xref: /titanic_41/usr/src/uts/sun4v/io/vds.c (revision cb3f2375234dff602cedb2b5e0afd6c27ec05ecb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/fs/hsfs_isospec.h>
41 #include <sys/mdeg.h>
42 #include <sys/mhd.h>
43 #include <sys/modhash.h>
44 #include <sys/note.h>
45 #include <sys/pathname.h>
46 #include <sys/sdt.h>
47 #include <sys/sunddi.h>
48 #include <sys/sunldi.h>
49 #include <sys/sysmacros.h>
50 #include <sys/vio_common.h>
51 #include <sys/vio_util.h>
52 #include <sys/vdsk_mailbox.h>
53 #include <sys/vdsk_common.h>
54 #include <sys/vtoc.h>
55 #include <sys/vfs.h>
56 #include <sys/stat.h>
57 #include <sys/scsi/impl/uscsi.h>
58 #include <vm/seg_map.h>
59 
60 /* Virtual disk server initialization flags */
61 #define	VDS_LDI			0x01
62 #define	VDS_MDEG		0x02
63 
64 /* Virtual disk server tunable parameters */
65 #define	VDS_RETRIES		5
66 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
67 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
68 #define	VDS_NCHAINS		32
69 
70 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
71 #define	VDS_NAME		"virtual-disk-server"
72 
73 #define	VD_NAME			"vd"
74 #define	VD_VOLUME_NAME		"vdisk"
75 #define	VD_ASCIILABEL		"Virtual Disk"
76 
77 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
78 #define	VD_ID_PROP		"id"
79 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
80 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
81 #define	VD_REG_PROP		"reg"
82 
83 /* Virtual disk initialization flags */
84 #define	VD_DISK_READY		0x01
85 #define	VD_LOCKING		0x02
86 #define	VD_LDC			0x04
87 #define	VD_DRING		0x08
88 #define	VD_SID			0x10
89 #define	VD_SEQ_NUM		0x20
90 #define	VD_SETUP_ERROR		0x40
91 
92 /* Flags for writing to a vdisk which is a file */
93 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
94 
95 /* Number of backup labels */
96 #define	VD_FILE_NUM_BACKUP	5
97 
98 /* Timeout for SCSI I/O */
99 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
100 
101 /* Maximum number of logical partitions */
102 #define	VD_MAXPART	(NDKMAP + 1)
103 
104 /*
105  * By Solaris convention, slice/partition 2 represents the entire disk;
106  * unfortunately, this convention does not appear to be codified.
107  */
108 #define	VD_ENTIRE_DISK_SLICE	2
109 
110 /* Driver types */
111 typedef enum vd_driver {
112 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
113 	VD_DRIVER_DISK,		/* disk driver */
114 	VD_DRIVER_VOLUME	/* volume driver */
115 } vd_driver_t;
116 
117 #define	VD_DRIVER_NAME_LEN	64
118 
119 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
120 
121 typedef struct vd_driver_type {
122 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
123 	vd_driver_t type;		/* driver type (disk or volume) */
124 } vd_driver_type_t;
125 
126 /*
127  * There is no reliable way to determine if a device is representing a disk
128  * or a volume, especially with pseudo devices. So we maintain a list of well
129  * known drivers and the type of device they represent (either a disk or a
130  * volume).
131  *
132  * The list can be extended by adding a "driver-type-list" entry in vds.conf
133  * with the following syntax:
134  *
135  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
136  *
137  * Where:
138  *	<driver> is the name of a driver (limited to 64 characters)
139  *	<type> is either the string "disk" or "volume"
140  *
141  * Invalid entries in "driver-type-list" will be ignored.
142  *
143  * For example, the following line in vds.conf:
144  *
145  * 	driver-type-list="foo:disk","bar:volume";
146  *
147  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
148  *
149  * When a list is defined in vds.conf, it is checked before the built-in list
150  * (vds_driver_types[]) so that any definition from this list can be overriden
151  * using vds.conf.
152  */
153 vd_driver_type_t vds_driver_types[] = {
154 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
155 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
156 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
157 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
158 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
159 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
160 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
161 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
162 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
163 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
164 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
165 };
166 
167 /* Return a cpp token as a string */
168 #define	STRINGIZE(token)	#token
169 
170 /*
171  * Print a message prefixed with the current function name to the message log
172  * (and optionally to the console for verbose boots); these macros use cpp's
173  * concatenation of string literals and C99 variable-length-argument-list
174  * macros
175  */
176 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
177 #define	_PRN(format, ...)					\
178 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
179 
180 /* Return a pointer to the "i"th vdisk dring element */
181 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
182 	    (vd->dring + (i)*vd->descriptor_size))
183 
184 /* Return the virtual disk client's type as a string (for use in messages) */
185 #define	VD_CLIENT(vd)							\
186 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
187 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
188 		(((vd)->xfer_mode == 0) ? "null client" :		\
189 		    "unsupported client")))
190 
191 /* Read disk label from a disk on file */
192 #define	VD_FILE_LABEL_READ(vd, labelp) \
193 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
194 	    0, sizeof (struct dk_label))
195 
196 /* Write disk label to a disk on file */
197 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
198 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
199 	    0, sizeof (struct dk_label))
200 
201 /* Message for disk access rights reset failure */
202 #define	VD_RESET_ACCESS_FAILURE_MSG \
203 	"Fail to reset disk access rights for disk %s"
204 
205 /*
206  * Specification of an MD node passed to the MDEG to filter any
207  * 'vport' nodes that do not belong to the specified node. This
208  * template is copied for each vds instance and filled in with
209  * the appropriate 'cfg-handle' value before being passed to the MDEG.
210  */
211 static mdeg_prop_spec_t	vds_prop_template[] = {
212 	{ MDET_PROP_STR,	"name",		VDS_NAME },
213 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
214 	{ MDET_LIST_END,	NULL, 		NULL }
215 };
216 
217 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
218 
219 /*
220  * Matching criteria passed to the MDEG to register interest
221  * in changes to 'virtual-device-port' nodes identified by their
222  * 'id' property.
223  */
224 static md_prop_match_t	vd_prop_match[] = {
225 	{ MDET_PROP_VAL,	VD_ID_PROP },
226 	{ MDET_LIST_END,	NULL }
227 };
228 
229 static mdeg_node_match_t vd_match = {"virtual-device-port",
230 				    vd_prop_match};
231 
232 /*
233  * Options for the VD_BLOCK_DEVICE_OPTS property.
234  */
235 #define	VD_OPT_RDONLY		0x1	/* read-only  */
236 #define	VD_OPT_SLICE		0x2	/* single slice */
237 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
238 
239 #define	VD_OPTION_NLEN	128
240 
241 typedef struct vd_option {
242 	char vdo_name[VD_OPTION_NLEN];
243 	uint64_t vdo_value;
244 } vd_option_t;
245 
246 vd_option_t vd_bdev_options[] = {
247 	{ "ro",		VD_OPT_RDONLY },
248 	{ "slice", 	VD_OPT_SLICE },
249 	{ "excl",	VD_OPT_EXCLUSIVE }
250 };
251 
252 /* Debugging macros */
253 #ifdef DEBUG
254 
255 static int	vd_msglevel = 0;
256 
257 #define	PR0 if (vd_msglevel > 0)	PRN
258 #define	PR1 if (vd_msglevel > 1)	PRN
259 #define	PR2 if (vd_msglevel > 2)	PRN
260 
261 #define	VD_DUMP_DRING_ELEM(elem)					\
262 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
263 	    elem->hdr.dstate,						\
264 	    elem->payload.operation,					\
265 	    elem->payload.status,					\
266 	    elem->payload.nbytes,					\
267 	    elem->payload.addr,						\
268 	    elem->payload.ncookies);
269 
270 char *
271 vd_decode_state(int state)
272 {
273 	char *str;
274 
275 #define	CASE_STATE(_s)	case _s: str = #_s; break;
276 
277 	switch (state) {
278 	CASE_STATE(VD_STATE_INIT)
279 	CASE_STATE(VD_STATE_VER)
280 	CASE_STATE(VD_STATE_ATTR)
281 	CASE_STATE(VD_STATE_DRING)
282 	CASE_STATE(VD_STATE_RDX)
283 	CASE_STATE(VD_STATE_DATA)
284 	default: str = "unknown"; break;
285 	}
286 
287 #undef CASE_STATE
288 
289 	return (str);
290 }
291 
292 void
293 vd_decode_tag(vio_msg_t *msg)
294 {
295 	char *tstr, *sstr, *estr;
296 
297 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
298 
299 	switch (msg->tag.vio_msgtype) {
300 	CASE_TYPE(VIO_TYPE_CTRL)
301 	CASE_TYPE(VIO_TYPE_DATA)
302 	CASE_TYPE(VIO_TYPE_ERR)
303 	default: tstr = "unknown"; break;
304 	}
305 
306 #undef CASE_TYPE
307 
308 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
309 
310 	switch (msg->tag.vio_subtype) {
311 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
312 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
313 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
314 	default: sstr = "unknown"; break;
315 	}
316 
317 #undef CASE_SUBTYPE
318 
319 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
320 
321 	switch (msg->tag.vio_subtype_env) {
322 	CASE_ENV(VIO_VER_INFO)
323 	CASE_ENV(VIO_ATTR_INFO)
324 	CASE_ENV(VIO_DRING_REG)
325 	CASE_ENV(VIO_DRING_UNREG)
326 	CASE_ENV(VIO_RDX)
327 	CASE_ENV(VIO_PKT_DATA)
328 	CASE_ENV(VIO_DESC_DATA)
329 	CASE_ENV(VIO_DRING_DATA)
330 	default: estr = "unknown"; break;
331 	}
332 
333 #undef CASE_ENV
334 
335 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
336 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
337 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
338 }
339 
340 #else	/* !DEBUG */
341 
342 #define	PR0(...)
343 #define	PR1(...)
344 #define	PR2(...)
345 
346 #define	VD_DUMP_DRING_ELEM(elem)
347 
348 #define	vd_decode_state(_s)	(NULL)
349 #define	vd_decode_tag(_s)	(NULL)
350 
351 #endif	/* DEBUG */
352 
353 
354 /*
355  * Soft state structure for a vds instance
356  */
357 typedef struct vds {
358 	uint_t		initialized;	/* driver inst initialization flags */
359 	dev_info_t	*dip;		/* driver inst devinfo pointer */
360 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
361 	mod_hash_t	*vd_table;	/* table of virtual disks served */
362 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
363 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
364 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
365 	int 		num_drivers;	/* num of extra driver types */
366 } vds_t;
367 
368 /*
369  * Types of descriptor-processing tasks
370  */
371 typedef enum vd_task_type {
372 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
373 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
374 } vd_task_type_t;
375 
376 /*
377  * Structure describing the task for processing a descriptor
378  */
379 typedef struct vd_task {
380 	struct vd		*vd;		/* vd instance task is for */
381 	vd_task_type_t		type;		/* type of descriptor task */
382 	int			index;		/* dring elem index for task */
383 	vio_msg_t		*msg;		/* VIO message task is for */
384 	size_t			msglen;		/* length of message content */
385 	vd_dring_payload_t	*request;	/* request task will perform */
386 	struct buf		buf;		/* buf(9s) for I/O request */
387 	ldc_mem_handle_t	mhdl;		/* task memory handle */
388 	int			status;		/* status of processing task */
389 	int	(*completef)(struct vd_task *task); /* completion func ptr */
390 } vd_task_t;
391 
392 /*
393  * Soft state structure for a virtual disk instance
394  */
395 typedef struct vd {
396 	uint_t			initialized;	/* vdisk initialization flags */
397 	uint64_t		operations;	/* bitmask of VD_OPs exported */
398 	vio_ver_t		version;	/* ver negotiated with client */
399 	vds_t			*vds;		/* server for this vdisk */
400 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
401 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
402 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
403 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
404 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
405 	int			open_flags;	/* open flags */
406 	uint_t			nslices;	/* number of slices */
407 	size_t			vdisk_size;	/* number of blocks in vdisk */
408 	size_t			vdisk_block_size; /* size of each vdisk block */
409 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
410 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
411 	vd_media_t		vdisk_media;	/* media type of backing dev. */
412 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
413 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
414 	size_t			block_size;	/* blk size of actual device */
415 	boolean_t		volume;		/* is vDisk backed by volume */
416 	boolean_t		file;		/* is vDisk backed by a file? */
417 	boolean_t		scsi;		/* is vDisk backed by scsi? */
418 	vnode_t			*file_vnode;	/* file vnode */
419 	size_t			file_size;	/* file size */
420 	ddi_devid_t		file_devid;	/* devid for disk image */
421 	efi_gpt_t		efi_gpt;	/* EFI GPT for slice type */
422 	efi_gpe_t		efi_gpe;	/* EFI GPE for slice type */
423 	int			efi_reserved;	/* EFI reserved slice */
424 	struct dk_geom		dk_geom;	/* synthetic for slice type */
425 	struct vtoc		vtoc;		/* synthetic for slice type */
426 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
427 	boolean_t		ownership;	/* disk ownership status */
428 	ldc_status_t		ldc_state;	/* LDC connection state */
429 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
430 	size_t			max_msglen;	/* largest LDC message len */
431 	vd_state_t		state;		/* client handshake state */
432 	uint8_t			xfer_mode;	/* transfer mode with client */
433 	uint32_t		sid;		/* client's session ID */
434 	uint64_t		seq_num;	/* message sequence number */
435 	uint64_t		dring_ident;	/* identifier of dring */
436 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
437 	uint32_t		descriptor_size;	/* num bytes in desc */
438 	uint32_t		dring_len;	/* number of dring elements */
439 	caddr_t			dring;		/* address of dring */
440 	caddr_t			vio_msgp;	/* vio msg staging buffer */
441 	vd_task_t		inband_task;	/* task for inband descriptor */
442 	vd_task_t		*dring_task;	/* tasks dring elements */
443 
444 	kmutex_t		lock;		/* protects variables below */
445 	boolean_t		enabled;	/* is vdisk enabled? */
446 	boolean_t		reset_state;	/* reset connection state? */
447 	boolean_t		reset_ldc;	/* reset LDC channel? */
448 } vd_t;
449 
450 typedef struct vds_operation {
451 	char	*namep;
452 	uint8_t	operation;
453 	int	(*start)(vd_task_t *task);
454 	int	(*complete)(vd_task_t *task);
455 } vds_operation_t;
456 
457 typedef struct vd_ioctl {
458 	uint8_t		operation;		/* vdisk operation */
459 	const char	*operation_name;	/* vdisk operation name */
460 	size_t		nbytes;			/* size of operation buffer */
461 	int		cmd;			/* corresponding ioctl cmd */
462 	const char	*cmd_name;		/* ioctl cmd name */
463 	void		*arg;			/* ioctl cmd argument */
464 	/* convert input vd_buf to output ioctl_arg */
465 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
466 	/* convert input ioctl_arg to output vd_buf */
467 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
468 	/* write is true if the operation writes any data to the backend */
469 	boolean_t	write;
470 } vd_ioctl_t;
471 
472 /* Define trivial copyin/copyout conversion function flag */
473 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
474 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
475 
476 
477 static int	vds_ldc_retries = VDS_RETRIES;
478 static int	vds_ldc_delay = VDS_LDC_DELAY;
479 static int	vds_dev_retries = VDS_RETRIES;
480 static int	vds_dev_delay = VDS_DEV_DELAY;
481 static void	*vds_state;
482 
483 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
484 
485 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
486 static int	vd_scsi_debug = USCSI_SILENT;
487 
488 /*
489  * Tunable to define the behavior of the service domain if the vdisk server
490  * fails to reset disk exclusive access when a LDC channel is reset. When a
491  * LDC channel is reset the vdisk server will try to reset disk exclusive
492  * access by releasing any SCSI-2 reservation or resetting the disk. If these
493  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
494  * print a warning message. This default behavior can be changed by setting
495  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
496  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
497  * the service domain to panic. In both cases, the reset of the service domain
498  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
499  */
500 static int 	vd_reset_access_failure = 0;
501 
502 /*
503  * Tunable for backward compatibility. When this variable is set to B_TRUE,
504  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
505  * slice disks whether or not they have the "slice" option set. This is
506  * to provide a simple backward compatibility mechanism when upgrading
507  * the vds driver and using a domain configuration created before the
508  * "slice" option was available.
509  */
510 static boolean_t vd_volume_force_slice = B_FALSE;
511 
512 /*
513  * The label of disk images created with some earlier versions of the virtual
514  * disk software is not entirely correct and have an incorrect v_sanity field
515  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
516  * these images because we are now validating that the disk label (and the
517  * sanity) is correct when a disk image is opened.
518  *
519  * This tunable is set to false to not validate the sanity field and ensure
520  * compatibility. If the tunable is set to true, we will do a strict checking
521  * of the sanity but this can create compatibility problems with old disk
522  * images.
523  */
524 static boolean_t vd_file_validate_sanity = B_FALSE;
525 
526 /*
527  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
528  *
529  * Each supported major version should appear only once, paired with (and only
530  * with) its highest supported minor version number (as the protocol requires
531  * supporting all lower minor version numbers as well)
532  */
533 static const vio_ver_t	vds_version[] = {{1, 1}};
534 static const size_t	vds_num_versions =
535     sizeof (vds_version)/sizeof (vds_version[0]);
536 
537 static void vd_free_dring_task(vd_t *vdp);
538 static int vd_setup_vd(vd_t *vd);
539 static int vd_setup_single_slice_disk(vd_t *vd);
540 static int vd_setup_mediainfo(vd_t *vd);
541 static boolean_t vd_enabled(vd_t *vd);
542 static ushort_t vd_lbl2cksum(struct dk_label *label);
543 static int vd_file_validate_geometry(vd_t *vd);
544 static boolean_t vd_file_is_iso_image(vd_t *vd);
545 static void vd_set_exported_operations(vd_t *vd);
546 static void vd_reset_access(vd_t *vd);
547 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
548 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
549 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
550 static void vds_driver_types_free(vds_t *vds);
551 
552 /*
553  * Function:
554  *	vd_file_rw
555  *
556  * Description:
557  * 	Read or write to a disk on file.
558  *
559  * Parameters:
560  *	vd		- disk on which the operation is performed.
561  *	slice		- slice on which the operation is performed,
562  *			  VD_SLICE_NONE indicates that the operation
563  *			  is done using an absolute disk offset.
564  *	operation	- operation to execute: read (VD_OP_BREAD) or
565  *			  write (VD_OP_BWRITE).
566  *	data		- buffer where data are read to or written from.
567  *	blk		- starting block for the operation.
568  *	len		- number of bytes to read or write.
569  *
570  * Return Code:
571  *	n >= 0		- success, n indicates the number of bytes read
572  *			  or written.
573  *	-1		- error.
574  */
575 static ssize_t
576 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
577     size_t len)
578 {
579 	caddr_t	maddr;
580 	size_t offset, maxlen, moffset, mlen, n;
581 	uint_t smflags;
582 	enum seg_rw srw;
583 
584 	ASSERT(vd->file);
585 	ASSERT(len > 0);
586 
587 	/*
588 	 * If a file is exported as a slice then we don't care about the vtoc.
589 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
590 	 * handle any I/O as a raw disk access so that we can have access to the
591 	 * entire backend.
592 	 */
593 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
594 		/* raw disk access */
595 		offset = blk * DEV_BSIZE;
596 	} else {
597 		ASSERT(slice >= 0 && slice < V_NUMPAR);
598 
599 		/*
600 		 * v1.0 vDisk clients depended on the server not verifying
601 		 * the label of a unformatted disk.  This "feature" is
602 		 * maintained for backward compatibility but all versions
603 		 * from v1.1 onwards must do the right thing.
604 		 */
605 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
606 		    vio_ver_is_supported(vd->version, 1, 1)) {
607 			(void) vd_file_validate_geometry(vd);
608 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
609 				PR0("Unknown disk label, can't do I/O "
610 				    "from slice %d", slice);
611 				return (-1);
612 			}
613 		}
614 
615 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
616 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
617 		} else {
618 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
619 			ASSERT(vd->vdisk_block_size == DEV_BSIZE);
620 		}
621 
622 		if (blk >= vd->slices[slice].nblocks) {
623 			/* address past the end of the slice */
624 			PR0("req_addr (0x%lx) > psize (0x%lx)",
625 			    blk, vd->slices[slice].nblocks);
626 			return (0);
627 		}
628 
629 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
630 
631 		/*
632 		 * If the requested size is greater than the size
633 		 * of the partition, truncate the read/write.
634 		 */
635 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
636 
637 		if (len > maxlen) {
638 			PR0("I/O size truncated to %lu bytes from %lu bytes",
639 			    maxlen, len);
640 			len = maxlen;
641 		}
642 	}
643 
644 	/*
645 	 * We have to ensure that we are reading/writing into the mmap
646 	 * range. If we have a partial disk image (e.g. an image of
647 	 * s0 instead s2) the system can try to access slices that
648 	 * are not included into the disk image.
649 	 */
650 	if ((offset + len) > vd->file_size) {
651 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
652 		    "file_size (0x%lx)", offset, len, vd->file_size);
653 		return (-1);
654 	}
655 
656 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
657 	smflags = (operation == VD_OP_BREAD)? 0 :
658 	    (SM_WRITE | vd_file_write_flags);
659 	n = len;
660 
661 	do {
662 		/*
663 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
664 		 * MAXBSIZE aligned.
665 		 */
666 		moffset = offset & MAXBOFFSET;
667 		mlen = MIN(MAXBSIZE - moffset, n);
668 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
669 		    mlen, 1, srw);
670 		/*
671 		 * Fault in the pages so we can check for error and ensure
672 		 * that we can safely used the mapped address.
673 		 */
674 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
675 		    F_SOFTLOCK, srw) != 0) {
676 			(void) segmap_release(segkmap, maddr, 0);
677 			return (-1);
678 		}
679 
680 		if (operation == VD_OP_BREAD)
681 			bcopy(maddr + moffset, data, mlen);
682 		else
683 			bcopy(data, maddr + moffset, mlen);
684 
685 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
686 		    F_SOFTUNLOCK, srw) != 0) {
687 			(void) segmap_release(segkmap, maddr, 0);
688 			return (-1);
689 		}
690 		if (segmap_release(segkmap, maddr, smflags) != 0)
691 			return (-1);
692 		n -= mlen;
693 		offset += mlen;
694 		data += mlen;
695 
696 	} while (n > 0);
697 
698 	return (len);
699 }
700 
701 /*
702  * Function:
703  *	vd_file_build_default_label
704  *
705  * Description:
706  *	Return a default label for the given disk. This is used when the disk
707  *	does not have a valid VTOC so that the user can get a valid default
708  *	configuration. The default label has all slice sizes set to 0 (except
709  *	slice 2 which is the entire disk) to force the user to write a valid
710  *	label onto the disk image.
711  *
712  * Parameters:
713  *	vd		- disk on which the operation is performed.
714  *	label		- the returned default label.
715  *
716  * Return Code:
717  *	none.
718  */
719 static void
720 vd_file_build_default_label(vd_t *vd, struct dk_label *label)
721 {
722 	size_t size;
723 	char prefix;
724 
725 	ASSERT(vd->file);
726 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
727 
728 	bzero(label, sizeof (struct dk_label));
729 
730 	/*
731 	 * We must have a resonable number of cylinders and sectors so
732 	 * that newfs can run using default values.
733 	 *
734 	 * if (disk_size < 2MB)
735 	 * 	phys_cylinders = disk_size / 100K
736 	 * else
737 	 * 	phys_cylinders = disk_size / 300K
738 	 *
739 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
740 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
741 	 * data_cylinders = phys_cylinders - alt_cylinders
742 	 *
743 	 * sectors = disk_size / (phys_cylinders * blk_size)
744 	 *
745 	 * The file size test is an attempt to not have too few cylinders
746 	 * for a small file, or so many on a big file that you waste space
747 	 * for backup superblocks or cylinder group structures.
