1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual disk server 31 */ 32 33 34 #include <sys/types.h> 35 #include <sys/conf.h> 36 #include <sys/crc32.h> 37 #include <sys/ddi.h> 38 #include <sys/dkio.h> 39 #include <sys/file.h> 40 #include <sys/mdeg.h> 41 #include <sys/modhash.h> 42 #include <sys/note.h> 43 #include <sys/pathname.h> 44 #include <sys/sunddi.h> 45 #include <sys/sunldi.h> 46 #include <sys/sysmacros.h> 47 #include <sys/vio_common.h> 48 #include <sys/vdsk_mailbox.h> 49 #include <sys/vdsk_common.h> 50 #include <sys/vtoc.h> 51 52 53 /* Virtual disk server initialization flags */ 54 #define VDS_LDI 0x01 55 #define VDS_MDEG 0x02 56 57 /* Virtual disk server tunable parameters */ 58 #define VDS_LDC_RETRIES 5 59 #define VDS_LDC_DELAY 1000 /* usec */ 60 #define VDS_NCHAINS 32 61 62 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 63 #define VDS_NAME "virtual-disk-server" 64 65 #define VD_NAME "vd" 66 #define VD_VOLUME_NAME "vdisk" 67 #define VD_ASCIILABEL "Virtual Disk" 68 69 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 70 #define VD_ID_PROP "id" 71 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 72 #define VD_REG_PROP "reg" 73 74 /* Virtual disk initialization flags */ 75 #define VD_LOCKING 0x01 76 #define VD_LDC 0x02 77 #define VD_DRING 0x04 78 #define VD_SID 0x08 79 #define VD_SEQ_NUM 0x10 80 81 /* Flags for opening/closing backing devices via LDI */ 82 #define VD_OPEN_FLAGS (FEXCL | FREAD | FWRITE) 83 84 /* 85 * By Solaris convention, slice/partition 2 represents the entire disk; 86 * unfortunately, this convention does not appear to be codified. 87 */ 88 #define VD_ENTIRE_DISK_SLICE 2 89 90 /* Return a cpp token as a string */ 91 #define STRINGIZE(token) #token 92 93 /* 94 * Print a message prefixed with the current function name to the message log 95 * (and optionally to the console for verbose boots); these macros use cpp's 96 * concatenation of string literals and C99 variable-length-argument-list 97 * macros 98 */ 99 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 100 #define _PRN(format, ...) \ 101 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 102 103 /* Return a pointer to the "i"th vdisk dring element */ 104 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 105 (vd->dring + (i)*vd->descriptor_size)) 106 107 /* Return the virtual disk client's type as a string (for use in messages) */ 108 #define VD_CLIENT(vd) \ 109 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 110 (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" : \ 111 (((vd)->xfer_mode == 0) ? "null client" : \ 112 "unsupported client"))) 113 114 /* 115 * Specification of an MD node passed to the MDEG to filter any 116 * 'vport' nodes that do not belong to the specified node. This 117 * template is copied for each vds instance and filled in with 118 * the appropriate 'cfg-handle' value before being passed to the MDEG. 119 */ 120 static mdeg_prop_spec_t vds_prop_template[] = { 121 { MDET_PROP_STR, "name", VDS_NAME }, 122 { MDET_PROP_VAL, "cfg-handle", NULL }, 123 { MDET_LIST_END, NULL, NULL } 124 }; 125 126 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 127 128 /* 129 * Matching criteria passed to the MDEG to register interest 130 * in changes to 'virtual-device-port' nodes identified by their 131 * 'id' property. 132 */ 133 static md_prop_match_t vd_prop_match[] = { 134 { MDET_PROP_VAL, VD_ID_PROP }, 135 { MDET_LIST_END, NULL } 136 }; 137 138 static mdeg_node_match_t vd_match = {"virtual-device-port", 139 vd_prop_match}; 140 141 /* Debugging macros */ 142 #ifdef DEBUG 143 144 static int vd_msglevel = 0; 145 146 147 #define PR0 if (vd_msglevel > 0) PRN 148 #define PR1 if (vd_msglevel > 1) PRN 149 #define PR2 if (vd_msglevel > 2) PRN 150 151 #define VD_DUMP_DRING_ELEM(elem) \ 152 PRN("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 153 elem->hdr.dstate, \ 154 elem->payload.operation, \ 155 elem->payload.status, \ 156 elem->payload.nbytes, \ 157 elem->payload.addr, \ 158 elem->payload.ncookies); 159 160 char * 161 vd_decode_state(int state) 162 { 163 char *str; 164 165 #define CASE_STATE(_s) case _s: str = #_s; break; 166 167 switch (state) { 168 CASE_STATE(VD_STATE_INIT) 169 CASE_STATE(VD_STATE_VER) 170 CASE_STATE(VD_STATE_ATTR) 171 CASE_STATE(VD_STATE_DRING) 172 CASE_STATE(VD_STATE_RDX) 173 CASE_STATE(VD_STATE_DATA) 174 default: str = "unknown"; break; 175 } 176 177 #undef CASE_STATE 178 179 return (str); 180 } 181 182 void 183 vd_decode_tag(vio_msg_t *msg) 184 { 185 char *tstr, *sstr, *estr; 186 187 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 188 189 switch (msg->tag.vio_msgtype) { 190 CASE_TYPE(VIO_TYPE_CTRL) 191 CASE_TYPE(VIO_TYPE_DATA) 192 CASE_TYPE(VIO_TYPE_ERR) 193 default: tstr = "unknown"; break; 194 } 195 196 #undef CASE_TYPE 197 198 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 199 200 switch (msg->tag.vio_subtype) { 201 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 202 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 203 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 204 default: sstr = "unknown"; break; 205 } 206 207 #undef CASE_SUBTYPE 208 209 #define CASE_ENV(_s) case _s: estr = #_s; break; 210 211 switch (msg->tag.vio_subtype_env) { 212 CASE_ENV(VIO_VER_INFO) 213 CASE_ENV(VIO_ATTR_INFO) 214 CASE_ENV(VIO_DRING_REG) 215 CASE_ENV(VIO_DRING_UNREG) 216 CASE_ENV(VIO_RDX) 217 CASE_ENV(VIO_PKT_DATA) 218 CASE_ENV(VIO_DESC_DATA) 219 CASE_ENV(VIO_DRING_DATA) 220 default: estr = "unknown"; break; 221 } 222 223 #undef CASE_ENV 224 225 PR1("(%x/%x/%x) message : (%s/%s/%s)", 226 msg->tag.vio_msgtype, msg->tag.vio_subtype, 227 msg->tag.vio_subtype_env, tstr, sstr, estr); 228 } 229 230 #else /* !DEBUG */ 231 232 #define PR0(...) 233 #define PR1(...) 234 #define PR2(...) 235 236 #define VD_DUMP_DRING_ELEM(elem) 237 238 #define vd_decode_state(_s) (NULL) 239 #define vd_decode_tag(_s) (NULL) 240 241 #endif /* DEBUG */ 242 243 244 /* 245 * Soft state structure for a vds instance 246 */ 247 typedef struct vds { 248 uint_t initialized; /* driver inst initialization flags */ 249 dev_info_t *dip; /* driver inst devinfo pointer */ 250 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 251 mod_hash_t *vd_table; /* table of virtual disks served */ 252 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 253 mdeg_handle_t mdeg; /* handle for MDEG operations */ 254 } vds_t; 255 256 /* 257 * Types of descriptor-processing tasks 258 */ 259 typedef enum vd_task_type { 260 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 261 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 262 } vd_task_type_t; 263 264 /* 265 * Structure describing the task for processing a descriptor 266 */ 267 typedef struct vd_task { 268 struct vd *vd; /* vd instance task is for */ 269 vd_task_type_t type; /* type of descriptor task */ 270 int index; /* dring elem index for task */ 271 vio_msg_t *msg; /* VIO message task is for */ 272 size_t msglen; /* length of message content */ 273 vd_dring_payload_t *request; /* request task will perform */ 274 struct buf buf; /* buf(9s) for I/O request */ 275 ldc_mem_handle_t mhdl; /* task memory handle */ 276 } vd_task_t; 277 278 /* 279 * Soft state structure for a virtual disk instance 280 */ 281 typedef struct vd { 282 uint_t initialized; /* vdisk initialization flags */ 283 vds_t *vds; /* server for this vdisk */ 284 ddi_taskq_t *startq; /* queue for I/O start tasks */ 285 ddi_taskq_t *completionq; /* queue for completion tasks */ 286 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 287 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 288 uint_t nslices; /* number of slices */ 289 size_t vdisk_size; /* number of blocks in vdisk */ 290 vd_disk_type_t vdisk_type; /* slice or entire disk */ 291 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 292 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 293 boolean_t pseudo; /* underlying pseudo dev */ 294 struct dk_efi dk_efi; /* synthetic for slice type */ 295 struct dk_geom dk_geom; /* synthetic for slice type */ 296 struct vtoc vtoc; /* synthetic for slice type */ 297 ldc_status_t ldc_state; /* LDC connection state */ 298 ldc_handle_t ldc_handle; /* handle for LDC comm */ 299 size_t max_msglen; /* largest LDC message len */ 300 vd_state_t state; /* client handshake state */ 301 uint8_t xfer_mode; /* transfer mode with client */ 302 uint32_t sid; /* client's session ID */ 303 uint64_t seq_num; /* message sequence number */ 304 uint64_t dring_ident; /* identifier of dring */ 305 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 306 uint32_t descriptor_size; /* num bytes in desc */ 307 uint32_t dring_len; /* number of dring elements */ 308 caddr_t dring; /* address of dring */ 309 caddr_t vio_msgp; /* vio msg staging buffer */ 310 vd_task_t inband_task; /* task for inband descriptor */ 311 vd_task_t *dring_task; /* tasks dring elements */ 312 313 kmutex_t lock; /* protects variables below */ 314 boolean_t enabled; /* is vdisk enabled? */ 315 boolean_t reset_state; /* reset connection state? */ 316 boolean_t reset_ldc; /* reset LDC channel? */ 317 } vd_t; 318 319 typedef struct vds_operation { 320 char *namep; 321 uint8_t operation; 322 int (*start)(vd_task_t *task); 323 void (*complete)(void *arg); 324 } vds_operation_t; 325 326 typedef struct vd_ioctl { 327 uint8_t operation; /* vdisk operation */ 328 const char *operation_name; /* vdisk operation name */ 329 size_t nbytes; /* size of operation buffer */ 330 int cmd; /* corresponding ioctl cmd */ 331 const char *cmd_name; /* ioctl cmd name */ 332 void *arg; /* ioctl cmd argument */ 333 /* convert input vd_buf to output ioctl_arg */ 334 void (*copyin)(void *vd_buf, void *ioctl_arg); 335 /* convert input ioctl_arg to output vd_buf */ 336 void (*copyout)(void *ioctl_arg, void *vd_buf); 337 } vd_ioctl_t; 338 339 /* Define trivial copyin/copyout conversion function flag */ 340 #define VD_IDENTITY ((void (*)(void *, void *))-1) 341 342 343 static int vds_ldc_retries = VDS_LDC_RETRIES; 344 static int vds_ldc_delay = VDS_LDC_DELAY; 345 static void *vds_state; 346 static uint64_t vds_operations; /* see vds_operation[] definition below */ 347 348 static int vd_open_flags = VD_OPEN_FLAGS; 349 350 /* 351 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 352 * 353 * Each supported major version should appear only once, paired with (and only 354 * with) its highest supported minor version number (as the protocol requires 355 * supporting all lower minor version numbers as well) 356 */ 357 static const vio_ver_t vds_version[] = {{1, 0}}; 358 static const size_t vds_num_versions = 359 sizeof (vds_version)/sizeof (vds_version[0]); 360 361 static void vd_free_dring_task(vd_t *vdp); 362 363 static int 364 vd_start_bio(vd_task_t *task) 365 { 366 int rv, status = 0; 367 vd_t *vd = task->vd; 368 vd_dring_payload_t *request = task->request; 369 struct buf *buf = &task->buf; 370 uint8_t mtype; 371 372 373 ASSERT(vd != NULL); 374 ASSERT(request != NULL); 375 ASSERT(request->slice < vd->nslices); 376 ASSERT((request->operation == VD_OP_BREAD) || 377 (request->operation == VD_OP_BWRITE)); 378 379 if (request->nbytes == 0) 380 return (EINVAL); /* no service for trivial requests */ 381 382 PR1("%s %lu bytes at block %lu", 383 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 384 request->nbytes, request->addr); 385 386 bioinit(buf); 387 buf->b_flags = B_BUSY; 388 buf->b_bcount = request->nbytes; 389 buf->b_lblkno = request->addr; 390 buf->b_edev = vd->dev[request->slice]; 