xref: /titanic_41/usr/src/uts/sun4v/io/vds.c (revision 60c582727d131e0112b386fc9d678dc1fd460c3a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vio_common.h>
48 #include <sys/vdsk_mailbox.h>
49 #include <sys/vdsk_common.h>
50 #include <sys/vtoc.h>
51 #include <sys/vfs.h>
52 #include <sys/stat.h>
53 #include <sys/scsi/impl/uscsi.h>
54 #include <vm/seg_map.h>
55 
56 /* Virtual disk server initialization flags */
57 #define	VDS_LDI			0x01
58 #define	VDS_MDEG		0x02
59 
60 /* Virtual disk server tunable parameters */
61 #define	VDS_RETRIES		5
62 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
63 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
64 #define	VDS_NCHAINS		32
65 
66 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
67 #define	VDS_NAME		"virtual-disk-server"
68 
69 #define	VD_NAME			"vd"
70 #define	VD_VOLUME_NAME		"vdisk"
71 #define	VD_ASCIILABEL		"Virtual Disk"
72 
73 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
74 #define	VD_ID_PROP		"id"
75 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
76 #define	VD_REG_PROP		"reg"
77 
78 /* Virtual disk initialization flags */
79 #define	VD_DISK_READY		0x01
80 #define	VD_LOCKING		0x02
81 #define	VD_LDC			0x04
82 #define	VD_DRING		0x08
83 #define	VD_SID			0x10
84 #define	VD_SEQ_NUM		0x20
85 
86 /* Flags for opening/closing backing devices via LDI */
87 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
88 
89 /* Flags for writing to a vdisk which is a file */
90 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
91 
92 /* Number of backup labels */
93 #define	VD_FILE_NUM_BACKUP	5
94 
95 /* Timeout for SCSI I/O */
96 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
97 
98 /*
99  * By Solaris convention, slice/partition 2 represents the entire disk;
100  * unfortunately, this convention does not appear to be codified.
101  */
102 #define	VD_ENTIRE_DISK_SLICE	2
103 
104 /* Return a cpp token as a string */
105 #define	STRINGIZE(token)	#token
106 
107 /*
108  * Print a message prefixed with the current function name to the message log
109  * (and optionally to the console for verbose boots); these macros use cpp's
110  * concatenation of string literals and C99 variable-length-argument-list
111  * macros
112  */
113 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
114 #define	_PRN(format, ...)					\
115 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
116 
117 /* Return a pointer to the "i"th vdisk dring element */
118 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
119 	    (vd->dring + (i)*vd->descriptor_size))
120 
121 /* Return the virtual disk client's type as a string (for use in messages) */
122 #define	VD_CLIENT(vd)							\
123 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
124 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
125 		(((vd)->xfer_mode == 0) ? "null client" :		\
126 		    "unsupported client")))
127 
128 /* Read disk label from a disk on file */
129 #define	VD_FILE_LABEL_READ(vd, labelp) \
130 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
131 	    0, sizeof (struct dk_label))
132 
133 /* Write disk label to a disk on file */
134 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
135 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
136 	    0, sizeof (struct dk_label))
137 
138 /*
139  * Specification of an MD node passed to the MDEG to filter any
140  * 'vport' nodes that do not belong to the specified node. This
141  * template is copied for each vds instance and filled in with
142  * the appropriate 'cfg-handle' value before being passed to the MDEG.
143  */
144 static mdeg_prop_spec_t	vds_prop_template[] = {
145 	{ MDET_PROP_STR,	"name",		VDS_NAME },
146 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
147 	{ MDET_LIST_END,	NULL, 		NULL }
148 };
149 
150 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
151 
152 /*
153  * Matching criteria passed to the MDEG to register interest
154  * in changes to 'virtual-device-port' nodes identified by their
155  * 'id' property.
156  */
157 static md_prop_match_t	vd_prop_match[] = {
158 	{ MDET_PROP_VAL,	VD_ID_PROP },
159 	{ MDET_LIST_END,	NULL }
160 };
161 
162 static mdeg_node_match_t vd_match = {"virtual-device-port",
163 				    vd_prop_match};
164 
165 /* Debugging macros */
166 #ifdef DEBUG
167 
168 static int	vd_msglevel = 0;
169 
170 #define	PR0 if (vd_msglevel > 0)	PRN
171 #define	PR1 if (vd_msglevel > 1)	PRN
172 #define	PR2 if (vd_msglevel > 2)	PRN
173 
174 #define	VD_DUMP_DRING_ELEM(elem)					\
175 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
176 	    elem->hdr.dstate,						\
177 	    elem->payload.operation,					\
178 	    elem->payload.status,					\
179 	    elem->payload.nbytes,					\
180 	    elem->payload.addr,						\
181 	    elem->payload.ncookies);
182 
183 char *
184 vd_decode_state(int state)
185 {
186 	char *str;
187 
188 #define	CASE_STATE(_s)	case _s: str = #_s; break;
189 
190 	switch (state) {
191 	CASE_STATE(VD_STATE_INIT)
192 	CASE_STATE(VD_STATE_VER)
193 	CASE_STATE(VD_STATE_ATTR)
194 	CASE_STATE(VD_STATE_DRING)
195 	CASE_STATE(VD_STATE_RDX)
196 	CASE_STATE(VD_STATE_DATA)
197 	default: str = "unknown"; break;
198 	}
199 
200 #undef CASE_STATE
201 
202 	return (str);
203 }
204 
205 void
206 vd_decode_tag(vio_msg_t *msg)
207 {
208 	char *tstr, *sstr, *estr;
209 
210 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
211 
212 	switch (msg->tag.vio_msgtype) {
213 	CASE_TYPE(VIO_TYPE_CTRL)
214 	CASE_TYPE(VIO_TYPE_DATA)
215 	CASE_TYPE(VIO_TYPE_ERR)
216 	default: tstr = "unknown"; break;
217 	}
218 
219 #undef CASE_TYPE
220 
221 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
222 
223 	switch (msg->tag.vio_subtype) {
224 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
225 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
226 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
227 	default: sstr = "unknown"; break;
228 	}
229 
230 #undef CASE_SUBTYPE
231 
232 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
233 
234 	switch (msg->tag.vio_subtype_env) {
235 	CASE_ENV(VIO_VER_INFO)
236 	CASE_ENV(VIO_ATTR_INFO)
237 	CASE_ENV(VIO_DRING_REG)
238 	CASE_ENV(VIO_DRING_UNREG)
239 	CASE_ENV(VIO_RDX)
240 	CASE_ENV(VIO_PKT_DATA)
241 	CASE_ENV(VIO_DESC_DATA)
242 	CASE_ENV(VIO_DRING_DATA)
243 	default: estr = "unknown"; break;
244 	}
245 
246 #undef CASE_ENV
247 
248 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
249 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
250 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
251 }
252 
253 #else	/* !DEBUG */
254 
255 #define	PR0(...)
256 #define	PR1(...)
257 #define	PR2(...)
258 
259 #define	VD_DUMP_DRING_ELEM(elem)
260 
261 #define	vd_decode_state(_s)	(NULL)
262 #define	vd_decode_tag(_s)	(NULL)
263 
264 #endif	/* DEBUG */
265 
266 
267 /*
268  * Soft state structure for a vds instance
269  */
270 typedef struct vds {
271 	uint_t		initialized;	/* driver inst initialization flags */
272 	dev_info_t	*dip;		/* driver inst devinfo pointer */
273 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
274 	mod_hash_t	*vd_table;	/* table of virtual disks served */
275 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
276 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
277 } vds_t;
278 
279 /*
280  * Types of descriptor-processing tasks
281  */
282 typedef enum vd_task_type {
283 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
284 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
285 } vd_task_type_t;
286 
287 /*
288  * Structure describing the task for processing a descriptor
289  */
290 typedef struct vd_task {
291 	struct vd		*vd;		/* vd instance task is for */
292 	vd_task_type_t		type;		/* type of descriptor task */
293 	int			index;		/* dring elem index for task */
294 	vio_msg_t		*msg;		/* VIO message task is for */
295 	size_t			msglen;		/* length of message content */
296 	vd_dring_payload_t	*request;	/* request task will perform */
297 	struct buf		buf;		/* buf(9s) for I/O request */
298 	ldc_mem_handle_t	mhdl;		/* task memory handle */
299 } vd_task_t;
300 
301 /*
302  * Soft state structure for a virtual disk instance
303  */
304 typedef struct vd {
305 	uint_t			initialized;	/* vdisk initialization flags */
306 	vds_t			*vds;		/* server for this vdisk */
307 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
308 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
309 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
310 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
311 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
312 	uint_t			nslices;	/* number of slices */
313 	size_t			vdisk_size;	/* number of blocks in vdisk */
314 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
315 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
316 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
317 	boolean_t		pseudo;		/* underlying pseudo dev */
318 	boolean_t		file;		/* underlying file */
319 	vnode_t			*file_vnode;	/* file vnode */
320 	size_t			file_size;	/* file size */
321 	ddi_devid_t		file_devid;	/* devid for disk image */
322 	struct dk_efi		dk_efi;		/* synthetic for slice type */
323 	struct dk_geom		dk_geom;	/* synthetic for slice type */
324 	struct vtoc		vtoc;		/* synthetic for slice type */
325 	ldc_status_t		ldc_state;	/* LDC connection state */
326 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
327 	size_t			max_msglen;	/* largest LDC message len */
328 	vd_state_t		state;		/* client handshake state */
329 	uint8_t			xfer_mode;	/* transfer mode with client */
330 	uint32_t		sid;		/* client's session ID */
331 	uint64_t		seq_num;	/* message sequence number */
332 	uint64_t		dring_ident;	/* identifier of dring */
333 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
334 	uint32_t		descriptor_size;	/* num bytes in desc */
335 	uint32_t		dring_len;	/* number of dring elements */
336 	caddr_t			dring;		/* address of dring */
337 	caddr_t			vio_msgp;	/* vio msg staging buffer */
338 	vd_task_t		inband_task;	/* task for inband descriptor */
339 	vd_task_t		*dring_task;	/* tasks dring elements */
340 
341 	kmutex_t		lock;		/* protects variables below */
342 	boolean_t		enabled;	/* is vdisk enabled? */
343 	boolean_t		reset_state;	/* reset connection state? */
344 	boolean_t		reset_ldc;	/* reset LDC channel? */
345 } vd_t;
346 
347 typedef struct vds_operation {
348 	char	*namep;
349 	uint8_t	operation;
350 	int	(*start)(vd_task_t *task);
351 	void	(*complete)(void *arg);
352 } vds_operation_t;
353 
354 typedef struct vd_ioctl {
355 	uint8_t		operation;		/* vdisk operation */
356 	const char	*operation_name;	/* vdisk operation name */
357 	size_t		nbytes;			/* size of operation buffer */
358 	int		cmd;			/* corresponding ioctl cmd */
359 	const char	*cmd_name;		/* ioctl cmd name */
360 	void		*arg;			/* ioctl cmd argument */
361 	/* convert input vd_buf to output ioctl_arg */
362 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
363 	/* convert input ioctl_arg to output vd_buf */
364 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
365 } vd_ioctl_t;
366 
367 /* Define trivial copyin/copyout conversion function flag */
368 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
369 
370 
371 static int	vds_ldc_retries = VDS_RETRIES;
372 static int	vds_ldc_delay = VDS_LDC_DELAY;
373 static int	vds_dev_retries = VDS_RETRIES;
374 static int	vds_dev_delay = VDS_DEV_DELAY;
375 static void	*vds_state;
376 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
377 
378 static int	vd_open_flags = VD_OPEN_FLAGS;
379 
380 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
381 
382 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
383 
384 /*
385  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
386  *
387  * Each supported major version should appear only once, paired with (and only
388  * with) its highest supported minor version number (as the protocol requires
389  * supporting all lower minor version numbers as well)
390  */
391 static const vio_ver_t	vds_version[] = {{1, 0}};
392 static const size_t	vds_num_versions =
393     sizeof (vds_version)/sizeof (vds_version[0]);
394 
395 static void vd_free_dring_task(vd_t *vdp);
396 static int vd_setup_vd(vd_t *vd);
397 static boolean_t vd_enabled(vd_t *vd);
398 
399 /*
400  * Function:
401  *	vd_file_rw
402  *
403  * Description:
404  * 	Read or write to a disk on file.
405  *
406  * Parameters:
407  *	vd		- disk on which the operation is performed.
408  *	slice		- slice on which the operation is performed,
409  *			  VD_SLICE_NONE indicates that the operation
410  *			  is done using an absolute disk offset.
411  *	operation	- operation to execute: read (VD_OP_BREAD) or
412  *			  write (VD_OP_BWRITE).
413  *	data		- buffer where data are read to or written from.
414  *	blk		- starting block for the operation.
415  *	len		- number of bytes to read or write.
416  *
417  * Return Code:
418  *	n >= 0		- success, n indicates the number of bytes read
419  *			  or written.
420  *	-1		- error.
421  */
422 static ssize_t
423 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
424     size_t len)
425 {
426 	caddr_t	maddr;
427 	size_t offset, maxlen, moffset, mlen, n;
428 	uint_t smflags;
429 	enum seg_rw srw;
430 
431 	ASSERT(vd->file);
432 	ASSERT(len > 0);
433 
434 	if (slice == VD_SLICE_NONE) {
435 		/* raw disk access */
436 		offset = blk * DEV_BSIZE;
437 	} else {
438 		ASSERT(slice >= 0 && slice < V_NUMPAR);
439 		if (blk >= vd->vtoc.v_part[slice].p_size) {
440 			/* address past the end of the slice */
441 			PR0("req_addr (0x%lx) > psize (0x%lx)",
442 			    blk, vd->vtoc.v_part[slice].p_size);
443 			return (0);
444 		}
445 
446 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
447 
448 		/*
449 		 * If the requested size is greater than the size
450 		 * of the partition, truncate the read/write.
451 		 */
452 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
453 
454 		if (len > maxlen) {
455 			PR0("I/O size truncated to %lu bytes from %lu bytes",
456 			    maxlen, len);
457 			len = maxlen;
458 		}
459 	}
460 
461 	/*
462 	 * We have to ensure that we are reading/writing into the mmap
463 	 * range. If we have a partial disk image (e.g. an image of
464 	 * s0 instead s2) the system can try to access slices that
465 	 * are not included into the disk image.
466 	 */
467 	if ((offset + len) >= vd->file_size) {
468 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
469 		    "file_size (0x%lx)", offset, len, vd->file_size);
470 		return (-1);
471 	}
472 
473 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
474 	smflags = (operation == VD_OP_BREAD)? 0 :
475 	    (SM_WRITE | vd_file_write_flags);
476 	n = len;
477 
478 	do {
479 		/*
480 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
481 		 * MAXBSIZE aligned.
482 		 */
483 		moffset = offset & MAXBOFFSET;
484 		mlen = MIN(MAXBSIZE - moffset, n);
485 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
486 		    mlen, 1, srw);
487 		/*
488 		 * Fault in the pages so we can check for error and ensure
489 		 * that we can safely used the mapped address.
490 		 */
491 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
492 		    F_SOFTLOCK, srw) != 0) {
493 			(void) segmap_release(segkmap, maddr, 0);
494 			return (-1);
495 		}
496 
497 		if (operation == VD_OP_BREAD)
498 			bcopy(maddr + moffset, data, mlen);
499 		else
500 			bcopy(data, maddr + moffset, mlen);
501 
502 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
503 		    F_SOFTUNLOCK, srw) != 0) {
504 			(void) segmap_release(segkmap, maddr, 0);
505 			return (-1);
506 		}
507 		if (segmap_release(segkmap, maddr, smflags) != 0)
508 			return (-1);
509 		n -= mlen;
510 		offset += mlen;
511 		data += mlen;
512 
513 	} while (n > 0);
514 
515 	return (len);
516 }
517 
518 /*
519  * Function:
520  *	vd_file_set_vtoc
521  *
522  * Description:
523  *	Set the vtoc of a disk image by writing the label and backup
524  *	labels into the disk image backend.
525  *
526  * Parameters:
527  *	vd		- disk on which the operation is performed.
528  *	label		- the data to be written.
529  *
530  * Return Code:
531  *	0		- success.
532  *	n > 0		- error, n indicates the errno code.
533  */
534 static int
535 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
536 {
537 	int blk, sec, cyl, head, cnt;
538 
539 	ASSERT(vd->file);
540 
541 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
542 		PR0("fail to write disk label");
543 		return (EIO);
544 	}
545 
546 	/*
547 	 * Backup labels are on the last alternate cylinder's
548 	 * first five odd sectors.