748 	 */
749 	if (vd->file_size < (2 * 1024 * 1024))
750 		label->dkl_pcyl = vd->file_size / (100 * 1024);
751 	else
752 		label->dkl_pcyl = vd->file_size / (300 * 1024);
753 
754 	if (label->dkl_pcyl == 0)
755 		label->dkl_pcyl = 1;
756 
757 	label->dkl_acyl = 0;
758 
759 	if (label->dkl_pcyl > 2)
760 		label->dkl_acyl = 2;
761 
762 	label->dkl_nsect = vd->file_size /
763 	    (DEV_BSIZE * label->dkl_pcyl);
764 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
765 	label->dkl_nhead = 1;
766 	label->dkl_write_reinstruct = 0;
767 	label->dkl_read_reinstruct = 0;
768 	label->dkl_rpm = 7200;
769 	label->dkl_apc = 0;
770 	label->dkl_intrlv = 0;
771 
772 	PR0("requested disk size: %ld bytes\n", vd->file_size);
773 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
774 	    label->dkl_nhead, label->dkl_nsect);
775 	PR0("provided disk size: %ld bytes\n", (uint64_t)
776 	    (label->dkl_pcyl * label->dkl_nhead *
777 	    label->dkl_nsect * DEV_BSIZE));
778 
779 	if (vd->file_size < (1ULL << 20)) {
780 		size = vd->file_size >> 10;
781 		prefix = 'K'; /* Kilobyte */
782 	} else if (vd->file_size < (1ULL << 30)) {
783 		size = vd->file_size >> 20;
784 		prefix = 'M'; /* Megabyte */
785 	} else if (vd->file_size < (1ULL << 40)) {
786 		size = vd->file_size >> 30;
787 		prefix = 'G'; /* Gigabyte */
788 	} else {
789 		size = vd->file_size >> 40;
790 		prefix = 'T'; /* Terabyte */
791 	}
792 
793 	/*
794 	 * We must have a correct label name otherwise format(1m) will
795 	 * not recognized the disk as labeled.
796 	 */
797 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
798 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
799 	    size, prefix,
800 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
801 	    label->dkl_nsect);
802 
803 	/* default VTOC */
804 	label->dkl_vtoc.v_version = V_VERSION;
805 	label->dkl_vtoc.v_nparts = V_NUMPAR;
806 	label->dkl_vtoc.v_sanity = VTOC_SANE;
807 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
808 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
809 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
810 	    label->dkl_nhead * label->dkl_nsect;
811 	label->dkl_magic = DKL_MAGIC;
812 	label->dkl_cksum = vd_lbl2cksum(label);
813 }
814 
815 /*
816  * Function:
817  *	vd_file_set_vtoc
818  *
819  * Description:
820  *	Set the vtoc of a disk image by writing the label and backup
821  *	labels into the disk image backend.
822  *
823  * Parameters:
824  *	vd		- disk on which the operation is performed.
825  *	label		- the data to be written.
826  *
827  * Return Code:
828  *	0		- success.
829  *	n > 0		- error, n indicates the errno code.
830  */
831 static int
832 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
833 {
834 	int blk, sec, cyl, head, cnt;
835 
836 	ASSERT(vd->file);
837 
838 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
839 		PR0("fail to write disk label");
840 		return (EIO);
841 	}
842 
843 	/*
844 	 * Backup labels are on the last alternate cylinder's
845 	 * first five odd sectors.
846 	 */
847 	if (label->dkl_acyl == 0) {
848 		PR0("no alternate cylinder, can not store backup labels");
849 		return (0);
850 	}
851 
852 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
853 	head = label->dkl_nhead - 1;
854 
855 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
856 	    (head * label->dkl_nsect);
857 
858 	/*
859 	 * Write the backup labels. Make sure we don't try to write past
860 	 * the last cylinder.
861 	 */
862 	sec = 1;
863 
864 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
865 
866 		if (sec >= label->dkl_nsect) {
867 			PR0("not enough sector to store all backup labels");
868 			return (0);
869 		}
870 
871 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
872 		    blk + sec, sizeof (struct dk_label)) < 0) {
873 			PR0("error writing backup label at block %d\n",
874 			    blk + sec);
875 			return (EIO);
876 		}
877 
878 		PR1("wrote backup label at block %d\n", blk + sec);
879 
880 		sec += 2;
881 	}
882 
883 	return (0);
884 }
885 
886 /*
887  * Function:
888  *	vd_file_get_devid_block
889  *
890  * Description:
891  *	Return the block number where the device id is stored.
892  *
893  * Parameters:
894  *	vd		- disk on which the operation is performed.
895  *	blkp		- pointer to the block number
896  *
897  * Return Code:
898  *	0		- success
899  *	ENOSPC		- disk has no space to store a device id
900  */
901 static int
902 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
903 {
904 	diskaddr_t spc, head, cyl;
905 
906 	ASSERT(vd->file);
907 
908 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
909 		/*
910 		 * If no label is defined we don't know where to find
911 		 * a device id.
912 		 */
913 		return (ENOSPC);
914 	}
915 
916 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
917 		/*
918 		 * For an EFI disk, the devid is at the beginning of
919 		 * the reserved slice
920 		 */
921 		if (vd->efi_reserved == -1) {
922 			PR0("EFI disk has no reserved slice");
923 			return (ENOSPC);
924 		}
925 
926 		*blkp = vd->slices[vd->efi_reserved].start;
927 		return (0);
928 	}
929 
930 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
931 
932 	/* this geometry doesn't allow us to have a devid */
933 	if (vd->dk_geom.dkg_acyl < 2) {
934 		PR0("not enough alternate cylinder available for devid "
935 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
936 		return (ENOSPC);
937 	}
938 
939 	/* the devid is in on the track next to the last cylinder */
940 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
941 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
942 	head = vd->dk_geom.dkg_nhead - 1;
943 
944 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
945 	    (head * vd->dk_geom.dkg_nsect) + 1;
946 
947 	return (0);
948 }
949 
950 /*
951  * Return the checksum of a disk block containing an on-disk devid.
952  */
953 static uint_t
954 vd_dkdevid2cksum(struct dk_devid *dkdevid)
955 {
956 	uint_t chksum, *ip;
957 	int i;
958 
959 	chksum = 0;
960 	ip = (uint_t *)dkdevid;
961 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
962 		chksum ^= ip[i];
963 
964 	return (chksum);
965 }
966 
967 /*
968  * Function:
969  *	vd_file_read_devid
970  *
971  * Description:
972  *	Read the device id stored on a disk image.
973  *
974  * Parameters:
975  *	vd		- disk on which the operation is performed.
976  *	devid		- the return address of the device ID.
977  *
978  * Return Code:
979  *	0		- success
980  *	EIO		- I/O error while trying to access the disk image
981  *	EINVAL		- no valid device id was found
982  *	ENOSPC		- disk has no space to store a device id
983  */
984 static int
985 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
986 {
987 	struct dk_devid *dkdevid;
988 	size_t blk;
989 	uint_t chksum;
990 	int status, sz;
991 
992 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
993 		return (status);
994 
995 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
996 
997 	/* get the devid */
998 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
999 	    DEV_BSIZE)) < 0) {
1000 		PR0("error reading devid block at %lu", blk);
1001 		status = EIO;
1002 		goto done;
1003 	}
1004 
1005 	/* validate the revision */
1006 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1007 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1008 		PR0("invalid devid found at block %lu (bad revision)", blk);
1009 		status = EINVAL;
1010 		goto done;
1011 	}
1012 
1013 	/* compute checksum */
1014 	chksum = vd_dkdevid2cksum(dkdevid);
1015 
1016 	/* compare the checksums */
1017 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1018 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1019 		status = EINVAL;
1020 		goto done;
1021 	}
1022 
1023 	/* validate the device id */
1024 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1025 		PR0("invalid devid found at block %lu", blk);
1026 		status = EINVAL;
1027 		goto done;
1028 	}
1029 
1030 	PR1("devid read at block %lu", blk);
1031 
1032 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1033 	*devid = kmem_alloc(sz, KM_SLEEP);
1034 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1035 
1036 done:
1037 	kmem_free(dkdevid, DEV_BSIZE);
1038 	return (status);
1039 
1040 }
1041 
1042 /*
1043  * Function:
1044  *	vd_file_write_devid
1045  *
1046  * Description:
1047  *	Write a device id into disk image.
1048  *
1049  * Parameters:
1050  *	vd		- disk on which the operation is performed.
1051  *	devid		- the device ID to store.
1052  *
1053  * Return Code:
1054  *	0		- success
1055  *	EIO		- I/O error while trying to access the disk image
1056  *	ENOSPC		- disk has no space to store a device id
1057  */
1058 static int
1059 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
1060 {
1061 	struct dk_devid *dkdevid;
1062 	uint_t chksum;
1063 	size_t blk;
1064 	int status;
1065 
1066 	if (devid == NULL) {
1067 		/* nothing to write */
1068 		return (0);
1069 	}
1070 
1071 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1072 		return (status);
1073 
1074 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1075 
1076 	/* set revision */
1077 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1078 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1079 
1080 	/* copy devid */
1081 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1082 
1083 	/* compute checksum */
1084 	chksum = vd_dkdevid2cksum(dkdevid);
1085 
1086 	/* set checksum */
1087 	DKD_FORMCHKSUM(chksum, dkdevid);
1088 
1089 	/* store the devid */
1090 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1091 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1092 		PR0("Error writing devid block at %lu", blk);
1093 		status = EIO;
1094 	} else {
1095 		PR1("devid written at block %lu", blk);
1096 		status = 0;
1097 	}
1098 
1099 	kmem_free(dkdevid, DEV_BSIZE);
1100 	return (status);
1101 }
1102 
1103 /*
1104  * Function:
1105  *	vd_do_scsi_rdwr
1106  *
1107  * Description:
1108  * 	Read or write to a SCSI disk using an absolute disk offset.
1109  *
1110  * Parameters:
1111  *	vd		- disk on which the operation is performed.
1112  *	operation	- operation to execute: read (VD_OP_BREAD) or
1113  *			  write (VD_OP_BWRITE).
1114  *	data		- buffer where data are read to or written from.
1115  *	blk		- starting block for the operation.
1116  *	len		- number of bytes to read or write.
1117  *
1118  * Return Code:
1119  *	0		- success
1120  *	n != 0		- error.
1121  */
1122 static int
1123 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1124 {
1125 	struct uscsi_cmd ucmd;
1126 	union scsi_cdb cdb;
1127 	int nsectors, nblk;
1128 	int max_sectors;
1129 	int status, rval;
1130 
1131 	ASSERT(!vd->file);
1132 	ASSERT(vd->vdisk_block_size > 0);
1133 
1134 	max_sectors = vd->max_xfer_sz;
1135 	nblk = (len / vd->vdisk_block_size);
1136 
1137 	if (len % vd->vdisk_block_size != 0)
1138 		return (EINVAL);
1139 
1140 	/*
1141 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1142 	 * or group4 command as necessary, since some targets
1143 	 * do not support group1 commands.
1144 	 */
1145 	while (nblk) {
1146 
1147 		bzero(&ucmd, sizeof (ucmd));
1148 		bzero(&cdb, sizeof (cdb));
1149 
1150 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1151 
1152 		/*
1153 		 * Some of the optical drives on sun4v machines are ATAPI
1154 		 * devices which use Group 1 Read/Write commands so we need
1155 		 * to explicitly check a flag which is set when a domain
1156 		 * is bound.
1157 		 */
1158 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1159 			FORMG0ADDR(&cdb, blk);
1160 			FORMG0COUNT(&cdb, nsectors);
1161 			ucmd.uscsi_cdblen = CDB_GROUP0;
1162 		} else if (blk > 0xffffffff) {
1163 			FORMG4LONGADDR(&cdb, blk);
1164 			FORMG4COUNT(&cdb, nsectors);
1165 			ucmd.uscsi_cdblen = CDB_GROUP4;
1166 			cdb.scc_cmd |= SCMD_GROUP4;
1167 		} else {
1168 			FORMG1ADDR(&cdb, blk);
1169 			FORMG1COUNT(&cdb, nsectors);
1170 			ucmd.uscsi_cdblen = CDB_GROUP1;
1171 			cdb.scc_cmd |= SCMD_GROUP1;
1172 		}
1173 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1174 		ucmd.uscsi_bufaddr = data;
1175 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1176 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1177 		/*
1178 		 * Set flags so that the command is isolated from normal
1179 		 * commands and no error message is printed.
1180 		 */
1181 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1182 
1183 		if (operation == VD_OP_BREAD) {
1184 			cdb.scc_cmd |= SCMD_READ;
1185 			ucmd.uscsi_flags |= USCSI_READ;
1186 		} else {
1187 			cdb.scc_cmd |= SCMD_WRITE;
1188 		}
1189 
1190 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1191 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1192 		    kcred, &rval);
1193 
1194 		if (status == 0)
1195 			status = ucmd.uscsi_status;
1196 
1197 		if (status != 0)
1198 			break;
1199 
1200 		/*
1201 		 * Check if partial DMA breakup is required. If so, reduce
1202 		 * the request size by half and retry the last request.
1203 		 */
1204 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1205 			max_sectors >>= 1;
1206 			if (max_sectors <= 0) {
1207 				status = EIO;
1208 				break;
1209 			}
1210 			continue;
1211 		}
1212 
1213 		if (ucmd.uscsi_resid != 0) {
1214 			status = EIO;
1215 			break;
1216 		}
1217 
1218 		blk += nsectors;
1219 		nblk -= nsectors;
1220 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1221 	}
1222 
1223 	return (status);
1224 }
1225 
1226 /*
1227  * Function:
1228  *	vd_scsi_rdwr
1229  *
1230  * Description:
1231  * 	Wrapper function to read or write to a SCSI disk using an absolute
1232  *	disk offset. It checks the blocksize of the underlying device and,
1233  *	if necessary, adjusts the buffers accordingly before calling
1234  *	vd_do_scsi_rdwr() to do the actual read or write.
1235  *
1236  * Parameters:
1237  *	vd		- disk on which the operation is performed.
1238  *	operation	- operation to execute: read (VD_OP_BREAD) or
1239  *			  write (VD_OP_BWRITE).
1240  *	data		- buffer where data are read to or written from.
1241  *	blk		- starting block for the operation.
1242  *	len		- number of bytes to read or write.
1243  *
1244  * Return Code:
1245  *	0		- success
1246  *	n != 0		- error.
1247  */
1248 static int
1249 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1250 {
1251 	int	rv;
1252 
1253 	size_t	pblk;	/* physical device block number of data on device */
1254 	size_t	delta;	/* relative offset between pblk and vblk */
1255 	size_t	pnblk;	/* number of physical blocks to be read from device */
1256 	size_t	plen;	/* length of data to be read from physical device */
1257 	char	*buf;	/* buffer area to fit physical device's block size */
1258 
1259 	if (vd->block_size == 0) {
1260 		/*
1261 		 * The block size was not available during the attach,
1262 		 * try to update it now.
1263 		 */
1264 		if (vd_setup_mediainfo(vd) != 0)
1265 			return (EIO);
1266 	}
1267 
1268 	/*
1269 	 * If the vdisk block size and the block size of the underlying device
1270 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1271 	 * to create a buffer large enough to handle the device's block size
1272 	 * and adjust the block to be read from and the amount of data to
1273 	 * read to correspond with the device's block size.
1274 	 */
1275 	if (vd->vdisk_block_size == vd->block_size)
1276 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1277 
1278 	if (vd->vdisk_block_size > vd->block_size)
1279 		return (EINVAL);
1280 
1281 	/*
1282 	 * Writing of physical block sizes larger than the virtual block size
1283 	 * is not supported. This would be added if/when support for guests
1284 	 * writing to DVDs is implemented.
1285 	 */
1286 	if (operation == VD_OP_BWRITE)
1287 		return (ENOTSUP);
1288 
1289 	/* BEGIN CSTYLED */
1290 	/*
1291 	 * Below is a diagram showing the relationship between the physical
1292 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1293 	 * requested, then the physical blocks denoted by 'Y' are read.
1294 	 *
1295 	 *           vblk
1296 	 *             |      vlen
1297 	 *             |<--------------->|
1298 	 *             v                 v
1299 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1300 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1301 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1302 	 *          :  :                 :  :
1303 	 *         >:==:< delta          :  :
1304 	 *          :  :                 :  :
1305 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1306 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1307 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1308 	 *          ^                       ^
1309 	 *          |<--------------------->|
1310 	 *          |         plen
1311 	 *         pblk
1312 	 */
1313 	/* END CSTYLED */
1314 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1315 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1316 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1317 	plen = pnblk * vd->block_size;
1318 
1319 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1320 
1321 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1322 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1323 	bcopy(buf + delta, data, vlen);
1324 
1325 	kmem_free(buf, sizeof (caddr_t) * plen);
1326 
1327 	return (rv);
1328 }
1329 
1330 /*
1331  * Return Values
1332  *	EINPROGRESS	- operation was successfully started
1333  *	EIO		- encountered LDC (aka. task error)
1334  *	0		- operation completed successfully
1335  *
1336  * Side Effect
1337  *     sets request->status = <disk operation status>
1338  */
1339 static int
1340 vd_start_bio(vd_task_t *task)
1341 {
1342 	int			rv, status = 0;
1343 	vd_t			*vd		= task->vd;
1344 	vd_dring_payload_t	*request	= task->request;
1345 	struct buf		*buf		= &task->buf;
1346 	uint8_t			mtype;
1347 	int 			slice;
1348 	char			*bufaddr = 0;
1349 	size_t			buflen;
1350 
1351 	ASSERT(vd != NULL);
1352 	ASSERT(request != NULL);
1353 
1354 	slice = request->slice;
1355 
1356 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1357 	ASSERT((request->operation == VD_OP_BREAD) ||
1358 	    (request->operation == VD_OP_BWRITE));
1359 
1360 	if (request->nbytes == 0) {
1361 		/* no service for trivial requests */
1362 		request->status = EINVAL;
1363 		return (0);
1364 	}
1365 
1366 	PR1("%s %lu bytes at block %lu",
1367 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1368 	    request->nbytes, request->addr);
1369 
1370 	/*
1371 	 * We have to check the open flags because the functions processing
1372 	 * the read/write request will not do it.
1373 	 */
1374 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1375 		PR0("write fails because backend is opened read-only");
1376 		request->nbytes = 0;
1377 		request->status = EROFS;
1378 		return (0);
1379 	}
1380 
1381 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1382 
1383 	/* Map memory exported by client */
1384 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1385 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1386 	    &bufaddr, NULL);
1387 	if (status != 0) {
1388 		PR0("ldc_mem_map() returned err %d ", status);
1389 		return (EIO);
1390 	}
1391 
1392 	buflen = request->nbytes;
1393 
1394 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1395 	if (status != 0) {
1396 		(void) ldc_mem_unmap(task->mhdl);
1397 		PR0("ldc_mem_acquire() returned err %d ", status);
1398 		return (EIO);
1399 	}
1400 
1401 	/* Start the block I/O */
1402 	if (vd->file) {
1403 		rv = vd_file_rw(vd, slice, request->operation, bufaddr,
1404 		    request->addr, request->nbytes);
1405 		if (rv < 0) {
1406 			request->nbytes = 0;
1407 			request->status = EIO;
1408 		} else {
1409 			request->nbytes = rv;
1410 			request->status = 0;
1411 		}
1412 	} else {
1413 		if (slice == VD_SLICE_NONE) {
1414 			/*
1415 			 * This is not a disk image so it is a real disk. We
1416 			 * assume that the underlying device driver supports
1417 			 * USCSICMD ioctls. This is the case of all SCSI devices
1418 			 * (sd, ssd...).
1419 			 *
1420 			 * In the future if we have non-SCSI disks we would need
1421 			 * to invoke the appropriate function to do I/O using an
1422 			 * absolute disk offset (for example using DIOCTL_RWCMD
1423 			 * for IDE disks).
1424 			 */
1425 			rv = vd_scsi_rdwr(vd, request->operation, bufaddr,
1426 			    request->addr, request->nbytes);
1427 			if (rv != 0) {
1428 				request->nbytes = 0;
1429 				request->status = EIO;
1430 			} else {
1431 				request->status = 0;
1432 			}
1433 		} else {
1434 			bioinit(buf);
1435 			buf->b_flags	= B_BUSY;
1436 			buf->b_bcount	= request->nbytes;
1437 			buf->b_lblkno	= request->addr;
1438 			buf->b_edev 	= vd->dev[slice];
1439 			buf->b_un.b_addr = bufaddr;
1440 			buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1441 			    B_READ : B_WRITE;
1442 
1443 			request->status =
1444 			    ldi_strategy(vd->ldi_handle[slice], buf);
1445 
1446 			/*
1447 			 * This is to indicate to the caller that the request
1448 			 * needs to be finished by vd_complete_bio() by calling
1449 			 * biowait() there and waiting for that to return before
1450 			 * triggering the notification of the vDisk client.
1451 			 *
1452 			 * This is necessary when writing to real disks as
1453 			 * otherwise calls to ldi_strategy() would be serialized
1454 			 * behind the calls to biowait() and performance would
1455 			 * suffer.
1456 			 */
1457 			if (request->status == 0)
1458 				return (EINPROGRESS);
1459 
1460 			biofini(buf);
1461 		}
1462 	}
1463 
1464 	/* Clean up after error */
1465 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1466 	if (rv) {
1467 		PR0("ldc_mem_release() returned err %d ", rv);
1468 		status = EIO;
1469 	}
1470 	rv = ldc_mem_unmap(task->mhdl);
1471 	if (rv) {
1472 		PR0("ldc_mem_unmap() returned err %d ", rv);
1473 		status = EIO;
1474 	}
1475 
1476 	return (status);
1477 }
1478 
1479 /*
1480  * This function should only be called from vd_notify to ensure that requests
1481  * are responded to in the order that they are received.
