xref: /titanic_41/usr/src/uts/sun4v/io/vds.c (revision ed5289f91b9bf164dccd6c75398362be77a4478d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Virtual disk server
29  */
30 
31 
32 #include <sys/types.h>
33 #include <sys/conf.h>
34 #include <sys/crc32.h>
35 #include <sys/ddi.h>
36 #include <sys/dkio.h>
37 #include <sys/file.h>
38 #include <sys/fs/hsfs_isospec.h>
39 #include <sys/mdeg.h>
40 #include <sys/mhd.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vio_util.h>
50 #include <sys/vdsk_mailbox.h>
51 #include <sys/vdsk_common.h>
52 #include <sys/vtoc.h>
53 #include <sys/vfs.h>
54 #include <sys/stat.h>
55 #include <sys/scsi/impl/uscsi.h>
56 #include <sys/ontrap.h>
57 #include <vm/seg_map.h>
58 
59 #define	ONE_MEGABYTE	(1ULL << 20)
60 #define	ONE_GIGABYTE	(1ULL << 30)
61 #define	ONE_TERABYTE	(1ULL << 40)
62 
63 /* Virtual disk server initialization flags */
64 #define	VDS_LDI			0x01
65 #define	VDS_MDEG		0x02
66 
67 /* Virtual disk server tunable parameters */
68 #define	VDS_RETRIES		5
69 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
70 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
71 #define	VDS_NCHAINS		32
72 
73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
74 #define	VDS_NAME		"virtual-disk-server"
75 
76 #define	VD_NAME			"vd"
77 #define	VD_VOLUME_NAME		"vdisk"
78 #define	VD_ASCIILABEL		"Virtual Disk"
79 
80 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
81 #define	VD_ID_PROP		"id"
82 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
83 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
84 #define	VD_REG_PROP		"reg"
85 
86 /* Virtual disk initialization flags */
87 #define	VD_DISK_READY		0x01
88 #define	VD_LOCKING		0x02
89 #define	VD_LDC			0x04
90 #define	VD_DRING		0x08
91 #define	VD_SID			0x10
92 #define	VD_SEQ_NUM		0x20
93 #define	VD_SETUP_ERROR		0x40
94 
95 /* Flags for writing to a vdisk which is a file */
96 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
97 
98 /* Number of backup labels */
99 #define	VD_DSKIMG_NUM_BACKUP	5
100 
101 /* Timeout for SCSI I/O */
102 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
103 
104 /* Maximum number of logical partitions */
105 #define	VD_MAXPART	(NDKMAP + 1)
106 
107 /*
108  * By Solaris convention, slice/partition 2 represents the entire disk;
109  * unfortunately, this convention does not appear to be codified.
110  */
111 #define	VD_ENTIRE_DISK_SLICE	2
112 
113 /* Logical block address for EFI */
114 #define	VD_EFI_LBA_GPT		1	/* LBA of the GPT */
115 #define	VD_EFI_LBA_GPE		2	/* LBA of the GPE */
116 
117 /* Driver types */
118 typedef enum vd_driver {
119 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
120 	VD_DRIVER_DISK,		/* disk driver */
121 	VD_DRIVER_VOLUME	/* volume driver */
122 } vd_driver_t;
123 
124 #define	VD_DRIVER_NAME_LEN	64
125 
126 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
127 
128 typedef struct vd_driver_type {
129 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
130 	vd_driver_t type;		/* driver type (disk or volume) */
131 } vd_driver_type_t;
132 
133 /*
134  * There is no reliable way to determine if a device is representing a disk
135  * or a volume, especially with pseudo devices. So we maintain a list of well
136  * known drivers and the type of device they represent (either a disk or a
137  * volume).
138  *
139  * The list can be extended by adding a "driver-type-list" entry in vds.conf
140  * with the following syntax:
141  *
142  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
143  *
144  * Where:
145  *	<driver> is the name of a driver (limited to 64 characters)
146  *	<type> is either the string "disk" or "volume"
147  *
148  * Invalid entries in "driver-type-list" will be ignored.
149  *
150  * For example, the following line in vds.conf:
151  *
152  * 	driver-type-list="foo:disk","bar:volume";
153  *
154  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
155  *
156  * When a list is defined in vds.conf, it is checked before the built-in list
157  * (vds_driver_types[]) so that any definition from this list can be overriden
158  * using vds.conf.
159  */
160 vd_driver_type_t vds_driver_types[] = {
161 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
162 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
163 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
164 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
165 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
166 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
167 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
168 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
169 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
170 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
171 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
172 };
173 
174 /* Return a cpp token as a string */
175 #define	STRINGIZE(token)	#token
176 
177 /*
178  * Print a message prefixed with the current function name to the message log
179  * (and optionally to the console for verbose boots); these macros use cpp's
180  * concatenation of string literals and C99 variable-length-argument-list
181  * macros
182  */
183 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
184 #define	_PRN(format, ...)					\
185 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
186 
187 /* Return a pointer to the "i"th vdisk dring element */
188 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
189 	    (vd->dring + (i)*vd->descriptor_size))
190 
191 /* Return the virtual disk client's type as a string (for use in messages) */
192 #define	VD_CLIENT(vd)							\
193 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
194 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
195 		(((vd)->xfer_mode == 0) ? "null client" :		\
196 		    "unsupported client")))
197 
198 /* Read disk label from a disk image */
199 #define	VD_DSKIMG_LABEL_READ(vd, labelp) \
200 	vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
201 	    0, sizeof (struct dk_label))
202 
203 /* Write disk label to a disk image */
204 #define	VD_DSKIMG_LABEL_WRITE(vd, labelp)	\
205 	vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
206 	    0, sizeof (struct dk_label))
207 
208 /* Identify if a backend is a disk image */
209 #define	VD_DSKIMG(vd)	((vd)->vdisk_type == VD_DISK_TYPE_DISK &&	\
210 	((vd)->file || (vd)->volume))
211 
212 /* Message for disk access rights reset failure */
213 #define	VD_RESET_ACCESS_FAILURE_MSG \
214 	"Fail to reset disk access rights for disk %s"
215 
216 /*
217  * Specification of an MD node passed to the MDEG to filter any
218  * 'vport' nodes that do not belong to the specified node. This
219  * template is copied for each vds instance and filled in with
220  * the appropriate 'cfg-handle' value before being passed to the MDEG.
221  */
222 static mdeg_prop_spec_t	vds_prop_template[] = {
223 	{ MDET_PROP_STR,	"name",		VDS_NAME },
224 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
225 	{ MDET_LIST_END,	NULL, 		NULL }
226 };
227 
228 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
229 
230 /*
231  * Matching criteria passed to the MDEG to register interest
232  * in changes to 'virtual-device-port' nodes identified by their
233  * 'id' property.
234  */
235 static md_prop_match_t	vd_prop_match[] = {
236 	{ MDET_PROP_VAL,	VD_ID_PROP },
237 	{ MDET_LIST_END,	NULL }
238 };
239 
240 static mdeg_node_match_t vd_match = {"virtual-device-port",
241 				    vd_prop_match};
242 
243 /*
244  * Options for the VD_BLOCK_DEVICE_OPTS property.
245  */
246 #define	VD_OPT_RDONLY		0x1	/* read-only  */
247 #define	VD_OPT_SLICE		0x2	/* single slice */
248 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
249 
250 #define	VD_OPTION_NLEN	128
251 
252 typedef struct vd_option {
253 	char vdo_name[VD_OPTION_NLEN];
254 	uint64_t vdo_value;
255 } vd_option_t;
256 
257 vd_option_t vd_bdev_options[] = {
258 	{ "ro",		VD_OPT_RDONLY },
259 	{ "slice", 	VD_OPT_SLICE },
260 	{ "excl",	VD_OPT_EXCLUSIVE }
261 };
262 
263 /* Debugging macros */
264 #ifdef DEBUG
265 
266 static int	vd_msglevel = 0;
267 
268 #define	PR0 if (vd_msglevel > 0)	PRN
269 #define	PR1 if (vd_msglevel > 1)	PRN
270 #define	PR2 if (vd_msglevel > 2)	PRN
271 
272 #define	VD_DUMP_DRING_ELEM(elem)					\
273 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
274 	    elem->hdr.dstate,						\
275 	    elem->payload.operation,					\
276 	    elem->payload.status,					\
277 	    elem->payload.nbytes,					\
278 	    elem->payload.addr,						\
279 	    elem->payload.ncookies);
280 
281 char *
282 vd_decode_state(int state)
283 {
284 	char *str;
285 
286 #define	CASE_STATE(_s)	case _s: str = #_s; break;
287 
288 	switch (state) {
289 	CASE_STATE(VD_STATE_INIT)
290 	CASE_STATE(VD_STATE_VER)
291 	CASE_STATE(VD_STATE_ATTR)
292 	CASE_STATE(VD_STATE_DRING)
293 	CASE_STATE(VD_STATE_RDX)
294 	CASE_STATE(VD_STATE_DATA)
295 	default: str = "unknown"; break;
296 	}
297 
298 #undef CASE_STATE
299 
300 	return (str);
301 }
302 
303 void
304 vd_decode_tag(vio_msg_t *msg)
305 {
306 	char *tstr, *sstr, *estr;
307 
308 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
309 
310 	switch (msg->tag.vio_msgtype) {
311 	CASE_TYPE(VIO_TYPE_CTRL)
312 	CASE_TYPE(VIO_TYPE_DATA)
313 	CASE_TYPE(VIO_TYPE_ERR)
314 	default: tstr = "unknown"; break;
315 	}
316 
317 #undef CASE_TYPE
318 
319 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
320 
321 	switch (msg->tag.vio_subtype) {
322 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
323 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
324 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
325 	default: sstr = "unknown"; break;
326 	}
327 
328 #undef CASE_SUBTYPE
329 
330 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
331 
332 	switch (msg->tag.vio_subtype_env) {
333 	CASE_ENV(VIO_VER_INFO)
334 	CASE_ENV(VIO_ATTR_INFO)
335 	CASE_ENV(VIO_DRING_REG)
336 	CASE_ENV(VIO_DRING_UNREG)
337 	CASE_ENV(VIO_RDX)
338 	CASE_ENV(VIO_PKT_DATA)
339 	CASE_ENV(VIO_DESC_DATA)
340 	CASE_ENV(VIO_DRING_DATA)
341 	default: estr = "unknown"; break;
342 	}
343 
344 #undef CASE_ENV
345 
346 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
347 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
348 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
349 }
350 
351 #else	/* !DEBUG */
352 
353 #define	PR0(...)
354 #define	PR1(...)
355 #define	PR2(...)
356 
357 #define	VD_DUMP_DRING_ELEM(elem)
358 
359 #define	vd_decode_state(_s)	(NULL)
360 #define	vd_decode_tag(_s)	(NULL)
361 
362 #endif	/* DEBUG */
363 
364 
365 /*
366  * Soft state structure for a vds instance
367  */
368 typedef struct vds {
369 	uint_t		initialized;	/* driver inst initialization flags */
370 	dev_info_t	*dip;		/* driver inst devinfo pointer */
371 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
372 	mod_hash_t	*vd_table;	/* table of virtual disks served */
373 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
374 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
375 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
376 	int 		num_drivers;	/* num of extra driver types */
377 } vds_t;
378 
379 /*
380  * Types of descriptor-processing tasks
381  */
382 typedef enum vd_task_type {
383 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
384 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
385 } vd_task_type_t;
386 
387 /*
388  * Structure describing the task for processing a descriptor
389  */
390 typedef struct vd_task {
391 	struct vd		*vd;		/* vd instance task is for */
392 	vd_task_type_t		type;		/* type of descriptor task */
393 	int			index;		/* dring elem index for task */
394 	vio_msg_t		*msg;		/* VIO message task is for */
395 	size_t			msglen;		/* length of message content */
396 	vd_dring_payload_t	*request;	/* request task will perform */
397 	struct buf		buf;		/* buf(9s) for I/O request */
398 	ldc_mem_handle_t	mhdl;		/* task memory handle */
399 	int			status;		/* status of processing task */
400 	int	(*completef)(struct vd_task *task); /* completion func ptr */
401 } vd_task_t;
402 
403 /*
404  * Soft state structure for a virtual disk instance
405  */
406 typedef struct vd {
407 	uint_t			initialized;	/* vdisk initialization flags */
408 	uint64_t		operations;	/* bitmask of VD_OPs exported */
409 	vio_ver_t		version;	/* ver negotiated with client */
410 	vds_t			*vds;		/* server for this vdisk */
411 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
412 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
413 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
414 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
415 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
416 	int			open_flags;	/* open flags */
417 	uint_t			nslices;	/* number of slices we export */
418 	size_t			vdisk_size;	/* number of blocks in vdisk */
419 	size_t			vdisk_block_size; /* size of each vdisk block */
420 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
421 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
422 	vd_media_t		vdisk_media;	/* media type of backing dev. */
423 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
424 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
425 	size_t			block_size;	/* blk size of actual device */
426 	boolean_t		volume;		/* is vDisk backed by volume */
427 	boolean_t		zvol;		/* is vDisk backed by a zvol */
428 	boolean_t		file;		/* is vDisk backed by a file? */
429 	boolean_t		scsi;		/* is vDisk backed by scsi? */
430 	vnode_t			*file_vnode;	/* file vnode */
431 	size_t			dskimg_size;	/* size of disk image */
432 	ddi_devid_t		dskimg_devid;	/* devid for disk image */
433 	int			efi_reserved;	/* EFI reserved slice */
434 	caddr_t			flabel;		/* fake label for slice type */
435 	uint_t			flabel_size;	/* fake label size */
436 	uint_t			flabel_limit;	/* limit of the fake label */
437 	struct dk_geom		dk_geom;	/* synthetic for slice type */
438 	struct extvtoc		vtoc;		/* synthetic for slice type */
439 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
440 	boolean_t		ownership;	/* disk ownership status */
441 	ldc_status_t		ldc_state;	/* LDC connection state */
442 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
443 	size_t			max_msglen;	/* largest LDC message len */
444 	vd_state_t		state;		/* client handshake state */
445 	uint8_t			xfer_mode;	/* transfer mode with client */
446 	uint32_t		sid;		/* client's session ID */
447 	uint64_t		seq_num;	/* message sequence number */
448 	uint64_t		dring_ident;	/* identifier of dring */
449 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
450 	uint32_t		descriptor_size;	/* num bytes in desc */
451 	uint32_t		dring_len;	/* number of dring elements */
452 	uint8_t			dring_mtype;	/* dring mem map type */
453 	caddr_t			dring;		/* address of dring */
454 	caddr_t			vio_msgp;	/* vio msg staging buffer */
455 	vd_task_t		inband_task;	/* task for inband descriptor */
456 	vd_task_t		*dring_task;	/* tasks dring elements */
457 
458 	kmutex_t		lock;		/* protects variables below */
459 	boolean_t		enabled;	/* is vdisk enabled? */
460 	boolean_t		reset_state;	/* reset connection state? */
461 	boolean_t		reset_ldc;	/* reset LDC channel? */
462 } vd_t;
463 
464 /*
465  * Macros to manipulate the fake label (flabel) for single slice disks.
466  *
467  * If we fake a VTOC label then the fake label consists of only one block
468  * containing the VTOC label (struct dk_label).
469  *
470  * If we fake an EFI label then the fake label consists of a blank block
471  * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
472  *
473  */
474 #define	VD_LABEL_VTOC_SIZE					\
475 	P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE)
476 
477 #define	VD_LABEL_EFI_SIZE					\
478 	P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + 		\
479 	    sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE)
480 
481 #define	VD_LABEL_VTOC(vd)	\
482 		((struct dk_label *)(void *)((vd)->flabel))
483 
484 #define	VD_LABEL_EFI_GPT(vd)	\
485 		((efi_gpt_t *)(void *)((vd)->flabel + DEV_BSIZE))
486 #define	VD_LABEL_EFI_GPE(vd)	\
487 		((efi_gpe_t *)(void *)((vd)->flabel + DEV_BSIZE + \
488 		sizeof (efi_gpt_t)))
489 
490 
491 typedef struct vds_operation {
492 	char	*namep;
493 	uint8_t	operation;
494 	int	(*start)(vd_task_t *task);
495 	int	(*complete)(vd_task_t *task);
496 } vds_operation_t;
497 
498 typedef struct vd_ioctl {
499 	uint8_t		operation;		/* vdisk operation */
500 	const char	*operation_name;	/* vdisk operation name */
501 	size_t		nbytes;			/* size of operation buffer */
502 	int		cmd;			/* corresponding ioctl cmd */
503 	const char	*cmd_name;		/* ioctl cmd name */
504 	void		*arg;			/* ioctl cmd argument */
505 	/* convert input vd_buf to output ioctl_arg */
506 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
507 	/* convert input ioctl_arg to output vd_buf */
508 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
509 	/* write is true if the operation writes any data to the backend */
510 	boolean_t	write;
511 } vd_ioctl_t;
512 
513 /* Define trivial copyin/copyout conversion function flag */
514 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
515 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
516 
517 
518 static int	vds_ldc_retries = VDS_RETRIES;
519 static int	vds_ldc_delay = VDS_LDC_DELAY;
520 static int	vds_dev_retries = VDS_RETRIES;
521 static int	vds_dev_delay = VDS_DEV_DELAY;
522 static void	*vds_state;
523 
524 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
525 
526 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
527 static int	vd_scsi_debug = USCSI_SILENT;
528 
529 /*
530  * Tunable to define the behavior of the service domain if the vdisk server
531  * fails to reset disk exclusive access when a LDC channel is reset. When a
532  * LDC channel is reset the vdisk server will try to reset disk exclusive
533  * access by releasing any SCSI-2 reservation or resetting the disk. If these
534  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
535  * print a warning message. This default behavior can be changed by setting
536  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
537  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
538  * the service domain to panic. In both cases, the reset of the service domain
539  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
540  */
541 static int 	vd_reset_access_failure = 0;
542 
543 /*
544  * Tunable for backward compatibility. When this variable is set to B_TRUE,
545  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
546  * slice disks whether or not they have the "slice" option set. This is
547  * to provide a simple backward compatibility mechanism when upgrading
548  * the vds driver and using a domain configuration created before the
549  * "slice" option was available.
550  */
551 static boolean_t vd_volume_force_slice = B_FALSE;
552 
553 /*
554  * The label of disk images created with some earlier versions of the virtual
555  * disk software is not entirely correct and have an incorrect v_sanity field
556  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
557  * these images because we are now validating that the disk label (and the
558  * sanity) is correct when a disk image is opened.
559  *
560  * This tunable is set to false to not validate the sanity field and ensure
561  * compatibility. If the tunable is set to true, we will do a strict checking
562  * of the sanity but this can create compatibility problems with old disk
563  * images.
564  */
565 static boolean_t vd_dskimg_validate_sanity = B_FALSE;
566 
567 /*
568  * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
569  */
570 static boolean_t vd_direct_mapped_drings = B_TRUE;
571 
572 /*
573  * When a backend is exported as a single-slice disk then we entirely fake
574  * its disk label. So it can be exported either with a VTOC label or with
575  * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
576  * single-slice disks will be exported with a VTOC label; and if it is set
577  * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
578  * an EFI label.
579  *
580  * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
581  * or volume device then it will be exported with the same type of label as
582  * defined on the device. Otherwise if the backend is a file then it will
583  * exported with the disk label type set in the vd_file_slice_label variable.
584  *
585  * Note that if the backend size is greater than 1TB then it will always be
586  * exported with an EFI label no matter what the setting is.
587  */
588 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
589 
590 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
591 
592 /*
593  * Tunable for backward compatibility. If this variable is set to B_TRUE then
594  * single-slice disks are exported as disks with only one slice instead of
595  * faking a complete disk partitioning.
596  */
597 static boolean_t vd_slice_single_slice = B_FALSE;
598 
599 /*
600  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
601  *
602  * Each supported major version should appear only once, paired with (and only
603  * with) its highest supported minor version number (as the protocol requires
604  * supporting all lower minor version numbers as well)
605  */
606 static const vio_ver_t	vds_version[] = {{1, 1}};
607 static const size_t	vds_num_versions =
608     sizeof (vds_version)/sizeof (vds_version[0]);
609 
610 static void vd_free_dring_task(vd_t *vdp);
611 static int vd_setup_vd(vd_t *vd);
612 static int vd_setup_single_slice_disk(vd_t *vd);
613 static int vd_setup_slice_image(vd_t *vd);
614 static int vd_setup_disk_image(vd_t *vd);
615 static int vd_backend_check_size(vd_t *vd);
616 static boolean_t vd_enabled(vd_t *vd);
617 static ushort_t vd_lbl2cksum(struct dk_label *label);
618 static int vd_dskimg_validate_geometry(vd_t *vd);
619 static boolean_t vd_dskimg_is_iso_image(vd_t *vd);
620 static void vd_set_exported_operations(vd_t *vd);
621 static void vd_reset_access(vd_t *vd);
622 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
623 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
624 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
625 static void vds_driver_types_free(vds_t *vds);
626 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
627     struct dk_label *label);
628 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
629     struct dk_geom *geom);
630 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
631 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
632 
633 extern int is_pseudo_device(dev_info_t *);
634 
635 /*
636  * Function:
637  *	vd_get_readable_size
638  *
639  * Description:
640  * 	Convert a given size in bytes to a human readable format in
641  * 	kilobytes, megabytes, gigabytes or terabytes.
642  *
643  * Parameters:
644  *	full_size	- the size to convert in bytes.
645  *	size		- the converted size.
646  *	unit		- the unit of the converted size: 'K' (kilobyte),
647  *			  'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
648  *
649  * Return Code:
650  *	none
651  */
652 static void
653 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
654 {
655 	if (full_size < (1ULL << 20)) {
656 		*size = full_size >> 10;
657 		*unit = 'K'; /* Kilobyte */
658 	} else if (full_size < (1ULL << 30)) {
659 		*size = full_size >> 20;
660 		*unit = 'M'; /* Megabyte */
661 	} else if (full_size < (1ULL << 40)) {
662 		*size = full_size >> 30;
663 		*unit = 'G'; /* Gigabyte */
664 	} else {
665 		*size = full_size >> 40;
666 		*unit = 'T'; /* Terabyte */
667 	}
668 }
669 
670 /*
671  * Function:
672  *	vd_dskimg_io_params
673  *
674  * Description:
675  * 	Convert virtual disk I/O parameters (slice, block, length) to
676  *	(offset, length) relative to the disk image and according to
677  *	the virtual disk partitioning.
678  *
679  * Parameters:
680  *	vd		- disk on which the operation is performed.
681  *	slice		- slice to which is the I/O parameters apply.
682  *			  VD_SLICE_NONE indicates that parameters are
683  *			  are relative to the entire virtual disk.
684  *	blkp		- pointer to the starting block relative to the
685  *			  slice; return the starting block relative to
686  *			  the disk image.
687  *	lenp		- pointer to the number of bytes requested; return
688  *			  the number of bytes that can effectively be used.
689  *
690  * Return Code:
691  *	0		- I/O parameters have been successfully converted;
692  *			  blkp and lenp point to the converted values.
693  *	ENODATA		- no data are available for the given I/O parameters;
694  *			  This occurs if the starting block is past the limit
695  *			  of the slice.
696  *	EINVAL		- I/O parameters are invalid.
697  */
698 static int
699 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp)
700 {
701 	size_t blk = *blkp;
702 	size_t len = *lenp;
703 	size_t offset, maxlen;
704 
705 	ASSERT(vd->file || VD_DSKIMG(vd));
706 	ASSERT(len > 0);
707 
708 	/*
709 	 * If a file is exported as a slice then we don't care about the vtoc.
710 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
711 	 * handle any I/O as a raw disk access so that we can have access to the
712 	 * entire backend.
713 	 */
714 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
715 		/* raw disk access */
716 		offset = blk * DEV_BSIZE;
717 		if (offset >= vd->dskimg_size) {
718 			/* offset past the end of the disk */
719 			PR0("offset (0x%lx) >= size (0x%lx)",
720 			    offset, vd->dskimg_size);
721 			return (ENODATA);
722 		}
723 		maxlen = vd->dskimg_size - offset;
724 	} else {
725 		ASSERT(slice >= 0 && slice < V_NUMPAR);
726 
727 		/*
728 		 * v1.0 vDisk clients depended on the server not verifying
729 		 * the label of a unformatted disk.  This "feature" is
730 		 * maintained for backward compatibility but all versions
731 		 * from v1.1 onwards must do the right thing.
732 		 */
733 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
734 		    vio_ver_is_supported(vd->version, 1, 1)) {
735 			(void) vd_dskimg_validate_geometry(vd);
736 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
737 				PR0("Unknown disk label, can't do I/O "
738 				    "from slice %d", slice);
739 				return (EINVAL);
740 			}
741 		}
742 
743 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
744 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
745 		} else {
746 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
747 			ASSERT(vd->vdisk_block_size == DEV_BSIZE);
748 		}
749 
750 		if (blk >= vd->slices[slice].nblocks) {
751 			/* address past the end of the slice */
752 			PR0("req_addr (0x%lx) >= psize (0x%lx)",
753 			    blk, vd->slices[slice].nblocks);
754 			return (ENODATA);
755 		}
756 
757 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
758 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
759 	}
760 
761 	/*
762 	 * If the requested size is greater than the size
763 	 * of the partition, truncate the read/write.
764 	 */
765 	if (len > maxlen) {
766 		PR0("I/O size truncated to %lu bytes from %lu bytes",
767 		    maxlen, len);
768 		len = maxlen;
769 	}
770 
771 	/*
772 	 * We have to ensure that we are reading/writing into the mmap
773 	 * range. If we have a partial disk image (e.g. an image of
774 	 * s0 instead s2) the system can try to access slices that
775 	 * are not included into the disk image.
776 	 */
777 	if ((offset + len) > vd->dskimg_size) {
778 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
779 		    "dskimg_size (0x%lx)", offset, len, vd->dskimg_size);
780 		return (EINVAL);
781 	}
782 
783 	*blkp = offset / DEV_BSIZE;
784 	*lenp = len;
785 
786 	return (0);
787 }
788 
789 /*
790  * Function:
791  *	vd_dskimg_rw
792  *
793  * Description:
794  * 	Read or write to a disk image. It handles the case where the disk
795  *	image is a file or a volume exported as a full disk or a file
796  *	exported as single-slice disk. Read or write to volumes exported as
797  *	single slice disks are done by directly using the ldi interface.
798  *
799  * Parameters:
800  *	vd		- disk on which the operation is performed.
801  *	slice		- slice on which the operation is performed,
802  *			  VD_SLICE_NONE indicates that the operation
803  *			  is done using an absolute disk offset.
804  *	operation	- operation to execute: read (VD_OP_BREAD) or
805  *			  write (VD_OP_BWRITE).
806  *	data		- buffer where data are read to or written from.
807  *	blk		- starting block for the operation.
808  *	len		- number of bytes to read or write.
809  *
810  * Return Code:
811  *	n >= 0		- success, n indicates the number of bytes read
812  *			  or written.
813  *	-1		- error.
814  */
815 static ssize_t
816 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset,
817     size_t len)
818 {
819 	caddr_t	maddr;
820 	size_t moffset, mlen, n;
821 	uint_t smflags;
822 	enum seg_rw srw;
823 	ssize_t resid;
824 	struct buf buf;
825 	int status;
826 
827 	ASSERT(vd->file || VD_DSKIMG(vd));
828 	ASSERT(len > 0);
829 
830 	if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0)
831 		return ((status == ENODATA)? 0: -1);
832 
833 	offset *= DEV_BSIZE;
834 
835 	if (vd->volume) {
836 		ASSERT(offset % DEV_BSIZE == 0);
837 
838 		bioinit(&buf);
839 		buf.b_flags	= B_BUSY |
840 		    ((operation == VD_OP_BREAD)? B_READ : B_WRITE);
841 		buf.b_bcount	= len;
842 		buf.b_lblkno	= offset / DEV_BSIZE;
843 		buf.b_edev 	= vd->dev[0];
844 		buf.b_un.b_addr = data;
845 
846 		/*
847 		 * We use ldi_strategy() and not ldi_read()/ldi_write() because
848 		 * the read/write functions of the underlying driver may try to
849 		 * lock pages of the data buffer, and this requires the data
850 		 * buffer to be kmem_alloc'ed (and not allocated on the stack).
