xref: /titanic_41/usr/src/uts/sun4v/io/vds.c (revision f48205be61a214698b763ff550ab9e657525104c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vio_common.h>
48 #include <sys/vdsk_mailbox.h>
49 #include <sys/vdsk_common.h>
50 #include <sys/vtoc.h>
51 #include <sys/vfs.h>
52 #include <sys/stat.h>
53 #include <vm/seg_map.h>
54 
55 /* Virtual disk server initialization flags */
56 #define	VDS_LDI			0x01
57 #define	VDS_MDEG		0x02
58 
59 /* Virtual disk server tunable parameters */
60 #define	VDS_RETRIES		5
61 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
62 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
63 #define	VDS_NCHAINS		32
64 
65 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
66 #define	VDS_NAME		"virtual-disk-server"
67 
68 #define	VD_NAME			"vd"
69 #define	VD_VOLUME_NAME		"vdisk"
70 #define	VD_ASCIILABEL		"Virtual Disk"
71 
72 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
73 #define	VD_ID_PROP		"id"
74 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
75 #define	VD_REG_PROP		"reg"
76 
77 /* Virtual disk initialization flags */
78 #define	VD_DISK_READY		0x01
79 #define	VD_LOCKING		0x02
80 #define	VD_LDC			0x04
81 #define	VD_DRING		0x08
82 #define	VD_SID			0x10
83 #define	VD_SEQ_NUM		0x20
84 
85 /* Flags for opening/closing backing devices via LDI */
86 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
87 
88 /* Flags for writing to a vdisk which is a file */
89 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
90 
91 /*
92  * By Solaris convention, slice/partition 2 represents the entire disk;
93  * unfortunately, this convention does not appear to be codified.
94  */
95 #define	VD_ENTIRE_DISK_SLICE	2
96 
97 /* Return a cpp token as a string */
98 #define	STRINGIZE(token)	#token
99 
100 /*
101  * Print a message prefixed with the current function name to the message log
102  * (and optionally to the console for verbose boots); these macros use cpp's
103  * concatenation of string literals and C99 variable-length-argument-list
104  * macros
105  */
106 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
107 #define	_PRN(format, ...)					\
108 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
109 
110 /* Return a pointer to the "i"th vdisk dring element */
111 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
112 	    (vd->dring + (i)*vd->descriptor_size))
113 
114 /* Return the virtual disk client's type as a string (for use in messages) */
115 #define	VD_CLIENT(vd)							\
116 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
117 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
118 		(((vd)->xfer_mode == 0) ? "null client" :		\
119 		    "unsupported client")))
120 
121 /* For IO to raw disk on file */
122 #define	VD_FILE_SLICE_NONE	-1
123 
124 /* Read disk label from a disk on file */
125 #define	VD_FILE_LABEL_READ(vd, labelp) \
126 	vd_file_rw(vd, VD_FILE_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
127 	    0, sizeof (struct dk_label))
128 
129 /* Write disk label to a disk on file */
130 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
131 	vd_file_rw(vd, VD_FILE_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
132 	    0, sizeof (struct dk_label))
133 
134 /*
135  * Specification of an MD node passed to the MDEG to filter any
136  * 'vport' nodes that do not belong to the specified node. This
137  * template is copied for each vds instance and filled in with
138  * the appropriate 'cfg-handle' value before being passed to the MDEG.
139  */
140 static mdeg_prop_spec_t	vds_prop_template[] = {
141 	{ MDET_PROP_STR,	"name",		VDS_NAME },
142 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
143 	{ MDET_LIST_END,	NULL, 		NULL }
144 };
145 
146 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
147 
148 /*
149  * Matching criteria passed to the MDEG to register interest
150  * in changes to 'virtual-device-port' nodes identified by their
151  * 'id' property.
152  */
153 static md_prop_match_t	vd_prop_match[] = {
154 	{ MDET_PROP_VAL,	VD_ID_PROP },
155 	{ MDET_LIST_END,	NULL }
156 };
157 
158 static mdeg_node_match_t vd_match = {"virtual-device-port",
159 				    vd_prop_match};
160 
161 /* Debugging macros */
162 #ifdef DEBUG
163 
164 static int	vd_msglevel = 0;
165 
166 #define	PR0 if (vd_msglevel > 0)	PRN
167 #define	PR1 if (vd_msglevel > 1)	PRN
168 #define	PR2 if (vd_msglevel > 2)	PRN
169 
170 #define	VD_DUMP_DRING_ELEM(elem)					\
171 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
172 	    elem->hdr.dstate,						\
173 	    elem->payload.operation,					\
174 	    elem->payload.status,					\
175 	    elem->payload.nbytes,					\
176 	    elem->payload.addr,						\
177 	    elem->payload.ncookies);
178 
179 char *
180 vd_decode_state(int state)
181 {
182 	char *str;
183 
184 #define	CASE_STATE(_s)	case _s: str = #_s; break;
185 
186 	switch (state) {
187 	CASE_STATE(VD_STATE_INIT)
188 	CASE_STATE(VD_STATE_VER)
189 	CASE_STATE(VD_STATE_ATTR)
190 	CASE_STATE(VD_STATE_DRING)
191 	CASE_STATE(VD_STATE_RDX)
192 	CASE_STATE(VD_STATE_DATA)
193 	default: str = "unknown"; break;
194 	}
195 
196 #undef CASE_STATE
197 
198 	return (str);
199 }
200 
201 void
202 vd_decode_tag(vio_msg_t *msg)
203 {
204 	char *tstr, *sstr, *estr;
205 
206 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
207 
208 	switch (msg->tag.vio_msgtype) {
209 	CASE_TYPE(VIO_TYPE_CTRL)
210 	CASE_TYPE(VIO_TYPE_DATA)
211 	CASE_TYPE(VIO_TYPE_ERR)
212 	default: tstr = "unknown"; break;
213 	}
214 
215 #undef CASE_TYPE
216 
217 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
218 
219 	switch (msg->tag.vio_subtype) {
220 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
221 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
222 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
223 	default: sstr = "unknown"; break;
224 	}
225 
226 #undef CASE_SUBTYPE
227 
228 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
229 
230 	switch (msg->tag.vio_subtype_env) {
231 	CASE_ENV(VIO_VER_INFO)
232 	CASE_ENV(VIO_ATTR_INFO)
233 	CASE_ENV(VIO_DRING_REG)
234 	CASE_ENV(VIO_DRING_UNREG)
235 	CASE_ENV(VIO_RDX)
236 	CASE_ENV(VIO_PKT_DATA)
237 	CASE_ENV(VIO_DESC_DATA)
238 	CASE_ENV(VIO_DRING_DATA)
239 	default: estr = "unknown"; break;
240 	}
241 
242 #undef CASE_ENV
243 
244 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
245 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
246 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
247 }
248 
249 #else	/* !DEBUG */
250 
251 #define	PR0(...)
252 #define	PR1(...)
253 #define	PR2(...)
254 
255 #define	VD_DUMP_DRING_ELEM(elem)
256 
257 #define	vd_decode_state(_s)	(NULL)
258 #define	vd_decode_tag(_s)	(NULL)
259 
260 #endif	/* DEBUG */
261 
262 
263 /*
264  * Soft state structure for a vds instance
265  */
266 typedef struct vds {
267 	uint_t		initialized;	/* driver inst initialization flags */
268 	dev_info_t	*dip;		/* driver inst devinfo pointer */
269 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
270 	mod_hash_t	*vd_table;	/* table of virtual disks served */
271 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
272 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
273 } vds_t;
274 
275 /*
276  * Types of descriptor-processing tasks
277  */
278 typedef enum vd_task_type {
279 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
280 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
281 } vd_task_type_t;
282 
283 /*
284  * Structure describing the task for processing a descriptor
285  */
286 typedef struct vd_task {
287 	struct vd		*vd;		/* vd instance task is for */
288 	vd_task_type_t		type;		/* type of descriptor task */
289 	int			index;		/* dring elem index for task */
290 	vio_msg_t		*msg;		/* VIO message task is for */
291 	size_t			msglen;		/* length of message content */
292 	vd_dring_payload_t	*request;	/* request task will perform */
293 	struct buf		buf;		/* buf(9s) for I/O request */
294 	ldc_mem_handle_t	mhdl;		/* task memory handle */
295 } vd_task_t;
296 
297 /*
298  * Soft state structure for a virtual disk instance
299  */
300 typedef struct vd {
301 	uint_t			initialized;	/* vdisk initialization flags */
302 	vds_t			*vds;		/* server for this vdisk */
303 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
304 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
305 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
306 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
307 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
308 	uint_t			nslices;	/* number of slices */
309 	size_t			vdisk_size;	/* number of blocks in vdisk */
310 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
311 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
312 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
313 	boolean_t		pseudo;		/* underlying pseudo dev */
314 	boolean_t		file;		/* underlying file */
315 	vnode_t			*file_vnode;	/* file vnode */
316 	size_t			file_size;	/* file size */
317 	struct dk_efi		dk_efi;		/* synthetic for slice type */
318 	struct dk_geom		dk_geom;	/* synthetic for slice type */
319 	struct vtoc		vtoc;		/* synthetic for slice type */
320 	ldc_status_t		ldc_state;	/* LDC connection state */
321 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
322 	size_t			max_msglen;	/* largest LDC message len */
323 	vd_state_t		state;		/* client handshake state */
324 	uint8_t			xfer_mode;	/* transfer mode with client */
325 	uint32_t		sid;		/* client's session ID */
326 	uint64_t		seq_num;	/* message sequence number */
327 	uint64_t		dring_ident;	/* identifier of dring */
328 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
329 	uint32_t		descriptor_size;	/* num bytes in desc */
330 	uint32_t		dring_len;	/* number of dring elements */
331 	caddr_t			dring;		/* address of dring */
332 	caddr_t			vio_msgp;	/* vio msg staging buffer */
333 	vd_task_t		inband_task;	/* task for inband descriptor */
334 	vd_task_t		*dring_task;	/* tasks dring elements */
335 
336 	kmutex_t		lock;		/* protects variables below */
337 	boolean_t		enabled;	/* is vdisk enabled? */
338 	boolean_t		reset_state;	/* reset connection state? */
339 	boolean_t		reset_ldc;	/* reset LDC channel? */
340 } vd_t;
341 
342 typedef struct vds_operation {
343 	char	*namep;
344 	uint8_t	operation;
345 	int	(*start)(vd_task_t *task);
346 	void	(*complete)(void *arg);
347 } vds_operation_t;
348 
349 typedef struct vd_ioctl {
350 	uint8_t		operation;		/* vdisk operation */
351 	const char	*operation_name;	/* vdisk operation name */
352 	size_t		nbytes;			/* size of operation buffer */
353 	int		cmd;			/* corresponding ioctl cmd */
354 	const char	*cmd_name;		/* ioctl cmd name */
355 	void		*arg;			/* ioctl cmd argument */
356 	/* convert input vd_buf to output ioctl_arg */
357 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
358 	/* convert input ioctl_arg to output vd_buf */
359 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
360 } vd_ioctl_t;
361 
362 /* Define trivial copyin/copyout conversion function flag */
363 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
364 
365 
366 static int	vds_ldc_retries = VDS_RETRIES;
367 static int	vds_ldc_delay = VDS_LDC_DELAY;
368 static int	vds_dev_retries = VDS_RETRIES;
369 static int	vds_dev_delay = VDS_DEV_DELAY;
370 static void	*vds_state;
371 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
372 
373 static int	vd_open_flags = VD_OPEN_FLAGS;
374 
375 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
376 
377 /*
378  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
379  *
380  * Each supported major version should appear only once, paired with (and only
381  * with) its highest supported minor version number (as the protocol requires
382  * supporting all lower minor version numbers as well)
383  */
384 static const vio_ver_t	vds_version[] = {{1, 0}};
385 static const size_t	vds_num_versions =
386     sizeof (vds_version)/sizeof (vds_version[0]);
387 
388 static void vd_free_dring_task(vd_t *vdp);
389 static int vd_setup_vd(vd_t *vd);
390 static boolean_t vd_enabled(vd_t *vd);
391 
392 /*
393  * Function:
394  *	vd_file_rw
395  *
396  * Description:
397  * 	Read or write to a disk on file.
398  *
399  * Parameters:
400  *	vd		- disk on which the operation is performed.
401  *	slice		- slice on which the operation is performed,
402  *			  VD_FILE_SLICE_NONE indicates that the operation
403  *			  is done on the raw disk.
404  *	operation	- operation to execute: read (VD_OP_BREAD) or
405  *			  write (VD_OP_BWRITE).
406  *	data		- buffer where data are read to or written from.
407  *	blk		- starting block for the operation.
408  *	len		- number of bytes to read or write.
409  *
410  * Return Code:
411  *	n >= 0		- success, n indicates the number of bytes read
412  *			  or written.
413  *	-1		- error.
414  */
415 static ssize_t
416 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
417     size_t len)
418 {
419 	caddr_t	maddr;
420 	size_t offset, maxlen, moffset, mlen, n;
421 	uint_t smflags;
422 	enum seg_rw srw;
423 
424 	ASSERT(vd->file);
425 	ASSERT(len > 0);
426 
427 	if (slice == VD_FILE_SLICE_NONE) {
428 		/* raw disk access */
429 		offset = blk * DEV_BSIZE;
430 	} else {
431 		ASSERT(slice >= 0 && slice < V_NUMPAR);
432 		if (blk >= vd->vtoc.v_part[slice].p_size) {
433 			/* address past the end of the slice */
434 			PR0("req_addr (0x%lx) > psize (0x%lx)",
435 			    blk, vd->vtoc.v_part[slice].p_size);
436 			return (0);
437 		}
438 
439 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
440 
441 		/*
442 		 * If the requested size is greater than the size
443 		 * of the partition, truncate the read/write.
444 		 */
445 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
446 
447 		if (len > maxlen) {
448 			PR0("I/O size truncated to %lu bytes from %lu bytes",
449 			    maxlen, len);
450 			len = maxlen;
451 		}
452 	}
453 
454 	/*
455 	 * We have to ensure that we are reading/writing into the mmap
456 	 * range. If we have a partial disk image (e.g. an image of
457 	 * s0 instead s2) the system can try to access slices that
458 	 * are not included into the disk image.
459 	 */
460 	if ((offset + len) >= vd->file_size) {
461 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
462 		    "file_size (0x%lx)", offset, len, vd->file_size);
463 		return (-1);
464 	}
465 
466 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
467 	smflags = (operation == VD_OP_BREAD)? 0 :
468 	    (SM_WRITE | vd_file_write_flags);
469 	n = len;
470 
471 	do {
472 		/*
473 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
474 		 * MAXBSIZE aligned.