1482  */
1483 static int
1484 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1485 {
1486 	int	status;
1487 	size_t	nbytes;
1488 
1489 	do {
1490 		nbytes = msglen;
1491 		status = ldc_write(ldc_handle, msg, &nbytes);
1492 		if (status != EWOULDBLOCK)
1493 			break;
1494 		drv_usecwait(vds_ldc_delay);
1495 	} while (status == EWOULDBLOCK);
1496 
1497 	if (status != 0) {
1498 		if (status != ECONNRESET)
1499 			PR0("ldc_write() returned errno %d", status);
1500 		return (status);
1501 	} else if (nbytes != msglen) {
1502 		PR0("ldc_write() performed only partial write");
1503 		return (EIO);
1504 	}
1505 
1506 	PR1("SENT %lu bytes", msglen);
1507 	return (0);
1508 }
1509 
1510 static void
1511 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1512 {
1513 	mutex_enter(&vd->lock);
1514 	vd->reset_state	= B_TRUE;
1515 	vd->reset_ldc	= reset_ldc;
1516 	mutex_exit(&vd->lock);
1517 }
1518 
1519 /*
1520  * Reset the state of the connection with a client, if needed; reset the LDC
1521  * transport as well, if needed.  This function should only be called from the
1522  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1523  */
1524 static void
1525 vd_reset_if_needed(vd_t *vd)
1526 {
1527 	int	status = 0;
1528 
1529 	mutex_enter(&vd->lock);
1530 	if (!vd->reset_state) {
1531 		ASSERT(!vd->reset_ldc);
1532 		mutex_exit(&vd->lock);
1533 		return;
1534 	}
1535 	mutex_exit(&vd->lock);
1536 
1537 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1538 
1539 	/*
1540 	 * Let any asynchronous I/O complete before possibly pulling the rug
1541 	 * out from under it; defer checking vd->reset_ldc, as one of the
1542 	 * asynchronous tasks might set it
1543 	 */
1544 	ddi_taskq_wait(vd->completionq);
1545 
1546 	if (vd->file) {
1547 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1548 		if (status) {
1549 			PR0("VOP_FSYNC returned errno %d", status);
1550 		}
1551 	}
1552 
1553 	if ((vd->initialized & VD_DRING) &&
1554 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1555 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1556 
1557 	vd_free_dring_task(vd);
1558 
1559 	/* Free the staging buffer for msgs */
1560 	if (vd->vio_msgp != NULL) {
1561 		kmem_free(vd->vio_msgp, vd->max_msglen);
1562 		vd->vio_msgp = NULL;
1563 	}
1564 
1565 	/* Free the inband message buffer */
1566 	if (vd->inband_task.msg != NULL) {
1567 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1568 		vd->inband_task.msg = NULL;
1569 	}
1570 
1571 	mutex_enter(&vd->lock);
1572 
1573 	if (vd->reset_ldc)
1574 		PR0("taking down LDC channel");
1575 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1576 		PR0("ldc_down() returned errno %d", status);
1577 
1578 	/* Reset exclusive access rights */
1579 	vd_reset_access(vd);
1580 
1581 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1582 	vd->state	= VD_STATE_INIT;
1583 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1584 
1585 	/* Allocate the staging buffer */
1586 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1587 
1588 	PR0("calling ldc_up\n");
1589 	(void) ldc_up(vd->ldc_handle);
1590 
1591 	vd->reset_state	= B_FALSE;
1592 	vd->reset_ldc	= B_FALSE;
1593 
1594 	mutex_exit(&vd->lock);
1595 }
1596 
1597 static void vd_recv_msg(void *arg);
1598 
1599 static void
1600 vd_mark_in_reset(vd_t *vd)
1601 {
1602 	int status;
1603 
1604 	PR0("vd_mark_in_reset: marking vd in reset\n");
1605 
1606 	vd_need_reset(vd, B_FALSE);
1607 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1608 	if (status == DDI_FAILURE) {
1609 		PR0("cannot schedule task to recv msg\n");
1610 		vd_need_reset(vd, B_TRUE);
1611 		return;
1612 	}
1613 }
1614 
1615 static int
1616 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1617 {
1618 	boolean_t		accepted;
1619 	int			status;
1620 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1621 
1622 	if (vd->reset_state)
1623 		return (0);
1624 
1625 	/* Acquire the element */
1626 	if (!vd->reset_state &&
1627 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1628 		if (status == ECONNRESET) {
1629 			vd_mark_in_reset(vd);
1630 			return (0);
1631 		} else {
1632 			PR0("ldc_mem_dring_acquire() returned errno %d",
1633 			    status);
1634 			return (status);
1635 		}
1636 	}
1637 
1638 	/* Set the element's status and mark it done */
1639 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1640 	if (accepted) {
1641 		elem->payload.nbytes	= elem_nbytes;
1642 		elem->payload.status	= elem_status;
1643 		elem->hdr.dstate	= VIO_DESC_DONE;
1644 	} else {
1645 		/* Perhaps client timed out waiting for I/O... */
1646 		PR0("element %u no longer \"accepted\"", idx);
1647 		VD_DUMP_DRING_ELEM(elem);
1648 	}
1649 	/* Release the element */
1650 	if (!vd->reset_state &&
1651 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1652 		if (status == ECONNRESET) {
1653 			vd_mark_in_reset(vd);
1654 			return (0);
1655 		} else {
1656 			PR0("ldc_mem_dring_release() returned errno %d",
1657 			    status);
1658 			return (status);
1659 		}
1660 	}
1661 
1662 	return (accepted ? 0 : EINVAL);
1663 }
1664 
1665 /*
1666  * Return Values
1667  *	0	- operation completed successfully
1668  *	EIO	- encountered LDC / task error
1669  *
1670  * Side Effect
1671  *	sets request->status = <disk operation status>
1672  */
1673 static int
1674 vd_complete_bio(vd_task_t *task)
1675 {
1676 	int			status		= 0;
1677 	int			rv		= 0;
1678 	vd_t			*vd		= task->vd;
1679 	vd_dring_payload_t	*request	= task->request;
1680 	struct buf		*buf		= &task->buf;
1681 
1682 
1683 	ASSERT(vd != NULL);
1684 	ASSERT(request != NULL);
1685 	ASSERT(task->msg != NULL);
1686 	ASSERT(task->msglen >= sizeof (*task->msg));
1687 	ASSERT(!vd->file);
1688 	ASSERT(request->slice != VD_SLICE_NONE);
1689 
1690 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
1691 	request->status = biowait(buf);
1692 
1693 	/* return back the number of bytes read/written */
1694 	request->nbytes = buf->b_bcount - buf->b_resid;
1695 
1696 	/* Release the buffer */
1697 	if (!vd->reset_state)
1698 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1699 	if (status) {
1700 		PR0("ldc_mem_release() returned errno %d copying to "
1701 		    "client", status);
1702 		if (status == ECONNRESET) {
1703 			vd_mark_in_reset(vd);
1704 		}
1705 		rv = EIO;
1706 	}
1707 
1708 	/* Unmap the memory, even if in reset */
1709 	status = ldc_mem_unmap(task->mhdl);
1710 	if (status) {
1711 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1712 		    status);
1713 		if (status == ECONNRESET) {
1714 			vd_mark_in_reset(vd);
1715 		}
1716 		rv = EIO;
1717 	}
1718 
1719 	biofini(buf);
1720 
1721 	return (rv);
1722 }
1723 
1724 /*
1725  * Description:
1726  *	This function is called by the two functions called by a taskq
1727  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
1728  *	message to the client.
1729  *
1730  * Parameters:
1731  *	arg 	- opaque pointer to structure containing task to be completed
1732  *
1733  * Return Values
1734  *	None
1735  */
1736 static void
1737 vd_notify(vd_task_t *task)
1738 {
1739 	int	status;
1740 
1741 	ASSERT(task != NULL);
1742 	ASSERT(task->vd != NULL);
1743 
1744 	if (task->vd->reset_state)
1745 		return;
1746 
1747 	/*
1748 	 * Send the "ack" or "nack" back to the client; if sending the message
1749 	 * via LDC fails, arrange to reset both the connection state and LDC
1750 	 * itself
1751 	 */
1752 	PR2("Sending %s",
1753 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1754 
1755 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
1756 	switch (status) {
1757 	case 0:
1758 		break;
1759 	case ECONNRESET:
1760 		vd_mark_in_reset(task->vd);
1761 		break;
1762 	default:
1763 		PR0("initiating full reset");
1764 		vd_need_reset(task->vd, B_TRUE);
1765 		break;
1766 	}
1767 
1768 	DTRACE_PROBE1(task__end, vd_task_t *, task);
1769 }
1770 
1771 /*
1772  * Description:
1773  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
1774  *	the vDisk client
1775  *
1776  * Parameters:
1777  *	task 		- structure containing the request sent from client
1778  *
1779  * Return Values
1780  *	None
1781  */
1782 static void
1783 vd_complete_notify(vd_task_t *task)
1784 {
1785 	int			status		= 0;
1786 	vd_t			*vd		= task->vd;
1787 	vd_dring_payload_t	*request	= task->request;
1788 
1789 	/* Update the dring element for a dring client */
1790 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
1791 		status = vd_mark_elem_done(vd, task->index,
1792 		    request->status, request->nbytes);
1793 		if (status == ECONNRESET)
1794 			vd_mark_in_reset(vd);
1795 	}
1796 
1797 	/*
1798 	 * If a transport error occurred while marking the element done or
1799 	 * previously while executing the task, arrange to "nack" the message
1800 	 * when the final task in the descriptor element range completes
1801 	 */
1802 	if ((status != 0) || (task->status != 0))
1803 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1804 
1805 	/*
1806 	 * Only the final task for a range of elements will respond to and
1807 	 * free the message
1808 	 */
1809 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1810 		return;
1811 	}
1812 
1813 	vd_notify(task);
1814 }
1815 
1816 /*
1817  * Description:
1818  *	This is the basic completion function called to handle inband data
1819  *	requests and handshake messages. All it needs to do is trigger a
1820  *	message to the client that the request is completed.
1821  *
1822  * Parameters:
1823  *	arg 	- opaque pointer to structure containing task to be completed
1824  *
1825  * Return Values
1826  *	None
1827  */
1828 static void
1829 vd_serial_notify(void *arg)
1830 {
1831 	vd_task_t		*task = (vd_task_t *)arg;
1832 
1833 	ASSERT(task != NULL);
1834 	vd_notify(task);
1835 }
1836 
1837 /* ARGSUSED */
1838 static int
1839 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1840 {
1841 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1842 	return (0);
1843 }
1844 
1845 /* ARGSUSED */
1846 static int
1847 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1848 {
1849 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1850 	return (0);
1851 }
1852 
1853 static void
1854 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1855 {
1856 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1857 }
1858 
1859 static void
1860 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1861 {
1862 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1863 }
1864 
1865 static int
1866 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1867 {
1868 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1869 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1870 	size_t data_len;
1871 
1872 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
1873 	if (vd_efi->length > data_len)
1874 		return (EINVAL);
1875 
1876 	dk_efi->dki_lba = vd_efi->lba;
1877 	dk_efi->dki_length = vd_efi->length;
1878 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1879 	return (0);
1880 }
1881 
1882 static void
1883 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1884 {
1885 	int len;
1886 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1887 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1888 
1889 	len = vd_efi->length;
1890 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1891 	kmem_free(dk_efi->dki_data, len);
1892 }
1893 
1894 static int
1895 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1896 {
1897 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1898 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1899 	size_t data_len;
1900 
1901 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
1902 	if (vd_efi->length > data_len)
1903 		return (EINVAL);
1904 
1905 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1906 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1907 	return (0);
1908 }
1909 
1910 static void
1911 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1912 {
1913 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1914 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1915 
1916 	kmem_free(dk_efi->dki_data, vd_efi->length);
1917 }
1918 
1919 static int
1920 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1921 {
1922 	size_t vd_scsi_len;
1923 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
1924 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
1925 
1926 	/* check buffer size */
1927 	vd_scsi_len = VD_SCSI_SIZE;
1928 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
1929 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
1930 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
1931 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
1932 
1933 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
1934 
1935 	if (vd_buf_len < vd_scsi_len)
1936 		return (EINVAL);
1937 
1938 	/* set flags */
1939 	uscsi->uscsi_flags = vd_scsi_debug;
1940 
1941 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
1942 		uscsi->uscsi_flags |= USCSI_ISOLATE;
1943 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
1944 	}
1945 
1946 	/* task attribute */
1947 	switch (vd_scsi->task_attribute) {
1948 	case VD_SCSI_TASK_ACA:
1949 		uscsi->uscsi_flags |= USCSI_HEAD;
1950 		break;
1951 	case VD_SCSI_TASK_HQUEUE:
1952 		uscsi->uscsi_flags |= USCSI_HTAG;
1953 		break;
1954 	case VD_SCSI_TASK_ORDERED:
1955 		uscsi->uscsi_flags |= USCSI_OTAG;
1956 		break;
1957 	default:
1958 		uscsi->uscsi_flags |= USCSI_NOTAG;
1959 		break;
1960 	}
1961 
1962 	/* timeout */
1963 	uscsi->uscsi_timeout = vd_scsi->timeout;
1964 
1965 	/* cdb data */
1966 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
1967 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
1968 
1969 	/* sense buffer */
1970 	if (vd_scsi->sense_len != 0) {
1971 		uscsi->uscsi_flags |= USCSI_RQENABLE;
1972 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
1973 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
1974 	}
1975 
1976 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
1977 		/* uscsi does not support read/write request */
1978 		return (EINVAL);
1979 	}
1980 
1981 	/* request data-in */
1982 	if (vd_scsi->datain_len != 0) {
1983 		uscsi->uscsi_flags |= USCSI_READ;
1984 		uscsi->uscsi_buflen = vd_scsi->datain_len;
1985 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
1986 	}
1987 
1988 	/* request data-out */
1989 	if (vd_scsi->dataout_len != 0) {
1990 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
1991 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
1992 	}
1993 
1994 	return (0);
1995 }
1996 
1997 static void
1998 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
1999 {
2000 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2001 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2002 
2003 	/* output fields */
2004 	vd_scsi->cmd_status = uscsi->uscsi_status;
2005 
2006 	/* sense data */
2007 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2008 	    (uscsi->uscsi_status == STATUS_CHECK ||
2009 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2010 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2011 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2012 			vd_scsi->sense_len -= uscsi->uscsi_resid;
2013 		else
2014 			vd_scsi->sense_len = 0;
2015 	} else {
2016 		vd_scsi->sense_len = 0;
2017 	}
2018 
2019 	if (uscsi->uscsi_status != STATUS_GOOD) {
2020 		vd_scsi->dataout_len = 0;
2021 		vd_scsi->datain_len = 0;
2022 		return;
2023 	}
2024 
2025 	if (uscsi->uscsi_flags & USCSI_READ) {
2026 		/* request data (read) */
2027 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2028 		vd_scsi->dataout_len = 0;
2029 	} else {
2030 		/* request data (write) */
2031 		vd_scsi->datain_len = 0;
2032 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2033 	}
2034 }
2035 
2036 static ushort_t
2037 vd_lbl2cksum(struct dk_label *label)
2038 {
2039 	int	count;
2040 	ushort_t sum, *sp;
2041 
2042 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2043 	sp = (ushort_t *)label;
2044 	sum = 0;
2045 	while (count--) {
2046 		sum ^= *sp++;
2047 	}
2048 
2049 	return (sum);
2050 }
2051 
2052 /*
2053  * Handle ioctls to a disk slice.
2054  *
2055  * Return Values
2056  *	0	- Indicates that there are no errors in disk operations
2057  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
2058  *	EINVAL	- Not enough room to copy the EFI label
2059  *
2060  */
2061 static int
2062 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2063 {
2064 	dk_efi_t *dk_ioc;
2065 	int rval;
2066 
2067 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2068 
2069 	if (cmd == DKIOCFLUSHWRITECACHE) {
2070 		if (vd->file) {
2071 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2072 		} else {
2073 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
2074 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
2075 			    kcred, &rval));
2076 		}
2077 	}
2078 
2079 	switch (vd->vdisk_label) {
2080 
2081 	/* ioctls for a single slice disk with a VTOC label */
2082 	case VD_DISK_LABEL_VTOC:
2083 
2084 		switch (cmd) {
2085 		case DKIOCGGEOM:
2086 			ASSERT(ioctl_arg != NULL);
2087 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
2088 			return (0);
2089 		case DKIOCGVTOC:
2090 			ASSERT(ioctl_arg != NULL);
2091 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
2092 			return (0);
2093 		default:
2094 			return (ENOTSUP);
2095 		}
2096 
2097 	/* ioctls for a single slice disk with an EFI label */
2098 	case VD_DISK_LABEL_EFI:
2099 
2100 		switch (cmd) {
2101 		case DKIOCGETEFI:
2102 			ASSERT(ioctl_arg != NULL);
2103 			dk_ioc = (dk_efi_t *)ioctl_arg;
2104 
2105 			/*
2106 			 * For a single slice disk with an EFI label, we define
2107 			 * a fake EFI label with the GPT at LBA 1 and one GPE
2108 			 * at LBA 2. So we return the GPT or the GPE depending
2109 			 * on which LBA is requested.
2110 			 */
2111 			if (dk_ioc->dki_lba == 1) {
2112 
2113 				/* return the EFI GPT */
2114 				if (dk_ioc->dki_length < sizeof (efi_gpt_t))
2115 					return (EINVAL);
2116 
2117 				bcopy(&vd->efi_gpt, dk_ioc->dki_data,
2118 				    sizeof (efi_gpt_t));
2119 
2120 				/* also return the GPE if possible */
2121 				if (dk_ioc->dki_length >= sizeof (efi_gpt_t) +
2122 				    sizeof (efi_gpe_t)) {
2123 					bcopy(&vd->efi_gpe, dk_ioc->dki_data +
2124 					    1, sizeof (efi_gpe_t));
2125 				}
2126 
2127 			} else if (dk_ioc->dki_lba == 2) {
2128 
2129 				/* return the EFI GPE */
2130 				if (dk_ioc->dki_length < sizeof (efi_gpe_t))
2131 					return (EINVAL);
2132 
2133 				bcopy(&vd->efi_gpe, dk_ioc->dki_data,
2134 				    sizeof (efi_gpe_t));
2135 
2136 			} else {
2137 				return (EINVAL);
2138 			}
2139 
2140 			return (0);
2141 		default:
2142 			return (ENOTSUP);
2143 		}
2144 
2145 	default:
2146 		/* Unknown disk label type */
2147 		return (ENOTSUP);
2148 	}
2149 }
2150 
2151 static int
2152 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
2153 {
2154 	vd_efi_dev_t edev;
2155 	int status;
2156 
2157 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2158 
2159 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
2160 
2161 	return (status);
2162 }
2163 
2164 static void
2165 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
2166 {
2167 	vd_efi_dev_t edev;
2168 
2169 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2170 
2171 	vd_efi_free(&edev, gpt, gpe);
2172 }
2173 
2174 static int
2175 vd_file_validate_efi(vd_t *vd)
2176 {
2177 	efi_gpt_t *gpt;
2178 	efi_gpe_t *gpe;
2179 	int i, nparts, status;
2180 	struct uuid efi_reserved = EFI_RESERVED;
2181 
2182 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
2183 		return (status);
2184 
2185 	bzero(&vd->vtoc, sizeof (struct vtoc));
2186 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
2187 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2188 
2189 	vd->efi_reserved = -1;
2190 
2191 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
2192 
2193 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
2194 
2195 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
2196 		    gpe[i].efi_gpe_EndingLBA == 0) {
2197 			continue;
2198 		}
2199 
2200 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
2201 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
2202 		    gpe[i].efi_gpe_StartingLBA + 1;
2203 
2204 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
2205 		    sizeof (struct uuid)) == 0)
2206 			vd->efi_reserved = i;
2207 
2208 	}
2209 
2210 	ASSERT(vd->vdisk_size != 0);
2211 	vd->slices[VD_EFI_WD_SLICE].start = 0;
2212 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
2213 
2214 	vds_efi_free(vd, gpt, gpe);
2215 
2216 	return (status);
2217 }
2218 
2219 /*
2220  * Function:
2221  *	vd_file_validate_geometry
2222  *
2223  * Description:
2224  *	Read the label and validate the geometry of a disk image. The driver
2225  *	label, vtoc and geometry information are updated according to the
2226  *	label read from the disk image.
2227  *
2228  *	If no valid label is found, the label is set to unknown and the
2229  *	function returns EINVAL, but a default vtoc and geometry are provided
2230  *	to the driver. If an EFI label is found, ENOTSUP is returned.
2231  *
2232  * Parameters:
2233  *	vd	- disk on which the operation is performed.
2234  *
2235  * Return Code:
2236  *	0	- success.
2237  *	EIO	- error reading the label from the disk image.
2238  *	EINVAL	- unknown disk label.
2239  *	ENOTSUP	- geometry not applicable (EFI label).
2240  */
2241 static int
2242 vd_file_validate_geometry(vd_t *vd)
2243 {
2244 	struct dk_label label;
2245 	struct dk_geom *geom = &vd->dk_geom;
2246 	struct vtoc *vtoc = &vd->vtoc;
2247 	int i;
2248 	int status = 0;
2249 
2250 	ASSERT(vd->file);
2251 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2252 
2253 	if (VD_FILE_LABEL_READ(vd, &label) < 0)
2254 		return (EIO);
2255 
2256 	if (label.dkl_magic != DKL_MAGIC ||
2257 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
2258 	    (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) ||
2259 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
2260 
2261 		if (vd_file_validate_efi(vd) == 0) {
2262 			vd->vdisk_label = VD_DISK_LABEL_EFI;
2263 			return (ENOTSUP);
2264 		}
2265 
2266 		vd->vdisk_label = VD_DISK_LABEL_UNK;
2267 		vd_file_build_default_label(vd, &label);
2268 		status = EINVAL;
2269 	} else {
2270 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
2271 	}
2272 
2273 	/* Update the driver geometry */
2274 	bzero(geom, sizeof (struct dk_geom));
2275 
2276 	geom->dkg_ncyl = label.dkl_ncyl;
2277 	geom->dkg_acyl = label.dkl_acyl;
2278 	geom->dkg_nhead = label.dkl_nhead;
2279 	geom->dkg_nsect = label.dkl_nsect;
2280 	geom->dkg_intrlv = label.dkl_intrlv;
2281 	geom->dkg_apc = label.dkl_apc;
2282 	geom->dkg_rpm = label.dkl_rpm;
2283 	geom->dkg_pcyl = label.dkl_pcyl;
2284 	geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
2285 	geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
2286 
2287 	/* Update the driver vtoc */
2288 	bzero(vtoc, sizeof (struct vtoc));
2289 
2290 	vtoc->v_sanity = label.dkl_vtoc.v_sanity;
2291 	vtoc->v_version = label.dkl_vtoc.v_version;
2292 	vtoc->v_sectorsz = DEV_BSIZE;
2293 	vtoc->v_nparts = label.dkl_vtoc.v_nparts;
2294 
2295 	for (i = 0; i < vtoc->v_nparts; i++) {
2296 		vtoc->v_part[i].p_tag =
2297 		    label.dkl_vtoc.v_part[i].p_tag;
2298 		vtoc->v_part[i].p_flag =
2299 		    label.dkl_vtoc.v_part[i].p_flag;
2300 		vtoc->v_part[i].p_start =
2301 		    label.dkl_map[i].dkl_cylno *
2302 		    (label.dkl_nhead * label.dkl_nsect);
2303 		vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
2304 		vtoc->timestamp[i] =
2305 		    label.dkl_vtoc.v_timestamp[i];
2306 	}
2307 	/*
2308 	 * The bootinfo array can not be copied with bcopy() because
2309 	 * elements are of type long in vtoc (so 64-bit) and of type
2310 	 * int in dk_vtoc (so 32-bit).
2311 	 */
2312 	vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
2313 	vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
2314 	vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
2315 	bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
2316 	    LEN_DKL_ASCII);
2317 	bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
2318 	    LEN_DKL_VVOL);
2319 
2320 	/* Update logical partitions */
2321 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2322 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
2323 		for (i = 0; i < vtoc->v_nparts; i++) {
2324 			vd->slices[i].start = vtoc->v_part[i].p_start;
2325 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
2326 		}
2327 	}
2328 
2329 	return (status);
2330 }
2331 
2332 /*
2333  * Handle ioctls to a disk image (file-based).
2334  *
2335  * Return Values
2336  *	0	- Indicates that there are no errors
2337  *	!= 0	- Disk operation returned an error
2338  */
2339 static int
2340 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2341 {
2342 	struct dk_label label;
2343 	struct dk_geom *geom;
2344 	struct vtoc *vtoc;
2345 	dk_efi_t *efi;
2346 	int i, rc;
2347 
2348 	ASSERT(vd->file);
2349 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2350 
2351 	switch (cmd) {
2352 
2353 	case DKIOCGGEOM:
2354 		ASSERT(ioctl_arg != NULL);
2355 		geom = (struct dk_geom *)ioctl_arg;
2356 
2357 		rc = vd_file_validate_geometry(vd);
2358 		if (rc != 0 && rc != EINVAL)
2359 			return (rc);
2360 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
2361 		return (0);
2362 
2363 	case DKIOCGVTOC:
2364 		ASSERT(ioctl_arg != NULL);
2365 		vtoc = (struct vtoc *)ioctl_arg;
2366 
2367 		rc = vd_file_validate_geometry(vd);
2368 		if (rc != 0 && rc != EINVAL)
2369 			return (rc);
2370 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
2371 		return (0);
2372 
2373 	case DKIOCSGEOM:
2374 		ASSERT(ioctl_arg != NULL);
2375 		geom = (struct dk_geom *)ioctl_arg;
2376 
2377 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
2378 			return (EINVAL);
2379 
2380 		/*
2381 		 * The current device geometry is not updated, just the driver
2382 		 * "notion" of it. The device geometry will be effectively
2383 		 * updated when a label is written to the device during a next
2384 		 * DKIOCSVTOC.
