1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Virtual disk server 29 */ 30 31 32 #include <sys/types.h> 33 #include <sys/conf.h> 34 #include <sys/crc32.h> 35 #include <sys/ddi.h> 36 #include <sys/dkio.h> 37 #include <sys/file.h> 38 #include <sys/fs/hsfs_isospec.h> 39 #include <sys/mdeg.h> 40 #include <sys/mhd.h> 41 #include <sys/modhash.h> 42 #include <sys/note.h> 43 #include <sys/pathname.h> 44 #include <sys/sdt.h> 45 #include <sys/sunddi.h> 46 #include <sys/sunldi.h> 47 #include <sys/sysmacros.h> 48 #include <sys/vio_common.h> 49 #include <sys/vio_util.h> 50 #include <sys/vdsk_mailbox.h> 51 #include <sys/vdsk_common.h> 52 #include <sys/vtoc.h> 53 #include <sys/vfs.h> 54 #include <sys/stat.h> 55 #include <sys/scsi/impl/uscsi.h> 56 #include <sys/ontrap.h> 57 #include <vm/seg_map.h> 58 59 #define ONE_MEGABYTE (1ULL << 20) 60 #define ONE_GIGABYTE (1ULL << 30) 61 #define ONE_TERABYTE (1ULL << 40) 62 63 /* Virtual disk server initialization flags */ 64 #define VDS_LDI 0x01 65 #define VDS_MDEG 0x02 66 67 /* Virtual disk server tunable parameters */ 68 #define VDS_RETRIES 5 69 #define VDS_LDC_DELAY 1000 /* 1 msecs */ 70 #define VDS_DEV_DELAY 10000000 /* 10 secs */ 71 #define VDS_NCHAINS 32 72 73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 74 #define VDS_NAME "virtual-disk-server" 75 76 #define VD_NAME "vd" 77 #define VD_VOLUME_NAME "vdisk" 78 #define VD_ASCIILABEL "Virtual Disk" 79 80 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 81 #define VD_ID_PROP "id" 82 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 83 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts" 84 #define VD_REG_PROP "reg" 85 86 /* Virtual disk initialization flags */ 87 #define VD_DISK_READY 0x01 88 #define VD_LOCKING 0x02 89 #define VD_LDC 0x04 90 #define VD_DRING 0x08 91 #define VD_SID 0x10 92 #define VD_SEQ_NUM 0x20 93 #define VD_SETUP_ERROR 0x40 94 95 /* Number of backup labels */ 96 #define VD_DSKIMG_NUM_BACKUP 5 97 98 /* Timeout for SCSI I/O */ 99 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ 100 101 /* 102 * Default number of threads for the I/O queue. In many cases, we will not 103 * receive more than 8 I/O requests at the same time. However there are 104 * cases (for example during the OS installation) where we can have a lot 105 * more (up to the limit of the DRing size). 106 */ 107 #define VD_IOQ_NTHREADS 8 108 109 /* Maximum number of logical partitions */ 110 #define VD_MAXPART (NDKMAP + 1) 111 112 /* 113 * By Solaris convention, slice/partition 2 represents the entire disk; 114 * unfortunately, this convention does not appear to be codified. 115 */ 116 #define VD_ENTIRE_DISK_SLICE 2 117 118 /* Logical block address for EFI */ 119 #define VD_EFI_LBA_GPT 1 /* LBA of the GPT */ 120 #define VD_EFI_LBA_GPE 2 /* LBA of the GPE */ 121 122 /* 123 * Flags defining the behavior for flushing asynchronous writes used to 124 * performed some write I/O requests. 125 * 126 * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous 127 * writes. This ensures that data are committed to the backend when the I/O 128 * request reply is sent to the guest domain so this prevents any data to 129 * be lost in case a service domain unexpectedly crashes. 130 * 131 * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another 132 * thread while the request is immediatly marked as completed. In that case, 133 * a guest domain can a receive a reply that its write request is completed 134 * while data haven't been flushed to disk yet. 135 * 136 * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive. 137 */ 138 #define VD_AWFLUSH_IMMEDIATE 0x01 /* immediate flushing */ 139 #define VD_AWFLUSH_DEFER 0x02 /* defer flushing */ 140 #define VD_AWFLUSH_GROUP 0x04 /* group requests before flushing */ 141 142 /* Driver types */ 143 typedef enum vd_driver { 144 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */ 145 VD_DRIVER_DISK, /* disk driver */ 146 VD_DRIVER_VOLUME /* volume driver */ 147 } vd_driver_t; 148 149 #define VD_DRIVER_NAME_LEN 64 150 151 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t)) 152 153 typedef struct vd_driver_type { 154 char name[VD_DRIVER_NAME_LEN]; /* driver name */ 155 vd_driver_t type; /* driver type (disk or volume) */ 156 } vd_driver_type_t; 157 158 /* 159 * There is no reliable way to determine if a device is representing a disk 160 * or a volume, especially with pseudo devices. So we maintain a list of well 161 * known drivers and the type of device they represent (either a disk or a 162 * volume). 163 * 164 * The list can be extended by adding a "driver-type-list" entry in vds.conf 165 * with the following syntax: 166 * 167 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>"; 168 * 169 * Where: 170 * <driver> is the name of a driver (limited to 64 characters) 171 * <type> is either the string "disk" or "volume" 172 * 173 * Invalid entries in "driver-type-list" will be ignored. 174 * 175 * For example, the following line in vds.conf: 176 * 177 * driver-type-list="foo:disk","bar:volume"; 178 * 179 * defines that "foo" is a disk driver, and driver "bar" is a volume driver. 180 * 181 * When a list is defined in vds.conf, it is checked before the built-in list 182 * (vds_driver_types[]) so that any definition from this list can be overriden 183 * using vds.conf. 184 */ 185 vd_driver_type_t vds_driver_types[] = { 186 { "dad", VD_DRIVER_DISK }, /* Solaris */ 187 { "did", VD_DRIVER_DISK }, /* Sun Cluster */ 188 { "dlmfdrv", VD_DRIVER_DISK }, /* Hitachi HDLM */ 189 { "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */ 190 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */ 191 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */ 192 { "sd", VD_DRIVER_DISK }, /* Solaris */ 193 { "ssd", VD_DRIVER_DISK }, /* Solaris */ 194 { "vdc", VD_DRIVER_DISK }, /* Solaris */ 195 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */ 196 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */ 197 { "zfs", VD_DRIVER_VOLUME } /* Solaris */ 198 }; 199 200 /* Return a cpp token as a string */ 201 #define STRINGIZE(token) #token 202 203 /* 204 * Print a message prefixed with the current function name to the message log 205 * (and optionally to the console for verbose boots); these macros use cpp's 206 * concatenation of string literals and C99 variable-length-argument-list 207 * macros 208 */ 209 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 210 #define _PRN(format, ...) \ 211 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 212 213 /* Return a pointer to the "i"th vdisk dring element */ 214 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 215 (vd->dring + (i)*vd->descriptor_size)) 216 217 /* Return the virtual disk client's type as a string (for use in messages) */ 218 #define VD_CLIENT(vd) \ 219 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 220 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \ 221 (((vd)->xfer_mode == 0) ? "null client" : \ 222 "unsupported client"))) 223 224 /* Read disk label from a disk image */ 225 #define VD_DSKIMG_LABEL_READ(vd, labelp) \ 226 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 227 0, sizeof (struct dk_label)) 228 229 /* Write disk label to a disk image */ 230 #define VD_DSKIMG_LABEL_WRITE(vd, labelp) \ 231 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 232 0, sizeof (struct dk_label)) 233 234 /* Identify if a backend is a disk image */ 235 #define VD_DSKIMG(vd) ((vd)->vdisk_type == VD_DISK_TYPE_DISK && \ 236 ((vd)->file || (vd)->volume)) 237 238 /* Next index in a write queue */ 239 #define VD_WRITE_INDEX_NEXT(vd, id) \ 240 ((((id) + 1) >= vd->dring_len)? 0 : (id) + 1) 241 242 /* Message for disk access rights reset failure */ 243 #define VD_RESET_ACCESS_FAILURE_MSG \ 244 "Fail to reset disk access rights for disk %s" 245 246 /* 247 * Specification of an MD node passed to the MDEG to filter any 248 * 'vport' nodes that do not belong to the specified node. This 249 * template is copied for each vds instance and filled in with 250 * the appropriate 'cfg-handle' value before being passed to the MDEG. 251 */ 252 static mdeg_prop_spec_t vds_prop_template[] = { 253 { MDET_PROP_STR, "name", VDS_NAME }, 254 { MDET_PROP_VAL, "cfg-handle", NULL }, 255 { MDET_LIST_END, NULL, NULL } 256 }; 257 258 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 259 260 /* 261 * Matching criteria passed to the MDEG to register interest 262 * in changes to 'virtual-device-port' nodes identified by their 263 * 'id' property. 264 */ 265 static md_prop_match_t vd_prop_match[] = { 266 { MDET_PROP_VAL, VD_ID_PROP }, 267 { MDET_LIST_END, NULL } 268 }; 269 270 static mdeg_node_match_t vd_match = {"virtual-device-port", 271 vd_prop_match}; 272 273 /* 274 * Options for the VD_BLOCK_DEVICE_OPTS property. 275 */ 276 #define VD_OPT_RDONLY 0x1 /* read-only */ 277 #define VD_OPT_SLICE 0x2 /* single slice */ 278 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */ 279 280 #define VD_OPTION_NLEN 128 281 282 typedef struct vd_option { 283 char vdo_name[VD_OPTION_NLEN]; 284 uint64_t vdo_value; 285 } vd_option_t; 286 287 vd_option_t vd_bdev_options[] = { 288 { "ro", VD_OPT_RDONLY }, 289 { "slice", VD_OPT_SLICE }, 290 { "excl", VD_OPT_EXCLUSIVE } 291 }; 292 293 /* Debugging macros */ 294 #ifdef DEBUG 295 296 static int vd_msglevel = 0; 297 298 #define PR0 if (vd_msglevel > 0) PRN 299 #define PR1 if (vd_msglevel > 1) PRN 300 #define PR2 if (vd_msglevel > 2) PRN 301 302 #define VD_DUMP_DRING_ELEM(elem) \ 303 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 304 elem->hdr.dstate, \ 305 elem->payload.operation, \ 306 elem->payload.status, \ 307 elem->payload.nbytes, \ 308 elem->payload.addr, \ 309 elem->payload.ncookies); 310 311 char * 312 vd_decode_state(int state) 313 { 314 char *str; 315 316 #define CASE_STATE(_s) case _s: str = #_s; break; 317 318 switch (state) { 319 CASE_STATE(VD_STATE_INIT) 320 CASE_STATE(VD_STATE_VER) 321 CASE_STATE(VD_STATE_ATTR) 322 CASE_STATE(VD_STATE_DRING) 323 CASE_STATE(VD_STATE_RDX) 324 CASE_STATE(VD_STATE_DATA) 325 default: str = "unknown"; break; 326 } 327 328 #undef CASE_STATE 329 330 return (str); 331 } 332 333 void 334 vd_decode_tag(vio_msg_t *msg) 335 { 336 char *tstr, *sstr, *estr; 337 338 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 339 340 switch (msg->tag.vio_msgtype) { 341 CASE_TYPE(VIO_TYPE_CTRL) 342 CASE_TYPE(VIO_TYPE_DATA) 343 CASE_TYPE(VIO_TYPE_ERR) 344 default: tstr = "unknown"; break; 345 } 346 347 #undef CASE_TYPE 348 349 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 350 351 switch (msg->tag.vio_subtype) { 352 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 353 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 354 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 355 default: sstr = "unknown"; break; 356 } 357 358 #undef CASE_SUBTYPE 359 360 #define CASE_ENV(_s) case _s: estr = #_s; break; 361 362 switch (msg->tag.vio_subtype_env) { 363 CASE_ENV(VIO_VER_INFO) 364 CASE_ENV(VIO_ATTR_INFO) 365 CASE_ENV(VIO_DRING_REG) 366 CASE_ENV(VIO_DRING_UNREG) 367 CASE_ENV(VIO_RDX) 368 CASE_ENV(VIO_PKT_DATA) 369 CASE_ENV(VIO_DESC_DATA) 370 CASE_ENV(VIO_DRING_DATA) 371 default: estr = "unknown"; break; 372 } 373 374 #undef CASE_ENV 375 376 PR1("(%x/%x/%x) message : (%s/%s/%s)", 377 msg->tag.vio_msgtype, msg->tag.vio_subtype, 378 msg->tag.vio_subtype_env, tstr, sstr, estr); 379 } 380 381 #else /* !DEBUG */ 382 383 #define PR0(...) 384 #define PR1(...) 385 #define PR2(...) 386 387 #define VD_DUMP_DRING_ELEM(elem) 388 389 #define vd_decode_state(_s) (NULL) 390 #define vd_decode_tag(_s) (NULL) 391 392 #endif /* DEBUG */ 393 394 395 /* 396 * Soft state structure for a vds instance 397 */ 398 typedef struct vds { 399 uint_t initialized; /* driver inst initialization flags */ 400 dev_info_t *dip; /* driver inst devinfo pointer */ 401 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 402 mod_hash_t *vd_table; /* table of virtual disks served */ 403 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 404 mdeg_handle_t mdeg; /* handle for MDEG operations */ 405 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */ 406 int num_drivers; /* num of extra driver types */ 407 } vds_t; 408 409 /* 410 * Types of descriptor-processing tasks 411 */ 412 typedef enum vd_task_type { 413 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 414 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 415 } vd_task_type_t; 416 417 /* 418 * Structure describing the task for processing a descriptor 419 */ 420 typedef struct vd_task { 421 struct vd *vd; /* vd instance task is for */ 422 vd_task_type_t type; /* type of descriptor task */ 423 int index; /* dring elem index for task */ 424 vio_msg_t *msg; /* VIO message task is for */ 425 size_t msglen; /* length of message content */ 426 vd_dring_payload_t *request; /* request task will perform */ 427 struct buf buf; /* buf(9s) for I/O request */ 428 ldc_mem_handle_t mhdl; /* task memory handle */ 429 int status; /* status of processing task */ 430 int (*completef)(struct vd_task *task); /* completion func ptr */ 431 uint32_t write_index; /* index in the write_queue */ 432 } vd_task_t; 433 434 /* 435 * Soft state structure for a virtual disk instance 436 */ 437 typedef struct vd { 438 uint64_t id; /* vdisk id */ 439 uint_t initialized; /* vdisk initialization flags */ 440 uint64_t operations; /* bitmask of VD_OPs exported */ 441 vio_ver_t version; /* ver negotiated with client */ 442 vds_t *vds; /* server for this vdisk */ 443 ddi_taskq_t *startq; /* queue for I/O start tasks */ 444 ddi_taskq_t *completionq; /* queue for completion tasks */ 445 ddi_taskq_t *ioq; /* queue for I/O */ 446 uint32_t write_index; /* next write index */ 447 buf_t **write_queue; /* queue for async writes */ 448 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 449 char device_path[MAXPATHLEN + 1]; /* vdisk device */ 450 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 451 int open_flags; /* open flags */ 452 uint_t nslices; /* number of slices we export */ 453 size_t vdisk_size; /* number of blocks in vdisk */ 454 size_t vdisk_block_size; /* size of each vdisk block */ 455 vd_disk_type_t vdisk_type; /* slice or entire disk */ 456 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 457 vd_media_t vdisk_media; /* media type of backing dev. */ 458 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */ 459 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 460 size_t block_size; /* blk size of actual device */ 461 boolean_t volume; /* is vDisk backed by volume */ 462 boolean_t zvol; /* is vDisk backed by a zvol */ 463 boolean_t file; /* is vDisk backed by a file? */ 464 boolean_t scsi; /* is vDisk backed by scsi? */ 465 vnode_t *file_vnode; /* file vnode */ 466 size_t dskimg_size; /* size of disk image */ 467 ddi_devid_t dskimg_devid; /* devid for disk image */ 468 int efi_reserved; /* EFI reserved slice */ 469 caddr_t flabel; /* fake label for slice type */ 470 uint_t flabel_size; /* fake label size */ 471 uint_t flabel_limit; /* limit of the fake label */ 472 struct dk_geom dk_geom; /* synthetic for slice type */ 473 struct extvtoc vtoc; /* synthetic for slice type */ 474 vd_slice_t slices[VD_MAXPART]; /* logical partitions */ 475 boolean_t ownership; /* disk ownership status */ 476 ldc_status_t ldc_state; /* LDC connection state */ 477 ldc_handle_t ldc_handle; /* handle for LDC comm */ 478 size_t max_msglen; /* largest LDC message len */ 479 vd_state_t state; /* client handshake state */ 480 uint8_t xfer_mode; /* transfer mode with client */ 481 uint32_t sid; /* client's session ID */ 482 uint64_t seq_num; /* message sequence number */ 483 uint64_t dring_ident; /* identifier of dring */ 484 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 485 uint32_t descriptor_size; /* num bytes in desc */ 486 uint32_t dring_len; /* number of dring elements */ 487 uint8_t dring_mtype; /* dring mem map type */ 488 caddr_t dring; /* address of dring */ 489 caddr_t vio_msgp; /* vio msg staging buffer */ 490 vd_task_t inband_task; /* task for inband descriptor */ 491 vd_task_t *dring_task; /* tasks dring elements */ 492 493 kmutex_t lock; /* protects variables below */ 494 boolean_t enabled; /* is vdisk enabled? */ 495 boolean_t reset_state; /* reset connection state? */ 496 boolean_t reset_ldc; /* reset LDC channel? */ 497 } vd_t; 498 499 /* 500 * Macros to manipulate the fake label (flabel) for single slice disks. 501 * 502 * If we fake a VTOC label then the fake label consists of only one block 503 * containing the VTOC label (struct dk_label). 504 * 505 * If we fake an EFI label then the fake label consists of a blank block 506 * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t). 507 * 508 */ 509 #define VD_LABEL_VTOC_SIZE \ 510 P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE) 511 512 #define VD_LABEL_EFI_SIZE \ 513 P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + \ 514 sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE) 515 516 #define VD_LABEL_VTOC(vd) \ 517 ((struct dk_label *)(void *)((vd)->flabel)) 518 519 #define VD_LABEL_EFI_GPT(vd) \ 520 ((efi_gpt_t *)(void *)((vd)->flabel + DEV_BSIZE)) 521 #define VD_LABEL_EFI_GPE(vd) \ 522 ((efi_gpe_t *)(void *)((vd)->flabel + DEV_BSIZE + \ 523 sizeof (efi_gpt_t))) 524 525 526 typedef struct vds_operation { 527 char *namep; 528 uint8_t operation; 529 int (*start)(vd_task_t *task); 530 int (*complete)(vd_task_t *task); 531 } vds_operation_t; 532 533 typedef struct vd_ioctl { 534 uint8_t operation; /* vdisk operation */ 535 const char *operation_name; /* vdisk operation name */ 536 size_t nbytes; /* size of operation buffer */ 537 int cmd; /* corresponding ioctl cmd */ 538 const char *cmd_name; /* ioctl cmd name */ 539 void *arg; /* ioctl cmd argument */ 540 /* convert input vd_buf to output ioctl_arg */ 541 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg); 542 /* convert input ioctl_arg to output vd_buf */ 543 void (*copyout)(void *ioctl_arg, void *vd_buf); 544 /* write is true if the operation writes any data to the backend */ 545 boolean_t write; 546 } vd_ioctl_t; 547 548 /* Define trivial copyin/copyout conversion function flag */ 549 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1) 550 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1) 551 552 553 static int vds_ldc_retries = VDS_RETRIES; 554 static int vds_ldc_delay = VDS_LDC_DELAY; 555 static int vds_dev_retries = VDS_RETRIES; 556 static int vds_dev_delay = VDS_DEV_DELAY; 557 static void *vds_state; 558 559 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; 560 static int vd_scsi_debug = USCSI_SILENT; 561 562 /* 563 * Number of threads in the taskq handling vdisk I/O. This can be set up to 564 * the size of the DRing which is the maximum number of I/O we can receive 565 * in parallel. Note that using a high number of threads can improve performance 566 * but this is going to consume a lot of resources if there are many vdisks. 567 */ 568 static int vd_ioq_nthreads = VD_IOQ_NTHREADS; 569 570 /* 571 * Tunable to define the behavior for flushing asynchronous writes used to 572 * performed some write I/O requests. The default behavior is to group as 573 * much asynchronous writes as possible and to flush them immediatly. 574 * 575 * If the tunable is set to 0 then explicit flushing is disabled. In that 576 * case, data will be flushed by traditional mechanism (like fsflush) but 577 * this might not happen immediatly. 578 * 579 */ 580 static int vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP; 581 582 /* 583 * Tunable to define the behavior of the service domain if the vdisk server 584 * fails to reset disk exclusive access when a LDC channel is reset. When a 585 * LDC channel is reset the vdisk server will try to reset disk exclusive 586 * access by releasing any SCSI-2 reservation or resetting the disk. If these 587 * actions fail then the default behavior (vd_reset_access_failure = 0) is to 588 * print a warning message. This default behavior can be changed by setting 589 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will 590 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause 591 * the service domain to panic. In both cases, the reset of the service domain 592 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation. 593 */ 594 static int vd_reset_access_failure = 0; 595 596 /* 597 * Tunable for backward compatibility. When this variable is set to B_TRUE, 598 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single 599 * slice disks whether or not they have the "slice" option set. This is 600 * to provide a simple backward compatibility mechanism when upgrading 601 * the vds driver and using a domain configuration created before the 602 * "slice" option was available. 603 */ 604 static boolean_t vd_volume_force_slice = B_FALSE; 605 606 /* 607 * The label of disk images created with some earlier versions of the virtual 608 * disk software is not entirely correct and have an incorrect v_sanity field 609 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with 610 * these images because we are now validating that the disk label (and the 611 * sanity) is correct when a disk image is opened. 612 * 613 * This tunable is set to false to not validate the sanity field and ensure 614 * compatibility. If the tunable is set to true, we will do a strict checking 615 * of the sanity but this can create compatibility problems with old disk 616 * images. 617 */ 618 static boolean_t vd_dskimg_validate_sanity = B_FALSE; 619 620 /* 621 * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings. 622 */ 623 static boolean_t vd_direct_mapped_drings = B_TRUE; 624 625 /* 626 * When a backend is exported as a single-slice disk then we entirely fake 627 * its disk label. So it can be exported either with a VTOC label or with 628 * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all 629 * single-slice disks will be exported with a VTOC label; and if it is set 630 * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with 631 * an EFI label. 632 * 633 * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk 634 * or volume device then it will be exported with the same type of label as 635 * defined on the device. Otherwise if the backend is a file then it will 636 * exported with the disk label type set in the vd_file_slice_label variable. 637 * 638 * Note that if the backend size is greater than 1TB then it will always be 639 * exported with an EFI label no matter what the setting is. 640 */ 641 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK; 642 643 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC; 644 645 /* 646 * Tunable for backward compatibility. If this variable is set to B_TRUE then 647 * single-slice disks are exported as disks with only one slice instead of 648 * faking a complete disk partitioning. 649 */ 650 static boolean_t vd_slice_single_slice = B_FALSE; 651 652 /* 653 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 654 * 655 * Each supported major version should appear only once, paired with (and only 656 * with) its highest supported minor version number (as the protocol requires 657 * supporting all lower minor version numbers as well) 658 */ 659 static const vio_ver_t vds_version[] = {{1, 1}}; 660 static const size_t vds_num_versions = 661 sizeof (vds_version)/sizeof (vds_version[0]); 662 663 static void vd_free_dring_task(vd_t *vdp); 664 static int vd_setup_vd(vd_t *vd); 665 static int vd_setup_single_slice_disk(vd_t *vd); 666 static int vd_setup_slice_image(vd_t *vd); 667 static int vd_setup_disk_image(vd_t *vd); 668 static int vd_backend_check_size(vd_t *vd); 669 static boolean_t vd_enabled(vd_t *vd); 670 static ushort_t vd_lbl2cksum(struct dk_label *label); 671 static int vd_dskimg_validate_geometry(vd_t *vd); 672 static boolean_t vd_dskimg_is_iso_image(vd_t *vd); 673 static void vd_set_exported_operations(vd_t *vd); 674 static void vd_reset_access(vd_t *vd); 675 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg); 676 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **); 677 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *); 678 static void vds_driver_types_free(vds_t *vds); 679 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom, 680 struct dk_label *label); 681 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc, 682 struct dk_geom *geom); 683 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom); 684 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc); 685 686 extern int is_pseudo_device(dev_info_t *); 687 688 /* 689 * Function: 690 * vd_get_readable_size 691 * 692 * Description: 693 * Convert a given size in bytes to a human readable format in 694 * kilobytes, megabytes, gigabytes or terabytes. 695 * 696 * Parameters: 697 * full_size - the size to convert in bytes. 698 * size - the converted size. 699 * unit - the unit of the converted size: 'K' (kilobyte), 700 * 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte). 701 * 702 * Return Code: 703 * none 704 */ 705 static void 706 vd_get_readable_size(size_t full_size, size_t *size, char *unit) 707 { 708 if (full_size < (1ULL << 20)) { 709 *size = full_size >> 10; 710 *unit = 'K'; /* Kilobyte */ 711 } else if (full_size < (1ULL << 30)) { 712 *size = full_size >> 20; 713 *unit = 'M'; /* Megabyte */ 714 } else if (full_size < (1ULL << 40)) { 715 *size = full_size >> 30; 716 *unit = 'G'; /* Gigabyte */ 717 } else { 718 *size = full_size >> 40; 719 *unit = 'T'; /* Terabyte */ 720 } 721 } 722 723 /* 724 * Function: 725 * vd_dskimg_io_params 726 * 727 * Description: 728 * Convert virtual disk I/O parameters (slice, block, length) to 729 * (offset, length) relative to the disk image and according to 730 * the virtual disk partitioning. 731 * 732 * Parameters: 733 * vd - disk on which the operation is performed. 734 * slice - slice to which is the I/O parameters apply. 735 * VD_SLICE_NONE indicates that parameters are 736 * are relative to the entire virtual disk. 737 * blkp - pointer to the starting block relative to the 738 * slice; return the starting block relative to 739 * the disk image. 