475 		 */
476 		moffset = offset & MAXBOFFSET;
477 		mlen = MIN(MAXBSIZE - moffset, n);
478 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
479 		    mlen, 1, srw);
480 		/*
481 		 * Fault in the pages so we can check for error and ensure
482 		 * that we can safely used the mapped address.
483 		 */
484 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
485 		    F_SOFTLOCK, srw) != 0) {
486 			(void) segmap_release(segkmap, maddr, 0);
487 			return (-1);
488 		}
489 
490 		if (operation == VD_OP_BREAD)
491 			bcopy(maddr + moffset, data, mlen);
492 		else
493 			bcopy(data, maddr + moffset, mlen);
494 
495 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
496 		    F_SOFTUNLOCK, srw) != 0) {
497 			(void) segmap_release(segkmap, maddr, 0);
498 			return (-1);
499 		}
500 		if (segmap_release(segkmap, maddr, smflags) != 0)
501 			return (-1);
502 		n -= mlen;
503 		offset += mlen;
504 		data += mlen;
505 
506 	} while (n > 0);
507 
508 	return (len);
509 }
510 
511 static int
512 vd_start_bio(vd_task_t *task)
513 {
514 	int			rv, status = 0;
515 	vd_t			*vd		= task->vd;
516 	vd_dring_payload_t	*request	= task->request;
517 	struct buf		*buf		= &task->buf;
518 	uint8_t			mtype;
519 	int 			slice;
520 
521 	ASSERT(vd != NULL);
522 	ASSERT(request != NULL);
523 
524 	slice = request->slice;
525 
526 	ASSERT(slice < vd->nslices);
527 	ASSERT((request->operation == VD_OP_BREAD) ||
528 	    (request->operation == VD_OP_BWRITE));
529 
530 	if (request->nbytes == 0)
531 		return (EINVAL);	/* no service for trivial requests */
532 
533 	PR1("%s %lu bytes at block %lu",
534 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
535 	    request->nbytes, request->addr);
536 
537 	bioinit(buf);
538 	buf->b_flags		= B_BUSY;
539 	buf->b_bcount		= request->nbytes;
540 	buf->b_lblkno		= request->addr;
541 	buf->b_edev		= vd->dev[slice];
542 
543 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
544 
545 	/* Map memory exported by client */
546 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
547 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
548 	    &(buf->b_un.b_addr), NULL);
549 	if (status != 0) {
550 		PR0("ldc_mem_map() returned err %d ", status);
551 		biofini(buf);
552 		return (status);
553 	}
554 
555 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
556 	if (status != 0) {
557 		(void) ldc_mem_unmap(task->mhdl);
558 		PR0("ldc_mem_acquire() returned err %d ", status);
559 		biofini(buf);
560 		return (status);
561 	}
562 
563 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
564 
565 	/* Start the block I/O */
566 	if (vd->file) {
567 		rv = vd_file_rw(vd, slice, request->operation, buf->b_un.b_addr,
568 		    request->addr, request->nbytes);
569 		if (rv < 0) {
570 			request->nbytes = 0;
571 			status = EIO;
572 		} else {
573 			request->nbytes = rv;
574 			status = 0;
575 		}
576 	} else {
577 		status = ldi_strategy(vd->ldi_handle[slice], buf);
578 		if (status == 0)
579 			return (EINPROGRESS); /* will complete on completionq */
580 	}
581 
582 	/* Clean up after error */
583 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
584 	if (rv) {
585 		PR0("ldc_mem_release() returned err %d ", rv);
586 	}
587 	rv = ldc_mem_unmap(task->mhdl);
588 	if (rv) {
589 		PR0("ldc_mem_unmap() returned err %d ", status);
590 	}
591 
592 	biofini(buf);
593 	return (status);
594 }
595 
596 static int
597 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
598 {
599 	int	status;
600 	size_t	nbytes;
601 
602 	do {
603 		nbytes = msglen;
604 		status = ldc_write(ldc_handle, msg, &nbytes);
605 		if (status != EWOULDBLOCK)
606 			break;
607 		drv_usecwait(vds_ldc_delay);
608 	} while (status == EWOULDBLOCK);
609 
610 	if (status != 0) {
611 		if (status != ECONNRESET)
612 			PR0("ldc_write() returned errno %d", status);
613 		return (status);
614 	} else if (nbytes != msglen) {
615 		PR0("ldc_write() performed only partial write");
616 		return (EIO);
617 	}
618 
619 	PR1("SENT %lu bytes", msglen);
620 	return (0);
621 }
622 
623 static void
624 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
625 {
626 	mutex_enter(&vd->lock);
627 	vd->reset_state	= B_TRUE;
628 	vd->reset_ldc	= reset_ldc;
629 	mutex_exit(&vd->lock);
630 }
631 
632 /*
633  * Reset the state of the connection with a client, if needed; reset the LDC
634  * transport as well, if needed.  This function should only be called from the
635  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
636  */
637 static void
638 vd_reset_if_needed(vd_t *vd)
639 {
640 	int	status = 0;
641 
642 	mutex_enter(&vd->lock);
643 	if (!vd->reset_state) {
644 		ASSERT(!vd->reset_ldc);
645 		mutex_exit(&vd->lock);
646 		return;
647 	}
648 	mutex_exit(&vd->lock);
649 
650 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
651 
652 	/*
653 	 * Let any asynchronous I/O complete before possibly pulling the rug
654 	 * out from under it; defer checking vd->reset_ldc, as one of the
655 	 * asynchronous tasks might set it
656 	 */
657 	ddi_taskq_wait(vd->completionq);
658 
659 	if (vd->file) {
660 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred);
661 		if (status) {
662 			PR0("VOP_FSYNC returned errno %d", status);
663 		}
664 	}
665 
666 	if ((vd->initialized & VD_DRING) &&
667 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
668 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
669 
670 	vd_free_dring_task(vd);
671 
672 	/* Free the staging buffer for msgs */
673 	if (vd->vio_msgp != NULL) {
674 		kmem_free(vd->vio_msgp, vd->max_msglen);
675 		vd->vio_msgp = NULL;
676 	}
677 
678 	/* Free the inband message buffer */
679 	if (vd->inband_task.msg != NULL) {
680 		kmem_free(vd->inband_task.msg, vd->max_msglen);
681 		vd->inband_task.msg = NULL;
682 	}
683 
684 	mutex_enter(&vd->lock);
685 
686 	if (vd->reset_ldc)
687 		PR0("taking down LDC channel");
688 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
689 		PR0("ldc_down() returned errno %d", status);
690 
691 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
692 	vd->state	= VD_STATE_INIT;
693 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
694 
695 	/* Allocate the staging buffer */
696 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
697 
698 	PR0("calling ldc_up\n");
699 	(void) ldc_up(vd->ldc_handle);
700 
701 	vd->reset_state	= B_FALSE;
702 	vd->reset_ldc	= B_FALSE;
703 
704 	mutex_exit(&vd->lock);
705 }
706 
707 static void vd_recv_msg(void *arg);
708 
709 static void
710 vd_mark_in_reset(vd_t *vd)
711 {
712 	int status;
713 
714 	PR0("vd_mark_in_reset: marking vd in reset\n");
715 
716 	vd_need_reset(vd, B_FALSE);
717 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
718 	if (status == DDI_FAILURE) {
719 		PR0("cannot schedule task to recv msg\n");
720 		vd_need_reset(vd, B_TRUE);
721 		return;
722 	}
723 }
724 
725 static int
726 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
727 {
728 	boolean_t		accepted;
729 	int			status;
730 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
731 
732 	if (vd->reset_state)
733 		return (0);
734 
735 	/* Acquire the element */
736 	if (!vd->reset_state &&
737 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
738 		if (status == ECONNRESET) {
739 			vd_mark_in_reset(vd);
740 			return (0);
741 		} else {
742 			PR0("ldc_mem_dring_acquire() returned errno %d",
743 			    status);
744 			return (status);
745 		}
746 	}
747 
748 	/* Set the element's status and mark it done */
749 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
750 	if (accepted) {
751 		elem->payload.nbytes	= elem_nbytes;
752 		elem->payload.status	= elem_status;
753 		elem->hdr.dstate	= VIO_DESC_DONE;
754 	} else {
755 		/* Perhaps client timed out waiting for I/O... */
756 		PR0("element %u no longer \"accepted\"", idx);
757 		VD_DUMP_DRING_ELEM(elem);
758 	}
759 	/* Release the element */
760 	if (!vd->reset_state &&
761 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
762 		if (status == ECONNRESET) {
763 			vd_mark_in_reset(vd);
764 			return (0);
765 		} else {
766 			PR0("ldc_mem_dring_release() returned errno %d",
767 			    status);
768 			return (status);
769 		}
770 	}
771 
772 	return (accepted ? 0 : EINVAL);
773 }
774 
775 static void
776 vd_complete_bio(void *arg)
777 {
778 	int			status		= 0;
779 	vd_task_t		*task		= (vd_task_t *)arg;
780 	vd_t			*vd		= task->vd;
781 	vd_dring_payload_t	*request	= task->request;
782 	struct buf		*buf		= &task->buf;
783 
784 
785 	ASSERT(vd != NULL);
786 	ASSERT(request != NULL);
787 	ASSERT(task->msg != NULL);
788 	ASSERT(task->msglen >= sizeof (*task->msg));
789 	ASSERT(!vd->file);
790 
791 	/* Wait for the I/O to complete */
792 	request->status = biowait(buf);
793 
794 	/* return back the number of bytes read/written */
795 	request->nbytes = buf->b_bcount - buf->b_resid;
796 
797 	/* Release the buffer */
798 	if (!vd->reset_state)
799 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
800 	if (status) {
801 		PR0("ldc_mem_release() returned errno %d copying to "
802 		    "client", status);
803 		if (status == ECONNRESET) {
804 			vd_mark_in_reset(vd);
805 		}
806 	}
807 
808 	/* Unmap the memory, even if in reset */
809 	status = ldc_mem_unmap(task->mhdl);
810 	if (status) {
811 		PR0("ldc_mem_unmap() returned errno %d copying to client",
812 		    status);
813 		if (status == ECONNRESET) {
814 			vd_mark_in_reset(vd);
815 		}
816 	}
817 
818 	biofini(buf);
819 
820 	/* Update the dring element for a dring client */
821 	if (!vd->reset_state && (status == 0) &&
822 	    (vd->xfer_mode == VIO_DRING_MODE)) {
823 		status = vd_mark_elem_done(vd, task->index,
824 		    request->status, request->nbytes);
825 		if (status == ECONNRESET)
826 			vd_mark_in_reset(vd);
827 	}
828 
829 	/*
830 	 * If a transport error occurred, arrange to "nack" the message when
831 	 * the final task in the descriptor element range completes
832 	 */
833 	if (status != 0)
834 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
835 
836 	/*
837 	 * Only the final task for a range of elements will respond to and
838 	 * free the message
839 	 */
840 	if (task->type == VD_NONFINAL_RANGE_TASK) {
841 		return;
842 	}
843 
844 	/*
845 	 * Send the "ack" or "nack" back to the client; if sending the message
846 	 * via LDC fails, arrange to reset both the connection state and LDC
847 	 * itself
848 	 */
849 	PR1("Sending %s",
850 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
851 	if (!vd->reset_state) {
852 		status = send_msg(vd->ldc_handle, task->msg, task->msglen);
853 		switch (status) {
854 		case 0:
855 			break;
856 		case ECONNRESET:
857 			vd_mark_in_reset(vd);
858 			break;
859 		default:
860 			PR0("initiating full reset");
861 			vd_need_reset(vd, B_TRUE);
862 			break;
863 		}
864 	}
865 }
866 
867 static void
868 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
869 {
870 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
871 }
872 
873 static void
874 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
875 {
876 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
877 }
878 
879 static void
880 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
881 {
882 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
883 }
884 
885 static void
886 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
887 {
888 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
889 }
890 
891 static void
892 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
893 {
894 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
895 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
896 
897 	dk_efi->dki_lba = vd_efi->lba;
898 	dk_efi->dki_length = vd_efi->length;
899 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
900 }
901 
902 static void
903 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
904 {
905 	int len;
906 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
907 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
908 
909 	len = vd_efi->length;
910 	DK_EFI2VD_EFI(dk_efi, vd_efi);
911 	kmem_free(dk_efi->dki_data, len);
912 }
913 
914 static void
915 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
916 {
917 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
918 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
919 
920 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
921 	VD_EFI2DK_EFI(vd_efi, dk_efi);
922 }
923 
924 static void
925 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
926 {
927 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
928 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
929 
930 	kmem_free(dk_efi->dki_data, vd_efi->length);
931 }
932 
933 static int
934 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label)
935 {
936 	int status, rval;
937 	struct dk_gpt *efi;
938 	size_t efi_len;
939 
940 	*label = VD_DISK_LABEL_UNK;
941 
942 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
943 	    (vd_open_flags | FKIOCTL), kcred, &rval);
944 
945 	if (status == 0) {
946 		*label = VD_DISK_LABEL_VTOC;
947 		return (0);
948 	} else if (status != ENOTSUP) {
949 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
950 		return (status);
951 	}
952 
953 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
954 
955 	if (status) {
956 		PR0("vds_efi_alloc_and_read returned error %d", status);
957 		return (status);
958 	}
959 
960 	*label = VD_DISK_LABEL_EFI;
961 	vd_efi_to_vtoc(efi, vtoc);
962 	vd_efi_free(efi, efi_len);
963 
964 	return (0);
965 }
966 
967 static ushort_t
968 vd_lbl2cksum(struct dk_label *label)
969 {
970 	int	count;
971 	ushort_t sum, *sp;
972 
973 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
974 	sp = (ushort_t *)label;
975 	sum = 0;
976 	while (count--) {
977 		sum ^= *sp++;
978 	}
979 
980 	return (sum);
981 }
982 
983 static int
984 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
985 {
986 	dk_efi_t *dk_ioc;
987 	struct dk_label label;
988 	struct vtoc *vtoc;
989 	int i;
990 
991 	switch (vd->vdisk_label) {
992 
993 	case VD_DISK_LABEL_VTOC:
994 
995 		switch (cmd) {
996 		case DKIOCGGEOM:
997 			ASSERT(ioctl_arg != NULL);
998 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
999 			return (0);
1000 		case DKIOCGVTOC:
1001 			ASSERT(ioctl_arg != NULL);
1002 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
1003 			return (0);
1004 		case DKIOCSVTOC:
1005 			if (!vd->file)
1006 				return (ENOTSUP);
1007 			ASSERT(ioctl_arg != NULL);
1008 			vtoc = (struct vtoc *)ioctl_arg;
1009 
1010 			if (vtoc->v_sanity != VTOC_SANE ||
1011 			    vtoc->v_sectorsz != DEV_BSIZE ||
1012 			    vtoc->v_nparts != V_NUMPAR)