851 		 *
852 		 * Also using ldi_strategy() ensures that writes are immediatly
853 		 * commited and not cached as this may be the case with
854 		 * ldi_write() (for example with a ZFS volume).
855 		 */
856 		if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) {
857 			biofini(&buf);
858 			return (-1);
859 		}
860 
861 		if (biowait(&buf) != 0) {
862 			biofini(&buf);
863 			return (-1);
864 		}
865 
866 		resid = buf.b_resid;
867 		biofini(&buf);
868 
869 		ASSERT(resid <= len);
870 		return (len - resid);
871 	}
872 
873 	ASSERT(vd->file);
874 
875 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
876 	smflags = (operation == VD_OP_BREAD)? 0 :
877 	    (SM_WRITE | vd_file_write_flags);
878 	n = len;
879 
880 	do {
881 		/*
882 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
883 		 * MAXBSIZE aligned.
884 		 */
885 		moffset = offset & MAXBOFFSET;
886 		mlen = MIN(MAXBSIZE - moffset, n);
887 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
888 		    mlen, 1, srw);
889 		/*
890 		 * Fault in the pages so we can check for error and ensure
891 		 * that we can safely used the mapped address.
892 		 */
893 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
894 		    F_SOFTLOCK, srw) != 0) {
895 			(void) segmap_release(segkmap, maddr, 0);
896 			return (-1);
897 		}
898 
899 		if (operation == VD_OP_BREAD)
900 			bcopy(maddr + moffset, data, mlen);
901 		else
902 			bcopy(data, maddr + moffset, mlen);
903 
904 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
905 		    F_SOFTUNLOCK, srw) != 0) {
906 			(void) segmap_release(segkmap, maddr, 0);
907 			return (-1);
908 		}
909 		if (segmap_release(segkmap, maddr, smflags) != 0)
910 			return (-1);
911 		n -= mlen;
912 		offset += mlen;
913 		data += mlen;
914 
915 	} while (n > 0);
916 
917 	return (len);
918 }
919 
920 /*
921  * Function:
922  *	vd_build_default_label
923  *
924  * Description:
925  *	Return a default label for a given disk size. This is used when the disk
926  *	does not have a valid VTOC so that the user can get a valid default
927  *	configuration. The default label has all slice sizes set to 0 (except
928  *	slice 2 which is the entire disk) to force the user to write a valid
929  *	label onto the disk image.
930  *
931  * Parameters:
932  *	disk_size	- the disk size in bytes
933  *	label		- the returned default label.
934  *
935  * Return Code:
936  *	none.
937  */
938 static void
939 vd_build_default_label(size_t disk_size, struct dk_label *label)
940 {
941 	size_t size;
942 	char unit;
943 
944 	bzero(label, sizeof (struct dk_label));
945 
946 	/*
947 	 * Ideally we would like the cylinder size (nsect * nhead) to be the
948 	 * same whatever the disk size is. That way the VTOC label could be
949 	 * easily updated in case the disk size is increased (keeping the
950 	 * same cylinder size allows to preserve the existing partitioning
951 	 * when updating the VTOC label). But it is not possible to have
952 	 * a fixed cylinder size and to cover all disk size.
953 	 *
954 	 * So we define different cylinder sizes depending on the disk size.
955 	 * The cylinder size is chosen so that we don't have too few cylinders
956 	 * for a small disk image, or so many on a big disk image that you
957 	 * waste space for backup superblocks or cylinder group structures.
958 	 * Also we must have a resonable number of cylinders and sectors so
959 	 * that newfs can run using default values.
960 	 *
961 	 *	+-----------+--------+---------+--------+
962 	 *	| disk_size |  < 2MB | 2MB-4GB | >= 8GB |
963 	 *	+-----------+--------+---------+--------+
964 	 *	| nhead	    |	 1   |	   1   |    96  |
965 	 *	| nsect	    |  200   |   600   |   768  |
966 	 *	+-----------+--------+---------+--------+
967 	 *
968 	 * Other parameters are computed from these values:
969 	 *
970 	 * 	pcyl = disk_size / (nhead * nsect * 512)
971 	 * 	acyl = (pcyl > 2)? 2 : 0
972 	 * 	ncyl = pcyl - acyl
973 	 *
974 	 * The maximum number of cylinder is 65535 so this allows to define a
975 	 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
976 	 * which is more than enough to cover the maximum size allowed by the
977 	 * extended VTOC format (2TB).
978 	 */
979 
980 	if (disk_size >= 8 * ONE_GIGABYTE) {
981 
982 		label->dkl_nhead = 96;
983 		label->dkl_nsect = 768;
984 
985 	} else if (disk_size >= 2 * ONE_MEGABYTE) {
986 
987 		label->dkl_nhead = 1;
988 		label->dkl_nsect = 600;
989 
990 	} else {
991 
992 		label->dkl_nhead = 1;
993 		label->dkl_nsect = 200;
994 	}
995 
996 	label->dkl_pcyl = disk_size /
997 	    (label->dkl_nsect * label->dkl_nhead * DEV_BSIZE);
998 
999 	if (label->dkl_pcyl == 0)
1000 		label->dkl_pcyl = 1;
1001 
1002 	label->dkl_acyl = 0;
1003 
1004 	if (label->dkl_pcyl > 2)
1005 		label->dkl_acyl = 2;
1006 
1007 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
1008 	label->dkl_write_reinstruct = 0;
1009 	label->dkl_read_reinstruct = 0;
1010 	label->dkl_rpm = 7200;
1011 	label->dkl_apc = 0;
1012 	label->dkl_intrlv = 0;
1013 
1014 	PR0("requested disk size: %ld bytes\n", disk_size);
1015 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
1016 	    label->dkl_nhead, label->dkl_nsect);
1017 	PR0("provided disk size: %ld bytes\n", (uint64_t)
1018 	    (label->dkl_pcyl * label->dkl_nhead *
1019 	    label->dkl_nsect * DEV_BSIZE));
1020 
1021 	vd_get_readable_size(disk_size, &size, &unit);
1022 
1023 	/*
1024 	 * We must have a correct label name otherwise format(1m) will
1025 	 * not recognized the disk as labeled.
1026 	 */
1027 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
1028 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
1029 	    size, unit,
1030 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
1031 	    label->dkl_nsect);
1032 
1033 	/* default VTOC */
1034 	label->dkl_vtoc.v_version = V_EXTVERSION;
1035 	label->dkl_vtoc.v_nparts = V_NUMPAR;
1036 	label->dkl_vtoc.v_sanity = VTOC_SANE;
1037 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
1038 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
1039 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
1040 	    label->dkl_nhead * label->dkl_nsect;
1041 	label->dkl_magic = DKL_MAGIC;
1042 	label->dkl_cksum = vd_lbl2cksum(label);
1043 }
1044 
1045 /*
1046  * Function:
1047  *	vd_dskimg_set_vtoc
1048  *
1049  * Description:
1050  *	Set the vtoc of a disk image by writing the label and backup
1051  *	labels into the disk image backend.
1052  *
1053  * Parameters:
1054  *	vd		- disk on which the operation is performed.
1055  *	label		- the data to be written.
1056  *
1057  * Return Code:
1058  *	0		- success.
1059  *	n > 0		- error, n indicates the errno code.
1060  */
1061 static int
1062 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label)
1063 {
1064 	size_t blk, sec, cyl, head, cnt;
1065 
1066 	ASSERT(VD_DSKIMG(vd));
1067 
1068 	if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) {
1069 		PR0("fail to write disk label");
1070 		return (EIO);
1071 	}
1072 
1073 	/*
1074 	 * Backup labels are on the last alternate cylinder's
1075 	 * first five odd sectors.
1076 	 */
1077 	if (label->dkl_acyl == 0) {
1078 		PR0("no alternate cylinder, can not store backup labels");
1079 		return (0);
1080 	}
1081 
1082 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
1083 	head = label->dkl_nhead - 1;
1084 
1085 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
1086 	    (head * label->dkl_nsect);
1087 
1088 	/*
1089 	 * Write the backup labels. Make sure we don't try to write past
1090 	 * the last cylinder.
1091 	 */
1092 	sec = 1;
1093 
1094 	for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) {
1095 
1096 		if (sec >= label->dkl_nsect) {
1097 			PR0("not enough sector to store all backup labels");
1098 			return (0);
1099 		}
1100 
1101 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1102 		    (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) {
1103 			PR0("error writing backup label at block %lu\n",
1104 			    blk + sec);
1105 			return (EIO);
1106 		}
1107 
1108 		PR1("wrote backup label at block %lu\n", blk + sec);
1109 
1110 		sec += 2;
1111 	}
1112 
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Function:
1118  *	vd_dskimg_get_devid_block
1119  *
1120  * Description:
1121  *	Return the block number where the device id is stored.
1122  *
1123  * Parameters:
1124  *	vd		- disk on which the operation is performed.
1125  *	blkp		- pointer to the block number
1126  *
1127  * Return Code:
1128  *	0		- success
1129  *	ENOSPC		- disk has no space to store a device id
1130  */
1131 static int
1132 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp)
1133 {
1134 	diskaddr_t spc, head, cyl;
1135 
1136 	ASSERT(VD_DSKIMG(vd));
1137 
1138 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1139 		/*
1140 		 * If no label is defined we don't know where to find
1141 		 * a device id.
1142 		 */
1143 		return (ENOSPC);
1144 	}
1145 
1146 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1147 		/*
1148 		 * For an EFI disk, the devid is at the beginning of
1149 		 * the reserved slice
1150 		 */
1151 		if (vd->efi_reserved == -1) {
1152 			PR0("EFI disk has no reserved slice");
1153 			return (ENOSPC);
1154 		}
1155 
1156 		*blkp = vd->slices[vd->efi_reserved].start;
1157 		return (0);
1158 	}
1159 
1160 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1161 
1162 	/* this geometry doesn't allow us to have a devid */
1163 	if (vd->dk_geom.dkg_acyl < 2) {
1164 		PR0("not enough alternate cylinder available for devid "
1165 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
1166 		return (ENOSPC);
1167 	}
1168 
1169 	/* the devid is in on the track next to the last cylinder */
1170 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1171 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1172 	head = vd->dk_geom.dkg_nhead - 1;
1173 
1174 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1175 	    (head * vd->dk_geom.dkg_nsect) + 1;
1176 
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Return the checksum of a disk block containing an on-disk devid.
1182  */
1183 static uint_t
1184 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1185 {
1186 	uint_t chksum, *ip;
1187 	int i;
1188 
1189 	chksum = 0;
1190 	ip = (void *)dkdevid;
1191 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1192 		chksum ^= ip[i];
1193 
1194 	return (chksum);
1195 }
1196 
1197 /*
1198  * Function:
1199  *	vd_dskimg_read_devid
1200  *
1201  * Description:
1202  *	Read the device id stored on a disk image.
1203  *
1204  * Parameters:
1205  *	vd		- disk on which the operation is performed.
1206  *	devid		- the return address of the device ID.
1207  *
1208  * Return Code:
1209  *	0		- success
1210  *	EIO		- I/O error while trying to access the disk image
1211  *	EINVAL		- no valid device id was found
1212  *	ENOSPC		- disk has no space to store a device id
1213  */
1214 static int
1215 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid)
1216 {
1217 	struct dk_devid *dkdevid;
1218 	size_t blk;
1219 	uint_t chksum;
1220 	int status, sz;
1221 
1222 	if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1223 		return (status);
1224 
1225 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1226 
1227 	/* get the devid */
1228 	if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1229 	    DEV_BSIZE)) < 0) {
1230 		PR0("error reading devid block at %lu", blk);
1231 		status = EIO;
1232 		goto done;
1233 	}
1234 
1235 	/* validate the revision */
1236 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1237 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1238 		PR0("invalid devid found at block %lu (bad revision)", blk);
1239 		status = EINVAL;
1240 		goto done;
1241 	}
1242 
1243 	/* compute checksum */
1244 	chksum = vd_dkdevid2cksum(dkdevid);
1245 
1246 	/* compare the checksums */
1247 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1248 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1249 		status = EINVAL;
1250 		goto done;
1251 	}
1252 
1253 	/* validate the device id */
1254 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1255 		PR0("invalid devid found at block %lu", blk);
1256 		status = EINVAL;
1257 		goto done;
1258 	}
1259 
1260 	PR1("devid read at block %lu", blk);
1261 
1262 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1263 	*devid = kmem_alloc(sz, KM_SLEEP);
1264 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1265 
1266 done:
1267 	kmem_free(dkdevid, DEV_BSIZE);
1268 	return (status);
1269 
1270 }
1271 
1272 /*
1273  * Function:
1274  *	vd_dskimg_write_devid
1275  *
1276  * Description:
1277  *	Write a device id into disk image.
1278  *
1279  * Parameters:
1280  *	vd		- disk on which the operation is performed.
1281  *	devid		- the device ID to store.
1282  *
1283  * Return Code:
1284  *	0		- success
1285  *	EIO		- I/O error while trying to access the disk image
1286  *	ENOSPC		- disk has no space to store a device id
1287  */
1288 static int
1289 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid)
1290 {
1291 	struct dk_devid *dkdevid;
1292 	uint_t chksum;
1293 	size_t blk;
1294 	int status;
1295 
1296 	if (devid == NULL) {
1297 		/* nothing to write */
1298 		return (0);
1299 	}
1300 
1301 	if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1302 		return (status);
1303 
1304 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1305 
1306 	/* set revision */
1307 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1308 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1309 
1310 	/* copy devid */
1311 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1312 
1313 	/* compute checksum */
1314 	chksum = vd_dkdevid2cksum(dkdevid);
1315 
1316 	/* set checksum */
1317 	DKD_FORMCHKSUM(chksum, dkdevid);
1318 
1319 	/* store the devid */
1320 	if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1321 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1322 		PR0("Error writing devid block at %lu", blk);
1323 		status = EIO;
1324 	} else {
1325 		PR1("devid written at block %lu", blk);
1326 		status = 0;
1327 	}
1328 
1329 	kmem_free(dkdevid, DEV_BSIZE);
1330 	return (status);
1331 }
1332 
1333 /*
1334  * Function:
1335  *	vd_do_scsi_rdwr
1336  *
1337  * Description:
1338  * 	Read or write to a SCSI disk using an absolute disk offset.
1339  *
1340  * Parameters:
1341  *	vd		- disk on which the operation is performed.
1342  *	operation	- operation to execute: read (VD_OP_BREAD) or
1343  *			  write (VD_OP_BWRITE).
1344  *	data		- buffer where data are read to or written from.
1345  *	blk		- starting block for the operation.
1346  *	len		- number of bytes to read or write.
1347  *
1348  * Return Code:
1349  *	0		- success
1350  *	n != 0		- error.
1351  */
1352 static int
1353 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1354 {
1355 	struct uscsi_cmd ucmd;
1356 	union scsi_cdb cdb;
1357 	int nsectors, nblk;
1358 	int max_sectors;
1359 	int status, rval;
1360 
1361 	ASSERT(!vd->file);
1362 	ASSERT(!vd->volume);
1363 	ASSERT(vd->vdisk_block_size > 0);
1364 
1365 	max_sectors = vd->max_xfer_sz;
1366 	nblk = (len / vd->vdisk_block_size);
1367 
1368 	if (len % vd->vdisk_block_size != 0)
1369 		return (EINVAL);
1370 
1371 	/*
1372 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1373 	 * or group4 command as necessary, since some targets
1374 	 * do not support group1 commands.
1375 	 */
1376 	while (nblk) {
1377 
1378 		bzero(&ucmd, sizeof (ucmd));
1379 		bzero(&cdb, sizeof (cdb));
1380 
1381 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1382 
1383 		/*
1384 		 * Some of the optical drives on sun4v machines are ATAPI
1385 		 * devices which use Group 1 Read/Write commands so we need
1386 		 * to explicitly check a flag which is set when a domain
1387 		 * is bound.
1388 		 */
1389 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1390 			FORMG0ADDR(&cdb, blk);
1391 			FORMG0COUNT(&cdb, (uchar_t)nsectors);
1392 			ucmd.uscsi_cdblen = CDB_GROUP0;
1393 		} else if (blk > 0xffffffff) {
1394 			FORMG4LONGADDR(&cdb, blk);
1395 			FORMG4COUNT(&cdb, nsectors);
1396 			ucmd.uscsi_cdblen = CDB_GROUP4;
1397 			cdb.scc_cmd |= SCMD_GROUP4;
1398 		} else {
1399 			FORMG1ADDR(&cdb, blk);
1400 			FORMG1COUNT(&cdb, nsectors);
1401 			ucmd.uscsi_cdblen = CDB_GROUP1;
1402 			cdb.scc_cmd |= SCMD_GROUP1;
1403 		}
1404 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1405 		ucmd.uscsi_bufaddr = data;
1406 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1407 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1408 		/*
1409 		 * Set flags so that the command is isolated from normal
1410 		 * commands and no error message is printed.
1411 		 */
1412 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1413 
1414 		if (operation == VD_OP_BREAD) {
1415 			cdb.scc_cmd |= SCMD_READ;
1416 			ucmd.uscsi_flags |= USCSI_READ;
1417 		} else {
1418 			cdb.scc_cmd |= SCMD_WRITE;
1419 		}
1420 
1421 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1422 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1423 		    kcred, &rval);
1424 
1425 		if (status == 0)
1426 			status = ucmd.uscsi_status;
1427 
1428 		if (status != 0)
1429 			break;
1430 
1431 		/*
1432 		 * Check if partial DMA breakup is required. If so, reduce
1433 		 * the request size by half and retry the last request.
1434 		 */
1435 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1436 			max_sectors >>= 1;
1437 			if (max_sectors <= 0) {
1438 				status = EIO;
1439 				break;
1440 			}
1441 			continue;
1442 		}
1443 
1444 		if (ucmd.uscsi_resid != 0) {
1445 			status = EIO;
1446 			break;
1447 		}
1448 
1449 		blk += nsectors;
1450 		nblk -= nsectors;
1451 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1452 	}
1453 
1454 	return (status);
1455 }
1456 
1457 /*
1458  * Function:
1459  *	vd_scsi_rdwr
1460  *
1461  * Description:
1462  * 	Wrapper function to read or write to a SCSI disk using an absolute
1463  *	disk offset. It checks the blocksize of the underlying device and,
1464  *	if necessary, adjusts the buffers accordingly before calling
1465  *	vd_do_scsi_rdwr() to do the actual read or write.
1466  *
1467  * Parameters:
1468  *	vd		- disk on which the operation is performed.
1469  *	operation	- operation to execute: read (VD_OP_BREAD) or
1470  *			  write (VD_OP_BWRITE).
1471  *	data		- buffer where data are read to or written from.
1472  *	blk		- starting block for the operation.
1473  *	len		- number of bytes to read or write.
1474  *
1475  * Return Code:
1476  *	0		- success
1477  *	n != 0		- error.
1478  */
1479 static int
1480 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1481 {
1482 	int	rv;
1483 
1484 	size_t	pblk;	/* physical device block number of data on device */
1485 	size_t	delta;	/* relative offset between pblk and vblk */
1486 	size_t	pnblk;	/* number of physical blocks to be read from device */
1487 	size_t	plen;	/* length of data to be read from physical device */
1488 	char	*buf;	/* buffer area to fit physical device's block size */
1489 
1490 	if (vd->block_size == 0) {
1491 		/*
1492 		 * The block size was not available during the attach,
1493 		 * try to update it now.
1494 		 */
1495 		if (vd_backend_check_size(vd) != 0)
1496 			return (EIO);
1497 	}
1498 
1499 	/*
1500 	 * If the vdisk block size and the block size of the underlying device
1501 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1502 	 * to create a buffer large enough to handle the device's block size
1503 	 * and adjust the block to be read from and the amount of data to
1504 	 * read to correspond with the device's block size.
1505 	 */
1506 	if (vd->vdisk_block_size == vd->block_size)
1507 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1508 
1509 	if (vd->vdisk_block_size > vd->block_size)
1510 		return (EINVAL);
1511 
1512 	/*
1513 	 * Writing of physical block sizes larger than the virtual block size
1514 	 * is not supported. This would be added if/when support for guests
1515 	 * writing to DVDs is implemented.
1516 	 */
1517 	if (operation == VD_OP_BWRITE)
1518 		return (ENOTSUP);
1519 
1520 	/* BEGIN CSTYLED */
1521 	/*
1522 	 * Below is a diagram showing the relationship between the physical
1523 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1524 	 * requested, then the physical blocks denoted by 'Y' are read.
1525 	 *
1526 	 *           vblk
1527 	 *             |      vlen
1528 	 *             |<--------------->|
1529 	 *             v                 v
1530 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1531 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1532 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1533 	 *          :  :                 :  :
1534 	 *         >:==:< delta          :  :
1535 	 *          :  :                 :  :
1536 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1537 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1538 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1539 	 *          ^                       ^
1540 	 *          |<--------------------->|
1541 	 *          |         plen
1542 	 *         pblk
1543 	 */
1544 	/* END CSTYLED */
1545 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1546 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1547 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1548 	plen = pnblk * vd->block_size;
1549 
1550 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1551 
1552 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1553 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1554 	bcopy(buf + delta, data, vlen);
1555 
1556 	kmem_free(buf, sizeof (caddr_t) * plen);
1557 
1558 	return (rv);
1559 }
1560 
1561 /*
1562  * Function:
1563  *	vd_slice_flabel_read
1564  *
1565  * Description:
1566  *	This function simulates a read operation from the fake label of
1567  *	a single-slice disk.
1568  *
1569  * Parameters:
1570  *	vd		- single-slice disk to read from
1571  *	data		- buffer where data should be read to
1572  *	offset		- offset in byte where the read should start
1573  *	length		- number of bytes to read
1574  *
1575  * Return Code:
1576  *	n >= 0		- success, n indicates the number of bytes read
1577  *	-1		- error
1578  */
1579 static ssize_t
1580 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1581 {
1582 	size_t n = 0;
1583 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1584 
1585 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1586 	ASSERT(vd->flabel != NULL);
1587 
1588 	/* if offset is past the fake label limit there's nothing to read */
1589 	if (offset >= limit)
1590 		return (0);
1591 
1592 	/* data with offset 0 to flabel_size are read from flabel */
1593 	if (offset < vd->flabel_size) {
1594 
1595 		if (offset + length <= vd->flabel_size) {
1596 			bcopy(vd->flabel + offset, data, length);
1597 			return (length);
1598 		}
1599 
1600 		n = vd->flabel_size - offset;
1601 		bcopy(vd->flabel + offset, data, n);
1602 		data += n;
1603 	}
1604 
1605 	/* data with offset from flabel_size to flabel_limit are all zeros */
1606 	if (offset + length <= limit) {
1607 		bzero(data, length - n);
1608 		return (length);
1609 	}
1610 
1611 	bzero(data, limit - offset - n);
1612 	return (limit - offset);
1613 }
1614 
1615 /*
1616  * Function:
1617  *	vd_slice_flabel_write
1618  *
1619  * Description:
1620  *	This function simulates a write operation to the fake label of
1621  *	a single-slice disk. Write operations are actually faked and return
1622  *	success although the label is never changed. This is mostly to
1623  *	simulate a successful label update.
1624  *
1625  * Parameters:
1626  *	vd		- single-slice disk to write to
1627  *	data		- buffer where data should be written from
1628  *	offset		- offset in byte where the write should start
1629  *	length		- number of bytes to written
1630  *
1631  * Return Code:
1632  *	n >= 0		- success, n indicates the number of bytes written
1633  *	-1		- error
1634  */
1635 static ssize_t
1636 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1637 {
1638 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1639 	struct dk_label *label;
1640 	struct dk_geom geom;
1641 	struct extvtoc vtoc;
1642 
1643 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1644 	ASSERT(vd->flabel != NULL);
1645 
1646 	if (offset >= limit)
1647 		return (0);
1648 
1649 	/*
1650 	 * If this is a request to overwrite the VTOC disk label, check that
1651 	 * the new label is similar to the previous one and return that the
1652 	 * write was successful, but note that nothing is actually overwritten.
1653 	 */
1654 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1655 	    offset == 0 && length == DEV_BSIZE) {
1656 		label = (void *)data;
1657 
1658 		/* check that this is a valid label */
1659 		if (label->dkl_magic != DKL_MAGIC ||
1660 		    label->dkl_cksum != vd_lbl2cksum(label))
1661 			return (-1);
1662 
1663 		/* check the vtoc and geometry */
1664 		vd_label_to_vtocgeom(label, &vtoc, &geom);
1665 		if (vd_slice_geom_isvalid(vd, &geom) &&
1666 		    vd_slice_vtoc_isvalid(vd, &vtoc))
1667 			return (length);
1668 	}
1669 
1670 	/* fail any other write */
1671 	return (-1);
1672 }
1673 
1674 /*
1675  * Function:
1676  *	vd_slice_fake_rdwr
1677  *
1678  * Description:
1679  *	This function simulates a raw read or write operation to a single-slice
1680  *	disk. It only handles the faked part of the operation i.e. I/Os to
1681  *	blocks which have no mapping with the vdisk backend (I/Os to the
1682  *	beginning and to the end of the vdisk).
1683  *
1684  *	The function returns 0 is the operation	is completed and it has been
1685  *	entirely handled as a fake read or write. In that case, lengthp points
1686  *	to the number of bytes not read or written. Values returned by datap
1687  *	and blkp are undefined.
1688  *
1689  *	If the fake operation has succeeded but the read or write is not
1690  *	complete (i.e. the read/write operation extends beyond the blocks
1691  *	we fake) then the function returns EAGAIN and datap, blkp and lengthp
1692  *	pointers points to the parameters for completing the operation.
1693  *
1694  *	In case of an error, for example if the slice is empty or parameters
1695  *	are invalid, then the function returns a non-zero value different
1696  *	from EAGAIN. In that case, the returned values of datap, blkp and
1697  *	lengthp are undefined.
1698  *
1699  * Parameters:
1700  *	vd		- single-slice disk on which the operation is performed
1701  *	slice		- slice on which the operation is performed,
1702  *			  VD_SLICE_NONE indicates that the operation
1703  *			  is done using an absolute disk offset.
1704  *	operation	- operation to execute: read (VD_OP_BREAD) or
1705  *			  write (VD_OP_BWRITE).
1706  *	datap		- pointer to the buffer where data are read to
1707  *			  or written from. Return the pointer where remaining
1708  *			  data have to be read to or written from.
1709  *	blkp		- pointer to the starting block for the operation.
1710  *			  Return the starting block relative to the vdisk
1711  *			  backend for the remaining operation.
1712  *	lengthp		- pointer to the number of bytes to read or write.
1713  *			  This should be a multiple of DEV_BSIZE. Return the
1714  *			  remaining number of bytes to read or write.
1715  *
1716  * Return Code:
1717  *	0		- read/write operation is completed
1718  *	EAGAIN		- read/write operation is not completed
1719  *	other values	- error
1720  */
1721 static int
1722 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1723     size_t *blkp, size_t *lengthp)
1724 {
1725 	struct dk_label *label;
1726 	caddr_t data;
1727 	size_t blk, length, csize;
1728 	size_t ablk, asize, aoff, alen;
1729 	ssize_t n;
1730 	int sec, status;
1731 
1732 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1733 	ASSERT(slice != 0);
1734 
1735 	data = *datap;
1736 	blk = *blkp;
1737 	length = *lengthp;
1738 
1739 	/*
1740 	 * If this is not a raw I/O or an I/O from a full disk slice then
1741 	 * this is an I/O to/from an empty slice.