2385 		 */
2386 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
2387 		return (0);
2388 
2389 	case DKIOCSVTOC:
2390 		ASSERT(ioctl_arg != NULL);
2391 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
2392 		    vd->dk_geom.dkg_nsect != 0);
2393 		vtoc = (struct vtoc *)ioctl_arg;
2394 
2395 		if (vtoc->v_sanity != VTOC_SANE ||
2396 		    vtoc->v_sectorsz != DEV_BSIZE ||
2397 		    vtoc->v_nparts != V_NUMPAR)
2398 			return (EINVAL);
2399 
2400 		bzero(&label, sizeof (label));
2401 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
2402 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
2403 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
2404 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
2405 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
2406 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
2407 		label.dkl_apc = vd->dk_geom.dkg_apc;
2408 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
2409 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
2410 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
2411 
2412 		label.dkl_vtoc.v_nparts = V_NUMPAR;
2413 		label.dkl_vtoc.v_sanity = VTOC_SANE;
2414 		label.dkl_vtoc.v_version = vtoc->v_version;
2415 		for (i = 0; i < V_NUMPAR; i++) {
2416 			label.dkl_vtoc.v_timestamp[i] =
2417 			    vtoc->timestamp[i];
2418 			label.dkl_vtoc.v_part[i].p_tag =
2419 			    vtoc->v_part[i].p_tag;
2420 			label.dkl_vtoc.v_part[i].p_flag =
2421 			    vtoc->v_part[i].p_flag;
2422 			label.dkl_map[i].dkl_cylno =
2423 			    vtoc->v_part[i].p_start /
2424 			    (label.dkl_nhead * label.dkl_nsect);
2425 			label.dkl_map[i].dkl_nblk =
2426 			    vtoc->v_part[i].p_size;
2427 		}
2428 		/*
2429 		 * The bootinfo array can not be copied with bcopy() because
2430 		 * elements are of type long in vtoc (so 64-bit) and of type
2431 		 * int in dk_vtoc (so 32-bit).
2432 		 */
2433 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2434 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2435 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2436 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
2437 		    LEN_DKL_ASCII);
2438 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
2439 		    LEN_DKL_VVOL);
2440 
2441 		/* re-compute checksum */
2442 		label.dkl_magic = DKL_MAGIC;
2443 		label.dkl_cksum = vd_lbl2cksum(&label);
2444 
2445 		/* write label to the disk image */
2446 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
2447 			return (rc);
2448 
2449 		break;
2450 
2451 	case DKIOCFLUSHWRITECACHE:
2452 		return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2453 
2454 	case DKIOCGETEFI:
2455 		ASSERT(ioctl_arg != NULL);
2456 		efi = (dk_efi_t *)ioctl_arg;
2457 
2458 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
2459 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
2460 			return (EIO);
2461 
2462 		return (0);
2463 
2464 	case DKIOCSETEFI:
2465 		ASSERT(ioctl_arg != NULL);
2466 		efi = (dk_efi_t *)ioctl_arg;
2467 
2468 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
2469 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
2470 			return (EIO);
2471 
2472 		break;
2473 
2474 
2475 	default:
2476 		return (ENOTSUP);
2477 	}
2478 
2479 	ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI);
2480 
2481 	/* label has changed, revalidate the geometry */
2482 	(void) vd_file_validate_geometry(vd);
2483 
2484 	/*
2485 	 * The disk geometry may have changed, so we need to write
2486 	 * the devid (if there is one) so that it is stored at the
2487 	 * right location.
2488 	 */
2489 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
2490 		PR0("Fail to write devid");
2491 	}
2492 
2493 	return (0);
2494 }
2495 
2496 static int
2497 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
2498 {
2499 	int rval = 0, status;
2500 
2501 	/*
2502 	 * Call the appropriate function to execute the ioctl depending
2503 	 * on the type of vdisk.
2504 	 */
2505 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
2506 
2507 		/* slice, file or volume exported as a single slice disk */
2508 		status = vd_do_slice_ioctl(vd, cmd, arg);
2509 
2510 	} else if (vd->file) {
2511 
2512 		/* file or volume exported as a full disk */
2513 		status = vd_do_file_ioctl(vd, cmd, arg);
2514 
2515 	} else {
2516 
2517 		/* disk device exported as a full disk */
2518 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
2519 		    vd->open_flags | FKIOCTL, kcred, &rval);
2520 	}
2521 
2522 #ifdef DEBUG
2523 	if (rval != 0) {
2524 		PR0("ioctl %x set rval = %d, which is not being returned"
2525 		    " to caller", cmd, rval);
2526 	}
2527 #endif /* DEBUG */
2528 
2529 	return (status);
2530 }
2531 
2532 /*
2533  * Description:
2534  *	This is the function that processes the ioctl requests (farming it
2535  *	out to functions that handle slices, files or whole disks)
2536  *
2537  * Return Values
2538  *     0		- ioctl operation completed successfully
2539  *     != 0		- The LDC error value encountered
2540  *			  (propagated back up the call stack as a task error)
2541  *
2542  * Side Effect
2543  *     sets request->status to the return value of the ioctl function.
2544  */
2545 static int
2546 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
2547 {
2548 	int	status = 0;
2549 	size_t	nbytes = request->nbytes;	/* modifiable copy */
2550 
2551 
2552 	ASSERT(request->slice < vd->nslices);
2553 	PR0("Performing %s", ioctl->operation_name);
2554 
2555 	/* Get data from client and convert, if necessary */
2556 	if (ioctl->copyin != NULL)  {
2557 		ASSERT(nbytes != 0 && buf != NULL);
2558 		PR1("Getting \"arg\" data from client");
2559 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2560 		    request->cookie, request->ncookies,
2561 		    LDC_COPY_IN)) != 0) {
2562 			PR0("ldc_mem_copy() returned errno %d "
2563 			    "copying from client", status);
2564 			return (status);
2565 		}
2566 
2567 		/* Convert client's data, if necessary */
2568 		if (ioctl->copyin == VD_IDENTITY_IN) {
2569 			/* use client buffer */
2570 			ioctl->arg = buf;
2571 		} else {
2572 			/* convert client vdisk operation data to ioctl data */
2573 			status = (ioctl->copyin)(buf, nbytes,
2574 			    (void *)ioctl->arg);
2575 			if (status != 0) {
2576 				request->status = status;
2577 				return (0);
2578 			}
2579 		}
2580 	}
2581 
2582 	if (ioctl->operation == VD_OP_SCSICMD) {
2583 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
2584 
2585 		/* check write permission */
2586 		if (!(vd->open_flags & FWRITE) &&
2587 		    !(uscsi->uscsi_flags & USCSI_READ)) {
2588 			PR0("uscsi fails because backend is opened read-only");
2589 			request->status = EROFS;
2590 			return (0);
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Send the ioctl to the disk backend.
2596 	 */
2597 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
2598 
2599 	if (request->status != 0) {
2600 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
2601 		if (ioctl->operation == VD_OP_SCSICMD &&
2602 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
2603 			/*
2604 			 * USCSICMD has reported an error and the uscsi_status
2605 			 * field is not zero. This means that the SCSI command
2606 			 * has completed but it has an error. So we should
2607 			 * mark the VD operation has succesfully completed
2608 			 * and clients can check the SCSI status field for
2609 			 * SCSI errors.
2610 			 */
2611 			request->status = 0;
2612 		else
2613 			return (0);
2614 	}
2615 
2616 	/* Convert data and send to client, if necessary */
2617 	if (ioctl->copyout != NULL)  {
2618 		ASSERT(nbytes != 0 && buf != NULL);
2619 		PR1("Sending \"arg\" data to client");
2620 
2621 		/* Convert ioctl data to vdisk operation data, if necessary */
2622 		if (ioctl->copyout != VD_IDENTITY_OUT)
2623 			(ioctl->copyout)((void *)ioctl->arg, buf);
2624 
2625 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2626 		    request->cookie, request->ncookies,
2627 		    LDC_COPY_OUT)) != 0) {
2628 			PR0("ldc_mem_copy() returned errno %d "
2629 			    "copying to client", status);
2630 			return (status);
2631 		}
2632 	}
2633 
2634 	return (status);
2635 }
2636 
2637 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
2638 
2639 /*
2640  * Description:
2641  *	This generic function is called by the task queue to complete
2642  *	the processing of the tasks. The specific completion function
2643  *	is passed in as a field in the task pointer.
2644  *
2645  * Parameters:
2646  *	arg 	- opaque pointer to structure containing task to be completed
2647  *
2648  * Return Values
2649  *	None
2650  */
2651 static void
2652 vd_complete(void *arg)
2653 {
2654 	vd_task_t	*task = (vd_task_t *)arg;
2655 
2656 	ASSERT(task != NULL);
2657 	ASSERT(task->status == EINPROGRESS);
2658 	ASSERT(task->completef != NULL);
2659 
2660 	task->status = task->completef(task);
2661 	if (task->status)
2662 		PR0("%s: Error %d completing task", __func__, task->status);
2663 
2664 	/* Now notify the vDisk client */
2665 	vd_complete_notify(task);
2666 }
2667 
2668 static int
2669 vd_ioctl(vd_task_t *task)
2670 {
2671 	int			i, status;
2672 	void			*buf = NULL;
2673 	struct dk_geom		dk_geom = {0};
2674 	struct vtoc		vtoc = {0};
2675 	struct dk_efi		dk_efi = {0};
2676 	struct uscsi_cmd	uscsi = {0};
2677 	vd_t			*vd		= task->vd;
2678 	vd_dring_payload_t	*request	= task->request;
2679 	vd_ioctl_t		ioctl[] = {
2680 		/* Command (no-copy) operations */
2681 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
2682 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
2683 		    NULL, NULL, NULL, B_TRUE},
2684 
2685 		/* "Get" (copy-out) operations */
2686 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
2687 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
2688 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
2689 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
2690 		    RNDSIZE(vd_geom_t),
2691 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
2692 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
2693 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
2694 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
2695 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
2696 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
2697 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
2698 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
2699 
2700 		/* "Set" (copy-in) operations */
2701 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
2702 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
2703 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
2704 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
2705 		    RNDSIZE(vd_geom_t),
2706 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
2707 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
2708 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
2709 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
2710 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
2711 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
2712 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
2713 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
2714 
2715 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
2716 		    USCSICMD, STRINGIZE(USCSICMD),
2717 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
2718 	};
2719 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
2720 
2721 
2722 	ASSERT(vd != NULL);
2723 	ASSERT(request != NULL);
2724 	ASSERT(request->slice < vd->nslices);
2725 
2726 	/*
2727 	 * Determine ioctl corresponding to caller's "operation" and
2728 	 * validate caller's "nbytes"
2729 	 */
2730 	for (i = 0; i < nioctls; i++) {
2731 		if (request->operation == ioctl[i].operation) {
2732 			/* LDC memory operations require 8-byte multiples */
2733 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
2734 
2735 			if (request->operation == VD_OP_GET_EFI ||
2736 			    request->operation == VD_OP_SET_EFI ||
2737 			    request->operation == VD_OP_SCSICMD) {
2738 				if (request->nbytes >= ioctl[i].nbytes)
2739 					break;
2740 				PR0("%s:  Expected at least nbytes = %lu, "
2741 				    "got %lu", ioctl[i].operation_name,
2742 				    ioctl[i].nbytes, request->nbytes);
2743 				return (EINVAL);
2744 			}
2745 
2746 			if (request->nbytes != ioctl[i].nbytes) {
2747 				PR0("%s:  Expected nbytes = %lu, got %lu",
2748 				    ioctl[i].operation_name, ioctl[i].nbytes,
2749 				    request->nbytes);
2750 				return (EINVAL);
2751 			}
2752 
2753 			break;
2754 		}
2755 	}
2756 	ASSERT(i < nioctls);	/* because "operation" already validated */
2757 
2758 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
2759 		PR0("%s fails because backend is opened read-only",
2760 		    ioctl[i].operation_name);
2761 		request->status = EROFS;
2762 		return (0);
2763 	}
2764 
2765 	if (request->nbytes)
2766 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
2767 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
2768 	if (request->nbytes)
2769 		kmem_free(buf, request->nbytes);
2770 
2771 	return (status);
2772 }
2773 
2774 static int
2775 vd_get_devid(vd_task_t *task)
2776 {
2777 	vd_t *vd = task->vd;
2778 	vd_dring_payload_t *request = task->request;
2779 	vd_devid_t *vd_devid;
2780 	impl_devid_t *devid;
2781 	int status, bufid_len, devid_len, len, sz;
2782 	int bufbytes;
2783 
2784 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
2785 
2786 	if (vd->file) {
2787 		if (vd->file_devid == NULL) {
2788 			PR2("No Device ID");
2789 			request->status = ENOENT;
2790 			return (0);
2791 		} else {
2792 			sz = ddi_devid_sizeof(vd->file_devid);
2793 			devid = kmem_alloc(sz, KM_SLEEP);
2794 			bcopy(vd->file_devid, devid, sz);
2795 		}
2796 	} else {
2797 		if (ddi_lyr_get_devid(vd->dev[request->slice],
2798 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
2799 			PR2("No Device ID");
2800 			request->status = ENOENT;
2801 			return (0);
2802 		}
2803 	}
2804 
2805 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
2806 	devid_len = DEVID_GETLEN(devid);
2807 
2808 	/*
2809 	 * Save the buffer size here for use in deallocation.
2810 	 * The actual number of bytes copied is returned in
2811 	 * the 'nbytes' field of the request structure.
2812 	 */
2813 	bufbytes = request->nbytes;
2814 
2815 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
2816 	vd_devid->length = devid_len;
2817 	vd_devid->type = DEVID_GETTYPE(devid);
2818 
2819 	len = (devid_len > bufid_len)? bufid_len : devid_len;
2820 
2821 	bcopy(devid->did_id, vd_devid->id, len);
2822 
2823 	request->status = 0;
2824 
2825 	/* LDC memory operations require 8-byte multiples */
2826 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
2827 
2828 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
2829 	    &request->nbytes, request->cookie, request->ncookies,
2830 	    LDC_COPY_OUT)) != 0) {
2831 		PR0("ldc_mem_copy() returned errno %d copying to client",
2832 		    status);
2833 	}
2834 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
2835 
2836 	kmem_free(vd_devid, bufbytes);
2837 	ddi_devid_free((ddi_devid_t)devid);
2838 
2839 	return (status);
2840 }
2841 
2842 static int
2843 vd_scsi_reset(vd_t *vd)
2844 {
2845 	int rval, status;
2846 	struct uscsi_cmd uscsi = { 0 };
2847 
2848 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
2849 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
2850 
2851 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
2852 	    (vd->open_flags | FKIOCTL), kcred, &rval);
2853 
2854 	return (status);
2855 }
2856 
2857 static int
2858 vd_reset(vd_task_t *task)
2859 {
2860 	vd_t *vd = task->vd;
2861 	vd_dring_payload_t *request = task->request;
2862 
2863 	ASSERT(request->operation == VD_OP_RESET);
2864 	ASSERT(vd->scsi);
2865 
2866 	PR0("Performing VD_OP_RESET");
2867 
2868 	if (request->nbytes != 0) {
2869 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
2870 		    request->nbytes);
2871 		return (EINVAL);
2872 	}
2873 
2874 	request->status = vd_scsi_reset(vd);
2875 
2876 	return (0);
2877 }
2878 
2879 static int
2880 vd_get_capacity(vd_task_t *task)
2881 {
2882 	int rv;
2883 	size_t nbytes;
2884 	vd_t *vd = task->vd;
2885 	vd_dring_payload_t *request = task->request;
2886 	vd_capacity_t vd_cap = { 0 };
2887 
2888 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
2889 	ASSERT(vd->scsi);
2890 
2891 	PR0("Performing VD_OP_GET_CAPACITY");
2892 
2893 	nbytes = request->nbytes;
2894 
2895 	if (nbytes != RNDSIZE(vd_capacity_t)) {
2896 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
2897 		    RNDSIZE(vd_capacity_t), nbytes);
2898 		return (EINVAL);
2899 	}
2900 
2901 	if (vd->vdisk_size == VD_SIZE_UNKNOWN) {
2902 		if (vd_setup_mediainfo(vd) != 0)
2903 			ASSERT(vd->vdisk_size == VD_SIZE_UNKNOWN);
2904 	}
2905 
2906 	ASSERT(vd->vdisk_size != 0);
2907 
2908 	request->status = 0;
2909 
2910 	vd_cap.vdisk_block_size = vd->vdisk_block_size;
2911 	vd_cap.vdisk_size = vd->vdisk_size;
2912 
2913 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
2914 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
2915 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
2916 		return (rv);
2917 	}
2918 
2919 	return (0);
2920 }
2921 
2922 static int
2923 vd_get_access(vd_task_t *task)
2924 {
2925 	uint64_t access;
2926 	int rv, rval = 0;
2927 	size_t nbytes;
2928 	vd_t *vd = task->vd;
2929 	vd_dring_payload_t *request = task->request;
2930 
2931 	ASSERT(request->operation == VD_OP_GET_ACCESS);
2932 	ASSERT(vd->scsi);
2933 
2934 	PR0("Performing VD_OP_GET_ACCESS");
2935 
2936 	nbytes = request->nbytes;
2937 
2938 	if (nbytes != sizeof (uint64_t)) {
2939 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
2940 		    sizeof (uint64_t), nbytes);
2941 		return (EINVAL);
2942 	}
2943 
2944 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
2945 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
2946 
2947 	if (request->status != 0)
2948 		return (0);
2949 
2950 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
2951 
2952 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
2953 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
2954 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
2955 		return (rv);
2956 	}
2957 
2958 	return (0);
2959 }
2960 
2961 static int
2962 vd_set_access(vd_task_t *task)
2963 {
2964 	uint64_t flags;
2965 	int rv, rval;
2966 	size_t nbytes;
2967 	vd_t *vd = task->vd;
2968 	vd_dring_payload_t *request = task->request;
2969 
2970 	ASSERT(request->operation == VD_OP_SET_ACCESS);
2971 	ASSERT(vd->scsi);
2972 
2973 	nbytes = request->nbytes;
2974 
2975 	if (nbytes != sizeof (uint64_t)) {
2976 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
2977 		    sizeof (uint64_t), nbytes);
2978 		return (EINVAL);
2979 	}
2980 
2981 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
2982 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
2983 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
2984 		return (rv);
2985 	}
2986 
2987 	if (flags == VD_ACCESS_SET_CLEAR) {
2988 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
2989 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2990 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
2991 		    &rval);
2992 		if (request->status == 0)
2993 			vd->ownership = B_FALSE;
2994 		return (0);
2995 	}
2996 
2997 	/*
2998 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
2999 	 * when the EXCLUSIVE flag is set.
3000 	 */
3001 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3002 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3003 		request->status = EINVAL;
3004 		return (0);
3005 	}
3006 
3007 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3008 
3009 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3010 		/*
3011 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3012 		 * acquire exclusive access rights, preserve them and we
3013 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3014 		 */
3015 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3016 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3017 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3018 		break;
3019 
3020 	case VD_ACCESS_SET_PRESERVE:
3021 		/*
3022 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3023 		 * access rights and preserve them, but not preempt any other
3024 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3025 		 * "preserve" feature but we can not called it directly
3026 		 * because it uses preemption. So before that, we use the
3027 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3028 		 * without preempting anyone.
3029 		 */
3030 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3031 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3032 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3033 		    &rval);
3034 		if (request->status != 0)
3035 			break;
3036 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3037 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3038 		break;
3039 
3040 	case VD_ACCESS_SET_PREEMPT:
3041 		/*
3042 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3043 		 * access rights and we can use preemption. So we try to do
3044 		 * a SCSI reservation, if it fails we reset the disk to clear
3045 		 * any reservation and we try to reserve again.
3046 		 */
3047 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3048 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3049 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3050 		    &rval);
3051 		if (request->status == 0)
3052 			break;
3053 
3054 		/* reset the disk */
3055 		(void) vd_scsi_reset(vd);
3056 
3057 		/* try again even if the reset has failed */
3058 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3059 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3060 		    &rval);
3061 		break;
3062 
3063 	case 0:
3064 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
3065 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
3066 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3067 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3068 		    &rval);
3069 		break;
3070 	}
3071 
3072 	if (request->status == 0)
3073 		vd->ownership = B_TRUE;
3074 	else
3075 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
3076 
3077 	return (0);
3078 }
3079 
3080 static void
3081 vd_reset_access(vd_t *vd)
3082 {
3083 	int status, rval;
3084 
3085 	if (vd->file || !vd->ownership)
3086 		return;
3087 
3088 	PR0("Releasing disk ownership");
3089 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3090 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3091 
3092 	/*
3093 	 * An EACCES failure means that there is a reservation conflict,
3094 	 * so we are not the owner of the disk anymore.
3095 	 */
3096 	if (status == 0 || status == EACCES) {
3097 		vd->ownership = B_FALSE;
3098 		return;
3099 	}
3100 
3101 	PR0("Fail to release ownership, error %d", status);
3102 
3103 	/*
3104 	 * We have failed to release the ownership, try to reset the disk
3105 	 * to release reservations.
3106 	 */
3107 	PR0("Resetting disk");
3108 	status = vd_scsi_reset(vd);
3109 
3110 	if (status != 0)
3111 		PR0("Fail to reset disk, error %d", status);
3112 
3113 	/* whatever the result of the reset is, we try the release again */
3114 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3115 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3116 
3117 	if (status == 0 || status == EACCES) {
3118 		vd->ownership = B_FALSE;
3119 		return;
3120 	}
3121 
3122 	PR0("Fail to release ownership, error %d", status);
3123 
3124 	/*
3125 	 * At this point we have done our best to try to reset the
3126 	 * access rights to the disk and we don't know if we still
3127 	 * own a reservation and if any mechanism to preserve the
3128 	 * ownership is still in place. The ultimate solution would
3129 	 * be to reset the system but this is usually not what we
3130 	 * want to happen.
3131 	 */
3132 
3133 	if (vd_reset_access_failure == A_REBOOT) {
3134 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
3135 		    ", rebooting the system", vd->device_path);
3136 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
3137 	} else if (vd_reset_access_failure == A_DUMP) {
3138 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3139 	}
3140 
3141 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3142 }
3143 
3144 /*
3145  * Define the supported operations once the functions for performing them have
3146  * been defined
3147  */
3148 static const vds_operation_t	vds_operation[] = {
3149 #define	X(_s)	#_s, _s
3150 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
3151 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
3152 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
3153 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
3154 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
3155 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
3156 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
3157 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
3158 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
3159 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
3160 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
3161 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
3162 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
3163 	{X(VD_OP_RESET),	vd_reset,	NULL},
3164 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
3165 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
3166 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
3167 #undef	X
3168 };
3169 
3170 static const size_t	vds_noperations =
3171 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
3172 
3173 /*
3174  * Process a task specifying a client I/O request
3175  *
3176  * Parameters:
3177  *	task 		- structure containing the request sent from client
3178  *
3179  * Return Value
3180  *	0	- success
3181  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
3182  *	EINVAL	- Invalid disk slice
3183  *	!= 0	- some other non-zero return value from start function
3184  */
3185 static int
3186 vd_do_process_task(vd_task_t *task)
3187 {
3188 	int			i;
3189 	vd_t			*vd		= task->vd;
3190 	vd_dring_payload_t	*request	= task->request;
3191 
3192 	ASSERT(vd != NULL);
3193 	ASSERT(request != NULL);
3194 
3195 	/* Find the requested operation */
3196 	for (i = 0; i < vds_noperations; i++) {
3197 		if (request->operation == vds_operation[i].operation) {
3198 			/* all operations should have a start func */
3199 			ASSERT(vds_operation[i].start != NULL);
3200 
3201 			task->completef = vds_operation[i].complete;
3202 			break;
3203 		}
3204 	}
3205 
3206 	/*
3207 	 * We need to check that the requested operation is permitted
3208 	 * for the particular client that sent it or that the loop above
3209 	 * did not complete without finding the operation type (indicating
3210 	 * that the requested operation is unknown/unimplemented)
3211 	 */
3212 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
3213 	    (i == vds_noperations)) {
3214 		PR0("Unsupported operation %u", request->operation);
3215 		request->status = ENOTSUP;
3216 		return (0);
3217 	}
3218 
3219 	/* Range-check slice */
3220 	if (request->slice >= vd->nslices &&
3221 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
3222 	    request->slice != VD_SLICE_NONE)) {
3223 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
3224 		    request->slice, (vd->nslices - 1));
3225 		return (EINVAL);
3226 	}
3227 
3228 	/*
3229 	 * Call the function pointer that starts the operation.
