1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Virtual disk server
28 */
29
30
31 #include <sys/types.h>
32 #include <sys/conf.h>
33 #include <sys/crc32.h>
34 #include <sys/ddi.h>
35 #include <sys/dkio.h>
36 #include <sys/file.h>
37 #include <sys/fs/hsfs_isospec.h>
38 #include <sys/mdeg.h>
39 #include <sys/mhd.h>
40 #include <sys/modhash.h>
41 #include <sys/note.h>
42 #include <sys/pathname.h>
43 #include <sys/sdt.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vio_common.h>
48 #include <sys/vio_util.h>
49 #include <sys/vdsk_mailbox.h>
50 #include <sys/vdsk_common.h>
51 #include <sys/vtoc.h>
52 #include <sys/vfs.h>
53 #include <sys/stat.h>
54 #include <sys/scsi/impl/uscsi.h>
55 #include <sys/ontrap.h>
56 #include <vm/seg_map.h>
57
58 #define ONE_MEGABYTE (1ULL << 20)
59 #define ONE_GIGABYTE (1ULL << 30)
60 #define ONE_TERABYTE (1ULL << 40)
61
62 /* Virtual disk server initialization flags */
63 #define VDS_LDI 0x01
64 #define VDS_MDEG 0x02
65
66 /* Virtual disk server tunable parameters */
67 #define VDS_RETRIES 5
68 #define VDS_LDC_DELAY 1000 /* 1 msecs */
69 #define VDS_DEV_DELAY 10000000 /* 10 secs */
70 #define VDS_NCHAINS 32
71
72 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
73 #define VDS_NAME "virtual-disk-server"
74
75 #define VD_NAME "vd"
76 #define VD_VOLUME_NAME "vdisk"
77 #define VD_ASCIILABEL "Virtual Disk"
78
79 #define VD_CHANNEL_ENDPOINT "channel-endpoint"
80 #define VD_ID_PROP "id"
81 #define VD_BLOCK_DEVICE_PROP "vds-block-device"
82 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts"
83 #define VD_REG_PROP "reg"
84
85 /* Virtual disk initialization flags */
86 #define VD_DISK_READY 0x01
87 #define VD_LOCKING 0x02
88 #define VD_LDC 0x04
89 #define VD_DRING 0x08
90 #define VD_SID 0x10
91 #define VD_SEQ_NUM 0x20
92 #define VD_SETUP_ERROR 0x40
93
94 /* Number of backup labels */
95 #define VD_DSKIMG_NUM_BACKUP 5
96
97 /* Timeout for SCSI I/O */
98 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */
99
100 /*
101 * Default number of threads for the I/O queue. In many cases, we will not
102 * receive more than 8 I/O requests at the same time. However there are
103 * cases (for example during the OS installation) where we can have a lot
104 * more (up to the limit of the DRing size).
105 */
106 #define VD_IOQ_NTHREADS 8
107
108 /* Maximum number of logical partitions */
109 #define VD_MAXPART (NDKMAP + 1)
110
111 /*
112 * By Solaris convention, slice/partition 2 represents the entire disk;
113 * unfortunately, this convention does not appear to be codified.
114 */
115 #define VD_ENTIRE_DISK_SLICE 2
116
117 /* Logical block address for EFI */
118 #define VD_EFI_LBA_GPT 1 /* LBA of the GPT */
119 #define VD_EFI_LBA_GPE 2 /* LBA of the GPE */
120
121 #define VD_EFI_DEV_SET(dev, vdsk, ioctl) \
122 VDSK_EFI_DEV_SET(dev, vdsk, ioctl, \
123 (vdsk)->vdisk_bsize, (vdsk)->vdisk_size)
124
125 /*
126 * Flags defining the behavior for flushing asynchronous writes used to
127 * performed some write I/O requests.
128 *
129 * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous
130 * writes. This ensures that data are committed to the backend when the I/O
131 * request reply is sent to the guest domain so this prevents any data to
132 * be lost in case a service domain unexpectedly crashes.
133 *
134 * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another
135 * thread while the request is immediatly marked as completed. In that case,
136 * a guest domain can a receive a reply that its write request is completed
137 * while data haven't been flushed to disk yet.
138 *
139 * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive.
140 */
141 #define VD_AWFLUSH_IMMEDIATE 0x01 /* immediate flushing */
142 #define VD_AWFLUSH_DEFER 0x02 /* defer flushing */
143 #define VD_AWFLUSH_GROUP 0x04 /* group requests before flushing */
144
145 /* Driver types */
146 typedef enum vd_driver {
147 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */
148 VD_DRIVER_DISK, /* disk driver */
149 VD_DRIVER_VOLUME /* volume driver */
150 } vd_driver_t;
151
152 #define VD_DRIVER_NAME_LEN 64
153
154 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
155
156 typedef struct vd_driver_type {
157 char name[VD_DRIVER_NAME_LEN]; /* driver name */
158 vd_driver_t type; /* driver type (disk or volume) */
159 } vd_driver_type_t;
160
161 /*
162 * There is no reliable way to determine if a device is representing a disk
163 * or a volume, especially with pseudo devices. So we maintain a list of well
164 * known drivers and the type of device they represent (either a disk or a
165 * volume).
166 *
167 * The list can be extended by adding a "driver-type-list" entry in vds.conf
168 * with the following syntax:
169 *
170 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
171 *
172 * Where:
173 * <driver> is the name of a driver (limited to 64 characters)
174 * <type> is either the string "disk" or "volume"
175 *
176 * Invalid entries in "driver-type-list" will be ignored.
177 *
178 * For example, the following line in vds.conf:
179 *
180 * driver-type-list="foo:disk","bar:volume";
181 *
182 * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
183 *
184 * When a list is defined in vds.conf, it is checked before the built-in list
185 * (vds_driver_types[]) so that any definition from this list can be overriden
186 * using vds.conf.
187 */
188 vd_driver_type_t vds_driver_types[] = {
189 { "dad", VD_DRIVER_DISK }, /* Solaris */
190 { "did", VD_DRIVER_DISK }, /* Sun Cluster */
191 { "dlmfdrv", VD_DRIVER_DISK }, /* Hitachi HDLM */
192 { "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */
193 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */
194 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */
195 { "sd", VD_DRIVER_DISK }, /* Solaris */
196 { "ssd", VD_DRIVER_DISK }, /* Solaris */
197 { "vdc", VD_DRIVER_DISK }, /* Solaris */
198 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */
199 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */
200 { "zfs", VD_DRIVER_VOLUME } /* Solaris */
201 };
202
203 /* Return a cpp token as a string */
204 #define STRINGIZE(token) #token
205
206 /*
207 * Print a message prefixed with the current function name to the message log
208 * (and optionally to the console for verbose boots); these macros use cpp's
209 * concatenation of string literals and C99 variable-length-argument-list
210 * macros
211 */
212 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "")
213 #define _PRN(format, ...) \
214 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
215
216 /* Return a pointer to the "i"th vdisk dring element */
217 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \
218 (vd->dring + (i)*vd->descriptor_size))
219
220 /* Return the virtual disk client's type as a string (for use in messages) */
221 #define VD_CLIENT(vd) \
222 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \
223 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \
224 (((vd)->xfer_mode == 0) ? "null client" : \
225 "unsupported client")))
226
227 /* Read disk label from a disk image */
228 #define VD_DSKIMG_LABEL_READ(vd, labelp) \
229 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
230 0, sizeof (struct dk_label))
231
232 /* Write disk label to a disk image */
233 #define VD_DSKIMG_LABEL_WRITE(vd, labelp) \
234 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
235 0, sizeof (struct dk_label))
236
237 /* Identify if a backend is a disk image */
238 #define VD_DSKIMG(vd) ((vd)->vdisk_type == VD_DISK_TYPE_DISK && \
239 ((vd)->file || (vd)->volume))
240
241 /* Next index in a write queue */
242 #define VD_WRITE_INDEX_NEXT(vd, id) \
243 ((((id) + 1) >= vd->dring_len)? 0 : (id) + 1)
244
245 /* Message for disk access rights reset failure */
246 #define VD_RESET_ACCESS_FAILURE_MSG \
247 "Fail to reset disk access rights for disk %s"
248
249 /*
250 * Specification of an MD node passed to the MDEG to filter any
251 * 'vport' nodes that do not belong to the specified node. This
252 * template is copied for each vds instance and filled in with
253 * the appropriate 'cfg-handle' value before being passed to the MDEG.
254 */
255 static mdeg_prop_spec_t vds_prop_template[] = {
256 { MDET_PROP_STR, "name", VDS_NAME },
257 { MDET_PROP_VAL, "cfg-handle", NULL },
258 { MDET_LIST_END, NULL, NULL }
259 };
260
261 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
262
263 /*
264 * Matching criteria passed to the MDEG to register interest
265 * in changes to 'virtual-device-port' nodes identified by their
266 * 'id' property.
267 */
268 static md_prop_match_t vd_prop_match[] = {
269 { MDET_PROP_VAL, VD_ID_PROP },
270 { MDET_LIST_END, NULL }
271 };
272
273 static mdeg_node_match_t vd_match = {"virtual-device-port",
274 vd_prop_match};
275
276 /*
277 * Options for the VD_BLOCK_DEVICE_OPTS property.
278 */
279 #define VD_OPT_RDONLY 0x1 /* read-only */
280 #define VD_OPT_SLICE 0x2 /* single slice */
281 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */
282
283 #define VD_OPTION_NLEN 128
284
285 typedef struct vd_option {
286 char vdo_name[VD_OPTION_NLEN];
287 uint64_t vdo_value;
288 } vd_option_t;
289
290 vd_option_t vd_bdev_options[] = {
291 { "ro", VD_OPT_RDONLY },
292 { "slice", VD_OPT_SLICE },
293 { "excl", VD_OPT_EXCLUSIVE }
294 };
295
296 /* Debugging macros */
297 #ifdef DEBUG
298
299 static int vd_msglevel = 0;
300
301 #define PR0 if (vd_msglevel > 0) PRN
302 #define PR1 if (vd_msglevel > 1) PRN
303 #define PR2 if (vd_msglevel > 2) PRN
304
305 #define VD_DUMP_DRING_ELEM(elem) \
306 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \
307 elem->hdr.dstate, \
308 elem->payload.operation, \
309 elem->payload.status, \
310 elem->payload.nbytes, \
311 elem->payload.addr, \
312 elem->payload.ncookies);
313
314 char *
vd_decode_state(int state)315 vd_decode_state(int state)
316 {
317 char *str;
318
319 #define CASE_STATE(_s) case _s: str = #_s; break;
320
321 switch (state) {
322 CASE_STATE(VD_STATE_INIT)
323 CASE_STATE(VD_STATE_VER)
324 CASE_STATE(VD_STATE_ATTR)
325 CASE_STATE(VD_STATE_DRING)
326 CASE_STATE(VD_STATE_RDX)
327 CASE_STATE(VD_STATE_DATA)
328 default: str = "unknown"; break;
329 }
330
331 #undef CASE_STATE
332
333 return (str);
334 }
335
336 void
vd_decode_tag(vio_msg_t * msg)337 vd_decode_tag(vio_msg_t *msg)
338 {
339 char *tstr, *sstr, *estr;
340
341 #define CASE_TYPE(_s) case _s: tstr = #_s; break;
342
343 switch (msg->tag.vio_msgtype) {
344 CASE_TYPE(VIO_TYPE_CTRL)
345 CASE_TYPE(VIO_TYPE_DATA)
346 CASE_TYPE(VIO_TYPE_ERR)
347 default: tstr = "unknown"; break;
348 }
349
350 #undef CASE_TYPE
351
352 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
353
354 switch (msg->tag.vio_subtype) {
355 CASE_SUBTYPE(VIO_SUBTYPE_INFO)
356 CASE_SUBTYPE(VIO_SUBTYPE_ACK)
357 CASE_SUBTYPE(VIO_SUBTYPE_NACK)
358 default: sstr = "unknown"; break;
359 }
360
361 #undef CASE_SUBTYPE
362
363 #define CASE_ENV(_s) case _s: estr = #_s; break;
364
365 switch (msg->tag.vio_subtype_env) {
366 CASE_ENV(VIO_VER_INFO)
367 CASE_ENV(VIO_ATTR_INFO)
368 CASE_ENV(VIO_DRING_REG)
369 CASE_ENV(VIO_DRING_UNREG)
370 CASE_ENV(VIO_RDX)
371 CASE_ENV(VIO_PKT_DATA)
372 CASE_ENV(VIO_DESC_DATA)
373 CASE_ENV(VIO_DRING_DATA)
374 default: estr = "unknown"; break;
375 }
376
377 #undef CASE_ENV
378
379 PR1("(%x/%x/%x) message : (%s/%s/%s)",
380 msg->tag.vio_msgtype, msg->tag.vio_subtype,
381 msg->tag.vio_subtype_env, tstr, sstr, estr);
382 }
383
384 #else /* !DEBUG */
385
386 #define PR0(...)
387 #define PR1(...)
388 #define PR2(...)
389
390 #define VD_DUMP_DRING_ELEM(elem)
391
392 #define vd_decode_state(_s) (NULL)
393 #define vd_decode_tag(_s) (NULL)
394
395 #endif /* DEBUG */
396
397
398 /*
399 * Soft state structure for a vds instance
400 */
401 typedef struct vds {
402 uint_t initialized; /* driver inst initialization flags */
403 dev_info_t *dip; /* driver inst devinfo pointer */
404 ldi_ident_t ldi_ident; /* driver's identifier for LDI */
405 mod_hash_t *vd_table; /* table of virtual disks served */
406 mdeg_node_spec_t *ispecp; /* mdeg node specification */
407 mdeg_handle_t mdeg; /* handle for MDEG operations */
408 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */
409 int num_drivers; /* num of extra driver types */
410 } vds_t;
411
412 /*
413 * Types of descriptor-processing tasks
414 */
415 typedef enum vd_task_type {
416 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */
417 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */
418 } vd_task_type_t;
419
420 /*
421 * Structure describing the task for processing a descriptor
422 */
423 typedef struct vd_task {
424 struct vd *vd; /* vd instance task is for */
425 vd_task_type_t type; /* type of descriptor task */
426 int index; /* dring elem index for task */
427 vio_msg_t *msg; /* VIO message task is for */
428 size_t msglen; /* length of message content */
429 vd_dring_payload_t *request; /* request task will perform */
430 struct buf buf; /* buf(9s) for I/O request */
431 ldc_mem_handle_t mhdl; /* task memory handle */
432 int status; /* status of processing task */
433 int (*completef)(struct vd_task *task); /* completion func ptr */
434 uint32_t write_index; /* index in the write_queue */
435 } vd_task_t;
436
437 /*
438 * Soft state structure for a virtual disk instance
439 */
440 typedef struct vd {
441 uint64_t id; /* vdisk id */
442 uint_t initialized; /* vdisk initialization flags */
443 uint64_t operations; /* bitmask of VD_OPs exported */
444 vio_ver_t version; /* ver negotiated with client */
445 vds_t *vds; /* server for this vdisk */
446 ddi_taskq_t *startq; /* queue for I/O start tasks */
447 ddi_taskq_t *completionq; /* queue for completion tasks */
448 ddi_taskq_t *ioq; /* queue for I/O */
449 uint32_t write_index; /* next write index */
450 buf_t **write_queue; /* queue for async writes */
451 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */
452 char device_path[MAXPATHLEN + 1]; /* vdisk device */
453 dev_t dev[V_NUMPAR]; /* dev numbers for slices */
454 int open_flags; /* open flags */
455 uint_t nslices; /* number of slices we export */
456 size_t vdisk_size; /* number of blocks in vdisk */
457 size_t vdisk_bsize; /* blk size of the vdisk */
458 vd_disk_type_t vdisk_type; /* slice or entire disk */
459 vd_disk_label_t vdisk_label; /* EFI or VTOC label */
460 vd_media_t vdisk_media; /* media type of backing dev. */
461 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */
462 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */
463 size_t backend_bsize; /* blk size of backend device */
464 int vio_bshift; /* shift for blk convertion */
465 boolean_t volume; /* is vDisk backed by volume */
466 boolean_t zvol; /* is vDisk backed by a zvol */
467 boolean_t file; /* is vDisk backed by a file? */
468 boolean_t scsi; /* is vDisk backed by scsi? */
469 vnode_t *file_vnode; /* file vnode */
470 size_t dskimg_size; /* size of disk image */
471 ddi_devid_t dskimg_devid; /* devid for disk image */
472 int efi_reserved; /* EFI reserved slice */
473 caddr_t flabel; /* fake label for slice type */
474 uint_t flabel_size; /* fake label size */
475 uint_t flabel_limit; /* limit of the fake label */
476 struct dk_geom dk_geom; /* synthetic for slice type */
477 struct extvtoc vtoc; /* synthetic for slice type */
478 vd_slice_t slices[VD_MAXPART]; /* logical partitions */
479 boolean_t ownership; /* disk ownership status */
480 ldc_status_t ldc_state; /* LDC connection state */
481 ldc_handle_t ldc_handle; /* handle for LDC comm */
482 size_t max_msglen; /* largest LDC message len */
483 vd_state_t state; /* client handshake state */
484 uint8_t xfer_mode; /* transfer mode with client */
485 uint32_t sid; /* client's session ID */
486 uint64_t seq_num; /* message sequence number */
487 uint64_t dring_ident; /* identifier of dring */
488 ldc_dring_handle_t dring_handle; /* handle for dring ops */
489 uint32_t descriptor_size; /* num bytes in desc */
490 uint32_t dring_len; /* number of dring elements */
491 uint8_t dring_mtype; /* dring mem map type */
492 caddr_t dring; /* address of dring */
493 caddr_t vio_msgp; /* vio msg staging buffer */
494 vd_task_t inband_task; /* task for inband descriptor */
495 vd_task_t *dring_task; /* tasks dring elements */
496
497 kmutex_t lock; /* protects variables below */
498 boolean_t enabled; /* is vdisk enabled? */
499 boolean_t reset_state; /* reset connection state? */
500 boolean_t reset_ldc; /* reset LDC channel? */
501 } vd_t;
502
503 /*
504 * Macros to manipulate the fake label (flabel) for single slice disks.
505 *
506 * If we fake a VTOC label then the fake label consists of only one block
507 * containing the VTOC label (struct dk_label).
508 *
509 * If we fake an EFI label then the fake label consists of a blank block
510 * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
511 *
512 */
513 #define VD_LABEL_VTOC_SIZE(lba) \
514 P2ROUNDUP(sizeof (struct dk_label), (lba))
515
516 #define VD_LABEL_EFI_SIZE(lba) \
517 P2ROUNDUP(2 * (lba) + sizeof (efi_gpe_t) * VD_MAXPART, \
518 (lba))
519
520 #define VD_LABEL_VTOC(vd) \
521 ((struct dk_label *)(void *)((vd)->flabel))
522
523 #define VD_LABEL_EFI_GPT(vd, lba) \
524 ((efi_gpt_t *)(void *)((vd)->flabel + (lba)))
525 #define VD_LABEL_EFI_GPE(vd, lba) \
526 ((efi_gpe_t *)(void *)((vd)->flabel + 2 * (lba)))
527
528
529 typedef struct vds_operation {
530 char *namep;
531 uint8_t operation;
532 int (*start)(vd_task_t *task);
533 int (*complete)(vd_task_t *task);
534 } vds_operation_t;
535
536 typedef struct vd_ioctl {
537 uint8_t operation; /* vdisk operation */
538 const char *operation_name; /* vdisk operation name */
539 size_t nbytes; /* size of operation buffer */
540 int cmd; /* corresponding ioctl cmd */
541 const char *cmd_name; /* ioctl cmd name */
542 void *arg; /* ioctl cmd argument */
543 /* convert input vd_buf to output ioctl_arg */
544 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg);
545 /* convert input ioctl_arg to output vd_buf */
546 void (*copyout)(void *ioctl_arg, void *vd_buf);
547 /* write is true if the operation writes any data to the backend */
548 boolean_t write;
549 } vd_ioctl_t;
550
551 /* Define trivial copyin/copyout conversion function flag */
552 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1)
553 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1)
554
555
556 static int vds_ldc_retries = VDS_RETRIES;
557 static int vds_ldc_delay = VDS_LDC_DELAY;
558 static int vds_dev_retries = VDS_RETRIES;
559 static int vds_dev_delay = VDS_DEV_DELAY;
560 static void *vds_state;
561
562 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
563 static int vd_scsi_debug = USCSI_SILENT;
564
565 /*
566 * Number of threads in the taskq handling vdisk I/O. This can be set up to
567 * the size of the DRing which is the maximum number of I/O we can receive
568 * in parallel. Note that using a high number of threads can improve performance
569 * but this is going to consume a lot of resources if there are many vdisks.
570 */
571 static int vd_ioq_nthreads = VD_IOQ_NTHREADS;
572
573 /*
574 * Tunable to define the behavior for flushing asynchronous writes used to
575 * performed some write I/O requests. The default behavior is to group as
576 * much asynchronous writes as possible and to flush them immediatly.
577 *
578 * If the tunable is set to 0 then explicit flushing is disabled. In that
579 * case, data will be flushed by traditional mechanism (like fsflush) but
580 * this might not happen immediatly.
581 *
582 */
583 static int vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP;
584
585 /*
586 * Tunable to define the behavior of the service domain if the vdisk server
587 * fails to reset disk exclusive access when a LDC channel is reset. When a
588 * LDC channel is reset the vdisk server will try to reset disk exclusive
589 * access by releasing any SCSI-2 reservation or resetting the disk. If these
590 * actions fail then the default behavior (vd_reset_access_failure = 0) is to
591 * print a warning message. This default behavior can be changed by setting
592 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
593 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
594 * the service domain to panic. In both cases, the reset of the service domain
595 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
596 */
597 static int vd_reset_access_failure = 0;
598
599 /*
600 * Tunable for backward compatibility. When this variable is set to B_TRUE,
601 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
602 * slice disks whether or not they have the "slice" option set. This is
603 * to provide a simple backward compatibility mechanism when upgrading
604 * the vds driver and using a domain configuration created before the
605 * "slice" option was available.
606 */
607 static boolean_t vd_volume_force_slice = B_FALSE;
608
609 /*
610 * The label of disk images created with some earlier versions of the virtual
611 * disk software is not entirely correct and have an incorrect v_sanity field
612 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
613 * these images because we are now validating that the disk label (and the
614 * sanity) is correct when a disk image is opened.
615 *
616 * This tunable is set to false to not validate the sanity field and ensure
617 * compatibility. If the tunable is set to true, we will do a strict checking
618 * of the sanity but this can create compatibility problems with old disk
619 * images.
620 */
621 static boolean_t vd_dskimg_validate_sanity = B_FALSE;
622
623 /*
624 * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
625 */
626 static boolean_t vd_direct_mapped_drings = B_TRUE;
627
628 /*
629 * When a backend is exported as a single-slice disk then we entirely fake
630 * its disk label. So it can be exported either with a VTOC label or with
631 * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
632 * single-slice disks will be exported with a VTOC label; and if it is set
633 * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
634 * an EFI label.
635 *
636 * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
637 * or volume device then it will be exported with the same type of label as
638 * defined on the device. Otherwise if the backend is a file then it will
639 * exported with the disk label type set in the vd_file_slice_label variable.
640 *
641 * Note that if the backend size is greater than 1TB then it will always be
642 * exported with an EFI label no matter what the setting is.
643 */
644 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
645
646 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
647
648 /*
649 * Tunable for backward compatibility. If this variable is set to B_TRUE then
650 * single-slice disks are exported as disks with only one slice instead of
651 * faking a complete disk partitioning.
652 */
653 static boolean_t vd_slice_single_slice = B_FALSE;
654
655 /*
656 * Supported protocol version pairs, from highest (newest) to lowest (oldest)
657 *
658 * Each supported major version should appear only once, paired with (and only
659 * with) its highest supported minor version number (as the protocol requires
660 * supporting all lower minor version numbers as well)
661 */
662 static const vio_ver_t vds_version[] = {{1, 1}};
663 static const size_t vds_num_versions =
664 sizeof (vds_version)/sizeof (vds_version[0]);
665
666 static void vd_free_dring_task(vd_t *vdp);
667 static int vd_setup_vd(vd_t *vd);
668 static int vd_setup_single_slice_disk(vd_t *vd);
669 static int vd_setup_slice_image(vd_t *vd);
670 static int vd_setup_disk_image(vd_t *vd);
671 static int vd_backend_check_size(vd_t *vd);
672 static boolean_t vd_enabled(vd_t *vd);
673 static ushort_t vd_lbl2cksum(struct dk_label *label);
674 static int vd_dskimg_validate_geometry(vd_t *vd);
675 static boolean_t vd_dskimg_is_iso_image(vd_t *vd);
676 static void vd_set_exported_operations(vd_t *vd);
677 static void vd_reset_access(vd_t *vd);
678 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
679 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
680 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
681 static void vds_driver_types_free(vds_t *vds);
682 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
683 struct dk_label *label);
684 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
685 struct dk_geom *geom);
686 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
687 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
688
689 extern int is_pseudo_device(dev_info_t *);
690
691 /*
692 * Function:
693 * vd_get_readable_size
694 *
695 * Description:
696 * Convert a given size in bytes to a human readable format in
697 * kilobytes, megabytes, gigabytes or terabytes.
698 *
699 * Parameters:
700 * full_size - the size to convert in bytes.
701 * size - the converted size.
702 * unit - the unit of the converted size: 'K' (kilobyte),
703 * 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
704 *
705 * Return Code:
706 * none
707 */
708 static void
vd_get_readable_size(size_t full_size,size_t * size,char * unit)709 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
710 {
711 if (full_size < (1ULL << 20)) {
712 *size = full_size >> 10;
713 *unit = 'K'; /* Kilobyte */
714 } else if (full_size < (1ULL << 30)) {
715 *size = full_size >> 20;
716 *unit = 'M'; /* Megabyte */
717 } else if (full_size < (1ULL << 40)) {
718 *size = full_size >> 30;
719 *unit = 'G'; /* Gigabyte */
720 } else {
721 *size = full_size >> 40;
722 *unit = 'T'; /* Terabyte */
723 }
724 }
725
726 /*
727 * Function:
728 * vd_dskimg_io_params
729 *
730 * Description:
731 * Convert virtual disk I/O parameters (slice, block, length) to
732 * (offset, length) relative to the disk image and according to
733 * the virtual disk partitioning.
734 *
735 * Parameters:
736 * vd - disk on which the operation is performed.
737 * slice - slice to which is the I/O parameters apply.
738 * VD_SLICE_NONE indicates that parameters are
739 * are relative to the entire virtual disk.
740 * blkp - pointer to the starting block relative to the
741 * slice; return the starting block relative to
742 * the disk image.
743 * lenp - pointer to the number of bytes requested; return
744 * the number of bytes that can effectively be used.
745 *
746 * Return Code:
747 * 0 - I/O parameters have been successfully converted;
748 * blkp and lenp point to the converted values.
749 * ENODATA - no data are available for the given I/O parameters;
750 * This occurs if the starting block is past the limit
751 * of the slice.
752 * EINVAL - I/O parameters are invalid.
753 */
754 static int
vd_dskimg_io_params(vd_t * vd,int slice,size_t * blkp,size_t * lenp)755 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp)
756 {
757 size_t blk = *blkp;
758 size_t len = *lenp;
759 size_t offset, maxlen;
760
761 ASSERT(vd->file || VD_DSKIMG(vd));
762 ASSERT(len > 0);
763 ASSERT(vd->vdisk_bsize == DEV_BSIZE);
764
765 /*
766 * If a file is exported as a slice then we don't care about the vtoc.
767 * In that case, the vtoc is a fake mainly to make newfs happy and we
768 * handle any I/O as a raw disk access so that we can have access to the
769 * entire backend.
770 */
771 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
772 /* raw disk access */
773 offset = blk * DEV_BSIZE;
774 if (offset >= vd->dskimg_size) {
775 /* offset past the end of the disk */
776 PR0("offset (0x%lx) >= size (0x%lx)",
777 offset, vd->dskimg_size);
778 return (ENODATA);
779 }
780 maxlen = vd->dskimg_size - offset;
781 } else {
782 ASSERT(slice >= 0 && slice < V_NUMPAR);
783
784 /*
785 * v1.0 vDisk clients depended on the server not verifying
786 * the label of a unformatted disk. This "feature" is
787 * maintained for backward compatibility but all versions
788 * from v1.1 onwards must do the right thing.
789 */
790 if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
791 vio_ver_is_supported(vd->version, 1, 1)) {
792 (void) vd_dskimg_validate_geometry(vd);
793 if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
794 PR0("Unknown disk label, can't do I/O "
795 "from slice %d", slice);
796 return (EINVAL);
797 }
798 }
799
800 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
801 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
802 } else {
803 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
804 }
805
806 if (blk >= vd->slices[slice].nblocks) {
807 /* address past the end of the slice */
808 PR0("req_addr (0x%lx) >= psize (0x%lx)",
809 blk, vd->slices[slice].nblocks);
810 return (ENODATA);
811 }
812
813 offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
814 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
815 }
816
817 /*
818 * If the requested size is greater than the size
819 * of the partition, truncate the read/write.
820 */
821 if (len > maxlen) {
822 PR0("I/O size truncated to %lu bytes from %lu bytes",
823 maxlen, len);
824 len = maxlen;
825 }
826
827 /*
828 * We have to ensure that we are reading/writing into the mmap
829 * range. If we have a partial disk image (e.g. an image of
830 * s0 instead s2) the system can try to access slices that
831 * are not included into the disk image.