1742 	 */
1743 	if (slice != VD_SLICE_NONE &&
1744 	    (slice != VD_ENTIRE_DISK_SLICE ||
1745 	    vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1746 	    (slice != VD_EFI_WD_SLICE ||
1747 	    vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1748 		return (EIO);
1749 	}
1750 
1751 	if (length % DEV_BSIZE != 0)
1752 		return (EINVAL);
1753 
1754 	/* handle any I/O with the fake label */
1755 	if (operation == VD_OP_BWRITE)
1756 		n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length);
1757 	else
1758 		n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length);
1759 
1760 	if (n == -1)
1761 		return (EINVAL);
1762 
1763 	ASSERT(n % DEV_BSIZE == 0);
1764 
1765 	/* adjust I/O arguments */
1766 	data += n;
1767 	blk += n / DEV_BSIZE;
1768 	length -= n;
1769 
1770 	/* check if there's something else to process */
1771 	if (length == 0) {
1772 		status = 0;
1773 		goto done;
1774 	}
1775 
1776 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1777 	    slice == VD_ENTIRE_DISK_SLICE) {
1778 		status = EAGAIN;
1779 		goto done;
1780 	}
1781 
1782 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1783 		asize = EFI_MIN_RESV_SIZE + 33;
1784 		ablk = vd->vdisk_size - asize;
1785 	} else {
1786 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1787 		ASSERT(vd->dk_geom.dkg_apc == 0);
1788 
1789 		csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1790 		ablk = vd->dk_geom.dkg_ncyl * csize;
1791 		asize = vd->dk_geom.dkg_acyl * csize;
1792 	}
1793 
1794 	alen = length / DEV_BSIZE;
1795 	aoff = blk;
1796 
1797 	/* if we have reached the last block then the I/O is completed */
1798 	if (aoff == ablk + asize) {
1799 		status = 0;
1800 		goto done;
1801 	}
1802 
1803 	/* if we are past the last block then return an error */
1804 	if (aoff > ablk + asize)
1805 		return (EIO);
1806 
1807 	/* check if there is any I/O to end of the disk */
1808 	if (aoff + alen < ablk) {
1809 		status = EAGAIN;
1810 		goto done;
1811 	}
1812 
1813 	/* we don't allow any write to the end of the disk */
1814 	if (operation == VD_OP_BWRITE)
1815 		return (EIO);
1816 
1817 	if (aoff < ablk) {
1818 		alen -= (ablk - aoff);
1819 		aoff = ablk;
1820 	}
1821 
1822 	if (aoff + alen > ablk + asize) {
1823 		alen = ablk + asize - aoff;
1824 	}
1825 
1826 	alen *= DEV_BSIZE;
1827 
1828 	if (operation == VD_OP_BREAD) {
1829 		bzero(data + (aoff - blk) * DEV_BSIZE, alen);
1830 
1831 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1832 			/* check if we read backup labels */
1833 			label = VD_LABEL_VTOC(vd);
1834 			ablk += (label->dkl_acyl - 1) * csize +
1835 			    (label->dkl_nhead - 1) * label->dkl_nsect;
1836 
1837 			for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1838 
1839 				if (ablk + sec >= blk &&
1840 				    ablk + sec < blk + (length / DEV_BSIZE)) {
1841 					bcopy(label, data +
1842 					    (ablk + sec - blk) * DEV_BSIZE,
1843 					    sizeof (struct dk_label));
1844 				}
1845 			}
1846 		}
1847 	}
1848 
1849 	length -= alen;
1850 
1851 	status = (length == 0)? 0: EAGAIN;
1852 
1853 done:
1854 	ASSERT(length == 0 || blk >= vd->flabel_limit);
1855 
1856 	/*
1857 	 * Return the parameters for the remaining I/O. The starting block is
1858 	 * adjusted so that it is relative to the vdisk backend.
1859 	 */
1860 	*datap = data;
1861 	*blkp = blk - vd->flabel_limit;
1862 	*lengthp = length;
1863 
1864 	return (status);
1865 }
1866 
1867 /*
1868  * We define our own biodone function so that buffers used for
1869  * asynchronous writes are not released when biodone() is called.
1870  */
1871 static int
1872 vd_biodone(struct buf *bp)
1873 {
1874 	ASSERT((bp->b_flags & B_DONE) == 0);
1875 	ASSERT(SEMA_HELD(&bp->b_sem));
1876 
1877 	bp->b_flags |= B_DONE;
1878 	if (!(bp->b_flags & B_ASYNC))
1879 		sema_v(&bp->b_io);
1880 
1881 	return (0);
1882 }
1883 
1884 /*
1885  * Return Values
1886  *	EINPROGRESS	- operation was successfully started
1887  *	EIO		- encountered LDC (aka. task error)
1888  *	0		- operation completed successfully
1889  *
1890  * Side Effect
1891  *     sets request->status = <disk operation status>
1892  */
1893 static int
1894 vd_start_bio(vd_task_t *task)
1895 {
1896 	int			rv, status = 0;
1897 	vd_t			*vd		= task->vd;
1898 	vd_dring_payload_t	*request	= task->request;
1899 	struct buf		*buf		= &task->buf;
1900 	uint8_t			mtype;
1901 	int 			slice;
1902 	char			*bufaddr = 0;
1903 	size_t			buflen;
1904 	size_t			offset, length, nbytes;
1905 
1906 	ASSERT(vd != NULL);
1907 	ASSERT(request != NULL);
1908 
1909 	slice = request->slice;
1910 
1911 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1912 	ASSERT((request->operation == VD_OP_BREAD) ||
1913 	    (request->operation == VD_OP_BWRITE));
1914 
1915 	if (request->nbytes == 0) {
1916 		/* no service for trivial requests */
1917 		request->status = EINVAL;
1918 		return (0);
1919 	}
1920 
1921 	PR1("%s %lu bytes at block %lu",
1922 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1923 	    request->nbytes, request->addr);
1924 
1925 	/*
1926 	 * We have to check the open flags because the functions processing
1927 	 * the read/write request will not do it.
1928 	 */
1929 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1930 		PR0("write fails because backend is opened read-only");
1931 		request->nbytes = 0;
1932 		request->status = EROFS;
1933 		return (0);
1934 	}
1935 
1936 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1937 
1938 	/* Map memory exported by client */
1939 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1940 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1941 	    &bufaddr, NULL);
1942 	if (status != 0) {
1943 		PR0("ldc_mem_map() returned err %d ", status);
1944 		return (EIO);
1945 	}
1946 
1947 	/*
1948 	 * The buffer size has to be 8-byte aligned, so the client should have
1949 	 * sent a buffer which size is roundup to the next 8-byte aligned value.
1950 	 */
1951 	buflen = P2ROUNDUP(request->nbytes, 8);
1952 
1953 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1954 	if (status != 0) {
1955 		(void) ldc_mem_unmap(task->mhdl);
1956 		PR0("ldc_mem_acquire() returned err %d ", status);
1957 		return (EIO);
1958 	}
1959 
1960 	offset = request->addr;
1961 	nbytes = request->nbytes;
1962 	length = nbytes;
1963 
1964 	/* default number of byte returned by the I/O */
1965 	request->nbytes = 0;
1966 
1967 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
1968 
1969 		if (slice != 0) {
1970 			/* handle any fake I/O */
1971 			rv = vd_slice_fake_rdwr(vd, slice, request->operation,
1972 			    &bufaddr, &offset, &length);
1973 
1974 			/* record the number of bytes from the fake I/O */
1975 			request->nbytes = nbytes - length;
1976 
1977 			if (rv == 0) {
1978 				request->status = 0;
1979 				goto io_done;
1980 			}
1981 
1982 			if (rv != EAGAIN) {
1983 				request->nbytes = 0;
1984 				request->status = EIO;
1985 				goto io_done;
1986 			}
1987 
1988 			/*
1989 			 * If we return with EAGAIN then this means that there
1990 			 * are still data to read or write.
1991 			 */
1992 			ASSERT(length != 0);
1993 
1994 			/*
1995 			 * We need to continue the I/O from the slice backend to
1996 			 * complete the request. The variables bufaddr, offset
1997 			 * and length have been adjusted to have the right
1998 			 * information to do the remaining I/O from the backend.
1999 			 * The backend is entirely mapped to slice 0 so we just
2000 			 * have to complete the I/O from that slice.
2001 			 */
2002 			slice = 0;
2003 		}
2004 
2005 	} else if (vd->volume) {
2006 
2007 		rv = vd_dskimg_io_params(vd, slice, &offset, &length);
2008 		if (rv != 0) {
2009 			request->status = (rv == ENODATA)? 0: EIO;
2010 			goto io_done;
2011 		}
2012 		slice = 0;
2013 
2014 	} else if ((slice == VD_SLICE_NONE) && !vd->file) {
2015 
2016 		/*
2017 		 * This is not a disk image so it is a real disk. We
2018 		 * assume that the underlying device driver supports
2019 		 * USCSICMD ioctls. This is the case of all SCSI devices
2020 		 * (sd, ssd...).
2021 		 *
2022 		 * In the future if we have non-SCSI disks we would need
2023 		 * to invoke the appropriate function to do I/O using an
2024 		 * absolute disk offset (for example using DIOCTL_RWCMD
2025 		 * for IDE disks).
2026 		 */
2027 		rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
2028 		    length);
2029 		if (rv != 0) {
2030 			request->status = EIO;
2031 		} else {
2032 			request->nbytes = length;
2033 			request->status = 0;
2034 		}
2035 		goto io_done;
2036 	}
2037 
2038 	/* Start the block I/O */
2039 	if (vd->file) {
2040 		rv = vd_dskimg_rw(vd, slice, request->operation, bufaddr,
2041 		    offset, length);
2042 		if (rv < 0) {
2043 			request->nbytes = 0;
2044 			request->status = EIO;
2045 		} else {
2046 			request->nbytes += rv;
2047 			request->status = 0;
2048 		}
2049 	} else {
2050 		bioinit(buf);
2051 		buf->b_flags	= B_BUSY;
2052 		buf->b_bcount	= length;
2053 		buf->b_lblkno	= offset;
2054 		buf->b_bufsize	= buflen;
2055 		buf->b_edev 	= vd->dev[slice];
2056 		buf->b_un.b_addr = bufaddr;
2057 		buf->b_iodone	= vd_biodone;
2058 
2059 		if (request->operation == VD_OP_BREAD) {
2060 			buf->b_flags |= B_READ;
2061 		} else {
2062 			/*
2063 			 * If we have a ZFS volume then we do an
2064 			 * asynchronous write and we will wait for the
2065 			 * completion of the write in vd_complete_bio()
2066 			 * using the DKIOCFLUSHWRITECACHE ioctl. We
2067 			 * do so for performance reason because, for a
2068 			 * synchronous write, the ZFS volume strategy()
2069 			 * function would only return after the write is
2070 			 * commited and this prevents starting multiple
2071 			 * writes in parallel.
2072 			 */
2073 			if (vd->zvol)
2074 				buf->b_flags |= B_WRITE | B_ASYNC;
2075 			else
2076 				buf->b_flags |= B_WRITE;
2077 		}
2078 
2079 		request->status = ldi_strategy(vd->ldi_handle[slice], buf);
2080 
2081 		/*
2082 		 * This is to indicate to the caller that the request
2083 		 * needs to be finished by vd_complete_bio() by calling
2084 		 * biowait() there and waiting for that to return before
2085 		 * triggering the notification of the vDisk client.
2086 		 *
2087 		 * This is necessary when writing to real disks as
2088 		 * otherwise calls to ldi_strategy() would be serialized
2089 		 * behind the calls to biowait() and performance would
2090 		 * suffer.
2091 		 */
2092 		if (request->status == 0)
2093 			return (EINPROGRESS);
2094 
2095 		biofini(buf);
2096 	}
2097 
2098 io_done:
2099 	/* Clean up after error or completion */
2100 	rv = ldc_mem_release(task->mhdl, 0, buflen);
2101 	if (rv) {
2102 		PR0("ldc_mem_release() returned err %d ", rv);
2103 		status = EIO;
2104 	}
2105 	rv = ldc_mem_unmap(task->mhdl);
2106 	if (rv) {
2107 		PR0("ldc_mem_unmap() returned err %d ", rv);
2108 		status = EIO;
2109 	}
2110 
2111 	return (status);
2112 }
2113 
2114 /*
2115  * This function should only be called from vd_notify to ensure that requests
2116  * are responded to in the order that they are received.
2117  */
2118 static int
2119 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
2120 {
2121 	int	status;
2122 	size_t	nbytes;
2123 
2124 	do {
2125 		nbytes = msglen;
2126 		status = ldc_write(ldc_handle, msg, &nbytes);
2127 		if (status != EWOULDBLOCK)
2128 			break;
2129 		drv_usecwait(vds_ldc_delay);
2130 	} while (status == EWOULDBLOCK);
2131 
2132 	if (status != 0) {
2133 		if (status != ECONNRESET)
2134 			PR0("ldc_write() returned errno %d", status);
2135 		return (status);
2136 	} else if (nbytes != msglen) {
2137 		PR0("ldc_write() performed only partial write");
2138 		return (EIO);
2139 	}
2140 
2141 	PR1("SENT %lu bytes", msglen);
2142 	return (0);
2143 }
2144 
2145 static void
2146 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
2147 {
2148 	mutex_enter(&vd->lock);
2149 	vd->reset_state	= B_TRUE;
2150 	vd->reset_ldc	= reset_ldc;
2151 	mutex_exit(&vd->lock);
2152 }
2153 
2154 /*
2155  * Reset the state of the connection with a client, if needed; reset the LDC
2156  * transport as well, if needed.  This function should only be called from the
2157  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
2158  */
2159 static void
2160 vd_reset_if_needed(vd_t *vd)
2161 {
2162 	int	status = 0;
2163 
2164 	mutex_enter(&vd->lock);
2165 	if (!vd->reset_state) {
2166 		ASSERT(!vd->reset_ldc);
2167 		mutex_exit(&vd->lock);
2168 		return;
2169 	}
2170 	mutex_exit(&vd->lock);
2171 
2172 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
2173 
2174 	/*
2175 	 * Let any asynchronous I/O complete before possibly pulling the rug
2176 	 * out from under it; defer checking vd->reset_ldc, as one of the
2177 	 * asynchronous tasks might set it
2178 	 */
2179 	ddi_taskq_wait(vd->completionq);
2180 
2181 	if (vd->file) {
2182 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
2183 		if (status) {
2184 			PR0("VOP_FSYNC returned errno %d", status);
2185 		}
2186 	}
2187 
2188 	if ((vd->initialized & VD_DRING) &&
2189 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2190 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
2191 
2192 	vd_free_dring_task(vd);
2193 
2194 	/* Free the staging buffer for msgs */
2195 	if (vd->vio_msgp != NULL) {
2196 		kmem_free(vd->vio_msgp, vd->max_msglen);
2197 		vd->vio_msgp = NULL;
2198 	}
2199 
2200 	/* Free the inband message buffer */
2201 	if (vd->inband_task.msg != NULL) {
2202 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2203 		vd->inband_task.msg = NULL;
2204 	}
2205 
2206 	mutex_enter(&vd->lock);
2207 
2208 	if (vd->reset_ldc)
2209 		PR0("taking down LDC channel");
2210 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2211 		PR0("ldc_down() returned errno %d", status);
2212 
2213 	/* Reset exclusive access rights */
2214 	vd_reset_access(vd);
2215 
2216 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2217 	vd->state	= VD_STATE_INIT;
2218 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2219 
2220 	/* Allocate the staging buffer */
2221 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2222 
2223 	PR0("calling ldc_up\n");
2224 	(void) ldc_up(vd->ldc_handle);
2225 
2226 	vd->reset_state	= B_FALSE;
2227 	vd->reset_ldc	= B_FALSE;
2228 
2229 	mutex_exit(&vd->lock);
2230 }
2231 
2232 static void vd_recv_msg(void *arg);
2233 
2234 static void
2235 vd_mark_in_reset(vd_t *vd)
2236 {
2237 	int status;
2238 
2239 	PR0("vd_mark_in_reset: marking vd in reset\n");
2240 
2241 	vd_need_reset(vd, B_FALSE);
2242 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2243 	if (status == DDI_FAILURE) {
2244 		PR0("cannot schedule task to recv msg\n");
2245 		vd_need_reset(vd, B_TRUE);
2246 		return;
2247 	}
2248 }
2249 
2250 static int
2251 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2252 {
2253 	boolean_t		accepted;
2254 	int			status;
2255 	on_trap_data_t		otd;
2256 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2257 
2258 	if (vd->reset_state)
2259 		return (0);
2260 
2261 	/* Acquire the element */
2262 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2263 	    vd->dring_handle, idx, idx)) != 0) {
2264 		if (status == ECONNRESET) {
2265 			vd_mark_in_reset(vd);
2266 			return (0);
2267 		} else {
2268 			return (status);
2269 		}
2270 	}
2271 
2272 	/* Set the element's status and mark it done */
2273 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2274 	if (accepted) {
2275 		elem->payload.nbytes	= elem_nbytes;
2276 		elem->payload.status	= elem_status;
2277 		elem->hdr.dstate	= VIO_DESC_DONE;
2278 	} else {
2279 		/* Perhaps client timed out waiting for I/O... */
2280 		PR0("element %u no longer \"accepted\"", idx);
2281 		VD_DUMP_DRING_ELEM(elem);
2282 	}
2283 	/* Release the element */
2284 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2285 	    vd->dring_handle, idx, idx)) != 0) {
2286 		if (status == ECONNRESET) {
2287 			vd_mark_in_reset(vd);
2288 			return (0);
2289 		} else {
2290 			PR0("VIO_DRING_RELEASE() returned errno %d",
2291 			    status);
2292 			return (status);
2293 		}
2294 	}
2295 
2296 	return (accepted ? 0 : EINVAL);
2297 }
2298 
2299 /*
2300  * Return Values
2301  *	0	- operation completed successfully
2302  *	EIO	- encountered LDC / task error
2303  *
2304  * Side Effect
2305  *	sets request->status = <disk operation status>
2306  */
2307 static int
2308 vd_complete_bio(vd_task_t *task)
2309 {
2310 	int			status		= 0;
2311 	int			rv		= 0;
2312 	vd_t			*vd		= task->vd;
2313 	vd_dring_payload_t	*request	= task->request;
2314 	struct buf		*buf		= &task->buf;
2315 	int			rval;
2316 
2317 
2318 	ASSERT(vd != NULL);
2319 	ASSERT(request != NULL);
2320 	ASSERT(task->msg != NULL);
2321 	ASSERT(task->msglen >= sizeof (*task->msg));
2322 	ASSERT(!vd->file);
2323 	ASSERT(request->slice != VD_SLICE_NONE || (!vd_slice_single_slice &&
2324 	    vd->vdisk_type == VD_DISK_TYPE_SLICE) || vd->volume);
2325 
2326 	if (vd->zvol && request->operation == VD_OP_BWRITE) {
2327 		/*
2328 		 * For a ZFS volume, we use asynchronous writes so we have to
2329 		 * ensure that writes have been commited before marking the
2330 		 * I/O as completed.
2331 		 */
2332 		request->status = ldi_ioctl(vd->ldi_handle[0],
2333 		    DKIOCFLUSHWRITECACHE, NULL, vd->open_flags | FKIOCTL,
2334 		    kcred, &rval);
2335 	} else {
2336 		/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
2337 		request->status = biowait(buf);
2338 	}
2339 
2340 	/* Update the number of bytes read/written */
2341 	request->nbytes += buf->b_bcount - buf->b_resid;
2342 
2343 	/* Release the buffer */
2344 	if (!vd->reset_state)
2345 		status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2346 	if (status) {
2347 		PR0("ldc_mem_release() returned errno %d copying to "
2348 		    "client", status);
2349 		if (status == ECONNRESET) {
2350 			vd_mark_in_reset(vd);
2351 		}
2352 		rv = EIO;
2353 	}
2354 
2355 	/* Unmap the memory, even if in reset */
2356 	status = ldc_mem_unmap(task->mhdl);
2357 	if (status) {
2358 		PR0("ldc_mem_unmap() returned errno %d copying to client",
2359 		    status);
2360 		if (status == ECONNRESET) {
2361 			vd_mark_in_reset(vd);
2362 		}
2363 		rv = EIO;
2364 	}
2365 
2366 	biofini(buf);
2367 
2368 	return (rv);
2369 }
2370 
2371 /*
2372  * Description:
2373  *	This function is called by the two functions called by a taskq
2374  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
2375  *	message to the client.
2376  *
2377  * Parameters:
2378  *	arg 	- opaque pointer to structure containing task to be completed
2379  *
2380  * Return Values
2381  *	None
2382  */
2383 static void
2384 vd_notify(vd_task_t *task)
2385 {
2386 	int	status;
2387 
2388 	ASSERT(task != NULL);
2389 	ASSERT(task->vd != NULL);
2390 
2391 	/*
2392 	 * Send the "ack" or "nack" back to the client; if sending the message
2393 	 * via LDC fails, arrange to reset both the connection state and LDC
2394 	 * itself
2395 	 */
2396 	PR2("Sending %s",
2397 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2398 
2399 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2400 	switch (status) {
2401 	case 0:
2402 		break;
2403 	case ECONNRESET:
2404 		vd_mark_in_reset(task->vd);
2405 		break;
2406 	default:
2407 		PR0("initiating full reset");
2408 		vd_need_reset(task->vd, B_TRUE);
2409 		break;
2410 	}
2411 
2412 	DTRACE_PROBE1(task__end, vd_task_t *, task);
2413 }
2414 
2415 /*
2416  * Description:
2417  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2418  *	the vDisk client
2419  *
2420  * Parameters:
2421  *	task 		- structure containing the request sent from client
2422  *
2423  * Return Values
2424  *	None
2425  */
2426 static void
2427 vd_complete_notify(vd_task_t *task)
2428 {
2429 	int			status		= 0;
2430 	vd_t			*vd		= task->vd;
2431 	vd_dring_payload_t	*request	= task->request;
2432 
2433 	/* Update the dring element for a dring client */
2434 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2435 		status = vd_mark_elem_done(vd, task->index,
2436 		    request->status, request->nbytes);
2437 		if (status == ECONNRESET)
2438 			vd_mark_in_reset(vd);
2439 		else if (status == EACCES)
2440 			vd_need_reset(vd, B_TRUE);
2441 	}
2442 
2443 	/*
2444 	 * If a transport error occurred while marking the element done or
2445 	 * previously while executing the task, arrange to "nack" the message
2446 	 * when the final task in the descriptor element range completes
2447 	 */
2448 	if ((status != 0) || (task->status != 0))
2449 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2450 
2451 	/*
2452 	 * Only the final task for a range of elements will respond to and
2453 	 * free the message
2454 	 */
2455 	if (task->type == VD_NONFINAL_RANGE_TASK) {
2456 		return;
2457 	}
2458 
2459 	/*
2460 	 * We should only send an ACK/NACK here if we are not currently in
2461 	 * reset as, depending on how we reset, the dring may have been
2462 	 * blown away and we don't want to ACK/NACK a message that isn't
2463 	 * there.
2464 	 */
2465 	if (!vd->reset_state)
2466 		vd_notify(task);
2467 }
2468 
2469 /*
2470  * Description:
2471  *	This is the basic completion function called to handle inband data
2472  *	requests and handshake messages. All it needs to do is trigger a
2473  *	message to the client that the request is completed.
2474  *
2475  * Parameters:
2476  *	arg 	- opaque pointer to structure containing task to be completed
2477  *
2478  * Return Values
2479  *	None
2480  */
2481 static void
2482 vd_serial_notify(void *arg)
2483 {
2484 	vd_task_t		*task = (vd_task_t *)arg;
2485 
2486 	ASSERT(task != NULL);
2487 	vd_notify(task);
2488 }
2489 
2490 /* ARGSUSED */
2491 static int
2492 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2493 {
2494 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2495 	return (0);
2496 }
2497 
2498 /* ARGSUSED */
2499 static int
2500 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2501 {
2502 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
2503 	return (0);
2504 }
2505 
2506 static void
2507 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2508 {
2509 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2510 }
2511 
2512 static void
2513 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2514 {
2515 	VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2516 }
2517 
2518 static int
2519 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2520 {
2521 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2522 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2523 	size_t data_len;
2524 
2525 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2526 	if (vd_efi->length > data_len)
2527 		return (EINVAL);
2528 
2529 	dk_efi->dki_lba = vd_efi->lba;
2530 	dk_efi->dki_length = vd_efi->length;
2531 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2532 	return (0);
2533 }
2534 
2535 static void
2536 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2537 {
2538 	int len;
2539 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2540 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2541 
2542 	len = vd_efi->length;
2543 	DK_EFI2VD_EFI(dk_efi, vd_efi);
2544 	kmem_free(dk_efi->dki_data, len);
2545 }
2546 
2547 static int
2548 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2549 {
2550 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2551 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2552 	size_t data_len;
2553 
2554 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2555 	if (vd_efi->length > data_len)
2556 		return (EINVAL);
2557 
2558 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2559 	VD_EFI2DK_EFI(vd_efi, dk_efi);
2560 	return (0);
2561 }
2562 
2563 static void
2564 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2565 {
2566 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2567 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2568 
2569 	kmem_free(dk_efi->dki_data, vd_efi->length);
2570 }
2571 
2572 static int
2573 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2574 {
2575 	size_t vd_scsi_len;
2576 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2577 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2578 
2579 	/* check buffer size */
2580 	vd_scsi_len = VD_SCSI_SIZE;
2581 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2582 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2583 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2584 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2585 
2586 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2587 
2588 	if (vd_buf_len < vd_scsi_len)
2589 		return (EINVAL);
2590 
2591 	/* set flags */
2592 	uscsi->uscsi_flags = vd_scsi_debug;
2593 
2594 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2595 		uscsi->uscsi_flags |= USCSI_ISOLATE;
2596 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2597 	}
2598 
2599 	/* task attribute */
2600 	switch (vd_scsi->task_attribute) {
2601 	case VD_SCSI_TASK_ACA:
2602 		uscsi->uscsi_flags |= USCSI_HEAD;
2603 		break;
2604 	case VD_SCSI_TASK_HQUEUE:
2605 		uscsi->uscsi_flags |= USCSI_HTAG;
2606 		break;
2607 	case VD_SCSI_TASK_ORDERED:
2608 		uscsi->uscsi_flags |= USCSI_OTAG;
2609 		break;
2610 	default:
2611 		uscsi->uscsi_flags |= USCSI_NOTAG;
2612 		break;
2613 	}
2614 
2615 	/* timeout */
2616 	uscsi->uscsi_timeout = vd_scsi->timeout;
2617 
2618 	/* cdb data */
2619 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2620 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2621 
2622 	/* sense buffer */
2623 	if (vd_scsi->sense_len != 0) {
2624 		uscsi->uscsi_flags |= USCSI_RQENABLE;
2625 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2626 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
2627 	}
2628 
2629 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2630 		/* uscsi does not support read/write request */
2631 		return (EINVAL);
2632 	}
2633 
2634 	/* request data-in */
2635 	if (vd_scsi->datain_len != 0) {
2636 		uscsi->uscsi_flags |= USCSI_READ;
2637 		uscsi->uscsi_buflen = vd_scsi->datain_len;
2638 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2639 	}
2640 
2641 	/* request data-out */
2642 	if (vd_scsi->dataout_len != 0) {
2643 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
2644 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2645 	}
2646 
2647 	return (0);
2648 }
2649 
2650 static void
2651 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2652 {
2653 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2654 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2655 
2656 	/* output fields */
2657 	vd_scsi->cmd_status = uscsi->uscsi_status;
2658 
2659 	/* sense data */
2660 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2661 	    (uscsi->uscsi_status == STATUS_CHECK ||
2662 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2663 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2664 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2665 			vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2666 		else
2667 			vd_scsi->sense_len = 0;
2668 	} else {
2669 		vd_scsi->sense_len = 0;
2670 	}
2671 
2672 	if (uscsi->uscsi_status != STATUS_GOOD) {
2673 		vd_scsi->dataout_len = 0;
2674 		vd_scsi->datain_len = 0;
2675 		return;
2676 	}
2677 
2678 	if (uscsi->uscsi_flags & USCSI_READ) {
2679 		/* request data (read) */
2680 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2681 		vd_scsi->dataout_len = 0;
2682 	} else {
2683 		/* request data (write) */
2684 		vd_scsi->datain_len = 0;
2685 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2686 	}
2687 }
2688 
2689 static ushort_t
2690 vd_lbl2cksum(struct dk_label *label)
2691 {
2692 	int	count;
2693 	ushort_t sum, *sp;
2694 
2695 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2696 	sp = (ushort_t *)label;
2697 	sum = 0;
2698 	while (count--) {
2699 		sum ^= *sp++;
2700 	}
2701 
2702 	return (sum);
2703 }
2704 
2705 /*
2706  * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2707  */
2708 static void
2709 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
2710     struct dk_label *label)
2711 {
2712 	int i;
2713 
2714 	ASSERT(vtoc->v_nparts == V_NUMPAR);
2715 	ASSERT(vtoc->v_sanity == VTOC_SANE);
2716 
2717 	bzero(label, sizeof (struct dk_label));
2718 
2719 	label->dkl_ncyl = geom->dkg_ncyl;
2720 	label->dkl_acyl = geom->dkg_acyl;
2721 	label->dkl_pcyl = geom->dkg_pcyl;
2722 	label->dkl_nhead = geom->dkg_nhead;
2723 	label->dkl_nsect = geom->dkg_nsect;
2724 	label->dkl_intrlv = geom->dkg_intrlv;
2725 	label->dkl_apc = geom->dkg_apc;
2726 	label->dkl_rpm = geom->dkg_rpm;
2727 	label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2728 	label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2729 
2730 	label->dkl_vtoc.v_nparts = V_NUMPAR;
2731 	label->dkl_vtoc.v_sanity = VTOC_SANE;
2732 	label->dkl_vtoc.v_version = vtoc->v_version;
2733 	for (i = 0; i < V_NUMPAR; i++) {
2734 		label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2735 		label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2736 		label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2737 		label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2738 		    (label->dkl_nhead * label->dkl_nsect);
2739 		label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2740 	}
2741 
2742 	/*
2743 	 * The bootinfo array can not be copied with bcopy() because
2744 	 * elements are of type long in vtoc (so 64-bit) and of type
2745 	 * int in dk_vtoc (so 32-bit).