549 	 */
550 	if (label->dkl_acyl == 0) {
551 		PR0("no alternate cylinder, can not store backup labels");
552 		return (0);
553 	}
554 
555 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
556 	head = label->dkl_nhead - 1;
557 
558 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
559 	    (head * label->dkl_nsect);
560 
561 	/*
562 	 * Write the backup labels. Make sure we don't try to write past
563 	 * the last cylinder.
564 	 */
565 	sec = 1;
566 
567 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
568 
569 		if (sec >= label->dkl_nsect) {
570 			PR0("not enough sector to store all backup labels");
571 			return (0);
572 		}
573 
574 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
575 		    blk + sec, sizeof (struct dk_label)) < 0) {
576 			PR0("error writing backup label at block %d\n",
577 			    blk + sec);
578 			return (EIO);
579 		}
580 
581 		PR1("wrote backup label at block %d\n", blk + sec);
582 
583 		sec += 2;
584 	}
585 
586 	return (0);
587 }
588 
589 /*
590  * Function:
591  *	vd_file_get_devid_block
592  *
593  * Description:
594  *	Return the block number where the device id is stored.
595  *
596  * Parameters:
597  *	vd		- disk on which the operation is performed.
598  *	blkp		- pointer to the block number
599  *
600  * Return Code:
601  *	0		- success
602  *	ENOSPC		- disk has no space to store a device id
603  */
604 static int
605 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
606 {
607 	diskaddr_t spc, head, cyl;
608 
609 	ASSERT(vd->file);
610 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
611 
612 	/* this geometry doesn't allow us to have a devid */
613 	if (vd->dk_geom.dkg_acyl < 2) {
614 		PR0("not enough alternate cylinder available for devid "
615 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
616 		return (ENOSPC);
617 	}
618 
619 	/* the devid is in on the track next to the last cylinder */
620 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
621 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
622 	head = vd->dk_geom.dkg_nhead - 1;
623 
624 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
625 	    (head * vd->dk_geom.dkg_nsect) + 1;
626 
627 	return (0);
628 }
629 
630 /*
631  * Return the checksum of a disk block containing an on-disk devid.
632  */
633 static uint_t
634 vd_dkdevid2cksum(struct dk_devid *dkdevid)
635 {
636 	uint_t chksum, *ip;
637 	int i;
638 
639 	chksum = 0;
640 	ip = (uint_t *)dkdevid;
641 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
642 		chksum ^= ip[i];
643 
644 	return (chksum);
645 }
646 
647 /*
648  * Function:
649  *	vd_file_read_devid
650  *
651  * Description:
652  *	Read the device id stored on a disk image.
653  *
654  * Parameters:
655  *	vd		- disk on which the operation is performed.
656  *	devid		- the return address of the device ID.
657  *
658  * Return Code:
659  *	0		- success
660  *	EIO		- I/O error while trying to access the disk image
661  *	EINVAL		- no valid device id was found
662  *	ENOSPC		- disk has no space to store a device id
663  */
664 static int
665 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
666 {
667 	struct dk_devid *dkdevid;
668 	size_t blk;
669 	uint_t chksum;
670 	int status, sz;
671 
672 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
673 		return (status);
674 
675 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
676 
677 	/* get the devid */
678 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
679 	    DEV_BSIZE)) < 0) {
680 		PR0("error reading devid block at %lu", blk);
681 		status = EIO;
682 		goto done;
683 	}
684 
685 	/* validate the revision */
686 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
687 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
688 		PR0("invalid devid found at block %lu (bad revision)", blk);
689 		status = EINVAL;
690 		goto done;
691 	}
692 
693 	/* compute checksum */
694 	chksum = vd_dkdevid2cksum(dkdevid);
695 
696 	/* compare the checksums */
697 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
698 		PR0("invalid devid found at block %lu (bad checksum)", blk);
699 		status = EINVAL;
700 		goto done;
701 	}
702 
703 	/* validate the device id */
704 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
705 		PR0("invalid devid found at block %lu", blk);
706 		status = EINVAL;
707 		goto done;
708 	}
709 
710 	PR1("devid read at block %lu", blk);
711 
712 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
713 	*devid = kmem_alloc(sz, KM_SLEEP);
714 	bcopy(&dkdevid->dkd_devid, *devid, sz);
715 
716 done:
717 	kmem_free(dkdevid, DEV_BSIZE);
718 	return (status);
719 
720 }
721 
722 /*
723  * Function:
724  *	vd_file_write_devid
725  *
726  * Description:
727  *	Write a device id into disk image.
728  *
729  * Parameters:
730  *	vd		- disk on which the operation is performed.
731  *	devid		- the device ID to store.
732  *
733  * Return Code:
734  *	0		- success
735  *	EIO		- I/O error while trying to access the disk image
736  *	ENOSPC		- disk has no space to store a device id
737  */
738 static int
739 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
740 {
741 	struct dk_devid *dkdevid;
742 	uint_t chksum;
743 	size_t blk;
744 	int status;
745 
746 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
747 		return (status);
748 
749 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
750 
751 	/* set revision */
752 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
753 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
754 
755 	/* copy devid */
756 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
757 
758 	/* compute checksum */
759 	chksum = vd_dkdevid2cksum(dkdevid);
760 
761 	/* set checksum */
762 	DKD_FORMCHKSUM(chksum, dkdevid);
763 
764 	/* store the devid */
765 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
766 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
767 		PR0("Error writing devid block at %lu", blk);
768 		status = EIO;
769 	} else {
770 		PR1("devid written at block %lu", blk);
771 		status = 0;
772 	}
773 
774 	kmem_free(dkdevid, DEV_BSIZE);
775 	return (status);
776 }
777 
778 /*
779  * Function:
780  *	vd_scsi_rdwr
781  *
782  * Description:
783  * 	Read or write to a SCSI disk using an absolute disk offset.
784  *
785  * Parameters:
786  *	vd		- disk on which the operation is performed.
787  *	operation	- operation to execute: read (VD_OP_BREAD) or
788  *			  write (VD_OP_BWRITE).
789  *	data		- buffer where data are read to or written from.
790  *	blk		- starting block for the operation.
791  *	len		- number of bytes to read or write.
792  *
793  * Return Code:
794  *	0		- success
795  *	n != 0		- error.
796  */
797 static int
798 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
799 {
800 	struct uscsi_cmd ucmd;
801 	union scsi_cdb cdb;
802 	int nsectors, nblk;
803 	int max_sectors;
804 	int status, rval;
805 
806 	ASSERT(!vd->file);
807 
808 	max_sectors = vd->max_xfer_sz;
809 	nblk = (len / DEV_BSIZE);
810 
811 	if (len % DEV_BSIZE != 0)
812 		return (EINVAL);
813 
814 	/*
815 	 * Build and execute the uscsi ioctl.  We build a group0, group1
816 	 * or group4 command as necessary, since some targets
817 	 * do not support group1 commands.
818 	 */
819 	while (nblk) {
820 
821 		bzero(&ucmd, sizeof (ucmd));
822 		bzero(&cdb, sizeof (cdb));
823 
824 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
825 
826 		if (blk < (2 << 20) && nsectors <= 0xff) {
827 			FORMG0ADDR(&cdb, blk);
828 			FORMG0COUNT(&cdb, nsectors);
829 			ucmd.uscsi_cdblen = CDB_GROUP0;
830 		} else if (blk > 0xffffffff) {
831 			FORMG4LONGADDR(&cdb, blk);
832 			FORMG4COUNT(&cdb, nsectors);
833 			ucmd.uscsi_cdblen = CDB_GROUP4;
834 			cdb.scc_cmd |= SCMD_GROUP4;
835 		} else {
836 			FORMG1ADDR(&cdb, blk);
837 			FORMG1COUNT(&cdb, nsectors);
838 			ucmd.uscsi_cdblen = CDB_GROUP1;
839 			cdb.scc_cmd |= SCMD_GROUP1;
840 		}
841 
842 		ucmd.uscsi_cdb = (caddr_t)&cdb;
843 		ucmd.uscsi_bufaddr = data;
844 		ucmd.uscsi_buflen = nsectors * DEV_BSIZE;
845 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
846 		/*
847 		 * Set flags so that the command is isolated from normal
848 		 * commands and no error message is printed.
849 		 */
850 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
851 
852 		if (operation == VD_OP_BREAD) {
853 			cdb.scc_cmd |= SCMD_READ;
854 			ucmd.uscsi_flags |= USCSI_READ;
855 		} else {
856 			cdb.scc_cmd |= SCMD_WRITE;
857 		}
858 
859 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
860 		    USCSICMD, (intptr_t)&ucmd, (vd_open_flags | FKIOCTL),
861 		    kcred, &rval);
862 
863 		if (status == 0)
864 			status = ucmd.uscsi_status;
865 
866 		if (status != 0)
867 			break;
868 
869 		/*
870 		 * Check if partial DMA breakup is required. If so, reduce
871 		 * the request size by half and retry the last request.
872 		 */
873 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
874 			max_sectors >>= 1;
875 			if (max_sectors <= 0) {
876 				status = EIO;
877 				break;
878 			}
879 			continue;
880 		}
881 
882 		if (ucmd.uscsi_resid != 0) {
883 			status = EIO;
884 			break;
885 		}
886 
887 		blk += nsectors;
888 		nblk -= nsectors;
889 		data += nsectors * DEV_BSIZE; /* SECSIZE */
890 	}
891 
892 	return (status);
893 }
894 
895 static int
896 vd_start_bio(vd_task_t *task)
897 {
898 	int			rv, status = 0;
899 	vd_t			*vd		= task->vd;
900 	vd_dring_payload_t	*request	= task->request;
901 	struct buf		*buf		= &task->buf;
902 	uint8_t			mtype;
903 	int 			slice;
904 
905 	ASSERT(vd != NULL);
906 	ASSERT(request != NULL);
907 
908 	slice = request->slice;
909 
910 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
911 	ASSERT((request->operation == VD_OP_BREAD) ||
912 	    (request->operation == VD_OP_BWRITE));
913 
914 	if (request->nbytes == 0)
915 		return (EINVAL);	/* no service for trivial requests */
916 
917 	PR1("%s %lu bytes at block %lu",
918 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
919 	    request->nbytes, request->addr);
920 
921 	bioinit(buf);
922 	buf->b_flags		= B_BUSY;
923 	buf->b_bcount		= request->nbytes;
924 	buf->b_lblkno		= request->addr;
925 	buf->b_edev = (slice == VD_SLICE_NONE)? NODEV : vd->dev[slice];
926 
927 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
928 
929 	/* Map memory exported by client */
930 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
931 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
932 	    &(buf->b_un.b_addr), NULL);
933 	if (status != 0) {
934 		PR0("ldc_mem_map() returned err %d ", status);
935 		biofini(buf);
936 		return (status);
937 	}
938 
939 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
940 	if (status != 0) {
941 		(void) ldc_mem_unmap(task->mhdl);
942 		PR0("ldc_mem_acquire() returned err %d ", status);
943 		biofini(buf);
944 		return (status);
945 	}
946 
947 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
948 
949 	/* Start the block I/O */
950 	if (vd->file) {
951 		rv = vd_file_rw(vd, slice, request->operation, buf->b_un.b_addr,
952 		    request->addr, request->nbytes);
953 		if (rv < 0) {
954 			request->nbytes = 0;
955 			status = EIO;
956 		} else {
957 			request->nbytes = rv;
958 			status = 0;
959 		}
960 	} else {
961 		if (slice == VD_SLICE_NONE) {
962 			/*
963 			 * This is not a disk image so it is a real disk. We
964 			 * assume that the underlying device driver supports
965 			 * USCSICMD ioctls. This is the case of all SCSI devices
966 			 * (sd, ssd...).
967 			 *
968 			 * In the future if we have non-SCSI disks we would need
969 			 * to invoke the appropriate function to do I/O using an
970 			 * absolute disk offset (for example using DKIOCTL_RWCMD
971 			 * for IDE disks).
972 			 */
973 			rv = vd_scsi_rdwr(vd, request->operation,
974 			    buf->b_un.b_addr, request->addr, request->nbytes);
975 			if (rv != 0) {
976 				request->nbytes = 0;
977 				status = EIO;
978 			} else {
979 				status = 0;
980 			}
981 		} else {
982 			status = ldi_strategy(vd->ldi_handle[slice], buf);
983 			if (status == 0)
984 				/* will complete on completionq */
985 				return (EINPROGRESS);
986 		}
987 	}
988 
989 	/* Clean up after error */
990 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
991 	if (rv) {
992 		PR0("ldc_mem_release() returned err %d ", rv);
993 	}
994 	rv = ldc_mem_unmap(task->mhdl);
995 	if (rv) {
996 		PR0("ldc_mem_unmap() returned err %d ", status);
997 	}
998 
999 	biofini(buf);
1000 	return (status);
1001 }
1002 
1003 static int
1004 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1005 {
1006 	int	status;
1007 	size_t	nbytes;
1008 
1009 	do {
1010 		nbytes = msglen;
1011 		status = ldc_write(ldc_handle, msg, &nbytes);
1012 		if (status != EWOULDBLOCK)
1013 			break;
1014 		drv_usecwait(vds_ldc_delay);
1015 	} while (status == EWOULDBLOCK);
1016 
1017 	if (status != 0) {
1018 		if (status != ECONNRESET)
1019 			PR0("ldc_write() returned errno %d", status);
1020 		return (status);
1021 	} else if (nbytes != msglen) {
1022 		PR0("ldc_write() performed only partial write");
1023 		return (EIO);
1024 	}
1025 
1026 	PR1("SENT %lu bytes", msglen);
1027 	return (0);
1028 }
1029 
1030 static void
1031 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1032 {
1033 	mutex_enter(&vd->lock);
1034 	vd->reset_state	= B_TRUE;
1035 	vd->reset_ldc	= reset_ldc;
1036 	mutex_exit(&vd->lock);
1037 }
1038 
1039 /*
1040  * Reset the state of the connection with a client, if needed; reset the LDC
1041  * transport as well, if needed.  This function should only be called from the
1042  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1043  */
1044 static void
1045 vd_reset_if_needed(vd_t *vd)
1046 {
1047 	int	status = 0;
1048 
1049 	mutex_enter(&vd->lock);
1050 	if (!vd->reset_state) {
1051 		ASSERT(!vd->reset_ldc);
1052 		mutex_exit(&vd->lock);
1053 		return;
1054 	}
1055 	mutex_exit(&vd->lock);
1056 
1057 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1058 
1059 	/*
1060 	 * Let any asynchronous I/O complete before possibly pulling the rug
1061 	 * out from under it; defer checking vd->reset_ldc, as one of the
1062 	 * asynchronous tasks might set it
1063 	 */
1064 	ddi_taskq_wait(vd->completionq);
1065 
1066 	if (vd->file) {
1067 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred);
1068 		if (status) {
1069 			PR0("VOP_FSYNC returned errno %d", status);
1070 		}
1071 	}
1072 
1073 	if ((vd->initialized & VD_DRING) &&
1074 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1075 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1076 
1077 	vd_free_dring_task(vd);
1078 
1079 	/* Free the staging buffer for msgs */
1080 	if (vd->vio_msgp != NULL) {
1081 		kmem_free(vd->vio_msgp, vd->max_msglen);
1082 		vd->vio_msgp = NULL;
1083 	}
1084 
1085 	/* Free the inband message buffer */
1086 	if (vd->inband_task.msg != NULL) {
1087 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1088 		vd->inband_task.msg = NULL;
1089 	}
1090 
1091 	mutex_enter(&vd->lock);
1092 
1093 	if (vd->reset_ldc)
1094 		PR0("taking down LDC channel");
1095 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1096 		PR0("ldc_down() returned errno %d", status);
1097 
1098 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1099 	vd->state	= VD_STATE_INIT;