391 392 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 393 394 /* Map memory exported by client */ 395 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 396 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 397 &(buf->b_un.b_addr), NULL); 398 if (status != 0) { 399 PR0("ldc_mem_map() returned err %d ", status); 400 biofini(buf); 401 return (status); 402 } 403 404 status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount); 405 if (status != 0) { 406 (void) ldc_mem_unmap(task->mhdl); 407 PR0("ldc_mem_acquire() returned err %d ", status); 408 biofini(buf); 409 return (status); 410 } 411 412 buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE; 413 414 /* Start the block I/O */ 415 if ((status = ldi_strategy(vd->ldi_handle[request->slice], buf)) == 0) 416 return (EINPROGRESS); /* will complete on completionq */ 417 418 /* Clean up after error */ 419 rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount); 420 if (rv) { 421 PR0("ldc_mem_release() returned err %d ", rv); 422 } 423 rv = ldc_mem_unmap(task->mhdl); 424 if (rv) { 425 PR0("ldc_mem_unmap() returned err %d ", status); 426 } 427 428 biofini(buf); 429 return (status); 430 } 431 432 static int 433 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 434 { 435 int status; 436 size_t nbytes; 437 438 do { 439 nbytes = msglen; 440 status = ldc_write(ldc_handle, msg, &nbytes); 441 if (status != EWOULDBLOCK) 442 break; 443 drv_usecwait(vds_ldc_delay); 444 } while (status == EWOULDBLOCK); 445 446 if (status != 0) { 447 if (status != ECONNRESET) 448 PR0("ldc_write() returned errno %d", status); 449 return (status); 450 } else if (nbytes != msglen) { 451 PR0("ldc_write() performed only partial write"); 452 return (EIO); 453 } 454 455 PR1("SENT %lu bytes", msglen); 456 return (0); 457 } 458 459 static void 460 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 461 { 462 mutex_enter(&vd->lock); 463 vd->reset_state = B_TRUE; 464 vd->reset_ldc = reset_ldc; 465 mutex_exit(&vd->lock); 466 } 467 468 /* 469 * Reset the state of the connection with a client, if needed; reset the LDC 470 * transport as well, if needed. This function should only be called from the 471 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 472 */ 473 static void 474 vd_reset_if_needed(vd_t *vd) 475 { 476 int status = 0; 477 478 mutex_enter(&vd->lock); 479 if (!vd->reset_state) { 480 ASSERT(!vd->reset_ldc); 481 mutex_exit(&vd->lock); 482 return; 483 } 484 mutex_exit(&vd->lock); 485 486 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 487 488 /* 489 * Let any asynchronous I/O complete before possibly pulling the rug 490 * out from under it; defer checking vd->reset_ldc, as one of the 491 * asynchronous tasks might set it 492 */ 493 ddi_taskq_wait(vd->completionq); 494 495 if ((vd->initialized & VD_DRING) && 496 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 497 PR0("ldc_mem_dring_unmap() returned errno %d", status); 498 499 vd_free_dring_task(vd); 500 501 /* Free the staging buffer for msgs */ 502 if (vd->vio_msgp != NULL) { 503 kmem_free(vd->vio_msgp, vd->max_msglen); 504 vd->vio_msgp = NULL; 505 } 506 507 /* Free the inband message buffer */ 508 if (vd->inband_task.msg != NULL) { 509 kmem_free(vd->inband_task.msg, vd->max_msglen); 510 vd->inband_task.msg = NULL; 511 } 512 513 mutex_enter(&vd->lock); 514 515 if (vd->reset_ldc) 516 PR0("taking down LDC channel"); 517 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 518 PR0("ldc_down() returned errno %d", status); 519 520 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 521 vd->state = VD_STATE_INIT; 522 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 523 524 /* Allocate the staging buffer */ 525 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 526 527 PR0("calling ldc_up\n"); 528 (void) ldc_up(vd->ldc_handle); 529 530 vd->reset_state = B_FALSE; 531 vd->reset_ldc = B_FALSE; 532 533 mutex_exit(&vd->lock); 534 } 535 536 static void vd_recv_msg(void *arg); 537 538 static void 539 vd_mark_in_reset(vd_t *vd) 540 { 541 int status; 542 543 PR0("vd_mark_in_reset: marking vd in reset\n"); 544 545 vd_need_reset(vd, B_FALSE); 546 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 547 if (status == DDI_FAILURE) { 548 PR0("cannot schedule task to recv msg\n"); 549 vd_need_reset(vd, B_TRUE); 550 return; 551 } 552 } 553 554 static int 555 vd_mark_elem_done(vd_t *vd, int idx, int elem_status) 556 { 557 boolean_t accepted; 558 int status; 559 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 560 561 if (vd->reset_state) 562 return (0); 563 564 /* Acquire the element */ 565 if (!vd->reset_state && 566 (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 567 if (status == ECONNRESET) { 568 vd_mark_in_reset(vd); 569 return (0); 570 } else { 571 PR0("ldc_mem_dring_acquire() returned errno %d", 572 status); 573 return (status); 574 } 575 } 576 577 /* Set the element's status and mark it done */ 578 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 579 if (accepted) { 580 elem->payload.status = elem_status; 581 elem->hdr.dstate = VIO_DESC_DONE; 582 } else { 583 /* Perhaps client timed out waiting for I/O... */ 584 PR0("element %u no longer \"accepted\"", idx); 585 VD_DUMP_DRING_ELEM(elem); 586 } 587 /* Release the element */ 588 if (!vd->reset_state && 589 (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 590 if (status == ECONNRESET) { 591 vd_mark_in_reset(vd); 592 return (0); 593 } else { 594 PR0("ldc_mem_dring_release() returned errno %d", 595 status); 596 return (status); 597 } 598 } 599 600 return (accepted ? 0 : EINVAL); 601 } 602 603 static void 604 vd_complete_bio(void *arg) 605 { 606 int status = 0; 607 vd_task_t *task = (vd_task_t *)arg; 608 vd_t *vd = task->vd; 609 vd_dring_payload_t *request = task->request; 610 struct buf *buf = &task->buf; 611 612 613 ASSERT(vd != NULL); 614 ASSERT(request != NULL); 615 ASSERT(task->msg != NULL); 616 ASSERT(task->msglen >= sizeof (*task->msg)); 617 618 /* Wait for the I/O to complete */ 619 request->status = biowait(buf); 620 621 /* Release the buffer */ 622 if (!vd->reset_state) 623 status = ldc_mem_release(task->mhdl, 0, buf->b_bcount); 624 if (status) { 625 PR0("ldc_mem_release() returned errno %d copying to " 626 "client", status); 627 if (status == ECONNRESET) { 628 vd_mark_in_reset(vd); 629 } 630 } 631 632 /* Unmap the memory, even if in reset */ 633 status = ldc_mem_unmap(task->mhdl); 634 if (status) { 635 PR0("ldc_mem_unmap() returned errno %d copying to client", 636 status); 637 if (status == ECONNRESET) { 638 vd_mark_in_reset(vd); 639 } 640 } 641 642 biofini(buf); 643 644 /* Update the dring element for a dring client */ 645 if (!vd->reset_state && (status == 0) && 646 (vd->xfer_mode == VIO_DRING_MODE)) { 647 status = vd_mark_elem_done(vd, task->index, request->status); 648 if (status == ECONNRESET) 649 vd_mark_in_reset(vd); 650 } 651 652 /* 653 * If a transport error occurred, arrange to "nack" the message when 654 * the final task in the descriptor element range completes 655 */ 656 if (status != 0) 657 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 658 659 /* 660 * Only the final task for a range of elements will respond to and 661 * free the message 662 */ 663 if (task->type == VD_NONFINAL_RANGE_TASK) { 664 return; 665 } 666 667 /* 668 * Send the "ack" or "nack" back to the client; if sending the message 669 * via LDC fails, arrange to reset both the connection state and LDC 670 * itself 671 */ 672 PR1("Sending %s", 673 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 674 if (!vd->reset_state) { 675 status = send_msg(vd->ldc_handle, task->msg, task->msglen); 676 switch (status) { 677 case 0: 678 break; 679 case ECONNRESET: 680 vd_mark_in_reset(vd); 681 break; 682 default: 683 PR0("initiating full reset"); 684 vd_need_reset(vd, B_TRUE); 685 break; 686 } 687 } 688 } 689 690 static void 691 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg) 692 { 693 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 694 } 695 696 static void 697 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg) 698 { 699 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg); 700 } 701 702 static void 703 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 704 { 705 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 706 } 707 708 static void 709 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 710 { 711 VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 712 } 713 714 static void 715 vd_get_efi_in(void *vd_buf, void *ioctl_arg) 716 { 717 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 718 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 719 720 dk_efi->dki_lba = vd_efi->lba; 721 dk_efi->dki_length = vd_efi->length; 722 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 723 } 724 725 static void 726 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 727 { 728 int len; 729 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 730 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 731 732 len = vd_efi->length; 733 DK_EFI2VD_EFI(dk_efi, vd_efi); 734 kmem_free(dk_efi->dki_data, len); 735 } 736 737 static void 738 vd_set_efi_in(void *vd_buf, void *ioctl_arg) 739 { 740 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 741 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 742 743 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 744 VD_EFI2DK_EFI(vd_efi, dk_efi); 745 } 746 747 static void 748 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 749 { 750 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 751 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 752 753 kmem_free(dk_efi->dki_data, vd_efi->length); 754 } 755 756 static int 757 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label) 758 { 759 int status, rval; 760 struct dk_gpt *efi; 761 size_t efi_len; 762 763 *label = VD_DISK_LABEL_UNK; 764 765 status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc, 766 (vd_open_flags | FKIOCTL), kcred, &rval); 767 768 if (status == 0) { 769 *label = VD_DISK_LABEL_VTOC; 770 return (0); 771 } else if (status != ENOTSUP) { 772 PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status); 773 return (status); 774 } 775 776 status = vds_efi_alloc_and_read(handle, &efi, &efi_len); 777 778 if (status) { 779 PR0("vds_efi_alloc_and_read returned error %d", status); 780 return (status); 781 } 782 783 *label = VD_DISK_LABEL_EFI; 784 vd_efi_to_vtoc(efi, vtoc); 785 vd_efi_free(efi, efi_len); 786 787 return (0); 788 } 789 790 static int 791 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 792 { 793 dk_efi_t *dk_ioc; 794 795 switch (vd->vdisk_label) { 796 797 case VD_DISK_LABEL_VTOC: 798 799 switch (cmd) { 800 case DKIOCGGEOM: 801 ASSERT(ioctl_arg != NULL); 802 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 803 return (0); 804 case DKIOCGVTOC: 805 ASSERT(ioctl_arg != NULL); 806 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 807 return (0); 808 default: 809 return (ENOTSUP); 810 } 811 812 case VD_DISK_LABEL_EFI: 813 814 switch (cmd) { 815 case DKIOCGETEFI: 816 ASSERT(ioctl_arg != NULL); 817 dk_ioc = (dk_efi_t *)ioctl_arg; 818 if (dk_ioc->dki_length < vd->dk_efi.dki_length) 819 return (EINVAL); 820 bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data, 821 vd->dk_efi.dki_length); 822 return (0); 823 default: 824 return (ENOTSUP); 825 } 826 827 default: 828 return (ENOTSUP); 829 } 830 } 831 832 static int 833 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 834 { 835 int rval = 0, status; 836 