t cpu; uintptr_t addr = cw->cw_array[cw->cw_ndx++]; if (addr == NULL) return (WALK_DONE); if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { mdb_warn("failed to read cpu at %p", addr); return (WALK_DONE); } return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); } typedef struct cpuinfo_data { intptr_t cid_cpu; uintptr_t cid_lbolt; uintptr_t **cid_ithr; char cid_print_head; char cid_print_thr; char cid_print_ithr; char cid_print_flags; } cpuinfo_data_t; int cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) { cpu_t c; int id; uint8_t pil; if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) return (WALK_NEXT); if (thr->t_bound_cpu == NULL) { mdb_warn("thr %p is intr thread w/out a CPU\n", addr); return (WALK_NEXT); } (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); if ((id = c.cpu_id) >= NCPU) { mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", thr->t_bound_cpu, id, NCPU); return (WALK_NEXT); } if ((pil = thr->t_pil) >= NINTR) { mdb_warn("thread %p has pil (%d) greater than %d\n", addr, pil, NINTR); return (WALK_NEXT); } if (cid->cid_ithr[id][pil] != NULL) { mdb_warn("CPU %d has multiple threads at pil %d (at least " "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); return (WALK_NEXT); } cid->cid_ithr[id][pil] = addr; return (WALK_NEXT); } #define CPUINFO_IDWIDTH 3 #define CPUINFO_FLAGWIDTH 9 #ifdef _LP64 #if defined(__amd64) #define CPUINFO_TWIDTH 16 #define CPUINFO_CPUWIDTH 16 #else #define CPUINFO_CPUWIDTH 11 #define CPUINFO_TWIDTH 11 #endif #else #define CPUINFO_CPUWIDTH 8 #define CPUINFO_TWIDTH 8 #endif #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) #define CPUINFO_ITHRDELT 4 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ flagline < nflaglines ? flagbuf[flagline++] : "") int cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) { kthread_t t; disp_t disp; proc_t p; uintptr_t pinned; char **flagbuf; int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; const char *flags[] = { "RUNNING", "READY", "QUIESCED", "EXISTS", "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", "SPARE", "FAULTED", NULL }; if (cid->cid_cpu != -1) { if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) return (WALK_NEXT); /* * Set cid_cpu to -1 to indicate that we found a matching CPU. */ cid->cid_cpu = -1; rval = WALK_DONE; } if (cid->cid_print_head) { mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", "PROC"); cid->cid_print_head = FALSE; } bspl = cpu->cpu_base_spl; if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); return (WALK_ERR); } mdb_printf("%3d %0*p %3x %4d %4d ", cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, disp.disp_nrunnable, bspl); if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { mdb_printf("%3d ", t.t_pri); } else { mdb_printf("%3s ", "-"); } mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", cpu->cpu_kprunrun ? "yes" : "no"); if (cpu->cpu_last_swtch) { clock_t lbolt; if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); return (WALK_ERR); } mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); } else { mdb_printf("%-6s ", "-"); } mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); if (cpu->cpu_thread == cpu->cpu_idle_thread) mdb_printf(" (idle)\n"); else if (cpu->cpu_thread == NULL) mdb_printf(" -\n"); else { if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { mdb_printf(" %s\n", p.p_user.u_comm); } else { mdb_printf(" ?\n"); } } flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); if (cid->cid_print_flags) { int first = 1, i, j, k; char *s; cid->cid_print_head = TRUE; for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { if (!(cpu->cpu_flags & i)) continue; if (first) { s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s|%*s", CPUINFO_FLAGDELT, "", CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); flagbuf[nflaglines++] = s; } s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], first ? "<--+" : ""); for (k = strlen(s); k < CPUINFO_THRDELT; k++) s[k] = ' '; s[k] = '\0'; flagbuf[nflaglines++] = s; first = 0; } } if (cid->cid_print_ithr) { int i, found_one = FALSE; int print_thr = disp.disp_nrunnable && cid->cid_print_thr; for (i = NINTR - 1; i >= 0; i--) { uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; if (iaddr == NULL) continue; if (!found_one) { found_one = TRUE; CPUINFO_INDENT; mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', CPUINFO_ITHRDELT, ""); CPUINFO_INDENT; mdb_printf("%c%*s+--> %3s %s\n", print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "PIL", "THREAD"); } if (mdb_vread(&t, sizeof (t), iaddr) == -1) { mdb_warn("failed to read kthread_t at %p", iaddr); return (WALK_ERR); } CPUINFO_INDENT; mdb_printf("%c%*s %3d %0*p\n", print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", t.t_pil, CPUINFO_TWIDTH, iaddr); pinned = (uintptr_t)t.t_intr; } if (found_one && pinned != NULL) { cid->cid_print_head = TRUE; (void) strcpy(p.p_user.u_comm, "?"); if (mdb_vread(&t, sizeof (t), (uintptr_t)pinned) == -1) { mdb_warn("failed to read kthread_t at %p", pinned); return (WALK_ERR); } if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) == -1) { mdb_warn("failed to read proc_t at %p", t.t_procp); return (WALK_ERR); } CPUINFO_INDENT; mdb_printf("%c%*s %3s %0*p %s\n", print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", CPUINFO_TWIDTH, pinned, pinned == (uintptr_t)cpu->cpu_idle_thread ? "(idle)" : p.p_user.u_comm); } } if (disp.disp_nrunnable && cid->cid_print_thr) { dispq_t *dq; int i, npri = disp.disp_npri; dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); if (mdb_vread(dq, sizeof (dispq_t) * npri, (uintptr_t)disp.disp_q) == -1) { mdb_warn("failed to read dispq_t at %p", disp.disp_q); return (WALK_ERR); } CPUINFO_INDENT; mdb_printf("|\n"); CPUINFO_INDENT; mdb_printf("+--> %3s %-*s %s\n", "PRI", CPUINFO_TWIDTH, "THREAD", "PROC"); for (i = npri - 1; i >= 0; i--) { uintptr_t taddr = (uintptr_t)dq[i].dq_first; while (taddr != NULL) { if (mdb_vread(&t, sizeof (t), taddr) == -1) { mdb_warn("failed to read kthread_t " "at %p", taddr); return (WALK_ERR); } if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) == -1) { mdb_warn("failed to read proc_t at %p", t.t_procp); return (WALK_ERR); } CPUINFO_INDENT; mdb_printf(" %3d %0*p %s\n", t.t_pri, CPUINFO_TWIDTH, taddr, p.p_user.u_comm); taddr = (uintptr_t)t.t_link; } } cid->cid_print_head = TRUE; } while (flagline < nflaglines) mdb_printf("%s\n", flagbuf[flagline++]); if (cid->cid_print_head) mdb_printf("\n"); return (rval); } int cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uint_t verbose = FALSE; cpuinfo_data_t cid; GElf_Sym sym; clock_t lbolt; cid.cid_print_ithr = FALSE; cid.cid_print_thr = FALSE; cid.cid_print_flags = FALSE; cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; cid.cid_cpu = -1; if (flags & DCMD_ADDRSPEC) cid.cid_cpu = addr; if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) return (DCMD_USAGE); if (verbose) { cid.cid_print_ithr = TRUE; cid.cid_print_thr = TRUE; cid.cid_print_flags = TRUE; cid.cid_print_head = TRUE; } if (cid.cid_print_ithr) { int i; cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) * NCPU, UM_SLEEP | UM_GC); for (i = 0; i < NCPU; i++) cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * NINTR, UM_SLEEP | UM_GC); if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, &cid) == -1) { mdb_warn("couldn't walk thread"); return (DCMD_ERR); } } if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { mdb_warn("failed to find panic_lbolt"); return (DCMD_ERR); } cid.cid_lbolt = (uintptr_t)sym.st_value; if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { mdb_warn("failed to read panic_lbolt"); return (DCMD_ERR); } if (lbolt == 0) { if (mdb_lookup_by_name("lbolt", &sym) == -1) { mdb_warn("failed to find lbolt"); return (DCMD_ERR); } cid.cid_lbolt = (uintptr_t)sym.st_value; } if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { mdb_warn("can't walk cpus"); return (DCMD_ERR); } if (cid.cid_cpu != -1) { /* * We didn't find this CPU when we walked through the CPUs * (i.e. the address specified doesn't show up in the "cpu" * walk). However, the specified address may still correspond * to a valid cpu_t (for example, if the specified address is * the actual panicking cpu_t and not the cached panic_cpu). * Point is: even if we didn't find it, we still want to try * to print the specified address as a cpu_t. */ cpu_t cpu; if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { mdb_warn("%p is neither a valid CPU ID nor a " "valid cpu_t address\n", cid.cid_cpu); return (DCMD_ERR); } (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); } return (DCMD_OK); } /*ARGSUSED*/ int flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int i; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); for (i = 0; i < sizeof (addr) * NBBY; i++) mdb_printf("%p\n", addr ^ (1UL << i)); return (DCMD_OK); } /* * Grumble, grumble. */ #define SMAP_HASHFUNC(vp, off) \ ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ ((off) >> MAXBSHIFT)) & smd_hashmsk) int vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { long smd_hashmsk; int hash; uintptr_t offset = 0; struct smap smp; uintptr_t saddr, kaddr; uintptr_t smd_hash, smd_smap; struct seg seg; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { mdb_warn("failed to read smd_hashmsk"); return (DCMD_ERR); } if (mdb_readvar(&smd_hash, "smd_hash") == -1) { mdb_warn("failed to read smd_hash"); return (DCMD_ERR); } if (mdb_readvar(&smd_smap, "smd_smap") == -1) { mdb_warn("failed to read smd_hash"); return (DCMD_ERR); } if (mdb_readvar(&kaddr, "segkmap") == -1) { mdb_warn("failed to read segkmap"); return (DCMD_ERR); } if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { mdb_warn("failed to read segkmap at %p", kaddr); return (DCMD_ERR); } if (argc != 0) { const mdb_arg_t *arg = &argv[0]; if (arg->a_type == MDB_TYPE_IMMEDIATE) offset = arg->a_un.a_val; else offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); } hash = SMAP_HASHFUNC(addr, offset); if (mdb_vread(&saddr, sizeof (saddr), smd_hash + hash * sizeof (uintptr_t)) == -1) { mdb_warn("couldn't read smap at %p", smd_hash + hash * sizeof (uintptr_t)); return (DCMD_ERR); } do { if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { mdb_warn("couldn't read smap at %p", saddr); return (DCMD_ERR); } if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", addr, offset, saddr, ((saddr - smd_smap) / sizeof (smp)) * MAXBSIZE + seg.s_base); return (DCMD_OK); } saddr = (uintptr_t)smp.sm_hash; } while (saddr != NULL); mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); return (DCMD_OK); } /*ARGSUSED*/ int addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uintptr_t kaddr; struct seg seg; struct segmap_data sd; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_readvar(&kaddr, "segkmap") == -1) { mdb_warn("failed to read segkmap"); return (DCMD_ERR); } if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { mdb_warn("failed to read segkmap at %p", kaddr); return (DCMD_ERR); } if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { mdb_warn("failed to read segmap_data at %p", seg.s_data); return (DCMD_ERR); } mdb_printf("%p is smap %p\n", addr, ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * sizeof (struct smap) + (uintptr_t)sd.smd_sm); return (DCMD_OK); } int as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) { if (p->p_as == *asp) mdb_printf("%p\n", addr); return (WALK_NEXT); } /*ARGSUSED*/ int as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { if (!