832 */
833 if ((offset + len) > vd->dskimg_size) {
834 PR0("offset + nbytes (0x%lx + 0x%lx) > "
835 "dskimg_size (0x%lx)", offset, len, vd->dskimg_size);
836 return (EINVAL);
837 }
838
839 *blkp = offset / DEV_BSIZE;
840 *lenp = len;
841
842 return (0);
843 }
844
845 /*
846 * Function:
847 * vd_dskimg_rw
848 *
849 * Description:
850 * Read or write to a disk image. It handles the case where the disk
851 * image is a file or a volume exported as a full disk or a file
852 * exported as single-slice disk. Read or write to volumes exported as
853 * single slice disks are done by directly using the ldi interface.
854 *
855 * Parameters:
856 * vd - disk on which the operation is performed.
857 * slice - slice on which the operation is performed,
858 * VD_SLICE_NONE indicates that the operation
859 * is done using an absolute disk offset.
860 * operation - operation to execute: read (VD_OP_BREAD) or
861 * write (VD_OP_BWRITE).
862 * data - buffer where data are read to or written from.
863 * blk - starting block for the operation.
864 * len - number of bytes to read or write.
865 *
866 * Return Code:
867 * n >= 0 - success, n indicates the number of bytes read
868 * or written.
869 * -1 - error.
870 */
871 static ssize_t
vd_dskimg_rw(vd_t * vd,int slice,int operation,caddr_t data,size_t offset,size_t len)872 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset,
873 size_t len)
874 {
875 ssize_t resid;
876 struct buf buf;
877 int status;
878
879 ASSERT(vd->file || VD_DSKIMG(vd));
880 ASSERT(len > 0);
881 ASSERT(vd->vdisk_bsize == DEV_BSIZE);
882
883 if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0)
884 return ((status == ENODATA)? 0: -1);
885
886 if (vd->volume) {
887
888 bioinit(&buf);
889 buf.b_flags = B_BUSY |
890 ((operation == VD_OP_BREAD)? B_READ : B_WRITE);
891 buf.b_bcount = len;
892 buf.b_lblkno = offset;
893 buf.b_edev = vd->dev[0];
894 buf.b_un.b_addr = data;
895
896 /*
897 * We use ldi_strategy() and not ldi_read()/ldi_write() because
898 * the read/write functions of the underlying driver may try to
899 * lock pages of the data buffer, and this requires the data
900 * buffer to be kmem_alloc'ed (and not allocated on the stack).
901 *
902 * Also using ldi_strategy() ensures that writes are immediatly
903 * commited and not cached as this may be the case with
904 * ldi_write() (for example with a ZFS volume).
905 */
906 if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) {
907 biofini(&buf);
908 return (-1);
909 }
910
911 if (biowait(&buf) != 0) {
912 biofini(&buf);
913 return (-1);
914 }
915
916 resid = buf.b_resid;
917 biofini(&buf);
918
919 ASSERT(resid <= len);
920 return (len - resid);
921 }
922
923 ASSERT(vd->file);
924
925 status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE,
926 vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC,
927 RLIM64_INFINITY, kcred, &resid);
928
929 if (status != 0)
930 return (-1);
931
932 return (len);
933 }
934
935 /*
936 * Function:
937 * vd_build_default_label
938 *
939 * Description:
940 * Return a default label for a given disk size. This is used when the disk
941 * does not have a valid VTOC so that the user can get a valid default
942 * configuration. The default label has all slice sizes set to 0 (except
943 * slice 2 which is the entire disk) to force the user to write a valid
944 * label onto the disk image.
945 *
946 * Parameters:
947 * disk_size - the disk size in bytes
948 * bsize - the disk block size in bytes
949 * label - the returned default label.
950 *
951 * Return Code:
952 * none.
953 */
954 static void
vd_build_default_label(size_t disk_size,size_t bsize,struct dk_label * label)955 vd_build_default_label(size_t disk_size, size_t bsize, struct dk_label *label)
956 {
957 size_t size;
958 char unit;
959
960 ASSERT(bsize > 0);
961
962 bzero(label, sizeof (struct dk_label));
963
964 /*
965 * Ideally we would like the cylinder size (nsect * nhead) to be the
966 * same whatever the disk size is. That way the VTOC label could be
967 * easily updated in case the disk size is increased (keeping the
968 * same cylinder size allows to preserve the existing partitioning
969 * when updating the VTOC label). But it is not possible to have
970 * a fixed cylinder size and to cover all disk size.
971 *
972 * So we define different cylinder sizes depending on the disk size.
973 * The cylinder size is chosen so that we don't have too few cylinders
974 * for a small disk image, or so many on a big disk image that you
975 * waste space for backup superblocks or cylinder group structures.
976 * Also we must have a resonable number of cylinders and sectors so
977 * that newfs can run using default values.
978 *
979 * +-----------+--------+---------+--------+
980 * | disk_size | < 2MB | 2MB-4GB | >= 8GB |
981 * +-----------+--------+---------+--------+
982 * | nhead | 1 | 1 | 96 |
983 * | nsect | 200 | 600 | 768 |
984 * +-----------+--------+---------+--------+
985 *
986 * Other parameters are computed from these values:
987 *
988 * pcyl = disk_size / (nhead * nsect * 512)
989 * acyl = (pcyl > 2)? 2 : 0
990 * ncyl = pcyl - acyl
991 *
992 * The maximum number of cylinder is 65535 so this allows to define a
993 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
994 * which is more than enough to cover the maximum size allowed by the
995 * extended VTOC format (2TB).
996 */
997
998 if (disk_size >= 8 * ONE_GIGABYTE) {
999
1000 label->dkl_nhead = 96;
1001 label->dkl_nsect = 768;
1002
1003 } else if (disk_size >= 2 * ONE_MEGABYTE) {
1004
1005 label->dkl_nhead = 1;
1006 label->dkl_nsect = 600;
1007
1008 } else {
1009
1010 label->dkl_nhead = 1;
1011 label->dkl_nsect = 200;
1012 }
1013
1014 label->dkl_pcyl = disk_size /
1015 (label->dkl_nsect * label->dkl_nhead * bsize);
1016
1017 if (label->dkl_pcyl == 0)
1018 label->dkl_pcyl = 1;
1019
1020 label->dkl_acyl = 0;
1021
1022 if (label->dkl_pcyl > 2)
1023 label->dkl_acyl = 2;
1024
1025 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
1026 label->dkl_write_reinstruct = 0;
1027 label->dkl_read_reinstruct = 0;
1028 label->dkl_rpm = 7200;
1029 label->dkl_apc = 0;
1030 label->dkl_intrlv = 0;
1031
1032 PR0("requested disk size: %ld bytes\n", disk_size);
1033 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
1034 label->dkl_nhead, label->dkl_nsect);
1035 PR0("provided disk size: %ld bytes\n", (uint64_t)
1036 (label->dkl_pcyl * label->dkl_nhead *
1037 label->dkl_nsect * bsize));
1038
1039 vd_get_readable_size(disk_size, &size, &unit);
1040
1041 /*
1042 * We must have a correct label name otherwise format(1m) will
1043 * not recognized the disk as labeled.
1044 */
1045 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
1046 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
1047 size, unit,
1048 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
1049 label->dkl_nsect);
1050
1051 /* default VTOC */
1052 label->dkl_vtoc.v_version = V_EXTVERSION;
1053 label->dkl_vtoc.v_nparts = V_NUMPAR;
1054 label->dkl_vtoc.v_sanity = VTOC_SANE;
1055 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
1056 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
1057 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
1058 label->dkl_nhead * label->dkl_nsect;
1059 label->dkl_magic = DKL_MAGIC;
1060 label->dkl_cksum = vd_lbl2cksum(label);
1061 }
1062
1063 /*
1064 * Function:
1065 * vd_dskimg_set_vtoc
1066 *
1067 * Description:
1068 * Set the vtoc of a disk image by writing the label and backup
1069 * labels into the disk image backend.
1070 *
1071 * Parameters:
1072 * vd - disk on which the operation is performed.
1073 * label - the data to be written.
1074 *
1075 * Return Code:
1076 * 0 - success.
1077 * n > 0 - error, n indicates the errno code.
1078 */
1079 static int
vd_dskimg_set_vtoc(vd_t * vd,struct dk_label * label)1080 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label)
1081 {
1082 size_t blk, sec, cyl, head, cnt;
1083
1084 ASSERT(VD_DSKIMG(vd));
1085
1086 if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) {
1087 PR0("fail to write disk label");
1088 return (EIO);
1089 }
1090
1091 /*
1092 * Backup labels are on the last alternate cylinder's
1093 * first five odd sectors.
1094 */
1095 if (label->dkl_acyl == 0) {
1096 PR0("no alternate cylinder, can not store backup labels");
1097 return (0);
1098 }
1099
1100 cyl = label->dkl_ncyl + label->dkl_acyl - 1;
1101 head = label->dkl_nhead - 1;
1102
1103 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
1104 (head * label->dkl_nsect);
1105
1106 /*
1107 * Write the backup labels. Make sure we don't try to write past
1108 * the last cylinder.
1109 */
1110 sec = 1;
1111
1112 for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) {
1113
1114 if (sec >= label->dkl_nsect) {
1115 PR0("not enough sector to store all backup labels");
1116 return (0);
1117 }
1118
1119 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1120 (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) {
1121 PR0("error writing backup label at block %lu\n",
1122 blk + sec);
1123 return (EIO);
1124 }
1125
1126 PR1("wrote backup label at block %lu\n", blk + sec);
1127
1128 sec += 2;
1129 }
1130
1131 return (0);
1132 }
1133
1134 /*
1135 * Function:
1136 * vd_dskimg_get_devid_block
1137 *
1138 * Description:
1139 * Return the block number where the device id is stored.
1140 *
1141 * Parameters:
1142 * vd - disk on which the operation is performed.
1143 * blkp - pointer to the block number
1144 *
1145 * Return Code:
1146 * 0 - success
1147 * ENOSPC - disk has no space to store a device id
1148 */
1149 static int
vd_dskimg_get_devid_block(vd_t * vd,size_t * blkp)1150 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp)
1151 {
1152 diskaddr_t spc, head, cyl;
1153
1154 ASSERT(VD_DSKIMG(vd));
1155
1156 if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1157 /*
1158 * If no label is defined we don't know where to find
1159 * a device id.
1160 */
1161 return (ENOSPC);
1162 }
1163
1164 if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1165 /*
1166 * For an EFI disk, the devid is at the beginning of
1167 * the reserved slice
1168 */
1169 if (vd->efi_reserved == -1) {
1170 PR0("EFI disk has no reserved slice");
1171 return (ENOSPC);
1172 }
1173
1174 *blkp = vd->slices[vd->efi_reserved].start;
1175 return (0);
1176 }
1177
1178 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1179
1180 /* this geometry doesn't allow us to have a devid */
1181 if (vd->dk_geom.dkg_acyl < 2) {
1182 PR0("not enough alternate cylinder available for devid "
1183 "(acyl=%u)", vd->dk_geom.dkg_acyl);
1184 return (ENOSPC);
1185 }
1186
1187 /* the devid is in on the track next to the last cylinder */
1188 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1189 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1190 head = vd->dk_geom.dkg_nhead - 1;
1191
1192 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1193 (head * vd->dk_geom.dkg_nsect) + 1;
1194
1195 return (0);
1196 }
1197
1198 /*
1199 * Return the checksum of a disk block containing an on-disk devid.
1200 */
1201 static uint_t
vd_dkdevid2cksum(struct dk_devid * dkdevid)1202 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1203 {
1204 uint_t chksum, *ip;
1205 int i;
1206
1207 chksum = 0;
1208 ip = (void *)dkdevid;
1209 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1210 chksum ^= ip[i];
1211
1212 return (chksum);
1213 }
1214
1215 /*
1216 * Function:
1217 * vd_dskimg_read_devid
1218 *
1219 * Description:
1220 * Read the device id stored on a disk image.
1221 *
1222 * Parameters:
1223 * vd - disk on which the operation is performed.
1224 * devid - the return address of the device ID.
1225 *
1226 * Return Code:
1227 * 0 - success
1228 * EIO - I/O error while trying to access the disk image
1229 * EINVAL - no valid device id was found
1230 * ENOSPC - disk has no space to store a device id
1231 */
1232 static int
vd_dskimg_read_devid(vd_t * vd,ddi_devid_t * devid)1233 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid)
1234 {
1235 struct dk_devid *dkdevid;
1236 size_t blk;
1237 uint_t chksum;
1238 int status, sz;
1239
1240 ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1241
1242 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1243 return (status);
1244
1245 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1246
1247 /* get the devid */
1248 if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1249 DEV_BSIZE)) < 0) {
1250 PR0("error reading devid block at %lu", blk);
1251 status = EIO;
1252 goto done;
1253 }
1254
1255 /* validate the revision */
1256 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1257 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1258 PR0("invalid devid found at block %lu (bad revision)", blk);
1259 status = EINVAL;
1260 goto done;
1261 }
1262
1263 /* compute checksum */
1264 chksum = vd_dkdevid2cksum(dkdevid);
1265
1266 /* compare the checksums */
1267 if (DKD_GETCHKSUM(dkdevid) != chksum) {
1268 PR0("invalid devid found at block %lu (bad checksum)", blk);
1269 status = EINVAL;
1270 goto done;
1271 }
1272
1273 /* validate the device id */
1274 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1275 PR0("invalid devid found at block %lu", blk);
1276 status = EINVAL;
1277 goto done;
1278 }
1279
1280 PR1("devid read at block %lu", blk);
1281
1282 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1283 *devid = kmem_alloc(sz, KM_SLEEP);
1284 bcopy(&dkdevid->dkd_devid, *devid, sz);
1285
1286 done:
1287 kmem_free(dkdevid, DEV_BSIZE);
1288 return (status);
1289
1290 }
1291
1292 /*
1293 * Function:
1294 * vd_dskimg_write_devid
1295 *
1296 * Description:
1297 * Write a device id into disk image.
1298 *
1299 * Parameters:
1300 * vd - disk on which the operation is performed.
1301 * devid - the device ID to store.
1302 *
1303 * Return Code:
1304 * 0 - success
1305 * EIO - I/O error while trying to access the disk image
1306 * ENOSPC - disk has no space to store a device id
1307 */
1308 static int
vd_dskimg_write_devid(vd_t * vd,ddi_devid_t devid)1309 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid)
1310 {
1311 struct dk_devid *dkdevid;
1312 uint_t chksum;
1313 size_t blk;
1314 int status;
1315
1316 ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1317
1318 if (devid == NULL) {
1319 /* nothing to write */
1320 return (0);
1321 }
1322
1323 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1324 return (status);
1325
1326 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1327
1328 /* set revision */
1329 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1330 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1331
1332 /* copy devid */
1333 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1334
1335 /* compute checksum */
1336 chksum = vd_dkdevid2cksum(dkdevid);
1337
1338 /* set checksum */
1339 DKD_FORMCHKSUM(chksum, dkdevid);
1340
1341 /* store the devid */
1342 if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1343 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1344 PR0("Error writing devid block at %lu", blk);
1345 status = EIO;
1346 } else {
1347 PR1("devid written at block %lu", blk);
1348 status = 0;
1349 }
1350
1351 kmem_free(dkdevid, DEV_BSIZE);
1352 return (status);
1353 }
1354
1355 /*
1356 * Function:
1357 * vd_do_scsi_rdwr
1358 *
1359 * Description:
1360 * Read or write to a SCSI disk using an absolute disk offset.
1361 *
1362 * Parameters:
1363 * vd - disk on which the operation is performed.
1364 * operation - operation to execute: read (VD_OP_BREAD) or
1365 * write (VD_OP_BWRITE).
1366 * data - buffer where data are read to or written from.
1367 * blk - starting block for the operation.
1368 * len - number of bytes to read or write.
1369 *
1370 * Return Code:
1371 * 0 - success
1372 * n != 0 - error.
1373 */
1374 static int
vd_do_scsi_rdwr(vd_t * vd,int operation,caddr_t data,size_t blk,size_t len)1375 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1376 {
1377 struct uscsi_cmd ucmd;
1378 union scsi_cdb cdb;
1379 int nsectors, nblk;
1380 int max_sectors;
1381 int status, rval;
1382
1383 ASSERT(!vd->file);
1384 ASSERT(!vd->volume);
1385 ASSERT(vd->vdisk_bsize > 0);
1386
1387 max_sectors = vd->max_xfer_sz;
1388 nblk = (len / vd->vdisk_bsize);
1389
1390 if (len % vd->vdisk_bsize != 0)
1391 return (EINVAL);
1392
1393 /*
1394 * Build and execute the uscsi ioctl. We build a group0, group1
1395 * or group4 command as necessary, since some targets
1396 * do not support group1 commands.
1397 */
1398 while (nblk) {
1399
1400 bzero(&ucmd, sizeof (ucmd));
1401 bzero(&cdb, sizeof (cdb));
1402
1403 nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1404
1405 /*
1406 * Some of the optical drives on sun4v machines are ATAPI
1407 * devices which use Group 1 Read/Write commands so we need
1408 * to explicitly check a flag which is set when a domain
1409 * is bound.
1410 */
1411 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1412 FORMG0ADDR(&cdb, blk);
1413 FORMG0COUNT(&cdb, (uchar_t)nsectors);
1414 ucmd.uscsi_cdblen = CDB_GROUP0;
1415 } else if (blk > 0xffffffff) {
1416 FORMG4LONGADDR(&cdb, blk);
1417 FORMG4COUNT(&cdb, nsectors);
1418 ucmd.uscsi_cdblen = CDB_GROUP4;
1419 cdb.scc_cmd |= SCMD_GROUP4;
1420 } else {
1421 FORMG1ADDR(&cdb, blk);
1422 FORMG1COUNT(&cdb, nsectors);
1423 ucmd.uscsi_cdblen = CDB_GROUP1;
1424 cdb.scc_cmd |= SCMD_GROUP1;
1425 }
1426 ucmd.uscsi_cdb = (caddr_t)&cdb;
1427 ucmd.uscsi_bufaddr = data;
1428 ucmd.uscsi_buflen = nsectors * vd->backend_bsize;
1429 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1430 /*
1431 * Set flags so that the command is isolated from normal
1432 * commands and no error message is printed.
1433 */
1434 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1435
1436 if (operation == VD_OP_BREAD) {
1437 cdb.scc_cmd |= SCMD_READ;
1438 ucmd.uscsi_flags |= USCSI_READ;
1439 } else {
1440 cdb.scc_cmd |= SCMD_WRITE;
1441 }
1442
1443 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1444 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1445 kcred, &rval);
1446
1447 if (status == 0)
1448 status = ucmd.uscsi_status;
1449
1450 if (status != 0)
1451 break;
1452
1453 /*
1454 * Check if partial DMA breakup is required. If so, reduce
1455 * the request size by half and retry the last request.
1456 */
1457 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1458 max_sectors >>= 1;
1459 if (max_sectors <= 0) {
1460 status = EIO;
1461 break;
1462 }
1463 continue;
1464 }
1465
1466 if (ucmd.uscsi_resid != 0) {
1467 status = EIO;
1468 break;
1469 }
1470
1471 blk += nsectors;
1472 nblk -= nsectors;
1473 data += nsectors * vd->vdisk_bsize;
1474 }
1475
1476 return (status);
1477 }
1478
1479 /*
1480 * Function:
1481 * vd_scsi_rdwr
1482 *
1483 * Description:
1484 * Wrapper function to read or write to a SCSI disk using an absolute
1485 * disk offset. It checks the blocksize of the underlying device and,
1486 * if necessary, adjusts the buffers accordingly before calling
1487 * vd_do_scsi_rdwr() to do the actual read or write.
1488 *
1489 * Parameters:
1490 * vd - disk on which the operation is performed.
1491 * operation - operation to execute: read (VD_OP_BREAD) or
1492 * write (VD_OP_BWRITE).
1493 * data - buffer where data are read to or written from.
1494 * blk - starting block for the operation.
1495 * len - number of bytes to read or write.
1496 *
1497 * Return Code:
1498 * 0 - success
1499 * n != 0 - error.
1500 */
1501 static int
vd_scsi_rdwr(vd_t * vd,int operation,caddr_t data,size_t vblk,size_t vlen)1502 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1503 {
1504 int rv;
1505
1506 size_t pblk; /* physical device block number of data on device */
1507 size_t delta; /* relative offset between pblk and vblk */
1508 size_t pnblk; /* number of physical blocks to be read from device */
1509 size_t plen; /* length of data to be read from physical device */
1510 char *buf; /* buffer area to fit physical device's block size */
1511
1512 if (vd->backend_bsize == 0) {
1513 /*
1514 * The block size was not available during the attach,
1515 * try to update it now.
1516 */
1517 if (vd_backend_check_size(vd) != 0)
1518 return (EIO);
1519 }
1520
1521 /*
1522 * If the vdisk block size and the block size of the underlying device
1523 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1524 * to create a buffer large enough to handle the device's block size
1525 * and adjust the block to be read from and the amount of data to
1526 * read to correspond with the device's block size.
1527 */
1528 if (vd->vdisk_bsize == vd->backend_bsize)
1529 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1530
1531 if (vd->vdisk_bsize > vd->backend_bsize)
1532 return (EINVAL);
1533
1534 /*
1535 * Writing of physical block sizes larger than the virtual block size
1536 * is not supported. This would be added if/when support for guests
1537 * writing to DVDs is implemented.
1538 */
1539 if (operation == VD_OP_BWRITE)
1540 return (ENOTSUP);
1541
1542 /* BEGIN CSTYLED */
1543 /*
1544 * Below is a diagram showing the relationship between the physical
1545 * and virtual blocks. If the virtual blocks marked by 'X' below are
1546 * requested, then the physical blocks denoted by 'Y' are read.
1547 *
1548 * vblk
1549 * | vlen
1550 * |<--------------->|
1551 * v v
1552 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk:
1553 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is
1554 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_bsize
1555 * : : : :
1556 * >:==:< delta : :
1557 * : : : :
1558 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk:
1559 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is
1560 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->backend_bsize
1561 * ^ ^
1562 * |<--------------------->|
1563 * | plen
1564 * pblk
1565 */
1566 /* END CSTYLED */
1567 pblk = (vblk * vd->vdisk_bsize) / vd->backend_bsize;
1568 delta = (vblk * vd->vdisk_bsize) - (pblk * vd->backend_bsize);
1569 pnblk = ((delta + vlen - 1) / vd->backend_bsize) + 1;
1570 plen = pnblk * vd->backend_bsize;
1571
1572 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1573
1574 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1575 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1576 bcopy(buf + delta, data, vlen);
1577
1578 kmem_free(buf, sizeof (caddr_t) * plen);
1579
1580 return (rv);
1581 }
1582
1583 /*
1584 * Function:
1585 * vd_slice_flabel_read
1586 *
1587 * Description:
1588 * This function simulates a read operation from the fake label of
1589 * a single-slice disk.
1590 *
1591 * Parameters:
1592 * vd - single-slice disk to read from
1593 * data - buffer where data should be read to
1594 * offset - offset in byte where the read should start
1595 * length - number of bytes to read
1596 *
1597 * Return Code:
1598 * n >= 0 - success, n indicates the number of bytes read
1599 * -1 - error
1600 */
1601 static ssize_t
vd_slice_flabel_read(vd_t * vd,caddr_t data,size_t offset,size_t length)1602 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1603 {
1604 size_t n = 0;
1605 uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1606
1607 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1608 ASSERT(vd->flabel != NULL);
1609
1610 /* if offset is past the fake label limit there's nothing to read */
1611 if (offset >= limit)
1612 return (0);
1613
1614 /* data with offset 0 to flabel_size are read from flabel */
1615 if (offset < vd->flabel_size) {
1616
1617 if (offset + length <= vd->flabel_size) {
1618 bcopy(vd->flabel + offset, data, length);
1619 return (length);
1620 }
1621
1622 n = vd->flabel_size - offset;
1623 bcopy(vd->flabel + offset, data, n);
1624 data += n;
1625 }
1626
1627 /* data with offset from flabel_size to flabel_limit are all zeros */
1628 if (offset + length <= limit) {
1629 bzero(data, length - n);
1630 return (length);
1631 }
1632
1633 bzero(data, limit - offset - n);
1634 return (limit - offset);
1635 }
1636
1637 /*
1638 * Function:
1639 * vd_slice_flabel_write
1640 *
1641 * Description:
1642 * This function simulates a write operation to the fake label of
1643 * a single-slice disk. Write operations are actually faked and return
1644 * success although the label is never changed. This is mostly to
1645 * simulate a successful label update.
1646 *
1647 * Parameters:
1648 * vd - single-slice disk to write to
1649 * data - buffer where data should be written from
1650 * offset - offset in byte where the write should start
1651 * length - number of bytes to written
1652 *
1653 * Return Code:
1654 * n >= 0 - success, n indicates the number of bytes written
1655 * -1 - error
1656 */
1657 static ssize_t
vd_slice_flabel_write(vd_t * vd,caddr_t data,size_t offset,size_t length)1658 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1659 {
1660 uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1661 struct dk_label *label;
1662 struct dk_geom geom;
1663 struct extvtoc vtoc;
1664
1665 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1666 ASSERT(vd->flabel != NULL);
1667
1668 if (offset >= limit)
1669 return (0);
1670
1671 /*
1672 * If this is a request to overwrite the VTOC disk label, check that
1673 * the new label is similar to the previous one and return that the
1674 * write was successful, but note that nothing is actually overwritten.
1675 */
1676 if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1677 offset == 0 && length == vd->vdisk_bsize) {
1678 label = (void *)data;
1679
1680 /* check that this is a valid label */
1681 if (label->dkl_magic != DKL_MAGIC ||
1682 label->dkl_cksum != vd_lbl2cksum(label))
1683 return (-1);
1684
1685 /* check the vtoc and geometry */
1686 vd_label_to_vtocgeom(label, &vtoc, &geom);
1687 if (vd_slice_geom_isvalid(vd, &geom) &&
1688 vd_slice_vtoc_isvalid(vd, &vtoc))
1689 return (length);
1690 }
1691
1692 /* fail any other write */
1693 return (-1);
1694 }
1695
1696 /*
1697 * Function:
1698 * vd_slice_fake_rdwr
1699 *
1700 * Description:
1701 * This function simulates a raw read or write operation to a single-slice
1702 * disk. It only handles the faked part of the operation i.e. I/Os to
1703 * blocks which have no mapping with the vdisk backend (I/Os to the
1704 * beginning and to the end of the vdisk).
1705 *
1706 * The function returns 0 is the operation is completed and it has been
1707 * entirely handled as a fake read or write. In that case, lengthp points
1708 * to the number of bytes not read or written. Values returned by datap
1709 * and blkp are undefined.
1710 *
1711 * If the fake operation has succeeded but the read or write is not
1712 * complete (i.e. the read/write operation extends beyond the blocks
1713 * we fake) then the function returns EAGAIN and datap, blkp and lengthp
1714 * pointers points to the parameters for completing the operation.
1715 *
1716 * In case of an error, for example if the slice is empty or parameters
1717 * are invalid, then the function returns a non-zero value different
1718 * from EAGAIN. In that case, the returned values of datap, blkp and
1719 * lengthp are undefined.
1720 *
1721 * Parameters:
1722 * vd - single-slice disk on which the operation is performed
1723 * slice - slice on which the operation is performed,
1724 * VD_SLICE_NONE indicates that the operation
1725 * is done using an absolute disk offset.
1726 * operation - operation to execute: read (VD_OP_BREAD) or
1727 * write (VD_OP_BWRITE).
1728 * datap - pointer to the buffer where data are read to
1729 * or written from. Return the pointer where remaining
1730 * data have to be read to or written from.
1731 * blkp - pointer to the starting block for the operation.
1732 * Return the starting block relative to the vdisk
1733 * backend for the remaining operation.
1734 * lengthp - pointer to the number of bytes to read or write.
1735 * This should be a multiple of vdisk_bsize. Return the
1736 * remaining number of bytes to read or write.
1737 *
1738 * Return Code:
1739 * 0 - read/write operation is completed
1740 * EAGAIN - read/write operation is not completed
1741 * other values - error
1742 */
1743 static int
vd_slice_fake_rdwr(vd_t * vd,int slice,int operation,caddr_t * datap,size_t * blkp,size_t * lengthp)1744 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1745 size_t *blkp, size_t *lengthp)
1746 {
1747 struct dk_label *label;
1748 caddr_t data;
1749 size_t blk, length, csize;
1750 size_t ablk, asize, aoff, alen;
1751 ssize_t n;
1752 int sec, status;
1753 size_t bsize = vd->vdisk_bsize;
1754
1755 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1756 ASSERT(slice != 0);
1757
1758 data = *datap;
1759 blk = *blkp;
1760 length = *lengthp;
1761
1762 /*
1763 * If this is not a raw I/O or an I/O from a full disk slice then
1764 * this is an I/O to/from an empty slice.