740 * lenp - pointer to the number of bytes requested; return 741 * the number of bytes that can effectively be used. 742 * 743 * Return Code: 744 * 0 - I/O parameters have been successfully converted; 745 * blkp and lenp point to the converted values. 746 * ENODATA - no data are available for the given I/O parameters; 747 * This occurs if the starting block is past the limit 748 * of the slice. 749 * EINVAL - I/O parameters are invalid. 750 */ 751 static int 752 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp) 753 { 754 size_t blk = *blkp; 755 size_t len = *lenp; 756 size_t offset, maxlen; 757 758 ASSERT(vd->file || VD_DSKIMG(vd)); 759 ASSERT(len > 0); 760 761 /* 762 * If a file is exported as a slice then we don't care about the vtoc. 763 * In that case, the vtoc is a fake mainly to make newfs happy and we 764 * handle any I/O as a raw disk access so that we can have access to the 765 * entire backend. 766 */ 767 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) { 768 /* raw disk access */ 769 offset = blk * DEV_BSIZE; 770 if (offset >= vd->dskimg_size) { 771 /* offset past the end of the disk */ 772 PR0("offset (0x%lx) >= size (0x%lx)", 773 offset, vd->dskimg_size); 774 return (ENODATA); 775 } 776 maxlen = vd->dskimg_size - offset; 777 } else { 778 ASSERT(slice >= 0 && slice < V_NUMPAR); 779 780 /* 781 * v1.0 vDisk clients depended on the server not verifying 782 * the label of a unformatted disk. This "feature" is 783 * maintained for backward compatibility but all versions 784 * from v1.1 onwards must do the right thing. 785 */ 786 if (vd->vdisk_label == VD_DISK_LABEL_UNK && 787 vio_ver_is_supported(vd->version, 1, 1)) { 788 (void) vd_dskimg_validate_geometry(vd); 789 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 790 PR0("Unknown disk label, can't do I/O " 791 "from slice %d", slice); 792 return (EINVAL); 793 } 794 } 795 796 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 797 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE); 798 } else { 799 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI); 800 ASSERT(vd->vdisk_block_size == DEV_BSIZE); 801 } 802 803 if (blk >= vd->slices[slice].nblocks) { 804 /* address past the end of the slice */ 805 PR0("req_addr (0x%lx) >= psize (0x%lx)", 806 blk, vd->slices[slice].nblocks); 807 return (ENODATA); 808 } 809 810 offset = (vd->slices[slice].start + blk) * DEV_BSIZE; 811 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE; 812 } 813 814 /* 815 * If the requested size is greater than the size 816 * of the partition, truncate the read/write. 817 */ 818 if (len > maxlen) { 819 PR0("I/O size truncated to %lu bytes from %lu bytes", 820 maxlen, len); 821 len = maxlen; 822 } 823 824 /* 825 * We have to ensure that we are reading/writing into the mmap 826 * range. If we have a partial disk image (e.g. an image of 827 * s0 instead s2) the system can try to access slices that 828 * are not included into the disk image. 829 */ 830 if ((offset + len) > vd->dskimg_size) { 831 PR0("offset + nbytes (0x%lx + 0x%lx) > " 832 "dskimg_size (0x%lx)", offset, len, vd->dskimg_size); 833 return (EINVAL); 834 } 835 836 *blkp = offset / DEV_BSIZE; 837 *lenp = len; 838 839 return (0); 840 } 841 842 /* 843 * Function: 844 * vd_dskimg_rw 845 * 846 * Description: 847 * Read or write to a disk image. It handles the case where the disk 848 * image is a file or a volume exported as a full disk or a file 849 * exported as single-slice disk. Read or write to volumes exported as 850 * single slice disks are done by directly using the ldi interface. 851 * 852 * Parameters: 853 * vd - disk on which the operation is performed. 854 * slice - slice on which the operation is performed, 855 * VD_SLICE_NONE indicates that the operation 856 * is done using an absolute disk offset. 857 * operation - operation to execute: read (VD_OP_BREAD) or 858 * write (VD_OP_BWRITE). 859 * data - buffer where data are read to or written from. 860 * blk - starting block for the operation. 861 * len - number of bytes to read or write. 862 * 863 * Return Code: 864 * n >= 0 - success, n indicates the number of bytes read 865 * or written. 866 * -1 - error. 867 */ 868 static ssize_t 869 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset, 870 size_t len) 871 { 872 ssize_t resid; 873 struct buf buf; 874 int status; 875 876 ASSERT(vd->file || VD_DSKIMG(vd)); 877 ASSERT(len > 0); 878 879 if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0) 880 return ((status == ENODATA)? 0: -1); 881 882 if (vd->volume) { 883 884 bioinit(&buf); 885 buf.b_flags = B_BUSY | 886 ((operation == VD_OP_BREAD)? B_READ : B_WRITE); 887 buf.b_bcount = len; 888 buf.b_lblkno = offset; 889 buf.b_edev = vd->dev[0]; 890 buf.b_un.b_addr = data; 891 892 /* 893 * We use ldi_strategy() and not ldi_read()/ldi_write() because 894 * the read/write functions of the underlying driver may try to 895 * lock pages of the data buffer, and this requires the data 896 * buffer to be kmem_alloc'ed (and not allocated on the stack). 897 * 898 * Also using ldi_strategy() ensures that writes are immediatly 899 * commited and not cached as this may be the case with 900 * ldi_write() (for example with a ZFS volume). 901 */ 902 if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) { 903 biofini(&buf); 904 return (-1); 905 } 906 907 if (biowait(&buf) != 0) { 908 biofini(&buf); 909 return (-1); 910 } 911 912 resid = buf.b_resid; 913 biofini(&buf); 914 915 ASSERT(resid <= len); 916 return (len - resid); 917 } 918 919 ASSERT(vd->file); 920 921 status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE, 922 vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC, 923 RLIM64_INFINITY, kcred, &resid); 924 925 if (status != 0) 926 return (-1); 927 928 return (len); 929 } 930 931 /* 932 * Function: 933 * vd_build_default_label 934 * 935 * Description: 936 * Return a default label for a given disk size. This is used when the disk 937 * does not have a valid VTOC so that the user can get a valid default 938 * configuration. The default label has all slice sizes set to 0 (except 939 * slice 2 which is the entire disk) to force the user to write a valid 940 * label onto the disk image. 941 * 942 * Parameters: 943 * disk_size - the disk size in bytes 944 * label - the returned default label. 945 * 946 * Return Code: 947 * none. 948 */ 949 static void 950 vd_build_default_label(size_t disk_size, struct dk_label *label) 951 { 952 size_t size; 953 char unit; 954 955 bzero(label, sizeof (struct dk_label)); 956 957 /* 958 * Ideally we would like the cylinder size (nsect * nhead) to be the 959 * same whatever the disk size is. That way the VTOC label could be 960 * easily updated in case the disk size is increased (keeping the 961 * same cylinder size allows to preserve the existing partitioning 962 * when updating the VTOC label). But it is not possible to have 963 * a fixed cylinder size and to cover all disk size. 964 * 965 * So we define different cylinder sizes depending on the disk size. 966 * The cylinder size is chosen so that we don't have too few cylinders 967 * for a small disk image, or so many on a big disk image that you 968 * waste space for backup superblocks or cylinder group structures. 969 * Also we must have a resonable number of cylinders and sectors so 970 * that newfs can run using default values. 971 * 972 * +-----------+--------+---------+--------+ 973 * | disk_size | < 2MB | 2MB-4GB | >= 8GB | 974 * +-----------+--------+---------+--------+ 975 * | nhead | 1 | 1 | 96 | 976 * | nsect | 200 | 600 | 768 | 977 * +-----------+--------+---------+--------+ 978 * 979 * Other parameters are computed from these values: 980 * 981 * pcyl = disk_size / (nhead * nsect * 512) 982 * acyl = (pcyl > 2)? 2 : 0 983 * ncyl = pcyl - acyl 984 * 985 * The maximum number of cylinder is 65535 so this allows to define a 986 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB 987 * which is more than enough to cover the maximum size allowed by the 988 * extended VTOC format (2TB). 989 */ 990 991 if (disk_size >= 8 * ONE_GIGABYTE) { 992 993 label->dkl_nhead = 96; 994 label->dkl_nsect = 768; 995 996 } else if (disk_size >= 2 * ONE_MEGABYTE) { 997 998 label->dkl_nhead = 1; 999 label->dkl_nsect = 600; 1000 1001 } else { 1002 1003 label->dkl_nhead = 1; 1004 label->dkl_nsect = 200; 1005 } 1006 1007 label->dkl_pcyl = disk_size / 1008 (label->dkl_nsect * label->dkl_nhead * DEV_BSIZE); 1009 1010 if (label->dkl_pcyl == 0) 1011 label->dkl_pcyl = 1; 1012 1013 label->dkl_acyl = 0; 1014 1015 if (label->dkl_pcyl > 2) 1016 label->dkl_acyl = 2; 1017 1018 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl; 1019 label->dkl_write_reinstruct = 0; 1020 label->dkl_read_reinstruct = 0; 1021 label->dkl_rpm = 7200; 1022 label->dkl_apc = 0; 1023 label->dkl_intrlv = 0; 1024 1025 PR0("requested disk size: %ld bytes\n", disk_size); 1026 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl, 1027 label->dkl_nhead, label->dkl_nsect); 1028 PR0("provided disk size: %ld bytes\n", (uint64_t) 1029 (label->dkl_pcyl * label->dkl_nhead * 1030 label->dkl_nsect * DEV_BSIZE)); 1031 1032 vd_get_readable_size(disk_size, &size, &unit); 1033 1034 /* 1035 * We must have a correct label name otherwise format(1m) will 1036 * not recognized the disk as labeled. 1037 */ 1038 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII, 1039 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", 1040 size, unit, 1041 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead, 1042 label->dkl_nsect); 1043 1044 /* default VTOC */ 1045 label->dkl_vtoc.v_version = V_EXTVERSION; 1046 label->dkl_vtoc.v_nparts = V_NUMPAR; 1047 label->dkl_vtoc.v_sanity = VTOC_SANE; 1048 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 1049 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0; 1050 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl * 1051 label->dkl_nhead * label->dkl_nsect; 1052 label->dkl_magic = DKL_MAGIC; 1053 label->dkl_cksum = vd_lbl2cksum(label); 1054 } 1055 1056 /* 1057 * Function: 1058 * vd_dskimg_set_vtoc 1059 * 1060 * Description: 1061 * Set the vtoc of a disk image by writing the label and backup 1062 * labels into the disk image backend. 1063 * 1064 * Parameters: 1065 * vd - disk on which the operation is performed. 1066 * label - the data to be written. 1067 * 1068 * Return Code: 1069 * 0 - success. 1070 * n > 0 - error, n indicates the errno code. 1071 */ 1072 static int 1073 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label) 1074 { 1075 size_t blk, sec, cyl, head, cnt; 1076 1077 ASSERT(VD_DSKIMG(vd)); 1078 1079 if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) { 1080 PR0("fail to write disk label"); 1081 return (EIO); 1082 } 1083 1084 /* 1085 * Backup labels are on the last alternate cylinder's 1086 * first five odd sectors. 1087 */ 1088 if (label->dkl_acyl == 0) { 1089 PR0("no alternate cylinder, can not store backup labels"); 1090 return (0); 1091 } 1092 1093 cyl = label->dkl_ncyl + label->dkl_acyl - 1; 1094 head = label->dkl_nhead - 1; 1095 1096 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + 1097 (head * label->dkl_nsect); 1098 1099 /* 1100 * Write the backup labels. Make sure we don't try to write past 1101 * the last cylinder. 1102 */ 1103 sec = 1; 1104 1105 for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) { 1106 1107 if (sec >= label->dkl_nsect) { 1108 PR0("not enough sector to store all backup labels"); 1109 return (0); 1110 } 1111 1112 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1113 (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) { 1114 PR0("error writing backup label at block %lu\n", 1115 blk + sec); 1116 return (EIO); 1117 } 1118 1119 PR1("wrote backup label at block %lu\n", blk + sec); 1120 1121 sec += 2; 1122 } 1123 1124 return (0); 1125 } 1126 1127 /* 1128 * Function: 1129 * vd_dskimg_get_devid_block 1130 * 1131 * Description: 1132 * Return the block number where the device id is stored. 1133 * 1134 * Parameters: 1135 * vd - disk on which the operation is performed. 1136 * blkp - pointer to the block number 1137 * 1138 * Return Code: 1139 * 0 - success 1140 * ENOSPC - disk has no space to store a device id 1141 */ 1142 static int 1143 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp) 1144 { 1145 diskaddr_t spc, head, cyl; 1146 1147 ASSERT(VD_DSKIMG(vd)); 1148 1149 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 1150 /* 1151 * If no label is defined we don't know where to find 1152 * a device id. 1153 */ 1154 return (ENOSPC); 1155 } 1156 1157 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1158 /* 1159 * For an EFI disk, the devid is at the beginning of 1160 * the reserved slice 1161 */ 1162 if (vd->efi_reserved == -1) { 1163 PR0("EFI disk has no reserved slice"); 1164 return (ENOSPC); 1165 } 1166 1167 *blkp = vd->slices[vd->efi_reserved].start; 1168 return (0); 1169 } 1170 1171 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1172 1173 /* this geometry doesn't allow us to have a devid */ 1174 if (vd->dk_geom.dkg_acyl < 2) { 1175 PR0("not enough alternate cylinder available for devid " 1176 "(acyl=%u)", vd->dk_geom.dkg_acyl); 1177 return (ENOSPC); 1178 } 1179 1180 /* the devid is in on the track next to the last cylinder */ 1181 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; 1182 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1183 head = vd->dk_geom.dkg_nhead - 1; 1184 1185 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + 1186 (head * vd->dk_geom.dkg_nsect) + 1; 1187 1188 return (0); 1189 } 1190 1191 /* 1192 * Return the checksum of a disk block containing an on-disk devid. 1193 */ 1194 static uint_t 1195 vd_dkdevid2cksum(struct dk_devid *dkdevid) 1196 { 1197 uint_t chksum, *ip; 1198 int i; 1199 1200 chksum = 0; 1201 ip = (void *)dkdevid; 1202 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) 1203 chksum ^= ip[i]; 1204 1205 return (chksum); 1206 } 1207 1208 /* 1209 * Function: 1210 * vd_dskimg_read_devid 1211 * 1212 * Description: 1213 * Read the device id stored on a disk image. 1214 * 1215 * Parameters: 1216 * vd - disk on which the operation is performed. 1217 * devid - the return address of the device ID. 1218 * 1219 * Return Code: 1220 * 0 - success 1221 * EIO - I/O error while trying to access the disk image 1222 * EINVAL - no valid device id was found 1223 * ENOSPC - disk has no space to store a device id 1224 */ 1225 static int 1226 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid) 1227 { 1228 struct dk_devid *dkdevid; 1229 size_t blk; 1230 uint_t chksum; 1231 int status, sz; 1232 1233 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0) 1234 return (status); 1235 1236 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1237 1238 /* get the devid */ 1239 if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, 1240 DEV_BSIZE)) < 0) { 1241 PR0("error reading devid block at %lu", blk); 1242 status = EIO; 1243 goto done; 1244 } 1245 1246 /* validate the revision */ 1247 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 1248 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 1249 PR0("invalid devid found at block %lu (bad revision)", blk); 1250 status = EINVAL; 1251 goto done; 1252 } 1253 1254 /* compute checksum */ 1255 chksum = vd_dkdevid2cksum(dkdevid); 1256 1257 /* compare the checksums */ 1258 if (DKD_GETCHKSUM(dkdevid) != chksum) { 1259 PR0("invalid devid found at block %lu (bad checksum)", blk); 1260 status = EINVAL; 1261 goto done; 1262 } 1263 1264 /* validate the device id */ 1265 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 1266 PR0("invalid devid found at block %lu", blk); 1267 status = EINVAL; 1268 goto done; 1269 } 1270 1271 PR1("devid read at block %lu", blk); 1272 1273 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 1274 *devid = kmem_alloc(sz, KM_SLEEP); 1275 bcopy(&dkdevid->dkd_devid, *devid, sz); 1276 1277 done: 1278 kmem_free(dkdevid, DEV_BSIZE); 1279 return (status); 1280 1281 } 1282 1283 /* 1284 * Function: 1285 * vd_dskimg_write_devid 1286 * 1287 * Description: 1288 * Write a device id into disk image. 1289 * 1290 * Parameters: 1291 * vd - disk on which the operation is performed. 1292 * devid - the device ID to store. 1293 * 1294 * Return Code: 1295 * 0 - success 1296 * EIO - I/O error while trying to access the disk image 1297 * ENOSPC - disk has no space to store a device id 1298 */ 1299 static int 1300 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid) 1301 { 1302 struct dk_devid *dkdevid; 1303 uint_t chksum; 1304 size_t blk; 1305 int status; 1306 1307 if (devid == NULL) { 1308 /* nothing to write */ 1309 return (0); 1310 } 1311 1312 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0) 1313 return (status); 1314 1315 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1316 1317 /* set revision */ 1318 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 1319 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 1320 1321 /* copy devid */ 1322 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); 1323 1324 /* compute checksum */ 1325 chksum = vd_dkdevid2cksum(dkdevid); 1326 1327 /* set checksum */ 1328 DKD_FORMCHKSUM(chksum, dkdevid); 1329 1330 /* store the devid */ 1331 if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1332 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { 1333 PR0("Error writing devid block at %lu", blk); 1334 status = EIO; 1335 } else { 1336 PR1("devid written at block %lu", blk); 1337 status = 0; 1338 } 1339 1340 kmem_free(dkdevid, DEV_BSIZE); 1341 return (status); 1342 } 1343 1344 /* 1345 * Function: 1346 * vd_do_scsi_rdwr 1347 * 1348 * Description: 1349 * Read or write to a SCSI disk using an absolute disk offset. 1350 * 1351 * Parameters: 1352 * vd - disk on which the operation is performed. 1353 * operation - operation to execute: read (VD_OP_BREAD) or 1354 * write (VD_OP_BWRITE). 1355 * data - buffer where data are read to or written from. 1356 * blk - starting block for the operation. 1357 * len - number of bytes to read or write. 1358 * 1359 * Return Code: 1360 * 0 - success 1361 * n != 0 - error. 1362 */ 1363 static int 1364 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) 1365 { 1366 struct uscsi_cmd ucmd; 1367 union scsi_cdb cdb; 1368 int nsectors, nblk; 1369 int max_sectors; 1370 int status, rval; 1371 1372 ASSERT(!vd->file); 1373 ASSERT(!vd->volume); 1374 ASSERT(vd->vdisk_block_size > 0); 1375 1376 max_sectors = vd->max_xfer_sz; 1377 nblk = (len / vd->vdisk_block_size); 1378 1379 if (len % vd->vdisk_block_size != 0) 1380 return (EINVAL); 1381 1382 /* 1383 * Build and execute the uscsi ioctl. We build a group0, group1 1384 * or group4 command as necessary, since some targets 1385 * do not support group1 commands. 1386 */ 1387 while (nblk) { 1388 1389 bzero(&ucmd, sizeof (ucmd)); 1390 bzero(&cdb, sizeof (cdb)); 1391 1392 nsectors = (max_sectors < nblk) ? max_sectors : nblk; 1393 1394 /* 1395 * Some of the optical drives on sun4v machines are ATAPI 1396 * devices which use Group 1 Read/Write commands so we need 1397 * to explicitly check a flag which is set when a domain 1398 * is bound. 1399 */ 1400 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) { 1401 FORMG0ADDR(&cdb, blk); 1402 FORMG0COUNT(&cdb, (uchar_t)nsectors); 1403 ucmd.uscsi_cdblen = CDB_GROUP0; 1404 } else if (blk > 0xffffffff) { 1405 FORMG4LONGADDR(&cdb, blk); 1406 FORMG4COUNT(&cdb, nsectors); 1407 ucmd.uscsi_cdblen = CDB_GROUP4; 1408 cdb.scc_cmd |= SCMD_GROUP4; 1409 } else { 1410 FORMG1ADDR(&cdb, blk); 1411 FORMG1COUNT(&cdb, nsectors); 1412 ucmd.uscsi_cdblen = CDB_GROUP1; 1413 cdb.scc_cmd |= SCMD_GROUP1; 1414 } 1415 ucmd.uscsi_cdb = (caddr_t)&cdb; 1416 ucmd.uscsi_bufaddr = data; 1417 ucmd.uscsi_buflen = nsectors * vd->block_size; 1418 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; 1419 /* 1420 * Set flags so that the command is isolated from normal 1421 * commands and no error message is printed. 1422 */ 1423 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; 1424 1425 if (operation == VD_OP_BREAD) { 1426 cdb.scc_cmd |= SCMD_READ; 1427 ucmd.uscsi_flags |= USCSI_READ; 1428 } else { 1429 cdb.scc_cmd |= SCMD_WRITE; 1430 } 1431 1432 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], 1433 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL), 1434 kcred, &rval); 1435 1436 if (status == 0) 1437 status = ucmd.uscsi_status; 1438 1439 if (status != 0) 1440 break; 1441 1442 /* 1443 * Check if partial DMA breakup is required. If so, reduce 1444 * the request size by half and retry the last request. 1445 */ 1446 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { 1447 max_sectors >>= 1; 1448 if (max_sectors <= 0) { 1449 status = EIO; 1450 break; 1451 } 1452 continue; 1453 } 1454 1455 if (ucmd.uscsi_resid != 0) { 1456 status = EIO; 1457 break; 1458 } 1459 1460 blk += nsectors; 1461 nblk -= nsectors; 1462 data += nsectors * vd->vdisk_block_size; /* SECSIZE */ 1463 } 1464 1465 return (status); 1466 } 1467 1468 /* 1469 * Function: 1470 * vd_scsi_rdwr 1471 * 1472 * Description: 1473 * Wrapper function to read or write to a SCSI disk using an absolute 1474 * disk offset. It checks the blocksize of the underlying device and, 1475 * if necessary, adjusts the buffers accordingly before calling 1476 * vd_do_scsi_rdwr() to do the actual read or write. 1477 * 1478 * Parameters: 1479 * vd - disk on which the operation is performed. 1480 * operation - operation to execute: read (VD_OP_BREAD) or 1481 * write (VD_OP_BWRITE). 1482 * data - buffer where data are read to or written from. 1483 * blk - starting block for the operation. 1484 * len - number of bytes to read or write. 1485 * 1486 * Return Code: 1487 * 0 - success 1488 * n != 0 - error. 1489 */ 1490 static int 1491 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen) 1492 { 1493 int rv; 1494 1495 size_t pblk; /* physical device block number of data on device */ 1496 size_t delta; /* relative offset between pblk and vblk */ 1497 size_t pnblk; /* number of physical blocks to be read from device */ 1498 size_t plen; /* length of data to be read from physical device */ 1499 char *buf; /* buffer area to fit physical device's block size */ 1500 1501 if (vd->block_size == 0) { 1502 /* 1503 * The block size was not available during the attach, 1504 * try to update it now. 1505 */ 1506 if (vd_backend_check_size(vd) != 0) 1507 return (EIO); 1508 } 1509 1510 /* 1511 * If the vdisk block size and the block size of the underlying device 1512 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need 1513 * to create a buffer large enough to handle the device's block size 1514 * and adjust the block to be read from and the amount of data to 1515 * read to correspond with the device's block size. 1516 */ 1517 if (vd->vdisk_block_size == vd->block_size) 1518 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen)); 1519 1520 if (vd->vdisk_block_size > vd->block_size) 1521 return (EINVAL); 1522 1523 /* 1524 * Writing of physical block sizes larger than the virtual block size 1525 * is not supported. This would be added if/when support for guests 1526 * writing to DVDs is implemented. 1527 */ 1528 if (operation == VD_OP_BWRITE) 1529 return (ENOTSUP); 1530 1531 /* BEGIN CSTYLED */ 1532 /* 1533 * Below is a diagram showing the relationship between the physical 1534 * and virtual blocks. If the virtual blocks marked by 'X' below are 1535 * requested, then the physical blocks denoted by 'Y' are read. 1536 * 1537 * vblk 1538 * | vlen 1539 * |<--------------->| 1540 * v v 1541 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk: 1542 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is 1543 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_block_size 1544 * : : : : 1545 * >:==:< delta : : 1546 * : : : : 1547 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk: 1548 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is 1549 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->block_size 1550 * ^ ^ 1551 * |<--------------------->| 1552 * | plen 1553 * pblk 1554 */ 1555 /* END CSTYLED */ 1556 pblk = (vblk * vd->vdisk_block_size) / vd->block_size; 1557 delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size); 1558 pnblk = ((delta + vlen - 1) / vd->block_size) + 1; 1559 plen = pnblk * vd->block_size; 1560 1561 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen); 1562 1563 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP); 1564 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen); 1565 bcopy(buf + delta, data, vlen); 1566 1567 kmem_free(buf, sizeof (caddr_t) * plen); 1568 1569 return (rv); 1570 } 1571 1572 /* 1573 * Function: 1574 * vd_slice_flabel_read 1575 * 1576 * Description: 1577 * This function simulates a read operation from the fake label of 1578 * a single-slice disk. 1579 * 1580 * Parameters: 1581 * vd - single-slice disk to read from 1582 * data - buffer where data should be read to 1583 * offset - offset in byte where the read should start 1584 * length - number of bytes to read 1585 * 1586 * Return Code: 1587 * n >= 0 - success, n indicates the number of bytes read 1588 * -1 - error 1589 */ 1590 static ssize_t 1591 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length) 1592 { 1593 size_t n = 0; 1594 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1595 1596 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1597 ASSERT(vd->flabel != NULL); 1598 1599 /* if offset is past the fake label limit there's nothing to read */ 1600 if (offset >= limit) 1601 return (0); 1602 1603 /* data with offset 0 to flabel_size are read from flabel */ 1604 if (offset < vd->flabel_size) { 1605 1606 if (offset + length <= vd->flabel_size) { 1607 bcopy(vd->flabel + offset, data, length); 1608 return (length); 1609 } 1610 1611 n = vd->flabel_size - offset; 1612 bcopy(vd->flabel + offset, data, n); 1613 data += n; 1614 } 1615 1616 /* data with offset from flabel_size to flabel_limit are all zeros */ 1617 if (offset + length <= limit) { 1618 bzero(data, length - n); 1619 return (length); 1620 } 1621 1622 bzero(data, limit - offset - n); 1623 return (limit - offset); 1624 } 1625 1626 /* 1627 * Function: 1628 * vd_slice_flabel_write 1629 * 1630 * Description: 1631 * This function simulates a write operation to the fake label of 1632 * a single-slice disk. Write operations are actually faked and return 1633 * success although the label is never changed. This is mostly to 1634 * simulate a successful label update. 