(flags & DCMD_ADDRSPEC) || argc != 0) return (DCMD_USAGE); if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { mdb_warn("failed to walk proc"); return (DCMD_ERR); } return (DCMD_OK); } /*ARGSUSED*/ int ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) { proc_t parent; int ident = 0; uintptr_t paddr; for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { mdb_vread(&parent, sizeof (parent), paddr); paddr = (uintptr_t)parent.p_parent; } mdb_inc_indent(ident); mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); mdb_dec_indent(ident); return (WALK_NEXT); } void ptree_ancestors(uintptr_t addr, uintptr_t start) { proc_t p; if (mdb_vread(&p, sizeof (p), addr) == -1) { mdb_warn("couldn't read ancestor at %p", addr); return; } if (p.p_parent != NULL) ptree_ancestors((uintptr_t)p.p_parent, start); if (addr != start) (void) ptree_walk(addr, &p, NULL); } /*ARGSUSED*/ int ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { if (!(flags & DCMD_ADDRSPEC)) addr = NULL; else ptree_ancestors(addr, addr); if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { mdb_warn("couldn't walk 'proc'"); return (DCMD_ERR); } return (DCMD_OK); } /*ARGSUSED*/ static int fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int fdnum; const mdb_arg_t *argp = &argv[0]; proc_t p; uf_entry_t uf; if ((flags & DCMD_ADDRSPEC) == 0) { mdb_warn("fd doesn't give global information\n"); return (DCMD_ERR); } if (argc != 1) return (DCMD_USAGE); if (argp->a_type == MDB_TYPE_IMMEDIATE) fdnum = argp->a_un.a_val; else fdnum = mdb_strtoull(argp->a_un.a_str); if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { mdb_warn("couldn't read proc_t at %p", addr); return (DCMD_ERR); } if (fdnum > p.p_user.u_finfo.fi_nfiles) { mdb_warn("process %p only has %d files open.\n", addr, p.p_user.u_finfo.fi_nfiles); return (DCMD_ERR); } if (mdb_vread(&uf, sizeof (uf_entry_t), (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { mdb_warn("couldn't read uf_entry_t at %p", &p.p_user.u_finfo.fi_list[fdnum]); return (DCMD_ERR); } mdb_printf("%p\n", uf.uf_file); return (DCMD_OK); } /*ARGSUSED*/ static int pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { pid_t pid = (pid_t)addr; if (argc != 0) return (DCMD_USAGE); if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { mdb_warn("PID 0t%d not found\n", pid); return (DCMD_ERR); } mdb_printf("%p\n", addr); return (DCMD_OK); } static char *sysfile_cmd[] = { "exclude:", "include:", "forceload:", "rootdev:", "rootfs:", "swapdev:", "swapfs:", "moddir:", "set", "unknown", }; static char *sysfile_ops[] = { "", "=", "&", "|" }; /*ARGSUSED*/ static int sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) { if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { *target = NULL; return (WALK_DONE); } return (WALK_NEXT); } /*ARGSUSED*/ static int sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { struct sysparam *sysp, sys; char var[256]; char modname[256]; char val[256]; char strval[256]; vmem_t *mod_sysfile_arena; void *straddr; if (mdb_readvar(&sysp, "sysparam_hd") == -1) { mdb_warn("failed to read sysparam_hd"); return (DCMD_ERR); } if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { mdb_warn("failed to read mod_sysfile_arena"); return (DCMD_ERR); } while (sysp != NULL) { var[0] = '\0'; val[0] = '\0'; modname[0] = '\0'; if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { mdb_warn("couldn't read sysparam %p", sysp); return (DCMD_ERR); } if (sys.sys_modnam != NULL && mdb_readstr(modname, 256, (uintptr_t)sys.sys_modnam) == -1) { mdb_warn("couldn't read modname in %p", sysp); return (DCMD_ERR); } if (sys.sys_ptr != NULL && mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { mdb_warn("couldn't read ptr in %p", sysp); return (DCMD_ERR); } if (sys.sys_op != SETOP_NONE) { /* * Is this an int or a string? We determine this * by checking whether straddr is contained in * mod_sysfile_arena. If so, the walker will set * straddr to NULL. */ straddr = (void *)(uintptr_t)sys.sys_info; if (sys.sys_op == SETOP_ASSIGN && sys.sys_info != 0 && mdb_pwalk("vmem_seg", (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, (uintptr_t)mod_sysfile_arena) == 0 && straddr == NULL && mdb_readstr(strval, 256, (uintptr_t)sys.sys_info) != -1) { (void) mdb_snprintf(val, sizeof (val), "\"%s\"", strval); } else { (void) mdb_snprintf(val, sizeof (val), "0x%llx [0t%llu]", sys.sys_info, sys.sys_info); } } mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], modname, modname[0] == '\0' ? "" : ":", var, sysfile_ops[sys.sys_op], val); sysp = sys.sys_next; } return (DCMD_OK); } /* * Dump a taskq_ent_t given its address. */ /*ARGSUSED*/ int taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { taskq_ent_t taskq_ent; GElf_Sym sym; char buf[MDB_SYM_NAMLEN+1]; if (!(flags & DCMD_ADDRSPEC)) { mdb_warn("expected explicit taskq_ent_t address before ::\n"); return (DCMD_USAGE); } if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { mdb_warn("failed to read taskq_ent_t at %p", addr); return (DCMD_ERR); } if (DCMD_HDRSPEC(flags)) { mdb_printf("%%-?s %-?s %-s%\n", "ENTRY", "ARG", "FUNCTION"); } if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, buf, sizeof (buf), &sym) == -1) { (void) strcpy(buf, "????"); } mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); return (DCMD_OK); } /* * Given the address of the (taskq_t) task queue head, walk the queue listing * the address of every taskq_ent_t. */ int taskq_walk_init(mdb_walk_state_t *wsp) { taskq_t tq_head; if (wsp->walk_addr == NULL) { mdb_warn("start address required\n"); return (WALK_ERR); } /* * Save the address of the list head entry. This terminates the list. */ wsp->walk_data = (void *) ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); /* * Read in taskq head, set walk_addr to point to first taskq_ent_t. */ if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == -1) { mdb_warn("failed to read taskq list head at %p", wsp->walk_addr); } wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; /* * Check for null list (next=head) */ if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { return (WALK_DONE); } return (WALK_NEXT); } int taskq_walk_step(mdb_walk_state_t *wsp) { taskq_ent_t tq_ent; int status; if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == -1) { mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); return (DCMD_ERR); } status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, wsp->walk_cbdata); wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; /* Check if we're at the last element (next=head) */ if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { return (WALK_DONE); } return (status); } int didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) { if (*didp == thr->t_did) { mdb_printf("%p\n", addr); return (WALK_DONE); } else return (WALK_NEXT); } /*ARGSUSED*/ int did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { const mdb_arg_t *argp = &argv[0]; kt_did_t did; if (argc != 1) return (DCMD_USAGE); did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { mdb_warn("failed to walk thread"); return (DCMD_ERR); } return (DCMD_OK); } static int errorq_walk_init(mdb_walk_state_t *wsp) { if (wsp->walk_addr == NULL && mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { mdb_warn("failed to read errorq_list"); return (WALK_ERR); } return (WALK_NEXT); } static int errorq_walk_step(mdb_walk_state_t *wsp) { uintptr_t addr = wsp->walk_addr; errorq_t eq; if (addr == NULL) return (WALK_DONE); if (mdb_vread(&eq, sizeof (eq), addr) == -1) { mdb_warn("failed to read errorq at %p", addr); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)eq.eq_next; return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); } typedef struct eqd_walk_data { uintptr_t *eqd_stack; void *eqd_buf; ulong_t eqd_qpos; ulong_t eqd_qlen; size_t eqd_size; } eqd_walk_data_t; /* * In order to walk the list of pending error queue elements, we push the * addresses of the corresponding data buffers in to the eqd_stack array. * The error lists are in reverse chronological order when iterating using * eqe_prev, so we then pop things off the top in eqd_walk_step so that the * walker client gets addresses in order from oldest error to newest error. */ static void eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) { errorq_elem_t eqe; while (addr != NULL) { if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { mdb_warn("failed to read errorq element at %p", addr); break; } if (eqdp->eqd_qpos == eqdp->eqd_qlen) { mdb_warn("errorq is overfull -- more than %lu " "elems found\n", eqdp->eqd_qlen); break; } eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; addr = (uintptr_t)eqe.eqe_prev; } } static int eqd_walk_init(mdb_walk_state_t *wsp) { eqd_walk_data_t *eqdp; errorq_elem_t eqe, *addr; errorq_t eq; ulong_t i; if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { mdb_warn("failed to read errorq at %p", wsp->walk_addr); return (WALK_ERR); } if (eq.eq_ptail != NULL && mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { mdb_warn("failed to read errorq element at %p", eq.eq_ptail); return (WALK_ERR); } eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); wsp->walk_data = eqdp; eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); eqdp->eqd_qlen = eq.eq_qlen; eqdp->eqd_qpos = 0; eqdp->eqd_size = eq.eq_size; /* * The newest elements in the queue are on the pending list, so we * push those on to our stack first. */ eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); /* * If eq_ptail is set, it may point to a subset of the errors on the * pending list in the event a casptr() failed; if ptail's data is * already in our stack, NULL out eq_ptail and ignore it. */ if (eq.eq_ptail != NULL) { for (i = 0; i < eqdp->eqd_qpos; i++) { if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { eq.eq_ptail = NULL; break; } } } /* * If eq_phead is set, it has the processing list in order from oldest * to newest. Use this to recompute eq_ptail as best we can and then * we nicely fall into eqd_push_list() of eq_ptail below. */ for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) eq.eq_ptail = addr; /* * The oldest elements in the queue are on the processing list, subject * to machinations in the if-clauses above. Push any such elements. */ eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); return (WALK_NEXT); } static int eqd_walk_step(mdb_walk_state_t *wsp) { eqd_walk_data_t *eqdp = wsp->walk_data; uintptr_t addr; if (eqdp->eqd_qpos == 0) return (WALK_DONE); addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { mdb_warn("failed to read errorq data at %p", addr); return (WALK_ERR); } return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); } static void eqd_walk_fini(mdb_walk_state_t *wsp) { eqd_walk_data_t *eqdp = wsp->walk_data; mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); mdb_free(eqdp->eqd_buf, eqdp->eqd_size); mdb_free(eqdp, sizeof (eqd_walk_data_t)); } #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) static int errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int i; errorq_t eq; uint_t opt_v = FALSE; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { mdb_warn("can't walk 'errorq'"); return (DCMD_ERR); } return (DCMD_OK); } i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); argc -= i; argv += i; if (argc != 0) return (DCMD_USAGE); if (opt_v || DCMD_HDRSPEC(flags)) { mdb_printf("%%-11s %-16s %1s %1s %1s ", "ADDR", "NAME", "S", "V", "N"); if (!opt_v) { mdb_printf("%7s %7s %7s%\n", "ACCEPT", "DROP", "LOG"); } else { mdb_printf("%5s %6s %6s %3s %16s%\n", "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); } } if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { mdb_warn("failed to read errorq at %p", addr); return (DCMD_ERR); } mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); if (!opt_v) { mdb_printf("%7llu %7llu %7llu\n", EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); } else { mdb_printf("%5s %6lu %6lu %3u %a\n", " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); mdb_printf("%38s\n%41s" "%12s %llu\n" "%53s %llu\n" "%53s %llu\n" "%53s %llu\n" "%53s %llu\n" "%53s %llu\n" "%53s %llu\n" "%53s %llu\n\n", "|", "+-> ", "DISPATCHED", EQKSVAL(eq, eqk_dispatched), "DROPPED", EQKSVAL(eq, eqk_dropped), "LOGGED", EQKSVAL(eq, eqk_logged), "RESERVED", EQKSVAL(eq, eqk_reserved), "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), "COMMITTED", EQKSVAL(eq, eqk_committed), "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), "CANCELLED", EQKSVAL(eq, eqk_cancelled)); } return (DCMD_OK); } /*ARGSUSED*/ static int panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { cpu_t panic_cpu; kthread_t *panic_thread; void *panicbuf; panic_data_t *pd; int i, n; if (!mdb_prop_postmortem) { mdb_warn("panicinfo can only be run on a system " "dump; see dumpadm(1M)\n"); return (DCMD_ERR); } if (flags & DCMD_ADDRSPEC || argc != 0) return (DCMD_USAGE); if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) mdb_warn("failed to read 'panic_cpu'"); else mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); if (mdb_readvar(&panic_thread, "panic_thread") == -1) mdb_warn("failed to read 'panic_thread'"); else mdb_printf("%16s %?p\n", "thread", panic_thread); panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); pd = (panic_data_t *)panicbuf; if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || pd->pd_version != PANICBUFVERS) { mdb_warn("failed to read 'panicbuf'"); mdb_free(panicbuf, PANICBUFSIZE); return (DCMD_ERR); } mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); n = (pd->pd_msgoff - (sizeof (panic_data_t) - sizeof (panic_nv_t))) / sizeof (panic_nv_t); for (i = 0; i < n; i++) mdb_printf("%16s %?llx\n", pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); mdb_free(panicbuf, PANICBUFSIZE); return (DCMD_OK); } static const mdb_dcmd_t dcmds[] = { /* from genunix.c */ { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, { "as2proc", ":", "convert as to proc_t address", as2proc }, { "binding_hash_entry", ":", "print driver names hash table entry", binding_hash_entry }, { "callout", NULL, "print callout table", callout }, { "class", NULL, "print process scheduler classes", class }, { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, { "did2thread", "? kt_did", "find kernel thread for this id", did2thread }, { "errorq", "?[-v]", "display kernel error queues", errorq }, { "fd", ":[fd num]", "get a file pointer from an fd", fd }, { "flipone", ":", "the vik_rev_level 2 special", flipone }, { "lminfo", NULL, "print lock manager information", lminfo }, { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, { "panicinfo", NULL, "print panic information", panicinfo }, { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, { "pmap", ":[-q]", "print process memory map", pmap }, { "project", NULL, "display kernel project(s)", project }, { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, { "pgrep", "[-n | -o] pattern", "pattern match against all processes", pgrep }, { "ptree", NULL, "print process tree", ptree }, { "seg", ":", "print address space segment", seg }, { "sysevent", "?[-sv]", "print sysevent pending or sent queue", sysevent}, { "sysevent_channel", "?", "print sysevent channel database", sysevent_channel}, { "sysevent_class_list", ":", "print sysevent class list", sysevent_class_list}, { "sysevent_subclass_list", ":", "print sysevent subclass list", sysevent_subclass_list}, { "system", NULL, "print contents of /etc/system file", sysfile }, { "task", NULL, "display kernel task(s)", task }, { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, { "whereopen", ":", "given a vnode, dumps procs which have it open", whereopen }, /* from zone.c */ { "zone", "?", "display kernel zone(s)", zoneprt }, { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, /* from bio.c */ { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, /* from contract.c */ { "contract", "?", "display a contract", cmd_contract }, { "ctevent", ":", "display a contract event", cmd_ctevent }, { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, /* from cpupart.c */ { "cpupart", "?[-v]", "print cpu partition info", cpupart }, /* from cyclic.c */ { "cyccover", NULL, "dump cyclic coverage information", cyccover }, { "cycid", "?", "dump a cyclic id", cycid }, { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, { "cyclic", ":", "developer information", cyclic }, { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, /* from devinfo.c */ { "devbindings", "?[-qs] [device-name | major-num]", "print devinfo nodes bound to device-name or major-num", devbindings, devinfo_help }, { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, devinfo_help }, { "devinfo_audit", ":[-v]", "devinfo configuration audit record", devinfo_audit }, { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", devinfo_audit_log }, { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", devinfo_audit_node }, { "devinfo2driver", ":", "find driver name for this devinfo node", devinfo2driver }, { "devnames", "?[-vm] [num]", "print devnames array", devnames }, { "dev2major", "?", "convert dev_t to a major number", dev2major }, { "dev2minor", "?", "convert dev_t to a minor number", dev2minor }, { "devt", "?", "display a dev_t's major and minor numbers", devt }, { "major2name", "?", "convert major number to dev name", major2name }, { "minornodes", ":", "given a devinfo node, print its minor nodes", minornodes }, { "modctl2devinfo", ":", "given a modctl, list its devinfos", modctl2devinfo }, { "name2major", "", "convert dev name to major number", name2major }, { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, { "softstate", ":", "retrieve soft-state pointer", softstate }, { "devinfo_fm", ":", "devinfo fault managment configuration", devinfo_fm }, { "devinfo_fmce", ":", "devinfo fault managment cache entry", devinfo_fmce}, /* from findstack.c */ { "findstack", ":[-v]", "find kernel thread stack", findstack }, { "findstack_debug", NULL, "toggle findstack debugging", findstack_debug }, /* from kgrep.c + genunix.c */ { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep }, /* from kmem.c */ { "allocdby", ":", "given a thread, print its allocated buffers", allocdby }, { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, { "freedby", ":", "given a thread, print its freed buffers", freedby }, { "kmalog", "?