1100 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1101 
1102 	/* Allocate the staging buffer */
1103 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1104 
1105 	PR0("calling ldc_up\n");
1106 	(void) ldc_up(vd->ldc_handle);
1107 
1108 	vd->reset_state	= B_FALSE;
1109 	vd->reset_ldc	= B_FALSE;
1110 
1111 	mutex_exit(&vd->lock);
1112 }
1113 
1114 static void vd_recv_msg(void *arg);
1115 
1116 static void
1117 vd_mark_in_reset(vd_t *vd)
1118 {
1119 	int status;
1120 
1121 	PR0("vd_mark_in_reset: marking vd in reset\n");
1122 
1123 	vd_need_reset(vd, B_FALSE);
1124 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1125 	if (status == DDI_FAILURE) {
1126 		PR0("cannot schedule task to recv msg\n");
1127 		vd_need_reset(vd, B_TRUE);
1128 		return;
1129 	}
1130 }
1131 
1132 static int
1133 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1134 {
1135 	boolean_t		accepted;
1136 	int			status;
1137 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1138 
1139 	if (vd->reset_state)
1140 		return (0);
1141 
1142 	/* Acquire the element */
1143 	if (!vd->reset_state &&
1144 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1145 		if (status == ECONNRESET) {
1146 			vd_mark_in_reset(vd);
1147 			return (0);
1148 		} else {
1149 			PR0("ldc_mem_dring_acquire() returned errno %d",
1150 			    status);
1151 			return (status);
1152 		}
1153 	}
1154 
1155 	/* Set the element's status and mark it done */
1156 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1157 	if (accepted) {
1158 		elem->payload.nbytes	= elem_nbytes;
1159 		elem->payload.status	= elem_status;
1160 		elem->hdr.dstate	= VIO_DESC_DONE;
1161 	} else {
1162 		/* Perhaps client timed out waiting for I/O... */
1163 		PR0("element %u no longer \"accepted\"", idx);
1164 		VD_DUMP_DRING_ELEM(elem);
1165 	}
1166 	/* Release the element */
1167 	if (!vd->reset_state &&
1168 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1169 		if (status == ECONNRESET) {
1170 			vd_mark_in_reset(vd);
1171 			return (0);
1172 		} else {
1173 			PR0("ldc_mem_dring_release() returned errno %d",
1174 			    status);
1175 			return (status);
1176 		}
1177 	}
1178 
1179 	return (accepted ? 0 : EINVAL);
1180 }
1181 
1182 static void
1183 vd_complete_bio(void *arg)
1184 {
1185 	int			status		= 0;
1186 	vd_task_t		*task		= (vd_task_t *)arg;
1187 	vd_t			*vd		= task->vd;
1188 	vd_dring_payload_t	*request	= task->request;
1189 	struct buf		*buf		= &task->buf;
1190 
1191 
1192 	ASSERT(vd != NULL);
1193 	ASSERT(request != NULL);
1194 	ASSERT(task->msg != NULL);
1195 	ASSERT(task->msglen >= sizeof (*task->msg));
1196 	ASSERT(!vd->file);
1197 
1198 	/* Wait for the I/O to complete */
1199 	request->status = biowait(buf);
1200 
1201 	/* return back the number of bytes read/written */
1202 	request->nbytes = buf->b_bcount - buf->b_resid;
1203 
1204 	/* Release the buffer */
1205 	if (!vd->reset_state)
1206 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1207 	if (status) {
1208 		PR0("ldc_mem_release() returned errno %d copying to "
1209 		    "client", status);
1210 		if (status == ECONNRESET) {
1211 			vd_mark_in_reset(vd);
1212 		}
1213 	}
1214 
1215 	/* Unmap the memory, even if in reset */
1216 	status = ldc_mem_unmap(task->mhdl);
1217 	if (status) {
1218 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1219 		    status);
1220 		if (status == ECONNRESET) {
1221 			vd_mark_in_reset(vd);
1222 		}
1223 	}
1224 
1225 	biofini(buf);
1226 
1227 	/* Update the dring element for a dring client */
1228 	if (!vd->reset_state && (status == 0) &&
1229 	    (vd->xfer_mode == VIO_DRING_MODE)) {
1230 		status = vd_mark_elem_done(vd, task->index,
1231 		    request->status, request->nbytes);
1232 		if (status == ECONNRESET)
1233 			vd_mark_in_reset(vd);
1234 	}
1235 
1236 	/*
1237 	 * If a transport error occurred, arrange to "nack" the message when
1238 	 * the final task in the descriptor element range completes
1239 	 */
1240 	if (status != 0)
1241 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1242 
1243 	/*
1244 	 * Only the final task for a range of elements will respond to and
1245 	 * free the message
1246 	 */
1247 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1248 		return;
1249 	}
1250 
1251 	/*
1252 	 * Send the "ack" or "nack" back to the client; if sending the message
1253 	 * via LDC fails, arrange to reset both the connection state and LDC
1254 	 * itself
1255 	 */
1256 	PR1("Sending %s",
1257 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1258 	if (!vd->reset_state) {
1259 		status = send_msg(vd->ldc_handle, task->msg, task->msglen);
1260 		switch (status) {
1261 		case 0:
1262 			break;
1263 		case ECONNRESET:
1264 			vd_mark_in_reset(vd);
1265 			break;
1266 		default:
1267 			PR0("initiating full reset");
1268 			vd_need_reset(vd, B_TRUE);
1269 			break;
1270 		}
1271 	}
1272 }
1273 
1274 static void
1275 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
1276 {
1277 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1278 }
1279 
1280 static void
1281 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
1282 {
1283 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1284 }
1285 
1286 static void
1287 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1288 {
1289 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1290 }
1291 
1292 static void
1293 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1294 {
1295 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1296 }
1297 
1298 static void
1299 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
1300 {
1301 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1302 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1303 
1304 	dk_efi->dki_lba = vd_efi->lba;
1305 	dk_efi->dki_length = vd_efi->length;
1306 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1307 }
1308 
1309 static void
1310 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1311 {
1312 	int len;
1313 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1314 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1315 
1316 	len = vd_efi->length;
1317 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1318 	kmem_free(dk_efi->dki_data, len);
1319 }
1320 
1321 static void
1322 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
1323 {
1324 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1325 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1326 
1327 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1328 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1329 }
1330 
1331 static void
1332 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1333 {
1334 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1335 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1336 
1337 	kmem_free(dk_efi->dki_data, vd_efi->length);
1338 }
1339 
1340 static int
1341 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label)
1342 {
1343 	int status, rval;
1344 	struct dk_gpt *efi;
1345 	size_t efi_len;
1346 
1347 	*label = VD_DISK_LABEL_UNK;
1348 
1349 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
1350 	    (vd_open_flags | FKIOCTL), kcred, &rval);
1351 
1352 	if (status == 0) {
1353 		*label = VD_DISK_LABEL_VTOC;
1354 		return (0);
1355 	} else if (status != ENOTSUP) {
1356 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
1357 		return (status);
1358 	}
1359 
1360 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
1361 
1362 	if (status) {
1363 		PR0("vds_efi_alloc_and_read returned error %d", status);
1364 		return (status);
1365 	}
1366 
1367 	*label = VD_DISK_LABEL_EFI;
1368 	vd_efi_to_vtoc(efi, vtoc);
1369 	vd_efi_free(efi, efi_len);
1370 
1371 	return (0);
1372 }
1373 
1374 static ushort_t
1375 vd_lbl2cksum(struct dk_label *label)
1376 {
1377 	int	count;
1378 	ushort_t sum, *sp;
1379 
1380 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
1381 	sp = (ushort_t *)label;
1382 	sum = 0;
1383 	while (count--) {
1384 		sum ^= *sp++;
1385 	}
1386 
1387 	return (sum);
1388 }
1389 
1390 /*
1391  * Handle ioctls to a disk slice.
1392  */
1393 static int
1394 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1395 {
1396 	dk_efi_t *dk_ioc;
1397 
1398 	switch (vd->vdisk_label) {
1399 
1400 	/* ioctls for a slice from a disk with a VTOC label */
1401 	case VD_DISK_LABEL_VTOC:
1402 
1403 		switch (cmd) {
1404 		case DKIOCGGEOM:
1405 			ASSERT(ioctl_arg != NULL);
1406 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
1407 			return (0);
1408 		case DKIOCGVTOC:
1409 			ASSERT(ioctl_arg != NULL);
1410 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
1411 			return (0);
1412 		default:
1413 			return (ENOTSUP);
1414 		}
1415 
1416 	/* ioctls for a slice from a disk with an EFI label */
1417 	case VD_DISK_LABEL_EFI:
1418 
1419 		switch (cmd) {
1420 		case DKIOCGETEFI:
1421 			ASSERT(ioctl_arg != NULL);
1422 			dk_ioc = (dk_efi_t *)ioctl_arg;
1423 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1424 				return (EINVAL);
1425 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1426 			    vd->dk_efi.dki_length);
1427 			return (0);
1428 		default:
1429 			return (ENOTSUP);
1430 		}
1431 
1432 	default:
1433 		return (ENOTSUP);
1434 	}
1435 }
1436 
1437 /*
1438  * Handle ioctls to a disk image.
1439  */
1440 static int
1441 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1442 {
1443 	struct dk_label label;
1444 	struct dk_geom *geom;
1445 	struct vtoc *vtoc;
1446 	int i, rc;
1447 
1448 	ASSERT(vd->file);
1449 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1450 
1451 	switch (cmd) {
1452 
1453 	case DKIOCGGEOM:
1454 		ASSERT(ioctl_arg != NULL);
1455 		geom = (struct dk_geom *)ioctl_arg;
1456 
1457 		if (VD_FILE_LABEL_READ(vd, &label) < 0)
1458 			return (EIO);
1459 
1460 		if (label.dkl_magic != DKL_MAGIC ||
1461 		    label.dkl_cksum != vd_lbl2cksum(&label))
1462 			return (EINVAL);
1463 
1464 		bzero(geom, sizeof (struct dk_geom));
1465 		geom->dkg_ncyl = label.dkl_ncyl;
1466 		geom->dkg_acyl = label.dkl_acyl;
1467 		geom->dkg_nhead = label.dkl_nhead;
1468 		geom->dkg_nsect = label.dkl_nsect;
1469 		geom->dkg_intrlv = label.dkl_intrlv;
1470 		geom->dkg_apc = label.dkl_apc;
1471 		geom->dkg_rpm = label.dkl_rpm;
1472 		geom->dkg_pcyl = label.dkl_pcyl;
1473 		geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
1474 		geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
1475 
1476 		return (0);
1477 
1478 	case DKIOCGVTOC:
1479 		ASSERT(ioctl_arg != NULL);
1480 		vtoc = (struct vtoc *)ioctl_arg;
1481 
1482 		if (VD_FILE_LABEL_READ(vd, &label) < 0)
1483 			return (EIO);
1484 
1485 		if (label.dkl_magic != DKL_MAGIC ||
1486 		    label.dkl_cksum != vd_lbl2cksum(&label))
1487 			return (EINVAL);
1488 
1489 		bzero(vtoc, sizeof (struct vtoc));
1490 
1491 		vtoc->v_sanity = label.dkl_vtoc.v_sanity;
1492 		vtoc->v_version = label.dkl_vtoc.v_version;
1493 		vtoc->v_sectorsz = DEV_BSIZE;
1494 		vtoc->v_nparts = label.dkl_vtoc.v_nparts;
1495 
1496 		for (i = 0; i < vtoc->v_nparts; i++) {
1497 			vtoc->v_part[i].p_tag =
1498 			    label.dkl_vtoc.v_part[i].p_tag;
1499 			vtoc->v_part[i].p_flag =
1500 			    label.dkl_vtoc.v_part[i].p_flag;
1501 			vtoc->v_part[i].p_start =
1502 			    label.dkl_map[i].dkl_cylno *
1503 			    (label.dkl_nhead * label.dkl_nsect);
1504 			vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
1505 			vtoc->timestamp[i] =
1506 			    label.dkl_vtoc.v_timestamp[i];
1507 		}
1508 		/*
1509 		 * The bootinfo array can not be copied with bcopy() because
1510 		 * elements are of type long in vtoc (so 64-bit) and of type
1511 		 * int in dk_vtoc (so 32-bit).
1512 		 */
1513 		vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
1514 		vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
1515 		vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
1516 		bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
1517 		    LEN_DKL_ASCII);
1518 		bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
1519 		    LEN_DKL_VVOL);
1520 
1521 		return (0);
1522 
1523 	case DKIOCSGEOM:
1524 		ASSERT(ioctl_arg != NULL);
1525 		geom = (struct dk_geom *)ioctl_arg;
1526 
1527 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
1528 			return (EINVAL);
1529 
1530 		/*
1531 		 * The current device geometry is not updated, just the driver
1532 		 * "notion" of it. The device geometry will be effectively
1533 		 * updated when a label is written to the device during a next
1534 		 * DKIOCSVTOC.
1535 		 */
1536 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
1537 		return (0);
1538 
1539 	case DKIOCSVTOC:
1540 		ASSERT(ioctl_arg != NULL);
1541 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
1542 		    vd->dk_geom.dkg_nsect != 0);
1543 		vtoc = (struct vtoc *)ioctl_arg;
1544 
1545 		if (vtoc->v_sanity != VTOC_SANE ||
1546 		    vtoc->v_sectorsz != DEV_BSIZE ||
1547 		    vtoc->v_nparts != V_NUMPAR)
1548 			return (EINVAL);
1549 
1550 		bzero(&label, sizeof (label));
1551 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
1552 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
1553 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
1554 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
1555 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
1556 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
1557 		label.dkl_apc = vd->dk_geom.dkg_apc;
1558 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
1559 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
1560 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
1561 
1562 		label.dkl_vtoc.v_nparts = V_NUMPAR;
1563 		label.dkl_vtoc.v_sanity = VTOC_SANE;
1564 		label.dkl_vtoc.v_version = vtoc->v_version;
1565 		for (i = 0; i < V_NUMPAR; i++) {
1566 			label.dkl_vtoc.v_timestamp[i] =
1567 			    vtoc->timestamp[i];
1568 			label.dkl_vtoc.v_part[i].p_tag =
1569 			    vtoc->v_part[i].p_tag;
1570 			label.dkl_vtoc.v_part[i].p_flag =
1571 			    vtoc->v_part[i].p_flag;
1572 			label.dkl_map[i].dkl_cylno =
1573 			    vtoc->v_part[i].p_start /
1574 			    (label.dkl_nhead * label.dkl_nsect);
1575 			label.dkl_map[i].dkl_nblk =
1576 			    vtoc->v_part[i].p_size;
1577 		}
1578 		/*
1579 		 * The bootinfo array can not be copied with bcopy() because
1580 		 * elements are of type long in vtoc (so 64-bit) and of type
1581 		 * int in dk_vtoc (so 32-bit).
1582 		 */
1583 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
1584 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
1585 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
1586 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
1587 		    LEN_DKL_ASCII);
1588 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
1589 		    LEN_DKL_VVOL);
1590 
1591 		/* re-compute checksum */
1592 		label.dkl_magic = DKL_MAGIC;
1593 		label.dkl_cksum = vd_lbl2cksum(&label);
1594 
1595 		/* write label to the disk image */
1596 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
1597 			return (rc);
1598 
1599 		/* update the cached vdisk VTOC */
1600 		bcopy(vtoc, &vd->vtoc, sizeof (vd->vtoc));
1601 
1602 		/*
1603 		 * The disk geometry may have changed, so we need to write
1604 		 * the devid (if there is one) so that it is stored at the
1605 		 * right location.