1013 				return (EINVAL);
1014 
1015 			bzero(&label, sizeof (label));
1016 			label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
1017 			label.dkl_acyl = vd->dk_geom.dkg_acyl;
1018 			label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
1019 			label.dkl_nhead = vd->dk_geom.dkg_nhead;
1020 			label.dkl_nsect = vd->dk_geom.dkg_nsect;
1021 			label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
1022 			label.dkl_apc = vd->dk_geom.dkg_apc;
1023 			label.dkl_rpm = vd->dk_geom.dkg_rpm;
1024 			label.dkl_write_reinstruct =
1025 				vd->dk_geom.dkg_write_reinstruct;
1026 			label.dkl_read_reinstruct =
1027 				vd->dk_geom.dkg_read_reinstruct;
1028 
1029 			label.dkl_vtoc.v_nparts = vtoc->v_nparts;
1030 			label.dkl_vtoc.v_sanity = vtoc->v_sanity;
1031 			label.dkl_vtoc.v_version = vtoc->v_version;
1032 			for (i = 0; i < vtoc->v_nparts; i++) {
1033 				label.dkl_vtoc.v_timestamp[i] =
1034 				    vtoc->timestamp[i];
1035 				label.dkl_vtoc.v_part[i].p_tag =
1036 				    vtoc->v_part[i].p_tag;
1037 				label.dkl_vtoc.v_part[i].p_flag =
1038 				    vtoc->v_part[i].p_flag;
1039 				label.dkl_map[i].dkl_cylno =
1040 					vtoc->v_part[i].p_start /
1041 					(label.dkl_nhead * label.dkl_nsect);
1042 				label.dkl_map[i].dkl_nblk =
1043 				    vtoc->v_part[i].p_size;
1044 			}
1045 			bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
1046 			    LEN_DKL_ASCII);
1047 			bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
1048 			    LEN_DKL_VVOL);
1049 			bcopy(vtoc->v_bootinfo, label.dkl_vtoc.v_bootinfo,
1050 			    sizeof (vtoc->v_bootinfo));
1051 
1052 			/* re-compute checksum */
1053 			label.dkl_magic = DKL_MAGIC;
1054 			label.dkl_cksum = vd_lbl2cksum(&label);
1055 
1056 			/* write label to file */
1057 			if (VD_FILE_LABEL_WRITE(vd, &label) < 0)
1058 				return (EIO);
1059 
1060 			/* update the cached vdisk VTOC */
1061 			bcopy(vtoc, &vd->vtoc, sizeof (vd->vtoc));
1062 
1063 			return (0);
1064 		default:
1065 			return (ENOTSUP);
1066 		}
1067 
1068 	case VD_DISK_LABEL_EFI:
1069 
1070 		switch (cmd) {
1071 		case DKIOCGETEFI:
1072 			ASSERT(ioctl_arg != NULL);
1073 			dk_ioc = (dk_efi_t *)ioctl_arg;
1074 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1075 				return (EINVAL);
1076 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1077 			    vd->dk_efi.dki_length);
1078 			return (0);
1079 		default:
1080 			return (ENOTSUP);
1081 		}
1082 
1083 	default:
1084 		return (ENOTSUP);
1085 	}
1086 }
1087 
1088 static int
1089 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
1090 {
1091 	int	rval = 0, status;
1092 	size_t	nbytes = request->nbytes;	/* modifiable copy */
1093 
1094 
1095 	ASSERT(request->slice < vd->nslices);
1096 	PR0("Performing %s", ioctl->operation_name);
1097 
1098 	/* Get data from client and convert, if necessary */
1099 	if (ioctl->copyin != NULL)  {
1100 		ASSERT(nbytes != 0 && buf != NULL);
1101 		PR1("Getting \"arg\" data from client");
1102 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1103 			    request->cookie, request->ncookies,
1104 			    LDC_COPY_IN)) != 0) {
1105 			PR0("ldc_mem_copy() returned errno %d "
1106 			    "copying from client", status);
1107 			return (status);
1108 		}
1109 
1110 		/* Convert client's data, if necessary */
1111 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
1112 			ioctl->arg = buf;
1113 		else	/* convert client vdisk operation data to ioctl data */
1114 			(ioctl->copyin)(buf, (void *)ioctl->arg);
1115 	}
1116 
1117 	/*
1118 	 * Handle single-slice block devices internally; otherwise, have the
1119 	 * real driver perform the ioctl()
1120 	 */
1121 	if (vd->file || (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo)) {
1122 		if ((status = vd_do_slice_ioctl(vd, ioctl->cmd,
1123 			    (void *)ioctl->arg)) != 0)
1124 			return (status);
1125 	} else if ((status = ldi_ioctl(vd->ldi_handle[request->slice],
1126 		    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
1127 		    kcred, &rval)) != 0) {
1128 		PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status);
1129 		return (status);
1130 	}
1131 #ifdef DEBUG
1132 	if (rval != 0) {
1133 		PR0("%s set rval = %d, which is not being returned to client",
1134 		    ioctl->cmd_name, rval);
1135 	}
1136 #endif /* DEBUG */
1137 
1138 	/* Convert data and send to client, if necessary */
1139 	if (ioctl->copyout != NULL)  {
1140 		ASSERT(nbytes != 0 && buf != NULL);
1141 		PR1("Sending \"arg\" data to client");
1142 
1143 		/* Convert ioctl data to vdisk operation data, if necessary */
1144 		if (ioctl->copyout != VD_IDENTITY)
1145 			(ioctl->copyout)((void *)ioctl->arg, buf);
1146 
1147 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1148 			    request->cookie, request->ncookies,
1149 			    LDC_COPY_OUT)) != 0) {
1150 			PR0("ldc_mem_copy() returned errno %d "
1151 			    "copying to client", status);
1152 			return (status);
1153 		}
1154 	}
1155 
1156 	return (status);
1157 }
1158 
1159 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
1160 static int
1161 vd_ioctl(vd_task_t *task)
1162 {
1163 	int			i, status, rc;
1164 	void			*buf = NULL;
1165 	struct dk_geom		dk_geom = {0};
1166 	struct vtoc		vtoc = {0};
1167 	struct dk_efi		dk_efi = {0};
1168 	vd_t			*vd		= task->vd;
1169 	vd_dring_payload_t	*request	= task->request;
1170 	vd_ioctl_t		ioctl[] = {
1171 		/* Command (no-copy) operations */
1172 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
1173 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
1174 		    NULL, NULL, NULL},
1175 
1176 		/* "Get" (copy-out) operations */
1177 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
1178 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
1179 		    NULL, VD_IDENTITY, VD_IDENTITY},
1180 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
1181 		    RNDSIZE(vd_geom_t),
1182 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
1183 		    &dk_geom, NULL, dk_geom2vd_geom},
1184 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
1185 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
1186 		    &vtoc, NULL, vtoc2vd_vtoc},
1187 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
1188 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
1189 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
1190 
1191 		/* "Set" (copy-in) operations */
1192 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
1193 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
1194 		    NULL, VD_IDENTITY, VD_IDENTITY},
1195 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
1196 		    RNDSIZE(vd_geom_t),
1197 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
1198 		    &dk_geom, vd_geom2dk_geom, NULL},
1199 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
1200 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
1201 		    &vtoc, vd_vtoc2vtoc, NULL},
1202 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
1203 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
1204 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
1205 	};
1206 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
1207 
1208 
1209 	ASSERT(vd != NULL);
1210 	ASSERT(request != NULL);
1211 	ASSERT(request->slice < vd->nslices);
1212 
1213 	/*
1214 	 * Determine ioctl corresponding to caller's "operation" and
1215 	 * validate caller's "nbytes"
1216 	 */
1217 	for (i = 0; i < nioctls; i++) {
1218 		if (request->operation == ioctl[i].operation) {
1219 			/* LDC memory operations require 8-byte multiples */
1220 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
1221 
1222 			if (request->operation == VD_OP_GET_EFI ||
1223 			    request->operation == VD_OP_SET_EFI) {
1224 				if (request->nbytes >= ioctl[i].nbytes)
1225 					break;
1226 				PR0("%s:  Expected at least nbytes = %lu, "
1227 				    "got %lu", ioctl[i].operation_name,
1228 				    ioctl[i].nbytes, request->nbytes);
1229 				return (EINVAL);
1230 			}
1231 
1232 			if (request->nbytes != ioctl[i].nbytes) {
1233 				PR0("%s:  Expected nbytes = %lu, got %lu",
1234 				    ioctl[i].operation_name, ioctl[i].nbytes,
1235 				    request->nbytes);
1236 				return (EINVAL);
1237 			}
1238 
1239 			break;
1240 		}
1241 	}
1242 	ASSERT(i < nioctls);	/* because "operation" already validated */
1243 
1244 	if (request->nbytes)
1245 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
1246 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
1247 	if (request->nbytes)
1248 		kmem_free(buf, request->nbytes);
1249 	if (!vd->file && vd->vdisk_type == VD_DISK_TYPE_DISK &&
1250 	    (request->operation == VD_OP_SET_VTOC ||
1251 	    request->operation == VD_OP_SET_EFI)) {
1252 		/* update disk information */
1253 		rc = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc,
1254 		    &vd->vdisk_label);
1255 		if (rc != 0)
1256 			PR0("vd_read_vtoc return error %d", rc);
1257 	}
1258 	PR0("Returning %d", status);
1259 	return (status);
1260 }
1261 
1262 static int
1263 vd_get_devid(vd_task_t *task)
1264 {
1265 	vd_t *vd = task->vd;
1266 	vd_dring_payload_t *request = task->request;
1267 	vd_devid_t *vd_devid;
1268 	impl_devid_t *devid;
1269 	int status, bufid_len, devid_len, len;
1270 	int bufbytes;
1271 
1272 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
1273 
1274 	if (vd->file) {
1275 		/* no devid for disk on file */
1276 		return (ENOENT);
1277 	}
1278 
1279 	if (ddi_lyr_get_devid(vd->dev[request->slice],
1280 	    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
1281 		/* the most common failure is that no devid is available */
1282 		PR2("No Device ID");
1283 		return (ENOENT);
1284 	}
1285 
1286 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
1287 	devid_len = DEVID_GETLEN(devid);
1288 
1289 	/*
1290 	 * Save the buffer size here for use in deallocation.
1291 	 * The actual number of bytes copied is returned in
1292 	 * the 'nbytes' field of the request structure.
1293 	 */
1294 	bufbytes = request->nbytes;
1295 
1296 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
1297 	vd_devid->length = devid_len;
1298 	vd_devid->type = DEVID_GETTYPE(devid);
1299 
1300 	len = (devid_len > bufid_len)? bufid_len : devid_len;
1301 
1302 	bcopy(devid->did_id, vd_devid->id, len);
1303 
1304 	/* LDC memory operations require 8-byte multiples */
1305 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
1306 
1307 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
1308 	    &request->nbytes, request->cookie, request->ncookies,
1309 	    LDC_COPY_OUT)) != 0) {
1310 		PR0("ldc_mem_copy() returned errno %d copying to client",
1311 		    status);
1312 	}
1313 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
1314 
1315 	kmem_free(vd_devid, bufbytes);
1316 	ddi_devid_free((ddi_devid_t)devid);
1317 
1318 	return (status);
1319 }
1320 
1321 /*
1322  * Define the supported operations once the functions for performing them have
1323  * been defined
1324  */
1325 static const vds_operation_t	vds_operation[] = {
1326 #define	X(_s)	#_s, _s
1327 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
1328 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
1329 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
1330 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
1331 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
1332 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
1333 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
1334 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
1335 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
1336 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
1337 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
1338 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
1339 #undef	X
1340 };
1341 
1342 static const size_t	vds_noperations =
1343 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
1344 
1345 /*
1346  * Process a task specifying a client I/O request
1347  */
1348 static int
1349 vd_process_task(vd_task_t *task)
1350 {
1351 	int			i, status;
1352 	vd_t			*vd		= task->vd;
1353 	vd_dring_payload_t	*request	= task->request;
1354 
1355 
1356 	ASSERT(vd != NULL);
1357 	ASSERT(request != NULL);
1358 
1359 	/* Find the requested operation */
1360 	for (i = 0; i < vds_noperations; i++)
1361 		if (request->operation == vds_operation[i].operation)
1362 			break;
1363 	if (i == vds_noperations) {
1364 		PR0("Unsupported operation %u", request->operation);
1365 		return (ENOTSUP);
1366 	}
1367 
1368 	/* Handle client using absolute disk offsets */
1369 	if ((vd->vdisk_type == VD_DISK_TYPE_DISK) &&
1370 	    (request->slice == UINT8_MAX))
1371 		request->slice = VD_ENTIRE_DISK_SLICE;
1372 
1373 	/* Range-check slice */
1374 	if (request->slice >= vd->nslices) {
1375 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
1376 		    request->slice, (vd->nslices - 1));
1377 		return (EINVAL);
1378 	}
1379 
1380 	PR1("operation : %s", vds_operation[i].namep);
1381 
1382 	/* Start the operation */
1383 	if ((status = vds_operation[i].start(task)) != EINPROGRESS) {
1384 		PR0("operation : %s returned status %d",
1385 			vds_operation[i].namep, status);
1386 		request->status = status;	/* op succeeded or failed */
1387 		return (0);			/* but request completed */
1388 	}
1389 
1390 	ASSERT(vds_operation[i].complete != NULL);	/* debug case */
1391 	if (vds_operation[i].complete == NULL) {	/* non-debug case */
1392 		PR0("Unexpected return of EINPROGRESS "
1393 		    "with no I/O completion handler");
1394 		request->status = EIO;	/* operation failed */
1395 		return (0);		/* but request completed */
1396 	}
1397 
1398 	PR1("operation : kick off taskq entry for %s", vds_operation[i].namep);
1399 
1400 	/* Queue a task to complete the operation */
1401 	status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete,
1402 	    task, DDI_SLEEP);
1403 	/* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */
1404 	ASSERT(status == DDI_SUCCESS);
1405 
1406 	PR1("Operation in progress");
1407 	return (EINPROGRESS);	/* completion handler will finish request */
1408 }
1409 
1410 /*
1411  * Return true if the "type", "subtype", and "env" fields of the "tag" first
1412  * argument match the corresponding remaining arguments; otherwise, return false
1413  */
1414 boolean_t
1415 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
1416 {
1417 	return ((tag->vio_msgtype == type) &&
1418 		(tag->vio_subtype == subtype) &&
1419 		(tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
1420 }
1421 
1422 /*
1423  * Check whether the major/minor version specified in "ver_msg" is supported
1424  * by this server.
