1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Virtual disk server 29 */ 30 31 32 #include <sys/types.h> 33 #include <sys/conf.h> 34 #include <sys/crc32.h> 35 #include <sys/ddi.h> 36 #include <sys/dkio.h> 37 #include <sys/file.h> 38 #include <sys/fs/hsfs_isospec.h> 39 #include <sys/mdeg.h> 40 #include <sys/mhd.h> 41 #include <sys/modhash.h> 42 #include <sys/note.h> 43 #include <sys/pathname.h> 44 #include <sys/sdt.h> 45 #include <sys/sunddi.h> 46 #include <sys/sunldi.h> 47 #include <sys/sysmacros.h> 48 #include <sys/vio_common.h> 49 #include <sys/vio_util.h> 50 #include <sys/vdsk_mailbox.h> 51 #include <sys/vdsk_common.h> 52 #include <sys/vtoc.h> 53 #include <sys/vfs.h> 54 #include <sys/stat.h> 55 #include <sys/scsi/impl/uscsi.h> 56 #include <sys/ontrap.h> 57 #include <vm/seg_map.h> 58 59 #define ONE_MEGABYTE (1ULL << 20) 60 #define ONE_GIGABYTE (1ULL << 30) 61 #define ONE_TERABYTE (1ULL << 40) 62 63 /* Virtual disk server initialization flags */ 64 #define VDS_LDI 0x01 65 #define VDS_MDEG 0x02 66 67 /* Virtual disk server tunable parameters */ 68 #define VDS_RETRIES 5 69 #define VDS_LDC_DELAY 1000 /* 1 msecs */ 70 #define VDS_DEV_DELAY 10000000 /* 10 secs */ 71 #define VDS_NCHAINS 32 72 73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 74 #define VDS_NAME "virtual-disk-server" 75 76 #define VD_NAME "vd" 77 #define VD_VOLUME_NAME "vdisk" 78 #define VD_ASCIILABEL "Virtual Disk" 79 80 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 81 #define VD_ID_PROP "id" 82 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 83 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts" 84 #define VD_REG_PROP "reg" 85 86 /* Virtual disk initialization flags */ 87 #define VD_DISK_READY 0x01 88 #define VD_LOCKING 0x02 89 #define VD_LDC 0x04 90 #define VD_DRING 0x08 91 #define VD_SID 0x10 92 #define VD_SEQ_NUM 0x20 93 #define VD_SETUP_ERROR 0x40 94 95 /* Number of backup labels */ 96 #define VD_DSKIMG_NUM_BACKUP 5 97 98 /* Timeout for SCSI I/O */ 99 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ 100 101 /* 102 * Default number of threads for the I/O queue. In many cases, we will not 103 * receive more than 8 I/O requests at the same time. However there are 104 * cases (for example during the OS installation) where we can have a lot 105 * more (up to the limit of the DRing size). 106 */ 107 #define VD_IOQ_NTHREADS 8 108 109 /* Maximum number of logical partitions */ 110 #define VD_MAXPART (NDKMAP + 1) 111 112 /* 113 * By Solaris convention, slice/partition 2 represents the entire disk; 114 * unfortunately, this convention does not appear to be codified. 115 */ 116 #define VD_ENTIRE_DISK_SLICE 2 117 118 /* Logical block address for EFI */ 119 #define VD_EFI_LBA_GPT 1 /* LBA of the GPT */ 120 #define VD_EFI_LBA_GPE 2 /* LBA of the GPE */ 121 122 #define VD_EFI_DEV_SET(dev, vdsk, ioctl) \ 123 VDSK_EFI_DEV_SET(dev, vdsk, ioctl, \ 124 (vdsk)->vdisk_bsize, (vdsk)->vdisk_size) 125 126 /* 127 * Flags defining the behavior for flushing asynchronous writes used to 128 * performed some write I/O requests. 129 * 130 * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous 131 * writes. This ensures that data are committed to the backend when the I/O 132 * request reply is sent to the guest domain so this prevents any data to 133 * be lost in case a service domain unexpectedly crashes. 134 * 135 * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another 136 * thread while the request is immediatly marked as completed. In that case, 137 * a guest domain can a receive a reply that its write request is completed 138 * while data haven't been flushed to disk yet. 139 * 140 * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive. 141 */ 142 #define VD_AWFLUSH_IMMEDIATE 0x01 /* immediate flushing */ 143 #define VD_AWFLUSH_DEFER 0x02 /* defer flushing */ 144 #define VD_AWFLUSH_GROUP 0x04 /* group requests before flushing */ 145 146 /* Driver types */ 147 typedef enum vd_driver { 148 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */ 149 VD_DRIVER_DISK, /* disk driver */ 150 VD_DRIVER_VOLUME /* volume driver */ 151 } vd_driver_t; 152 153 #define VD_DRIVER_NAME_LEN 64 154 155 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t)) 156 157 typedef struct vd_driver_type { 158 char name[VD_DRIVER_NAME_LEN]; /* driver name */ 159 vd_driver_t type; /* driver type (disk or volume) */ 160 } vd_driver_type_t; 161 162 /* 163 * There is no reliable way to determine if a device is representing a disk 164 * or a volume, especially with pseudo devices. So we maintain a list of well 165 * known drivers and the type of device they represent (either a disk or a 166 * volume). 167 * 168 * The list can be extended by adding a "driver-type-list" entry in vds.conf 169 * with the following syntax: 170 * 171 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>"; 172 * 173 * Where: 174 * <driver> is the name of a driver (limited to 64 characters) 175 * <type> is either the string "disk" or "volume" 176 * 177 * Invalid entries in "driver-type-list" will be ignored. 178 * 179 * For example, the following line in vds.conf: 180 * 181 * driver-type-list="foo:disk","bar:volume"; 182 * 183 * defines that "foo" is a disk driver, and driver "bar" is a volume driver. 184 * 185 * When a list is defined in vds.conf, it is checked before the built-in list 186 * (vds_driver_types[]) so that any definition from this list can be overriden 187 * using vds.conf. 188 */ 189 vd_driver_type_t vds_driver_types[] = { 190 { "dad", VD_DRIVER_DISK }, /* Solaris */ 191 { "did", VD_DRIVER_DISK }, /* Sun Cluster */ 192 { "dlmfdrv", VD_DRIVER_DISK }, /* Hitachi HDLM */ 193 { "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */ 194 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */ 195 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */ 196 { "sd", VD_DRIVER_DISK }, /* Solaris */ 197 { "ssd", VD_DRIVER_DISK }, /* Solaris */ 198 { "vdc", VD_DRIVER_DISK }, /* Solaris */ 199 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */ 200 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */ 201 { "zfs", VD_DRIVER_VOLUME } /* Solaris */ 202 }; 203 204 /* Return a cpp token as a string */ 205 #define STRINGIZE(token) #token 206 207 /* 208 * Print a message prefixed with the current function name to the message log 209 * (and optionally to the console for verbose boots); these macros use cpp's 210 * concatenation of string literals and C99 variable-length-argument-list 211 * macros 212 */ 213 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 214 #define _PRN(format, ...) \ 215 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 216 217 /* Return a pointer to the "i"th vdisk dring element */ 218 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 219 (vd->dring + (i)*vd->descriptor_size)) 220 221 /* Return the virtual disk client's type as a string (for use in messages) */ 222 #define VD_CLIENT(vd) \ 223 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 224 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \ 225 (((vd)->xfer_mode == 0) ? "null client" : \ 226 "unsupported client"))) 227 228 /* Read disk label from a disk image */ 229 #define VD_DSKIMG_LABEL_READ(vd, labelp) \ 230 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 231 0, sizeof (struct dk_label)) 232 233 /* Write disk label to a disk image */ 234 #define VD_DSKIMG_LABEL_WRITE(vd, labelp) \ 235 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 236 0, sizeof (struct dk_label)) 237 238 /* Identify if a backend is a disk image */ 239 #define VD_DSKIMG(vd) ((vd)->vdisk_type == VD_DISK_TYPE_DISK && \ 240 ((vd)->file || (vd)->volume)) 241 242 /* Next index in a write queue */ 243 #define VD_WRITE_INDEX_NEXT(vd, id) \ 244 ((((id) + 1) >= vd->dring_len)? 0 : (id) + 1) 245 246 /* Message for disk access rights reset failure */ 247 #define VD_RESET_ACCESS_FAILURE_MSG \ 248 "Fail to reset disk access rights for disk %s" 249 250 /* 251 * Specification of an MD node passed to the MDEG to filter any 252 * 'vport' nodes that do not belong to the specified node. This 253 * template is copied for each vds instance and filled in with 254 * the appropriate 'cfg-handle' value before being passed to the MDEG. 255 */ 256 static mdeg_prop_spec_t vds_prop_template[] = { 257 { MDET_PROP_STR, "name", VDS_NAME }, 258 { MDET_PROP_VAL, "cfg-handle", NULL }, 259 { MDET_LIST_END, NULL, NULL } 260 }; 261 262 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 263 264 /* 265 * Matching criteria passed to the MDEG to register interest 266 * in changes to 'virtual-device-port' nodes identified by their 267 * 'id' property. 268 */ 269 static md_prop_match_t vd_prop_match[] = { 270 { MDET_PROP_VAL, VD_ID_PROP }, 271 { MDET_LIST_END, NULL } 272 }; 273 274 static mdeg_node_match_t vd_match = {"virtual-device-port", 275 vd_prop_match}; 276 277 /* 278 * Options for the VD_BLOCK_DEVICE_OPTS property. 279 */ 280 #define VD_OPT_RDONLY 0x1 /* read-only */ 281 #define VD_OPT_SLICE 0x2 /* single slice */ 282 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */ 283 284 #define VD_OPTION_NLEN 128 285 286 typedef struct vd_option { 287 char vdo_name[VD_OPTION_NLEN]; 288 uint64_t vdo_value; 289 } vd_option_t; 290 291 vd_option_t vd_bdev_options[] = { 292 { "ro", VD_OPT_RDONLY }, 293 { "slice", VD_OPT_SLICE }, 294 { "excl", VD_OPT_EXCLUSIVE } 295 }; 296 297 /* Debugging macros */ 298 #ifdef DEBUG 299 300 static int vd_msglevel = 0; 301 302 #define PR0 if (vd_msglevel > 0) PRN 303 #define PR1 if (vd_msglevel > 1) PRN 304 #define PR2 if (vd_msglevel > 2) PRN 305 306 #define VD_DUMP_DRING_ELEM(elem) \ 307 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 308 elem->hdr.dstate, \ 309 elem->payload.operation, \ 310 elem->payload.status, \ 311 elem->payload.nbytes, \ 312 elem->payload.addr, \ 313 elem->payload.ncookies); 314 315 char * 316 vd_decode_state(int state) 317 { 318 char *str; 319 320 #define CASE_STATE(_s) case _s: str = #_s; break; 321 322 switch (state) { 323 CASE_STATE(VD_STATE_INIT) 324 CASE_STATE(VD_STATE_VER) 325 CASE_STATE(VD_STATE_ATTR) 326 CASE_STATE(VD_STATE_DRING) 327 CASE_STATE(VD_STATE_RDX) 328 CASE_STATE(VD_STATE_DATA) 329 default: str = "unknown"; break; 330 } 331 332 #undef CASE_STATE 333 334 return (str); 335 } 336 337 void 338 vd_decode_tag(vio_msg_t *msg) 339 { 340 char *tstr, *sstr, *estr; 341 342 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 343 344 switch (msg->tag.vio_msgtype) { 345 CASE_TYPE(VIO_TYPE_CTRL) 346 CASE_TYPE(VIO_TYPE_DATA) 347 CASE_TYPE(VIO_TYPE_ERR) 348 default: tstr = "unknown"; break; 349 } 350 351 #undef CASE_TYPE 352 353 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 354 355 switch (msg->tag.vio_subtype) { 356 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 357 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 358 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 359 default: sstr = "unknown"; break; 360 } 361 362 #undef CASE_SUBTYPE 363 364 #define CASE_ENV(_s) case _s: estr = #_s; break; 365 366 switch (msg->tag.vio_subtype_env) { 367 CASE_ENV(VIO_VER_INFO) 368 CASE_ENV(VIO_ATTR_INFO) 369 CASE_ENV(VIO_DRING_REG) 370 CASE_ENV(VIO_DRING_UNREG) 371 CASE_ENV(VIO_RDX) 372 CASE_ENV(VIO_PKT_DATA) 373 CASE_ENV(VIO_DESC_DATA) 374 CASE_ENV(VIO_DRING_DATA) 375 default: estr = "unknown"; break; 376 } 377 378 #undef CASE_ENV 379 380 PR1("(%x/%x/%x) message : (%s/%s/%s)", 381 msg->tag.vio_msgtype, msg->tag.vio_subtype, 382 msg->tag.vio_subtype_env, tstr, sstr, estr); 383 } 384 385 #else /* !DEBUG */ 386 387 #define PR0(...) 388 #define PR1(...) 389 #define PR2(...) 390 391 #define VD_DUMP_DRING_ELEM(elem) 392 393 #define vd_decode_state(_s) (NULL) 394 #define vd_decode_tag(_s) (NULL) 395 396 #endif /* DEBUG */ 397 398 399 /* 400 * Soft state structure for a vds instance 401 */ 402 typedef struct vds { 403 uint_t initialized; /* driver inst initialization flags */ 404 dev_info_t *dip; /* driver inst devinfo pointer */ 405 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 406 mod_hash_t *vd_table; /* table of virtual disks served */ 407 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 408 mdeg_handle_t mdeg; /* handle for MDEG operations */ 409 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */ 410 int num_drivers; /* num of extra driver types */ 411 } vds_t; 412 413 /* 414 * Types of descriptor-processing tasks 415 */ 416 typedef enum vd_task_type { 417 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 418 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 419 } vd_task_type_t; 420 421 /* 422 * Structure describing the task for processing a descriptor 423 */ 424 typedef struct vd_task { 425 struct vd *vd; /* vd instance task is for */ 426 vd_task_type_t type; /* type of descriptor task */ 427 int index; /* dring elem index for task */ 428 vio_msg_t *msg; /* VIO message task is for */ 429 size_t msglen; /* length of message content */ 430 vd_dring_payload_t *request; /* request task will perform */ 431 struct buf buf; /* buf(9s) for I/O request */ 432 ldc_mem_handle_t mhdl; /* task memory handle */ 433 int status; /* status of processing task */ 434 int (*completef)(struct vd_task *task); /* completion func ptr */ 435 uint32_t write_index; /* index in the write_queue */ 436 } vd_task_t; 437 438 /* 439 * Soft state structure for a virtual disk instance 440 */ 441 typedef struct vd { 442 uint64_t id; /* vdisk id */ 443 uint_t initialized; /* vdisk initialization flags */ 444 uint64_t operations; /* bitmask of VD_OPs exported */ 445 vio_ver_t version; /* ver negotiated with client */ 446 vds_t *vds; /* server for this vdisk */ 447 ddi_taskq_t *startq; /* queue for I/O start tasks */ 448 ddi_taskq_t *completionq; /* queue for completion tasks */ 449 ddi_taskq_t *ioq; /* queue for I/O */ 450 uint32_t write_index; /* next write index */ 451 buf_t **write_queue; /* queue for async writes */ 452 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 453 char device_path[MAXPATHLEN + 1]; /* vdisk device */ 454 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 455 int open_flags; /* open flags */ 456 uint_t nslices; /* number of slices we export */ 457 size_t vdisk_size; /* number of blocks in vdisk */ 458 size_t vdisk_bsize; /* blk size of the vdisk */ 459 vd_disk_type_t vdisk_type; /* slice or entire disk */ 460 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 461 vd_media_t vdisk_media; /* media type of backing dev. */ 462 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */ 463 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 464 size_t backend_bsize; /* blk size of backend device */ 465 int vio_bshift; /* shift for blk convertion */ 466 boolean_t volume; /* is vDisk backed by volume */ 467 boolean_t zvol; /* is vDisk backed by a zvol */ 468 boolean_t file; /* is vDisk backed by a file? */ 469 boolean_t scsi; /* is vDisk backed by scsi? */ 470 vnode_t *file_vnode; /* file vnode */ 471 size_t dskimg_size; /* size of disk image */ 472 ddi_devid_t dskimg_devid; /* devid for disk image */ 473 int efi_reserved; /* EFI reserved slice */ 474 caddr_t flabel; /* fake label for slice type */ 475 uint_t flabel_size; /* fake label size */ 476 uint_t flabel_limit; /* limit of the fake label */ 477 struct dk_geom dk_geom; /* synthetic for slice type */ 478 struct extvtoc vtoc; /* synthetic for slice type */ 479 vd_slice_t slices[VD_MAXPART]; /* logical partitions */ 480 boolean_t ownership; /* disk ownership status */ 481 ldc_status_t ldc_state; /* LDC connection state */ 482 ldc_handle_t ldc_handle; /* handle for LDC comm */ 483 size_t max_msglen; /* largest LDC message len */ 484 vd_state_t state; /* client handshake state */ 485 uint8_t xfer_mode; /* transfer mode with client */ 486 uint32_t sid; /* client's session ID */ 487 uint64_t seq_num; /* message sequence number */ 488 uint64_t dring_ident; /* identifier of dring */ 489 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 490 uint32_t descriptor_size; /* num bytes in desc */ 491 uint32_t dring_len; /* number of dring elements */ 492 uint8_t dring_mtype; /* dring mem map type */ 493 caddr_t dring; /* address of dring */ 494 caddr_t vio_msgp; /* vio msg staging buffer */ 495 vd_task_t inband_task; /* task for inband descriptor */ 496 vd_task_t *dring_task; /* tasks dring elements */ 497 498 kmutex_t lock; /* protects variables below */ 499 boolean_t enabled; /* is vdisk enabled? */ 500 boolean_t reset_state; /* reset connection state? */ 501 boolean_t reset_ldc; /* reset LDC channel? */ 502 } vd_t; 503 504 /* 505 * Macros to manipulate the fake label (flabel) for single slice disks. 506 * 507 * If we fake a VTOC label then the fake label consists of only one block 508 * containing the VTOC label (struct dk_label). 509 * 510 * If we fake an EFI label then the fake label consists of a blank block 511 * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t). 512 * 513 */ 514 #define VD_LABEL_VTOC_SIZE(lba) \ 515 P2ROUNDUP(sizeof (struct dk_label), (lba)) 516 517 #define VD_LABEL_EFI_SIZE(lba) \ 518 P2ROUNDUP(2 * (lba) + sizeof (efi_gpe_t) * VD_MAXPART, \ 519 (lba)) 520 521 #define VD_LABEL_VTOC(vd) \ 522 ((struct dk_label *)(void *)((vd)->flabel)) 523 524 #define VD_LABEL_EFI_GPT(vd, lba) \ 525 ((efi_gpt_t *)(void *)((vd)->flabel + (lba))) 526 #define VD_LABEL_EFI_GPE(vd, lba) \ 527 ((efi_gpe_t *)(void *)((vd)->flabel + 2 * (lba))) 528 529 530 typedef struct vds_operation { 531 char *namep; 532 uint8_t operation; 533 int (*start)(vd_task_t *task); 534 int (*complete)(vd_task_t *task); 535 } vds_operation_t; 536 537 typedef struct vd_ioctl { 538 uint8_t operation; /* vdisk operation */ 539 const char *operation_name; /* vdisk operation name */ 540 size_t nbytes; /* size of operation buffer */ 541 int cmd; /* corresponding ioctl cmd */ 542 const char *cmd_name; /* ioctl cmd name */ 543 void *arg; /* ioctl cmd argument */ 544 /* convert input vd_buf to output ioctl_arg */ 545 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg); 546 /* convert input ioctl_arg to output vd_buf */ 547 void (*copyout)(void *ioctl_arg, void *vd_buf); 548 /* write is true if the operation writes any data to the backend */ 549 boolean_t write; 550 } vd_ioctl_t; 551 552 /* Define trivial copyin/copyout conversion function flag */ 553 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1) 554 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1) 555 556 557 static int vds_ldc_retries = VDS_RETRIES; 558 static int vds_ldc_delay = VDS_LDC_DELAY; 559 static int vds_dev_retries = VDS_RETRIES; 560 static int vds_dev_delay = VDS_DEV_DELAY; 561 static void *vds_state; 562 563 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; 564 static int vd_scsi_debug = USCSI_SILENT; 565 566 /* 567 * Number of threads in the taskq handling vdisk I/O. This can be set up to 568 * the size of the DRing which is the maximum number of I/O we can receive 569 * in parallel. Note that using a high number of threads can improve performance 570 * but this is going to consume a lot of resources if there are many vdisks. 571 */ 572 static int vd_ioq_nthreads = VD_IOQ_NTHREADS; 573 574 /* 575 * Tunable to define the behavior for flushing asynchronous writes used to 576 * performed some write I/O requests. The default behavior is to group as 577 * much asynchronous writes as possible and to flush them immediatly. 578 * 579 * If the tunable is set to 0 then explicit flushing is disabled. In that 580 * case, data will be flushed by traditional mechanism (like fsflush) but 581 * this might not happen immediatly. 582 * 583 */ 584 static int vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP; 585 586 /* 587 * Tunable to define the behavior of the service domain if the vdisk server 588 * fails to reset disk exclusive access when a LDC channel is reset. When a 589 * LDC channel is reset the vdisk server will try to reset disk exclusive 590 * access by releasing any SCSI-2 reservation or resetting the disk. If these 591 * actions fail then the default behavior (vd_reset_access_failure = 0) is to 592 * print a warning message. This default behavior can be changed by setting 593 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will 594 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause 595 * the service domain to panic. In both cases, the reset of the service domain 596 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation. 597 */ 598 static int vd_reset_access_failure = 0; 599 600 /* 601 * Tunable for backward compatibility. When this variable is set to B_TRUE, 602 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single 603 * slice disks whether or not they have the "slice" option set. This is 604 * to provide a simple backward compatibility mechanism when upgrading 605 * the vds driver and using a domain configuration created before the 606 * "slice" option was available. 607 */ 608 static boolean_t vd_volume_force_slice = B_FALSE; 609 610 /* 611 * The label of disk images created with some earlier versions of the virtual 612 * disk software is not entirely correct and have an incorrect v_sanity field 613 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with 614 * these images because we are now validating that the disk label (and the 615 * sanity) is correct when a disk image is opened. 616 * 617 * This tunable is set to false to not validate the sanity field and ensure 618 * compatibility. If the tunable is set to true, we will do a strict checking 619 * of the sanity but this can create compatibility problems with old disk 620 * images. 621 */ 622 static boolean_t vd_dskimg_validate_sanity = B_FALSE; 623 624 /* 625 * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings. 626 */ 627 static boolean_t vd_direct_mapped_drings = B_TRUE; 628 629 /* 630 * When a backend is exported as a single-slice disk then we entirely fake 631 * its disk label. So it can be exported either with a VTOC label or with 632 * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all 633 * single-slice disks will be exported with a VTOC label; and if it is set 634 * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with 635 * an EFI label. 636 * 637 * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk 638 * or volume device then it will be exported with the same type of label as 639 * defined on the device. Otherwise if the backend is a file then it will 640 * exported with the disk label type set in the vd_file_slice_label variable. 641 * 642 * Note that if the backend size is greater than 1TB then it will always be 643 * exported with an EFI label no matter what the setting is. 644 */ 645 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK; 646 647 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC; 648 649 /* 650 * Tunable for backward compatibility. If this variable is set to B_TRUE then 651 * single-slice disks are exported as disks with only one slice instead of 652 * faking a complete disk partitioning. 653 */ 654 static boolean_t vd_slice_single_slice = B_FALSE; 655 656 /* 657 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 658 * 659 * Each supported major version should appear only once, paired with (and only 660 * with) its highest supported minor version number (as the protocol requires 661 * supporting all lower minor version numbers as well) 662 */ 663 static const vio_ver_t vds_version[] = {{1, 1}}; 664 static const size_t vds_num_versions = 665 sizeof (vds_version)/sizeof (vds_version[0]); 666 667 static void vd_free_dring_task(vd_t *vdp); 668 static int vd_setup_vd(vd_t *vd); 669 static int vd_setup_single_slice_disk(vd_t *vd); 670 static int vd_setup_slice_image(vd_t *vd); 671 static int vd_setup_disk_image(vd_t *vd); 672 static int vd_backend_check_size(vd_t *vd); 673 static boolean_t vd_enabled(vd_t *vd); 674 static ushort_t vd_lbl2cksum(struct dk_label *label); 675 static int vd_dskimg_validate_geometry(vd_t *vd); 676 static boolean_t vd_dskimg_is_iso_image(vd_t *vd); 677 static void vd_set_exported_operations(vd_t *vd); 678 static void vd_reset_access(vd_t *vd); 679 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg); 680 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **); 681 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *); 682 static void vds_driver_types_free(vds_t *vds); 683 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom, 684 struct dk_label *label); 685 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc, 686 struct dk_geom *geom); 687 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom); 688 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc); 689 690 extern int is_pseudo_device(dev_info_t *); 691 692 /* 693 * Function: 694 * vd_get_readable_size 695 * 696 * Description: 697 * Convert a given size in bytes to a human readable format in 698 * kilobytes, megabytes, gigabytes or terabytes. 699 * 700 * Parameters: 701 * full_size - the size to convert in bytes. 702 * size - the converted size. 703 * unit - the unit of the converted size: 'K' (kilobyte), 704 * 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte). 705 * 706 * Return Code: 707 * none 708 */ 709 static void 710 vd_get_readable_size(size_t full_size, size_t *size, char *unit) 711 { 712 if (full_size < (1ULL << 20)) { 713 *size = full_size >> 10; 714 *unit = 'K'; /* Kilobyte */ 715 } else if (full_size < (1ULL << 30)) { 716 *size = full_size >> 20; 717 *unit = 'M'; /* Megabyte */ 718 } else if (full_size < (1ULL << 40)) { 719 *size = full_size >> 30; 720 *unit = 'G'; /* Gigabyte */ 721 } else { 722 *size = full_size >> 40; 723 *unit = 'T'; /* Terabyte */ 724 } 725 } 726 727 /* 728 * Function: 729 * vd_dskimg_io_params 730 * 731 * Description: 732 * Convert virtual disk I/O parameters (slice, block, length) to 733 * (offset, length) relative to the disk image and according to 734 * the virtual disk partitioning. 735 * 736 * Parameters: 737 * vd - disk on which the operation is performed. 738 * slice - slice to which is the I/O parameters apply. 739 * VD_SLICE_NONE indicates that parameters are 740 * are relative to the entire virtual disk. 741 * blkp - pointer to the starting block relative to the 742 * slice; return the starting block relative to 743 * the disk image. 744 * lenp - pointer to the number of bytes requested; return 745 * the number of bytes that can effectively be used. 746 * 747 * Return Code: 748 * 0 - I/O parameters have been successfully converted; 749 * blkp and lenp point to the converted values. 750 * ENODATA - no data are available for the given I/O parameters; 751 * This occurs if the starting block is past the limit 752 * of the slice. 753 * EINVAL - I/O parameters are invalid. 754 */ 755 static int 756 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp) 757 { 758 size_t blk = *blkp; 759 size_t len = *lenp; 760 size_t offset, maxlen; 761 762 ASSERT(vd->file || VD_DSKIMG(vd)); 763 ASSERT(len > 0); 764 ASSERT(vd->vdisk_bsize == DEV_BSIZE); 765 766 /* 767 * If a file is exported as a slice then we don't care about the vtoc. 768 * In that case, the vtoc is a fake mainly to make newfs happy and we 769 * handle any I/O as a raw disk access so that we can have access to the 770 * entire backend. 771 */ 772 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) { 773 /* raw disk access */ 774 offset = blk * DEV_BSIZE; 775 if (offset >= vd->dskimg_size) { 776 /* offset past the end of the disk */ 777 PR0("offset (0x%lx) >= size (0x%lx)", 778 offset, vd->dskimg_size); 779 return (ENODATA); 780 } 781 maxlen = vd->dskimg_size - offset; 782 } else { 783 ASSERT(slice >= 0 && slice < V_NUMPAR); 784 785 /* 786 * v1.0 vDisk clients depended on the server not verifying 787 * the label of a unformatted disk. This "feature" is 788 * maintained for backward compatibility but all versions 789 * from v1.1 onwards must do the right thing. 790 */ 791 if (vd->vdisk_label == VD_DISK_LABEL_UNK && 792 vio_ver_is_supported(vd->version, 1, 1)) { 793 (void) vd_dskimg_validate_geometry(vd); 794 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 795 PR0("Unknown disk label, can't do I/O " 796 "from slice %d", slice); 797 return (EINVAL); 798 } 799 } 800 801 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 802 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE); 803 } else { 804 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI); 805 } 806 807 if (blk >= vd->slices[slice].nblocks) { 808 /* address past the end of the slice */ 809 PR0("req_addr (0x%lx) >= psize (0x%lx)", 810 blk, vd->slices[slice].nblocks); 811 return (ENODATA); 812 } 813 814 offset = (vd->slices[slice].start + blk) * DEV_BSIZE; 815 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE; 816 } 817 818 /* 819 * If the requested size is greater than the size 820 * of the partition, truncate the read/write. 