1606 		 */
1607 		if (vd->file_devid != NULL &&
1608 		    vd_file_write_devid(vd, vd->file_devid) != 0) {
1609 			PR0("Fail to write devid");
1610 		}
1611 
1612 		return (0);
1613 
1614 	default:
1615 		return (ENOTSUP);
1616 	}
1617 }
1618 
1619 static int
1620 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
1621 {
1622 	int	rval = 0, status;
1623 	size_t	nbytes = request->nbytes;	/* modifiable copy */
1624 
1625 
1626 	ASSERT(request->slice < vd->nslices);
1627 	PR0("Performing %s", ioctl->operation_name);
1628 
1629 	/* Get data from client and convert, if necessary */
1630 	if (ioctl->copyin != NULL)  {
1631 		ASSERT(nbytes != 0 && buf != NULL);
1632 		PR1("Getting \"arg\" data from client");
1633 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1634 		    request->cookie, request->ncookies,
1635 		    LDC_COPY_IN)) != 0) {
1636 			PR0("ldc_mem_copy() returned errno %d "
1637 			    "copying from client", status);
1638 			return (status);
1639 		}
1640 
1641 		/* Convert client's data, if necessary */
1642 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
1643 			ioctl->arg = buf;
1644 		else	/* convert client vdisk operation data to ioctl data */
1645 			(ioctl->copyin)(buf, (void *)ioctl->arg);
1646 	}
1647 
1648 	/*
1649 	 * Handle single-slice block devices internally; otherwise, have the
1650 	 * real driver perform the ioctl()
1651 	 */
1652 	if (vd->file) {
1653 		if ((status = vd_do_file_ioctl(vd, ioctl->cmd,
1654 		    (void *)ioctl->arg)) != 0)
1655 			return (status);
1656 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
1657 		if ((status = vd_do_slice_ioctl(vd, ioctl->cmd,
1658 		    (void *)ioctl->arg)) != 0)
1659 			return (status);
1660 	} else if ((status = ldi_ioctl(vd->ldi_handle[request->slice],
1661 	    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
1662 	    kcred, &rval)) != 0) {
1663 		PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status);
1664 		return (status);
1665 	}
1666 #ifdef DEBUG
1667 	if (rval != 0) {
1668 		PR0("%s set rval = %d, which is not being returned to client",
1669 		    ioctl->cmd_name, rval);
1670 	}
1671 #endif /* DEBUG */
1672 
1673 	/* Convert data and send to client, if necessary */
1674 	if (ioctl->copyout != NULL)  {
1675 		ASSERT(nbytes != 0 && buf != NULL);
1676 		PR1("Sending \"arg\" data to client");
1677 
1678 		/* Convert ioctl data to vdisk operation data, if necessary */
1679 		if (ioctl->copyout != VD_IDENTITY)
1680 			(ioctl->copyout)((void *)ioctl->arg, buf);
1681 
1682 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1683 		    request->cookie, request->ncookies,
1684 		    LDC_COPY_OUT)) != 0) {
1685 			PR0("ldc_mem_copy() returned errno %d "
1686 			    "copying to client", status);
1687 			return (status);
1688 		}
1689 	}
1690 
1691 	return (status);
1692 }
1693 
1694 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
1695 static int
1696 vd_ioctl(vd_task_t *task)
1697 {
1698 	int			i, status;
1699 	void			*buf = NULL;
1700 	struct dk_geom		dk_geom = {0};
1701 	struct vtoc		vtoc = {0};
1702 	struct dk_efi		dk_efi = {0};
1703 	vd_t			*vd		= task->vd;
1704 	vd_dring_payload_t	*request	= task->request;
1705 	vd_ioctl_t		ioctl[] = {
1706 		/* Command (no-copy) operations */
1707 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
1708 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
1709 		    NULL, NULL, NULL},
1710 
1711 		/* "Get" (copy-out) operations */
1712 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
1713 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
1714 		    NULL, VD_IDENTITY, VD_IDENTITY},
1715 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
1716 		    RNDSIZE(vd_geom_t),
1717 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
1718 		    &dk_geom, NULL, dk_geom2vd_geom},
1719 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
1720 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
1721 		    &vtoc, NULL, vtoc2vd_vtoc},
1722 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
1723 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
1724 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
1725 
1726 		/* "Set" (copy-in) operations */
1727 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
1728 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
1729 		    NULL, VD_IDENTITY, VD_IDENTITY},
1730 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
1731 		    RNDSIZE(vd_geom_t),
1732 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
1733 		    &dk_geom, vd_geom2dk_geom, NULL},
1734 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
1735 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
1736 		    &vtoc, vd_vtoc2vtoc, NULL},
1737 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
1738 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
1739 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
1740 	};
1741 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
1742 
1743 
1744 	ASSERT(vd != NULL);
1745 	ASSERT(request != NULL);
1746 	ASSERT(request->slice < vd->nslices);
1747 
1748 	/*
1749 	 * Determine ioctl corresponding to caller's "operation" and
1750 	 * validate caller's "nbytes"
1751 	 */
1752 	for (i = 0; i < nioctls; i++) {
1753 		if (request->operation == ioctl[i].operation) {
1754 			/* LDC memory operations require 8-byte multiples */
1755 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
1756 
1757 			if (request->operation == VD_OP_GET_EFI ||
1758 			    request->operation == VD_OP_SET_EFI) {
1759 				if (request->nbytes >= ioctl[i].nbytes)
1760 					break;
1761 				PR0("%s:  Expected at least nbytes = %lu, "
1762 				    "got %lu", ioctl[i].operation_name,
1763 				    ioctl[i].nbytes, request->nbytes);
1764 				return (EINVAL);
1765 			}
1766 
1767 			if (request->nbytes != ioctl[i].nbytes) {
1768 				PR0("%s:  Expected nbytes = %lu, got %lu",
1769 				    ioctl[i].operation_name, ioctl[i].nbytes,
1770 				    request->nbytes);
1771 				return (EINVAL);
1772 			}
1773 
1774 			break;
1775 		}
1776 	}
1777 	ASSERT(i < nioctls);	/* because "operation" already validated */
1778 
1779 	if (request->nbytes)
1780 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
1781 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
1782 	if (request->nbytes)
1783 		kmem_free(buf, request->nbytes);
1784 
1785 	PR0("Returning %d", status);
1786 	return (status);
1787 }
1788 
1789 static int
1790 vd_get_devid(vd_task_t *task)
1791 {
1792 	vd_t *vd = task->vd;
1793 	vd_dring_payload_t *request = task->request;
1794 	vd_devid_t *vd_devid;
1795 	impl_devid_t *devid;
1796 	int status, bufid_len, devid_len, len, sz;
1797 	int bufbytes;
1798 
1799 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
1800 
1801 	if (vd->file) {
1802 		if (vd->file_devid == NULL) {
1803 			PR2("No Device ID");
1804 			return (ENOENT);
1805 		} else {
1806 			sz = ddi_devid_sizeof(vd->file_devid);
1807 			devid = kmem_alloc(sz, KM_SLEEP);
1808 			bcopy(vd->file_devid, devid, sz);
1809 		}
1810 	} else {
1811 		if (ddi_lyr_get_devid(vd->dev[request->slice],
1812 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
1813 			PR2("No Device ID");
1814 			return (ENOENT);
1815 		}
1816 	}
1817 
1818 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
1819 	devid_len = DEVID_GETLEN(devid);
1820 
1821 	/*
1822 	 * Save the buffer size here for use in deallocation.
1823 	 * The actual number of bytes copied is returned in
1824 	 * the 'nbytes' field of the request structure.
1825 	 */
1826 	bufbytes = request->nbytes;
1827 
1828 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
1829 	vd_devid->length = devid_len;
1830 	vd_devid->type = DEVID_GETTYPE(devid);
1831 
1832 	len = (devid_len > bufid_len)? bufid_len : devid_len;
1833 
1834 	bcopy(devid->did_id, vd_devid->id, len);
1835 
1836 	/* LDC memory operations require 8-byte multiples */
1837 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
1838 
1839 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
1840 	    &request->nbytes, request->cookie, request->ncookies,
1841 	    LDC_COPY_OUT)) != 0) {
1842 		PR0("ldc_mem_copy() returned errno %d copying to client",
1843 		    status);
1844 	}
1845 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
1846 
1847 	kmem_free(vd_devid, bufbytes);
1848 	ddi_devid_free((ddi_devid_t)devid);
1849 
1850 	return (status);
1851 }
1852 
1853 /*
1854  * Define the supported operations once the functions for performing them have
1855  * been defined
1856  */
1857 static const vds_operation_t	vds_operation[] = {
1858 #define	X(_s)	#_s, _s
1859 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
1860 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
1861 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
1862 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
1863 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
1864 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
1865 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
1866 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
1867 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
1868 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
1869 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
1870 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
1871 #undef	X
1872 };
1873 
1874 static const size_t	vds_noperations =
1875 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
1876 
1877 /*
1878  * Process a task specifying a client I/O request
1879  */
1880 static int
1881 vd_process_task(vd_task_t *task)
1882 {
1883 	int			i, status;
1884 	vd_t			*vd		= task->vd;
1885 	vd_dring_payload_t	*request	= task->request;
1886 
1887 
1888 	ASSERT(vd != NULL);
1889 	ASSERT(request != NULL);
1890 
1891 	/* Find the requested operation */
1892 	for (i = 0; i < vds_noperations; i++)
1893 		if (request->operation == vds_operation[i].operation)
1894 			break;
1895 	if (i == vds_noperations) {
1896 		PR0("Unsupported operation %u", request->operation);
1897 		return (ENOTSUP);
1898 	}
1899 
1900 	/* Range-check slice */
1901 	if (request->slice >= vd->nslices &&
1902 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
1903 	    request->slice != VD_SLICE_NONE)) {
1904 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
1905 		    request->slice, (vd->nslices - 1));
1906 		return (EINVAL);
1907 	}
1908 
1909 	PR1("operation : %s", vds_operation[i].namep);
1910 
1911 	/* Start the operation */
1912 	if ((status = vds_operation[i].start(task)) != EINPROGRESS) {
1913 		PR0("operation : %s returned status %d",
1914 		    vds_operation[i].namep, status);
1915 		request->status = status;	/* op succeeded or failed */
1916 		return (0);			/* but request completed */
1917 	}
1918 
1919 	ASSERT(vds_operation[i].complete != NULL);	/* debug case */
1920 	if (vds_operation[i].complete == NULL) {	/* non-debug case */
1921 		PR0("Unexpected return of EINPROGRESS "
1922 		    "with no I/O completion handler");
1923 		request->status = EIO;	/* operation failed */
1924 		return (0);		/* but request completed */
1925 	}
1926 
1927 	PR1("operation : kick off taskq entry for %s", vds_operation[i].namep);
1928 
1929 	/* Queue a task to complete the operation */
1930 	status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete,
1931 	    task, DDI_SLEEP);
1932 	/* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */
1933 	ASSERT(status == DDI_SUCCESS);
1934 
1935 	PR1("Operation in progress");
1936 	return (EINPROGRESS);	/* completion handler will finish request */
1937 }
1938 
1939 /*
1940  * Return true if the "type", "subtype", and "env" fields of the "tag" first
1941  * argument match the corresponding remaining arguments; otherwise, return false
1942  */
1943 boolean_t
1944 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
1945 {
1946 	return ((tag->vio_msgtype == type) &&
1947 	    (tag->vio_subtype == subtype) &&
1948 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
1949 }
1950 
1951 /*
1952  * Check whether the major/minor version specified in "ver_msg" is supported
1953  * by this server.
1954  */
1955 static boolean_t
1956 vds_supported_version(vio_ver_msg_t *ver_msg)
1957 {
1958 	for (int i = 0; i < vds_num_versions; i++) {
1959 		ASSERT(vds_version[i].major > 0);
1960 		ASSERT((i == 0) ||
1961 		    (vds_version[i].major < vds_version[i-1].major));
1962 
1963 		/*
1964 		 * If the major versions match, adjust the minor version, if
1965 		 * necessary, down to the highest value supported by this
1966 		 * server and return true so this message will get "ack"ed;
1967 		 * the client should also support all minor versions lower
1968 		 * than the value it sent
1969 		 */
1970 		if (ver_msg->ver_major == vds_version[i].major) {
1971 			if (ver_msg->ver_minor > vds_version[i].minor) {
1972 				PR0("Adjusting minor version from %u to %u",
1973 				    ver_msg->ver_minor, vds_version[i].minor);
1974 				ver_msg->ver_minor = vds_version[i].minor;
1975 			}
1976 			return (B_TRUE);
1977 		}
1978 
1979 		/*
1980 		 * If the message contains a higher major version number, set
1981 		 * the message's major/minor versions to the current values
1982 		 * and return false, so this message will get "nack"ed with
1983 		 * these values, and the client will potentially try again
1984 		 * with the same or a lower version
1985 		 */
1986 		if (ver_msg->ver_major > vds_version[i].major) {
1987 			ver_msg->ver_major = vds_version[i].major;
1988 			ver_msg->ver_minor = vds_version[i].minor;
1989 			return (B_FALSE);
1990 		}
1991 
1992 		/*
1993 		 * Otherwise, the message's major version is less than the
1994 		 * current major version, so continue the loop to the next
1995 		 * (lower) supported version
1996 		 */
1997 	}
1998 
1999 	/*
2000 	 * No common version was found; "ground" the version pair in the
2001 	 * message to terminate negotiation
2002 	 */
2003 	ver_msg->ver_major = 0;
2004 	ver_msg->ver_minor = 0;
2005 	return (B_FALSE);
2006 }
2007 
2008 /*
2009  * Process a version message from a client.  vds expects to receive version
2010  * messages from clients seeking service, but never issues version messages
2011  * itself; therefore, vds can ACK or NACK client version messages, but does
2012  * not expect to receive version-message ACKs or NACKs (and will treat such
2013  * messages as invalid).
2014  */
2015 static int
2016 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2017 {
2018 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
2019 
2020 
2021 	ASSERT(msglen >= sizeof (msg->tag));
2022 
2023 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2024 	    VIO_VER_INFO)) {
2025 		return (ENOMSG);	/* not a version message */
2026 	}
2027 
2028 	if (msglen != sizeof (*ver_msg)) {
2029 		PR0("Expected %lu-byte version message; "
2030 		    "received %lu bytes", sizeof (*ver_msg), msglen);
2031 		return (EBADMSG);
2032 	}
2033 
2034 	if (ver_msg->dev_class != VDEV_DISK) {
2035 		PR0("Expected device class %u (disk); received %u",
2036 		    VDEV_DISK, ver_msg->dev_class);
2037 		return (EBADMSG);
2038 	}
2039 
2040 	/*
2041 	 * We're talking to the expected kind of client; set our device class
2042 	 * for "ack/nack" back to the client
2043 	 */
2044 	ver_msg->dev_class = VDEV_DISK_SERVER;
2045 
2046 	/*
2047 	 * Check whether the (valid) version message specifies a version
2048 	 * supported by this server.  If the version is not supported, return
2049 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
2050 	 * will have updated the message with a supported version for the
2051 	 * client to consider
2052 	 */
2053 	if (!vds_supported_version(ver_msg))
2054 		return (EBADMSG);
2055 
2056 
2057 	/*
2058 	 * A version has been agreed upon; use the client's SID for
2059 	 * communication on this channel now
2060 	 */
2061 	ASSERT(!(vd->initialized & VD_SID));
2062 	vd->sid = ver_msg->tag.vio_sid;
2063 	vd->initialized |= VD_SID;
2064 
2065 	/*
2066 	 * When multiple versions are supported, this function should store
2067 	 * the negotiated major and minor version values in the "vd" data
2068 	 * structure to govern further communication; in particular, note that
2069 	 * the client might have specified a lower minor version for the
2070 	 * agreed major version than specifed in the vds_version[] array.  The
2071 	 * following assertions should help remind future maintainers to make
2072 	 * the appropriate changes to support multiple versions.
2073 	 */
2074 	ASSERT(vds_num_versions == 1);
2075 	ASSERT(ver_msg->ver_major == vds_version[0].major);
2076 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
2077 
2078 	PR0("Using major version %u, minor version %u",
2079 	    ver_msg->ver_major, ver_msg->ver_minor);
2080 	return (0);
2081 }
2082 
2083 static int
2084 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2085 {
2086 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
2087 	int		status, retry = 0;
2088 
2089 
2090 	ASSERT(msglen >= sizeof (msg->tag));
2091 
2092 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2093 	    VIO_ATTR_INFO)) {
2094 		PR0("Message is not an attribute message");
2095 		return (ENOMSG);
2096 	}
2097 
2098 	if (msglen != sizeof (*attr_msg)) {
2099 		PR0("Expected %lu-byte attribute message; "
2100 		    "received %lu bytes", sizeof (*attr_msg), msglen);
2101 		return (EBADMSG);
2102 	}
2103 
2104 	if (attr_msg->max_xfer_sz == 0) {
2105 		PR0("Received maximum transfer size of 0 from client");
2106 		return (EBADMSG);
2107 	}
2108 
2109 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
2110 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
2111 		PR0("Client requested unsupported transfer mode");
2112 		return (EBADMSG);
2113 	}
2114 
2115 	/*
2116 	 * check if the underlying disk is ready, if not try accessing
2117 	 * the device again. Open the vdisk device and extract info
2118 	 * about it, as this is needed to respond to the attr info msg
2119 	 */
2120 	if ((vd->initialized & VD_DISK_READY) == 0) {
2121 		PR0("Retry setting up disk (%s)", vd->device_path);
2122 		do {
2123 			status = vd_setup_vd(vd);
2124 			if (status != EAGAIN || ++retry > vds_dev_retries)
2125 				break;
2126 
2127 			/* incremental delay */
2128 			delay(drv_usectohz(vds_dev_delay));
2129 
2130 			/* if vdisk is no longer enabled - return error */
2131 			if (!vd_enabled(vd))
2132 				return (ENXIO);
2133 
2134 		} while (status == EAGAIN);
2135 
2136 		if (status)
2137 			return (ENXIO);
2138 
2139 		vd->initialized |= VD_DISK_READY;
2140 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2141 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
2142 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2143 		    (vd->pseudo ? "yes" : "no"),
2144 		    (vd->file ? "yes" : "no"),
2145 		    vd->nslices);
2146 	}
2147 
2148 	/* Success:  valid message and transfer mode */
2149 	vd->xfer_mode = attr_msg->xfer_mode;
2150 
2151 	if (vd->xfer_mode == VIO_DESC_MODE) {
2152 
2153 		/*
2154 		 * The vd_dring_inband_msg_t contains one cookie; need room
2155 		 * for up to n-1 more cookies, where "n" is the number of full
2156 		 * pages plus possibly one partial page required to cover
2157 		 * "max_xfer_sz".  Add room for one more cookie if
2158 		 * "max_xfer_sz" isn't an integral multiple of the page size.
2159 		 * Must first get the maximum transfer size in bytes.