3230 	 */
3231 	return (vds_operation[i].start(task));
3232 }
3233 
3234 /*
3235  * Description:
3236  *	This function is called by both the in-band and descriptor ring
3237  *	message processing functions paths to actually execute the task
3238  *	requested by the vDisk client. It in turn calls its worker
3239  *	function, vd_do_process_task(), to carry our the request.
3240  *
3241  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
3242  *	saved in the 'status' field of the task and are propagated back
3243  *	up the call stack to trigger a NACK
3244  *
3245  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
3246  *	the 'status' field of the request and result in an ACK being sent
3247  *	by the completion handler.
3248  *
3249  * Parameters:
3250  *	task 		- structure containing the request sent from client
3251  *
3252  * Return Value
3253  *	0		- successful synchronous request.
3254  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
3255  *	EINPROGRESS	- task will be finished in a completion handler
3256  */
3257 static int
3258 vd_process_task(vd_task_t *task)
3259 {
3260 	vd_t	*vd = task->vd;
3261 	int	status;
3262 
3263 	DTRACE_PROBE1(task__start, vd_task_t *, task);
3264 
3265 	task->status =  vd_do_process_task(task);
3266 
3267 	/*
3268 	 * If the task processing function returned EINPROGRESS indicating
3269 	 * that the task needs completing then schedule a taskq entry to
3270 	 * finish it now.
3271 	 *
3272 	 * Otherwise the task processing function returned either zero
3273 	 * indicating that the task was finished in the start function (and we
3274 	 * don't need to wait in a completion function) or the start function
3275 	 * returned an error - in both cases all that needs to happen is the
3276 	 * notification to the vDisk client higher up the call stack.
3277 	 * If the task was using a Descriptor Ring, we need to mark it as done
3278 	 * at this stage.
3279 	 */
3280 	if (task->status == EINPROGRESS) {
3281 		/* Queue a task to complete the operation */
3282 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
3283 		    task, DDI_SLEEP);
3284 
3285 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
3286 		/* Update the dring element if it's a dring client */
3287 		status = vd_mark_elem_done(vd, task->index,
3288 		    task->request->status, task->request->nbytes);
3289 		if (status == ECONNRESET)
3290 			vd_mark_in_reset(vd);
3291 	}
3292 
3293 	return (task->status);
3294 }
3295 
3296 /*
3297  * Return true if the "type", "subtype", and "env" fields of the "tag" first
3298  * argument match the corresponding remaining arguments; otherwise, return false
3299  */
3300 boolean_t
3301 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
3302 {
3303 	return ((tag->vio_msgtype == type) &&
3304 	    (tag->vio_subtype == subtype) &&
3305 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
3306 }
3307 
3308 /*
3309  * Check whether the major/minor version specified in "ver_msg" is supported
3310  * by this server.
3311  */
3312 static boolean_t
3313 vds_supported_version(vio_ver_msg_t *ver_msg)
3314 {
3315 	for (int i = 0; i < vds_num_versions; i++) {
3316 		ASSERT(vds_version[i].major > 0);
3317 		ASSERT((i == 0) ||
3318 		    (vds_version[i].major < vds_version[i-1].major));
3319 
3320 		/*
3321 		 * If the major versions match, adjust the minor version, if
3322 		 * necessary, down to the highest value supported by this
3323 		 * server and return true so this message will get "ack"ed;
3324 		 * the client should also support all minor versions lower
3325 		 * than the value it sent
3326 		 */
3327 		if (ver_msg->ver_major == vds_version[i].major) {
3328 			if (ver_msg->ver_minor > vds_version[i].minor) {
3329 				PR0("Adjusting minor version from %u to %u",
3330 				    ver_msg->ver_minor, vds_version[i].minor);
3331 				ver_msg->ver_minor = vds_version[i].minor;
3332 			}
3333 			return (B_TRUE);
3334 		}
3335 
3336 		/*
3337 		 * If the message contains a higher major version number, set
3338 		 * the message's major/minor versions to the current values
3339 		 * and return false, so this message will get "nack"ed with
3340 		 * these values, and the client will potentially try again
3341 		 * with the same or a lower version
3342 		 */
3343 		if (ver_msg->ver_major > vds_version[i].major) {
3344 			ver_msg->ver_major = vds_version[i].major;
3345 			ver_msg->ver_minor = vds_version[i].minor;
3346 			return (B_FALSE);
3347 		}
3348 
3349 		/*
3350 		 * Otherwise, the message's major version is less than the
3351 		 * current major version, so continue the loop to the next
3352 		 * (lower) supported version
3353 		 */
3354 	}
3355 
3356 	/*
3357 	 * No common version was found; "ground" the version pair in the
3358 	 * message to terminate negotiation
3359 	 */
3360 	ver_msg->ver_major = 0;
3361 	ver_msg->ver_minor = 0;
3362 	return (B_FALSE);
3363 }
3364 
3365 /*
3366  * Process a version message from a client.  vds expects to receive version
3367  * messages from clients seeking service, but never issues version messages
3368  * itself; therefore, vds can ACK or NACK client version messages, but does
3369  * not expect to receive version-message ACKs or NACKs (and will treat such
3370  * messages as invalid).
3371  */
3372 static int
3373 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3374 {
3375 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
3376 
3377 
3378 	ASSERT(msglen >= sizeof (msg->tag));
3379 
3380 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3381 	    VIO_VER_INFO)) {
3382 		return (ENOMSG);	/* not a version message */
3383 	}
3384 
3385 	if (msglen != sizeof (*ver_msg)) {
3386 		PR0("Expected %lu-byte version message; "
3387 		    "received %lu bytes", sizeof (*ver_msg), msglen);
3388 		return (EBADMSG);
3389 	}
3390 
3391 	if (ver_msg->dev_class != VDEV_DISK) {
3392 		PR0("Expected device class %u (disk); received %u",
3393 		    VDEV_DISK, ver_msg->dev_class);
3394 		return (EBADMSG);
3395 	}
3396 
3397 	/*
3398 	 * We're talking to the expected kind of client; set our device class
3399 	 * for "ack/nack" back to the client
3400 	 */
3401 	ver_msg->dev_class = VDEV_DISK_SERVER;
3402 
3403 	/*
3404 	 * Check whether the (valid) version message specifies a version
3405 	 * supported by this server.  If the version is not supported, return
3406 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
3407 	 * will have updated the message with a supported version for the
3408 	 * client to consider
3409 	 */
3410 	if (!vds_supported_version(ver_msg))
3411 		return (EBADMSG);
3412 
3413 
3414 	/*
3415 	 * A version has been agreed upon; use the client's SID for
3416 	 * communication on this channel now
3417 	 */
3418 	ASSERT(!(vd->initialized & VD_SID));
3419 	vd->sid = ver_msg->tag.vio_sid;
3420 	vd->initialized |= VD_SID;
3421 
3422 	/*
3423 	 * Store the negotiated major and minor version values in the "vd" data
3424 	 * structure so that we can check if certain operations are supported
3425 	 * by the client.
3426 	 */
3427 	vd->version.major = ver_msg->ver_major;
3428 	vd->version.minor = ver_msg->ver_minor;
3429 
3430 	PR0("Using major version %u, minor version %u",
3431 	    ver_msg->ver_major, ver_msg->ver_minor);
3432 	return (0);
3433 }
3434 
3435 static void
3436 vd_set_exported_operations(vd_t *vd)
3437 {
3438 	vd->operations = 0;	/* clear field */
3439 
3440 	/*
3441 	 * We need to check from the highest version supported to the
3442 	 * lowest because versions with a higher minor number implicitly
3443 	 * support versions with a lower minor number.
3444 	 */
3445 	if (vio_ver_is_supported(vd->version, 1, 1)) {
3446 		ASSERT(vd->open_flags & FREAD);
3447 		vd->operations |= VD_OP_MASK_READ;
3448 
3449 		if (vd->open_flags & FWRITE)
3450 			vd->operations |= VD_OP_MASK_WRITE;
3451 
3452 		if (vd->scsi)
3453 			vd->operations |= VD_OP_MASK_SCSI;
3454 
3455 		if (vd->file && vd_file_is_iso_image(vd)) {
3456 			/*
3457 			 * can't write to ISO images, make sure that write
3458 			 * support is not set in case administrator did not
3459 			 * use "options=ro" when doing an ldm add-vdsdev
3460 			 */
3461 			vd->operations &= ~VD_OP_MASK_WRITE;
3462 		}
3463 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
3464 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
3465 	}
3466 
3467 	/* we should have already agreed on a version */
3468 	ASSERT(vd->operations != 0);
3469 }
3470 
3471 static int
3472 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3473 {
3474 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
3475 	int		status, retry = 0;
3476 
3477 
3478 	ASSERT(msglen >= sizeof (msg->tag));
3479 
3480 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3481 	    VIO_ATTR_INFO)) {
3482 		PR0("Message is not an attribute message");
3483 		return (ENOMSG);
3484 	}
3485 
3486 	if (msglen != sizeof (*attr_msg)) {
3487 		PR0("Expected %lu-byte attribute message; "
3488 		    "received %lu bytes", sizeof (*attr_msg), msglen);
3489 		return (EBADMSG);
3490 	}
3491 
3492 	if (attr_msg->max_xfer_sz == 0) {
3493 		PR0("Received maximum transfer size of 0 from client");
3494 		return (EBADMSG);
3495 	}
3496 
3497 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
3498 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
3499 		PR0("Client requested unsupported transfer mode");
3500 		return (EBADMSG);
3501 	}
3502 
3503 	/*
3504 	 * check if the underlying disk is ready, if not try accessing
3505 	 * the device again. Open the vdisk device and extract info
3506 	 * about it, as this is needed to respond to the attr info msg
3507 	 */
3508 	if ((vd->initialized & VD_DISK_READY) == 0) {
3509 		PR0("Retry setting up disk (%s)", vd->device_path);
3510 		do {
3511 			status = vd_setup_vd(vd);
3512 			if (status != EAGAIN || ++retry > vds_dev_retries)
3513 				break;
3514 
3515 			/* incremental delay */
3516 			delay(drv_usectohz(vds_dev_delay));
3517 
3518 			/* if vdisk is no longer enabled - return error */
3519 			if (!vd_enabled(vd))
3520 				return (ENXIO);
3521 
3522 		} while (status == EAGAIN);
3523 
3524 		if (status)
3525 			return (ENXIO);
3526 
3527 		vd->initialized |= VD_DISK_READY;
3528 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3529 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
3530 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3531 		    (vd->volume ? "yes" : "no"),
3532 		    (vd->file ? "yes" : "no"),
3533 		    vd->nslices);
3534 	}
3535 
3536 	/* Success:  valid message and transfer mode */
3537 	vd->xfer_mode = attr_msg->xfer_mode;
3538 
3539 	if (vd->xfer_mode == VIO_DESC_MODE) {
3540 
3541 		/*
3542 		 * The vd_dring_inband_msg_t contains one cookie; need room
3543 		 * for up to n-1 more cookies, where "n" is the number of full
3544 		 * pages plus possibly one partial page required to cover
3545 		 * "max_xfer_sz".  Add room for one more cookie if
3546 		 * "max_xfer_sz" isn't an integral multiple of the page size.
3547 		 * Must first get the maximum transfer size in bytes.
3548 		 */
3549 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
3550 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
3551 		    attr_msg->max_xfer_sz;
3552 		size_t	max_inband_msglen =
3553 		    sizeof (vd_dring_inband_msg_t) +
3554 		    ((max_xfer_bytes/PAGESIZE +
3555 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
3556 		    (sizeof (ldc_mem_cookie_t)));
3557 
3558 		/*
3559 		 * Set the maximum expected message length to
3560 		 * accommodate in-band-descriptor messages with all
3561 		 * their cookies
3562 		 */
3563 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
3564 
3565 		/*
3566 		 * Initialize the data structure for processing in-band I/O
3567 		 * request descriptors
3568 		 */
3569 		vd->inband_task.vd	= vd;
3570 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
3571 		vd->inband_task.index	= 0;
3572 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
3573 	}
3574 
3575 	/* Return the device's block size and max transfer size to the client */
3576 	attr_msg->vdisk_block_size	= vd->vdisk_block_size;
3577 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
3578 
3579 	attr_msg->vdisk_size = vd->vdisk_size;
3580 	attr_msg->vdisk_type = vd->vdisk_type;
3581 	attr_msg->vdisk_media = vd->vdisk_media;
3582 
3583 	/* Discover and save the list of supported VD_OP_XXX operations */
3584 	vd_set_exported_operations(vd);
3585 	attr_msg->operations = vd->operations;
3586 
3587 	PR0("%s", VD_CLIENT(vd));
3588 
3589 	ASSERT(vd->dring_task == NULL);
3590 
3591 	return (0);
3592 }
3593 
3594 static int
3595 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3596 {
3597 	int			status;
3598 	size_t			expected;
3599 	ldc_mem_info_t		dring_minfo;
3600 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
3601 
3602 
3603 	ASSERT(msglen >= sizeof (msg->tag));
3604 
3605 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3606 	    VIO_DRING_REG)) {
3607 		PR0("Message is not a register-dring message");
3608 		return (ENOMSG);
3609 	}
3610 
3611 	if (msglen < sizeof (*reg_msg)) {
3612 		PR0("Expected at least %lu-byte register-dring message; "
3613 		    "received %lu bytes", sizeof (*reg_msg), msglen);
3614 		return (EBADMSG);
3615 	}
3616 
3617 	expected = sizeof (*reg_msg) +
3618 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
3619 	if (msglen != expected) {
3620 		PR0("Expected %lu-byte register-dring message; "
3621 		    "received %lu bytes", expected, msglen);
3622 		return (EBADMSG);
3623 	}
3624 
3625 	if (vd->initialized & VD_DRING) {
3626 		PR0("A dring was previously registered; only support one");
3627 		return (EBADMSG);
3628 	}
3629 
3630 	if (reg_msg->num_descriptors > INT32_MAX) {
3631 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
3632 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
3633 		return (EBADMSG);
3634 	}
3635 
3636 	if (reg_msg->ncookies != 1) {
3637 		/*
3638 		 * In addition to fixing the assertion in the success case
3639 		 * below, supporting drings which require more than one
3640 		 * "cookie" requires increasing the value of vd->max_msglen
3641 		 * somewhere in the code path prior to receiving the message
3642 		 * which results in calling this function.  Note that without
3643 		 * making this change, the larger message size required to
3644 		 * accommodate multiple cookies cannot be successfully
3645 		 * received, so this function will not even get called.
3646 		 * Gracefully accommodating more dring cookies might
3647 		 * reasonably demand exchanging an additional attribute or
3648 		 * making a minor protocol adjustment
3649 		 */
3650 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
3651 		return (EBADMSG);
3652 	}
3653 
3654 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
3655 	    reg_msg->ncookies, reg_msg->num_descriptors,
3656 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
3657 	if (status != 0) {
3658 		PR0("ldc_mem_dring_map() returned errno %d", status);
3659 		return (status);
3660 	}
3661 
3662 	/*
3663 	 * To remove the need for this assertion, must call
3664 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
3665 	 * successful call to ldc_mem_dring_map()
3666 	 */
3667 	ASSERT(reg_msg->ncookies == 1);
3668 
3669 	if ((status =
3670 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
3671 		PR0("ldc_mem_dring_info() returned errno %d", status);
3672 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
3673 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
3674 		return (status);
3675 	}
3676 
3677 	if (dring_minfo.vaddr == NULL) {
3678 		PR0("Descriptor ring virtual address is NULL");
3679 		return (ENXIO);
3680 	}
3681 
3682 
3683 	/* Initialize for valid message and mapped dring */
3684 	PR1("descriptor size = %u, dring length = %u",
3685 	    vd->descriptor_size, vd->dring_len);
3686 	vd->initialized |= VD_DRING;
3687 	vd->dring_ident = 1;	/* "There Can Be Only One" */
3688 	vd->dring = dring_minfo.vaddr;
3689 	vd->descriptor_size = reg_msg->descriptor_size;
3690 	vd->dring_len = reg_msg->num_descriptors;
3691 	reg_msg->dring_ident = vd->dring_ident;
3692 
3693 	/*
3694 	 * Allocate and initialize a "shadow" array of data structures for
3695 	 * tasks to process I/O requests in dring elements
3696 	 */
3697 	vd->dring_task =
3698 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
3699 	for (int i = 0; i < vd->dring_len; i++) {
3700 		vd->dring_task[i].vd		= vd;
3701 		vd->dring_task[i].index		= i;
3702 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
3703 
3704 		status = ldc_mem_alloc_handle(vd->ldc_handle,
3705 		    &(vd->dring_task[i].mhdl));
3706 		if (status) {
3707 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
3708 			return (ENXIO);
3709 		}
3710 
3711 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
3712 	}
3713 
3714 	return (0);
3715 }
3716 
3717 static int
3718 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3719 {
3720 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
3721 
3722 
3723 	ASSERT(msglen >= sizeof (msg->tag));
3724 
3725 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3726 	    VIO_DRING_UNREG)) {
3727 		PR0("Message is not an unregister-dring message");
3728 		return (ENOMSG);
3729 	}
3730 
3731 	if (msglen != sizeof (*unreg_msg)) {
3732 		PR0("Expected %lu-byte unregister-dring message; "
3733 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
3734 		return (EBADMSG);
3735 	}
3736 
3737 	if (unreg_msg->dring_ident != vd->dring_ident) {
3738 		PR0("Expected dring ident %lu; received %lu",
3739 		    vd->dring_ident, unreg_msg->dring_ident);
3740 		return (EBADMSG);
3741 	}
3742 
3743 	return (0);
3744 }
3745 
3746 static int
3747 process_rdx_msg(vio_msg_t *msg, size_t msglen)
3748 {
3749 	ASSERT(msglen >= sizeof (msg->tag));
3750 
3751 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
3752 		PR0("Message is not an RDX message");
3753 		return (ENOMSG);
3754 	}
3755 
3756 	if (msglen != sizeof (vio_rdx_msg_t)) {
3757 		PR0("Expected %lu-byte RDX message; received %lu bytes",
3758 		    sizeof (vio_rdx_msg_t), msglen);
3759 		return (EBADMSG);
3760 	}
3761 
3762 	PR0("Valid RDX message");
3763 	return (0);
3764 }
3765 
3766 static int
3767 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
3768 {
3769 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
3770 		PR0("Received seq_num %lu; expected %lu",
3771 		    seq_num, (vd->seq_num + 1));
3772 		PR0("initiating soft reset");
3773 		vd_need_reset(vd, B_FALSE);
3774 		return (1);
3775 	}
3776 
3777 	vd->seq_num = seq_num;
3778 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
3779 	return (0);
3780 }
3781 
3782 /*
3783  * Return the expected size of an inband-descriptor message with all the
3784  * cookies it claims to include
3785  */
3786 static size_t
3787 expected_inband_size(vd_dring_inband_msg_t *msg)
3788 {
3789 	return ((sizeof (*msg)) +
3790 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
3791 }
3792 
3793 /*
3794  * Process an in-band descriptor message:  used with clients like OBP, with
3795  * which vds exchanges descriptors within VIO message payloads, rather than
3796  * operating on them within a descriptor ring
3797  */
3798 static int
3799 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3800 {
3801 	size_t			expected;
3802 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
3803 
3804 
3805 	ASSERT(msglen >= sizeof (msg->tag));
3806 
3807 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3808 	    VIO_DESC_DATA)) {
3809 		PR1("Message is not an in-band-descriptor message");
3810 		return (ENOMSG);
3811 	}
3812 
3813 	if (msglen < sizeof (*desc_msg)) {
3814 		PR0("Expected at least %lu-byte descriptor message; "
3815 		    "received %lu bytes", sizeof (*desc_msg), msglen);
3816 		return (EBADMSG);
3817 	}
3818 
3819 	if (msglen != (expected = expected_inband_size(desc_msg))) {
3820 		PR0("Expected %lu-byte descriptor message; "
3821 		    "received %lu bytes", expected, msglen);
3822 		return (EBADMSG);
3823 	}
3824 
3825 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
3826 		return (EBADMSG);
3827 
3828 	/*
3829 	 * Valid message:  Set up the in-band descriptor task and process the
3830 	 * request.  Arrange to acknowledge the client's message, unless an
3831 	 * error processing the descriptor task results in setting
3832 	 * VIO_SUBTYPE_NACK
3833 	 */
3834 	PR1("Valid in-band-descriptor message");
3835 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3836 
3837 	ASSERT(vd->inband_task.msg != NULL);
3838 
3839 	bcopy(msg, vd->inband_task.msg, msglen);
3840 	vd->inband_task.msglen	= msglen;
3841 
3842 	/*
3843 	 * The task request is now the payload of the message
3844 	 * that was just copied into the body of the task.
3845 	 */
3846 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
3847 	vd->inband_task.request	= &desc_msg->payload;
3848 
3849 	return (vd_process_task(&vd->inband_task));
3850 }
3851 
3852 static int
3853 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
3854     vio_msg_t *msg, size_t msglen)
3855 {
3856 	int			status;
3857 	boolean_t		ready;
3858 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
3859 
3860 
3861 	/* Accept the updated dring element */
3862 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
3863 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
3864 		return (status);
3865 	}
3866 	ready = (elem->hdr.dstate == VIO_DESC_READY);
3867 	if (ready) {
3868 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
3869 	} else {
3870 		PR0("descriptor %u not ready", idx);
3871 		VD_DUMP_DRING_ELEM(elem);
3872 	}
3873 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
3874 		PR0("ldc_mem_dring_release() returned errno %d", status);
3875 		return (status);
3876 	}
3877 	if (!ready)
3878 		return (EBUSY);
3879 
3880 
3881 	/* Initialize a task and process the accepted element */
3882 	PR1("Processing dring element %u", idx);
3883 	vd->dring_task[idx].type	= type;
3884 
3885 	/* duplicate msg buf for cookies etc. */
3886 	bcopy(msg, vd->dring_task[idx].msg, msglen);
3887 
3888 	vd->dring_task[idx].msglen	= msglen;
3889 	return (vd_process_task(&vd->dring_task[idx]));
3890 }
3891 
3892 static int
3893 vd_process_element_range(vd_t *vd, int start, int end,
3894     vio_msg_t *msg, size_t msglen)
3895 {
3896 	int		i, n, nelem, status = 0;
3897 	boolean_t	inprogress = B_FALSE;
3898 	vd_task_type_t	type;
3899 
3900 
3901 	ASSERT(start >= 0);
3902 	ASSERT(end >= 0);
3903 
3904 	/*
3905 	 * Arrange to acknowledge the client's message, unless an error
3906 	 * processing one of the dring elements results in setting
3907 	 * VIO_SUBTYPE_NACK
3908 	 */
3909 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3910 
3911 	/*
3912 	 * Process the dring elements in the range
3913 	 */
3914 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
3915 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
3916 		((vio_dring_msg_t *)msg)->end_idx = i;
3917 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
3918 		status = vd_process_element(vd, type, i, msg, msglen);
3919 		if (status == EINPROGRESS)
3920 			inprogress = B_TRUE;
3921 		else if (status != 0)
3922 			break;
3923 	}
3924 
3925 	/*
3926 	 * If some, but not all, operations of a multi-element range are in
3927 	 * progress, wait for other operations to complete before returning
3928 	 * (which will result in "ack" or "nack" of the message).  Note that
3929 	 * all outstanding operations will need to complete, not just the ones
3930 	 * corresponding to the current range of dring elements; howevever, as
3931 	 * this situation is an error case, performance is less critical.