1635 * 1636 * Parameters: 1637 * vd - single-slice disk to write to 1638 * data - buffer where data should be written from 1639 * offset - offset in byte where the write should start 1640 * length - number of bytes to written 1641 * 1642 * Return Code: 1643 * n >= 0 - success, n indicates the number of bytes written 1644 * -1 - error 1645 */ 1646 static ssize_t 1647 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length) 1648 { 1649 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1650 struct dk_label *label; 1651 struct dk_geom geom; 1652 struct extvtoc vtoc; 1653 1654 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1655 ASSERT(vd->flabel != NULL); 1656 1657 if (offset >= limit) 1658 return (0); 1659 1660 /* 1661 * If this is a request to overwrite the VTOC disk label, check that 1662 * the new label is similar to the previous one and return that the 1663 * write was successful, but note that nothing is actually overwritten. 1664 */ 1665 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1666 offset == 0 && length == DEV_BSIZE) { 1667 label = (void *)data; 1668 1669 /* check that this is a valid label */ 1670 if (label->dkl_magic != DKL_MAGIC || 1671 label->dkl_cksum != vd_lbl2cksum(label)) 1672 return (-1); 1673 1674 /* check the vtoc and geometry */ 1675 vd_label_to_vtocgeom(label, &vtoc, &geom); 1676 if (vd_slice_geom_isvalid(vd, &geom) && 1677 vd_slice_vtoc_isvalid(vd, &vtoc)) 1678 return (length); 1679 } 1680 1681 /* fail any other write */ 1682 return (-1); 1683 } 1684 1685 /* 1686 * Function: 1687 * vd_slice_fake_rdwr 1688 * 1689 * Description: 1690 * This function simulates a raw read or write operation to a single-slice 1691 * disk. It only handles the faked part of the operation i.e. I/Os to 1692 * blocks which have no mapping with the vdisk backend (I/Os to the 1693 * beginning and to the end of the vdisk). 1694 * 1695 * The function returns 0 is the operation is completed and it has been 1696 * entirely handled as a fake read or write. In that case, lengthp points 1697 * to the number of bytes not read or written. Values returned by datap 1698 * and blkp are undefined. 1699 * 1700 * If the fake operation has succeeded but the read or write is not 1701 * complete (i.e. the read/write operation extends beyond the blocks 1702 * we fake) then the function returns EAGAIN and datap, blkp and lengthp 1703 * pointers points to the parameters for completing the operation. 1704 * 1705 * In case of an error, for example if the slice is empty or parameters 1706 * are invalid, then the function returns a non-zero value different 1707 * from EAGAIN. In that case, the returned values of datap, blkp and 1708 * lengthp are undefined. 1709 * 1710 * Parameters: 1711 * vd - single-slice disk on which the operation is performed 1712 * slice - slice on which the operation is performed, 1713 * VD_SLICE_NONE indicates that the operation 1714 * is done using an absolute disk offset. 1715 * operation - operation to execute: read (VD_OP_BREAD) or 1716 * write (VD_OP_BWRITE). 1717 * datap - pointer to the buffer where data are read to 1718 * or written from. Return the pointer where remaining 1719 * data have to be read to or written from. 1720 * blkp - pointer to the starting block for the operation. 1721 * Return the starting block relative to the vdisk 1722 * backend for the remaining operation. 1723 * lengthp - pointer to the number of bytes to read or write. 1724 * This should be a multiple of DEV_BSIZE. Return the 1725 * remaining number of bytes to read or write. 1726 * 1727 * Return Code: 1728 * 0 - read/write operation is completed 1729 * EAGAIN - read/write operation is not completed 1730 * other values - error 1731 */ 1732 static int 1733 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap, 1734 size_t *blkp, size_t *lengthp) 1735 { 1736 struct dk_label *label; 1737 caddr_t data; 1738 size_t blk, length, csize; 1739 size_t ablk, asize, aoff, alen; 1740 ssize_t n; 1741 int sec, status; 1742 1743 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1744 ASSERT(slice != 0); 1745 1746 data = *datap; 1747 blk = *blkp; 1748 length = *lengthp; 1749 1750 /* 1751 * If this is not a raw I/O or an I/O from a full disk slice then 1752 * this is an I/O to/from an empty slice. 1753 */ 1754 if (slice != VD_SLICE_NONE && 1755 (slice != VD_ENTIRE_DISK_SLICE || 1756 vd->vdisk_label != VD_DISK_LABEL_VTOC) && 1757 (slice != VD_EFI_WD_SLICE || 1758 vd->vdisk_label != VD_DISK_LABEL_EFI)) { 1759 return (EIO); 1760 } 1761 1762 if (length % DEV_BSIZE != 0) 1763 return (EINVAL); 1764 1765 /* handle any I/O with the fake label */ 1766 if (operation == VD_OP_BWRITE) 1767 n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length); 1768 else 1769 n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length); 1770 1771 if (n == -1) 1772 return (EINVAL); 1773 1774 ASSERT(n % DEV_BSIZE == 0); 1775 1776 /* adjust I/O arguments */ 1777 data += n; 1778 blk += n / DEV_BSIZE; 1779 length -= n; 1780 1781 /* check if there's something else to process */ 1782 if (length == 0) { 1783 status = 0; 1784 goto done; 1785 } 1786 1787 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1788 slice == VD_ENTIRE_DISK_SLICE) { 1789 status = EAGAIN; 1790 goto done; 1791 } 1792 1793 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1794 asize = EFI_MIN_RESV_SIZE + 33; 1795 ablk = vd->vdisk_size - asize; 1796 } else { 1797 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1798 ASSERT(vd->dk_geom.dkg_apc == 0); 1799 1800 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1801 ablk = vd->dk_geom.dkg_ncyl * csize; 1802 asize = vd->dk_geom.dkg_acyl * csize; 1803 } 1804 1805 alen = length / DEV_BSIZE; 1806 aoff = blk; 1807 1808 /* if we have reached the last block then the I/O is completed */ 1809 if (aoff == ablk + asize) { 1810 status = 0; 1811 goto done; 1812 } 1813 1814 /* if we are past the last block then return an error */ 1815 if (aoff > ablk + asize) 1816 return (EIO); 1817 1818 /* check if there is any I/O to end of the disk */ 1819 if (aoff + alen < ablk) { 1820 status = EAGAIN; 1821 goto done; 1822 } 1823 1824 /* we don't allow any write to the end of the disk */ 1825 if (operation == VD_OP_BWRITE) 1826 return (EIO); 1827 1828 if (aoff < ablk) { 1829 alen -= (ablk - aoff); 1830 aoff = ablk; 1831 } 1832 1833 if (aoff + alen > ablk + asize) { 1834 alen = ablk + asize - aoff; 1835 } 1836 1837 alen *= DEV_BSIZE; 1838 1839 if (operation == VD_OP_BREAD) { 1840 bzero(data + (aoff - blk) * DEV_BSIZE, alen); 1841 1842 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 1843 /* check if we read backup labels */ 1844 label = VD_LABEL_VTOC(vd); 1845 ablk += (label->dkl_acyl - 1) * csize + 1846 (label->dkl_nhead - 1) * label->dkl_nsect; 1847 1848 for (sec = 1; (sec < 5 * 2 + 1); sec += 2) { 1849 1850 if (ablk + sec >= blk && 1851 ablk + sec < blk + (length / DEV_BSIZE)) { 1852 bcopy(label, data + 1853 (ablk + sec - blk) * DEV_BSIZE, 1854 sizeof (struct dk_label)); 1855 } 1856 } 1857 } 1858 } 1859 1860 length -= alen; 1861 1862 status = (length == 0)? 0: EAGAIN; 1863 1864 done: 1865 ASSERT(length == 0 || blk >= vd->flabel_limit); 1866 1867 /* 1868 * Return the parameters for the remaining I/O. The starting block is 1869 * adjusted so that it is relative to the vdisk backend. 1870 */ 1871 *datap = data; 1872 *blkp = blk - vd->flabel_limit; 1873 *lengthp = length; 1874 1875 return (status); 1876 } 1877 1878 static int 1879 vd_flush_write(vd_t *vd) 1880 { 1881 int status, rval; 1882 1883 if (vd->file) { 1884 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL); 1885 } else { 1886 status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE, 1887 NULL, vd->open_flags | FKIOCTL, kcred, &rval); 1888 } 1889 1890 return (status); 1891 } 1892 1893 static void 1894 vd_bio_task(void *arg) 1895 { 1896 struct buf *buf = (struct buf *)arg; 1897 vd_task_t *task = (vd_task_t *)buf->b_private; 1898 vd_t *vd = task->vd; 1899 ssize_t resid; 1900 int status; 1901 1902 if (vd->zvol) { 1903 1904 status = ldi_strategy(vd->ldi_handle[0], buf); 1905 1906 } else { 1907 1908 ASSERT(vd->file); 1909 1910 status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE, 1911 vd->file_vnode, buf->b_un.b_addr, buf->b_bcount, 1912 buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0, 1913 RLIM64_INFINITY, kcred, &resid); 1914 1915 if (status == 0) { 1916 buf->b_resid = resid; 1917 biodone(buf); 1918 return; 1919 } 1920 } 1921 1922 if (status != 0) { 1923 bioerror(buf, status); 1924 biodone(buf); 1925 } 1926 } 1927 1928 /* 1929 * We define our own biodone function so that buffers used for 1930 * asynchronous writes are not released when biodone() is called. 1931 */ 1932 static int 1933 vd_biodone(struct buf *bp) 1934 { 1935 ASSERT((bp->b_flags & B_DONE) == 0); 1936 ASSERT(SEMA_HELD(&bp->b_sem)); 1937 1938 bp->b_flags |= B_DONE; 1939 sema_v(&bp->b_io); 1940 1941 return (0); 1942 } 1943 1944 /* 1945 * Return Values 1946 * EINPROGRESS - operation was successfully started 1947 * EIO - encountered LDC (aka. task error) 1948 * 0 - operation completed successfully 1949 * 1950 * Side Effect 1951 * sets request->status = <disk operation status> 1952 */ 1953 static int 1954 vd_start_bio(vd_task_t *task) 1955 { 1956 int rv, status = 0; 1957 vd_t *vd = task->vd; 1958 vd_dring_payload_t *request = task->request; 1959 struct buf *buf = &task->buf; 1960 uint8_t mtype; 1961 int slice; 1962 char *bufaddr = 0; 1963 size_t buflen; 1964 size_t offset, length, nbytes; 1965 1966 ASSERT(vd != NULL); 1967 ASSERT(request != NULL); 1968 1969 slice = request->slice; 1970 1971 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); 1972 ASSERT((request->operation == VD_OP_BREAD) || 1973 (request->operation == VD_OP_BWRITE)); 1974 1975 if (request->nbytes == 0) { 1976 /* no service for trivial requests */ 1977 request->status = EINVAL; 1978 return (0); 1979 } 1980 1981 PR1("%s %lu bytes at block %lu", 1982 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 1983 request->nbytes, request->addr); 1984 1985 /* 1986 * We have to check the open flags because the functions processing 1987 * the read/write request will not do it. 1988 */ 1989 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) { 1990 PR0("write fails because backend is opened read-only"); 1991 request->nbytes = 0; 1992 request->status = EROFS; 1993 return (0); 1994 } 1995 1996 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 1997 1998 /* Map memory exported by client */ 1999 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 2000 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 2001 &bufaddr, NULL); 2002 if (status != 0) { 2003 PR0("ldc_mem_map() returned err %d ", status); 2004 return (EIO); 2005 } 2006 2007 /* 2008 * The buffer size has to be 8-byte aligned, so the client should have 2009 * sent a buffer which size is roundup to the next 8-byte aligned value. 2010 */ 2011 buflen = P2ROUNDUP(request->nbytes, 8); 2012 2013 status = ldc_mem_acquire(task->mhdl, 0, buflen); 2014 if (status != 0) { 2015 (void) ldc_mem_unmap(task->mhdl); 2016 PR0("ldc_mem_acquire() returned err %d ", status); 2017 return (EIO); 2018 } 2019 2020 offset = request->addr; 2021 nbytes = request->nbytes; 2022 length = nbytes; 2023 2024 /* default number of byte returned by the I/O */ 2025 request->nbytes = 0; 2026 2027 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 2028 2029 if (slice != 0) { 2030 /* handle any fake I/O */ 2031 rv = vd_slice_fake_rdwr(vd, slice, request->operation, 2032 &bufaddr, &offset, &length); 2033 2034 /* record the number of bytes from the fake I/O */ 2035 request->nbytes = nbytes - length; 2036 2037 if (rv == 0) { 2038 request->status = 0; 2039 goto io_done; 2040 } 2041 2042 if (rv != EAGAIN) { 2043 request->nbytes = 0; 2044 request->status = EIO; 2045 goto io_done; 2046 } 2047 2048 /* 2049 * If we return with EAGAIN then this means that there 2050 * are still data to read or write. 2051 */ 2052 ASSERT(length != 0); 2053 2054 /* 2055 * We need to continue the I/O from the slice backend to 2056 * complete the request. The variables bufaddr, offset 2057 * and length have been adjusted to have the right 2058 * information to do the remaining I/O from the backend. 2059 * The backend is entirely mapped to slice 0 so we just 2060 * have to complete the I/O from that slice. 2061 */ 2062 slice = 0; 2063 } 2064 2065 } else if (vd->volume || vd->file) { 2066 2067 rv = vd_dskimg_io_params(vd, slice, &offset, &length); 2068 if (rv != 0) { 2069 request->status = (rv == ENODATA)? 0: EIO; 2070 goto io_done; 2071 } 2072 slice = 0; 2073 2074 } else if (slice == VD_SLICE_NONE) { 2075 2076 /* 2077 * This is not a disk image so it is a real disk. We 2078 * assume that the underlying device driver supports 2079 * USCSICMD ioctls. This is the case of all SCSI devices 2080 * (sd, ssd...). 2081 * 2082 * In the future if we have non-SCSI disks we would need 2083 * to invoke the appropriate function to do I/O using an 2084 * absolute disk offset (for example using DIOCTL_RWCMD 2085 * for IDE disks). 2086 */ 2087 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset, 2088 length); 2089 if (rv != 0) { 2090 request->status = EIO; 2091 } else { 2092 request->nbytes = length; 2093 request->status = 0; 2094 } 2095 goto io_done; 2096 } 2097 2098 /* Start the block I/O */ 2099 bioinit(buf); 2100 buf->b_flags = B_BUSY; 2101 buf->b_bcount = length; 2102 buf->b_lblkno = offset; 2103 buf->b_bufsize = buflen; 2104 buf->b_edev = vd->dev[slice]; 2105 buf->b_un.b_addr = bufaddr; 2106 buf->b_iodone = vd_biodone; 2107 2108 if (vd->file || vd->zvol) { 2109 /* 2110 * I/O to a file are dispatched to an I/O queue, so that several 2111 * I/Os can be processed in parallel. We also do that for ZFS 2112 * volumes because the ZFS volume strategy() function will only 2113 * return after the I/O is completed (instead of just starting 2114 * the I/O). 2115 */ 2116 2117 if (request->operation == VD_OP_BREAD) { 2118 buf->b_flags |= B_READ; 2119 } else { 2120 /* 2121 * For ZFS volumes and files, we do an asynchronous 2122 * write and we will wait for the completion of the 2123 * write in vd_complete_bio() by flushing the volume 2124 * or file. 2125 * 2126 * This done for performance reasons, so that we can 2127 * group together several write requests into a single 2128 * flush operation. 2129 */ 2130 buf->b_flags |= B_WRITE | B_ASYNC; 2131 2132 /* 2133 * We keep track of the write so that we can group 2134 * requests when flushing. The write queue has the 2135 * same number of slots as the dring so this prevents 2136 * the write queue from wrapping and overwriting 2137 * existing entries: if the write queue gets full 2138 * then that means that the dring is full so we stop 2139 * receiving new requests until an existing request 2140 * is processed, removed from the write queue and 2141 * then from the dring. 2142 */ 2143 task->write_index = vd->write_index; 2144 vd->write_queue[task->write_index] = buf; 2145 vd->write_index = 2146 VD_WRITE_INDEX_NEXT(vd, vd->write_index); 2147 } 2148 2149 buf->b_private = task; 2150 2151 ASSERT(vd->ioq != NULL); 2152 2153 request->status = 0; 2154 (void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf, 2155 DDI_SLEEP); 2156 2157 } else { 2158 2159 if (request->operation == VD_OP_BREAD) { 2160 buf->b_flags |= B_READ; 2161 } else { 2162 buf->b_flags |= B_WRITE; 2163 } 2164 2165 request->status = ldi_strategy(vd->ldi_handle[slice], buf); 2166 } 2167 2168 /* 2169 * This is to indicate to the caller that the request 2170 * needs to be finished by vd_complete_bio() by calling 2171 * biowait() there and waiting for that to return before 2172 * triggering the notification of the vDisk client. 2173 * 2174 * This is necessary when writing to real disks as 2175 * otherwise calls to ldi_strategy() would be serialized 2176 * behind the calls to biowait() and performance would 2177 * suffer. 2178 */ 2179 if (request->status == 0) 2180 return (EINPROGRESS); 2181 2182 biofini(buf); 2183 2184 io_done: 2185 /* Clean up after error or completion */ 2186 rv = ldc_mem_release(task->mhdl, 0, buflen); 2187 if (rv) { 2188 PR0("ldc_mem_release() returned err %d ", rv); 2189 status = EIO; 2190 } 2191 rv = ldc_mem_unmap(task->mhdl); 2192 if (rv) { 2193 PR0("ldc_mem_unmap() returned err %d ", rv); 2194 status = EIO; 2195 } 2196 2197 return (status); 2198 } 2199 2200 /* 2201 * This function should only be called from vd_notify to ensure that requests 2202 * are responded to in the order that they are received. 2203 */ 2204 static int 2205 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 2206 { 2207 int status; 2208 size_t nbytes; 2209 2210 do { 2211 nbytes = msglen; 2212 status = ldc_write(ldc_handle, msg, &nbytes); 2213 if (status != EWOULDBLOCK) 2214 break; 2215 drv_usecwait(vds_ldc_delay); 2216 } while (status == EWOULDBLOCK); 2217 2218 if (status != 0) { 2219 if (status != ECONNRESET) 2220 PR0("ldc_write() returned errno %d", status); 2221 return (status); 2222 } else if (nbytes != msglen) { 2223 PR0("ldc_write() performed only partial write"); 2224 return (EIO); 2225 } 2226 2227 PR1("SENT %lu bytes", msglen); 2228 return (0); 2229 } 2230 2231 static void 2232 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 2233 { 2234 mutex_enter(&vd->lock); 2235 vd->reset_state = B_TRUE; 2236 vd->reset_ldc = reset_ldc; 2237 mutex_exit(&vd->lock); 2238 } 2239 2240 /* 2241 * Reset the state of the connection with a client, if needed; reset the LDC 2242 * transport as well, if needed. This function should only be called from the 2243 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 2244 */ 2245 static void 2246 vd_reset_if_needed(vd_t *vd) 2247 { 2248 int status = 0; 2249 2250 mutex_enter(&vd->lock); 2251 if (!vd->reset_state) { 2252 ASSERT(!vd->reset_ldc); 2253 mutex_exit(&vd->lock); 2254 return; 2255 } 2256 mutex_exit(&vd->lock); 2257 2258 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 2259 2260 /* 2261 * Let any asynchronous I/O complete before possibly pulling the rug 2262 * out from under it; defer checking vd->reset_ldc, as one of the 2263 * asynchronous tasks might set it 2264 */ 2265 if (vd->ioq != NULL) 2266 ddi_taskq_wait(vd->ioq); 2267 ddi_taskq_wait(vd->completionq); 2268 2269 status = vd_flush_write(vd); 2270 if (status) { 2271 PR0("flushwrite returned error %d", status); 2272 } 2273 2274 if ((vd->initialized & VD_DRING) && 2275 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 2276 PR0("ldc_mem_dring_unmap() returned errno %d", status); 2277 2278 vd_free_dring_task(vd); 2279 2280 /* Free the staging buffer for msgs */ 2281 if (vd->vio_msgp != NULL) { 2282 kmem_free(vd->vio_msgp, vd->max_msglen); 2283 vd->vio_msgp = NULL; 2284 } 2285 2286 /* Free the inband message buffer */ 2287 if (vd->inband_task.msg != NULL) { 2288 kmem_free(vd->inband_task.msg, vd->max_msglen); 2289 vd->inband_task.msg = NULL; 2290 } 2291 2292 mutex_enter(&vd->lock); 2293 2294 if (vd->reset_ldc) 2295 PR0("taking down LDC channel"); 2296 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 2297 PR0("ldc_down() returned errno %d", status); 2298 2299 /* Reset exclusive access rights */ 2300 vd_reset_access(vd); 2301 2302 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 2303 vd->state = VD_STATE_INIT; 2304 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 2305 2306 /* Allocate the staging buffer */ 2307 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 2308 2309 PR0("calling ldc_up\n"); 2310 (void) ldc_up(vd->ldc_handle); 2311 2312 vd->reset_state = B_FALSE; 2313 vd->reset_ldc = B_FALSE; 2314 2315 mutex_exit(&vd->lock); 2316 } 2317 2318 static void vd_recv_msg(void *arg); 2319 2320 static void 2321 vd_mark_in_reset(vd_t *vd) 2322 { 2323 int status; 2324 2325 PR0("vd_mark_in_reset: marking vd in reset\n"); 2326 2327 vd_need_reset(vd, B_FALSE); 2328 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 2329 if (status == DDI_FAILURE) { 2330 PR0("cannot schedule task to recv msg\n"); 2331 vd_need_reset(vd, B_TRUE); 2332 return; 2333 } 2334 } 2335 2336 static int 2337 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) 2338 { 2339 boolean_t accepted; 2340 int status; 2341 on_trap_data_t otd; 2342 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 2343 2344 if (vd->reset_state) 2345 return (0); 2346 2347 /* Acquire the element */ 2348 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 2349 vd->dring_handle, idx, idx)) != 0) { 2350 if (status == ECONNRESET) { 2351 vd_mark_in_reset(vd); 2352 return (0); 2353 } else { 2354 return (status); 2355 } 2356 } 2357 2358 /* Set the element's status and mark it done */ 2359 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 2360 if (accepted) { 2361 elem->payload.nbytes = elem_nbytes; 2362 elem->payload.status = elem_status; 2363 elem->hdr.dstate = VIO_DESC_DONE; 2364 } else { 2365 /* Perhaps client timed out waiting for I/O... */ 2366 PR0("element %u no longer \"accepted\"", idx); 2367 VD_DUMP_DRING_ELEM(elem); 2368 } 2369 /* Release the element */ 2370 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 2371 vd->dring_handle, idx, idx)) != 0) { 2372 if (status == ECONNRESET) { 2373 vd_mark_in_reset(vd); 2374 return (0); 2375 } else { 2376 PR0("VIO_DRING_RELEASE() returned errno %d", 2377 status); 2378 return (status); 2379 } 2380 } 2381 2382 return (accepted ? 0 : EINVAL); 2383 } 2384 2385 /* 2386 * Return Values 2387 * 0 - operation completed successfully 2388 * EIO - encountered LDC / task error 2389 * 2390 * Side Effect 2391 * sets request->status = <disk operation status> 2392 */ 2393 static int 2394 vd_complete_bio(vd_task_t *task) 2395 { 2396 int status = 0; 2397 int rv = 0; 2398 vd_t *vd = task->vd; 2399 vd_dring_payload_t *request = task->request; 2400 struct buf *buf = &task->buf; 2401 int wid, nwrites; 2402 2403 2404 ASSERT(vd != NULL); 2405 ASSERT(request != NULL); 2406 ASSERT(task->msg != NULL); 2407 ASSERT(task->msglen >= sizeof (*task->msg)); 2408 2409 if (buf->b_flags & B_DONE) { 2410 /* 2411 * If the I/O is already done then we don't call biowait() 2412 * because biowait() might already have been called when 2413 * flushing a previous asynchronous write. So we just 2414 * retrieve the status of the request. 2415 */ 2416 request->status = geterror(buf); 2417 } else { 2418 /* 2419 * Wait for the I/O. For synchronous I/O, biowait() will return 2420 * when the I/O has completed. For asynchronous write, it will 2421 * return the write has been submitted to the backend, but it 2422 * may not have been committed. 2423 */ 2424 request->status = biowait(buf); 2425 } 2426 2427 if (buf->b_flags & B_ASYNC) { 2428 /* 2429 * Asynchronous writes are used when writing to a file or a 2430 * ZFS volume. In that case the bio notification indicates 2431 * that the write has started. We have to flush the backend 2432 * to ensure that the write has been committed before marking 2433 * the request as completed. 2434 */ 2435 ASSERT(task->request->operation == VD_OP_BWRITE); 2436 2437 wid = task->write_index; 2438 2439 /* check if write has been already flushed */ 2440 if (vd->write_queue[wid] != NULL) { 2441 2442 vd->write_queue[wid] = NULL; 2443 wid = VD_WRITE_INDEX_NEXT(vd, wid); 2444 2445 /* 2446 * Because flushing is time consuming, it is worth 2447 * waiting for any other writes so that they can be 2448 * included in this single flush request. 2449 */ 2450 if (vd_awflush & VD_AWFLUSH_GROUP) { 2451 nwrites = 1; 2452 while (vd->write_queue[wid] != NULL) { 2453 (void) biowait(vd->write_queue[wid]); 2454 vd->write_queue[wid] = NULL; 2455 wid = VD_WRITE_INDEX_NEXT(vd, wid); 2456 nwrites++; 2457 } 2458 DTRACE_PROBE2(flushgrp, vd_task_t *, task, 2459 int, nwrites); 2460 } 2461 2462 if (vd_awflush & VD_AWFLUSH_IMMEDIATE) { 2463 request->status = vd_flush_write(vd); 2464 } else if (vd_awflush & VD_AWFLUSH_DEFER) { 2465 (void) taskq_dispatch(system_taskq, 2466 (void (*)(void *))vd_flush_write, vd, 2467 DDI_SLEEP); 2468 request->status = 0; 2469 } 2470 } 2471 } 2472 2473 /* Update the number of bytes read/written */ 2474 request->nbytes += buf->b_bcount - buf->b_resid; 2475 2476 /* Release the buffer */ 2477 if (!vd->reset_state) 2478 status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize); 2479 if (status) { 2480 PR0("ldc_mem_release() returned errno %d copying to " 2481 "client", status); 2482 if (status == ECONNRESET) { 2483 vd_mark_in_reset(vd); 2484 } 2485 rv = EIO; 2486 } 2487 2488 /* Unmap the memory, even if in reset */ 2489 status = ldc_mem_unmap(task->mhdl); 2490 if (status) { 2491 PR0("ldc_mem_unmap() returned errno %d copying to client", 2492 status); 2493 if (status == ECONNRESET) { 2494 vd_mark_in_reset(vd); 2495 } 2496 rv = EIO; 2497 } 2498 2499 biofini(buf); 2500 2501 return (rv); 2502 } 2503 2504 /* 2505 * Description: 2506 * This function is called by the two functions called by a taskq 2507 * [ vd_complete_notify() and vd_serial_notify()) ] to send the 2508 * message to the client. 