2160 		 */
2161 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
2162 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
2163 		    attr_msg->max_xfer_sz;
2164 		size_t	max_inband_msglen =
2165 		    sizeof (vd_dring_inband_msg_t) +
2166 		    ((max_xfer_bytes/PAGESIZE +
2167 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
2168 		    (sizeof (ldc_mem_cookie_t)));
2169 
2170 		/*
2171 		 * Set the maximum expected message length to
2172 		 * accommodate in-band-descriptor messages with all
2173 		 * their cookies
2174 		 */
2175 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
2176 
2177 		/*
2178 		 * Initialize the data structure for processing in-band I/O
2179 		 * request descriptors
2180 		 */
2181 		vd->inband_task.vd	= vd;
2182 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
2183 		vd->inband_task.index	= 0;
2184 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
2185 	}
2186 
2187 	/* Return the device's block size and max transfer size to the client */
2188 	attr_msg->vdisk_block_size	= DEV_BSIZE;
2189 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
2190 
2191 	attr_msg->vdisk_size = vd->vdisk_size;
2192 	attr_msg->vdisk_type = vd->vdisk_type;
2193 	attr_msg->operations = vds_operations;
2194 	PR0("%s", VD_CLIENT(vd));
2195 
2196 	ASSERT(vd->dring_task == NULL);
2197 
2198 	return (0);
2199 }
2200 
2201 static int
2202 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2203 {
2204 	int			status;
2205 	size_t			expected;
2206 	ldc_mem_info_t		dring_minfo;
2207 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
2208 
2209 
2210 	ASSERT(msglen >= sizeof (msg->tag));
2211 
2212 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2213 	    VIO_DRING_REG)) {
2214 		PR0("Message is not a register-dring message");
2215 		return (ENOMSG);
2216 	}
2217 
2218 	if (msglen < sizeof (*reg_msg)) {
2219 		PR0("Expected at least %lu-byte register-dring message; "
2220 		    "received %lu bytes", sizeof (*reg_msg), msglen);
2221 		return (EBADMSG);
2222 	}
2223 
2224 	expected = sizeof (*reg_msg) +
2225 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
2226 	if (msglen != expected) {
2227 		PR0("Expected %lu-byte register-dring message; "
2228 		    "received %lu bytes", expected, msglen);
2229 		return (EBADMSG);
2230 	}
2231 
2232 	if (vd->initialized & VD_DRING) {
2233 		PR0("A dring was previously registered; only support one");
2234 		return (EBADMSG);
2235 	}
2236 
2237 	if (reg_msg->num_descriptors > INT32_MAX) {
2238 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
2239 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
2240 		return (EBADMSG);
2241 	}
2242 
2243 	if (reg_msg->ncookies != 1) {
2244 		/*
2245 		 * In addition to fixing the assertion in the success case
2246 		 * below, supporting drings which require more than one
2247 		 * "cookie" requires increasing the value of vd->max_msglen
2248 		 * somewhere in the code path prior to receiving the message
2249 		 * which results in calling this function.  Note that without
2250 		 * making this change, the larger message size required to
2251 		 * accommodate multiple cookies cannot be successfully
2252 		 * received, so this function will not even get called.
2253 		 * Gracefully accommodating more dring cookies might
2254 		 * reasonably demand exchanging an additional attribute or
2255 		 * making a minor protocol adjustment
2256 		 */
2257 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
2258 		return (EBADMSG);
2259 	}
2260 
2261 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
2262 	    reg_msg->ncookies, reg_msg->num_descriptors,
2263 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
2264 	if (status != 0) {
2265 		PR0("ldc_mem_dring_map() returned errno %d", status);
2266 		return (status);
2267 	}
2268 
2269 	/*
2270 	 * To remove the need for this assertion, must call
2271 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
2272 	 * successful call to ldc_mem_dring_map()
2273 	 */
2274 	ASSERT(reg_msg->ncookies == 1);
2275 
2276 	if ((status =
2277 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
2278 		PR0("ldc_mem_dring_info() returned errno %d", status);
2279 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
2280 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
2281 		return (status);
2282 	}
2283 
2284 	if (dring_minfo.vaddr == NULL) {
2285 		PR0("Descriptor ring virtual address is NULL");
2286 		return (ENXIO);
2287 	}
2288 
2289 
2290 	/* Initialize for valid message and mapped dring */
2291 	PR1("descriptor size = %u, dring length = %u",
2292 	    vd->descriptor_size, vd->dring_len);
2293 	vd->initialized |= VD_DRING;
2294 	vd->dring_ident = 1;	/* "There Can Be Only One" */
2295 	vd->dring = dring_minfo.vaddr;
2296 	vd->descriptor_size = reg_msg->descriptor_size;
2297 	vd->dring_len = reg_msg->num_descriptors;
2298 	reg_msg->dring_ident = vd->dring_ident;
2299 
2300 	/*
2301 	 * Allocate and initialize a "shadow" array of data structures for
2302 	 * tasks to process I/O requests in dring elements
2303 	 */
2304 	vd->dring_task =
2305 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
2306 	for (int i = 0; i < vd->dring_len; i++) {
2307 		vd->dring_task[i].vd		= vd;
2308 		vd->dring_task[i].index		= i;
2309 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
2310 
2311 		status = ldc_mem_alloc_handle(vd->ldc_handle,
2312 		    &(vd->dring_task[i].mhdl));
2313 		if (status) {
2314 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
2315 			return (ENXIO);
2316 		}
2317 
2318 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
2319 	}
2320 
2321 	return (0);
2322 }
2323 
2324 static int
2325 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2326 {
2327 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
2328 
2329 
2330 	ASSERT(msglen >= sizeof (msg->tag));
2331 
2332 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2333 	    VIO_DRING_UNREG)) {
2334 		PR0("Message is not an unregister-dring message");
2335 		return (ENOMSG);
2336 	}
2337 
2338 	if (msglen != sizeof (*unreg_msg)) {
2339 		PR0("Expected %lu-byte unregister-dring message; "
2340 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
2341 		return (EBADMSG);
2342 	}
2343 
2344 	if (unreg_msg->dring_ident != vd->dring_ident) {
2345 		PR0("Expected dring ident %lu; received %lu",
2346 		    vd->dring_ident, unreg_msg->dring_ident);
2347 		return (EBADMSG);
2348 	}
2349 
2350 	return (0);
2351 }
2352 
2353 static int
2354 process_rdx_msg(vio_msg_t *msg, size_t msglen)
2355 {
2356 	ASSERT(msglen >= sizeof (msg->tag));
2357 
2358 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
2359 		PR0("Message is not an RDX message");
2360 		return (ENOMSG);
2361 	}
2362 
2363 	if (msglen != sizeof (vio_rdx_msg_t)) {
2364 		PR0("Expected %lu-byte RDX message; received %lu bytes",
2365 		    sizeof (vio_rdx_msg_t), msglen);
2366 		return (EBADMSG);
2367 	}
2368 
2369 	PR0("Valid RDX message");
2370 	return (0);
2371 }
2372 
2373 static int
2374 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
2375 {
2376 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
2377 		PR0("Received seq_num %lu; expected %lu",
2378 		    seq_num, (vd->seq_num + 1));
2379 		PR0("initiating soft reset");
2380 		vd_need_reset(vd, B_FALSE);
2381 		return (1);
2382 	}
2383 
2384 	vd->seq_num = seq_num;
2385 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
2386 	return (0);
2387 }
2388 
2389 /*
2390  * Return the expected size of an inband-descriptor message with all the
2391  * cookies it claims to include
2392  */
2393 static size_t
2394 expected_inband_size(vd_dring_inband_msg_t *msg)
2395 {
2396 	return ((sizeof (*msg)) +
2397 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
2398 }
2399 
2400 /*
2401  * Process an in-band descriptor message:  used with clients like OBP, with
2402  * which vds exchanges descriptors within VIO message payloads, rather than
2403  * operating on them within a descriptor ring
2404  */
2405 static int
2406 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2407 {
2408 	size_t			expected;
2409 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
2410 
2411 
2412 	ASSERT(msglen >= sizeof (msg->tag));
2413 
2414 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2415 	    VIO_DESC_DATA)) {
2416 		PR1("Message is not an in-band-descriptor message");
2417 		return (ENOMSG);
2418 	}
2419 
2420 	if (msglen < sizeof (*desc_msg)) {
2421 		PR0("Expected at least %lu-byte descriptor message; "
2422 		    "received %lu bytes", sizeof (*desc_msg), msglen);
2423 		return (EBADMSG);
2424 	}
2425 
2426 	if (msglen != (expected = expected_inband_size(desc_msg))) {
2427 		PR0("Expected %lu-byte descriptor message; "
2428 		    "received %lu bytes", expected, msglen);
2429 		return (EBADMSG);
2430 	}
2431 
2432 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
2433 		return (EBADMSG);
2434 
2435 	/*
2436 	 * Valid message:  Set up the in-band descriptor task and process the
2437 	 * request.  Arrange to acknowledge the client's message, unless an
2438 	 * error processing the descriptor task results in setting
2439 	 * VIO_SUBTYPE_NACK
2440 	 */
2441 	PR1("Valid in-band-descriptor message");
2442 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2443 
2444 	ASSERT(vd->inband_task.msg != NULL);
2445 
2446 	bcopy(msg, vd->inband_task.msg, msglen);
2447 	vd->inband_task.msglen	= msglen;
2448 
2449 	/*
2450 	 * The task request is now the payload of the message
2451 	 * that was just copied into the body of the task.
2452 	 */
2453 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
2454 	vd->inband_task.request	= &desc_msg->payload;
2455 
2456 	return (vd_process_task(&vd->inband_task));
2457 }
2458 
2459 static int
2460 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
2461     vio_msg_t *msg, size_t msglen)
2462 {
2463 	int			status;
2464 	boolean_t		ready;
2465 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2466 
2467 
2468 	/* Accept the updated dring element */
2469 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
2470 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
2471 		return (status);
2472 	}
2473 	ready = (elem->hdr.dstate == VIO_DESC_READY);
2474 	if (ready) {
2475 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
2476 	} else {
2477 		PR0("descriptor %u not ready", idx);
2478 		VD_DUMP_DRING_ELEM(elem);
2479 	}
2480 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
2481 		PR0("ldc_mem_dring_release() returned errno %d", status);
2482 		return (status);
2483 	}
2484 	if (!ready)
2485 		return (EBUSY);
2486 
2487 
2488 	/* Initialize a task and process the accepted element */
2489 	PR1("Processing dring element %u", idx);
2490 	vd->dring_task[idx].type	= type;
2491 
2492 	/* duplicate msg buf for cookies etc. */
2493 	bcopy(msg, vd->dring_task[idx].msg, msglen);
2494 
2495 	vd->dring_task[idx].msglen	= msglen;
2496 	if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS)
2497 		status = vd_mark_elem_done(vd, idx,
2498 		    vd->dring_task[idx].request->status,
2499 		    vd->dring_task[idx].request->nbytes);
2500 
2501 	return (status);
2502 }
2503 
2504 static int
2505 vd_process_element_range(vd_t *vd, int start, int end,
2506     vio_msg_t *msg, size_t msglen)
2507 {
2508 	int		i, n, nelem, status = 0;
2509 	boolean_t	inprogress = B_FALSE;
2510 	vd_task_type_t	type;
2511 
2512 
2513 	ASSERT(start >= 0);
2514 	ASSERT(end >= 0);
2515 
2516 	/*
2517 	 * Arrange to acknowledge the client's message, unless an error
2518 	 * processing one of the dring elements results in setting
2519 	 * VIO_SUBTYPE_NACK
2520 	 */
2521 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2522 
2523 	/*
2524 	 * Process the dring elements in the range
2525 	 */
2526 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
2527 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
2528 		((vio_dring_msg_t *)msg)->end_idx = i;
2529 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
2530 		status = vd_process_element(vd, type, i, msg, msglen);
2531 		if (status == EINPROGRESS)
2532 			inprogress = B_TRUE;
2533 		else if (status != 0)
2534 			break;
2535 	}
2536 
2537 	/*
2538 	 * If some, but not all, operations of a multi-element range are in
2539 	 * progress, wait for other operations to complete before returning
2540 	 * (which will result in "ack" or "nack" of the message).  Note that
2541 	 * all outstanding operations will need to complete, not just the ones
2542 	 * corresponding to the current range of dring elements; howevever, as
2543 	 * this situation is an error case, performance is less critical.