3932 	 */
3933 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
3934 		ddi_taskq_wait(vd->completionq);
3935 
3936 	return (status);
3937 }
3938 
3939 static int
3940 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3941 {
3942 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
3943 
3944 
3945 	ASSERT(msglen >= sizeof (msg->tag));
3946 
3947 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3948 	    VIO_DRING_DATA)) {
3949 		PR1("Message is not a dring-data message");
3950 		return (ENOMSG);
3951 	}
3952 
3953 	if (msglen != sizeof (*dring_msg)) {
3954 		PR0("Expected %lu-byte dring message; received %lu bytes",
3955 		    sizeof (*dring_msg), msglen);
3956 		return (EBADMSG);
3957 	}
3958 
3959 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
3960 		return (EBADMSG);
3961 
3962 	if (dring_msg->dring_ident != vd->dring_ident) {
3963 		PR0("Expected dring ident %lu; received ident %lu",
3964 		    vd->dring_ident, dring_msg->dring_ident);
3965 		return (EBADMSG);
3966 	}
3967 
3968 	if (dring_msg->start_idx >= vd->dring_len) {
3969 		PR0("\"start_idx\" = %u; must be less than %u",
3970 		    dring_msg->start_idx, vd->dring_len);
3971 		return (EBADMSG);
3972 	}
3973 
3974 	if ((dring_msg->end_idx < 0) ||
3975 	    (dring_msg->end_idx >= vd->dring_len)) {
3976 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
3977 		    dring_msg->end_idx, vd->dring_len);
3978 		return (EBADMSG);
3979 	}
3980 
3981 	/* Valid message; process range of updated dring elements */
3982 	PR1("Processing descriptor range, start = %u, end = %u",
3983 	    dring_msg->start_idx, dring_msg->end_idx);
3984 	return (vd_process_element_range(vd, dring_msg->start_idx,
3985 	    dring_msg->end_idx, msg, msglen));
3986 }
3987 
3988 static int
3989 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
3990 {
3991 	int	retry, status;
3992 	size_t	size = *nbytes;
3993 
3994 
3995 	for (retry = 0, status = ETIMEDOUT;
3996 	    retry < vds_ldc_retries && status == ETIMEDOUT;
3997 	    retry++) {
3998 		PR1("ldc_read() attempt %d", (retry + 1));
3999 		*nbytes = size;
4000 		status = ldc_read(ldc_handle, msg, nbytes);
4001 	}
4002 
4003 	if (status) {
4004 		PR0("ldc_read() returned errno %d", status);
4005 		if (status != ECONNRESET)
4006 			return (ENOMSG);
4007 		return (status);
4008 	} else if (*nbytes == 0) {
4009 		PR1("ldc_read() returned 0 and no message read");
4010 		return (ENOMSG);
4011 	}
4012 
4013 	PR1("RCVD %lu-byte message", *nbytes);
4014 	return (0);
4015 }
4016 
4017 static int
4018 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4019 {
4020 	int		status;
4021 
4022 
4023 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
4024 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
4025 #ifdef	DEBUG
4026 	vd_decode_tag(msg);
4027 #endif
4028 
4029 	/*
4030 	 * Validate session ID up front, since it applies to all messages
4031 	 * once set
4032 	 */
4033 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
4034 		PR0("Expected SID %u, received %u", vd->sid,
4035 		    msg->tag.vio_sid);
4036 		return (EBADMSG);
4037 	}
4038 
4039 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
4040 
4041 	/*
4042 	 * Process the received message based on connection state
4043 	 */
4044 	switch (vd->state) {
4045 	case VD_STATE_INIT:	/* expect version message */
4046 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
4047 			return (status);
4048 
4049 		/* Version negotiated, move to that state */
4050 		vd->state = VD_STATE_VER;
4051 		return (0);
4052 
4053 	case VD_STATE_VER:	/* expect attribute message */
4054 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
4055 			return (status);
4056 
4057 		/* Attributes exchanged, move to that state */
4058 		vd->state = VD_STATE_ATTR;
4059 		return (0);
4060 
4061 	case VD_STATE_ATTR:
4062 		switch (vd->xfer_mode) {
4063 		case VIO_DESC_MODE:	/* expect RDX message */
4064 			if ((status = process_rdx_msg(msg, msglen)) != 0)
4065 				return (status);
4066 
4067 			/* Ready to receive in-band descriptors */
4068 			vd->state = VD_STATE_DATA;
4069 			return (0);
4070 
4071 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
4072 			if ((status =
4073 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
4074 				return (status);
4075 
4076 			/* One dring negotiated, move to that state */
4077 			vd->state = VD_STATE_DRING;
4078 			return (0);
4079 
4080 		default:
4081 			ASSERT("Unsupported transfer mode");
4082 			PR0("Unsupported transfer mode");
4083 			return (ENOTSUP);
4084 		}
4085 
4086 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
4087 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
4088 			/* Ready to receive data */
4089 			vd->state = VD_STATE_DATA;
4090 			return (0);
4091 		} else if (status != ENOMSG) {
4092 			return (status);
4093 		}
4094 
4095 
4096 		/*
4097 		 * If another register-dring message is received, stay in
4098 		 * dring state in case the client sends RDX; although the
4099 		 * protocol allows multiple drings, this server does not
4100 		 * support using more than one
4101 		 */
4102 		if ((status =
4103 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
4104 			return (status);
4105 
4106 		/*
4107 		 * Acknowledge an unregister-dring message, but reset the
4108 		 * connection anyway:  Although the protocol allows
4109 		 * unregistering drings, this server cannot serve a vdisk
4110 		 * without its only dring
4111 		 */
4112 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
4113 		return ((status == 0) ? ENOTSUP : status);
4114 
4115 	case VD_STATE_DATA:
4116 		switch (vd->xfer_mode) {
4117 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
4118 			return (vd_process_desc_msg(vd, msg, msglen));
4119 
4120 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
4121 			/*
4122 			 * Typically expect dring-data messages, so handle
4123 			 * them first
4124 			 */
4125 			if ((status = vd_process_dring_msg(vd, msg,
4126 			    msglen)) != ENOMSG)
4127 				return (status);
4128 
4129 			/*
4130 			 * Acknowledge an unregister-dring message, but reset
4131 			 * the connection anyway:  Although the protocol
4132 			 * allows unregistering drings, this server cannot
4133 			 * serve a vdisk without its only dring
4134 			 */
4135 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
4136 			return ((status == 0) ? ENOTSUP : status);
4137 
4138 		default:
4139 			ASSERT("Unsupported transfer mode");
4140 			PR0("Unsupported transfer mode");
4141 			return (ENOTSUP);
4142 		}
4143 
4144 	default:
4145 		ASSERT("Invalid client connection state");
4146 		PR0("Invalid client connection state");
4147 		return (ENOTSUP);
4148 	}
4149 }
4150 
4151 static int
4152 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4153 {
4154 	int		status;
4155 	boolean_t	reset_ldc = B_FALSE;
4156 	vd_task_t	task;
4157 
4158 	/*
4159 	 * Check that the message is at least big enough for a "tag", so that
4160 	 * message processing can proceed based on tag-specified message type
4161 	 */
4162 	if (msglen < sizeof (vio_msg_tag_t)) {
4163 		PR0("Received short (%lu-byte) message", msglen);
4164 		/* Can't "nack" short message, so drop the big hammer */
4165 		PR0("initiating full reset");
4166 		vd_need_reset(vd, B_TRUE);
4167 		return (EBADMSG);
4168 	}
4169 
4170 	/*
4171 	 * Process the message
4172 	 */
4173 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
4174 	case 0:
4175 		/* "ack" valid, successfully-processed messages */
4176 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4177 		break;
4178 
4179 	case EINPROGRESS:
4180 		/* The completion handler will "ack" or "nack" the message */
4181 		return (EINPROGRESS);
4182 	case ENOMSG:
4183 		PR0("Received unexpected message");
4184 		_NOTE(FALLTHROUGH);
4185 	case EBADMSG:
4186 	case ENOTSUP:
4187 		/* "transport" error will cause NACK of invalid messages */
4188 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4189 		break;
4190 
4191 	default:
4192 		/* "transport" error will cause NACK of invalid messages */
4193 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4194 		/* An LDC error probably occurred, so try resetting it */
4195 		reset_ldc = B_TRUE;
4196 		break;
4197 	}
4198 
4199 	PR1("\tResulting in state %d (%s)", vd->state,
4200 	    vd_decode_state(vd->state));
4201 
4202 	/* populate the task so we can dispatch it on the taskq */
4203 	task.vd = vd;
4204 	task.msg = msg;
4205 	task.msglen = msglen;
4206 
4207 	/*
4208 	 * Queue a task to send the notification that the operation completed.
4209 	 * We need to ensure that requests are responded to in the correct
4210 	 * order and since the taskq is processed serially this ordering
4211 	 * is maintained.
4212 	 */
4213 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
4214 	    &task, DDI_SLEEP);
4215 
4216 	/*
4217 	 * To ensure handshake negotiations do not happen out of order, such
4218 	 * requests that come through this path should not be done in parallel
4219 	 * so we need to wait here until the response is sent to the client.
4220 	 */
4221 	ddi_taskq_wait(vd->completionq);
4222 
4223 	/* Arrange to reset the connection for nack'ed or failed messages */
4224 	if ((status != 0) || reset_ldc) {
4225 		PR0("initiating %s reset",
4226 		    (reset_ldc) ? "full" : "soft");
4227 		vd_need_reset(vd, reset_ldc);
4228 	}
4229 
4230 	return (status);
4231 }
4232 
4233 static boolean_t
4234 vd_enabled(vd_t *vd)
4235 {
4236 	boolean_t	enabled;
4237 
4238 	mutex_enter(&vd->lock);
4239 	enabled = vd->enabled;
4240 	mutex_exit(&vd->lock);
4241 	return (enabled);
4242 }
4243 
4244 static void
4245 vd_recv_msg(void *arg)
4246 {
4247 	vd_t	*vd = (vd_t *)arg;
4248 	int	rv = 0, status = 0;
4249 
4250 	ASSERT(vd != NULL);
4251 
4252 	PR2("New task to receive incoming message(s)");
4253 
4254 
4255 	while (vd_enabled(vd) && status == 0) {
4256 		size_t		msglen, msgsize;
4257 		ldc_status_t	lstatus;
4258 
4259 		/*
4260 		 * Receive and process a message
4261 		 */
4262 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
4263 
4264 		/*
4265 		 * check if channel is UP - else break out of loop
4266 		 */
4267 		status = ldc_status(vd->ldc_handle, &lstatus);
4268 		if (lstatus != LDC_UP) {
4269 			PR0("channel not up (status=%d), exiting recv loop\n",
4270 			    lstatus);
4271 			break;
4272 		}
4273 
4274 		ASSERT(vd->max_msglen != 0);
4275 
4276 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
4277 		msglen	= msgsize;	  /* actual len after recv_msg() */
4278 
4279 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
4280 		switch (status) {
4281 		case 0:
4282 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
4283 			    msglen);
4284 			/* check if max_msglen changed */
4285 			if (msgsize != vd->max_msglen) {
4286 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
4287 				    msgsize, vd->max_msglen);
4288 				kmem_free(vd->vio_msgp, msgsize);
4289 				vd->vio_msgp =
4290 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
4291 			}
4292 			if (rv == EINPROGRESS)
4293 				continue;
4294 			break;
4295 
4296 		case ENOMSG:
4297 			break;
4298 
4299 		case ECONNRESET:
4300 			PR0("initiating soft reset (ECONNRESET)\n");
4301 			vd_need_reset(vd, B_FALSE);
4302 			status = 0;
4303 			break;
4304 
4305 		default:
4306 			/* Probably an LDC failure; arrange to reset it */
4307 			PR0("initiating full reset (status=0x%x)", status);
4308 			vd_need_reset(vd, B_TRUE);
4309 			break;
4310 		}
4311 	}
4312 
4313 	PR2("Task finished");
4314 }
4315 
4316 static uint_t
4317 vd_handle_ldc_events(uint64_t event, caddr_t arg)
4318 {
4319 	vd_t	*vd = (vd_t *)(void *)arg;
4320 	int	status;
4321 
4322 	ASSERT(vd != NULL);
4323 
4324 	if (!vd_enabled(vd))
4325 		return (LDC_SUCCESS);
4326 
4327 	if (event & LDC_EVT_DOWN) {
4328 		PR0("LDC_EVT_DOWN: LDC channel went down");
4329 
4330 		vd_need_reset(vd, B_TRUE);
4331 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4332 		    DDI_SLEEP);
4333 		if (status == DDI_FAILURE) {
4334 			PR0("cannot schedule task to recv msg\n");
4335 			vd_need_reset(vd, B_TRUE);
4336 		}
4337 	}
4338 
4339 	if (event & LDC_EVT_RESET) {
4340 		PR0("LDC_EVT_RESET: LDC channel was reset");
4341 
4342 		if (vd->state != VD_STATE_INIT) {
4343 			PR0("scheduling full reset");
4344 			vd_need_reset(vd, B_FALSE);
4345 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4346 			    vd, DDI_SLEEP);
4347 			if (status == DDI_FAILURE) {
4348 				PR0("cannot schedule task to recv msg\n");
4349 				vd_need_reset(vd, B_TRUE);
4350 			}
4351 
4352 		} else {
4353 			PR0("channel already reset, ignoring...\n");
4354 			PR0("doing ldc up...\n");
4355 			(void) ldc_up(vd->ldc_handle);
4356 		}
4357 
4358 		return (LDC_SUCCESS);
4359 	}
4360 
4361 	if (event & LDC_EVT_UP) {
4362 		PR0("EVT_UP: LDC is up\nResetting client connection state");
4363 		PR0("initiating soft reset");
4364 		vd_need_reset(vd, B_FALSE);
4365 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4366 		    vd, DDI_SLEEP);
4367 		if (status == DDI_FAILURE) {
4368 			PR0("cannot schedule task to recv msg\n");
4369 			vd_need_reset(vd, B_TRUE);
4370 			return (LDC_SUCCESS);
4371 		}
4372 	}
4373 
4374 	if (event & LDC_EVT_READ) {
4375 		int	status;
4376 
4377 		PR1("New data available");
4378 		/* Queue a task to receive the new data */
4379 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4380 		    DDI_SLEEP);
4381 
4382 		if (status == DDI_FAILURE) {
4383 			PR0("cannot schedule task to recv msg\n");
4384 			vd_need_reset(vd, B_TRUE);
4385 		}
4386 	}
4387 
4388 	return (LDC_SUCCESS);
4389 }
4390 
4391 static uint_t
4392 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4393 {
4394 	_NOTE(ARGUNUSED(key, val))
4395 	(*((uint_t *)arg))++;
4396 	return (MH_WALK_TERMINATE);
4397 }
4398 
4399 
4400 static int
4401 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
4402 {
4403 	uint_t	vd_present = 0;
4404 	minor_t	instance;
4405 	vds_t	*vds;
4406 
4407 
4408 	switch (cmd) {
4409 	case DDI_DETACH:
4410 		/* the real work happens below */
4411 		break;
4412 	case DDI_SUSPEND:
4413 		PR0("No action required for DDI_SUSPEND");
4414 		return (DDI_SUCCESS);
4415 	default:
4416 		PR0("Unrecognized \"cmd\"");
4417 		return (DDI_FAILURE);
4418 	}
4419 
4420 	ASSERT(cmd == DDI_DETACH);
4421 	instance = ddi_get_instance(dip);
4422 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
4423 		PR0("Could not get state for instance %u", instance);
4424 		ddi_soft_state_free(vds_state, instance);
4425 		return (DDI_FAILURE);
4426 	}
4427 
4428 	/* Do no detach when serving any vdisks */
4429 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
4430 	if (vd_present) {
4431 		PR0("Not detaching because serving vdisks");
4432 		return (DDI_FAILURE);
4433 	}
4434 
4435 	PR0("Detaching");
4436 	if (vds->initialized & VDS_MDEG) {
4437 		(void) mdeg_unregister(vds->mdeg);
4438 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
4439 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
4440 		vds->ispecp = NULL;
4441 		vds->mdeg = NULL;
4442 	}
4443 
4444 	vds_driver_types_free(vds);
4445 
4446 	if (vds->initialized & VDS_LDI)
4447 		(void) ldi_ident_release(vds->ldi_ident);
4448 	mod_hash_destroy_hash(vds->vd_table);
4449 	ddi_soft_state_free(vds_state, instance);
4450 	return (DDI_SUCCESS);
4451 }
4452 
4453 static boolean_t
4454 is_pseudo_device(dev_info_t *dip)
4455 {
4456 	dev_info_t	*parent, *root = ddi_root_node();
4457 
4458 
4459 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
4460 	    parent = ddi_get_parent(parent)) {
4461 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
4462 			return (B_TRUE);
4463 	}
4464 
4465 	return (B_FALSE);
4466 }
4467 
4468 /*
4469  * Description:
4470  *	This function checks to see if the file being used as a
4471  *	virtual disk is an ISO image. An ISO image is a special
4472  *	case which can be booted/installed from like a CD/DVD
4473  *
4474  * Parameters:
4475  *	vd		- disk on which the operation is performed.
4476  *
4477  * Return Code:
4478  *	B_TRUE		- The file is an ISO 9660 compliant image
4479  *	B_FALSE		- just a regular disk image file
4480  */
4481 static boolean_t
4482 vd_file_is_iso_image(vd_t *vd)
4483 {
4484 	char	iso_buf[ISO_SECTOR_SIZE];
4485 	int	i, rv;
4486 	uint_t	sec;
4487 
4488 	ASSERT(vd->file);
4489 
4490 	/*
4491 	 * If we have already discovered and saved this info we can
4492 	 * short-circuit the check and avoid reading the file.
4493 	 */
4494 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
4495 		return (B_TRUE);
4496 
4497 	/*
4498 	 * We wish to read the sector that should contain the 2nd ISO volume
4499 	 * descriptor. The second field in this descriptor is called the
4500 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
4501 	 * to the ISO 9660 standard.
4502 	 */
4503 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
4504 	rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
4505 	    sec, ISO_SECTOR_SIZE);
4506 
4507 	if (rv < 0)
4508 		return (B_FALSE);
4509 
4510 	for (i = 0; i < ISO_ID_STRLEN; i++) {
4511 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
4512 			return (B_FALSE);
4513 	}
4514 
4515 	return (B_TRUE);
4516 }
4517 
4518 /*
4519  * Description:
4520  *	This function checks to see if the virtual device is an ATAPI
4521  *	device. ATAPI devices use Group 1 Read/Write commands, so
4522  *	any USCSI calls vds makes need to take this into account.
4523  *
4524  * Parameters:
4525  *	vd		- disk on which the operation is performed.
4526  *
4527  * Return Code:
4528  *	B_TRUE		- The virtual disk is backed by an ATAPI device
4529  *	B_FALSE		- not an ATAPI device (presumably SCSI)
4530  */
4531 static boolean_t
4532 vd_is_atapi_device(vd_t *vd)
4533 {
4534 	boolean_t	is_atapi = B_FALSE;
4535 	char		*variantp;
4536 	int		rv;
4537 
4538 	ASSERT(vd->ldi_handle[0] != NULL);
4539 	ASSERT(!vd->file);
4540 
4541 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
4542 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
4543 	if (rv == DDI_PROP_SUCCESS) {
4544 		PR0("'variant' property exists for %s", vd->device_path);
4545 		if (strcmp(variantp, "atapi") == 0)
4546 			is_atapi = B_TRUE;
4547 		ddi_prop_free(variantp);
4548 	}
4549 
4550 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
4551 	if (rv) {
4552 		PR0("'atapi' property exists for %s", vd->device_path);
4553 		is_atapi = B_TRUE;
4554 	}
4555 
4556 	return (is_atapi);
4557 }
4558 
4559 static int
4560 vd_setup_mediainfo(vd_t *vd)
4561 {
4562 	int status, rval;
4563 	struct dk_minfo	dk_minfo;
4564 
4565 	ASSERT(vd->ldi_handle[0] != NULL);
4566 	ASSERT(vd->vdisk_block_size != 0);
4567 
4568 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
4569 	    (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL),
4570 	    kcred, &rval)) != 0)
4571 		return (status);
4572 
4573 	ASSERT(dk_minfo.dki_lbsize % vd->vdisk_block_size == 0);
4574 
4575 	vd->block_size = dk_minfo.dki_lbsize;
4576 	vd->vdisk_size = (dk_minfo.dki_capacity * dk_minfo.dki_lbsize) /
4577 	    vd->vdisk_block_size;
4578 	vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type);
4579 	return (0);
4580 }
4581 
4582 static int
4583 vd_setup_full_disk(vd_t *vd)
4584 {
4585 	int		status;
4586 	major_t		major = getmajor(vd->dev[0]);
4587 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
4588 
4589 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
4590 
4591 	vd->vdisk_block_size = DEV_BSIZE;
4592 
4593 	/*
4594 	 * At this point, vdisk_size is set to the size of partition 2 but
4595 	 * this does not represent the size of the disk because partition 2
4596 	 * may not cover the entire disk and its size does not include reserved
4597 	 * blocks. So we call vd_get_mediainfo to udpate this information and
4598 	 * set the block size and the media type of the disk.
4599 	 */
4600 	status = vd_setup_mediainfo(vd);
4601 
4602 	if (status != 0) {
4603 		if (!vd->scsi) {
4604 			/* unexpected failure */
4605 			PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
4606 			    status);
4607 			return (status);
4608 		}
4609 
4610 		/*
4611 		 * The function can fail for SCSI disks which are present but
4612 		 * reserved by another system. In that case, we don't know the
4613 		 * size of the disk and the block size.
4614 		 */
4615 		vd->vdisk_size = VD_SIZE_UNKNOWN;
4616 		vd->block_size = 0;
4617 		vd->vdisk_media = VD_MEDIA_FIXED;
4618 	}
4619 
4620 	/* Move dev number and LDI handle to entire-disk-slice array elements */
4621 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
4622 	vd->dev[0]				= 0;
4623 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
4624 	vd->ldi_handle[0]			= NULL;
4625 
4626 	/* Initialize device numbers for remaining slices and open them */
4627 	for (int slice = 0; slice < vd->nslices; slice++) {
4628 		/*
4629 		 * Skip the entire-disk slice, as it's already open and its
4630 		 * device known
4631 		 */
4632 		if (slice == VD_ENTIRE_DISK_SLICE)
4633 			continue;
4634 		ASSERT(vd->dev[slice] == 0);
4635 		ASSERT(vd->ldi_handle[slice] == NULL);
4636 
4637 		/*
4638 		 * Construct the device number for the current slice
4639 		 */
4640 		vd->dev[slice] = makedevice(major, (minor + slice));
4641 
4642 		/*
4643 		 * Open all slices of the disk to serve them to the client.
4644 		 * Slices are opened exclusively to prevent other threads or
4645 		 * processes in the service domain from performing I/O to
4646 		 * slices being accessed by a client.  Failure to open a slice
4647 		 * results in vds not serving this disk, as the client could
4648 		 * attempt (and should be able) to access any slice immediately.
4649 		 * Any slices successfully opened before a failure will get
4650 		 * closed by vds_destroy_vd() as a result of the error returned
4651 		 * by this function.
4652 		 *
4653 		 * We need to do the open with FNDELAY so that opening an empty
4654 		 * slice does not fail.
4655 		 */
4656 		PR0("Opening device major %u, minor %u = slice %u",
4657 		    major, minor, slice);
4658 
4659 		/*
4660 		 * Try to open the device. This can fail for example if we are
4661 		 * opening an empty slice. So in case of a failure, we try the
4662 		 * open again but this time with the FNDELAY flag.
4663 		 */
4664 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
4665 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
4666 		    vd->vds->ldi_ident);
4667 
4668 		if (status != 0) {
4669 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
4670 			    vd->open_flags | FNDELAY, kcred,
4671 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
4672 		}
4673 
4674 		if (status != 0) {
4675 			PRN("ldi_open_by_dev() returned errno %d "
4676 			    "for slice %u", status, slice);
4677 			/* vds_destroy_vd() will close any open slices */
4678 			vd->ldi_handle[slice] = NULL;
4679 			return (status);
4680 		}
4681 	}
4682 
4683 	return (0);
4684 }
4685 
4686 /*
4687  * When a slice or a volume is exported as a single-slice disk, we want
4688  * the disk backend (i.e. the slice or volume) to be entirely mapped as
4689  * a slice without the addition of any metadata.
4690  *
4691  * So when exporting the disk as a VTOC disk, we fake a disk with the following
4692  * layout:
4693  *
4694  *                 0 1                         N+1
4695  *                 +-+--------------------------+
4696  *  virtual disk:  |L|           slice 0        |
4697  *                 +-+--------------------------+
4698  *                  ^:                          :
4699  *                  |:                          :
4700  *      VTOC LABEL--+:                          :
4701  *                   +--------------------------+
4702  *  disk backend:    |       slice/volume       |
4703  *                   +--------------------------+
4704  *                   0                          N
4705  *
4706  * N is the number of blocks in the slice/volume.