821 */ 822 if (len > maxlen) { 823 PR0("I/O size truncated to %lu bytes from %lu bytes", 824 maxlen, len); 825 len = maxlen; 826 } 827 828 /* 829 * We have to ensure that we are reading/writing into the mmap 830 * range. If we have a partial disk image (e.g. an image of 831 * s0 instead s2) the system can try to access slices that 832 * are not included into the disk image. 833 */ 834 if ((offset + len) > vd->dskimg_size) { 835 PR0("offset + nbytes (0x%lx + 0x%lx) > " 836 "dskimg_size (0x%lx)", offset, len, vd->dskimg_size); 837 return (EINVAL); 838 } 839 840 *blkp = offset / DEV_BSIZE; 841 *lenp = len; 842 843 return (0); 844 } 845 846 /* 847 * Function: 848 * vd_dskimg_rw 849 * 850 * Description: 851 * Read or write to a disk image. It handles the case where the disk 852 * image is a file or a volume exported as a full disk or a file 853 * exported as single-slice disk. Read or write to volumes exported as 854 * single slice disks are done by directly using the ldi interface. 855 * 856 * Parameters: 857 * vd - disk on which the operation is performed. 858 * slice - slice on which the operation is performed, 859 * VD_SLICE_NONE indicates that the operation 860 * is done using an absolute disk offset. 861 * operation - operation to execute: read (VD_OP_BREAD) or 862 * write (VD_OP_BWRITE). 863 * data - buffer where data are read to or written from. 864 * blk - starting block for the operation. 865 * len - number of bytes to read or write. 866 * 867 * Return Code: 868 * n >= 0 - success, n indicates the number of bytes read 869 * or written. 870 * -1 - error. 871 */ 872 static ssize_t 873 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset, 874 size_t len) 875 { 876 ssize_t resid; 877 struct buf buf; 878 int status; 879 880 ASSERT(vd->file || VD_DSKIMG(vd)); 881 ASSERT(len > 0); 882 ASSERT(vd->vdisk_bsize == DEV_BSIZE); 883 884 if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0) 885 return ((status == ENODATA)? 0: -1); 886 887 if (vd->volume) { 888 889 bioinit(&buf); 890 buf.b_flags = B_BUSY | 891 ((operation == VD_OP_BREAD)? B_READ : B_WRITE); 892 buf.b_bcount = len; 893 buf.b_lblkno = offset; 894 buf.b_edev = vd->dev[0]; 895 buf.b_un.b_addr = data; 896 897 /* 898 * We use ldi_strategy() and not ldi_read()/ldi_write() because 899 * the read/write functions of the underlying driver may try to 900 * lock pages of the data buffer, and this requires the data 901 * buffer to be kmem_alloc'ed (and not allocated on the stack). 902 * 903 * Also using ldi_strategy() ensures that writes are immediatly 904 * commited and not cached as this may be the case with 905 * ldi_write() (for example with a ZFS volume). 906 */ 907 if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) { 908 biofini(&buf); 909 return (-1); 910 } 911 912 if (biowait(&buf) != 0) { 913 biofini(&buf); 914 return (-1); 915 } 916 917 resid = buf.b_resid; 918 biofini(&buf); 919 920 ASSERT(resid <= len); 921 return (len - resid); 922 } 923 924 ASSERT(vd->file); 925 926 status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE, 927 vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC, 928 RLIM64_INFINITY, kcred, &resid); 929 930 if (status != 0) 931 return (-1); 932 933 return (len); 934 } 935 936 /* 937 * Function: 938 * vd_build_default_label 939 * 940 * Description: 941 * Return a default label for a given disk size. This is used when the disk 942 * does not have a valid VTOC so that the user can get a valid default 943 * configuration. The default label has all slice sizes set to 0 (except 944 * slice 2 which is the entire disk) to force the user to write a valid 945 * label onto the disk image. 946 * 947 * Parameters: 948 * disk_size - the disk size in bytes 949 * bsize - the disk block size in bytes 950 * label - the returned default label. 951 * 952 * Return Code: 953 * none. 954 */ 955 static void 956 vd_build_default_label(size_t disk_size, size_t bsize, struct dk_label *label) 957 { 958 size_t size; 959 char unit; 960 961 ASSERT(bsize > 0); 962 963 bzero(label, sizeof (struct dk_label)); 964 965 /* 966 * Ideally we would like the cylinder size (nsect * nhead) to be the 967 * same whatever the disk size is. That way the VTOC label could be 968 * easily updated in case the disk size is increased (keeping the 969 * same cylinder size allows to preserve the existing partitioning 970 * when updating the VTOC label). But it is not possible to have 971 * a fixed cylinder size and to cover all disk size. 972 * 973 * So we define different cylinder sizes depending on the disk size. 974 * The cylinder size is chosen so that we don't have too few cylinders 975 * for a small disk image, or so many on a big disk image that you 976 * waste space for backup superblocks or cylinder group structures. 977 * Also we must have a resonable number of cylinders and sectors so 978 * that newfs can run using default values. 979 * 980 * +-----------+--------+---------+--------+ 981 * | disk_size | < 2MB | 2MB-4GB | >= 8GB | 982 * +-----------+--------+---------+--------+ 983 * | nhead | 1 | 1 | 96 | 984 * | nsect | 200 | 600 | 768 | 985 * +-----------+--------+---------+--------+ 986 * 987 * Other parameters are computed from these values: 988 * 989 * pcyl = disk_size / (nhead * nsect * 512) 990 * acyl = (pcyl > 2)? 2 : 0 991 * ncyl = pcyl - acyl 992 * 993 * The maximum number of cylinder is 65535 so this allows to define a 994 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB 995 * which is more than enough to cover the maximum size allowed by the 996 * extended VTOC format (2TB). 997 */ 998 999 if (disk_size >= 8 * ONE_GIGABYTE) { 1000 1001 label->dkl_nhead = 96; 1002 label->dkl_nsect = 768; 1003 1004 } else if (disk_size >= 2 * ONE_MEGABYTE) { 1005 1006 label->dkl_nhead = 1; 1007 label->dkl_nsect = 600; 1008 1009 } else { 1010 1011 label->dkl_nhead = 1; 1012 label->dkl_nsect = 200; 1013 } 1014 1015 label->dkl_pcyl = disk_size / 1016 (label->dkl_nsect * label->dkl_nhead * bsize); 1017 1018 if (label->dkl_pcyl == 0) 1019 label->dkl_pcyl = 1; 1020 1021 label->dkl_acyl = 0; 1022 1023 if (label->dkl_pcyl > 2) 1024 label->dkl_acyl = 2; 1025 1026 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl; 1027 label->dkl_write_reinstruct = 0; 1028 label->dkl_read_reinstruct = 0; 1029 label->dkl_rpm = 7200; 1030 label->dkl_apc = 0; 1031 label->dkl_intrlv = 0; 1032 1033 PR0("requested disk size: %ld bytes\n", disk_size); 1034 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl, 1035 label->dkl_nhead, label->dkl_nsect); 1036 PR0("provided disk size: %ld bytes\n", (uint64_t) 1037 (label->dkl_pcyl * label->dkl_nhead * 1038 label->dkl_nsect * bsize)); 1039 1040 vd_get_readable_size(disk_size, &size, &unit); 1041 1042 /* 1043 * We must have a correct label name otherwise format(1m) will 1044 * not recognized the disk as labeled. 1045 */ 1046 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII, 1047 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", 1048 size, unit, 1049 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead, 1050 label->dkl_nsect); 1051 1052 /* default VTOC */ 1053 label->dkl_vtoc.v_version = V_EXTVERSION; 1054 label->dkl_vtoc.v_nparts = V_NUMPAR; 1055 label->dkl_vtoc.v_sanity = VTOC_SANE; 1056 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 1057 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0; 1058 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl * 1059 label->dkl_nhead * label->dkl_nsect; 1060 label->dkl_magic = DKL_MAGIC; 1061 label->dkl_cksum = vd_lbl2cksum(label); 1062 } 1063 1064 /* 1065 * Function: 1066 * vd_dskimg_set_vtoc 1067 * 1068 * Description: 1069 * Set the vtoc of a disk image by writing the label and backup 1070 * labels into the disk image backend. 1071 * 1072 * Parameters: 1073 * vd - disk on which the operation is performed. 1074 * label - the data to be written. 1075 * 1076 * Return Code: 1077 * 0 - success. 1078 * n > 0 - error, n indicates the errno code. 1079 */ 1080 static int 1081 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label) 1082 { 1083 size_t blk, sec, cyl, head, cnt; 1084 1085 ASSERT(VD_DSKIMG(vd)); 1086 1087 if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) { 1088 PR0("fail to write disk label"); 1089 return (EIO); 1090 } 1091 1092 /* 1093 * Backup labels are on the last alternate cylinder's 1094 * first five odd sectors. 1095 */ 1096 if (label->dkl_acyl == 0) { 1097 PR0("no alternate cylinder, can not store backup labels"); 1098 return (0); 1099 } 1100 1101 cyl = label->dkl_ncyl + label->dkl_acyl - 1; 1102 head = label->dkl_nhead - 1; 1103 1104 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + 1105 (head * label->dkl_nsect); 1106 1107 /* 1108 * Write the backup labels. Make sure we don't try to write past 1109 * the last cylinder. 1110 */ 1111 sec = 1; 1112 1113 for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) { 1114 1115 if (sec >= label->dkl_nsect) { 1116 PR0("not enough sector to store all backup labels"); 1117 return (0); 1118 } 1119 1120 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1121 (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) { 1122 PR0("error writing backup label at block %lu\n", 1123 blk + sec); 1124 return (EIO); 1125 } 1126 1127 PR1("wrote backup label at block %lu\n", blk + sec); 1128 1129 sec += 2; 1130 } 1131 1132 return (0); 1133 } 1134 1135 /* 1136 * Function: 1137 * vd_dskimg_get_devid_block 1138 * 1139 * Description: 1140 * Return the block number where the device id is stored. 1141 * 1142 * Parameters: 1143 * vd - disk on which the operation is performed. 1144 * blkp - pointer to the block number 1145 * 1146 * Return Code: 1147 * 0 - success 1148 * ENOSPC - disk has no space to store a device id 1149 */ 1150 static int 1151 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp) 1152 { 1153 diskaddr_t spc, head, cyl; 1154 1155 ASSERT(VD_DSKIMG(vd)); 1156 1157 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 1158 /* 1159 * If no label is defined we don't know where to find 1160 * a device id. 1161 */ 1162 return (ENOSPC); 1163 } 1164 1165 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1166 /* 1167 * For an EFI disk, the devid is at the beginning of 1168 * the reserved slice 1169 */ 1170 if (vd->efi_reserved == -1) { 1171 PR0("EFI disk has no reserved slice"); 1172 return (ENOSPC); 1173 } 1174 1175 *blkp = vd->slices[vd->efi_reserved].start; 1176 return (0); 1177 } 1178 1179 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1180 1181 /* this geometry doesn't allow us to have a devid */ 1182 if (vd->dk_geom.dkg_acyl < 2) { 1183 PR0("not enough alternate cylinder available for devid " 1184 "(acyl=%u)", vd->dk_geom.dkg_acyl); 1185 return (ENOSPC); 1186 } 1187 1188 /* the devid is in on the track next to the last cylinder */ 1189 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; 1190 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1191 head = vd->dk_geom.dkg_nhead - 1; 1192 1193 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + 1194 (head * vd->dk_geom.dkg_nsect) + 1; 1195 1196 return (0); 1197 } 1198 1199 /* 1200 * Return the checksum of a disk block containing an on-disk devid. 1201 */ 1202 static uint_t 1203 vd_dkdevid2cksum(struct dk_devid *dkdevid) 1204 { 1205 uint_t chksum, *ip; 1206 int i; 1207 1208 chksum = 0; 1209 ip = (void *)dkdevid; 1210 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) 1211 chksum ^= ip[i]; 1212 1213 return (chksum); 1214 } 1215 1216 /* 1217 * Function: 1218 * vd_dskimg_read_devid 1219 * 1220 * Description: 1221 * Read the device id stored on a disk image. 1222 * 1223 * Parameters: 1224 * vd - disk on which the operation is performed. 1225 * devid - the return address of the device ID. 1226 * 1227 * Return Code: 1228 * 0 - success 1229 * EIO - I/O error while trying to access the disk image 1230 * EINVAL - no valid device id was found 1231 * ENOSPC - disk has no space to store a device id 1232 */ 1233 static int 1234 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid) 1235 { 1236 struct dk_devid *dkdevid; 1237 size_t blk; 1238 uint_t chksum; 1239 int status, sz; 1240 1241 ASSERT(vd->vdisk_bsize == DEV_BSIZE); 1242 1243 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0) 1244 return (status); 1245 1246 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1247 1248 /* get the devid */ 1249 if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, 1250 DEV_BSIZE)) < 0) { 1251 PR0("error reading devid block at %lu", blk); 1252 status = EIO; 1253 goto done; 1254 } 1255 1256 /* validate the revision */ 1257 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 1258 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 1259 PR0("invalid devid found at block %lu (bad revision)", blk); 1260 status = EINVAL; 1261 goto done; 1262 } 1263 1264 /* compute checksum */ 1265 chksum = vd_dkdevid2cksum(dkdevid); 1266 1267 /* compare the checksums */ 1268 if (DKD_GETCHKSUM(dkdevid) != chksum) { 1269 PR0("invalid devid found at block %lu (bad checksum)", blk); 1270 status = EINVAL; 1271 goto done; 1272 } 1273 1274 /* validate the device id */ 1275 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 1276 PR0("invalid devid found at block %lu", blk); 1277 status = EINVAL; 1278 goto done; 1279 } 1280 1281 PR1("devid read at block %lu", blk); 1282 1283 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 1284 *devid = kmem_alloc(sz, KM_SLEEP); 1285 bcopy(&dkdevid->dkd_devid, *devid, sz); 1286 1287 done: 1288 kmem_free(dkdevid, DEV_BSIZE); 1289 return (status); 1290 1291 } 1292 1293 /* 1294 * Function: 1295 * vd_dskimg_write_devid 1296 * 1297 * Description: 1298 * Write a device id into disk image. 1299 * 1300 * Parameters: 1301 * vd - disk on which the operation is performed. 1302 * devid - the device ID to store. 1303 * 1304 * Return Code: 1305 * 0 - success 1306 * EIO - I/O error while trying to access the disk image 1307 * ENOSPC - disk has no space to store a device id 1308 */ 1309 static int 1310 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid) 1311 { 1312 struct dk_devid *dkdevid; 1313 uint_t chksum; 1314 size_t blk; 1315 int status; 1316 1317 ASSERT(vd->vdisk_bsize == DEV_BSIZE); 1318 1319 if (devid == NULL) { 1320 /* nothing to write */ 1321 return (0); 1322 } 1323 1324 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0) 1325 return (status); 1326 1327 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1328 1329 /* set revision */ 1330 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 1331 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 1332 1333 /* copy devid */ 1334 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); 1335 1336 /* compute checksum */ 1337 chksum = vd_dkdevid2cksum(dkdevid); 1338 1339 /* set checksum */ 1340 DKD_FORMCHKSUM(chksum, dkdevid); 1341 1342 /* store the devid */ 1343 if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1344 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { 1345 PR0("Error writing devid block at %lu", blk); 1346 status = EIO; 1347 } else { 1348 PR1("devid written at block %lu", blk); 1349 status = 0; 1350 } 1351 1352 kmem_free(dkdevid, DEV_BSIZE); 1353 return (status); 1354 } 1355 1356 /* 1357 * Function: 1358 * vd_do_scsi_rdwr 1359 * 1360 * Description: 1361 * Read or write to a SCSI disk using an absolute disk offset. 1362 * 1363 * Parameters: 1364 * vd - disk on which the operation is performed. 1365 * operation - operation to execute: read (VD_OP_BREAD) or 1366 * write (VD_OP_BWRITE). 1367 * data - buffer where data are read to or written from. 1368 * blk - starting block for the operation. 1369 * len - number of bytes to read or write. 1370 * 1371 * Return Code: 1372 * 0 - success 1373 * n != 0 - error. 1374 */ 1375 static int 1376 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) 1377 { 1378 struct uscsi_cmd ucmd; 1379 union scsi_cdb cdb; 1380 int nsectors, nblk; 1381 int max_sectors; 1382 int status, rval; 1383 1384 ASSERT(!vd->file); 1385 ASSERT(!vd->volume); 1386 ASSERT(vd->vdisk_bsize > 0); 1387 1388 max_sectors = vd->max_xfer_sz; 1389 nblk = (len / vd->vdisk_bsize); 1390 1391 if (len % vd->vdisk_bsize != 0) 1392 return (EINVAL); 1393 1394 /* 1395 * Build and execute the uscsi ioctl. We build a group0, group1 1396 * or group4 command as necessary, since some targets 1397 * do not support group1 commands. 1398 */ 1399 while (nblk) { 1400 1401 bzero(&ucmd, sizeof (ucmd)); 1402 bzero(&cdb, sizeof (cdb)); 1403 1404 nsectors = (max_sectors < nblk) ? max_sectors : nblk; 1405 1406 /* 1407 * Some of the optical drives on sun4v machines are ATAPI 1408 * devices which use Group 1 Read/Write commands so we need 1409 * to explicitly check a flag which is set when a domain 1410 * is bound. 1411 */ 1412 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) { 1413 FORMG0ADDR(&cdb, blk); 1414 FORMG0COUNT(&cdb, (uchar_t)nsectors); 1415 ucmd.uscsi_cdblen = CDB_GROUP0; 1416 } else if (blk > 0xffffffff) { 1417 FORMG4LONGADDR(&cdb, blk); 1418 FORMG4COUNT(&cdb, nsectors); 1419 ucmd.uscsi_cdblen = CDB_GROUP4; 1420 cdb.scc_cmd |= SCMD_GROUP4; 1421 } else { 1422 FORMG1ADDR(&cdb, blk); 1423 FORMG1COUNT(&cdb, nsectors); 1424 ucmd.uscsi_cdblen = CDB_GROUP1; 1425 cdb.scc_cmd |= SCMD_GROUP1; 1426 } 1427 ucmd.uscsi_cdb = (caddr_t)&cdb; 1428 ucmd.uscsi_bufaddr = data; 1429 ucmd.uscsi_buflen = nsectors * vd->backend_bsize; 1430 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; 1431 /* 1432 * Set flags so that the command is isolated from normal 1433 * commands and no error message is printed. 1434 */ 1435 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; 1436 1437 if (operation == VD_OP_BREAD) { 1438 cdb.scc_cmd |= SCMD_READ; 1439 ucmd.uscsi_flags |= USCSI_READ; 1440 } else { 1441 cdb.scc_cmd |= SCMD_WRITE; 1442 } 1443 1444 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], 1445 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL), 1446 kcred, &rval); 1447 1448 if (status == 0) 1449 status = ucmd.uscsi_status; 1450 1451 if (status != 0) 1452 break; 1453 1454 /* 1455 * Check if partial DMA breakup is required. If so, reduce 1456 * the request size by half and retry the last request. 1457 */ 1458 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { 1459 max_sectors >>= 1; 1460 if (max_sectors <= 0) { 1461 status = EIO; 1462 break; 1463 } 1464 continue; 1465 } 1466 1467 if (ucmd.uscsi_resid != 0) { 1468 status = EIO; 1469 break; 1470 } 1471 1472 blk += nsectors; 1473 nblk -= nsectors; 1474 data += nsectors * vd->vdisk_bsize; 1475 } 1476 1477 return (status); 1478 } 1479 1480 /* 1481 * Function: 1482 * vd_scsi_rdwr 1483 * 1484 * Description: 1485 * Wrapper function to read or write to a SCSI disk using an absolute 1486 * disk offset. It checks the blocksize of the underlying device and, 1487 * if necessary, adjusts the buffers accordingly before calling 1488 * vd_do_scsi_rdwr() to do the actual read or write. 1489 * 1490 * Parameters: 1491 * vd - disk on which the operation is performed. 1492 * operation - operation to execute: read (VD_OP_BREAD) or 1493 * write (VD_OP_BWRITE). 1494 * data - buffer where data are read to or written from. 1495 * blk - starting block for the operation. 1496 * len - number of bytes to read or write. 1497 * 1498 * Return Code: 1499 * 0 - success 1500 * n != 0 - error. 1501 */ 1502 static int 1503 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen) 1504 { 1505 int rv; 1506 1507 size_t pblk; /* physical device block number of data on device */ 1508 size_t delta; /* relative offset between pblk and vblk */ 1509 size_t pnblk; /* number of physical blocks to be read from device */ 1510 size_t plen; /* length of data to be read from physical device */ 1511 char *buf; /* buffer area to fit physical device's block size */ 1512 1513 if (vd->backend_bsize == 0) { 1514 /* 1515 * The block size was not available during the attach, 1516 * try to update it now. 1517 */ 1518 if (vd_backend_check_size(vd) != 0) 1519 return (EIO); 1520 } 1521 1522 /* 1523 * If the vdisk block size and the block size of the underlying device 1524 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need 1525 * to create a buffer large enough to handle the device's block size 1526 * and adjust the block to be read from and the amount of data to 1527 * read to correspond with the device's block size. 1528 */ 1529 if (vd->vdisk_bsize == vd->backend_bsize) 1530 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen)); 1531 1532 if (vd->vdisk_bsize > vd->backend_bsize) 1533 return (EINVAL); 1534 1535 /* 1536 * Writing of physical block sizes larger than the virtual block size 1537 * is not supported. This would be added if/when support for guests 1538 * writing to DVDs is implemented. 1539 */ 1540 if (operation == VD_OP_BWRITE) 1541 return (ENOTSUP); 1542 1543 /* BEGIN CSTYLED */ 1544 /* 1545 * Below is a diagram showing the relationship between the physical 1546 * and virtual blocks. If the virtual blocks marked by 'X' below are 1547 * requested, then the physical blocks denoted by 'Y' are read. 1548 * 1549 * vblk 1550 * | vlen 1551 * |<--------------->| 1552 * v v 1553 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk: 1554 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is 1555 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_bsize 1556 * : : : : 1557 * >:==:< delta : : 1558 * : : : : 1559 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk: 1560 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is 1561 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->backend_bsize 1562 * ^ ^ 1563 * |<--------------------->| 1564 * | plen 1565 * pblk 1566 */ 1567 /* END CSTYLED */ 1568 pblk = (vblk * vd->vdisk_bsize) / vd->backend_bsize; 1569 delta = (vblk * vd->vdisk_bsize) - (pblk * vd->backend_bsize); 1570 pnblk = ((delta + vlen - 1) / vd->backend_bsize) + 1; 1571 plen = pnblk * vd->backend_bsize; 1572 1573 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen); 1574 1575 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP); 1576 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen); 1577 bcopy(buf + delta, data, vlen); 1578 1579 kmem_free(buf, sizeof (caddr_t) * plen); 1580 1581 return (rv); 1582 } 1583 1584 /* 1585 * Function: 1586 * vd_slice_flabel_read 1587 * 1588 * Description: 1589 * This function simulates a read operation from the fake label of 1590 * a single-slice disk. 1591 * 1592 * Parameters: 1593 * vd - single-slice disk to read from 1594 * data - buffer where data should be read to 1595 * offset - offset in byte where the read should start 1596 * length - number of bytes to read 1597 * 1598 * Return Code: 1599 * n >= 0 - success, n indicates the number of bytes read 1600 * -1 - error 1601 */ 1602 static ssize_t 1603 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length) 1604 { 1605 size_t n = 0; 1606 uint_t limit = vd->flabel_limit * vd->vdisk_bsize; 1607 1608 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1609 ASSERT(vd->flabel != NULL); 1610 1611 /* if offset is past the fake label limit there's nothing to read */ 1612 if (offset >= limit) 1613 return (0); 1614 1615 /* data with offset 0 to flabel_size are read from flabel */ 1616 if (offset < vd->flabel_size) { 1617 1618 if (offset + length <= vd->flabel_size) { 1619 bcopy(vd->flabel + offset, data, length); 1620 return (length); 1621 } 1622 1623 n = vd->flabel_size - offset; 1624 bcopy(vd->flabel + offset, data, n); 1625 data += n; 1626 } 1627 1628 /* data with offset from flabel_size to flabel_limit are all zeros */ 1629 if (offset + length <= limit) { 1630 bzero(data, length - n); 1631 return (length); 1632 } 1633 1634 bzero(data, limit - offset - n); 1635 return (limit - offset); 1636 } 1637 1638 /* 1639 * Function: 1640 * vd_slice_flabel_write 1641 * 1642 * Description: 1643 * This function simulates a write operation to the fake label of 1644 * a single-slice disk. Write operations are actually faked and return 1645 * success although the label is never changed. This is mostly to 1646 * simulate a successful label update. 1647 * 1648 * Parameters: 1649 * vd - single-slice disk to write to 1650 * data - buffer where data should be written from 1651 * offset - offset in byte where the write should start 1652 * length - number of bytes to written 1653 * 1654 * Return Code: 1655 * n >= 0 - success, n indicates the number of bytes written 1656 * -1 - error 1657 */ 1658 static ssize_t 1659 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length) 1660 { 1661 uint_t limit = vd->flabel_limit * vd->vdisk_bsize; 1662 struct dk_label *label; 1663 struct dk_geom geom; 1664 struct extvtoc vtoc; 1665 1666 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1667 ASSERT(vd->flabel != NULL); 1668 1669 if (offset >= limit) 1670 return (0); 1671 1672 /* 1673 * If this is a request to overwrite the VTOC disk label, check that 1674 * the new label is similar to the previous one and return that the 1675 * write was successful, but note that nothing is actually overwritten. 1676 */ 1677 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1678 offset == 0 && length == vd->vdisk_bsize) { 1679 label = (void *)data; 1680 1681 /* check that this is a valid label */ 1682 if (label->dkl_magic != DKL_MAGIC || 1683 label->dkl_cksum != vd_lbl2cksum(label)) 1684 return (-1); 1685 1686 /* check the vtoc and geometry */ 1687 vd_label_to_vtocgeom(label, &vtoc, &geom); 1688 if (vd_slice_geom_isvalid(vd, &geom) && 1689 vd_slice_vtoc_isvalid(vd, &vtoc)) 1690 return (length); 1691 } 1692 1693 /* fail any other write */ 1694 return (-1); 1695 } 1696 1697 /* 1698 * Function: 1699 * vd_slice_fake_rdwr 1700 * 1701 * Description: 1702 * This function simulates a raw read or write operation to a single-slice 1703 * disk. It only handles the faked part of the operation i.e. I/Os to 1704 * blocks which have no mapping with the vdisk backend (I/Os to the 1705 * beginning and to the end of the vdisk). 1706 * 1707 * The function returns 0 is the operation is completed and it has been 1708 * entirely handled as a fake read or write. In that case, lengthp points 1709 * to the number of bytes not read or written. Values returned by datap 1710 * and blkp are undefined. 1711 * 1712 * If the fake operation has succeeded but the read or write is not 1713 * complete (i.e. the read/write operation extends beyond the blocks 1714 * we fake) then the function returns EAGAIN and datap, blkp and lengthp 1715 * pointers points to the parameters for completing the operation. 1716 * 1717 * In case of an error, for example if the slice is empty or parameters 1718 * are invalid, then the function returns a non-zero value different 1719 * from EAGAIN. In that case, the returned values of datap, blkp and 1720 * lengthp are undefined. 1721 * 1722 * Parameters: 1723 * vd - single-slice disk on which the operation is performed 1724 * slice - slice on which the operation is performed, 1725 * VD_SLICE_NONE indicates that the operation 1726 * is done using an absolute disk offset. 1727 * operation - operation to execute: read (VD_OP_BREAD) or 1728 * write (VD_OP_BWRITE). 1729 * datap - pointer to the buffer where data are read to 1730 * or written from. Return the pointer where remaining 1731 * data have to be read to or written from. 1732 * blkp - pointer to the starting block for the operation. 1733 * Return the starting block relative to the vdisk 1734 * backend for the remaining operation. 1735 * lengthp - pointer to the number of bytes to read or write. 1736 * This should be a multiple of vdisk_bsize. Return the 1737 * remaining number of bytes to read or write. 1738 * 1739 * Return Code: 1740 * 0 - read/write operation is completed 1741 * EAGAIN - read/write operation is not completed 1742 * other values - error 1743 */ 1744 static int 1745 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap, 1746 size_t *blkp, size_t *lengthp) 1747 { 1748 struct dk_label *label; 1749 caddr_t data; 1750 size_t blk, length, csize; 1751 size_t ablk, asize, aoff, alen; 1752 ssize_t n; 1753 int sec, status; 1754 size_t bsize = vd->vdisk_bsize; 1755 1756 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1757 ASSERT(slice != 0); 1758 1759 data = *datap; 1760 blk = *blkp; 1761 length = *lengthp; 1762 1763 /* 1764 * If this is not a raw I/O or an I/O from a full disk slice then 1765 * this is an I/O to/from an empty slice. 