2746 	 */
2747 	label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2748 	label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2749 	label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2750 	bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2751 	bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2752 
2753 	/* re-compute checksum */
2754 	label->dkl_magic = DKL_MAGIC;
2755 	label->dkl_cksum = vd_lbl2cksum(label);
2756 }
2757 
2758 /*
2759  * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2760  */
2761 static void
2762 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
2763     struct dk_geom *geom)
2764 {
2765 	int i;
2766 
2767 	bzero(vtoc, sizeof (struct vtoc));
2768 	bzero(geom, sizeof (struct dk_geom));
2769 
2770 	geom->dkg_ncyl = label->dkl_ncyl;
2771 	geom->dkg_acyl = label->dkl_acyl;
2772 	geom->dkg_nhead = label->dkl_nhead;
2773 	geom->dkg_nsect = label->dkl_nsect;
2774 	geom->dkg_intrlv = label->dkl_intrlv;
2775 	geom->dkg_apc = label->dkl_apc;
2776 	geom->dkg_rpm = label->dkl_rpm;
2777 	geom->dkg_pcyl = label->dkl_pcyl;
2778 	geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2779 	geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2780 
2781 	vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2782 	vtoc->v_version = label->dkl_vtoc.v_version;
2783 	vtoc->v_sectorsz = DEV_BSIZE;
2784 	vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2785 
2786 	for (i = 0; i < vtoc->v_nparts; i++) {
2787 		vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2788 		vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2789 		vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2790 		    (label->dkl_nhead * label->dkl_nsect);
2791 		vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2792 		vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2793 	}
2794 
2795 	/*
2796 	 * The bootinfo array can not be copied with bcopy() because
2797 	 * elements are of type long in vtoc (so 64-bit) and of type
2798 	 * int in dk_vtoc (so 32-bit).
2799 	 */
2800 	vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2801 	vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2802 	vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2803 	bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2804 	bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2805 }
2806 
2807 /*
2808  * Check if a geometry is valid for a single-slice disk. A geometry is
2809  * considered valid if the main attributes of the geometry match with the
2810  * attributes of the fake geometry we have created.
2811  */
2812 static boolean_t
2813 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2814 {
2815 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2816 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2817 
2818 	if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2819 	    geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2820 	    geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2821 	    geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2822 		return (B_FALSE);
2823 
2824 	return (B_TRUE);
2825 }
2826 
2827 /*
2828  * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2829  * valid if the main attributes of the vtoc match with the attributes of the
2830  * fake vtoc we have created.
2831  */
2832 static boolean_t
2833 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
2834 {
2835 	size_t csize;
2836 	int i;
2837 
2838 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2839 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2840 
2841 	if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2842 	    vtoc->v_version != vd->vtoc.v_version ||
2843 	    vtoc->v_nparts != vd->vtoc.v_nparts ||
2844 	    strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2845 	    strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2846 		return (B_FALSE);
2847 
2848 	/* slice 2 should be unchanged */
2849 	if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
2850 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
2851 	    vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
2852 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
2853 		return (B_FALSE);
2854 
2855 	/*
2856 	 * Slice 0 should be mostly unchanged and cover most of the disk.
2857 	 * However we allow some flexibility wrt to the start and the size
2858 	 * of this slice mainly because we can't exactly know how it will
2859 	 * be defined by the OS installer.
2860 	 *
2861 	 * We allow slice 0 to be defined as starting on any of the first
2862 	 * 4 cylinders.
2863 	 */
2864 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
2865 
2866 	if (vtoc->v_part[0].p_start > 4 * csize ||
2867 	    vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
2868 			return (B_FALSE);
2869 
2870 	if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
2871 	    vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
2872 			return (B_FALSE);
2873 
2874 	/* any other slice should have a size of 0 */
2875 	for (i = 1; i < vtoc->v_nparts; i++) {
2876 		if (i != VD_ENTIRE_DISK_SLICE &&
2877 		    vtoc->v_part[i].p_size != 0)
2878 			return (B_FALSE);
2879 	}
2880 
2881 	return (B_TRUE);
2882 }
2883 
2884 /*
2885  * Handle ioctls to a disk slice.
2886  *
2887  * Return Values
2888  *	0	- Indicates that there are no errors in disk operations
2889  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
2890  *	EINVAL	- Not enough room to copy the EFI label
2891  *
2892  */
2893 static int
2894 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2895 {
2896 	dk_efi_t *dk_ioc;
2897 	struct extvtoc *vtoc;
2898 	struct dk_geom *geom;
2899 	size_t len, lba;
2900 	int rval;
2901 
2902 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2903 
2904 	if (cmd == DKIOCFLUSHWRITECACHE) {
2905 		if (vd->file) {
2906 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2907 		} else {
2908 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
2909 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
2910 			    kcred, &rval));
2911 		}
2912 	}
2913 
2914 	switch (vd->vdisk_label) {
2915 
2916 	/* ioctls for a single slice disk with a VTOC label */
2917 	case VD_DISK_LABEL_VTOC:
2918 
2919 		switch (cmd) {
2920 
2921 		case DKIOCGGEOM:
2922 			ASSERT(ioctl_arg != NULL);
2923 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
2924 			return (0);
2925 
2926 		case DKIOCGEXTVTOC:
2927 			ASSERT(ioctl_arg != NULL);
2928 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
2929 			return (0);
2930 
2931 		case DKIOCSGEOM:
2932 			ASSERT(ioctl_arg != NULL);
2933 			if (vd_slice_single_slice)
2934 				return (ENOTSUP);
2935 
2936 			/* fake success only if new geometry is valid */
2937 			geom = (struct dk_geom *)ioctl_arg;
2938 			if (!vd_slice_geom_isvalid(vd, geom))
2939 				return (EINVAL);
2940 
2941 			return (0);
2942 
2943 		case DKIOCSEXTVTOC:
2944 			ASSERT(ioctl_arg != NULL);
2945 			if (vd_slice_single_slice)
2946 				return (ENOTSUP);
2947 
2948 			/* fake sucess only if the new vtoc is valid */
2949 			vtoc = (struct extvtoc *)ioctl_arg;
2950 			if (!vd_slice_vtoc_isvalid(vd, vtoc))
2951 				return (EINVAL);
2952 
2953 			return (0);
2954 
2955 		default:
2956 			return (ENOTSUP);
2957 		}
2958 
2959 	/* ioctls for a single slice disk with an EFI label */
2960 	case VD_DISK_LABEL_EFI:
2961 
2962 		if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
2963 			return (ENOTSUP);
2964 
2965 		ASSERT(ioctl_arg != NULL);
2966 		dk_ioc = (dk_efi_t *)ioctl_arg;
2967 
2968 		len = dk_ioc->dki_length;
2969 		lba = dk_ioc->dki_lba;
2970 
2971 		if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
2972 		    (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
2973 		    (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
2974 			return (EINVAL);
2975 
2976 		switch (cmd) {
2977 		case DKIOCGETEFI:
2978 			len = vd_slice_flabel_read(vd,
2979 			    (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len);
2980 
2981 			ASSERT(len > 0);
2982 
2983 			return (0);
2984 
2985 		case DKIOCSETEFI:
2986 			if (vd_slice_single_slice)
2987 				return (ENOTSUP);
2988 
2989 			/* we currently don't support writing EFI */
2990 			return (EIO);
2991 		}
2992 
2993 	default:
2994 		/* Unknown disk label type */
2995 		return (ENOTSUP);
2996 	}
2997 }
2998 
2999 static int
3000 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
3001 {
3002 	vd_efi_dev_t edev;
3003 	int status;
3004 
3005 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3006 
3007 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
3008 
3009 	return (status);
3010 }
3011 
3012 static void
3013 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
3014 {
3015 	vd_efi_dev_t edev;
3016 
3017 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3018 
3019 	vd_efi_free(&edev, gpt, gpe);
3020 }
3021 
3022 static int
3023 vd_dskimg_validate_efi(vd_t *vd)
3024 {
3025 	efi_gpt_t *gpt;
3026 	efi_gpe_t *gpe;
3027 	int i, nparts, status;
3028 	struct uuid efi_reserved = EFI_RESERVED;
3029 
3030 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
3031 		return (status);
3032 
3033 	bzero(&vd->vtoc, sizeof (struct extvtoc));
3034 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
3035 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3036 
3037 	vd->efi_reserved = -1;
3038 
3039 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
3040 
3041 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
3042 
3043 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
3044 		    gpe[i].efi_gpe_EndingLBA == 0) {
3045 			continue;
3046 		}
3047 
3048 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
3049 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
3050 		    gpe[i].efi_gpe_StartingLBA + 1;
3051 
3052 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
3053 		    sizeof (struct uuid)) == 0)
3054 			vd->efi_reserved = i;
3055 
3056 	}
3057 
3058 	ASSERT(vd->vdisk_size != 0);
3059 	vd->slices[VD_EFI_WD_SLICE].start = 0;
3060 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
3061 
3062 	vds_efi_free(vd, gpt, gpe);
3063 
3064 	return (status);
3065 }
3066 
3067 /*
3068  * Function:
3069  *	vd_dskimg_validate_geometry
3070  *
3071  * Description:
3072  *	Read the label and validate the geometry of a disk image. The driver
3073  *	label, vtoc and geometry information are updated according to the
3074  *	label read from the disk image.
3075  *
3076  *	If no valid label is found, the label is set to unknown and the
3077  *	function returns EINVAL, but a default vtoc and geometry are provided
3078  *	to the driver. If an EFI label is found, ENOTSUP is returned.
3079  *
3080  * Parameters:
3081  *	vd	- disk on which the operation is performed.
3082  *
3083  * Return Code:
3084  *	0	- success.
3085  *	EIO	- error reading the label from the disk image.
3086  *	EINVAL	- unknown disk label.
3087  *	ENOTSUP	- geometry not applicable (EFI label).
3088  */
3089 static int
3090 vd_dskimg_validate_geometry(vd_t *vd)
3091 {
3092 	struct dk_label label;
3093 	struct dk_geom *geom = &vd->dk_geom;
3094 	struct extvtoc *vtoc = &vd->vtoc;
3095 	int i;
3096 	int status = 0;
3097 
3098 	ASSERT(VD_DSKIMG(vd));
3099 
3100 	if (VD_DSKIMG_LABEL_READ(vd, &label) < 0)
3101 		return (EIO);
3102 
3103 	if (label.dkl_magic != DKL_MAGIC ||
3104 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
3105 	    (vd_dskimg_validate_sanity &&
3106 	    label.dkl_vtoc.v_sanity != VTOC_SANE) ||
3107 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
3108 
3109 		if (vd_dskimg_validate_efi(vd) == 0) {
3110 			vd->vdisk_label = VD_DISK_LABEL_EFI;
3111 			return (ENOTSUP);
3112 		}
3113 
3114 		vd->vdisk_label = VD_DISK_LABEL_UNK;
3115 		vd_build_default_label(vd->dskimg_size, &label);
3116 		status = EINVAL;
3117 	} else {
3118 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
3119 	}
3120 
3121 	/* Update the driver geometry and vtoc */
3122 	vd_label_to_vtocgeom(&label, vtoc, geom);
3123 
3124 	/* Update logical partitions */
3125 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3126 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3127 		for (i = 0; i < vtoc->v_nparts; i++) {
3128 			vd->slices[i].start = vtoc->v_part[i].p_start;
3129 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
3130 		}
3131 	}
3132 
3133 	return (status);
3134 }
3135 
3136 /*
3137  * Handle ioctls to a disk image.
3138  *
3139  * Return Values
3140  *	0	- Indicates that there are no errors
3141  *	!= 0	- Disk operation returned an error
3142  */
3143 static int
3144 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3145 {
3146 	struct dk_label label;
3147 	struct dk_geom *geom;
3148 	struct extvtoc *vtoc;
3149 	dk_efi_t *efi;
3150 	int rc, rval;
3151 
3152 	ASSERT(VD_DSKIMG(vd));
3153 
3154 	switch (cmd) {
3155 
3156 	case DKIOCGGEOM:
3157 		ASSERT(ioctl_arg != NULL);
3158 		geom = (struct dk_geom *)ioctl_arg;
3159 
3160 		rc = vd_dskimg_validate_geometry(vd);
3161 		if (rc != 0 && rc != EINVAL)
3162 			return (rc);
3163 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
3164 		return (0);
3165 
3166 	case DKIOCGEXTVTOC:
3167 		ASSERT(ioctl_arg != NULL);
3168 		vtoc = (struct extvtoc *)ioctl_arg;
3169 
3170 		rc = vd_dskimg_validate_geometry(vd);
3171 		if (rc != 0 && rc != EINVAL)
3172 			return (rc);
3173 		bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
3174 		return (0);
3175 
3176 	case DKIOCSGEOM:
3177 		ASSERT(ioctl_arg != NULL);
3178 		geom = (struct dk_geom *)ioctl_arg;
3179 
3180 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
3181 			return (EINVAL);
3182 
3183 		/*
3184 		 * The current device geometry is not updated, just the driver
3185 		 * "notion" of it. The device geometry will be effectively
3186 		 * updated when a label is written to the device during a next
3187 		 * DKIOCSEXTVTOC.
3188 		 */
3189 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3190 		return (0);
3191 
3192 	case DKIOCSEXTVTOC:
3193 		ASSERT(ioctl_arg != NULL);
3194 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3195 		    vd->dk_geom.dkg_nsect != 0);
3196 		vtoc = (struct extvtoc *)ioctl_arg;
3197 
3198 		if (vtoc->v_sanity != VTOC_SANE ||
3199 		    vtoc->v_sectorsz != DEV_BSIZE ||
3200 		    vtoc->v_nparts != V_NUMPAR)
3201 			return (EINVAL);
3202 
3203 		vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3204 
3205 		/* write label to the disk image */
3206 		if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0)
3207 			return (rc);
3208 
3209 		break;
3210 
3211 	case DKIOCFLUSHWRITECACHE:
3212 		if (vd->file)
3213 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
3214 		else
3215 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
3216 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
3217 			    kcred, &rval));
3218 
3219 	case DKIOCGETEFI:
3220 		ASSERT(ioctl_arg != NULL);
3221 		efi = (dk_efi_t *)ioctl_arg;
3222 
3223 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3224 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3225 			return (EIO);
3226 
3227 		return (0);
3228 
3229 	case DKIOCSETEFI:
3230 		ASSERT(ioctl_arg != NULL);
3231 		efi = (dk_efi_t *)ioctl_arg;
3232 
3233 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3234 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3235 			return (EIO);
3236 
3237 		break;
3238 
3239 
3240 	default:
3241 		return (ENOTSUP);
3242 	}
3243 
3244 	ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
3245 
3246 	/* label has changed, revalidate the geometry */
3247 	(void) vd_dskimg_validate_geometry(vd);
3248 
3249 	/*
3250 	 * The disk geometry may have changed, so we need to write
3251 	 * the devid (if there is one) so that it is stored at the
3252 	 * right location.
3253 	 */
3254 	if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
3255 		PR0("Fail to write devid");
3256 	}
3257 
3258 	return (0);
3259 }
3260 
3261 static int
3262 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3263 {
3264 	int rval = 0, status;
3265 	struct vtoc vtoc;
3266 
3267 	/*
3268 	 * Call the appropriate function to execute the ioctl depending
3269 	 * on the type of vdisk.
3270 	 */
3271 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3272 
3273 		/* slice, file or volume exported as a single slice disk */
3274 		status = vd_do_slice_ioctl(vd, cmd, arg);
3275 
3276 	} else if (VD_DSKIMG(vd)) {
3277 
3278 		/* file or volume exported as a full disk */
3279 		status = vd_do_dskimg_ioctl(vd, cmd, arg);
3280 
3281 	} else {
3282 
3283 		/* disk device exported as a full disk */
3284 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3285 		    vd->open_flags | FKIOCTL, kcred, &rval);
3286 
3287 		/*
3288 		 * By default VTOC ioctls are done using ioctls for the
3289 		 * extended VTOC. Some drivers (in particular non-Sun drivers)
3290 		 * may not support these ioctls. In that case, we fallback to
3291 		 * the regular VTOC ioctls.
3292 		 */
3293 		if (status == ENOTTY) {
3294 			switch (cmd) {
3295 
3296 			case DKIOCGEXTVTOC:
3297 				cmd = DKIOCGVTOC;
3298 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3299 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3300 				    kcred, &rval);
3301 				vtoctoextvtoc(vtoc,
3302 				    (*(struct extvtoc *)(void *)arg));
3303 				break;
3304 
3305 			case DKIOCSEXTVTOC:
3306 				cmd = DKIOCSVTOC;
3307 				extvtoctovtoc((*(struct extvtoc *)(void *)arg),
3308 				    vtoc);
3309 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3310 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3311 				    kcred, &rval);
3312 				break;
3313 			}
3314 		}
3315 	}
3316 
3317 #ifdef DEBUG
3318 	if (rval != 0) {
3319 		PR0("ioctl %x set rval = %d, which is not being returned"
3320 		    " to caller", cmd, rval);
3321 	}
3322 #endif /* DEBUG */
3323 
3324 	return (status);
3325 }
3326 
3327 /*
3328  * Description:
3329  *	This is the function that processes the ioctl requests (farming it
3330  *	out to functions that handle slices, files or whole disks)
3331  *
3332  * Return Values
3333  *     0		- ioctl operation completed successfully
3334  *     != 0		- The LDC error value encountered
3335  *			  (propagated back up the call stack as a task error)
3336  *
3337  * Side Effect
3338  *     sets request->status to the return value of the ioctl function.
3339  */
3340 static int
3341 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3342 {
3343 	int	status = 0;
3344 	size_t	nbytes = request->nbytes;	/* modifiable copy */
3345 
3346 
3347 	ASSERT(request->slice < vd->nslices);
3348 	PR0("Performing %s", ioctl->operation_name);
3349 
3350 	/* Get data from client and convert, if necessary */
3351 	if (ioctl->copyin != NULL)  {
3352 		ASSERT(nbytes != 0 && buf != NULL);
3353 		PR1("Getting \"arg\" data from client");
3354 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3355 		    request->cookie, request->ncookies,
3356 		    LDC_COPY_IN)) != 0) {
3357 			PR0("ldc_mem_copy() returned errno %d "
3358 			    "copying from client", status);
3359 			return (status);
3360 		}
3361 
3362 		/* Convert client's data, if necessary */
3363 		if (ioctl->copyin == VD_IDENTITY_IN) {
3364 			/* use client buffer */
3365 			ioctl->arg = buf;
3366 		} else {
3367 			/* convert client vdisk operation data to ioctl data */
3368 			status = (ioctl->copyin)(buf, nbytes,
3369 			    (void *)ioctl->arg);
3370 			if (status != 0) {
3371 				request->status = status;
3372 				return (0);
3373 			}
3374 		}
3375 	}
3376 
3377 	if (ioctl->operation == VD_OP_SCSICMD) {
3378 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3379 
3380 		/* check write permission */
3381 		if (!(vd->open_flags & FWRITE) &&
3382 		    !(uscsi->uscsi_flags & USCSI_READ)) {
3383 			PR0("uscsi fails because backend is opened read-only");
3384 			request->status = EROFS;
3385 			return (0);
3386 		}
3387 	}
3388 
3389 	/*
3390 	 * Send the ioctl to the disk backend.
3391 	 */
3392 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3393 
3394 	if (request->status != 0) {
3395 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3396 		if (ioctl->operation == VD_OP_SCSICMD &&
3397 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3398 			/*
3399 			 * USCSICMD has reported an error and the uscsi_status
3400 			 * field is not zero. This means that the SCSI command
3401 			 * has completed but it has an error. So we should
3402 			 * mark the VD operation has succesfully completed
3403 			 * and clients can check the SCSI status field for
3404 			 * SCSI errors.
3405 			 */
3406 			request->status = 0;
3407 		else
3408 			return (0);
3409 	}
3410 
3411 	/* Convert data and send to client, if necessary */
3412 	if (ioctl->copyout != NULL)  {
3413 		ASSERT(nbytes != 0 && buf != NULL);
3414 		PR1("Sending \"arg\" data to client");
3415 
3416 		/* Convert ioctl data to vdisk operation data, if necessary */
3417 		if (ioctl->copyout != VD_IDENTITY_OUT)
3418 			(ioctl->copyout)((void *)ioctl->arg, buf);
3419 
3420 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3421 		    request->cookie, request->ncookies,
3422 		    LDC_COPY_OUT)) != 0) {
3423 			PR0("ldc_mem_copy() returned errno %d "
3424 			    "copying to client", status);
3425 			return (status);
3426 		}
3427 	}
3428 
3429 	return (status);
3430 }
3431 
3432 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3433 
3434 /*
3435  * Description:
3436  *	This generic function is called by the task queue to complete
3437  *	the processing of the tasks. The specific completion function
3438  *	is passed in as a field in the task pointer.
3439  *
3440  * Parameters:
3441  *	arg 	- opaque pointer to structure containing task to be completed
3442  *
3443  * Return Values
3444  *	None
3445  */
3446 static void
3447 vd_complete(void *arg)
3448 {
3449 	vd_task_t	*task = (vd_task_t *)arg;
3450 
3451 	ASSERT(task != NULL);
3452 	ASSERT(task->status == EINPROGRESS);
3453 	ASSERT(task->completef != NULL);
3454 
3455 	task->status = task->completef(task);
3456 	if (task->status)
3457 		PR0("%s: Error %d completing task", __func__, task->status);
3458 
3459 	/* Now notify the vDisk client */
3460 	vd_complete_notify(task);
3461 }
3462 
3463 static int
3464 vd_ioctl(vd_task_t *task)
3465 {
3466 	int			i, status;
3467 	void			*buf = NULL;
3468 	struct dk_geom		dk_geom = {0};
3469 	struct extvtoc		vtoc = {0};
3470 	struct dk_efi		dk_efi = {0};
3471 	struct uscsi_cmd	uscsi = {0};
3472 	vd_t			*vd		= task->vd;
3473 	vd_dring_payload_t	*request	= task->request;
3474 	vd_ioctl_t		ioctl[] = {
3475 		/* Command (no-copy) operations */
3476 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3477 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3478 		    NULL, NULL, NULL, B_TRUE},
3479 
3480 		/* "Get" (copy-out) operations */
3481 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3482 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3483 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3484 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3485 		    RNDSIZE(vd_geom_t),
3486 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3487 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3488 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3489 		    DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
3490 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3491 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3492 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3493 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3494 
3495 		/* "Set" (copy-in) operations */
3496 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3497 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3498 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3499 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3500 		    RNDSIZE(vd_geom_t),
3501 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3502 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3503 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3504 		    DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
3505 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3506 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3507 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3508 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3509 
3510 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3511 		    USCSICMD, STRINGIZE(USCSICMD),
3512 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3513 	};
3514 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3515 
3516 
3517 	ASSERT(vd != NULL);
3518 	ASSERT(request != NULL);
3519 	ASSERT(request->slice < vd->nslices);
3520 
3521 	/*
3522 	 * Determine ioctl corresponding to caller's "operation" and
3523 	 * validate caller's "nbytes"
3524 	 */
3525 	for (i = 0; i < nioctls; i++) {
3526 		if (request->operation == ioctl[i].operation) {
3527 			/* LDC memory operations require 8-byte multiples */
3528 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3529 
3530 			if (request->operation == VD_OP_GET_EFI ||
3531 			    request->operation == VD_OP_SET_EFI ||
3532 			    request->operation == VD_OP_SCSICMD) {
3533 				if (request->nbytes >= ioctl[i].nbytes)
3534 					break;
3535 				PR0("%s:  Expected at least nbytes = %lu, "
3536 				    "got %lu", ioctl[i].operation_name,
3537 				    ioctl[i].nbytes, request->nbytes);
3538 				return (EINVAL);
3539 			}
3540 
3541 			if (request->nbytes != ioctl[i].nbytes) {
3542 				PR0("%s:  Expected nbytes = %lu, got %lu",
3543 				    ioctl[i].operation_name, ioctl[i].nbytes,
3544 				    request->nbytes);
3545 				return (EINVAL);
3546 			}
3547 
3548 			break;
3549 		}
3550 	}
3551 	ASSERT(i < nioctls);	/* because "operation" already validated */
3552 
3553 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3554 		PR0("%s fails because backend is opened read-only",
3555 		    ioctl[i].operation_name);
3556 		request->status = EROFS;
3557 		return (0);
3558 	}
3559 
3560 	if (request->nbytes)
3561 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3562 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3563 	if (request->nbytes)
3564 		kmem_free(buf, request->nbytes);
3565 
3566 	return (status);
3567 }
3568 
3569 static int
3570 vd_get_devid(vd_task_t *task)
3571 {
3572 	vd_t *vd = task->vd;
3573 	vd_dring_payload_t *request = task->request;
3574 	vd_devid_t *vd_devid;
3575 	impl_devid_t *devid;
3576 	int status, bufid_len, devid_len, len, sz;
3577 	int bufbytes;
3578 
3579 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
3580 
3581 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3582 		/*
3583 		 * We don't support devid for single-slice disks because we
3584 		 * have no space to store a fabricated devid and for physical
3585 		 * disk slices, we can't use the devid of the disk otherwise
3586 		 * exporting multiple slices from the same disk will produce
3587 		 * the same devids.
3588 		 */
3589 		PR2("No Device ID for slices");
3590 		request->status = ENOTSUP;
3591 		return (0);
3592 	}
3593 
3594 	if (VD_DSKIMG(vd)) {
3595 		if (vd->dskimg_devid == NULL) {
3596 			PR2("No Device ID");
3597 			request->status = ENOENT;
3598 			return (0);
3599 		} else {
3600 			sz = ddi_devid_sizeof(vd->dskimg_devid);
3601 			devid = kmem_alloc(sz, KM_SLEEP);
3602 			bcopy(vd->dskimg_devid, devid, sz);
3603 		}
3604 	} else {
3605 		if (ddi_lyr_get_devid(vd->dev[request->slice],
3606 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3607 			PR2("No Device ID");
3608 			request->status = ENOENT;
3609 			return (0);
3610 		}
3611 	}
3612 
3613 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3614 	devid_len = DEVID_GETLEN(devid);
3615 
3616 	/*
3617 	 * Save the buffer size here for use in deallocation.
3618 	 * The actual number of bytes copied is returned in
3619 	 * the 'nbytes' field of the request structure.