1425  */
1426 static boolean_t
1427 vds_supported_version(vio_ver_msg_t *ver_msg)
1428 {
1429 	for (int i = 0; i < vds_num_versions; i++) {
1430 		ASSERT(vds_version[i].major > 0);
1431 		ASSERT((i == 0) ||
1432 		    (vds_version[i].major < vds_version[i-1].major));
1433 
1434 		/*
1435 		 * If the major versions match, adjust the minor version, if
1436 		 * necessary, down to the highest value supported by this
1437 		 * server and return true so this message will get "ack"ed;
1438 		 * the client should also support all minor versions lower
1439 		 * than the value it sent
1440 		 */
1441 		if (ver_msg->ver_major == vds_version[i].major) {
1442 			if (ver_msg->ver_minor > vds_version[i].minor) {
1443 				PR0("Adjusting minor version from %u to %u",
1444 				    ver_msg->ver_minor, vds_version[i].minor);
1445 				ver_msg->ver_minor = vds_version[i].minor;
1446 			}
1447 			return (B_TRUE);
1448 		}
1449 
1450 		/*
1451 		 * If the message contains a higher major version number, set
1452 		 * the message's major/minor versions to the current values
1453 		 * and return false, so this message will get "nack"ed with
1454 		 * these values, and the client will potentially try again
1455 		 * with the same or a lower version
1456 		 */
1457 		if (ver_msg->ver_major > vds_version[i].major) {
1458 			ver_msg->ver_major = vds_version[i].major;
1459 			ver_msg->ver_minor = vds_version[i].minor;
1460 			return (B_FALSE);
1461 		}
1462 
1463 		/*
1464 		 * Otherwise, the message's major version is less than the
1465 		 * current major version, so continue the loop to the next
1466 		 * (lower) supported version
1467 		 */
1468 	}
1469 
1470 	/*
1471 	 * No common version was found; "ground" the version pair in the
1472 	 * message to terminate negotiation
1473 	 */
1474 	ver_msg->ver_major = 0;
1475 	ver_msg->ver_minor = 0;
1476 	return (B_FALSE);
1477 }
1478 
1479 /*
1480  * Process a version message from a client.  vds expects to receive version
1481  * messages from clients seeking service, but never issues version messages
1482  * itself; therefore, vds can ACK or NACK client version messages, but does
1483  * not expect to receive version-message ACKs or NACKs (and will treat such
1484  * messages as invalid).
1485  */
1486 static int
1487 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1488 {
1489 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
1490 
1491 
1492 	ASSERT(msglen >= sizeof (msg->tag));
1493 
1494 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1495 		VIO_VER_INFO)) {
1496 		return (ENOMSG);	/* not a version message */
1497 	}
1498 
1499 	if (msglen != sizeof (*ver_msg)) {
1500 		PR0("Expected %lu-byte version message; "
1501 		    "received %lu bytes", sizeof (*ver_msg), msglen);
1502 		return (EBADMSG);
1503 	}
1504 
1505 	if (ver_msg->dev_class != VDEV_DISK) {
1506 		PR0("Expected device class %u (disk); received %u",
1507 		    VDEV_DISK, ver_msg->dev_class);
1508 		return (EBADMSG);
1509 	}
1510 
1511 	/*
1512 	 * We're talking to the expected kind of client; set our device class
1513 	 * for "ack/nack" back to the client
1514 	 */
1515 	ver_msg->dev_class = VDEV_DISK_SERVER;
1516 
1517 	/*
1518 	 * Check whether the (valid) version message specifies a version
1519 	 * supported by this server.  If the version is not supported, return
1520 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
1521 	 * will have updated the message with a supported version for the
1522 	 * client to consider
1523 	 */
1524 	if (!vds_supported_version(ver_msg))
1525 		return (EBADMSG);
1526 
1527 
1528 	/*
1529 	 * A version has been agreed upon; use the client's SID for
1530 	 * communication on this channel now
1531 	 */
1532 	ASSERT(!(vd->initialized & VD_SID));
1533 	vd->sid = ver_msg->tag.vio_sid;
1534 	vd->initialized |= VD_SID;
1535 
1536 	/*
1537 	 * When multiple versions are supported, this function should store
1538 	 * the negotiated major and minor version values in the "vd" data
1539 	 * structure to govern further communication; in particular, note that
1540 	 * the client might have specified a lower minor version for the
1541 	 * agreed major version than specifed in the vds_version[] array.  The
1542 	 * following assertions should help remind future maintainers to make
1543 	 * the appropriate changes to support multiple versions.
1544 	 */
1545 	ASSERT(vds_num_versions == 1);
1546 	ASSERT(ver_msg->ver_major == vds_version[0].major);
1547 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
1548 
1549 	PR0("Using major version %u, minor version %u",
1550 	    ver_msg->ver_major, ver_msg->ver_minor);
1551 	return (0);
1552 }
1553 
1554 static int
1555 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1556 {
1557 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
1558 	int		status, retry = 0;
1559 
1560 
1561 	ASSERT(msglen >= sizeof (msg->tag));
1562 
1563 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1564 		VIO_ATTR_INFO)) {
1565 		PR0("Message is not an attribute message");
1566 		return (ENOMSG);
1567 	}
1568 
1569 	if (msglen != sizeof (*attr_msg)) {
1570 		PR0("Expected %lu-byte attribute message; "
1571 		    "received %lu bytes", sizeof (*attr_msg), msglen);
1572 		return (EBADMSG);
1573 	}
1574 
1575 	if (attr_msg->max_xfer_sz == 0) {
1576 		PR0("Received maximum transfer size of 0 from client");
1577 		return (EBADMSG);
1578 	}
1579 
1580 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
1581 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
1582 		PR0("Client requested unsupported transfer mode");
1583 		return (EBADMSG);
1584 	}
1585 
1586 	/*
1587 	 * check if the underlying disk is ready, if not try accessing
1588 	 * the device again. Open the vdisk device and extract info
1589 	 * about it, as this is needed to respond to the attr info msg
1590 	 */
1591 	if ((vd->initialized & VD_DISK_READY) == 0) {
1592 		PR0("Retry setting up disk (%s)", vd->device_path);
1593 		do {
1594 			status = vd_setup_vd(vd);
1595 			if (status != EAGAIN || ++retry > vds_dev_retries)
1596 				break;
1597 
1598 			/* incremental delay */
1599 			delay(drv_usectohz(vds_dev_delay));
1600 
1601 			/* if vdisk is no longer enabled - return error */
1602 			if (!vd_enabled(vd))
1603 				return (ENXIO);
1604 
1605 		} while (status == EAGAIN);
1606 
1607 		if (status)
1608 			return (ENXIO);
1609 
1610 		vd->initialized |= VD_DISK_READY;
1611 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
1612 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
1613 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
1614 		    (vd->pseudo ? "yes" : "no"),
1615 		    (vd->file ? "yes" : "no"),
1616 		    vd->nslices);
1617 	}
1618 
1619 	/* Success:  valid message and transfer mode */
1620 	vd->xfer_mode = attr_msg->xfer_mode;
1621 
1622 	if (vd->xfer_mode == VIO_DESC_MODE) {
1623 
1624 		/*
1625 		 * The vd_dring_inband_msg_t contains one cookie; need room
1626 		 * for up to n-1 more cookies, where "n" is the number of full
1627 		 * pages plus possibly one partial page required to cover
1628 		 * "max_xfer_sz".  Add room for one more cookie if
1629 		 * "max_xfer_sz" isn't an integral multiple of the page size.
1630 		 * Must first get the maximum transfer size in bytes.
1631 		 */
1632 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
1633 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
1634 		    attr_msg->max_xfer_sz;
1635 		size_t	max_inband_msglen =
1636 		    sizeof (vd_dring_inband_msg_t) +
1637 		    ((max_xfer_bytes/PAGESIZE +
1638 			((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
1639 			(sizeof (ldc_mem_cookie_t)));
1640 
1641 		/*
1642 		 * Set the maximum expected message length to
1643 		 * accommodate in-band-descriptor messages with all
1644 		 * their cookies
1645 		 */
1646 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
1647 
1648 		/*
1649 		 * Initialize the data structure for processing in-band I/O
1650 		 * request descriptors
1651 		 */
1652 		vd->inband_task.vd	= vd;
1653 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
1654 		vd->inband_task.index	= 0;
1655 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
1656 	}
1657 
1658 	/* Return the device's block size and max transfer size to the client */
1659 	attr_msg->vdisk_block_size	= DEV_BSIZE;
1660 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
1661 
1662 	attr_msg->vdisk_size = vd->vdisk_size;
1663 	attr_msg->vdisk_type = vd->vdisk_type;
1664 	attr_msg->operations = vds_operations;
1665 	PR0("%s", VD_CLIENT(vd));
1666 
1667 	ASSERT(vd->dring_task == NULL);
1668 
1669 	return (0);
1670 }
1671 
1672 static int
1673 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1674 {
1675 	int			status;
1676 	size_t			expected;
1677 	ldc_mem_info_t		dring_minfo;
1678 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
1679 
1680 
1681 	ASSERT(msglen >= sizeof (msg->tag));
1682 
1683 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1684 		VIO_DRING_REG)) {
1685 		PR0("Message is not a register-dring message");
1686 		return (ENOMSG);
1687 	}
1688 
1689 	if (msglen < sizeof (*reg_msg)) {
1690 		PR0("Expected at least %lu-byte register-dring message; "
1691 		    "received %lu bytes", sizeof (*reg_msg), msglen);
1692 		return (EBADMSG);
1693 	}
1694 
1695 	expected = sizeof (*reg_msg) +
1696 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
1697 	if (msglen != expected) {
1698 		PR0("Expected %lu-byte register-dring message; "
1699 		    "received %lu bytes", expected, msglen);
1700 		return (EBADMSG);
1701 	}
1702 
1703 	if (vd->initialized & VD_DRING) {
1704 		PR0("A dring was previously registered; only support one");
1705 		return (EBADMSG);
1706 	}
1707 
1708 	if (reg_msg->num_descriptors > INT32_MAX) {
1709 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
1710 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
1711 		return (EBADMSG);
1712 	}
1713 
1714 	if (reg_msg->ncookies != 1) {
1715 		/*
1716 		 * In addition to fixing the assertion in the success case
1717 		 * below, supporting drings which require more than one
1718 		 * "cookie" requires increasing the value of vd->max_msglen
1719 		 * somewhere in the code path prior to receiving the message
1720 		 * which results in calling this function.  Note that without
1721 		 * making this change, the larger message size required to
1722 		 * accommodate multiple cookies cannot be successfully
1723 		 * received, so this function will not even get called.
1724 		 * Gracefully accommodating more dring cookies might
1725 		 * reasonably demand exchanging an additional attribute or
1726 		 * making a minor protocol adjustment
1727 		 */
1728 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
1729 		return (EBADMSG);
1730 	}
1731 
1732 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
1733 	    reg_msg->ncookies, reg_msg->num_descriptors,
1734 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
1735 	if (status != 0) {
1736 		PR0("ldc_mem_dring_map() returned errno %d", status);
1737 		return (status);
1738 	}
1739 
1740 	/*
1741 	 * To remove the need for this assertion, must call
1742 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
1743 	 * successful call to ldc_mem_dring_map()
1744 	 */
1745 	ASSERT(reg_msg->ncookies == 1);
1746 
1747 	if ((status =
1748 		ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
1749 		PR0("ldc_mem_dring_info() returned errno %d", status);
1750 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
1751 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
1752 		return (status);
1753 	}
1754 
1755 	if (dring_minfo.vaddr == NULL) {
1756 		PR0("Descriptor ring virtual address is NULL");
1757 		return (ENXIO);
1758 	}
1759 
1760 
1761 	/* Initialize for valid message and mapped dring */
1762 	PR1("descriptor size = %u, dring length = %u",
1763 	    vd->descriptor_size, vd->dring_len);
1764 	vd->initialized |= VD_DRING;
1765 	vd->dring_ident = 1;	/* "There Can Be Only One" */
1766 	vd->dring = dring_minfo.vaddr;
1767 	vd->descriptor_size = reg_msg->descriptor_size;
1768 	vd->dring_len = reg_msg->num_descriptors;
1769 	reg_msg->dring_ident = vd->dring_ident;
1770 
1771 	/*
1772 	 * Allocate and initialize a "shadow" array of data structures for
1773 	 * tasks to process I/O requests in dring elements
1774 	 */
1775 	vd->dring_task =
1776 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
1777 	for (int i = 0; i < vd->dring_len; i++) {
1778 		vd->dring_task[i].vd		= vd;
1779 		vd->dring_task[i].index		= i;
1780 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
1781 
1782 		status = ldc_mem_alloc_handle(vd->ldc_handle,
1783 		    &(vd->dring_task[i].mhdl));
1784 		if (status) {
1785 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
1786 			return (ENXIO);
1787 		}
1788 
1789 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
1790 	}
1791 
1792 	return (0);
1793 }
1794 
1795 static int
1796 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1797 {
1798 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
1799 
1800 
1801 	ASSERT(msglen >= sizeof (msg->tag));
1802 
1803 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1804 		VIO_DRING_UNREG)) {
1805 		PR0("Message is not an unregister-dring message");
1806 		return (ENOMSG);
1807 	}
1808 
1809 	if (msglen != sizeof (*unreg_msg)) {
1810 		PR0("Expected %lu-byte unregister-dring message; "
1811 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
1812 		return (EBADMSG);
1813 	}
1814 
1815 	if (unreg_msg->dring_ident != vd->dring_ident) {
1816 		PR0("Expected dring ident %lu; received %lu",
1817 		    vd->dring_ident, unreg_msg->dring_ident);
1818 		return (EBADMSG);
1819 	}
1820 
1821 	return (0);
1822 }
1823 
1824 static int
1825 process_rdx_msg(vio_msg_t *msg, size_t msglen)
1826 {
1827 	ASSERT(msglen >= sizeof (msg->tag));
1828 
1829 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
1830 		PR0("Message is not an RDX message");
1831 		return (ENOMSG);
1832 	}
1833 
1834 	if (msglen != sizeof (vio_rdx_msg_t)) {
1835 		PR0("Expected %lu-byte RDX message; received %lu bytes",
1836 		    sizeof (vio_rdx_msg_t), msglen);
1837 		return (EBADMSG);
1838 	}
1839 
1840 	PR0("Valid RDX message");
1841 	return (0);
1842 }
1843 
1844 static int
1845 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
1846 {
1847 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
1848 		PR0("Received seq_num %lu; expected %lu",
1849 		    seq_num, (vd->seq_num + 1));
1850 		PR0("initiating soft reset");
1851 		vd_need_reset(vd, B_FALSE);
1852 		return (1);
1853 	}
1854 
1855 	vd->seq_num = seq_num;
1856 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Return the expected size of an inband-descriptor message with all the
1862  * cookies it claims to include
1863  */
1864 static size_t
1865 expected_inband_size(vd_dring_inband_msg_t *msg)
1866 {
1867 	return ((sizeof (*msg)) +
1868 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
1869 }
1870 
1871 /*
1872  * Process an in-band descriptor message:  used with clients like OBP, with
1873  * which vds exchanges descriptors within VIO message payloads, rather than
1874  * operating on them within a descriptor ring
1875  */
1876 static int
1877 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1878 {
1879 	size_t			expected;
1880 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
1881 
1882 
1883 	ASSERT(msglen >= sizeof (msg->tag));
1884 
1885 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
1886 		VIO_DESC_DATA)) {
1887 		PR1("Message is not an in-band-descriptor message");
1888 		return (ENOMSG);
1889 	}
1890 
1891 	if (msglen < sizeof (*desc_msg)) {
1892 		PR0("Expected at least %lu-byte descriptor message; "
1893 		    "received %lu bytes", sizeof (*desc_msg), msglen);
1894 		return (EBADMSG);
1895 	}
1896 
1897 	if (msglen != (expected = expected_inband_size(desc_msg))) {
1898 		PR0("Expected %lu-byte descriptor message; "
1899 		    "received %lu bytes", expected, msglen);
1900 		return (EBADMSG);
1901 	}
1902 
1903 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
1904 		return (EBADMSG);
1905 
1906 	/*
1907 	 * Valid message:  Set up the in-band descriptor task and process the
1908 	 * request.  Arrange to acknowledge the client's message, unless an
1909 	 * error processing the descriptor task results in setting
1910 	 * VIO_SUBTYPE_NACK
1911 	 */
1912 	PR1("Valid in-band-descriptor message");
1913 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1914 
1915 	ASSERT(vd->inband_task.msg != NULL);
1916 
1917 	bcopy(msg, vd->inband_task.msg, msglen);
1918 	vd->inband_task.msglen	= msglen;
1919 
1920 	/*
1921 	 * The task request is now the payload of the message
1922 	 * that was just copied into the body of the task.