size_t nbytes = request->nbytes; /* modifiable copy */ 837 838 839 ASSERT(request->slice < vd->nslices); 840 PR0("Performing %s", ioctl->operation_name); 841 842 /* Get data from client and convert, if necessary */ 843 if (ioctl->copyin != NULL) { 844 ASSERT(nbytes != 0 && buf != NULL); 845 PR1("Getting \"arg\" data from client"); 846 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 847 request->cookie, request->ncookies, 848 LDC_COPY_IN)) != 0) { 849 PR0("ldc_mem_copy() returned errno %d " 850 "copying from client", status); 851 return (status); 852 } 853 854 /* Convert client's data, if necessary */ 855 if (ioctl->copyin == VD_IDENTITY) /* use client buffer */ 856 ioctl->arg = buf; 857 else /* convert client vdisk operation data to ioctl data */ 858 (ioctl->copyin)(buf, (void *)ioctl->arg); 859 } 860 861 /* 862 * Handle single-slice block devices internally; otherwise, have the 863 * real driver perform the ioctl() 864 */ 865 if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) { 866 if ((status = vd_do_slice_ioctl(vd, ioctl->cmd, 867 (void *)ioctl->arg)) != 0) 868 return (status); 869 } else if ((status = ldi_ioctl(vd->ldi_handle[request->slice], 870 ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL), 871 kcred, &rval)) != 0) { 872 PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status); 873 return (status); 874 } 875 #ifdef DEBUG 876 if (rval != 0) { 877 PR0("%s set rval = %d, which is not being returned to client", 878 ioctl->cmd_name, rval); 879 } 880 #endif /* DEBUG */ 881 882 /* Convert data and send to client, if necessary */ 883 if (ioctl->copyout != NULL) { 884 ASSERT(nbytes != 0 && buf != NULL); 885 PR1("Sending \"arg\" data to client"); 886 887 /* Convert ioctl data to vdisk operation data, if necessary */ 888 if (ioctl->copyout != VD_IDENTITY) 889 (ioctl->copyout)((void *)ioctl->arg, buf); 890 891 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 892 request->cookie, request->ncookies, 893 LDC_COPY_OUT)) != 0) { 894 PR0("ldc_mem_copy() returned errno %d " 895 "copying to client", status); 896 return (status); 897 } 898 } 899 900 return (status); 901 } 902 903 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 904 static int 905 vd_ioctl(vd_task_t *task) 906 { 907 int i, status, rc; 908 void *buf = NULL; 909 struct dk_geom dk_geom = {0}; 910 struct vtoc vtoc = {0}; 911 struct dk_efi dk_efi = {0}; 912 vd_t *vd = task->vd; 913 vd_dring_payload_t *request = task->request; 914 vd_ioctl_t ioctl[] = { 915 /* Command (no-copy) operations */ 916 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 917 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 918 NULL, NULL, NULL}, 919 920 /* "Get" (copy-out) operations */ 921 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 922 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 923 NULL, VD_IDENTITY, VD_IDENTITY}, 924 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 925 RNDSIZE(vd_geom_t), 926 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 927 &dk_geom, NULL, dk_geom2vd_geom}, 928 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 929 DKIOCGVTOC, STRINGIZE(DKIOCGVTOC), 930 &vtoc, NULL, vtoc2vd_vtoc}, 931 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 932 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 933 &dk_efi, vd_get_efi_in, vd_get_efi_out}, 934 935 /* "Set" (copy-in) operations */ 936 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 937 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 938 NULL, VD_IDENTITY, VD_IDENTITY}, 939 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 940 RNDSIZE(vd_geom_t), 941 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 942 &dk_geom, vd_geom2dk_geom, NULL}, 943 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 944 DKIOCSVTOC, STRINGIZE(DKIOCSVTOC), 945 &vtoc, vd_vtoc2vtoc, NULL}, 946 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 947 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 948 &dk_efi, vd_set_efi_in, vd_set_efi_out}, 949 }; 950 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 951 952 953 ASSERT(vd != NULL); 954 ASSERT(request != NULL); 955 ASSERT(request->slice < vd->nslices); 956 957 /* 958 * Determine ioctl corresponding to caller's "operation" and 959 * validate caller's "nbytes" 960 */ 961 for (i = 0; i < nioctls; i++) { 962 if (request->operation == ioctl[i].operation) { 963 /* LDC memory operations require 8-byte multiples */ 964 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 965 966 if (request->operation == VD_OP_GET_EFI || 967 request->operation == VD_OP_SET_EFI) { 968 if (request->nbytes >= ioctl[i].nbytes) 969 break; 970 PR0("%s: Expected at least nbytes = %lu, " 971 "got %lu", ioctl[i].operation_name, 972 ioctl[i].nbytes, request->nbytes); 973 return (EINVAL); 974 } 975 976 if (request->nbytes != ioctl[i].nbytes) { 977 PR0("%s: Expected nbytes = %lu, got %lu", 978 ioctl[i].operation_name, ioctl[i].nbytes, 979 request->nbytes); 980 return (EINVAL); 981 } 982 983 break; 984 } 985 } 986 ASSERT(i < nioctls); /* because "operation" already validated */ 987 988 if (request->nbytes) 989 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 990 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 991 if (request->nbytes) 992 kmem_free(buf, request->nbytes); 993 if (vd->vdisk_type == VD_DISK_TYPE_DISK && 994 (request->operation == VD_OP_SET_VTOC || 995 request->operation == VD_OP_SET_EFI)) { 996 /* update disk information */ 997 rc = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, 998 &vd->vdisk_label); 999 if (rc != 0) 1000 PR0("vd_read_vtoc return error %d", rc); 1001 } 1002 PR0("Returning %d", status); 1003 return (status); 1004 } 1005 1006 static int 1007 vd_get_devid(vd_task_t *task) 1008 { 1009 vd_t *vd = task->vd; 1010 vd_dring_payload_t *request = task->request; 1011 vd_devid_t *vd_devid; 1012 impl_devid_t *devid; 1013 int status, bufid_len, devid_len, len; 1014 int bufbytes; 1015 1016 PR1("Get Device ID, nbytes=%ld", request->nbytes); 1017 1018 if (ddi_lyr_get_devid(vd->dev[request->slice], 1019 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 1020 /* the most common failure is that no devid is available */ 1021 PR2("No Device ID"); 1022 return (ENOENT); 1023 } 1024 1025 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 1026 devid_len = DEVID_GETLEN(devid); 1027 1028 /* 1029 * Save the buffer size here for use in deallocation. 1030 * The actual number of bytes copied is returned in 1031 * the 'nbytes' field of the request structure. 1032 */ 1033 bufbytes = request->nbytes; 1034 1035 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 1036 vd_devid->length = devid_len; 1037 vd_devid->type = DEVID_GETTYPE(devid); 1038 1039 len = (devid_len > bufid_len)? bufid_len : devid_len; 1040 1041 bcopy(devid->did_id, vd_devid->id, len); 1042 1043 /* LDC memory operations require 8-byte multiples */ 1044 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 1045 1046 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 1047 &request->nbytes, request->cookie, request->ncookies, 1048 LDC_COPY_OUT)) != 0) { 1049 PR0("ldc_mem_copy() returned errno %d copying to client", 1050 status); 1051 } 1052 PR1("post mem_copy: nbytes=%ld", request->nbytes); 1053 1054 kmem_free(vd_devid, bufbytes); 1055 ddi_devid_free((ddi_devid_t)devid); 1056 1057 return (status); 1058 } 1059 1060 /* 1061 * Define the supported operations once the functions for performing them have 1062 * been defined 1063 */ 1064 static const vds_operation_t vds_operation[] = { 1065 #define X(_s) #_s, _s 1066 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 1067 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 1068 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 1069 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 1070 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 1071 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 1072 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 1073 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 1074 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 1075 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 1076 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 1077 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 1078 #undef X 1079 }; 1080 1081 static const size_t vds_noperations = 1082 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 1083 1084 /* 1085 * Process a task specifying a client I/O request 1086 */ 1087 static int 1088 vd_process_task(vd_task_t *task) 1089 { 1090 int i, status; 1091 vd_t *vd = task->vd; 1092 vd_dring_payload_t *request = task->request; 1093 1094 1095 ASSERT(vd != NULL); 1096 ASSERT(request != NULL); 1097 1098 /* Find the requested operation */ 1099 for (i = 0; i < vds_noperations; i++) 1100 if (request->operation == vds_operation[i].operation) 1101 break; 1102 if (i == vds_noperations) { 1103 PR0("Unsupported operation %u", request->operation); 1104 return (ENOTSUP); 1105 } 1106 1107 /* Handle client using absolute disk offsets */ 1108 if ((vd->vdisk_type == VD_DISK_TYPE_DISK) && 1109 (request->slice == UINT8_MAX)) 1110 request->slice = VD_ENTIRE_DISK_SLICE; 1111 1112 /* Range-check slice */ 1113 if (request->slice >= vd->nslices) { 1114 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 1115 request->slice, (vd->nslices - 1)); 1116 return (EINVAL); 1117 } 1118 1119 PR1("operation : %s", vds_operation[i].namep); 1120 1121 /* Start the operation */ 1122 if ((status = vds_operation[i].start(task)) != EINPROGRESS) { 1123 PR0("operation : %s returned status %d", 1124 vds_operation[i].namep, status); 1125 request->status = status; /* op succeeded or failed */ 1126 return (0); /* but request completed */ 1127 } 1128 1129 ASSERT(vds_operation[i].complete != NULL); /* debug case */ 1130 if (vds_operation[i].complete == NULL) { /* non-debug case */ 1131 PR0("Unexpected return of EINPROGRESS " 1132 "with no I/O completion handler"); 1133 request->status = EIO; /* operation failed */ 1134 return (0); /* but request completed */ 1135 } 1136 1137 PR1("operation : kick off taskq entry for %s", vds_operation[i].namep); 1138 1139 /* Queue a task to complete the operation */ 1140 status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete, 1141 task, DDI_SLEEP); 1142 /* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */ 1143 ASSERT(status == DDI_SUCCESS); 1144 1145 PR1("Operation in progress"); 1146 return (EINPROGRESS); /* completion handler will finish request */ 1147 } 1148 1149 /* 1150 * Return true if the "type", "subtype", and "env" fields of the "tag" first 1151 * argument match the corresponding remaining arguments; otherwise, return false 1152 */ 1153 boolean_t 1154 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 1155 { 1156 return ((tag->vio_msgtype == type) && 1157 (tag->vio_subtype == subtype) && 1158 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 1159 } 1160 1161 /* 1162 * Check whether the major/minor version specified in "ver_msg" is supported 1163 * by this server. 