[ fail | slab ]", "display kmem transaction log and stack traces", kmalog }, { "kmastat", NULL, "kernel memory allocator stats", kmastat }, { "kmausers", "?[-ef] [cache ...]", "current medium and large users " "of the kmem allocator", kmausers, kmausers_help }, { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, { "kmem_verify", "?", "check integrity of kmem-managed memory", kmem_verify }, { "vmem", "?", "print a vmem_t", vmem }, { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " "[-m minsize] [-M maxsize] [-t thread] [-T type]", "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, { "whatis", ":[-abiv]", "given an address, return information", whatis, whatis_help }, { "whatthread", ":[-v]", "print threads whose stack contains the " "given address", whatthread }, /* from ldi.c */ { "ldi_handle", "?[-i]", "display a layered driver handle", ldi_handle, ldi_handle_help }, { "ldi_ident", NULL, "display a layered driver identifier", ldi_ident, ldi_ident_help }, /* from leaky.c + leaky_subr.c */ { "findleaks", FINDLEAKS_USAGE, "search for potential kernel memory leaks", findleaks, findleaks_help }, /* from lgrp.c */ { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, /* from log.c */ { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, /* from memory.c */ { "page", "?", "display a summarized page_t", page }, { "memstat", NULL, "display memory usage summary", memstat }, { "memlist", "?[-iav]", "display a struct memlist", memlist }, { "swapinfo", "?", "display a struct swapinfo", swapinfof }, /* from mmd.c */ { "multidata", ":[-sv]", "display a summarized multidata_t", multidata }, { "pattbl", ":", "display a summarized multidata attribute table", pattbl }, { "pattr2multidata", ":", "print multidata pointer from pattr_t", pattr2multidata }, { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", pdesc2slab }, { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", slab2multidata }, /* from modhash.c */ { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", "display information about one or all mod_hash structures", modhash, modhash_help }, { "modent", ":[-k | -v | -t type]", "display information about a mod_hash_entry", modent, modent_help }, /* from net.c */ { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", mi }, { "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]", "show network statistics", netstat }, { "sonode", "?[-f inet | inet6 | unix | #] " "[-t stream | dgram | raw | #] [-p #]", "filter and display sonode", sonode }, /* from nvpair.c */ { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, nvpair_print }, /* from rctl.c */ { "rctl_dict", "?", "print systemwide default rctl definitions", rctl_dict }, { "rctl_list", ":[handle]", "print rctls for the given proc", rctl_list }, { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", rctl }, { "rctl_validate", ":[-v] [-n #]", "test resource control value " "sequence", rctl_validate }, /* from sobj.c */ { "rwlock", ":", "dump out a readers/writer lock", rwlock }, { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, mutex_help }, { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, { "turnstile", "?", "display a turnstile", turnstile }, /* from stream.c */ { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", "print an mblk", mblk_prt, mblk_help }, { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", mblk2dblk }, { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, { "q2rdq", ":", "print read queue for a given queue", q2rdq }, { "q2syncq", ":", "print syncq for a given queue", q2syncq }, { "q2stream", ":", "print stream pointer for a given queue", q2stream }, { "q2wrq", ":", "print write queue for a given queue", q2wrq }, { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", "filter and display STREAM queue", queue, queue_help }, { "stdata", ":[-q|v] [-f flag] [-F flag]", "filter and display STREAM head", stdata, stdata_help }, { "str2mate", ":", "print mate of this stream", str2mate }, { "str2wrq", ":", "print write queue of this stream", str2wrq }, { "stream", ":", "display STREAM", stream }, { "strftevent", ":", "print STREAMS flow trace event", strftevent }, { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", "filter and display STREAM sync queue", syncq, syncq_help }, { "syncq2q", ":", "print queue for a given syncq", syncq2q }, /* from thread.c */ { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, thread_help }, { "threadlist", "?[-v [count]]", "display threads and associated C stack traces", threadlist, threadlist_help }, /* from tsd.c */ { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, { "tsdtot", ":", "find thread with this tsd", tsdtot }, /* * typegraph does not work under kmdb, as it requires too much memory * for its internal data structures. */ #ifndef _KMDB /* from typegraph.c */ { "findlocks", ":", "find locks held by specified thread", findlocks }, { "findfalse", "?[-v]", "find potentially falsely shared structures", findfalse }, { "typegraph", NULL, "build type graph", typegraph }, { "istype", ":type", "manually set object type", istype }, { "notype", ":", "manually clear object type", notype }, { "whattype", ":", "determine object type", whattype }, #endif /* from vfs.c */ { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, { "pfiles", ":[-fp]", "print process file information", pfiles, pfiles_help }, { NULL } }; static const mdb_walker_t walkers[] = { /* from genunix.c */ { "avl", "given any avl_tree_t *, forward walk all entries in tree", avl_walk_init, avl_walk_step, avl_walk_fini }, { "anon", "given an amp, list of anon structures", anon_walk_init, anon_walk_step, anon_walk_fini }, { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, { "errorq", "walk list of system error queues", errorq_walk_init, errorq_walk_step, NULL }, { "errorq_data", "walk pending error