3620 	 */
3621 	bufbytes = request->nbytes;
3622 
3623 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3624 	vd_devid->length = devid_len;
3625 	vd_devid->type = DEVID_GETTYPE(devid);
3626 
3627 	len = (devid_len > bufid_len)? bufid_len : devid_len;
3628 
3629 	bcopy(devid->did_id, vd_devid->id, len);
3630 
3631 	request->status = 0;
3632 
3633 	/* LDC memory operations require 8-byte multiples */
3634 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3635 
3636 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3637 	    &request->nbytes, request->cookie, request->ncookies,
3638 	    LDC_COPY_OUT)) != 0) {
3639 		PR0("ldc_mem_copy() returned errno %d copying to client",
3640 		    status);
3641 	}
3642 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
3643 
3644 	kmem_free(vd_devid, bufbytes);
3645 	ddi_devid_free((ddi_devid_t)devid);
3646 
3647 	return (status);
3648 }
3649 
3650 static int
3651 vd_scsi_reset(vd_t *vd)
3652 {
3653 	int rval, status;
3654 	struct uscsi_cmd uscsi = { 0 };
3655 
3656 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3657 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3658 
3659 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3660 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3661 
3662 	return (status);
3663 }
3664 
3665 static int
3666 vd_reset(vd_task_t *task)
3667 {
3668 	vd_t *vd = task->vd;
3669 	vd_dring_payload_t *request = task->request;
3670 
3671 	ASSERT(request->operation == VD_OP_RESET);
3672 	ASSERT(vd->scsi);
3673 
3674 	PR0("Performing VD_OP_RESET");
3675 
3676 	if (request->nbytes != 0) {
3677 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3678 		    request->nbytes);
3679 		return (EINVAL);
3680 	}
3681 
3682 	request->status = vd_scsi_reset(vd);
3683 
3684 	return (0);
3685 }
3686 
3687 static int
3688 vd_get_capacity(vd_task_t *task)
3689 {
3690 	int rv;
3691 	size_t nbytes;
3692 	vd_t *vd = task->vd;
3693 	vd_dring_payload_t *request = task->request;
3694 	vd_capacity_t vd_cap = { 0 };
3695 
3696 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
3697 
3698 	PR0("Performing VD_OP_GET_CAPACITY");
3699 
3700 	nbytes = request->nbytes;
3701 
3702 	if (nbytes != RNDSIZE(vd_capacity_t)) {
3703 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3704 		    RNDSIZE(vd_capacity_t), nbytes);
3705 		return (EINVAL);
3706 	}
3707 
3708 	/*
3709 	 * Check the backend size in case it has changed. If the check fails
3710 	 * then we will return the last known size.
3711 	 */
3712 
3713 	(void) vd_backend_check_size(vd);
3714 	ASSERT(vd->vdisk_size != 0);
3715 
3716 	request->status = 0;
3717 
3718 	vd_cap.vdisk_block_size = vd->vdisk_block_size;
3719 	vd_cap.vdisk_size = vd->vdisk_size;
3720 
3721 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3722 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3723 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3724 		return (rv);
3725 	}
3726 
3727 	return (0);
3728 }
3729 
3730 static int
3731 vd_get_access(vd_task_t *task)
3732 {
3733 	uint64_t access;
3734 	int rv, rval = 0;
3735 	size_t nbytes;
3736 	vd_t *vd = task->vd;
3737 	vd_dring_payload_t *request = task->request;
3738 
3739 	ASSERT(request->operation == VD_OP_GET_ACCESS);
3740 	ASSERT(vd->scsi);
3741 
3742 	PR0("Performing VD_OP_GET_ACCESS");
3743 
3744 	nbytes = request->nbytes;
3745 
3746 	if (nbytes != sizeof (uint64_t)) {
3747 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3748 		    sizeof (uint64_t), nbytes);
3749 		return (EINVAL);
3750 	}
3751 
3752 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3753 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3754 
3755 	if (request->status != 0)
3756 		return (0);
3757 
3758 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3759 
3760 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3761 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3762 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3763 		return (rv);
3764 	}
3765 
3766 	return (0);
3767 }
3768 
3769 static int
3770 vd_set_access(vd_task_t *task)
3771 {
3772 	uint64_t flags;
3773 	int rv, rval;
3774 	size_t nbytes;
3775 	vd_t *vd = task->vd;
3776 	vd_dring_payload_t *request = task->request;
3777 
3778 	ASSERT(request->operation == VD_OP_SET_ACCESS);
3779 	ASSERT(vd->scsi);
3780 
3781 	nbytes = request->nbytes;
3782 
3783 	if (nbytes != sizeof (uint64_t)) {
3784 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3785 		    sizeof (uint64_t), nbytes);
3786 		return (EINVAL);
3787 	}
3788 
3789 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3790 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3791 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3792 		return (rv);
3793 	}
3794 
3795 	if (flags == VD_ACCESS_SET_CLEAR) {
3796 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3797 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3798 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3799 		    &rval);
3800 		if (request->status == 0)
3801 			vd->ownership = B_FALSE;
3802 		return (0);
3803 	}
3804 
3805 	/*
3806 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3807 	 * when the EXCLUSIVE flag is set.
3808 	 */
3809 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3810 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3811 		request->status = EINVAL;
3812 		return (0);
3813 	}
3814 
3815 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3816 
3817 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3818 		/*
3819 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3820 		 * acquire exclusive access rights, preserve them and we
3821 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3822 		 */
3823 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3824 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3825 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3826 		break;
3827 
3828 	case VD_ACCESS_SET_PRESERVE:
3829 		/*
3830 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3831 		 * access rights and preserve them, but not preempt any other
3832 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3833 		 * "preserve" feature but we can not called it directly
3834 		 * because it uses preemption. So before that, we use the
3835 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3836 		 * without preempting anyone.
3837 		 */
3838 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3839 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3840 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3841 		    &rval);
3842 		if (request->status != 0)
3843 			break;
3844 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3845 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3846 		break;
3847 
3848 	case VD_ACCESS_SET_PREEMPT:
3849 		/*
3850 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3851 		 * access rights and we can use preemption. So we try to do
3852 		 * a SCSI reservation, if it fails we reset the disk to clear
3853 		 * any reservation and we try to reserve again.
3854 		 */
3855 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3856 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3857 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3858 		    &rval);
3859 		if (request->status == 0)
3860 			break;
3861 
3862 		/* reset the disk */
3863 		(void) vd_scsi_reset(vd);
3864 
3865 		/* try again even if the reset has failed */
3866 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3867 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3868 		    &rval);
3869 		break;
3870 
3871 	case 0:
3872 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
3873 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
3874 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3875 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3876 		    &rval);
3877 		break;
3878 	}
3879 
3880 	if (request->status == 0)
3881 		vd->ownership = B_TRUE;
3882 	else
3883 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
3884 
3885 	return (0);
3886 }
3887 
3888 static void
3889 vd_reset_access(vd_t *vd)
3890 {
3891 	int status, rval;
3892 
3893 	if (vd->file || vd->volume || !vd->ownership)
3894 		return;
3895 
3896 	PR0("Releasing disk ownership");
3897 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3898 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3899 
3900 	/*
3901 	 * An EACCES failure means that there is a reservation conflict,
3902 	 * so we are not the owner of the disk anymore.
3903 	 */
3904 	if (status == 0 || status == EACCES) {
3905 		vd->ownership = B_FALSE;
3906 		return;
3907 	}
3908 
3909 	PR0("Fail to release ownership, error %d", status);
3910 
3911 	/*
3912 	 * We have failed to release the ownership, try to reset the disk
3913 	 * to release reservations.
3914 	 */
3915 	PR0("Resetting disk");
3916 	status = vd_scsi_reset(vd);
3917 
3918 	if (status != 0)
3919 		PR0("Fail to reset disk, error %d", status);
3920 
3921 	/* whatever the result of the reset is, we try the release again */
3922 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3923 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3924 
3925 	if (status == 0 || status == EACCES) {
3926 		vd->ownership = B_FALSE;
3927 		return;
3928 	}
3929 
3930 	PR0("Fail to release ownership, error %d", status);
3931 
3932 	/*
3933 	 * At this point we have done our best to try to reset the
3934 	 * access rights to the disk and we don't know if we still
3935 	 * own a reservation and if any mechanism to preserve the
3936 	 * ownership is still in place. The ultimate solution would
3937 	 * be to reset the system but this is usually not what we
3938 	 * want to happen.
3939 	 */
3940 
3941 	if (vd_reset_access_failure == A_REBOOT) {
3942 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
3943 		    ", rebooting the system", vd->device_path);
3944 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
3945 	} else if (vd_reset_access_failure == A_DUMP) {
3946 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3947 	}
3948 
3949 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3950 }
3951 
3952 /*
3953  * Define the supported operations once the functions for performing them have
3954  * been defined
3955  */
3956 static const vds_operation_t	vds_operation[] = {
3957 #define	X(_s)	#_s, _s
3958 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
3959 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
3960 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
3961 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
3962 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
3963 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
3964 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
3965 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
3966 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
3967 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
3968 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
3969 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
3970 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
3971 	{X(VD_OP_RESET),	vd_reset,	NULL},
3972 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
3973 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
3974 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
3975 #undef	X
3976 };
3977 
3978 static const size_t	vds_noperations =
3979 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
3980 
3981 /*
3982  * Process a task specifying a client I/O request
3983  *
3984  * Parameters:
3985  *	task 		- structure containing the request sent from client
3986  *
3987  * Return Value
3988  *	0	- success
3989  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
3990  *	EINVAL	- Invalid disk slice
3991  *	!= 0	- some other non-zero return value from start function
3992  */
3993 static int
3994 vd_do_process_task(vd_task_t *task)
3995 {
3996 	int			i;
3997 	vd_t			*vd		= task->vd;
3998 	vd_dring_payload_t	*request	= task->request;
3999 
4000 	ASSERT(vd != NULL);
4001 	ASSERT(request != NULL);
4002 
4003 	/* Find the requested operation */
4004 	for (i = 0; i < vds_noperations; i++) {
4005 		if (request->operation == vds_operation[i].operation) {
4006 			/* all operations should have a start func */
4007 			ASSERT(vds_operation[i].start != NULL);
4008 
4009 			task->completef = vds_operation[i].complete;
4010 			break;
4011 		}
4012 	}
4013 
4014 	/*
4015 	 * We need to check that the requested operation is permitted
4016 	 * for the particular client that sent it or that the loop above
4017 	 * did not complete without finding the operation type (indicating
4018 	 * that the requested operation is unknown/unimplemented)
4019 	 */
4020 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
4021 	    (i == vds_noperations)) {
4022 		PR0("Unsupported operation %u", request->operation);
4023 		request->status = ENOTSUP;
4024 		return (0);
4025 	}
4026 
4027 	/* Range-check slice */
4028 	if (request->slice >= vd->nslices &&
4029 	    ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
4030 	    request->slice != VD_SLICE_NONE)) {
4031 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
4032 		    request->slice, (vd->nslices - 1));
4033 		request->status = EINVAL;
4034 		return (0);
4035 	}
4036 
4037 	/*
4038 	 * Call the function pointer that starts the operation.
4039 	 */
4040 	return (vds_operation[i].start(task));
4041 }
4042 
4043 /*
4044  * Description:
4045  *	This function is called by both the in-band and descriptor ring
4046  *	message processing functions paths to actually execute the task
4047  *	requested by the vDisk client. It in turn calls its worker
4048  *	function, vd_do_process_task(), to carry our the request.
4049  *
4050  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
4051  *	saved in the 'status' field of the task and are propagated back
4052  *	up the call stack to trigger a NACK
4053  *
4054  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
4055  *	the 'status' field of the request and result in an ACK being sent
4056  *	by the completion handler.
4057  *
4058  * Parameters:
4059  *	task 		- structure containing the request sent from client
4060  *
4061  * Return Value
4062  *	0		- successful synchronous request.
4063  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
4064  *	EINPROGRESS	- task will be finished in a completion handler
4065  */
4066 static int
4067 vd_process_task(vd_task_t *task)
4068 {
4069 	vd_t	*vd = task->vd;
4070 	int	status;
4071 
4072 	DTRACE_PROBE1(task__start, vd_task_t *, task);
4073 
4074 	task->status =  vd_do_process_task(task);
4075 
4076 	/*
4077 	 * If the task processing function returned EINPROGRESS indicating
4078 	 * that the task needs completing then schedule a taskq entry to
4079 	 * finish it now.
4080 	 *
4081 	 * Otherwise the task processing function returned either zero
4082 	 * indicating that the task was finished in the start function (and we
4083 	 * don't need to wait in a completion function) or the start function
4084 	 * returned an error - in both cases all that needs to happen is the
4085 	 * notification to the vDisk client higher up the call stack.
4086 	 * If the task was using a Descriptor Ring, we need to mark it as done
4087 	 * at this stage.
4088 	 */
4089 	if (task->status == EINPROGRESS) {
4090 		/* Queue a task to complete the operation */
4091 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
4092 		    task, DDI_SLEEP);
4093 
4094 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
4095 		/* Update the dring element if it's a dring client */
4096 		status = vd_mark_elem_done(vd, task->index,
4097 		    task->request->status, task->request->nbytes);
4098 		if (status == ECONNRESET)
4099 			vd_mark_in_reset(vd);
4100 		else if (status == EACCES)
4101 			vd_need_reset(vd, B_TRUE);
4102 	}
4103 
4104 	return (task->status);
4105 }
4106 
4107 /*
4108  * Return true if the "type", "subtype", and "env" fields of the "tag" first
4109  * argument match the corresponding remaining arguments; otherwise, return false
4110  */
4111 boolean_t
4112 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
4113 {
4114 	return ((tag->vio_msgtype == type) &&
4115 	    (tag->vio_subtype == subtype) &&
4116 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
4117 }
4118 
4119 /*
4120  * Check whether the major/minor version specified in "ver_msg" is supported
4121  * by this server.
4122  */
4123 static boolean_t
4124 vds_supported_version(vio_ver_msg_t *ver_msg)
4125 {
4126 	for (int i = 0; i < vds_num_versions; i++) {
4127 		ASSERT(vds_version[i].major > 0);
4128 		ASSERT((i == 0) ||
4129 		    (vds_version[i].major < vds_version[i-1].major));
4130 
4131 		/*
4132 		 * If the major versions match, adjust the minor version, if
4133 		 * necessary, down to the highest value supported by this
4134 		 * server and return true so this message will get "ack"ed;
4135 		 * the client should also support all minor versions lower
4136 		 * than the value it sent
4137 		 */
4138 		if (ver_msg->ver_major == vds_version[i].major) {
4139 			if (ver_msg->ver_minor > vds_version[i].minor) {
4140 				PR0("Adjusting minor version from %u to %u",
4141 				    ver_msg->ver_minor, vds_version[i].minor);
4142 				ver_msg->ver_minor = vds_version[i].minor;
4143 			}
4144 			return (B_TRUE);
4145 		}
4146 
4147 		/*
4148 		 * If the message contains a higher major version number, set
4149 		 * the message's major/minor versions to the current values
4150 		 * and return false, so this message will get "nack"ed with
4151 		 * these values, and the client will potentially try again
4152 		 * with the same or a lower version
4153 		 */
4154 		if (ver_msg->ver_major > vds_version[i].major) {
4155 			ver_msg->ver_major = vds_version[i].major;
4156 			ver_msg->ver_minor = vds_version[i].minor;
4157 			return (B_FALSE);
4158 		}
4159 
4160 		/*
4161 		 * Otherwise, the message's major version is less than the
4162 		 * current major version, so continue the loop to the next
4163 		 * (lower) supported version
4164 		 */
4165 	}
4166 
4167 	/*
4168 	 * No common version was found; "ground" the version pair in the
4169 	 * message to terminate negotiation
4170 	 */
4171 	ver_msg->ver_major = 0;
4172 	ver_msg->ver_minor = 0;
4173 	return (B_FALSE);
4174 }
4175 
4176 /*
4177  * Process a version message from a client.  vds expects to receive version
4178  * messages from clients seeking service, but never issues version messages
4179  * itself; therefore, vds can ACK or NACK client version messages, but does
4180  * not expect to receive version-message ACKs or NACKs (and will treat such
4181  * messages as invalid).
4182  */
4183 static int
4184 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4185 {
4186 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
4187 
4188 
4189 	ASSERT(msglen >= sizeof (msg->tag));
4190 
4191 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4192 	    VIO_VER_INFO)) {
4193 		return (ENOMSG);	/* not a version message */
4194 	}
4195 
4196 	if (msglen != sizeof (*ver_msg)) {
4197 		PR0("Expected %lu-byte version message; "
4198 		    "received %lu bytes", sizeof (*ver_msg), msglen);
4199 		return (EBADMSG);
4200 	}
4201 
4202 	if (ver_msg->dev_class != VDEV_DISK) {
4203 		PR0("Expected device class %u (disk); received %u",
4204 		    VDEV_DISK, ver_msg->dev_class);
4205 		return (EBADMSG);
4206 	}
4207 
4208 	/*
4209 	 * We're talking to the expected kind of client; set our device class
4210 	 * for "ack/nack" back to the client
4211 	 */
4212 	ver_msg->dev_class = VDEV_DISK_SERVER;
4213 
4214 	/*
4215 	 * Check whether the (valid) version message specifies a version
4216 	 * supported by this server.  If the version is not supported, return
4217 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
4218 	 * will have updated the message with a supported version for the
4219 	 * client to consider
4220 	 */
4221 	if (!vds_supported_version(ver_msg))
4222 		return (EBADMSG);
4223 
4224 
4225 	/*
4226 	 * A version has been agreed upon; use the client's SID for
4227 	 * communication on this channel now
4228 	 */
4229 	ASSERT(!(vd->initialized & VD_SID));
4230 	vd->sid = ver_msg->tag.vio_sid;
4231 	vd->initialized |= VD_SID;
4232 
4233 	/*
4234 	 * Store the negotiated major and minor version values in the "vd" data
4235 	 * structure so that we can check if certain operations are supported
4236 	 * by the client.
4237 	 */
4238 	vd->version.major = ver_msg->ver_major;
4239 	vd->version.minor = ver_msg->ver_minor;
4240 
4241 	PR0("Using major version %u, minor version %u",
4242 	    ver_msg->ver_major, ver_msg->ver_minor);
4243 	return (0);
4244 }
4245 
4246 static void
4247 vd_set_exported_operations(vd_t *vd)
4248 {
4249 	vd->operations = 0;	/* clear field */
4250 
4251 	/*
4252 	 * We need to check from the highest version supported to the
4253 	 * lowest because versions with a higher minor number implicitly
4254 	 * support versions with a lower minor number.
4255 	 */
4256 	if (vio_ver_is_supported(vd->version, 1, 1)) {
4257 		ASSERT(vd->open_flags & FREAD);
4258 		vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4259 
4260 		if (vd->open_flags & FWRITE)
4261 			vd->operations |= VD_OP_MASK_WRITE;
4262 
4263 		if (vd->scsi)
4264 			vd->operations |= VD_OP_MASK_SCSI;
4265 
4266 		if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) {
4267 			/*
4268 			 * can't write to ISO images, make sure that write
4269 			 * support is not set in case administrator did not
4270 			 * use "options=ro" when doing an ldm add-vdsdev
4271 			 */
4272 			vd->operations &= ~VD_OP_MASK_WRITE;
4273 		}
4274 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
4275 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4276 	}
4277 
4278 	/* we should have already agreed on a version */
4279 	ASSERT(vd->operations != 0);
4280 }
4281 
4282 static int
4283 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4284 {
4285 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
4286 	int		status, retry = 0;
4287 
4288 
4289 	ASSERT(msglen >= sizeof (msg->tag));
4290 
4291 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4292 	    VIO_ATTR_INFO)) {
4293 		PR0("Message is not an attribute message");
4294 		return (ENOMSG);
4295 	}
4296 
4297 	if (msglen != sizeof (*attr_msg)) {
4298 		PR0("Expected %lu-byte attribute message; "
4299 		    "received %lu bytes", sizeof (*attr_msg), msglen);
4300 		return (EBADMSG);
4301 	}
4302 
4303 	if (attr_msg->max_xfer_sz == 0) {
4304 		PR0("Received maximum transfer size of 0 from client");
4305 		return (EBADMSG);
4306 	}
4307 
4308 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4309 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4310 		PR0("Client requested unsupported transfer mode");
4311 		return (EBADMSG);
4312 	}
4313 
4314 	/*
4315 	 * check if the underlying disk is ready, if not try accessing
4316 	 * the device again. Open the vdisk device and extract info
4317 	 * about it, as this is needed to respond to the attr info msg
4318 	 */
4319 	if ((vd->initialized & VD_DISK_READY) == 0) {
4320 		PR0("Retry setting up disk (%s)", vd->device_path);
4321 		do {
4322 			status = vd_setup_vd(vd);
4323 			if (status != EAGAIN || ++retry > vds_dev_retries)
4324 				break;
4325 
4326 			/* incremental delay */
4327 			delay(drv_usectohz(vds_dev_delay));
4328 
4329 			/* if vdisk is no longer enabled - return error */
4330 			if (!vd_enabled(vd))
4331 				return (ENXIO);
4332 
4333 		} while (status == EAGAIN);
4334 
4335 		if (status)
4336 			return (ENXIO);
4337 
4338 		vd->initialized |= VD_DISK_READY;
4339 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4340 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4341 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4342 		    (vd->volume ? "yes" : "no"),
4343 		    (vd->file ? "yes" : "no"),
4344 		    vd->nslices);
4345 	}
4346 
4347 	/* Success:  valid message and transfer mode */
4348 	vd->xfer_mode = attr_msg->xfer_mode;
4349 
4350 	if (vd->xfer_mode == VIO_DESC_MODE) {
4351 
4352 		/*
4353 		 * The vd_dring_inband_msg_t contains one cookie; need room
4354 		 * for up to n-1 more cookies, where "n" is the number of full
4355 		 * pages plus possibly one partial page required to cover
4356 		 * "max_xfer_sz".  Add room for one more cookie if
4357 		 * "max_xfer_sz" isn't an integral multiple of the page size.
4358 		 * Must first get the maximum transfer size in bytes.
4359 		 */
4360 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
4361 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
4362 		    attr_msg->max_xfer_sz;
4363 		size_t	max_inband_msglen =
4364 		    sizeof (vd_dring_inband_msg_t) +
4365 		    ((max_xfer_bytes/PAGESIZE +
4366 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4367 		    (sizeof (ldc_mem_cookie_t)));
4368 
4369 		/*
4370 		 * Set the maximum expected message length to
4371 		 * accommodate in-band-descriptor messages with all
4372 		 * their cookies
4373 		 */
4374 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4375 
4376 		/*
4377 		 * Initialize the data structure for processing in-band I/O
4378 		 * request descriptors
4379 		 */
4380 		vd->inband_task.vd	= vd;
4381 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
4382 		vd->inband_task.index	= 0;
4383 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
4384 	}
4385 
4386 	/* Return the device's block size and max transfer size to the client */
4387 	attr_msg->vdisk_block_size	= vd->vdisk_block_size;
4388 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
4389 
4390 	attr_msg->vdisk_size = vd->vdisk_size;
4391 	attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4392 	    VD_DISK_TYPE_DISK;
4393 	attr_msg->vdisk_media = vd->vdisk_media;
4394 
4395 	/* Discover and save the list of supported VD_OP_XXX operations */
4396 	vd_set_exported_operations(vd);
4397 	attr_msg->operations = vd->operations;
4398 
4399 	PR0("%s", VD_CLIENT(vd));
4400 
4401 	ASSERT(vd->dring_task == NULL);
4402 
4403 	return (0);
4404 }
4405 
4406 static int
4407 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4408 {
4409 	int			status;
4410 	size_t			expected;
4411 	ldc_mem_info_t		dring_minfo;
4412 	uint8_t			mtype;
4413 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
4414 
4415 
4416 	ASSERT(msglen >= sizeof (msg->tag));
4417 
4418 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4419 	    VIO_DRING_REG)) {
4420 		PR0("Message is not a register-dring message");
4421 		return (ENOMSG);
4422 	}
4423 
4424 	if (msglen < sizeof (*reg_msg)) {
4425 		PR0("Expected at least %lu-byte register-dring message; "
4426 		    "received %lu bytes", sizeof (*reg_msg), msglen);
4427 		return (EBADMSG);
4428 	}
4429 
4430 	expected = sizeof (*reg_msg) +
4431 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4432 	if (msglen != expected) {
4433 		PR0("Expected %lu-byte register-dring message; "
4434 		    "received %lu bytes", expected, msglen);
4435 		return (EBADMSG);
4436 	}
4437 
4438 	if (vd->initialized & VD_DRING) {
4439 		PR0("A dring was previously registered; only support one");
4440 		return (EBADMSG);
4441 	}
4442 
4443 	if (reg_msg->num_descriptors > INT32_MAX) {
4444 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4445 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4446 		return (EBADMSG);
4447 	}
4448 
4449 	if (reg_msg->ncookies != 1) {
4450 		/*
4451 		 * In addition to fixing the assertion in the success case
4452 		 * below, supporting drings which require more than one
4453 		 * "cookie" requires increasing the value of vd->max_msglen
4454 		 * somewhere in the code path prior to receiving the message
4455 		 * which results in calling this function.  Note that without
4456 		 * making this change, the larger message size required to
4457 		 * accommodate multiple cookies cannot be successfully
4458 		 * received, so this function will not even get called.
4459 		 * Gracefully accommodating more dring cookies might
4460 		 * reasonably demand exchanging an additional attribute or
4461 		 * making a minor protocol adjustment
4462 		 */
4463 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4464 		return (EBADMSG);
4465 	}
4466 
4467 	if (vd_direct_mapped_drings)
4468 		mtype = LDC_DIRECT_MAP;
4469 	else
4470 		mtype = LDC_SHADOW_MAP;
4471 
4472 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4473 	    reg_msg->ncookies, reg_msg->num_descriptors,
4474 	    reg_msg->descriptor_size, mtype, &vd->dring_handle);
4475 	if (status != 0) {
4476 		PR0("ldc_mem_dring_map() returned errno %d", status);
4477 		return (status);
4478 	}
4479 
4480 	/*
4481 	 * To remove the need for this assertion, must call
4482 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4483 	 * successful call to ldc_mem_dring_map()
4484 	 */
4485 	ASSERT(reg_msg->ncookies == 1);
4486 
4487 	if ((status =
4488 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4489 		PR0("ldc_mem_dring_info() returned errno %d", status);
4490 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4491 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
4492 		return (status);
4493 	}
4494 
4495 	if (dring_minfo.vaddr == NULL) {
4496 		PR0("Descriptor ring virtual address is NULL");
4497 		return (ENXIO);
4498 	}
4499 
4500 
4501 	/* Initialize for valid message and mapped dring */
4502 	vd->initialized |= VD_DRING;
4503 	vd->dring_ident = 1;	/* "There Can Be Only One" */
4504 	vd->dring = dring_minfo.vaddr;
4505 	vd->descriptor_size = reg_msg->descriptor_size;
4506 	vd->dring_len = reg_msg->num_descriptors;
4507 	vd->dring_mtype = dring_minfo.mtype;
4508 	reg_msg->dring_ident = vd->dring_ident;
4509 	PR1("descriptor size = %u, dring length = %u",
4510 	    vd->descriptor_size, vd->dring_len);
4511 
4512 	/*
4513 	 * Allocate and initialize a "shadow" array of data structures for
4514 	 * tasks to process I/O requests in dring elements
4515 	 */
4516 	vd->dring_task =
4517 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4518 	for (int i = 0; i < vd->dring_len; i++) {
4519 		vd->dring_task[i].vd		= vd;
4520 		vd->dring_task[i].index		= i;
4521 
4522 		status = ldc_mem_alloc_handle(vd->ldc_handle,
4523 		    &(vd->dring_task[i].mhdl));
4524 		if (status) {
4525 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
4526 			return (ENXIO);
4527 		}
4528 
4529 		/*
4530 		 * The descriptor payload varies in length. Calculate its
4531 		 * size by subtracting the header size from the total
4532 		 * descriptor size.