1766 */ 1767 if (slice != VD_SLICE_NONE && 1768 (slice != VD_ENTIRE_DISK_SLICE || 1769 vd->vdisk_label != VD_DISK_LABEL_VTOC) && 1770 (slice != VD_EFI_WD_SLICE || 1771 vd->vdisk_label != VD_DISK_LABEL_EFI)) { 1772 return (EIO); 1773 } 1774 1775 if (length % bsize != 0) 1776 return (EINVAL); 1777 1778 /* handle any I/O with the fake label */ 1779 if (operation == VD_OP_BWRITE) 1780 n = vd_slice_flabel_write(vd, data, blk * bsize, length); 1781 else 1782 n = vd_slice_flabel_read(vd, data, blk * bsize, length); 1783 1784 if (n == -1) 1785 return (EINVAL); 1786 1787 ASSERT(n % bsize == 0); 1788 1789 /* adjust I/O arguments */ 1790 data += n; 1791 blk += n / bsize; 1792 length -= n; 1793 1794 /* check if there's something else to process */ 1795 if (length == 0) { 1796 status = 0; 1797 goto done; 1798 } 1799 1800 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1801 slice == VD_ENTIRE_DISK_SLICE) { 1802 status = EAGAIN; 1803 goto done; 1804 } 1805 1806 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1807 asize = EFI_MIN_RESV_SIZE + (EFI_MIN_ARRAY_SIZE / bsize) + 1; 1808 ablk = vd->vdisk_size - asize; 1809 } else { 1810 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1811 ASSERT(vd->dk_geom.dkg_apc == 0); 1812 1813 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1814 ablk = vd->dk_geom.dkg_ncyl * csize; 1815 asize = vd->dk_geom.dkg_acyl * csize; 1816 } 1817 1818 alen = length / bsize; 1819 aoff = blk; 1820 1821 /* if we have reached the last block then the I/O is completed */ 1822 if (aoff == ablk + asize) { 1823 status = 0; 1824 goto done; 1825 } 1826 1827 /* if we are past the last block then return an error */ 1828 if (aoff > ablk + asize) 1829 return (EIO); 1830 1831 /* check if there is any I/O to end of the disk */ 1832 if (aoff + alen < ablk) { 1833 status = EAGAIN; 1834 goto done; 1835 } 1836 1837 /* we don't allow any write to the end of the disk */ 1838 if (operation == VD_OP_BWRITE) 1839 return (EIO); 1840 1841 if (aoff < ablk) { 1842 alen -= (ablk - aoff); 1843 aoff = ablk; 1844 } 1845 1846 if (aoff + alen > ablk + asize) { 1847 alen = ablk + asize - aoff; 1848 } 1849 1850 alen *= bsize; 1851 1852 if (operation == VD_OP_BREAD) { 1853 bzero(data + (aoff - blk) * bsize, alen); 1854 1855 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 1856 /* check if we read backup labels */ 1857 label = VD_LABEL_VTOC(vd); 1858 ablk += (label->dkl_acyl - 1) * csize + 1859 (label->dkl_nhead - 1) * label->dkl_nsect; 1860 1861 for (sec = 1; (sec < 5 * 2 + 1); sec += 2) { 1862 1863 if (ablk + sec >= blk && 1864 ablk + sec < blk + (length / bsize)) { 1865 bcopy(label, data + 1866 (ablk + sec - blk) * bsize, 1867 sizeof (struct dk_label)); 1868 } 1869 } 1870 } 1871 } 1872 1873 length -= alen; 1874 1875 status = (length == 0)? 0: EAGAIN; 1876 1877 done: 1878 ASSERT(length == 0 || blk >= vd->flabel_limit); 1879 1880 /* 1881 * Return the parameters for the remaining I/O. The starting block is 1882 * adjusted so that it is relative to the vdisk backend. 1883 */ 1884 *datap = data; 1885 *blkp = blk - vd->flabel_limit; 1886 *lengthp = length; 1887 1888 return (status); 1889 } 1890 1891 static int 1892 vd_flush_write(vd_t *vd) 1893 { 1894 int status, rval; 1895 1896 if (vd->file) { 1897 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL); 1898 } else { 1899 status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE, 1900 NULL, vd->open_flags | FKIOCTL, kcred, &rval); 1901 } 1902 1903 return (status); 1904 } 1905 1906 static void 1907 vd_bio_task(void *arg) 1908 { 1909 struct buf *buf = (struct buf *)arg; 1910 vd_task_t *task = (vd_task_t *)buf->b_private; 1911 vd_t *vd = task->vd; 1912 ssize_t resid; 1913 int status; 1914 1915 ASSERT(vd->vdisk_bsize == DEV_BSIZE); 1916 1917 if (vd->zvol) { 1918 1919 status = ldi_strategy(vd->ldi_handle[0], buf); 1920 1921 } else { 1922 1923 ASSERT(vd->file); 1924 1925 status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE, 1926 vd->file_vnode, buf->b_un.b_addr, buf->b_bcount, 1927 buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0, 1928 RLIM64_INFINITY, kcred, &resid); 1929 1930 if (status == 0) { 1931 buf->b_resid = resid; 1932 biodone(buf); 1933 return; 1934 } 1935 } 1936 1937 if (status != 0) { 1938 bioerror(buf, status); 1939 biodone(buf); 1940 } 1941 } 1942 1943 /* 1944 * We define our own biodone function so that buffers used for 1945 * asynchronous writes are not released when biodone() is called. 1946 */ 1947 static int 1948 vd_biodone(struct buf *bp) 1949 { 1950 ASSERT((bp->b_flags & B_DONE) == 0); 1951 ASSERT(SEMA_HELD(&bp->b_sem)); 1952 1953 bp->b_flags |= B_DONE; 1954 sema_v(&bp->b_io); 1955 1956 return (0); 1957 } 1958 1959 /* 1960 * Return Values 1961 * EINPROGRESS - operation was successfully started 1962 * EIO - encountered LDC (aka. task error) 1963 * 0 - operation completed successfully 1964 * 1965 * Side Effect 1966 * sets request->status = <disk operation status> 1967 */ 1968 static int 1969 vd_start_bio(vd_task_t *task) 1970 { 1971 int rv, status = 0; 1972 vd_t *vd = task->vd; 1973 vd_dring_payload_t *request = task->request; 1974 struct buf *buf = &task->buf; 1975 uint8_t mtype; 1976 int slice; 1977 char *bufaddr = 0; 1978 size_t buflen; 1979 size_t offset, length, nbytes; 1980 1981 ASSERT(vd != NULL); 1982 ASSERT(request != NULL); 1983 1984 slice = request->slice; 1985 1986 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); 1987 ASSERT((request->operation == VD_OP_BREAD) || 1988 (request->operation == VD_OP_BWRITE)); 1989 1990 if (request->nbytes == 0) { 1991 /* no service for trivial requests */ 1992 request->status = EINVAL; 1993 return (0); 1994 } 1995 1996 PR1("%s %lu bytes at block %lu", 1997 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 1998 request->nbytes, request->addr); 1999 2000 /* 2001 * We have to check the open flags because the functions processing 2002 * the read/write request will not do it. 2003 */ 2004 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) { 2005 PR0("write fails because backend is opened read-only"); 2006 request->nbytes = 0; 2007 request->status = EROFS; 2008 return (0); 2009 } 2010 2011 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 2012 2013 /* Map memory exported by client */ 2014 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 2015 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 2016 &bufaddr, NULL); 2017 if (status != 0) { 2018 PR0("ldc_mem_map() returned err %d ", status); 2019 return (EIO); 2020 } 2021 2022 /* 2023 * The buffer size has to be 8-byte aligned, so the client should have 2024 * sent a buffer which size is roundup to the next 8-byte aligned value. 2025 */ 2026 buflen = P2ROUNDUP(request->nbytes, 8); 2027 2028 status = ldc_mem_acquire(task->mhdl, 0, buflen); 2029 if (status != 0) { 2030 (void) ldc_mem_unmap(task->mhdl); 2031 PR0("ldc_mem_acquire() returned err %d ", status); 2032 return (EIO); 2033 } 2034 2035 offset = request->addr; 2036 nbytes = request->nbytes; 2037 length = nbytes; 2038 2039 /* default number of byte returned by the I/O */ 2040 request->nbytes = 0; 2041 2042 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 2043 2044 if (slice != 0) { 2045 /* handle any fake I/O */ 2046 rv = vd_slice_fake_rdwr(vd, slice, request->operation, 2047 &bufaddr, &offset, &length); 2048 2049 /* record the number of bytes from the fake I/O */ 2050 request->nbytes = nbytes - length; 2051 2052 if (rv == 0) { 2053 request->status = 0; 2054 goto io_done; 2055 } 2056 2057 if (rv != EAGAIN) { 2058 request->nbytes = 0; 2059 request->status = EIO; 2060 goto io_done; 2061 } 2062 2063 /* 2064 * If we return with EAGAIN then this means that there 2065 * are still data to read or write. 2066 */ 2067 ASSERT(length != 0); 2068 2069 /* 2070 * We need to continue the I/O from the slice backend to 2071 * complete the request. The variables bufaddr, offset 2072 * and length have been adjusted to have the right 2073 * information to do the remaining I/O from the backend. 2074 * The backend is entirely mapped to slice 0 so we just 2075 * have to complete the I/O from that slice. 2076 */ 2077 slice = 0; 2078 } 2079 2080 } else if (vd->volume || vd->file) { 2081 2082 rv = vd_dskimg_io_params(vd, slice, &offset, &length); 2083 if (rv != 0) { 2084 request->status = (rv == ENODATA)? 0: EIO; 2085 goto io_done; 2086 } 2087 slice = 0; 2088 2089 } else if (slice == VD_SLICE_NONE) { 2090 2091 /* 2092 * This is not a disk image so it is a real disk. We 2093 * assume that the underlying device driver supports 2094 * USCSICMD ioctls. This is the case of all SCSI devices 2095 * (sd, ssd...). 2096 * 2097 * In the future if we have non-SCSI disks we would need 2098 * to invoke the appropriate function to do I/O using an 2099 * absolute disk offset (for example using DIOCTL_RWCMD 2100 * for IDE disks). 2101 */ 2102 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset, 2103 length); 2104 if (rv != 0) { 2105 request->status = EIO; 2106 } else { 2107 request->nbytes = length; 2108 request->status = 0; 2109 } 2110 goto io_done; 2111 } 2112 2113 /* Start the block I/O */ 2114 bioinit(buf); 2115 buf->b_flags = B_BUSY; 2116 buf->b_bcount = length; 2117 buf->b_lblkno = offset; 2118 buf->b_bufsize = buflen; 2119 buf->b_edev = vd->dev[slice]; 2120 buf->b_un.b_addr = bufaddr; 2121 buf->b_iodone = vd_biodone; 2122 2123 if (vd->file || vd->zvol) { 2124 /* 2125 * I/O to a file are dispatched to an I/O queue, so that several 2126 * I/Os can be processed in parallel. We also do that for ZFS 2127 * volumes because the ZFS volume strategy() function will only 2128 * return after the I/O is completed (instead of just starting 2129 * the I/O). 2130 */ 2131 2132 if (request->operation == VD_OP_BREAD) { 2133 buf->b_flags |= B_READ; 2134 } else { 2135 /* 2136 * For ZFS volumes and files, we do an asynchronous 2137 * write and we will wait for the completion of the 2138 * write in vd_complete_bio() by flushing the volume 2139 * or file. 2140 * 2141 * This done for performance reasons, so that we can 2142 * group together several write requests into a single 2143 * flush operation. 2144 */ 2145 buf->b_flags |= B_WRITE | B_ASYNC; 2146 2147 /* 2148 * We keep track of the write so that we can group 2149 * requests when flushing. The write queue has the 2150 * same number of slots as the dring so this prevents 2151 * the write queue from wrapping and overwriting 2152 * existing entries: if the write queue gets full 2153 * then that means that the dring is full so we stop 2154 * receiving new requests until an existing request 2155 * is processed, removed from the write queue and 2156 * then from the dring. 2157 */ 2158 task->write_index = vd->write_index; 2159 vd->write_queue[task->write_index] = buf; 2160 vd->write_index = 2161 VD_WRITE_INDEX_NEXT(vd, vd->write_index); 2162 } 2163 2164 buf->b_private = task; 2165 2166 ASSERT(vd->ioq != NULL); 2167 2168 request->status = 0; 2169 (void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf, 2170 DDI_SLEEP); 2171 2172 } else { 2173 2174 if (request->operation == VD_OP_BREAD) { 2175 buf->b_flags |= B_READ; 2176 } else { 2177 buf->b_flags |= B_WRITE; 2178 } 2179 2180 /* convert VIO block number to buf block number */ 2181 buf->b_lblkno = offset << vd->vio_bshift; 2182 2183 request->status = ldi_strategy(vd->ldi_handle[slice], buf); 2184 } 2185 2186 /* 2187 * This is to indicate to the caller that the request 2188 * needs to be finished by vd_complete_bio() by calling 2189 * biowait() there and waiting for that to return before 2190 * triggering the notification of the vDisk client. 2191 * 2192 * This is necessary when writing to real disks as 2193 * otherwise calls to ldi_strategy() would be serialized 2194 * behind the calls to biowait() and performance would 2195 * suffer. 2196 */ 2197 if (request->status == 0) 2198 return (EINPROGRESS); 2199 2200 biofini(buf); 2201 2202 io_done: 2203 /* Clean up after error or completion */ 2204 rv = ldc_mem_release(task->mhdl, 0, buflen); 2205 if (rv) { 2206 PR0("ldc_mem_release() returned err %d ", rv); 2207 status = EIO; 2208 } 2209 rv = ldc_mem_unmap(task->mhdl); 2210 if (rv) { 2211 PR0("ldc_mem_unmap() returned err %d ", rv); 2212 status = EIO; 2213 } 2214 2215 return (status); 2216 } 2217 2218 /* 2219 * This function should only be called from vd_notify to ensure that requests 2220 * are responded to in the order that they are received. 2221 */ 2222 static int 2223 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 2224 { 2225 int status; 2226 size_t nbytes; 2227 2228 do { 2229 nbytes = msglen; 2230 status = ldc_write(ldc_handle, msg, &nbytes); 2231 if (status != EWOULDBLOCK) 2232 break; 2233 drv_usecwait(vds_ldc_delay); 2234 } while (status == EWOULDBLOCK); 2235 2236 if (status != 0) { 2237 if (status != ECONNRESET) 2238 PR0("ldc_write() returned errno %d", status); 2239 return (status); 2240 } else if (nbytes != msglen) { 2241 PR0("ldc_write() performed only partial write"); 2242 return (EIO); 2243 } 2244 2245 PR1("SENT %lu bytes", msglen); 2246 return (0); 2247 } 2248 2249 static void 2250 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 2251 { 2252 mutex_enter(&vd->lock); 2253 vd->reset_state = B_TRUE; 2254 vd->reset_ldc = reset_ldc; 2255 mutex_exit(&vd->lock); 2256 } 2257 2258 /* 2259 * Reset the state of the connection with a client, if needed; reset the LDC 2260 * transport as well, if needed. This function should only be called from the 2261 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 2262 */ 2263 static void 2264 vd_reset_if_needed(vd_t *vd) 2265 { 2266 int status = 0; 2267 2268 mutex_enter(&vd->lock); 2269 if (!vd->reset_state) { 2270 ASSERT(!vd->reset_ldc); 2271 mutex_exit(&vd->lock); 2272 return; 2273 } 2274 mutex_exit(&vd->lock); 2275 2276 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 2277 2278 /* 2279 * Let any asynchronous I/O complete before possibly pulling the rug 2280 * out from under it; defer checking vd->reset_ldc, as one of the 2281 * asynchronous tasks might set it 2282 */ 2283 if (vd->ioq != NULL) 2284 ddi_taskq_wait(vd->ioq); 2285 ddi_taskq_wait(vd->completionq); 2286 2287 status = vd_flush_write(vd); 2288 if (status) { 2289 PR0("flushwrite returned error %d", status); 2290 } 2291 2292 if ((vd->initialized & VD_DRING) && 2293 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 2294 PR0("ldc_mem_dring_unmap() returned errno %d", status); 2295 2296 vd_free_dring_task(vd); 2297 2298 /* Free the staging buffer for msgs */ 2299 if (vd->vio_msgp != NULL) { 2300 kmem_free(vd->vio_msgp, vd->max_msglen); 2301 vd->vio_msgp = NULL; 2302 } 2303 2304 /* Free the inband message buffer */ 2305 if (vd->inband_task.msg != NULL) { 2306 kmem_free(vd->inband_task.msg, vd->max_msglen); 2307 vd->inband_task.msg = NULL; 2308 } 2309 2310 mutex_enter(&vd->lock); 2311 2312 if (vd->reset_ldc) 2313 PR0("taking down LDC channel"); 2314 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 2315 PR0("ldc_down() returned errno %d", status); 2316 2317 /* Reset exclusive access rights */ 2318 vd_reset_access(vd); 2319 2320 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 2321 vd->state = VD_STATE_INIT; 2322 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 2323 2324 /* Allocate the staging buffer */ 2325 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 2326 2327 PR0("calling ldc_up\n"); 2328 (void) ldc_up(vd->ldc_handle); 2329 2330 vd->reset_state = B_FALSE; 2331 vd->reset_ldc = B_FALSE; 2332 2333 mutex_exit(&vd->lock); 2334 } 2335 2336 static void vd_recv_msg(void *arg); 2337 2338 static void 2339 vd_mark_in_reset(vd_t *vd) 2340 { 2341 int status; 2342 2343 PR0("vd_mark_in_reset: marking vd in reset\n"); 2344 2345 vd_need_reset(vd, B_FALSE); 2346 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 2347 if (status == DDI_FAILURE) { 2348 PR0("cannot schedule task to recv msg\n"); 2349 vd_need_reset(vd, B_TRUE); 2350 return; 2351 } 2352 } 2353 2354 static int 2355 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) 2356 { 2357 boolean_t accepted; 2358 int status; 2359 on_trap_data_t otd; 2360 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 2361 2362 if (vd->reset_state) 2363 return (0); 2364 2365 /* Acquire the element */ 2366 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 2367 vd->dring_handle, idx, idx)) != 0) { 2368 if (status == ECONNRESET) { 2369 vd_mark_in_reset(vd); 2370 return (0); 2371 } else { 2372 return (status); 2373 } 2374 } 2375 2376 /* Set the element's status and mark it done */ 2377 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 2378 if (accepted) { 2379 elem->payload.nbytes = elem_nbytes; 2380 elem->payload.status = elem_status; 2381 elem->hdr.dstate = VIO_DESC_DONE; 2382 } else { 2383 /* Perhaps client timed out waiting for I/O... */ 2384 PR0("element %u no longer \"accepted\"", idx); 2385 VD_DUMP_DRING_ELEM(elem); 2386 } 2387 /* Release the element */ 2388 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 2389 vd->dring_handle, idx, idx)) != 0) { 2390 if (status == ECONNRESET) { 2391 vd_mark_in_reset(vd); 2392 return (0); 2393 } else { 2394 PR0("VIO_DRING_RELEASE() returned errno %d", 2395 status); 2396 return (status); 2397 } 2398 } 2399 2400 return (accepted ? 0 : EINVAL); 2401 } 2402 2403 /* 2404 * Return Values 2405 * 0 - operation completed successfully 2406 * EIO - encountered LDC / task error 2407 * 2408 * Side Effect 2409 * sets request->status = <disk operation status> 2410 */ 2411 static int 2412 vd_complete_bio(vd_task_t *task) 2413 { 2414 int status = 0; 2415 int rv = 0; 2416 vd_t *vd = task->vd; 2417 vd_dring_payload_t *request = task->request; 2418 struct buf *buf = &task->buf; 2419 int wid, nwrites; 2420 2421 2422 ASSERT(vd != NULL); 2423 ASSERT(request != NULL); 2424 ASSERT(task->msg != NULL); 2425 ASSERT(task->msglen >= sizeof (*task->msg)); 2426 2427 if (buf->b_flags & B_DONE) { 2428 /* 2429 * If the I/O is already done then we don't call biowait() 2430 * because biowait() might already have been called when 2431 * flushing a previous asynchronous write. So we just 2432 * retrieve the status of the request. 2433 */ 2434 request->status = geterror(buf); 2435 } else { 2436 /* 2437 * Wait for the I/O. For synchronous I/O, biowait() will return 2438 * when the I/O has completed. For asynchronous write, it will 2439 * return the write has been submitted to the backend, but it 2440 * may not have been committed. 2441 */ 2442 request->status = biowait(buf); 2443 } 2444 2445 if (buf->b_flags & B_ASYNC) { 2446 /* 2447 * Asynchronous writes are used when writing to a file or a 2448 * ZFS volume. In that case the bio notification indicates 2449 * that the write has started. We have to flush the backend 2450 * to ensure that the write has been committed before marking 2451 * the request as completed. 2452 */ 2453 ASSERT(task->request->operation == VD_OP_BWRITE); 2454 2455 wid = task->write_index; 2456 2457 /* check if write has been already flushed */ 2458 if (vd->write_queue[wid] != NULL) { 2459 2460 vd->write_queue[wid] = NULL; 2461 wid = VD_WRITE_INDEX_NEXT(vd, wid); 2462 2463 /* 2464 * Because flushing is time consuming, it is worth 2465 * waiting for any other writes so that they can be 2466 * included in this single flush request. 2467 */ 2468 if (vd_awflush & VD_AWFLUSH_GROUP) { 2469 nwrites = 1; 2470 while (vd->write_queue[wid] != NULL) { 2471 (void) biowait(vd->write_queue[wid]); 2472 vd->write_queue[wid] = NULL; 2473 wid = VD_WRITE_INDEX_NEXT(vd, wid); 2474 nwrites++; 2475 } 2476 DTRACE_PROBE2(flushgrp, vd_task_t *, task, 2477 int, nwrites); 2478 } 2479 2480 if (vd_awflush & VD_AWFLUSH_IMMEDIATE) { 2481 request->status = vd_flush_write(vd); 2482 } else if (vd_awflush & VD_AWFLUSH_DEFER) { 2483 (void) taskq_dispatch(system_taskq, 2484 (void (*)(void *))vd_flush_write, vd, 2485 DDI_SLEEP); 2486 request->status = 0; 2487 } 2488 } 2489 } 2490 2491 /* Update the number of bytes read/written */ 2492 request->nbytes += buf->b_bcount - buf->b_resid; 2493 2494 /* Release the buffer */ 2495 if (!vd->reset_state) 2496 status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize); 2497 if (status) { 2498 PR0("ldc_mem_release() returned errno %d copying to " 2499 "client", status); 2500 if (status == ECONNRESET) { 2501 vd_mark_in_reset(vd); 2502 } 2503 rv = EIO; 2504 } 2505 2506 /* Unmap the memory, even if in reset */ 2507 status = ldc_mem_unmap(task->mhdl); 2508 if (status) { 2509 PR0("ldc_mem_unmap() returned errno %d copying to client", 2510 status); 2511 if (status == ECONNRESET) { 2512 vd_mark_in_reset(vd); 2513 } 2514 rv = EIO; 2515 } 2516 2517 biofini(buf); 2518 2519 return (rv); 2520 } 2521 2522 /* 2523 * Description: 2524 * This function is called by the two functions called by a taskq 2525 * [ vd_complete_notify() and vd_serial_notify()) ] to send the 2526 * message to the client. 2527 * 2528 * Parameters: 2529 * arg - opaque pointer to structure containing task to be completed 2530 * 2531 * Return Values 2532 * None 2533 */ 2534 static void 2535 vd_notify(vd_task_t *task) 2536 { 2537 int status; 2538 2539 ASSERT(task != NULL); 2540 ASSERT(task->vd != NULL); 2541 2542 /* 2543 * Send the "ack" or "nack" back to the client; if sending the message 2544 * via LDC fails, arrange to reset both the connection state and LDC 2545 * itself 2546 */ 2547 PR2("Sending %s", 2548 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 2549 2550 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); 2551 switch (status) { 2552 case 0: 2553 break; 2554 case ECONNRESET: 2555 vd_mark_in_reset(task->vd); 2556 break; 2557 default: 2558 PR0("initiating full reset"); 2559 vd_need_reset(task->vd, B_TRUE); 2560 break; 2561 } 2562 2563 DTRACE_PROBE1(task__end, vd_task_t *, task); 2564 } 2565 2566 /* 2567 * Description: 2568 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to 2569 * the vDisk client 2570 * 2571 * Parameters: 2572 * task - structure containing the request sent from client 2573 * 2574 * Return Values 2575 * None 2576 */ 2577 static void 2578 vd_complete_notify(vd_task_t *task) 2579 { 2580 int status = 0; 2581 vd_t *vd = task->vd; 2582 vd_dring_payload_t *request = task->request; 2583 2584 /* Update the dring element for a dring client */ 2585 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 2586 status = vd_mark_elem_done(vd, task->index, 2587 request->status, request->nbytes); 2588 if (status == ECONNRESET) 2589 vd_mark_in_reset(vd); 2590 else if (status == EACCES) 2591 vd_need_reset(vd, B_TRUE); 2592 } 2593 2594 /* 2595 * If a transport error occurred while marking the element done or 2596 * previously while executing the task, arrange to "nack" the message 2597 * when the final task in the descriptor element range completes 2598 */ 2599 if ((status != 0) || (task->status != 0)) 2600 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 2601 2602 /* 2603 * Only the final task for a range of elements will respond to and 2604 * free the message 2605 */ 2606 if (task->type == VD_NONFINAL_RANGE_TASK) { 2607 return; 2608 } 2609 2610 /* 2611 * We should only send an ACK/NACK here if we are not currently in 2612 * reset as, depending on how we reset, the dring may have been 2613 * blown away and we don't want to ACK/NACK a message that isn't 2614 * there. 2615 */ 2616 if (!vd->reset_state) 2617 vd_notify(task); 2618 } 2619 2620 /* 2621 * Description: 2622 * This is the basic completion function called to handle inband data 2623 * requests and handshake messages. All it needs to do is trigger a 2624 * message to the client that the request is completed. 2625 * 2626 * Parameters: 2627 * arg - opaque pointer to structure containing task to be completed 2628 * 2629 * Return Values 2630 * None 2631 */ 2632 static void 2633 vd_serial_notify(void *arg) 2634 { 2635 vd_task_t *task = (vd_task_t *)arg; 2636 2637 ASSERT(task != NULL); 2638 vd_notify(task); 2639 } 2640 2641 /* ARGSUSED */ 2642 static int 2643 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2644 { 2645 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 2646 return (0); 2647 } 2648 2649 /* ARGSUSED */ 2650 static int 2651 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2652 { 2653 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg); 2654 return (0); 2655 } 2656 2657 static void 2658 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 2659 { 2660 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 2661 } 2662 2663 static void 2664 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 2665 { 2666 VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 2667 } 2668 2669 static int 2670 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2671 { 2672 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2673 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2674 size_t data_len; 2675 2676 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2677 if (vd_efi->length > data_len) 2678 return (EINVAL); 2679 2680 dk_efi->dki_lba = vd_efi->lba; 2681 dk_efi->dki_length = vd_efi->length; 2682 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 2683 return (0); 2684 } 2685 2686 static void 2687 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 2688 { 2689 int len; 2690 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2691 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2692 2693 len = vd_efi->length; 2694 DK_EFI2VD_EFI(dk_efi, vd_efi); 2695 kmem_free(dk_efi->dki_data, len); 2696 } 2697 2698 static int 2699 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2700 { 2701 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2702 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2703 size_t data_len; 2704 2705 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2706 if (vd_efi->length > data_len) 2707 return (EINVAL); 2708 2709 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 2710 VD_EFI2DK_EFI(vd_efi, dk_efi); 2711 return (0); 2712 } 2713 2714 static void 2715 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 2716 { 2717 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2718 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2719 2720 kmem_free(dk_efi->dki_data, vd_efi->length); 2721 } 2722 2723 static int 2724 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2725 { 2726 size_t vd_scsi_len; 2727 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2728 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2729 2730 /* check buffer size */ 2731 vd_scsi_len = VD_SCSI_SIZE; 2732 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t)); 2733 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t)); 2734 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t)); 2735 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t)); 2736 2737 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 2738 2739 if (vd_buf_len < vd_scsi_len) 2740 return (EINVAL); 2741 2742 /* set flags */ 2743 uscsi->uscsi_flags = vd_scsi_debug; 2744 2745 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) { 2746 uscsi->uscsi_flags |= USCSI_ISOLATE; 2747 uscsi->uscsi_flags |= USCSI_DIAGNOSE; 2748 } 2749 2750 /* task attribute */ 2751 switch (vd_scsi->task_attribute) { 2752 case VD_SCSI_TASK_ACA: 2753 uscsi->uscsi_flags |= USCSI_HEAD; 2754 break; 2755 case VD_SCSI_TASK_HQUEUE: 2756 uscsi->uscsi_flags |= USCSI_HTAG; 2757 break; 2758 case VD_SCSI_TASK_ORDERED: 2759 uscsi->uscsi_flags |= USCSI_OTAG; 2760 break; 2761 default: 2762 uscsi->uscsi_flags |= USCSI_NOTAG; 2763 break; 2764 } 2765 2766 /* timeout */ 2767 uscsi->uscsi_timeout = vd_scsi->timeout; 2768 2769 /* cdb data */ 2770 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi); 2771 uscsi->uscsi_cdblen = vd_scsi->cdb_len; 2772 2773 /* sense buffer */ 2774 if (vd_scsi->sense_len != 0) { 2775 uscsi->uscsi_flags |= USCSI_RQENABLE; 2776 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi); 2777 uscsi->uscsi_rqlen = vd_scsi->sense_len; 2778 } 2779 2780 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) { 2781 /* uscsi does not support read/write request */ 2782 return (EINVAL); 2783 } 2784 2785 /* request data-in */ 2786 if (vd_scsi->datain_len != 0) { 2787 uscsi->uscsi_flags |= USCSI_READ; 2788 uscsi->uscsi_buflen = vd_scsi->datain_len; 2789 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi); 2790 } 2791 2792 /* request data-out */ 2793 if (vd_scsi->dataout_len != 0) { 2794 uscsi->uscsi_buflen = vd_scsi->dataout_len; 2795 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi); 2796 } 2797 2798 return (0); 2799 } 2800 2801 static void 2802 vd_scsicmd_out(void *ioctl_arg, void *vd_buf) 2803 { 2804 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2805 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2806 2807 /* output fields */ 2808 vd_scsi->cmd_status = uscsi->uscsi_status; 2809 2810 /* sense data */ 2811 if ((uscsi->uscsi_flags & USCSI_RQENABLE) && 2812 (uscsi->uscsi_status == STATUS_CHECK || 2813 uscsi->uscsi_status == STATUS_TERMINATED)) { 2814 vd_scsi->sense_status = uscsi->uscsi_rqstatus; 2815 if (uscsi->uscsi_rqstatus == STATUS_GOOD) 2816 vd_scsi->sense_len -= uscsi->uscsi_rqresid; 2817 else 2818 vd_scsi->sense_len = 0; 2819 } else { 2820 vd_scsi->sense_len = 0; 2821 } 2822 2823 if (uscsi->uscsi_status != STATUS_GOOD) { 2824 vd_scsi->dataout_len = 0; 2825 vd_scsi->datain_len = 0; 2826 return; 2827 } 2828 2829 if (uscsi->uscsi_flags & USCSI_READ) { 2830 /* request data (read) */ 2831 vd_scsi->datain_len -= uscsi->uscsi_resid; 2832 vd_scsi->dataout_len = 0; 2833 } else { 2834 /* request data (write) */ 2835 vd_scsi->datain_len = 0; 2836 vd_scsi->dataout_len -= uscsi->uscsi_resid; 2837 } 2838 } 2839 2840 static ushort_t 2841 vd_lbl2cksum(struct dk_label *label) 2842 { 2843 int count; 2844 ushort_t sum, *sp; 2845 2846 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 2847 sp = (ushort_t *)label; 2848 sum = 0; 2849 while (count--) { 2850 sum ^= *sp++; 2851 } 2852 2853 return (sum); 2854 } 2855 2856 /* 2857 * Copy information from a vtoc and dk_geom structures to a dk_label structure. 