queue data buffers", eqd_walk_init, eqd_walk_step, eqd_walk_fini }, { "allfile", "given a proc pointer, list all file pointers", file_walk_init, allfile_walk_step, file_walk_fini }, { "file", "given a proc pointer, list of open file pointers", file_walk_init, file_walk_step, file_walk_fini }, { "lock_descriptor", "walk lock_descriptor_t structures", ld_walk_init, ld_walk_step, NULL }, { "lock_graph", "walk lock graph", lg_walk_init, lg_walk_step, NULL }, { "port", "given a proc pointer, list of created event ports", port_walk_init, port_walk_step, NULL }, { "portev", "given a port pointer, list of events in the queue", portev_walk_init, portev_walk_step, portev_walk_fini }, { "proc", "list of active proc_t structures", proc_walk_init, proc_walk_step, proc_walk_fini }, { "projects", "walk a list of kernel projects", project_walk_init, project_walk_step, NULL }, { "seg", "given an as, list of segments", seg_walk_init, avl_walk_step, avl_walk_fini }, { "sysevent_pend", "walk sysevent pending queue", sysevent_pend_walk_init, sysevent_walk_step, sysevent_walk_fini}, { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, sysevent_walk_step, sysevent_walk_fini}, { "sysevent_channel", "walk sysevent channel subscriptions", sysevent_channel_walk_init, sysevent_channel_walk_step, sysevent_channel_walk_fini}, { "sysevent_class_list", "walk sysevent subscription's class list", sysevent_class_list_walk_init, sysevent_class_list_walk_step, sysevent_class_list_walk_fini}, { "sysevent_subclass_list", "walk sysevent subscription's subclass list", sysevent_subclass_list_walk_init, sysevent_subclass_list_walk_step, sysevent_subclass_list_walk_fini}, { "task", "given a task pointer, walk its processes", task_walk_init, task_walk_step, NULL }, { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", taskq_walk_init, taskq_walk_step, NULL, NULL }, /* from zone.c */ { "zone", "walk a list of kernel zones", zone_walk_init, zone_walk_step, NULL }, { "zsd", "walk list of zsd entries for a zone", zsd_walk_init, zsd_walk_step, NULL }, /* from bio.c */ { "buf", "walk the bio buf hash", buf_walk_init, buf_walk_step, buf_walk_fini }, /* from contract.c */ { "contract", "walk all contracts, or those of the specified type", ct_walk_init, generic_walk_step, NULL }, { "ct_event", "walk events on a contract event queue", ct_event_walk_init, generic_walk_step, NULL }, { "ct_listener", "walk contract event queue listeners", ct_listener_walk_init, generic_walk_step, NULL }, /* from cpupart.c */ { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, NULL }, { "cpupart_walk", "walk the set of cpu partitions", cpupart_walk_init, cpupart_walk_step, NULL }, /* from ctxop.c */ { "ctxop", "walk list of context ops on a thread", ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, /* from cyclic.c */ { "cyccpu", "walk per-CPU cyc_cpu structures", cyccpu_walk_init, cyccpu_walk_step, NULL }, { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", cycomni_walk_init, cycomni_walk_step, NULL }, { "cyctrace", "walk cyclic trace buffer", cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, /* from devinfo.c */ { "binding_hash", "walk all entries in binding hash table", binding_hash_walk_init, binding_hash_walk_step, NULL }, { "devinfo", "walk devinfo tree or subtree", devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, { "devinfo_audit_log", "walk devinfo audit system-wide log", devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, devinfo_audit_log_walk_fini}, { "devinfo_audit_node", "walk per-devinfo audit history", devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, devinfo_audit_node_walk_fini}, { "devinfo_children", "walk children of devinfo node", devinfo_children_walk_init, devinfo_children_walk_step, devinfo_children_walk_fini }, { "devinfo_parents", "walk ancestors of devinfo node", devinfo_parents_walk_init, devinfo_parents_walk_step, devinfo_parents_walk_fini }, { "devinfo_siblings", "walk siblings of devinfo node", devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, { "devi_next", "walk devinfo list", NULL, devi_next_walk_step, NULL }, { "devnames", "walk devnames array", devnames_walk_init, devnames_walk_step, devnames_walk_fini }, { "minornode", "given a devinfo node, walk minor nodes", minornode_walk_init, minornode_walk_step, NULL }, { "softstate", "given an i_ddi_soft_state*, list all in-use driver stateps", soft_state_walk_init, soft_state_walk_step, NULL, NULL }, { "softstate_all", "given an i_ddi_soft_state*, list all driver stateps", soft_state_walk_init, soft_state_all_walk_step, NULL, NULL }, { "devinfo_fmc", "walk a fault management handle cache active list", devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, /* from kmem.c */ { "allocdby", "given a thread, walk its allocated bufctls", allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, { "bufctl", "walk a kmem cache's bufctls", bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, { "bufctl_history", "walk the available history of a bufctl", bufctl_history_walk_init, bufctl_history_walk_step, bufctl_history_walk_fini }, { "freedby", "given a thread, walk its freed bufctls", freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, { "freectl", "walk a kmem cache's free bufctls", freectl_walk_init, kmem_walk_step, kmem_walk_fini }, { "freectl_constructed", "walk a kmem cache's constructed free bufctls", freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, { "freemem", "walk a kmem cache's free memory", freemem_walk_init, kmem_walk_step, kmem_walk_fini }, { "freemem_constructed", "walk a kmem cache's constructed free memory", freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, { "kmem", "walk a kmem cache", kmem_walk_init, kmem_walk_step, kmem_walk_fini }, { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, { "kmem_hash", "given a kmem cache, walk its allocated hash table", kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, { "kmem_log", "walk