1923 	 */
1924 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
1925 	vd->inband_task.request	= &desc_msg->payload;
1926 
1927 	return (vd_process_task(&vd->inband_task));
1928 }
1929 
1930 static int
1931 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
1932     vio_msg_t *msg, size_t msglen)
1933 {
1934 	int			status;
1935 	boolean_t		ready;
1936 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1937 
1938 
1939 	/* Accept the updated dring element */
1940 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1941 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
1942 		return (status);
1943 	}
1944 	ready = (elem->hdr.dstate == VIO_DESC_READY);
1945 	if (ready) {
1946 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
1947 	} else {
1948 		PR0("descriptor %u not ready", idx);
1949 		VD_DUMP_DRING_ELEM(elem);
1950 	}
1951 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1952 		PR0("ldc_mem_dring_release() returned errno %d", status);
1953 		return (status);
1954 	}
1955 	if (!ready)
1956 		return (EBUSY);
1957 
1958 
1959 	/* Initialize a task and process the accepted element */
1960 	PR1("Processing dring element %u", idx);
1961 	vd->dring_task[idx].type	= type;
1962 
1963 	/* duplicate msg buf for cookies etc. */
1964 	bcopy(msg, vd->dring_task[idx].msg, msglen);
1965 
1966 	vd->dring_task[idx].msglen	= msglen;
1967 	if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS)
1968 		status = vd_mark_elem_done(vd, idx,
1969 		    vd->dring_task[idx].request->status,
1970 		    vd->dring_task[idx].request->nbytes);
1971 
1972 	return (status);
1973 }
1974 
1975 static int
1976 vd_process_element_range(vd_t *vd, int start, int end,
1977     vio_msg_t *msg, size_t msglen)
1978 {
1979 	int		i, n, nelem, status = 0;
1980 	boolean_t	inprogress = B_FALSE;
1981 	vd_task_type_t	type;
1982 
1983 
1984 	ASSERT(start >= 0);
1985 	ASSERT(end >= 0);
1986 
1987 	/*
1988 	 * Arrange to acknowledge the client's message, unless an error
1989 	 * processing one of the dring elements results in setting
1990 	 * VIO_SUBTYPE_NACK
1991 	 */
1992 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1993 
1994 	/*
1995 	 * Process the dring elements in the range
1996 	 */
1997 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
1998 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
1999 		((vio_dring_msg_t *)msg)->end_idx = i;
2000 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
2001 		status = vd_process_element(vd, type, i, msg, msglen);
2002 		if (status == EINPROGRESS)
2003 			inprogress = B_TRUE;
2004 		else if (status != 0)
2005 			break;
2006 	}
2007 
2008 	/*
2009 	 * If some, but not all, operations of a multi-element range are in
2010 	 * progress, wait for other operations to complete before returning
2011 	 * (which will result in "ack" or "nack" of the message).  Note that
2012 	 * all outstanding operations will need to complete, not just the ones
2013 	 * corresponding to the current range of dring elements; howevever, as
2014 	 * this situation is an error case, performance is less critical.
2015 	 */
2016 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
2017 		ddi_taskq_wait(vd->completionq);
2018 
2019 	return (status);
2020 }
2021 
2022 static int
2023 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2024 {
2025 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
2026 
2027 
2028 	ASSERT(msglen >= sizeof (msg->tag));
2029 
2030 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2031 		VIO_DRING_DATA)) {
2032 		PR1("Message is not a dring-data message");
2033 		return (ENOMSG);
2034 	}
2035 
2036 	if (msglen != sizeof (*dring_msg)) {
2037 		PR0("Expected %lu-byte dring message; received %lu bytes",
2038 		    sizeof (*dring_msg), msglen);
2039 		return (EBADMSG);
2040 	}
2041 
2042 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
2043 		return (EBADMSG);
2044 
2045 	if (dring_msg->dring_ident != vd->dring_ident) {
2046 		PR0("Expected dring ident %lu; received ident %lu",
2047 		    vd->dring_ident, dring_msg->dring_ident);
2048 		return (EBADMSG);
2049 	}
2050 
2051 	if (dring_msg->start_idx >= vd->dring_len) {
2052 		PR0("\"start_idx\" = %u; must be less than %u",
2053 		    dring_msg->start_idx, vd->dring_len);
2054 		return (EBADMSG);
2055 	}
2056 
2057 	if ((dring_msg->end_idx < 0) ||
2058 	    (dring_msg->end_idx >= vd->dring_len)) {
2059 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
2060 		    dring_msg->end_idx, vd->dring_len);
2061 		return (EBADMSG);
2062 	}
2063 
2064 	/* Valid message; process range of updated dring elements */
2065 	PR1("Processing descriptor range, start = %u, end = %u",
2066 	    dring_msg->start_idx, dring_msg->end_idx);
2067 	return (vd_process_element_range(vd, dring_msg->start_idx,
2068 		dring_msg->end_idx, msg, msglen));
2069 }
2070 
2071 static int
2072 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
2073 {
2074 	int	retry, status;
2075 	size_t	size = *nbytes;
2076 
2077 
2078 	for (retry = 0, status = ETIMEDOUT;
2079 	    retry < vds_ldc_retries && status == ETIMEDOUT;
2080 	    retry++) {
2081 		PR1("ldc_read() attempt %d", (retry + 1));
2082 		*nbytes = size;
2083 		status = ldc_read(ldc_handle, msg, nbytes);
2084 	}
2085 
2086 	if (status) {
2087 		PR0("ldc_read() returned errno %d", status);
2088 		if (status != ECONNRESET)
2089 			return (ENOMSG);
2090 		return (status);
2091 	} else if (*nbytes == 0) {
2092 		PR1("ldc_read() returned 0 and no message read");
2093 		return (ENOMSG);
2094 	}
2095 
2096 	PR1("RCVD %lu-byte message", *nbytes);
2097 	return (0);
2098 }
2099 
2100 static int
2101 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2102 {
2103 	int		status;
2104 
2105 
2106 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
2107 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
2108 #ifdef	DEBUG
2109 	vd_decode_tag(msg);
2110 #endif
2111 
2112 	/*
2113 	 * Validate session ID up front, since it applies to all messages
2114 	 * once set
2115 	 */
2116 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
2117 		PR0("Expected SID %u, received %u", vd->sid,
2118 		    msg->tag.vio_sid);
2119 		return (EBADMSG);
2120 	}
2121 
2122 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
2123 
2124 	/*
2125 	 * Process the received message based on connection state
2126 	 */
2127 	switch (vd->state) {
2128 	case VD_STATE_INIT:	/* expect version message */
2129 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
2130 			return (status);
2131 
2132 		/* Version negotiated, move to that state */
2133 		vd->state = VD_STATE_VER;
2134 		return (0);
2135 
2136 	case VD_STATE_VER:	/* expect attribute message */
2137 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
2138 			return (status);
2139 
2140 		/* Attributes exchanged, move to that state */
2141 		vd->state = VD_STATE_ATTR;
2142 		return (0);
2143 
2144 	case VD_STATE_ATTR:
2145 		switch (vd->xfer_mode) {
2146 		case VIO_DESC_MODE:	/* expect RDX message */
2147 			if ((status = process_rdx_msg(msg, msglen)) != 0)
2148 				return (status);
2149 
2150 			/* Ready to receive in-band descriptors */
2151 			vd->state = VD_STATE_DATA;
2152 			return (0);
2153 
2154 		case VIO_DRING_MODE:	/* expect register-dring message */
2155 			if ((status =
2156 				vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
2157 				return (status);
2158 
2159 			/* One dring negotiated, move to that state */
2160 			vd->state = VD_STATE_DRING;
2161 			return (0);
2162 
2163 		default:
2164 			ASSERT("Unsupported transfer mode");
2165 			PR0("Unsupported transfer mode");
2166 			return (ENOTSUP);
2167 		}
2168 
2169 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
2170 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
2171 			/* Ready to receive data */
2172 			vd->state = VD_STATE_DATA;
2173 			return (0);
2174 		} else if (status != ENOMSG) {
2175 			return (status);
2176 		}
2177 
2178 
2179 		/*
2180 		 * If another register-dring message is received, stay in
2181 		 * dring state in case the client sends RDX; although the
2182 		 * protocol allows multiple drings, this server does not
2183 		 * support using more than one
2184 		 */
2185 		if ((status =
2186 			vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
2187 			return (status);
2188 
2189 		/*
2190 		 * Acknowledge an unregister-dring message, but reset the
2191 		 * connection anyway:  Although the protocol allows
2192 		 * unregistering drings, this server cannot serve a vdisk
2193 		 * without its only dring
2194 		 */
2195 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
2196 		return ((status == 0) ? ENOTSUP : status);
2197 
2198 	case VD_STATE_DATA:
2199 		switch (vd->xfer_mode) {
2200 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
2201 			return (vd_process_desc_msg(vd, msg, msglen));
2202 
2203 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
2204 			/*
2205 			 * Typically expect dring-data messages, so handle
2206 			 * them first
2207 			 */
2208 			if ((status = vd_process_dring_msg(vd, msg,
2209 				    msglen)) != ENOMSG)
2210 				return (status);
2211 
2212 			/*
2213 			 * Acknowledge an unregister-dring message, but reset
2214 			 * the connection anyway:  Although the protocol
2215 			 * allows unregistering drings, this server cannot
2216 			 * serve a vdisk without its only dring
2217 			 */
2218 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
2219 			return ((status == 0) ? ENOTSUP : status);
2220 
2221 		default:
2222 			ASSERT("Unsupported transfer mode");
2223 			PR0("Unsupported transfer mode");
2224 			return (ENOTSUP);
2225 		}
2226 
2227 	default:
2228 		ASSERT("Invalid client connection state");
2229 		PR0("Invalid client connection state");
2230 		return (ENOTSUP);
2231 	}
2232 }
2233 
2234 static int
2235 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2236 {
2237 	int		status;
2238 	boolean_t	reset_ldc = B_FALSE;
2239 
2240 
2241 	/*
2242 	 * Check that the message is at least big enough for a "tag", so that
2243 	 * message processing can proceed based on tag-specified message type
2244 	 */
2245 	if (msglen < sizeof (vio_msg_tag_t)) {
2246 		PR0("Received short (%lu-byte) message", msglen);
2247 		/* Can't "nack" short message, so drop the big hammer */
2248 		PR0("initiating full reset");
2249 		vd_need_reset(vd, B_TRUE);
2250 		return (EBADMSG);
2251 	}
2252 
2253 	/*
2254 	 * Process the message
2255 	 */
2256 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
2257 	case 0:
2258 		/* "ack" valid, successfully-processed messages */
2259 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2260 		break;
2261 
2262 	case EINPROGRESS:
2263 		/* The completion handler will "ack" or "nack" the message */
2264 		return (EINPROGRESS);
2265 	case ENOMSG:
2266 		PR0("Received unexpected message");
2267 		_NOTE(FALLTHROUGH);
2268 	case EBADMSG:
2269 	case ENOTSUP:
2270 		/* "nack" invalid messages */
2271 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2272 		break;
2273 
2274 	default:
2275 		/* "nack" failed messages */
2276 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2277 		/* An LDC error probably occurred, so try resetting it */
2278 		reset_ldc = B_TRUE;
2279 		break;
2280 	}
2281 
2282 	PR1("\tResulting in state %d (%s)", vd->state,
2283 		vd_decode_state(vd->state));
2284 
2285 	/* Send the "ack" or "nack" to the client */
2286 	PR1("Sending %s",
2287 	    (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2288 	if (send_msg(vd->ldc_handle, msg, msglen) != 0)
2289 		reset_ldc = B_TRUE;
2290 
2291 	/* Arrange to reset the connection for nack'ed or failed messages */
2292 	if ((status != 0) || reset_ldc) {
2293 		PR0("initiating %s reset",
2294 		    (reset_ldc) ? "full" : "soft");
2295 		vd_need_reset(vd, reset_ldc);
2296 	}
2297 
2298 	return (status);
2299 }
2300 
2301 static boolean_t
2302 vd_enabled(vd_t *vd)
2303 {
2304 	boolean_t	enabled;
2305 
2306 
2307 	mutex_enter(&vd->lock);
2308 	enabled = vd->enabled;
2309 	mutex_exit(&vd->lock);
2310 	return (enabled);
2311 }
2312 
2313 static void
2314 vd_recv_msg(void *arg)
2315 {
2316 	vd_t	*vd = (vd_t *)arg;
2317 	int	rv = 0, status = 0;
2318 
2319 	ASSERT(vd != NULL);
2320 
2321 	PR2("New task to receive incoming message(s)");
2322 
2323 
2324 	while (vd_enabled(vd) && status == 0) {
2325 		size_t		msglen, msgsize;
2326 		ldc_status_t	lstatus;
2327 
2328 		/*
2329 		 * Receive and process a message
2330 		 */
2331 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