2858 */ 2859 static void 2860 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom, 2861 struct dk_label *label) 2862 { 2863 int i; 2864 2865 ASSERT(vtoc->v_nparts == V_NUMPAR); 2866 ASSERT(vtoc->v_sanity == VTOC_SANE); 2867 2868 bzero(label, sizeof (struct dk_label)); 2869 2870 label->dkl_ncyl = geom->dkg_ncyl; 2871 label->dkl_acyl = geom->dkg_acyl; 2872 label->dkl_pcyl = geom->dkg_pcyl; 2873 label->dkl_nhead = geom->dkg_nhead; 2874 label->dkl_nsect = geom->dkg_nsect; 2875 label->dkl_intrlv = geom->dkg_intrlv; 2876 label->dkl_apc = geom->dkg_apc; 2877 label->dkl_rpm = geom->dkg_rpm; 2878 label->dkl_write_reinstruct = geom->dkg_write_reinstruct; 2879 label->dkl_read_reinstruct = geom->dkg_read_reinstruct; 2880 2881 label->dkl_vtoc.v_nparts = V_NUMPAR; 2882 label->dkl_vtoc.v_sanity = VTOC_SANE; 2883 label->dkl_vtoc.v_version = vtoc->v_version; 2884 for (i = 0; i < V_NUMPAR; i++) { 2885 label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; 2886 label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag; 2887 label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag; 2888 label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start / 2889 (label->dkl_nhead * label->dkl_nsect); 2890 label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size; 2891 } 2892 2893 /* 2894 * The bootinfo array can not be copied with bcopy() because 2895 * elements are of type long in vtoc (so 64-bit) and of type 2896 * int in dk_vtoc (so 32-bit). 2897 */ 2898 label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; 2899 label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; 2900 label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; 2901 bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII); 2902 bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL); 2903 2904 /* re-compute checksum */ 2905 label->dkl_magic = DKL_MAGIC; 2906 label->dkl_cksum = vd_lbl2cksum(label); 2907 } 2908 2909 /* 2910 * Copy information from a dk_label structure to a vtoc and dk_geom structures. 2911 */ 2912 static void 2913 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc, 2914 struct dk_geom *geom) 2915 { 2916 int i; 2917 2918 bzero(vtoc, sizeof (struct extvtoc)); 2919 bzero(geom, sizeof (struct dk_geom)); 2920 2921 geom->dkg_ncyl = label->dkl_ncyl; 2922 geom->dkg_acyl = label->dkl_acyl; 2923 geom->dkg_nhead = label->dkl_nhead; 2924 geom->dkg_nsect = label->dkl_nsect; 2925 geom->dkg_intrlv = label->dkl_intrlv; 2926 geom->dkg_apc = label->dkl_apc; 2927 geom->dkg_rpm = label->dkl_rpm; 2928 geom->dkg_pcyl = label->dkl_pcyl; 2929 geom->dkg_write_reinstruct = label->dkl_write_reinstruct; 2930 geom->dkg_read_reinstruct = label->dkl_read_reinstruct; 2931 2932 vtoc->v_sanity = label->dkl_vtoc.v_sanity; 2933 vtoc->v_version = label->dkl_vtoc.v_version; 2934 vtoc->v_sectorsz = DEV_BSIZE; 2935 vtoc->v_nparts = label->dkl_vtoc.v_nparts; 2936 2937 for (i = 0; i < vtoc->v_nparts; i++) { 2938 vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag; 2939 vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag; 2940 vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno * 2941 (label->dkl_nhead * label->dkl_nsect); 2942 vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk; 2943 vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i]; 2944 } 2945 2946 /* 2947 * The bootinfo array can not be copied with bcopy() because 2948 * elements are of type long in vtoc (so 64-bit) and of type 2949 * int in dk_vtoc (so 32-bit). 2950 */ 2951 vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0]; 2952 vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1]; 2953 vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2]; 2954 bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII); 2955 bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL); 2956 } 2957 2958 /* 2959 * Check if a geometry is valid for a single-slice disk. A geometry is 2960 * considered valid if the main attributes of the geometry match with the 2961 * attributes of the fake geometry we have created. 2962 */ 2963 static boolean_t 2964 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom) 2965 { 2966 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2967 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2968 2969 if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl || 2970 geom->dkg_acyl != vd->dk_geom.dkg_acyl || 2971 geom->dkg_nsect != vd->dk_geom.dkg_nsect || 2972 geom->dkg_pcyl != vd->dk_geom.dkg_pcyl) 2973 return (B_FALSE); 2974 2975 return (B_TRUE); 2976 } 2977 2978 /* 2979 * Check if a vtoc is valid for a single-slice disk. A vtoc is considered 2980 * valid if the main attributes of the vtoc match with the attributes of the 2981 * fake vtoc we have created. 2982 */ 2983 static boolean_t 2984 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc) 2985 { 2986 size_t csize; 2987 int i; 2988 2989 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2990 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2991 2992 if (vtoc->v_sanity != vd->vtoc.v_sanity || 2993 vtoc->v_version != vd->vtoc.v_version || 2994 vtoc->v_nparts != vd->vtoc.v_nparts || 2995 strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 || 2996 strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0) 2997 return (B_FALSE); 2998 2999 /* slice 2 should be unchanged */ 3000 if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start != 3001 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start || 3002 vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size != 3003 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size) 3004 return (B_FALSE); 3005 3006 /* 3007 * Slice 0 should be mostly unchanged and cover most of the disk. 3008 * However we allow some flexibility wrt to the start and the size 3009 * of this slice mainly because we can't exactly know how it will 3010 * be defined by the OS installer. 3011 * 3012 * We allow slice 0 to be defined as starting on any of the first 3013 * 4 cylinders. 3014 */ 3015 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 3016 3017 if (vtoc->v_part[0].p_start > 4 * csize || 3018 vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size) 3019 return (B_FALSE); 3020 3021 if (vd->vtoc.v_part[0].p_size >= 4 * csize && 3022 vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize) 3023 return (B_FALSE); 3024 3025 /* any other slice should have a size of 0 */ 3026 for (i = 1; i < vtoc->v_nparts; i++) { 3027 if (i != VD_ENTIRE_DISK_SLICE && 3028 vtoc->v_part[i].p_size != 0) 3029 return (B_FALSE); 3030 } 3031 3032 return (B_TRUE); 3033 } 3034 3035 /* 3036 * Handle ioctls to a disk slice. 3037 * 3038 * Return Values 3039 * 0 - Indicates that there are no errors in disk operations 3040 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl 3041 * EINVAL - Not enough room to copy the EFI label 3042 * 3043 */ 3044 static int 3045 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 3046 { 3047 dk_efi_t *dk_ioc; 3048 struct extvtoc *vtoc; 3049 struct dk_geom *geom; 3050 size_t len, lba; 3051 3052 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 3053 3054 if (cmd == DKIOCFLUSHWRITECACHE) 3055 return (vd_flush_write(vd)); 3056 3057 switch (vd->vdisk_label) { 3058 3059 /* ioctls for a single slice disk with a VTOC label */ 3060 case VD_DISK_LABEL_VTOC: 3061 3062 switch (cmd) { 3063 3064 case DKIOCGGEOM: 3065 ASSERT(ioctl_arg != NULL); 3066 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 3067 return (0); 3068 3069 case DKIOCGEXTVTOC: 3070 ASSERT(ioctl_arg != NULL); 3071 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 3072 return (0); 3073 3074 case DKIOCSGEOM: 3075 ASSERT(ioctl_arg != NULL); 3076 if (vd_slice_single_slice) 3077 return (ENOTSUP); 3078 3079 /* fake success only if new geometry is valid */ 3080 geom = (struct dk_geom *)ioctl_arg; 3081 if (!vd_slice_geom_isvalid(vd, geom)) 3082 return (EINVAL); 3083 3084 return (0); 3085 3086 case DKIOCSEXTVTOC: 3087 ASSERT(ioctl_arg != NULL); 3088 if (vd_slice_single_slice) 3089 return (ENOTSUP); 3090 3091 /* fake sucess only if the new vtoc is valid */ 3092 vtoc = (struct extvtoc *)ioctl_arg; 3093 if (!vd_slice_vtoc_isvalid(vd, vtoc)) 3094 return (EINVAL); 3095 3096 return (0); 3097 3098 default: 3099 return (ENOTSUP); 3100 } 3101 3102 /* ioctls for a single slice disk with an EFI label */ 3103 case VD_DISK_LABEL_EFI: 3104 3105 if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI) 3106 return (ENOTSUP); 3107 3108 ASSERT(ioctl_arg != NULL); 3109 dk_ioc = (dk_efi_t *)ioctl_arg; 3110 3111 len = dk_ioc->dki_length; 3112 lba = dk_ioc->dki_lba; 3113 3114 if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) || 3115 (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) || 3116 (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t))) 3117 return (EINVAL); 3118 3119 switch (cmd) { 3120 case DKIOCGETEFI: 3121 len = vd_slice_flabel_read(vd, 3122 (caddr_t)dk_ioc->dki_data, 3123 lba * vd->vdisk_bsize, len); 3124 3125 ASSERT(len > 0); 3126 3127 return (0); 3128 3129 case DKIOCSETEFI: 3130 if (vd_slice_single_slice) 3131 return (ENOTSUP); 3132 3133 /* we currently don't support writing EFI */ 3134 return (EIO); 3135 } 3136 3137 default: 3138 /* Unknown disk label type */ 3139 return (ENOTSUP); 3140 } 3141 } 3142 3143 static int 3144 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe) 3145 { 3146 vd_efi_dev_t edev; 3147 int status; 3148 3149 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 3150 3151 status = vd_efi_alloc_and_read(&edev, gpt, gpe); 3152 3153 return (status); 3154 } 3155 3156 static void 3157 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe) 3158 { 3159 vd_efi_dev_t edev; 3160 3161 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 3162 3163 vd_efi_free(&edev, gpt, gpe); 3164 } 3165 3166 static int 3167 vd_dskimg_validate_efi(vd_t *vd) 3168 { 3169 efi_gpt_t *gpt; 3170 efi_gpe_t *gpe; 3171 int i, nparts, status; 3172 struct uuid efi_reserved = EFI_RESERVED; 3173 3174 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0) 3175 return (status); 3176 3177 bzero(&vd->vtoc, sizeof (struct extvtoc)); 3178 bzero(&vd->dk_geom, sizeof (struct dk_geom)); 3179 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 3180 3181 vd->efi_reserved = -1; 3182 3183 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 3184 3185 for (i = 0; i < nparts && i < VD_MAXPART; i++) { 3186 3187 if (gpe[i].efi_gpe_StartingLBA == 0 && 3188 gpe[i].efi_gpe_EndingLBA == 0) { 3189 continue; 3190 } 3191 3192 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA; 3193 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA - 3194 gpe[i].efi_gpe_StartingLBA + 1; 3195 3196 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved, 3197 sizeof (struct uuid)) == 0) 3198 vd->efi_reserved = i; 3199 3200 } 3201 3202 ASSERT(vd->vdisk_size != 0); 3203 vd->slices[VD_EFI_WD_SLICE].start = 0; 3204 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size; 3205 3206 vds_efi_free(vd, gpt, gpe); 3207 3208 return (status); 3209 } 3210 3211 /* 3212 * Function: 3213 * vd_dskimg_validate_geometry 3214 * 3215 * Description: 3216 * Read the label and validate the geometry of a disk image. The driver 3217 * label, vtoc and geometry information are updated according to the 3218 * label read from the disk image. 3219 * 3220 * If no valid label is found, the label is set to unknown and the 3221 * function returns EINVAL, but a default vtoc and geometry are provided 3222 * to the driver. If an EFI label is found, ENOTSUP is returned. 3223 * 3224 * Parameters: 3225 * vd - disk on which the operation is performed. 3226 * 3227 * Return Code: 3228 * 0 - success. 3229 * EIO - error reading the label from the disk image. 3230 * EINVAL - unknown disk label. 3231 * ENOTSUP - geometry not applicable (EFI label). 3232 */ 3233 static int 3234 vd_dskimg_validate_geometry(vd_t *vd) 3235 { 3236 struct dk_label label; 3237 struct dk_geom *geom = &vd->dk_geom; 3238 struct extvtoc *vtoc = &vd->vtoc; 3239 int i; 3240 int status = 0; 3241 3242 ASSERT(VD_DSKIMG(vd)); 3243 3244 if (VD_DSKIMG_LABEL_READ(vd, &label) < 0) 3245 return (EIO); 3246 3247 if (label.dkl_magic != DKL_MAGIC || 3248 label.dkl_cksum != vd_lbl2cksum(&label) || 3249 (vd_dskimg_validate_sanity && 3250 label.dkl_vtoc.v_sanity != VTOC_SANE) || 3251 label.dkl_vtoc.v_nparts != V_NUMPAR) { 3252 3253 if (vd_dskimg_validate_efi(vd) == 0) { 3254 vd->vdisk_label = VD_DISK_LABEL_EFI; 3255 return (ENOTSUP); 3256 } 3257 3258 vd->vdisk_label = VD_DISK_LABEL_UNK; 3259 vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize, 3260 &label); 3261 status = EINVAL; 3262 } else { 3263 vd->vdisk_label = VD_DISK_LABEL_VTOC; 3264 } 3265 3266 /* Update the driver geometry and vtoc */ 3267 vd_label_to_vtocgeom(&label, vtoc, geom); 3268 3269 /* Update logical partitions */ 3270 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 3271 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 3272 for (i = 0; i < vtoc->v_nparts; i++) { 3273 vd->slices[i].start = vtoc->v_part[i].p_start; 3274 vd->slices[i].nblocks = vtoc->v_part[i].p_size; 3275 } 3276 } 3277 3278 return (status); 3279 } 3280 3281 /* 3282 * Handle ioctls to a disk image. 3283 * 3284 * Return Values 3285 * 0 - Indicates that there are no errors 3286 * != 0 - Disk operation returned an error 3287 */ 3288 static int 3289 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 3290 { 3291 struct dk_label label; 3292 struct dk_geom *geom; 3293 struct extvtoc *vtoc; 3294 dk_efi_t *efi; 3295 int rc; 3296 3297 ASSERT(VD_DSKIMG(vd)); 3298 3299 switch (cmd) { 3300 3301 case DKIOCGGEOM: 3302 ASSERT(ioctl_arg != NULL); 3303 geom = (struct dk_geom *)ioctl_arg; 3304 3305 rc = vd_dskimg_validate_geometry(vd); 3306 if (rc != 0 && rc != EINVAL) 3307 return (rc); 3308 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom)); 3309 return (0); 3310 3311 case DKIOCGEXTVTOC: 3312 ASSERT(ioctl_arg != NULL); 3313 vtoc = (struct extvtoc *)ioctl_arg; 3314 3315 rc = vd_dskimg_validate_geometry(vd); 3316 if (rc != 0 && rc != EINVAL) 3317 return (rc); 3318 bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc)); 3319 return (0); 3320 3321 case DKIOCSGEOM: 3322 ASSERT(ioctl_arg != NULL); 3323 geom = (struct dk_geom *)ioctl_arg; 3324 3325 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) 3326 return (EINVAL); 3327 3328 /* 3329 * The current device geometry is not updated, just the driver 3330 * "notion" of it. The device geometry will be effectively 3331 * updated when a label is written to the device during a next 3332 * DKIOCSEXTVTOC. 3333 */ 3334 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); 3335 return (0); 3336 3337 case DKIOCSEXTVTOC: 3338 ASSERT(ioctl_arg != NULL); 3339 ASSERT(vd->dk_geom.dkg_nhead != 0 && 3340 vd->dk_geom.dkg_nsect != 0); 3341 vtoc = (struct extvtoc *)ioctl_arg; 3342 3343 if (vtoc->v_sanity != VTOC_SANE || 3344 vtoc->v_sectorsz != DEV_BSIZE || 3345 vtoc->v_nparts != V_NUMPAR) 3346 return (EINVAL); 3347 3348 vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label); 3349 3350 /* write label to the disk image */ 3351 if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0) 3352 return (rc); 3353 3354 break; 3355 3356 case DKIOCFLUSHWRITECACHE: 3357 return (vd_flush_write(vd)); 3358 3359 case DKIOCGETEFI: 3360 ASSERT(ioctl_arg != NULL); 3361 efi = (dk_efi_t *)ioctl_arg; 3362 3363 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, 3364 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3365 return (EIO); 3366 3367 return (0); 3368 3369 case DKIOCSETEFI: 3370 ASSERT(ioctl_arg != NULL); 3371 efi = (dk_efi_t *)ioctl_arg; 3372 3373 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 3374 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3375 return (EIO); 3376 3377 break; 3378 3379 3380 default: 3381 return (ENOTSUP); 3382 } 3383 3384 ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI); 3385 3386 /* label has changed, revalidate the geometry */ 3387 (void) vd_dskimg_validate_geometry(vd); 3388 3389 /* 3390 * The disk geometry may have changed, so we need to write 3391 * the devid (if there is one) so that it is stored at the 3392 * right location. 3393 */ 3394 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) { 3395 PR0("Fail to write devid"); 3396 } 3397 3398 return (0); 3399 } 3400 3401 static int 3402 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg) 3403 { 3404 int rval = 0, status; 3405 struct vtoc vtoc; 3406 3407 /* 3408 * Call the appropriate function to execute the ioctl depending 3409 * on the type of vdisk. 3410 */ 3411 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3412 3413 /* slice, file or volume exported as a single slice disk */ 3414 status = vd_do_slice_ioctl(vd, cmd, arg); 3415 3416 } else if (VD_DSKIMG(vd)) { 3417 3418 /* file or volume exported as a full disk */ 3419 status = vd_do_dskimg_ioctl(vd, cmd, arg); 3420 3421 } else { 3422 3423 /* disk device exported as a full disk */ 3424 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg, 3425 vd->open_flags | FKIOCTL, kcred, &rval); 3426 3427 /* 3428 * By default VTOC ioctls are done using ioctls for the 3429 * extended VTOC. Some drivers (in particular non-Sun drivers) 3430 * may not support these ioctls. In that case, we fallback to 3431 * the regular VTOC ioctls. 3432 */ 3433 if (status == ENOTTY) { 3434 switch (cmd) { 3435 3436 case DKIOCGEXTVTOC: 3437 cmd = DKIOCGVTOC; 3438 status = ldi_ioctl(vd->ldi_handle[0], cmd, 3439 (intptr_t)&vtoc, vd->open_flags | FKIOCTL, 3440 kcred, &rval); 3441 vtoctoextvtoc(vtoc, 3442 (*(struct extvtoc *)(void *)arg)); 3443 break; 3444 3445 case DKIOCSEXTVTOC: 3446 cmd = DKIOCSVTOC; 3447 extvtoctovtoc((*(struct extvtoc *)(void *)arg), 3448 vtoc); 3449 status = ldi_ioctl(vd->ldi_handle[0], cmd, 3450 (intptr_t)&vtoc, vd->open_flags | FKIOCTL, 3451 kcred, &rval); 3452 break; 3453 } 3454 } 3455 } 3456 3457 #ifdef DEBUG 3458 if (rval != 0) { 3459 PR0("ioctl %x set rval = %d, which is not being returned" 3460 " to caller", cmd, rval); 3461 } 3462 #endif /* DEBUG */ 3463 3464 return (status); 3465 } 3466 3467 /* 3468 * Description: 3469 * This is the function that processes the ioctl requests (farming it 3470 * out to functions that handle slices, files or whole disks) 3471 * 3472 * Return Values 3473 * 0 - ioctl operation completed successfully 3474 * != 0 - The LDC error value encountered 3475 * (propagated back up the call stack as a task error) 3476 * 3477 * Side Effect 3478 * sets request->status to the return value of the ioctl function. 3479 */ 3480 static int 3481 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 3482 { 3483 int status = 0; 3484 size_t nbytes = request->nbytes; /* modifiable copy */ 3485 3486 3487 ASSERT(request->slice < vd->nslices); 3488 PR0("Performing %s", ioctl->operation_name); 3489 3490 /* Get data from client and convert, if necessary */ 3491 if (ioctl->copyin != NULL) { 3492 ASSERT(nbytes != 0 && buf != NULL); 3493 PR1("Getting \"arg\" data from client"); 3494 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3495 request->cookie, request->ncookies, 3496 LDC_COPY_IN)) != 0) { 3497 PR0("ldc_mem_copy() returned errno %d " 3498 "copying from client", status); 3499 return (status); 3500 } 3501 3502 /* Convert client's data, if necessary */ 3503 if (ioctl->copyin == VD_IDENTITY_IN) { 3504 /* use client buffer */ 3505 ioctl->arg = buf; 3506 } else { 3507 /* convert client vdisk operation data to ioctl data */ 3508 status = (ioctl->copyin)(buf, nbytes, 3509 (void *)ioctl->arg); 3510 if (status != 0) { 3511 request->status = status; 3512 return (0); 3513 } 3514 } 3515 } 3516 3517 if (ioctl->operation == VD_OP_SCSICMD) { 3518 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg; 3519 3520 /* check write permission */ 3521 if (!(vd->open_flags & FWRITE) && 3522 !(uscsi->uscsi_flags & USCSI_READ)) { 3523 PR0("uscsi fails because backend is opened read-only"); 3524 request->status = EROFS; 3525 return (0); 3526 } 3527 } 3528 3529 /* 3530 * Send the ioctl to the disk backend. 3531 */ 3532 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg); 3533 3534 if (request->status != 0) { 3535 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); 3536 if (ioctl->operation == VD_OP_SCSICMD && 3537 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0) 3538 /* 3539 * USCSICMD has reported an error and the uscsi_status 3540 * field is not zero. This means that the SCSI command 3541 * has completed but it has an error. So we should 3542 * mark the VD operation has succesfully completed 3543 * and clients can check the SCSI status field for 3544 * SCSI errors. 3545 */ 3546 request->status = 0; 3547 else 3548 return (0); 3549 } 3550 3551 /* Convert data and send to client, if necessary */ 3552 if (ioctl->copyout != NULL) { 3553 ASSERT(nbytes != 0 && buf != NULL); 3554 PR1("Sending \"arg\" data to client"); 3555 3556 /* Convert ioctl data to vdisk operation data, if necessary */ 3557 if (ioctl->copyout != VD_IDENTITY_OUT) 3558 (ioctl->copyout)((void *)ioctl->arg, buf); 3559 3560 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3561 request->cookie, request->ncookies, 3562 LDC_COPY_OUT)) != 0) { 3563 PR0("ldc_mem_copy() returned errno %d " 3564 "copying to client", status); 3565 return (status); 3566 } 3567 } 3568 3569 return (status); 3570 } 3571 3572 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 3573 3574 /* 3575 * Description: 3576 * This generic function is called by the task queue to complete 3577 * the processing of the tasks. The specific completion function 3578 * is passed in as a field in the task pointer. 3579 * 3580 * Parameters: 3581 * arg - opaque pointer to structure containing task to be completed 3582 * 3583 * Return Values 3584 * None 3585 */ 3586 static void 3587 vd_complete(void *arg) 3588 { 3589 vd_task_t *task = (vd_task_t *)arg; 3590 3591 ASSERT(task != NULL); 3592 ASSERT(task->status == EINPROGRESS); 3593 ASSERT(task->completef != NULL); 3594 3595 task->status = task->completef(task); 3596 if (task->status) 3597 PR0("%s: Error %d completing task", __func__, task->status); 3598 3599 /* Now notify the vDisk client */ 3600 vd_complete_notify(task); 3601 } 3602 3603 static int 3604 vd_ioctl(vd_task_t *task) 3605 { 3606 int i, status; 3607 void *buf = NULL; 3608 struct dk_geom dk_geom = {0}; 3609 struct extvtoc vtoc = {0}; 3610 struct dk_efi dk_efi = {0}; 3611 struct uscsi_cmd uscsi = {0}; 3612 vd_t *vd = task->vd; 3613 vd_dring_payload_t *request = task->request; 3614 vd_ioctl_t ioctl[] = { 3615 /* Command (no-copy) operations */ 3616 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 3617 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 3618 NULL, NULL, NULL, B_TRUE}, 3619 3620 /* "Get" (copy-out) operations */ 3621 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 3622 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 3623 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE}, 3624 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 3625 RNDSIZE(vd_geom_t), 3626 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 3627 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE}, 3628 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 3629 DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC), 3630 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE}, 3631 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 3632 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 3633 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE}, 3634 3635 /* "Set" (copy-in) operations */ 3636 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 3637 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 3638 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE}, 3639 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 3640 RNDSIZE(vd_geom_t), 3641 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 3642 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE}, 3643 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 3644 DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC), 3645 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE}, 3646 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 3647 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 3648 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE}, 3649 3650 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t), 3651 USCSICMD, STRINGIZE(USCSICMD), 3652 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE}, 3653 }; 3654 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 3655 3656 3657 ASSERT(vd != NULL); 3658 ASSERT(request != NULL); 3659 ASSERT(request->slice < vd->nslices); 3660 3661 /* 3662 * Determine ioctl corresponding to caller's "operation" and 3663 * validate caller's "nbytes" 3664 */ 3665 for (i = 0; i < nioctls; i++) { 3666 if (request->operation == ioctl[i].operation) { 3667 /* LDC memory operations require 8-byte multiples */ 3668 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 3669 3670 if (request->operation == VD_OP_GET_EFI || 3671 request->operation == VD_OP_SET_EFI || 3672 request->operation == VD_OP_SCSICMD) { 3673 if (request->nbytes >= ioctl[i].nbytes) 3674 break; 3675 PR0("%s: Expected at least nbytes = %lu, " 3676 "got %lu", ioctl[i].operation_name, 3677 ioctl[i].nbytes, request->nbytes); 3678 return (EINVAL); 3679 } 3680 3681 if (request->nbytes != ioctl[i].nbytes) { 3682 PR0("%s: Expected nbytes = %lu, got %lu", 3683 ioctl[i].operation_name, ioctl[i].nbytes, 3684 request->nbytes); 3685 return (EINVAL); 3686 } 3687 3688 break; 3689 } 3690 } 3691 ASSERT(i < nioctls); /* because "operation" already validated */ 3692 3693 if (!(vd->open_flags & FWRITE) && ioctl[i].write) { 3694 PR0("%s fails because backend is opened read-only", 3695 ioctl[i].operation_name); 3696 request->status = EROFS; 3697 return (0); 3698 } 3699 3700 if (request->nbytes) 3701 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 3702 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 3703 if (request->nbytes) 3704 kmem_free(buf, request->nbytes); 3705 3706 return (status); 3707 } 3708 3709 static int 3710 vd_get_devid(vd_task_t *task) 3711 { 3712 vd_t *vd = task->vd; 3713 vd_dring_payload_t *request = task->request; 3714 vd_devid_t *vd_devid; 3715 impl_devid_t *devid; 3716 int status, bufid_len, devid_len, len, sz; 3717 int bufbytes; 3718 3719 PR1("Get Device ID, nbytes=%ld", request->nbytes); 3720 3721 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3722 /* 3723 * We don't support devid for single-slice disks because we 3724 * have no space to store a fabricated devid and for physical 3725 * disk slices, we can't use the devid of the disk otherwise 3726 * exporting multiple slices from the same disk will produce 3727 * the same devids. 3728 */ 3729 PR2("No Device ID for slices"); 3730 request->status = ENOTSUP; 3731 return (0); 3732 } 3733 3734 if (VD_DSKIMG(vd)) { 3735 if (vd->dskimg_devid == NULL) { 3736 PR2("No Device ID"); 3737 request->status = ENOENT; 3738 return (0); 3739 } else { 3740 sz = ddi_devid_sizeof(vd->dskimg_devid); 3741 devid = kmem_alloc(sz, KM_SLEEP); 3742 bcopy(vd->dskimg_devid, devid, sz); 3743 } 3744 } else { 3745 if (ddi_lyr_get_devid(vd->dev[request->slice], 3746 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 3747 PR2("No Device ID"); 3748 request->status = ENOENT; 3749 return (0); 3750 } 3751 } 3752 3753 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 3754 devid_len = DEVID_GETLEN(devid); 3755 3756 /* 3757 * Save the buffer size here for use in deallocation. 3758 * The actual number of bytes copied is returned in 3759 * the 'nbytes' field of the request structure. 