1164 */ 1165 static boolean_t 1166 vds_supported_version(vio_ver_msg_t *ver_msg) 1167 { 1168 for (int i = 0; i < vds_num_versions; i++) { 1169 ASSERT(vds_version[i].major > 0); 1170 ASSERT((i == 0) || 1171 (vds_version[i].major < vds_version[i-1].major)); 1172 1173 /* 1174 * If the major versions match, adjust the minor version, if 1175 * necessary, down to the highest value supported by this 1176 * server and return true so this message will get "ack"ed; 1177 * the client should also support all minor versions lower 1178 * than the value it sent 1179 */ 1180 if (ver_msg->ver_major == vds_version[i].major) { 1181 if (ver_msg->ver_minor > vds_version[i].minor) { 1182 PR0("Adjusting minor version from %u to %u", 1183 ver_msg->ver_minor, vds_version[i].minor); 1184 ver_msg->ver_minor = vds_version[i].minor; 1185 } 1186 return (B_TRUE); 1187 } 1188 1189 /* 1190 * If the message contains a higher major version number, set 1191 * the message's major/minor versions to the current values 1192 * and return false, so this message will get "nack"ed with 1193 * these values, and the client will potentially try again 1194 * with the same or a lower version 1195 */ 1196 if (ver_msg->ver_major > vds_version[i].major) { 1197 ver_msg->ver_major = vds_version[i].major; 1198 ver_msg->ver_minor = vds_version[i].minor; 1199 return (B_FALSE); 1200 } 1201 1202 /* 1203 * Otherwise, the message's major version is less than the 1204 * current major version, so continue the loop to the next 1205 * (lower) supported version 1206 */ 1207 } 1208 1209 /* 1210 * No common version was found; "ground" the version pair in the 1211 * message to terminate negotiation 1212 */ 1213 ver_msg->ver_major = 0; 1214 ver_msg->ver_minor = 0; 1215 return (B_FALSE); 1216 } 1217 1218 /* 1219 * Process a version message from a client. vds expects to receive version 1220 * messages from clients seeking service, but never issues version messages 1221 * itself; therefore, vds can ACK or NACK client version messages, but does 1222 * not expect to receive version-message ACKs or NACKs (and will treat such 1223 * messages as invalid). 1224 */ 1225 static int 1226 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1227 { 1228 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 1229 1230 1231 ASSERT(msglen >= sizeof (msg->tag)); 1232 1233 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1234 VIO_VER_INFO)) { 1235 return (ENOMSG); /* not a version message */ 1236 } 1237 1238 if (msglen != sizeof (*ver_msg)) { 1239 PR0("Expected %lu-byte version message; " 1240 "received %lu bytes", sizeof (*ver_msg), msglen); 1241 return (EBADMSG); 1242 } 1243 1244 if (ver_msg->dev_class != VDEV_DISK) { 1245 PR0("Expected device class %u (disk); received %u", 1246 VDEV_DISK, ver_msg->dev_class); 1247 return (EBADMSG); 1248 } 1249 1250 /* 1251 * We're talking to the expected kind of client; set our device class 1252 * for "ack/nack" back to the client 1253 */ 1254 ver_msg->dev_class = VDEV_DISK_SERVER; 1255 1256 /* 1257 * Check whether the (valid) version message specifies a version 1258 * supported by this server. If the version is not supported, return 1259 * EBADMSG so the message will get "nack"ed; vds_supported_version() 1260 * will have updated the message with a supported version for the 1261 * client to consider 1262 */ 1263 if (!vds_supported_version(ver_msg)) 1264 return (EBADMSG); 1265 1266 1267 /* 1268 * A version has been agreed upon; use the client's SID for 1269 * communication on this channel now 1270 */ 1271 ASSERT(!(vd->initialized & VD_SID)); 1272 vd->sid = ver_msg->tag.vio_sid; 1273 vd->initialized |= VD_SID; 1274 1275 /* 1276 * When multiple versions are supported, this function should store 1277 * the negotiated major and minor version values in the "vd" data 1278 * structure to govern further communication; in particular, note that 1279 * the client might have specified a lower minor version for the 1280 * agreed major version than specifed in the vds_version[] array. The 1281 * following assertions should help remind future maintainers to make 1282 * the appropriate changes to support multiple versions. 1283 */ 1284 ASSERT(vds_num_versions == 1); 1285 ASSERT(ver_msg->ver_major == vds_version[0].major); 1286 ASSERT(ver_msg->ver_minor == vds_version[0].minor); 1287 1288 PR0("Using major version %u, minor version %u", 1289 ver_msg->ver_major, ver_msg->ver_minor); 1290 return (0); 1291 } 1292 1293 static int 1294 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1295 { 1296 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 1297 1298 1299 ASSERT(msglen >= sizeof (msg->tag)); 1300 1301 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1302 VIO_ATTR_INFO)) { 1303 PR0("Message is not an attribute message"); 1304 return (ENOMSG); 1305 } 1306 1307 if (msglen != sizeof (*attr_msg)) { 1308 PR0("Expected %lu-byte attribute message; " 1309 "received %lu bytes", sizeof (*attr_msg), msglen); 1310 return (EBADMSG); 1311 } 1312 1313 if (attr_msg->max_xfer_sz == 0) { 1314 PR0("Received maximum transfer size of 0 from client"); 1315 return (EBADMSG); 1316 } 1317 1318 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 1319 (attr_msg->xfer_mode != VIO_DRING_MODE)) { 1320 PR0("Client requested unsupported transfer mode"); 1321 return (EBADMSG); 1322 } 1323 1324 /* Success: valid message and transfer mode */ 1325 vd->xfer_mode = attr_msg->xfer_mode; 1326 1327 if (vd->xfer_mode == VIO_DESC_MODE) { 1328 1329 /* 1330 * The vd_dring_inband_msg_t contains one cookie; need room 1331 * for up to n-1 more cookies, where "n" is the number of full 1332 * pages plus possibly one partial page required to cover 1333 * "max_xfer_sz". Add room for one more cookie if 1334 * "max_xfer_sz" isn't an integral multiple of the page size. 1335 * Must first get the maximum transfer size in bytes. 1336 */ 1337 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 1338 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 1339 attr_msg->max_xfer_sz; 1340 size_t max_inband_msglen = 1341 sizeof (vd_dring_inband_msg_t) + 1342 ((max_xfer_bytes/PAGESIZE + 1343 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 1344 (sizeof (ldc_mem_cookie_t))); 1345 1346 /* 1347 * Set the maximum expected message length to 1348 * accommodate in-band-descriptor messages with all 1349 * their cookies 1350 */ 1351 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 1352 1353 /* 1354 * Initialize the data structure for processing in-band I/O 1355 * request descriptors 1356 */ 1357 vd->inband_task.vd = vd; 1358 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 1359 vd->inband_task.index = 0; 1360 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 1361 } 1362 1363 /* Return the device's block size and max transfer size to the client */ 1364 attr_msg->vdisk_block_size = DEV_BSIZE; 1365 attr_msg->max_xfer_sz = vd->max_xfer_sz; 1366 1367 attr_msg->vdisk_size = vd->vdisk_size; 1368 attr_msg->vdisk_type = vd->vdisk_type; 1369 attr_msg->operations = vds_operations; 1370 PR0("%s", VD_CLIENT(vd)); 1371 1372 ASSERT(vd->dring_task == NULL); 1373 1374 return (0); 1375 } 1376 1377 static int 1378 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1379 { 1380 int status; 1381 size_t expected; 1382 ldc_mem_info_t dring_minfo; 1383 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 1384 1385 1386 ASSERT(msglen >= sizeof (msg->tag)); 1387 1388 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1389 VIO_DRING_REG)) { 1390 PR0("Message is not a register-dring message"); 1391 return (ENOMSG); 1392 } 1393 1394 if (msglen < sizeof (*reg_msg)) { 1395 PR0("Expected at least %lu-byte register-dring message; " 1396 "received %lu bytes", sizeof (*reg_msg), msglen); 1397 return (EBADMSG); 1398 } 1399 1400 expected = sizeof (*reg_msg) + 1401 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 1402 if (msglen != expected) { 1403 PR0("Expected %lu-byte register-dring message; " 1404 "received %lu bytes", expected, msglen); 1405 return (EBADMSG); 1406 } 1407 1408 if (vd->initialized & VD_DRING) { 1409 PR0("A dring was previously registered; only support one"); 1410 return (EBADMSG); 1411 } 1412 1413 if (reg_msg->num_descriptors > INT32_MAX) { 1414 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 1415 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 1416 return (EBADMSG); 1417 } 1418 1419 if (reg_msg->ncookies != 1) { 1420 /* 1421 * In addition to fixing the assertion in the success case 1422 * below, supporting drings which require more than one 1423 * "cookie" requires increasing the value of vd->max_msglen 1424 * somewhere in the code path prior to receiving the message 1425 * which results in calling this function. Note that without 1426 * making this change, the larger message size required to 1427 * accommodate multiple cookies cannot be successfully 1428 * received, so this function will not even get called. 1429 * Gracefully accommodating more dring cookies might 1430 * reasonably demand exchanging an additional attribute or 1431 * making a minor protocol adjustment 1432 */ 1433 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 1434 return (EBADMSG); 1435 } 1436 1437 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 1438 reg_msg->ncookies, reg_msg->num_descriptors, 1439 reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle); 1440 if (status != 0) { 1441 PR0("ldc_mem_dring_map() returned errno %d", status); 1442 return (status); 1443 } 1444 1445 /* 1446 * To remove the need for this assertion, must call 1447 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 1448 * successful call to ldc_mem_dring_map() 1449 */ 1450 ASSERT(reg_msg->ncookies == 1); 1451 1452 if ((status = 1453 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 1454 PR0("ldc_mem_dring_info() returned errno %d", status); 1455 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 1456 PR0("ldc_mem_dring_unmap() returned errno %d", status); 1457 return (status); 1458 } 1459 1460 if (dring_minfo.vaddr == NULL) { 1461 PR0("Descriptor ring virtual address is NULL"); 1462 return (ENXIO); 1463 } 1464 1465 1466 /* Initialize for valid message and mapped dring */ 1467 PR1("descriptor size = %u, dring length = %u", 1468 vd->descriptor_size, vd->dring_len); 1469 vd->initialized |= VD_DRING; 1470 vd->dring_ident = 1; /* "There Can Be Only One" */ 1471 vd->dring = dring_minfo.vaddr; 1472 vd->descriptor_size = reg_msg->descriptor_size; 1473 vd->dring_len = reg_msg->num_descriptors; 1474 reg_msg->dring_ident = vd->dring_ident; 1475 1476 /* 1477 * Allocate and initialize a "shadow" array of data structures for 1478 * tasks to process I/O requests in dring elements 1479 */ 1480 vd->dring_task = 1481 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 1482 for (int i = 0; i < vd->dring_len; i++) { 1483 vd->dring_task[i].vd = vd; 1484 vd->dring_task[i].index = i; 1485 vd->dring_task[i].request = &VD_DRING_ELEM(i)->payload; 1486 1487 status = ldc_mem_alloc_handle(vd->ldc_handle, 1488 &(vd->dring_task[i].mhdl)); 1489 if (status) { 1490 PR0("ldc_mem_alloc_handle() returned err %d ", status); 1491 return (ENXIO); 1492 } 1493 1494 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 1495 } 1496 1497 return (0); 1498 } 1499 1500 static int 1501 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1502 { 1503 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 1504 1505 1506 ASSERT(msglen >= sizeof (msg->tag)); 1507 1508 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1509 VIO_DRING_UNREG)) { 1510 PR0("Message is not an unregister-dring message"); 1511 return (ENOMSG); 1512 } 1513 1514 if (msglen != sizeof (*unreg_msg)) { 1515 PR0("Expected %lu-byte unregister-dring message; " 1516 "received %lu bytes", sizeof (*unreg_msg), msglen); 1517 return (EBADMSG); 1518 } 1519 1520 if (unreg_msg->dring_ident != vd->dring_ident) { 1521 PR0("Expected dring ident %lu; received %lu", 1522 vd->dring_ident, unreg_msg->dring_ident); 1523 return (EBADMSG); 