1765 */
1766 if (slice != VD_SLICE_NONE &&
1767 (slice != VD_ENTIRE_DISK_SLICE ||
1768 vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1769 (slice != VD_EFI_WD_SLICE ||
1770 vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1771 return (EIO);
1772 }
1773
1774 if (length % bsize != 0)
1775 return (EINVAL);
1776
1777 /* handle any I/O with the fake label */
1778 if (operation == VD_OP_BWRITE)
1779 n = vd_slice_flabel_write(vd, data, blk * bsize, length);
1780 else
1781 n = vd_slice_flabel_read(vd, data, blk * bsize, length);
1782
1783 if (n == -1)
1784 return (EINVAL);
1785
1786 ASSERT(n % bsize == 0);
1787
1788 /* adjust I/O arguments */
1789 data += n;
1790 blk += n / bsize;
1791 length -= n;
1792
1793 /* check if there's something else to process */
1794 if (length == 0) {
1795 status = 0;
1796 goto done;
1797 }
1798
1799 if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1800 slice == VD_ENTIRE_DISK_SLICE) {
1801 status = EAGAIN;
1802 goto done;
1803 }
1804
1805 if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1806 asize = EFI_MIN_RESV_SIZE + (EFI_MIN_ARRAY_SIZE / bsize) + 1;
1807 ablk = vd->vdisk_size - asize;
1808 } else {
1809 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1810 ASSERT(vd->dk_geom.dkg_apc == 0);
1811
1812 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1813 ablk = vd->dk_geom.dkg_ncyl * csize;
1814 asize = vd->dk_geom.dkg_acyl * csize;
1815 }
1816
1817 alen = length / bsize;
1818 aoff = blk;
1819
1820 /* if we have reached the last block then the I/O is completed */
1821 if (aoff == ablk + asize) {
1822 status = 0;
1823 goto done;
1824 }
1825
1826 /* if we are past the last block then return an error */
1827 if (aoff > ablk + asize)
1828 return (EIO);
1829
1830 /* check if there is any I/O to end of the disk */
1831 if (aoff + alen < ablk) {
1832 status = EAGAIN;
1833 goto done;
1834 }
1835
1836 /* we don't allow any write to the end of the disk */
1837 if (operation == VD_OP_BWRITE)
1838 return (EIO);
1839
1840 if (aoff < ablk) {
1841 alen -= (ablk - aoff);
1842 aoff = ablk;
1843 }
1844
1845 if (aoff + alen > ablk + asize) {
1846 alen = ablk + asize - aoff;
1847 }
1848
1849 alen *= bsize;
1850
1851 if (operation == VD_OP_BREAD) {
1852 bzero(data + (aoff - blk) * bsize, alen);
1853
1854 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1855 /* check if we read backup labels */
1856 label = VD_LABEL_VTOC(vd);
1857 ablk += (label->dkl_acyl - 1) * csize +
1858 (label->dkl_nhead - 1) * label->dkl_nsect;
1859
1860 for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1861
1862 if (ablk + sec >= blk &&
1863 ablk + sec < blk + (length / bsize)) {
1864 bcopy(label, data +
1865 (ablk + sec - blk) * bsize,
1866 sizeof (struct dk_label));
1867 }
1868 }
1869 }
1870 }
1871
1872 length -= alen;
1873
1874 status = (length == 0)? 0: EAGAIN;
1875
1876 done:
1877 ASSERT(length == 0 || blk >= vd->flabel_limit);
1878
1879 /*
1880 * Return the parameters for the remaining I/O. The starting block is
1881 * adjusted so that it is relative to the vdisk backend.
1882 */
1883 *datap = data;
1884 *blkp = blk - vd->flabel_limit;
1885 *lengthp = length;
1886
1887 return (status);
1888 }
1889
1890 static int
vd_flush_write(vd_t * vd)1891 vd_flush_write(vd_t *vd)
1892 {
1893 int status, rval;
1894
1895 if (vd->file) {
1896 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1897 } else {
1898 status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE,
1899 NULL, vd->open_flags | FKIOCTL, kcred, &rval);
1900 }
1901
1902 return (status);
1903 }
1904
1905 static void
vd_bio_task(void * arg)1906 vd_bio_task(void *arg)
1907 {
1908 struct buf *buf = (struct buf *)arg;
1909 vd_task_t *task = (vd_task_t *)buf->b_private;
1910 vd_t *vd = task->vd;
1911 ssize_t resid;
1912 int status;
1913
1914 ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1915
1916 if (vd->zvol) {
1917
1918 status = ldi_strategy(vd->ldi_handle[0], buf);
1919
1920 } else {
1921
1922 ASSERT(vd->file);
1923
1924 status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE,
1925 vd->file_vnode, buf->b_un.b_addr, buf->b_bcount,
1926 buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0,
1927 RLIM64_INFINITY, kcred, &resid);
1928
1929 if (status == 0) {
1930 buf->b_resid = resid;
1931 biodone(buf);
1932 return;
1933 }
1934 }
1935
1936 if (status != 0) {
1937 bioerror(buf, status);
1938 biodone(buf);
1939 }
1940 }
1941
1942 /*
1943 * We define our own biodone function so that buffers used for
1944 * asynchronous writes are not released when biodone() is called.
1945 */
1946 static int
vd_biodone(struct buf * bp)1947 vd_biodone(struct buf *bp)
1948 {
1949 ASSERT((bp->b_flags & B_DONE) == 0);
1950 ASSERT(SEMA_HELD(&bp->b_sem));
1951
1952 bp->b_flags |= B_DONE;
1953 sema_v(&bp->b_io);
1954
1955 return (0);
1956 }
1957
1958 /*
1959 * Return Values
1960 * EINPROGRESS - operation was successfully started
1961 * EIO - encountered LDC (aka. task error)
1962 * 0 - operation completed successfully
1963 *
1964 * Side Effect
1965 * sets request->status = <disk operation status>
1966 */
1967 static int
vd_start_bio(vd_task_t * task)1968 vd_start_bio(vd_task_t *task)
1969 {
1970 int rv, status = 0;
1971 vd_t *vd = task->vd;
1972 vd_dring_payload_t *request = task->request;
1973 struct buf *buf = &task->buf;
1974 uint8_t mtype;
1975 int slice;
1976 char *bufaddr = 0;
1977 size_t buflen;
1978 size_t offset, length, nbytes;
1979
1980 ASSERT(vd != NULL);
1981 ASSERT(request != NULL);
1982
1983 slice = request->slice;
1984
1985 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1986 ASSERT((request->operation == VD_OP_BREAD) ||
1987 (request->operation == VD_OP_BWRITE));
1988
1989 if (request->nbytes == 0) {
1990 /* no service for trivial requests */
1991 request->status = EINVAL;
1992 return (0);
1993 }
1994
1995 PR1("%s %lu bytes at block %lu",
1996 (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1997 request->nbytes, request->addr);
1998
1999 /*
2000 * We have to check the open flags because the functions processing
2001 * the read/write request will not do it.
2002 */
2003 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
2004 PR0("write fails because backend is opened read-only");
2005 request->nbytes = 0;
2006 request->status = EROFS;
2007 return (0);
2008 }
2009
2010 mtype = LDC_SHADOW_MAP;
2011
2012 /* Map memory exported by client */
2013 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
2014 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
2015 &bufaddr, NULL);
2016 if (status != 0) {
2017 PR0("ldc_mem_map() returned err %d ", status);
2018 return (EIO);
2019 }
2020
2021 /*
2022 * The buffer size has to be 8-byte aligned, so the client should have
2023 * sent a buffer which size is roundup to the next 8-byte aligned value.
2024 */
2025 buflen = P2ROUNDUP(request->nbytes, 8);
2026
2027 status = ldc_mem_acquire(task->mhdl, 0, buflen);
2028 if (status != 0) {
2029 (void) ldc_mem_unmap(task->mhdl);
2030 PR0("ldc_mem_acquire() returned err %d ", status);
2031 return (EIO);
2032 }
2033
2034 offset = request->addr;
2035 nbytes = request->nbytes;
2036 length = nbytes;
2037
2038 /* default number of byte returned by the I/O */
2039 request->nbytes = 0;
2040
2041 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
2042
2043 if (slice != 0) {
2044 /* handle any fake I/O */
2045 rv = vd_slice_fake_rdwr(vd, slice, request->operation,
2046 &bufaddr, &offset, &length);
2047
2048 /* record the number of bytes from the fake I/O */
2049 request->nbytes = nbytes - length;
2050
2051 if (rv == 0) {
2052 request->status = 0;
2053 goto io_done;
2054 }
2055
2056 if (rv != EAGAIN) {
2057 request->nbytes = 0;
2058 request->status = EIO;
2059 goto io_done;
2060 }
2061
2062 /*
2063 * If we return with EAGAIN then this means that there
2064 * are still data to read or write.
2065 */
2066 ASSERT(length != 0);
2067
2068 /*
2069 * We need to continue the I/O from the slice backend to
2070 * complete the request. The variables bufaddr, offset
2071 * and length have been adjusted to have the right
2072 * information to do the remaining I/O from the backend.
2073 * The backend is entirely mapped to slice 0 so we just
2074 * have to complete the I/O from that slice.
2075 */
2076 slice = 0;
2077 }
2078
2079 } else if (vd->volume || vd->file) {
2080
2081 rv = vd_dskimg_io_params(vd, slice, &offset, &length);
2082 if (rv != 0) {
2083 request->status = (rv == ENODATA)? 0: EIO;
2084 goto io_done;
2085 }
2086 slice = 0;
2087
2088 } else if (slice == VD_SLICE_NONE) {
2089
2090 /*
2091 * This is not a disk image so it is a real disk. We
2092 * assume that the underlying device driver supports
2093 * USCSICMD ioctls. This is the case of all SCSI devices
2094 * (sd, ssd...).
2095 *
2096 * In the future if we have non-SCSI disks we would need
2097 * to invoke the appropriate function to do I/O using an
2098 * absolute disk offset (for example using DIOCTL_RWCMD
2099 * for IDE disks).
2100 */
2101 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
2102 length);
2103 if (rv != 0) {
2104 request->status = EIO;
2105 } else {
2106 request->nbytes = length;
2107 request->status = 0;
2108 }
2109 goto io_done;
2110 }
2111
2112 /* Start the block I/O */
2113 bioinit(buf);
2114 buf->b_flags = B_BUSY;
2115 buf->b_bcount = length;
2116 buf->b_lblkno = offset;
2117 buf->b_bufsize = buflen;
2118 buf->b_edev = vd->dev[slice];
2119 buf->b_un.b_addr = bufaddr;
2120 buf->b_iodone = vd_biodone;
2121
2122 if (vd->file || vd->zvol) {
2123 /*
2124 * I/O to a file are dispatched to an I/O queue, so that several
2125 * I/Os can be processed in parallel. We also do that for ZFS
2126 * volumes because the ZFS volume strategy() function will only
2127 * return after the I/O is completed (instead of just starting
2128 * the I/O).
2129 */
2130
2131 if (request->operation == VD_OP_BREAD) {
2132 buf->b_flags |= B_READ;
2133 } else {
2134 /*
2135 * For ZFS volumes and files, we do an asynchronous
2136 * write and we will wait for the completion of the
2137 * write in vd_complete_bio() by flushing the volume
2138 * or file.
2139 *
2140 * This done for performance reasons, so that we can
2141 * group together several write requests into a single
2142 * flush operation.
2143 */
2144 buf->b_flags |= B_WRITE | B_ASYNC;
2145
2146 /*
2147 * We keep track of the write so that we can group
2148 * requests when flushing. The write queue has the
2149 * same number of slots as the dring so this prevents
2150 * the write queue from wrapping and overwriting
2151 * existing entries: if the write queue gets full
2152 * then that means that the dring is full so we stop
2153 * receiving new requests until an existing request
2154 * is processed, removed from the write queue and
2155 * then from the dring.
2156 */
2157 task->write_index = vd->write_index;
2158 vd->write_queue[task->write_index] = buf;
2159 vd->write_index =
2160 VD_WRITE_INDEX_NEXT(vd, vd->write_index);
2161 }
2162
2163 buf->b_private = task;
2164
2165 ASSERT(vd->ioq != NULL);
2166
2167 request->status = 0;
2168 (void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf,
2169 DDI_SLEEP);
2170
2171 } else {
2172
2173 if (request->operation == VD_OP_BREAD) {
2174 buf->b_flags |= B_READ;
2175 } else {
2176 buf->b_flags |= B_WRITE;
2177 }
2178
2179 /* convert VIO block number to buf block number */
2180 buf->b_lblkno = offset << vd->vio_bshift;
2181
2182 request->status = ldi_strategy(vd->ldi_handle[slice], buf);
2183 }
2184
2185 /*
2186 * This is to indicate to the caller that the request
2187 * needs to be finished by vd_complete_bio() by calling
2188 * biowait() there and waiting for that to return before
2189 * triggering the notification of the vDisk client.
2190 *
2191 * This is necessary when writing to real disks as
2192 * otherwise calls to ldi_strategy() would be serialized
2193 * behind the calls to biowait() and performance would
2194 * suffer.
2195 */
2196 if (request->status == 0)
2197 return (EINPROGRESS);
2198
2199 biofini(buf);
2200
2201 io_done:
2202 /* Clean up after error or completion */
2203 rv = ldc_mem_release(task->mhdl, 0, buflen);
2204 if (rv) {
2205 PR0("ldc_mem_release() returned err %d ", rv);
2206 status = EIO;
2207 }
2208 rv = ldc_mem_unmap(task->mhdl);
2209 if (rv) {
2210 PR0("ldc_mem_unmap() returned err %d ", rv);
2211 status = EIO;
2212 }
2213
2214 return (status);
2215 }
2216
2217 /*
2218 * This function should only be called from vd_notify to ensure that requests
2219 * are responded to in the order that they are received.
2220 */
2221 static int
send_msg(ldc_handle_t ldc_handle,void * msg,size_t msglen)2222 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
2223 {
2224 int status;
2225 size_t nbytes;
2226
2227 do {
2228 nbytes = msglen;
2229 status = ldc_write(ldc_handle, msg, &nbytes);
2230 if (status != EWOULDBLOCK)
2231 break;
2232 drv_usecwait(vds_ldc_delay);
2233 } while (status == EWOULDBLOCK);
2234
2235 if (status != 0) {
2236 if (status != ECONNRESET)
2237 PR0("ldc_write() returned errno %d", status);
2238 return (status);
2239 } else if (nbytes != msglen) {
2240 PR0("ldc_write() performed only partial write");
2241 return (EIO);
2242 }
2243
2244 PR1("SENT %lu bytes", msglen);
2245 return (0);
2246 }
2247
2248 static void
vd_need_reset(vd_t * vd,boolean_t reset_ldc)2249 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
2250 {
2251 mutex_enter(&vd->lock);
2252 vd->reset_state = B_TRUE;
2253 vd->reset_ldc = reset_ldc;
2254 mutex_exit(&vd->lock);
2255 }
2256
2257 /*
2258 * Reset the state of the connection with a client, if needed; reset the LDC
2259 * transport as well, if needed. This function should only be called from the
2260 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
2261 */
2262 static void
vd_reset_if_needed(vd_t * vd)2263 vd_reset_if_needed(vd_t *vd)
2264 {
2265 int status = 0;
2266
2267 mutex_enter(&vd->lock);
2268 if (!vd->reset_state) {
2269 ASSERT(!vd->reset_ldc);
2270 mutex_exit(&vd->lock);
2271 return;
2272 }
2273 mutex_exit(&vd->lock);
2274
2275 PR0("Resetting connection state with %s", VD_CLIENT(vd));
2276
2277 /*
2278 * Let any asynchronous I/O complete before possibly pulling the rug
2279 * out from under it; defer checking vd->reset_ldc, as one of the
2280 * asynchronous tasks might set it
2281 */
2282 if (vd->ioq != NULL)
2283 ddi_taskq_wait(vd->ioq);
2284 ddi_taskq_wait(vd->completionq);
2285
2286 status = vd_flush_write(vd);
2287 if (status) {
2288 PR0("flushwrite returned error %d", status);
2289 }
2290
2291 if ((vd->initialized & VD_DRING) &&
2292 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2293 PR0("ldc_mem_dring_unmap() returned errno %d", status);
2294
2295 vd_free_dring_task(vd);
2296
2297 /* Free the staging buffer for msgs */
2298 if (vd->vio_msgp != NULL) {
2299 kmem_free(vd->vio_msgp, vd->max_msglen);
2300 vd->vio_msgp = NULL;
2301 }
2302
2303 /* Free the inband message buffer */
2304 if (vd->inband_task.msg != NULL) {
2305 kmem_free(vd->inband_task.msg, vd->max_msglen);
2306 vd->inband_task.msg = NULL;
2307 }
2308
2309 mutex_enter(&vd->lock);
2310
2311 if (vd->reset_ldc)
2312 PR0("taking down LDC channel");
2313 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2314 PR0("ldc_down() returned errno %d", status);
2315
2316 /* Reset exclusive access rights */
2317 vd_reset_access(vd);
2318
2319 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2320 vd->state = VD_STATE_INIT;
2321 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */
2322
2323 /* Allocate the staging buffer */
2324 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2325
2326 PR0("calling ldc_up\n");
2327 (void) ldc_up(vd->ldc_handle);
2328
2329 vd->reset_state = B_FALSE;
2330 vd->reset_ldc = B_FALSE;
2331
2332 mutex_exit(&vd->lock);
2333 }
2334
2335 static void vd_recv_msg(void *arg);
2336
2337 static void
vd_mark_in_reset(vd_t * vd)2338 vd_mark_in_reset(vd_t *vd)
2339 {
2340 int status;
2341
2342 PR0("vd_mark_in_reset: marking vd in reset\n");
2343
2344 vd_need_reset(vd, B_FALSE);
2345 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2346 if (status == DDI_FAILURE) {
2347 PR0("cannot schedule task to recv msg\n");
2348 vd_need_reset(vd, B_TRUE);
2349 return;
2350 }
2351 }
2352
2353 static int
vd_mark_elem_done(vd_t * vd,int idx,int elem_status,int elem_nbytes)2354 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2355 {
2356 boolean_t accepted;
2357 int status;
2358 on_trap_data_t otd;
2359 vd_dring_entry_t *elem = VD_DRING_ELEM(idx);
2360
2361 if (vd->reset_state)
2362 return (0);
2363
2364 /* Acquire the element */
2365 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2366 vd->dring_handle, idx, idx)) != 0) {
2367 if (status == ECONNRESET) {
2368 vd_mark_in_reset(vd);
2369 return (0);
2370 } else {
2371 return (status);
2372 }
2373 }
2374
2375 /* Set the element's status and mark it done */
2376 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2377 if (accepted) {
2378 elem->payload.nbytes = elem_nbytes;
2379 elem->payload.status = elem_status;
2380 elem->hdr.dstate = VIO_DESC_DONE;
2381 } else {
2382 /* Perhaps client timed out waiting for I/O... */
2383 PR0("element %u no longer \"accepted\"", idx);
2384 VD_DUMP_DRING_ELEM(elem);
2385 }
2386 /* Release the element */
2387 if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2388 vd->dring_handle, idx, idx)) != 0) {
2389 if (status == ECONNRESET) {
2390 vd_mark_in_reset(vd);
2391 return (0);
2392 } else {
2393 PR0("VIO_DRING_RELEASE() returned errno %d",
2394 status);
2395 return (status);
2396 }
2397 }
2398
2399 return (accepted ? 0 : EINVAL);
2400 }
2401
2402 /*
2403 * Return Values
2404 * 0 - operation completed successfully
2405 * EIO - encountered LDC / task error
2406 *
2407 * Side Effect
2408 * sets request->status = <disk operation status>
2409 */
2410 static int
vd_complete_bio(vd_task_t * task)2411 vd_complete_bio(vd_task_t *task)
2412 {
2413 int status = 0;
2414 int rv = 0;
2415 vd_t *vd = task->vd;
2416 vd_dring_payload_t *request = task->request;
2417 struct buf *buf = &task->buf;
2418 int wid, nwrites;
2419
2420
2421 ASSERT(vd != NULL);
2422 ASSERT(request != NULL);
2423 ASSERT(task->msg != NULL);
2424 ASSERT(task->msglen >= sizeof (*task->msg));
2425
2426 if (buf->b_flags & B_DONE) {
2427 /*
2428 * If the I/O is already done then we don't call biowait()
2429 * because biowait() might already have been called when
2430 * flushing a previous asynchronous write. So we just
2431 * retrieve the status of the request.
2432 */
2433 request->status = geterror(buf);
2434 } else {
2435 /*
2436 * Wait for the I/O. For synchronous I/O, biowait() will return
2437 * when the I/O has completed. For asynchronous write, it will
2438 * return the write has been submitted to the backend, but it
2439 * may not have been committed.
2440 */
2441 request->status = biowait(buf);
2442 }
2443
2444 if (buf->b_flags & B_ASYNC) {
2445 /*
2446 * Asynchronous writes are used when writing to a file or a
2447 * ZFS volume. In that case the bio notification indicates
2448 * that the write has started. We have to flush the backend
2449 * to ensure that the write has been committed before marking
2450 * the request as completed.
2451 */
2452 ASSERT(task->request->operation == VD_OP_BWRITE);
2453
2454 wid = task->write_index;
2455
2456 /* check if write has been already flushed */
2457 if (vd->write_queue[wid] != NULL) {
2458
2459 vd->write_queue[wid] = NULL;
2460 wid = VD_WRITE_INDEX_NEXT(vd, wid);
2461
2462 /*
2463 * Because flushing is time consuming, it is worth
2464 * waiting for any other writes so that they can be
2465 * included in this single flush request.
2466 */
2467 if (vd_awflush & VD_AWFLUSH_GROUP) {
2468 nwrites = 1;
2469 while (vd->write_queue[wid] != NULL) {
2470 (void) biowait(vd->write_queue[wid]);
2471 vd->write_queue[wid] = NULL;
2472 wid = VD_WRITE_INDEX_NEXT(vd, wid);
2473 nwrites++;
2474 }
2475 DTRACE_PROBE2(flushgrp, vd_task_t *, task,
2476 int, nwrites);
2477 }
2478
2479 if (vd_awflush & VD_AWFLUSH_IMMEDIATE) {
2480 request->status = vd_flush_write(vd);
2481 } else if (vd_awflush & VD_AWFLUSH_DEFER) {
2482 (void) taskq_dispatch(system_taskq,
2483 (void (*)(void *))vd_flush_write, vd,
2484 DDI_SLEEP);
2485 request->status = 0;
2486 }
2487 }
2488 }
2489
2490 /* Update the number of bytes read/written */
2491 request->nbytes += buf->b_bcount - buf->b_resid;
2492
2493 /* Release the buffer */
2494 if (!vd->reset_state)
2495 status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2496 if (status) {
2497 PR0("ldc_mem_release() returned errno %d copying to "
2498 "client", status);
2499 if (status == ECONNRESET) {
2500 vd_mark_in_reset(vd);
2501 }
2502 rv = EIO;
2503 }
2504
2505 /* Unmap the memory, even if in reset */
2506 status = ldc_mem_unmap(task->mhdl);
2507 if (status) {
2508 PR0("ldc_mem_unmap() returned errno %d copying to client",
2509 status);
2510 if (status == ECONNRESET) {
2511 vd_mark_in_reset(vd);
2512 }
2513 rv = EIO;
2514 }
2515
2516 biofini(buf);
2517
2518 return (rv);
2519 }
2520
2521 /*
2522 * Description:
2523 * This function is called by the two functions called by a taskq
2524 * [ vd_complete_notify() and vd_serial_notify()) ] to send the
2525 * message to the client.
2526 *
2527 * Parameters:
2528 * arg - opaque pointer to structure containing task to be completed
2529 *
2530 * Return Values
2531 * None
2532 */
2533 static void
vd_notify(vd_task_t * task)2534 vd_notify(vd_task_t *task)
2535 {
2536 int status;
2537
2538 ASSERT(task != NULL);
2539 ASSERT(task->vd != NULL);
2540
2541 /*
2542 * Send the "ack" or "nack" back to the client; if sending the message
2543 * via LDC fails, arrange to reset both the connection state and LDC
2544 * itself
2545 */
2546 PR2("Sending %s",
2547 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2548
2549 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2550 switch (status) {
2551 case 0:
2552 break;
2553 case ECONNRESET:
2554 vd_mark_in_reset(task->vd);
2555 break;
2556 default:
2557 PR0("initiating full reset");
2558 vd_need_reset(task->vd, B_TRUE);
2559 break;
2560 }
2561
2562 DTRACE_PROBE1(task__end, vd_task_t *, task);
2563 }
2564
2565 /*
2566 * Description:
2567 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2568 * the vDisk client
2569 *
2570 * Parameters:
2571 * task - structure containing the request sent from client
2572 *
2573 * Return Values
2574 * None
2575 */
2576 static void
vd_complete_notify(vd_task_t * task)2577 vd_complete_notify(vd_task_t *task)
2578 {
2579 int status = 0;
2580 vd_t *vd = task->vd;
2581 vd_dring_payload_t *request = task->request;
2582
2583 /* Update the dring element for a dring client */
2584 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2585 status = vd_mark_elem_done(vd, task->index,
2586 request->status, request->nbytes);
2587 if (status == ECONNRESET)
2588 vd_mark_in_reset(vd);
2589 else if (status == EACCES)
2590 vd_need_reset(vd, B_TRUE);
2591 }
2592
2593 /*
2594 * If a transport error occurred while marking the element done or
2595 * previously while executing the task, arrange to "nack" the message
2596 * when the final task in the descriptor element range completes
2597 */
2598 if ((status != 0) || (task->status != 0))
2599 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2600
2601 /*
2602 * Only the final task for a range of elements will respond to and
2603 * free the message
2604 */
2605 if (task->type == VD_NONFINAL_RANGE_TASK) {
2606 return;
2607 }
2608
2609 /*
2610 * We should only send an ACK/NACK here if we are not currently in
2611 * reset as, depending on how we reset, the dring may have been
2612 * blown away and we don't want to ACK/NACK a message that isn't
2613 * there.
2614 */
2615 if (!vd->reset_state)
2616 vd_notify(task);
2617 }
2618
2619 /*
2620 * Description:
2621 * This is the basic completion function called to handle inband data
2622 * requests and handshake messages. All it needs to do is trigger a
2623 * message to the client that the request is completed.
2624 *
2625 * Parameters:
2626 * arg - opaque pointer to structure containing task to be completed
2627 *
2628 * Return Values
2629 * None
2630 */
2631 static void
vd_serial_notify(void * arg)2632 vd_serial_notify(void *arg)
2633 {
2634 vd_task_t *task = (vd_task_t *)arg;
2635
2636 ASSERT(task != NULL);
2637 vd_notify(task);
2638 }
2639
2640 /* ARGSUSED */
2641 static int
vd_geom2dk_geom(void * vd_buf,size_t vd_buf_len,void * ioctl_arg)2642 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2643 {
2644 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2645 return (0);
2646 }
2647
2648 /* ARGSUSED */
2649 static int
vd_vtoc2vtoc(void * vd_buf,size_t vd_buf_len,void * ioctl_arg)2650 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2651 {
2652 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
2653 return (0);
2654 }
2655
2656 static void
dk_geom2vd_geom(void * ioctl_arg,void * vd_buf)2657 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2658 {
2659 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2660 }
2661
2662 static void
vtoc2vd_vtoc(void * ioctl_arg,void * vd_buf)2663 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2664 {
2665 VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2666 }
2667
2668 static int
vd_get_efi_in(void * vd_buf,size_t vd_buf_len,void * ioctl_arg)2669 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2670 {
2671 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2672 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2673 size_t data_len;
2674
2675 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2676 if (vd_efi->length > data_len)
2677 return (EINVAL);
2678
2679 dk_efi->dki_lba = vd_efi->lba;
2680 dk_efi->dki_length = vd_efi->length;
2681 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2682 return (0);
2683 }
2684
2685 static void
vd_get_efi_out(void * ioctl_arg,void * vd_buf)2686 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2687 {
2688 int len;
2689 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2690 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2691
2692 len = vd_efi->length;
2693 DK_EFI2VD_EFI(dk_efi, vd_efi);
2694 kmem_free(dk_efi->dki_data, len);
2695 }
2696
2697 static int
vd_set_efi_in(void * vd_buf,size_t vd_buf_len,void * ioctl_arg)2698 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2699 {
2700 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2701 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2702 size_t data_len;
2703
2704 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2705 if (vd_efi->length > data_len)
2706 return (EINVAL);
2707
2708 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2709 VD_EFI2DK_EFI(vd_efi, dk_efi);
2710 return (0);
2711 }
2712
2713 static void
vd_set_efi_out(void * ioctl_arg,void * vd_buf)2714 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2715 {
2716 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2717 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2718
2719 kmem_free(dk_efi->dki_data, vd_efi->length);
2720 }
2721
2722 static int
vd_scsicmd_in(void * vd_buf,size_t vd_buf_len,void * ioctl_arg)2723 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2724 {
2725 size_t vd_scsi_len;
2726 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2727 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2728
2729 /* check buffer size */
2730 vd_scsi_len = VD_SCSI_SIZE;
2731 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2732 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2733 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2734 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2735
2736 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2737
2738 if (vd_buf_len < vd_scsi_len)
2739 return (EINVAL);
2740
2741 /* set flags */
2742 uscsi->uscsi_flags = vd_scsi_debug;
2743
2744 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2745 uscsi->uscsi_flags |= USCSI_ISOLATE;
2746 uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2747 }
2748
2749 /* task attribute */
2750 switch (vd_scsi->task_attribute) {
2751 case VD_SCSI_TASK_ACA:
2752 uscsi->uscsi_flags |= USCSI_HEAD;
2753 break;
2754 case VD_SCSI_TASK_HQUEUE:
2755 uscsi->uscsi_flags |= USCSI_HTAG;
2756 break;
2757 case VD_SCSI_TASK_ORDERED:
2758 uscsi->uscsi_flags |= USCSI_OTAG;
2759 break;
2760 default:
2761 uscsi->uscsi_flags |= USCSI_NOTAG;
2762 break;
2763 }
2764
2765 /* timeout */
2766 uscsi->uscsi_timeout = vd_scsi->timeout;
2767
2768 /* cdb data */
2769 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2770 uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2771
2772 /* sense buffer */
2773 if (vd_scsi->sense_len != 0) {
2774 uscsi->uscsi_flags |= USCSI_RQENABLE;
2775 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2776 uscsi->uscsi_rqlen = vd_scsi->sense_len;
2777 }
2778
2779 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2780 /* uscsi does not support read/write request */
2781 return (EINVAL);
2782 }
2783
2784 /* request data-in */
2785 if (vd_scsi->datain_len != 0) {
2786 uscsi->uscsi_flags |= USCSI_READ;
2787 uscsi->uscsi_buflen = vd_scsi->datain_len;
2788 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2789 }
2790
2791 /* request data-out */
2792 if (vd_scsi->dataout_len != 0) {
2793 uscsi->uscsi_buflen = vd_scsi->dataout_len;
2794 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2795 }
2796
2797 return (0);
2798 }
2799
2800 static void
vd_scsicmd_out(void * ioctl_arg,void * vd_buf)2801 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2802 {
2803 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2804 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2805
2806 /* output fields */
2807 vd_scsi->cmd_status = uscsi->uscsi_status;
2808
2809 /* sense data */
2810 if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2811 (uscsi->uscsi_status == STATUS_CHECK ||
2812 uscsi->uscsi_status == STATUS_TERMINATED)) {
2813 vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2814 if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2815 vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2816 else
2817 vd_scsi->sense_len = 0;
2818 } else {
2819 vd_scsi->sense_len = 0;
2820 }
2821
2822 if (uscsi->uscsi_status != STATUS_GOOD) {
2823 vd_scsi->dataout_len = 0;
2824 vd_scsi->datain_len = 0;
2825 return;
2826 }
2827
2828 if (uscsi->uscsi_flags & USCSI_READ) {
2829 /* request data (read) */
2830 vd_scsi->datain_len -= uscsi->uscsi_resid;
2831 vd_scsi->dataout_len = 0;
2832 } else {
2833 /* request data (write) */
2834 vd_scsi->datain_len = 0;
2835 vd_scsi->dataout_len -= uscsi->uscsi_resid;
2836 }
2837 }
2838
2839 static ushort_t
vd_lbl2cksum(struct dk_label * label)2840 vd_lbl2cksum(struct dk_label *label)
2841 {
2842 int count;
2843 ushort_t sum, *sp;
2844
2845 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1;
2846 sp = (ushort_t *)label;
2847 sum = 0;
2848 while (count--) {
2849 sum ^= *sp++;
2850 }
2851
2852 return (sum);
2853 }
2854
2855 /*
2856 * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2857 */
2858 static void
vd_vtocgeom_to_label(struct extvtoc * vtoc,struct dk_geom * geom,struct dk_label * label)2859 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
2860 struct dk_label *label)
2861 {
2862 int i;
2863
2864 ASSERT(vtoc->v_nparts == V_NUMPAR);
2865 ASSERT(vtoc->v_sanity == VTOC_SANE);
2866
2867 bzero(label, sizeof (struct dk_label));
2868
2869 label->dkl_ncyl = geom->dkg_ncyl;
2870 label->dkl_acyl = geom->dkg_acyl;
2871 label->dkl_pcyl = geom->dkg_pcyl;
2872 label->dkl_nhead = geom->dkg_nhead;
2873 label->dkl_nsect = geom->dkg_nsect;
2874 label->dkl_intrlv = geom->dkg_intrlv;
2875 label->dkl_apc = geom->dkg_apc;
2876 label->dkl_rpm = geom->dkg_rpm;
2877 label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2878 label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2879
2880 label->dkl_vtoc.v_nparts = V_NUMPAR;
2881 label->dkl_vtoc.v_sanity = VTOC_SANE;
2882 label->dkl_vtoc.v_version = vtoc->v_version;
2883 for (i = 0; i < V_NUMPAR; i++) {
2884 label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2885 label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2886 label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2887 label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2888 (label->dkl_nhead * label->dkl_nsect);
2889 label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2890 }
2891
2892 /*
2893 * The bootinfo array can not be copied with bcopy() because
2894 * elements are of type long in vtoc (so 64-bit) and of type
2895 * int in dk_vtoc (so 32-bit).