the kmem transaction log", kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, { "kmem_slab", "given a kmem cache, walk its slabs", kmem_slab_walk_init, kmem_slab_walk_step, NULL }, { "kmem_slab_partial", "given a kmem cache, walk its partially allocated slabs (min 1)", kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, { "vmem", "walk vmem structures in pre-fix, depth-first order", vmem_walk_init, vmem_walk_step, vmem_walk_fini }, { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, { "vmem_free", "given a vmem_t, walk its free vmem_segs", vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, /* from ldi.c */ { "ldi_handle", "walk the layered driver handle hash", ldi_handle_walk_init, ldi_handle_walk_step, NULL }, { "ldi_ident", "walk the layered driver identifier hash", ldi_ident_walk_init, ldi_ident_walk_step, NULL }, /* from leaky.c + leaky_subr.c */ { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " "stack trace", leaky_walk_init, leaky_walk_step, leaky_walk_fini }, { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " "leaks w/ same stack trace", leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, /* from lgrp.c */ { "lgrp_cpulist", "given an lgrp, walk cpus", lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, { "lgrptbl", "walk the lgrp table", lgrp_walk_init, lgrp_walk_step, NULL }, /* from list.c */ { "list", "walk a linked list", list_walk_init, list_walk_step, list_walk_fini }, /* from memory.c */ { "page", "walk all pages, or those from the specified vnode", page_walk_init, page_walk_step, page_walk_fini }, { "memlist", "walk specified memlist", NULL, memlist_walk_step, NULL }, { "swapinfo", "walk swapinfo structures", swap_walk_init, swap_walk_step, NULL }, /* from mmd.c */ { "pattr", "walk pattr_t structures", pattr_walk_init, mmdq_walk_step, mmdq_walk_fini }, { "pdesc", "walk pdesc_t structures", pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, { "pdesc_slab", "walk pdesc_slab_t structures", pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, /* from modhash.c */ { "modhash", "walk list of mod_hash structures", modhash_walk_init, modhash_walk_step, NULL }, { "modent", "walk list of entries in a given mod_hash", modent_walk_init, modent_walk_step, modent_walk_fini }, { "modchain", "walk list of entries in a given mod_hash_entry", NULL, modchain_walk_step, NULL }, /* from net.c */ { "ar", "walk ar_t structures using MI", mi_payload_walk_init, mi_payload_walk_step, mi_payload_walk_fini, &mi_ar_arg }, { "icmp", "walk ICMP control structures using MI", mi_payload_walk_init, mi_payload_walk_step, mi_payload_walk_fini, &mi_icmp_arg }, { "ill", "walk ill_t structures using MI", mi_payload_walk_init, mi_payload_walk_step, mi_payload_walk_fini, &mi_ill_arg }, { "mi", "given a MI_O, walk the MI", mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, { "sonode", "given a sonode, walk its children", sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, /* from nvpair.c */ { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, nvpair_walk_init, nvpair_walk_step, NULL }, /* from rctl.c */ { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", rctl_dict_walk_init, rctl_dict_walk_step, NULL }, { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, rctl_set_walk_step, NULL }, { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", rctl_val_walk_init, rctl_val_walk_step }, /* from sobj.c */ { "blocked", "walk threads blocked on a given sobj", blocked_walk_init, blocked_walk_step, NULL }, { "wchan", "given a wchan, list of blocked threads", wchan_walk_init, wchan_walk_step, wchan_walk_fini }, /* from stream.c */ { "b_cont", "walk mblk_t list using b_cont", mblk_walk_init, b_cont_step, mblk_walk_fini }, { "b_next", "walk mblk_t list using b_next", mblk_walk_init, b_next_step, mblk_walk_fini }, { "qlink", "walk queue_t list using q_link", queue_walk_init, queue_link_step, queue_walk_fini }, { "qnext", "walk queue_t list using q_next", queue_walk_init, queue_next_step, queue_walk_fini }, { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", strftblk_walk_init, strftblk_step, strftblk_walk_fini }, { "readq", "walk read queue side of stdata", str_walk_init, strr_walk_step, str_walk_fini }, { "writeq", "walk write queue side of stdata", str_walk_init, strw_walk_step, str_walk_fini }, /* from thread.c */ { "deathrow", "walk threads on both lwp_ and thread_deathrow", deathrow_walk_init, deathrow_walk_step, NULL }, { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, { "cpupart_dispq", "given a cpupart_t, walk threads in dispatcher queues", cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, { "lwp_deathrow", "walk lwp_deathrow", lwp_deathrow_walk_init, deathrow_walk_step, NULL }, { "thread", "global or per-process kthread_t structures", thread_walk_init, thread_walk_step, thread_walk_fini }, { "thread_deathrow", "walk threads on thread_deathrow", thread_deathrow_walk_init, deathrow_walk_step, NULL }, /* from tsd.c */ { "tsd", "walk list of thread-specific data", tsd_walk_init, tsd_walk_step, tsd_walk_fini }, /* * typegraph does not work under kmdb, as it requires too much memory * for its internal data structures. */ #ifndef _KMDB /* from typegraph.c */ { "typeconflict", "walk buffers with conflicting type inferences", typegraph_walk_init, typeconflict_walk_step }, { "typeunknown", "walk buffers with unknown types", typegraph_walk_init, typeunknown_walk_step }, #endif /* from vfs.c */ { "vfs", "walk file system list", vfs_walk_init, vfs_walk_step }, { NULL } }; static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; const mdb_modinfo_t * _mdb_init(void) { if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { mdb_warn("failed to read 'top_devinfo'"); return (NULL); } if (findstack_init() != DCMD_OK) return (NULL); kmem_init(); return (&modinfo); } void _mdb_fini(void) { /* * Force ::findleaks to let go any cached memory */ leaky_cleanup(1); }