3760 */ 3761 bufbytes = request->nbytes; 3762 3763 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 3764 vd_devid->length = devid_len; 3765 vd_devid->type = DEVID_GETTYPE(devid); 3766 3767 len = (devid_len > bufid_len)? bufid_len : devid_len; 3768 3769 bcopy(devid->did_id, vd_devid->id, len); 3770 3771 request->status = 0; 3772 3773 /* LDC memory operations require 8-byte multiples */ 3774 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 3775 3776 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 3777 &request->nbytes, request->cookie, request->ncookies, 3778 LDC_COPY_OUT)) != 0) { 3779 PR0("ldc_mem_copy() returned errno %d copying to client", 3780 status); 3781 } 3782 PR1("post mem_copy: nbytes=%ld", request->nbytes); 3783 3784 kmem_free(vd_devid, bufbytes); 3785 ddi_devid_free((ddi_devid_t)devid); 3786 3787 return (status); 3788 } 3789 3790 static int 3791 vd_scsi_reset(vd_t *vd) 3792 { 3793 int rval, status; 3794 struct uscsi_cmd uscsi = { 0 }; 3795 3796 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET; 3797 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout; 3798 3799 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi, 3800 (vd->open_flags | FKIOCTL), kcred, &rval); 3801 3802 return (status); 3803 } 3804 3805 static int 3806 vd_reset(vd_task_t *task) 3807 { 3808 vd_t *vd = task->vd; 3809 vd_dring_payload_t *request = task->request; 3810 3811 ASSERT(request->operation == VD_OP_RESET); 3812 ASSERT(vd->scsi); 3813 3814 PR0("Performing VD_OP_RESET"); 3815 3816 if (request->nbytes != 0) { 3817 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu", 3818 request->nbytes); 3819 return (EINVAL); 3820 } 3821 3822 request->status = vd_scsi_reset(vd); 3823 3824 return (0); 3825 } 3826 3827 static int 3828 vd_get_capacity(vd_task_t *task) 3829 { 3830 int rv; 3831 size_t nbytes; 3832 vd_t *vd = task->vd; 3833 vd_dring_payload_t *request = task->request; 3834 vd_capacity_t vd_cap = { 0 }; 3835 3836 ASSERT(request->operation == VD_OP_GET_CAPACITY); 3837 3838 PR0("Performing VD_OP_GET_CAPACITY"); 3839 3840 nbytes = request->nbytes; 3841 3842 if (nbytes != RNDSIZE(vd_capacity_t)) { 3843 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu", 3844 RNDSIZE(vd_capacity_t), nbytes); 3845 return (EINVAL); 3846 } 3847 3848 /* 3849 * Check the backend size in case it has changed. If the check fails 3850 * then we will return the last known size. 3851 */ 3852 3853 (void) vd_backend_check_size(vd); 3854 ASSERT(vd->vdisk_size != 0); 3855 3856 request->status = 0; 3857 3858 vd_cap.vdisk_block_size = vd->vdisk_bsize; 3859 vd_cap.vdisk_size = vd->vdisk_size; 3860 3861 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes, 3862 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3863 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3864 return (rv); 3865 } 3866 3867 return (0); 3868 } 3869 3870 static int 3871 vd_get_access(vd_task_t *task) 3872 { 3873 uint64_t access; 3874 int rv, rval = 0; 3875 size_t nbytes; 3876 vd_t *vd = task->vd; 3877 vd_dring_payload_t *request = task->request; 3878 3879 ASSERT(request->operation == VD_OP_GET_ACCESS); 3880 ASSERT(vd->scsi); 3881 3882 PR0("Performing VD_OP_GET_ACCESS"); 3883 3884 nbytes = request->nbytes; 3885 3886 if (nbytes != sizeof (uint64_t)) { 3887 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu", 3888 sizeof (uint64_t), nbytes); 3889 return (EINVAL); 3890 } 3891 3892 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS, 3893 NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3894 3895 if (request->status != 0) 3896 return (0); 3897 3898 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED; 3899 3900 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes, 3901 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3902 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3903 return (rv); 3904 } 3905 3906 return (0); 3907 } 3908 3909 static int 3910 vd_set_access(vd_task_t *task) 3911 { 3912 uint64_t flags; 3913 int rv, rval; 3914 size_t nbytes; 3915 vd_t *vd = task->vd; 3916 vd_dring_payload_t *request = task->request; 3917 3918 ASSERT(request->operation == VD_OP_SET_ACCESS); 3919 ASSERT(vd->scsi); 3920 3921 nbytes = request->nbytes; 3922 3923 if (nbytes != sizeof (uint64_t)) { 3924 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu", 3925 sizeof (uint64_t), nbytes); 3926 return (EINVAL); 3927 } 3928 3929 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes, 3930 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { 3931 PR0("ldc_mem_copy() returned errno %d copying from client", rv); 3932 return (rv); 3933 } 3934 3935 if (flags == VD_ACCESS_SET_CLEAR) { 3936 PR0("Performing VD_OP_SET_ACCESS (CLEAR)"); 3937 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3938 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred, 3939 &rval); 3940 if (request->status == 0) 3941 vd->ownership = B_FALSE; 3942 return (0); 3943 } 3944 3945 /* 3946 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid 3947 * when the EXCLUSIVE flag is set. 3948 */ 3949 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) { 3950 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags); 3951 request->status = EINVAL; 3952 return (0); 3953 } 3954 3955 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) { 3956 3957 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE: 3958 /* 3959 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to 3960 * acquire exclusive access rights, preserve them and we 3961 * can use preemption. So we can use the MHIOCTKNOWN ioctl. 3962 */ 3963 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)"); 3964 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3965 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3966 break; 3967 3968 case VD_ACCESS_SET_PRESERVE: 3969 /* 3970 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive 3971 * access rights and preserve them, but not preempt any other 3972 * host. So we need to use the MHIOCTKOWN ioctl to enable the 3973 * "preserve" feature but we can not called it directly 3974 * because it uses preemption. So before that, we use the 3975 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights 3976 * without preempting anyone. 3977 */ 3978 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)"); 3979 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3980 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3981 &rval); 3982 if (request->status != 0) 3983 break; 3984 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3985 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3986 break; 3987 3988 case VD_ACCESS_SET_PREEMPT: 3989 /* 3990 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive 3991 * access rights and we can use preemption. So we try to do 3992 * a SCSI reservation, if it fails we reset the disk to clear 3993 * any reservation and we try to reserve again. 3994 */ 3995 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)"); 3996 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3997 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3998 &rval); 3999 if (request->status == 0) 4000 break; 4001 4002 /* reset the disk */ 4003 (void) vd_scsi_reset(vd); 4004 4005 /* try again even if the reset has failed */ 4006 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 4007 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 4008 &rval); 4009 break; 4010 4011 case 0: 4012 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */ 4013 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)"); 4014 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 4015 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 4016 &rval); 4017 break; 4018 } 4019 4020 if (request->status == 0) 4021 vd->ownership = B_TRUE; 4022 else 4023 PR0("VD_OP_SET_ACCESS: error %d", request->status); 4024 4025 return (0); 4026 } 4027 4028 static void 4029 vd_reset_access(vd_t *vd) 4030 { 4031 int status, rval; 4032 4033 if (vd->file || vd->volume || !vd->ownership) 4034 return; 4035 4036 PR0("Releasing disk ownership"); 4037 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 4038 (vd->open_flags | FKIOCTL), kcred, &rval); 4039 4040 /* 4041 * An EACCES failure means that there is a reservation conflict, 4042 * so we are not the owner of the disk anymore. 4043 */ 4044 if (status == 0 || status == EACCES) { 4045 vd->ownership = B_FALSE; 4046 return; 4047 } 4048 4049 PR0("Fail to release ownership, error %d", status); 4050 4051 /* 4052 * We have failed to release the ownership, try to reset the disk 4053 * to release reservations. 4054 */ 4055 PR0("Resetting disk"); 4056 status = vd_scsi_reset(vd); 4057 4058 if (status != 0) 4059 PR0("Fail to reset disk, error %d", status); 4060 4061 /* whatever the result of the reset is, we try the release again */ 4062 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 4063 (vd->open_flags | FKIOCTL), kcred, &rval); 4064 4065 if (status == 0 || status == EACCES) { 4066 vd->ownership = B_FALSE; 4067 return; 4068 } 4069 4070 PR0("Fail to release ownership, error %d", status); 4071 4072 /* 4073 * At this point we have done our best to try to reset the 4074 * access rights to the disk and we don't know if we still 4075 * own a reservation and if any mechanism to preserve the 4076 * ownership is still in place. The ultimate solution would 4077 * be to reset the system but this is usually not what we 4078 * want to happen. 4079 */ 4080 4081 if (vd_reset_access_failure == A_REBOOT) { 4082 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG 4083 ", rebooting the system", vd->device_path); 4084 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL); 4085 } else if (vd_reset_access_failure == A_DUMP) { 4086 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 4087 } 4088 4089 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 4090 } 4091 4092 /* 4093 * Define the supported operations once the functions for performing them have 4094 * been defined 4095 */ 4096 static const vds_operation_t vds_operation[] = { 4097 #define X(_s) #_s, _s 4098 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 4099 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 4100 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 4101 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 4102 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 4103 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 4104 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 4105 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 4106 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 4107 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 4108 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 4109 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 4110 {X(VD_OP_SCSICMD), vd_ioctl, NULL}, 4111 {X(VD_OP_RESET), vd_reset, NULL}, 4112 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL}, 4113 {X(VD_OP_SET_ACCESS), vd_set_access, NULL}, 4114 {X(VD_OP_GET_ACCESS), vd_get_access, NULL}, 4115 #undef X 4116 }; 4117 4118 static const size_t vds_noperations = 4119 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 4120 4121 /* 4122 * Process a task specifying a client I/O request 4123 * 4124 * Parameters: 4125 * task - structure containing the request sent from client 4126 * 4127 * Return Value 4128 * 0 - success 4129 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation 4130 * EINVAL - Invalid disk slice 4131 * != 0 - some other non-zero return value from start function 4132 */ 4133 static int 4134 vd_do_process_task(vd_task_t *task) 4135 { 4136 int i; 4137 vd_t *vd = task->vd; 4138 vd_dring_payload_t *request = task->request; 4139 4140 ASSERT(vd != NULL); 4141 ASSERT(request != NULL); 4142 4143 /* Find the requested operation */ 4144 for (i = 0; i < vds_noperations; i++) { 4145 if (request->operation == vds_operation[i].operation) { 4146 /* all operations should have a start func */ 4147 ASSERT(vds_operation[i].start != NULL); 4148 4149 task->completef = vds_operation[i].complete; 4150 break; 4151 } 4152 } 4153 4154 /* 4155 * We need to check that the requested operation is permitted 4156 * for the particular client that sent it or that the loop above 4157 * did not complete without finding the operation type (indicating 4158 * that the requested operation is unknown/unimplemented) 4159 */ 4160 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) || 4161 (i == vds_noperations)) { 4162 PR0("Unsupported operation %u", request->operation); 4163 request->status = ENOTSUP; 4164 return (0); 4165 } 4166 4167 /* Range-check slice */ 4168 if (request->slice >= vd->nslices && 4169 ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) || 4170 request->slice != VD_SLICE_NONE)) { 4171 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 4172 request->slice, (vd->nslices - 1)); 4173 request->status = EINVAL; 4174 return (0); 4175 } 4176 4177 /* 4178 * Call the function pointer that starts the operation. 4179 */ 4180 return (vds_operation[i].start(task)); 4181 } 4182 4183 /* 4184 * Description: 4185 * This function is called by both the in-band and descriptor ring 4186 * message processing functions paths to actually execute the task 4187 * requested by the vDisk client. It in turn calls its worker 4188 * function, vd_do_process_task(), to carry our the request. 4189 * 4190 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are 4191 * saved in the 'status' field of the task and are propagated back 4192 * up the call stack to trigger a NACK 4193 * 4194 * Any request errors (e.g. ENOTTY from an ioctl) are saved in 4195 * the 'status' field of the request and result in an ACK being sent 4196 * by the completion handler. 4197 * 4198 * Parameters: 4199 * task - structure containing the request sent from client 4200 * 4201 * Return Value 4202 * 0 - successful synchronous request. 4203 * != 0 - transport error (e.g. LDC errors, vDisk protocol) 4204 * EINPROGRESS - task will be finished in a completion handler 4205 */ 4206 static int 4207 vd_process_task(vd_task_t *task) 4208 { 4209 vd_t *vd = task->vd; 4210 int status; 4211 4212 DTRACE_PROBE1(task__start, vd_task_t *, task); 4213 4214 task->status = vd_do_process_task(task); 4215 4216 /* 4217 * If the task processing function returned EINPROGRESS indicating 4218 * that the task needs completing then schedule a taskq entry to 4219 * finish it now. 4220 * 4221 * Otherwise the task processing function returned either zero 4222 * indicating that the task was finished in the start function (and we 4223 * don't need to wait in a completion function) or the start function 4224 * returned an error - in both cases all that needs to happen is the 4225 * notification to the vDisk client higher up the call stack. 4226 * If the task was using a Descriptor Ring, we need to mark it as done 4227 * at this stage. 4228 */ 4229 if (task->status == EINPROGRESS) { 4230 /* Queue a task to complete the operation */ 4231 (void) ddi_taskq_dispatch(vd->completionq, vd_complete, 4232 task, DDI_SLEEP); 4233 return (EINPROGRESS); 4234 } 4235 4236 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 4237 /* Update the dring element if it's a dring client */ 4238 status = vd_mark_elem_done(vd, task->index, 4239 task->request->status, task->request->nbytes); 4240 if (status == ECONNRESET) 4241 vd_mark_in_reset(vd); 4242 else if (status == EACCES) 4243 vd_need_reset(vd, B_TRUE); 4244 } 4245 4246 return (task->status); 4247 } 4248 4249 /* 4250 * Return true if the "type", "subtype", and "env" fields of the "tag" first 4251 * argument match the corresponding remaining arguments; otherwise, return false 4252 */ 4253 boolean_t 4254 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 4255 { 4256 return ((tag->vio_msgtype == type) && 4257 (tag->vio_subtype == subtype) && 4258 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 4259 } 4260 4261 /* 4262 * Check whether the major/minor version specified in "ver_msg" is supported 4263 * by this server. 4264 */ 4265 static boolean_t 4266 vds_supported_version(vio_ver_msg_t *ver_msg) 4267 { 4268 for (int i = 0; i < vds_num_versions; i++) { 4269 ASSERT(vds_version[i].major > 0); 4270 ASSERT((i == 0) || 4271 (vds_version[i].major < vds_version[i-1].major)); 4272 4273 /* 4274 * If the major versions match, adjust the minor version, if 4275 * necessary, down to the highest value supported by this 4276 * server and return true so this message will get "ack"ed; 4277 * the client should also support all minor versions lower 4278 * than the value it sent 4279 */ 4280 if (ver_msg->ver_major == vds_version[i].major) { 4281 if (ver_msg->ver_minor > vds_version[i].minor) { 4282 PR0("Adjusting minor version from %u to %u", 4283 ver_msg->ver_minor, vds_version[i].minor); 4284 ver_msg->ver_minor = vds_version[i].minor; 4285 } 4286 return (B_TRUE); 4287 } 4288 4289 /* 4290 * If the message contains a higher major version number, set 4291 * the message's major/minor versions to the current values 4292 * and return false, so this message will get "nack"ed with 4293 * these values, and the client will potentially try again 4294 * with the same or a lower version 4295 */ 4296 if (ver_msg->ver_major > vds_version[i].major) { 4297 ver_msg->ver_major = vds_version[i].major; 4298 ver_msg->ver_minor = vds_version[i].minor; 4299 return (B_FALSE); 4300 } 4301 4302 /* 4303 * Otherwise, the message's major version is less than the 4304 * current major version, so continue the loop to the next 4305 * (lower) supported version 4306 */ 4307 } 4308 4309 /* 4310 * No common version was found; "ground" the version pair in the 4311 * message to terminate negotiation 4312 */ 4313 ver_msg->ver_major = 0; 4314 ver_msg->ver_minor = 0; 4315 return (B_FALSE); 4316 } 4317 4318 /* 4319 * Process a version message from a client. vds expects to receive version 4320 * messages from clients seeking service, but never issues version messages 4321 * itself; therefore, vds can ACK or NACK client version messages, but does 4322 * not expect to receive version-message ACKs or NACKs (and will treat such 4323 * messages as invalid). 4324 */ 4325 static int 4326 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4327 { 4328 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 4329 4330 4331 ASSERT(msglen >= sizeof (msg->tag)); 4332 4333 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4334 VIO_VER_INFO)) { 4335 return (ENOMSG); /* not a version message */ 4336 } 4337 4338 if (msglen != sizeof (*ver_msg)) { 4339 PR0("Expected %lu-byte version message; " 4340 "received %lu bytes", sizeof (*ver_msg), msglen); 4341 return (EBADMSG); 4342 } 4343 4344 if (ver_msg->dev_class != VDEV_DISK) { 4345 PR0("Expected device class %u (disk); received %u", 4346 VDEV_DISK, ver_msg->dev_class); 4347 return (EBADMSG); 4348 } 4349 4350 /* 4351 * We're talking to the expected kind of client; set our device class 4352 * for "ack/nack" back to the client 4353 */ 4354 ver_msg->dev_class = VDEV_DISK_SERVER; 4355 4356 /* 4357 * Check whether the (valid) version message specifies a version 4358 * supported by this server. If the version is not supported, return 4359 * EBADMSG so the message will get "nack"ed; vds_supported_version() 4360 * will have updated the message with a supported version for the 4361 * client to consider 4362 */ 4363 if (!vds_supported_version(ver_msg)) 4364 return (EBADMSG); 4365 4366 4367 /* 4368 * A version has been agreed upon; use the client's SID for 4369 * communication on this channel now 4370 */ 4371 ASSERT(!(vd->initialized & VD_SID)); 4372 vd->sid = ver_msg->tag.vio_sid; 4373 vd->initialized |= VD_SID; 4374 4375 /* 4376 * Store the negotiated major and minor version values in the "vd" data 4377 * structure so that we can check if certain operations are supported 4378 * by the client. 4379 */ 4380 vd->version.major = ver_msg->ver_major; 4381 vd->version.minor = ver_msg->ver_minor; 4382 4383 PR0("Using major version %u, minor version %u", 4384 ver_msg->ver_major, ver_msg->ver_minor); 4385 return (0); 4386 } 4387 4388 static void 4389 vd_set_exported_operations(vd_t *vd) 4390 { 4391 vd->operations = 0; /* clear field */ 4392 4393 /* 4394 * We need to check from the highest version supported to the 4395 * lowest because versions with a higher minor number implicitly 4396 * support versions with a lower minor number. 4397 */ 4398 if (vio_ver_is_supported(vd->version, 1, 1)) { 4399 ASSERT(vd->open_flags & FREAD); 4400 vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY); 4401 4402 if (vd->open_flags & FWRITE) 4403 vd->operations |= VD_OP_MASK_WRITE; 4404 4405 if (vd->scsi) 4406 vd->operations |= VD_OP_MASK_SCSI; 4407 4408 if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) { 4409 /* 4410 * can't write to ISO images, make sure that write 4411 * support is not set in case administrator did not 4412 * use "options=ro" when doing an ldm add-vdsdev 4413 */ 4414 vd->operations &= ~VD_OP_MASK_WRITE; 4415 } 4416 } else if (vio_ver_is_supported(vd->version, 1, 0)) { 4417 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE; 4418 } 4419 4420 /* we should have already agreed on a version */ 4421 ASSERT(vd->operations != 0); 4422 } 4423 4424 static int 4425 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4426 { 4427 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 4428 int status, retry = 0; 4429 4430 4431 ASSERT(msglen >= sizeof (msg->tag)); 4432 4433 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4434 VIO_ATTR_INFO)) { 4435 PR0("Message is not an attribute message"); 4436 return (ENOMSG); 4437 } 4438 4439 if (msglen != sizeof (*attr_msg)) { 4440 PR0("Expected %lu-byte attribute message; " 4441 "received %lu bytes", sizeof (*attr_msg), msglen); 4442 return (EBADMSG); 4443 } 4444 4445 if (attr_msg->max_xfer_sz == 0) { 4446 PR0("Received maximum transfer size of 0 from client"); 4447 return (EBADMSG); 4448 } 4449 4450 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 4451 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) { 4452 PR0("Client requested unsupported transfer mode"); 4453 return (EBADMSG); 4454 } 4455 4456 /* 4457 * check if the underlying disk is ready, if not try accessing 4458 * the device again. Open the vdisk device and extract info 4459 * about it, as this is needed to respond to the attr info msg 4460 */ 4461 if ((vd->initialized & VD_DISK_READY) == 0) { 4462 PR0("Retry setting up disk (%s)", vd->device_path); 4463 do { 4464 status = vd_setup_vd(vd); 4465 if (status != EAGAIN || ++retry > vds_dev_retries) 4466 break; 4467 4468 /* incremental delay */ 4469 delay(drv_usectohz(vds_dev_delay)); 4470 4471 /* if vdisk is no longer enabled - return error */ 4472 if (!vd_enabled(vd)) 4473 return (ENXIO); 4474 4475 } while (status == EAGAIN); 4476 4477 if (status) 4478 return (ENXIO); 4479 4480 vd->initialized |= VD_DISK_READY; 4481 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 4482 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 4483 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 4484 (vd->volume ? "yes" : "no"), 4485 (vd->file ? "yes" : "no"), 4486 vd->nslices); 4487 } 4488 4489 /* Success: valid message and transfer mode */ 4490 vd->xfer_mode = attr_msg->xfer_mode; 4491 4492 if (vd->xfer_mode == VIO_DESC_MODE) { 4493 4494 /* 4495 * The vd_dring_inband_msg_t contains one cookie; need room 4496 * for up to n-1 more cookies, where "n" is the number of full 4497 * pages plus possibly one partial page required to cover 4498 * "max_xfer_sz". Add room for one more cookie if 4499 * "max_xfer_sz" isn't an integral multiple of the page size. 4500 * Must first get the maximum transfer size in bytes. 4501 */ 4502 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 4503 attr_msg->vdisk_block_size * attr_msg->max_xfer_sz : 4504 attr_msg->max_xfer_sz; 4505 size_t max_inband_msglen = 4506 sizeof (vd_dring_inband_msg_t) + 4507 ((max_xfer_bytes/PAGESIZE + 4508 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 4509 (sizeof (ldc_mem_cookie_t))); 4510 4511 /* 4512 * Set the maximum expected message length to 4513 * accommodate in-band-descriptor messages with all 4514 * their cookies 4515 */ 4516 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 4517 4518 /* 4519 * Initialize the data structure for processing in-band I/O 4520 * request descriptors 4521 */ 4522 vd->inband_task.vd = vd; 4523 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4524 vd->inband_task.index = 0; 4525 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 4526 } 4527 4528 /* Return the device's block size and max transfer size to the client */ 4529 attr_msg->vdisk_block_size = vd->vdisk_bsize; 4530 attr_msg->max_xfer_sz = vd->max_xfer_sz; 4531 4532 attr_msg->vdisk_size = vd->vdisk_size; 4533 attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type : 4534 VD_DISK_TYPE_DISK; 4535 attr_msg->vdisk_media = vd->vdisk_media; 4536 4537 /* Discover and save the list of supported VD_OP_XXX operations */ 4538 vd_set_exported_operations(vd); 4539 attr_msg->operations = vd->operations; 4540 4541 PR0("%s", VD_CLIENT(vd)); 4542 4543 ASSERT(vd->dring_task == NULL); 4544 4545 return (0); 4546 } 4547 4548 static int 4549 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4550 { 4551 int status; 4552 size_t expected; 4553 ldc_mem_info_t dring_minfo; 4554 uint8_t mtype; 4555 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 4556 4557 4558 ASSERT(msglen >= sizeof (msg->tag)); 4559 4560 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4561 VIO_DRING_REG)) { 4562 PR0("Message is not a register-dring message"); 4563 return (ENOMSG); 4564 } 4565 4566 if (msglen < sizeof (*reg_msg)) { 4567 PR0("Expected at least %lu-byte register-dring message; " 4568 "received %lu bytes", sizeof (*reg_msg), msglen); 4569 return (EBADMSG); 4570 } 4571 4572 expected = sizeof (*reg_msg) + 4573 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 4574 if (msglen != expected) { 4575 PR0("Expected %lu-byte register-dring message; " 4576 "received %lu bytes", expected, msglen); 4577 return (EBADMSG); 4578 } 4579 4580 if (vd->initialized & VD_DRING) { 4581 PR0("A dring was previously registered; only support one"); 4582 return (EBADMSG); 4583 } 4584 4585 if (reg_msg->num_descriptors > INT32_MAX) { 4586 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 4587 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 4588 return (EBADMSG); 4589 } 4590 4591 if (reg_msg->ncookies != 1) { 4592 /* 4593 * In addition to fixing the assertion in the success case 4594 * below, supporting drings which require more than one 4595 * "cookie" requires increasing the value of vd->max_msglen 4596 * somewhere in the code path prior to receiving the message 4597 * which results in calling this function. Note that without 4598 * making this change, the larger message size required to 4599 * accommodate multiple cookies cannot be successfully 4600 * received, so this function will not even get called. 