2544 	 */
2545 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
2546 		ddi_taskq_wait(vd->completionq);
2547 
2548 	return (status);
2549 }
2550 
2551 static int
2552 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2553 {
2554 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
2555 
2556 
2557 	ASSERT(msglen >= sizeof (msg->tag));
2558 
2559 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2560 	    VIO_DRING_DATA)) {
2561 		PR1("Message is not a dring-data message");
2562 		return (ENOMSG);
2563 	}
2564 
2565 	if (msglen != sizeof (*dring_msg)) {
2566 		PR0("Expected %lu-byte dring message; received %lu bytes",
2567 		    sizeof (*dring_msg), msglen);
2568 		return (EBADMSG);
2569 	}
2570 
2571 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
2572 		return (EBADMSG);
2573 
2574 	if (dring_msg->dring_ident != vd->dring_ident) {
2575 		PR0("Expected dring ident %lu; received ident %lu",
2576 		    vd->dring_ident, dring_msg->dring_ident);
2577 		return (EBADMSG);
2578 	}
2579 
2580 	if (dring_msg->start_idx >= vd->dring_len) {
2581 		PR0("\"start_idx\" = %u; must be less than %u",
2582 		    dring_msg->start_idx, vd->dring_len);
2583 		return (EBADMSG);
2584 	}
2585 
2586 	if ((dring_msg->end_idx < 0) ||
2587 	    (dring_msg->end_idx >= vd->dring_len)) {
2588 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
2589 		    dring_msg->end_idx, vd->dring_len);
2590 		return (EBADMSG);
2591 	}
2592 
2593 	/* Valid message; process range of updated dring elements */
2594 	PR1("Processing descriptor range, start = %u, end = %u",
2595 	    dring_msg->start_idx, dring_msg->end_idx);
2596 	return (vd_process_element_range(vd, dring_msg->start_idx,
2597 	    dring_msg->end_idx, msg, msglen));
2598 }
2599 
2600 static int
2601 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
2602 {
2603 	int	retry, status;
2604 	size_t	size = *nbytes;
2605 
2606 
2607 	for (retry = 0, status = ETIMEDOUT;
2608 	    retry < vds_ldc_retries && status == ETIMEDOUT;
2609 	    retry++) {
2610 		PR1("ldc_read() attempt %d", (retry + 1));
2611 		*nbytes = size;
2612 		status = ldc_read(ldc_handle, msg, nbytes);
2613 	}
2614 
2615 	if (status) {
2616 		PR0("ldc_read() returned errno %d", status);
2617 		if (status != ECONNRESET)
2618 			return (ENOMSG);
2619 		return (status);
2620 	} else if (*nbytes == 0) {
2621 		PR1("ldc_read() returned 0 and no message read");
2622 		return (ENOMSG);
2623 	}
2624 
2625 	PR1("RCVD %lu-byte message", *nbytes);
2626 	return (0);
2627 }
2628 
2629 static int
2630 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2631 {
2632 	int		status;
2633 
2634 
2635 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
2636 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
2637 #ifdef	DEBUG
2638 	vd_decode_tag(msg);
2639 #endif
2640 
2641 	/*
2642 	 * Validate session ID up front, since it applies to all messages
2643 	 * once set
2644 	 */
2645 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
2646 		PR0("Expected SID %u, received %u", vd->sid,
2647 		    msg->tag.vio_sid);
2648 		return (EBADMSG);
2649 	}
2650 
2651 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
2652 
2653 	/*
2654 	 * Process the received message based on connection state
2655 	 */
2656 	switch (vd->state) {
2657 	case VD_STATE_INIT:	/* expect version message */
2658 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
2659 			return (status);
2660 
2661 		/* Version negotiated, move to that state */
2662 		vd->state = VD_STATE_VER;
2663 		return (0);
2664 
2665 	case VD_STATE_VER:	/* expect attribute message */
2666 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
2667 			return (status);
2668 
2669 		/* Attributes exchanged, move to that state */
2670 		vd->state = VD_STATE_ATTR;
2671 		return (0);
2672 
2673 	case VD_STATE_ATTR:
2674 		switch (vd->xfer_mode) {
2675 		case VIO_DESC_MODE:	/* expect RDX message */
2676 			if ((status = process_rdx_msg(msg, msglen)) != 0)
2677 				return (status);
2678 
2679 			/* Ready to receive in-band descriptors */
2680 			vd->state = VD_STATE_DATA;
2681 			return (0);
2682 
2683 		case VIO_DRING_MODE:	/* expect register-dring message */
2684 			if ((status =
2685 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
2686 				return (status);
2687 
2688 			/* One dring negotiated, move to that state */
2689 			vd->state = VD_STATE_DRING;
2690 			return (0);
2691 
2692 		default:
2693 			ASSERT("Unsupported transfer mode");
2694 			PR0("Unsupported transfer mode");
2695 			return (ENOTSUP);
2696 		}
2697 
2698 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
2699 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
2700 			/* Ready to receive data */
2701 			vd->state = VD_STATE_DATA;
2702 			return (0);
2703 		} else if (status != ENOMSG) {
2704 			return (status);
2705 		}
2706 
2707 
2708 		/*
2709 		 * If another register-dring message is received, stay in
2710 		 * dring state in case the client sends RDX; although the
2711 		 * protocol allows multiple drings, this server does not
2712 		 * support using more than one
2713 		 */
2714 		if ((status =
2715 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
2716 			return (status);
2717 
2718 		/*
2719 		 * Acknowledge an unregister-dring message, but reset the
2720 		 * connection anyway:  Although the protocol allows
2721 		 * unregistering drings, this server cannot serve a vdisk
2722 		 * without its only dring
2723 		 */
2724 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
2725 		return ((status == 0) ? ENOTSUP : status);
2726 
2727 	case VD_STATE_DATA:
2728 		switch (vd->xfer_mode) {
2729 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
2730 			return (vd_process_desc_msg(vd, msg, msglen));
2731 
2732 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
2733 			/*
2734 			 * Typically expect dring-data messages, so handle
2735 			 * them first
2736 			 */
2737 			if ((status = vd_process_dring_msg(vd, msg,
2738 			    msglen)) != ENOMSG)
2739 				return (status);
2740 
2741 			/*
2742 			 * Acknowledge an unregister-dring message, but reset
2743 			 * the connection anyway:  Although the protocol
2744 			 * allows unregistering drings, this server cannot
2745 			 * serve a vdisk without its only dring
2746 			 */
2747 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
2748 			return ((status == 0) ? ENOTSUP : status);
2749 
2750 		default:
2751 			ASSERT("Unsupported transfer mode");
2752 			PR0("Unsupported transfer mode");
2753 			return (ENOTSUP);
2754 		}
2755 
2756 	default:
2757 		ASSERT("Invalid client connection state");
2758 		PR0("Invalid client connection state");
2759 		return (ENOTSUP);
2760 	}
2761 }
2762 
2763 static int
2764 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2765 {
2766 	int		status;
2767 	boolean_t	reset_ldc = B_FALSE;
2768 
2769 
2770 	/*
2771 	 * Check that the message is at least big enough for a "tag", so that
2772 	 * message processing can proceed based on tag-specified message type
2773 	 */
2774 	if (msglen < sizeof (vio_msg_tag_t)) {
2775 		PR0("Received short (%lu-byte) message", msglen);
2776 		/* Can't "nack" short message, so drop the big hammer */
2777 		PR0("initiating full reset");
2778 		vd_need_reset(vd, B_TRUE);
2779 		return (EBADMSG);
2780 	}
2781 
2782 	/*
2783 	 * Process the message
2784 	 */
2785 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
2786 	case 0:
2787 		/* "ack" valid, successfully-processed messages */
2788 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2789 		break;
2790 
2791 	case EINPROGRESS:
2792 		/* The completion handler will "ack" or "nack" the message */
2793 		return (EINPROGRESS);
2794 	case ENOMSG:
2795 		PR0("Received unexpected message");
2796 		_NOTE(FALLTHROUGH);
2797 	case EBADMSG:
2798 	case ENOTSUP:
2799 		/* "nack" invalid messages */
2800 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2801 		break;
2802 
2803 	default:
2804 		/* "nack" failed messages */
2805 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2806 		/* An LDC error probably occurred, so try resetting it */
2807 		reset_ldc = B_TRUE;
2808 		break;
2809 	}
2810 
2811 	PR1("\tResulting in state %d (%s)", vd->state,
2812 	    vd_decode_state(vd->state));
2813 
2814 	/* Send the "ack" or "nack" to the client */
2815 	PR1("Sending %s",
2816 	    (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2817 	if (send_msg(vd->ldc_handle, msg, msglen) != 0)
2818 		reset_ldc = B_TRUE;
2819 
2820 	/* Arrange to reset the connection for nack'ed or failed messages */
2821 	if ((status != 0) || reset_ldc) {
2822 		PR0("initiating %s reset",
2823 		    (reset_ldc) ? "full" : "soft");
2824 		vd_need_reset(vd, reset_ldc);
2825 	}
2826 
2827 	return (status);
2828 }
2829 
2830 static boolean_t
2831 vd_enabled(vd_t *vd)
2832 {
2833 	boolean_t	enabled;
2834 
2835 
2836 	mutex_enter(&vd->lock);
2837 	enabled = vd->enabled;
2838 	mutex_exit(&vd->lock);
2839 	return (enabled);
2840 }
2841 
2842 static void
2843 vd_recv_msg(void *arg)
2844 {
2845 	vd_t	*vd = (vd_t *)arg;
2846 	int	rv = 0, status = 0;
2847 
2848 	ASSERT(vd != NULL);
2849 
2850 	PR2("New task to receive incoming message(s)");
2851 
2852 
2853 	while (vd_enabled(vd) && status == 0) {
2854 		size_t		msglen, msgsize;
2855 		ldc_status_t	lstatus;
2856 
2857 		/*
2858 		 * Receive and process a message
2859 		 */
2860 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
2861 
2862 		/*
2863 		 * check if channel is UP - else break out of loop
2864 		 */
2865 		status = ldc_status(vd->ldc_handle, &lstatus);
2866 		if (lstatus != LDC_UP) {
2867 			PR0("channel not up (status=%d), exiting recv loop\n",
2868 			    lstatus);
2869 			break;
2870 		}
2871 
2872 		ASSERT(vd->max_msglen != 0);
2873 
2874 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
2875 		msglen	= msgsize;	  /* actual len after recv_msg() */
2876 
2877 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
2878 		switch (status) {
2879 		case 0:
2880 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
2881 			    msglen);
2882 			/* check if max_msglen changed */
2883 			if (msgsize != vd->max_msglen) {
2884 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
2885 				    msgsize, vd->max_msglen);
2886 				kmem_free(vd->vio_msgp, msgsize);
2887 				vd->vio_msgp =
2888 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
2889 			}
2890 			if (rv == EINPROGRESS)
2891 				continue;
2892 			break;
2893 
2894 		case ENOMSG:
2895 			break;
2896 
2897 		case ECONNRESET:
2898 			PR0("initiating soft reset (ECONNRESET)\n");
2899 			vd_need_reset(vd, B_FALSE);
2900 			status = 0;
2901 			break;
2902 
2903 		default:
2904 			/* Probably an LDC failure; arrange to reset it */
2905 			PR0("initiating full reset (status=0x%x)", status);
2906 			vd_need_reset(vd, B_TRUE);
2907 			break;
2908 		}
2909 	}
2910 
2911 	PR2("Task finished");
2912 }
2913 
2914 static uint_t
2915 vd_handle_ldc_events(uint64_t event, caddr_t arg)
2916 {
2917 	vd_t	*vd = (vd_t *)(void *)arg;
2918 	int	status;
2919 
2920 	ASSERT(vd != NULL);
2921 
2922 	if (!vd_enabled(vd))
2923 		return (LDC_SUCCESS);
2924 
2925 	if (event & LDC_EVT_DOWN) {
2926 		PR0("LDC_EVT_DOWN: LDC channel went down");
2927 
2928 		vd_need_reset(vd, B_TRUE);
2929 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2930 		    DDI_SLEEP);
2931 		if (status == DDI_FAILURE) {
2932 			PR0("cannot schedule task to recv msg\n");
2933 			vd_need_reset(vd, B_TRUE);
2934 		}
2935 	}
2936 
2937 	if (event & LDC_EVT_RESET) {
2938 		PR0("LDC_EVT_RESET: LDC channel was reset");
2939 
2940 		if (vd->state != VD_STATE_INIT) {
2941 			PR0("scheduling full reset");
2942 			vd_need_reset(vd, B_FALSE);
2943 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2944 			    vd, DDI_SLEEP);
2945 			if (status == DDI_FAILURE) {
2946 				PR0("cannot schedule task to recv msg\n");
2947 				vd_need_reset(vd, B_TRUE);
2948 			}
2949 
2950 		} else {
2951 			PR0("channel already reset, ignoring...\n");
2952 			PR0("doing ldc up...\n");
2953 			(void) ldc_up(vd->ldc_handle);
2954 		}
2955 
2956 		return (LDC_SUCCESS);
2957 	}
2958 
2959 	if (event & LDC_EVT_UP) {
2960 		PR0("EVT_UP: LDC is up\nResetting client connection state");
2961 		PR0("initiating soft reset");
2962 		vd_need_reset(vd, B_FALSE);
2963 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2964 		    vd, DDI_SLEEP);
2965 		if (status == DDI_FAILURE) {
2966 			PR0("cannot schedule task to recv msg\n");
2967 			vd_need_reset(vd, B_TRUE);
2968 			return (LDC_SUCCESS);
2969 		}
2970 	}
2971 
2972 	if (event & LDC_EVT_READ) {
2973 		int	status;
2974 
2975 		PR1("New data available");
2976 		/* Queue a task to receive the new data */
2977 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2978 		    DDI_SLEEP);
2979 
2980 		if (status == DDI_FAILURE) {
2981 			PR0("cannot schedule task to recv msg\n");
2982 			vd_need_reset(vd, B_TRUE);
2983 		}
2984 	}
2985 
2986 	return (LDC_SUCCESS);
2987 }
2988 
2989 static uint_t
2990 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2991 {
2992 	_NOTE(ARGUNUSED(key, val))
2993 	(*((uint_t *)arg))++;
2994 	return (MH_WALK_TERMINATE);
2995 }
2996 
2997 
2998 static int
2999 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3000 {
3001 	uint_t	vd_present = 0;
3002 	minor_t	instance;
3003 	vds_t	*vds;
3004 
3005 
3006 	switch (cmd) {
3007 	case DDI_DETACH:
3008 		/* the real work happens below */
3009 		break;
3010 	case DDI_SUSPEND:
3011 		PR0("No action required for DDI_SUSPEND");
3012 		return (DDI_SUCCESS);
3013 	default:
3014 		PR0("Unrecognized \"cmd\"");
3015 		return (DDI_FAILURE);
3016 	}
3017 
3018 	ASSERT(cmd == DDI_DETACH);
3019 	instance = ddi_get_instance(dip);
3020 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3021 		PR0("Could not get state for instance %u", instance);
3022 		ddi_soft_state_free(vds_state, instance);
3023 		return (DDI_FAILURE);
3024 	}
3025 
3026 	/* Do no detach when serving any vdisks */
3027 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
3028 	if (vd_present) {
3029 		PR0("Not detaching because serving vdisks");
3030 		return (DDI_FAILURE);
3031 	}
3032 
3033 	PR0("Detaching");
3034 	if (vds->initialized & VDS_MDEG) {
3035 		(void) mdeg_unregister(vds->mdeg);
3036 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
3037 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
3038 		vds->ispecp = NULL;
3039 		vds->mdeg = NULL;
3040 	}
3041 
3042 	if (vds->initialized & VDS_LDI)
3043 		(void) ldi_ident_release(vds->ldi_ident);
3044 	mod_hash_destroy_hash(vds->vd_table);
3045 	ddi_soft_state_free(vds_state, instance);
3046 	return (DDI_SUCCESS);
3047 }
3048 
3049 static boolean_t
3050 is_pseudo_device(dev_info_t *dip)
3051 {
3052 	dev_info_t	*parent, *root = ddi_root_node();
3053 
3054 
3055 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
3056 	    parent = ddi_get_parent(parent)) {
3057 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
3058 			return (B_TRUE);
3059 	}
3060 
3061 	return (B_FALSE);
3062 }
3063 
3064 static int
3065 vd_setup_full_disk(vd_t *vd)
3066 {
3067 	int		rval, status;
3068 	major_t		major = getmajor(vd->dev[0]);
3069 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
3070 	struct dk_minfo	dk_minfo;
3071 
3072 	/*
3073 	 * At this point, vdisk_size is set to the size of partition 2 but
3074 	 * this does not represent the size of the disk because partition 2
3075 	 * may not cover the entire disk and its size does not include reserved
3076 	 * blocks. So we update vdisk_size to be the size of the entire disk.
3077 	 */
3078 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
3079 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
3080 	    kcred, &rval)) != 0) {
3081 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
3082 		    status);
3083 		return (status);
3084 	}
3085 	vd->vdisk_size = dk_minfo.dki_capacity;
3086 
3087 	/* Set full-disk parameters */
3088 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
3089 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
3090 
3091 	/* Move dev number and LDI handle to entire-disk-slice array elements */
3092 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
3093 	vd->dev[0]				= 0;
3094 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
3095 	vd->ldi_handle[0]			= NULL;
3096 
3097 	/* Initialize device numbers for remaining slices and open them */
3098 	for (int slice = 0; slice < vd->nslices; slice++) {
3099 		/*
3100 		 * Skip the entire-disk slice, as it's already open and its
3101 		 * device known
3102 		 */
3103 		if (slice == VD_ENTIRE_DISK_SLICE)
3104 			continue;
3105 		ASSERT(vd->dev[slice] == 0);
3106 		ASSERT(vd->ldi_handle[slice] == NULL);
3107 
3108 		/*
3109 		 * Construct the device number for the current slice
3110 		 */
3111 		vd->dev[slice] = makedevice(major, (minor + slice));
3112 
3113 		/*
3114 		 * Open all slices of the disk to serve them to the client.
3115 		 * Slices are opened exclusively to prevent other threads or
3116 		 * processes in the service domain from performing I/O to
3117 		 * slices being accessed by a client.  Failure to open a slice
3118 		 * results in vds not serving this disk, as the client could
3119 		 * attempt (and should be able) to access any slice immediately.
3120 		 * Any slices successfully opened before a failure will get
3121 		 * closed by vds_destroy_vd() as a result of the error returned
3122 		 * by this function.
3123 		 *
3124 		 * We need to do the open with FNDELAY so that opening an empty
3125 		 * slice does not fail.
3126 		 */
3127 		PR0("Opening device major %u, minor %u = slice %u",
3128 		    major, minor, slice);
3129 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3130 		    vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice],
3131 		    vd->vds->ldi_ident)) != 0) {
3132 			PRN("ldi_open_by_dev() returned errno %d "
3133 			    "for slice %u", status, slice);
3134 			/* vds_destroy_vd() will close any open slices */
3135 			vd->ldi_handle[slice] = NULL;
3136 			return (status);
3137 		}
3138 	}
3139 
3140 	return (0);
3141 }
3142 
3143 static int
3144 vd_setup_partition_efi(vd_t *vd)
3145 {
3146 	efi_gpt_t *gpt;
3147 	efi_gpe_t *gpe;
3148 	struct uuid uuid = EFI_RESERVED;
3149 	uint32_t crc;
3150 	int length;
3151 
3152 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
3153 
3154 	gpt = kmem_zalloc(length, KM_SLEEP);
3155 	gpe = (efi_gpe_t *)(gpt + 1);
3156 
3157 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
3158 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
3159 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
3160 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
3161 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
3162 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
3163 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
3164 
3165 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
3166 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
3167 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
3168 
3169 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
3170 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
3171 
3172 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
3173 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
3174 
3175 	vd->dk_efi.dki_lba = 0;
3176 	vd->dk_efi.dki_length = length;
3177 	vd->dk_efi.dki_data = gpt;
3178 
3179 	return (0);
3180 }
3181 
3182 static int
3183 vd_setup_file(vd_t *vd)
3184 {
3185 	int 		i, rval, status;
3186 	ushort_t	sum;
3187 	vattr_t		vattr;
3188 	dev_t		dev;
3189 	size_t		size;
3190 	char		*file_path = vd->device_path;
3191 	char		dev_path[MAXPATHLEN + 1];
3192 	char		prefix;
3193 	ldi_handle_t	lhandle;
3194 	struct dk_cinfo	dk_cinfo;
3195 	struct dk_label label;
3196 
3197 	/* make sure the file is valid */
3198 	if ((status = lookupname(file_path, UIO_SYSSPACE, FOLLOW,
3199 	    NULLVPP, &vd->file_vnode)) != 0) {
3200 		PRN("Cannot lookup file(%s) errno %d", file_path, status);
3201 		return (status);
3202 	}
3203 
3204 	if (vd->file_vnode->v_type != VREG) {
3205 		PRN("Invalid file type (%s)\n", file_path);
3206 		VN_RELE(vd->file_vnode);
3207 		return (EBADF);
3208 	}
3209 	VN_RELE(vd->file_vnode);
3210 
3211 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd_open_flags | FOFFMAX,
3212 	    0, &vd->file_vnode, 0, 0)) != 0) {
3213 		PRN("vn_open(%s) = errno %d", file_path, status);
3214 		return (status);
3215 	}
3216 
3217 	/*
3218 	 * We set vd->file now so that vds_destroy_vd will take care of
3219 	 * closing the file and releasing the vnode in case of an error.