2896 */
2897 label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2898 label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2899 label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2900 bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2901 bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2902
2903 /* re-compute checksum */
2904 label->dkl_magic = DKL_MAGIC;
2905 label->dkl_cksum = vd_lbl2cksum(label);
2906 }
2907
2908 /*
2909 * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2910 */
2911 static void
vd_label_to_vtocgeom(struct dk_label * label,struct extvtoc * vtoc,struct dk_geom * geom)2912 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
2913 struct dk_geom *geom)
2914 {
2915 int i;
2916
2917 bzero(vtoc, sizeof (struct extvtoc));
2918 bzero(geom, sizeof (struct dk_geom));
2919
2920 geom->dkg_ncyl = label->dkl_ncyl;
2921 geom->dkg_acyl = label->dkl_acyl;
2922 geom->dkg_nhead = label->dkl_nhead;
2923 geom->dkg_nsect = label->dkl_nsect;
2924 geom->dkg_intrlv = label->dkl_intrlv;
2925 geom->dkg_apc = label->dkl_apc;
2926 geom->dkg_rpm = label->dkl_rpm;
2927 geom->dkg_pcyl = label->dkl_pcyl;
2928 geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2929 geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2930
2931 vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2932 vtoc->v_version = label->dkl_vtoc.v_version;
2933 vtoc->v_sectorsz = DEV_BSIZE;
2934 vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2935
2936 for (i = 0; i < vtoc->v_nparts; i++) {
2937 vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2938 vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2939 vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2940 (label->dkl_nhead * label->dkl_nsect);
2941 vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2942 vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2943 }
2944
2945 /*
2946 * The bootinfo array can not be copied with bcopy() because
2947 * elements are of type long in vtoc (so 64-bit) and of type
2948 * int in dk_vtoc (so 32-bit).
2949 */
2950 vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2951 vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2952 vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2953 bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2954 bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2955 }
2956
2957 /*
2958 * Check if a geometry is valid for a single-slice disk. A geometry is
2959 * considered valid if the main attributes of the geometry match with the
2960 * attributes of the fake geometry we have created.
2961 */
2962 static boolean_t
vd_slice_geom_isvalid(vd_t * vd,struct dk_geom * geom)2963 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2964 {
2965 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2966 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2967
2968 if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2969 geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2970 geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2971 geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2972 return (B_FALSE);
2973
2974 return (B_TRUE);
2975 }
2976
2977 /*
2978 * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2979 * valid if the main attributes of the vtoc match with the attributes of the
2980 * fake vtoc we have created.
2981 */
2982 static boolean_t
vd_slice_vtoc_isvalid(vd_t * vd,struct extvtoc * vtoc)2983 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
2984 {
2985 size_t csize;
2986 int i;
2987
2988 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2989 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2990
2991 if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2992 vtoc->v_version != vd->vtoc.v_version ||
2993 vtoc->v_nparts != vd->vtoc.v_nparts ||
2994 strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2995 strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2996 return (B_FALSE);
2997
2998 /* slice 2 should be unchanged */
2999 if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
3000 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
3001 vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
3002 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
3003 return (B_FALSE);
3004
3005 /*
3006 * Slice 0 should be mostly unchanged and cover most of the disk.
3007 * However we allow some flexibility wrt to the start and the size
3008 * of this slice mainly because we can't exactly know how it will
3009 * be defined by the OS installer.
3010 *
3011 * We allow slice 0 to be defined as starting on any of the first
3012 * 4 cylinders.
3013 */
3014 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
3015
3016 if (vtoc->v_part[0].p_start > 4 * csize ||
3017 vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
3018 return (B_FALSE);
3019
3020 if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
3021 vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
3022 return (B_FALSE);
3023
3024 /* any other slice should have a size of 0 */
3025 for (i = 1; i < vtoc->v_nparts; i++) {
3026 if (i != VD_ENTIRE_DISK_SLICE &&
3027 vtoc->v_part[i].p_size != 0)
3028 return (B_FALSE);
3029 }
3030
3031 return (B_TRUE);
3032 }
3033
3034 /*
3035 * Handle ioctls to a disk slice.
3036 *
3037 * Return Values
3038 * 0 - Indicates that there are no errors in disk operations
3039 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl
3040 * EINVAL - Not enough room to copy the EFI label
3041 *
3042 */
3043 static int
vd_do_slice_ioctl(vd_t * vd,int cmd,void * ioctl_arg)3044 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3045 {
3046 dk_efi_t *dk_ioc;
3047 struct extvtoc *vtoc;
3048 struct dk_geom *geom;
3049 size_t len, lba;
3050
3051 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
3052
3053 if (cmd == DKIOCFLUSHWRITECACHE)
3054 return (vd_flush_write(vd));
3055
3056 switch (vd->vdisk_label) {
3057
3058 /* ioctls for a single slice disk with a VTOC label */
3059 case VD_DISK_LABEL_VTOC:
3060
3061 switch (cmd) {
3062
3063 case DKIOCGGEOM:
3064 ASSERT(ioctl_arg != NULL);
3065 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
3066 return (0);
3067
3068 case DKIOCGEXTVTOC:
3069 ASSERT(ioctl_arg != NULL);
3070 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
3071 return (0);
3072
3073 case DKIOCSGEOM:
3074 ASSERT(ioctl_arg != NULL);
3075 if (vd_slice_single_slice)
3076 return (ENOTSUP);
3077
3078 /* fake success only if new geometry is valid */
3079 geom = (struct dk_geom *)ioctl_arg;
3080 if (!vd_slice_geom_isvalid(vd, geom))
3081 return (EINVAL);
3082
3083 return (0);
3084
3085 case DKIOCSEXTVTOC:
3086 ASSERT(ioctl_arg != NULL);
3087 if (vd_slice_single_slice)
3088 return (ENOTSUP);
3089
3090 /* fake sucess only if the new vtoc is valid */
3091 vtoc = (struct extvtoc *)ioctl_arg;
3092 if (!vd_slice_vtoc_isvalid(vd, vtoc))
3093 return (EINVAL);
3094
3095 return (0);
3096
3097 default:
3098 return (ENOTSUP);
3099 }
3100
3101 /* ioctls for a single slice disk with an EFI label */
3102 case VD_DISK_LABEL_EFI:
3103
3104 if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
3105 return (ENOTSUP);
3106
3107 ASSERT(ioctl_arg != NULL);
3108 dk_ioc = (dk_efi_t *)ioctl_arg;
3109
3110 len = dk_ioc->dki_length;
3111 lba = dk_ioc->dki_lba;
3112
3113 if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
3114 (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
3115 (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
3116 return (EINVAL);
3117
3118 switch (cmd) {
3119 case DKIOCGETEFI:
3120 len = vd_slice_flabel_read(vd,
3121 (caddr_t)dk_ioc->dki_data,
3122 lba * vd->vdisk_bsize, len);
3123
3124 ASSERT(len > 0);
3125
3126 return (0);
3127
3128 case DKIOCSETEFI:
3129 if (vd_slice_single_slice)
3130 return (ENOTSUP);
3131
3132 /* we currently don't support writing EFI */
3133 return (EIO);
3134 }
3135
3136 default:
3137 /* Unknown disk label type */
3138 return (ENOTSUP);
3139 }
3140 }
3141
3142 static int
vds_efi_alloc_and_read(vd_t * vd,efi_gpt_t ** gpt,efi_gpe_t ** gpe)3143 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
3144 {
3145 vd_efi_dev_t edev;
3146 int status;
3147
3148 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3149
3150 status = vd_efi_alloc_and_read(&edev, gpt, gpe);
3151
3152 return (status);
3153 }
3154
3155 static void
vds_efi_free(vd_t * vd,efi_gpt_t * gpt,efi_gpe_t * gpe)3156 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
3157 {
3158 vd_efi_dev_t edev;
3159
3160 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3161
3162 vd_efi_free(&edev, gpt, gpe);
3163 }
3164
3165 static int
vd_dskimg_validate_efi(vd_t * vd)3166 vd_dskimg_validate_efi(vd_t *vd)
3167 {
3168 efi_gpt_t *gpt;
3169 efi_gpe_t *gpe;
3170 int i, nparts, status;
3171 struct uuid efi_reserved = EFI_RESERVED;
3172
3173 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
3174 return (status);
3175
3176 bzero(&vd->vtoc, sizeof (struct extvtoc));
3177 bzero(&vd->dk_geom, sizeof (struct dk_geom));
3178 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3179
3180 vd->efi_reserved = -1;
3181
3182 nparts = gpt->efi_gpt_NumberOfPartitionEntries;
3183
3184 for (i = 0; i < nparts && i < VD_MAXPART; i++) {
3185
3186 if (gpe[i].efi_gpe_StartingLBA == 0 &&
3187 gpe[i].efi_gpe_EndingLBA == 0) {
3188 continue;
3189 }
3190
3191 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
3192 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
3193 gpe[i].efi_gpe_StartingLBA + 1;
3194
3195 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
3196 sizeof (struct uuid)) == 0)
3197 vd->efi_reserved = i;
3198
3199 }
3200
3201 ASSERT(vd->vdisk_size != 0);
3202 vd->slices[VD_EFI_WD_SLICE].start = 0;
3203 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
3204
3205 vds_efi_free(vd, gpt, gpe);
3206
3207 return (status);
3208 }
3209
3210 /*
3211 * Function:
3212 * vd_dskimg_validate_geometry
3213 *
3214 * Description:
3215 * Read the label and validate the geometry of a disk image. The driver
3216 * label, vtoc and geometry information are updated according to the
3217 * label read from the disk image.
3218 *
3219 * If no valid label is found, the label is set to unknown and the
3220 * function returns EINVAL, but a default vtoc and geometry are provided
3221 * to the driver. If an EFI label is found, ENOTSUP is returned.
3222 *
3223 * Parameters:
3224 * vd - disk on which the operation is performed.
3225 *
3226 * Return Code:
3227 * 0 - success.
3228 * EIO - error reading the label from the disk image.
3229 * EINVAL - unknown disk label.
3230 * ENOTSUP - geometry not applicable (EFI label).
3231 */
3232 static int
vd_dskimg_validate_geometry(vd_t * vd)3233 vd_dskimg_validate_geometry(vd_t *vd)
3234 {
3235 struct dk_label label;
3236 struct dk_geom *geom = &vd->dk_geom;
3237 struct extvtoc *vtoc = &vd->vtoc;
3238 int i;
3239 int status = 0;
3240
3241 ASSERT(VD_DSKIMG(vd));
3242
3243 if (VD_DSKIMG_LABEL_READ(vd, &label) < 0)
3244 return (EIO);
3245
3246 if (label.dkl_magic != DKL_MAGIC ||
3247 label.dkl_cksum != vd_lbl2cksum(&label) ||
3248 (vd_dskimg_validate_sanity &&
3249 label.dkl_vtoc.v_sanity != VTOC_SANE) ||
3250 label.dkl_vtoc.v_nparts != V_NUMPAR) {
3251
3252 if (vd_dskimg_validate_efi(vd) == 0) {
3253 vd->vdisk_label = VD_DISK_LABEL_EFI;
3254 return (ENOTSUP);
3255 }
3256
3257 vd->vdisk_label = VD_DISK_LABEL_UNK;
3258 vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
3259 &label);
3260 status = EINVAL;
3261 } else {
3262 vd->vdisk_label = VD_DISK_LABEL_VTOC;
3263 }
3264
3265 /* Update the driver geometry and vtoc */
3266 vd_label_to_vtocgeom(&label, vtoc, geom);
3267
3268 /* Update logical partitions */
3269 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3270 if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3271 for (i = 0; i < vtoc->v_nparts; i++) {
3272 vd->slices[i].start = vtoc->v_part[i].p_start;
3273 vd->slices[i].nblocks = vtoc->v_part[i].p_size;
3274 }
3275 }
3276
3277 return (status);
3278 }
3279
3280 /*
3281 * Handle ioctls to a disk image.
3282 *
3283 * Return Values
3284 * 0 - Indicates that there are no errors
3285 * != 0 - Disk operation returned an error
3286 */
3287 static int
vd_do_dskimg_ioctl(vd_t * vd,int cmd,void * ioctl_arg)3288 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3289 {
3290 struct dk_label label;
3291 struct dk_geom *geom;
3292 struct extvtoc *vtoc;
3293 dk_efi_t *efi;
3294 int rc;
3295
3296 ASSERT(VD_DSKIMG(vd));
3297
3298 switch (cmd) {
3299
3300 case DKIOCGGEOM:
3301 ASSERT(ioctl_arg != NULL);
3302 geom = (struct dk_geom *)ioctl_arg;
3303
3304 rc = vd_dskimg_validate_geometry(vd);
3305 if (rc != 0 && rc != EINVAL)
3306 return (rc);
3307 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
3308 return (0);
3309
3310 case DKIOCGEXTVTOC:
3311 ASSERT(ioctl_arg != NULL);
3312 vtoc = (struct extvtoc *)ioctl_arg;
3313
3314 rc = vd_dskimg_validate_geometry(vd);
3315 if (rc != 0 && rc != EINVAL)
3316 return (rc);
3317 bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
3318 return (0);
3319
3320 case DKIOCSGEOM:
3321 ASSERT(ioctl_arg != NULL);
3322 geom = (struct dk_geom *)ioctl_arg;
3323
3324 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
3325 return (EINVAL);
3326
3327 /*
3328 * The current device geometry is not updated, just the driver
3329 * "notion" of it. The device geometry will be effectively
3330 * updated when a label is written to the device during a next
3331 * DKIOCSEXTVTOC.
3332 */
3333 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3334 return (0);
3335
3336 case DKIOCSEXTVTOC:
3337 ASSERT(ioctl_arg != NULL);
3338 ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3339 vd->dk_geom.dkg_nsect != 0);
3340 vtoc = (struct extvtoc *)ioctl_arg;
3341
3342 if (vtoc->v_sanity != VTOC_SANE ||
3343 vtoc->v_sectorsz != DEV_BSIZE ||
3344 vtoc->v_nparts != V_NUMPAR)
3345 return (EINVAL);
3346
3347 vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3348
3349 /* write label to the disk image */
3350 if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0)
3351 return (rc);
3352
3353 break;
3354
3355 case DKIOCFLUSHWRITECACHE:
3356 return (vd_flush_write(vd));
3357
3358 case DKIOCGETEFI:
3359 ASSERT(ioctl_arg != NULL);
3360 efi = (dk_efi_t *)ioctl_arg;
3361
3362 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3363 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3364 return (EIO);
3365
3366 return (0);
3367
3368 case DKIOCSETEFI:
3369 ASSERT(ioctl_arg != NULL);
3370 efi = (dk_efi_t *)ioctl_arg;
3371
3372 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3373 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3374 return (EIO);
3375
3376 break;
3377
3378
3379 default:
3380 return (ENOTSUP);
3381 }
3382
3383 ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
3384
3385 /* label has changed, revalidate the geometry */
3386 (void) vd_dskimg_validate_geometry(vd);
3387
3388 /*
3389 * The disk geometry may have changed, so we need to write
3390 * the devid (if there is one) so that it is stored at the
3391 * right location.
3392 */
3393 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
3394 PR0("Fail to write devid");
3395 }
3396
3397 return (0);
3398 }
3399
3400 static int
vd_backend_ioctl(vd_t * vd,int cmd,caddr_t arg)3401 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3402 {
3403 int rval = 0, status;
3404 struct vtoc vtoc;
3405
3406 /*
3407 * Call the appropriate function to execute the ioctl depending
3408 * on the type of vdisk.
3409 */
3410 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3411
3412 /* slice, file or volume exported as a single slice disk */
3413 status = vd_do_slice_ioctl(vd, cmd, arg);
3414
3415 } else if (VD_DSKIMG(vd)) {
3416
3417 /* file or volume exported as a full disk */
3418 status = vd_do_dskimg_ioctl(vd, cmd, arg);
3419
3420 } else {
3421
3422 /* disk device exported as a full disk */
3423 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3424 vd->open_flags | FKIOCTL, kcred, &rval);
3425
3426 /*
3427 * By default VTOC ioctls are done using ioctls for the
3428 * extended VTOC. Some drivers (in particular non-Sun drivers)
3429 * may not support these ioctls. In that case, we fallback to
3430 * the regular VTOC ioctls.
3431 */
3432 if (status == ENOTTY) {
3433 switch (cmd) {
3434
3435 case DKIOCGEXTVTOC:
3436 cmd = DKIOCGVTOC;
3437 status = ldi_ioctl(vd->ldi_handle[0], cmd,
3438 (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3439 kcred, &rval);
3440 vtoctoextvtoc(vtoc,
3441 (*(struct extvtoc *)(void *)arg));
3442 break;
3443
3444 case DKIOCSEXTVTOC:
3445 cmd = DKIOCSVTOC;
3446 extvtoctovtoc((*(struct extvtoc *)(void *)arg),
3447 vtoc);
3448 status = ldi_ioctl(vd->ldi_handle[0], cmd,
3449 (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3450 kcred, &rval);
3451 break;
3452 }
3453 }
3454 }
3455
3456 #ifdef DEBUG
3457 if (rval != 0) {
3458 PR0("ioctl %x set rval = %d, which is not being returned"
3459 " to caller", cmd, rval);
3460 }
3461 #endif /* DEBUG */
3462
3463 return (status);
3464 }
3465
3466 /*
3467 * Description:
3468 * This is the function that processes the ioctl requests (farming it
3469 * out to functions that handle slices, files or whole disks)
3470 *
3471 * Return Values
3472 * 0 - ioctl operation completed successfully
3473 * != 0 - The LDC error value encountered
3474 * (propagated back up the call stack as a task error)
3475 *
3476 * Side Effect
3477 * sets request->status to the return value of the ioctl function.
3478 */
3479 static int
vd_do_ioctl(vd_t * vd,vd_dring_payload_t * request,void * buf,vd_ioctl_t * ioctl)3480 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3481 {
3482 int status = 0;
3483 size_t nbytes = request->nbytes; /* modifiable copy */
3484
3485
3486 ASSERT(request->slice < vd->nslices);
3487 PR0("Performing %s", ioctl->operation_name);
3488
3489 /* Get data from client and convert, if necessary */
3490 if (ioctl->copyin != NULL) {
3491 ASSERT(nbytes != 0 && buf != NULL);
3492 PR1("Getting \"arg\" data from client");
3493 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3494 request->cookie, request->ncookies,
3495 LDC_COPY_IN)) != 0) {
3496 PR0("ldc_mem_copy() returned errno %d "
3497 "copying from client", status);
3498 return (status);
3499 }
3500
3501 /* Convert client's data, if necessary */
3502 if (ioctl->copyin == VD_IDENTITY_IN) {
3503 /* use client buffer */
3504 ioctl->arg = buf;
3505 } else {
3506 /* convert client vdisk operation data to ioctl data */
3507 status = (ioctl->copyin)(buf, nbytes,
3508 (void *)ioctl->arg);
3509 if (status != 0) {
3510 request->status = status;
3511 return (0);
3512 }
3513 }
3514 }
3515
3516 if (ioctl->operation == VD_OP_SCSICMD) {
3517 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3518
3519 /* check write permission */
3520 if (!(vd->open_flags & FWRITE) &&
3521 !(uscsi->uscsi_flags & USCSI_READ)) {
3522 PR0("uscsi fails because backend is opened read-only");
3523 request->status = EROFS;
3524 return (0);
3525 }
3526 }
3527
3528 /*
3529 * Send the ioctl to the disk backend.
3530 */
3531 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3532
3533 if (request->status != 0) {
3534 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3535 if (ioctl->operation == VD_OP_SCSICMD &&
3536 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3537 /*
3538 * USCSICMD has reported an error and the uscsi_status
3539 * field is not zero. This means that the SCSI command
3540 * has completed but it has an error. So we should
3541 * mark the VD operation has succesfully completed
3542 * and clients can check the SCSI status field for
3543 * SCSI errors.
3544 */
3545 request->status = 0;
3546 else
3547 return (0);
3548 }
3549
3550 /* Convert data and send to client, if necessary */
3551 if (ioctl->copyout != NULL) {
3552 ASSERT(nbytes != 0 && buf != NULL);
3553 PR1("Sending \"arg\" data to client");
3554
3555 /* Convert ioctl data to vdisk operation data, if necessary */
3556 if (ioctl->copyout != VD_IDENTITY_OUT)
3557 (ioctl->copyout)((void *)ioctl->arg, buf);
3558
3559 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3560 request->cookie, request->ncookies,
3561 LDC_COPY_OUT)) != 0) {
3562 PR0("ldc_mem_copy() returned errno %d "
3563 "copying to client", status);
3564 return (status);
3565 }
3566 }
3567
3568 return (status);
3569 }
3570
3571 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3572
3573 /*
3574 * Description:
3575 * This generic function is called by the task queue to complete
3576 * the processing of the tasks. The specific completion function
3577 * is passed in as a field in the task pointer.
3578 *
3579 * Parameters:
3580 * arg - opaque pointer to structure containing task to be completed
3581 *
3582 * Return Values
3583 * None
3584 */
3585 static void
vd_complete(void * arg)3586 vd_complete(void *arg)
3587 {
3588 vd_task_t *task = (vd_task_t *)arg;
3589
3590 ASSERT(task != NULL);
3591 ASSERT(task->status == EINPROGRESS);
3592 ASSERT(task->completef != NULL);
3593
3594 task->status = task->completef(task);
3595 if (task->status)
3596 PR0("%s: Error %d completing task", __func__, task->status);
3597
3598 /* Now notify the vDisk client */
3599 vd_complete_notify(task);
3600 }
3601
3602 static int
vd_ioctl(vd_task_t * task)3603 vd_ioctl(vd_task_t *task)
3604 {
3605 int i, status;
3606 void *buf = NULL;
3607 struct dk_geom dk_geom = {0};
3608 struct extvtoc vtoc = {0};
3609 struct dk_efi dk_efi = {0};
3610 struct uscsi_cmd uscsi = {0};
3611 vd_t *vd = task->vd;
3612 vd_dring_payload_t *request = task->request;
3613 vd_ioctl_t ioctl[] = {
3614 /* Command (no-copy) operations */
3615 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3616 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3617 NULL, NULL, NULL, B_TRUE},
3618
3619 /* "Get" (copy-out) operations */
3620 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3621 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3622 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3623 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3624 RNDSIZE(vd_geom_t),
3625 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3626 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3627 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3628 DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
3629 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3630 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3631 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3632 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3633
3634 /* "Set" (copy-in) operations */
3635 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3636 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3637 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3638 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3639 RNDSIZE(vd_geom_t),
3640 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3641 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3642 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3643 DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
3644 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3645 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3646 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3647 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3648
3649 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3650 USCSICMD, STRINGIZE(USCSICMD),
3651 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3652 };
3653 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3654
3655
3656 ASSERT(vd != NULL);
3657 ASSERT(request != NULL);
3658 ASSERT(request->slice < vd->nslices);
3659
3660 /*
3661 * Determine ioctl corresponding to caller's "operation" and
3662 * validate caller's "nbytes"
3663 */
3664 for (i = 0; i < nioctls; i++) {
3665 if (request->operation == ioctl[i].operation) {
3666 /* LDC memory operations require 8-byte multiples */
3667 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3668
3669 if (request->operation == VD_OP_GET_EFI ||
3670 request->operation == VD_OP_SET_EFI ||
3671 request->operation == VD_OP_SCSICMD) {
3672 if (request->nbytes >= ioctl[i].nbytes)
3673 break;
3674 PR0("%s: Expected at least nbytes = %lu, "
3675 "got %lu", ioctl[i].operation_name,
3676 ioctl[i].nbytes, request->nbytes);
3677 return (EINVAL);
3678 }
3679
3680 if (request->nbytes != ioctl[i].nbytes) {
3681 PR0("%s: Expected nbytes = %lu, got %lu",
3682 ioctl[i].operation_name, ioctl[i].nbytes,
3683 request->nbytes);
3684 return (EINVAL);
3685 }
3686
3687 break;
3688 }
3689 }
3690 ASSERT(i < nioctls); /* because "operation" already validated */
3691
3692 if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3693 PR0("%s fails because backend is opened read-only",
3694 ioctl[i].operation_name);
3695 request->status = EROFS;
3696 return (0);
3697 }
3698
3699 if (request->nbytes)
3700 buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3701 status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3702 if (request->nbytes)
3703 kmem_free(buf, request->nbytes);
3704
3705 return (status);
3706 }
3707
3708 static int
vd_get_devid(vd_task_t * task)3709 vd_get_devid(vd_task_t *task)
3710 {
3711 vd_t *vd = task->vd;
3712 vd_dring_payload_t *request = task->request;
3713 vd_devid_t *vd_devid;
3714 impl_devid_t *devid;
3715 int status, bufid_len, devid_len, len, sz;
3716 int bufbytes;
3717
3718 PR1("Get Device ID, nbytes=%ld", request->nbytes);
3719
3720 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3721 /*
3722 * We don't support devid for single-slice disks because we
3723 * have no space to store a fabricated devid and for physical
3724 * disk slices, we can't use the devid of the disk otherwise
3725 * exporting multiple slices from the same disk will produce
3726 * the same devids.
3727 */
3728 PR2("No Device ID for slices");
3729 request->status = ENOTSUP;
3730 return (0);
3731 }
3732
3733 if (VD_DSKIMG(vd)) {
3734 if (vd->dskimg_devid == NULL) {
3735 PR2("No Device ID");
3736 request->status = ENOENT;
3737 return (0);
3738 } else {
3739 sz = ddi_devid_sizeof(vd->dskimg_devid);
3740 devid = kmem_alloc(sz, KM_SLEEP);
3741 bcopy(vd->dskimg_devid, devid, sz);
3742 }
3743 } else {
3744 if (ddi_lyr_get_devid(vd->dev[request->slice],
3745 (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3746 PR2("No Device ID");
3747 request->status = ENOENT;
3748 return (0);
3749 }
3750 }
3751
3752 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3753 devid_len = DEVID_GETLEN(devid);
3754
3755 /*
3756 * Save the buffer size here for use in deallocation.
3757 * The actual number of bytes copied is returned in
3758 * the 'nbytes' field of the request structure.