4601 * Gracefully accommodating more dring cookies might 4602 * reasonably demand exchanging an additional attribute or 4603 * making a minor protocol adjustment 4604 */ 4605 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 4606 return (EBADMSG); 4607 } 4608 4609 if (vd_direct_mapped_drings) 4610 mtype = LDC_DIRECT_MAP; 4611 else 4612 mtype = LDC_SHADOW_MAP; 4613 4614 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 4615 reg_msg->ncookies, reg_msg->num_descriptors, 4616 reg_msg->descriptor_size, mtype, &vd->dring_handle); 4617 if (status != 0) { 4618 PR0("ldc_mem_dring_map() returned errno %d", status); 4619 return (status); 4620 } 4621 4622 /* 4623 * To remove the need for this assertion, must call 4624 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 4625 * successful call to ldc_mem_dring_map() 4626 */ 4627 ASSERT(reg_msg->ncookies == 1); 4628 4629 if ((status = 4630 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 4631 PR0("ldc_mem_dring_info() returned errno %d", status); 4632 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 4633 PR0("ldc_mem_dring_unmap() returned errno %d", status); 4634 return (status); 4635 } 4636 4637 if (dring_minfo.vaddr == NULL) { 4638 PR0("Descriptor ring virtual address is NULL"); 4639 return (ENXIO); 4640 } 4641 4642 4643 /* Initialize for valid message and mapped dring */ 4644 vd->initialized |= VD_DRING; 4645 vd->dring_ident = 1; /* "There Can Be Only One" */ 4646 vd->dring = dring_minfo.vaddr; 4647 vd->descriptor_size = reg_msg->descriptor_size; 4648 vd->dring_len = reg_msg->num_descriptors; 4649 vd->dring_mtype = dring_minfo.mtype; 4650 reg_msg->dring_ident = vd->dring_ident; 4651 PR1("descriptor size = %u, dring length = %u", 4652 vd->descriptor_size, vd->dring_len); 4653 4654 /* 4655 * Allocate and initialize a "shadow" array of data structures for 4656 * tasks to process I/O requests in dring elements 4657 */ 4658 vd->dring_task = 4659 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 4660 for (int i = 0; i < vd->dring_len; i++) { 4661 vd->dring_task[i].vd = vd; 4662 vd->dring_task[i].index = i; 4663 4664 status = ldc_mem_alloc_handle(vd->ldc_handle, 4665 &(vd->dring_task[i].mhdl)); 4666 if (status) { 4667 PR0("ldc_mem_alloc_handle() returned err %d ", status); 4668 return (ENXIO); 4669 } 4670 4671 /* 4672 * The descriptor payload varies in length. Calculate its 4673 * size by subtracting the header size from the total 4674 * descriptor size. 4675 */ 4676 vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size - 4677 sizeof (vio_dring_entry_hdr_t)), KM_SLEEP); 4678 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4679 } 4680 4681 if (vd->file || vd->zvol) { 4682 vd->write_queue = 4683 kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP); 4684 } 4685 4686 return (0); 4687 } 4688 4689 static int 4690 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4691 { 4692 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 4693 4694 4695 ASSERT(msglen >= sizeof (msg->tag)); 4696 4697 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4698 VIO_DRING_UNREG)) { 4699 PR0("Message is not an unregister-dring message"); 4700 return (ENOMSG); 4701 } 4702 4703 if (msglen != sizeof (*unreg_msg)) { 4704 PR0("Expected %lu-byte unregister-dring message; " 4705 "received %lu bytes", sizeof (*unreg_msg), msglen); 4706 return (EBADMSG); 4707 } 4708 4709 if (unreg_msg->dring_ident != vd->dring_ident) { 4710 PR0("Expected dring ident %lu; received %lu", 4711 vd->dring_ident, unreg_msg->dring_ident); 4712 return (EBADMSG); 4713 } 4714 4715 return (0); 4716 } 4717 4718 static int 4719 process_rdx_msg(vio_msg_t *msg, size_t msglen) 4720 { 4721 ASSERT(msglen >= sizeof (msg->tag)); 4722 4723 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 4724 PR0("Message is not an RDX message"); 4725 return (ENOMSG); 4726 } 4727 4728 if (msglen != sizeof (vio_rdx_msg_t)) { 4729 PR0("Expected %lu-byte RDX message; received %lu bytes", 4730 sizeof (vio_rdx_msg_t), msglen); 4731 return (EBADMSG); 4732 } 4733 4734 PR0("Valid RDX message"); 4735 return (0); 4736 } 4737 4738 static int 4739 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 4740 { 4741 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 4742 PR0("Received seq_num %lu; expected %lu", 4743 seq_num, (vd->seq_num + 1)); 4744 PR0("initiating soft reset"); 4745 vd_need_reset(vd, B_FALSE); 4746 return (1); 4747 } 4748 4749 vd->seq_num = seq_num; 4750 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 4751 return (0); 4752 } 4753 4754 /* 4755 * Return the expected size of an inband-descriptor message with all the 4756 * cookies it claims to include 4757 */ 4758 static size_t 4759 expected_inband_size(vd_dring_inband_msg_t *msg) 4760 { 4761 return ((sizeof (*msg)) + 4762 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 4763 } 4764 4765 /* 4766 * Process an in-band descriptor message: used with clients like OBP, with 4767 * which vds exchanges descriptors within VIO message payloads, rather than 4768 * operating on them within a descriptor ring 4769 */ 4770 static int 4771 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4772 { 4773 size_t expected; 4774 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 4775 4776 4777 ASSERT(msglen >= sizeof (msg->tag)); 4778 4779 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4780 VIO_DESC_DATA)) { 4781 PR1("Message is not an in-band-descriptor message"); 4782 return (ENOMSG); 4783 } 4784 4785 if (msglen < sizeof (*desc_msg)) { 4786 PR0("Expected at least %lu-byte descriptor message; " 4787 "received %lu bytes", sizeof (*desc_msg), msglen); 4788 return (EBADMSG); 4789 } 4790 4791 if (msglen != (expected = expected_inband_size(desc_msg))) { 4792 PR0("Expected %lu-byte descriptor message; " 4793 "received %lu bytes", expected, msglen); 4794 return (EBADMSG); 4795 } 4796 4797 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 4798 return (EBADMSG); 4799 4800 /* 4801 * Valid message: Set up the in-band descriptor task and process the 4802 * request. Arrange to acknowledge the client's message, unless an 4803 * error processing the descriptor task results in setting 4804 * VIO_SUBTYPE_NACK 4805 */ 4806 PR1("Valid in-band-descriptor message"); 4807 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4808 4809 ASSERT(vd->inband_task.msg != NULL); 4810 4811 bcopy(msg, vd->inband_task.msg, msglen); 4812 vd->inband_task.msglen = msglen; 4813 4814 /* 4815 * The task request is now the payload of the message 4816 * that was just copied into the body of the task. 4817 */ 4818 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 4819 vd->inband_task.request = &desc_msg->payload; 4820 4821 return (vd_process_task(&vd->inband_task)); 4822 } 4823 4824 static int 4825 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 4826 vio_msg_t *msg, size_t msglen) 4827 { 4828 int status; 4829 boolean_t ready; 4830 on_trap_data_t otd; 4831 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 4832 4833 /* Accept the updated dring element */ 4834 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 4835 vd->dring_handle, idx, idx)) != 0) { 4836 return (status); 4837 } 4838 ready = (elem->hdr.dstate == VIO_DESC_READY); 4839 if (ready) { 4840 elem->hdr.dstate = VIO_DESC_ACCEPTED; 4841 bcopy(&elem->payload, vd->dring_task[idx].request, 4842 (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t))); 4843 } else { 4844 PR0("descriptor %u not ready", idx); 4845 VD_DUMP_DRING_ELEM(elem); 4846 } 4847 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 4848 vd->dring_handle, idx, idx)) != 0) { 4849 PR0("VIO_DRING_RELEASE() returned errno %d", status); 4850 return (status); 4851 } 4852 if (!ready) 4853 return (EBUSY); 4854 4855 4856 /* Initialize a task and process the accepted element */ 4857 PR1("Processing dring element %u", idx); 4858 vd->dring_task[idx].type = type; 4859 4860 /* duplicate msg buf for cookies etc. */ 4861 bcopy(msg, vd->dring_task[idx].msg, msglen); 4862 4863 vd->dring_task[idx].msglen = msglen; 4864 return (vd_process_task(&vd->dring_task[idx])); 4865 } 4866 4867 static int 4868 vd_process_element_range(vd_t *vd, int start, int end, 4869 vio_msg_t *msg, size_t msglen) 4870 { 4871 int i, n, nelem, status = 0; 4872 boolean_t inprogress = B_FALSE; 4873 vd_task_type_t type; 4874 4875 4876 ASSERT(start >= 0); 4877 ASSERT(end >= 0); 4878 4879 /* 4880 * Arrange to acknowledge the client's message, unless an error 4881 * processing one of the dring elements results in setting 4882 * VIO_SUBTYPE_NACK 4883 */ 4884 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4885 4886 /* 4887 * Process the dring elements in the range 4888 */ 4889 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 4890 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 4891 ((vio_dring_msg_t *)msg)->end_idx = i; 4892 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 4893 status = vd_process_element(vd, type, i, msg, msglen); 4894 if (status == EINPROGRESS) 4895 inprogress = B_TRUE; 4896 else if (status != 0) 4897 break; 4898 } 4899 4900 /* 4901 * If some, but not all, operations of a multi-element range are in 4902 * progress, wait for other operations to complete before returning 4903 * (which will result in "ack" or "nack" of the message). Note that 4904 * all outstanding operations will need to complete, not just the ones 4905 * corresponding to the current range of dring elements; howevever, as 4906 * this situation is an error case, performance is less critical. 4907 */ 4908 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) { 4909 if (vd->ioq != NULL) 4910 ddi_taskq_wait(vd->ioq); 4911 ddi_taskq_wait(vd->completionq); 4912 } 4913 4914 return (status); 4915 } 4916 4917 static int 4918 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4919 { 4920 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 4921 4922 4923 ASSERT(msglen >= sizeof (msg->tag)); 4924 4925 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4926 VIO_DRING_DATA)) { 4927 PR1("Message is not a dring-data message"); 4928 return (ENOMSG); 4929 } 4930 4931 if (msglen != sizeof (*dring_msg)) { 4932 PR0("Expected %lu-byte dring message; received %lu bytes", 4933 sizeof (*dring_msg), msglen); 4934 return (EBADMSG); 4935 } 4936 4937 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 4938 return (EBADMSG); 4939 4940 if (dring_msg->dring_ident != vd->dring_ident) { 4941 PR0("Expected dring ident %lu; received ident %lu", 4942 vd->dring_ident, dring_msg->dring_ident); 4943 return (EBADMSG); 4944 } 4945 4946 if (dring_msg->start_idx >= vd->dring_len) { 4947 PR0("\"start_idx\" = %u; must be less than %u", 4948 dring_msg->start_idx, vd->dring_len); 4949 return (EBADMSG); 4950 } 4951 4952 if ((dring_msg->end_idx < 0) || 4953 (dring_msg->end_idx >= vd->dring_len)) { 4954 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 4955 dring_msg->end_idx, vd->dring_len); 4956 return (EBADMSG); 4957 } 4958 4959 /* Valid message; process range of updated dring elements */ 4960 PR1("Processing descriptor range, start = %u, end = %u", 4961 dring_msg->start_idx, dring_msg->end_idx); 4962 return (vd_process_element_range(vd, dring_msg->start_idx, 4963 dring_msg->end_idx, msg, msglen)); 4964 } 4965 4966 static int 4967 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 4968 { 4969 int retry, status; 4970 size_t size = *nbytes; 4971 4972 4973 for (retry = 0, status = ETIMEDOUT; 4974 retry < vds_ldc_retries && status == ETIMEDOUT; 4975 retry++) { 4976 PR1("ldc_read() attempt %d", (retry + 1)); 4977 *nbytes = size; 4978 status = ldc_read(ldc_handle, msg, nbytes); 4979 } 4980 4981 if (status) { 4982 PR0("ldc_read() returned errno %d", status); 4983 if (status != ECONNRESET) 4984 return (ENOMSG); 4985 return (status); 4986 } else if (*nbytes == 0) { 4987 PR1("ldc_read() returned 0 and no message read"); 4988 return (ENOMSG); 4989 } 4990 4991 PR1("RCVD %lu-byte message", *nbytes); 4992 return (0); 4993 } 4994 4995 static int 4996 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4997 { 4998 int status; 4999 5000 5001 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 5002 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 5003 #ifdef DEBUG 5004 vd_decode_tag(msg); 5005 #endif 5006 5007 /* 5008 * Validate session ID up front, since it applies to all messages 5009 * once set 5010 */ 5011 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 5012 PR0("Expected SID %u, received %u", vd->sid, 5013 msg->tag.vio_sid); 5014 return (EBADMSG); 5015 } 5016 5017 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 5018 5019 /* 5020 * Process the received message based on connection state 5021 */ 5022 switch (vd->state) { 5023 case VD_STATE_INIT: /* expect version message */ 5024 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 5025 return (status); 5026 5027 /* Version negotiated, move to that state */ 5028 vd->state = VD_STATE_VER; 5029 return (0); 5030 5031 case VD_STATE_VER: /* expect attribute message */ 5032 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 5033 return (status); 5034 5035 /* Attributes exchanged, move to that state */ 5036 vd->state = VD_STATE_ATTR; 5037 return (0); 5038 5039 case VD_STATE_ATTR: 5040 switch (vd->xfer_mode) { 5041 case VIO_DESC_MODE: /* expect RDX message */ 5042 if ((status = process_rdx_msg(msg, msglen)) != 0) 5043 return (status); 5044 5045 /* Ready to receive in-band descriptors */ 5046 vd->state = VD_STATE_DATA; 5047 return (0); 5048 5049 case VIO_DRING_MODE_V1_0: /* expect register-dring message */ 5050 if ((status = 5051 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 5052 return (status); 5053 5054 /* One dring negotiated, move to that state */ 5055 vd->state = VD_STATE_DRING; 5056 return (0); 5057 5058 default: 5059 ASSERT("Unsupported transfer mode"); 5060 PR0("Unsupported transfer mode"); 5061 return (ENOTSUP); 5062 } 5063 5064 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 5065 if ((status = process_rdx_msg(msg, msglen)) == 0) { 5066 /* Ready to receive data */ 5067 vd->state = VD_STATE_DATA; 5068 return (0); 5069 } else if (status != ENOMSG) { 5070 return (status); 5071 } 5072 5073 5074 /* 5075 * If another register-dring message is received, stay in 5076 * dring state in case the client sends RDX; although the 5077 * protocol allows multiple drings, this server does not 5078 * support using more than one 5079 */ 5080 if ((status = 5081 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 5082 return (status); 5083 5084 /* 5085 * Acknowledge an unregister-dring message, but reset the 5086 * connection anyway: Although the protocol allows 5087 * unregistering drings, this server cannot serve a vdisk 5088 * without its only dring 5089 */ 5090 status = vd_process_dring_unreg_msg(vd, msg, msglen); 5091 return ((status == 0) ? ENOTSUP : status); 5092 5093 case VD_STATE_DATA: 5094 switch (vd->xfer_mode) { 5095 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 5096 return (vd_process_desc_msg(vd, msg, msglen)); 5097 5098 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */ 5099 /* 5100 * Typically expect dring-data messages, so handle 5101 * them first 5102 */ 5103 if ((status = vd_process_dring_msg(vd, msg, 5104 msglen)) != ENOMSG) 5105 return (status); 5106 5107 /* 5108 * Acknowledge an unregister-dring message, but reset 5109 * the connection anyway: Although the protocol 5110 * allows unregistering drings, this server cannot 5111 * serve a vdisk without its only dring 5112 */ 5113 status = vd_process_dring_unreg_msg(vd, msg, msglen); 5114 return ((status == 0) ? ENOTSUP : status); 5115 5116 default: 5117 ASSERT("Unsupported transfer mode"); 5118 PR0("Unsupported transfer mode"); 5119 return (ENOTSUP); 5120 } 5121 5122 default: 5123 ASSERT("Invalid client connection state"); 5124 PR0("Invalid client connection state"); 5125 return (ENOTSUP); 5126 } 5127 } 5128 5129 static int 5130 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 5131 { 5132 int status; 5133 boolean_t reset_ldc = B_FALSE; 5134 vd_task_t task; 5135 5136 /* 5137 * Check that the message is at least big enough for a "tag", so that 5138 * message processing can proceed based on tag-specified message type 5139 */ 5140 if (msglen < sizeof (vio_msg_tag_t)) { 5141 PR0("Received short (%lu-byte) message", msglen); 5142 /* Can't "nack" short message, so drop the big hammer */ 5143 PR0("initiating full reset"); 5144 vd_need_reset(vd, B_TRUE); 5145 return (EBADMSG); 5146 } 5147 5148 /* 5149 * Process the message 5150 */ 5151 switch (status = vd_do_process_msg(vd, msg, msglen)) { 5152 case 0: 5153 /* "ack" valid, successfully-processed messages */ 5154 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 5155 break; 5156 5157 case EINPROGRESS: 5158 /* The completion handler will "ack" or "nack" the message */ 5159 return (EINPROGRESS); 5160 case ENOMSG: 5161 PR0("Received unexpected message"); 5162 _NOTE(FALLTHROUGH); 5163 case EBADMSG: 5164 case ENOTSUP: 5165 /* "transport" error will cause NACK of invalid messages */ 5166 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 5167 break; 5168 5169 default: 5170 /* "transport" error will cause NACK of invalid messages */ 5171 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 5172 /* An LDC error probably occurred, so try resetting it */ 5173 reset_ldc = B_TRUE; 5174 break; 5175 } 5176 5177 PR1("\tResulting in state %d (%s)", vd->state, 5178 vd_decode_state(vd->state)); 5179 5180 /* populate the task so we can dispatch it on the taskq */ 5181 task.vd = vd; 5182 task.msg = msg; 5183 task.msglen = msglen; 5184 5185 /* 5186 * Queue a task to send the notification that the operation completed. 5187 * We need to ensure that requests are responded to in the correct 5188 * order and since the taskq is processed serially this ordering 5189 * is maintained. 5190 */ 5191 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, 5192 &task, DDI_SLEEP); 5193 5194 /* 5195 * To ensure handshake negotiations do not happen out of order, such 5196 * requests that come through this path should not be done in parallel 5197 * so we need to wait here until the response is sent to the client. 5198 */ 5199 ddi_taskq_wait(vd->completionq); 5200 5201 /* Arrange to reset the connection for nack'ed or failed messages */ 5202 if ((status != 0) || reset_ldc) { 5203 PR0("initiating %s reset", 5204 (reset_ldc) ? "full" : "soft"); 5205 vd_need_reset(vd, reset_ldc); 5206 } 5207 5208 return (status); 5209 } 5210 5211 static boolean_t 5212 vd_enabled(vd_t *vd) 5213 { 5214 boolean_t enabled; 5215 5216 mutex_enter(&vd->lock); 5217 enabled = vd->enabled; 5218 mutex_exit(&vd->lock); 5219 return (enabled); 5220 } 5221 5222 static void 5223 vd_recv_msg(void *arg) 5224 { 5225 vd_t *vd = (vd_t *)arg; 5226 int rv = 0, status = 0; 5227 5228 ASSERT(vd != NULL); 5229 5230 PR2("New task to receive incoming message(s)"); 5231 5232 5233 while (vd_enabled(vd) && status == 0) { 5234 size_t msglen, msgsize; 5235 ldc_status_t lstatus; 5236 5237 /* 5238 * Receive and process a message 5239 */ 5240 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 5241 5242 /* 5243 * check if channel is UP - else break out of loop 5244 */ 5245 status = ldc_status(vd->ldc_handle, &lstatus); 5246 if (lstatus != LDC_UP) { 5247 PR0("channel not up (status=%d), exiting recv loop\n", 5248 lstatus); 5249 break; 5250 } 5251 5252 ASSERT(vd->max_msglen != 0); 5253 5254 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 5255 msglen = msgsize; /* actual len after recv_msg() */ 5256 5257 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 5258 switch (status) { 5259 case 0: 5260 rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen); 5261 /* check if max_msglen changed */ 5262 if (msgsize != vd->max_msglen) { 5263 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 5264 msgsize, vd->max_msglen); 5265 kmem_free(vd->vio_msgp, msgsize); 5266 vd->vio_msgp = 5267 kmem_alloc(vd->max_msglen, KM_SLEEP); 5268 } 5269 if (rv == EINPROGRESS) 5270 continue; 5271 break; 5272 5273 case ENOMSG: 5274 break; 5275 5276 case ECONNRESET: 5277 PR0("initiating soft reset (ECONNRESET)\n"); 5278 vd_need_reset(vd, B_FALSE); 5279 status = 0; 5280 break; 5281 5282 default: 5283 /* Probably an LDC failure; arrange to reset it */ 5284 PR0("initiating full reset (status=0x%x)", status); 5285 vd_need_reset(vd, B_TRUE); 5286 break; 5287 } 5288 } 5289 5290 PR2("Task finished"); 5291 } 5292 5293 static uint_t 5294 vd_handle_ldc_events(uint64_t event, caddr_t arg) 5295 { 5296 vd_t *vd = (vd_t *)(void *)arg; 5297 int status; 5298 5299 ASSERT(vd != NULL); 5300 5301 if (!vd_enabled(vd)) 5302 return (LDC_SUCCESS); 5303 5304 if (event & LDC_EVT_DOWN) { 5305 PR0("LDC_EVT_DOWN: LDC channel went down"); 5306 5307 vd_need_reset(vd, B_TRUE); 5308 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 5309 DDI_SLEEP); 5310 if (status == DDI_FAILURE) { 5311 PR0("cannot schedule task to recv msg\n"); 5312 vd_need_reset(vd, B_TRUE); 5313 } 5314 } 5315 5316 if (event & LDC_EVT_RESET) { 5317 PR0("LDC_EVT_RESET: LDC channel was reset"); 5318 5319 if (vd->state != VD_STATE_INIT) { 5320 PR0("scheduling full reset"); 5321 vd_need_reset(vd, B_FALSE); 5322 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 5323 vd, DDI_SLEEP); 5324 if (status == DDI_FAILURE) { 5325 PR0("cannot schedule task to recv msg\n"); 5326 vd_need_reset(vd, B_TRUE); 5327 } 5328 5329 } else { 5330 PR0("channel already reset, ignoring...\n"); 5331 PR0("doing ldc up...\n"); 5332 (void) ldc_up(vd->ldc_handle); 5333 } 5334 5335 return (LDC_SUCCESS); 5336 } 5337 5338 if (event & LDC_EVT_UP) { 5339 PR0("EVT_UP: LDC is up\nResetting client connection state"); 5340 PR0("initiating soft reset"); 5341 vd_need_reset(vd, B_FALSE); 5342 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 5343 vd, DDI_SLEEP); 5344 if (status == DDI_FAILURE) { 5345 PR0("cannot schedule task to recv msg\n"); 5346 vd_need_reset(vd, B_TRUE); 5347 return (LDC_SUCCESS); 5348 } 5349 } 5350 5351 if (event & LDC_EVT_READ) { 5352 int status; 5353 5354 PR1("New data available"); 5355 /* Queue a task to receive the new data */ 5356 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 5357 DDI_SLEEP); 5358 5359 if (status == DDI_FAILURE) { 5360 PR0("cannot schedule task to recv msg\n"); 5361 vd_need_reset(vd, B_TRUE); 5362 } 5363 } 5364 5365 return (LDC_SUCCESS); 5366 } 5367 5368 static uint_t 5369 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5370 { 5371 _NOTE(ARGUNUSED(key, val)) 5372 (*((uint_t *)arg))++; 5373 return (MH_WALK_TERMINATE); 5374 } 5375 5376 5377 static int 5378 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 5379 { 5380 uint_t vd_present = 0; 5381 minor_t instance; 5382 vds_t *vds; 5383 5384 5385 switch (cmd) { 5386 case DDI_DETACH: 5387 /* the real work happens below */ 5388 break; 5389 case DDI_SUSPEND: 5390 PR0("No action required for DDI_SUSPEND"); 5391 return (DDI_SUCCESS); 5392 default: 5393 PR0("Unrecognized \"cmd\""); 5394 return (DDI_FAILURE); 5395 } 5396 5397 ASSERT(cmd == DDI_DETACH); 5398 instance = ddi_get_instance(dip); 5399 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 5400 PR0("Could not get state for instance %u", instance); 5401 ddi_soft_state_free(vds_state, instance); 5402 return (DDI_FAILURE); 5403 } 5404 5405 /* Do no detach when serving any vdisks */ 5406 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 5407 if (vd_present) { 5408 PR0("Not detaching because serving vdisks"); 5409 return (DDI_FAILURE); 5410 } 5411 5412 PR0("Detaching"); 5413 if (vds->initialized & VDS_MDEG) { 5414 (void) mdeg_unregister(vds->mdeg); 5415 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 5416 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 5417 vds->ispecp = NULL; 5418 vds->mdeg = NULL; 5419 } 5420 5421 vds_driver_types_free(vds); 5422 5423 if (vds->initialized & VDS_LDI) 5424 (void) ldi_ident_release(vds->ldi_ident); 5425 mod_hash_destroy_hash(vds->vd_table); 5426 ddi_soft_state_free(vds_state, instance); 5427 return (DDI_SUCCESS); 5428 } 5429 5430 /* 5431 * Description: 5432 * This function checks to see if the disk image being used as a 5433 * virtual disk is an ISO image. An ISO image is a special case 5434 * which can be booted/installed from like a CD/DVD. 5435 * 5436 * Parameters: 5437 * vd - disk on which the operation is performed. 5438 * 5439 * Return Code: 5440 * B_TRUE - The disk image is an ISO 9660 compliant image 5441 * B_FALSE - just a regular disk image 5442 */ 5443 static boolean_t 5444 vd_dskimg_is_iso_image(vd_t *vd) 5445 { 5446 char iso_buf[ISO_SECTOR_SIZE]; 5447 int i, rv; 5448 uint_t sec; 5449 5450 ASSERT(VD_DSKIMG(vd)); 5451 5452 /* 5453 * If we have already discovered and saved this info we can 5454 * short-circuit the check and avoid reading the disk image. 5455 */ 5456 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD) 5457 return (B_TRUE); 5458 5459 /* 5460 * We wish to read the sector that should contain the 2nd ISO volume 5461 * descriptor. The second field in this descriptor is called the 5462 * Standard Identifier and is set to CD001 for a CD-ROM compliant 5463 * to the ISO 9660 standard. 5464 */ 5465 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_bsize; 5466 rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf, 5467 sec, ISO_SECTOR_SIZE); 5468 5469 if (rv < 0) 5470 return (B_FALSE); 5471 5472 for (i = 0; i < ISO_ID_STRLEN; i++) { 5473 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i]) 5474 return (B_FALSE); 5475 } 5476 5477 return (B_TRUE); 5478 } 5479 5480 /* 5481 * Description: 5482 * This function checks to see if the virtual device is an ATAPI 5483 * device. ATAPI devices use Group 1 Read/Write commands, so 5484 * any USCSI calls vds makes need to take this into account. 5485 * 5486 * Parameters: 5487 * vd - disk on which the operation is performed. 5488 * 5489 * Return Code: 5490 * B_TRUE - The virtual disk is backed by an ATAPI device 5491 * B_FALSE - not an ATAPI device (presumably SCSI) 5492 */ 5493 static boolean_t 5494 vd_is_atapi_device(vd_t *vd) 5495 { 5496 boolean_t is_atapi = B_FALSE; 5497 char *variantp; 5498 int rv; 5499 5500 ASSERT(vd->ldi_handle[0] != NULL); 5501 ASSERT(!vd->file); 5502 5503 rv = ldi_prop_lookup_string(vd->ldi_handle[0], 5504 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp); 5505 if (rv == DDI_PROP_SUCCESS) { 5506 PR0("'variant' property exists for %s", vd->device_path); 5507 if (strcmp(variantp, "atapi") == 0) 5508 is_atapi = B_TRUE; 5509 ddi_prop_free(variantp); 5510 } 5511 5512 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi"); 5513 if (rv) { 5514 PR0("'atapi' property exists for %s", vd->device_path); 5515 is_atapi = B_TRUE; 5516 } 5517 5518 return (is_atapi); 5519 } 5520 5521 static int 5522 vd_setup_full_disk(vd_t *vd) 5523 { 5524 int status; 5525 major_t major = getmajor(vd->dev[0]); 5526 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 5527 5528 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 5529 5530 /* set the disk size, block size and the media type of the disk */ 5531 status = vd_backend_check_size(vd); 5532 5533 if (status != 0) { 5534 if (!vd->scsi) { 5535 /* unexpected failure */ 5536 PRN("Check size failed for %s (errno %d)", 5537 vd->device_path, status); 5538 return (EIO); 5539 } 5540 5541 /* 5542 * The function can fail for SCSI disks which are present but 5543 * reserved by another system. In that case, we don't know the 5544 * size of the disk and the block size. 5545 */ 5546 vd->vdisk_size = VD_SIZE_UNKNOWN; 5547 vd->vdisk_bsize = 0; 5548 vd->backend_bsize = 0; 5549 vd->vdisk_media = VD_MEDIA_FIXED; 5550 } 5551 5552 /* Move dev number and LDI handle to entire-disk-slice array elements */ 5553 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 5554 vd->dev[0] = 0; 5555 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 5556 vd->ldi_handle[0] = NULL; 5557 5558 /* Initialize device numbers for remaining slices and open them */ 5559 for (int slice = 0; slice < vd->nslices; slice++) { 5560 /* 5561 * Skip the entire-disk slice, as it's already open and its 5562 * device known 5563 */ 5564 if (slice == VD_ENTIRE_DISK_SLICE) 5565 continue; 5566 ASSERT(vd->dev[slice] == 0); 5567 ASSERT(vd->ldi_handle[slice] == NULL); 5568 5569 /* 5570 * Construct the device number for the current slice 5571 */ 5572 vd->dev[slice] = makedevice(major, (minor + slice)); 5573 5574 /* 5575 * Open all slices of the disk to serve them to the client. 5576 * Slices are opened exclusively to prevent other threads or 5577 * processes in the service domain from performing I/O to 5578 * slices being accessed by a client. Failure to open a slice 5579 * results in vds not serving this disk, as the client could 5580 * attempt (and should be able) to access any slice immediately. 5581 * Any slices successfully opened before a failure will get 5582 * closed by vds_destroy_vd() as a result of the error returned 5583 * by this function. 5584 * 5585 * We need to do the open with FNDELAY so that opening an empty 5586 * slice does not fail. 5587 */ 5588 PR0("Opening device major %u, minor %u = slice %u", 5589 major, minor, slice); 5590 5591 /* 5592 * Try to open the device. This can fail for example if we are 5593 * opening an empty slice. So in case of a failure, we try the 5594 * open again but this time with the FNDELAY flag. 5595 */ 5596 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5597 vd->open_flags, kcred, &vd->ldi_handle[slice], 5598 vd->vds->ldi_ident); 5599 5600 if (status != 0) { 5601 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5602 vd->open_flags | FNDELAY, kcred, 5603 &vd->ldi_handle[slice], vd->vds->ldi_ident); 5604 } 5605 5606 if (status != 0) { 5607 PRN("ldi_open_by_dev() returned errno %d " 5608 "for slice %u", status, slice); 5609 /* vds_destroy_vd() will close any open slices */ 5610 vd->ldi_handle[slice] = NULL; 5611 return (status); 5612 } 5613 } 5614 5615 return (0); 5616 } 5617 5618 /* 5619 * When a slice or a volume is exported as a single-slice disk, we want 5620 * the disk backend (i.e. the slice or volume) to be entirely mapped as 5621 * a slice without the addition of any metadata. 5622 * 5623 * So when exporting the disk as a VTOC disk, we fake a disk with the following 5624 * layout: 5625 * flabel +--- flabel_limit 5626 * <-> V 5627 * 0 1 C D E 5628 * +-+---+--------------------------+--+ 5629 * virtual disk: |L|XXX| slice 0 |AA| 5630 * +-+---+--------------------------+--+ 5631 * ^ : : 5632 * | : : 5633 * VTOC LABEL--+ : : 5634 * +--------------------------+ 5635 * disk backend: | slice/volume/file | 5636 * +--------------------------+ 5637 * 0 N 5638 * 5639 * N is the number of blocks in the slice/volume/file. 5640 * 5641 * We simulate a disk with N+M blocks, where M is the number of blocks 5642 * simluated at the beginning and at the end of the disk (blocks 0-C 5643 * and D-E). 5644 * 5645 * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C 5646 * to D defines slice 0 and are mapped to the backend. Finally we emulate 2 5647 * alternate cylinders at the end of the disk (blocks D-E). In summary we have: 5648 * 5649 * - block 0 (L) returns a fake VTOC label 5650 * - blocks 1 to C-1 (X) are unused and return 0 5651 * - blocks C to D-1 are mapped to the exported slice or volume 5652 * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders) 5653 * 5654 * Note: because we define a fake disk geometry, it is possible that the length 5655 * of the backend is not a multiple of the size of cylinder, in that case the 5656 * very end of the backend will not map to any block of the virtual disk. 5657 */ 5658 static int 5659 vd_setup_partition_vtoc(vd_t *vd) 5660 { 5661 char *device_path = vd->device_path; 5662 char unit; 5663 size_t size, csize; 5664 5665 /* Initialize dk_geom structure for single-slice device */ 5666 if (vd->dk_geom.dkg_nsect == 0) { 5667 PRN("%s geometry claims 0 sectors per track", device_path); 5668 return (EIO); 5669 } 5670 if (vd->dk_geom.dkg_nhead == 0) { 5671 PRN("%s geometry claims 0 heads", device_path); 5672 return (EIO); 5673 } 5674 5675 /* size of a cylinder in block */ 5676 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 5677 5678 /* 5679 * Add extra cylinders: we emulate the first cylinder (which contains 5680 * the disk label). 