4533 		 */
4534 		vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4535 		    sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4536 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4537 	}
4538 
4539 	return (0);
4540 }
4541 
4542 static int
4543 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4544 {
4545 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
4546 
4547 
4548 	ASSERT(msglen >= sizeof (msg->tag));
4549 
4550 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4551 	    VIO_DRING_UNREG)) {
4552 		PR0("Message is not an unregister-dring message");
4553 		return (ENOMSG);
4554 	}
4555 
4556 	if (msglen != sizeof (*unreg_msg)) {
4557 		PR0("Expected %lu-byte unregister-dring message; "
4558 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
4559 		return (EBADMSG);
4560 	}
4561 
4562 	if (unreg_msg->dring_ident != vd->dring_ident) {
4563 		PR0("Expected dring ident %lu; received %lu",
4564 		    vd->dring_ident, unreg_msg->dring_ident);
4565 		return (EBADMSG);
4566 	}
4567 
4568 	return (0);
4569 }
4570 
4571 static int
4572 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4573 {
4574 	ASSERT(msglen >= sizeof (msg->tag));
4575 
4576 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4577 		PR0("Message is not an RDX message");
4578 		return (ENOMSG);
4579 	}
4580 
4581 	if (msglen != sizeof (vio_rdx_msg_t)) {
4582 		PR0("Expected %lu-byte RDX message; received %lu bytes",
4583 		    sizeof (vio_rdx_msg_t), msglen);
4584 		return (EBADMSG);
4585 	}
4586 
4587 	PR0("Valid RDX message");
4588 	return (0);
4589 }
4590 
4591 static int
4592 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4593 {
4594 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4595 		PR0("Received seq_num %lu; expected %lu",
4596 		    seq_num, (vd->seq_num + 1));
4597 		PR0("initiating soft reset");
4598 		vd_need_reset(vd, B_FALSE);
4599 		return (1);
4600 	}
4601 
4602 	vd->seq_num = seq_num;
4603 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
4604 	return (0);
4605 }
4606 
4607 /*
4608  * Return the expected size of an inband-descriptor message with all the
4609  * cookies it claims to include
4610  */
4611 static size_t
4612 expected_inband_size(vd_dring_inband_msg_t *msg)
4613 {
4614 	return ((sizeof (*msg)) +
4615 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4616 }
4617 
4618 /*
4619  * Process an in-band descriptor message:  used with clients like OBP, with
4620  * which vds exchanges descriptors within VIO message payloads, rather than
4621  * operating on them within a descriptor ring
4622  */
4623 static int
4624 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4625 {
4626 	size_t			expected;
4627 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
4628 
4629 
4630 	ASSERT(msglen >= sizeof (msg->tag));
4631 
4632 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4633 	    VIO_DESC_DATA)) {
4634 		PR1("Message is not an in-band-descriptor message");
4635 		return (ENOMSG);
4636 	}
4637 
4638 	if (msglen < sizeof (*desc_msg)) {
4639 		PR0("Expected at least %lu-byte descriptor message; "
4640 		    "received %lu bytes", sizeof (*desc_msg), msglen);
4641 		return (EBADMSG);
4642 	}
4643 
4644 	if (msglen != (expected = expected_inband_size(desc_msg))) {
4645 		PR0("Expected %lu-byte descriptor message; "
4646 		    "received %lu bytes", expected, msglen);
4647 		return (EBADMSG);
4648 	}
4649 
4650 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4651 		return (EBADMSG);
4652 
4653 	/*
4654 	 * Valid message:  Set up the in-band descriptor task and process the
4655 	 * request.  Arrange to acknowledge the client's message, unless an
4656 	 * error processing the descriptor task results in setting
4657 	 * VIO_SUBTYPE_NACK
4658 	 */
4659 	PR1("Valid in-band-descriptor message");
4660 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4661 
4662 	ASSERT(vd->inband_task.msg != NULL);
4663 
4664 	bcopy(msg, vd->inband_task.msg, msglen);
4665 	vd->inband_task.msglen	= msglen;
4666 
4667 	/*
4668 	 * The task request is now the payload of the message
4669 	 * that was just copied into the body of the task.
4670 	 */
4671 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4672 	vd->inband_task.request	= &desc_msg->payload;
4673 
4674 	return (vd_process_task(&vd->inband_task));
4675 }
4676 
4677 static int
4678 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4679     vio_msg_t *msg, size_t msglen)
4680 {
4681 	int			status;
4682 	boolean_t		ready;
4683 	on_trap_data_t		otd;
4684 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
4685 
4686 	/* Accept the updated dring element */
4687 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4688 	    vd->dring_handle, idx, idx)) != 0) {
4689 		return (status);
4690 	}
4691 	ready = (elem->hdr.dstate == VIO_DESC_READY);
4692 	if (ready) {
4693 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
4694 		bcopy(&elem->payload, vd->dring_task[idx].request,
4695 		    (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4696 	} else {
4697 		PR0("descriptor %u not ready", idx);
4698 		VD_DUMP_DRING_ELEM(elem);
4699 	}
4700 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4701 	    vd->dring_handle, idx, idx)) != 0) {
4702 		PR0("VIO_DRING_RELEASE() returned errno %d", status);
4703 		return (status);
4704 	}
4705 	if (!ready)
4706 		return (EBUSY);
4707 
4708 
4709 	/* Initialize a task and process the accepted element */
4710 	PR1("Processing dring element %u", idx);
4711 	vd->dring_task[idx].type	= type;
4712 
4713 	/* duplicate msg buf for cookies etc. */
4714 	bcopy(msg, vd->dring_task[idx].msg, msglen);
4715 
4716 	vd->dring_task[idx].msglen	= msglen;
4717 	return (vd_process_task(&vd->dring_task[idx]));
4718 }
4719 
4720 static int
4721 vd_process_element_range(vd_t *vd, int start, int end,
4722     vio_msg_t *msg, size_t msglen)
4723 {
4724 	int		i, n, nelem, status = 0;
4725 	boolean_t	inprogress = B_FALSE;
4726 	vd_task_type_t	type;
4727 
4728 
4729 	ASSERT(start >= 0);
4730 	ASSERT(end >= 0);
4731 
4732 	/*
4733 	 * Arrange to acknowledge the client's message, unless an error
4734 	 * processing one of the dring elements results in setting
4735 	 * VIO_SUBTYPE_NACK
4736 	 */
4737 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4738 
4739 	/*
4740 	 * Process the dring elements in the range
4741 	 */
4742 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4743 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4744 		((vio_dring_msg_t *)msg)->end_idx = i;
4745 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4746 		status = vd_process_element(vd, type, i, msg, msglen);
4747 		if (status == EINPROGRESS)
4748 			inprogress = B_TRUE;
4749 		else if (status != 0)
4750 			break;
4751 	}
4752 
4753 	/*
4754 	 * If some, but not all, operations of a multi-element range are in
4755 	 * progress, wait for other operations to complete before returning
4756 	 * (which will result in "ack" or "nack" of the message).  Note that
4757 	 * all outstanding operations will need to complete, not just the ones
4758 	 * corresponding to the current range of dring elements; howevever, as
4759 	 * this situation is an error case, performance is less critical.
4760 	 */
4761 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
4762 		ddi_taskq_wait(vd->completionq);
4763 
4764 	return (status);
4765 }
4766 
4767 static int
4768 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4769 {
4770 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
4771 
4772 
4773 	ASSERT(msglen >= sizeof (msg->tag));
4774 
4775 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4776 	    VIO_DRING_DATA)) {
4777 		PR1("Message is not a dring-data message");
4778 		return (ENOMSG);
4779 	}
4780 
4781 	if (msglen != sizeof (*dring_msg)) {
4782 		PR0("Expected %lu-byte dring message; received %lu bytes",
4783 		    sizeof (*dring_msg), msglen);
4784 		return (EBADMSG);
4785 	}
4786 
4787 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4788 		return (EBADMSG);
4789 
4790 	if (dring_msg->dring_ident != vd->dring_ident) {
4791 		PR0("Expected dring ident %lu; received ident %lu",
4792 		    vd->dring_ident, dring_msg->dring_ident);
4793 		return (EBADMSG);
4794 	}
4795 
4796 	if (dring_msg->start_idx >= vd->dring_len) {
4797 		PR0("\"start_idx\" = %u; must be less than %u",
4798 		    dring_msg->start_idx, vd->dring_len);
4799 		return (EBADMSG);
4800 	}
4801 
4802 	if ((dring_msg->end_idx < 0) ||
4803 	    (dring_msg->end_idx >= vd->dring_len)) {
4804 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4805 		    dring_msg->end_idx, vd->dring_len);
4806 		return (EBADMSG);
4807 	}
4808 
4809 	/* Valid message; process range of updated dring elements */
4810 	PR1("Processing descriptor range, start = %u, end = %u",
4811 	    dring_msg->start_idx, dring_msg->end_idx);
4812 	return (vd_process_element_range(vd, dring_msg->start_idx,
4813 	    dring_msg->end_idx, msg, msglen));
4814 }
4815 
4816 static int
4817 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4818 {
4819 	int	retry, status;
4820 	size_t	size = *nbytes;
4821 
4822 
4823 	for (retry = 0, status = ETIMEDOUT;
4824 	    retry < vds_ldc_retries && status == ETIMEDOUT;
4825 	    retry++) {
4826 		PR1("ldc_read() attempt %d", (retry + 1));
4827 		*nbytes = size;
4828 		status = ldc_read(ldc_handle, msg, nbytes);
4829 	}
4830 
4831 	if (status) {
4832 		PR0("ldc_read() returned errno %d", status);
4833 		if (status != ECONNRESET)
4834 			return (ENOMSG);
4835 		return (status);
4836 	} else if (*nbytes == 0) {
4837 		PR1("ldc_read() returned 0 and no message read");
4838 		return (ENOMSG);
4839 	}
4840 
4841 	PR1("RCVD %lu-byte message", *nbytes);
4842 	return (0);
4843 }
4844 
4845 static int
4846 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4847 {
4848 	int		status;
4849 
4850 
4851 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
4852 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
4853 #ifdef	DEBUG
4854 	vd_decode_tag(msg);
4855 #endif
4856 
4857 	/*
4858 	 * Validate session ID up front, since it applies to all messages
4859 	 * once set
4860 	 */
4861 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
4862 		PR0("Expected SID %u, received %u", vd->sid,
4863 		    msg->tag.vio_sid);
4864 		return (EBADMSG);
4865 	}
4866 
4867 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
4868 
4869 	/*
4870 	 * Process the received message based on connection state
4871 	 */
4872 	switch (vd->state) {
4873 	case VD_STATE_INIT:	/* expect version message */
4874 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
4875 			return (status);
4876 
4877 		/* Version negotiated, move to that state */
4878 		vd->state = VD_STATE_VER;
4879 		return (0);
4880 
4881 	case VD_STATE_VER:	/* expect attribute message */
4882 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
4883 			return (status);
4884 
4885 		/* Attributes exchanged, move to that state */
4886 		vd->state = VD_STATE_ATTR;
4887 		return (0);
4888 
4889 	case VD_STATE_ATTR:
4890 		switch (vd->xfer_mode) {
4891 		case VIO_DESC_MODE:	/* expect RDX message */
4892 			if ((status = process_rdx_msg(msg, msglen)) != 0)
4893 				return (status);
4894 
4895 			/* Ready to receive in-band descriptors */
4896 			vd->state = VD_STATE_DATA;
4897 			return (0);
4898 
4899 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
4900 			if ((status =
4901 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
4902 				return (status);
4903 
4904 			/* One dring negotiated, move to that state */
4905 			vd->state = VD_STATE_DRING;
4906 			return (0);
4907 
4908 		default:
4909 			ASSERT("Unsupported transfer mode");
4910 			PR0("Unsupported transfer mode");
4911 			return (ENOTSUP);
4912 		}
4913 
4914 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
4915 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
4916 			/* Ready to receive data */
4917 			vd->state = VD_STATE_DATA;
4918 			return (0);
4919 		} else if (status != ENOMSG) {
4920 			return (status);
4921 		}
4922 
4923 
4924 		/*
4925 		 * If another register-dring message is received, stay in
4926 		 * dring state in case the client sends RDX; although the
4927 		 * protocol allows multiple drings, this server does not
4928 		 * support using more than one
4929 		 */
4930 		if ((status =
4931 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
4932 			return (status);
4933 
4934 		/*
4935 		 * Acknowledge an unregister-dring message, but reset the
4936 		 * connection anyway:  Although the protocol allows
4937 		 * unregistering drings, this server cannot serve a vdisk
4938 		 * without its only dring
4939 		 */
4940 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
4941 		return ((status == 0) ? ENOTSUP : status);
4942 
4943 	case VD_STATE_DATA:
4944 		switch (vd->xfer_mode) {
4945 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
4946 			return (vd_process_desc_msg(vd, msg, msglen));
4947 
4948 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
4949 			/*
4950 			 * Typically expect dring-data messages, so handle
4951 			 * them first
4952 			 */
4953 			if ((status = vd_process_dring_msg(vd, msg,
4954 			    msglen)) != ENOMSG)
4955 				return (status);
4956 
4957 			/*
4958 			 * Acknowledge an unregister-dring message, but reset
4959 			 * the connection anyway:  Although the protocol
4960 			 * allows unregistering drings, this server cannot
4961 			 * serve a vdisk without its only dring
4962 			 */
4963 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
4964 			return ((status == 0) ? ENOTSUP : status);
4965 
4966 		default:
4967 			ASSERT("Unsupported transfer mode");
4968 			PR0("Unsupported transfer mode");
4969 			return (ENOTSUP);
4970 		}
4971 
4972 	default:
4973 		ASSERT("Invalid client connection state");
4974 		PR0("Invalid client connection state");
4975 		return (ENOTSUP);
4976 	}
4977 }
4978 
4979 static int
4980 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4981 {
4982 	int		status;
4983 	boolean_t	reset_ldc = B_FALSE;
4984 	vd_task_t	task;
4985 
4986 	/*
4987 	 * Check that the message is at least big enough for a "tag", so that
4988 	 * message processing can proceed based on tag-specified message type
4989 	 */
4990 	if (msglen < sizeof (vio_msg_tag_t)) {
4991 		PR0("Received short (%lu-byte) message", msglen);
4992 		/* Can't "nack" short message, so drop the big hammer */
4993 		PR0("initiating full reset");
4994 		vd_need_reset(vd, B_TRUE);
4995 		return (EBADMSG);
4996 	}
4997 
4998 	/*
4999 	 * Process the message
5000 	 */
5001 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
5002 	case 0:
5003 		/* "ack" valid, successfully-processed messages */
5004 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
5005 		break;
5006 
5007 	case EINPROGRESS:
5008 		/* The completion handler will "ack" or "nack" the message */
5009 		return (EINPROGRESS);
5010 	case ENOMSG:
5011 		PR0("Received unexpected message");
5012 		_NOTE(FALLTHROUGH);
5013 	case EBADMSG:
5014 	case ENOTSUP:
5015 		/* "transport" error will cause NACK of invalid messages */
5016 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5017 		break;
5018 
5019 	default:
5020 		/* "transport" error will cause NACK of invalid messages */
5021 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5022 		/* An LDC error probably occurred, so try resetting it */
5023 		reset_ldc = B_TRUE;
5024 		break;
5025 	}
5026 
5027 	PR1("\tResulting in state %d (%s)", vd->state,
5028 	    vd_decode_state(vd->state));
5029 
5030 	/* populate the task so we can dispatch it on the taskq */
5031 	task.vd = vd;
5032 	task.msg = msg;
5033 	task.msglen = msglen;
5034 
5035 	/*
5036 	 * Queue a task to send the notification that the operation completed.
5037 	 * We need to ensure that requests are responded to in the correct
5038 	 * order and since the taskq is processed serially this ordering
5039 	 * is maintained.
5040 	 */
5041 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
5042 	    &task, DDI_SLEEP);
5043 
5044 	/*
5045 	 * To ensure handshake negotiations do not happen out of order, such
5046 	 * requests that come through this path should not be done in parallel
5047 	 * so we need to wait here until the response is sent to the client.
5048 	 */
5049 	ddi_taskq_wait(vd->completionq);
5050 
5051 	/* Arrange to reset the connection for nack'ed or failed messages */
5052 	if ((status != 0) || reset_ldc) {
5053 		PR0("initiating %s reset",
5054 		    (reset_ldc) ? "full" : "soft");
5055 		vd_need_reset(vd, reset_ldc);
5056 	}
5057 
5058 	return (status);
5059 }
5060 
5061 static boolean_t
5062 vd_enabled(vd_t *vd)
5063 {
5064 	boolean_t	enabled;
5065 
5066 	mutex_enter(&vd->lock);
5067 	enabled = vd->enabled;
5068 	mutex_exit(&vd->lock);
5069 	return (enabled);
5070 }
5071 
5072 static void
5073 vd_recv_msg(void *arg)
5074 {
5075 	vd_t	*vd = (vd_t *)arg;
5076 	int	rv = 0, status = 0;
5077 
5078 	ASSERT(vd != NULL);
5079 
5080 	PR2("New task to receive incoming message(s)");
5081 
5082 
5083 	while (vd_enabled(vd) && status == 0) {
5084 		size_t		msglen, msgsize;
5085 		ldc_status_t	lstatus;
5086 
5087 		/*
5088 		 * Receive and process a message
5089 		 */
5090 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
5091 
5092 		/*
5093 		 * check if channel is UP - else break out of loop
5094 		 */
5095 		status = ldc_status(vd->ldc_handle, &lstatus);
5096 		if (lstatus != LDC_UP) {
5097 			PR0("channel not up (status=%d), exiting recv loop\n",
5098 			    lstatus);
5099 			break;
5100 		}
5101 
5102 		ASSERT(vd->max_msglen != 0);
5103 
5104 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
5105 		msglen	= msgsize;	  /* actual len after recv_msg() */
5106 
5107 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
5108 		switch (status) {
5109 		case 0:
5110 			rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
5111 			/* check if max_msglen changed */
5112 			if (msgsize != vd->max_msglen) {
5113 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
5114 				    msgsize, vd->max_msglen);
5115 				kmem_free(vd->vio_msgp, msgsize);
5116 				vd->vio_msgp =
5117 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
5118 			}
5119 			if (rv == EINPROGRESS)
5120 				continue;
5121 			break;
5122 
5123 		case ENOMSG:
5124 			break;
5125 
5126 		case ECONNRESET:
5127 			PR0("initiating soft reset (ECONNRESET)\n");
5128 			vd_need_reset(vd, B_FALSE);
5129 			status = 0;
5130 			break;
5131 
5132 		default:
5133 			/* Probably an LDC failure; arrange to reset it */
5134 			PR0("initiating full reset (status=0x%x)", status);
5135 			vd_need_reset(vd, B_TRUE);
5136 			break;
5137 		}
5138 	}
5139 
5140 	PR2("Task finished");
5141 }
5142 
5143 static uint_t
5144 vd_handle_ldc_events(uint64_t event, caddr_t arg)
5145 {
5146 	vd_t	*vd = (vd_t *)(void *)arg;
5147 	int	status;
5148 
5149 	ASSERT(vd != NULL);
5150 
5151 	if (!vd_enabled(vd))
5152 		return (LDC_SUCCESS);
5153 
5154 	if (event & LDC_EVT_DOWN) {
5155 		PR0("LDC_EVT_DOWN: LDC channel went down");
5156 
5157 		vd_need_reset(vd, B_TRUE);
5158 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5159 		    DDI_SLEEP);
5160 		if (status == DDI_FAILURE) {
5161 			PR0("cannot schedule task to recv msg\n");
5162 			vd_need_reset(vd, B_TRUE);
5163 		}
5164 	}
5165 
5166 	if (event & LDC_EVT_RESET) {
5167 		PR0("LDC_EVT_RESET: LDC channel was reset");
5168 
5169 		if (vd->state != VD_STATE_INIT) {
5170 			PR0("scheduling full reset");
5171 			vd_need_reset(vd, B_FALSE);
5172 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5173 			    vd, DDI_SLEEP);
5174 			if (status == DDI_FAILURE) {
5175 				PR0("cannot schedule task to recv msg\n");
5176 				vd_need_reset(vd, B_TRUE);
5177 			}
5178 
5179 		} else {
5180 			PR0("channel already reset, ignoring...\n");
5181 			PR0("doing ldc up...\n");
5182 			(void) ldc_up(vd->ldc_handle);
5183 		}
5184 
5185 		return (LDC_SUCCESS);
5186 	}
5187 
5188 	if (event & LDC_EVT_UP) {
5189 		PR0("EVT_UP: LDC is up\nResetting client connection state");
5190 		PR0("initiating soft reset");
5191 		vd_need_reset(vd, B_FALSE);
5192 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5193 		    vd, DDI_SLEEP);
5194 		if (status == DDI_FAILURE) {
5195 			PR0("cannot schedule task to recv msg\n");
5196 			vd_need_reset(vd, B_TRUE);
5197 			return (LDC_SUCCESS);
5198 		}
5199 	}
5200 
5201 	if (event & LDC_EVT_READ) {
5202 		int	status;
5203 
5204 		PR1("New data available");
5205 		/* Queue a task to receive the new data */
5206 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5207 		    DDI_SLEEP);
5208 
5209 		if (status == DDI_FAILURE) {
5210 			PR0("cannot schedule task to recv msg\n");
5211 			vd_need_reset(vd, B_TRUE);
5212 		}
5213 	}
5214 
5215 	return (LDC_SUCCESS);
5216 }
5217 
5218 static uint_t
5219 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5220 {
5221 	_NOTE(ARGUNUSED(key, val))
5222 	(*((uint_t *)arg))++;
5223 	return (MH_WALK_TERMINATE);
5224 }
5225 
5226 
5227 static int
5228 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5229 {
5230 	uint_t	vd_present = 0;
5231 	minor_t	instance;
5232 	vds_t	*vds;
5233 
5234 
5235 	switch (cmd) {
5236 	case DDI_DETACH:
5237 		/* the real work happens below */
5238 		break;
5239 	case DDI_SUSPEND:
5240 		PR0("No action required for DDI_SUSPEND");
5241 		return (DDI_SUCCESS);
5242 	default:
5243 		PR0("Unrecognized \"cmd\"");
5244 		return (DDI_FAILURE);
5245 	}
5246 
5247 	ASSERT(cmd == DDI_DETACH);
5248 	instance = ddi_get_instance(dip);
5249 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5250 		PR0("Could not get state for instance %u", instance);
5251 		ddi_soft_state_free(vds_state, instance);
5252 		return (DDI_FAILURE);
5253 	}
5254 
5255 	/* Do no detach when serving any vdisks */
5256 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5257 	if (vd_present) {
5258 		PR0("Not detaching because serving vdisks");
5259 		return (DDI_FAILURE);
5260 	}
5261 
5262 	PR0("Detaching");
5263 	if (vds->initialized & VDS_MDEG) {
5264 		(void) mdeg_unregister(vds->mdeg);
5265 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5266 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5267 		vds->ispecp = NULL;
5268 		vds->mdeg = NULL;
5269 	}
5270 
5271 	vds_driver_types_free(vds);
5272 
5273 	if (vds->initialized & VDS_LDI)
5274 		(void) ldi_ident_release(vds->ldi_ident);
5275 	mod_hash_destroy_hash(vds->vd_table);
5276 	ddi_soft_state_free(vds_state, instance);
5277 	return (DDI_SUCCESS);
5278 }
5279 
5280 /*
5281  * Description:
5282  *	This function checks to see if the disk image being used as a
5283  *	virtual disk is an ISO image. An ISO image is a special case
5284  *	which can be booted/installed from like a CD/DVD.
5285  *
5286  * Parameters:
5287  *	vd		- disk on which the operation is performed.
5288  *
5289  * Return Code:
5290  *	B_TRUE		- The disk image is an ISO 9660 compliant image
5291  *	B_FALSE		- just a regular disk image
5292  */
5293 static boolean_t
5294 vd_dskimg_is_iso_image(vd_t *vd)
5295 {
5296 	char	iso_buf[ISO_SECTOR_SIZE];
5297 	int	i, rv;
5298 	uint_t	sec;
5299 
5300 	ASSERT(VD_DSKIMG(vd));
5301 
5302 	/*
5303 	 * If we have already discovered and saved this info we can
5304 	 * short-circuit the check and avoid reading the disk image.
5305 	 */
5306 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5307 		return (B_TRUE);
5308 
5309 	/*
5310 	 * We wish to read the sector that should contain the 2nd ISO volume
5311 	 * descriptor. The second field in this descriptor is called the
5312 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5313 	 * to the ISO 9660 standard.
5314 	 */
5315 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
5316 	rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5317 	    sec, ISO_SECTOR_SIZE);
5318 
5319 	if (rv < 0)
5320 		return (B_FALSE);
5321 
5322 	for (i = 0; i < ISO_ID_STRLEN; i++) {
5323 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5324 			return (B_FALSE);
5325 	}
5326 
5327 	return (B_TRUE);
5328 }
5329 
5330 /*
5331  * Description:
5332  *	This function checks to see if the virtual device is an ATAPI
5333  *	device. ATAPI devices use Group 1 Read/Write commands, so
5334  *	any USCSI calls vds makes need to take this into account.
5335  *
5336  * Parameters:
5337  *	vd		- disk on which the operation is performed.
5338  *
5339  * Return Code:
5340  *	B_TRUE		- The virtual disk is backed by an ATAPI device
5341  *	B_FALSE		- not an ATAPI device (presumably SCSI)
5342  */
5343 static boolean_t
5344 vd_is_atapi_device(vd_t *vd)
5345 {
5346 	boolean_t	is_atapi = B_FALSE;
5347 	char		*variantp;
5348 	int		rv;
5349 
5350 	ASSERT(vd->ldi_handle[0] != NULL);
5351 	ASSERT(!vd->file);
5352 
5353 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5354 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5355 	if (rv == DDI_PROP_SUCCESS) {
5356 		PR0("'variant' property exists for %s", vd->device_path);
5357 		if (strcmp(variantp, "atapi") == 0)
5358 			is_atapi = B_TRUE;
5359 		ddi_prop_free(variantp);
5360 	}
5361 
5362 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5363 	if (rv) {
5364 		PR0("'atapi' property exists for %s", vd->device_path);
5365 		is_atapi = B_TRUE;
5366 	}
5367 
5368 	return (is_atapi);
5369 }
5370 
5371 static int
5372 vd_setup_full_disk(vd_t *vd)
5373 {
5374 	int		status;
5375 	major_t		major = getmajor(vd->dev[0]);
5376 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5377 
5378 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5379 
5380 	vd->vdisk_block_size = DEV_BSIZE;
5381 
5382 	/* set the disk size, block size and the media type of the disk */
5383 	status = vd_backend_check_size(vd);
5384 
5385 	if (status != 0) {
5386 		if (!vd->scsi) {
5387 			/* unexpected failure */
5388 			PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
5389 			    status);
5390 			return (status);
5391 		}
5392 
5393 		/*
5394 		 * The function can fail for SCSI disks which are present but
5395 		 * reserved by another system. In that case, we don't know the
5396 		 * size of the disk and the block size.
5397 		 */
5398 		vd->vdisk_size = VD_SIZE_UNKNOWN;
5399 		vd->block_size = 0;
5400 		vd->vdisk_media = VD_MEDIA_FIXED;
5401 	}
5402 
5403 	/* Move dev number and LDI handle to entire-disk-slice array elements */
5404 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
5405 	vd->dev[0]				= 0;
5406 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
5407 	vd->ldi_handle[0]			= NULL;
5408 
5409 	/* Initialize device numbers for remaining slices and open them */
5410 	for (int slice = 0; slice < vd->nslices; slice++) {
5411 		/*
5412 		 * Skip the entire-disk slice, as it's already open and its
5413 		 * device known
5414 		 */
5415 		if (slice == VD_ENTIRE_DISK_SLICE)
5416 			continue;
5417 		ASSERT(vd->dev[slice] == 0);
5418 		ASSERT(vd->ldi_handle[slice] == NULL);
5419 
5420 		/*
5421 		 * Construct the device number for the current slice
5422 		 */
5423 		vd->dev[slice] = makedevice(major, (minor + slice));
5424 
5425 		/*
5426 		 * Open all slices of the disk to serve them to the client.
5427 		 * Slices are opened exclusively to prevent other threads or
5428 		 * processes in the service domain from performing I/O to
5429 		 * slices being accessed by a client.  Failure to open a slice
5430 		 * results in vds not serving this disk, as the client could
5431 		 * attempt (and should be able) to access any slice immediately.
5432 		 * Any slices successfully opened before a failure will get
5433 		 * closed by vds_destroy_vd() as a result of the error returned
5434 		 * by this function.
5435 		 *
5436 		 * We need to do the open with FNDELAY so that opening an empty
5437 		 * slice does not fail.
5438 		 */
5439 		PR0("Opening device major %u, minor %u = slice %u",
5440 		    major, minor, slice);
5441 
5442 		/*
5443 		 * Try to open the device. This can fail for example if we are
5444 		 * opening an empty slice. So in case of a failure, we try the
5445 		 * open again but this time with the FNDELAY flag.
5446 		 */
5447 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5448 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
5449 		    vd->vds->ldi_ident);
5450 
5451 		if (status != 0) {
5452 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5453 			    vd->open_flags | FNDELAY, kcred,
5454 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
5455 		}
5456 
5457 		if (status != 0) {
5458 			PRN("ldi_open_by_dev() returned errno %d "
5459 			    "for slice %u", status, slice);
5460 			/* vds_destroy_vd() will close any open slices */
5461 			vd->ldi_handle[slice] = NULL;
5462 			return (status);
5463 		}
5464 	}
5465 
5466 	return (0);
5467 }
5468 
5469 /*
5470  * When a slice or a volume is exported as a single-slice disk, we want
5471  * the disk backend (i.e. the slice or volume) to be entirely mapped as
5472  * a slice without the addition of any metadata.