3759 */
3760 bufbytes = request->nbytes;
3761
3762 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3763 vd_devid->length = devid_len;
3764 vd_devid->type = DEVID_GETTYPE(devid);
3765
3766 len = (devid_len > bufid_len)? bufid_len : devid_len;
3767
3768 bcopy(devid->did_id, vd_devid->id, len);
3769
3770 request->status = 0;
3771
3772 /* LDC memory operations require 8-byte multiples */
3773 ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3774
3775 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3776 &request->nbytes, request->cookie, request->ncookies,
3777 LDC_COPY_OUT)) != 0) {
3778 PR0("ldc_mem_copy() returned errno %d copying to client",
3779 status);
3780 }
3781 PR1("post mem_copy: nbytes=%ld", request->nbytes);
3782
3783 kmem_free(vd_devid, bufbytes);
3784 ddi_devid_free((ddi_devid_t)devid);
3785
3786 return (status);
3787 }
3788
3789 static int
vd_scsi_reset(vd_t * vd)3790 vd_scsi_reset(vd_t *vd)
3791 {
3792 int rval, status;
3793 struct uscsi_cmd uscsi = { 0 };
3794
3795 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3796 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3797
3798 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3799 (vd->open_flags | FKIOCTL), kcred, &rval);
3800
3801 return (status);
3802 }
3803
3804 static int
vd_reset(vd_task_t * task)3805 vd_reset(vd_task_t *task)
3806 {
3807 vd_t *vd = task->vd;
3808 vd_dring_payload_t *request = task->request;
3809
3810 ASSERT(request->operation == VD_OP_RESET);
3811 ASSERT(vd->scsi);
3812
3813 PR0("Performing VD_OP_RESET");
3814
3815 if (request->nbytes != 0) {
3816 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu",
3817 request->nbytes);
3818 return (EINVAL);
3819 }
3820
3821 request->status = vd_scsi_reset(vd);
3822
3823 return (0);
3824 }
3825
3826 static int
vd_get_capacity(vd_task_t * task)3827 vd_get_capacity(vd_task_t *task)
3828 {
3829 int rv;
3830 size_t nbytes;
3831 vd_t *vd = task->vd;
3832 vd_dring_payload_t *request = task->request;
3833 vd_capacity_t vd_cap = { 0 };
3834
3835 ASSERT(request->operation == VD_OP_GET_CAPACITY);
3836
3837 PR0("Performing VD_OP_GET_CAPACITY");
3838
3839 nbytes = request->nbytes;
3840
3841 if (nbytes != RNDSIZE(vd_capacity_t)) {
3842 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu",
3843 RNDSIZE(vd_capacity_t), nbytes);
3844 return (EINVAL);
3845 }
3846
3847 /*
3848 * Check the backend size in case it has changed. If the check fails
3849 * then we will return the last known size.
3850 */
3851
3852 (void) vd_backend_check_size(vd);
3853 ASSERT(vd->vdisk_size != 0);
3854
3855 request->status = 0;
3856
3857 vd_cap.vdisk_block_size = vd->vdisk_bsize;
3858 vd_cap.vdisk_size = vd->vdisk_size;
3859
3860 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3861 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3862 PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3863 return (rv);
3864 }
3865
3866 return (0);
3867 }
3868
3869 static int
vd_get_access(vd_task_t * task)3870 vd_get_access(vd_task_t *task)
3871 {
3872 uint64_t access;
3873 int rv, rval = 0;
3874 size_t nbytes;
3875 vd_t *vd = task->vd;
3876 vd_dring_payload_t *request = task->request;
3877
3878 ASSERT(request->operation == VD_OP_GET_ACCESS);
3879 ASSERT(vd->scsi);
3880
3881 PR0("Performing VD_OP_GET_ACCESS");
3882
3883 nbytes = request->nbytes;
3884
3885 if (nbytes != sizeof (uint64_t)) {
3886 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu",
3887 sizeof (uint64_t), nbytes);
3888 return (EINVAL);
3889 }
3890
3891 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3892 NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3893
3894 if (request->status != 0)
3895 return (0);
3896
3897 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3898
3899 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3900 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3901 PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3902 return (rv);
3903 }
3904
3905 return (0);
3906 }
3907
3908 static int
vd_set_access(vd_task_t * task)3909 vd_set_access(vd_task_t *task)
3910 {
3911 uint64_t flags;
3912 int rv, rval;
3913 size_t nbytes;
3914 vd_t *vd = task->vd;
3915 vd_dring_payload_t *request = task->request;
3916
3917 ASSERT(request->operation == VD_OP_SET_ACCESS);
3918 ASSERT(vd->scsi);
3919
3920 nbytes = request->nbytes;
3921
3922 if (nbytes != sizeof (uint64_t)) {
3923 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu",
3924 sizeof (uint64_t), nbytes);
3925 return (EINVAL);
3926 }
3927
3928 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3929 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3930 PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3931 return (rv);
3932 }
3933
3934 if (flags == VD_ACCESS_SET_CLEAR) {
3935 PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3936 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3937 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3938 &rval);
3939 if (request->status == 0)
3940 vd->ownership = B_FALSE;
3941 return (0);
3942 }
3943
3944 /*
3945 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3946 * when the EXCLUSIVE flag is set.
3947 */
3948 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3949 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3950 request->status = EINVAL;
3951 return (0);
3952 }
3953
3954 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3955
3956 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3957 /*
3958 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3959 * acquire exclusive access rights, preserve them and we
3960 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3961 */
3962 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3963 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3964 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3965 break;
3966
3967 case VD_ACCESS_SET_PRESERVE:
3968 /*
3969 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3970 * access rights and preserve them, but not preempt any other
3971 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3972 * "preserve" feature but we can not called it directly
3973 * because it uses preemption. So before that, we use the
3974 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3975 * without preempting anyone.
3976 */
3977 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3978 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3979 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3980 &rval);
3981 if (request->status != 0)
3982 break;
3983 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3984 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3985 break;
3986
3987 case VD_ACCESS_SET_PREEMPT:
3988 /*
3989 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3990 * access rights and we can use preemption. So we try to do
3991 * a SCSI reservation, if it fails we reset the disk to clear
3992 * any reservation and we try to reserve again.
3993 */
3994 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3995 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3996 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3997 &rval);
3998 if (request->status == 0)
3999 break;
4000
4001 /* reset the disk */
4002 (void) vd_scsi_reset(vd);
4003
4004 /* try again even if the reset has failed */
4005 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4006 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4007 &rval);
4008 break;
4009
4010 case 0:
4011 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */
4012 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
4013 request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4014 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4015 &rval);
4016 break;
4017 }
4018
4019 if (request->status == 0)
4020 vd->ownership = B_TRUE;
4021 else
4022 PR0("VD_OP_SET_ACCESS: error %d", request->status);
4023
4024 return (0);
4025 }
4026
4027 static void
vd_reset_access(vd_t * vd)4028 vd_reset_access(vd_t *vd)
4029 {
4030 int status, rval;
4031
4032 if (vd->file || vd->volume || !vd->ownership)
4033 return;
4034
4035 PR0("Releasing disk ownership");
4036 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4037 (vd->open_flags | FKIOCTL), kcred, &rval);
4038
4039 /*
4040 * An EACCES failure means that there is a reservation conflict,
4041 * so we are not the owner of the disk anymore.
4042 */
4043 if (status == 0 || status == EACCES) {
4044 vd->ownership = B_FALSE;
4045 return;
4046 }
4047
4048 PR0("Fail to release ownership, error %d", status);
4049
4050 /*
4051 * We have failed to release the ownership, try to reset the disk
4052 * to release reservations.
4053 */
4054 PR0("Resetting disk");
4055 status = vd_scsi_reset(vd);
4056
4057 if (status != 0)
4058 PR0("Fail to reset disk, error %d", status);
4059
4060 /* whatever the result of the reset is, we try the release again */
4061 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4062 (vd->open_flags | FKIOCTL), kcred, &rval);
4063
4064 if (status == 0 || status == EACCES) {
4065 vd->ownership = B_FALSE;
4066 return;
4067 }
4068
4069 PR0("Fail to release ownership, error %d", status);
4070
4071 /*
4072 * At this point we have done our best to try to reset the
4073 * access rights to the disk and we don't know if we still
4074 * own a reservation and if any mechanism to preserve the
4075 * ownership is still in place. The ultimate solution would
4076 * be to reset the system but this is usually not what we
4077 * want to happen.
4078 */
4079
4080 if (vd_reset_access_failure == A_REBOOT) {
4081 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
4082 ", rebooting the system", vd->device_path);
4083 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
4084 } else if (vd_reset_access_failure == A_DUMP) {
4085 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4086 }
4087
4088 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4089 }
4090
4091 /*
4092 * Define the supported operations once the functions for performing them have
4093 * been defined
4094 */
4095 static const vds_operation_t vds_operation[] = {
4096 #define X(_s) #_s, _s
4097 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio},
4098 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio},
4099 {X(VD_OP_FLUSH), vd_ioctl, NULL},
4100 {X(VD_OP_GET_WCE), vd_ioctl, NULL},
4101 {X(VD_OP_SET_WCE), vd_ioctl, NULL},
4102 {X(VD_OP_GET_VTOC), vd_ioctl, NULL},
4103 {X(VD_OP_SET_VTOC), vd_ioctl, NULL},
4104 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL},
4105 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL},
4106 {X(VD_OP_GET_EFI), vd_ioctl, NULL},
4107 {X(VD_OP_SET_EFI), vd_ioctl, NULL},
4108 {X(VD_OP_GET_DEVID), vd_get_devid, NULL},
4109 {X(VD_OP_SCSICMD), vd_ioctl, NULL},
4110 {X(VD_OP_RESET), vd_reset, NULL},
4111 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL},
4112 {X(VD_OP_SET_ACCESS), vd_set_access, NULL},
4113 {X(VD_OP_GET_ACCESS), vd_get_access, NULL},
4114 #undef X
4115 };
4116
4117 static const size_t vds_noperations =
4118 (sizeof (vds_operation))/(sizeof (vds_operation[0]));
4119
4120 /*
4121 * Process a task specifying a client I/O request
4122 *
4123 * Parameters:
4124 * task - structure containing the request sent from client
4125 *
4126 * Return Value
4127 * 0 - success
4128 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation
4129 * EINVAL - Invalid disk slice
4130 * != 0 - some other non-zero return value from start function
4131 */
4132 static int
vd_do_process_task(vd_task_t * task)4133 vd_do_process_task(vd_task_t *task)
4134 {
4135 int i;
4136 vd_t *vd = task->vd;
4137 vd_dring_payload_t *request = task->request;
4138
4139 ASSERT(vd != NULL);
4140 ASSERT(request != NULL);
4141
4142 /* Find the requested operation */
4143 for (i = 0; i < vds_noperations; i++) {
4144 if (request->operation == vds_operation[i].operation) {
4145 /* all operations should have a start func */
4146 ASSERT(vds_operation[i].start != NULL);
4147
4148 task->completef = vds_operation[i].complete;
4149 break;
4150 }
4151 }
4152
4153 /*
4154 * We need to check that the requested operation is permitted
4155 * for the particular client that sent it or that the loop above
4156 * did not complete without finding the operation type (indicating
4157 * that the requested operation is unknown/unimplemented)
4158 */
4159 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
4160 (i == vds_noperations)) {
4161 PR0("Unsupported operation %u", request->operation);
4162 request->status = ENOTSUP;
4163 return (0);
4164 }
4165
4166 /* Range-check slice */
4167 if (request->slice >= vd->nslices &&
4168 ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
4169 request->slice != VD_SLICE_NONE)) {
4170 PR0("Invalid \"slice\" %u (max %u) for virtual disk",
4171 request->slice, (vd->nslices - 1));
4172 request->status = EINVAL;
4173 return (0);
4174 }
4175
4176 /*
4177 * Call the function pointer that starts the operation.
4178 */
4179 return (vds_operation[i].start(task));
4180 }
4181
4182 /*
4183 * Description:
4184 * This function is called by both the in-band and descriptor ring
4185 * message processing functions paths to actually execute the task
4186 * requested by the vDisk client. It in turn calls its worker
4187 * function, vd_do_process_task(), to carry our the request.
4188 *
4189 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are
4190 * saved in the 'status' field of the task and are propagated back
4191 * up the call stack to trigger a NACK
4192 *
4193 * Any request errors (e.g. ENOTTY from an ioctl) are saved in
4194 * the 'status' field of the request and result in an ACK being sent
4195 * by the completion handler.
4196 *
4197 * Parameters:
4198 * task - structure containing the request sent from client
4199 *
4200 * Return Value
4201 * 0 - successful synchronous request.
4202 * != 0 - transport error (e.g. LDC errors, vDisk protocol)
4203 * EINPROGRESS - task will be finished in a completion handler
4204 */
4205 static int
vd_process_task(vd_task_t * task)4206 vd_process_task(vd_task_t *task)
4207 {
4208 vd_t *vd = task->vd;
4209 int status;
4210
4211 DTRACE_PROBE1(task__start, vd_task_t *, task);
4212
4213 task->status = vd_do_process_task(task);
4214
4215 /*
4216 * If the task processing function returned EINPROGRESS indicating
4217 * that the task needs completing then schedule a taskq entry to
4218 * finish it now.
4219 *
4220 * Otherwise the task processing function returned either zero
4221 * indicating that the task was finished in the start function (and we
4222 * don't need to wait in a completion function) or the start function
4223 * returned an error - in both cases all that needs to happen is the
4224 * notification to the vDisk client higher up the call stack.
4225 * If the task was using a Descriptor Ring, we need to mark it as done
4226 * at this stage.
4227 */
4228 if (task->status == EINPROGRESS) {
4229 /* Queue a task to complete the operation */
4230 (void) ddi_taskq_dispatch(vd->completionq, vd_complete,
4231 task, DDI_SLEEP);
4232 return (EINPROGRESS);
4233 }
4234
4235 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
4236 /* Update the dring element if it's a dring client */
4237 status = vd_mark_elem_done(vd, task->index,
4238 task->request->status, task->request->nbytes);
4239 if (status == ECONNRESET)
4240 vd_mark_in_reset(vd);
4241 else if (status == EACCES)
4242 vd_need_reset(vd, B_TRUE);
4243 }
4244
4245 return (task->status);
4246 }
4247
4248 /*
4249 * Return true if the "type", "subtype", and "env" fields of the "tag" first
4250 * argument match the corresponding remaining arguments; otherwise, return false
4251 */
4252 boolean_t
vd_msgtype(vio_msg_tag_t * tag,int type,int subtype,int env)4253 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
4254 {
4255 return ((tag->vio_msgtype == type) &&
4256 (tag->vio_subtype == subtype) &&
4257 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
4258 }
4259
4260 /*
4261 * Check whether the major/minor version specified in "ver_msg" is supported
4262 * by this server.
4263 */
4264 static boolean_t
vds_supported_version(vio_ver_msg_t * ver_msg)4265 vds_supported_version(vio_ver_msg_t *ver_msg)
4266 {
4267 for (int i = 0; i < vds_num_versions; i++) {
4268 ASSERT(vds_version[i].major > 0);
4269 ASSERT((i == 0) ||
4270 (vds_version[i].major < vds_version[i-1].major));
4271
4272 /*
4273 * If the major versions match, adjust the minor version, if
4274 * necessary, down to the highest value supported by this
4275 * server and return true so this message will get "ack"ed;
4276 * the client should also support all minor versions lower
4277 * than the value it sent
4278 */
4279 if (ver_msg->ver_major == vds_version[i].major) {
4280 if (ver_msg->ver_minor > vds_version[i].minor) {
4281 PR0("Adjusting minor version from %u to %u",
4282 ver_msg->ver_minor, vds_version[i].minor);
4283 ver_msg->ver_minor = vds_version[i].minor;
4284 }
4285 return (B_TRUE);
4286 }
4287
4288 /*
4289 * If the message contains a higher major version number, set
4290 * the message's major/minor versions to the current values
4291 * and return false, so this message will get "nack"ed with
4292 * these values, and the client will potentially try again
4293 * with the same or a lower version
4294 */
4295 if (ver_msg->ver_major > vds_version[i].major) {
4296 ver_msg->ver_major = vds_version[i].major;
4297 ver_msg->ver_minor = vds_version[i].minor;
4298 return (B_FALSE);
4299 }
4300
4301 /*
4302 * Otherwise, the message's major version is less than the
4303 * current major version, so continue the loop to the next
4304 * (lower) supported version
4305 */
4306 }
4307
4308 /*
4309 * No common version was found; "ground" the version pair in the
4310 * message to terminate negotiation
4311 */
4312 ver_msg->ver_major = 0;
4313 ver_msg->ver_minor = 0;
4314 return (B_FALSE);
4315 }
4316
4317 /*
4318 * Process a version message from a client. vds expects to receive version
4319 * messages from clients seeking service, but never issues version messages
4320 * itself; therefore, vds can ACK or NACK client version messages, but does
4321 * not expect to receive version-message ACKs or NACKs (and will treat such
4322 * messages as invalid).
4323 */
4324 static int
vd_process_ver_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4325 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4326 {
4327 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg;
4328
4329
4330 ASSERT(msglen >= sizeof (msg->tag));
4331
4332 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4333 VIO_VER_INFO)) {
4334 return (ENOMSG); /* not a version message */
4335 }
4336
4337 if (msglen != sizeof (*ver_msg)) {
4338 PR0("Expected %lu-byte version message; "
4339 "received %lu bytes", sizeof (*ver_msg), msglen);
4340 return (EBADMSG);
4341 }
4342
4343 if (ver_msg->dev_class != VDEV_DISK) {
4344 PR0("Expected device class %u (disk); received %u",
4345 VDEV_DISK, ver_msg->dev_class);
4346 return (EBADMSG);
4347 }
4348
4349 /*
4350 * We're talking to the expected kind of client; set our device class
4351 * for "ack/nack" back to the client
4352 */
4353 ver_msg->dev_class = VDEV_DISK_SERVER;
4354
4355 /*
4356 * Check whether the (valid) version message specifies a version
4357 * supported by this server. If the version is not supported, return
4358 * EBADMSG so the message will get "nack"ed; vds_supported_version()
4359 * will have updated the message with a supported version for the
4360 * client to consider
4361 */
4362 if (!vds_supported_version(ver_msg))
4363 return (EBADMSG);
4364
4365
4366 /*
4367 * A version has been agreed upon; use the client's SID for
4368 * communication on this channel now
4369 */
4370 ASSERT(!(vd->initialized & VD_SID));
4371 vd->sid = ver_msg->tag.vio_sid;
4372 vd->initialized |= VD_SID;
4373
4374 /*
4375 * Store the negotiated major and minor version values in the "vd" data
4376 * structure so that we can check if certain operations are supported
4377 * by the client.
4378 */
4379 vd->version.major = ver_msg->ver_major;
4380 vd->version.minor = ver_msg->ver_minor;
4381
4382 PR0("Using major version %u, minor version %u",
4383 ver_msg->ver_major, ver_msg->ver_minor);
4384 return (0);
4385 }
4386
4387 static void
vd_set_exported_operations(vd_t * vd)4388 vd_set_exported_operations(vd_t *vd)
4389 {
4390 vd->operations = 0; /* clear field */
4391
4392 /*
4393 * We need to check from the highest version supported to the
4394 * lowest because versions with a higher minor number implicitly
4395 * support versions with a lower minor number.
4396 */
4397 if (vio_ver_is_supported(vd->version, 1, 1)) {
4398 ASSERT(vd->open_flags & FREAD);
4399 vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4400
4401 if (vd->open_flags & FWRITE)
4402 vd->operations |= VD_OP_MASK_WRITE;
4403
4404 if (vd->scsi)
4405 vd->operations |= VD_OP_MASK_SCSI;
4406
4407 if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) {
4408 /*
4409 * can't write to ISO images, make sure that write
4410 * support is not set in case administrator did not
4411 * use "options=ro" when doing an ldm add-vdsdev
4412 */
4413 vd->operations &= ~VD_OP_MASK_WRITE;
4414 }
4415 } else if (vio_ver_is_supported(vd->version, 1, 0)) {
4416 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4417 }
4418
4419 /* we should have already agreed on a version */
4420 ASSERT(vd->operations != 0);
4421 }
4422
4423 static int
vd_process_attr_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4424 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4425 {
4426 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg;
4427 int status, retry = 0;
4428
4429
4430 ASSERT(msglen >= sizeof (msg->tag));
4431
4432 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4433 VIO_ATTR_INFO)) {
4434 PR0("Message is not an attribute message");
4435 return (ENOMSG);
4436 }
4437
4438 if (msglen != sizeof (*attr_msg)) {
4439 PR0("Expected %lu-byte attribute message; "
4440 "received %lu bytes", sizeof (*attr_msg), msglen);
4441 return (EBADMSG);
4442 }
4443
4444 if (attr_msg->max_xfer_sz == 0) {
4445 PR0("Received maximum transfer size of 0 from client");
4446 return (EBADMSG);
4447 }
4448
4449 if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4450 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4451 PR0("Client requested unsupported transfer mode");
4452 return (EBADMSG);
4453 }
4454
4455 /*
4456 * check if the underlying disk is ready, if not try accessing
4457 * the device again. Open the vdisk device and extract info
4458 * about it, as this is needed to respond to the attr info msg
4459 */
4460 if ((vd->initialized & VD_DISK_READY) == 0) {
4461 PR0("Retry setting up disk (%s)", vd->device_path);
4462 do {
4463 status = vd_setup_vd(vd);
4464 if (status != EAGAIN || ++retry > vds_dev_retries)
4465 break;
4466
4467 /* incremental delay */
4468 delay(drv_usectohz(vds_dev_delay));
4469
4470 /* if vdisk is no longer enabled - return error */
4471 if (!vd_enabled(vd))
4472 return (ENXIO);
4473
4474 } while (status == EAGAIN);
4475
4476 if (status)
4477 return (ENXIO);
4478
4479 vd->initialized |= VD_DISK_READY;
4480 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4481 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4482 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4483 (vd->volume ? "yes" : "no"),
4484 (vd->file ? "yes" : "no"),
4485 vd->nslices);
4486 }
4487
4488 /* Success: valid message and transfer mode */
4489 vd->xfer_mode = attr_msg->xfer_mode;
4490
4491 if (vd->xfer_mode == VIO_DESC_MODE) {
4492
4493 /*
4494 * The vd_dring_inband_msg_t contains one cookie; need room
4495 * for up to n-1 more cookies, where "n" is the number of full
4496 * pages plus possibly one partial page required to cover
4497 * "max_xfer_sz". Add room for one more cookie if
4498 * "max_xfer_sz" isn't an integral multiple of the page size.
4499 * Must first get the maximum transfer size in bytes.
4500 */
4501 size_t max_xfer_bytes = attr_msg->vdisk_block_size ?
4502 attr_msg->vdisk_block_size * attr_msg->max_xfer_sz :
4503 attr_msg->max_xfer_sz;
4504 size_t max_inband_msglen =
4505 sizeof (vd_dring_inband_msg_t) +
4506 ((max_xfer_bytes/PAGESIZE +
4507 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4508 (sizeof (ldc_mem_cookie_t)));
4509
4510 /*
4511 * Set the maximum expected message length to
4512 * accommodate in-band-descriptor messages with all
4513 * their cookies
4514 */
4515 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4516
4517 /*
4518 * Initialize the data structure for processing in-band I/O
4519 * request descriptors
4520 */
4521 vd->inband_task.vd = vd;
4522 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4523 vd->inband_task.index = 0;
4524 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */
4525 }
4526
4527 /* Return the device's block size and max transfer size to the client */
4528 attr_msg->vdisk_block_size = vd->vdisk_bsize;
4529 attr_msg->max_xfer_sz = vd->max_xfer_sz;
4530
4531 attr_msg->vdisk_size = vd->vdisk_size;
4532 attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4533 VD_DISK_TYPE_DISK;
4534 attr_msg->vdisk_media = vd->vdisk_media;
4535
4536 /* Discover and save the list of supported VD_OP_XXX operations */
4537 vd_set_exported_operations(vd);
4538 attr_msg->operations = vd->operations;
4539
4540 PR0("%s", VD_CLIENT(vd));
4541
4542 ASSERT(vd->dring_task == NULL);
4543
4544 return (0);
4545 }
4546
4547 static int
vd_process_dring_reg_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4548 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4549 {
4550 int status;
4551 size_t expected;
4552 ldc_mem_info_t dring_minfo;
4553 uint8_t mtype;
4554 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg;
4555
4556
4557 ASSERT(msglen >= sizeof (msg->tag));
4558
4559 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4560 VIO_DRING_REG)) {
4561 PR0("Message is not a register-dring message");
4562 return (ENOMSG);
4563 }
4564
4565 if (msglen < sizeof (*reg_msg)) {
4566 PR0("Expected at least %lu-byte register-dring message; "
4567 "received %lu bytes", sizeof (*reg_msg), msglen);
4568 return (EBADMSG);
4569 }
4570
4571 expected = sizeof (*reg_msg) +
4572 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4573 if (msglen != expected) {
4574 PR0("Expected %lu-byte register-dring message; "
4575 "received %lu bytes", expected, msglen);
4576 return (EBADMSG);
4577 }
4578
4579 if (vd->initialized & VD_DRING) {
4580 PR0("A dring was previously registered; only support one");
4581 return (EBADMSG);
4582 }
4583
4584 if (reg_msg->num_descriptors > INT32_MAX) {
4585 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4586 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4587 return (EBADMSG);
4588 }
4589
4590 if (reg_msg->ncookies != 1) {
4591 /*
4592 * In addition to fixing the assertion in the success case
4593 * below, supporting drings which require more than one
4594 * "cookie" requires increasing the value of vd->max_msglen
4595 * somewhere in the code path prior to receiving the message
4596 * which results in calling this function. Note that without
4597 * making this change, the larger message size required to
4598 * accommodate multiple cookies cannot be successfully
4599 * received, so this function will not even get called.
4600 * Gracefully accommodating more dring cookies might
4601 * reasonably demand exchanging an additional attribute or
4602 * making a minor protocol adjustment
4603 */
4604 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4605 return (EBADMSG);
4606 }
4607
4608 if (vd_direct_mapped_drings)
4609 mtype = LDC_DIRECT_MAP;
4610 else
4611 mtype = LDC_SHADOW_MAP;
4612
4613 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4614 reg_msg->ncookies, reg_msg->num_descriptors,
4615 reg_msg->descriptor_size, mtype, &vd->dring_handle);
4616 if (status != 0) {
4617 PR0("ldc_mem_dring_map() returned errno %d", status);
4618 return (status);
4619 }
4620
4621 /*
4622 * To remove the need for this assertion, must call
4623 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4624 * successful call to ldc_mem_dring_map()
4625 */
4626 ASSERT(reg_msg->ncookies == 1);
4627
4628 if ((status =
4629 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4630 PR0("ldc_mem_dring_info() returned errno %d", status);
4631 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4632 PR0("ldc_mem_dring_unmap() returned errno %d", status);
4633 return (status);
4634 }
4635
4636 if (dring_minfo.vaddr == NULL) {
4637 PR0("Descriptor ring virtual address is NULL");
4638 return (ENXIO);
4639 }
4640
4641
4642 /* Initialize for valid message and mapped dring */
4643 vd->initialized |= VD_DRING;
4644 vd->dring_ident = 1; /* "There Can Be Only One" */
4645 vd->dring = dring_minfo.vaddr;
4646 vd->descriptor_size = reg_msg->descriptor_size;
4647 vd->dring_len = reg_msg->num_descriptors;
4648 vd->dring_mtype = dring_minfo.mtype;
4649 reg_msg->dring_ident = vd->dring_ident;
4650 PR1("descriptor size = %u, dring length = %u",
4651 vd->descriptor_size, vd->dring_len);
4652
4653 /*
4654 * Allocate and initialize a "shadow" array of data structures for
4655 * tasks to process I/O requests in dring elements
4656 */
4657 vd->dring_task =
4658 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4659 for (int i = 0; i < vd->dring_len; i++) {
4660 vd->dring_task[i].vd = vd;
4661 vd->dring_task[i].index = i;
4662
4663 status = ldc_mem_alloc_handle(vd->ldc_handle,
4664 &(vd->dring_task[i].mhdl));
4665 if (status) {
4666 PR0("ldc_mem_alloc_handle() returned err %d ", status);
4667 return (ENXIO);
4668 }
4669
4670 /*
4671 * The descriptor payload varies in length. Calculate its
4672 * size by subtracting the header size from the total
4673 * descriptor size.