3220 	 */
3221 	vd->file = B_TRUE;
3222 	vd->pseudo = B_FALSE;
3223 
3224 	vattr.va_mask = AT_SIZE;
3225 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) {
3226 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
3227 		return (EIO);
3228 	}
3229 
3230 	vd->file_size = vattr.va_size;
3231 	/* size should be at least sizeof(dk_label) */
3232 	if (vd->file_size < sizeof (struct dk_label)) {
3233 		PRN("Size of file has to be at least %ld bytes",
3234 		    sizeof (struct dk_label));
3235 		return (EIO);
3236 	}
3237 
3238 	if (vd->file_vnode->v_flag & VNOMAP) {
3239 		PRN("File %s cannot be mapped", file_path);
3240 		return (EIO);
3241 	}
3242 
3243 	/* read label from file */
3244 	if (VD_FILE_LABEL_READ(vd, &label) < 0) {
3245 		PRN("Can't read label from %s", file_path);
3246 		return (EIO);
3247 	}
3248 
3249 	/* label checksum */
3250 	sum = vd_lbl2cksum(&label);
3251 
3252 	if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != sum) {
3253 		PR0("%s has an invalid disk label "
3254 		    "(magic=%x cksum=%x (expect %x))",
3255 		    file_path, label.dkl_magic, label.dkl_cksum, sum);
3256 
3257 		/* default label */
3258 		bzero(&label, sizeof (struct dk_label));
3259 
3260 		/*
3261 		 * We must have a resonable number of cylinders and sectors so
3262 		 * that newfs can run using default values.
3263 		 *
3264 		 * if (disk_size < 2MB)
3265 		 * 	phys_cylinders = disk_size / 100K
3266 		 * else
3267 		 * 	phys_cylinders = disk_size / 300K
3268 		 *
3269 		 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
3270 		 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
3271 		 * data_cylinders = phys_cylinders - alt_cylinders
3272 		 *
3273 		 * sectors = disk_size / (phys_cylinders * blk_size)
3274 		 */
3275 		if (vd->file_size < (2 * 1024 * 1024))
3276 			label.dkl_pcyl = vd->file_size / (100 * 1024);
3277 		else
3278 			label.dkl_pcyl = vd->file_size / (300 * 1024);
3279 
3280 		if (label.dkl_pcyl == 0)
3281 			label.dkl_pcyl = 1;
3282 
3283 		if (label.dkl_pcyl > 2)
3284 			label.dkl_acyl = 2;
3285 		else
3286 			label.dkl_acyl = 0;
3287 
3288 		label.dkl_nsect = vd->file_size /
3289 		    (DEV_BSIZE * label.dkl_pcyl);
3290 		label.dkl_ncyl = label.dkl_pcyl - label.dkl_acyl;
3291 		label.dkl_nhead = 1;
3292 		label.dkl_write_reinstruct = 0;
3293 		label.dkl_read_reinstruct = 0;
3294 		label.dkl_rpm = 7200;
3295 		label.dkl_apc = 0;
3296 		label.dkl_intrlv = 0;
3297 		label.dkl_magic = DKL_MAGIC;
3298 
3299 		PR0("requested disk size: %ld bytes\n", vd->file_size);
3300 		PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label.dkl_pcyl,
3301 		    label.dkl_nhead, label.dkl_nsect);
3302 		PR0("provided disk size: %ld bytes\n", (uint64_t)
3303 		    (label.dkl_pcyl *
3304 		    label.dkl_nhead * label.dkl_nsect * DEV_BSIZE));
3305 
3306 		if (vd->file_size < (1ULL << 20)) {
3307 			size = vd->file_size >> 10;
3308 			prefix = 'K'; /* Kilobyte */
3309 		} else if (vd->file_size < (1ULL << 30)) {
3310 			size = vd->file_size >> 20;
3311 			prefix = 'M'; /* Megabyte */
3312 		} else if (vd->file_size < (1ULL << 40)) {
3313 			size = vd->file_size >> 30;
3314 			prefix = 'G'; /* Gigabyte */
3315 		} else {
3316 			size = vd->file_size >> 40;
3317 			prefix = 'T'; /* Terabyte */
3318 		}
3319 
3320 		/*
3321 		 * We must have a correct label name otherwise format(1m) will
3322 		 * not recognized the disk as labeled.
3323 		 */
3324 		(void) snprintf(label.dkl_asciilabel, LEN_DKL_ASCII,
3325 		    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
3326 		    size, prefix,
3327 		    label.dkl_ncyl, label.dkl_acyl, label.dkl_nhead,
3328 		    label.dkl_nsect);
3329 
3330 		/* default VTOC */
3331 		label.dkl_vtoc.v_version = V_VERSION;
3332 		label.dkl_vtoc.v_nparts = V_NUMPAR;
3333 		label.dkl_vtoc.v_sanity = VTOC_SANE;
3334 		label.dkl_vtoc.v_part[2].p_tag = V_BACKUP;
3335 		label.dkl_map[2].dkl_cylno = 0;
3336 		label.dkl_map[2].dkl_nblk = label.dkl_ncyl *
3337 		    label.dkl_nhead * label.dkl_nsect;
3338 		label.dkl_map[0] = label.dkl_map[2];
3339 		label.dkl_map[0] = label.dkl_map[2];
3340 		label.dkl_cksum = vd_lbl2cksum(&label);
3341 
3342 		/* write default label to file */
3343 		if ((rval = vd_file_set_vtoc(vd, &label)) != 0) {
3344 			PRN("Can't write label to %s", file_path);
3345 			return (rval);
3346 		}
3347 	}
3348 
3349 	vd->nslices = label.dkl_vtoc.v_nparts;
3350 
3351 	/* sector size = block size = DEV_BSIZE */
3352 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
3353 	vd->vdisk_type = VD_DISK_TYPE_DISK;
3354 	vd->vdisk_label = VD_DISK_LABEL_VTOC;
3355 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
3356 
3357 	/* Get max_xfer_sz from the device where the file is */
3358 	dev = vd->file_vnode->v_vfsp->vfs_dev;
3359 	dev_path[0] = NULL;
3360 	if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
3361 		PR0("underlying device = %s\n", dev_path);
3362 	}
3363 
3364 	if ((status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD,
3365 	    kcred, &lhandle, vd->vds->ldi_ident)) != 0) {
3366 		PR0("ldi_open_by_dev() returned errno %d for device %s",
3367 		    status, dev_path);
3368 	} else {
3369 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
3370 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
3371 		    &rval)) != 0) {
3372 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3373 			    status, dev_path);
3374 		} else {
3375 			/*
3376 			 * Store the device's max transfer size for
3377 			 * return to the client
3378 			 */
3379 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3380 		}
3381 
3382 		PR0("close the device %s", dev_path);
3383 		(void) ldi_close(lhandle, FREAD, kcred);
3384 	}
3385 
3386 	PR0("using for file %s, dev %s, max_xfer = %u blks",
3387 	    file_path, dev_path, vd->max_xfer_sz);
3388 
3389 	vd->dk_geom.dkg_ncyl = label.dkl_ncyl;
3390 	vd->dk_geom.dkg_acyl = label.dkl_acyl;
3391 	vd->dk_geom.dkg_pcyl = label.dkl_pcyl;
3392 	vd->dk_geom.dkg_nhead = label.dkl_nhead;
3393 	vd->dk_geom.dkg_nsect = label.dkl_nsect;
3394 	vd->dk_geom.dkg_intrlv = label.dkl_intrlv;
3395 	vd->dk_geom.dkg_apc = label.dkl_apc;
3396 	vd->dk_geom.dkg_rpm = label.dkl_rpm;
3397 	vd->dk_geom.dkg_write_reinstruct = label.dkl_write_reinstruct;
3398 	vd->dk_geom.dkg_read_reinstruct = label.dkl_read_reinstruct;
3399 
3400 	vd->vtoc.v_sanity = label.dkl_vtoc.v_sanity;
3401 	vd->vtoc.v_version = label.dkl_vtoc.v_version;
3402 	vd->vtoc.v_sectorsz = DEV_BSIZE;
3403 	vd->vtoc.v_nparts = label.dkl_vtoc.v_nparts;
3404 
3405 	bcopy(label.dkl_vtoc.v_volume, vd->vtoc.v_volume,
3406 	    LEN_DKL_VVOL);
3407 	bcopy(label.dkl_asciilabel, vd->vtoc.v_asciilabel,
3408 	    LEN_DKL_ASCII);
3409 
3410 	for (i = 0; i < vd->nslices; i++) {
3411 		vd->vtoc.timestamp[i] = label.dkl_vtoc.v_timestamp[i];
3412 		vd->vtoc.v_part[i].p_tag = label.dkl_vtoc.v_part[i].p_tag;
3413 		vd->vtoc.v_part[i].p_flag = label.dkl_vtoc.v_part[i].p_flag;
3414 		vd->vtoc.v_part[i].p_start = label.dkl_map[i].dkl_cylno *
3415 		    label.dkl_nhead * label.dkl_nsect;
3416 		vd->vtoc.v_part[i].p_size = label.dkl_map[i].dkl_nblk;
3417 		vd->ldi_handle[i] = NULL;
3418 		vd->dev[i] = NULL;
3419 	}
3420 
3421 	/* Setup devid for the disk image */
3422 
3423 	status = vd_file_read_devid(vd, &vd->file_devid);
3424 
3425 	if (status == 0) {
3426 		/* a valid devid was found */
3427 		return (0);
3428 	}
3429 
3430 	if (status != EINVAL) {
3431 		/*
3432 		 * There was an error while trying to read the devid. So this
3433 		 * disk image may have a devid but we are unable to read it.
3434 		 */
3435 		PR0("can not read devid for %s", file_path);
3436 		vd->file_devid = NULL;
3437 		return (0);
3438 	}
3439 
3440 	/*
3441 	 * No valid device id was found so we create one. Note that a failure
3442 	 * to create a device id is not fatal and does not prevent the disk
3443 	 * image from being attached.
3444 	 */
3445 	PR1("creating devid for %s", file_path);
3446 
3447 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
3448 	    &vd->file_devid) != DDI_SUCCESS) {
3449 		PR0("fail to create devid for %s", file_path);
3450 		vd->file_devid = NULL;
3451 		return (0);
3452 	}
3453 
3454 	/* write devid to the disk image */
3455 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3456 		PR0("fail to write devid for %s", file_path);
3457 		ddi_devid_free(vd->file_devid);
3458 		vd->file_devid = NULL;
3459 	}
3460 
3461 	return (0);
3462 }
3463 
3464 static int
3465 vd_setup_vd(vd_t *vd)
3466 {
3467 	int		rval, status;
3468 	dev_info_t	*dip;
3469 	struct dk_cinfo	dk_cinfo;
3470 	char		*device_path = vd->device_path;
3471 
3472 	/*
3473 	 * We need to open with FNDELAY so that opening an empty partition
3474 	 * does not fail.
3475 	 */
3476 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
3477 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
3478 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
3479 		vd->ldi_handle[0] = NULL;
3480 
3481 		/* this may not be a device try opening as a file */
3482 		if (status == ENXIO || status == ENODEV)
3483 			status = vd_setup_file(vd);
3484 		if (status) {
3485 			PRN("Cannot use device/file (%s), errno=%d\n",
3486 			    device_path, status);
3487 			if (status == ENXIO || status == ENODEV ||
3488 			    status == ENOENT) {
3489 				return (EAGAIN);
3490 			}
3491 		}
3492 		return (status);
3493 	}
3494 
3495 	/*
3496 	 * nslices must be updated now so that vds_destroy_vd() will close
3497 	 * the slice we have just opened in case of an error.
3498 	 */
3499 	vd->nslices = 1;
3500 	vd->file = B_FALSE;
3501 
3502 	/* Get device number and size of backing device */
3503 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
3504 		PRN("ldi_get_dev() returned errno %d for %s",
3505 		    status, device_path);
3506 		return (status);
3507 	}
3508 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
3509 		PRN("ldi_get_size() failed for %s", device_path);
3510 		return (EIO);
3511 	}
3512 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
3513 
3514 	/* Verify backing device supports dk_cinfo, dk_geom, and vtoc */
3515 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
3516 	    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
3517 	    &rval)) != 0) {
3518 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3519 		    status, device_path);
3520 		return (status);
3521 	}
3522 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
3523 		PRN("slice %u >= maximum slice %u for %s",
3524 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
3525 		return (EIO);
3526 	}
3527 
3528 	status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label);
3529 
3530 	if (status != 0) {
3531 		PRN("vd_read_vtoc returned errno %d for %s",
3532 		    status, device_path);
3533 		return (status);
3534 	}
3535 
3536 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
3537 	    (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
3538 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL),
3539 	    kcred, &rval)) != 0) {
3540 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
3541 		    status, device_path);
3542 		return (status);
3543 	}
3544 
3545 	/* Store the device's max transfer size for return to the client */
3546 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3547 
3548 	/* Determine if backing device is a pseudo device */
3549 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
3550 	    dev_to_instance(vd->dev[0]), 0))  == NULL) {
3551 		PRN("%s is no longer accessible", device_path);
3552 		return (EIO);
3553 	}
3554 	vd->pseudo = is_pseudo_device(dip);
3555 	ddi_release_devi(dip);
3556 	if (vd->pseudo) {
3557 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
3558 		vd->nslices	= 1;
3559 		return (0);	/* ...and we're done */
3560 	}
3561 
3562 	/* If slice is entire-disk slice, initialize for full disk */
3563 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
3564 		return (vd_setup_full_disk(vd));
3565 
3566 
3567 	/* Otherwise, we have a non-entire slice of a device */
3568 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
3569 	vd->nslices	= 1;
3570 
3571 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
3572 		status = vd_setup_partition_efi(vd);
3573 		return (status);
3574 	}
3575 
3576 	/* Initialize dk_geom structure for single-slice device */
3577 	if (vd->dk_geom.dkg_nsect == 0) {
3578 		PRN("%s geometry claims 0 sectors per track", device_path);
3579 		return (EIO);
3580 	}
3581 	if (vd->dk_geom.dkg_nhead == 0) {
3582 		PRN("%s geometry claims 0 heads", device_path);
3583 		return (EIO);
3584 	}
3585 	vd->dk_geom.dkg_ncyl =
3586 	    vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead;
3587 	vd->dk_geom.dkg_acyl = 0;
3588 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
3589 
3590 
3591 	/* Initialize vtoc structure for single-slice device */
3592 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3593 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3594 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3595 	vd->vtoc.v_nparts = 1;
3596 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3597 	vd->vtoc.v_part[0].p_flag = 0;
3598 	vd->vtoc.v_part[0].p_start = 0;
3599 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3600 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3601 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3602 
3603 
3604 	return (0);
3605 }
3606 
3607 static int
3608 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
3609     vd_t **vdp)
3610 {
3611 	char			tq_name[TASKQ_NAMELEN];
3612 	int			status;
3613 	ddi_iblock_cookie_t	iblock = NULL;
3614 	ldc_attr_t		ldc_attr;
3615 	vd_t			*vd;
3616 
3617 
3618 	ASSERT(vds != NULL);
3619 	ASSERT(device_path != NULL);
3620 	ASSERT(vdp != NULL);
3621 	PR0("Adding vdisk for %s", device_path);
3622 
3623 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
3624 		PRN("No memory for virtual disk");
3625 		return (EAGAIN);
3626 	}
3627 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
3628 	vd->vds = vds;
3629 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
3630 
3631 	/* Open vdisk and initialize parameters */
3632 	if ((status = vd_setup_vd(vd)) == 0) {
3633 		vd->initialized |= VD_DISK_READY;
3634 
3635 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3636 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
3637 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3638 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
3639 		    vd->nslices);
3640 	} else {
3641 		if (status != EAGAIN)
3642 			return (status);
3643 	}
3644 
3645 	/* Initialize locking */
3646 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
3647 	    &iblock) != DDI_SUCCESS) {
3648 		PRN("Could not get iblock cookie.");
3649 		return (EIO);
3650 	}
3651 
3652 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
3653 	vd->initialized |= VD_LOCKING;
3654 
3655 
3656 	/* Create start and completion task queues for the vdisk */
3657 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
3658 	PR1("tq_name = %s", tq_name);
3659 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
3660 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
3661 		PRN("Could not create task queue");
3662 		return (EIO);
3663 	}
3664 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
3665 	PR1("tq_name = %s", tq_name);
3666 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
3667 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
3668 		PRN("Could not create task queue");
3669 		return (EIO);
3670 	}
3671 	vd->enabled = 1;	/* before callback can dispatch to startq */
3672 
3673 
3674 	/* Bring up LDC */
3675 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
3676 	ldc_attr.instance	= ddi_get_instance(vds->dip);
3677 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
3678 	ldc_attr.mtu		= VD_LDC_MTU;
3679 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
3680 		PRN("Could not initialize LDC channel %lu, "
3681 		    "init failed with error %d", ldc_id, status);
3682 		return (status);
3683 	}
3684 	vd->initialized |= VD_LDC;
3685 
3686 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
3687 	    (caddr_t)vd)) != 0) {
3688 		PRN("Could not initialize LDC channel %lu,"
3689 		    "reg_callback failed with error %d", ldc_id, status);
3690 		return (status);
3691 	}
3692 
3693 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
3694 		PRN("Could not initialize LDC channel %lu,"
3695 		    "open failed with error %d", ldc_id, status);
3696 		return (status);
3697 	}
3698 
3699 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
3700 		PR0("ldc_up() returned errno %d", status);
3701 	}
3702 
3703 	/* Allocate the inband task memory handle */
3704 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
3705 	if (status) {
3706 		PRN("Could not initialize LDC channel %lu,"
3707 		    "alloc_handle failed with error %d", ldc_id, status);
3708 		return (ENXIO);
3709 	}
3710 
3711 	/* Add the successfully-initialized vdisk to the server's table */
3712 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
3713 		PRN("Error adding vdisk ID %lu to table", id);
3714 		return (EIO);
3715 	}
3716 
3717 	/* Allocate the staging buffer */
3718 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
3719 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
3720 
3721 	/* store initial state */
3722 	vd->state = VD_STATE_INIT;
3723 
3724 	return (0);
3725 }
3726 
3727 static void
3728 vd_free_dring_task(vd_t *vdp)
3729 {
3730 	if (vdp->dring_task != NULL) {
3731 		ASSERT(vdp->dring_len != 0);
3732 		/* Free all dring_task memory handles */
3733 		for (int i = 0; i < vdp->dring_len; i++) {
3734 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
3735 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
3736 			vdp->dring_task[i].msg = NULL;
3737 		}
3738 		kmem_free(vdp->dring_task,
3739 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
3740 		vdp->dring_task = NULL;
3741 	}
3742 }
3743 
3744 /*
3745  * Destroy the state associated with a virtual disk
3746  */
3747 static void
3748 vds_destroy_vd(void *arg)
3749 {
3750 	vd_t	*vd = (vd_t *)arg;
3751 	int	retry = 0, rv;
3752 
3753 	if (vd == NULL)
3754 		return;
3755 
3756 	PR0("Destroying vdisk state");
3757 
3758 	if (vd->dk_efi.dki_data != NULL)
3759 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
3760 
3761 	/* Disable queuing requests for the vdisk */
3762 	if (vd->initialized & VD_LOCKING) {
3763 		mutex_enter(&vd->lock);
3764 		vd->enabled = 0;
3765 		mutex_exit(&vd->lock);
3766 	}
3767 
3768 	/* Drain and destroy start queue (*before* destroying completionq) */
3769 	if (vd->startq != NULL)
3770 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
3771 
3772 	/* Drain and destroy completion queue (*before* shutting down LDC) */
3773 	if (vd->completionq != NULL)
3774 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
3775 
3776 	vd_free_dring_task(vd);
3777 
3778 	/* Free the inband task memory handle */
3779 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
3780 
3781 	/* Shut down LDC */
3782 	if (vd->initialized & VD_LDC) {
3783 		/* unmap the dring */
3784 		if (vd->initialized & VD_DRING)
3785 			(void) ldc_mem_dring_unmap(vd->dring_handle);
3786 
3787 		/* close LDC channel - retry on EAGAIN */
3788 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
3789 			if (++retry > vds_ldc_retries) {
3790 				PR0("Timed out closing channel");
3791 				break;
3792 			}
3793 			drv_usecwait(vds_ldc_delay);
3794 		}
3795 		if (rv == 0) {
3796 			(void) ldc_unreg_callback(vd->ldc_handle);
3797 			(void) ldc_fini(vd->ldc_handle);
3798 		} else {
3799 			/*
3800 			 * Closing the LDC channel has failed. Ideally we should
3801 			 * fail here but there is no Zeus level infrastructure
3802 			 * to handle this. The MD has already been changed and
3803 			 * we have to do the close. So we try to do as much
3804 			 * clean up as we can.