4707  *
4708  * We simulate a disk with N+1 blocks. The first block (block 0) is faked and
4709  * can not be changed. The remaining blocks (1 to N+1) defines slice 0 and are
4710  * mapped to the exported slice or volume:
4711  *
4712  * - block 0 (L) can return a fake VTOC label if raw read was implemented.
4713  * - block 1 to N+1 is mapped to the exported slice or volume.
4714  *
4715  */
4716 static int
4717 vd_setup_partition_vtoc(vd_t *vd)
4718 {
4719 	int rval, status;
4720 	char *device_path = vd->device_path;
4721 
4722 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
4723 	    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), kcred, &rval);
4724 
4725 	if (status != 0) {
4726 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
4727 		    status, device_path);
4728 		return (status);
4729 	}
4730 
4731 	/* Initialize dk_geom structure for single-slice device */
4732 	if (vd->dk_geom.dkg_nsect == 0) {
4733 		PRN("%s geometry claims 0 sectors per track", device_path);
4734 		return (EIO);
4735 	}
4736 	if (vd->dk_geom.dkg_nhead == 0) {
4737 		PRN("%s geometry claims 0 heads", device_path);
4738 		return (EIO);
4739 	}
4740 	vd->dk_geom.dkg_ncyl = (vd->vdisk_size + 1) / vd->dk_geom.dkg_nsect /
4741 	    vd->dk_geom.dkg_nhead;
4742 	vd->dk_geom.dkg_acyl = 0;
4743 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
4744 
4745 
4746 	/* Initialize vtoc structure for single-slice device */
4747 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
4748 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
4749 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
4750 	vd->vtoc.v_nparts = 1;
4751 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
4752 	vd->vtoc.v_part[0].p_flag = 0;
4753 	vd->vtoc.v_part[0].p_start = 1;
4754 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
4755 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
4756 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
4757 
4758 	/* adjust the vdisk_size, we emulate the first block */
4759 	vd->vdisk_size += 1;
4760 
4761 	return (0);
4762 }
4763 
4764 /*
4765  * When a slice, volume or file is exported as a single-slice disk, we want
4766  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
4767  * as a slice without the addition of any metadata.
4768  *
4769  * So when exporting the disk as an EFI disk, we fake a disk with the following
4770  * layout:
4771  *
4772  *                 0 1 2 3      34                        34+N
4773  *                 +-+-+-+-------+--------------------------+
4774  *  virtual disk:  |X|T|E|XXXXXXX|           slice 0        |
4775  *                 +-+-+-+-------+--------------------------+
4776  *                    ^ ^        :                          :
4777  *                    | |        :                          :
4778  *                GPT-+ +-GPE    :                          :
4779  *                               +--------------------------+
4780  *  disk backend:                |     slice/volume/file    |
4781  *                               +--------------------------+
4782  *                               0                          N
4783  *
4784  * N is the number of blocks in the slice/volume/file.
4785  *
4786  * We simulate a disk with 34+N blocks. The first 34 blocks (0 to 33) are
4787  * emulated and can not be changed. The remaining blocks (34 to 34+N) defines
4788  * slice 0 and are mapped to the exported slice, volume or file:
4789  *
4790  * - block 0 (X) is unused and can return 0 if raw read was implemented.
4791  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
4792  * - block 2 (E) returns a fake EFI GPE (via DKIOCGETEFI)
4793  * - block 3 to 33 (X) are unused and return 0 if raw read is implemented.
4794  * - block 34 to 34+N is mapped to the exported slice, volume or file.
4795  *
4796  */
4797 static int
4798 vd_setup_partition_efi(vd_t *vd)
4799 {
4800 	efi_gpt_t *gpt;
4801 	efi_gpe_t *gpe;
4802 	struct uuid uuid = EFI_USR;
4803 	uint32_t crc;
4804 
4805 	gpt = &vd->efi_gpt;
4806 	gpe = &vd->efi_gpe;
4807 
4808 	bzero(gpt, sizeof (efi_gpt_t));
4809 	bzero(gpe, sizeof (efi_gpe_t));
4810 
4811 	/* adjust the vdisk_size, we emulate the first 34 blocks */
4812 	vd->vdisk_size += 34;
4813 
4814 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
4815 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
4816 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
4817 	gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL);
4818 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
4819 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
4820 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
4821 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
4822 
4823 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
4824 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
4825 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
4826 
4827 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
4828 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
4829 
4830 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
4831 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
4832 
4833 	return (0);
4834 }
4835 
4836 /*
4837  * Setup for a virtual disk whose backend is a file (exported as a single slice
4838  * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume)
4839  * exported as a full disk. In these cases, the backend is accessed using the
4840  * vnode interface.
4841  */
4842 static int
4843 vd_setup_backend_vnode(vd_t *vd)
4844 {
4845 	int 		rval, status;
4846 	vattr_t		vattr;
4847 	dev_t		dev;
4848 	char		*file_path = vd->device_path;
4849 	char		dev_path[MAXPATHLEN + 1];
4850 	ldi_handle_t	lhandle;
4851 	struct dk_cinfo	dk_cinfo;
4852 
4853 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
4854 	    0, &vd->file_vnode, 0, 0)) != 0) {
4855 		PRN("vn_open(%s) = errno %d", file_path, status);
4856 		return (status);
4857 	}
4858 
4859 	/*
4860 	 * We set vd->file now so that vds_destroy_vd will take care of
4861 	 * closing the file and releasing the vnode in case of an error.
4862 	 */
4863 	vd->file = B_TRUE;
4864 
4865 	vattr.va_mask = AT_SIZE;
4866 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
4867 	    != 0) {
4868 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
4869 		return (EIO);
4870 	}
4871 
4872 	vd->file_size = vattr.va_size;
4873 	/* size should be at least sizeof(dk_label) */
4874 	if (vd->file_size < sizeof (struct dk_label)) {
4875 		PRN("Size of file has to be at least %ld bytes",
4876 		    sizeof (struct dk_label));
4877 		return (EIO);
4878 	}
4879 
4880 	if (vd->file_vnode->v_flag & VNOMAP) {
4881 		PRN("File %s cannot be mapped", file_path);
4882 		return (EIO);
4883 	}
4884 
4885 	/* sector size = block size = DEV_BSIZE */
4886 	vd->block_size = DEV_BSIZE;
4887 	vd->vdisk_block_size = DEV_BSIZE;
4888 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
4889 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
4890 
4891 	/*
4892 	 * Get max_xfer_sz from the device where the file is or from the device
4893 	 * itself if we have a volume device.
4894 	 */
4895 	dev_path[0] = '\0';
4896 
4897 	if (vd->volume) {
4898 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
4899 		    vd->vds->ldi_ident);
4900 	} else {
4901 		dev = vd->file_vnode->v_vfsp->vfs_dev;
4902 		if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
4903 			PR0("underlying device = %s\n", dev_path);
4904 		}
4905 
4906 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
4907 		    vd->vds->ldi_ident);
4908 	}
4909 
4910 	if (status != 0) {
4911 		PR0("ldi_open() returned errno %d for device %s",
4912 		    status, (dev_path[0] == '\0')? file_path : dev_path);
4913 	} else {
4914 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
4915 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
4916 		    &rval)) != 0) {
4917 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
4918 			    status, dev_path);
4919 		} else {
4920 			/*
4921 			 * Store the device's max transfer size for
4922 			 * return to the client
4923 			 */
4924 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
4925 		}
4926 
4927 		PR0("close the device %s", dev_path);
4928 		(void) ldi_close(lhandle, FREAD, kcred);
4929 	}
4930 
4931 	PR0("using file %s, dev %s, max_xfer = %u blks",
4932 	    file_path, dev_path, vd->max_xfer_sz);
4933 
4934 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
4935 		ASSERT(!vd->volume);
4936 		vd->vdisk_label = VD_DISK_LABEL_EFI;
4937 		status = vd_setup_partition_efi(vd);
4938 		return (0);
4939 	}
4940 
4941 	/*
4942 	 * Find and validate the geometry of a disk image.
4943 	 */
4944 	status = vd_file_validate_geometry(vd);
4945 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
4946 		PRN("Failed to read label from %s", file_path);
4947 		return (EIO);
4948 	}
4949 
4950 	if (vd_file_is_iso_image(vd)) {
4951 		/*
4952 		 * Indicate whether to call this a CD or DVD from the size
4953 		 * of the ISO image (images for both drive types are stored
4954 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
4955 		 */
4956 		if ((vd->vdisk_size * vd->vdisk_block_size) >
4957 		    (1024 * 1024 * 1024))
4958 			vd->vdisk_media = VD_MEDIA_DVD;
4959 		else
4960 			vd->vdisk_media = VD_MEDIA_CD;
4961 	} else {
4962 		vd->vdisk_media = VD_MEDIA_FIXED;
4963 	}
4964 
4965 	/* Setup devid for the disk image */
4966 
4967 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
4968 
4969 		status = vd_file_read_devid(vd, &vd->file_devid);
4970 
4971 		if (status == 0) {
4972 			/* a valid devid was found */
4973 			return (0);
4974 		}
4975 
4976 		if (status != EINVAL) {
4977 			/*
4978 			 * There was an error while trying to read the devid.
4979 			 * So this disk image may have a devid but we are
4980 			 * unable to read it.
4981 			 */
4982 			PR0("can not read devid for %s", file_path);
4983 			vd->file_devid = NULL;
4984 			return (0);
4985 		}
4986 	}
4987 
4988 	/*
4989 	 * No valid device id was found so we create one. Note that a failure
4990 	 * to create a device id is not fatal and does not prevent the disk
4991 	 * image from being attached.
4992 	 */
4993 	PR1("creating devid for %s", file_path);
4994 
4995 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
4996 	    &vd->file_devid) != DDI_SUCCESS) {
4997 		PR0("fail to create devid for %s", file_path);
4998 		vd->file_devid = NULL;
4999 		return (0);
5000 	}
5001 
5002 	/*
5003 	 * Write devid to the disk image. The devid is stored into the disk
5004 	 * image if we have a valid label; otherwise the devid will be stored
5005 	 * when the user writes a valid label.
5006 	 */
5007 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5008 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
5009 			PR0("fail to write devid for %s", file_path);
5010 			ddi_devid_free(vd->file_devid);
5011 			vd->file_devid = NULL;
5012 		}
5013 	}
5014 
5015 	return (0);
5016 }
5017 
5018 
5019 /*
5020  * Description:
5021  *	Open a device using its device path (supplied by ldm(1m))
5022  *
5023  * Parameters:
5024  *	vd 	- pointer to structure containing the vDisk info
5025  *	flags	- open flags
5026  *
5027  * Return Value
5028  *	0	- success
5029  *	!= 0	- some other non-zero return value from ldi(9F) functions
5030  */
5031 static int
5032 vd_open_using_ldi_by_name(vd_t *vd, int flags)
5033 {
5034 	int		status;
5035 	char		*device_path = vd->device_path;
5036 
5037 	/* Attempt to open device */
5038 	status = ldi_open_by_name(device_path, flags, kcred,
5039 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
5040 
5041 	/*
5042 	 * The open can fail for example if we are opening an empty slice.
5043 	 * In case of a failure, we try the open again but this time with
5044 	 * the FNDELAY flag.
5045 	 */
5046 	if (status != 0)
5047 		status = ldi_open_by_name(device_path, flags | FNDELAY,
5048 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
5049 
5050 	if (status != 0) {
5051 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
5052 		vd->ldi_handle[0] = NULL;
5053 		return (status);
5054 	}
5055 
5056 	return (0);
5057 }
5058 
5059 /*
5060  * Setup for a virtual disk which backend is a device (a physical disk,
5061  * slice or volume device) that is directly exported either as a full disk
5062  * for a physical disk or as a slice for a volume device or a disk slice.
5063  * In these cases, the backend is accessed using the LDI interface.
5064  */
5065 static int
5066 vd_setup_backend_ldi(vd_t *vd)
5067 {
5068 	int		rval, status;
5069 	struct dk_cinfo	dk_cinfo;
5070 	char		*device_path = vd->device_path;
5071 
5072 	/* device has been opened by vd_identify_dev() */
5073 	ASSERT(vd->ldi_handle[0] != NULL);
5074 	ASSERT(vd->dev[0] != NULL);
5075 
5076 	vd->file = B_FALSE;
5077 
5078 	/* Verify backing device supports dk_cinfo */
5079 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5080 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5081 	    &rval)) != 0) {
5082 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5083 		    status, device_path);
5084 		return (status);
5085 	}
5086 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5087 		PRN("slice %u >= maximum slice %u for %s",
5088 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
5089 		return (EIO);
5090 	}
5091 
5092 	/*
5093 	 * The device has been opened read-only by vd_identify_dev(), re-open
5094 	 * it read-write if the write flag is set and we don't have an optical
5095 	 * device such as a CD-ROM, which, for now, we do not permit writes to
5096 	 * and thus should not export write operations to the client.
5097 	 *
5098 	 * Future: if/when we implement support for guest domains writing to
5099 	 * optical devices we will need to do further checking of the media type
5100 	 * to distinguish between read-only and writable discs.
5101 	 */
5102 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
5103 
5104 		vd->open_flags &= ~FWRITE;
5105 
5106 	} else if (vd->open_flags & FWRITE) {
5107 
5108 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
5109 		    kcred);
5110 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
5111 		if (status != 0) {
5112 			PR0("Failed to open (%s) = errno %d",
5113 			    device_path, status);
5114 			return (status);
5115 		}
5116 	}
5117 
5118 	/* Store the device's max transfer size for return to the client */
5119 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5120 
5121 	/*
5122 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
5123 	 * that we can use the correct CDB group when sending USCSI commands.
5124 	 */
5125 	vd->is_atapi_dev = vd_is_atapi_device(vd);
5126 
5127 	/*
5128 	 * Export a full disk.
5129 	 *
5130 	 * When we use the LDI interface, we export a device as a full disk
5131 	 * if we have an entire disk slice (slice 2) and if this slice is
5132 	 * exported as a full disk and not as a single slice disk.
5133 	 * Similarly, we want to use LDI if we are accessing a CD or DVD
5134 	 * device (even if it isn't s2)
5135 	 *
5136 	 * Note that volume devices are exported as full disks using the vnode
5137 	 * interface, not the LDI interface.
5138 	 */
5139 	if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
5140 	    vd->vdisk_type == VD_DISK_TYPE_DISK) ||
5141 	    dk_cinfo.dki_ctype == DKC_CDROM) {
5142 		ASSERT(!vd->volume);
5143 		if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
5144 			vd->scsi = B_TRUE;
5145 		return (vd_setup_full_disk(vd));
5146 	}
5147 
5148 	/*
5149 	 * Export a single slice disk.
5150 	 *
5151 	 * The exported device can be either a volume device or a disk slice. If
5152 	 * it is a disk slice different from slice 2 then it is always exported
5153 	 * as a single slice disk even if the "slice" option is not specified.
5154 	 * If it is disk slice 2 or a volume device then it is exported as a
5155 	 * single slice disk only if the "slice" option is specified.
5156 	 */
5157 	return (vd_setup_single_slice_disk(vd));
5158 }
5159 
5160 static int
5161 vd_setup_single_slice_disk(vd_t *vd)
5162 {
5163 	int status, rval;
5164 	char *device_path = vd->device_path;
5165 
5166 	/* Get size of backing device */
5167 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
5168 		PRN("ldi_get_size() failed for %s", device_path);
5169 		return (EIO);
5170 	}
5171 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
5172 	vd->block_size = DEV_BSIZE;
5173 	vd->vdisk_block_size = DEV_BSIZE;
5174 	vd->vdisk_media = VD_MEDIA_FIXED;
5175 
5176 	if (vd->volume) {
5177 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
5178 	}
5179 
5180 	/*
5181 	 * We export the slice as a single slice disk even if the "slice"
5182 	 * option was not specified.
5183 	 */
5184 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
5185 	vd->nslices	= 1;
5186 
5187 	/*
5188 	 * When exporting a slice or a device as a single slice disk, we don't
5189 	 * care about any partitioning exposed by the backend. The goal is just
5190 	 * to export the backend as a flat storage. We provide a fake partition
5191 	 * table (either a VTOC or EFI), which presents only one slice, to
5192 	 * accommodate tools expecting a disk label.
5193 	 *
5194 	 * We check the label of the backend to export the device as a slice
5195 	 * using the same type of label (VTOC or EFI). If there is no label
5196 	 * then we create a fake EFI label.
5197 	 *
5198 	 * Note that the partition table we are creating could also be faked
5199 	 * by the client based on the size of the backend device.
5200 	 */
5201 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, (intptr_t)&vd->vtoc,
5202 	    (vd->open_flags | FKIOCTL), kcred, &rval);
5203 
5204 	if (status == 0) {
5205 		/* export with a fake VTOC label */
5206 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
5207 		status = vd_setup_partition_vtoc(vd);
5208 	} else {
5209 		/* export with a fake EFI label */
5210 		vd->vdisk_label = VD_DISK_LABEL_EFI;
5211 		status = vd_setup_partition_efi(vd);
5212 	}
5213 
5214 	return (status);
5215 }
5216 
5217 /*
5218  * Description:
5219  *	Open a device using its device path and identify if this is
5220  *	a disk device or a volume device.
5221  *
5222  * Parameters:
5223  *	vd 	- pointer to structure containing the vDisk info
5224  *	dtype	- return the driver type of the device
5225  *
5226  * Return Value
5227  *	0	- success
5228  *	!= 0	- some other non-zero return value from ldi(9F) functions
5229  */
5230 static int
5231 vd_identify_dev(vd_t *vd, int *dtype)
5232 {
5233 	int status, i;
5234 	char *device_path = vd->device_path;
5235 	char *drv_name;
5236 	int drv_type;
5237 	vds_t *vds = vd->vds;
5238 
5239 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
5240 	if (status != 0) {
5241 		PR0("Failed to open (%s) = errno %d", device_path, status);
5242 		return (status);
5243 	}
5244 
5245 	/* Get device number of backing device */
5246 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
5247 		PRN("ldi_get_dev() returned errno %d for %s",
5248 		    status, device_path);
5249 		return (status);
5250 	}
5251 
5252 	/*
5253 	 * We start by looking if the driver is in the list from vds.conf
5254 	 * so that we can override the built-in list using vds.conf.
5255 	 */
5256 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
5257 	drv_type = VD_DRIVER_UNKNOWN;
5258 
5259 	/* check vds.conf list */
5260 	for (i = 0; i < vds->num_drivers; i++) {
5261 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
5262 			/* ignore invalid entries */
5263 			continue;
5264 		}
5265 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
5266 			drv_type = vds->driver_types[i].type;
5267 			goto done;
5268 		}
5269 	}
5270 
5271 	/* check built-in list */
5272 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
5273 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
5274 			drv_type = vds_driver_types[i].type;
5275 			goto done;
5276 		}
5277 	}
5278 
5279 done:
5280 	PR0("driver %s identified as %s", drv_name,
5281 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
5282 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
5283 
5284 	*dtype = drv_type;
5285 
5286 	return (0);
5287 }
5288 
5289 static int
5290 vd_setup_vd(vd_t *vd)
5291 {
5292 	int		status, drv_type, pseudo;
5293 	dev_info_t	*dip;
5294 	vnode_t 	*vnp;
5295 	char		*path = vd->device_path;
5296 
5297 	/* make sure the vdisk backend is valid */
5298 	if ((status = lookupname(path, UIO_SYSSPACE,
5299 	    FOLLOW, NULLVPP, &vnp)) != 0) {
5300 		PR0("Cannot lookup %s errno %d", path, status);
5301 		goto done;
5302 	}
5303 
5304 	switch (vnp->v_type) {
5305 	case VREG:
5306 		/*
5307 		 * Backend is a file so it is exported as a full disk or as a
5308 		 * single slice disk using the vnode interface.
5309 		 */
5310 		VN_RELE(vnp);
5311 		vd->volume = B_FALSE;
5312 		status = vd_setup_backend_vnode(vd);
5313 		break;
5314 
5315 	case VBLK:
5316 	case VCHR:
5317 		/*
5318 		 * Backend is a device. The way it is exported depends on the
5319 		 * type of the device.
5320 		 *
5321 		 * - A volume device is exported as a full disk using the vnode
5322 		 *   interface or as a single slice disk using the LDI
5323 		 *   interface.
5324 		 *
5325 		 * - A disk (represented by the slice 2 of that disk) is
5326 		 *   exported as a full disk using the LDI interface.
5327 		 *
5328 		 * - A disk slice (different from slice 2) is always exported
5329 		 *   as a single slice disk using the LDI interface.
5330 		 *
5331 		 * - The slice 2 of a disk is exported as a single slice disk
5332 		 *   if the "slice" option is specified, otherwise the entire
5333 		 *   disk will be exported. In any case, the LDI interface is
5334 		 *   used.
5335 		 */
5336 
5337 		/* check if this is a pseudo device */
5338 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
5339 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
5340 			PRN("%s is no longer accessible", path);
5341 			VN_RELE(vnp);
5342 			status = EIO;
5343 			break;
5344 		}
5345 		pseudo = is_pseudo_device(dip);
5346 		ddi_release_devi(dip);
5347 		VN_RELE(vnp);
5348 
5349 		if (vd_identify_dev(vd, &drv_type) != 0) {
5350 			PRN("%s identification failed", path);
5351 			status = EIO;
5352 			break;
5353 		}
5354 
5355 		/*
5356 		 * If the driver hasn't been identified then we consider that
5357 		 * pseudo devices are volumes and other devices are disks.
5358 		 */
5359 		if (drv_type == VD_DRIVER_VOLUME ||
5360 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
5361 			vd->volume = B_TRUE;
5362 		} else {
5363 			status = vd_setup_backend_ldi(vd);
5364 			break;
5365 		}
5366 
5367 		/*
5368 		 * If this is a volume device then its usage depends if the
5369 		 * "slice" option is set or not. If the "slice" option is set
5370 		 * then the volume device will be exported as a single slice,
5371 		 * otherwise it will be exported as a full disk.
5372 		 *
5373 		 * For backward compatibility, if vd_volume_force_slice is set
5374 		 * then we always export volume devices as slices.
5375 		 */
5376 		if (vd_volume_force_slice) {
5377 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
5378 			vd->nslices = 1;
5379 		}
5380 
5381 		if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
5382 			/* close device opened during identification */
5383 			(void) ldi_close(vd->ldi_handle[0],
5384 			    vd->open_flags & ~FWRITE, kcred);
5385 			vd->ldi_handle[0] = NULL;
5386 			vd->dev[0] = 0;
5387 			status = vd_setup_backend_vnode(vd);
5388 		} else {
5389 			status = vd_setup_backend_ldi(vd);
5390 		}
5391 		break;
5392 
5393 	default:
5394 		PRN("Unsupported vdisk backend %s", path);
5395 		VN_RELE(vnp);
5396 		status = EBADF;
5397 	}
5398 
5399 done:
5400 	if (status != 0) {
5401 		/*
5402 		 * If the error is retryable print an error message only
5403 		 * during the first try.