4674 */
4675 vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4676 sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4677 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4678 }
4679
4680 if (vd->file || vd->zvol) {
4681 vd->write_queue =
4682 kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP);
4683 }
4684
4685 return (0);
4686 }
4687
4688 static int
vd_process_dring_unreg_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4689 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4690 {
4691 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg;
4692
4693
4694 ASSERT(msglen >= sizeof (msg->tag));
4695
4696 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4697 VIO_DRING_UNREG)) {
4698 PR0("Message is not an unregister-dring message");
4699 return (ENOMSG);
4700 }
4701
4702 if (msglen != sizeof (*unreg_msg)) {
4703 PR0("Expected %lu-byte unregister-dring message; "
4704 "received %lu bytes", sizeof (*unreg_msg), msglen);
4705 return (EBADMSG);
4706 }
4707
4708 if (unreg_msg->dring_ident != vd->dring_ident) {
4709 PR0("Expected dring ident %lu; received %lu",
4710 vd->dring_ident, unreg_msg->dring_ident);
4711 return (EBADMSG);
4712 }
4713
4714 return (0);
4715 }
4716
4717 static int
process_rdx_msg(vio_msg_t * msg,size_t msglen)4718 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4719 {
4720 ASSERT(msglen >= sizeof (msg->tag));
4721
4722 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4723 PR0("Message is not an RDX message");
4724 return (ENOMSG);
4725 }
4726
4727 if (msglen != sizeof (vio_rdx_msg_t)) {
4728 PR0("Expected %lu-byte RDX message; received %lu bytes",
4729 sizeof (vio_rdx_msg_t), msglen);
4730 return (EBADMSG);
4731 }
4732
4733 PR0("Valid RDX message");
4734 return (0);
4735 }
4736
4737 static int
vd_check_seq_num(vd_t * vd,uint64_t seq_num)4738 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4739 {
4740 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4741 PR0("Received seq_num %lu; expected %lu",
4742 seq_num, (vd->seq_num + 1));
4743 PR0("initiating soft reset");
4744 vd_need_reset(vd, B_FALSE);
4745 return (1);
4746 }
4747
4748 vd->seq_num = seq_num;
4749 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */
4750 return (0);
4751 }
4752
4753 /*
4754 * Return the expected size of an inband-descriptor message with all the
4755 * cookies it claims to include
4756 */
4757 static size_t
expected_inband_size(vd_dring_inband_msg_t * msg)4758 expected_inband_size(vd_dring_inband_msg_t *msg)
4759 {
4760 return ((sizeof (*msg)) +
4761 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4762 }
4763
4764 /*
4765 * Process an in-band descriptor message: used with clients like OBP, with
4766 * which vds exchanges descriptors within VIO message payloads, rather than
4767 * operating on them within a descriptor ring
4768 */
4769 static int
vd_process_desc_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4770 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4771 {
4772 size_t expected;
4773 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg;
4774
4775
4776 ASSERT(msglen >= sizeof (msg->tag));
4777
4778 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4779 VIO_DESC_DATA)) {
4780 PR1("Message is not an in-band-descriptor message");
4781 return (ENOMSG);
4782 }
4783
4784 if (msglen < sizeof (*desc_msg)) {
4785 PR0("Expected at least %lu-byte descriptor message; "
4786 "received %lu bytes", sizeof (*desc_msg), msglen);
4787 return (EBADMSG);
4788 }
4789
4790 if (msglen != (expected = expected_inband_size(desc_msg))) {
4791 PR0("Expected %lu-byte descriptor message; "
4792 "received %lu bytes", expected, msglen);
4793 return (EBADMSG);
4794 }
4795
4796 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4797 return (EBADMSG);
4798
4799 /*
4800 * Valid message: Set up the in-band descriptor task and process the
4801 * request. Arrange to acknowledge the client's message, unless an
4802 * error processing the descriptor task results in setting
4803 * VIO_SUBTYPE_NACK
4804 */
4805 PR1("Valid in-band-descriptor message");
4806 msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4807
4808 ASSERT(vd->inband_task.msg != NULL);
4809
4810 bcopy(msg, vd->inband_task.msg, msglen);
4811 vd->inband_task.msglen = msglen;
4812
4813 /*
4814 * The task request is now the payload of the message
4815 * that was just copied into the body of the task.
4816 */
4817 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4818 vd->inband_task.request = &desc_msg->payload;
4819
4820 return (vd_process_task(&vd->inband_task));
4821 }
4822
4823 static int
vd_process_element(vd_t * vd,vd_task_type_t type,uint32_t idx,vio_msg_t * msg,size_t msglen)4824 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4825 vio_msg_t *msg, size_t msglen)
4826 {
4827 int status;
4828 boolean_t ready;
4829 on_trap_data_t otd;
4830 vd_dring_entry_t *elem = VD_DRING_ELEM(idx);
4831
4832 /* Accept the updated dring element */
4833 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4834 vd->dring_handle, idx, idx)) != 0) {
4835 return (status);
4836 }
4837 ready = (elem->hdr.dstate == VIO_DESC_READY);
4838 if (ready) {
4839 elem->hdr.dstate = VIO_DESC_ACCEPTED;
4840 bcopy(&elem->payload, vd->dring_task[idx].request,
4841 (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4842 } else {
4843 PR0("descriptor %u not ready", idx);
4844 VD_DUMP_DRING_ELEM(elem);
4845 }
4846 if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4847 vd->dring_handle, idx, idx)) != 0) {
4848 PR0("VIO_DRING_RELEASE() returned errno %d", status);
4849 return (status);
4850 }
4851 if (!ready)
4852 return (EBUSY);
4853
4854
4855 /* Initialize a task and process the accepted element */
4856 PR1("Processing dring element %u", idx);
4857 vd->dring_task[idx].type = type;
4858
4859 /* duplicate msg buf for cookies etc. */
4860 bcopy(msg, vd->dring_task[idx].msg, msglen);
4861
4862 vd->dring_task[idx].msglen = msglen;
4863 return (vd_process_task(&vd->dring_task[idx]));
4864 }
4865
4866 static int
vd_process_element_range(vd_t * vd,int start,int end,vio_msg_t * msg,size_t msglen)4867 vd_process_element_range(vd_t *vd, int start, int end,
4868 vio_msg_t *msg, size_t msglen)
4869 {
4870 int i, n, nelem, status = 0;
4871 boolean_t inprogress = B_FALSE;
4872 vd_task_type_t type;
4873
4874
4875 ASSERT(start >= 0);
4876 ASSERT(end >= 0);
4877
4878 /*
4879 * Arrange to acknowledge the client's message, unless an error
4880 * processing one of the dring elements results in setting
4881 * VIO_SUBTYPE_NACK
4882 */
4883 msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4884
4885 /*
4886 * Process the dring elements in the range
4887 */
4888 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4889 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4890 ((vio_dring_msg_t *)msg)->end_idx = i;
4891 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4892 status = vd_process_element(vd, type, i, msg, msglen);
4893 if (status == EINPROGRESS)
4894 inprogress = B_TRUE;
4895 else if (status != 0)
4896 break;
4897 }
4898
4899 /*
4900 * If some, but not all, operations of a multi-element range are in
4901 * progress, wait for other operations to complete before returning
4902 * (which will result in "ack" or "nack" of the message). Note that
4903 * all outstanding operations will need to complete, not just the ones
4904 * corresponding to the current range of dring elements; howevever, as
4905 * this situation is an error case, performance is less critical.
4906 */
4907 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) {
4908 if (vd->ioq != NULL)
4909 ddi_taskq_wait(vd->ioq);
4910 ddi_taskq_wait(vd->completionq);
4911 }
4912
4913 return (status);
4914 }
4915
4916 static int
vd_process_dring_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4917 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4918 {
4919 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg;
4920
4921
4922 ASSERT(msglen >= sizeof (msg->tag));
4923
4924 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4925 VIO_DRING_DATA)) {
4926 PR1("Message is not a dring-data message");
4927 return (ENOMSG);
4928 }
4929
4930 if (msglen != sizeof (*dring_msg)) {
4931 PR0("Expected %lu-byte dring message; received %lu bytes",
4932 sizeof (*dring_msg), msglen);
4933 return (EBADMSG);
4934 }
4935
4936 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4937 return (EBADMSG);
4938
4939 if (dring_msg->dring_ident != vd->dring_ident) {
4940 PR0("Expected dring ident %lu; received ident %lu",
4941 vd->dring_ident, dring_msg->dring_ident);
4942 return (EBADMSG);
4943 }
4944
4945 if (dring_msg->start_idx >= vd->dring_len) {
4946 PR0("\"start_idx\" = %u; must be less than %u",
4947 dring_msg->start_idx, vd->dring_len);
4948 return (EBADMSG);
4949 }
4950
4951 if ((dring_msg->end_idx < 0) ||
4952 (dring_msg->end_idx >= vd->dring_len)) {
4953 PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4954 dring_msg->end_idx, vd->dring_len);
4955 return (EBADMSG);
4956 }
4957
4958 /* Valid message; process range of updated dring elements */
4959 PR1("Processing descriptor range, start = %u, end = %u",
4960 dring_msg->start_idx, dring_msg->end_idx);
4961 return (vd_process_element_range(vd, dring_msg->start_idx,
4962 dring_msg->end_idx, msg, msglen));
4963 }
4964
4965 static int
recv_msg(ldc_handle_t ldc_handle,void * msg,size_t * nbytes)4966 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4967 {
4968 int retry, status;
4969 size_t size = *nbytes;
4970
4971
4972 for (retry = 0, status = ETIMEDOUT;
4973 retry < vds_ldc_retries && status == ETIMEDOUT;
4974 retry++) {
4975 PR1("ldc_read() attempt %d", (retry + 1));
4976 *nbytes = size;
4977 status = ldc_read(ldc_handle, msg, nbytes);
4978 }
4979
4980 if (status) {
4981 PR0("ldc_read() returned errno %d", status);
4982 if (status != ECONNRESET)
4983 return (ENOMSG);
4984 return (status);
4985 } else if (*nbytes == 0) {
4986 PR1("ldc_read() returned 0 and no message read");
4987 return (ENOMSG);
4988 }
4989
4990 PR1("RCVD %lu-byte message", *nbytes);
4991 return (0);
4992 }
4993
4994 static int
vd_do_process_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)4995 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4996 {
4997 int status;
4998
4999
5000 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
5001 msg->tag.vio_subtype, msg->tag.vio_subtype_env);
5002 #ifdef DEBUG
5003 vd_decode_tag(msg);
5004 #endif
5005
5006 /*
5007 * Validate session ID up front, since it applies to all messages
5008 * once set
5009 */
5010 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
5011 PR0("Expected SID %u, received %u", vd->sid,
5012 msg->tag.vio_sid);
5013 return (EBADMSG);
5014 }
5015
5016 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
5017
5018 /*
5019 * Process the received message based on connection state
5020 */
5021 switch (vd->state) {
5022 case VD_STATE_INIT: /* expect version message */
5023 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
5024 return (status);
5025
5026 /* Version negotiated, move to that state */
5027 vd->state = VD_STATE_VER;
5028 return (0);
5029
5030 case VD_STATE_VER: /* expect attribute message */
5031 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
5032 return (status);
5033
5034 /* Attributes exchanged, move to that state */
5035 vd->state = VD_STATE_ATTR;
5036 return (0);
5037
5038 case VD_STATE_ATTR:
5039 switch (vd->xfer_mode) {
5040 case VIO_DESC_MODE: /* expect RDX message */
5041 if ((status = process_rdx_msg(msg, msglen)) != 0)
5042 return (status);
5043
5044 /* Ready to receive in-band descriptors */
5045 vd->state = VD_STATE_DATA;
5046 return (0);
5047
5048 case VIO_DRING_MODE_V1_0: /* expect register-dring message */
5049 if ((status =
5050 vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
5051 return (status);
5052
5053 /* One dring negotiated, move to that state */
5054 vd->state = VD_STATE_DRING;
5055 return (0);
5056
5057 default:
5058 ASSERT("Unsupported transfer mode");
5059 PR0("Unsupported transfer mode");
5060 return (ENOTSUP);
5061 }
5062
5063 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */
5064 if ((status = process_rdx_msg(msg, msglen)) == 0) {
5065 /* Ready to receive data */
5066 vd->state = VD_STATE_DATA;
5067 return (0);
5068 } else if (status != ENOMSG) {
5069 return (status);
5070 }
5071
5072
5073 /*
5074 * If another register-dring message is received, stay in
5075 * dring state in case the client sends RDX; although the
5076 * protocol allows multiple drings, this server does not
5077 * support using more than one
5078 */
5079 if ((status =
5080 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
5081 return (status);
5082
5083 /*
5084 * Acknowledge an unregister-dring message, but reset the
5085 * connection anyway: Although the protocol allows
5086 * unregistering drings, this server cannot serve a vdisk
5087 * without its only dring
5088 */
5089 status = vd_process_dring_unreg_msg(vd, msg, msglen);
5090 return ((status == 0) ? ENOTSUP : status);
5091
5092 case VD_STATE_DATA:
5093 switch (vd->xfer_mode) {
5094 case VIO_DESC_MODE: /* expect in-band-descriptor message */
5095 return (vd_process_desc_msg(vd, msg, msglen));
5096
5097 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
5098 /*
5099 * Typically expect dring-data messages, so handle
5100 * them first
5101 */
5102 if ((status = vd_process_dring_msg(vd, msg,
5103 msglen)) != ENOMSG)
5104 return (status);
5105
5106 /*
5107 * Acknowledge an unregister-dring message, but reset
5108 * the connection anyway: Although the protocol
5109 * allows unregistering drings, this server cannot
5110 * serve a vdisk without its only dring
5111 */
5112 status = vd_process_dring_unreg_msg(vd, msg, msglen);
5113 return ((status == 0) ? ENOTSUP : status);
5114
5115 default:
5116 ASSERT("Unsupported transfer mode");
5117 PR0("Unsupported transfer mode");
5118 return (ENOTSUP);
5119 }
5120
5121 default:
5122 ASSERT("Invalid client connection state");
5123 PR0("Invalid client connection state");
5124 return (ENOTSUP);
5125 }
5126 }
5127
5128 static int
vd_process_msg(vd_t * vd,vio_msg_t * msg,size_t msglen)5129 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
5130 {
5131 int status;
5132 boolean_t reset_ldc = B_FALSE;
5133 vd_task_t task;
5134
5135 /*
5136 * Check that the message is at least big enough for a "tag", so that
5137 * message processing can proceed based on tag-specified message type
5138 */
5139 if (msglen < sizeof (vio_msg_tag_t)) {
5140 PR0("Received short (%lu-byte) message", msglen);
5141 /* Can't "nack" short message, so drop the big hammer */
5142 PR0("initiating full reset");
5143 vd_need_reset(vd, B_TRUE);
5144 return (EBADMSG);
5145 }
5146
5147 /*
5148 * Process the message
5149 */
5150 switch (status = vd_do_process_msg(vd, msg, msglen)) {
5151 case 0:
5152 /* "ack" valid, successfully-processed messages */
5153 msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
5154 break;
5155
5156 case EINPROGRESS:
5157 /* The completion handler will "ack" or "nack" the message */
5158 return (EINPROGRESS);
5159 case ENOMSG:
5160 PR0("Received unexpected message");
5161 _NOTE(FALLTHROUGH);
5162 case EBADMSG:
5163 case ENOTSUP:
5164 /* "transport" error will cause NACK of invalid messages */
5165 msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5166 break;
5167
5168 default:
5169 /* "transport" error will cause NACK of invalid messages */
5170 msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5171 /* An LDC error probably occurred, so try resetting it */
5172 reset_ldc = B_TRUE;
5173 break;
5174 }
5175
5176 PR1("\tResulting in state %d (%s)", vd->state,
5177 vd_decode_state(vd->state));
5178
5179 /* populate the task so we can dispatch it on the taskq */
5180 task.vd = vd;
5181 task.msg = msg;
5182 task.msglen = msglen;
5183
5184 /*
5185 * Queue a task to send the notification that the operation completed.
5186 * We need to ensure that requests are responded to in the correct
5187 * order and since the taskq is processed serially this ordering
5188 * is maintained.
5189 */
5190 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
5191 &task, DDI_SLEEP);
5192
5193 /*
5194 * To ensure handshake negotiations do not happen out of order, such
5195 * requests that come through this path should not be done in parallel
5196 * so we need to wait here until the response is sent to the client.
5197 */
5198 ddi_taskq_wait(vd->completionq);
5199
5200 /* Arrange to reset the connection for nack'ed or failed messages */
5201 if ((status != 0) || reset_ldc) {
5202 PR0("initiating %s reset",
5203 (reset_ldc) ? "full" : "soft");
5204 vd_need_reset(vd, reset_ldc);
5205 }
5206
5207 return (status);
5208 }
5209
5210 static boolean_t
vd_enabled(vd_t * vd)5211 vd_enabled(vd_t *vd)
5212 {
5213 boolean_t enabled;
5214
5215 mutex_enter(&vd->lock);
5216 enabled = vd->enabled;
5217 mutex_exit(&vd->lock);
5218 return (enabled);
5219 }
5220
5221 static void
vd_recv_msg(void * arg)5222 vd_recv_msg(void *arg)
5223 {
5224 vd_t *vd = (vd_t *)arg;
5225 int rv = 0, status = 0;
5226
5227 ASSERT(vd != NULL);
5228
5229 PR2("New task to receive incoming message(s)");
5230
5231
5232 while (vd_enabled(vd) && status == 0) {
5233 size_t msglen, msgsize;
5234 ldc_status_t lstatus;
5235
5236 /*
5237 * Receive and process a message
5238 */
5239 vd_reset_if_needed(vd); /* can change vd->max_msglen */
5240
5241 /*
5242 * check if channel is UP - else break out of loop
5243 */
5244 status = ldc_status(vd->ldc_handle, &lstatus);
5245 if (lstatus != LDC_UP) {
5246 PR0("channel not up (status=%d), exiting recv loop\n",
5247 lstatus);
5248 break;
5249 }
5250
5251 ASSERT(vd->max_msglen != 0);
5252
5253 msgsize = vd->max_msglen; /* stable copy for alloc/free */
5254 msglen = msgsize; /* actual len after recv_msg() */
5255
5256 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
5257 switch (status) {
5258 case 0:
5259 rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
5260 /* check if max_msglen changed */
5261 if (msgsize != vd->max_msglen) {
5262 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
5263 msgsize, vd->max_msglen);
5264 kmem_free(vd->vio_msgp, msgsize);
5265 vd->vio_msgp =
5266 kmem_alloc(vd->max_msglen, KM_SLEEP);
5267 }
5268 if (rv == EINPROGRESS)
5269 continue;
5270 break;
5271
5272 case ENOMSG:
5273 break;
5274
5275 case ECONNRESET:
5276 PR0("initiating soft reset (ECONNRESET)\n");
5277 vd_need_reset(vd, B_FALSE);
5278 status = 0;
5279 break;
5280
5281 default:
5282 /* Probably an LDC failure; arrange to reset it */
5283 PR0("initiating full reset (status=0x%x)", status);
5284 vd_need_reset(vd, B_TRUE);
5285 break;
5286 }
5287 }
5288
5289 PR2("Task finished");
5290 }
5291
5292 static uint_t
vd_handle_ldc_events(uint64_t event,caddr_t arg)5293 vd_handle_ldc_events(uint64_t event, caddr_t arg)
5294 {
5295 vd_t *vd = (vd_t *)(void *)arg;
5296 int status;
5297
5298 ASSERT(vd != NULL);
5299
5300 if (!vd_enabled(vd))
5301 return (LDC_SUCCESS);
5302
5303 if (event & LDC_EVT_DOWN) {
5304 PR0("LDC_EVT_DOWN: LDC channel went down");
5305
5306 vd_need_reset(vd, B_TRUE);
5307 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5308 DDI_SLEEP);
5309 if (status == DDI_FAILURE) {
5310 PR0("cannot schedule task to recv msg\n");
5311 vd_need_reset(vd, B_TRUE);
5312 }
5313 }
5314
5315 if (event & LDC_EVT_RESET) {
5316 PR0("LDC_EVT_RESET: LDC channel was reset");
5317
5318 if (vd->state != VD_STATE_INIT) {
5319 PR0("scheduling full reset");
5320 vd_need_reset(vd, B_FALSE);
5321 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5322 vd, DDI_SLEEP);
5323 if (status == DDI_FAILURE) {
5324 PR0("cannot schedule task to recv msg\n");
5325 vd_need_reset(vd, B_TRUE);
5326 }
5327
5328 } else {
5329 PR0("channel already reset, ignoring...\n");
5330 PR0("doing ldc up...\n");
5331 (void) ldc_up(vd->ldc_handle);
5332 }
5333
5334 return (LDC_SUCCESS);
5335 }
5336
5337 if (event & LDC_EVT_UP) {
5338 PR0("EVT_UP: LDC is up\nResetting client connection state");
5339 PR0("initiating soft reset");
5340 vd_need_reset(vd, B_FALSE);
5341 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5342 vd, DDI_SLEEP);
5343 if (status == DDI_FAILURE) {
5344 PR0("cannot schedule task to recv msg\n");
5345 vd_need_reset(vd, B_TRUE);
5346 return (LDC_SUCCESS);
5347 }
5348 }
5349
5350 if (event & LDC_EVT_READ) {
5351 int status;
5352
5353 PR1("New data available");
5354 /* Queue a task to receive the new data */
5355 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5356 DDI_SLEEP);
5357
5358 if (status == DDI_FAILURE) {
5359 PR0("cannot schedule task to recv msg\n");
5360 vd_need_reset(vd, B_TRUE);
5361 }
5362 }
5363
5364 return (LDC_SUCCESS);
5365 }
5366
5367 static uint_t
vds_check_for_vd(mod_hash_key_t key,mod_hash_val_t * val,void * arg)5368 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5369 {
5370 _NOTE(ARGUNUSED(key, val))
5371 (*((uint_t *)arg))++;
5372 return (MH_WALK_TERMINATE);
5373 }
5374
5375
5376 static int
vds_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)5377 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5378 {
5379 uint_t vd_present = 0;
5380 minor_t instance;
5381 vds_t *vds;
5382
5383
5384 switch (cmd) {
5385 case DDI_DETACH:
5386 /* the real work happens below */
5387 break;
5388 case DDI_SUSPEND:
5389 PR0("No action required for DDI_SUSPEND");
5390 return (DDI_SUCCESS);
5391 default:
5392 PR0("Unrecognized \"cmd\"");
5393 return (DDI_FAILURE);
5394 }
5395
5396 ASSERT(cmd == DDI_DETACH);
5397 instance = ddi_get_instance(dip);
5398 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5399 PR0("Could not get state for instance %u", instance);
5400 ddi_soft_state_free(vds_state, instance);
5401 return (DDI_FAILURE);
5402 }
5403
5404 /* Do no detach when serving any vdisks */
5405 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5406 if (vd_present) {
5407 PR0("Not detaching because serving vdisks");
5408 return (DDI_FAILURE);
5409 }
5410
5411 PR0("Detaching");
5412 if (vds->initialized & VDS_MDEG) {
5413 (void) mdeg_unregister(vds->mdeg);
5414 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5415 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5416 vds->ispecp = NULL;
5417 vds->mdeg = NULL;
5418 }
5419
5420 vds_driver_types_free(vds);
5421
5422 if (vds->initialized & VDS_LDI)
5423 (void) ldi_ident_release(vds->ldi_ident);
5424 mod_hash_destroy_hash(vds->vd_table);
5425 ddi_soft_state_free(vds_state, instance);
5426 return (DDI_SUCCESS);
5427 }
5428
5429 /*
5430 * Description:
5431 * This function checks to see if the disk image being used as a
5432 * virtual disk is an ISO image. An ISO image is a special case
5433 * which can be booted/installed from like a CD/DVD.
5434 *
5435 * Parameters:
5436 * vd - disk on which the operation is performed.
5437 *
5438 * Return Code:
5439 * B_TRUE - The disk image is an ISO 9660 compliant image
5440 * B_FALSE - just a regular disk image
5441 */
5442 static boolean_t
vd_dskimg_is_iso_image(vd_t * vd)5443 vd_dskimg_is_iso_image(vd_t *vd)
5444 {
5445 char iso_buf[ISO_SECTOR_SIZE];
5446 int i, rv;
5447 uint_t sec;
5448
5449 ASSERT(VD_DSKIMG(vd));
5450
5451 /*
5452 * If we have already discovered and saved this info we can
5453 * short-circuit the check and avoid reading the disk image.
5454 */
5455 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5456 return (B_TRUE);
5457
5458 /*
5459 * We wish to read the sector that should contain the 2nd ISO volume
5460 * descriptor. The second field in this descriptor is called the
5461 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5462 * to the ISO 9660 standard.
5463 */
5464 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_bsize;
5465 rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5466 sec, ISO_SECTOR_SIZE);
5467
5468 if (rv < 0)
5469 return (B_FALSE);
5470
5471 for (i = 0; i < ISO_ID_STRLEN; i++) {
5472 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5473 return (B_FALSE);
5474 }
5475
5476 return (B_TRUE);
5477 }
5478
5479 /*
5480 * Description:
5481 * This function checks to see if the virtual device is an ATAPI
5482 * device. ATAPI devices use Group 1 Read/Write commands, so
5483 * any USCSI calls vds makes need to take this into account.
5484 *
5485 * Parameters:
5486 * vd - disk on which the operation is performed.
5487 *
5488 * Return Code:
5489 * B_TRUE - The virtual disk is backed by an ATAPI device
5490 * B_FALSE - not an ATAPI device (presumably SCSI)
5491 */
5492 static boolean_t
vd_is_atapi_device(vd_t * vd)5493 vd_is_atapi_device(vd_t *vd)
5494 {
5495 boolean_t is_atapi = B_FALSE;
5496 char *variantp;
5497 int rv;
5498
5499 ASSERT(vd->ldi_handle[0] != NULL);
5500 ASSERT(!vd->file);
5501
5502 rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5503 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5504 if (rv == DDI_PROP_SUCCESS) {
5505 PR0("'variant' property exists for %s", vd->device_path);
5506 if (strcmp(variantp, "atapi") == 0)
5507 is_atapi = B_TRUE;
5508 ddi_prop_free(variantp);
5509 }
5510
5511 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5512 if (rv) {
5513 PR0("'atapi' property exists for %s", vd->device_path);
5514 is_atapi = B_TRUE;
5515 }
5516
5517 return (is_atapi);
5518 }
5519
5520 static int
vd_setup_full_disk(vd_t * vd)5521 vd_setup_full_disk(vd_t *vd)
5522 {
5523 int status;
5524 major_t major = getmajor(vd->dev[0]);
5525 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5526
5527 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5528
5529 /* set the disk size, block size and the media type of the disk */
5530 status = vd_backend_check_size(vd);
5531
5532 if (status != 0) {
5533 if (!vd->scsi) {
5534 /* unexpected failure */
5535 PRN("Check size failed for %s (errno %d)",
5536 vd->device_path, status);
5537 return (EIO);
5538 }
5539
5540 /*
5541 * The function can fail for SCSI disks which are present but
5542 * reserved by another system. In that case, we don't know the
5543 * size of the disk and the block size.
5544 */
5545 vd->vdisk_size = VD_SIZE_UNKNOWN;
5546 vd->vdisk_bsize = 0;
5547 vd->backend_bsize = 0;
5548 vd->vdisk_media = VD_MEDIA_FIXED;
5549 }
5550
5551 /* Move dev number and LDI handle to entire-disk-slice array elements */
5552 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0];
5553 vd->dev[0] = 0;
5554 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0];
5555 vd->ldi_handle[0] = NULL;
5556
5557 /* Initialize device numbers for remaining slices and open them */
5558 for (int slice = 0; slice < vd->nslices; slice++) {
5559 /*
5560 * Skip the entire-disk slice, as it's already open and its
5561 * device known
5562 */
5563 if (slice == VD_ENTIRE_DISK_SLICE)
5564 continue;
5565 ASSERT(vd->dev[slice] == 0);
5566 ASSERT(vd->ldi_handle[slice] == NULL);
5567
5568 /*
5569 * Construct the device number for the current slice
5570 */
5571 vd->dev[slice] = makedevice(major, (minor + slice));
5572
5573 /*
5574 * Open all slices of the disk to serve them to the client.
5575 * Slices are opened exclusively to prevent other threads or
5576 * processes in the service domain from performing I/O to
5577 * slices being accessed by a client. Failure to open a slice
5578 * results in vds not serving this disk, as the client could
5579 * attempt (and should be able) to access any slice immediately.
5580 * Any slices successfully opened before a failure will get
5581 * closed by vds_destroy_vd() as a result of the error returned
5582 * by this function.
5583 *
5584 * We need to do the open with FNDELAY so that opening an empty
5585 * slice does not fail.
5586 */
5587 PR0("Opening device major %u, minor %u = slice %u",
5588 major, minor, slice);
5589
5590 /*
5591 * Try to open the device. This can fail for example if we are
5592 * opening an empty slice. So in case of a failure, we try the
5593 * open again but this time with the FNDELAY flag.
5594 */
5595 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5596 vd->open_flags, kcred, &vd->ldi_handle[slice],
5597 vd->vds->ldi_ident);
5598
5599 if (status != 0) {
5600 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5601 vd->open_flags | FNDELAY, kcred,
5602 &vd->ldi_handle[slice], vd->vds->ldi_ident);
5603 }
5604
5605 if (status != 0) {
5606 PRN("ldi_open_by_dev() returned errno %d "
5607 "for slice %u", status, slice);
5608 /* vds_destroy_vd() will close any open slices */
5609 vd->ldi_handle[slice] = NULL;
5610 return (status);
5611 }
5612 }
5613
5614 return (0);
5615 }
5616
5617 /*
5618 * When a slice or a volume is exported as a single-slice disk, we want
5619 * the disk backend (i.e. the slice or volume) to be entirely mapped as
5620 * a slice without the addition of any metadata.
5621 *
5622 * So when exporting the disk as a VTOC disk, we fake a disk with the following
5623 * layout:
5624 * flabel +--- flabel_limit
5625 * <-> V
5626 * 0 1 C D E
5627 * +-+---+--------------------------+--+
5628 * virtual disk: |L|XXX| slice 0 |AA|
5629 * +-+---+--------------------------+--+
5630 * ^ : :
5631 * | : :
5632 * VTOC LABEL--+ : :
5633 * +--------------------------+
5634 * disk backend: | slice/volume/file |
5635 * +--------------------------+
5636 * 0 N
5637 *
5638 * N is the number of blocks in the slice/volume/file.
5639 *
5640 * We simulate a disk with N+M blocks, where M is the number of blocks
5641 * simluated at the beginning and at the end of the disk (blocks 0-C
5642 * and D-E).
5643 *
5644 * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5645 * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5646 * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5647 *
5648 * - block 0 (L) returns a fake VTOC label
5649 * - blocks 1 to C-1 (X) are unused and return 0
5650 * - blocks C to D-1 are mapped to the exported slice or volume
5651 * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5652 *
5653 * Note: because we define a fake disk geometry, it is possible that the length
5654 * of the backend is not a multiple of the size of cylinder, in that case the
5655 * very end of the backend will not map to any block of the virtual disk.
5656 */
5657 static int
vd_setup_partition_vtoc(vd_t * vd)5658 vd_setup_partition_vtoc(vd_t *vd)
5659 {
5660 char *device_path = vd->device_path;
5661 char unit;
5662 size_t size, csize;
5663
5664 /* Initialize dk_geom structure for single-slice device */
5665 if (vd->dk_geom.dkg_nsect == 0) {
5666 PRN("%s geometry claims 0 sectors per track", device_path);
5667 return (EIO);
5668 }
5669 if (vd->dk_geom.dkg_nhead == 0) {
5670 PRN("%s geometry claims 0 heads", device_path);
5671 return (EIO);
5672 }
5673
5674 /* size of a cylinder in block */
5675 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5676
5677 /*
5678 * Add extra cylinders: we emulate the first cylinder (which contains
5679 * the disk label).