2509 * 2510 * Parameters: 2511 * arg - opaque pointer to structure containing task to be completed 2512 * 2513 * Return Values 2514 * None 2515 */ 2516 static void 2517 vd_notify(vd_task_t *task) 2518 { 2519 int status; 2520 2521 ASSERT(task != NULL); 2522 ASSERT(task->vd != NULL); 2523 2524 /* 2525 * Send the "ack" or "nack" back to the client; if sending the message 2526 * via LDC fails, arrange to reset both the connection state and LDC 2527 * itself 2528 */ 2529 PR2("Sending %s", 2530 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 2531 2532 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); 2533 switch (status) { 2534 case 0: 2535 break; 2536 case ECONNRESET: 2537 vd_mark_in_reset(task->vd); 2538 break; 2539 default: 2540 PR0("initiating full reset"); 2541 vd_need_reset(task->vd, B_TRUE); 2542 break; 2543 } 2544 2545 DTRACE_PROBE1(task__end, vd_task_t *, task); 2546 } 2547 2548 /* 2549 * Description: 2550 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to 2551 * the vDisk client 2552 * 2553 * Parameters: 2554 * task - structure containing the request sent from client 2555 * 2556 * Return Values 2557 * None 2558 */ 2559 static void 2560 vd_complete_notify(vd_task_t *task) 2561 { 2562 int status = 0; 2563 vd_t *vd = task->vd; 2564 vd_dring_payload_t *request = task->request; 2565 2566 /* Update the dring element for a dring client */ 2567 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 2568 status = vd_mark_elem_done(vd, task->index, 2569 request->status, request->nbytes); 2570 if (status == ECONNRESET) 2571 vd_mark_in_reset(vd); 2572 else if (status == EACCES) 2573 vd_need_reset(vd, B_TRUE); 2574 } 2575 2576 /* 2577 * If a transport error occurred while marking the element done or 2578 * previously while executing the task, arrange to "nack" the message 2579 * when the final task in the descriptor element range completes 2580 */ 2581 if ((status != 0) || (task->status != 0)) 2582 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 2583 2584 /* 2585 * Only the final task for a range of elements will respond to and 2586 * free the message 2587 */ 2588 if (task->type == VD_NONFINAL_RANGE_TASK) { 2589 return; 2590 } 2591 2592 /* 2593 * We should only send an ACK/NACK here if we are not currently in 2594 * reset as, depending on how we reset, the dring may have been 2595 * blown away and we don't want to ACK/NACK a message that isn't 2596 * there. 2597 */ 2598 if (!vd->reset_state) 2599 vd_notify(task); 2600 } 2601 2602 /* 2603 * Description: 2604 * This is the basic completion function called to handle inband data 2605 * requests and handshake messages. All it needs to do is trigger a 2606 * message to the client that the request is completed. 2607 * 2608 * Parameters: 2609 * arg - opaque pointer to structure containing task to be completed 2610 * 2611 * Return Values 2612 * None 2613 */ 2614 static void 2615 vd_serial_notify(void *arg) 2616 { 2617 vd_task_t *task = (vd_task_t *)arg; 2618 2619 ASSERT(task != NULL); 2620 vd_notify(task); 2621 } 2622 2623 /* ARGSUSED */ 2624 static int 2625 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2626 { 2627 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 2628 return (0); 2629 } 2630 2631 /* ARGSUSED */ 2632 static int 2633 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2634 { 2635 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg); 2636 return (0); 2637 } 2638 2639 static void 2640 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 2641 { 2642 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 2643 } 2644 2645 static void 2646 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 2647 { 2648 VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 2649 } 2650 2651 static int 2652 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2653 { 2654 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2655 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2656 size_t data_len; 2657 2658 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2659 if (vd_efi->length > data_len) 2660 return (EINVAL); 2661 2662 dk_efi->dki_lba = vd_efi->lba; 2663 dk_efi->dki_length = vd_efi->length; 2664 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 2665 return (0); 2666 } 2667 2668 static void 2669 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 2670 { 2671 int len; 2672 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2673 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2674 2675 len = vd_efi->length; 2676 DK_EFI2VD_EFI(dk_efi, vd_efi); 2677 kmem_free(dk_efi->dki_data, len); 2678 } 2679 2680 static int 2681 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2682 { 2683 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2684 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2685 size_t data_len; 2686 2687 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2688 if (vd_efi->length > data_len) 2689 return (EINVAL); 2690 2691 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 2692 VD_EFI2DK_EFI(vd_efi, dk_efi); 2693 return (0); 2694 } 2695 2696 static void 2697 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 2698 { 2699 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2700 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2701 2702 kmem_free(dk_efi->dki_data, vd_efi->length); 2703 } 2704 2705 static int 2706 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2707 { 2708 size_t vd_scsi_len; 2709 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2710 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2711 2712 /* check buffer size */ 2713 vd_scsi_len = VD_SCSI_SIZE; 2714 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t)); 2715 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t)); 2716 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t)); 2717 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t)); 2718 2719 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 2720 2721 if (vd_buf_len < vd_scsi_len) 2722 return (EINVAL); 2723 2724 /* set flags */ 2725 uscsi->uscsi_flags = vd_scsi_debug; 2726 2727 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) { 2728 uscsi->uscsi_flags |= USCSI_ISOLATE; 2729 uscsi->uscsi_flags |= USCSI_DIAGNOSE; 2730 } 2731 2732 /* task attribute */ 2733 switch (vd_scsi->task_attribute) { 2734 case VD_SCSI_TASK_ACA: 2735 uscsi->uscsi_flags |= USCSI_HEAD; 2736 break; 2737 case VD_SCSI_TASK_HQUEUE: 2738 uscsi->uscsi_flags |= USCSI_HTAG; 2739 break; 2740 case VD_SCSI_TASK_ORDERED: 2741 uscsi->uscsi_flags |= USCSI_OTAG; 2742 break; 2743 default: 2744 uscsi->uscsi_flags |= USCSI_NOTAG; 2745 break; 2746 } 2747 2748 /* timeout */ 2749 uscsi->uscsi_timeout = vd_scsi->timeout; 2750 2751 /* cdb data */ 2752 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi); 2753 uscsi->uscsi_cdblen = vd_scsi->cdb_len; 2754 2755 /* sense buffer */ 2756 if (vd_scsi->sense_len != 0) { 2757 uscsi->uscsi_flags |= USCSI_RQENABLE; 2758 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi); 2759 uscsi->uscsi_rqlen = vd_scsi->sense_len; 2760 } 2761 2762 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) { 2763 /* uscsi does not support read/write request */ 2764 return (EINVAL); 2765 } 2766 2767 /* request data-in */ 2768 if (vd_scsi->datain_len != 0) { 2769 uscsi->uscsi_flags |= USCSI_READ; 2770 uscsi->uscsi_buflen = vd_scsi->datain_len; 2771 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi); 2772 } 2773 2774 /* request data-out */ 2775 if (vd_scsi->dataout_len != 0) { 2776 uscsi->uscsi_buflen = vd_scsi->dataout_len; 2777 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi); 2778 } 2779 2780 return (0); 2781 } 2782 2783 static void 2784 vd_scsicmd_out(void *ioctl_arg, void *vd_buf) 2785 { 2786 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2787 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2788 2789 /* output fields */ 2790 vd_scsi->cmd_status = uscsi->uscsi_status; 2791 2792 /* sense data */ 2793 if ((uscsi->uscsi_flags & USCSI_RQENABLE) && 2794 (uscsi->uscsi_status == STATUS_CHECK || 2795 uscsi->uscsi_status == STATUS_TERMINATED)) { 2796 vd_scsi->sense_status = uscsi->uscsi_rqstatus; 2797 if (uscsi->uscsi_rqstatus == STATUS_GOOD) 2798 vd_scsi->sense_len -= uscsi->uscsi_rqresid; 2799 else 2800 vd_scsi->sense_len = 0; 2801 } else { 2802 vd_scsi->sense_len = 0; 2803 } 2804 2805 if (uscsi->uscsi_status != STATUS_GOOD) { 2806 vd_scsi->dataout_len = 0; 2807 vd_scsi->datain_len = 0; 2808 return; 2809 } 2810 2811 if (uscsi->uscsi_flags & USCSI_READ) { 2812 /* request data (read) */ 2813 vd_scsi->datain_len -= uscsi->uscsi_resid; 2814 vd_scsi->dataout_len = 0; 2815 } else { 2816 /* request data (write) */ 2817 vd_scsi->datain_len = 0; 2818 vd_scsi->dataout_len -= uscsi->uscsi_resid; 2819 } 2820 } 2821 2822 static ushort_t 2823 vd_lbl2cksum(struct dk_label *label) 2824 { 2825 int count; 2826 ushort_t sum, *sp; 2827 2828 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 2829 sp = (ushort_t *)label; 2830 sum = 0; 2831 while (count--) { 2832 sum ^= *sp++; 2833 } 2834 2835 return (sum); 2836 } 2837 2838 /* 2839 * Copy information from a vtoc and dk_geom structures to a dk_label structure. 2840 */ 2841 static void 2842 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom, 2843 struct dk_label *label) 2844 { 2845 int i; 2846 2847 ASSERT(vtoc->v_nparts == V_NUMPAR); 2848 ASSERT(vtoc->v_sanity == VTOC_SANE); 2849 2850 bzero(label, sizeof (struct dk_label)); 2851 2852 label->dkl_ncyl = geom->dkg_ncyl; 2853 label->dkl_acyl = geom->dkg_acyl; 2854 label->dkl_pcyl = geom->dkg_pcyl; 2855 label->dkl_nhead = geom->dkg_nhead; 2856 label->dkl_nsect = geom->dkg_nsect; 2857 label->dkl_intrlv = geom->dkg_intrlv; 2858 label->dkl_apc = geom->dkg_apc; 2859 label->dkl_rpm = geom->dkg_rpm; 2860 label->dkl_write_reinstruct = geom->dkg_write_reinstruct; 2861 label->dkl_read_reinstruct = geom->dkg_read_reinstruct; 2862 2863 label->dkl_vtoc.v_nparts = V_NUMPAR; 2864 label->dkl_vtoc.v_sanity = VTOC_SANE; 2865 label->dkl_vtoc.v_version = vtoc->v_version; 2866 for (i = 0; i < V_NUMPAR; i++) { 2867 label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; 2868 label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag; 2869 label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag; 2870 label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start / 2871 (label->dkl_nhead * label->dkl_nsect); 2872 label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size; 2873 } 2874 2875 /* 2876 * The bootinfo array can not be copied with bcopy() because 2877 * elements are of type long in vtoc (so 64-bit) and of type 2878 * int in dk_vtoc (so 32-bit). 2879 */ 2880 label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; 2881 label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; 2882 label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; 2883 bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII); 2884 bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL); 2885 2886 /* re-compute checksum */ 2887 label->dkl_magic = DKL_MAGIC; 2888 label->dkl_cksum = vd_lbl2cksum(label); 2889 } 2890 2891 /* 2892 * Copy information from a dk_label structure to a vtoc and dk_geom structures. 2893 */ 2894 static void 2895 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc, 2896 struct dk_geom *geom) 2897 { 2898 int i; 2899 2900 bzero(vtoc, sizeof (struct vtoc)); 2901 bzero(geom, sizeof (struct dk_geom)); 2902 2903 geom->dkg_ncyl = label->dkl_ncyl; 2904 geom->dkg_acyl = label->dkl_acyl; 2905 geom->dkg_nhead = label->dkl_nhead; 2906 geom->dkg_nsect = label->dkl_nsect; 2907 geom->dkg_intrlv = label->dkl_intrlv; 2908 geom->dkg_apc = label->dkl_apc; 2909 geom->dkg_rpm = label->dkl_rpm; 2910 geom->dkg_pcyl = label->dkl_pcyl; 2911 geom->dkg_write_reinstruct = label->dkl_write_reinstruct; 2912 geom->dkg_read_reinstruct = label->dkl_read_reinstruct; 2913 2914 vtoc->v_sanity = label->dkl_vtoc.v_sanity; 2915 vtoc->v_version = label->dkl_vtoc.v_version; 2916 vtoc->v_sectorsz = DEV_BSIZE; 2917 vtoc->v_nparts = label->dkl_vtoc.v_nparts; 2918 2919 for (i = 0; i < vtoc->v_nparts; i++) { 2920 vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag; 2921 vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag; 2922 vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno * 2923 (label->dkl_nhead * label->dkl_nsect); 2924 vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk; 2925 vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i]; 2926 } 2927 2928 /* 2929 * The bootinfo array can not be copied with bcopy() because 2930 * elements are of type long in vtoc (so 64-bit) and of type 2931 * int in dk_vtoc (so 32-bit). 2932 */ 2933 vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0]; 2934 vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1]; 2935 vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2]; 2936 bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII); 2937 bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL); 2938 } 2939 2940 /* 2941 * Check if a geometry is valid for a single-slice disk. A geometry is 2942 * considered valid if the main attributes of the geometry match with the 2943 * attributes of the fake geometry we have created. 2944 */ 2945 static boolean_t 2946 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom) 2947 { 2948 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2949 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2950 2951 if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl || 2952 geom->dkg_acyl != vd->dk_geom.dkg_acyl || 2953 geom->dkg_nsect != vd->dk_geom.dkg_nsect || 2954 geom->dkg_pcyl != vd->dk_geom.dkg_pcyl) 2955 return (B_FALSE); 2956 2957 return (B_TRUE); 2958 } 2959 2960 /* 2961 * Check if a vtoc is valid for a single-slice disk. A vtoc is considered 2962 * valid if the main attributes of the vtoc match with the attributes of the 2963 * fake vtoc we have created. 2964 */ 2965 static boolean_t 2966 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc) 2967 { 2968 size_t csize; 2969 int i; 2970 2971 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2972 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2973 2974 if (vtoc->v_sanity != vd->vtoc.v_sanity || 2975 vtoc->v_version != vd->vtoc.v_version || 2976 vtoc->v_nparts != vd->vtoc.v_nparts || 2977 strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 || 2978 strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0) 2979 return (B_FALSE); 2980 2981 /* slice 2 should be unchanged */ 2982 if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start != 2983 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start || 2984 vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size != 2985 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size) 2986 return (B_FALSE); 2987 2988 /* 2989 * Slice 0 should be mostly unchanged and cover most of the disk. 2990 * However we allow some flexibility wrt to the start and the size 2991 * of this slice mainly because we can't exactly know how it will 2992 * be defined by the OS installer. 2993 * 2994 * We allow slice 0 to be defined as starting on any of the first 2995 * 4 cylinders. 2996 */ 2997 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 2998 2999 if (vtoc->v_part[0].p_start > 4 * csize || 3000 vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size) 3001 return (B_FALSE); 3002 3003 if (vd->vtoc.v_part[0].p_size >= 4 * csize && 3004 vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize) 3005 return (B_FALSE); 3006 3007 /* any other slice should have a size of 0 */ 3008 for (i = 1; i < vtoc->v_nparts; i++) { 3009 if (i != VD_ENTIRE_DISK_SLICE && 3010 vtoc->v_part[i].p_size != 0) 3011 return (B_FALSE); 3012 } 3013 3014 return (B_TRUE); 3015 } 3016 3017 /* 3018 * Handle ioctls to a disk slice. 3019 * 3020 * Return Values 3021 * 0 - Indicates that there are no errors in disk operations 3022 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl 3023 * EINVAL - Not enough room to copy the EFI label 3024 * 3025 */ 3026 static int 3027 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 3028 { 3029 dk_efi_t *dk_ioc; 3030 struct extvtoc *vtoc; 3031 struct dk_geom *geom; 3032 size_t len, lba; 3033 3034 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 3035 3036 if (cmd == DKIOCFLUSHWRITECACHE) 3037 return (vd_flush_write(vd)); 3038 3039 switch (vd->vdisk_label) { 3040 3041 /* ioctls for a single slice disk with a VTOC label */ 3042 case VD_DISK_LABEL_VTOC: 3043 3044 switch (cmd) { 3045 3046 case DKIOCGGEOM: 3047 ASSERT(ioctl_arg != NULL); 3048 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 3049 return (0); 3050 3051 case DKIOCGEXTVTOC: 3052 ASSERT(ioctl_arg != NULL); 3053 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 3054 return (0); 3055 3056 case DKIOCSGEOM: 3057 ASSERT(ioctl_arg != NULL); 3058 if (vd_slice_single_slice) 3059 return (ENOTSUP); 3060 3061 /* fake success only if new geometry is valid */ 3062 geom = (struct dk_geom *)ioctl_arg; 3063 if (!vd_slice_geom_isvalid(vd, geom)) 3064 return (EINVAL); 3065 3066 return (0); 3067 3068 case DKIOCSEXTVTOC: 3069 ASSERT(ioctl_arg != NULL); 3070 if (vd_slice_single_slice) 3071 return (ENOTSUP); 3072 3073 /* fake sucess only if the new vtoc is valid */ 3074 vtoc = (struct extvtoc *)ioctl_arg; 3075 if (!vd_slice_vtoc_isvalid(vd, vtoc)) 3076 return (EINVAL); 3077 3078 return (0); 3079 3080 default: 3081 return (ENOTSUP); 3082 } 3083 3084 /* ioctls for a single slice disk with an EFI label */ 3085 case VD_DISK_LABEL_EFI: 3086 3087 if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI) 3088 return (ENOTSUP); 3089 3090 ASSERT(ioctl_arg != NULL); 3091 dk_ioc = (dk_efi_t *)ioctl_arg; 3092 3093 len = dk_ioc->dki_length; 3094 lba = dk_ioc->dki_lba; 3095 3096 if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) || 3097 (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) || 3098 (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t))) 3099 return (EINVAL); 3100 3101 switch (cmd) { 3102 case DKIOCGETEFI: 3103 len = vd_slice_flabel_read(vd, 3104 (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len); 3105 3106 ASSERT(len > 0); 3107 3108 return (0); 3109 3110 case DKIOCSETEFI: 3111 if (vd_slice_single_slice) 3112 return (ENOTSUP); 3113 3114 /* we currently don't support writing EFI */ 3115 return (EIO); 3116 } 3117 3118 default: 3119 /* Unknown disk label type */ 3120 return (ENOTSUP); 3121 } 3122 } 3123 3124 static int 3125 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe) 3126 { 3127 vd_efi_dev_t edev; 3128 int status; 3129 3130 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 3131 3132 status = vd_efi_alloc_and_read(&edev, gpt, gpe); 3133 3134 return (status); 3135 } 3136 3137 static void 3138 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe) 3139 { 3140 vd_efi_dev_t edev; 3141 3142 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 3143 3144 vd_efi_free(&edev, gpt, gpe); 3145 } 3146 3147 static int 3148 vd_dskimg_validate_efi(vd_t *vd) 3149 { 3150 efi_gpt_t *gpt; 3151 efi_gpe_t *gpe; 3152 int i, nparts, status; 3153 struct uuid efi_reserved = EFI_RESERVED; 3154 3155 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0) 3156 return (status); 3157 3158 bzero(&vd->vtoc, sizeof (struct extvtoc)); 3159 bzero(&vd->dk_geom, sizeof (struct dk_geom)); 3160 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 3161 3162 vd->efi_reserved = -1; 3163 3164 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 3165 3166 for (i = 0; i < nparts && i < VD_MAXPART; i++) { 3167 3168 if (gpe[i].efi_gpe_StartingLBA == 0 && 3169 gpe[i].efi_gpe_EndingLBA == 0) { 3170 continue; 3171 } 3172 3173 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA; 3174 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA - 3175 gpe[i].efi_gpe_StartingLBA + 1; 3176 3177 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved, 3178 sizeof (struct uuid)) == 0) 3179 vd->efi_reserved = i; 3180 3181 } 3182 3183 ASSERT(vd->vdisk_size != 0); 3184 vd->slices[VD_EFI_WD_SLICE].start = 0; 3185 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size; 3186 3187 vds_efi_free(vd, gpt, gpe); 3188 3189 return (status); 3190 } 3191 3192 /* 3193 * Function: 3194 * vd_dskimg_validate_geometry 3195 * 3196 * Description: 3197 * Read the label and validate the geometry of a disk image. The driver 3198 * label, vtoc and geometry information are updated according to the 3199 * label read from the disk image. 3200 * 3201 * If no valid label is found, the label is set to unknown and the 3202 * function returns EINVAL, but a default vtoc and geometry are provided 3203 * to the driver. If an EFI label is found, ENOTSUP is returned. 3204 * 3205 * Parameters: 3206 * vd - disk on which the operation is performed. 3207 * 3208 * Return Code: 3209 * 0 - success. 3210 * EIO - error reading the label from the disk image. 3211 * EINVAL - unknown disk label. 3212 * ENOTSUP - geometry not applicable (EFI label). 3213 */ 3214 static int 3215 vd_dskimg_validate_geometry(vd_t *vd) 3216 { 3217 struct dk_label label; 3218 struct dk_geom *geom = &vd->dk_geom; 3219 struct extvtoc *vtoc = &vd->vtoc; 3220 int i; 3221 int status = 0; 3222 3223 ASSERT(VD_DSKIMG(vd)); 3224 3225 if (VD_DSKIMG_LABEL_READ(vd, &label) < 0) 3226 return (EIO); 3227 3228 if (label.dkl_magic != DKL_MAGIC || 3229 label.dkl_cksum != vd_lbl2cksum(&label) || 3230 (vd_dskimg_validate_sanity && 3231 label.dkl_vtoc.v_sanity != VTOC_SANE) || 3232 label.dkl_vtoc.v_nparts != V_NUMPAR) { 3233 3234 if (vd_dskimg_validate_efi(vd) == 0) { 3235 vd->vdisk_label = VD_DISK_LABEL_EFI; 3236 return (ENOTSUP); 3237 } 3238 3239 vd->vdisk_label = VD_DISK_LABEL_UNK; 3240 vd_build_default_label(vd->dskimg_size, &label); 3241 status = EINVAL; 3242 } else { 3243 vd->vdisk_label = VD_DISK_LABEL_VTOC; 3244 } 3245 3246 /* Update the driver geometry and vtoc */ 3247 vd_label_to_vtocgeom(&label, vtoc, geom); 3248 3249 /* Update logical partitions */ 3250 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 3251 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 3252 for (i = 0; i < vtoc->v_nparts; i++) { 3253 vd->slices[i].start = vtoc->v_part[i].p_start; 3254 vd->slices[i].nblocks = vtoc->v_part[i].p_size; 3255 } 3256 } 3257 3258 return (status); 3259 } 3260 3261 /* 3262 * Handle ioctls to a disk image. 3263 * 3264 * Return Values 3265 * 0 - Indicates that there are no errors 3266 * != 0 - Disk operation returned an error 3267 */ 3268 static int 3269 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 3270 { 3271 struct dk_label label; 3272 struct dk_geom *geom; 3273 struct extvtoc *vtoc; 3274 dk_efi_t *efi; 3275 int rc; 3276 3277 ASSERT(VD_DSKIMG(vd)); 3278 3279 switch (cmd) { 3280 3281 case DKIOCGGEOM: 3282 ASSERT(ioctl_arg != NULL); 3283 geom = (struct dk_geom *)ioctl_arg; 3284 3285 rc = vd_dskimg_validate_geometry(vd); 3286 if (rc != 0 && rc != EINVAL) 3287 return (rc); 3288 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom)); 3289 return (0); 3290 3291 case DKIOCGEXTVTOC: 3292 ASSERT(ioctl_arg != NULL); 3293 vtoc = (struct extvtoc *)ioctl_arg; 3294 3295 rc = vd_dskimg_validate_geometry(vd); 3296 if (rc != 0 && rc != EINVAL) 3297 return (rc); 3298 bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc)); 3299 return (0); 3300 3301 case DKIOCSGEOM: 3302 ASSERT(ioctl_arg != NULL); 3303 geom = (struct dk_geom *)ioctl_arg; 3304 3305 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) 3306 return (EINVAL); 3307 3308 /* 3309 * The current device geometry is not updated, just the driver 3310 * "notion" of it. The device geometry will be effectively 3311 * updated when a label is written to the device during a next 3312 * DKIOCSEXTVTOC. 3313 */ 3314 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); 3315 return (0); 3316 3317 case DKIOCSEXTVTOC: 3318 ASSERT(ioctl_arg != NULL); 3319 ASSERT(vd->dk_geom.dkg_nhead != 0 && 3320 vd->dk_geom.dkg_nsect != 0); 3321 vtoc = (struct extvtoc *)ioctl_arg; 3322 3323 if (vtoc->v_sanity != VTOC_SANE || 3324 vtoc->v_sectorsz != DEV_BSIZE || 3325 vtoc->v_nparts != V_NUMPAR) 3326 return (EINVAL); 3327 3328 vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label); 3329 3330 /* write label to the disk image */ 3331 if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0) 3332 return (rc); 3333 3334 break; 3335 3336 case DKIOCFLUSHWRITECACHE: 3337 return (vd_flush_write(vd)); 3338 3339 case DKIOCGETEFI: 3340 ASSERT(ioctl_arg != NULL); 3341 efi = (dk_efi_t *)ioctl_arg; 3342 3343 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, 3344 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3345 return (EIO); 3346 3347 return (0); 3348 3349 case DKIOCSETEFI: 3350 ASSERT(ioctl_arg != NULL); 3351 efi = (dk_efi_t *)ioctl_arg; 3352 3353 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 3354 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3355 return (EIO); 3356 3357 break; 3358 3359 3360 default: 3361 return (ENOTSUP); 3362 } 3363 3364 ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI); 3365 3366 /* label has changed, revalidate the geometry */ 3367 (void) vd_dskimg_validate_geometry(vd); 3368 3369 /* 3370 * The disk geometry may have changed, so we need to write 3371 * the devid (if there is one) so that it is stored at the 3372 * right location. 3373 */ 3374 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) { 3375 PR0("Fail to write devid"); 3376 } 3377 3378 return (0); 3379 } 3380 3381 static int 3382 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg) 3383 { 3384 int rval = 0, status; 3385 struct vtoc vtoc; 3386 3387 /* 3388 * Call the appropriate function to execute the ioctl depending 3389 * on the type of vdisk. 3390 */ 3391 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3392 3393 /* slice, file or volume exported as a single slice disk */ 3394 status = vd_do_slice_ioctl(vd, cmd, arg); 3395 3396 } else if (VD_DSKIMG(vd)) { 3397 3398 /* file or volume exported as a full disk */ 3399 status = vd_do_dskimg_ioctl(vd, cmd, arg); 3400 3401 } else { 3402 3403 /* disk device exported as a full disk */ 3404 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg, 3405 vd->open_flags | FKIOCTL, kcred, &rval); 3406 3407 /* 3408 * By default VTOC ioctls are done using ioctls for the 3409 * extended VTOC. Some drivers (in particular non-Sun drivers) 3410 * may not support these ioctls. In that case, we fallback to 3411 * the regular VTOC ioctls. 