3805 			 */
3806 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
3807 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
3808 				drv_usecwait(vds_ldc_delay);
3809 		}
3810 	}
3811 
3812 	/* Free the staging buffer for msgs */
3813 	if (vd->vio_msgp != NULL) {
3814 		kmem_free(vd->vio_msgp, vd->max_msglen);
3815 		vd->vio_msgp = NULL;
3816 	}
3817 
3818 	/* Free the inband message buffer */
3819 	if (vd->inband_task.msg != NULL) {
3820 		kmem_free(vd->inband_task.msg, vd->max_msglen);
3821 		vd->inband_task.msg = NULL;
3822 	}
3823 	if (vd->file) {
3824 		/* Close file */
3825 		(void) VOP_CLOSE(vd->file_vnode, vd_open_flags, 1,
3826 		    0, kcred);
3827 		VN_RELE(vd->file_vnode);
3828 		if (vd->file_devid != NULL)
3829 			ddi_devid_free(vd->file_devid);
3830 	} else {
3831 		/* Close any open backing-device slices */
3832 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
3833 			if (vd->ldi_handle[slice] != NULL) {
3834 				PR0("Closing slice %u", slice);
3835 				(void) ldi_close(vd->ldi_handle[slice],
3836 				    vd_open_flags | FNDELAY, kcred);
3837 			}
3838 		}
3839 	}
3840 
3841 	/* Free lock */
3842 	if (vd->initialized & VD_LOCKING)
3843 		mutex_destroy(&vd->lock);
3844 
3845 	/* Finally, free the vdisk structure itself */
3846 	kmem_free(vd, sizeof (*vd));
3847 }
3848 
3849 static int
3850 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
3851 {
3852 	int	status;
3853 	vd_t	*vd = NULL;
3854 
3855 
3856 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
3857 		vds_destroy_vd(vd);
3858 
3859 	return (status);
3860 }
3861 
3862 static int
3863 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
3864     uint64_t *ldc_id)
3865 {
3866 	int	num_channels;
3867 
3868 
3869 	/* Look for channel endpoint child(ren) of the vdisk MD node */
3870 	if ((num_channels = md_scan_dag(md, vd_node,
3871 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
3872 	    md_find_name(md, "fwd"), channel)) <= 0) {
3873 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
3874 		return (-1);
3875 	}
3876 
3877 	/* Get the "id" value for the first channel endpoint node */
3878 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
3879 		PRN("No \"%s\" property found for \"%s\" of vdisk",
3880 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
3881 		return (-1);
3882 	}
3883 
3884 	if (num_channels > 1) {
3885 		PRN("Using ID of first of multiple channels for this vdisk");
3886 	}
3887 
3888 	return (0);
3889 }
3890 
3891 static int
3892 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
3893 {
3894 	int		num_nodes, status;
3895 	size_t		size;
3896 	mde_cookie_t	*channel;
3897 
3898 
3899 	if ((num_nodes = md_node_count(md)) <= 0) {
3900 		PRN("Invalid node count in Machine Description subtree");
3901 		return (-1);
3902 	}
3903 	size = num_nodes*(sizeof (*channel));
3904 	channel = kmem_zalloc(size, KM_SLEEP);
3905 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
3906 	kmem_free(channel, size);
3907 
3908 	return (status);
3909 }
3910 
3911 static void
3912 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
3913 {
3914 	char		*device_path = NULL;
3915 	uint64_t	id = 0, ldc_id = 0;
3916 
3917 
3918 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
3919 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
3920 		return;
3921 	}
3922 	PR0("Adding vdisk ID %lu", id);
3923 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
3924 	    &device_path) != 0) {
3925 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
3926 		return;
3927 	}
3928 
3929 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
3930 		PRN("Error getting LDC ID for vdisk %lu", id);
3931 		return;
3932 	}
3933 
3934 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
3935 		PRN("Failed to add vdisk ID %lu", id);
3936 		return;
3937 	}
3938 }
3939 
3940 static void
3941 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
3942 {
3943 	uint64_t	id = 0;
3944 
3945 
3946 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
3947 		PRN("Unable to get \"%s\" property from vdisk's MD node",
3948 		    VD_ID_PROP);
3949 		return;
3950 	}
3951 	PR0("Removing vdisk ID %lu", id);
3952 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
3953 		PRN("No vdisk entry found for vdisk ID %lu", id);
3954 }
3955 
3956 static void
3957 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
3958     md_t *curr_md, mde_cookie_t curr_vd_node)
3959 {
3960 	char		*curr_dev, *prev_dev;
3961 	uint64_t	curr_id = 0, curr_ldc_id = 0;
3962 	uint64_t	prev_id = 0, prev_ldc_id = 0;
3963 	size_t		len;
3964 
3965 
3966 	/* Validate that vdisk ID has not changed */
3967 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
3968 		PRN("Error getting previous vdisk \"%s\" property",
3969 		    VD_ID_PROP);
3970 		return;
3971 	}
3972 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
3973 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
3974 		return;
3975 	}
3976 	if (curr_id != prev_id) {
3977 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
3978 		    prev_id, curr_id);
3979 		return;
3980 	}
3981 
3982 	/* Validate that LDC ID has not changed */
3983 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
3984 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
3985 		return;
3986 	}
3987 
3988 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
3989 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
3990 		return;
3991 	}
3992 	if (curr_ldc_id != prev_ldc_id) {
3993 		_NOTE(NOTREACHED);	/* lint is confused */
3994 		PRN("Not changing vdisk:  "
3995 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
3996 		return;
3997 	}
3998 
3999 	/* Determine whether device path has changed */
4000 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
4001 	    &prev_dev) != 0) {
4002 		PRN("Error getting previous vdisk \"%s\"",
4003 		    VD_BLOCK_DEVICE_PROP);
4004 		return;
4005 	}
4006 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
4007 	    &curr_dev) != 0) {
4008 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4009 		return;
4010 	}
4011 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
4012 	    (strncmp(curr_dev, prev_dev, len) == 0))
4013 		return;	/* no relevant (supported) change */
4014 
4015 	PR0("Changing vdisk ID %lu", prev_id);
4016 
4017 	/* Remove old state, which will close vdisk and reset */
4018 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
4019 		PRN("No entry found for vdisk ID %lu", prev_id);
4020 
4021 	/* Re-initialize vdisk with new state */
4022 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
4023 		PRN("Failed to change vdisk ID %lu", curr_id);
4024 		return;
4025 	}
4026 }
4027 
4028 static int
4029 vds_process_md(void *arg, mdeg_result_t *md)
4030 {
4031 	int	i;
4032 	vds_t	*vds = arg;
4033 
4034 
4035 	if (md == NULL)
4036 		return (MDEG_FAILURE);
4037 	ASSERT(vds != NULL);
4038 
4039 	for (i = 0; i < md->removed.nelem; i++)
4040 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
4041 	for (i = 0; i < md->match_curr.nelem; i++)
4042 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
4043 		    md->match_curr.mdp, md->match_curr.mdep[i]);
4044 	for (i = 0; i < md->added.nelem; i++)
4045 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
4046 
4047 	return (MDEG_SUCCESS);
4048 }
4049 
4050 
4051 static int
4052 vds_do_attach(dev_info_t *dip)
4053 {
4054 	int			status, sz;
4055 	int			cfg_handle;
4056 	minor_t			instance = ddi_get_instance(dip);
4057 	vds_t			*vds;
4058 	mdeg_prop_spec_t	*pspecp;
4059 	mdeg_node_spec_t	*ispecp;
4060 
4061 	/*
4062 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
4063 	 * notion of "instance", or unique identifier, for that node; OBP
4064 	 * stores the value of the "cfg-handle" MD property as the value of
4065 	 * the "reg" property on the node in the device tree it builds from
4066 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
4067 	 * "reg" property value to uniquely identify this device instance when
4068 	 * registering with the MD event-generation framework.  If the "reg"
4069 	 * property cannot be found, the device tree state is presumably so
4070 	 * broken that there is no point in continuing.
4071 	 */
4072 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4073 	    VD_REG_PROP)) {
4074 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
4075 		return (DDI_FAILURE);
4076 	}
4077 
4078 	/* Get the MD instance for later MDEG registration */
4079 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4080 	    VD_REG_PROP, -1);
4081 
4082 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
4083 		PRN("Could not allocate state for instance %u", instance);
4084 		return (DDI_FAILURE);
4085 	}
4086 
4087 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
4088 		PRN("Could not get state for instance %u", instance);
4089 		ddi_soft_state_free(vds_state, instance);
4090 		return (DDI_FAILURE);
4091 	}
4092 
4093 	vds->dip	= dip;
4094 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
4095 	    vds_destroy_vd, sizeof (void *));
4096 
4097 	ASSERT(vds->vd_table != NULL);
4098 
4099 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
4100 		PRN("ldi_ident_from_dip() returned errno %d", status);
4101 		return (DDI_FAILURE);
4102 	}
4103 	vds->initialized |= VDS_LDI;
4104 
4105 	/* Register for MD updates */
4106 	sz = sizeof (vds_prop_template);
4107 	pspecp = kmem_alloc(sz, KM_SLEEP);
4108 	bcopy(vds_prop_template, pspecp, sz);
4109 
4110 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
4111 
4112 	/* initialize the complete prop spec structure */
4113 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
4114 	ispecp->namep = "virtual-device";
4115 	ispecp->specp = pspecp;
4116 
4117 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
4118 	    &vds->mdeg) != MDEG_SUCCESS) {
4119 		PRN("Unable to register for MD updates");
4120 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
4121 		kmem_free(pspecp, sz);
4122 		return (DDI_FAILURE);
4123 	}
4124 
4125 	vds->ispecp = ispecp;
4126 	vds->initialized |= VDS_MDEG;
4127 
4128 	/* Prevent auto-detaching so driver is available whenever MD changes */
4129 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
4130 	    DDI_PROP_SUCCESS) {
4131 		PRN("failed to set \"%s\" property for instance %u",
4132 		    DDI_NO_AUTODETACH, instance);
4133 	}
4134 
4135 	ddi_report_dev(dip);
4136 	return (DDI_SUCCESS);
4137 }
4138 
4139 static int
4140 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
4141 {
4142 	int	status;
4143 
4144 	switch (cmd) {
4145 	case DDI_ATTACH:
4146 		PR0("Attaching");
4147 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
4148 			(void) vds_detach(dip, DDI_DETACH);
4149 		return (status);
4150 	case DDI_RESUME:
4151 		PR0("No action required for DDI_RESUME");
4152 		return (DDI_SUCCESS);
4153 	default:
4154 		return (DDI_FAILURE);
4155 	}
4156 }
4157 
4158 static struct dev_ops vds_ops = {
4159 	DEVO_REV,	/* devo_rev */
4160 	0,		/* devo_refcnt */
4161 	ddi_no_info,	/* devo_getinfo */
4162 	nulldev,	/* devo_identify */
4163 	nulldev,	/* devo_probe */
4164 	vds_attach,	/* devo_attach */
4165 	vds_detach,	/* devo_detach */
4166 	nodev,		/* devo_reset */
4167 	NULL,		/* devo_cb_ops */
4168 	NULL,		/* devo_bus_ops */
4169 	nulldev		/* devo_power */
4170 };
4171 
4172 static struct modldrv modldrv = {
4173 	&mod_driverops,
4174 	"virtual disk server v%I%",
4175 	&vds_ops,
4176 };
4177 
4178 static struct modlinkage modlinkage = {
4179 	MODREV_1,
4180 	&modldrv,
4181 	NULL
4182 };
4183 
4184 
4185 int
4186 _init(void)
4187 {
4188 	int		i, status;
4189 
4190 
4191 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
4192 		return (status);
4193 	if ((status = mod_install(&modlinkage)) != 0) {
4194 		ddi_soft_state_fini(&vds_state);
4195 		return (status);
4196 	}
4197 
4198 	/* Fill in the bit-mask of server-supported operations */
4199 	for (i = 0; i < vds_noperations; i++)
4200 		vds_operations |= 1 << (vds_operation[i].operation - 1);
4201 
4202 	return (0);
4203 }
4204 
4205 int
4206 _info(struct modinfo *modinfop)
4207 {
4208 	return (mod_info(&modlinkage, modinfop));
4209 }
4210 
4211 int
4212 _fini(void)
4213 {
4214 	int	status;
4215 
4216 
4217 	if ((status = mod_remove(&modlinkage)) != 0)
4218 		return (status);
4219 	ddi_soft_state_fini(&vds_state);
4220 	return (0);
4221 }
4222