2332 
2333 		/*
2334 		 * check if channel is UP - else break out of loop
2335 		 */
2336 		status = ldc_status(vd->ldc_handle, &lstatus);
2337 		if (lstatus != LDC_UP) {
2338 			PR0("channel not up (status=%d), exiting recv loop\n",
2339 			    lstatus);
2340 			break;
2341 		}
2342 
2343 		ASSERT(vd->max_msglen != 0);
2344 
2345 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
2346 		msglen	= msgsize;	  /* actual len after recv_msg() */
2347 
2348 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
2349 		switch (status) {
2350 		case 0:
2351 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
2352 				msglen);
2353 			/* check if max_msglen changed */
2354 			if (msgsize != vd->max_msglen) {
2355 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
2356 				    msgsize, vd->max_msglen);
2357 				kmem_free(vd->vio_msgp, msgsize);
2358 				vd->vio_msgp =
2359 					kmem_alloc(vd->max_msglen, KM_SLEEP);
2360 			}
2361 			if (rv == EINPROGRESS)
2362 				continue;
2363 			break;
2364 
2365 		case ENOMSG:
2366 			break;
2367 
2368 		case ECONNRESET:
2369 			PR0("initiating soft reset (ECONNRESET)\n");
2370 			vd_need_reset(vd, B_FALSE);
2371 			status = 0;
2372 			break;
2373 
2374 		default:
2375 			/* Probably an LDC failure; arrange to reset it */
2376 			PR0("initiating full reset (status=0x%x)", status);
2377 			vd_need_reset(vd, B_TRUE);
2378 			break;
2379 		}
2380 	}
2381 
2382 	PR2("Task finished");
2383 }
2384 
2385 static uint_t
2386 vd_handle_ldc_events(uint64_t event, caddr_t arg)
2387 {
2388 	vd_t	*vd = (vd_t *)(void *)arg;
2389 	int	status;
2390 
2391 	ASSERT(vd != NULL);
2392 
2393 	if (!vd_enabled(vd))
2394 		return (LDC_SUCCESS);
2395 
2396 	if (event & LDC_EVT_DOWN) {
2397 		PR0("LDC_EVT_DOWN: LDC channel went down");
2398 
2399 		vd_need_reset(vd, B_TRUE);
2400 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2401 		    DDI_SLEEP);
2402 		if (status == DDI_FAILURE) {
2403 			PR0("cannot schedule task to recv msg\n");
2404 			vd_need_reset(vd, B_TRUE);
2405 		}
2406 	}
2407 
2408 	if (event & LDC_EVT_RESET) {
2409 		PR0("LDC_EVT_RESET: LDC channel was reset");
2410 
2411 		if (vd->state != VD_STATE_INIT) {
2412 			PR0("scheduling full reset");
2413 			vd_need_reset(vd, B_FALSE);
2414 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2415 			    vd, DDI_SLEEP);
2416 			if (status == DDI_FAILURE) {
2417 				PR0("cannot schedule task to recv msg\n");
2418 				vd_need_reset(vd, B_TRUE);
2419 			}
2420 
2421 		} else {
2422 			PR0("channel already reset, ignoring...\n");
2423 			PR0("doing ldc up...\n");
2424 			(void) ldc_up(vd->ldc_handle);
2425 		}
2426 
2427 		return (LDC_SUCCESS);
2428 	}
2429 
2430 	if (event & LDC_EVT_UP) {
2431 		PR0("EVT_UP: LDC is up\nResetting client connection state");
2432 		PR0("initiating soft reset");
2433 		vd_need_reset(vd, B_FALSE);
2434 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2435 		    vd, DDI_SLEEP);
2436 		if (status == DDI_FAILURE) {
2437 			PR0("cannot schedule task to recv msg\n");
2438 			vd_need_reset(vd, B_TRUE);
2439 			return (LDC_SUCCESS);
2440 		}
2441 	}
2442 
2443 	if (event & LDC_EVT_READ) {
2444 		int	status;
2445 
2446 		PR1("New data available");
2447 		/* Queue a task to receive the new data */
2448 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2449 		    DDI_SLEEP);
2450 
2451 		if (status == DDI_FAILURE) {
2452 			PR0("cannot schedule task to recv msg\n");
2453 			vd_need_reset(vd, B_TRUE);
2454 		}
2455 	}
2456 
2457 	return (LDC_SUCCESS);
2458 }
2459 
2460 static uint_t
2461 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2462 {
2463 	_NOTE(ARGUNUSED(key, val))
2464 	(*((uint_t *)arg))++;
2465 	return (MH_WALK_TERMINATE);
2466 }
2467 
2468 
2469 static int
2470 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2471 {
2472 	uint_t	vd_present = 0;
2473 	minor_t	instance;
2474 	vds_t	*vds;
2475 
2476 
2477 	switch (cmd) {
2478 	case DDI_DETACH:
2479 		/* the real work happens below */
2480 		break;
2481 	case DDI_SUSPEND:
2482 		PR0("No action required for DDI_SUSPEND");
2483 		return (DDI_SUCCESS);
2484 	default:
2485 		PR0("Unrecognized \"cmd\"");
2486 		return (DDI_FAILURE);
2487 	}
2488 
2489 	ASSERT(cmd == DDI_DETACH);
2490 	instance = ddi_get_instance(dip);
2491 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
2492 		PR0("Could not get state for instance %u", instance);
2493 		ddi_soft_state_free(vds_state, instance);
2494 		return (DDI_FAILURE);
2495 	}
2496 
2497 	/* Do no detach when serving any vdisks */
2498 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
2499 	if (vd_present) {
2500 		PR0("Not detaching because serving vdisks");
2501 		return (DDI_FAILURE);
2502 	}
2503 
2504 	PR0("Detaching");
2505 	if (vds->initialized & VDS_MDEG) {
2506 		(void) mdeg_unregister(vds->mdeg);
2507 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
2508 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
2509 		vds->ispecp = NULL;
2510 		vds->mdeg = NULL;
2511 	}
2512 
2513 	if (vds->initialized & VDS_LDI)
2514 		(void) ldi_ident_release(vds->ldi_ident);
2515 	mod_hash_destroy_hash(vds->vd_table);
2516 	ddi_soft_state_free(vds_state, instance);
2517 	return (DDI_SUCCESS);
2518 }
2519 
2520 static boolean_t
2521 is_pseudo_device(dev_info_t *dip)
2522 {
2523 	dev_info_t	*parent, *root = ddi_root_node();
2524 
2525 
2526 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
2527 	    parent = ddi_get_parent(parent)) {
2528 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
2529 			return (B_TRUE);
2530 	}
2531 
2532 	return (B_FALSE);
2533 }
2534 
2535 static int
2536 vd_setup_full_disk(vd_t *vd)
2537 {
2538 	int		rval, status;
2539 	major_t		major = getmajor(vd->dev[0]);
2540 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
2541 	struct dk_minfo	dk_minfo;
2542 
2543 	/*
2544 	 * At this point, vdisk_size is set to the size of partition 2 but
2545 	 * this does not represent the size of the disk because partition 2
2546 	 * may not cover the entire disk and its size does not include reserved
2547 	 * blocks. So we update vdisk_size to be the size of the entire disk.
2548 	 */
2549 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
2550 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
2551 	    kcred, &rval)) != 0) {
2552 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
2553 		    status);
2554 		return (status);
2555 	}
2556 	vd->vdisk_size = dk_minfo.dki_capacity;
2557 
2558 	/* Set full-disk parameters */
2559 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
2560 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
2561 
2562 	/* Move dev number and LDI handle to entire-disk-slice array elements */
2563 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
2564 	vd->dev[0]				= 0;
2565 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
2566 	vd->ldi_handle[0]			= NULL;
2567 
2568 	/* Initialize device numbers for remaining slices and open them */
2569 	for (int slice = 0; slice < vd->nslices; slice++) {
2570 		/*
2571 		 * Skip the entire-disk slice, as it's already open and its
2572 		 * device known
2573 		 */
2574 		if (slice == VD_ENTIRE_DISK_SLICE)
2575 			continue;
2576 		ASSERT(vd->dev[slice] == 0);
2577 		ASSERT(vd->ldi_handle[slice] == NULL);
2578 
2579 		/*
2580 		 * Construct the device number for the current slice
2581 		 */
2582 		vd->dev[slice] = makedevice(major, (minor + slice));
2583 
2584 		/*
2585 		 * Open all slices of the disk to serve them to the client.
2586 		 * Slices are opened exclusively to prevent other threads or
2587 		 * processes in the service domain from performing I/O to
2588 		 * slices being accessed by a client.  Failure to open a slice
2589 		 * results in vds not serving this disk, as the client could
2590 		 * attempt (and should be able) to access any slice immediately.
2591 		 * Any slices successfully opened before a failure will get
2592 		 * closed by vds_destroy_vd() as a result of the error returned
2593 		 * by this function.
2594 		 *
2595 		 * We need to do the open with FNDELAY so that opening an empty
2596 		 * slice does not fail.
2597 		 */
2598 		PR0("Opening device major %u, minor %u = slice %u",
2599 		    major, minor, slice);
2600 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
2601 		    vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice],
2602 		    vd->vds->ldi_ident)) != 0) {
2603 			PRN("ldi_open_by_dev() returned errno %d "
2604 			    "for slice %u", status, slice);
2605 			/* vds_destroy_vd() will close any open slices */
2606 			vd->ldi_handle[slice] = NULL;
2607 			return (status);
2608 		}
2609 	}
2610 
2611 	return (0);
2612 }
2613 
2614 static int
2615 vd_setup_partition_efi(vd_t *vd)
2616 {
2617 	efi_gpt_t *gpt;
2618 	efi_gpe_t *gpe;
2619 	struct uuid uuid = EFI_RESERVED;
2620 	uint32_t crc;
2621 	int length;
2622 
2623 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
2624 
2625 	gpt = kmem_zalloc(length, KM_SLEEP);
2626 	gpe = (efi_gpe_t *)(gpt + 1);
2627 
2628 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
2629 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
2630 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
2631 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
2632 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
2633 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
2634 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
2635 
2636 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
2637 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
2638 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
2639 
2640 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
2641 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
2642 
2643 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
2644 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
2645 
2646 	vd->dk_efi.dki_lba = 0;
2647 	vd->dk_efi.dki_length = length;
2648 	vd->dk_efi.dki_data = gpt;
2649 
2650 	return (0);
2651 }
2652 
2653 static int
2654 vd_setup_file(vd_t *vd)
2655 {
2656 	int 		i, rval, status;
2657 	ushort_t	sum;
2658 	vattr_t		vattr;
2659 	dev_t		dev;
2660 	char		*file_path = vd->device_path;
2661 	char		dev_path[MAXPATHLEN + 1];
2662 	ldi_handle_t	lhandle;
2663 	struct dk_cinfo	dk_cinfo;
2664 	struct dk_label label;
2665 
2666 	/* make sure the file is valid */
2667 	if ((status = lookupname(file_path, UIO_SYSSPACE, FOLLOW,
2668 		NULLVPP, &vd->file_vnode)) != 0) {
2669 		PRN("Cannot lookup file(%s) errno %d", file_path, status);
2670 		return (status);
2671 	}
2672 
2673 	if (vd->file_vnode->v_type != VREG) {
2674 		PRN("Invalid file type (%s)\n", file_path);
2675 		VN_RELE(vd->file_vnode);
2676 		return (EBADF);
2677 	}
2678 	VN_RELE(vd->file_vnode);
2679 
2680 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd_open_flags | FOFFMAX,
2681 	    0, &vd->file_vnode, 0, 0)) != 0) {
2682 		PRN("vn_open(%s) = errno %d", file_path, status);
2683 		return (status);
2684 	}
2685 
2686 	/*
2687 	 * We set vd->file now so that vds_destroy_vd will take care of
2688 	 * closing the file and releasing the vnode in case of an error.
2689 	 */
2690 	vd->file = B_TRUE;
2691 	vd->pseudo = B_FALSE;
2692 
2693 	vattr.va_mask = AT_SIZE;
2694 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) {
2695 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
2696 		return (EIO);
2697 	}
2698 
2699 	vd->file_size = vattr.va_size;
2700 	/* size should be at least sizeof(dk_label) */
2701 	if (vd->file_size < sizeof (struct dk_label)) {
2702 		PRN("Size of file has to be at least %ld bytes",
2703 		    sizeof (struct dk_label));
2704 		return (EIO);
2705 	}
2706 
2707 	if (vd->file_vnode->v_flag & VNOMAP) {
2708 		PRN("File %s cannot be mapped", file_path);
2709 		return (EIO);
2710 	}
2711 
2712 	/* read label from file */
2713 	if (VD_FILE_LABEL_READ(vd, &label) < 0) {
2714 		PRN("Can't read label from %s", file_path);
2715 		return (EIO);
2716 	}
2717 
2718 	/* label checksum */
2719 	sum = vd_lbl2cksum(&label);
2720 
2721 	if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != sum) {
2722 		PR0("%s has an invalid disk label "
2723 		    "(magic=%x cksum=%x (expect %x))",
2724 		    file_path, label.dkl_magic, label.dkl_cksum, sum);
2725 
2726 		/* default label */
2727 		bzero(&label, sizeof (struct dk_label));
2728 
2729 		/*
2730 		 * We must have a resonable number of cylinders and sectors so
2731 		 * that newfs can run using default values.