3412 */ 3413 if (status == ENOTTY) { 3414 switch (cmd) { 3415 3416 case DKIOCGEXTVTOC: 3417 cmd = DKIOCGVTOC; 3418 status = ldi_ioctl(vd->ldi_handle[0], cmd, 3419 (intptr_t)&vtoc, vd->open_flags | FKIOCTL, 3420 kcred, &rval); 3421 vtoctoextvtoc(vtoc, 3422 (*(struct extvtoc *)(void *)arg)); 3423 break; 3424 3425 case DKIOCSEXTVTOC: 3426 cmd = DKIOCSVTOC; 3427 extvtoctovtoc((*(struct extvtoc *)(void *)arg), 3428 vtoc); 3429 status = ldi_ioctl(vd->ldi_handle[0], cmd, 3430 (intptr_t)&vtoc, vd->open_flags | FKIOCTL, 3431 kcred, &rval); 3432 break; 3433 } 3434 } 3435 } 3436 3437 #ifdef DEBUG 3438 if (rval != 0) { 3439 PR0("ioctl %x set rval = %d, which is not being returned" 3440 " to caller", cmd, rval); 3441 } 3442 #endif /* DEBUG */ 3443 3444 return (status); 3445 } 3446 3447 /* 3448 * Description: 3449 * This is the function that processes the ioctl requests (farming it 3450 * out to functions that handle slices, files or whole disks) 3451 * 3452 * Return Values 3453 * 0 - ioctl operation completed successfully 3454 * != 0 - The LDC error value encountered 3455 * (propagated back up the call stack as a task error) 3456 * 3457 * Side Effect 3458 * sets request->status to the return value of the ioctl function. 3459 */ 3460 static int 3461 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 3462 { 3463 int status = 0; 3464 size_t nbytes = request->nbytes; /* modifiable copy */ 3465 3466 3467 ASSERT(request->slice < vd->nslices); 3468 PR0("Performing %s", ioctl->operation_name); 3469 3470 /* Get data from client and convert, if necessary */ 3471 if (ioctl->copyin != NULL) { 3472 ASSERT(nbytes != 0 && buf != NULL); 3473 PR1("Getting \"arg\" data from client"); 3474 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3475 request->cookie, request->ncookies, 3476 LDC_COPY_IN)) != 0) { 3477 PR0("ldc_mem_copy() returned errno %d " 3478 "copying from client", status); 3479 return (status); 3480 } 3481 3482 /* Convert client's data, if necessary */ 3483 if (ioctl->copyin == VD_IDENTITY_IN) { 3484 /* use client buffer */ 3485 ioctl->arg = buf; 3486 } else { 3487 /* convert client vdisk operation data to ioctl data */ 3488 status = (ioctl->copyin)(buf, nbytes, 3489 (void *)ioctl->arg); 3490 if (status != 0) { 3491 request->status = status; 3492 return (0); 3493 } 3494 } 3495 } 3496 3497 if (ioctl->operation == VD_OP_SCSICMD) { 3498 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg; 3499 3500 /* check write permission */ 3501 if (!(vd->open_flags & FWRITE) && 3502 !(uscsi->uscsi_flags & USCSI_READ)) { 3503 PR0("uscsi fails because backend is opened read-only"); 3504 request->status = EROFS; 3505 return (0); 3506 } 3507 } 3508 3509 /* 3510 * Send the ioctl to the disk backend. 3511 */ 3512 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg); 3513 3514 if (request->status != 0) { 3515 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); 3516 if (ioctl->operation == VD_OP_SCSICMD && 3517 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0) 3518 /* 3519 * USCSICMD has reported an error and the uscsi_status 3520 * field is not zero. This means that the SCSI command 3521 * has completed but it has an error. So we should 3522 * mark the VD operation has succesfully completed 3523 * and clients can check the SCSI status field for 3524 * SCSI errors. 3525 */ 3526 request->status = 0; 3527 else 3528 return (0); 3529 } 3530 3531 /* Convert data and send to client, if necessary */ 3532 if (ioctl->copyout != NULL) { 3533 ASSERT(nbytes != 0 && buf != NULL); 3534 PR1("Sending \"arg\" data to client"); 3535 3536 /* Convert ioctl data to vdisk operation data, if necessary */ 3537 if (ioctl->copyout != VD_IDENTITY_OUT) 3538 (ioctl->copyout)((void *)ioctl->arg, buf); 3539 3540 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3541 request->cookie, request->ncookies, 3542 LDC_COPY_OUT)) != 0) { 3543 PR0("ldc_mem_copy() returned errno %d " 3544 "copying to client", status); 3545 return (status); 3546 } 3547 } 3548 3549 return (status); 3550 } 3551 3552 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 3553 3554 /* 3555 * Description: 3556 * This generic function is called by the task queue to complete 3557 * the processing of the tasks. The specific completion function 3558 * is passed in as a field in the task pointer. 3559 * 3560 * Parameters: 3561 * arg - opaque pointer to structure containing task to be completed 3562 * 3563 * Return Values 3564 * None 3565 */ 3566 static void 3567 vd_complete(void *arg) 3568 { 3569 vd_task_t *task = (vd_task_t *)arg; 3570 3571 ASSERT(task != NULL); 3572 ASSERT(task->status == EINPROGRESS); 3573 ASSERT(task->completef != NULL); 3574 3575 task->status = task->completef(task); 3576 if (task->status) 3577 PR0("%s: Error %d completing task", __func__, task->status); 3578 3579 /* Now notify the vDisk client */ 3580 vd_complete_notify(task); 3581 } 3582 3583 static int 3584 vd_ioctl(vd_task_t *task) 3585 { 3586 int i, status; 3587 void *buf = NULL; 3588 struct dk_geom dk_geom = {0}; 3589 struct extvtoc vtoc = {0}; 3590 struct dk_efi dk_efi = {0}; 3591 struct uscsi_cmd uscsi = {0}; 3592 vd_t *vd = task->vd; 3593 vd_dring_payload_t *request = task->request; 3594 vd_ioctl_t ioctl[] = { 3595 /* Command (no-copy) operations */ 3596 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 3597 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 3598 NULL, NULL, NULL, B_TRUE}, 3599 3600 /* "Get" (copy-out) operations */ 3601 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 3602 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 3603 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE}, 3604 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 3605 RNDSIZE(vd_geom_t), 3606 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 3607 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE}, 3608 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 3609 DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC), 3610 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE}, 3611 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 3612 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 3613 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE}, 3614 3615 /* "Set" (copy-in) operations */ 3616 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 3617 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 3618 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE}, 3619 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 3620 RNDSIZE(vd_geom_t), 3621 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 3622 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE}, 3623 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 3624 DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC), 3625 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE}, 3626 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 3627 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 3628 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE}, 3629 3630 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t), 3631 USCSICMD, STRINGIZE(USCSICMD), 3632 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE}, 3633 }; 3634 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 3635 3636 3637 ASSERT(vd != NULL); 3638 ASSERT(request != NULL); 3639 ASSERT(request->slice < vd->nslices); 3640 3641 /* 3642 * Determine ioctl corresponding to caller's "operation" and 3643 * validate caller's "nbytes" 3644 */ 3645 for (i = 0; i < nioctls; i++) { 3646 if (request->operation == ioctl[i].operation) { 3647 /* LDC memory operations require 8-byte multiples */ 3648 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 3649 3650 if (request->operation == VD_OP_GET_EFI || 3651 request->operation == VD_OP_SET_EFI || 3652 request->operation == VD_OP_SCSICMD) { 3653 if (request->nbytes >= ioctl[i].nbytes) 3654 break; 3655 PR0("%s: Expected at least nbytes = %lu, " 3656 "got %lu", ioctl[i].operation_name, 3657 ioctl[i].nbytes, request->nbytes); 3658 return (EINVAL); 3659 } 3660 3661 if (request->nbytes != ioctl[i].nbytes) { 3662 PR0("%s: Expected nbytes = %lu, got %lu", 3663 ioctl[i].operation_name, ioctl[i].nbytes, 3664 request->nbytes); 3665 return (EINVAL); 3666 } 3667 3668 break; 3669 } 3670 } 3671 ASSERT(i < nioctls); /* because "operation" already validated */ 3672 3673 if (!(vd->open_flags & FWRITE) && ioctl[i].write) { 3674 PR0("%s fails because backend is opened read-only", 3675 ioctl[i].operation_name); 3676 request->status = EROFS; 3677 return (0); 3678 } 3679 3680 if (request->nbytes) 3681 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 3682 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 3683 if (request->nbytes) 3684 kmem_free(buf, request->nbytes); 3685 3686 return (status); 3687 } 3688 3689 static int 3690 vd_get_devid(vd_task_t *task) 3691 { 3692 vd_t *vd = task->vd; 3693 vd_dring_payload_t *request = task->request; 3694 vd_devid_t *vd_devid; 3695 impl_devid_t *devid; 3696 int status, bufid_len, devid_len, len, sz; 3697 int bufbytes; 3698 3699 PR1("Get Device ID, nbytes=%ld", request->nbytes); 3700 3701 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3702 /* 3703 * We don't support devid for single-slice disks because we 3704 * have no space to store a fabricated devid and for physical 3705 * disk slices, we can't use the devid of the disk otherwise 3706 * exporting multiple slices from the same disk will produce 3707 * the same devids. 3708 */ 3709 PR2("No Device ID for slices"); 3710 request->status = ENOTSUP; 3711 return (0); 3712 } 3713 3714 if (VD_DSKIMG(vd)) { 3715 if (vd->dskimg_devid == NULL) { 3716 PR2("No Device ID"); 3717 request->status = ENOENT; 3718 return (0); 3719 } else { 3720 sz = ddi_devid_sizeof(vd->dskimg_devid); 3721 devid = kmem_alloc(sz, KM_SLEEP); 3722 bcopy(vd->dskimg_devid, devid, sz); 3723 } 3724 } else { 3725 if (ddi_lyr_get_devid(vd->dev[request->slice], 3726 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 3727 PR2("No Device ID"); 3728 request->status = ENOENT; 3729 return (0); 3730 } 3731 } 3732 3733 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 3734 devid_len = DEVID_GETLEN(devid); 3735 3736 /* 3737 * Save the buffer size here for use in deallocation. 3738 * The actual number of bytes copied is returned in 3739 * the 'nbytes' field of the request structure. 3740 */ 3741 bufbytes = request->nbytes; 3742 3743 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 3744 vd_devid->length = devid_len; 3745 vd_devid->type = DEVID_GETTYPE(devid); 3746 3747 len = (devid_len > bufid_len)? bufid_len : devid_len; 3748 3749 bcopy(devid->did_id, vd_devid->id, len); 3750 3751 request->status = 0; 3752 3753 /* LDC memory operations require 8-byte multiples */ 3754 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 3755 3756 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 3757 &request->nbytes, request->cookie, request->ncookies, 3758 LDC_COPY_OUT)) != 0) { 3759 PR0("ldc_mem_copy() returned errno %d copying to client", 3760 status); 3761 } 3762 PR1("post mem_copy: nbytes=%ld", request->nbytes); 3763 3764 kmem_free(vd_devid, bufbytes); 3765 ddi_devid_free((ddi_devid_t)devid); 3766 3767 return (status); 3768 } 3769 3770 static int 3771 vd_scsi_reset(vd_t *vd) 3772 { 3773 int rval, status; 3774 struct uscsi_cmd uscsi = { 0 }; 3775 3776 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET; 3777 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout; 3778 3779 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi, 3780 (vd->open_flags | FKIOCTL), kcred, &rval); 3781 3782 return (status); 3783 } 3784 3785 static int 3786 vd_reset(vd_task_t *task) 3787 { 3788 vd_t *vd = task->vd; 3789 vd_dring_payload_t *request = task->request; 3790 3791 ASSERT(request->operation == VD_OP_RESET); 3792 ASSERT(vd->scsi); 3793 3794 PR0("Performing VD_OP_RESET"); 3795 3796 if (request->nbytes != 0) { 3797 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu", 3798 request->nbytes); 3799 return (EINVAL); 3800 } 3801 3802 request->status = vd_scsi_reset(vd); 3803 3804 return (0); 3805 } 3806 3807 static int 3808 vd_get_capacity(vd_task_t *task) 3809 { 3810 int rv; 3811 size_t nbytes; 3812 vd_t *vd = task->vd; 3813 vd_dring_payload_t *request = task->request; 3814 vd_capacity_t vd_cap = { 0 }; 3815 3816 ASSERT(request->operation == VD_OP_GET_CAPACITY); 3817 3818 PR0("Performing VD_OP_GET_CAPACITY"); 3819 3820 nbytes = request->nbytes; 3821 3822 if (nbytes != RNDSIZE(vd_capacity_t)) { 3823 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu", 3824 RNDSIZE(vd_capacity_t), nbytes); 3825 return (EINVAL); 3826 } 3827 3828 /* 3829 * Check the backend size in case it has changed. If the check fails 3830 * then we will return the last known size. 3831 */ 3832 3833 (void) vd_backend_check_size(vd); 3834 ASSERT(vd->vdisk_size != 0); 3835 3836 request->status = 0; 3837 3838 vd_cap.vdisk_block_size = vd->vdisk_block_size; 3839 vd_cap.vdisk_size = vd->vdisk_size; 3840 3841 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes, 3842 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3843 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3844 return (rv); 3845 } 3846 3847 return (0); 3848 } 3849 3850 static int 3851 vd_get_access(vd_task_t *task) 3852 { 3853 uint64_t access; 3854 int rv, rval = 0; 3855 size_t nbytes; 3856 vd_t *vd = task->vd; 3857 vd_dring_payload_t *request = task->request; 3858 3859 ASSERT(request->operation == VD_OP_GET_ACCESS); 3860 ASSERT(vd->scsi); 3861 3862 PR0("Performing VD_OP_GET_ACCESS"); 3863 3864 nbytes = request->nbytes; 3865 3866 if (nbytes != sizeof (uint64_t)) { 3867 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu", 3868 sizeof (uint64_t), nbytes); 3869 return (EINVAL); 3870 } 3871 3872 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS, 3873 NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3874 3875 if (request->status != 0) 3876 return (0); 3877 3878 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED; 3879 3880 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes, 3881 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3882 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3883 return (rv); 3884 } 3885 3886 return (0); 3887 } 3888 3889 static int 3890 vd_set_access(vd_task_t *task) 3891 { 3892 uint64_t flags; 3893 int rv, rval; 3894 size_t nbytes; 3895 vd_t *vd = task->vd; 3896 vd_dring_payload_t *request = task->request; 3897 3898 ASSERT(request->operation == VD_OP_SET_ACCESS); 3899 ASSERT(vd->scsi); 3900 3901 nbytes = request->nbytes; 3902 3903 if (nbytes != sizeof (uint64_t)) { 3904 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu", 3905 sizeof (uint64_t), nbytes); 3906 return (EINVAL); 3907 } 3908 3909 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes, 3910 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { 3911 PR0("ldc_mem_copy() returned errno %d copying from client", rv); 3912 return (rv); 3913 } 3914 3915 if (flags == VD_ACCESS_SET_CLEAR) { 3916 PR0("Performing VD_OP_SET_ACCESS (CLEAR)"); 3917 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3918 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred, 3919 &rval); 3920 if (request->status == 0) 3921 vd->ownership = B_FALSE; 3922 return (0); 3923 } 3924 3925 /* 3926 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid 3927 * when the EXCLUSIVE flag is set. 3928 */ 3929 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) { 3930 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags); 3931 request->status = EINVAL; 3932 return (0); 3933 } 3934 3935 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) { 3936 3937 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE: 3938 /* 3939 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to 3940 * acquire exclusive access rights, preserve them and we 3941 * can use preemption. So we can use the MHIOCTKNOWN ioctl. 3942 */ 3943 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)"); 3944 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3945 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3946 break; 3947 3948 case VD_ACCESS_SET_PRESERVE: 3949 /* 3950 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive 3951 * access rights and preserve them, but not preempt any other 3952 * host. So we need to use the MHIOCTKOWN ioctl to enable the 3953 * "preserve" feature but we can not called it directly 3954 * because it uses preemption. So before that, we use the 3955 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights 3956 * without preempting anyone. 3957 */ 3958 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)"); 3959 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3960 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3961 &rval); 3962 if (request->status != 0) 3963 break; 3964 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3965 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3966 break; 3967 3968 case VD_ACCESS_SET_PREEMPT: 3969 /* 3970 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive 3971 * access rights and we can use preemption. So we try to do 3972 * a SCSI reservation, if it fails we reset the disk to clear 3973 * any reservation and we try to reserve again. 3974 */ 3975 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)"); 3976 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3977 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3978 &rval); 3979 if (request->status == 0) 3980 break; 3981 3982 /* reset the disk */ 3983 (void) vd_scsi_reset(vd); 3984 3985 /* try again even if the reset has failed */ 3986 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3987 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3988 &rval); 3989 break; 3990 3991 case 0: 3992 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */ 3993 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)"); 3994 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3995 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3996 &rval); 3997 break; 3998 } 3999 4000 if (request->status == 0) 4001 vd->ownership = B_TRUE; 4002 else 4003 PR0("VD_OP_SET_ACCESS: error %d", request->status); 4004 4005 return (0); 4006 } 4007 4008 static void 4009 vd_reset_access(vd_t *vd) 4010 { 4011 int status, rval; 4012 4013 if (vd->file || vd->volume || !vd->ownership) 4014 return; 4015 4016 PR0("Releasing disk ownership"); 4017 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 4018 (vd->open_flags | FKIOCTL), kcred, &rval); 4019 4020 /* 4021 * An EACCES failure means that there is a reservation conflict, 4022 * so we are not the owner of the disk anymore. 4023 */ 4024 if (status == 0 || status == EACCES) { 4025 vd->ownership = B_FALSE; 4026 return; 4027 } 4028 4029 PR0("Fail to release ownership, error %d", status); 4030 4031 /* 4032 * We have failed to release the ownership, try to reset the disk 4033 * to release reservations. 4034 */ 4035 PR0("Resetting disk"); 4036 status = vd_scsi_reset(vd); 4037 4038 if (status != 0) 4039 PR0("Fail to reset disk, error %d", status); 4040 4041 /* whatever the result of the reset is, we try the release again */ 4042 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 4043 (vd->open_flags | FKIOCTL), kcred, &rval); 4044 4045 if (status == 0 || status == EACCES) { 4046 vd->ownership = B_FALSE; 4047 return; 4048 } 4049 4050 PR0("Fail to release ownership, error %d", status); 4051 4052 /* 4053 * At this point we have done our best to try to reset the 4054 * access rights to the disk and we don't know if we still 4055 * own a reservation and if any mechanism to preserve the 4056 * ownership is still in place. The ultimate solution would 4057 * be to reset the system but this is usually not what we 4058 * want to happen. 4059 */ 4060 4061 if (vd_reset_access_failure == A_REBOOT) { 4062 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG 4063 ", rebooting the system", vd->device_path); 4064 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL); 4065 } else if (vd_reset_access_failure == A_DUMP) { 4066 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 4067 } 4068 4069 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 4070 } 4071 4072 /* 4073 * Define the supported operations once the functions for performing them have 4074 * been defined 4075 */ 4076 static const vds_operation_t vds_operation[] = { 4077 #define X(_s) #_s, _s 4078 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 4079 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 4080 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 4081 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 4082 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 4083 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 4084 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 4085 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 4086 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 4087 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 4088 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 4089 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 4090 {X(VD_OP_SCSICMD), vd_ioctl, NULL}, 4091 {X(VD_OP_RESET), vd_reset, NULL}, 4092 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL}, 4093 {X(VD_OP_SET_ACCESS), vd_set_access, NULL}, 4094 {X(VD_OP_GET_ACCESS), vd_get_access, NULL}, 4095 #undef X 4096 }; 4097 4098 static const size_t vds_noperations = 4099 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 4100 4101 /* 4102 * Process a task specifying a client I/O request 4103 * 4104 * Parameters: 4105 * task - structure containing the request sent from client 4106 * 4107 * Return Value 4108 * 0 - success 4109 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation 4110 * EINVAL - Invalid disk slice 4111 * != 0 - some other non-zero return value from start function 4112 */ 4113 static int 4114 vd_do_process_task(vd_task_t *task) 4115 { 4116 int i; 4117 vd_t *vd = task->vd; 4118 vd_dring_payload_t *request = task->request; 4119 4120 ASSERT(vd != NULL); 4121 ASSERT(request != NULL); 4122 4123 /* Find the requested operation */ 4124 for (i = 0; i < vds_noperations; i++) { 4125 if (request->operation == vds_operation[i].operation) { 4126 /* all operations should have a start func */ 4127 ASSERT(vds_operation[i].start != NULL); 4128 4129 task->completef = vds_operation[i].complete; 4130 break; 4131 } 4132 } 4133 4134 /* 4135 * We need to check that the requested operation is permitted 4136 * for the particular client that sent it or that the loop above 4137 * did not complete without finding the operation type (indicating 4138 * that the requested operation is unknown/unimplemented) 4139 */ 4140 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) || 4141 (i == vds_noperations)) { 4142 PR0("Unsupported operation %u", request->operation); 4143 request->status = ENOTSUP; 4144 return (0); 4145 } 4146 4147 /* Range-check slice */ 4148 if (request->slice >= vd->nslices && 4149 ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) || 4150 request->slice != VD_SLICE_NONE)) { 4151 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 4152 request->slice, (vd->nslices - 1)); 4153 request->status = EINVAL; 4154 return (0); 4155 } 4156 4157 /* 4158 * Call the function pointer that starts the operation. 4159 */ 4160 return (vds_operation[i].start(task)); 4161 } 4162 4163 /* 4164 * Description: 4165 * This function is called by both the in-band and descriptor ring 4166 * message processing functions paths to actually execute the task 4167 * requested by the vDisk client. It in turn calls its worker 4168 * function, vd_do_process_task(), to carry our the request. 4169 * 4170 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are 4171 * saved in the 'status' field of the task and are propagated back 4172 * up the call stack to trigger a NACK 4173 * 4174 * Any request errors (e.g. ENOTTY from an ioctl) are saved in 4175 * the 'status' field of the request and result in an ACK being sent 4176 * by the completion handler. 4177 * 4178 * Parameters: 4179 * task - structure containing the request sent from client 4180 * 4181 * Return Value 4182 * 0 - successful synchronous request. 4183 * != 0 - transport error (e.g. LDC errors, vDisk protocol) 4184 * EINPROGRESS - task will be finished in a completion handler 4185 */ 4186 static int 4187 vd_process_task(vd_task_t *task) 4188 { 4189 vd_t *vd = task->vd; 4190 int status; 4191 4192 DTRACE_PROBE1(task__start, vd_task_t *, task); 4193 4194 task->status = vd_do_process_task(task); 4195 4196 /* 4197 * If the task processing function returned EINPROGRESS indicating 4198 * that the task needs completing then schedule a taskq entry to 4199 * finish it now. 4200 * 4201 * Otherwise the task processing function returned either zero 4202 * indicating that the task was finished in the start function (and we 4203 * don't need to wait in a completion function) or the start function 4204 * returned an error - in both cases all that needs to happen is the 4205 * notification to the vDisk client higher up the call stack. 4206 * If the task was using a Descriptor Ring, we need to mark it as done 4207 * at this stage. 4208 */ 4209 if (task->status == EINPROGRESS) { 4210 /* Queue a task to complete the operation */ 4211 (void) ddi_taskq_dispatch(vd->completionq, vd_complete, 4212 task, DDI_SLEEP); 4213 return (EINPROGRESS); 4214 } 4215 4216 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 4217 /* Update the dring element if it's a dring client */ 4218 status = vd_mark_elem_done(vd, task->index, 4219 task->request->status, task->request->nbytes); 4220 if (status == ECONNRESET) 4221 vd_mark_in_reset(vd); 4222 else if (status == EACCES) 4223 vd_need_reset(vd, B_TRUE); 4224 } 4225 4226 return (task->status); 4227 } 4228 4229 /* 4230 * Return true if the "type", "subtype", and "env" fields of the "tag" first 4231 * argument match the corresponding remaining arguments; otherwise, return false 4232 */ 4233 boolean_t 4234 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 4235 { 4236 return ((tag->vio_msgtype == type) && 4237 (tag->vio_subtype == subtype) && 4238 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 4239 } 4240 4241 /* 4242 * Check whether the major/minor version specified in "ver_msg" is supported 4243 * by this server. 