1524 } 1525 1526 return (0); 1527 } 1528 1529 static int 1530 process_rdx_msg(vio_msg_t *msg, size_t msglen) 1531 { 1532 ASSERT(msglen >= sizeof (msg->tag)); 1533 1534 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 1535 PR0("Message is not an RDX message"); 1536 return (ENOMSG); 1537 } 1538 1539 if (msglen != sizeof (vio_rdx_msg_t)) { 1540 PR0("Expected %lu-byte RDX message; received %lu bytes", 1541 sizeof (vio_rdx_msg_t), msglen); 1542 return (EBADMSG); 1543 } 1544 1545 PR0("Valid RDX message"); 1546 return (0); 1547 } 1548 1549 static int 1550 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 1551 { 1552 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 1553 PR0("Received seq_num %lu; expected %lu", 1554 seq_num, (vd->seq_num + 1)); 1555 PR0("initiating soft reset"); 1556 vd_need_reset(vd, B_FALSE); 1557 return (1); 1558 } 1559 1560 vd->seq_num = seq_num; 1561 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 1562 return (0); 1563 } 1564 1565 /* 1566 * Return the expected size of an inband-descriptor message with all the 1567 * cookies it claims to include 1568 */ 1569 static size_t 1570 expected_inband_size(vd_dring_inband_msg_t *msg) 1571 { 1572 return ((sizeof (*msg)) + 1573 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 1574 } 1575 1576 /* 1577 * Process an in-band descriptor message: used with clients like OBP, with 1578 * which vds exchanges descriptors within VIO message payloads, rather than 1579 * operating on them within a descriptor ring 1580 */ 1581 static int 1582 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1583 { 1584 size_t expected; 1585 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 1586 1587 1588 ASSERT(msglen >= sizeof (msg->tag)); 1589 1590 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 1591 VIO_DESC_DATA)) { 1592 PR1("Message is not an in-band-descriptor message"); 1593 return (ENOMSG); 1594 } 1595 1596 if (msglen < sizeof (*desc_msg)) { 1597 PR0("Expected at least %lu-byte descriptor message; " 1598 "received %lu bytes", sizeof (*desc_msg), msglen); 1599 return (EBADMSG); 1600 } 1601 1602 if (msglen != (expected = expected_inband_size(desc_msg))) { 1603 PR0("Expected %lu-byte descriptor message; " 1604 "received %lu bytes", expected, msglen); 1605 return (EBADMSG); 1606 } 1607 1608 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 1609 return (EBADMSG); 1610 1611 /* 1612 * Valid message: Set up the in-band descriptor task and process the 1613 * request. Arrange to acknowledge the client's message, unless an 1614 * error processing the descriptor task results in setting 1615 * VIO_SUBTYPE_NACK 1616 */ 1617 PR1("Valid in-band-descriptor message"); 1618 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 1619 1620 ASSERT(vd->inband_task.msg != NULL); 1621 1622 bcopy(msg, vd->inband_task.msg, msglen); 1623 vd->inband_task.msglen = msglen; 1624 1625 /* 1626 * The task request is now the payload of the message 1627 * that was just copied into the body of the task. 1628 */ 1629 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 1630 vd->inband_task.request = &desc_msg->payload; 1631 1632 return (vd_process_task(&vd->inband_task)); 1633 } 1634 1635 static int 1636 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 1637 vio_msg_t *msg, size_t msglen) 1638 { 1639 int status; 1640 boolean_t ready; 1641 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 1642 1643 1644 /* Accept the updated dring element */ 1645 if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 1646 PR0("ldc_mem_dring_acquire() returned errno %d", status); 1647 return (status); 1648 } 1649 ready = (elem->hdr.dstate == VIO_DESC_READY); 1650 if (ready) { 1651 elem->hdr.dstate = VIO_DESC_ACCEPTED; 1652 } else { 1653 PR0("descriptor %u not ready", idx); 1654 VD_DUMP_DRING_ELEM(elem); 1655 } 1656 if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 1657 PR0("ldc_mem_dring_release() returned errno %d", status); 1658 return (status); 1659 } 1660 if (!ready) 1661 return (EBUSY); 1662 1663 1664 /* Initialize a task and process the accepted element */ 1665 PR1("Processing dring element %u", idx); 1666 vd->dring_task[idx].type = type; 1667 1668 /* duplicate msg buf for cookies etc. */ 1669 bcopy(msg, vd->dring_task[idx].msg, msglen); 1670 1671 vd->dring_task[idx].msglen = msglen; 1672 if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS) 1673 status = vd_mark_elem_done(vd, idx, elem->payload.status); 1674 1675 return (status); 1676 } 1677 1678 static int 1679 vd_process_element_range(vd_t *vd, int start, int end, 1680 vio_msg_t *msg, size_t msglen) 1681 { 1682 int i, n, nelem, status = 0; 1683 boolean_t inprogress = B_FALSE; 1684 vd_task_type_t type; 1685 1686 1687 ASSERT(start >= 0); 1688 ASSERT(end >= 0); 1689 1690 /* 1691 * Arrange to acknowledge the client's message, unless an error 1692 * processing one of the dring elements results in setting 1693 * VIO_SUBTYPE_NACK 1694 */ 1695 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 1696 1697 /* 1698 * Process the dring elements in the range 1699 */ 1700 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 1701 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 1702 ((vio_dring_msg_t *)msg)->end_idx = i; 1703 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 1704 status = vd_process_element(vd, type, i, msg, msglen); 1705 if (status == EINPROGRESS) 1706 inprogress = B_TRUE; 1707 else if (status != 0) 1708 break; 1709 } 1710 1711 /* 1712 * If some, but not all, operations of a multi-element range are in 1713 * progress, wait for other operations to complete before returning 1714 * (which will result in "ack" or "nack" of the message). Note that 1715 * all outstanding operations will need to complete, not just the ones 1716 * corresponding to the current range of dring elements; howevever, as 1717 * this situation is an error case, performance is less critical. 1718 */ 1719 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) 1720 ddi_taskq_wait(vd->completionq); 1721 1722 return (status); 1723 } 1724 1725 static int 1726 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1727 { 1728 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 1729 1730 1731 ASSERT(msglen >= sizeof (msg->tag)); 1732 1733 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 1734 VIO_DRING_DATA)) { 1735 PR1("Message is not a dring-data message"); 1736 return (ENOMSG); 1737 } 1738 1739 if (msglen != sizeof (*dring_msg)) { 1740 PR0("Expected %lu-byte dring message; received %lu bytes", 1741 sizeof (*dring_msg), msglen); 1742 return (EBADMSG); 1743 } 1744 1745 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 1746 return (EBADMSG); 1747 1748 if (dring_msg->dring_ident != vd->dring_ident) { 1749 PR0("Expected dring ident %lu; received ident %lu", 1750 vd->dring_ident, dring_msg->dring_ident); 1751 return (EBADMSG); 1752 } 1753 1754 if (dring_msg->start_idx >= vd->dring_len) { 1755 PR0("\"start_idx\" = %u; must be less than %u", 1756 dring_msg->start_idx, vd->dring_len); 1757 return (EBADMSG); 1758 } 1759 1760 if ((dring_msg->end_idx < 0) || 1761 (dring_msg->end_idx >= vd->dring_len)) { 1762 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 1763 dring_msg->end_idx, vd->dring_len); 1764 return (EBADMSG); 1765 } 1766 1767 /* Valid message; process range of updated dring elements */ 1768 PR1("Processing descriptor range, start = %u, end = %u", 1769 dring_msg->start_idx, dring_msg->end_idx); 1770 return (vd_process_element_range(vd, dring_msg->start_idx, 1771 dring_msg->end_idx, msg, msglen)); 1772 } 1773 1774 static int 1775 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 1776 { 1777 int retry, status; 1778 size_t size = *nbytes; 1779 1780 1781 for (retry = 0, status = ETIMEDOUT; 1782 retry < vds_ldc_retries && status == ETIMEDOUT; 1783 retry++) { 1784 PR1("ldc_read() attempt %d", (retry + 1)); 1785 *nbytes = size; 1786 status = ldc_read(ldc_handle, msg, nbytes); 1787 } 1788 1789 if (status) { 1790 PR0("ldc_read() returned errno %d", status); 1791 if (status != ECONNRESET) 1792 return (ENOMSG); 1793 return (status); 1794 } else if (*nbytes == 0) { 1795 PR1("ldc_read() returned 0 and no message read"); 1796 return (ENOMSG); 1797 } 1798 1799 PR1("RCVD %lu-byte message", *nbytes); 1800 return (0); 1801 } 1802 1803 static int 1804 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1805 { 1806 int status; 1807 1808 1809 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 1810 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 1811 #ifdef DEBUG 1812 vd_decode_tag(msg); 1813 #endif 1814 1815 /* 1816 * Validate session ID up front, since it applies to all messages 1817 * once set 1818 */ 1819 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 1820 PR0("Expected SID %u, received %u", vd->sid, 1821 msg->tag.vio_sid); 1822 return (EBADMSG); 1823 } 1824 1825 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 1826 1827 /* 1828 * Process the received message based on connection state 1829 */ 1830 switch (vd->state) { 1831 case VD_STATE_INIT: /* expect version message */ 1832 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 1833 return (status); 1834 1835 /* Version negotiated, move to that state */ 1836 vd->state = VD_STATE_VER; 1837 return (0); 1838 1839 case VD_STATE_VER: /* expect attribute message */ 1840 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 1841 return (status); 1842 1843 /* Attributes exchanged, move to that state */ 1844 vd->state = VD_STATE_ATTR; 1845 return (0); 1846 1847 case VD_STATE_ATTR: 1848 switch (vd->xfer_mode) { 1849 case VIO_DESC_MODE: /* expect RDX message */ 1850 if ((status = process_rdx_msg(msg, msglen)) != 0) 1851 return (status); 1852 1853 /* Ready to receive in-band descriptors */ 1854 vd->state = VD_STATE_DATA; 1855 return (0); 1856 1857 case VIO_DRING_MODE: /* expect register-dring message */ 1858 if ((status = 1859 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 1860 return (status); 1861 1862 /* One dring negotiated, move to that state */ 1863 vd->state = VD_STATE_DRING; 1864 return (0); 1865 1866 default: 1867 ASSERT("Unsupported transfer mode"); 1868 PR0("Unsupported transfer mode"); 1869 return (ENOTSUP); 1870 } 1871 1872 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 1873 if ((status = process_rdx_msg(msg, msglen)) == 0) { 1874 /* Ready to receive data */ 1875 vd->state = VD_STATE_DATA; 1876 return (0); 1877 } else if (status != ENOMSG) { 1878 return (status); 1879 } 1880 1881 1882 /* 1883 * If another register-dring message is received, stay in 1884 * dring state in case the client sends RDX; although the 1885 * protocol allows multiple drings, this server does not 1886 * support using more than one 1887 */ 1888 if ((status = 1889 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 1890 return (status); 1891 1892 /* 1893 * Acknowledge an unregister-dring message, but reset the 1894 * connection anyway: Although the protocol allows 1895 * unregistering drings, this server cannot serve a vdisk 1896 * without its only dring 1897 */ 1898 status = vd_process_dring_unreg_msg(vd, msg, msglen); 1899 return ((status == 0) ? ENOTSUP : status); 1900 1901 case VD_STATE_DATA: 1902 switch (vd->xfer_mode) { 1903 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 1904 return (vd_process_desc_msg(vd, msg, msglen)); 1905 1906 case VIO_DRING_MODE: /* expect dring-data or unreg-dring */ 1907 /* 1908 * Typically expect dring-data messages, so handle 1909 * them first 1910 */ 1911 if ((status = vd_process_dring_msg(vd, msg, 1912 msglen)) != ENOMSG) 1913 return (status); 1914 1915 /* 1916 * Acknowledge an unregister-dring message, but reset 1917 * the connection anyway: Although the protocol 1918 * allows unregistering drings, this server cannot 1919 * serve a vdisk without its only dring 1920 */ 1921 status = vd_process_dring_unreg_msg(vd, msg, msglen); 1922 return ((status == 0) ? ENOTSUP : status); 1923 1924 default: 1925 ASSERT("Unsupported transfer mode"); 1926 PR0("Unsupported transfer mode"); 1927 return (ENOTSUP); 1928 } 1929 1930 default: 1931 ASSERT("Invalid client connection state"); 1932 PR0("Invalid client connection state"); 1933 return (ENOTSUP); 1934 } 1935 } 1936 1937 static int 1938 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1939 { 1940 int status; 1941 boolean_t reset_ldc = B_FALSE; 1942 1943 1944 /* 1945 * Check that the message is at least big enough for a "tag", so that 1946 * message processing can proceed based on tag-specified message type 1947 */ 1948 if (msglen < sizeof (vio_msg_tag_t)) { 1949 PR0("Received short (%lu-byte) message", msglen); 1950 /* Can't "nack" short message, so drop the big hammer */ 1951 PR0("initiating full reset"); 1952 vd_need_reset(vd, B_TRUE); 1953 return (EBADMSG); 1954 } 1955 1956 /* 1957 * Process the message 1958 */ 1959 switch (status = vd_do_process_msg(vd, msg, msglen)) { 1960 case 0: 1961 /* "ack" valid, successfully-processed messages */ 1962 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 1963 break; 1964 1965 case EINPROGRESS: 1966 /* The completion handler will "ack" or "nack" the message */ 1967 return (EINPROGRESS); 1968 case ENOMSG: 1969 PR0("Received unexpected message"); 1970 _NOTE(FALLTHROUGH); 1971 case EBADMSG: 1972 case ENOTSUP: 1973 /* "nack" invalid messages */ 1974 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 1975 break; 1976 1977 default: 1978 /* "nack" failed messages */ 1979 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 1980 /* An LDC error probably occurred, so try resetting it */ 1981 reset_ldc = B_TRUE; 1982 break; 1983 } 1984 1985 PR1("\tResulting in state %d (%s)", vd->state, 1986 vd_decode_state(vd->state)); 1987 1988 /* Send the "ack" or "nack" to the client */ 1989 PR1("Sending %s", 1990 (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 1991 if (send_msg(vd->ldc_handle, msg, msglen) != 0) 1992 reset_ldc = B_TRUE; 1993 1994 /* Arrange to reset the connection for nack'ed or failed messages */ 1995 if ((status != 0) || reset_ldc) { 1996 PR0("initiating %s reset", 1997 (reset_ldc) ? "full" : "soft"); 1998 vd_need_reset(vd, reset_ldc); 1999 } 2000 2001 return (status); 2002 } 2003 2004 static boolean_t 2005 vd_enabled(vd_t *vd) 2006 { 2007 boolean_t enabled; 2008 2009 2010 mutex_enter(&vd->lock); 2011 enabled = vd->enabled; 2012 mutex_exit(&vd->lock); 2013 return (enabled); 2014 } 2015 2016 static void 2017 vd_recv_msg(void *arg) 2018 { 2019 vd_t *vd = (vd_t *)arg; 2020 int rv = 0, status = 0; 2021 2022 ASSERT(vd != NULL); 2023 2024 PR2("New task to receive incoming message(s)"); 2025 2026 2027 while (vd_enabled(vd) && status == 0) { 2028 size_t msglen, msgsize; 2029 ldc_status_t lstatus; 2030 2031 /* 2032 * Receive and process a message 2033 */ 2034 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 2035 2036 /* 2037 * check if channel is UP - else break out of loop 2038 */ 2039 status = ldc_status(vd->ldc_handle, &lstatus); 2040 if (lstatus != LDC_UP) { 2041 PR0("channel not up (status=%d), exiting recv loop\n", 2042 lstatus); 2043 break; 2044 } 2045 2046 ASSERT(vd->max_msglen != 0); 2047 2048 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 2049 msglen = msgsize; /* actual len after recv_msg() */ 2050 2051 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 2052 switch (status) { 2053 case 0: 2054 rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp, 2055 msglen); 2056 /* check if max_msglen changed */ 2057 if (msgsize != vd->max_msglen) { 2058 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 2059 msgsize, vd->max_msglen); 2060 kmem_free(vd->vio_msgp, msgsize); 2061 vd->vio_msgp = 2062 kmem_alloc(vd->max_msglen, KM_SLEEP); 2063 } 2064 if (rv == EINPROGRESS) 2065 continue; 2066 break; 2067 2068 case ENOMSG: 2069 break; 2070 2071 case ECONNRESET: 2072 PR0("initiating soft reset (ECONNRESET)\n"); 2073 vd_need_reset(vd, B_FALSE); 2074 status = 0; 2075 break; 2076 2077 default: 2078 /* Probably an LDC failure; arrange to reset it */ 2079 PR0("initiating full reset (status=0x%x)", status); 2080 vd_need_reset(vd, B_TRUE); 2081 break; 2082 } 2083 } 2084 2085 PR2("Task finished"); 2086 } 2087 2088 static uint_t 2089 vd_handle_ldc_events(uint64_t event, caddr_t arg) 2090 { 2091 vd_t *vd = (vd_t *)(void *)arg; 2092 int status; 2093 2094 ASSERT(vd != NULL); 2095 2096 if (!vd_enabled(vd)) 2097 return (LDC_SUCCESS); 2098 2099 if (event & LDC_EVT_DOWN) { 2100 PR0("LDC_EVT_DOWN: LDC channel went down"); 2101 2102 vd_need_reset(vd, B_TRUE); 2103 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 2104 DDI_SLEEP); 2105 if (status == DDI_FAILURE) { 2106 PR0("cannot schedule task to recv msg\n"); 2107 vd_need_reset(vd, B_TRUE); 2108 } 2109 } 2110 2111 if (event & LDC_EVT_RESET) { 2112 PR0("LDC_EVT_RESET: LDC channel was reset"); 2113 2114 if (vd->state != VD_STATE_INIT) { 2115 PR0("scheduling full reset"); 2116 vd_need_reset(vd, B_FALSE); 2117 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 2118 vd, DDI_SLEEP); 2119 if (status == DDI_FAILURE) { 2120 PR0("cannot schedule task to recv msg\n"); 2121 vd_need_reset(vd, B_TRUE); 2122 } 2123 2124 } else { 2125 PR0("channel already reset, ignoring...\n"); 2126 PR0("doing ldc up...\n"); 2127 (void) ldc_up(vd->ldc_handle); 2128 } 2129 2130 return (LDC_SUCCESS); 2131 } 2132 2133 if (event & LDC_EVT_UP) { 2134 PR0("EVT_UP: LDC is up\nResetting client connection state"); 2135 PR0("initiating soft reset"); 2136 vd_need_reset(vd, B_FALSE); 2137 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 2138 vd, DDI_SLEEP); 2139 if (status == DDI_FAILURE) { 2140 PR0("cannot schedule task to recv msg\n"); 2141 vd_need_reset(vd, B_TRUE); 2142 return (LDC_SUCCESS); 2143 } 2144 } 2145 2146 if (event & LDC_EVT_READ) { 2147 int status; 2148 2149 PR1("New data available"); 2150 /* Queue a task to receive the new data */ 2151 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 2152 DDI_SLEEP); 2153 2154 if (status == DDI_FAILURE) { 2155 PR0("cannot schedule task to recv msg\n"); 2156 vd_need_reset(vd, B_TRUE); 2157 } 2158 } 2159 2160 return (LDC_SUCCESS); 2161 } 2162 2163 static uint_t 2164 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2165 { 2166 _NOTE(ARGUNUSED(key, val)) 2167 (*((uint_t *)arg))++; 2168 return (MH_WALK_TERMINATE); 2169 } 2170 2171 2172 static int 2173 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2174 { 2175 uint_t vd_present = 0; 2176 minor_t instance; 2177 vds_t *vds; 2178 2179 2180 switch (cmd) { 2181 case DDI_DETACH: 2182 /* the real work happens below */ 2183 break; 2184 case DDI_SUSPEND: 2185 PR0("No action required for DDI_SUSPEND"); 2186 return (DDI_SUCCESS); 2187 default: 2188 PR0("Unrecognized \"cmd\""); 2189 return (DDI_FAILURE); 2190 } 2191 2192 ASSERT(cmd == DDI_DETACH); 2193 instance = ddi_get_instance(dip); 2194 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 2195 PR0("Could not get state for instance %u", instance); 2196 ddi_soft_state_free(vds_state, instance); 2197 return (DDI_FAILURE); 2198 } 2199 2200 /* Do no detach when serving any vdisks */ 2201 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 2202 if (vd_present) { 2203 PR0("Not detaching because serving vdisks"); 2204 return (DDI_FAILURE); 2205 } 2206 2207 PR0("Detaching"); 2208 if (vds->initialized & VDS_MDEG) { 2209 (void) mdeg_unregister(vds->mdeg); 2210 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 2211 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 2212 vds->ispecp = NULL; 2213 vds->mdeg = NULL; 2214 } 2215 2216 if (vds->initialized & VDS_LDI) 2217 (void) ldi_ident_release(vds->ldi_ident); 2218 mod_hash_destroy_hash(vds->vd_table); 2219 ddi_soft_state_free(vds_state, instance); 2220 return (DDI_SUCCESS); 2221 } 2222 2223 static boolean_t 2224 is_pseudo_device(dev_info_t *dip) 2225 { 2226 dev_info_t *parent, *root = ddi_root_node(); 2227 2228 2229 for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root); 2230 parent = ddi_get_parent(parent)) { 2231 if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0) 2232 return (B_TRUE); 2233 } 2234 2235 return (B_FALSE); 2236 } 2237 2238 static int 2239 vd_setup_full_disk(vd_t *vd) 2240 { 2241 int rval, status; 2242 major_t major = getmajor(vd->dev[0]); 2243 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 2244 struct dk_minfo dk_minfo; 2245 2246 /* 2247 * At this point, vdisk_size is set to the size of partition 2 but 2248 * this does not represent the size of the disk because partition 2 2249 * may not cover the entire disk and its size does not include reserved 2250 * blocks. So we update vdisk_size to be the size of the entire disk. 2251 */ 2252 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 2253 (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL), 2254 kcred, &rval)) != 0) { 2255 PR0("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 2256 status); 2257 return (status); 2258 } 2259 vd->vdisk_size = dk_minfo.dki_capacity; 2260 2261 /* Set full-disk parameters */ 2262 vd->vdisk_type = VD_DISK_TYPE_DISK; 2263 vd->nslices = (sizeof (vd->dev))/(sizeof (vd->dev[0])); 2264 2265 /* Move dev number and LDI handle to entire-disk-slice array elements */ 2266 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 2267 vd->dev[0] = 0; 2268 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 2269 vd->ldi_handle[0] = NULL; 2270 2271 /* Initialize device numbers for remaining slices and open them */ 2272 for (int slice = 0; slice < vd->nslices; slice++) { 2273 /* 2274 * Skip the entire-disk slice, as it's already open and its 2275 * device known 2276 */ 2277 if (slice == VD_ENTIRE_DISK_SLICE) 2278 continue; 2279 ASSERT(vd->dev[slice] == 0); 2280 ASSERT(vd->ldi_handle[slice] == NULL); 2281 2282 /* 2283 * Construct the device number for the current slice 2284 */ 2285 vd->dev[slice] = makedevice(major, (minor + slice)); 2286 2287 /* 2288 * Open all slices of the disk to serve them to the client. 2289 * Slices are opened exclusively to prevent other threads or 2290 * processes in the service domain from performing I/O to 2291 * slices being accessed by a client. Failure to open a slice 2292 * results in vds not serving this disk, as the client could 2293 * attempt (and should be able) to access any slice immediately. 2294 * Any slices successfully opened before a failure will get 2295 * closed by vds_destroy_vd() as a result of the error returned 2296 * by this function. 