5473  *
5474  * So when exporting the disk as a VTOC disk, we fake a disk with the following
5475  * layout:
5476  *                flabel +--- flabel_limit
5477  *                 <->   V
5478  *                 0 1   C                          D  E
5479  *                 +-+---+--------------------------+--+
5480  *  virtual disk:  |L|XXX|           slice 0        |AA|
5481  *                 +-+---+--------------------------+--+
5482  *                  ^    :                          :
5483  *                  |    :                          :
5484  *      VTOC LABEL--+    :                          :
5485  *                       +--------------------------+
5486  *  disk backend:        |     slice/volume/file    |
5487  *                       +--------------------------+
5488  *                       0                          N
5489  *
5490  * N is the number of blocks in the slice/volume/file.
5491  *
5492  * We simulate a disk with N+M blocks, where M is the number of blocks
5493  * simluated at the beginning and at the end of the disk (blocks 0-C
5494  * and D-E).
5495  *
5496  * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5497  * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5498  * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5499  *
5500  * - block 0 (L) returns a fake VTOC label
5501  * - blocks 1 to C-1 (X) are unused and return 0
5502  * - blocks C to D-1 are mapped to the exported slice or volume
5503  * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5504  *
5505  * Note: because we define a fake disk geometry, it is possible that the length
5506  * of the backend is not a multiple of the size of cylinder, in that case the
5507  * very end of the backend will not map to any block of the virtual disk.
5508  */
5509 static int
5510 vd_setup_partition_vtoc(vd_t *vd)
5511 {
5512 	char *device_path = vd->device_path;
5513 	char unit;
5514 	size_t size, csize;
5515 
5516 	/* Initialize dk_geom structure for single-slice device */
5517 	if (vd->dk_geom.dkg_nsect == 0) {
5518 		PRN("%s geometry claims 0 sectors per track", device_path);
5519 		return (EIO);
5520 	}
5521 	if (vd->dk_geom.dkg_nhead == 0) {
5522 		PRN("%s geometry claims 0 heads", device_path);
5523 		return (EIO);
5524 	}
5525 
5526 	/* size of a cylinder in block */
5527 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5528 
5529 	/*
5530 	 * Add extra cylinders: we emulate the first cylinder (which contains
5531 	 * the disk label).
5532 	 */
5533 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5534 
5535 	/* we emulate 2 alternate cylinders */
5536 	vd->dk_geom.dkg_acyl = 2;
5537 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5538 
5539 
5540 	/* Initialize vtoc structure for single-slice device */
5541 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5542 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5543 	vd->vtoc.v_part[0].p_flag = 0;
5544 	/*
5545 	 * Partition 0 starts on cylinder 1 and its size has to be
5546 	 * a multiple of a number of cylinder.
5547 	 */
5548 	vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5549 	vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5550 
5551 	if (vd_slice_single_slice) {
5552 		vd->vtoc.v_nparts = 1;
5553 		bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5554 		    MIN(sizeof (VD_ASCIILABEL),
5555 		    sizeof (vd->vtoc.v_asciilabel)));
5556 		bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5557 		    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5558 	} else {
5559 		/* adjust the number of slices */
5560 		vd->nslices = V_NUMPAR;
5561 		vd->vtoc.v_nparts = V_NUMPAR;
5562 
5563 		/* define slice 2 representing the entire disk */
5564 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5565 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5566 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5567 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5568 		    vd->dk_geom.dkg_ncyl * csize;
5569 
5570 		vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size,
5571 		    &size, &unit);
5572 
5573 		/*
5574 		 * Set some attributes of the geometry to what format(1m) uses
5575 		 * so that writing a default label using format(1m) does not
5576 		 * produce any error.
5577 		 */
5578 		vd->dk_geom.dkg_bcyl = 0;
5579 		vd->dk_geom.dkg_intrlv = 1;
5580 		vd->dk_geom.dkg_write_reinstruct = 0;
5581 		vd->dk_geom.dkg_read_reinstruct = 0;
5582 
5583 		/*
5584 		 * We must have a correct label name otherwise format(1m) will
5585 		 * not recognized the disk as labeled.
5586 		 */
5587 		(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5588 		    "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5589 		    size, unit,
5590 		    vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5591 		    vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5592 		bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5593 
5594 		/* create a fake label from the vtoc and geometry */
5595 		vd->flabel_limit = (uint_t)csize;
5596 		vd->flabel_size = VD_LABEL_VTOC_SIZE;
5597 		vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5598 		vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5599 		    VD_LABEL_VTOC(vd));
5600 	}
5601 
5602 	/* adjust the vdisk_size, we emulate 3 cylinders */
5603 	vd->vdisk_size += csize * 3;
5604 
5605 	return (0);
5606 }
5607 
5608 /*
5609  * When a slice, volume or file is exported as a single-slice disk, we want
5610  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5611  * as a slice without the addition of any metadata.
5612  *
5613  * So when exporting the disk as an EFI disk, we fake a disk with the following
5614  * layout:
5615  *
5616  *                  flabel        +--- flabel_limit
5617  *                 <------>       v
5618  *                 0 1 2  L      34                        34+N      P
5619  *                 +-+-+--+-------+--------------------------+-------+
5620  *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5621  *                 +-+-+--+-------+--------------------------+-------+
5622  *                    ^ ^         :                          :
5623  *                    | |         :                          :
5624  *                GPT-+ +-GPE     :                          :
5625  *                                +--------------------------+
5626  *  disk backend:                 |     slice/volume/file    |
5627  *                                +--------------------------+
5628  *                                0                          N
5629  *
5630  * N is the number of blocks in the slice/volume/file.
5631  *
5632  * We simulate a disk with N+M blocks, where M is the number of blocks
5633  * simluated at the beginning and at the end of the disk (blocks 0-34
5634  * and 34+N-P).
5635  *
5636  * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5637  * to 34+N defines slice 0 and are mapped to the exported backend, and we
5638  * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5639  * reserved partition.
5640  *
5641  * - block 0 (X) is unused and return 0
5642  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5643  * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5644  * - blocks L to 33 (X) are unused and return 0
5645  * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5646  * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5647  *   returns 0
5648  *
5649  * Note: if the backend size is not a multiple of the vdisk block size
5650  * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to
5651  * any block of the virtual disk.
5652  */
5653 static int
5654 vd_setup_partition_efi(vd_t *vd)
5655 {
5656 	efi_gpt_t *gpt;
5657 	efi_gpe_t *gpe;
5658 	struct uuid uuid = EFI_USR;
5659 	struct uuid efi_reserved = EFI_RESERVED;
5660 	uint32_t crc;
5661 	uint64_t s0_start, s0_end;
5662 
5663 	vd->flabel_limit = 34;
5664 	vd->flabel_size = VD_LABEL_EFI_SIZE;
5665 	vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5666 	gpt = VD_LABEL_EFI_GPT(vd);
5667 	gpe = VD_LABEL_EFI_GPE(vd);
5668 
5669 	/* adjust the vdisk_size, we emulate the first 34 blocks */
5670 	vd->vdisk_size += 34;
5671 	s0_start = 34;
5672 	s0_end = vd->vdisk_size - 1;
5673 
5674 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5675 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5676 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5677 	gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL);
5678 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5679 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5680 
5681 	UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5682 	gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5683 	gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5684 
5685 	if (vd_slice_single_slice) {
5686 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5687 	} else {
5688 		/* adjust the number of slices */
5689 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5690 		vd->nslices = V_NUMPAR;
5691 
5692 		/* define a fake reserved partition */
5693 		UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5694 		    efi_reserved);
5695 		gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5696 		    LE_64(s0_end + 1);
5697 		gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5698 		    LE_64(s0_end + EFI_MIN_RESV_SIZE);
5699 
5700 		/* adjust the vdisk_size to include the reserved slice */
5701 		vd->vdisk_size += EFI_MIN_RESV_SIZE;
5702 	}
5703 
5704 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5705 
5706 	/* adjust the vdisk size for the backup GPT and GPE */
5707 	vd->vdisk_size += 33;
5708 
5709 	CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5710 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5711 
5712 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5713 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5714 
5715 	return (0);
5716 }
5717 
5718 /*
5719  * Setup for a virtual disk whose backend is a file (exported as a single slice
5720  * or as a full disk). In that case, the backend is accessed using the vnode
5721  * interface.
5722  */
5723 static int
5724 vd_setup_backend_vnode(vd_t *vd)
5725 {
5726 	int 		rval, status;
5727 	vattr_t		vattr;
5728 	dev_t		dev;
5729 	char		*file_path = vd->device_path;
5730 	ldi_handle_t	lhandle;
5731 	struct dk_cinfo	dk_cinfo;
5732 
5733 	ASSERT(!vd->volume);
5734 
5735 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5736 	    0, &vd->file_vnode, 0, 0)) != 0) {
5737 		PRN("vn_open(%s) = errno %d", file_path, status);
5738 		return (status);
5739 	}
5740 
5741 	/*
5742 	 * We set vd->file now so that vds_destroy_vd will take care of
5743 	 * closing the file and releasing the vnode in case of an error.
5744 	 */
5745 	vd->file = B_TRUE;
5746 
5747 	vattr.va_mask = AT_SIZE;
5748 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
5749 	    != 0) {
5750 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
5751 		return (EIO);
5752 	}
5753 
5754 	vd->dskimg_size = vattr.va_size;
5755 
5756 	if (vd->file_vnode->v_flag & VNOMAP) {
5757 		PRN("File %s cannot be mapped", file_path);
5758 		return (EIO);
5759 	}
5760 
5761 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5762 
5763 	/*
5764 	 * Get max_xfer_sz from the device where the file is.
5765 	 */
5766 	dev = vd->file_vnode->v_vfsp->vfs_dev;
5767 	PR0("underlying device of %s = (%d, %d)\n", file_path,
5768 	    getmajor(dev), getminor(dev));
5769 
5770 	status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5771 	    vd->vds->ldi_ident);
5772 
5773 	if (status != 0) {
5774 		PR0("ldi_open() returned errno %d for underlying device",
5775 		    status);
5776 	} else {
5777 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5778 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5779 		    &rval)) != 0) {
5780 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5781 			    "underlying device", status);
5782 		} else {
5783 			/*
5784 			 * Store the device's max transfer size for
5785 			 * return to the client
5786 			 */
5787 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5788 		}
5789 
5790 		PR0("close the underlying device");
5791 		(void) ldi_close(lhandle, FREAD, kcred);
5792 	}
5793 
5794 	PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5795 	    file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5796 
5797 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
5798 		status = vd_setup_slice_image(vd);
5799 	else
5800 		status = vd_setup_disk_image(vd);
5801 
5802 	return (status);
5803 }
5804 
5805 static int
5806 vd_setup_slice_image(vd_t *vd)
5807 {
5808 	struct dk_label label;
5809 	int status;
5810 
5811 	/* sector size = block size = DEV_BSIZE */
5812 	vd->block_size = DEV_BSIZE;
5813 	vd->vdisk_block_size = DEV_BSIZE;
5814 	vd->vdisk_size = vd->dskimg_size / DEV_BSIZE;
5815 	vd->vdisk_media = VD_MEDIA_FIXED;
5816 	vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5817 	    vd_file_slice_label : vd_slice_label;
5818 
5819 	if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5820 	    vd->dskimg_size >= 2 * ONE_TERABYTE) {
5821 		status = vd_setup_partition_efi(vd);
5822 	} else {
5823 		/*
5824 		 * We build a default label to get a geometry for
5825 		 * the vdisk. Then the partition setup function will
5826 		 * adjust the vtoc so that it defines a single-slice
5827 		 * disk.
5828 		 */
5829 		vd_build_default_label(vd->dskimg_size, &label);
5830 		vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5831 		status = vd_setup_partition_vtoc(vd);
5832 	}
5833 
5834 	return (status);
5835 }
5836 
5837 static int
5838 vd_setup_disk_image(vd_t *vd)
5839 {
5840 	int status;
5841 	char *backend_path = vd->device_path;
5842 
5843 	/* size should be at least sizeof(dk_label) */
5844 	if (vd->dskimg_size < sizeof (struct dk_label)) {
5845 		PRN("Size of file has to be at least %ld bytes",
5846 		    sizeof (struct dk_label));
5847 		return (EIO);
5848 	}
5849 
5850 	/* sector size = block size = DEV_BSIZE */
5851 	vd->block_size = DEV_BSIZE;
5852 	vd->vdisk_block_size = DEV_BSIZE;
5853 	vd->vdisk_size = vd->dskimg_size / DEV_BSIZE;
5854 
5855 	/*
5856 	 * Find and validate the geometry of a disk image.
5857 	 */
5858 	status = vd_dskimg_validate_geometry(vd);
5859 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
5860 		PRN("Failed to read label from %s", backend_path);
5861 		return (EIO);
5862 	}
5863 
5864 	if (vd_dskimg_is_iso_image(vd)) {
5865 		/*
5866 		 * Indicate whether to call this a CD or DVD from the size
5867 		 * of the ISO image (images for both drive types are stored
5868 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
5869 		 */
5870 		if ((vd->vdisk_size * vd->vdisk_block_size) > ONE_GIGABYTE)
5871 			vd->vdisk_media = VD_MEDIA_DVD;
5872 		else
5873 			vd->vdisk_media = VD_MEDIA_CD;
5874 	} else {
5875 		vd->vdisk_media = VD_MEDIA_FIXED;
5876 	}
5877 
5878 	/* Setup devid for the disk image */
5879 
5880 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5881 
5882 		status = vd_dskimg_read_devid(vd, &vd->dskimg_devid);
5883 
5884 		if (status == 0) {
5885 			/* a valid devid was found */
5886 			return (0);
5887 		}
5888 
5889 		if (status != EINVAL) {
5890 			/*
5891 			 * There was an error while trying to read the devid.
5892 			 * So this disk image may have a devid but we are
5893 			 * unable to read it.
5894 			 */
5895 			PR0("can not read devid for %s", backend_path);
5896 			vd->dskimg_devid = NULL;
5897 			return (0);
5898 		}
5899 	}
5900 
5901 	/*
5902 	 * No valid device id was found so we create one. Note that a failure
5903 	 * to create a device id is not fatal and does not prevent the disk
5904 	 * image from being attached.
5905 	 */
5906 	PR1("creating devid for %s", backend_path);
5907 
5908 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
5909 	    &vd->dskimg_devid) != DDI_SUCCESS) {
5910 		PR0("fail to create devid for %s", backend_path);
5911 		vd->dskimg_devid = NULL;
5912 		return (0);
5913 	}
5914 
5915 	/*
5916 	 * Write devid to the disk image. The devid is stored into the disk
5917 	 * image if we have a valid label; otherwise the devid will be stored
5918 	 * when the user writes a valid label.
5919 	 */
5920 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5921 		if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
5922 			PR0("fail to write devid for %s", backend_path);
5923 			ddi_devid_free(vd->dskimg_devid);
5924 			vd->dskimg_devid = NULL;
5925 		}
5926 	}
5927 
5928 	return (0);
5929 }
5930 
5931 
5932 /*
5933  * Description:
5934  *	Open a device using its device path (supplied by ldm(1m))
5935  *
5936  * Parameters:
5937  *	vd 	- pointer to structure containing the vDisk info
5938  *	flags	- open flags
5939  *
5940  * Return Value
5941  *	0	- success
5942  *	!= 0	- some other non-zero return value from ldi(9F) functions
5943  */
5944 static int
5945 vd_open_using_ldi_by_name(vd_t *vd, int flags)
5946 {
5947 	int		status;
5948 	char		*device_path = vd->device_path;
5949 
5950 	/* Attempt to open device */
5951 	status = ldi_open_by_name(device_path, flags, kcred,
5952 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
5953 
5954 	/*
5955 	 * The open can fail for example if we are opening an empty slice.
5956 	 * In case of a failure, we try the open again but this time with
5957 	 * the FNDELAY flag.
5958 	 */
5959 	if (status != 0)
5960 		status = ldi_open_by_name(device_path, flags | FNDELAY,
5961 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
5962 
5963 	if (status != 0) {
5964 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
5965 		vd->ldi_handle[0] = NULL;
5966 		return (status);
5967 	}
5968 
5969 	return (0);
5970 }
5971 
5972 /*
5973  * Setup for a virtual disk which backend is a device (a physical disk,
5974  * slice or volume device) exported as a full disk or as a slice. In these
5975  * cases, the backend is accessed using the LDI interface.
5976  */
5977 static int
5978 vd_setup_backend_ldi(vd_t *vd)
5979 {
5980 	int		rval, status;
5981 	struct dk_cinfo	dk_cinfo;
5982 	char		*device_path = vd->device_path;
5983 
5984 	/* device has been opened by vd_identify_dev() */
5985 	ASSERT(vd->ldi_handle[0] != NULL);
5986 	ASSERT(vd->dev[0] != NULL);
5987 
5988 	vd->file = B_FALSE;
5989 
5990 	/* Verify backing device supports dk_cinfo */
5991 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5992 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5993 	    &rval)) != 0) {
5994 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5995 		    status, device_path);
5996 		return (status);
5997 	}
5998 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5999 		PRN("slice %u >= maximum slice %u for %s",
6000 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
6001 		return (EIO);
6002 	}
6003 
6004 	/*
6005 	 * The device has been opened read-only by vd_identify_dev(), re-open
6006 	 * it read-write if the write flag is set and we don't have an optical
6007 	 * device such as a CD-ROM, which, for now, we do not permit writes to
6008 	 * and thus should not export write operations to the client.
6009 	 *
6010 	 * Future: if/when we implement support for guest domains writing to
6011 	 * optical devices we will need to do further checking of the media type
6012 	 * to distinguish between read-only and writable discs.
6013 	 */
6014 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
6015 
6016 		vd->open_flags &= ~FWRITE;
6017 
6018 	} else if (vd->open_flags & FWRITE) {
6019 
6020 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
6021 		    kcred);
6022 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
6023 		if (status != 0) {
6024 			PR0("Failed to open (%s) = errno %d",
6025 			    device_path, status);
6026 			return (status);
6027 		}
6028 	}
6029 
6030 	/* Store the device's max transfer size for return to the client */
6031 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
6032 
6033 	/*
6034 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
6035 	 * that we can use the correct CDB group when sending USCSI commands.
6036 	 */
6037 	vd->is_atapi_dev = vd_is_atapi_device(vd);
6038 
6039 	/*
6040 	 * Export a full disk.
6041 	 *
6042 	 * The exported device can be either a volume, a disk or a CD/DVD
6043 	 * device.  We export a device as a full disk if we have an entire
6044 	 * disk slice (slice 2) and if this slice is exported as a full disk
6045 	 * and not as a single slice disk. A CD or DVD device is exported
6046 	 * as a full disk (even if it isn't s2). A volume is exported as a
6047 	 * full disk as long as the "slice" option is not specified.
6048 	 */
6049 	if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6050 
6051 		if (vd->volume) {
6052 			/* get size of backing device */
6053 			if (ldi_get_size(vd->ldi_handle[0], &vd->dskimg_size) !=
6054 			    DDI_SUCCESS) {
6055 				PRN("ldi_get_size() failed for %s",
6056 				    device_path);
6057 				return (EIO);
6058 			}
6059 
6060 			/* setup disk image */
6061 			return (vd_setup_disk_image(vd));
6062 		}
6063 
6064 		if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE ||
6065 		    dk_cinfo.dki_ctype == DKC_CDROM) {
6066 			ASSERT(!vd->volume);
6067 			if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
6068 				vd->scsi = B_TRUE;
6069 			return (vd_setup_full_disk(vd));
6070 		}
6071 	}
6072 
6073 	/*
6074 	 * Export a single slice disk.
6075 	 *
6076 	 * The exported device can be either a volume device or a disk slice. If
6077 	 * it is a disk slice different from slice 2 then it is always exported
6078 	 * as a single slice disk even if the "slice" option is not specified.
6079 	 * If it is disk slice 2 or a volume device then it is exported as a
6080 	 * single slice disk only if the "slice" option is specified.
6081 	 */
6082 	return (vd_setup_single_slice_disk(vd));
6083 }
6084 
6085 static int
6086 vd_setup_single_slice_disk(vd_t *vd)
6087 {
6088 	int status, rval;
6089 	struct dk_label label;
6090 	char *device_path = vd->device_path;
6091 	struct vtoc vtoc;
6092 
6093 	/* Get size of backing device */
6094 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
6095 		PRN("ldi_get_size() failed for %s", device_path);
6096 		return (EIO);
6097 	}
6098 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
6099 	vd->block_size = DEV_BSIZE;
6100 	vd->vdisk_block_size = DEV_BSIZE;
6101 	vd->vdisk_media = VD_MEDIA_FIXED;
6102 
6103 	if (vd->volume) {
6104 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
6105 	}
6106 
6107 	/*
6108 	 * We export the slice as a single slice disk even if the "slice"
6109 	 * option was not specified.
6110 	 */
6111 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
6112 	vd->nslices	= 1;
6113 
6114 	/*
6115 	 * When exporting a slice or a device as a single slice disk, we don't
6116 	 * care about any partitioning exposed by the backend. The goal is just
6117 	 * to export the backend as a flat storage. We provide a fake partition
6118 	 * table (either a VTOC or EFI), which presents only one slice, to
6119 	 * accommodate tools expecting a disk label. The selection of the label
6120 	 * type (VTOC or EFI) depends on the value of the vd_slice_label
6121 	 * variable.
6122 	 */
6123 	if (vd_slice_label == VD_DISK_LABEL_EFI ||
6124 	    vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) {
6125 		vd->vdisk_label = VD_DISK_LABEL_EFI;
6126 	} else {
6127 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
6128 		    (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
6129 		    kcred, &rval);
6130 
6131 		if (status == ENOTTY) {
6132 			/* try with the non-extended vtoc ioctl */
6133 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
6134 			    (intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
6135 			    kcred, &rval);
6136 			vtoctoextvtoc(vtoc, vd->vtoc);
6137 		}
6138 
6139 		if (status == 0) {
6140 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
6141 			    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
6142 			    kcred, &rval);
6143 
6144 			if (status != 0) {
6145 				PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
6146 				    "for %s", status, device_path);
6147 				return (status);
6148 			}
6149 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
6150 
6151 		} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
6152 
6153 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
6154 			vd_build_default_label(vd->vdisk_size * DEV_BSIZE,
6155 			    &label);
6156 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
6157 
6158 		} else {
6159 			vd->vdisk_label = VD_DISK_LABEL_EFI;
6160 		}
6161 	}
6162 
6163 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6164 		/* export with a fake VTOC label */
6165 		status = vd_setup_partition_vtoc(vd);
6166 
6167 	} else {
6168 		/* export with a fake EFI label */
6169 		status = vd_setup_partition_efi(vd);
6170 	}
6171 
6172 	return (status);
6173 }
6174 
6175 static int
6176 vd_backend_check_size(vd_t *vd)
6177 {
6178 	size_t backend_size, old_size, new_size;
6179 	struct dk_minfo minfo;
6180 	vattr_t vattr;
6181 	int rval, rv;
6182 
6183 	if (vd->file) {
6184 
6185 		/* file (slice or full disk) */
6186 		vattr.va_mask = AT_SIZE;
6187 		rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
6188 		if (rv != 0) {
6189 			PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
6190 			return (rv);
6191 		}
6192 		backend_size = vattr.va_size;
6193 
6194 	} else if (vd->volume || vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6195 
6196 		/* physical slice or volume (slice or full disk) */
6197 		rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6198 		if (rv != DDI_SUCCESS) {
6199 			PR0("ldi_get_size() failed for %s", vd->device_path);
6200 			return (EIO);
6201 		}
6202 
6203 	} else {
6204 
6205 		/* physical disk */
6206 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6207 		rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
6208 		    (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
6209 		    kcred, &rval);
6210 		if (rv != 0) {
6211 			PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
6212 			    vd->device_path, rv);
6213 			return (rv);
6214 		}
6215 		backend_size = minfo.dki_capacity * minfo.dki_lbsize;
6216 	}
6217 
6218 	old_size = vd->vdisk_size;
6219 	new_size = backend_size / DEV_BSIZE;
6220 
6221 	/* check if size has changed */
6222 	if (old_size != VD_SIZE_UNKNOWN && old_size == new_size)
6223 		return (0);
6224 
6225 	vd->vdisk_size = new_size;
6226 
6227 	if (vd->file || vd->volume)
6228 		vd->dskimg_size = backend_size;
6229 
6230 	/*
6231 	 * If we are exporting a single-slice disk and the size of the backend
6232 	 * has changed then we regenerate the partition setup so that the
6233 	 * partitioning matches with the new disk backend size.
6234 	 */
6235 
6236 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6237 		/* slice or file or device exported as a slice */
6238 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6239 			rv = vd_setup_partition_vtoc(vd);
6240 			if (rv != 0) {
6241 				PR0("vd_setup_partition_vtoc() failed for %s "
6242 				    "(err = %d)", vd->device_path, rv);
6243 				return (rv);
6244 			}
6245 		} else {
6246 			rv = vd_setup_partition_efi(vd);
6247 			if (rv != 0) {
6248 				PR0("vd_setup_partition_efi() failed for %s "
6249 				    "(err = %d)", vd->device_path, rv);
6250 				return (rv);
6251 			}
6252 		}
6253 
6254 	} else if (!vd->file && !vd->volume) {
6255 		/* physical disk */
6256 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6257 		vd->block_size = minfo.dki_lbsize;
6258 		vd->vdisk_media =
6259 		    DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6260 	}
6261 
6262 	return (0);
6263 }
6264 
6265 /*
6266  * Description:
6267  *	Open a device using its device path and identify if this is
6268  *	a disk device or a volume device.
6269  *
6270  * Parameters:
6271  *	vd 	- pointer to structure containing the vDisk info
6272  *	dtype	- return the driver type of the device
6273  *
6274  * Return Value
6275  *	0	- success
6276  *	!= 0	- some other non-zero return value from ldi(9F) functions
6277  */
6278 static int
6279 vd_identify_dev(vd_t *vd, int *dtype)
6280 {
6281 	int status, i;
6282 	char *device_path = vd->device_path;
6283 	char *drv_name;
6284 	int drv_type;
6285 	vds_t *vds = vd->vds;
6286 
6287 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6288 	if (status != 0) {
6289 		PR0("Failed to open (%s) = errno %d", device_path, status);
6290 		return (status);
6291 	}
6292 
6293 	/* Get device number of backing device */
6294 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6295 		PRN("ldi_get_dev() returned errno %d for %s",
6296 		    status, device_path);
6297 		return (status);
6298 	}
6299 
6300 	/*
6301 	 * We start by looking if the driver is in the list from vds.conf
6302 	 * so that we can override the built-in list using vds.conf.
6303 	 */
6304 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6305 	drv_type = VD_DRIVER_UNKNOWN;
6306 
6307 	/* check vds.conf list */
6308 	for (i = 0; i < vds->num_drivers; i++) {
6309 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6310 			/* ignore invalid entries */
6311 			continue;
6312 		}
6313 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6314 			drv_type = vds->driver_types[i].type;
6315 			goto done;
6316 		}
6317 	}
6318 
6319 	/* check built-in list */
6320 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6321 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6322 			drv_type = vds_driver_types[i].type;
6323 			goto done;
6324 		}
6325 	}
6326 
6327 done:
6328 	PR0("driver %s identified as %s", drv_name,
6329 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
6330 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6331 
6332 	if (strcmp(drv_name, "zfs") == 0)
6333 		vd->zvol = B_TRUE;
6334 
6335 	*dtype = drv_type;
6336 
6337 	return (0);
6338 }
6339 
6340 static int
6341 vd_setup_vd(vd_t *vd)
6342 {
6343 	int		status, drv_type, pseudo;
6344 	dev_info_t	*dip;
6345 	vnode_t 	*vnp;
6346 	char		*path = vd->device_path;
6347 
6348 	/* make sure the vdisk backend is valid */
6349 	if ((status = lookupname(path, UIO_SYSSPACE,
6350 	    FOLLOW, NULLVPP, &vnp)) != 0) {
6351 		PR0("Cannot lookup %s errno %d", path, status);
6352 		goto done;
6353 	}
6354 
6355 	switch (vnp->v_type) {
6356 	case VREG:
6357 		/*
6358 		 * Backend is a file so it is exported as a full disk or as a
6359 		 * single slice disk using the vnode interface.