5681 */ 5682 vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1; 5683 5684 /* we emulate 2 alternate cylinders */ 5685 vd->dk_geom.dkg_acyl = 2; 5686 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 5687 5688 5689 /* Initialize vtoc structure for single-slice device */ 5690 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 5691 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 5692 vd->vtoc.v_part[0].p_flag = 0; 5693 /* 5694 * Partition 0 starts on cylinder 1 and its size has to be 5695 * a multiple of a number of cylinder. 5696 */ 5697 vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */ 5698 vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize; 5699 5700 if (vd_slice_single_slice) { 5701 vd->vtoc.v_nparts = 1; 5702 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 5703 MIN(sizeof (VD_ASCIILABEL), 5704 sizeof (vd->vtoc.v_asciilabel))); 5705 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 5706 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 5707 } else { 5708 /* adjust the number of slices */ 5709 vd->nslices = V_NUMPAR; 5710 vd->vtoc.v_nparts = V_NUMPAR; 5711 5712 /* define slice 2 representing the entire disk */ 5713 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 5714 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0; 5715 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0; 5716 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size = 5717 vd->dk_geom.dkg_ncyl * csize; 5718 5719 vd_get_readable_size(vd->vdisk_size * vd->vdisk_bsize, 5720 &size, &unit); 5721 5722 /* 5723 * Set some attributes of the geometry to what format(1m) uses 5724 * so that writing a default label using format(1m) does not 5725 * produce any error. 5726 */ 5727 vd->dk_geom.dkg_bcyl = 0; 5728 vd->dk_geom.dkg_intrlv = 1; 5729 vd->dk_geom.dkg_write_reinstruct = 0; 5730 vd->dk_geom.dkg_read_reinstruct = 0; 5731 5732 /* 5733 * We must have a correct label name otherwise format(1m) will 5734 * not recognized the disk as labeled. 5735 */ 5736 (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII, 5737 "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d", 5738 size, unit, 5739 vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl, 5740 vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect); 5741 bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume)); 5742 5743 /* create a fake label from the vtoc and geometry */ 5744 vd->flabel_limit = (uint_t)csize; 5745 vd->flabel_size = VD_LABEL_VTOC_SIZE(vd->vdisk_bsize); 5746 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5747 vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom, 5748 VD_LABEL_VTOC(vd)); 5749 } 5750 5751 /* adjust the vdisk_size, we emulate 3 cylinders */ 5752 vd->vdisk_size += csize * 3; 5753 5754 return (0); 5755 } 5756 5757 /* 5758 * When a slice, volume or file is exported as a single-slice disk, we want 5759 * the disk backend (i.e. the slice, volume or file) to be entirely mapped 5760 * as a slice without the addition of any metadata. 5761 * 5762 * So when exporting the disk as an EFI disk, we fake a disk with the following 5763 * layout: (assuming the block size is 512 bytes) 5764 * 5765 * flabel +--- flabel_limit 5766 * <------> v 5767 * 0 1 2 L 34 34+N P 5768 * +-+-+--+-------+--------------------------+-------+ 5769 * virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR| 5770 * +-+-+--+-------+--------------------------+-------+ 5771 * ^ ^ : : 5772 * | | : : 5773 * GPT-+ +-GPE : : 5774 * +--------------------------+ 5775 * disk backend: | slice/volume/file | 5776 * +--------------------------+ 5777 * 0 N 5778 * 5779 * N is the number of blocks in the slice/volume/file. 5780 * 5781 * We simulate a disk with N+M blocks, where M is the number of blocks 5782 * simluated at the beginning and at the end of the disk (blocks 0-34 5783 * and 34+N-P). 5784 * 5785 * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34 5786 * to 34+N defines slice 0 and are mapped to the exported backend, and we 5787 * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI 5788 * reserved partition. 5789 * 5790 * - block 0 (X) is unused and return 0 5791 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI) 5792 * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI) 5793 * - blocks L to 33 (X) are unused and return 0 5794 * - blocks 34 to 34+N are mapped to the exported slice, volume or file 5795 * - blocks 34+N+1 to P define a fake reserved partition and backup label, it 5796 * returns 0 5797 * 5798 * Note: if the backend size is not a multiple of the vdisk block size then 5799 * the very end of the backend will not map to any block of the virtual disk. 5800 */ 5801 static int 5802 vd_setup_partition_efi(vd_t *vd) 5803 { 5804 efi_gpt_t *gpt; 5805 efi_gpe_t *gpe; 5806 struct uuid uuid = EFI_USR; 5807 struct uuid efi_reserved = EFI_RESERVED; 5808 uint32_t crc; 5809 uint64_t s0_start, s0_end, first_u_lba; 5810 size_t bsize; 5811 5812 ASSERT(vd->vdisk_bsize > 0); 5813 5814 bsize = vd->vdisk_bsize; 5815 /* 5816 * The minimum size for the label is 16K (EFI_MIN_ARRAY_SIZE) 5817 * for GPEs plus one block for the GPT and one for PMBR. 5818 */ 5819 first_u_lba = (EFI_MIN_ARRAY_SIZE / bsize) + 2; 5820 vd->flabel_limit = (uint_t)first_u_lba; 5821 vd->flabel_size = VD_LABEL_EFI_SIZE(bsize); 5822 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5823 gpt = VD_LABEL_EFI_GPT(vd, bsize); 5824 gpe = VD_LABEL_EFI_GPE(vd, bsize); 5825 5826 /* 5827 * Adjust the vdisk_size, we emulate the first few blocks 5828 * for the disk label. 5829 */ 5830 vd->vdisk_size += first_u_lba; 5831 s0_start = first_u_lba; 5832 s0_end = vd->vdisk_size - 1; 5833 5834 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 5835 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 5836 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 5837 gpt->efi_gpt_FirstUsableLBA = LE_64(first_u_lba); 5838 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 5839 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 5840 5841 UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid); 5842 gpe[0].efi_gpe_StartingLBA = LE_64(s0_start); 5843 gpe[0].efi_gpe_EndingLBA = LE_64(s0_end); 5844 5845 if (vd_slice_single_slice) { 5846 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 5847 } else { 5848 /* adjust the number of slices */ 5849 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART); 5850 vd->nslices = V_NUMPAR; 5851 5852 /* define a fake reserved partition */ 5853 UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID, 5854 efi_reserved); 5855 gpe[VD_MAXPART - 1].efi_gpe_StartingLBA = 5856 LE_64(s0_end + 1); 5857 gpe[VD_MAXPART - 1].efi_gpe_EndingLBA = 5858 LE_64(s0_end + EFI_MIN_RESV_SIZE); 5859 5860 /* adjust the vdisk_size to include the reserved slice */ 5861 vd->vdisk_size += EFI_MIN_RESV_SIZE; 5862 } 5863 5864 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 5865 5866 /* adjust the vdisk size for the backup GPT and GPE */ 5867 vd->vdisk_size += (EFI_MIN_ARRAY_SIZE / bsize) + 1; 5868 gpt->efi_gpt_AlternateLBA = LE_64(vd->vdisk_size - 1); 5869 5870 CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table); 5871 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 5872 5873 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 5874 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 5875 5876 return (0); 5877 } 5878 5879 /* 5880 * Setup for a virtual disk whose backend is a file (exported as a single slice 5881 * or as a full disk). In that case, the backend is accessed using the vnode 5882 * interface. 5883 */ 5884 static int 5885 vd_setup_backend_vnode(vd_t *vd) 5886 { 5887 int rval, status; 5888 dev_t dev; 5889 char *file_path = vd->device_path; 5890 ldi_handle_t lhandle; 5891 struct dk_cinfo dk_cinfo; 5892 5893 ASSERT(!vd->volume); 5894 5895 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX, 5896 0, &vd->file_vnode, 0, 0)) != 0) { 5897 PRN("vn_open(%s) = errno %d", file_path, status); 5898 return (status); 5899 } 5900 5901 /* 5902 * We set vd->file now so that vds_destroy_vd will take care of 5903 * closing the file and releasing the vnode in case of an error. 5904 */ 5905 vd->file = B_TRUE; 5906 5907 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ 5908 5909 /* 5910 * Get max_xfer_sz from the device where the file is. 5911 */ 5912 dev = vd->file_vnode->v_vfsp->vfs_dev; 5913 PR0("underlying device of %s = (%d, %d)\n", file_path, 5914 getmajor(dev), getminor(dev)); 5915 5916 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, 5917 vd->vds->ldi_ident); 5918 5919 if (status != 0) { 5920 PR0("ldi_open() returned errno %d for underlying device", 5921 status); 5922 } else { 5923 if ((status = ldi_ioctl(lhandle, DKIOCINFO, 5924 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5925 &rval)) != 0) { 5926 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for " 5927 "underlying device", status); 5928 } else { 5929 /* 5930 * Store the device's max transfer size for 5931 * return to the client 5932 */ 5933 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5934 } 5935 5936 PR0("close the underlying device"); 5937 (void) ldi_close(lhandle, FREAD, kcred); 5938 } 5939 5940 PR0("using file %s on device (%d, %d), max_xfer = %u blks", 5941 file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz); 5942 5943 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) 5944 status = vd_setup_slice_image(vd); 5945 else 5946 status = vd_setup_disk_image(vd); 5947 5948 return (status); 5949 } 5950 5951 static int 5952 vd_setup_slice_image(vd_t *vd) 5953 { 5954 struct dk_label label; 5955 int status; 5956 5957 if ((status = vd_backend_check_size(vd)) != 0) { 5958 PRN("Check size failed for %s (errno %d)", 5959 vd->device_path, status); 5960 return (EIO); 5961 } 5962 5963 vd->vdisk_media = VD_MEDIA_FIXED; 5964 vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)? 5965 vd_file_slice_label : vd_slice_label; 5966 5967 if (vd->vdisk_label == VD_DISK_LABEL_EFI || 5968 vd->dskimg_size >= 2 * ONE_TERABYTE) { 5969 status = vd_setup_partition_efi(vd); 5970 } else { 5971 /* 5972 * We build a default label to get a geometry for 5973 * the vdisk. Then the partition setup function will 5974 * adjust the vtoc so that it defines a single-slice 5975 * disk. 5976 */ 5977 vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize, 5978 &label); 5979 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5980 status = vd_setup_partition_vtoc(vd); 5981 } 5982 5983 return (status); 5984 } 5985 5986 static int 5987 vd_setup_disk_image(vd_t *vd) 5988 { 5989 int status; 5990 char *backend_path = vd->device_path; 5991 5992 if ((status = vd_backend_check_size(vd)) != 0) { 5993 PRN("Check size failed for %s (errno %d)", 5994 backend_path, status); 5995 return (EIO); 5996 } 5997 5998 /* size should be at least sizeof(dk_label) */ 5999 if (vd->dskimg_size < sizeof (struct dk_label)) { 6000 PRN("Size of file has to be at least %ld bytes", 6001 sizeof (struct dk_label)); 6002 return (EIO); 6003 } 6004 6005 /* 6006 * Find and validate the geometry of a disk image. 6007 */ 6008 status = vd_dskimg_validate_geometry(vd); 6009 if (status != 0 && status != EINVAL && status != ENOTSUP) { 6010 PRN("Failed to read label from %s", backend_path); 6011 return (EIO); 6012 } 6013 6014 if (vd_dskimg_is_iso_image(vd)) { 6015 /* 6016 * Indicate whether to call this a CD or DVD from the size 6017 * of the ISO image (images for both drive types are stored 6018 * in the ISO-9600 format). CDs can store up to just under 1Gb 6019 */ 6020 if ((vd->vdisk_size * vd->vdisk_bsize) > ONE_GIGABYTE) 6021 vd->vdisk_media = VD_MEDIA_DVD; 6022 else 6023 vd->vdisk_media = VD_MEDIA_CD; 6024 } else { 6025 vd->vdisk_media = VD_MEDIA_FIXED; 6026 } 6027 6028 /* Setup devid for the disk image */ 6029 6030 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 6031 6032 status = vd_dskimg_read_devid(vd, &vd->dskimg_devid); 6033 6034 if (status == 0) { 6035 /* a valid devid was found */ 6036 return (0); 6037 } 6038 6039 if (status != EINVAL) { 6040 /* 6041 * There was an error while trying to read the devid. 6042 * So this disk image may have a devid but we are 6043 * unable to read it. 6044 */ 6045 PR0("can not read devid for %s", backend_path); 6046 vd->dskimg_devid = NULL; 6047 return (0); 6048 } 6049 } 6050 6051 /* 6052 * No valid device id was found so we create one. Note that a failure 6053 * to create a device id is not fatal and does not prevent the disk 6054 * image from being attached. 6055 */ 6056 PR1("creating devid for %s", backend_path); 6057 6058 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, 6059 &vd->dskimg_devid) != DDI_SUCCESS) { 6060 PR0("fail to create devid for %s", backend_path); 6061 vd->dskimg_devid = NULL; 6062 return (0); 6063 } 6064 6065 /* 6066 * Write devid to the disk image. The devid is stored into the disk 6067 * image if we have a valid label; otherwise the devid will be stored 6068 * when the user writes a valid label. 6069 */ 6070 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 6071 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) { 6072 PR0("fail to write devid for %s", backend_path); 6073 ddi_devid_free(vd->dskimg_devid); 6074 vd->dskimg_devid = NULL; 6075 } 6076 } 6077 6078 return (0); 6079 } 6080 6081 6082 /* 6083 * Description: 6084 * Open a device using its device path (supplied by ldm(1m)) 6085 * 6086 * Parameters: 6087 * vd - pointer to structure containing the vDisk info 6088 * flags - open flags 6089 * 6090 * Return Value 6091 * 0 - success 6092 * != 0 - some other non-zero return value from ldi(9F) functions 6093 */ 6094 static int 6095 vd_open_using_ldi_by_name(vd_t *vd, int flags) 6096 { 6097 int status; 6098 char *device_path = vd->device_path; 6099 6100 /* Attempt to open device */ 6101 status = ldi_open_by_name(device_path, flags, kcred, 6102 &vd->ldi_handle[0], vd->vds->ldi_ident); 6103 6104 /* 6105 * The open can fail for example if we are opening an empty slice. 6106 * In case of a failure, we try the open again but this time with 6107 * the FNDELAY flag. 6108 */ 6109 if (status != 0) 6110 status = ldi_open_by_name(device_path, flags | FNDELAY, 6111 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident); 6112 6113 if (status != 0) { 6114 PR0("ldi_open_by_name(%s) = errno %d", device_path, status); 6115 vd->ldi_handle[0] = NULL; 6116 return (status); 6117 } 6118 6119 return (0); 6120 } 6121 6122 /* 6123 * Setup for a virtual disk which backend is a device (a physical disk, 6124 * slice or volume device) exported as a full disk or as a slice. In these 6125 * cases, the backend is accessed using the LDI interface. 6126 */ 6127 static int 6128 vd_setup_backend_ldi(vd_t *vd) 6129 { 6130 int rval, status; 6131 struct dk_cinfo dk_cinfo; 6132 char *device_path = vd->device_path; 6133 6134 /* device has been opened by vd_identify_dev() */ 6135 ASSERT(vd->ldi_handle[0] != NULL); 6136 ASSERT(vd->dev[0] != NULL); 6137 6138 vd->file = B_FALSE; 6139 6140 /* Verify backing device supports dk_cinfo */ 6141 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 6142 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 6143 &rval)) != 0) { 6144 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 6145 status, device_path); 6146 return (status); 6147 } 6148 if (dk_cinfo.dki_partition >= V_NUMPAR) { 6149 PRN("slice %u >= maximum slice %u for %s", 6150 dk_cinfo.dki_partition, V_NUMPAR, device_path); 6151 return (EIO); 6152 } 6153 6154 /* 6155 * The device has been opened read-only by vd_identify_dev(), re-open 6156 * it read-write if the write flag is set and we don't have an optical 6157 * device such as a CD-ROM, which, for now, we do not permit writes to 6158 * and thus should not export write operations to the client. 6159 * 6160 * Future: if/when we implement support for guest domains writing to 6161 * optical devices we will need to do further checking of the media type 6162 * to distinguish between read-only and writable discs. 6163 */ 6164 if (dk_cinfo.dki_ctype == DKC_CDROM) { 6165 6166 vd->open_flags &= ~FWRITE; 6167 6168 } else if (vd->open_flags & FWRITE) { 6169 6170 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE, 6171 kcred); 6172 status = vd_open_using_ldi_by_name(vd, vd->open_flags); 6173 if (status != 0) { 6174 PR0("Failed to open (%s) = errno %d", 6175 device_path, status); 6176 return (status); 6177 } 6178 } 6179 6180 /* Store the device's max transfer size for return to the client */ 6181 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 6182 6183 /* 6184 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so 6185 * that we can use the correct CDB group when sending USCSI commands. 6186 */ 6187 vd->is_atapi_dev = vd_is_atapi_device(vd); 6188 6189 /* 6190 * Export a full disk. 6191 * 6192 * The exported device can be either a volume, a disk or a CD/DVD 6193 * device. We export a device as a full disk if we have an entire 6194 * disk slice (slice 2) and if this slice is exported as a full disk 6195 * and not as a single slice disk. A CD or DVD device is exported 6196 * as a full disk (even if it isn't s2). A volume is exported as a 6197 * full disk as long as the "slice" option is not specified. 6198 */ 6199 if (vd->vdisk_type == VD_DISK_TYPE_DISK) { 6200 6201 if (vd->volume) { 6202 /* setup disk image */ 6203 return (vd_setup_disk_image(vd)); 6204 } 6205 6206 if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE || 6207 dk_cinfo.dki_ctype == DKC_CDROM) { 6208 ASSERT(!vd->volume); 6209 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS) 6210 vd->scsi = B_TRUE; 6211 return (vd_setup_full_disk(vd)); 6212 } 6213 } 6214 6215 /* 6216 * Export a single slice disk. 6217 * 6218 * The exported device can be either a volume device or a disk slice. If 6219 * it is a disk slice different from slice 2 then it is always exported 6220 * as a single slice disk even if the "slice" option is not specified. 6221 * If it is disk slice 2 or a volume device then it is exported as a 6222 * single slice disk only if the "slice" option is specified. 6223 */ 6224 return (vd_setup_single_slice_disk(vd)); 6225 } 6226 6227 static int 6228 vd_setup_single_slice_disk(vd_t *vd) 6229 { 6230 int status, rval; 6231 struct dk_label label; 6232 char *device_path = vd->device_path; 6233 struct vtoc vtoc; 6234 6235 vd->vdisk_media = VD_MEDIA_FIXED; 6236 6237 if (vd->volume) { 6238 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 6239 } 6240 6241 /* 6242 * We export the slice as a single slice disk even if the "slice" 6243 * option was not specified. 6244 */ 6245 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6246 vd->nslices = 1; 6247 6248 /* Get size of backing device */ 6249 if ((status = vd_backend_check_size(vd)) != 0) { 6250 PRN("Check size failed for %s (errno %d)", device_path, status); 6251 return (EIO); 6252 } 6253 6254 /* 6255 * When exporting a slice or a device as a single slice disk, we don't 6256 * care about any partitioning exposed by the backend. The goal is just 6257 * to export the backend as a flat storage. We provide a fake partition 6258 * table (either a VTOC or EFI), which presents only one slice, to 6259 * accommodate tools expecting a disk label. The selection of the label 6260 * type (VTOC or EFI) depends on the value of the vd_slice_label 6261 * variable. 6262 */ 6263 if (vd_slice_label == VD_DISK_LABEL_EFI || 6264 vd->vdisk_size >= ONE_TERABYTE / vd->vdisk_bsize) { 6265 vd->vdisk_label = VD_DISK_LABEL_EFI; 6266 } else { 6267 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC, 6268 (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL), 6269 kcred, &rval); 6270 6271 if (status == ENOTTY) { 6272 /* try with the non-extended vtoc ioctl */ 6273 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, 6274 (intptr_t)&vtoc, (vd->open_flags | FKIOCTL), 6275 kcred, &rval); 6276 vtoctoextvtoc(vtoc, vd->vtoc); 6277 } 6278 6279 if (status == 0) { 6280 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 6281 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), 6282 kcred, &rval); 6283 6284 if (status != 0) { 6285 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d " 6286 "for %s", status, device_path); 6287 return (status); 6288 } 6289 vd->vdisk_label = VD_DISK_LABEL_VTOC; 6290 6291 } else if (vd_slice_label == VD_DISK_LABEL_VTOC) { 6292 6293 vd->vdisk_label = VD_DISK_LABEL_VTOC; 6294 vd_build_default_label(vd->vdisk_size * vd->vdisk_bsize, 6295 vd->vdisk_bsize, &label); 6296 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 6297 6298 } else { 6299 vd->vdisk_label = VD_DISK_LABEL_EFI; 6300 } 6301 } 6302 6303 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 6304 /* export with a fake VTOC label */ 6305 status = vd_setup_partition_vtoc(vd); 6306 6307 } else { 6308 /* export with a fake EFI label */ 6309 status = vd_setup_partition_efi(vd); 6310 } 6311 6312 return (status); 6313 } 6314 6315 /* 6316 * This function is invoked when setting up the vdisk backend and to process 6317 * the VD_OP_GET_CAPACITY operation. It checks the backend size and set the 6318 * following attributes of the vd structure: 6319 * 6320 * - vdisk_bsize: block size for the virtual disk used by the VIO protocol. Its 6321 * value is 512 bytes (DEV_BSIZE) when the backend is a file, a volume or a 6322 * CD/DVD. When the backend is a disk or a disk slice then it has the value 6323 * of the logical block size of that disk (as returned by the DKIOCGMEDIAINFO 6324 * ioctl). This block size is expected to be a power of 2 and a multiple of 6325 * 512. 6326 * 6327 * - vdisk_size: size of the virtual disk expressed as a number of vdisk_bsize 6328 * blocks. 6329 * 6330 * vdisk_size and vdisk_bsize are sent to the vdisk client during the connection 6331 * handshake and in the result of a VD_OP_GET_CAPACITY operation. 6332 * 6333 * - backend_bsize: block size of the backend device. backend_bsize has the same 6334 * value as vdisk_bsize except when the backend is a CD/DVD. In that case, 6335 * vdisk_bsize is set to 512 (DEV_BSIZE) while backend_bsize is set to the 6336 * effective logical block size of the CD/DVD (usually 2048). 6337 * 6338 * - dskimg_size: size of the backend when the backend is a disk image. This 6339 * attribute is set only when the backend is a file or a volume, otherwise it 6340 * is unused. 6341 * 6342 * - vio_bshift: number of bit to shift to convert a VIO block number (which 6343 * uses a block size of vdisk_bsize) to a buf(9s) block number (which uses a 6344 * block size of 512 bytes) i.e. we have vdisk_bsize = 512 x 2 ^ vio_bshift 6345 * 6346 * - vdisk_media: media of the virtual disk. This function only sets this 6347 * attribute for physical disk and CD/DVD. For other backend types, this 6348 * attribute is set in the setup function of the backend. 6349 */ 6350 static int 6351 vd_backend_check_size(vd_t *vd) 6352 { 6353 size_t backend_size, backend_bsize, vdisk_bsize; 6354 size_t old_size, new_size; 6355 struct dk_minfo minfo; 6356 vattr_t vattr; 6357 int rval, rv, media, nshift = 0; 6358 uint32_t n; 6359 6360 if (vd->file) { 6361 6362 /* file (slice or full disk) */ 6363 vattr.va_mask = AT_SIZE; 6364 rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL); 6365 if (rv != 0) { 6366 PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv); 6367 return (rv); 6368 } 6369 backend_size = vattr.va_size; 6370 backend_bsize = DEV_BSIZE; 6371 vdisk_bsize = DEV_BSIZE; 6372 6373 } else if (vd->volume) { 6374 6375 /* volume (slice or full disk) */ 6376 rv = ldi_get_size(vd->ldi_handle[0], &backend_size); 6377 if (rv != DDI_SUCCESS) { 6378 PR0("ldi_get_size() failed for %s", vd->device_path); 6379 return (EIO); 6380 } 6381 backend_bsize = DEV_BSIZE; 6382 vdisk_bsize = DEV_BSIZE; 6383 6384 } else { 6385 6386 /* physical disk or slice */ 6387 rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 6388 (intptr_t)&minfo, (vd->open_flags | FKIOCTL), 6389 kcred, &rval); 6390 if (rv != 0) { 6391 PR0("DKIOCGMEDIAINFO failed for %s (err=%d)", 6392 vd->device_path, rv); 6393 return (rv); 6394 } 6395 6396 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 6397 rv = ldi_get_size(vd->ldi_handle[0], &backend_size); 6398 if (rv != DDI_SUCCESS) { 6399 PR0("ldi_get_size() failed for %s", 6400 vd->device_path); 6401 return (EIO); 6402 } 6403 } else { 6404 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 6405 backend_size = minfo.dki_capacity * minfo.dki_lbsize; 6406 } 6407 6408 backend_bsize = minfo.dki_lbsize; 6409 media = DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type); 6410 6411 /* 6412 * If the device is a CD or a DVD then we force the vdisk block 6413 * size to 512 bytes (DEV_BSIZE). In that case, vdisk_bsize can 6414 * be different from backend_size. 6415 */ 6416 if (media == VD_MEDIA_CD || media == VD_MEDIA_DVD) 6417 vdisk_bsize = DEV_BSIZE; 6418 else 6419 vdisk_bsize = backend_bsize; 6420 } 6421 6422 /* check vdisk block size */ 6423 if (vdisk_bsize == 0 || vdisk_bsize % DEV_BSIZE != 0) 6424 return (EINVAL); 6425 6426 old_size = vd->vdisk_size; 6427 new_size = backend_size / vdisk_bsize; 6428 6429 /* check if size has changed */ 6430 if (old_size != VD_SIZE_UNKNOWN && old_size == new_size && 6431 vd->vdisk_bsize == vdisk_bsize) 6432 return (0); 6433 6434 /* cache info for blk conversion */ 6435 for (n = vdisk_bsize / DEV_BSIZE; n > 1; n >>= 1) { 6436 if ((n & 0x1) != 0) { 6437 /* blk_size is not a power of 2 */ 6438 return (EINVAL); 6439 } 6440 nshift++; 6441 } 6442 6443 vd->vio_bshift = nshift; 6444 vd->vdisk_size = new_size; 6445 vd->vdisk_bsize = vdisk_bsize; 6446 vd->backend_bsize = backend_bsize; 6447 6448 if (vd->file || vd->volume) 6449 vd->dskimg_size = backend_size; 6450 6451 /* 6452 * If we are exporting a single-slice disk and the size of the backend 6453 * has changed then we regenerate the partition setup so that the 6454 * partitioning matches with the new disk backend size. 6455 */ 6456 6457 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 6458 /* slice or file or device exported as a slice */ 6459 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 6460 rv = vd_setup_partition_vtoc(vd); 6461 if (rv != 0) { 6462 PR0("vd_setup_partition_vtoc() failed for %s " 6463 "(err = %d)", vd->device_path, rv); 6464 return (rv); 6465 } 6466 } else { 6467 rv = vd_setup_partition_efi(vd); 6468 if (rv != 0) { 6469 PR0("vd_setup_partition_efi() failed for %s " 6470 "(err = %d)", vd->device_path, rv); 6471 return (rv); 6472 } 6473 } 6474 6475 } else if (!vd->file && !vd->volume) { 6476 /* physical disk */ 6477 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 6478 vd->vdisk_media = media; 6479 } 6480 6481 return (0); 6482 } 6483 6484 /* 6485 * Description: 6486 * Open a device using its device path and identify if this is 6487 * a disk device or a volume device. 6488 * 6489 * Parameters: 6490 * vd - pointer to structure containing the vDisk info 6491 * dtype - return the driver type of the device 6492 * 6493 * Return Value 6494 * 0 - success 6495 * != 0 - some other non-zero return value from ldi(9F) functions 6496 */ 6497 static int 6498 vd_identify_dev(vd_t *vd, int *dtype) 6499 { 6500 int status, i; 6501 char *device_path = vd->device_path; 6502 char *drv_name; 6503 int drv_type; 6504 vds_t *vds = vd->vds; 6505 6506 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE); 6507 if (status != 0) { 6508 PR0("Failed to open (%s) = errno %d", device_path, status); 6509 return (status); 6510 } 6511 6512 /* Get device number of backing device */ 6513 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 6514 PRN("ldi_get_dev() returned errno %d for %s", 6515 status, device_path); 6516 return (status); 6517 } 6518 6519 /* 6520 * We start by looking if the driver is in the list from vds.conf 6521 * so that we can override the built-in list using vds.conf. 6522 */ 6523 drv_name = ddi_major_to_name(getmajor(vd->dev[0])); 6524 drv_type = VD_DRIVER_UNKNOWN; 6525 6526 /* check vds.conf list */ 6527 for (i = 0; i < vds->num_drivers; i++) { 6528 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) { 6529 /* ignore invalid entries */ 6530 continue; 6531 } 6532 if (strcmp(drv_name, vds->driver_types[i].name) == 0) { 6533 drv_type = vds->driver_types[i].type; 6534 goto done; 6535 } 6536 } 6537 6538 /* check built-in list */ 6539 for (i = 0; i < VDS_NUM_DRIVERS; i++) { 6540 if (strcmp(drv_name, vds_driver_types[i].name) == 0) { 6541 drv_type = vds_driver_types[i].type; 6542 goto done; 6543 } 6544 } 6545 6546 done: 6547 PR0("driver %s identified as %s", drv_name, 6548 (drv_type == VD_DRIVER_DISK)? "DISK" : 6549 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN"); 6550 6551 if (strcmp(drv_name, "zfs") == 0) 6552 vd->zvol = B_TRUE; 6553 6554 *dtype = drv_type; 6555 6556 return (0); 6557 } 6558 6559 static int 6560 vd_setup_vd(vd_t *vd) 6561 { 6562 int status, drv_type, pseudo; 6563 dev_info_t *dip; 6564 vnode_t *vnp; 6565 char *path = vd->device_path; 6566 char tq_name[TASKQ_NAMELEN]; 6567 6568 /* make sure the vdisk backend is valid */ 6569 if ((status = lookupname(path, UIO_SYSSPACE, 6570 FOLLOW, NULLVPP, &vnp)) != 0) { 6571 PR0("Cannot lookup %s errno %d", path, status); 6572 goto done; 6573 } 6574 6575 switch (vnp->v_type) { 6576 case VREG: 6577 /* 6578 * Backend is a file so it is exported as a full disk or as a 6579 * single slice disk using the vnode interface. 