4244 */ 4245 static boolean_t 4246 vds_supported_version(vio_ver_msg_t *ver_msg) 4247 { 4248 for (int i = 0; i < vds_num_versions; i++) { 4249 ASSERT(vds_version[i].major > 0); 4250 ASSERT((i == 0) || 4251 (vds_version[i].major < vds_version[i-1].major)); 4252 4253 /* 4254 * If the major versions match, adjust the minor version, if 4255 * necessary, down to the highest value supported by this 4256 * server and return true so this message will get "ack"ed; 4257 * the client should also support all minor versions lower 4258 * than the value it sent 4259 */ 4260 if (ver_msg->ver_major == vds_version[i].major) { 4261 if (ver_msg->ver_minor > vds_version[i].minor) { 4262 PR0("Adjusting minor version from %u to %u", 4263 ver_msg->ver_minor, vds_version[i].minor); 4264 ver_msg->ver_minor = vds_version[i].minor; 4265 } 4266 return (B_TRUE); 4267 } 4268 4269 /* 4270 * If the message contains a higher major version number, set 4271 * the message's major/minor versions to the current values 4272 * and return false, so this message will get "nack"ed with 4273 * these values, and the client will potentially try again 4274 * with the same or a lower version 4275 */ 4276 if (ver_msg->ver_major > vds_version[i].major) { 4277 ver_msg->ver_major = vds_version[i].major; 4278 ver_msg->ver_minor = vds_version[i].minor; 4279 return (B_FALSE); 4280 } 4281 4282 /* 4283 * Otherwise, the message's major version is less than the 4284 * current major version, so continue the loop to the next 4285 * (lower) supported version 4286 */ 4287 } 4288 4289 /* 4290 * No common version was found; "ground" the version pair in the 4291 * message to terminate negotiation 4292 */ 4293 ver_msg->ver_major = 0; 4294 ver_msg->ver_minor = 0; 4295 return (B_FALSE); 4296 } 4297 4298 /* 4299 * Process a version message from a client. vds expects to receive version 4300 * messages from clients seeking service, but never issues version messages 4301 * itself; therefore, vds can ACK or NACK client version messages, but does 4302 * not expect to receive version-message ACKs or NACKs (and will treat such 4303 * messages as invalid). 4304 */ 4305 static int 4306 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4307 { 4308 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 4309 4310 4311 ASSERT(msglen >= sizeof (msg->tag)); 4312 4313 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4314 VIO_VER_INFO)) { 4315 return (ENOMSG); /* not a version message */ 4316 } 4317 4318 if (msglen != sizeof (*ver_msg)) { 4319 PR0("Expected %lu-byte version message; " 4320 "received %lu bytes", sizeof (*ver_msg), msglen); 4321 return (EBADMSG); 4322 } 4323 4324 if (ver_msg->dev_class != VDEV_DISK) { 4325 PR0("Expected device class %u (disk); received %u", 4326 VDEV_DISK, ver_msg->dev_class); 4327 return (EBADMSG); 4328 } 4329 4330 /* 4331 * We're talking to the expected kind of client; set our device class 4332 * for "ack/nack" back to the client 4333 */ 4334 ver_msg->dev_class = VDEV_DISK_SERVER; 4335 4336 /* 4337 * Check whether the (valid) version message specifies a version 4338 * supported by this server. If the version is not supported, return 4339 * EBADMSG so the message will get "nack"ed; vds_supported_version() 4340 * will have updated the message with a supported version for the 4341 * client to consider 4342 */ 4343 if (!vds_supported_version(ver_msg)) 4344 return (EBADMSG); 4345 4346 4347 /* 4348 * A version has been agreed upon; use the client's SID for 4349 * communication on this channel now 4350 */ 4351 ASSERT(!(vd->initialized & VD_SID)); 4352 vd->sid = ver_msg->tag.vio_sid; 4353 vd->initialized |= VD_SID; 4354 4355 /* 4356 * Store the negotiated major and minor version values in the "vd" data 4357 * structure so that we can check if certain operations are supported 4358 * by the client. 4359 */ 4360 vd->version.major = ver_msg->ver_major; 4361 vd->version.minor = ver_msg->ver_minor; 4362 4363 PR0("Using major version %u, minor version %u", 4364 ver_msg->ver_major, ver_msg->ver_minor); 4365 return (0); 4366 } 4367 4368 static void 4369 vd_set_exported_operations(vd_t *vd) 4370 { 4371 vd->operations = 0; /* clear field */ 4372 4373 /* 4374 * We need to check from the highest version supported to the 4375 * lowest because versions with a higher minor number implicitly 4376 * support versions with a lower minor number. 4377 */ 4378 if (vio_ver_is_supported(vd->version, 1, 1)) { 4379 ASSERT(vd->open_flags & FREAD); 4380 vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY); 4381 4382 if (vd->open_flags & FWRITE) 4383 vd->operations |= VD_OP_MASK_WRITE; 4384 4385 if (vd->scsi) 4386 vd->operations |= VD_OP_MASK_SCSI; 4387 4388 if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) { 4389 /* 4390 * can't write to ISO images, make sure that write 4391 * support is not set in case administrator did not 4392 * use "options=ro" when doing an ldm add-vdsdev 4393 */ 4394 vd->operations &= ~VD_OP_MASK_WRITE; 4395 } 4396 } else if (vio_ver_is_supported(vd->version, 1, 0)) { 4397 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE; 4398 } 4399 4400 /* we should have already agreed on a version */ 4401 ASSERT(vd->operations != 0); 4402 } 4403 4404 static int 4405 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4406 { 4407 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 4408 int status, retry = 0; 4409 4410 4411 ASSERT(msglen >= sizeof (msg->tag)); 4412 4413 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4414 VIO_ATTR_INFO)) { 4415 PR0("Message is not an attribute message"); 4416 return (ENOMSG); 4417 } 4418 4419 if (msglen != sizeof (*attr_msg)) { 4420 PR0("Expected %lu-byte attribute message; " 4421 "received %lu bytes", sizeof (*attr_msg), msglen); 4422 return (EBADMSG); 4423 } 4424 4425 if (attr_msg->max_xfer_sz == 0) { 4426 PR0("Received maximum transfer size of 0 from client"); 4427 return (EBADMSG); 4428 } 4429 4430 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 4431 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) { 4432 PR0("Client requested unsupported transfer mode"); 4433 return (EBADMSG); 4434 } 4435 4436 /* 4437 * check if the underlying disk is ready, if not try accessing 4438 * the device again. Open the vdisk device and extract info 4439 * about it, as this is needed to respond to the attr info msg 4440 */ 4441 if ((vd->initialized & VD_DISK_READY) == 0) { 4442 PR0("Retry setting up disk (%s)", vd->device_path); 4443 do { 4444 status = vd_setup_vd(vd); 4445 if (status != EAGAIN || ++retry > vds_dev_retries) 4446 break; 4447 4448 /* incremental delay */ 4449 delay(drv_usectohz(vds_dev_delay)); 4450 4451 /* if vdisk is no longer enabled - return error */ 4452 if (!vd_enabled(vd)) 4453 return (ENXIO); 4454 4455 } while (status == EAGAIN); 4456 4457 if (status) 4458 return (ENXIO); 4459 4460 vd->initialized |= VD_DISK_READY; 4461 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 4462 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 4463 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 4464 (vd->volume ? "yes" : "no"), 4465 (vd->file ? "yes" : "no"), 4466 vd->nslices); 4467 } 4468 4469 /* Success: valid message and transfer mode */ 4470 vd->xfer_mode = attr_msg->xfer_mode; 4471 4472 if (vd->xfer_mode == VIO_DESC_MODE) { 4473 4474 /* 4475 * The vd_dring_inband_msg_t contains one cookie; need room 4476 * for up to n-1 more cookies, where "n" is the number of full 4477 * pages plus possibly one partial page required to cover 4478 * "max_xfer_sz". Add room for one more cookie if 4479 * "max_xfer_sz" isn't an integral multiple of the page size. 4480 * Must first get the maximum transfer size in bytes. 4481 */ 4482 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 4483 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 4484 attr_msg->max_xfer_sz; 4485 size_t max_inband_msglen = 4486 sizeof (vd_dring_inband_msg_t) + 4487 ((max_xfer_bytes/PAGESIZE + 4488 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 4489 (sizeof (ldc_mem_cookie_t))); 4490 4491 /* 4492 * Set the maximum expected message length to 4493 * accommodate in-band-descriptor messages with all 4494 * their cookies 4495 */ 4496 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 4497 4498 /* 4499 * Initialize the data structure for processing in-band I/O 4500 * request descriptors 4501 */ 4502 vd->inband_task.vd = vd; 4503 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4504 vd->inband_task.index = 0; 4505 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 4506 } 4507 4508 /* Return the device's block size and max transfer size to the client */ 4509 attr_msg->vdisk_block_size = vd->vdisk_block_size; 4510 attr_msg->max_xfer_sz = vd->max_xfer_sz; 4511 4512 attr_msg->vdisk_size = vd->vdisk_size; 4513 attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type : 4514 VD_DISK_TYPE_DISK; 4515 attr_msg->vdisk_media = vd->vdisk_media; 4516 4517 /* Discover and save the list of supported VD_OP_XXX operations */ 4518 vd_set_exported_operations(vd); 4519 attr_msg->operations = vd->operations; 4520 4521 PR0("%s", VD_CLIENT(vd)); 4522 4523 ASSERT(vd->dring_task == NULL); 4524 4525 return (0); 4526 } 4527 4528 static int 4529 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4530 { 4531 int status; 4532 size_t expected; 4533 ldc_mem_info_t dring_minfo; 4534 uint8_t mtype; 4535 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 4536 4537 4538 ASSERT(msglen >= sizeof (msg->tag)); 4539 4540 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4541 VIO_DRING_REG)) { 4542 PR0("Message is not a register-dring message"); 4543 return (ENOMSG); 4544 } 4545 4546 if (msglen < sizeof (*reg_msg)) { 4547 PR0("Expected at least %lu-byte register-dring message; " 4548 "received %lu bytes", sizeof (*reg_msg), msglen); 4549 return (EBADMSG); 4550 } 4551 4552 expected = sizeof (*reg_msg) + 4553 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 4554 if (msglen != expected) { 4555 PR0("Expected %lu-byte register-dring message; " 4556 "received %lu bytes", expected, msglen); 4557 return (EBADMSG); 4558 } 4559 4560 if (vd->initialized & VD_DRING) { 4561 PR0("A dring was previously registered; only support one"); 4562 return (EBADMSG); 4563 } 4564 4565 if (reg_msg->num_descriptors > INT32_MAX) { 4566 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 4567 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 4568 return (EBADMSG); 4569 } 4570 4571 if (reg_msg->ncookies != 1) { 4572 /* 4573 * In addition to fixing the assertion in the success case 4574 * below, supporting drings which require more than one 4575 * "cookie" requires increasing the value of vd->max_msglen 4576 * somewhere in the code path prior to receiving the message 4577 * which results in calling this function. Note that without 4578 * making this change, the larger message size required to 4579 * accommodate multiple cookies cannot be successfully 4580 * received, so this function will not even get called. 4581 * Gracefully accommodating more dring cookies might 4582 * reasonably demand exchanging an additional attribute or 4583 * making a minor protocol adjustment 4584 */ 4585 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 4586 return (EBADMSG); 4587 } 4588 4589 if (vd_direct_mapped_drings) 4590 mtype = LDC_DIRECT_MAP; 4591 else 4592 mtype = LDC_SHADOW_MAP; 4593 4594 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 4595 reg_msg->ncookies, reg_msg->num_descriptors, 4596 reg_msg->descriptor_size, mtype, &vd->dring_handle); 4597 if (status != 0) { 4598 PR0("ldc_mem_dring_map() returned errno %d", status); 4599 return (status); 4600 } 4601 4602 /* 4603 * To remove the need for this assertion, must call 4604 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 4605 * successful call to ldc_mem_dring_map() 4606 */ 4607 ASSERT(reg_msg->ncookies == 1); 4608 4609 if ((status = 4610 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 4611 PR0("ldc_mem_dring_info() returned errno %d", status); 4612 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 4613 PR0("ldc_mem_dring_unmap() returned errno %d", status); 4614 return (status); 4615 } 4616 4617 if (dring_minfo.vaddr == NULL) { 4618 PR0("Descriptor ring virtual address is NULL"); 4619 return (ENXIO); 4620 } 4621 4622 4623 /* Initialize for valid message and mapped dring */ 4624 vd->initialized |= VD_DRING; 4625 vd->dring_ident = 1; /* "There Can Be Only One" */ 4626 vd->dring = dring_minfo.vaddr; 4627 vd->descriptor_size = reg_msg->descriptor_size; 4628 vd->dring_len = reg_msg->num_descriptors; 4629 vd->dring_mtype = dring_minfo.mtype; 4630 reg_msg->dring_ident = vd->dring_ident; 4631 PR1("descriptor size = %u, dring length = %u", 4632 vd->descriptor_size, vd->dring_len); 4633 4634 /* 4635 * Allocate and initialize a "shadow" array of data structures for 4636 * tasks to process I/O requests in dring elements 4637 */ 4638 vd->dring_task = 4639 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 4640 for (int i = 0; i < vd->dring_len; i++) { 4641 vd->dring_task[i].vd = vd; 4642 vd->dring_task[i].index = i; 4643 4644 status = ldc_mem_alloc_handle(vd->ldc_handle, 4645 &(vd->dring_task[i].mhdl)); 4646 if (status) { 4647 PR0("ldc_mem_alloc_handle() returned err %d ", status); 4648 return (ENXIO); 4649 } 4650 4651 /* 4652 * The descriptor payload varies in length. Calculate its 4653 * size by subtracting the header size from the total 4654 * descriptor size. 4655 */ 4656 vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size - 4657 sizeof (vio_dring_entry_hdr_t)), KM_SLEEP); 4658 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4659 } 4660 4661 if (vd->file || vd->zvol) { 4662 vd->write_queue = 4663 kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP); 4664 } 4665 4666 return (0); 4667 } 4668 4669 static int 4670 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4671 { 4672 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 4673 4674 4675 ASSERT(msglen >= sizeof (msg->tag)); 4676 4677 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4678 VIO_DRING_UNREG)) { 4679 PR0("Message is not an unregister-dring message"); 4680 return (ENOMSG); 4681 } 4682 4683 if (msglen != sizeof (*unreg_msg)) { 4684 PR0("Expected %lu-byte unregister-dring message; " 4685 "received %lu bytes", sizeof (*unreg_msg), msglen); 4686 return (EBADMSG); 4687 } 4688 4689 if (unreg_msg->dring_ident != vd->dring_ident) { 4690 PR0("Expected dring ident %lu; received %lu", 4691 vd->dring_ident, unreg_msg->dring_ident); 4692 return (EBADMSG); 4693 } 4694 4695 return (0); 4696 } 4697 4698 static int 4699 process_rdx_msg(vio_msg_t *msg, size_t msglen) 4700 { 4701 ASSERT(msglen >= sizeof (msg->tag)); 4702 4703 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 4704 PR0("Message is not an RDX message"); 4705 return (ENOMSG); 4706 } 4707 4708 if (msglen != sizeof (vio_rdx_msg_t)) { 4709 PR0("Expected %lu-byte RDX message; received %lu bytes", 4710 sizeof (vio_rdx_msg_t), msglen); 4711 return (EBADMSG); 4712 } 4713 4714 PR0("Valid RDX message"); 4715 return (0); 4716 } 4717 4718 static int 4719 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 4720 { 4721 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 4722 PR0("Received seq_num %lu; expected %lu", 4723 seq_num, (vd->seq_num + 1)); 4724 PR0("initiating soft reset"); 4725 vd_need_reset(vd, B_FALSE); 4726 return (1); 4727 } 4728 4729 vd->seq_num = seq_num; 4730 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 4731 return (0); 4732 } 4733 4734 /* 4735 * Return the expected size of an inband-descriptor message with all the 4736 * cookies it claims to include 4737 */ 4738 static size_t 4739 expected_inband_size(vd_dring_inband_msg_t *msg) 4740 { 4741 return ((sizeof (*msg)) + 4742 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 4743 } 4744 4745 /* 4746 * Process an in-band descriptor message: used with clients like OBP, with 4747 * which vds exchanges descriptors within VIO message payloads, rather than 4748 * operating on them within a descriptor ring 4749 */ 4750 static int 4751 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4752 { 4753 size_t expected; 4754 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 4755 4756 4757 ASSERT(msglen >= sizeof (msg->tag)); 4758 4759 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4760 VIO_DESC_DATA)) { 4761 PR1("Message is not an in-band-descriptor message"); 4762 return (ENOMSG); 4763 } 4764 4765 if (msglen < sizeof (*desc_msg)) { 4766 PR0("Expected at least %lu-byte descriptor message; " 4767 "received %lu bytes", sizeof (*desc_msg), msglen); 4768 return (EBADMSG); 4769 } 4770 4771 if (msglen != (expected = expected_inband_size(desc_msg))) { 4772 PR0("Expected %lu-byte descriptor message; " 4773 "received %lu bytes", expected, msglen); 4774 return (EBADMSG); 4775 } 4776 4777 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 4778 return (EBADMSG); 4779 4780 /* 4781 * Valid message: Set up the in-band descriptor task and process the 4782 * request. Arrange to acknowledge the client's message, unless an 4783 * error processing the descriptor task results in setting 4784 * VIO_SUBTYPE_NACK 4785 */ 4786 PR1("Valid in-band-descriptor message"); 4787 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4788 4789 ASSERT(vd->inband_task.msg != NULL); 4790 4791 bcopy(msg, vd->inband_task.msg, msglen); 4792 vd->inband_task.msglen = msglen; 4793 4794 /* 4795 * The task request is now the payload of the message 4796 * that was just copied into the body of the task. 4797 */ 4798 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 4799 vd->inband_task.request = &desc_msg->payload; 4800 4801 return (vd_process_task(&vd->inband_task)); 4802 } 4803 4804 static int 4805 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 4806 vio_msg_t *msg, size_t msglen) 4807 { 4808 int status; 4809 boolean_t ready; 4810 on_trap_data_t otd; 4811 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 4812 4813 /* Accept the updated dring element */ 4814 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 4815 vd->dring_handle, idx, idx)) != 0) { 4816 return (status); 4817 } 4818 ready = (elem->hdr.dstate == VIO_DESC_READY); 4819 if (ready) { 4820 elem->hdr.dstate = VIO_DESC_ACCEPTED; 4821 bcopy(&elem->payload, vd->dring_task[idx].request, 4822 (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t))); 4823 } else { 4824 PR0("descriptor %u not ready", idx); 4825 VD_DUMP_DRING_ELEM(elem); 4826 } 4827 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 4828 vd->dring_handle, idx, idx)) != 0) { 4829 PR0("VIO_DRING_RELEASE() returned errno %d", status); 4830 return (status); 4831 } 4832 if (!ready) 4833 return (EBUSY); 4834 4835 4836 /* Initialize a task and process the accepted element */ 4837 PR1("Processing dring element %u", idx); 4838 vd->dring_task[idx].type = type; 4839 4840 /* duplicate msg buf for cookies etc. */ 4841 bcopy(msg, vd->dring_task[idx].msg, msglen); 4842 4843 vd->dring_task[idx].msglen = msglen; 4844 return (vd_process_task(&vd->dring_task[idx])); 4845 } 4846 4847 static int 4848 vd_process_element_range(vd_t *vd, int start, int end, 4849 vio_msg_t *msg, size_t msglen) 4850 { 4851 int i, n, nelem, status = 0; 4852 boolean_t inprogress = B_FALSE; 4853 vd_task_type_t type; 4854 4855 4856 ASSERT(start >= 0); 4857 ASSERT(end >= 0); 4858 4859 /* 4860 * Arrange to acknowledge the client's message, unless an error 4861 * processing one of the dring elements results in setting 4862 * VIO_SUBTYPE_NACK 4863 */ 4864 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4865 4866 /* 4867 * Process the dring elements in the range 4868 */ 4869 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 4870 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 4871 ((vio_dring_msg_t *)msg)->end_idx = i; 4872 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 4873 status = vd_process_element(vd, type, i, msg, msglen); 4874 if (status == EINPROGRESS) 4875 inprogress = B_TRUE; 4876 else if (status != 0) 4877 break; 4878 } 4879 4880 /* 4881 * If some, but not all, operations of a multi-element range are in 4882 * progress, wait for other operations to complete before returning 4883 * (which will result in "ack" or "nack" of the message). Note that 4884 * all outstanding operations will need to complete, not just the ones 4885 * corresponding to the current range of dring elements; howevever, as 4886 * this situation is an error case, performance is less critical. 4887 */ 4888 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) { 4889 if (vd->ioq != NULL) 4890 ddi_taskq_wait(vd->ioq); 4891 ddi_taskq_wait(vd->completionq); 4892 } 4893 4894 return (status); 4895 } 4896 4897 static int 4898 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4899 { 4900 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 4901 4902 4903 ASSERT(msglen >= sizeof (msg->tag)); 4904 4905 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4906 VIO_DRING_DATA)) { 4907 PR1("Message is not a dring-data message"); 4908 return (ENOMSG); 4909 } 4910 4911 if (msglen != sizeof (*dring_msg)) { 4912 PR0("Expected %lu-byte dring message; received %lu bytes", 4913 sizeof (*dring_msg), msglen); 4914 return (EBADMSG); 4915 } 4916 4917 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 4918 return (EBADMSG); 4919 4920 if (dring_msg->dring_ident != vd->dring_ident) { 4921 PR0("Expected dring ident %lu; received ident %lu", 4922 vd->dring_ident, dring_msg->dring_ident); 4923 return (EBADMSG); 4924 } 4925 4926 if (dring_msg->start_idx >= vd->dring_len) { 4927 PR0("\"start_idx\" = %u; must be less than %u", 4928 dring_msg->start_idx, vd->dring_len); 4929 return (EBADMSG); 4930 } 4931 4932 if ((dring_msg->end_idx < 0) || 4933 (dring_msg->end_idx >= vd->dring_len)) { 4934 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 4935 dring_msg->end_idx, vd->dring_len); 4936 return (EBADMSG); 4937 } 4938 4939 /* Valid message; process range of updated dring elements */ 4940 PR1("Processing descriptor range, start = %u, end = %u", 4941 dring_msg->start_idx, dring_msg->end_idx); 4942 return (vd_process_element_range(vd, dring_msg->start_idx, 4943 dring_msg->end_idx, msg, msglen)); 4944 } 4945 4946 static int 4947 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 4948 { 4949 int retry, status; 4950 size_t size = *nbytes; 4951 4952 4953 for (retry = 0, status = ETIMEDOUT; 4954 retry < vds_ldc_retries && status == ETIMEDOUT; 4955 retry++) { 4956 PR1("ldc_read() attempt %d", (retry + 1)); 4957 *nbytes = size; 4958 status = ldc_read(ldc_handle, msg, nbytes); 4959 } 4960 4961 if (status) { 4962 PR0("ldc_read() returned errno %d", status); 4963 if (status != ECONNRESET) 4964 return (ENOMSG); 4965 return (status); 4966 } else if (*nbytes == 0) { 4967 PR1("ldc_read() returned 0 and no message read"); 4968 return (ENOMSG); 4969 } 4970 4971 PR1("RCVD %lu-byte message", *nbytes); 4972 return (0); 4973 } 4974 4975 static int 4976 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4977 { 4978 int status; 4979 4980 4981 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 4982 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 4983 #ifdef DEBUG 4984 vd_decode_tag(msg); 4985 #endif 4986 4987 /* 4988 * Validate session ID up front, since it applies to all messages 4989 * once set 4990 */ 4991 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 4992 PR0("Expected SID %u, received %u", vd->sid, 4993 msg->tag.vio_sid); 4994 return (EBADMSG); 4995 } 4996 4997 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 4998 4999 /* 5000 * Process the received message based on connection state 5001 */ 5002 switch (vd->state) { 5003 case VD_STATE_INIT: /* expect version message */ 5004 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 5005 return (status); 5006 5007 /* Version negotiated, move to that state */ 5008 vd->state = VD_STATE_VER; 5009 return (0); 5010 5011 case VD_STATE_VER: /* expect attribute message */ 5012 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 5013 return (status); 5014 5015 /* Attributes exchanged, move to that state */ 5016 vd->state = VD_STATE_ATTR; 5017 return (0); 5018 5019 case VD_STATE_ATTR: 5020 switch (vd->xfer_mode) { 5021 case VIO_DESC_MODE: /* expect RDX message */ 5022 if ((status = process_rdx_msg(msg, msglen)) != 0) 5023 return (status); 5024 5025 /* Ready to receive in-band descriptors */ 5026 vd->state = VD_STATE_DATA; 5027 return (0); 5028 5029 case VIO_DRING_MODE_V1_0: /* expect register-dring message */ 5030 if ((status = 5031 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 5032 return (status); 5033 5034 /* One dring negotiated, move to that state */ 5035 vd->state = VD_STATE_DRING; 5036 return (0); 5037 5038 default: 5039 ASSERT("Unsupported transfer mode"); 5040 PR0("Unsupported transfer mode"); 5041 return (ENOTSUP); 5042 } 5043 5044 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 5045 if ((status = process_rdx_msg(msg, msglen)) == 0) { 5046 /* Ready to receive data */ 5047 vd->state = VD_STATE_DATA; 5048 return (0); 5049 } else if (status != ENOMSG) { 5050 return (status); 5051 } 5052 5053 5054 /* 5055 * If another register-dring message is received, stay in 5056 * dring state in case the client sends RDX; although the 5057 * protocol allows multiple drings, this server does not 5058 * support using more than one 5059 */ 5060 if ((status = 5061 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 5062 return (status); 5063 5064 /* 5065 * Acknowledge an unregister-dring message, but reset the 5066 * connection anyway: Although the protocol allows 5067 * unregistering drings, this server cannot serve a vdisk 5068 * without its only dring 5069 */ 5070 status = vd_process_dring_unreg_msg(vd, msg, msglen); 5071 return ((status == 0) ? ENOTSUP : status); 5072 5073 case VD_STATE_DATA: 5074 switch (vd->xfer_mode) { 5075 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 5076 return (vd_process_desc_msg(vd, msg, msglen)); 5077 5078 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */ 5079 /* 5080 * Typically expect dring-data messages, so handle 5081 * them first 5082 */ 5083 if ((status = vd_process_dring_msg(vd, msg, 5084 msglen)) != ENOMSG) 5085 return (status); 5086 5087 /* 5088 * Acknowledge an unregister-dring message, but reset 5089 * the connection anyway: Although the protocol 5090 * allows unregistering drings, this server cannot 5091 * serve a vdisk without its only dring 5092 */ 5093 status = vd_process_dring_unreg_msg(vd, msg, msglen); 5094 return ((status == 0) ? ENOTSUP : status); 5095 5096 default: 5097 ASSERT("Unsupported transfer mode"); 5098 PR0("Unsupported transfer mode"); 5099 return (ENOTSUP); 5100 } 5101 5102 default: 5103 ASSERT("Invalid client connection state"); 5104 PR0("Invalid client connection state"); 5105 return (ENOTSUP); 5106 } 5107 } 5108 5109 static int 5110 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 5111 { 5112 int status; 5113 boolean_t reset_ldc = B_FALSE; 5114 vd_task_t task; 5115 5116 /* 5117 * Check that the message is at least big enough for a "tag", so that 5118 * message processing can proceed based on tag-specified message type 5119 */ 5120 if (msglen < sizeof (vio_msg_tag_t)) { 5121 PR0("Received short (%lu-byte) message", msglen); 5122 /* Can't "nack" short message, so drop the big hammer */ 5123 PR0("initiating full reset"); 5124 vd_need_reset(vd, B_TRUE); 5125 return (EBADMSG); 5126 } 5127 5128 /* 5129 * Process the message 5130 */ 5131 switch (status = vd_do_process_msg(vd, msg, msglen)) { 5132 case 0: 5133 /* "ack" valid, successfully-processed messages */ 5134 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 5135 break; 5136 5137 case EINPROGRESS: 5138 /* The completion handler will "ack" or "nack" the message */ 5139 return (EINPROGRESS); 5140 case ENOMSG: 5141 PR0("Received unexpected message"); 5142 _NOTE(FALLTHROUGH); 5143 case EBADMSG: 5144 case ENOTSUP: 5145 /* "transport" error will cause NACK of invalid messages */ 5146 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 5147 break; 5148 5149 default: 5150 /* "transport" error will cause NACK of invalid messages */ 5151 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 5152 /* An LDC error probably occurred, so try resetting it */ 5153 reset_ldc = B_TRUE; 5154 break; 5155 } 5156 5157 PR1("\tResulting in state %d (%s)", vd->state, 5158 vd_decode_state(vd->state)); 5159 5160 /* populate the task so we can dispatch it on the taskq */ 5161 task.vd = vd; 5162 task.msg = msg; 5163 task.msglen = msglen; 5164 5165 /* 5166 * Queue a task to send the notification that the operation completed. 