5680 */
5681 vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5682
5683 /* we emulate 2 alternate cylinders */
5684 vd->dk_geom.dkg_acyl = 2;
5685 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5686
5687
5688 /* Initialize vtoc structure for single-slice device */
5689 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5690 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5691 vd->vtoc.v_part[0].p_flag = 0;
5692 /*
5693 * Partition 0 starts on cylinder 1 and its size has to be
5694 * a multiple of a number of cylinder.
5695 */
5696 vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5697 vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5698
5699 if (vd_slice_single_slice) {
5700 vd->vtoc.v_nparts = 1;
5701 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5702 MIN(sizeof (VD_ASCIILABEL),
5703 sizeof (vd->vtoc.v_asciilabel)));
5704 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5705 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5706 } else {
5707 /* adjust the number of slices */
5708 vd->nslices = V_NUMPAR;
5709 vd->vtoc.v_nparts = V_NUMPAR;
5710
5711 /* define slice 2 representing the entire disk */
5712 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5713 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5714 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5715 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5716 vd->dk_geom.dkg_ncyl * csize;
5717
5718 vd_get_readable_size(vd->vdisk_size * vd->vdisk_bsize,
5719 &size, &unit);
5720
5721 /*
5722 * Set some attributes of the geometry to what format(1m) uses
5723 * so that writing a default label using format(1m) does not
5724 * produce any error.
5725 */
5726 vd->dk_geom.dkg_bcyl = 0;
5727 vd->dk_geom.dkg_intrlv = 1;
5728 vd->dk_geom.dkg_write_reinstruct = 0;
5729 vd->dk_geom.dkg_read_reinstruct = 0;
5730
5731 /*
5732 * We must have a correct label name otherwise format(1m) will
5733 * not recognized the disk as labeled.
5734 */
5735 (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5736 "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5737 size, unit,
5738 vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5739 vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5740 bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5741
5742 /* create a fake label from the vtoc and geometry */
5743 vd->flabel_limit = (uint_t)csize;
5744 vd->flabel_size = VD_LABEL_VTOC_SIZE(vd->vdisk_bsize);
5745 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5746 vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5747 VD_LABEL_VTOC(vd));
5748 }
5749
5750 /* adjust the vdisk_size, we emulate 3 cylinders */
5751 vd->vdisk_size += csize * 3;
5752
5753 return (0);
5754 }
5755
5756 /*
5757 * When a slice, volume or file is exported as a single-slice disk, we want
5758 * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5759 * as a slice without the addition of any metadata.
5760 *
5761 * So when exporting the disk as an EFI disk, we fake a disk with the following
5762 * layout: (assuming the block size is 512 bytes)
5763 *
5764 * flabel +--- flabel_limit
5765 * <------> v
5766 * 0 1 2 L 34 34+N P
5767 * +-+-+--+-------+--------------------------+-------+
5768 * virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR|
5769 * +-+-+--+-------+--------------------------+-------+
5770 * ^ ^ : :
5771 * | | : :
5772 * GPT-+ +-GPE : :
5773 * +--------------------------+
5774 * disk backend: | slice/volume/file |
5775 * +--------------------------+
5776 * 0 N
5777 *
5778 * N is the number of blocks in the slice/volume/file.
5779 *
5780 * We simulate a disk with N+M blocks, where M is the number of blocks
5781 * simluated at the beginning and at the end of the disk (blocks 0-34
5782 * and 34+N-P).
5783 *
5784 * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5785 * to 34+N defines slice 0 and are mapped to the exported backend, and we
5786 * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5787 * reserved partition.
5788 *
5789 * - block 0 (X) is unused and return 0
5790 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5791 * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5792 * - blocks L to 33 (X) are unused and return 0
5793 * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5794 * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5795 * returns 0
5796 *
5797 * Note: if the backend size is not a multiple of the vdisk block size then
5798 * the very end of the backend will not map to any block of the virtual disk.
5799 */
5800 static int
vd_setup_partition_efi(vd_t * vd)5801 vd_setup_partition_efi(vd_t *vd)
5802 {
5803 efi_gpt_t *gpt;
5804 efi_gpe_t *gpe;
5805 struct uuid uuid = EFI_USR;
5806 struct uuid efi_reserved = EFI_RESERVED;
5807 uint32_t crc;
5808 uint64_t s0_start, s0_end, first_u_lba;
5809 size_t bsize;
5810
5811 ASSERT(vd->vdisk_bsize > 0);
5812
5813 bsize = vd->vdisk_bsize;
5814 /*
5815 * The minimum size for the label is 16K (EFI_MIN_ARRAY_SIZE)
5816 * for GPEs plus one block for the GPT and one for PMBR.
5817 */
5818 first_u_lba = (EFI_MIN_ARRAY_SIZE / bsize) + 2;
5819 vd->flabel_limit = (uint_t)first_u_lba;
5820 vd->flabel_size = VD_LABEL_EFI_SIZE(bsize);
5821 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5822 gpt = VD_LABEL_EFI_GPT(vd, bsize);
5823 gpe = VD_LABEL_EFI_GPE(vd, bsize);
5824
5825 /*
5826 * Adjust the vdisk_size, we emulate the first few blocks
5827 * for the disk label.
5828 */
5829 vd->vdisk_size += first_u_lba;
5830 s0_start = first_u_lba;
5831 s0_end = vd->vdisk_size - 1;
5832
5833 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5834 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5835 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5836 gpt->efi_gpt_FirstUsableLBA = LE_64(first_u_lba);
5837 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5838 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5839
5840 UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5841 gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5842 gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5843
5844 if (vd_slice_single_slice) {
5845 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5846 } else {
5847 /* adjust the number of slices */
5848 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5849 vd->nslices = V_NUMPAR;
5850
5851 /* define a fake reserved partition */
5852 UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5853 efi_reserved);
5854 gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5855 LE_64(s0_end + 1);
5856 gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5857 LE_64(s0_end + EFI_MIN_RESV_SIZE);
5858
5859 /* adjust the vdisk_size to include the reserved slice */
5860 vd->vdisk_size += EFI_MIN_RESV_SIZE;
5861 }
5862
5863 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5864
5865 /* adjust the vdisk size for the backup GPT and GPE */
5866 vd->vdisk_size += (EFI_MIN_ARRAY_SIZE / bsize) + 1;
5867 gpt->efi_gpt_AlternateLBA = LE_64(vd->vdisk_size - 1);
5868
5869 CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5870 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5871
5872 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5873 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5874
5875 return (0);
5876 }
5877
5878 /*
5879 * Setup for a virtual disk whose backend is a file (exported as a single slice
5880 * or as a full disk). In that case, the backend is accessed using the vnode
5881 * interface.
5882 */
5883 static int
vd_setup_backend_vnode(vd_t * vd)5884 vd_setup_backend_vnode(vd_t *vd)
5885 {
5886 int rval, status;
5887 dev_t dev;
5888 char *file_path = vd->device_path;
5889 ldi_handle_t lhandle;
5890 struct dk_cinfo dk_cinfo;
5891
5892 ASSERT(!vd->volume);
5893
5894 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5895 0, &vd->file_vnode, 0, 0)) != 0) {
5896 if ((status == ENXIO || status == ENODEV || status == ENOENT ||
5897 status == EROFS) && (!(vd->initialized & VD_SETUP_ERROR) &&
5898 !(DEVI_IS_ATTACHING(vd->vds->dip)))) {
5899 PRN("vn_open(%s) = errno %d", file_path, status);
5900 }
5901 return (status);
5902 }
5903
5904 /*
5905 * We set vd->file now so that vds_destroy_vd will take care of
5906 * closing the file and releasing the vnode in case of an error.
5907 */
5908 vd->file = B_TRUE;
5909
5910 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5911
5912 /*
5913 * Get max_xfer_sz from the device where the file is.
5914 */
5915 dev = vd->file_vnode->v_vfsp->vfs_dev;
5916 PR0("underlying device of %s = (%d, %d)\n", file_path,
5917 getmajor(dev), getminor(dev));
5918
5919 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5920 vd->vds->ldi_ident);
5921
5922 if (status != 0) {
5923 PR0("ldi_open() returned errno %d for underlying device",
5924 status);
5925 } else {
5926 if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5927 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5928 &rval)) != 0) {
5929 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5930 "underlying device", status);
5931 } else {
5932 /*
5933 * Store the device's max transfer size for
5934 * return to the client
5935 */
5936 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5937 }
5938
5939 PR0("close the underlying device");
5940 (void) ldi_close(lhandle, FREAD, kcred);
5941 }
5942
5943 PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5944 file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5945
5946 if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
5947 status = vd_setup_slice_image(vd);
5948 else
5949 status = vd_setup_disk_image(vd);
5950
5951 return (status);
5952 }
5953
5954 static int
vd_setup_slice_image(vd_t * vd)5955 vd_setup_slice_image(vd_t *vd)
5956 {
5957 struct dk_label label;
5958 int status;
5959
5960 if ((status = vd_backend_check_size(vd)) != 0) {
5961 PRN("Check size failed for %s (errno %d)",
5962 vd->device_path, status);
5963 return (EIO);
5964 }
5965
5966 vd->vdisk_media = VD_MEDIA_FIXED;
5967 vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5968 vd_file_slice_label : vd_slice_label;
5969
5970 if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5971 vd->dskimg_size >= 2 * ONE_TERABYTE) {
5972 status = vd_setup_partition_efi(vd);
5973 } else {
5974 /*
5975 * We build a default label to get a geometry for
5976 * the vdisk. Then the partition setup function will
5977 * adjust the vtoc so that it defines a single-slice
5978 * disk.
5979 */
5980 vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
5981 &label);
5982 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5983 status = vd_setup_partition_vtoc(vd);
5984 }
5985
5986 return (status);
5987 }
5988
5989 static int
vd_setup_disk_image(vd_t * vd)5990 vd_setup_disk_image(vd_t *vd)
5991 {
5992 int status;
5993 char *backend_path = vd->device_path;
5994
5995 if ((status = vd_backend_check_size(vd)) != 0) {
5996 PRN("Check size failed for %s (errno %d)",
5997 backend_path, status);
5998 return (EIO);
5999 }
6000
6001 /* size should be at least sizeof(dk_label) */
6002 if (vd->dskimg_size < sizeof (struct dk_label)) {
6003 PRN("Size of file has to be at least %ld bytes",
6004 sizeof (struct dk_label));
6005 return (EIO);
6006 }
6007
6008 /*
6009 * Find and validate the geometry of a disk image.
6010 */
6011 status = vd_dskimg_validate_geometry(vd);
6012 if (status != 0 && status != EINVAL && status != ENOTSUP) {
6013 PRN("Failed to read label from %s", backend_path);
6014 return (EIO);
6015 }
6016
6017 if (vd_dskimg_is_iso_image(vd)) {
6018 /*
6019 * Indicate whether to call this a CD or DVD from the size
6020 * of the ISO image (images for both drive types are stored
6021 * in the ISO-9600 format). CDs can store up to just under 1Gb
6022 */
6023 if ((vd->vdisk_size * vd->vdisk_bsize) > ONE_GIGABYTE)
6024 vd->vdisk_media = VD_MEDIA_DVD;
6025 else
6026 vd->vdisk_media = VD_MEDIA_CD;
6027 } else {
6028 vd->vdisk_media = VD_MEDIA_FIXED;
6029 }
6030
6031 /* Setup devid for the disk image */
6032
6033 if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6034
6035 status = vd_dskimg_read_devid(vd, &vd->dskimg_devid);
6036
6037 if (status == 0) {
6038 /* a valid devid was found */
6039 return (0);
6040 }
6041
6042 if (status != EINVAL) {
6043 /*
6044 * There was an error while trying to read the devid.
6045 * So this disk image may have a devid but we are
6046 * unable to read it.
6047 */
6048 PR0("can not read devid for %s", backend_path);
6049 vd->dskimg_devid = NULL;
6050 return (0);
6051 }
6052 }
6053
6054 /*
6055 * No valid device id was found so we create one. Note that a failure
6056 * to create a device id is not fatal and does not prevent the disk
6057 * image from being attached.
6058 */
6059 PR1("creating devid for %s", backend_path);
6060
6061 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
6062 &vd->dskimg_devid) != DDI_SUCCESS) {
6063 PR0("fail to create devid for %s", backend_path);
6064 vd->dskimg_devid = NULL;
6065 return (0);
6066 }
6067
6068 /*
6069 * Write devid to the disk image. The devid is stored into the disk
6070 * image if we have a valid label; otherwise the devid will be stored
6071 * when the user writes a valid label.
6072 */
6073 if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6074 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
6075 PR0("fail to write devid for %s", backend_path);
6076 ddi_devid_free(vd->dskimg_devid);
6077 vd->dskimg_devid = NULL;
6078 }
6079 }
6080
6081 return (0);
6082 }
6083
6084
6085 /*
6086 * Description:
6087 * Open a device using its device path (supplied by ldm(1m))
6088 *
6089 * Parameters:
6090 * vd - pointer to structure containing the vDisk info
6091 * flags - open flags
6092 *
6093 * Return Value
6094 * 0 - success
6095 * != 0 - some other non-zero return value from ldi(9F) functions
6096 */
6097 static int
vd_open_using_ldi_by_name(vd_t * vd,int flags)6098 vd_open_using_ldi_by_name(vd_t *vd, int flags)
6099 {
6100 int status;
6101 char *device_path = vd->device_path;
6102
6103 /* Attempt to open device */
6104 status = ldi_open_by_name(device_path, flags, kcred,
6105 &vd->ldi_handle[0], vd->vds->ldi_ident);
6106
6107 /*
6108 * The open can fail for example if we are opening an empty slice.
6109 * In case of a failure, we try the open again but this time with
6110 * the FNDELAY flag.
6111 */
6112 if (status != 0)
6113 status = ldi_open_by_name(device_path, flags | FNDELAY,
6114 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
6115
6116 if (status != 0) {
6117 PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
6118 vd->ldi_handle[0] = NULL;
6119 return (status);
6120 }
6121
6122 return (0);
6123 }
6124
6125 /*
6126 * Setup for a virtual disk which backend is a device (a physical disk,
6127 * slice or volume device) exported as a full disk or as a slice. In these
6128 * cases, the backend is accessed using the LDI interface.
6129 */
6130 static int
vd_setup_backend_ldi(vd_t * vd)6131 vd_setup_backend_ldi(vd_t *vd)
6132 {
6133 int rval, status;
6134 struct dk_cinfo dk_cinfo;
6135 char *device_path = vd->device_path;
6136
6137 /* device has been opened by vd_identify_dev() */
6138 ASSERT(vd->ldi_handle[0] != NULL);
6139 ASSERT(vd->dev[0] != NULL);
6140
6141 vd->file = B_FALSE;
6142
6143 /* Verify backing device supports dk_cinfo */
6144 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
6145 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
6146 &rval)) != 0) {
6147 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
6148 status, device_path);
6149 return (status);
6150 }
6151 if (dk_cinfo.dki_partition >= V_NUMPAR) {
6152 PRN("slice %u >= maximum slice %u for %s",
6153 dk_cinfo.dki_partition, V_NUMPAR, device_path);
6154 return (EIO);
6155 }
6156
6157 /*
6158 * The device has been opened read-only by vd_identify_dev(), re-open
6159 * it read-write if the write flag is set and we don't have an optical
6160 * device such as a CD-ROM, which, for now, we do not permit writes to
6161 * and thus should not export write operations to the client.
6162 *
6163 * Future: if/when we implement support for guest domains writing to
6164 * optical devices we will need to do further checking of the media type
6165 * to distinguish between read-only and writable discs.
6166 */
6167 if (dk_cinfo.dki_ctype == DKC_CDROM) {
6168
6169 vd->open_flags &= ~FWRITE;
6170
6171 } else if (vd->open_flags & FWRITE) {
6172
6173 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
6174 kcred);
6175 status = vd_open_using_ldi_by_name(vd, vd->open_flags);
6176 if (status != 0) {
6177 PR0("Failed to open (%s) = errno %d",
6178 device_path, status);
6179 return (status);
6180 }
6181 }
6182
6183 /* Store the device's max transfer size for return to the client */
6184 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
6185
6186 /*
6187 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
6188 * that we can use the correct CDB group when sending USCSI commands.
6189 */
6190 vd->is_atapi_dev = vd_is_atapi_device(vd);
6191
6192 /*
6193 * Export a full disk.
6194 *
6195 * The exported device can be either a volume, a disk or a CD/DVD
6196 * device. We export a device as a full disk if we have an entire
6197 * disk slice (slice 2) and if this slice is exported as a full disk
6198 * and not as a single slice disk. A CD or DVD device is exported
6199 * as a full disk (even if it isn't s2). A volume is exported as a
6200 * full disk as long as the "slice" option is not specified.
6201 */
6202 if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6203
6204 if (vd->volume) {
6205 /* setup disk image */
6206 return (vd_setup_disk_image(vd));
6207 }
6208
6209 if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE ||
6210 dk_cinfo.dki_ctype == DKC_CDROM) {
6211 ASSERT(!vd->volume);
6212 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
6213 vd->scsi = B_TRUE;
6214 return (vd_setup_full_disk(vd));
6215 }
6216 }
6217
6218 /*
6219 * Export a single slice disk.
6220 *
6221 * The exported device can be either a volume device or a disk slice. If
6222 * it is a disk slice different from slice 2 then it is always exported
6223 * as a single slice disk even if the "slice" option is not specified.
6224 * If it is disk slice 2 or a volume device then it is exported as a
6225 * single slice disk only if the "slice" option is specified.
6226 */
6227 return (vd_setup_single_slice_disk(vd));
6228 }
6229
6230 static int
vd_setup_single_slice_disk(vd_t * vd)6231 vd_setup_single_slice_disk(vd_t *vd)
6232 {
6233 int status, rval;
6234 struct dk_label label;
6235 char *device_path = vd->device_path;
6236 struct vtoc vtoc;
6237
6238 vd->vdisk_media = VD_MEDIA_FIXED;
6239
6240 if (vd->volume) {
6241 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
6242 }
6243
6244 /*
6245 * We export the slice as a single slice disk even if the "slice"
6246 * option was not specified.
6247 */
6248 vd->vdisk_type = VD_DISK_TYPE_SLICE;
6249 vd->nslices = 1;
6250
6251 /* Get size of backing device */
6252 if ((status = vd_backend_check_size(vd)) != 0) {
6253 PRN("Check size failed for %s (errno %d)", device_path, status);
6254 return (EIO);
6255 }
6256
6257 /*
6258 * When exporting a slice or a device as a single slice disk, we don't
6259 * care about any partitioning exposed by the backend. The goal is just
6260 * to export the backend as a flat storage. We provide a fake partition
6261 * table (either a VTOC or EFI), which presents only one slice, to
6262 * accommodate tools expecting a disk label. The selection of the label
6263 * type (VTOC or EFI) depends on the value of the vd_slice_label
6264 * variable.
6265 */
6266 if (vd_slice_label == VD_DISK_LABEL_EFI ||
6267 vd->vdisk_size >= ONE_TERABYTE / vd->vdisk_bsize) {
6268 vd->vdisk_label = VD_DISK_LABEL_EFI;
6269 } else {
6270 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
6271 (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
6272 kcred, &rval);
6273
6274 if (status == ENOTTY) {
6275 /* try with the non-extended vtoc ioctl */
6276 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
6277 (intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
6278 kcred, &rval);
6279 vtoctoextvtoc(vtoc, vd->vtoc);
6280 }
6281
6282 if (status == 0) {
6283 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
6284 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
6285 kcred, &rval);
6286
6287 if (status != 0) {
6288 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
6289 "for %s", status, device_path);
6290 return (status);
6291 }
6292 vd->vdisk_label = VD_DISK_LABEL_VTOC;
6293
6294 } else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
6295
6296 vd->vdisk_label = VD_DISK_LABEL_VTOC;
6297 vd_build_default_label(vd->vdisk_size * vd->vdisk_bsize,
6298 vd->vdisk_bsize, &label);
6299 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
6300
6301 } else {
6302 vd->vdisk_label = VD_DISK_LABEL_EFI;
6303 }
6304 }
6305
6306 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6307 /* export with a fake VTOC label */
6308 status = vd_setup_partition_vtoc(vd);
6309
6310 } else {
6311 /* export with a fake EFI label */
6312 status = vd_setup_partition_efi(vd);
6313 }
6314
6315 return (status);
6316 }
6317
6318 /*
6319 * This function is invoked when setting up the vdisk backend and to process
6320 * the VD_OP_GET_CAPACITY operation. It checks the backend size and set the
6321 * following attributes of the vd structure:
6322 *
6323 * - vdisk_bsize: block size for the virtual disk used by the VIO protocol. Its
6324 * value is 512 bytes (DEV_BSIZE) when the backend is a file, a volume or a
6325 * CD/DVD. When the backend is a disk or a disk slice then it has the value
6326 * of the logical block size of that disk (as returned by the DKIOCGMEDIAINFO
6327 * ioctl). This block size is expected to be a power of 2 and a multiple of
6328 * 512.
6329 *
6330 * - vdisk_size: size of the virtual disk expressed as a number of vdisk_bsize
6331 * blocks.
6332 *
6333 * vdisk_size and vdisk_bsize are sent to the vdisk client during the connection
6334 * handshake and in the result of a VD_OP_GET_CAPACITY operation.
6335 *
6336 * - backend_bsize: block size of the backend device. backend_bsize has the same
6337 * value as vdisk_bsize except when the backend is a CD/DVD. In that case,
6338 * vdisk_bsize is set to 512 (DEV_BSIZE) while backend_bsize is set to the
6339 * effective logical block size of the CD/DVD (usually 2048).
6340 *
6341 * - dskimg_size: size of the backend when the backend is a disk image. This
6342 * attribute is set only when the backend is a file or a volume, otherwise it
6343 * is unused.
6344 *
6345 * - vio_bshift: number of bit to shift to convert a VIO block number (which
6346 * uses a block size of vdisk_bsize) to a buf(9s) block number (which uses a
6347 * block size of 512 bytes) i.e. we have vdisk_bsize = 512 x 2 ^ vio_bshift
6348 *
6349 * - vdisk_media: media of the virtual disk. This function only sets this
6350 * attribute for physical disk and CD/DVD. For other backend types, this
6351 * attribute is set in the setup function of the backend.
6352 */
6353 static int
vd_backend_check_size(vd_t * vd)6354 vd_backend_check_size(vd_t *vd)
6355 {
6356 size_t backend_size, backend_bsize, vdisk_bsize;
6357 size_t old_size, new_size;
6358 struct dk_minfo minfo;
6359 vattr_t vattr;
6360 int rval, rv, media, nshift = 0;
6361 uint32_t n;
6362
6363 if (vd->file) {
6364
6365 /* file (slice or full disk) */
6366 vattr.va_mask = AT_SIZE;
6367 rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
6368 if (rv != 0) {
6369 PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
6370 return (rv);
6371 }
6372 backend_size = vattr.va_size;
6373 backend_bsize = DEV_BSIZE;
6374 vdisk_bsize = DEV_BSIZE;
6375
6376 } else if (vd->volume) {
6377
6378 /* volume (slice or full disk) */
6379 rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6380 if (rv != DDI_SUCCESS) {
6381 PR0("ldi_get_size() failed for %s", vd->device_path);
6382 return (EIO);
6383 }
6384 backend_bsize = DEV_BSIZE;
6385 vdisk_bsize = DEV_BSIZE;
6386
6387 } else {
6388
6389 /* physical disk or slice */
6390 rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
6391 (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
6392 kcred, &rval);
6393 if (rv != 0) {
6394 PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
6395 vd->device_path, rv);
6396 return (rv);
6397 }
6398
6399 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6400 rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6401 if (rv != DDI_SUCCESS) {
6402 PR0("ldi_get_size() failed for %s",
6403 vd->device_path);
6404 return (EIO);
6405 }
6406 } else {
6407 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6408 backend_size = minfo.dki_capacity * minfo.dki_lbsize;
6409 }
6410
6411 backend_bsize = minfo.dki_lbsize;
6412 media = DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6413
6414 /*
6415 * If the device is a CD or a DVD then we force the vdisk block
6416 * size to 512 bytes (DEV_BSIZE). In that case, vdisk_bsize can
6417 * be different from backend_size.
6418 */
6419 if (media == VD_MEDIA_CD || media == VD_MEDIA_DVD)
6420 vdisk_bsize = DEV_BSIZE;
6421 else
6422 vdisk_bsize = backend_bsize;
6423 }
6424
6425 /* check vdisk block size */
6426 if (vdisk_bsize == 0 || vdisk_bsize % DEV_BSIZE != 0)
6427 return (EINVAL);
6428
6429 old_size = vd->vdisk_size;
6430 new_size = backend_size / vdisk_bsize;
6431
6432 /* check if size has changed */
6433 if (old_size != VD_SIZE_UNKNOWN && old_size == new_size &&
6434 vd->vdisk_bsize == vdisk_bsize)
6435 return (0);
6436
6437 /* cache info for blk conversion */
6438 for (n = vdisk_bsize / DEV_BSIZE; n > 1; n >>= 1) {
6439 if ((n & 0x1) != 0) {
6440 /* blk_size is not a power of 2 */
6441 return (EINVAL);
6442 }
6443 nshift++;
6444 }
6445
6446 vd->vio_bshift = nshift;
6447 vd->vdisk_size = new_size;
6448 vd->vdisk_bsize = vdisk_bsize;
6449 vd->backend_bsize = backend_bsize;
6450
6451 if (vd->file || vd->volume)
6452 vd->dskimg_size = backend_size;
6453
6454 /*
6455 * If we are exporting a single-slice disk and the size of the backend
6456 * has changed then we regenerate the partition setup so that the
6457 * partitioning matches with the new disk backend size.
6458 */
6459
6460 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6461 /* slice or file or device exported as a slice */
6462 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6463 rv = vd_setup_partition_vtoc(vd);
6464 if (rv != 0) {
6465 PR0("vd_setup_partition_vtoc() failed for %s "
6466 "(err = %d)", vd->device_path, rv);
6467 return (rv);
6468 }
6469 } else {
6470 rv = vd_setup_partition_efi(vd);
6471 if (rv != 0) {
6472 PR0("vd_setup_partition_efi() failed for %s "
6473 "(err = %d)", vd->device_path, rv);
6474 return (rv);
6475 }
6476 }
6477
6478 } else if (!vd->file && !vd->volume) {
6479 /* physical disk */
6480 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6481 vd->vdisk_media = media;
6482 }
6483
6484 return (0);
6485 }
6486
6487 /*
6488 * Description:
6489 * Open a device using its device path and identify if this is
6490 * a disk device or a volume device.
6491 *
6492 * Parameters:
6493 * vd - pointer to structure containing the vDisk info
6494 * dtype - return the driver type of the device
6495 *
6496 * Return Value
6497 * 0 - success
6498 * != 0 - some other non-zero return value from ldi(9F) functions
6499 */
6500 static int
vd_identify_dev(vd_t * vd,int * dtype)6501 vd_identify_dev(vd_t *vd, int *dtype)
6502 {
6503 int status, i;
6504 char *device_path = vd->device_path;
6505 char *drv_name;
6506 int drv_type;
6507 vds_t *vds = vd->vds;
6508
6509 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6510 if (status != 0) {
6511 PR0("Failed to open (%s) = errno %d", device_path, status);
6512 return (status);
6513 }
6514
6515 /* Get device number of backing device */
6516 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6517 PRN("ldi_get_dev() returned errno %d for %s",
6518 status, device_path);
6519 return (status);
6520 }
6521
6522 /*
6523 * We start by looking if the driver is in the list from vds.conf
6524 * so that we can override the built-in list using vds.conf.
6525 */
6526 drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6527 drv_type = VD_DRIVER_UNKNOWN;
6528
6529 /* check vds.conf list */
6530 for (i = 0; i < vds->num_drivers; i++) {
6531 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6532 /* ignore invalid entries */
6533 continue;
6534 }
6535 if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6536 drv_type = vds->driver_types[i].type;
6537 goto done;
6538 }
6539 }
6540
6541 /* check built-in list */
6542 for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6543 if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6544 drv_type = vds_driver_types[i].type;
6545 goto done;
6546 }
6547 }
6548
6549 done:
6550 PR0("driver %s identified as %s", drv_name,
6551 (drv_type == VD_DRIVER_DISK)? "DISK" :
6552 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6553
6554 if (strcmp(drv_name, "zfs") == 0)
6555 vd->zvol = B_TRUE;
6556
6557 *dtype = drv_type;
6558
6559 return (0);
6560 }
6561
6562 static int
vd_setup_vd(vd_t * vd)6563 vd_setup_vd(vd_t *vd)
6564 {
6565 int status, drv_type, pseudo;
6566 dev_info_t *dip;
6567 vnode_t *vnp;
6568 char *path = vd->device_path;
6569 char tq_name[TASKQ_NAMELEN];
6570
6571 /* make sure the vdisk backend is valid */
6572 if ((status = lookupname(path, UIO_SYSSPACE,
6573 FOLLOW, NULLVPP, &vnp)) != 0) {
6574 PR0("Cannot lookup %s errno %d", path, status);
6575 goto done;
6576 }
6577
6578 switch (vnp->v_type) {
6579 case VREG:
6580 /*
6581 * Backend is a file so it is exported as a full disk or as a
6582 * single slice disk using the vnode interface.
6583 */
6584 VN_RELE(vnp);
6585 vd->volume = B_FALSE;
6586 status = vd_setup_backend_vnode(vd);
6587 break;
6588
6589 case VBLK:
6590 case VCHR:
6591 /*
6592 * Backend is a device. In that case, it is exported using the
6593 * LDI interface, and it is exported either as a single-slice
6594 * disk or as a full disk depending on the "slice" option and
6595 * on the type of device.