6580 */ 6581 VN_RELE(vnp); 6582 vd->volume = B_FALSE; 6583 status = vd_setup_backend_vnode(vd); 6584 break; 6585 6586 case VBLK: 6587 case VCHR: 6588 /* 6589 * Backend is a device. In that case, it is exported using the 6590 * LDI interface, and it is exported either as a single-slice 6591 * disk or as a full disk depending on the "slice" option and 6592 * on the type of device. 6593 * 6594 * - A volume device is exported as a single-slice disk if the 6595 * "slice" is specified, otherwise it is exported as a full 6596 * disk. 6597 * 6598 * - A disk slice (different from slice 2) is always exported 6599 * as a single slice disk using the LDI interface. 6600 * 6601 * - The slice 2 of a disk is exported as a single slice disk 6602 * if the "slice" option is specified, otherwise the entire 6603 * disk will be exported. 6604 * 6605 * - The slice of a CD or DVD is exported as single slice disk 6606 * if the "slice" option is specified, otherwise the entire 6607 * disk will be exported. 6608 */ 6609 6610 /* check if this is a pseudo device */ 6611 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev), 6612 dev_to_instance(vnp->v_rdev), 0)) == NULL) { 6613 PRN("%s is no longer accessible", path); 6614 VN_RELE(vnp); 6615 status = EIO; 6616 break; 6617 } 6618 pseudo = is_pseudo_device(dip); 6619 ddi_release_devi(dip); 6620 VN_RELE(vnp); 6621 6622 if ((status = vd_identify_dev(vd, &drv_type)) != 0) { 6623 if (status != ENODEV && status != ENXIO && 6624 status != ENOENT && status != EROFS) { 6625 PRN("%s identification failed with status %d", 6626 path, status); 6627 status = EIO; 6628 } 6629 break; 6630 } 6631 6632 /* 6633 * If the driver hasn't been identified then we consider that 6634 * pseudo devices are volumes and other devices are disks. 6635 */ 6636 if (drv_type == VD_DRIVER_VOLUME || 6637 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) { 6638 vd->volume = B_TRUE; 6639 } 6640 6641 /* 6642 * If this is a volume device then its usage depends if the 6643 * "slice" option is set or not. If the "slice" option is set 6644 * then the volume device will be exported as a single slice, 6645 * otherwise it will be exported as a full disk. 6646 * 6647 * For backward compatibility, if vd_volume_force_slice is set 6648 * then we always export volume devices as slices. 6649 */ 6650 if (vd->volume && vd_volume_force_slice) { 6651 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6652 vd->nslices = 1; 6653 } 6654 6655 status = vd_setup_backend_ldi(vd); 6656 break; 6657 6658 default: 6659 PRN("Unsupported vdisk backend %s", path); 6660 VN_RELE(vnp); 6661 status = EBADF; 6662 } 6663 6664 done: 6665 if (status != 0) { 6666 /* 6667 * If the error is retryable print an error message only 6668 * during the first try. 6669 */ 6670 if (status == ENXIO || status == ENODEV || 6671 status == ENOENT || status == EROFS) { 6672 if (!(vd->initialized & VD_SETUP_ERROR)) { 6673 PRN("%s is currently inaccessible (error %d)", 6674 path, status); 6675 } 6676 status = EAGAIN; 6677 } else { 6678 PRN("%s can not be exported as a virtual disk " 6679 "(error %d)", path, status); 6680 } 6681 vd->initialized |= VD_SETUP_ERROR; 6682 6683 } else if (vd->initialized & VD_SETUP_ERROR) { 6684 /* print a message only if we previously had an error */ 6685 PRN("%s is now online", path); 6686 vd->initialized &= ~VD_SETUP_ERROR; 6687 } 6688 6689 /* 6690 * For file or ZFS volume we also need an I/O queue. 6691 * 6692 * The I/O task queue is initialized here and not in vds_do_init_vd() 6693 * (as the start and completion queues) because vd_setup_vd() will be 6694 * call again if the backend is not available, and we need to know if 6695 * the backend is a ZFS volume or a file. 6696 */ 6697 if ((vd->file || vd->zvol) && vd->ioq == NULL) { 6698 (void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id); 6699 6700 if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name, 6701 vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) { 6702 PRN("Could not create io task queue"); 6703 return (EIO); 6704 } 6705 } 6706 6707 return (status); 6708 } 6709 6710 static int 6711 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6712 uint64_t ldc_id, vd_t **vdp) 6713 { 6714 char tq_name[TASKQ_NAMELEN]; 6715 int status; 6716 ddi_iblock_cookie_t iblock = NULL; 6717 ldc_attr_t ldc_attr; 6718 vd_t *vd; 6719 6720 6721 ASSERT(vds != NULL); 6722 ASSERT(device_path != NULL); 6723 ASSERT(vdp != NULL); 6724 PR0("Adding vdisk for %s", device_path); 6725 6726 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 6727 PRN("No memory for virtual disk"); 6728 return (EAGAIN); 6729 } 6730 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 6731 vd->id = id; 6732 vd->vds = vds; 6733 (void) strncpy(vd->device_path, device_path, MAXPATHLEN); 6734 6735 /* Setup open flags */ 6736 vd->open_flags = FREAD; 6737 6738 if (!(options & VD_OPT_RDONLY)) 6739 vd->open_flags |= FWRITE; 6740 6741 if (options & VD_OPT_EXCLUSIVE) 6742 vd->open_flags |= FEXCL; 6743 6744 /* Setup disk type */ 6745 if (options & VD_OPT_SLICE) { 6746 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6747 vd->nslices = 1; 6748 } else { 6749 vd->vdisk_type = VD_DISK_TYPE_DISK; 6750 vd->nslices = V_NUMPAR; 6751 } 6752 6753 /* default disk label */ 6754 vd->vdisk_label = VD_DISK_LABEL_UNK; 6755 6756 /* Open vdisk and initialize parameters */ 6757 if ((status = vd_setup_vd(vd)) == 0) { 6758 vd->initialized |= VD_DISK_READY; 6759 6760 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 6761 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 6762 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 6763 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"), 6764 vd->nslices); 6765 } else { 6766 if (status != EAGAIN) 6767 return (status); 6768 } 6769 6770 /* Initialize locking */ 6771 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 6772 &iblock) != DDI_SUCCESS) { 6773 PRN("Could not get iblock cookie."); 6774 return (EIO); 6775 } 6776 6777 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 6778 vd->initialized |= VD_LOCKING; 6779 6780 6781 /* Create start and completion task queues for the vdisk */ 6782 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 6783 PR1("tq_name = %s", tq_name); 6784 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 6785 TASKQ_DEFAULTPRI, 0)) == NULL) { 6786 PRN("Could not create task queue"); 6787 return (EIO); 6788 } 6789 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 6790 PR1("tq_name = %s", tq_name); 6791 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 6792 TASKQ_DEFAULTPRI, 0)) == NULL) { 6793 PRN("Could not create task queue"); 6794 return (EIO); 6795 } 6796 6797 /* Allocate the staging buffer */ 6798 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 6799 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 6800 6801 vd->enabled = 1; /* before callback can dispatch to startq */ 6802 6803 6804 /* Bring up LDC */ 6805 ldc_attr.devclass = LDC_DEV_BLK_SVC; 6806 ldc_attr.instance = ddi_get_instance(vds->dip); 6807 ldc_attr.mode = LDC_MODE_UNRELIABLE; 6808 ldc_attr.mtu = VD_LDC_MTU; 6809 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 6810 PRN("Could not initialize LDC channel %lx, " 6811 "init failed with error %d", ldc_id, status); 6812 return (status); 6813 } 6814 vd->initialized |= VD_LDC; 6815 6816 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 6817 (caddr_t)vd)) != 0) { 6818 PRN("Could not initialize LDC channel %lu," 6819 "reg_callback failed with error %d", ldc_id, status); 6820 return (status); 6821 } 6822 6823 if ((status = ldc_open(vd->ldc_handle)) != 0) { 6824 PRN("Could not initialize LDC channel %lu," 6825 "open failed with error %d", ldc_id, status); 6826 return (status); 6827 } 6828 6829 if ((status = ldc_up(vd->ldc_handle)) != 0) { 6830 PR0("ldc_up() returned errno %d", status); 6831 } 6832 6833 /* Allocate the inband task memory handle */ 6834 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 6835 if (status) { 6836 PRN("Could not initialize LDC channel %lu," 6837 "alloc_handle failed with error %d", ldc_id, status); 6838 return (ENXIO); 6839 } 6840 6841 /* Add the successfully-initialized vdisk to the server's table */ 6842 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 6843 PRN("Error adding vdisk ID %lu to table", id); 6844 return (EIO); 6845 } 6846 6847 /* store initial state */ 6848 vd->state = VD_STATE_INIT; 6849 6850 return (0); 6851 } 6852 6853 static void 6854 vd_free_dring_task(vd_t *vdp) 6855 { 6856 if (vdp->dring_task != NULL) { 6857 ASSERT(vdp->dring_len != 0); 6858 /* Free all dring_task memory handles */ 6859 for (int i = 0; i < vdp->dring_len; i++) { 6860 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 6861 kmem_free(vdp->dring_task[i].request, 6862 (vdp->descriptor_size - 6863 sizeof (vio_dring_entry_hdr_t))); 6864 vdp->dring_task[i].request = NULL; 6865 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 6866 vdp->dring_task[i].msg = NULL; 6867 } 6868 kmem_free(vdp->dring_task, 6869 (sizeof (*vdp->dring_task)) * vdp->dring_len); 6870 vdp->dring_task = NULL; 6871 } 6872 6873 if (vdp->write_queue != NULL) { 6874 kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len); 6875 vdp->write_queue = NULL; 6876 } 6877 } 6878 6879 /* 6880 * Destroy the state associated with a virtual disk 6881 */ 6882 static void 6883 vds_destroy_vd(void *arg) 6884 { 6885 vd_t *vd = (vd_t *)arg; 6886 int retry = 0, rv; 6887 6888 if (vd == NULL) 6889 return; 6890 6891 PR0("Destroying vdisk state"); 6892 6893 /* Disable queuing requests for the vdisk */ 6894 if (vd->initialized & VD_LOCKING) { 6895 mutex_enter(&vd->lock); 6896 vd->enabled = 0; 6897 mutex_exit(&vd->lock); 6898 } 6899 6900 /* Drain and destroy start queue (*before* destroying ioq) */ 6901 if (vd->startq != NULL) 6902 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 6903 6904 /* Drain and destroy the I/O queue (*before* destroying completionq) */ 6905 if (vd->ioq != NULL) 6906 ddi_taskq_destroy(vd->ioq); 6907 6908 /* Drain and destroy completion queue (*before* shutting down LDC) */ 6909 if (vd->completionq != NULL) 6910 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 6911 6912 vd_free_dring_task(vd); 6913 6914 /* Free the inband task memory handle */ 6915 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 6916 6917 /* Shut down LDC */ 6918 if (vd->initialized & VD_LDC) { 6919 /* unmap the dring */ 6920 if (vd->initialized & VD_DRING) 6921 (void) ldc_mem_dring_unmap(vd->dring_handle); 6922 6923 /* close LDC channel - retry on EAGAIN */ 6924 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 6925 if (++retry > vds_ldc_retries) { 6926 PR0("Timed out closing channel"); 6927 break; 6928 } 6929 drv_usecwait(vds_ldc_delay); 6930 } 6931 if (rv == 0) { 6932 (void) ldc_unreg_callback(vd->ldc_handle); 6933 (void) ldc_fini(vd->ldc_handle); 6934 } else { 6935 /* 6936 * Closing the LDC channel has failed. Ideally we should 6937 * fail here but there is no Zeus level infrastructure 6938 * to handle this. The MD has already been changed and 6939 * we have to do the close. So we try to do as much 6940 * clean up as we can. 6941 */ 6942 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 6943 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 6944 drv_usecwait(vds_ldc_delay); 6945 } 6946 } 6947 6948 /* Free the staging buffer for msgs */ 6949 if (vd->vio_msgp != NULL) { 6950 kmem_free(vd->vio_msgp, vd->max_msglen); 6951 vd->vio_msgp = NULL; 6952 } 6953 6954 /* Free the inband message buffer */ 6955 if (vd->inband_task.msg != NULL) { 6956 kmem_free(vd->inband_task.msg, vd->max_msglen); 6957 vd->inband_task.msg = NULL; 6958 } 6959 6960 if (vd->file) { 6961 /* Close file */ 6962 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1, 6963 0, kcred, NULL); 6964 VN_RELE(vd->file_vnode); 6965 } else { 6966 /* Close any open backing-device slices */ 6967 for (uint_t slice = 0; slice < V_NUMPAR; slice++) { 6968 if (vd->ldi_handle[slice] != NULL) { 6969 PR0("Closing slice %u", slice); 6970 (void) ldi_close(vd->ldi_handle[slice], 6971 vd->open_flags, kcred); 6972 } 6973 } 6974 } 6975 6976 /* Free disk image devid */ 6977 if (vd->dskimg_devid != NULL) 6978 ddi_devid_free(vd->dskimg_devid); 6979 6980 /* Free any fake label */ 6981 if (vd->flabel) { 6982 kmem_free(vd->flabel, vd->flabel_size); 6983 vd->flabel = NULL; 6984 vd->flabel_size = 0; 6985 } 6986 6987 /* Free lock */ 6988 if (vd->initialized & VD_LOCKING) 6989 mutex_destroy(&vd->lock); 6990 6991 /* Finally, free the vdisk structure itself */ 6992 kmem_free(vd, sizeof (*vd)); 6993 } 6994 6995 static int 6996 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6997 uint64_t ldc_id) 6998 { 6999 int status; 7000 vd_t *vd = NULL; 7001 7002 7003 if ((status = vds_do_init_vd(vds, id, device_path, options, 7004 ldc_id, &vd)) != 0) 7005 vds_destroy_vd(vd); 7006 7007 return (status); 7008 } 7009 7010 static int 7011 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 7012 uint64_t *ldc_id) 7013 { 7014 int num_channels; 7015 7016 7017 /* Look for channel endpoint child(ren) of the vdisk MD node */ 7018 if ((num_channels = md_scan_dag(md, vd_node, 7019 md_find_name(md, VD_CHANNEL_ENDPOINT), 7020 md_find_name(md, "fwd"), channel)) <= 0) { 7021 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 7022 return (-1); 7023 } 7024 7025 /* Get the "id" value for the first channel endpoint node */ 7026 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 7027 PRN("No \"%s\" property found for \"%s\" of vdisk", 7028 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 7029 return (-1); 7030 } 7031 7032 if (num_channels > 1) { 7033 PRN("Using ID of first of multiple channels for this vdisk"); 7034 } 7035 7036 return (0); 7037 } 7038 7039 static int 7040 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 7041 { 7042 int num_nodes, status; 7043 size_t size; 7044 mde_cookie_t *channel; 7045 7046 7047 if ((num_nodes = md_node_count(md)) <= 0) { 7048 PRN("Invalid node count in Machine Description subtree"); 7049 return (-1); 7050 } 7051 size = num_nodes*(sizeof (*channel)); 7052 channel = kmem_zalloc(size, KM_SLEEP); 7053 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 7054 kmem_free(channel, size); 7055 7056 return (status); 7057 } 7058 7059 /* 7060 * Function: 7061 * vds_get_options 7062 * 7063 * Description: 7064 * Parse the options of a vds node. Options are defined as an array 7065 * of strings in the vds-block-device-opts property of the vds node 7066 * in the machine description. Options are returned as a bitmask. The 7067 * mapping between the bitmask options and the options strings from the 7068 * machine description is defined in the vd_bdev_options[] array. 7069 * 7070 * The vds-block-device-opts property is optional. If a vds has no such 7071 * property then no option is defined. 7072 * 7073 * Parameters: 7074 * md - machine description. 7075 * vd_node - vds node in the machine description for which 7076 * options have to be parsed. 7077 * options - the returned options. 7078 * 7079 * Return Code: 7080 * none. 7081 */ 7082 static void 7083 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options) 7084 { 7085 char *optstr, *opt; 7086 int len, n, i; 7087 7088 *options = 0; 7089 7090 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS, 7091 (uint8_t **)&optstr, &len) != 0) { 7092 PR0("No options found"); 7093 return; 7094 } 7095 7096 /* parse options */ 7097 opt = optstr; 7098 n = sizeof (vd_bdev_options) / sizeof (vd_option_t); 7099 7100 while (opt < optstr + len) { 7101 for (i = 0; i < n; i++) { 7102 if (strncmp(vd_bdev_options[i].vdo_name, 7103 opt, VD_OPTION_NLEN) == 0) { 7104 *options |= vd_bdev_options[i].vdo_value; 7105 break; 7106 } 7107 } 7108 7109 if (i < n) { 7110 PR0("option: %s", opt); 7111 } else { 7112 PRN("option %s is unknown or unsupported", opt); 7113 } 7114 7115 opt += strlen(opt) + 1; 7116 } 7117 } 7118 7119 static void 7120 vds_driver_types_free(vds_t *vds) 7121 { 7122 if (vds->driver_types != NULL) { 7123 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) * 7124 vds->num_drivers); 7125 vds->driver_types = NULL; 7126 vds->num_drivers = 0; 7127 } 7128 } 7129 7130 /* 7131 * Update the driver type list with information from vds.conf. 7132 */ 7133 static void 7134 vds_driver_types_update(vds_t *vds) 7135 { 7136 char **list, *s; 7137 uint_t i, num, count = 0, len; 7138 7139 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip, 7140 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) != 7141 DDI_PROP_SUCCESS) 7142 return; 7143 7144 /* 7145 * We create a driver_types list with as many as entries as there 7146 * is in the driver-type-list from vds.conf. However only valid 7147 * entries will be populated (i.e. entries from driver-type-list 7148 * with a valid syntax). Invalid entries will be left blank so 7149 * they will have no driver name and the driver type will be 7150 * VD_DRIVER_UNKNOWN (= 0). 7151 */ 7152 vds->num_drivers = num; 7153 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num, 7154 KM_SLEEP); 7155 7156 for (i = 0; i < num; i++) { 7157 7158 s = strchr(list[i], ':'); 7159 7160 if (s == NULL) { 7161 PRN("vds.conf: driver-type-list, entry %d (%s): " 7162 "a colon is expected in the entry", 7163 i, list[i]); 7164 continue; 7165 } 7166 7167 len = (uintptr_t)s - (uintptr_t)list[i]; 7168 7169 if (len == 0) { 7170 PRN("vds.conf: driver-type-list, entry %d (%s): " 7171 "the driver name is empty", 7172 i, list[i]); 7173 continue; 7174 } 7175 7176 if (len >= VD_DRIVER_NAME_LEN) { 7177 PRN("vds.conf: driver-type-list, entry %d (%s): " 7178 "the driver name is too long", 7179 i, list[i]); 7180 continue; 7181 } 7182 7183 if (strcmp(s + 1, "disk") == 0) { 7184 7185 vds->driver_types[i].type = VD_DRIVER_DISK; 7186 7187 } else if (strcmp(s + 1, "volume") == 0) { 7188 7189 vds->driver_types[i].type = VD_DRIVER_VOLUME; 7190 7191 } else { 7192 PRN("vds.conf: driver-type-list, entry %d (%s): " 7193 "the driver type is invalid", 7194 i, list[i]); 7195 continue; 7196 } 7197 7198 (void) strncpy(vds->driver_types[i].name, list[i], len); 7199 7200 PR0("driver-type-list, entry %d (%s) added", 7201 i, list[i]); 7202 7203 count++; 7204 } 7205 7206 ddi_prop_free(list); 7207 7208 if (count == 0) { 7209 /* nothing was added, clean up */ 7210 vds_driver_types_free(vds); 7211 } 7212 } 7213 7214 static void 7215 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 7216 { 7217 char *device_path = NULL; 7218 uint64_t id = 0, ldc_id = 0, options = 0; 7219 7220 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 7221 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 7222 return; 7223 } 7224 PR0("Adding vdisk ID %lu", id); 7225 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 7226 &device_path) != 0) { 7227 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 7228 return; 7229 } 7230 7231 vds_get_options(md, vd_node, &options); 7232 7233 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 7234 PRN("Error getting LDC ID for vdisk %lu", id); 7235 return; 7236 } 7237 7238 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) { 7239 PRN("Failed to add vdisk ID %lu", id); 7240 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 7241 PRN("No vDisk entry found for vdisk ID %lu", id); 7242 return; 7243 } 7244 } 7245 7246 static void 7247 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 7248 { 7249 uint64_t id = 0; 7250 7251 7252 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 7253 PRN("Unable to get \"%s\" property from vdisk's MD node", 7254 VD_ID_PROP); 7255 return; 7256 } 7257 PR0("Removing vdisk ID %lu", id); 7258 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 7259 PRN("No vdisk entry found for vdisk ID %lu", id); 7260 } 7261 7262 static void 7263 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 7264 md_t *curr_md, mde_cookie_t curr_vd_node) 7265 { 7266 char *curr_dev, *prev_dev; 7267 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0; 7268 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0; 7269 size_t len; 7270 7271 7272 /* Validate that vdisk ID has not changed */ 7273 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 7274 PRN("Error getting previous vdisk \"%s\" property", 7275 VD_ID_PROP); 7276 return; 7277 } 7278 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 7279 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 7280 return; 7281 } 7282 if (curr_id != prev_id) { 7283 PRN("Not changing vdisk: ID changed from %lu to %lu", 7284 prev_id, curr_id); 7285 return; 7286 } 7287 7288 /* Validate that LDC ID has not changed */ 7289 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 7290 PRN("Error getting LDC ID for vdisk %lu", prev_id); 7291 return; 7292 } 7293 7294 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 7295 PRN("Error getting LDC ID for vdisk %lu", curr_id); 7296 return; 7297 } 7298 if (curr_ldc_id != prev_ldc_id) { 7299 _NOTE(NOTREACHED); /* lint is confused */ 7300 PRN("Not changing vdisk: " 7301 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 7302 return; 7303 } 7304 7305 /* Determine whether device path has changed */ 7306 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 7307 &prev_dev) != 0) { 7308 PRN("Error getting previous vdisk \"%s\"", 7309 VD_BLOCK_DEVICE_PROP); 7310 return; 7311 } 7312 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 7313 &curr_dev) != 0) { 7314 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 7315 return; 7316 } 7317 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 7318 (strncmp(curr_dev, prev_dev, len) == 0)) 7319 return; /* no relevant (supported) change */ 7320 7321 /* Validate that options have not changed */ 7322 vds_get_options(prev_md, prev_vd_node, &prev_options); 7323 vds_get_options(curr_md, curr_vd_node, &curr_options); 7324 if (prev_options != curr_options) { 7325 PRN("Not changing vdisk: options changed from %lx to %lx", 7326 prev_options, curr_options); 7327 return; 7328 } 7329 7330 PR0("Changing vdisk ID %lu", prev_id); 7331 7332 /* Remove old state, which will close vdisk and reset */ 7333 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 7334 PRN("No entry found for vdisk ID %lu", prev_id); 7335 7336 /* Re-initialize vdisk with new state */ 7337 if (vds_init_vd(vds, curr_id, curr_dev, curr_options, 7338 curr_ldc_id) != 0) { 7339 PRN("Failed to change vdisk ID %lu", curr_id); 7340 return; 7341 } 7342 } 7343 7344 static int 7345 vds_process_md(void *arg, mdeg_result_t *md) 7346 { 7347 int i; 7348 vds_t *vds = arg; 7349 7350 7351 if (md == NULL) 7352 return (MDEG_FAILURE); 7353 ASSERT(vds != NULL); 7354 7355 for (i = 0; i < md->removed.nelem; i++) 7356 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 7357 for (i = 0; i < md->match_curr.nelem; i++) 7358 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 7359 md->match_curr.mdp, md->match_curr.mdep[i]); 7360 for (i = 0; i < md->added.nelem; i++) 7361 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 7362 7363 return (MDEG_SUCCESS); 7364 } 7365 7366 7367 static int 7368 vds_do_attach(dev_info_t *dip) 7369 { 7370 int status, sz; 7371 int cfg_handle; 7372 minor_t instance = ddi_get_instance(dip); 7373 vds_t *vds; 7374 mdeg_prop_spec_t *pspecp; 7375 mdeg_node_spec_t *ispecp; 7376 7377 /* 7378 * The "cfg-handle" property of a vds node in an MD contains the MD's 7379 * notion of "instance", or unique identifier, for that node; OBP 7380 * stores the value of the "cfg-handle" MD property as the value of 7381 * the "reg" property on the node in the device tree it builds from 7382 * the MD and passes to Solaris. Thus, we look up the devinfo node's 7383 * "reg" property value to uniquely identify this device instance when 7384 * registering with the MD event-generation framework. If the "reg" 7385 * property cannot be found, the device tree state is presumably so 7386 * broken that there is no point in continuing. 7387 */ 7388 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 7389 VD_REG_PROP)) { 7390 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 7391 return (DDI_FAILURE); 7392 } 7393 7394 /* Get the MD instance for later MDEG registration */ 7395 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 7396 VD_REG_PROP, -1); 7397 7398 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 7399 PRN("Could not allocate state for instance %u", instance); 7400 return (DDI_FAILURE); 7401 } 7402 7403 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 7404 PRN("Could not get state for instance %u", instance); 7405 ddi_soft_state_free(vds_state, instance); 7406 return (DDI_FAILURE); 7407 } 7408 7409 vds->dip = dip; 7410 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 7411 vds_destroy_vd, sizeof (void *)); 7412 7413 ASSERT(vds->vd_table != NULL); 7414 7415 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 7416 PRN("ldi_ident_from_dip() returned errno %d", status); 7417 return (DDI_FAILURE); 7418 } 7419 vds->initialized |= VDS_LDI; 7420 7421 /* Register for MD updates */ 7422 sz = sizeof (vds_prop_template); 7423 pspecp = kmem_alloc(sz, KM_SLEEP); 7424 bcopy(vds_prop_template, pspecp, sz); 7425 7426 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 7427 7428 /* initialize the complete prop spec structure */ 7429 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 7430 ispecp->namep = "virtual-device"; 7431 ispecp->specp = pspecp; 7432 7433 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 7434 &vds->mdeg) != MDEG_SUCCESS) { 7435 PRN("Unable to register for MD updates"); 7436 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 7437 kmem_free(pspecp, sz); 7438 return (DDI_FAILURE); 7439 } 7440 7441 vds->ispecp = ispecp; 7442 vds->initialized |= VDS_MDEG; 7443 7444 /* Prevent auto-detaching so driver is available whenever MD changes */ 7445 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 7446 DDI_PROP_SUCCESS) { 7447 PRN("failed to set \"%s\" property for instance %u", 7448 DDI_NO_AUTODETACH, instance); 7449 } 7450 7451 /* read any user defined driver types from conf file and update list */ 7452 vds_driver_types_update(vds); 7453 7454 ddi_report_dev(dip); 7455 return (DDI_SUCCESS); 7456 } 7457 7458 static int 7459 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 7460 { 7461 int status; 7462 7463 switch (cmd) { 7464 case DDI_ATTACH: 7465 PR0("Attaching"); 7466 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 7467 (void) vds_detach(dip, DDI_DETACH); 7468 return (status); 7469 case DDI_RESUME: 7470 PR0("No action required for DDI_RESUME"); 7471 return (DDI_SUCCESS); 7472 default: 7473 return (DDI_FAILURE); 7474 } 7475 } 7476 7477 static struct dev_ops vds_ops = { 7478 DEVO_REV, /* devo_rev */ 7479 0, /* devo_refcnt */ 7480 ddi_no_info, /* devo_getinfo */ 7481 nulldev, /* devo_identify */ 7482 nulldev, /* devo_probe */ 7483 vds_attach, /* devo_attach */ 7484 vds_detach, /* devo_detach */ 7485 nodev, /* devo_reset */ 7486 NULL, /* devo_cb_ops */ 7487 NULL, /* devo_bus_ops */ 7488 nulldev, /* devo_power */ 7489 ddi_quiesce_not_needed, /* devo_quiesce */ 7490 }; 7491 7492 static struct modldrv modldrv = { 7493 &mod_driverops, 7494 "virtual disk server", 7495 &vds_ops, 7496 }; 7497 7498 static struct modlinkage modlinkage = { 7499 MODREV_1, 7500 &modldrv, 7501 NULL 7502 }; 7503 7504 7505 int 7506 _init(void) 7507 { 7508 int status; 7509 7510 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 7511 return (status); 7512 7513 if ((status = mod_install(&modlinkage)) != 0) { 7514 ddi_soft_state_fini(&vds_state); 7515 return (status); 7516 } 7517 7518 return (0); 7519 } 7520 7521 int 7522 _info(struct modinfo *modinfop) 7523 { 7524 return (mod_info(&modlinkage, modinfop)); 7525 } 7526 7527 int 7528 _fini(void) 7529 { 7530 int status; 7531 7532 if ((status = mod_remove(&modlinkage)) != 0) 7533 return (status); 7534 ddi_soft_state_fini(&vds_state); 7535 return (0); 7536 } 7537