5167 * We need to ensure that requests are responded to in the correct 5168 * order and since the taskq is processed serially this ordering 5169 * is maintained. 5170 */ 5171 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, 5172 &task, DDI_SLEEP); 5173 5174 /* 5175 * To ensure handshake negotiations do not happen out of order, such 5176 * requests that come through this path should not be done in parallel 5177 * so we need to wait here until the response is sent to the client. 5178 */ 5179 ddi_taskq_wait(vd->completionq); 5180 5181 /* Arrange to reset the connection for nack'ed or failed messages */ 5182 if ((status != 0) || reset_ldc) { 5183 PR0("initiating %s reset", 5184 (reset_ldc) ? "full" : "soft"); 5185 vd_need_reset(vd, reset_ldc); 5186 } 5187 5188 return (status); 5189 } 5190 5191 static boolean_t 5192 vd_enabled(vd_t *vd) 5193 { 5194 boolean_t enabled; 5195 5196 mutex_enter(&vd->lock); 5197 enabled = vd->enabled; 5198 mutex_exit(&vd->lock); 5199 return (enabled); 5200 } 5201 5202 static void 5203 vd_recv_msg(void *arg) 5204 { 5205 vd_t *vd = (vd_t *)arg; 5206 int rv = 0, status = 0; 5207 5208 ASSERT(vd != NULL); 5209 5210 PR2("New task to receive incoming message(s)"); 5211 5212 5213 while (vd_enabled(vd) && status == 0) { 5214 size_t msglen, msgsize; 5215 ldc_status_t lstatus; 5216 5217 /* 5218 * Receive and process a message 5219 */ 5220 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 5221 5222 /* 5223 * check if channel is UP - else break out of loop 5224 */ 5225 status = ldc_status(vd->ldc_handle, &lstatus); 5226 if (lstatus != LDC_UP) { 5227 PR0("channel not up (status=%d), exiting recv loop\n", 5228 lstatus); 5229 break; 5230 } 5231 5232 ASSERT(vd->max_msglen != 0); 5233 5234 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 5235 msglen = msgsize; /* actual len after recv_msg() */ 5236 5237 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 5238 switch (status) { 5239 case 0: 5240 rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen); 5241 /* check if max_msglen changed */ 5242 if (msgsize != vd->max_msglen) { 5243 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 5244 msgsize, vd->max_msglen); 5245 kmem_free(vd->vio_msgp, msgsize); 5246 vd->vio_msgp = 5247 kmem_alloc(vd->max_msglen, KM_SLEEP); 5248 } 5249 if (rv == EINPROGRESS) 5250 continue; 5251 break; 5252 5253 case ENOMSG: 5254 break; 5255 5256 case ECONNRESET: 5257 PR0("initiating soft reset (ECONNRESET)\n"); 5258 vd_need_reset(vd, B_FALSE); 5259 status = 0; 5260 break; 5261 5262 default: 5263 /* Probably an LDC failure; arrange to reset it */ 5264 PR0("initiating full reset (status=0x%x)", status); 5265 vd_need_reset(vd, B_TRUE); 5266 break; 5267 } 5268 } 5269 5270 PR2("Task finished"); 5271 } 5272 5273 static uint_t 5274 vd_handle_ldc_events(uint64_t event, caddr_t arg) 5275 { 5276 vd_t *vd = (vd_t *)(void *)arg; 5277 int status; 5278 5279 ASSERT(vd != NULL); 5280 5281 if (!vd_enabled(vd)) 5282 return (LDC_SUCCESS); 5283 5284 if (event & LDC_EVT_DOWN) { 5285 PR0("LDC_EVT_DOWN: LDC channel went down"); 5286 5287 vd_need_reset(vd, B_TRUE); 5288 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 5289 DDI_SLEEP); 5290 if (status == DDI_FAILURE) { 5291 PR0("cannot schedule task to recv msg\n"); 5292 vd_need_reset(vd, B_TRUE); 5293 } 5294 } 5295 5296 if (event & LDC_EVT_RESET) { 5297 PR0("LDC_EVT_RESET: LDC channel was reset"); 5298 5299 if (vd->state != VD_STATE_INIT) { 5300 PR0("scheduling full reset"); 5301 vd_need_reset(vd, B_FALSE); 5302 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 5303 vd, DDI_SLEEP); 5304 if (status == DDI_FAILURE) { 5305 PR0("cannot schedule task to recv msg\n"); 5306 vd_need_reset(vd, B_TRUE); 5307 } 5308 5309 } else { 5310 PR0("channel already reset, ignoring...\n"); 5311 PR0("doing ldc up...\n"); 5312 (void) ldc_up(vd->ldc_handle); 5313 } 5314 5315 return (LDC_SUCCESS); 5316 } 5317 5318 if (event & LDC_EVT_UP) { 5319 PR0("EVT_UP: LDC is up\nResetting client connection state"); 5320 PR0("initiating soft reset"); 5321 vd_need_reset(vd, B_FALSE); 5322 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 5323 vd, DDI_SLEEP); 5324 if (status == DDI_FAILURE) { 5325 PR0("cannot schedule task to recv msg\n"); 5326 vd_need_reset(vd, B_TRUE); 5327 return (LDC_SUCCESS); 5328 } 5329 } 5330 5331 if (event & LDC_EVT_READ) { 5332 int status; 5333 5334 PR1("New data available"); 5335 /* Queue a task to receive the new data */ 5336 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 5337 DDI_SLEEP); 5338 5339 if (status == DDI_FAILURE) { 5340 PR0("cannot schedule task to recv msg\n"); 5341 vd_need_reset(vd, B_TRUE); 5342 } 5343 } 5344 5345 return (LDC_SUCCESS); 5346 } 5347 5348 static uint_t 5349 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5350 { 5351 _NOTE(ARGUNUSED(key, val)) 5352 (*((uint_t *)arg))++; 5353 return (MH_WALK_TERMINATE); 5354 } 5355 5356 5357 static int 5358 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 5359 { 5360 uint_t vd_present = 0; 5361 minor_t instance; 5362 vds_t *vds; 5363 5364 5365 switch (cmd) { 5366 case DDI_DETACH: 5367 /* the real work happens below */ 5368 break; 5369 case DDI_SUSPEND: 5370 PR0("No action required for DDI_SUSPEND"); 5371 return (DDI_SUCCESS); 5372 default: 5373 PR0("Unrecognized \"cmd\""); 5374 return (DDI_FAILURE); 5375 } 5376 5377 ASSERT(cmd == DDI_DETACH); 5378 instance = ddi_get_instance(dip); 5379 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 5380 PR0("Could not get state for instance %u", instance); 5381 ddi_soft_state_free(vds_state, instance); 5382 return (DDI_FAILURE); 5383 } 5384 5385 /* Do no detach when serving any vdisks */ 5386 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 5387 if (vd_present) { 5388 PR0("Not detaching because serving vdisks"); 5389 return (DDI_FAILURE); 5390 } 5391 5392 PR0("Detaching"); 5393 if (vds->initialized & VDS_MDEG) { 5394 (void) mdeg_unregister(vds->mdeg); 5395 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 5396 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 5397 vds->ispecp = NULL; 5398 vds->mdeg = NULL; 5399 } 5400 5401 vds_driver_types_free(vds); 5402 5403 if (vds->initialized & VDS_LDI) 5404 (void) ldi_ident_release(vds->ldi_ident); 5405 mod_hash_destroy_hash(vds->vd_table); 5406 ddi_soft_state_free(vds_state, instance); 5407 return (DDI_SUCCESS); 5408 } 5409 5410 /* 5411 * Description: 5412 * This function checks to see if the disk image being used as a 5413 * virtual disk is an ISO image. An ISO image is a special case 5414 * which can be booted/installed from like a CD/DVD. 5415 * 5416 * Parameters: 5417 * vd - disk on which the operation is performed. 5418 * 5419 * Return Code: 5420 * B_TRUE - The disk image is an ISO 9660 compliant image 5421 * B_FALSE - just a regular disk image 5422 */ 5423 static boolean_t 5424 vd_dskimg_is_iso_image(vd_t *vd) 5425 { 5426 char iso_buf[ISO_SECTOR_SIZE]; 5427 int i, rv; 5428 uint_t sec; 5429 5430 ASSERT(VD_DSKIMG(vd)); 5431 5432 /* 5433 * If we have already discovered and saved this info we can 5434 * short-circuit the check and avoid reading the disk image. 5435 */ 5436 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD) 5437 return (B_TRUE); 5438 5439 /* 5440 * We wish to read the sector that should contain the 2nd ISO volume 5441 * descriptor. The second field in this descriptor is called the 5442 * Standard Identifier and is set to CD001 for a CD-ROM compliant 5443 * to the ISO 9660 standard. 5444 */ 5445 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size; 5446 rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf, 5447 sec, ISO_SECTOR_SIZE); 5448 5449 if (rv < 0) 5450 return (B_FALSE); 5451 5452 for (i = 0; i < ISO_ID_STRLEN; i++) { 5453 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i]) 5454 return (B_FALSE); 5455 } 5456 5457 return (B_TRUE); 5458 } 5459 5460 /* 5461 * Description: 5462 * This function checks to see if the virtual device is an ATAPI 5463 * device. ATAPI devices use Group 1 Read/Write commands, so 5464 * any USCSI calls vds makes need to take this into account. 5465 * 5466 * Parameters: 5467 * vd - disk on which the operation is performed. 5468 * 5469 * Return Code: 5470 * B_TRUE - The virtual disk is backed by an ATAPI device 5471 * B_FALSE - not an ATAPI device (presumably SCSI) 5472 */ 5473 static boolean_t 5474 vd_is_atapi_device(vd_t *vd) 5475 { 5476 boolean_t is_atapi = B_FALSE; 5477 char *variantp; 5478 int rv; 5479 5480 ASSERT(vd->ldi_handle[0] != NULL); 5481 ASSERT(!vd->file); 5482 5483 rv = ldi_prop_lookup_string(vd->ldi_handle[0], 5484 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp); 5485 if (rv == DDI_PROP_SUCCESS) { 5486 PR0("'variant' property exists for %s", vd->device_path); 5487 if (strcmp(variantp, "atapi") == 0) 5488 is_atapi = B_TRUE; 5489 ddi_prop_free(variantp); 5490 } 5491 5492 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi"); 5493 if (rv) { 5494 PR0("'atapi' property exists for %s", vd->device_path); 5495 is_atapi = B_TRUE; 5496 } 5497 5498 return (is_atapi); 5499 } 5500 5501 static int 5502 vd_setup_full_disk(vd_t *vd) 5503 { 5504 int status; 5505 major_t major = getmajor(vd->dev[0]); 5506 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 5507 5508 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 5509 5510 vd->vdisk_block_size = DEV_BSIZE; 5511 5512 /* set the disk size, block size and the media type of the disk */ 5513 status = vd_backend_check_size(vd); 5514 5515 if (status != 0) { 5516 if (!vd->scsi) { 5517 /* unexpected failure */ 5518 PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 5519 status); 5520 return (status); 5521 } 5522 5523 /* 5524 * The function can fail for SCSI disks which are present but 5525 * reserved by another system. In that case, we don't know the 5526 * size of the disk and the block size. 5527 */ 5528 vd->vdisk_size = VD_SIZE_UNKNOWN; 5529 vd->block_size = 0; 5530 vd->vdisk_media = VD_MEDIA_FIXED; 5531 } 5532 5533 /* Move dev number and LDI handle to entire-disk-slice array elements */ 5534 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 5535 vd->dev[0] = 0; 5536 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 5537 vd->ldi_handle[0] = NULL; 5538 5539 /* Initialize device numbers for remaining slices and open them */ 5540 for (int slice = 0; slice < vd->nslices; slice++) { 5541 /* 5542 * Skip the entire-disk slice, as it's already open and its 5543 * device known 5544 */ 5545 if (slice == VD_ENTIRE_DISK_SLICE) 5546 continue; 5547 ASSERT(vd->dev[slice] == 0); 5548 ASSERT(vd->ldi_handle[slice] == NULL); 5549 5550 /* 5551 * Construct the device number for the current slice 5552 */ 5553 vd->dev[slice] = makedevice(major, (minor + slice)); 5554 5555 /* 5556 * Open all slices of the disk to serve them to the client. 5557 * Slices are opened exclusively to prevent other threads or 5558 * processes in the service domain from performing I/O to 5559 * slices being accessed by a client. Failure to open a slice 5560 * results in vds not serving this disk, as the client could 5561 * attempt (and should be able) to access any slice immediately. 5562 * Any slices successfully opened before a failure will get 5563 * closed by vds_destroy_vd() as a result of the error returned 5564 * by this function. 5565 * 5566 * We need to do the open with FNDELAY so that opening an empty 5567 * slice does not fail. 5568 */ 5569 PR0("Opening device major %u, minor %u = slice %u", 5570 major, minor, slice); 5571 5572 /* 5573 * Try to open the device. This can fail for example if we are 5574 * opening an empty slice. So in case of a failure, we try the 5575 * open again but this time with the FNDELAY flag. 5576 */ 5577 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5578 vd->open_flags, kcred, &vd->ldi_handle[slice], 5579 vd->vds->ldi_ident); 5580 5581 if (status != 0) { 5582 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5583 vd->open_flags | FNDELAY, kcred, 5584 &vd->ldi_handle[slice], vd->vds->ldi_ident); 5585 } 5586 5587 if (status != 0) { 5588 PRN("ldi_open_by_dev() returned errno %d " 5589 "for slice %u", status, slice); 5590 /* vds_destroy_vd() will close any open slices */ 5591 vd->ldi_handle[slice] = NULL; 5592 return (status); 5593 } 5594 } 5595 5596 return (0); 5597 } 5598 5599 /* 5600 * When a slice or a volume is exported as a single-slice disk, we want 5601 * the disk backend (i.e. the slice or volume) to be entirely mapped as 5602 * a slice without the addition of any metadata. 5603 * 5604 * So when exporting the disk as a VTOC disk, we fake a disk with the following 5605 * layout: 5606 * flabel +--- flabel_limit 5607 * <-> V 5608 * 0 1 C D E 5609 * +-+---+--------------------------+--+ 5610 * virtual disk: |L|XXX| slice 0 |AA| 5611 * +-+---+--------------------------+--+ 5612 * ^ : : 5613 * | : : 5614 * VTOC LABEL--+ : : 5615 * +--------------------------+ 5616 * disk backend: | slice/volume/file | 5617 * +--------------------------+ 5618 * 0 N 5619 * 5620 * N is the number of blocks in the slice/volume/file. 5621 * 5622 * We simulate a disk with N+M blocks, where M is the number of blocks 5623 * simluated at the beginning and at the end of the disk (blocks 0-C 5624 * and D-E). 5625 * 5626 * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C 5627 * to D defines slice 0 and are mapped to the backend. Finally we emulate 2 5628 * alternate cylinders at the end of the disk (blocks D-E). In summary we have: 5629 * 5630 * - block 0 (L) returns a fake VTOC label 5631 * - blocks 1 to C-1 (X) are unused and return 0 5632 * - blocks C to D-1 are mapped to the exported slice or volume 5633 * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders) 5634 * 5635 * Note: because we define a fake disk geometry, it is possible that the length 5636 * of the backend is not a multiple of the size of cylinder, in that case the 5637 * very end of the backend will not map to any block of the virtual disk. 5638 */ 5639 static int 5640 vd_setup_partition_vtoc(vd_t *vd) 5641 { 5642 char *device_path = vd->device_path; 5643 char unit; 5644 size_t size, csize; 5645 5646 /* Initialize dk_geom structure for single-slice device */ 5647 if (vd->dk_geom.dkg_nsect == 0) { 5648 PRN("%s geometry claims 0 sectors per track", device_path); 5649 return (EIO); 5650 } 5651 if (vd->dk_geom.dkg_nhead == 0) { 5652 PRN("%s geometry claims 0 heads", device_path); 5653 return (EIO); 5654 } 5655 5656 /* size of a cylinder in block */ 5657 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 5658 5659 /* 5660 * Add extra cylinders: we emulate the first cylinder (which contains 5661 * the disk label). 5662 */ 5663 vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1; 5664 5665 /* we emulate 2 alternate cylinders */ 5666 vd->dk_geom.dkg_acyl = 2; 5667 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 5668 5669 5670 /* Initialize vtoc structure for single-slice device */ 5671 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 5672 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 5673 vd->vtoc.v_part[0].p_flag = 0; 5674 /* 5675 * Partition 0 starts on cylinder 1 and its size has to be 5676 * a multiple of a number of cylinder. 5677 */ 5678 vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */ 5679 vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize; 5680 5681 if (vd_slice_single_slice) { 5682 vd->vtoc.v_nparts = 1; 5683 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 5684 MIN(sizeof (VD_ASCIILABEL), 5685 sizeof (vd->vtoc.v_asciilabel))); 5686 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 5687 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 5688 } else { 5689 /* adjust the number of slices */ 5690 vd->nslices = V_NUMPAR; 5691 vd->vtoc.v_nparts = V_NUMPAR; 5692 5693 /* define slice 2 representing the entire disk */ 5694 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 5695 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0; 5696 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0; 5697 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size = 5698 vd->dk_geom.dkg_ncyl * csize; 5699 5700 vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size, 5701 &size, &unit); 5702 5703 /* 5704 * Set some attributes of the geometry to what format(1m) uses 5705 * so that writing a default label using format(1m) does not 5706 * produce any error. 5707 */ 5708 vd->dk_geom.dkg_bcyl = 0; 5709 vd->dk_geom.dkg_intrlv = 1; 5710 vd->dk_geom.dkg_write_reinstruct = 0; 5711 vd->dk_geom.dkg_read_reinstruct = 0; 5712 5713 /* 5714 * We must have a correct label name otherwise format(1m) will 5715 * not recognized the disk as labeled. 5716 */ 5717 (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII, 5718 "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d", 5719 size, unit, 5720 vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl, 5721 vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect); 5722 bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume)); 5723 5724 /* create a fake label from the vtoc and geometry */ 5725 vd->flabel_limit = (uint_t)csize; 5726 vd->flabel_size = VD_LABEL_VTOC_SIZE; 5727 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5728 vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom, 5729 VD_LABEL_VTOC(vd)); 5730 } 5731 5732 /* adjust the vdisk_size, we emulate 3 cylinders */ 5733 vd->vdisk_size += csize * 3; 5734 5735 return (0); 5736 } 5737 5738 /* 5739 * When a slice, volume or file is exported as a single-slice disk, we want 5740 * the disk backend (i.e. the slice, volume or file) to be entirely mapped 5741 * as a slice without the addition of any metadata. 5742 * 5743 * So when exporting the disk as an EFI disk, we fake a disk with the following 5744 * layout: 5745 * 5746 * flabel +--- flabel_limit 5747 * <------> v 5748 * 0 1 2 L 34 34+N P 5749 * +-+-+--+-------+--------------------------+-------+ 5750 * virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR| 5751 * +-+-+--+-------+--------------------------+-------+ 5752 * ^ ^ : : 5753 * | | : : 5754 * GPT-+ +-GPE : : 5755 * +--------------------------+ 5756 * disk backend: | slice/volume/file | 5757 * +--------------------------+ 5758 * 0 N 5759 * 5760 * N is the number of blocks in the slice/volume/file. 5761 * 5762 * We simulate a disk with N+M blocks, where M is the number of blocks 5763 * simluated at the beginning and at the end of the disk (blocks 0-34 5764 * and 34+N-P). 5765 * 5766 * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34 5767 * to 34+N defines slice 0 and are mapped to the exported backend, and we 5768 * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI 5769 * reserved partition. 5770 * 5771 * - block 0 (X) is unused and return 0 5772 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI) 5773 * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI) 5774 * - blocks L to 33 (X) are unused and return 0 5775 * - blocks 34 to 34+N are mapped to the exported slice, volume or file 5776 * - blocks 34+N+1 to P define a fake reserved partition and backup label, it 5777 * returns 0 5778 * 5779 * Note: if the backend size is not a multiple of the vdisk block size 5780 * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to 5781 * any block of the virtual disk. 5782 */ 5783 static int 5784 vd_setup_partition_efi(vd_t *vd) 5785 { 5786 efi_gpt_t *gpt; 5787 efi_gpe_t *gpe; 5788 struct uuid uuid = EFI_USR; 5789 struct uuid efi_reserved = EFI_RESERVED; 5790 uint32_t crc; 5791 uint64_t s0_start, s0_end; 5792 5793 vd->flabel_limit = 34; 5794 vd->flabel_size = VD_LABEL_EFI_SIZE; 5795 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5796 gpt = VD_LABEL_EFI_GPT(vd); 5797 gpe = VD_LABEL_EFI_GPE(vd); 5798 5799 /* adjust the vdisk_size, we emulate the first 34 blocks */ 5800 vd->vdisk_size += 34; 5801 s0_start = 34; 5802 s0_end = vd->vdisk_size - 1; 5803 5804 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 5805 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 5806 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 5807 gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL); 5808 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 5809 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 5810 5811 UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid); 5812 gpe[0].efi_gpe_StartingLBA = LE_64(s0_start); 5813 gpe[0].efi_gpe_EndingLBA = LE_64(s0_end); 5814 5815 if (vd_slice_single_slice) { 5816 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 5817 } else { 5818 /* adjust the number of slices */ 5819 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART); 5820 vd->nslices = V_NUMPAR; 5821 5822 /* define a fake reserved partition */ 5823 UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID, 5824 efi_reserved); 5825 gpe[VD_MAXPART - 1].efi_gpe_StartingLBA = 5826 LE_64(s0_end + 1); 5827 gpe[VD_MAXPART - 1].efi_gpe_EndingLBA = 5828 LE_64(s0_end + EFI_MIN_RESV_SIZE); 5829 5830 /* adjust the vdisk_size to include the reserved slice */ 5831 vd->vdisk_size += EFI_MIN_RESV_SIZE; 5832 } 5833 5834 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 5835 5836 /* adjust the vdisk size for the backup GPT and GPE */ 5837 vd->vdisk_size += 33; 5838 5839 CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table); 5840 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 5841 5842 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 5843 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 5844 5845 return (0); 5846 } 5847 5848 /* 5849 * Setup for a virtual disk whose backend is a file (exported as a single slice 5850 * or as a full disk). In that case, the backend is accessed using the vnode 5851 * interface. 5852 */ 5853 static int 5854 vd_setup_backend_vnode(vd_t *vd) 5855 { 5856 int rval, status; 5857 vattr_t vattr; 5858 dev_t dev; 5859 char *file_path = vd->device_path; 5860 ldi_handle_t lhandle; 5861 struct dk_cinfo dk_cinfo; 5862 5863 ASSERT(!vd->volume); 5864 5865 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX, 5866 0, &vd->file_vnode, 0, 0)) != 0) { 5867 PRN("vn_open(%s) = errno %d", file_path, status); 5868 return (status); 5869 } 5870 5871 /* 5872 * We set vd->file now so that vds_destroy_vd will take care of 5873 * closing the file and releasing the vnode in case of an error. 5874 */ 5875 vd->file = B_TRUE; 5876 5877 vattr.va_mask = AT_SIZE; 5878 if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL)) 5879 != 0) { 5880 PRN("VOP_GETATTR(%s) = errno %d", file_path, status); 5881 return (EIO); 5882 } 5883 5884 vd->dskimg_size = vattr.va_size; 5885 5886 if (vd->file_vnode->v_flag & VNOMAP) { 5887 PRN("File %s cannot be mapped", file_path); 5888 return (EIO); 5889 } 5890 5891 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ 5892 5893 /* 5894 * Get max_xfer_sz from the device where the file is. 5895 */ 5896 dev = vd->file_vnode->v_vfsp->vfs_dev; 5897 PR0("underlying device of %s = (%d, %d)\n", file_path, 5898 getmajor(dev), getminor(dev)); 5899 5900 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, 5901 vd->vds->ldi_ident); 5902 5903 if (status != 0) { 5904 PR0("ldi_open() returned errno %d for underlying device", 5905 status); 5906 } else { 5907 if ((status = ldi_ioctl(lhandle, DKIOCINFO, 5908 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5909 &rval)) != 0) { 5910 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for " 5911 "underlying device", status); 5912 } else { 5913 /* 5914 * Store the device's max transfer size for 5915 * return to the client 5916 */ 5917 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5918 } 5919 5920 PR0("close the underlying device"); 5921 (void) ldi_close(lhandle, FREAD, kcred); 5922 } 5923 5924 PR0("using file %s on device (%d, %d), max_xfer = %u blks", 5925 file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz); 5926 5927 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) 5928 status = vd_setup_slice_image(vd); 5929 else 5930 status = vd_setup_disk_image(vd); 5931 5932 return (status); 5933 } 5934 5935 static int 5936 vd_setup_slice_image(vd_t *vd) 5937 { 5938 struct dk_label label; 5939 int status; 5940 5941 /* sector size = block size = DEV_BSIZE */ 5942 vd->block_size = DEV_BSIZE; 5943 vd->vdisk_block_size = DEV_BSIZE; 5944 vd->vdisk_size = vd->dskimg_size / DEV_BSIZE; 5945 vd->vdisk_media = VD_MEDIA_FIXED; 5946 vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)? 