2732 		 *
2733 		 * if (disk_size < 2MB)
2734 		 * 	phys_cylinders = disk_size / 100K
2735 		 * else
2736 		 * 	phys_cylinders = disk_size / 300K
2737 		 *
2738 		 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
2739 		 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
2740 		 * data_cylinders = phys_cylinders - alt_cylinders
2741 		 *
2742 		 * sectors = disk_size / (phys_cylinders * blk_size)
2743 		 */
2744 		if (vd->file_size < (2 * 1024 * 1024))
2745 			label.dkl_pcyl = vd->file_size / (100 * 1024);
2746 		else
2747 			label.dkl_pcyl = vd->file_size / (300 * 1024);
2748 
2749 		if (label.dkl_pcyl == 0)
2750 			label.dkl_pcyl = 1;
2751 
2752 		if (label.dkl_pcyl > 2)
2753 			label.dkl_acyl = 2;
2754 		else
2755 			label.dkl_acyl = 0;
2756 
2757 		label.dkl_nsect = vd->file_size /
2758 			(DEV_BSIZE * label.dkl_pcyl);
2759 		label.dkl_ncyl = label.dkl_pcyl - label.dkl_acyl;
2760 		label.dkl_nhead = 1;
2761 		label.dkl_write_reinstruct = 0;
2762 		label.dkl_read_reinstruct = 0;
2763 		label.dkl_rpm = 7200;
2764 		label.dkl_apc = 0;
2765 		label.dkl_intrlv = 0;
2766 		label.dkl_magic = DKL_MAGIC;
2767 
2768 		PR0("requested disk size: %ld bytes\n", vd->file_size);
2769 		PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label.dkl_pcyl,
2770 		    label.dkl_nhead, label.dkl_nsect);
2771 		PR0("provided disk size: %ld bytes\n", (uint64_t)
2772 		    (label.dkl_pcyl *
2773 			label.dkl_nhead * label.dkl_nsect * DEV_BSIZE));
2774 
2775 		/*
2776 		 * We must have a correct label name otherwise format(1m) will
2777 		 * not recognized the disk as labeled.
2778 		 */
2779 		(void) snprintf(label.dkl_asciilabel, LEN_DKL_ASCII,
2780 		    "SUNVDSK cyl %d alt %d hd %d sec %d",
2781 		    label.dkl_ncyl, label.dkl_acyl, label.dkl_nhead,
2782 		    label.dkl_nsect);
2783 
2784 		/* default VTOC */
2785 		label.dkl_vtoc.v_version = V_VERSION;
2786 		label.dkl_vtoc.v_nparts = V_NUMPAR;
2787 		label.dkl_vtoc.v_sanity = VTOC_SANE;
2788 		label.dkl_vtoc.v_part[2].p_tag = V_BACKUP;
2789 		label.dkl_map[2].dkl_cylno = 0;
2790 		label.dkl_map[2].dkl_nblk = label.dkl_ncyl *
2791 			label.dkl_nhead * label.dkl_nsect;
2792 		label.dkl_map[0] = label.dkl_map[2];
2793 		label.dkl_map[0] = label.dkl_map[2];
2794 		label.dkl_cksum = vd_lbl2cksum(&label);
2795 
2796 		/* write default label to file */
2797 		if (VD_FILE_LABEL_WRITE(vd, &label) < 0) {
2798 			PRN("Can't write label to %s", file_path);
2799 			return (EIO);
2800 		}
2801 	}
2802 
2803 	vd->nslices = label.dkl_vtoc.v_nparts;
2804 
2805 	/* sector size = block size = DEV_BSIZE */
2806 	vd->vdisk_size = (label.dkl_pcyl *
2807 	    label.dkl_nhead * label.dkl_nsect) / DEV_BSIZE;
2808 	vd->vdisk_type = VD_DISK_TYPE_DISK;
2809 	vd->vdisk_label = VD_DISK_LABEL_VTOC;
2810 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
2811 
2812 	/* Get max_xfer_sz from the device where the file is */
2813 	dev = vd->file_vnode->v_vfsp->vfs_dev;
2814 	dev_path[0] = NULL;
2815 	if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
2816 		PR0("underlying device = %s\n", dev_path);
2817 	}
2818 
2819 	if ((status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD,
2820 		kcred, &lhandle, vd->vds->ldi_ident)) != 0) {
2821 		PR0("ldi_open_by_dev() returned errno %d for device %s",
2822 		    status, dev_path);
2823 	} else {
2824 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
2825 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
2826 		    &rval)) != 0) {
2827 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
2828 			    status, dev_path);
2829 		} else {
2830 			/*
2831 			 * Store the device's max transfer size for
2832 			 * return to the client
2833 			 */
2834 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
2835 		}
2836 
2837 		PR0("close the device %s", dev_path);
2838 		(void) ldi_close(lhandle, FREAD, kcred);
2839 	}
2840 
2841 	PR0("using for file %s, dev %s, max_xfer = %u blks",
2842 	    file_path, dev_path, vd->max_xfer_sz);
2843 
2844 	vd->dk_geom.dkg_ncyl = label.dkl_ncyl;
2845 	vd->dk_geom.dkg_acyl = label.dkl_acyl;
2846 	vd->dk_geom.dkg_pcyl = label.dkl_pcyl;
2847 	vd->dk_geom.dkg_nhead = label.dkl_nhead;
2848 	vd->dk_geom.dkg_nsect = label.dkl_nsect;
2849 	vd->dk_geom.dkg_intrlv = label.dkl_intrlv;
2850 	vd->dk_geom.dkg_apc = label.dkl_apc;
2851 	vd->dk_geom.dkg_rpm = label.dkl_rpm;
2852 	vd->dk_geom.dkg_write_reinstruct = label.dkl_write_reinstruct;
2853 	vd->dk_geom.dkg_read_reinstruct = label.dkl_read_reinstruct;
2854 
2855 	vd->vtoc.v_sanity = label.dkl_vtoc.v_sanity;
2856 	vd->vtoc.v_version = label.dkl_vtoc.v_version;
2857 	vd->vtoc.v_sectorsz = DEV_BSIZE;
2858 	vd->vtoc.v_nparts = label.dkl_vtoc.v_nparts;
2859 
2860 	bcopy(label.dkl_vtoc.v_volume, vd->vtoc.v_volume,
2861 	    LEN_DKL_VVOL);
2862 	bcopy(label.dkl_asciilabel, vd->vtoc.v_asciilabel,
2863 	    LEN_DKL_ASCII);
2864 
2865 	for (i = 0; i < vd->nslices; i++) {
2866 		vd->vtoc.timestamp[i] = label.dkl_vtoc.v_timestamp[i];
2867 		vd->vtoc.v_part[i].p_tag = label.dkl_vtoc.v_part[i].p_tag;
2868 		vd->vtoc.v_part[i].p_flag = label.dkl_vtoc.v_part[i].p_flag;
2869 		vd->vtoc.v_part[i].p_start = label.dkl_map[i].dkl_cylno *
2870 			label.dkl_nhead * label.dkl_nsect;
2871 		vd->vtoc.v_part[i].p_size = label.dkl_map[i].dkl_nblk;
2872 		vd->ldi_handle[i] = NULL;
2873 		vd->dev[i] = NULL;
2874 	}
2875 
2876 	return (0);
2877 }
2878 
2879 static int
2880 vd_setup_vd(vd_t *vd)
2881 {
2882 	int		rval, status;
2883 	dev_info_t	*dip;
2884 	struct dk_cinfo	dk_cinfo;
2885 	char		*device_path = vd->device_path;
2886 
2887 	/*
2888 	 * We need to open with FNDELAY so that opening an empty partition
2889 	 * does not fail.
2890 	 */
2891 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
2892 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
2893 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
2894 		vd->ldi_handle[0] = NULL;
2895 
2896 		/* this may not be a device try opening as a file */
2897 		if (status == ENXIO || status == ENODEV)
2898 			status = vd_setup_file(vd);
2899 		if (status) {
2900 			PRN("Cannot use device/file (%s), errno=%d\n",
2901 			    device_path, status);
2902 			if (status == ENXIO || status == ENODEV ||
2903 			    status == ENOENT) {
2904 				return (EAGAIN);
2905 			}
2906 		}
2907 		return (status);
2908 	}
2909 
2910 	/*
2911 	 * nslices must be updated now so that vds_destroy_vd() will close
2912 	 * the slice we have just opened in case of an error.
2913 	 */
2914 	vd->nslices = 1;
2915 	vd->file = B_FALSE;
2916 
2917 	/* Get device number and size of backing device */
2918 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
2919 		PRN("ldi_get_dev() returned errno %d for %s",
2920 		    status, device_path);
2921 		return (status);
2922 	}
2923 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
2924 		PRN("ldi_get_size() failed for %s", device_path);
2925 		return (EIO);
2926 	}
2927 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
2928 
2929 	/* Verify backing device supports dk_cinfo, dk_geom, and vtoc */
2930 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
2931 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
2932 		    &rval)) != 0) {
2933 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
2934 		    status, device_path);
2935 		return (status);
2936 	}
2937 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
2938 		PRN("slice %u >= maximum slice %u for %s",
2939 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
2940 		return (EIO);
2941 	}
2942 
2943 	status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label);
2944 
2945 	if (status != 0) {
2946 		PRN("vd_read_vtoc returned errno %d for %s",
2947 		    status, device_path);
2948 		return (status);
2949 	}
2950 
2951 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
2952 	    (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
2953 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL),
2954 	    kcred, &rval)) != 0) {
2955 		    PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
2956 			status, device_path);
2957 		    return (status);
2958 	}
2959 
2960 	/* Store the device's max transfer size for return to the client */
2961 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
2962 
2963 	/* Determine if backing device is a pseudo device */
2964 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
2965 		    dev_to_instance(vd->dev[0]), 0))  == NULL) {
2966 		PRN("%s is no longer accessible", device_path);
2967 		return (EIO);
2968 	}
2969 	vd->pseudo = is_pseudo_device(dip);
2970 	ddi_release_devi(dip);
2971 	if (vd->pseudo) {
2972 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2973 		vd->nslices	= 1;
2974 		return (0);	/* ...and we're done */
2975 	}
2976 
2977 	/* If slice is entire-disk slice, initialize for full disk */
2978 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
2979 		return (vd_setup_full_disk(vd));
2980 
2981 
2982 	/* Otherwise, we have a non-entire slice of a device */
2983 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2984 	vd->nslices	= 1;
2985 
2986 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
2987 		status = vd_setup_partition_efi(vd);
2988 		return (status);
2989 	}
2990 
2991 	/* Initialize dk_geom structure for single-slice device */
2992 	if (vd->dk_geom.dkg_nsect == 0) {
2993 		PRN("%s geometry claims 0 sectors per track", device_path);
2994 		return (EIO);
2995 	}
2996 	if (vd->dk_geom.dkg_nhead == 0) {
2997 		PRN("%s geometry claims 0 heads", device_path);
2998 		return (EIO);
2999 	}
3000 	vd->dk_geom.dkg_ncyl =
3001 	    vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead;
3002 	vd->dk_geom.dkg_acyl = 0;
3003 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
3004 
3005 
3006 	/* Initialize vtoc structure for single-slice device */
3007 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3008 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3009 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3010 	vd->vtoc.v_nparts = 1;
3011 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3012 	vd->vtoc.v_part[0].p_flag = 0;
3013 	vd->vtoc.v_part[0].p_start = 0;
3014 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3015 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3016 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3017 
3018 
3019 	return (0);
3020 }
3021 
3022 static int
3023 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
3024     vd_t **vdp)
3025 {
3026 	char			tq_name[TASKQ_NAMELEN];
3027 	int			status;
3028 	ddi_iblock_cookie_t	iblock = NULL;
3029 	ldc_attr_t		ldc_attr;
3030 	vd_t			*vd;
3031 
3032 
3033 	ASSERT(vds != NULL);
3034 	ASSERT(device_path != NULL);
3035 	ASSERT(vdp != NULL);
3036 	PR0("Adding vdisk for %s", device_path);
3037 
3038 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
3039 		PRN("No memory for virtual disk");
3040 		return (EAGAIN);
3041 	}
3042 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
3043 	vd->vds = vds;
3044 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
3045 
3046 	/* Open vdisk and initialize parameters */
3047 	if ((status = vd_setup_vd(vd)) == 0) {
3048 		vd->initialized |= VD_DISK_READY;
3049 
3050 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3051 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
3052 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3053 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
3054 		    vd->nslices);
3055 	} else {
3056 		if (status != EAGAIN)
3057 			return (status);
3058 	}
3059 
3060 	/* Initialize locking */
3061 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
3062 		&iblock) != DDI_SUCCESS) {
3063 		PRN("Could not get iblock cookie.");
3064 		return (EIO);
3065 	}
3066 
3067 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
3068 	vd->initialized |= VD_LOCKING;
3069 
3070 
3071 	/* Create start and completion task queues for the vdisk */
3072 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
3073 	PR1("tq_name = %s", tq_name);
3074 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
3075 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
3076 		PRN("Could not create task queue");
3077 		return (EIO);
3078 	}
3079 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
3080 	PR1("tq_name = %s", tq_name);
3081 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
3082 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
3083 		PRN("Could not create task queue");
3084 		return (EIO);
3085 	}
3086 	vd->enabled = 1;	/* before callback can dispatch to startq */
3087 
3088 
3089 	/* Bring up LDC */
3090 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
3091 	ldc_attr.instance	= ddi_get_instance(vds->dip);
3092 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
3093 	ldc_attr.mtu		= VD_LDC_MTU;
3094 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
3095 		PRN("Could not initialize LDC channel %lu, "
3096 		    "init failed with error %d", ldc_id, status);
3097 		return (status);
3098 	}
3099 	vd->initialized |= VD_LDC;
3100 
3101 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
3102 		(caddr_t)vd)) != 0) {
3103 		PRN("Could not initialize LDC channel %lu,"
3104 		    "reg_callback failed with error %d", ldc_id, status);
3105 		return (status);
3106 	}
3107 
3108 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
3109 		PRN("Could not initialize LDC channel %lu,"
3110 		    "open failed with error %d", ldc_id, status);
3111 		return (status);
3112 	}
3113 
3114 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
3115 		PR0("ldc_up() returned errno %d", status);
3116 	}
3117 
3118 	/* Allocate the inband task memory handle */
3119 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
3120 	if (status) {
3121 		PRN("Could not initialize LDC channel %lu,"
3122 		    "alloc_handle failed with error %d", ldc_id, status);
3123 		return (ENXIO);
3124 	}
3125 
3126 	/* Add the successfully-initialized vdisk to the server's table */
3127 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
3128 		PRN("Error adding vdisk ID %lu to table", id);
3129 		return (EIO);
3130 	}
3131 
3132 	/* Allocate the staging buffer */
3133 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
3134 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
3135 
3136 	/* store initial state */
3137 	vd->state = VD_STATE_INIT;
3138 
3139 	return (0);
3140 }
3141 
3142 static void
3143 vd_free_dring_task(vd_t *vdp)
3144 {
3145 	if (vdp->dring_task != NULL) {
3146 		ASSERT(vdp->dring_len != 0);
3147 		/* Free all dring_task memory handles */
3148 		for (int i = 0; i < vdp->dring_len; i++) {
3149 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
3150 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
3151 			vdp->dring_task[i].msg = NULL;
3152 		}
3153 		kmem_free(vdp->dring_task,
3154 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
3155 		vdp->dring_task = NULL;
3156 	}
3157 }
3158 
3159 /*
3160  * Destroy the state associated with a virtual disk
3161  */
3162 static void
3163 vds_destroy_vd(void *arg)
3164 {
3165 	vd_t	*vd = (vd_t *)arg;
3166 	int	retry = 0, rv;
3167 
3168 	if (vd == NULL)
3169 		return;
3170 
3171 	PR0("Destroying vdisk state");
3172 
3173 	if (vd->dk_efi.dki_data != NULL)
3174 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
3175 
3176 	/* Disable queuing requests for the vdisk */
3177 	if (vd->initialized & VD_LOCKING) {
3178 		mutex_enter(&vd->lock);
3179 		vd->enabled = 0;
3180 		mutex_exit(&vd->lock);
3181 	}
3182 
3183 	/* Drain and destroy start queue (*before* destroying completionq) */
3184 	if (vd->startq != NULL)
3185 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
3186 
3187 	/* Drain and destroy completion queue (*before* shutting down LDC) */
3188 	if (vd->completionq != NULL)
3189 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
3190 
3191 	vd_free_dring_task(vd);
3192 
3193 	/* Free the inband task memory handle */
3194 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
3195 
3196 	/* Shut down LDC */
3197 	if (vd->initialized & VD_LDC) {
3198 		/* unmap the dring */
3199 		if (vd->initialized & VD_DRING)
3200 			(void) ldc_mem_dring_unmap(vd->dring_handle);
3201 
3202 		/* close LDC channel - retry on EAGAIN */
3203 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
3204 			if (++retry > vds_ldc_retries) {
3205 				PR0("Timed out closing channel");
3206 				break;
3207 			}
3208 			drv_usecwait(vds_ldc_delay);
3209 		}
3210 		if (rv == 0) {
3211 			(void) ldc_unreg_callback(vd->ldc_handle);
3212 			(void) ldc_fini(vd->ldc_handle);
3213 		} else {
3214 			/*
3215 			 * Closing the LDC channel has failed. Ideally we should
3216 			 * fail here but there is no Zeus level infrastructure
3217 			 * to handle this. The MD has already been changed and
3218 			 * we have to do the close. So we try to do as much
3219 			 * clean up as we can.