6360 		 */
6361 		VN_RELE(vnp);
6362 		vd->volume = B_FALSE;
6363 		status = vd_setup_backend_vnode(vd);
6364 		break;
6365 
6366 	case VBLK:
6367 	case VCHR:
6368 		/*
6369 		 * Backend is a device. In that case, it is exported using the
6370 		 * LDI interface, and it is exported either as a single-slice
6371 		 * disk or as a full disk depending on the "slice" option and
6372 		 * on the type of device.
6373 		 *
6374 		 * - A volume device is exported as a single-slice disk if the
6375 		 *   "slice" is specified, otherwise it is exported as a full
6376 		 *   disk.
6377 		 *
6378 		 * - A disk slice (different from slice 2) is always exported
6379 		 *   as a single slice disk using the LDI interface.
6380 		 *
6381 		 * - The slice 2 of a disk is exported as a single slice disk
6382 		 *   if the "slice" option is specified, otherwise the entire
6383 		 *   disk will be exported.
6384 		 *
6385 		 * - The slice of a CD or DVD is exported as single slice disk
6386 		 *   if the "slice" option is specified, otherwise the entire
6387 		 *   disk will be exported.
6388 		 */
6389 
6390 		/* check if this is a pseudo device */
6391 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6392 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6393 			PRN("%s is no longer accessible", path);
6394 			VN_RELE(vnp);
6395 			status = EIO;
6396 			break;
6397 		}
6398 		pseudo = is_pseudo_device(dip);
6399 		ddi_release_devi(dip);
6400 		VN_RELE(vnp);
6401 
6402 		if (vd_identify_dev(vd, &drv_type) != 0) {
6403 			PRN("%s identification failed", path);
6404 			status = EIO;
6405 			break;
6406 		}
6407 
6408 		/*
6409 		 * If the driver hasn't been identified then we consider that
6410 		 * pseudo devices are volumes and other devices are disks.
6411 		 */
6412 		if (drv_type == VD_DRIVER_VOLUME ||
6413 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6414 			vd->volume = B_TRUE;
6415 		}
6416 
6417 		/*
6418 		 * If this is a volume device then its usage depends if the
6419 		 * "slice" option is set or not. If the "slice" option is set
6420 		 * then the volume device will be exported as a single slice,
6421 		 * otherwise it will be exported as a full disk.
6422 		 *
6423 		 * For backward compatibility, if vd_volume_force_slice is set
6424 		 * then we always export volume devices as slices.
6425 		 */
6426 		if (vd->volume && vd_volume_force_slice) {
6427 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
6428 			vd->nslices = 1;
6429 		}
6430 
6431 		status = vd_setup_backend_ldi(vd);
6432 		break;
6433 
6434 	default:
6435 		PRN("Unsupported vdisk backend %s", path);
6436 		VN_RELE(vnp);
6437 		status = EBADF;
6438 	}
6439 
6440 done:
6441 	if (status != 0) {
6442 		/*
6443 		 * If the error is retryable print an error message only
6444 		 * during the first try.
6445 		 */
6446 		if (status == ENXIO || status == ENODEV ||
6447 		    status == ENOENT || status == EROFS) {
6448 			if (!(vd->initialized & VD_SETUP_ERROR)) {
6449 				PRN("%s is currently inaccessible (error %d)",
6450 				    path, status);
6451 			}
6452 			status = EAGAIN;
6453 		} else {
6454 			PRN("%s can not be exported as a virtual disk "
6455 			    "(error %d)", path, status);
6456 		}
6457 		vd->initialized |= VD_SETUP_ERROR;
6458 
6459 	} else if (vd->initialized & VD_SETUP_ERROR) {
6460 		/* print a message only if we previously had an error */
6461 		PRN("%s is now online", path);
6462 		vd->initialized &= ~VD_SETUP_ERROR;
6463 	}
6464 
6465 	return (status);
6466 }
6467 
6468 static int
6469 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6470     uint64_t ldc_id, vd_t **vdp)
6471 {
6472 	char			tq_name[TASKQ_NAMELEN];
6473 	int			status;
6474 	ddi_iblock_cookie_t	iblock = NULL;
6475 	ldc_attr_t		ldc_attr;
6476 	vd_t			*vd;
6477 
6478 
6479 	ASSERT(vds != NULL);
6480 	ASSERT(device_path != NULL);
6481 	ASSERT(vdp != NULL);
6482 	PR0("Adding vdisk for %s", device_path);
6483 
6484 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6485 		PRN("No memory for virtual disk");
6486 		return (EAGAIN);
6487 	}
6488 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
6489 	vd->vds = vds;
6490 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6491 
6492 	/* Setup open flags */
6493 	vd->open_flags = FREAD;
6494 
6495 	if (!(options & VD_OPT_RDONLY))
6496 		vd->open_flags |= FWRITE;
6497 
6498 	if (options & VD_OPT_EXCLUSIVE)
6499 		vd->open_flags |= FEXCL;
6500 
6501 	/* Setup disk type */
6502 	if (options & VD_OPT_SLICE) {
6503 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
6504 		vd->nslices = 1;
6505 	} else {
6506 		vd->vdisk_type = VD_DISK_TYPE_DISK;
6507 		vd->nslices = V_NUMPAR;
6508 	}
6509 
6510 	/* default disk label */
6511 	vd->vdisk_label = VD_DISK_LABEL_UNK;
6512 
6513 	/* Open vdisk and initialize parameters */
6514 	if ((status = vd_setup_vd(vd)) == 0) {
6515 		vd->initialized |= VD_DISK_READY;
6516 
6517 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6518 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6519 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6520 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6521 		    vd->nslices);
6522 	} else {
6523 		if (status != EAGAIN)
6524 			return (status);
6525 	}
6526 
6527 	/* Initialize locking */
6528 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6529 	    &iblock) != DDI_SUCCESS) {
6530 		PRN("Could not get iblock cookie.");
6531 		return (EIO);
6532 	}
6533 
6534 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6535 	vd->initialized |= VD_LOCKING;
6536 
6537 
6538 	/* Create start and completion task queues for the vdisk */
6539 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6540 	PR1("tq_name = %s", tq_name);
6541 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6542 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6543 		PRN("Could not create task queue");
6544 		return (EIO);
6545 	}
6546 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6547 	PR1("tq_name = %s", tq_name);
6548 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6549 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6550 		PRN("Could not create task queue");
6551 		return (EIO);
6552 	}
6553 
6554 	/* Allocate the staging buffer */
6555 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
6556 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6557 
6558 	vd->enabled = 1;	/* before callback can dispatch to startq */
6559 
6560 
6561 	/* Bring up LDC */
6562 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
6563 	ldc_attr.instance	= ddi_get_instance(vds->dip);
6564 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
6565 	ldc_attr.mtu		= VD_LDC_MTU;
6566 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6567 		PRN("Could not initialize LDC channel %lx, "
6568 		    "init failed with error %d", ldc_id, status);
6569 		return (status);
6570 	}
6571 	vd->initialized |= VD_LDC;
6572 
6573 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6574 	    (caddr_t)vd)) != 0) {
6575 		PRN("Could not initialize LDC channel %lu,"
6576 		    "reg_callback failed with error %d", ldc_id, status);
6577 		return (status);
6578 	}
6579 
6580 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
6581 		PRN("Could not initialize LDC channel %lu,"
6582 		    "open failed with error %d", ldc_id, status);
6583 		return (status);
6584 	}
6585 
6586 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
6587 		PR0("ldc_up() returned errno %d", status);
6588 	}
6589 
6590 	/* Allocate the inband task memory handle */
6591 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6592 	if (status) {
6593 		PRN("Could not initialize LDC channel %lu,"
6594 		    "alloc_handle failed with error %d", ldc_id, status);
6595 		return (ENXIO);
6596 	}
6597 
6598 	/* Add the successfully-initialized vdisk to the server's table */
6599 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6600 		PRN("Error adding vdisk ID %lu to table", id);
6601 		return (EIO);
6602 	}
6603 
6604 	/* store initial state */
6605 	vd->state = VD_STATE_INIT;
6606 
6607 	return (0);
6608 }
6609 
6610 static void
6611 vd_free_dring_task(vd_t *vdp)
6612 {
6613 	if (vdp->dring_task != NULL) {
6614 		ASSERT(vdp->dring_len != 0);
6615 		/* Free all dring_task memory handles */
6616 		for (int i = 0; i < vdp->dring_len; i++) {
6617 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6618 			kmem_free(vdp->dring_task[i].request,
6619 			    (vdp->descriptor_size -
6620 			    sizeof (vio_dring_entry_hdr_t)));
6621 			vdp->dring_task[i].request = NULL;
6622 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6623 			vdp->dring_task[i].msg = NULL;
6624 		}
6625 		kmem_free(vdp->dring_task,
6626 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
6627 		vdp->dring_task = NULL;
6628 	}
6629 }
6630 
6631 /*
6632  * Destroy the state associated with a virtual disk
6633  */
6634 static void
6635 vds_destroy_vd(void *arg)
6636 {
6637 	vd_t	*vd = (vd_t *)arg;
6638 	int	retry = 0, rv;
6639 
6640 	if (vd == NULL)
6641 		return;
6642 
6643 	PR0("Destroying vdisk state");
6644 
6645 	/* Disable queuing requests for the vdisk */
6646 	if (vd->initialized & VD_LOCKING) {
6647 		mutex_enter(&vd->lock);
6648 		vd->enabled = 0;
6649 		mutex_exit(&vd->lock);
6650 	}
6651 
6652 	/* Drain and destroy start queue (*before* destroying completionq) */
6653 	if (vd->startq != NULL)
6654 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
6655 
6656 	/* Drain and destroy completion queue (*before* shutting down LDC) */
6657 	if (vd->completionq != NULL)
6658 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
6659 
6660 	vd_free_dring_task(vd);
6661 
6662 	/* Free the inband task memory handle */
6663 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
6664 
6665 	/* Shut down LDC */
6666 	if (vd->initialized & VD_LDC) {
6667 		/* unmap the dring */
6668 		if (vd->initialized & VD_DRING)
6669 			(void) ldc_mem_dring_unmap(vd->dring_handle);
6670 
6671 		/* close LDC channel - retry on EAGAIN */
6672 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6673 			if (++retry > vds_ldc_retries) {
6674 				PR0("Timed out closing channel");
6675 				break;
6676 			}
6677 			drv_usecwait(vds_ldc_delay);
6678 		}
6679 		if (rv == 0) {
6680 			(void) ldc_unreg_callback(vd->ldc_handle);
6681 			(void) ldc_fini(vd->ldc_handle);
6682 		} else {
6683 			/*
6684 			 * Closing the LDC channel has failed. Ideally we should
6685 			 * fail here but there is no Zeus level infrastructure
6686 			 * to handle this. The MD has already been changed and
6687 			 * we have to do the close. So we try to do as much
6688 			 * clean up as we can.
6689 			 */
6690 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6691 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6692 				drv_usecwait(vds_ldc_delay);
6693 		}
6694 	}
6695 
6696 	/* Free the staging buffer for msgs */
6697 	if (vd->vio_msgp != NULL) {
6698 		kmem_free(vd->vio_msgp, vd->max_msglen);
6699 		vd->vio_msgp = NULL;
6700 	}
6701 
6702 	/* Free the inband message buffer */
6703 	if (vd->inband_task.msg != NULL) {
6704 		kmem_free(vd->inband_task.msg, vd->max_msglen);
6705 		vd->inband_task.msg = NULL;
6706 	}
6707 
6708 	if (vd->file) {
6709 		/* Close file */
6710 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6711 		    0, kcred, NULL);
6712 		VN_RELE(vd->file_vnode);
6713 	} else {
6714 		/* Close any open backing-device slices */
6715 		for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6716 			if (vd->ldi_handle[slice] != NULL) {
6717 				PR0("Closing slice %u", slice);
6718 				(void) ldi_close(vd->ldi_handle[slice],
6719 				    vd->open_flags, kcred);
6720 			}
6721 		}
6722 	}
6723 
6724 	/* Free disk image devid */
6725 	if (vd->dskimg_devid != NULL)
6726 		ddi_devid_free(vd->dskimg_devid);
6727 
6728 	/* Free any fake label */
6729 	if (vd->flabel) {
6730 		kmem_free(vd->flabel, vd->flabel_size);
6731 		vd->flabel = NULL;
6732 		vd->flabel_size = 0;
6733 	}
6734 
6735 	/* Free lock */
6736 	if (vd->initialized & VD_LOCKING)
6737 		mutex_destroy(&vd->lock);
6738 
6739 	/* Finally, free the vdisk structure itself */
6740 	kmem_free(vd, sizeof (*vd));
6741 }
6742 
6743 static int
6744 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6745     uint64_t ldc_id)
6746 {
6747 	int	status;
6748 	vd_t	*vd = NULL;
6749 
6750 
6751 	if ((status = vds_do_init_vd(vds, id, device_path, options,
6752 	    ldc_id, &vd)) != 0)
6753 		vds_destroy_vd(vd);
6754 
6755 	return (status);
6756 }
6757 
6758 static int
6759 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
6760     uint64_t *ldc_id)
6761 {
6762 	int	num_channels;
6763 
6764 
6765 	/* Look for channel endpoint child(ren) of the vdisk MD node */
6766 	if ((num_channels = md_scan_dag(md, vd_node,
6767 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
6768 	    md_find_name(md, "fwd"), channel)) <= 0) {
6769 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
6770 		return (-1);
6771 	}
6772 
6773 	/* Get the "id" value for the first channel endpoint node */
6774 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
6775 		PRN("No \"%s\" property found for \"%s\" of vdisk",
6776 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
6777 		return (-1);
6778 	}
6779 
6780 	if (num_channels > 1) {
6781 		PRN("Using ID of first of multiple channels for this vdisk");
6782 	}
6783 
6784 	return (0);
6785 }
6786 
6787 static int
6788 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
6789 {
6790 	int		num_nodes, status;
6791 	size_t		size;
6792 	mde_cookie_t	*channel;
6793 
6794 
6795 	if ((num_nodes = md_node_count(md)) <= 0) {
6796 		PRN("Invalid node count in Machine Description subtree");
6797 		return (-1);
6798 	}
6799 	size = num_nodes*(sizeof (*channel));
6800 	channel = kmem_zalloc(size, KM_SLEEP);
6801 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
6802 	kmem_free(channel, size);
6803 
6804 	return (status);
6805 }
6806 
6807 /*
6808  * Function:
6809  *	vds_get_options
6810  *
6811  * Description:
6812  * 	Parse the options of a vds node. Options are defined as an array
6813  *	of strings in the vds-block-device-opts property of the vds node
6814  *	in the machine description. Options are returned as a bitmask. The
6815  *	mapping between the bitmask options and the options strings from the
6816  *	machine description is defined in the vd_bdev_options[] array.
6817  *
6818  *	The vds-block-device-opts property is optional. If a vds has no such
6819  *	property then no option is defined.
6820  *
6821  * Parameters:
6822  *	md		- machine description.
6823  *	vd_node		- vds node in the machine description for which
6824  *			  options have to be parsed.
6825  *	options		- the returned options.
6826  *
6827  * Return Code:
6828  *	none.
6829  */
6830 static void
6831 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
6832 {
6833 	char	*optstr, *opt;
6834 	int	len, n, i;
6835 
6836 	*options = 0;
6837 
6838 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
6839 	    (uint8_t **)&optstr, &len) != 0) {
6840 		PR0("No options found");
6841 		return;
6842 	}
6843 
6844 	/* parse options */
6845 	opt = optstr;
6846 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
6847 
6848 	while (opt < optstr + len) {
6849 		for (i = 0; i < n; i++) {
6850 			if (strncmp(vd_bdev_options[i].vdo_name,
6851 			    opt, VD_OPTION_NLEN) == 0) {
6852 				*options |= vd_bdev_options[i].vdo_value;
6853 				break;
6854 			}
6855 		}
6856 
6857 		if (i < n) {
6858 			PR0("option: %s", opt);
6859 		} else {
6860 			PRN("option %s is unknown or unsupported", opt);
6861 		}
6862 
6863 		opt += strlen(opt) + 1;
6864 	}
6865 }
6866 
6867 static void
6868 vds_driver_types_free(vds_t *vds)
6869 {
6870 	if (vds->driver_types != NULL) {
6871 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
6872 		    vds->num_drivers);
6873 		vds->driver_types = NULL;
6874 		vds->num_drivers = 0;
6875 	}
6876 }
6877 
6878 /*
6879  * Update the driver type list with information from vds.conf.
6880  */
6881 static void
6882 vds_driver_types_update(vds_t *vds)
6883 {
6884 	char **list, *s;
6885 	uint_t i, num, count = 0, len;
6886 
6887 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
6888 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
6889 	    DDI_PROP_SUCCESS)
6890 		return;
6891 
6892 	/*
6893 	 * We create a driver_types list with as many as entries as there
6894 	 * is in the driver-type-list from vds.conf. However only valid
6895 	 * entries will be populated (i.e. entries from driver-type-list
6896 	 * with a valid syntax). Invalid entries will be left blank so
6897 	 * they will have no driver name and the driver type will be
6898 	 * VD_DRIVER_UNKNOWN (= 0).
6899 	 */
6900 	vds->num_drivers = num;
6901 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
6902 	    KM_SLEEP);
6903 
6904 	for (i = 0; i < num; i++) {
6905 
6906 		s = strchr(list[i], ':');
6907 
6908 		if (s == NULL) {
6909 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6910 			    "a colon is expected in the entry",
6911 			    i, list[i]);
6912 			continue;
6913 		}
6914 
6915 		len = (uintptr_t)s - (uintptr_t)list[i];
6916 
6917 		if (len == 0) {
6918 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6919 			    "the driver name is empty",
6920 			    i, list[i]);
6921 			continue;
6922 		}
6923 
6924 		if (len >= VD_DRIVER_NAME_LEN) {
6925 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6926 			    "the driver name is too long",
6927 			    i, list[i]);
6928 			continue;
6929 		}
6930 
6931 		if (strcmp(s + 1, "disk") == 0) {
6932 
6933 			vds->driver_types[i].type = VD_DRIVER_DISK;
6934 
6935 		} else if (strcmp(s + 1, "volume") == 0) {
6936 
6937 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
6938 
6939 		} else {
6940 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6941 			    "the driver type is invalid",
6942 			    i, list[i]);
6943 			continue;
6944 		}
6945 
6946 		(void) strncpy(vds->driver_types[i].name, list[i], len);
6947 
6948 		PR0("driver-type-list, entry %d (%s) added",
6949 		    i, list[i]);
6950 
6951 		count++;
6952 	}
6953 
6954 	ddi_prop_free(list);
6955 
6956 	if (count == 0) {
6957 		/* nothing was added, clean up */
6958 		vds_driver_types_free(vds);
6959 	}
6960 }
6961 
6962 static void
6963 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6964 {
6965 	char		*device_path = NULL;
6966 	uint64_t	id = 0, ldc_id = 0, options = 0;
6967 
6968 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6969 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
6970 		return;
6971 	}
6972 	PR0("Adding vdisk ID %lu", id);
6973 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
6974 	    &device_path) != 0) {
6975 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6976 		return;
6977 	}
6978 
6979 	vds_get_options(md, vd_node, &options);
6980 
6981 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
6982 		PRN("Error getting LDC ID for vdisk %lu", id);
6983 		return;
6984 	}
6985 
6986 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
6987 		PRN("Failed to add vdisk ID %lu", id);
6988 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6989 			PRN("No vDisk entry found for vdisk ID %lu", id);
6990 		return;
6991 	}
6992 }
6993 
6994 static void
6995 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6996 {
6997 	uint64_t	id = 0;
6998 
6999 
7000 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7001 		PRN("Unable to get \"%s\" property from vdisk's MD node",
7002 		    VD_ID_PROP);
7003 		return;
7004 	}
7005 	PR0("Removing vdisk ID %lu", id);
7006 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7007 		PRN("No vdisk entry found for vdisk ID %lu", id);
7008 }
7009 
7010 static void
7011 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
7012     md_t *curr_md, mde_cookie_t curr_vd_node)
7013 {
7014 	char		*curr_dev, *prev_dev;
7015 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
7016 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
7017 	size_t		len;
7018 
7019 
7020 	/* Validate that vdisk ID has not changed */
7021 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
7022 		PRN("Error getting previous vdisk \"%s\" property",
7023 		    VD_ID_PROP);
7024 		return;
7025 	}
7026 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
7027 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
7028 		return;
7029 	}
7030 	if (curr_id != prev_id) {
7031 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
7032 		    prev_id, curr_id);
7033 		return;
7034 	}
7035 
7036 	/* Validate that LDC ID has not changed */
7037 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
7038 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
7039 		return;
7040 	}
7041 
7042 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
7043 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
7044 		return;
7045 	}
7046 	if (curr_ldc_id != prev_ldc_id) {
7047 		_NOTE(NOTREACHED);	/* lint is confused */
7048 		PRN("Not changing vdisk:  "
7049 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
7050 		return;
7051 	}
7052 
7053 	/* Determine whether device path has changed */
7054 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
7055 	    &prev_dev) != 0) {
7056 		PRN("Error getting previous vdisk \"%s\"",
7057 		    VD_BLOCK_DEVICE_PROP);
7058 		return;
7059 	}
7060 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
7061 	    &curr_dev) != 0) {
7062 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7063 		return;
7064 	}
7065 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
7066 	    (strncmp(curr_dev, prev_dev, len) == 0))
7067 		return;	/* no relevant (supported) change */
7068 
7069 	/* Validate that options have not changed */
7070 	vds_get_options(prev_md, prev_vd_node, &prev_options);
7071 	vds_get_options(curr_md, curr_vd_node, &curr_options);
7072 	if (prev_options != curr_options) {
7073 		PRN("Not changing vdisk:  options changed from %lx to %lx",
7074 		    prev_options, curr_options);
7075 		return;
7076 	}
7077 
7078 	PR0("Changing vdisk ID %lu", prev_id);
7079 
7080 	/* Remove old state, which will close vdisk and reset */
7081 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
7082 		PRN("No entry found for vdisk ID %lu", prev_id);
7083 
7084 	/* Re-initialize vdisk with new state */
7085 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
7086 	    curr_ldc_id) != 0) {
7087 		PRN("Failed to change vdisk ID %lu", curr_id);
7088 		return;
7089 	}
7090 }
7091 
7092 static int
7093 vds_process_md(void *arg, mdeg_result_t *md)
7094 {
7095 	int	i;
7096 	vds_t	*vds = arg;
7097 
7098 
7099 	if (md == NULL)
7100 		return (MDEG_FAILURE);
7101 	ASSERT(vds != NULL);
7102 
7103 	for (i = 0; i < md->removed.nelem; i++)
7104 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
7105 	for (i = 0; i < md->match_curr.nelem; i++)
7106 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
7107 		    md->match_curr.mdp, md->match_curr.mdep[i]);
7108 	for (i = 0; i < md->added.nelem; i++)
7109 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
7110 
7111 	return (MDEG_SUCCESS);
7112 }
7113 
7114 
7115 static int
7116 vds_do_attach(dev_info_t *dip)
7117 {
7118 	int			status, sz;
7119 	int			cfg_handle;
7120 	minor_t			instance = ddi_get_instance(dip);
7121 	vds_t			*vds;
7122 	mdeg_prop_spec_t	*pspecp;
7123 	mdeg_node_spec_t	*ispecp;
7124 
7125 	/*
7126 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
7127 	 * notion of "instance", or unique identifier, for that node; OBP
7128 	 * stores the value of the "cfg-handle" MD property as the value of
7129 	 * the "reg" property on the node in the device tree it builds from
7130 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
7131 	 * "reg" property value to uniquely identify this device instance when
7132 	 * registering with the MD event-generation framework.  If the "reg"
7133 	 * property cannot be found, the device tree state is presumably so
7134 	 * broken that there is no point in continuing.
7135 	 */
7136 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7137 	    VD_REG_PROP)) {
7138 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
7139 		return (DDI_FAILURE);
7140 	}
7141 
7142 	/* Get the MD instance for later MDEG registration */
7143 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7144 	    VD_REG_PROP, -1);
7145 
7146 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
7147 		PRN("Could not allocate state for instance %u", instance);
7148 		return (DDI_FAILURE);
7149 	}
7150 
7151 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
7152 		PRN("Could not get state for instance %u", instance);
7153 		ddi_soft_state_free(vds_state, instance);
7154 		return (DDI_FAILURE);
7155 	}
7156 
7157 	vds->dip	= dip;
7158 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
7159 	    vds_destroy_vd, sizeof (void *));
7160 
7161 	ASSERT(vds->vd_table != NULL);
7162 
7163 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
7164 		PRN("ldi_ident_from_dip() returned errno %d", status);
7165 		return (DDI_FAILURE);
7166 	}
7167 	vds->initialized |= VDS_LDI;
7168 
7169 	/* Register for MD updates */
7170 	sz = sizeof (vds_prop_template);
7171 	pspecp = kmem_alloc(sz, KM_SLEEP);
7172 	bcopy(vds_prop_template, pspecp, sz);
7173 
7174 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
7175 
7176 	/* initialize the complete prop spec structure */
7177 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
7178 	ispecp->namep = "virtual-device";
7179 	ispecp->specp = pspecp;
7180 
7181 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
7182 	    &vds->mdeg) != MDEG_SUCCESS) {
7183 		PRN("Unable to register for MD updates");
7184 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
7185 		kmem_free(pspecp, sz);
7186 		return (DDI_FAILURE);
7187 	}
7188 
7189 	vds->ispecp = ispecp;
7190 	vds->initialized |= VDS_MDEG;
7191 
7192 	/* Prevent auto-detaching so driver is available whenever MD changes */
7193 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
7194 	    DDI_PROP_SUCCESS) {
7195 		PRN("failed to set \"%s\" property for instance %u",
7196 		    DDI_NO_AUTODETACH, instance);
7197 	}
7198 
7199 	/* read any user defined driver types from conf file and update list */
7200 	vds_driver_types_update(vds);
7201 
7202 	ddi_report_dev(dip);
7203 	return (DDI_SUCCESS);
7204 }
7205 
7206 static int
7207 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7208 {
7209 	int	status;
7210 
7211 	switch (cmd) {
7212 	case DDI_ATTACH:
7213 		PR0("Attaching");
7214 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
7215 			(void) vds_detach(dip, DDI_DETACH);
7216 		return (status);
7217 	case DDI_RESUME:
7218 		PR0("No action required for DDI_RESUME");
7219 		return (DDI_SUCCESS);
7220 	default:
7221 		return (DDI_FAILURE);
7222 	}
7223 }
7224 
7225 static struct dev_ops vds_ops = {
7226 	DEVO_REV,	/* devo_rev */
7227 	0,		/* devo_refcnt */
7228 	ddi_no_info,	/* devo_getinfo */
7229 	nulldev,	/* devo_identify */
7230 	nulldev,	/* devo_probe */
7231 	vds_attach,	/* devo_attach */
7232 	vds_detach,	/* devo_detach */
7233 	nodev,		/* devo_reset */
7234 	NULL,		/* devo_cb_ops */
7235 	NULL,		/* devo_bus_ops */
7236 	nulldev,	/* devo_power */
7237 	ddi_quiesce_not_needed,	/* devo_quiesce */
7238 };
7239 
7240 static struct modldrv modldrv = {
7241 	&mod_driverops,
7242 	"virtual disk server",
7243 	&vds_ops,
7244 };
7245 
7246 static struct modlinkage modlinkage = {
7247 	MODREV_1,
7248 	&modldrv,
7249 	NULL
7250 };
7251 
7252 
7253 int
7254 _init(void)
7255 {
7256 	int		status;
7257 
7258 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7259 		return (status);
7260 
7261 	if ((status = mod_install(&modlinkage)) != 0) {
7262 		ddi_soft_state_fini(&vds_state);
7263 		return (status);
7264 	}
7265 
7266 	return (0);
7267 }
7268 
7269 int
7270 _info(struct modinfo *modinfop)
7271 {
7272 	return (mod_info(&modlinkage, modinfop));
7273 }
7274 
7275 int
7276 _fini(void)
7277 {
7278 	int	status;
7279 
7280 	if ((status = mod_remove(&modlinkage)) != 0)
7281 		return (status);
7282 	ddi_soft_state_fini(&vds_state);
7283 	return (0);
7284 }
7285