6596 *
6597 * - A volume device is exported as a single-slice disk if the
6598 * "slice" is specified, otherwise it is exported as a full
6599 * disk.
6600 *
6601 * - A disk slice (different from slice 2) is always exported
6602 * as a single slice disk using the LDI interface.
6603 *
6604 * - The slice 2 of a disk is exported as a single slice disk
6605 * if the "slice" option is specified, otherwise the entire
6606 * disk will be exported.
6607 *
6608 * - The slice of a CD or DVD is exported as single slice disk
6609 * if the "slice" option is specified, otherwise the entire
6610 * disk will be exported.
6611 */
6612
6613 /* check if this is a pseudo device */
6614 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6615 dev_to_instance(vnp->v_rdev), 0)) == NULL) {
6616 PRN("%s is no longer accessible", path);
6617 VN_RELE(vnp);
6618 status = EIO;
6619 break;
6620 }
6621 pseudo = is_pseudo_device(dip);
6622 ddi_release_devi(dip);
6623 VN_RELE(vnp);
6624
6625 if ((status = vd_identify_dev(vd, &drv_type)) != 0) {
6626 if (status != ENODEV && status != ENXIO &&
6627 status != ENOENT && status != EROFS) {
6628 PRN("%s identification failed with status %d",
6629 path, status);
6630 status = EIO;
6631 }
6632 break;
6633 }
6634
6635 /*
6636 * If the driver hasn't been identified then we consider that
6637 * pseudo devices are volumes and other devices are disks.
6638 */
6639 if (drv_type == VD_DRIVER_VOLUME ||
6640 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6641 vd->volume = B_TRUE;
6642 }
6643
6644 /*
6645 * If this is a volume device then its usage depends if the
6646 * "slice" option is set or not. If the "slice" option is set
6647 * then the volume device will be exported as a single slice,
6648 * otherwise it will be exported as a full disk.
6649 *
6650 * For backward compatibility, if vd_volume_force_slice is set
6651 * then we always export volume devices as slices.
6652 */
6653 if (vd->volume && vd_volume_force_slice) {
6654 vd->vdisk_type = VD_DISK_TYPE_SLICE;
6655 vd->nslices = 1;
6656 }
6657
6658 status = vd_setup_backend_ldi(vd);
6659 break;
6660
6661 default:
6662 PRN("Unsupported vdisk backend %s", path);
6663 VN_RELE(vnp);
6664 status = EBADF;
6665 }
6666
6667 done:
6668 if (status != 0) {
6669 /*
6670 * If the error is retryable print an error message only
6671 * during the first try.
6672 */
6673 if (status == ENXIO || status == ENODEV ||
6674 status == ENOENT || status == EROFS) {
6675 if (!(vd->initialized & VD_SETUP_ERROR) &&
6676 !(DEVI_IS_ATTACHING(vd->vds->dip))) {
6677 PRN("%s is currently inaccessible (error %d)",
6678 path, status);
6679 }
6680 status = EAGAIN;
6681 } else {
6682 PRN("%s can not be exported as a virtual disk "
6683 "(error %d)", path, status);
6684 }
6685 vd->initialized |= VD_SETUP_ERROR;
6686
6687 } else if (vd->initialized & VD_SETUP_ERROR) {
6688 /* print a message only if we previously had an error */
6689 PRN("%s is now online", path);
6690 vd->initialized &= ~VD_SETUP_ERROR;
6691 }
6692
6693 /*
6694 * For file or ZFS volume we also need an I/O queue.
6695 *
6696 * The I/O task queue is initialized here and not in vds_do_init_vd()
6697 * (as the start and completion queues) because vd_setup_vd() will be
6698 * call again if the backend is not available, and we need to know if
6699 * the backend is a ZFS volume or a file.
6700 */
6701 if ((vd->file || vd->zvol) && vd->ioq == NULL) {
6702 (void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id);
6703
6704 if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name,
6705 vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) {
6706 PRN("Could not create io task queue");
6707 return (EIO);
6708 }
6709 }
6710
6711 return (status);
6712 }
6713
6714 static int
vds_do_init_vd(vds_t * vds,uint64_t id,char * device_path,uint64_t options,uint64_t ldc_id,vd_t ** vdp)6715 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6716 uint64_t ldc_id, vd_t **vdp)
6717 {
6718 char tq_name[TASKQ_NAMELEN];
6719 int status;
6720 ddi_iblock_cookie_t iblock = NULL;
6721 ldc_attr_t ldc_attr;
6722 vd_t *vd;
6723
6724
6725 ASSERT(vds != NULL);
6726 ASSERT(device_path != NULL);
6727 ASSERT(vdp != NULL);
6728 PR0("Adding vdisk for %s", device_path);
6729
6730 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6731 PRN("No memory for virtual disk");
6732 return (EAGAIN);
6733 }
6734 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */
6735 vd->id = id;
6736 vd->vds = vds;
6737 (void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6738
6739 /* Setup open flags */
6740 vd->open_flags = FREAD;
6741
6742 if (!(options & VD_OPT_RDONLY))
6743 vd->open_flags |= FWRITE;
6744
6745 if (options & VD_OPT_EXCLUSIVE)
6746 vd->open_flags |= FEXCL;
6747
6748 /* Setup disk type */
6749 if (options & VD_OPT_SLICE) {
6750 vd->vdisk_type = VD_DISK_TYPE_SLICE;
6751 vd->nslices = 1;
6752 } else {
6753 vd->vdisk_type = VD_DISK_TYPE_DISK;
6754 vd->nslices = V_NUMPAR;
6755 }
6756
6757 /* default disk label */
6758 vd->vdisk_label = VD_DISK_LABEL_UNK;
6759
6760 /* Open vdisk and initialize parameters */
6761 if ((status = vd_setup_vd(vd)) == 0) {
6762 vd->initialized |= VD_DISK_READY;
6763
6764 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6765 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6766 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6767 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6768 vd->nslices);
6769 } else {
6770 if (status != EAGAIN)
6771 return (status);
6772 }
6773
6774 /* Initialize locking */
6775 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6776 &iblock) != DDI_SUCCESS) {
6777 PRN("Could not get iblock cookie.");
6778 return (EIO);
6779 }
6780
6781 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6782 vd->initialized |= VD_LOCKING;
6783
6784
6785 /* Create start and completion task queues for the vdisk */
6786 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6787 PR1("tq_name = %s", tq_name);
6788 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6789 TASKQ_DEFAULTPRI, 0)) == NULL) {
6790 PRN("Could not create task queue");
6791 return (EIO);
6792 }
6793 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6794 PR1("tq_name = %s", tq_name);
6795 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6796 TASKQ_DEFAULTPRI, 0)) == NULL) {
6797 PRN("Could not create task queue");
6798 return (EIO);
6799 }
6800
6801 /* Allocate the staging buffer */
6802 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */
6803 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6804
6805 vd->enabled = 1; /* before callback can dispatch to startq */
6806
6807
6808 /* Bring up LDC */
6809 ldc_attr.devclass = LDC_DEV_BLK_SVC;
6810 ldc_attr.instance = ddi_get_instance(vds->dip);
6811 ldc_attr.mode = LDC_MODE_UNRELIABLE;
6812 ldc_attr.mtu = VD_LDC_MTU;
6813 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6814 PRN("Could not initialize LDC channel %lx, "
6815 "init failed with error %d", ldc_id, status);
6816 return (status);
6817 }
6818 vd->initialized |= VD_LDC;
6819
6820 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6821 (caddr_t)vd)) != 0) {
6822 PRN("Could not initialize LDC channel %lu,"
6823 "reg_callback failed with error %d", ldc_id, status);
6824 return (status);
6825 }
6826
6827 if ((status = ldc_open(vd->ldc_handle)) != 0) {
6828 PRN("Could not initialize LDC channel %lu,"
6829 "open failed with error %d", ldc_id, status);
6830 return (status);
6831 }
6832
6833 if ((status = ldc_up(vd->ldc_handle)) != 0) {
6834 PR0("ldc_up() returned errno %d", status);
6835 }
6836
6837 /* Allocate the inband task memory handle */
6838 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6839 if (status) {
6840 PRN("Could not initialize LDC channel %lu,"
6841 "alloc_handle failed with error %d", ldc_id, status);
6842 return (ENXIO);
6843 }
6844
6845 /* Add the successfully-initialized vdisk to the server's table */
6846 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6847 PRN("Error adding vdisk ID %lu to table", id);
6848 return (EIO);
6849 }
6850
6851 /* store initial state */
6852 vd->state = VD_STATE_INIT;
6853
6854 return (0);
6855 }
6856
6857 static void
vd_free_dring_task(vd_t * vdp)6858 vd_free_dring_task(vd_t *vdp)
6859 {
6860 if (vdp->dring_task != NULL) {
6861 ASSERT(vdp->dring_len != 0);
6862 /* Free all dring_task memory handles */
6863 for (int i = 0; i < vdp->dring_len; i++) {
6864 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6865 kmem_free(vdp->dring_task[i].request,
6866 (vdp->descriptor_size -
6867 sizeof (vio_dring_entry_hdr_t)));
6868 vdp->dring_task[i].request = NULL;
6869 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6870 vdp->dring_task[i].msg = NULL;
6871 }
6872 kmem_free(vdp->dring_task,
6873 (sizeof (*vdp->dring_task)) * vdp->dring_len);
6874 vdp->dring_task = NULL;
6875 }
6876
6877 if (vdp->write_queue != NULL) {
6878 kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len);
6879 vdp->write_queue = NULL;
6880 }
6881 }
6882
6883 /*
6884 * Destroy the state associated with a virtual disk
6885 */
6886 static void
vds_destroy_vd(void * arg)6887 vds_destroy_vd(void *arg)
6888 {
6889 vd_t *vd = (vd_t *)arg;
6890 int retry = 0, rv;
6891
6892 if (vd == NULL)
6893 return;
6894
6895 PR0("Destroying vdisk state");
6896
6897 /* Disable queuing requests for the vdisk */
6898 if (vd->initialized & VD_LOCKING) {
6899 mutex_enter(&vd->lock);
6900 vd->enabled = 0;
6901 mutex_exit(&vd->lock);
6902 }
6903
6904 /* Drain and destroy start queue (*before* destroying ioq) */
6905 if (vd->startq != NULL)
6906 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */
6907
6908 /* Drain and destroy the I/O queue (*before* destroying completionq) */
6909 if (vd->ioq != NULL)
6910 ddi_taskq_destroy(vd->ioq);
6911
6912 /* Drain and destroy completion queue (*before* shutting down LDC) */
6913 if (vd->completionq != NULL)
6914 ddi_taskq_destroy(vd->completionq); /* waits for tasks */
6915
6916 vd_free_dring_task(vd);
6917
6918 /* Free the inband task memory handle */
6919 (void) ldc_mem_free_handle(vd->inband_task.mhdl);
6920
6921 /* Shut down LDC */
6922 if (vd->initialized & VD_LDC) {
6923 /* unmap the dring */
6924 if (vd->initialized & VD_DRING)
6925 (void) ldc_mem_dring_unmap(vd->dring_handle);
6926
6927 /* close LDC channel - retry on EAGAIN */
6928 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6929 if (++retry > vds_ldc_retries) {
6930 PR0("Timed out closing channel");
6931 break;
6932 }
6933 drv_usecwait(vds_ldc_delay);
6934 }
6935 if (rv == 0) {
6936 (void) ldc_unreg_callback(vd->ldc_handle);
6937 (void) ldc_fini(vd->ldc_handle);
6938 } else {
6939 /*
6940 * Closing the LDC channel has failed. Ideally we should
6941 * fail here but there is no Zeus level infrastructure
6942 * to handle this. The MD has already been changed and
6943 * we have to do the close. So we try to do as much
6944 * clean up as we can.
6945 */
6946 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6947 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6948 drv_usecwait(vds_ldc_delay);
6949 }
6950 }
6951
6952 /* Free the staging buffer for msgs */
6953 if (vd->vio_msgp != NULL) {
6954 kmem_free(vd->vio_msgp, vd->max_msglen);
6955 vd->vio_msgp = NULL;
6956 }
6957
6958 /* Free the inband message buffer */
6959 if (vd->inband_task.msg != NULL) {
6960 kmem_free(vd->inband_task.msg, vd->max_msglen);
6961 vd->inband_task.msg = NULL;
6962 }
6963
6964 if (vd->file) {
6965 /* Close file */
6966 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6967 0, kcred, NULL);
6968 VN_RELE(vd->file_vnode);
6969 } else {
6970 /* Close any open backing-device slices */
6971 for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6972 if (vd->ldi_handle[slice] != NULL) {
6973 PR0("Closing slice %u", slice);
6974 (void) ldi_close(vd->ldi_handle[slice],
6975 vd->open_flags, kcred);
6976 }
6977 }
6978 }
6979
6980 /* Free disk image devid */
6981 if (vd->dskimg_devid != NULL)
6982 ddi_devid_free(vd->dskimg_devid);
6983
6984 /* Free any fake label */
6985 if (vd->flabel) {
6986 kmem_free(vd->flabel, vd->flabel_size);
6987 vd->flabel = NULL;
6988 vd->flabel_size = 0;
6989 }
6990
6991 /* Free lock */
6992 if (vd->initialized & VD_LOCKING)
6993 mutex_destroy(&vd->lock);
6994
6995 /* Finally, free the vdisk structure itself */
6996 kmem_free(vd, sizeof (*vd));
6997 }
6998
6999 static int
vds_init_vd(vds_t * vds,uint64_t id,char * device_path,uint64_t options,uint64_t ldc_id)7000 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
7001 uint64_t ldc_id)
7002 {
7003 int status;
7004 vd_t *vd = NULL;
7005
7006
7007 if ((status = vds_do_init_vd(vds, id, device_path, options,
7008 ldc_id, &vd)) != 0)
7009 vds_destroy_vd(vd);
7010
7011 return (status);
7012 }
7013
7014 static int
vds_do_get_ldc_id(md_t * md,mde_cookie_t vd_node,mde_cookie_t * channel,uint64_t * ldc_id)7015 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
7016 uint64_t *ldc_id)
7017 {
7018 int num_channels;
7019
7020
7021 /* Look for channel endpoint child(ren) of the vdisk MD node */
7022 if ((num_channels = md_scan_dag(md, vd_node,
7023 md_find_name(md, VD_CHANNEL_ENDPOINT),
7024 md_find_name(md, "fwd"), channel)) <= 0) {
7025 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
7026 return (-1);
7027 }
7028
7029 /* Get the "id" value for the first channel endpoint node */
7030 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
7031 PRN("No \"%s\" property found for \"%s\" of vdisk",
7032 VD_ID_PROP, VD_CHANNEL_ENDPOINT);
7033 return (-1);
7034 }
7035
7036 if (num_channels > 1) {
7037 PRN("Using ID of first of multiple channels for this vdisk");
7038 }
7039
7040 return (0);
7041 }
7042
7043 static int
vds_get_ldc_id(md_t * md,mde_cookie_t vd_node,uint64_t * ldc_id)7044 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
7045 {
7046 int num_nodes, status;
7047 size_t size;
7048 mde_cookie_t *channel;
7049
7050
7051 if ((num_nodes = md_node_count(md)) <= 0) {
7052 PRN("Invalid node count in Machine Description subtree");
7053 return (-1);
7054 }
7055 size = num_nodes*(sizeof (*channel));
7056 channel = kmem_zalloc(size, KM_SLEEP);
7057 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
7058 kmem_free(channel, size);
7059
7060 return (status);
7061 }
7062
7063 /*
7064 * Function:
7065 * vds_get_options
7066 *
7067 * Description:
7068 * Parse the options of a vds node. Options are defined as an array
7069 * of strings in the vds-block-device-opts property of the vds node
7070 * in the machine description. Options are returned as a bitmask. The
7071 * mapping between the bitmask options and the options strings from the
7072 * machine description is defined in the vd_bdev_options[] array.
7073 *
7074 * The vds-block-device-opts property is optional. If a vds has no such
7075 * property then no option is defined.
7076 *
7077 * Parameters:
7078 * md - machine description.
7079 * vd_node - vds node in the machine description for which
7080 * options have to be parsed.
7081 * options - the returned options.
7082 *
7083 * Return Code:
7084 * none.
7085 */
7086 static void
vds_get_options(md_t * md,mde_cookie_t vd_node,uint64_t * options)7087 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
7088 {
7089 char *optstr, *opt;
7090 int len, n, i;
7091
7092 *options = 0;
7093
7094 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
7095 (uint8_t **)&optstr, &len) != 0) {
7096 PR0("No options found");
7097 return;
7098 }
7099
7100 /* parse options */
7101 opt = optstr;
7102 n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
7103
7104 while (opt < optstr + len) {
7105 for (i = 0; i < n; i++) {
7106 if (strncmp(vd_bdev_options[i].vdo_name,
7107 opt, VD_OPTION_NLEN) == 0) {
7108 *options |= vd_bdev_options[i].vdo_value;
7109 break;
7110 }
7111 }
7112
7113 if (i < n) {
7114 PR0("option: %s", opt);
7115 } else {
7116 PRN("option %s is unknown or unsupported", opt);
7117 }
7118
7119 opt += strlen(opt) + 1;
7120 }
7121 }
7122
7123 static void
vds_driver_types_free(vds_t * vds)7124 vds_driver_types_free(vds_t *vds)
7125 {
7126 if (vds->driver_types != NULL) {
7127 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
7128 vds->num_drivers);
7129 vds->driver_types = NULL;
7130 vds->num_drivers = 0;
7131 }
7132 }
7133
7134 /*
7135 * Update the driver type list with information from vds.conf.
7136 */
7137 static void
vds_driver_types_update(vds_t * vds)7138 vds_driver_types_update(vds_t *vds)
7139 {
7140 char **list, *s;
7141 uint_t i, num, count = 0, len;
7142
7143 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
7144 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
7145 DDI_PROP_SUCCESS)
7146 return;
7147
7148 /*
7149 * We create a driver_types list with as many as entries as there
7150 * is in the driver-type-list from vds.conf. However only valid
7151 * entries will be populated (i.e. entries from driver-type-list
7152 * with a valid syntax). Invalid entries will be left blank so
7153 * they will have no driver name and the driver type will be
7154 * VD_DRIVER_UNKNOWN (= 0).
7155 */
7156 vds->num_drivers = num;
7157 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
7158 KM_SLEEP);
7159
7160 for (i = 0; i < num; i++) {
7161
7162 s = strchr(list[i], ':');
7163
7164 if (s == NULL) {
7165 PRN("vds.conf: driver-type-list, entry %d (%s): "
7166 "a colon is expected in the entry",
7167 i, list[i]);
7168 continue;
7169 }
7170
7171 len = (uintptr_t)s - (uintptr_t)list[i];
7172
7173 if (len == 0) {
7174 PRN("vds.conf: driver-type-list, entry %d (%s): "
7175 "the driver name is empty",
7176 i, list[i]);
7177 continue;
7178 }
7179
7180 if (len >= VD_DRIVER_NAME_LEN) {
7181 PRN("vds.conf: driver-type-list, entry %d (%s): "
7182 "the driver name is too long",
7183 i, list[i]);
7184 continue;
7185 }
7186
7187 if (strcmp(s + 1, "disk") == 0) {
7188
7189 vds->driver_types[i].type = VD_DRIVER_DISK;
7190
7191 } else if (strcmp(s + 1, "volume") == 0) {
7192
7193 vds->driver_types[i].type = VD_DRIVER_VOLUME;
7194
7195 } else {
7196 PRN("vds.conf: driver-type-list, entry %d (%s): "
7197 "the driver type is invalid",
7198 i, list[i]);
7199 continue;
7200 }
7201
7202 (void) strncpy(vds->driver_types[i].name, list[i], len);
7203
7204 PR0("driver-type-list, entry %d (%s) added",
7205 i, list[i]);
7206
7207 count++;
7208 }
7209
7210 ddi_prop_free(list);
7211
7212 if (count == 0) {
7213 /* nothing was added, clean up */
7214 vds_driver_types_free(vds);
7215 }
7216 }
7217
7218 static void
vds_add_vd(vds_t * vds,md_t * md,mde_cookie_t vd_node)7219 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7220 {
7221 char *device_path = NULL;
7222 uint64_t id = 0, ldc_id = 0, options = 0;
7223
7224 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7225 PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
7226 return;
7227 }
7228 PR0("Adding vdisk ID %lu", id);
7229 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
7230 &device_path) != 0) {
7231 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7232 return;
7233 }
7234
7235 vds_get_options(md, vd_node, &options);
7236
7237 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
7238 PRN("Error getting LDC ID for vdisk %lu", id);
7239 return;
7240 }
7241
7242 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
7243 PRN("Failed to add vdisk ID %lu", id);
7244 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7245 PRN("No vDisk entry found for vdisk ID %lu", id);
7246 return;
7247 }
7248 }
7249
7250 static void
vds_remove_vd(vds_t * vds,md_t * md,mde_cookie_t vd_node)7251 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7252 {
7253 uint64_t id = 0;
7254
7255
7256 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7257 PRN("Unable to get \"%s\" property from vdisk's MD node",
7258 VD_ID_PROP);
7259 return;
7260 }
7261 PR0("Removing vdisk ID %lu", id);
7262 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7263 PRN("No vdisk entry found for vdisk ID %lu", id);
7264 }
7265
7266 static void
vds_change_vd(vds_t * vds,md_t * prev_md,mde_cookie_t prev_vd_node,md_t * curr_md,mde_cookie_t curr_vd_node)7267 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
7268 md_t *curr_md, mde_cookie_t curr_vd_node)
7269 {
7270 char *curr_dev, *prev_dev;
7271 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0;
7272 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0;
7273 size_t len;
7274
7275
7276 /* Validate that vdisk ID has not changed */
7277 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
7278 PRN("Error getting previous vdisk \"%s\" property",
7279 VD_ID_PROP);
7280 return;
7281 }
7282 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
7283 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
7284 return;
7285 }
7286 if (curr_id != prev_id) {
7287 PRN("Not changing vdisk: ID changed from %lu to %lu",
7288 prev_id, curr_id);
7289 return;
7290 }
7291
7292 /* Validate that LDC ID has not changed */
7293 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
7294 PRN("Error getting LDC ID for vdisk %lu", prev_id);
7295 return;
7296 }
7297
7298 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
7299 PRN("Error getting LDC ID for vdisk %lu", curr_id);
7300 return;
7301 }
7302 if (curr_ldc_id != prev_ldc_id) {
7303 _NOTE(NOTREACHED); /* lint is confused */
7304 PRN("Not changing vdisk: "
7305 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
7306 return;
7307 }
7308
7309 /* Determine whether device path has changed */
7310 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
7311 &prev_dev) != 0) {
7312 PRN("Error getting previous vdisk \"%s\"",
7313 VD_BLOCK_DEVICE_PROP);
7314 return;
7315 }
7316 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
7317 &curr_dev) != 0) {
7318 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7319 return;
7320 }
7321 if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
7322 (strncmp(curr_dev, prev_dev, len) == 0))
7323 return; /* no relevant (supported) change */
7324
7325 /* Validate that options have not changed */
7326 vds_get_options(prev_md, prev_vd_node, &prev_options);
7327 vds_get_options(curr_md, curr_vd_node, &curr_options);
7328 if (prev_options != curr_options) {
7329 PRN("Not changing vdisk: options changed from %lx to %lx",
7330 prev_options, curr_options);
7331 return;
7332 }
7333
7334 PR0("Changing vdisk ID %lu", prev_id);
7335
7336 /* Remove old state, which will close vdisk and reset */
7337 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
7338 PRN("No entry found for vdisk ID %lu", prev_id);
7339
7340 /* Re-initialize vdisk with new state */
7341 if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
7342 curr_ldc_id) != 0) {
7343 PRN("Failed to change vdisk ID %lu", curr_id);
7344 return;
7345 }
7346 }
7347
7348 static int
vds_process_md(void * arg,mdeg_result_t * md)7349 vds_process_md(void *arg, mdeg_result_t *md)
7350 {
7351 int i;
7352 vds_t *vds = arg;
7353
7354
7355 if (md == NULL)
7356 return (MDEG_FAILURE);
7357 ASSERT(vds != NULL);
7358
7359 for (i = 0; i < md->removed.nelem; i++)
7360 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
7361 for (i = 0; i < md->match_curr.nelem; i++)
7362 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
7363 md->match_curr.mdp, md->match_curr.mdep[i]);
7364 for (i = 0; i < md->added.nelem; i++)
7365 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
7366
7367 return (MDEG_SUCCESS);
7368 }
7369
7370
7371 static int
vds_do_attach(dev_info_t * dip)7372 vds_do_attach(dev_info_t *dip)
7373 {
7374 int status, sz;
7375 int cfg_handle;
7376 minor_t instance = ddi_get_instance(dip);
7377 vds_t *vds;
7378 mdeg_prop_spec_t *pspecp;
7379 mdeg_node_spec_t *ispecp;
7380
7381 /*
7382 * The "cfg-handle" property of a vds node in an MD contains the MD's
7383 * notion of "instance", or unique identifier, for that node; OBP
7384 * stores the value of the "cfg-handle" MD property as the value of
7385 * the "reg" property on the node in the device tree it builds from
7386 * the MD and passes to Solaris. Thus, we look up the devinfo node's
7387 * "reg" property value to uniquely identify this device instance when
7388 * registering with the MD event-generation framework. If the "reg"
7389 * property cannot be found, the device tree state is presumably so
7390 * broken that there is no point in continuing.
7391 */
7392 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7393 VD_REG_PROP)) {
7394 PRN("vds \"%s\" property does not exist", VD_REG_PROP);
7395 return (DDI_FAILURE);
7396 }
7397
7398 /* Get the MD instance for later MDEG registration */
7399 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7400 VD_REG_PROP, -1);
7401
7402 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
7403 PRN("Could not allocate state for instance %u", instance);
7404 return (DDI_FAILURE);
7405 }
7406
7407 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
7408 PRN("Could not get state for instance %u", instance);
7409 ddi_soft_state_free(vds_state, instance);
7410 return (DDI_FAILURE);
7411 }
7412
7413 vds->dip = dip;
7414 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
7415 vds_destroy_vd, sizeof (void *));
7416
7417 ASSERT(vds->vd_table != NULL);
7418
7419 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
7420 PRN("ldi_ident_from_dip() returned errno %d", status);
7421 return (DDI_FAILURE);
7422 }
7423 vds->initialized |= VDS_LDI;
7424
7425 /* Register for MD updates */
7426 sz = sizeof (vds_prop_template);
7427 pspecp = kmem_alloc(sz, KM_SLEEP);
7428 bcopy(vds_prop_template, pspecp, sz);
7429
7430 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
7431
7432 /* initialize the complete prop spec structure */
7433 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
7434 ispecp->namep = "virtual-device";
7435 ispecp->specp = pspecp;
7436
7437 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
7438 &vds->mdeg) != MDEG_SUCCESS) {
7439 PRN("Unable to register for MD updates");
7440 kmem_free(ispecp, sizeof (mdeg_node_spec_t));
7441 kmem_free(pspecp, sz);
7442 return (DDI_FAILURE);
7443 }
7444
7445 vds->ispecp = ispecp;
7446 vds->initialized |= VDS_MDEG;
7447
7448 /* Prevent auto-detaching so driver is available whenever MD changes */
7449 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
7450 DDI_PROP_SUCCESS) {
7451 PRN("failed to set \"%s\" property for instance %u",
7452 DDI_NO_AUTODETACH, instance);
7453 }
7454
7455 /* read any user defined driver types from conf file and update list */
7456 vds_driver_types_update(vds);
7457
7458 ddi_report_dev(dip);
7459 return (DDI_SUCCESS);
7460 }
7461
7462 static int
vds_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)7463 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7464 {
7465 int status;
7466
7467 switch (cmd) {
7468 case DDI_ATTACH:
7469 PR0("Attaching");
7470 if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
7471 (void) vds_detach(dip, DDI_DETACH);
7472 return (status);
7473 case DDI_RESUME:
7474 PR0("No action required for DDI_RESUME");
7475 return (DDI_SUCCESS);
7476 default:
7477 return (DDI_FAILURE);
7478 }
7479 }
7480
7481 static struct dev_ops vds_ops = {
7482 DEVO_REV, /* devo_rev */
7483 0, /* devo_refcnt */
7484 ddi_no_info, /* devo_getinfo */
7485 nulldev, /* devo_identify */
7486 nulldev, /* devo_probe */
7487 vds_attach, /* devo_attach */
7488 vds_detach, /* devo_detach */
7489 nodev, /* devo_reset */
7490 NULL, /* devo_cb_ops */
7491 NULL, /* devo_bus_ops */
7492 nulldev, /* devo_power */
7493 ddi_quiesce_not_needed, /* devo_quiesce */
7494 };
7495
7496 static struct modldrv modldrv = {
7497 &mod_driverops,
7498 "virtual disk server",
7499 &vds_ops,
7500 };
7501
7502 static struct modlinkage modlinkage = {
7503 MODREV_1,
7504 &modldrv,
7505 NULL
7506 };
7507
7508
7509 int
_init(void)7510 _init(void)
7511 {
7512 int status;
7513
7514 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7515 return (status);
7516
7517 if ((status = mod_install(&modlinkage)) != 0) {
7518 ddi_soft_state_fini(&vds_state);
7519 return (status);
7520 }
7521
7522 return (0);
7523 }
7524
7525 int
_info(struct modinfo * modinfop)7526 _info(struct modinfo *modinfop)
7527 {
7528 return (mod_info(&modlinkage, modinfop));
7529 }
7530
7531 int
_fini(void)7532 _fini(void)
7533 {
7534 int status;
7535
7536 if ((status = mod_remove(&modlinkage)) != 0)
7537 return (status);
7538 ddi_soft_state_fini(&vds_state);
7539 return (0);
7540 }
7541