3220 			 */
3221 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
3222 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
3223 				drv_usecwait(vds_ldc_delay);
3224 		}
3225 	}
3226 
3227 	/* Free the staging buffer for msgs */
3228 	if (vd->vio_msgp != NULL) {
3229 		kmem_free(vd->vio_msgp, vd->max_msglen);
3230 		vd->vio_msgp = NULL;
3231 	}
3232 
3233 	/* Free the inband message buffer */
3234 	if (vd->inband_task.msg != NULL) {
3235 		kmem_free(vd->inband_task.msg, vd->max_msglen);
3236 		vd->inband_task.msg = NULL;
3237 	}
3238 	if (vd->file) {
3239 		/* Close file */
3240 		(void) VOP_CLOSE(vd->file_vnode, vd_open_flags, 1,
3241 		    0, kcred);
3242 		VN_RELE(vd->file_vnode);
3243 	} else {
3244 		/* Close any open backing-device slices */
3245 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
3246 			if (vd->ldi_handle[slice] != NULL) {
3247 				PR0("Closing slice %u", slice);
3248 				(void) ldi_close(vd->ldi_handle[slice],
3249 				    vd_open_flags | FNDELAY, kcred);
3250 			}
3251 		}
3252 	}
3253 
3254 	/* Free lock */
3255 	if (vd->initialized & VD_LOCKING)
3256 		mutex_destroy(&vd->lock);
3257 
3258 	/* Finally, free the vdisk structure itself */
3259 	kmem_free(vd, sizeof (*vd));
3260 }
3261 
3262 static int
3263 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
3264 {
3265 	int	status;
3266 	vd_t	*vd = NULL;
3267 
3268 
3269 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
3270 		vds_destroy_vd(vd);
3271 
3272 	return (status);
3273 }
3274 
3275 static int
3276 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
3277     uint64_t *ldc_id)
3278 {
3279 	int	num_channels;
3280 
3281 
3282 	/* Look for channel endpoint child(ren) of the vdisk MD node */
3283 	if ((num_channels = md_scan_dag(md, vd_node,
3284 		    md_find_name(md, VD_CHANNEL_ENDPOINT),
3285 		    md_find_name(md, "fwd"), channel)) <= 0) {
3286 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
3287 		return (-1);
3288 	}
3289 
3290 	/* Get the "id" value for the first channel endpoint node */
3291 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
3292 		PRN("No \"%s\" property found for \"%s\" of vdisk",
3293 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
3294 		return (-1);
3295 	}
3296 
3297 	if (num_channels > 1) {
3298 		PRN("Using ID of first of multiple channels for this vdisk");
3299 	}
3300 
3301 	return (0);
3302 }
3303 
3304 static int
3305 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
3306 {
3307 	int		num_nodes, status;
3308 	size_t		size;
3309 	mde_cookie_t	*channel;
3310 
3311 
3312 	if ((num_nodes = md_node_count(md)) <= 0) {
3313 		PRN("Invalid node count in Machine Description subtree");
3314 		return (-1);
3315 	}
3316 	size = num_nodes*(sizeof (*channel));
3317 	channel = kmem_zalloc(size, KM_SLEEP);
3318 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
3319 	kmem_free(channel, size);
3320 
3321 	return (status);
3322 }
3323 
3324 static void
3325 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
3326 {
3327 	char		*device_path = NULL;
3328 	uint64_t	id = 0, ldc_id = 0;
3329 
3330 
3331 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
3332 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
3333 		return;
3334 	}
3335 	PR0("Adding vdisk ID %lu", id);
3336 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
3337 		&device_path) != 0) {
3338 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
3339 		return;
3340 	}
3341 
3342 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
3343 		PRN("Error getting LDC ID for vdisk %lu", id);
3344 		return;
3345 	}
3346 
3347 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
3348 		PRN("Failed to add vdisk ID %lu", id);
3349 		return;
3350 	}
3351 }
3352 
3353 static void
3354 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
3355 {
3356 	uint64_t	id = 0;
3357 
3358 
3359 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
3360 		PRN("Unable to get \"%s\" property from vdisk's MD node",
3361 		    VD_ID_PROP);
3362 		return;
3363 	}
3364 	PR0("Removing vdisk ID %lu", id);
3365 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
3366 		PRN("No vdisk entry found for vdisk ID %lu", id);
3367 }
3368 
3369 static void
3370 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
3371     md_t *curr_md, mde_cookie_t curr_vd_node)
3372 {
3373 	char		*curr_dev, *prev_dev;
3374 	uint64_t	curr_id = 0, curr_ldc_id = 0;
3375 	uint64_t	prev_id = 0, prev_ldc_id = 0;
3376 	size_t		len;
3377 
3378 
3379 	/* Validate that vdisk ID has not changed */
3380 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
3381 		PRN("Error getting previous vdisk \"%s\" property",
3382 		    VD_ID_PROP);
3383 		return;
3384 	}
3385 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
3386 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
3387 		return;
3388 	}
3389 	if (curr_id != prev_id) {
3390 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
3391 		    prev_id, curr_id);
3392 		return;
3393 	}
3394 
3395 	/* Validate that LDC ID has not changed */
3396 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
3397 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
3398 		return;
3399 	}
3400 
3401 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
3402 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
3403 		return;
3404 	}
3405 	if (curr_ldc_id != prev_ldc_id) {
3406 		_NOTE(NOTREACHED);	/* lint is confused */
3407 		PRN("Not changing vdisk:  "
3408 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
3409 		return;
3410 	}
3411 
3412 	/* Determine whether device path has changed */
3413 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
3414 		&prev_dev) != 0) {
3415 		PRN("Error getting previous vdisk \"%s\"",
3416 		    VD_BLOCK_DEVICE_PROP);
3417 		return;
3418 	}
3419 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
3420 		&curr_dev) != 0) {
3421 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
3422 		return;
3423 	}
3424 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
3425 	    (strncmp(curr_dev, prev_dev, len) == 0))
3426 		return;	/* no relevant (supported) change */
3427 
3428 	PR0("Changing vdisk ID %lu", prev_id);
3429 
3430 	/* Remove old state, which will close vdisk and reset */
3431 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
3432 		PRN("No entry found for vdisk ID %lu", prev_id);
3433 
3434 	/* Re-initialize vdisk with new state */
3435 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
3436 		PRN("Failed to change vdisk ID %lu", curr_id);
3437 		return;
3438 	}
3439 }
3440 
3441 static int
3442 vds_process_md(void *arg, mdeg_result_t *md)
3443 {
3444 	int	i;
3445 	vds_t	*vds = arg;
3446 
3447 
3448 	if (md == NULL)
3449 		return (MDEG_FAILURE);
3450 	ASSERT(vds != NULL);
3451 
3452 	for (i = 0; i < md->removed.nelem; i++)
3453 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
3454 	for (i = 0; i < md->match_curr.nelem; i++)
3455 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
3456 		    md->match_curr.mdp, md->match_curr.mdep[i]);
3457 	for (i = 0; i < md->added.nelem; i++)
3458 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
3459 
3460 	return (MDEG_SUCCESS);
3461 }
3462 
3463 
3464 static int
3465 vds_do_attach(dev_info_t *dip)
3466 {
3467 	int			status, sz;
3468 	int			cfg_handle;
3469 	minor_t			instance = ddi_get_instance(dip);
3470 	vds_t			*vds;
3471 	mdeg_prop_spec_t	*pspecp;
3472 	mdeg_node_spec_t	*ispecp;
3473 
3474 	/*
3475 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
3476 	 * notion of "instance", or unique identifier, for that node; OBP
3477 	 * stores the value of the "cfg-handle" MD property as the value of
3478 	 * the "reg" property on the node in the device tree it builds from
3479 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
3480 	 * "reg" property value to uniquely identify this device instance when
3481 	 * registering with the MD event-generation framework.  If the "reg"
3482 	 * property cannot be found, the device tree state is presumably so
3483 	 * broken that there is no point in continuing.
3484 	 */
3485 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
3486 		VD_REG_PROP)) {
3487 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
3488 		return (DDI_FAILURE);
3489 	}
3490 
3491 	/* Get the MD instance for later MDEG registration */
3492 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
3493 	    VD_REG_PROP, -1);
3494 
3495 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
3496 		PRN("Could not allocate state for instance %u", instance);
3497 		return (DDI_FAILURE);
3498 	}
3499 
3500 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3501 		PRN("Could not get state for instance %u", instance);
3502 		ddi_soft_state_free(vds_state, instance);
3503 		return (DDI_FAILURE);
3504 	}
3505 
3506 
3507 	vds->dip	= dip;
3508 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
3509 							vds_destroy_vd,
3510 							sizeof (void *));
3511 	ASSERT(vds->vd_table != NULL);
3512 
3513 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
3514 		PRN("ldi_ident_from_dip() returned errno %d", status);
3515 		return (DDI_FAILURE);
3516 	}
3517 	vds->initialized |= VDS_LDI;
3518 
3519 	/* Register for MD updates */
3520 	sz = sizeof (vds_prop_template);
3521 	pspecp = kmem_alloc(sz, KM_SLEEP);
3522 	bcopy(vds_prop_template, pspecp, sz);
3523 
3524 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
3525 
3526 	/* initialize the complete prop spec structure */
3527 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
3528 	ispecp->namep = "virtual-device";
3529 	ispecp->specp = pspecp;
3530 
3531 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
3532 		&vds->mdeg) != MDEG_SUCCESS) {
3533 		PRN("Unable to register for MD updates");
3534 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
3535 		kmem_free(pspecp, sz);
3536 		return (DDI_FAILURE);
3537 	}
3538 
3539 	vds->ispecp = ispecp;
3540 	vds->initialized |= VDS_MDEG;
3541 
3542 	/* Prevent auto-detaching so driver is available whenever MD changes */
3543 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
3544 	    DDI_PROP_SUCCESS) {
3545 		PRN("failed to set \"%s\" property for instance %u",
3546 		    DDI_NO_AUTODETACH, instance);
3547 	}
3548 
3549 	ddi_report_dev(dip);
3550 	return (DDI_SUCCESS);
3551 }
3552 
3553 static int
3554 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3555 {
3556 	int	status;
3557 
3558 	switch (cmd) {
3559 	case DDI_ATTACH:
3560 		PR0("Attaching");
3561 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
3562 			(void) vds_detach(dip, DDI_DETACH);
3563 		return (status);
3564 	case DDI_RESUME:
3565 		PR0("No action required for DDI_RESUME");
3566 		return (DDI_SUCCESS);
3567 	default:
3568 		return (DDI_FAILURE);
3569 	}
3570 }
3571 
3572 static struct dev_ops vds_ops = {
3573 	DEVO_REV,	/* devo_rev */
3574 	0,		/* devo_refcnt */
3575 	ddi_no_info,	/* devo_getinfo */
3576 	nulldev,	/* devo_identify */
3577 	nulldev,	/* devo_probe */
3578 	vds_attach,	/* devo_attach */
3579 	vds_detach,	/* devo_detach */
3580 	nodev,		/* devo_reset */
3581 	NULL,		/* devo_cb_ops */
3582 	NULL,		/* devo_bus_ops */
3583 	nulldev		/* devo_power */
3584 };
3585 
3586 static struct modldrv modldrv = {
3587 	&mod_driverops,
3588 	"virtual disk server v%I%",
3589 	&vds_ops,
3590 };
3591 
3592 static struct modlinkage modlinkage = {
3593 	MODREV_1,
3594 	&modldrv,
3595 	NULL
3596 };
3597 
3598 
3599 int
3600 _init(void)
3601 {
3602 	int		i, status;
3603 
3604 
3605 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
3606 		return (status);
3607 	if ((status = mod_install(&modlinkage)) != 0) {
3608 		ddi_soft_state_fini(&vds_state);
3609 		return (status);
3610 	}
3611 
3612 	/* Fill in the bit-mask of server-supported operations */
3613 	for (i = 0; i < vds_noperations; i++)
3614 		vds_operations |= 1 << (vds_operation[i].operation - 1);
3615 
3616 	return (0);
3617 }
3618 
3619 int
3620 _info(struct modinfo *modinfop)
3621 {
3622 	return (mod_info(&modlinkage, modinfop));
3623 }
3624 
3625 int
3626 _fini(void)
3627 {
3628 	int	status;
3629 
3630 
3631 	if ((status = mod_remove(&modlinkage)) != 0)
3632 		return (status);
3633 	ddi_soft_state_fini(&vds_state);
3634 	return (0);
3635 }
3636