2297 * 2298 * We need to do the open with FNDELAY so that opening an empty 2299 * slice does not fail. 2300 */ 2301 PR0("Opening device major %u, minor %u = slice %u", 2302 major, minor, slice); 2303 if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 2304 vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice], 2305 vd->vds->ldi_ident)) != 0) { 2306 PR0("ldi_open_by_dev() returned errno %d " 2307 "for slice %u", status, slice); 2308 /* vds_destroy_vd() will close any open slices */ 2309 return (status); 2310 } 2311 } 2312 2313 return (0); 2314 } 2315 2316 static int 2317 vd_setup_partition_efi(vd_t *vd) 2318 { 2319 efi_gpt_t *gpt; 2320 efi_gpe_t *gpe; 2321 struct uuid uuid = EFI_RESERVED; 2322 uint32_t crc; 2323 int length; 2324 2325 length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t); 2326 2327 gpt = kmem_zalloc(length, KM_SLEEP); 2328 gpe = (efi_gpe_t *)(gpt + 1); 2329 2330 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 2331 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 2332 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 2333 gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL); 2334 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 2335 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 2336 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 2337 2338 UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid); 2339 gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA; 2340 gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA; 2341 2342 CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table); 2343 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 2344 2345 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 2346 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 2347 2348 vd->dk_efi.dki_lba = 0; 2349 vd->dk_efi.dki_length = length; 2350 vd->dk_efi.dki_data = gpt; 2351 2352 return (0); 2353 } 2354 2355 static int 2356 vd_setup_vd(char *device_path, vd_t *vd) 2357 { 2358 int rval, status; 2359 dev_info_t *dip; 2360 struct dk_cinfo dk_cinfo; 2361 2362 /* 2363 * We need to open with FNDELAY so that opening an empty partition 2364 * does not fail. 2365 */ 2366 if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY, 2367 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) { 2368 PRN("ldi_open_by_name(%s) = errno %d", device_path, status); 2369 return (status); 2370 } 2371 2372 /* 2373 * nslices must be updated now so that vds_destroy_vd() will close 2374 * the slice we have just opened in case of an error. 2375 */ 2376 vd->nslices = 1; 2377 2378 /* Get device number and size of backing device */ 2379 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 2380 PRN("ldi_get_dev() returned errno %d for %s", 2381 status, device_path); 2382 return (status); 2383 } 2384 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 2385 PRN("ldi_get_size() failed for %s", device_path); 2386 return (EIO); 2387 } 2388 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 2389 2390 /* Verify backing device supports dk_cinfo, dk_geom, and vtoc */ 2391 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 2392 (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred, 2393 &rval)) != 0) { 2394 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 2395 status, device_path); 2396 return (status); 2397 } 2398 if (dk_cinfo.dki_partition >= V_NUMPAR) { 2399 PRN("slice %u >= maximum slice %u for %s", 2400 dk_cinfo.dki_partition, V_NUMPAR, device_path); 2401 return (EIO); 2402 } 2403 2404 status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label); 2405 2406 if (status != 0) { 2407 PRN("vd_read_vtoc returned errno %d for %s", 2408 status, device_path); 2409 return (status); 2410 } 2411 2412 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 2413 (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 2414 (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL), 2415 kcred, &rval)) != 0) { 2416 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s", 2417 status, device_path); 2418 return (status); 2419 } 2420 2421 /* Store the device's max transfer size for return to the client */ 2422 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 2423 2424 2425 /* Determine if backing device is a pseudo device */ 2426 if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]), 2427 dev_to_instance(vd->dev[0]), 0)) == NULL) { 2428 PRN("%s is no longer accessible", device_path); 2429 return (EIO); 2430 } 2431 vd->pseudo = is_pseudo_device(dip); 2432 ddi_release_devi(dip); 2433 if (vd->pseudo) { 2434 vd->vdisk_type = VD_DISK_TYPE_SLICE; 2435 vd->nslices = 1; 2436 return (0); /* ...and we're done */ 2437 } 2438 2439 2440 /* If slice is entire-disk slice, initialize for full disk */ 2441 if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE) 2442 return (vd_setup_full_disk(vd)); 2443 2444 2445 /* Otherwise, we have a non-entire slice of a device */ 2446 vd->vdisk_type = VD_DISK_TYPE_SLICE; 2447 vd->nslices = 1; 2448 2449 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 2450 status = vd_setup_partition_efi(vd); 2451 return (status); 2452 } 2453 2454 /* Initialize dk_geom structure for single-slice device */ 2455 if (vd->dk_geom.dkg_nsect == 0) { 2456 PR0("%s geometry claims 0 sectors per track", device_path); 2457 return (EIO); 2458 } 2459 if (vd->dk_geom.dkg_nhead == 0) { 2460 PR0("%s geometry claims 0 heads", device_path); 2461 return (EIO); 2462 } 2463 vd->dk_geom.dkg_ncyl = 2464 vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead; 2465 vd->dk_geom.dkg_acyl = 0; 2466 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 2467 2468 2469 /* Initialize vtoc structure for single-slice device */ 2470 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 2471 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 2472 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 2473 vd->vtoc.v_nparts = 1; 2474 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 2475 vd->vtoc.v_part[0].p_flag = 0; 2476 vd->vtoc.v_part[0].p_start = 0; 2477 vd->vtoc.v_part[0].p_size = vd->vdisk_size; 2478 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 2479 MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel))); 2480 2481 2482 return (0); 2483 } 2484 2485 static int 2486 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id, 2487 vd_t **vdp) 2488 { 2489 char tq_name[TASKQ_NAMELEN]; 2490 int status; 2491 ddi_iblock_cookie_t iblock = NULL; 2492 ldc_attr_t ldc_attr; 2493 vd_t *vd; 2494 2495 2496 ASSERT(vds != NULL); 2497 ASSERT(device_path != NULL); 2498 ASSERT(vdp != NULL); 2499 PR0("Adding vdisk for %s", device_path); 2500 2501 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 2502 PRN("No memory for virtual disk"); 2503 return (EAGAIN); 2504 } 2505 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 2506 vd->vds = vds; 2507 2508 2509 /* Open vdisk and initialize parameters */ 2510 if ((status = vd_setup_vd(device_path, vd)) != 0) 2511 return (status); 2512 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 2513 PR0("vdisk_type = %s, pseudo = %s, nslices = %u", 2514 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 2515 (vd->pseudo ? "yes" : "no"), vd->nslices); 2516 2517 2518 /* Initialize locking */ 2519 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 2520 &iblock) != DDI_SUCCESS) { 2521 PRN("Could not get iblock cookie."); 2522 return (EIO); 2523 } 2524 2525 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 2526 vd->initialized |= VD_LOCKING; 2527 2528 2529 /* Create start and completion task queues for the vdisk */ 2530 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 2531 PR1("tq_name = %s", tq_name); 2532 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 2533 TASKQ_DEFAULTPRI, 0)) == NULL) { 2534 PRN("Could not create task queue"); 2535 return (EIO); 2536 } 2537 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 2538 PR1("tq_name = %s", tq_name); 2539 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 2540 TASKQ_DEFAULTPRI, 0)) == NULL) { 2541 PRN("Could not create task queue"); 2542 return (EIO); 2543 } 2544 vd->enabled = 1; /* before callback can dispatch to startq */ 2545 2546 2547 /* Bring up LDC */ 2548 ldc_attr.devclass = LDC_DEV_BLK_SVC; 2549 ldc_attr.instance = ddi_get_instance(vds->dip); 2550 ldc_attr.mode = LDC_MODE_UNRELIABLE; 2551 ldc_attr.mtu = VD_LDC_MTU; 2552 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 2553 PR0("ldc_init(%lu) = errno %d", ldc_id, status); 2554 return (status); 2555 } 2556 vd->initialized |= VD_LDC; 2557 2558 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 2559 (caddr_t)vd)) != 0) { 2560 PR0("ldc_reg_callback() returned errno %d", status); 2561 return (status); 2562 } 2563 2564 if ((status = ldc_open(vd->ldc_handle)) != 0) { 2565 PR0("ldc_open() returned errno %d", status); 2566 return (status); 2567 } 2568 2569 if ((status = ldc_up(vd->ldc_handle)) != 0) { 2570 PR0("ldc_up() returned errno %d", status); 2571 } 2572 2573 /* Allocate the inband task memory handle */ 2574 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 2575 if (status) { 2576 PR0("ldc_mem_alloc_handle() returned err %d ", status); 2577 return (ENXIO); 2578 } 2579 2580 /* Add the successfully-initialized vdisk to the server's table */ 2581 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 2582 PRN("Error adding vdisk ID %lu to table", id); 2583 return (EIO); 2584 } 2585 2586 /* Allocate the staging buffer */ 2587 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 2588 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 2589 2590 /* store initial state */ 2591 vd->state = VD_STATE_INIT; 2592 2593 return (0); 2594 } 2595 2596 static void 2597 vd_free_dring_task(vd_t *vdp) 2598 { 2599 if (vdp->dring_task != NULL) { 2600 ASSERT(vdp->dring_len != 0); 2601 /* Free all dring_task memory handles */ 2602 for (int i = 0; i < vdp->dring_len; i++) { 2603 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 2604 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 2605 vdp->dring_task[i].msg = NULL; 2606 } 2607 kmem_free(vdp->dring_task, 2608 (sizeof (*vdp->dring_task)) * vdp->dring_len); 2609 vdp->dring_task = NULL; 2610 } 2611 } 2612 2613 /* 2614 * Destroy the state associated with a virtual disk 2615 */ 2616 static void 2617 vds_destroy_vd(void *arg) 2618 { 2619 vd_t *vd = (vd_t *)arg; 2620 int retry = 0, rv; 2621 2622 if (vd == NULL) 2623 return; 2624 2625 PR0("Destroying vdisk state"); 2626 2627 if (vd->dk_efi.dki_data != NULL) 2628 kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length); 2629 2630 /* Disable queuing requests for the vdisk */ 2631 if (vd->initialized & VD_LOCKING) { 2632 mutex_enter(&vd->lock); 2633 vd->enabled = 0; 2634 mutex_exit(&vd->lock); 2635 } 2636 2637 /* Drain and destroy start queue (*before* destroying completionq) */ 2638 if (vd->startq != NULL) 2639 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 2640 2641 /* Drain and destroy completion queue (*before* shutting down LDC) */ 2642 if (vd->completionq != NULL) 2643 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 2644 2645 vd_free_dring_task(vd); 2646 2647 /* Free the inband task memory handle */ 2648 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 2649 2650 /* Shut down LDC */ 2651 if (vd->initialized & VD_LDC) { 2652 /* unmap the dring */ 2653 if (vd->initialized & VD_DRING) 2654 (void) ldc_mem_dring_unmap(vd->dring_handle); 2655 2656 /* close LDC channel - retry on EAGAIN */ 2657 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 2658 if (++retry > vds_ldc_retries) { 2659 PR0("Timed out closing channel"); 2660 break; 2661 } 2662 drv_usecwait(vds_ldc_delay); 2663 } 2664 if (rv == 0) { 2665 (void) ldc_unreg_callback(vd->ldc_handle); 2666 (void) ldc_fini(vd->ldc_handle); 2667 } else { 2668 /* 2669 * Closing the LDC channel has failed. Ideally we should 2670 * fail here but there is no Zeus level infrastructure 2671 * to handle this. The MD has already been changed and 2672 * we have to do the close. So we try to do as much 2673 * clean up as we can. 2674 */ 2675 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 2676 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 