5404 		 */
5405 		if (status == ENXIO || status == ENODEV ||
5406 		    status == ENOENT || status == EROFS) {
5407 			if (!(vd->initialized & VD_SETUP_ERROR)) {
5408 				PRN("%s is currently inaccessible (error %d)",
5409 				    path, status);
5410 			}
5411 			status = EAGAIN;
5412 		} else {
5413 			PRN("%s can not be exported as a virtual disk "
5414 			    "(error %d)", path, status);
5415 		}
5416 		vd->initialized |= VD_SETUP_ERROR;
5417 
5418 	} else if (vd->initialized & VD_SETUP_ERROR) {
5419 		/* print a message only if we previously had an error */
5420 		PRN("%s is now online", path);
5421 		vd->initialized &= ~VD_SETUP_ERROR;
5422 	}
5423 
5424 	return (status);
5425 }
5426 
5427 static int
5428 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
5429     uint64_t ldc_id, vd_t **vdp)
5430 {
5431 	char			tq_name[TASKQ_NAMELEN];
5432 	int			status;
5433 	ddi_iblock_cookie_t	iblock = NULL;
5434 	ldc_attr_t		ldc_attr;
5435 	vd_t			*vd;
5436 
5437 
5438 	ASSERT(vds != NULL);
5439 	ASSERT(device_path != NULL);
5440 	ASSERT(vdp != NULL);
5441 	PR0("Adding vdisk for %s", device_path);
5442 
5443 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
5444 		PRN("No memory for virtual disk");
5445 		return (EAGAIN);
5446 	}
5447 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
5448 	vd->vds = vds;
5449 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
5450 
5451 	/* Setup open flags */
5452 	vd->open_flags = FREAD;
5453 
5454 	if (!(options & VD_OPT_RDONLY))
5455 		vd->open_flags |= FWRITE;
5456 
5457 	if (options & VD_OPT_EXCLUSIVE)
5458 		vd->open_flags |= FEXCL;
5459 
5460 	/* Setup disk type */
5461 	if (options & VD_OPT_SLICE) {
5462 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
5463 		vd->nslices = 1;
5464 	} else {
5465 		vd->vdisk_type = VD_DISK_TYPE_DISK;
5466 		vd->nslices = V_NUMPAR;
5467 	}
5468 
5469 	/* default disk label */
5470 	vd->vdisk_label = VD_DISK_LABEL_UNK;
5471 
5472 	/* Open vdisk and initialize parameters */
5473 	if ((status = vd_setup_vd(vd)) == 0) {
5474 		vd->initialized |= VD_DISK_READY;
5475 
5476 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
5477 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
5478 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
5479 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
5480 		    vd->nslices);
5481 	} else {
5482 		if (status != EAGAIN)
5483 			return (status);
5484 	}
5485 
5486 	/* Initialize locking */
5487 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
5488 	    &iblock) != DDI_SUCCESS) {
5489 		PRN("Could not get iblock cookie.");
5490 		return (EIO);
5491 	}
5492 
5493 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
5494 	vd->initialized |= VD_LOCKING;
5495 
5496 
5497 	/* Create start and completion task queues for the vdisk */
5498 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
5499 	PR1("tq_name = %s", tq_name);
5500 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
5501 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
5502 		PRN("Could not create task queue");
5503 		return (EIO);
5504 	}
5505 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
5506 	PR1("tq_name = %s", tq_name);
5507 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
5508 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
5509 		PRN("Could not create task queue");
5510 		return (EIO);
5511 	}
5512 
5513 	/* Allocate the staging buffer */
5514 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
5515 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
5516 
5517 	vd->enabled = 1;	/* before callback can dispatch to startq */
5518 
5519 
5520 	/* Bring up LDC */
5521 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
5522 	ldc_attr.instance	= ddi_get_instance(vds->dip);
5523 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
5524 	ldc_attr.mtu		= VD_LDC_MTU;
5525 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
5526 		PRN("Could not initialize LDC channel %lx, "
5527 		    "init failed with error %d", ldc_id, status);
5528 		return (status);
5529 	}
5530 	vd->initialized |= VD_LDC;
5531 
5532 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
5533 	    (caddr_t)vd)) != 0) {
5534 		PRN("Could not initialize LDC channel %lu,"
5535 		    "reg_callback failed with error %d", ldc_id, status);
5536 		return (status);
5537 	}
5538 
5539 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
5540 		PRN("Could not initialize LDC channel %lu,"
5541 		    "open failed with error %d", ldc_id, status);
5542 		return (status);
5543 	}
5544 
5545 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
5546 		PR0("ldc_up() returned errno %d", status);
5547 	}
5548 
5549 	/* Allocate the inband task memory handle */
5550 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
5551 	if (status) {
5552 		PRN("Could not initialize LDC channel %lu,"
5553 		    "alloc_handle failed with error %d", ldc_id, status);
5554 		return (ENXIO);
5555 	}
5556 
5557 	/* Add the successfully-initialized vdisk to the server's table */
5558 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
5559 		PRN("Error adding vdisk ID %lu to table", id);
5560 		return (EIO);
5561 	}
5562 
5563 	/* store initial state */
5564 	vd->state = VD_STATE_INIT;
5565 
5566 	return (0);
5567 }
5568 
5569 static void
5570 vd_free_dring_task(vd_t *vdp)
5571 {
5572 	if (vdp->dring_task != NULL) {
5573 		ASSERT(vdp->dring_len != 0);
5574 		/* Free all dring_task memory handles */
5575 		for (int i = 0; i < vdp->dring_len; i++) {
5576 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
5577 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
5578 			vdp->dring_task[i].msg = NULL;
5579 		}
5580 		kmem_free(vdp->dring_task,
5581 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
5582 		vdp->dring_task = NULL;
5583 	}
5584 }
5585 
5586 /*
5587  * Destroy the state associated with a virtual disk
5588  */
5589 static void
5590 vds_destroy_vd(void *arg)
5591 {
5592 	vd_t	*vd = (vd_t *)arg;
5593 	int	retry = 0, rv;
5594 
5595 	if (vd == NULL)
5596 		return;
5597 
5598 	PR0("Destroying vdisk state");
5599 
5600 	/* Disable queuing requests for the vdisk */
5601 	if (vd->initialized & VD_LOCKING) {
5602 		mutex_enter(&vd->lock);
5603 		vd->enabled = 0;
5604 		mutex_exit(&vd->lock);
5605 	}
5606 
5607 	/* Drain and destroy start queue (*before* destroying completionq) */
5608 	if (vd->startq != NULL)
5609 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
5610 
5611 	/* Drain and destroy completion queue (*before* shutting down LDC) */
5612 	if (vd->completionq != NULL)
5613 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
5614 
5615 	vd_free_dring_task(vd);
5616 
5617 	/* Free the inband task memory handle */
5618 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
5619 
5620 	/* Shut down LDC */
5621 	if (vd->initialized & VD_LDC) {
5622 		/* unmap the dring */
5623 		if (vd->initialized & VD_DRING)
5624 			(void) ldc_mem_dring_unmap(vd->dring_handle);
5625 
5626 		/* close LDC channel - retry on EAGAIN */
5627 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
5628 			if (++retry > vds_ldc_retries) {
5629 				PR0("Timed out closing channel");
5630 				break;
5631 			}
5632 			drv_usecwait(vds_ldc_delay);
5633 		}
5634 		if (rv == 0) {
5635 			(void) ldc_unreg_callback(vd->ldc_handle);
5636 			(void) ldc_fini(vd->ldc_handle);
5637 		} else {
5638 			/*
5639 			 * Closing the LDC channel has failed. Ideally we should
5640 			 * fail here but there is no Zeus level infrastructure
5641 			 * to handle this. The MD has already been changed and
5642 			 * we have to do the close. So we try to do as much
5643 			 * clean up as we can.
5644 			 */
5645 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
5646 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
5647 				drv_usecwait(vds_ldc_delay);
5648 		}
5649 	}
5650 
5651 	/* Free the staging buffer for msgs */
5652 	if (vd->vio_msgp != NULL) {
5653 		kmem_free(vd->vio_msgp, vd->max_msglen);
5654 		vd->vio_msgp = NULL;
5655 	}
5656 
5657 	/* Free the inband message buffer */
5658 	if (vd->inband_task.msg != NULL) {
5659 		kmem_free(vd->inband_task.msg, vd->max_msglen);
5660 		vd->inband_task.msg = NULL;
5661 	}
5662 
5663 	if (vd->file) {
5664 		/* Close file */
5665 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
5666 		    0, kcred, NULL);
5667 		VN_RELE(vd->file_vnode);
5668 		if (vd->file_devid != NULL)
5669 			ddi_devid_free(vd->file_devid);
5670 	} else {
5671 		/* Close any open backing-device slices */
5672 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
5673 			if (vd->ldi_handle[slice] != NULL) {
5674 				PR0("Closing slice %u", slice);
5675 				(void) ldi_close(vd->ldi_handle[slice],
5676 				    vd->open_flags, kcred);
5677 			}
5678 		}
5679 	}
5680 
5681 	/* Free lock */
5682 	if (vd->initialized & VD_LOCKING)
5683 		mutex_destroy(&vd->lock);
5684 
5685 	/* Finally, free the vdisk structure itself */
5686 	kmem_free(vd, sizeof (*vd));
5687 }
5688 
5689 static int
5690 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
5691     uint64_t ldc_id)
5692 {
5693 	int	status;
5694 	vd_t	*vd = NULL;
5695 
5696 
5697 	if ((status = vds_do_init_vd(vds, id, device_path, options,
5698 	    ldc_id, &vd)) != 0)
5699 		vds_destroy_vd(vd);
5700 
5701 	return (status);
5702 }
5703 
5704 static int
5705 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
5706     uint64_t *ldc_id)
5707 {
5708 	int	num_channels;
5709 
5710 
5711 	/* Look for channel endpoint child(ren) of the vdisk MD node */
5712 	if ((num_channels = md_scan_dag(md, vd_node,
5713 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
5714 	    md_find_name(md, "fwd"), channel)) <= 0) {
5715 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
5716 		return (-1);
5717 	}
5718 
5719 	/* Get the "id" value for the first channel endpoint node */
5720 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
5721 		PRN("No \"%s\" property found for \"%s\" of vdisk",
5722 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
5723 		return (-1);
5724 	}
5725 
5726 	if (num_channels > 1) {
5727 		PRN("Using ID of first of multiple channels for this vdisk");
5728 	}
5729 
5730 	return (0);
5731 }
5732 
5733 static int
5734 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
5735 {
5736 	int		num_nodes, status;
5737 	size_t		size;
5738 	mde_cookie_t	*channel;
5739 
5740 
5741 	if ((num_nodes = md_node_count(md)) <= 0) {
5742 		PRN("Invalid node count in Machine Description subtree");
5743 		return (-1);
5744 	}
5745 	size = num_nodes*(sizeof (*channel));
5746 	channel = kmem_zalloc(size, KM_SLEEP);
5747 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
5748 	kmem_free(channel, size);
5749 
5750 	return (status);
5751 }
5752 
5753 /*
5754  * Function:
5755  *	vds_get_options
5756  *
5757  * Description:
5758  * 	Parse the options of a vds node. Options are defined as an array
5759  *	of strings in the vds-block-device-opts property of the vds node
5760  *	in the machine description. Options are returned as a bitmask. The
5761  *	mapping between the bitmask options and the options strings from the
5762  *	machine description is defined in the vd_bdev_options[] array.
5763  *
5764  *	The vds-block-device-opts property is optional. If a vds has no such
5765  *	property then no option is defined.
5766  *
5767  * Parameters:
5768  *	md		- machine description.
5769  *	vd_node		- vds node in the machine description for which
5770  *			  options have to be parsed.
5771  *	options		- the returned options.
5772  *
5773  * Return Code:
5774  *	none.
5775  */
5776 static void
5777 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
5778 {
5779 	char	*optstr, *opt;
5780 	int	len, n, i;
5781 
5782 	*options = 0;
5783 
5784 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
5785 	    (uint8_t **)&optstr, &len) != 0) {
5786 		PR0("No options found");
5787 		return;
5788 	}
5789 
5790 	/* parse options */
5791 	opt = optstr;
5792 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
5793 
5794 	while (opt < optstr + len) {
5795 		for (i = 0; i < n; i++) {
5796 			if (strncmp(vd_bdev_options[i].vdo_name,
5797 			    opt, VD_OPTION_NLEN) == 0) {
5798 				*options |= vd_bdev_options[i].vdo_value;
5799 				break;
5800 			}
5801 		}
5802 
5803 		if (i < n) {
5804 			PR0("option: %s", opt);
5805 		} else {
5806 			PRN("option %s is unknown or unsupported", opt);
5807 		}
5808 
5809 		opt += strlen(opt) + 1;
5810 	}
5811 }
5812 
5813 static void
5814 vds_driver_types_free(vds_t *vds)
5815 {
5816 	if (vds->driver_types != NULL) {
5817 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
5818 		    vds->num_drivers);
5819 		vds->driver_types = NULL;
5820 		vds->num_drivers = 0;
5821 	}
5822 }
5823 
5824 /*
5825  * Update the driver type list with information from vds.conf.
5826  */
5827 static void
5828 vds_driver_types_update(vds_t *vds)
5829 {
5830 	char **list, *s;
5831 	uint_t i, num, count = 0, len;
5832 
5833 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
5834 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
5835 	    DDI_PROP_SUCCESS)
5836 		return;
5837 
5838 	/*
5839 	 * We create a driver_types list with as many as entries as there
5840 	 * is in the driver-type-list from vds.conf. However only valid
5841 	 * entries will be populated (i.e. entries from driver-type-list
5842 	 * with a valid syntax). Invalid entries will be left blank so
5843 	 * they will have no driver name and the driver type will be
5844 	 * VD_DRIVER_UNKNOWN (= 0).
5845 	 */
5846 	vds->num_drivers = num;
5847 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
5848 	    KM_SLEEP);
5849 
5850 	for (i = 0; i < num; i++) {
5851 
5852 		s = strchr(list[i], ':');
5853 
5854 		if (s == NULL) {
5855 			PRN("vds.conf: driver-type-list, entry %d (%s): "
5856 			    "a colon is expected in the entry",
5857 			    i, list[i]);
5858 			continue;
5859 		}
5860 
5861 		len = (uintptr_t)s - (uintptr_t)list[i];
5862 
5863 		if (len == 0) {
5864 			PRN("vds.conf: driver-type-list, entry %d (%s): "
5865 			    "the driver name is empty",
5866 			    i, list[i]);
5867 			continue;
5868 		}
5869 
5870 		if (len >= VD_DRIVER_NAME_LEN) {
5871 			PRN("vds.conf: driver-type-list, entry %d (%s): "
5872 			    "the driver name is too long",
5873 			    i, list[i]);
5874 			continue;
5875 		}
5876 
5877 		if (strcmp(s + 1, "disk") == 0) {
5878 
5879 			vds->driver_types[i].type = VD_DRIVER_DISK;
5880 
5881 		} else if (strcmp(s + 1, "volume") == 0) {
5882 
5883 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
5884 
5885 		} else {
5886 			PRN("vds.conf: driver-type-list, entry %d (%s): "
5887 			    "the driver type is invalid",
5888 			    i, list[i]);
5889 			continue;
5890 		}
5891 
5892 		(void) strncpy(vds->driver_types[i].name, list[i], len);
5893 
5894 		PR0("driver-type-list, entry %d (%s) added",
5895 		    i, list[i]);
5896 
5897 		count++;
5898 	}
5899 
5900 	ddi_prop_free(list);
5901 
5902 	if (count == 0) {
5903 		/* nothing was added, clean up */
5904 		vds_driver_types_free(vds);
5905 	}
5906 }
5907 
5908 static void
5909 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
5910 {
5911 	char		*device_path = NULL;
5912 	uint64_t	id = 0, ldc_id = 0, options = 0;
5913 
5914 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
5915 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
5916 		return;
5917 	}
5918 	PR0("Adding vdisk ID %lu", id);
5919 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
5920 	    &device_path) != 0) {
5921 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
5922 		return;
5923 	}
5924 
5925 	vds_get_options(md, vd_node, &options);
5926 
5927 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
5928 		PRN("Error getting LDC ID for vdisk %lu", id);
5929 		return;
5930 	}
5931 
5932 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
5933 		PRN("Failed to add vdisk ID %lu", id);
5934 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
5935 			PRN("No vDisk entry found for vdisk ID %lu", id);
5936 		return;
5937 	}
5938 }
5939 
5940 static void
5941 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
5942 {
5943 	uint64_t	id = 0;
5944 
5945 
5946 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
5947 		PRN("Unable to get \"%s\" property from vdisk's MD node",
5948 		    VD_ID_PROP);
5949 		return;
5950 	}
5951 	PR0("Removing vdisk ID %lu", id);
5952 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
5953 		PRN("No vdisk entry found for vdisk ID %lu", id);
5954 }
5955 
5956 static void
5957 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
5958     md_t *curr_md, mde_cookie_t curr_vd_node)
5959 {
5960 	char		*curr_dev, *prev_dev;
5961 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
5962 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
5963 	size_t		len;
5964 
5965 
5966 	/* Validate that vdisk ID has not changed */
5967 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
5968 		PRN("Error getting previous vdisk \"%s\" property",
5969 		    VD_ID_PROP);
5970 		return;
5971 	}
5972 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
5973 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
5974 		return;
5975 	}
5976 	if (curr_id != prev_id) {
5977 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
5978 		    prev_id, curr_id);
5979 		return;
5980 	}
5981 
5982 	/* Validate that LDC ID has not changed */
5983 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
5984 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
5985 		return;
5986 	}
5987 
5988 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
5989 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
5990 		return;
5991 	}
5992 	if (curr_ldc_id != prev_ldc_id) {
5993 		_NOTE(NOTREACHED);	/* lint is confused */
5994 		PRN("Not changing vdisk:  "
5995 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
5996 		return;
5997 	}
5998 
5999 	/* Determine whether device path has changed */
6000 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
6001 	    &prev_dev) != 0) {
6002 		PRN("Error getting previous vdisk \"%s\"",
6003 		    VD_BLOCK_DEVICE_PROP);
6004 		return;
6005 	}
6006 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
6007 	    &curr_dev) != 0) {
6008 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6009 		return;
6010 	}
6011 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
6012 	    (strncmp(curr_dev, prev_dev, len) == 0))
6013 		return;	/* no relevant (supported) change */
6014 
6015 	/* Validate that options have not changed */
6016 	vds_get_options(prev_md, prev_vd_node, &prev_options);
6017 	vds_get_options(curr_md, curr_vd_node, &curr_options);
6018 	if (prev_options != curr_options) {
6019 		PRN("Not changing vdisk:  options changed from %lx to %lx",
6020 		    prev_options, curr_options);
6021 		return;
6022 	}
6023 
6024 	PR0("Changing vdisk ID %lu", prev_id);
6025 
6026 	/* Remove old state, which will close vdisk and reset */
6027 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
6028 		PRN("No entry found for vdisk ID %lu", prev_id);
6029 
6030 	/* Re-initialize vdisk with new state */
6031 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
6032 	    curr_ldc_id) != 0) {
6033 		PRN("Failed to change vdisk ID %lu", curr_id);
6034 		return;
6035 	}
6036 }
6037 
6038 static int
6039 vds_process_md(void *arg, mdeg_result_t *md)
6040 {
6041 	int	i;
6042 	vds_t	*vds = arg;
6043 
6044 
6045 	if (md == NULL)
6046 		return (MDEG_FAILURE);
6047 	ASSERT(vds != NULL);
6048 
6049 	for (i = 0; i < md->removed.nelem; i++)
6050 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
6051 	for (i = 0; i < md->match_curr.nelem; i++)
6052 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
6053 		    md->match_curr.mdp, md->match_curr.mdep[i]);
6054 	for (i = 0; i < md->added.nelem; i++)
6055 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
6056 
6057 	return (MDEG_SUCCESS);
6058 }
6059 
6060 
6061 static int
6062 vds_do_attach(dev_info_t *dip)
6063 {
6064 	int			status, sz;
6065 	int			cfg_handle;
6066 	minor_t			instance = ddi_get_instance(dip);
6067 	vds_t			*vds;
6068 	mdeg_prop_spec_t	*pspecp;
6069 	mdeg_node_spec_t	*ispecp;
6070 
6071 	/*
6072 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
6073 	 * notion of "instance", or unique identifier, for that node; OBP
6074 	 * stores the value of the "cfg-handle" MD property as the value of
6075 	 * the "reg" property on the node in the device tree it builds from
6076 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
6077 	 * "reg" property value to uniquely identify this device instance when
6078 	 * registering with the MD event-generation framework.  If the "reg"
6079 	 * property cannot be found, the device tree state is presumably so
6080 	 * broken that there is no point in continuing.
6081 	 */
6082 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6083 	    VD_REG_PROP)) {
6084 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
6085 		return (DDI_FAILURE);
6086 	}
6087 
6088 	/* Get the MD instance for later MDEG registration */
6089 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6090 	    VD_REG_PROP, -1);
6091 
6092 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
6093 		PRN("Could not allocate state for instance %u", instance);
6094 		return (DDI_FAILURE);
6095 	}
6096 
6097 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
6098 		PRN("Could not get state for instance %u", instance);
6099 		ddi_soft_state_free(vds_state, instance);
6100 		return (DDI_FAILURE);
6101 	}
6102 
6103 	vds->dip	= dip;
6104 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
6105 	    vds_destroy_vd, sizeof (void *));
6106 
6107 	ASSERT(vds->vd_table != NULL);
6108 
6109 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
6110 		PRN("ldi_ident_from_dip() returned errno %d", status);
6111 		return (DDI_FAILURE);
6112 	}
6113 	vds->initialized |= VDS_LDI;
6114 
6115 	/* Register for MD updates */
6116 	sz = sizeof (vds_prop_template);
6117 	pspecp = kmem_alloc(sz, KM_SLEEP);
6118 	bcopy(vds_prop_template, pspecp, sz);
6119 
6120 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
6121 
6122 	/* initialize the complete prop spec structure */
6123 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
6124 	ispecp->namep = "virtual-device";
6125 	ispecp->specp = pspecp;
6126 
6127 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
6128 	    &vds->mdeg) != MDEG_SUCCESS) {
6129 		PRN("Unable to register for MD updates");
6130 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
6131 		kmem_free(pspecp, sz);
6132 		return (DDI_FAILURE);
6133 	}
6134 
6135 	vds->ispecp = ispecp;
6136 	vds->initialized |= VDS_MDEG;
6137 
6138 	/* Prevent auto-detaching so driver is available whenever MD changes */
6139 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
6140 	    DDI_PROP_SUCCESS) {
6141 		PRN("failed to set \"%s\" property for instance %u",
6142 		    DDI_NO_AUTODETACH, instance);
6143 	}
6144 
6145 	/* read any user defined driver types from conf file and update list */
6146 	vds_driver_types_update(vds);
6147 
6148 	ddi_report_dev(dip);
6149 	return (DDI_SUCCESS);
6150 }
6151 
6152 static int
6153 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
6154 {
6155 	int	status;
6156 
6157 	switch (cmd) {
6158 	case DDI_ATTACH:
6159 		PR0("Attaching");
6160 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
6161 			(void) vds_detach(dip, DDI_DETACH);
6162 		return (status);
6163 	case DDI_RESUME:
6164 		PR0("No action required for DDI_RESUME");
6165 		return (DDI_SUCCESS);
6166 	default:
6167 		return (DDI_FAILURE);
6168 	}
6169 }
6170 
6171 static struct dev_ops vds_ops = {
6172 	DEVO_REV,	/* devo_rev */
6173 	0,		/* devo_refcnt */
6174 	ddi_no_info,	/* devo_getinfo */
6175 	nulldev,	/* devo_identify */
6176 	nulldev,	/* devo_probe */
6177 	vds_attach,	/* devo_attach */
6178 	vds_detach,	/* devo_detach */
6179 	nodev,		/* devo_reset */
6180 	NULL,		/* devo_cb_ops */
6181 	NULL,		/* devo_bus_ops */
6182 	nulldev		/* devo_power */
6183 };
6184 
6185 static struct modldrv modldrv = {
6186 	&mod_driverops,
6187 	"virtual disk server",
6188 	&vds_ops,
6189 };
6190 
6191 static struct modlinkage modlinkage = {
6192 	MODREV_1,
6193 	&modldrv,
6194 	NULL
6195 };
6196 
6197 
6198 int
6199 _init(void)
6200 {
6201 	int		status;
6202 
6203 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
6204 		return (status);
6205 
6206 	if ((status = mod_install(&modlinkage)) != 0) {
6207 		ddi_soft_state_fini(&vds_state);
6208 		return (status);
6209 	}
6210 
6211 	return (0);
6212 }
6213 
6214 int
6215 _info(struct modinfo *modinfop)
6216 {
6217 	return (mod_info(&modlinkage, modinfop));
6218 }
6219 
6220 int
6221 _fini(void)
6222 {
6223 	int	status;
6224 
6225 	if ((status = mod_remove(&modlinkage)) != 0)
6226 		return (status);
6227 	ddi_soft_state_fini(&vds_state);
6228 	return (0);
6229 }
6230