2677 drv_usecwait(vds_ldc_delay); 2678 } 2679 } 2680 2681 /* Free the staging buffer for msgs */ 2682 if (vd->vio_msgp != NULL) { 2683 kmem_free(vd->vio_msgp, vd->max_msglen); 2684 vd->vio_msgp = NULL; 2685 } 2686 2687 /* Free the inband message buffer */ 2688 if (vd->inband_task.msg != NULL) { 2689 kmem_free(vd->inband_task.msg, vd->max_msglen); 2690 vd->inband_task.msg = NULL; 2691 } 2692 2693 /* Close any open backing-device slices */ 2694 for (uint_t slice = 0; slice < vd->nslices; slice++) { 2695 if (vd->ldi_handle[slice] != NULL) { 2696 PR0("Closing slice %u", slice); 2697 (void) ldi_close(vd->ldi_handle[slice], 2698 vd_open_flags | FNDELAY, kcred); 2699 } 2700 } 2701 2702 /* Free lock */ 2703 if (vd->initialized & VD_LOCKING) 2704 mutex_destroy(&vd->lock); 2705 2706 /* Finally, free the vdisk structure itself */ 2707 kmem_free(vd, sizeof (*vd)); 2708 } 2709 2710 static int 2711 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id) 2712 { 2713 int status; 2714 vd_t *vd = NULL; 2715 2716 2717 if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0) 2718 vds_destroy_vd(vd); 2719 2720 return (status); 2721 } 2722 2723 static int 2724 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 2725 uint64_t *ldc_id) 2726 { 2727 int num_channels; 2728 2729 2730 /* Look for channel endpoint child(ren) of the vdisk MD node */ 2731 if ((num_channels = md_scan_dag(md, vd_node, 2732 md_find_name(md, VD_CHANNEL_ENDPOINT), 2733 md_find_name(md, "fwd"), channel)) <= 0) { 2734 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 2735 return (-1); 2736 } 2737 2738 /* Get the "id" value for the first channel endpoint node */ 2739 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 2740 PRN("No \"%s\" property found for \"%s\" of vdisk", 2741 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 2742 return (-1); 2743 } 2744 2745 if (num_channels > 1) { 2746 PRN("Using ID of first of multiple channels for this vdisk"); 2747 } 2748 2749 return (0); 2750 } 2751 2752 static int 2753 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 2754 { 2755 int num_nodes, status; 2756 size_t size; 2757 mde_cookie_t *channel; 2758 2759 2760 if ((num_nodes = md_node_count(md)) <= 0) { 2761 PRN("Invalid node count in Machine Description subtree"); 2762 return (-1); 2763 } 2764 size = num_nodes*(sizeof (*channel)); 2765 channel = kmem_zalloc(size, KM_SLEEP); 2766 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 2767 kmem_free(channel, size); 2768 2769 return (status); 2770 } 2771 2772 static void 2773 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 2774 { 2775 char *device_path = NULL; 2776 uint64_t id = 0, ldc_id = 0; 2777 2778 2779 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 2780 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 2781 return; 2782 } 2783 PR0("Adding vdisk ID %lu", id); 2784 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 2785 &device_path) != 0) { 2786 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 2787 return; 2788 } 2789 2790 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 2791 PRN("Error getting LDC ID for vdisk %lu", id); 2792 return; 2793 } 2794 2795 if (vds_init_vd(vds, id, device_path, ldc_id) != 0) { 2796 PRN("Failed to add vdisk ID %lu", id); 2797 return; 2798 } 2799 } 2800 2801 static void 2802 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 2803 { 2804 uint64_t id = 0; 2805 2806 2807 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 2808 PRN("Unable to get \"%s\" property from vdisk's MD node", 2809 VD_ID_PROP); 2810 return; 2811 } 2812 PR0("Removing vdisk ID %lu", id); 2813 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 2814 PRN("No vdisk entry found for vdisk ID %lu", id); 2815 } 2816 2817 static void 2818 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 2819 md_t *curr_md, mde_cookie_t curr_vd_node) 2820 { 2821 char *curr_dev, *prev_dev; 2822 uint64_t curr_id = 0, curr_ldc_id = 0; 2823 uint64_t prev_id = 0, prev_ldc_id = 0; 2824 size_t len; 2825 2826 2827 /* Validate that vdisk ID has not changed */ 2828 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 2829 PRN("Error getting previous vdisk \"%s\" property", 2830 VD_ID_PROP); 2831 return; 2832 } 2833 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 2834 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 2835 return; 2836 } 2837 if (curr_id != prev_id) { 2838 PRN("Not changing vdisk: ID changed from %lu to %lu", 2839 prev_id, curr_id); 2840 return; 2841 } 2842 2843 /* Validate that LDC ID has not changed */ 2844 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 2845 PRN("Error getting LDC ID for vdisk %lu", prev_id); 2846 return; 2847 } 2848 2849 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 2850 PRN("Error getting LDC ID for vdisk %lu", curr_id); 2851 return; 2852 } 2853 if (curr_ldc_id != prev_ldc_id) { 2854 _NOTE(NOTREACHED); /* lint is confused */ 2855 PRN("Not changing vdisk: " 2856 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 2857 return; 2858 } 2859 2860 /* Determine whether device path has changed */ 2861 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 2862 &prev_dev) != 0) { 2863 PRN("Error getting previous vdisk \"%s\"", 2864 VD_BLOCK_DEVICE_PROP); 2865 return; 2866 } 2867 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 2868 &curr_dev) != 0) { 2869 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 2870 return; 2871 } 2872 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 2873 (strncmp(curr_dev, prev_dev, len) == 0)) 2874 return; /* no relevant (supported) change */ 2875 2876 PR0("Changing vdisk ID %lu", prev_id); 2877 2878 /* Remove old state, which will close vdisk and reset */ 2879 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 2880 PRN("No entry found for vdisk ID %lu", prev_id); 2881 2882 /* Re-initialize vdisk with new state */ 2883 if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) { 2884 PRN("Failed to change vdisk ID %lu", curr_id); 2885 return; 2886 } 2887 } 2888 2889 static int 2890 vds_process_md(void *arg, mdeg_result_t *md) 2891 { 2892 int i; 2893 vds_t *vds = arg; 2894 2895 2896 if (md == NULL) 2897 return (MDEG_FAILURE); 2898 ASSERT(vds != NULL); 2899 2900 for (i = 0; i < md->removed.nelem; i++) 2901 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 2902 for (i = 0; i < md->match_curr.nelem; i++) 2903 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 2904 md->match_curr.mdp, md->match_curr.mdep[i]); 2905 for (i = 0; i < md->added.nelem; i++) 2906 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 2907 2908 return (MDEG_SUCCESS); 2909 } 2910 2911 static int 2912 vds_do_attach(dev_info_t *dip) 2913 { 2914 int status, sz; 2915 int cfg_handle; 2916 minor_t instance = ddi_get_instance(dip); 2917 vds_t *vds; 2918 mdeg_prop_spec_t *pspecp; 2919 mdeg_node_spec_t *ispecp; 2920 2921 /* 2922 * The "cfg-handle" property of a vds node in an MD contains the MD's 2923 * notion of "instance", or unique identifier, for that node; OBP 2924 * stores the value of the "cfg-handle" MD property as the value of 2925 * the "reg" property on the node in the device tree it builds from 2926 * the MD and passes to Solaris. Thus, we look up the devinfo node's 2927 * "reg" property value to uniquely identify this device instance when 2928 * registering with the MD event-generation framework. If the "reg" 2929 * property cannot be found, the device tree state is presumably so 2930 * broken that there is no point in continuing. 2931 */ 2932 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2933 VD_REG_PROP)) { 2934 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 2935 return (DDI_FAILURE); 2936 } 2937 2938 /* Get the MD instance for later MDEG registration */ 2939 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2940 VD_REG_PROP, -1); 2941 2942 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 2943 PRN("Could not allocate state for instance %u", instance); 2944 return (DDI_FAILURE); 2945 } 2946 2947 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 2948 PRN("Could not get state for instance %u", instance); 2949 ddi_soft_state_free(vds_state, instance); 2950 return (DDI_FAILURE); 2951 } 2952 2953 vds->dip = dip; 2954 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 2955 vds_destroy_vd, 2956 sizeof (void *)); 2957 ASSERT(vds->vd_table != NULL); 2958 2959 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 2960 PRN("ldi_ident_from_dip() returned errno %d", status); 2961 return (DDI_FAILURE); 2962 } 2963 vds->initialized |= VDS_LDI; 2964 2965 /* Register for MD updates */ 2966 sz = sizeof (vds_prop_template); 2967 pspecp = kmem_alloc(sz, KM_SLEEP); 2968 bcopy(vds_prop_template, pspecp, sz); 2969 2970 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 2971 2972 /* initialize the complete prop spec structure */ 2973 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 2974 ispecp->namep = "virtual-device"; 2975 ispecp->specp = pspecp; 2976 2977 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 2978 &vds->mdeg) != MDEG_SUCCESS) { 2979 PRN("Unable to register for MD updates"); 2980 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 2981 kmem_free(pspecp, sz); 2982 return (DDI_FAILURE); 2983 } 2984 2985 vds->ispecp = ispecp; 2986 vds->initialized |= VDS_MDEG; 2987 2988 /* Prevent auto-detaching so driver is available whenever MD changes */ 2989 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 2990 DDI_PROP_SUCCESS) { 2991 PRN("failed to set \"%s\" property for instance %u", 2992 DDI_NO_AUTODETACH, instance); 2993 } 2994 2995 ddi_report_dev(dip); 2996 return (DDI_SUCCESS); 2997 } 2998 2999 static int 3000 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 3001 { 3002 int status; 3003 3004 switch (cmd) { 3005 case DDI_ATTACH: 3006 PR0("Attaching"); 3007 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 3008 (void) vds_detach(dip, DDI_DETACH); 3009 return (status); 3010 case DDI_RESUME: 3011 PR0("No action required for DDI_RESUME"); 3012 return (DDI_SUCCESS); 3013 default: 3014 return (DDI_FAILURE); 3015 } 3016 } 3017 3018 static struct dev_ops vds_ops = { 3019 DEVO_REV, /* devo_rev */ 3020 0, /* devo_refcnt */ 3021 ddi_no_info, /* devo_getinfo */ 3022 nulldev, /* devo_identify */ 3023 nulldev, /* devo_probe */ 3024 vds_attach, /* devo_attach */ 3025 vds_detach, /* devo_detach */ 3026 nodev, /* devo_reset */ 3027 NULL, /* devo_cb_ops */ 3028 NULL, /* devo_bus_ops */ 3029 nulldev /* devo_power */ 3030 }; 3031 3032 static struct modldrv modldrv = { 3033 &mod_driverops, 3034 "virtual disk server v%I%", 3035 &vds_ops, 3036 }; 3037 3038 static struct modlinkage modlinkage = { 3039 MODREV_1, 3040 &modldrv, 3041 NULL 3042 }; 3043 3044 3045 int 3046 _init(void) 3047 { 3048 int i, status; 3049 3050 3051 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 3052 return (status); 3053 if ((status = mod_install(&modlinkage)) != 0) { 3054 ddi_soft_state_fini(&vds_state); 3055 return (status); 3056 } 3057 3058 /* Fill in the bit-mask of server-supported operations */ 3059 for (i = 0; i < vds_noperations; i++) 3060 vds_operations |= 1 << (vds_operation[i].operation - 1); 3061 3062 return (0); 3063 } 3064 3065 int 3066 _info(struct modinfo *modinfop) 3067 { 3068 return (mod_info(&modlinkage, modinfop)); 3069 } 3070 3071 int 3072 _fini(void) 3073 { 3074 int status; 3075 3076 3077 if ((status = mod_remove(&modlinkage)) != 0) 3078 return (status); 3079 ddi_soft_state_fini(&vds_state); 3080 return (0); 3081 } 3082