5947 vd_file_slice_label : vd_slice_label; 5948 5949 if (vd->vdisk_label == VD_DISK_LABEL_EFI || 5950 vd->dskimg_size >= 2 * ONE_TERABYTE) { 5951 status = vd_setup_partition_efi(vd); 5952 } else { 5953 /* 5954 * We build a default label to get a geometry for 5955 * the vdisk. Then the partition setup function will 5956 * adjust the vtoc so that it defines a single-slice 5957 * disk. 5958 */ 5959 vd_build_default_label(vd->dskimg_size, &label); 5960 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5961 status = vd_setup_partition_vtoc(vd); 5962 } 5963 5964 return (status); 5965 } 5966 5967 static int 5968 vd_setup_disk_image(vd_t *vd) 5969 { 5970 int status; 5971 char *backend_path = vd->device_path; 5972 5973 /* size should be at least sizeof(dk_label) */ 5974 if (vd->dskimg_size < sizeof (struct dk_label)) { 5975 PRN("Size of file has to be at least %ld bytes", 5976 sizeof (struct dk_label)); 5977 return (EIO); 5978 } 5979 5980 /* sector size = block size = DEV_BSIZE */ 5981 vd->block_size = DEV_BSIZE; 5982 vd->vdisk_block_size = DEV_BSIZE; 5983 vd->vdisk_size = vd->dskimg_size / DEV_BSIZE; 5984 5985 /* 5986 * Find and validate the geometry of a disk image. 5987 */ 5988 status = vd_dskimg_validate_geometry(vd); 5989 if (status != 0 && status != EINVAL && status != ENOTSUP) { 5990 PRN("Failed to read label from %s", backend_path); 5991 return (EIO); 5992 } 5993 5994 if (vd_dskimg_is_iso_image(vd)) { 5995 /* 5996 * Indicate whether to call this a CD or DVD from the size 5997 * of the ISO image (images for both drive types are stored 5998 * in the ISO-9600 format). CDs can store up to just under 1Gb 5999 */ 6000 if ((vd->vdisk_size * vd->vdisk_block_size) > ONE_GIGABYTE) 6001 vd->vdisk_media = VD_MEDIA_DVD; 6002 else 6003 vd->vdisk_media = VD_MEDIA_CD; 6004 } else { 6005 vd->vdisk_media = VD_MEDIA_FIXED; 6006 } 6007 6008 /* Setup devid for the disk image */ 6009 6010 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 6011 6012 status = vd_dskimg_read_devid(vd, &vd->dskimg_devid); 6013 6014 if (status == 0) { 6015 /* a valid devid was found */ 6016 return (0); 6017 } 6018 6019 if (status != EINVAL) { 6020 /* 6021 * There was an error while trying to read the devid. 6022 * So this disk image may have a devid but we are 6023 * unable to read it. 6024 */ 6025 PR0("can not read devid for %s", backend_path); 6026 vd->dskimg_devid = NULL; 6027 return (0); 6028 } 6029 } 6030 6031 /* 6032 * No valid device id was found so we create one. Note that a failure 6033 * to create a device id is not fatal and does not prevent the disk 6034 * image from being attached. 6035 */ 6036 PR1("creating devid for %s", backend_path); 6037 6038 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, 6039 &vd->dskimg_devid) != DDI_SUCCESS) { 6040 PR0("fail to create devid for %s", backend_path); 6041 vd->dskimg_devid = NULL; 6042 return (0); 6043 } 6044 6045 /* 6046 * Write devid to the disk image. The devid is stored into the disk 6047 * image if we have a valid label; otherwise the devid will be stored 6048 * when the user writes a valid label. 6049 */ 6050 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 6051 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) { 6052 PR0("fail to write devid for %s", backend_path); 6053 ddi_devid_free(vd->dskimg_devid); 6054 vd->dskimg_devid = NULL; 6055 } 6056 } 6057 6058 return (0); 6059 } 6060 6061 6062 /* 6063 * Description: 6064 * Open a device using its device path (supplied by ldm(1m)) 6065 * 6066 * Parameters: 6067 * vd - pointer to structure containing the vDisk info 6068 * flags - open flags 6069 * 6070 * Return Value 6071 * 0 - success 6072 * != 0 - some other non-zero return value from ldi(9F) functions 6073 */ 6074 static int 6075 vd_open_using_ldi_by_name(vd_t *vd, int flags) 6076 { 6077 int status; 6078 char *device_path = vd->device_path; 6079 6080 /* Attempt to open device */ 6081 status = ldi_open_by_name(device_path, flags, kcred, 6082 &vd->ldi_handle[0], vd->vds->ldi_ident); 6083 6084 /* 6085 * The open can fail for example if we are opening an empty slice. 6086 * In case of a failure, we try the open again but this time with 6087 * the FNDELAY flag. 6088 */ 6089 if (status != 0) 6090 status = ldi_open_by_name(device_path, flags | FNDELAY, 6091 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident); 6092 6093 if (status != 0) { 6094 PR0("ldi_open_by_name(%s) = errno %d", device_path, status); 6095 vd->ldi_handle[0] = NULL; 6096 return (status); 6097 } 6098 6099 return (0); 6100 } 6101 6102 /* 6103 * Setup for a virtual disk which backend is a device (a physical disk, 6104 * slice or volume device) exported as a full disk or as a slice. In these 6105 * cases, the backend is accessed using the LDI interface. 6106 */ 6107 static int 6108 vd_setup_backend_ldi(vd_t *vd) 6109 { 6110 int rval, status; 6111 struct dk_cinfo dk_cinfo; 6112 char *device_path = vd->device_path; 6113 6114 /* device has been opened by vd_identify_dev() */ 6115 ASSERT(vd->ldi_handle[0] != NULL); 6116 ASSERT(vd->dev[0] != NULL); 6117 6118 vd->file = B_FALSE; 6119 6120 /* Verify backing device supports dk_cinfo */ 6121 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 6122 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 6123 &rval)) != 0) { 6124 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 6125 status, device_path); 6126 return (status); 6127 } 6128 if (dk_cinfo.dki_partition >= V_NUMPAR) { 6129 PRN("slice %u >= maximum slice %u for %s", 6130 dk_cinfo.dki_partition, V_NUMPAR, device_path); 6131 return (EIO); 6132 } 6133 6134 /* 6135 * The device has been opened read-only by vd_identify_dev(), re-open 6136 * it read-write if the write flag is set and we don't have an optical 6137 * device such as a CD-ROM, which, for now, we do not permit writes to 6138 * and thus should not export write operations to the client. 6139 * 6140 * Future: if/when we implement support for guest domains writing to 6141 * optical devices we will need to do further checking of the media type 6142 * to distinguish between read-only and writable discs. 6143 */ 6144 if (dk_cinfo.dki_ctype == DKC_CDROM) { 6145 6146 vd->open_flags &= ~FWRITE; 6147 6148 } else if (vd->open_flags & FWRITE) { 6149 6150 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE, 6151 kcred); 6152 status = vd_open_using_ldi_by_name(vd, vd->open_flags); 6153 if (status != 0) { 6154 PR0("Failed to open (%s) = errno %d", 6155 device_path, status); 6156 return (status); 6157 } 6158 } 6159 6160 /* Store the device's max transfer size for return to the client */ 6161 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 6162 6163 /* 6164 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so 6165 * that we can use the correct CDB group when sending USCSI commands. 6166 */ 6167 vd->is_atapi_dev = vd_is_atapi_device(vd); 6168 6169 /* 6170 * Export a full disk. 6171 * 6172 * The exported device can be either a volume, a disk or a CD/DVD 6173 * device. We export a device as a full disk if we have an entire 6174 * disk slice (slice 2) and if this slice is exported as a full disk 6175 * and not as a single slice disk. A CD or DVD device is exported 6176 * as a full disk (even if it isn't s2). A volume is exported as a 6177 * full disk as long as the "slice" option is not specified. 6178 */ 6179 if (vd->vdisk_type == VD_DISK_TYPE_DISK) { 6180 6181 if (vd->volume) { 6182 /* get size of backing device */ 6183 if (ldi_get_size(vd->ldi_handle[0], &vd->dskimg_size) != 6184 DDI_SUCCESS) { 6185 PRN("ldi_get_size() failed for %s", 6186 device_path); 6187 return (EIO); 6188 } 6189 6190 /* setup disk image */ 6191 return (vd_setup_disk_image(vd)); 6192 } 6193 6194 if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE || 6195 dk_cinfo.dki_ctype == DKC_CDROM) { 6196 ASSERT(!vd->volume); 6197 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS) 6198 vd->scsi = B_TRUE; 6199 return (vd_setup_full_disk(vd)); 6200 } 6201 } 6202 6203 /* 6204 * Export a single slice disk. 6205 * 6206 * The exported device can be either a volume device or a disk slice. If 6207 * it is a disk slice different from slice 2 then it is always exported 6208 * as a single slice disk even if the "slice" option is not specified. 6209 * If it is disk slice 2 or a volume device then it is exported as a 6210 * single slice disk only if the "slice" option is specified. 6211 */ 6212 return (vd_setup_single_slice_disk(vd)); 6213 } 6214 6215 static int 6216 vd_setup_single_slice_disk(vd_t *vd) 6217 { 6218 int status, rval; 6219 struct dk_label label; 6220 char *device_path = vd->device_path; 6221 struct vtoc vtoc; 6222 6223 /* Get size of backing device */ 6224 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 6225 PRN("ldi_get_size() failed for %s", device_path); 6226 return (EIO); 6227 } 6228 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 6229 vd->block_size = DEV_BSIZE; 6230 vd->vdisk_block_size = DEV_BSIZE; 6231 vd->vdisk_media = VD_MEDIA_FIXED; 6232 6233 if (vd->volume) { 6234 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 6235 } 6236 6237 /* 6238 * We export the slice as a single slice disk even if the "slice" 6239 * option was not specified. 6240 */ 6241 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6242 vd->nslices = 1; 6243 6244 /* 6245 * When exporting a slice or a device as a single slice disk, we don't 6246 * care about any partitioning exposed by the backend. The goal is just 6247 * to export the backend as a flat storage. We provide a fake partition 6248 * table (either a VTOC or EFI), which presents only one slice, to 6249 * accommodate tools expecting a disk label. The selection of the label 6250 * type (VTOC or EFI) depends on the value of the vd_slice_label 6251 * variable. 6252 */ 6253 if (vd_slice_label == VD_DISK_LABEL_EFI || 6254 vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) { 6255 vd->vdisk_label = VD_DISK_LABEL_EFI; 6256 } else { 6257 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC, 6258 (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL), 6259 kcred, &rval); 6260 6261 if (status == ENOTTY) { 6262 /* try with the non-extended vtoc ioctl */ 6263 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, 6264 (intptr_t)&vtoc, (vd->open_flags | FKIOCTL), 6265 kcred, &rval); 6266 vtoctoextvtoc(vtoc, vd->vtoc); 6267 } 6268 6269 if (status == 0) { 6270 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 6271 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), 6272 kcred, &rval); 6273 6274 if (status != 0) { 6275 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d " 6276 "for %s", status, device_path); 6277 return (status); 6278 } 6279 vd->vdisk_label = VD_DISK_LABEL_VTOC; 6280 6281 } else if (vd_slice_label == VD_DISK_LABEL_VTOC) { 6282 6283 vd->vdisk_label = VD_DISK_LABEL_VTOC; 6284 vd_build_default_label(vd->vdisk_size * DEV_BSIZE, 6285 &label); 6286 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 6287 6288 } else { 6289 vd->vdisk_label = VD_DISK_LABEL_EFI; 6290 } 6291 } 6292 6293 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 6294 /* export with a fake VTOC label */ 6295 status = vd_setup_partition_vtoc(vd); 6296 6297 } else { 6298 /* export with a fake EFI label */ 6299 status = vd_setup_partition_efi(vd); 6300 } 6301 6302 return (status); 6303 } 6304 6305 static int 6306 vd_backend_check_size(vd_t *vd) 6307 { 6308 size_t backend_size, old_size, new_size; 6309 struct dk_minfo minfo; 6310 vattr_t vattr; 6311 int rval, rv; 6312 6313 if (vd->file) { 6314 6315 /* file (slice or full disk) */ 6316 vattr.va_mask = AT_SIZE; 6317 rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL); 6318 if (rv != 0) { 6319 PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv); 6320 return (rv); 6321 } 6322 backend_size = vattr.va_size; 6323 6324 } else if (vd->volume || vd->vdisk_type == VD_DISK_TYPE_SLICE) { 6325 6326 /* physical slice or volume (slice or full disk) */ 6327 rv = ldi_get_size(vd->ldi_handle[0], &backend_size); 6328 if (rv != DDI_SUCCESS) { 6329 PR0("ldi_get_size() failed for %s", vd->device_path); 6330 return (EIO); 6331 } 6332 6333 } else { 6334 6335 /* physical disk */ 6336 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 6337 rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 6338 (intptr_t)&minfo, (vd->open_flags | FKIOCTL), 6339 kcred, &rval); 6340 if (rv != 0) { 6341 PR0("DKIOCGMEDIAINFO failed for %s (err=%d)", 6342 vd->device_path, rv); 6343 return (rv); 6344 } 6345 backend_size = minfo.dki_capacity * minfo.dki_lbsize; 6346 } 6347 6348 old_size = vd->vdisk_size; 6349 new_size = backend_size / DEV_BSIZE; 6350 6351 /* check if size has changed */ 6352 if (old_size != VD_SIZE_UNKNOWN && old_size == new_size) 6353 return (0); 6354 6355 vd->vdisk_size = new_size; 6356 6357 if (vd->file || vd->volume) 6358 vd->dskimg_size = backend_size; 6359 6360 /* 6361 * If we are exporting a single-slice disk and the size of the backend 6362 * has changed then we regenerate the partition setup so that the 6363 * partitioning matches with the new disk backend size. 6364 */ 6365 6366 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 6367 /* slice or file or device exported as a slice */ 6368 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 6369 rv = vd_setup_partition_vtoc(vd); 6370 if (rv != 0) { 6371 PR0("vd_setup_partition_vtoc() failed for %s " 6372 "(err = %d)", vd->device_path, rv); 6373 return (rv); 6374 } 6375 } else { 6376 rv = vd_setup_partition_efi(vd); 6377 if (rv != 0) { 6378 PR0("vd_setup_partition_efi() failed for %s " 6379 "(err = %d)", vd->device_path, rv); 6380 return (rv); 6381 } 6382 } 6383 6384 } else if (!vd->file && !vd->volume) { 6385 /* physical disk */ 6386 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 6387 vd->block_size = minfo.dki_lbsize; 6388 vd->vdisk_media = 6389 DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type); 6390 } 6391 6392 return (0); 6393 } 6394 6395 /* 6396 * Description: 6397 * Open a device using its device path and identify if this is 6398 * a disk device or a volume device. 6399 * 6400 * Parameters: 6401 * vd - pointer to structure containing the vDisk info 6402 * dtype - return the driver type of the device 6403 * 6404 * Return Value 6405 * 0 - success 6406 * != 0 - some other non-zero return value from ldi(9F) functions 6407 */ 6408 static int 6409 vd_identify_dev(vd_t *vd, int *dtype) 6410 { 6411 int status, i; 6412 char *device_path = vd->device_path; 6413 char *drv_name; 6414 int drv_type; 6415 vds_t *vds = vd->vds; 6416 6417 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE); 6418 if (status != 0) { 6419 PR0("Failed to open (%s) = errno %d", device_path, status); 6420 return (status); 6421 } 6422 6423 /* Get device number of backing device */ 6424 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 6425 PRN("ldi_get_dev() returned errno %d for %s", 6426 status, device_path); 6427 return (status); 6428 } 6429 6430 /* 6431 * We start by looking if the driver is in the list from vds.conf 6432 * so that we can override the built-in list using vds.conf. 6433 */ 6434 drv_name = ddi_major_to_name(getmajor(vd->dev[0])); 6435 drv_type = VD_DRIVER_UNKNOWN; 6436 6437 /* check vds.conf list */ 6438 for (i = 0; i < vds->num_drivers; i++) { 6439 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) { 6440 /* ignore invalid entries */ 6441 continue; 6442 } 6443 if (strcmp(drv_name, vds->driver_types[i].name) == 0) { 6444 drv_type = vds->driver_types[i].type; 6445 goto done; 6446 } 6447 } 6448 6449 /* check built-in list */ 6450 for (i = 0; i < VDS_NUM_DRIVERS; i++) { 6451 if (strcmp(drv_name, vds_driver_types[i].name) == 0) { 6452 drv_type = vds_driver_types[i].type; 6453 goto done; 6454 } 6455 } 6456 6457 done: 6458 PR0("driver %s identified as %s", drv_name, 6459 (drv_type == VD_DRIVER_DISK)? "DISK" : 6460 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN"); 6461 6462 if (strcmp(drv_name, "zfs") == 0) 6463 vd->zvol = B_TRUE; 6464 6465 *dtype = drv_type; 6466 6467 return (0); 6468 } 6469 6470 static int 6471 vd_setup_vd(vd_t *vd) 6472 { 6473 int status, drv_type, pseudo; 6474 dev_info_t *dip; 6475 vnode_t *vnp; 6476 char *path = vd->device_path; 6477 char tq_name[TASKQ_NAMELEN]; 6478 6479 /* make sure the vdisk backend is valid */ 6480 if ((status = lookupname(path, UIO_SYSSPACE, 6481 FOLLOW, NULLVPP, &vnp)) != 0) { 6482 PR0("Cannot lookup %s errno %d", path, status); 6483 goto done; 6484 } 6485 6486 switch (vnp->v_type) { 6487 case VREG: 6488 /* 6489 * Backend is a file so it is exported as a full disk or as a 6490 * single slice disk using the vnode interface. 6491 */ 6492 VN_RELE(vnp); 6493 vd->volume = B_FALSE; 6494 status = vd_setup_backend_vnode(vd); 6495 break; 6496 6497 case VBLK: 6498 case VCHR: 6499 /* 6500 * Backend is a device. In that case, it is exported using the 6501 * LDI interface, and it is exported either as a single-slice 6502 * disk or as a full disk depending on the "slice" option and 6503 * on the type of device. 6504 * 6505 * - A volume device is exported as a single-slice disk if the 6506 * "slice" is specified, otherwise it is exported as a full 6507 * disk. 6508 * 6509 * - A disk slice (different from slice 2) is always exported 6510 * as a single slice disk using the LDI interface. 6511 * 6512 * - The slice 2 of a disk is exported as a single slice disk 6513 * if the "slice" option is specified, otherwise the entire 6514 * disk will be exported. 6515 * 6516 * - The slice of a CD or DVD is exported as single slice disk 6517 * if the "slice" option is specified, otherwise the entire 6518 * disk will be exported. 6519 */ 6520 6521 /* check if this is a pseudo device */ 6522 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev), 6523 dev_to_instance(vnp->v_rdev), 0)) == NULL) { 6524 PRN("%s is no longer accessible", path); 6525 VN_RELE(vnp); 6526 status = EIO; 6527 break; 6528 } 6529 pseudo = is_pseudo_device(dip); 6530 ddi_release_devi(dip); 6531 VN_RELE(vnp); 6532 6533 if ((status = vd_identify_dev(vd, &drv_type)) != 0) { 6534 if (status != ENODEV && status != ENXIO && 6535 status != ENOENT && status != EROFS) { 6536 PRN("%s identification failed with status %d", 6537 path, status); 6538 status = EIO; 6539 } 6540 break; 6541 } 6542 6543 /* 6544 * If the driver hasn't been identified then we consider that 6545 * pseudo devices are volumes and other devices are disks. 6546 */ 6547 if (drv_type == VD_DRIVER_VOLUME || 6548 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) { 6549 vd->volume = B_TRUE; 6550 } 6551 6552 /* 6553 * If this is a volume device then its usage depends if the 6554 * "slice" option is set or not. If the "slice" option is set 6555 * then the volume device will be exported as a single slice, 6556 * otherwise it will be exported as a full disk. 6557 * 6558 * For backward compatibility, if vd_volume_force_slice is set 6559 * then we always export volume devices as slices. 6560 */ 6561 if (vd->volume && vd_volume_force_slice) { 6562 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6563 vd->nslices = 1; 6564 } 6565 6566 status = vd_setup_backend_ldi(vd); 6567 break; 6568 6569 default: 6570 PRN("Unsupported vdisk backend %s", path); 6571 VN_RELE(vnp); 6572 status = EBADF; 6573 } 6574 6575 done: 6576 if (status != 0) { 6577 /* 6578 * If the error is retryable print an error message only 6579 * during the first try. 6580 */ 6581 if (status == ENXIO || status == ENODEV || 6582 status == ENOENT || status == EROFS) { 6583 if (!(vd->initialized & VD_SETUP_ERROR)) { 6584 PRN("%s is currently inaccessible (error %d)", 6585 path, status); 6586 } 6587 status = EAGAIN; 6588 } else { 6589 PRN("%s can not be exported as a virtual disk " 6590 "(error %d)", path, status); 6591 } 6592 vd->initialized |= VD_SETUP_ERROR; 6593 6594 } else if (vd->initialized & VD_SETUP_ERROR) { 6595 /* print a message only if we previously had an error */ 6596 PRN("%s is now online", path); 6597 vd->initialized &= ~VD_SETUP_ERROR; 6598 } 6599 6600 /* 6601 * For file or ZFS volume we also need an I/O queue. 6602 * 6603 * The I/O task queue is initialized here and not in vds_do_init_vd() 6604 * (as the start and completion queues) because vd_setup_vd() will be 6605 * call again if the backend is not available, and we need to know if 6606 * the backend is a ZFS volume or a file. 6607 */ 6608 if ((vd->file || vd->zvol) && vd->ioq == NULL) { 6609 (void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id); 6610 6611 if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name, 6612 vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) { 6613 PRN("Could not create io task queue"); 6614 return (EIO); 6615 } 6616 } 6617 6618 return (status); 6619 } 6620 6621 static int 6622 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6623 uint64_t ldc_id, vd_t **vdp) 6624 { 6625 char tq_name[TASKQ_NAMELEN]; 6626 int status; 6627 ddi_iblock_cookie_t iblock = NULL; 6628 ldc_attr_t ldc_attr; 6629 vd_t *vd; 6630 6631 6632 ASSERT(vds != NULL); 6633 ASSERT(device_path != NULL); 6634 ASSERT(vdp != NULL); 6635 PR0("Adding vdisk for %s", device_path); 6636 6637 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 6638 PRN("No memory for virtual disk"); 6639 return (EAGAIN); 6640 } 6641 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 6642 vd->id = id; 6643 vd->vds = vds; 6644 (void) strncpy(vd->device_path, device_path, MAXPATHLEN); 6645 6646 /* Setup open flags */ 6647 vd->open_flags = FREAD; 6648 6649 if (!(options & VD_OPT_RDONLY)) 6650 vd->open_flags |= FWRITE; 6651 6652 if (options & VD_OPT_EXCLUSIVE) 6653 vd->open_flags |= FEXCL; 6654 6655 /* Setup disk type */ 6656 if (options & VD_OPT_SLICE) { 6657 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6658 vd->nslices = 1; 6659 } else { 6660 vd->vdisk_type = VD_DISK_TYPE_DISK; 6661 vd->nslices = V_NUMPAR; 6662 } 6663 6664 /* default disk label */ 6665 vd->vdisk_label = VD_DISK_LABEL_UNK; 6666 6667 /* Open vdisk and initialize parameters */ 6668 if ((status = vd_setup_vd(vd)) == 0) { 6669 vd->initialized |= VD_DISK_READY; 6670 6671 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 6672 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 6673 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 6674 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"), 6675 vd->nslices); 6676 } else { 6677 if (status != EAGAIN) 6678 return (status); 6679 } 6680 6681 /* Initialize locking */ 6682 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 6683 &iblock) != DDI_SUCCESS) { 6684 PRN("Could not get iblock cookie."); 6685 return (EIO); 6686 } 6687 6688 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 6689 vd->initialized |= VD_LOCKING; 6690 6691 6692 /* Create start and completion task queues for the vdisk */ 6693 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 6694 PR1("tq_name = %s", tq_name); 6695 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 6696 TASKQ_DEFAULTPRI, 0)) == NULL) { 6697 PRN("Could not create task queue"); 6698 return (EIO); 6699 } 6700 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 6701 PR1("tq_name = %s", tq_name); 6702 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 6703 TASKQ_DEFAULTPRI, 0)) == NULL) { 6704 PRN("Could not create task queue"); 6705 return (EIO); 6706 } 6707 6708 /* Allocate the staging buffer */ 6709 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 6710 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 6711 6712 vd->enabled = 1; /* before callback can dispatch to startq */ 6713 6714 6715 /* Bring up LDC */ 6716 ldc_attr.devclass = LDC_DEV_BLK_SVC; 6717 ldc_attr.instance = ddi_get_instance(vds->dip); 6718 ldc_attr.mode = LDC_MODE_UNRELIABLE; 6719 ldc_attr.mtu = VD_LDC_MTU; 6720 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 6721 PRN("Could not initialize LDC channel %lx, " 6722 "init failed with error %d", ldc_id, status); 6723 return (status); 6724 } 6725 vd->initialized |= VD_LDC; 6726 6727 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 6728 (caddr_t)vd)) != 0) { 6729 PRN("Could not initialize LDC channel %lu," 6730 "reg_callback failed with error %d", ldc_id, status); 6731 return (status); 6732 } 6733 6734 if ((status = ldc_open(vd->ldc_handle)) != 0) { 6735 PRN("Could not initialize LDC channel %lu," 6736 "open failed with error %d", ldc_id, status); 6737 return (status); 6738 } 6739 6740 if ((status = ldc_up(vd->ldc_handle)) != 0) { 6741 PR0("ldc_up() returned errno %d", status); 6742 } 6743 6744 /* Allocate the inband task memory handle */ 6745 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 6746 if (status) { 6747 PRN("Could not initialize LDC channel %lu," 6748 "alloc_handle failed with error %d", ldc_id, status); 6749 return (ENXIO); 6750 } 6751 6752 /* Add the successfully-initialized vdisk to the server's table */ 6753 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 6754 PRN("Error adding vdisk ID %lu to table", id); 6755 return (EIO); 6756 } 6757 6758 /* store initial state */ 6759 vd->state = VD_STATE_INIT; 6760 6761 return (0); 6762 } 6763 6764 static void 6765 vd_free_dring_task(vd_t *vdp) 6766 { 6767 if (vdp->dring_task != NULL) { 6768 ASSERT(vdp->dring_len != 0); 6769 /* Free all dring_task memory handles */ 6770 for (int i = 0; i < vdp->dring_len; i++) { 6771 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 6772 kmem_free(vdp->dring_task[i].request, 6773 (vdp->descriptor_size - 6774 sizeof (vio_dring_entry_hdr_t))); 6775 vdp->dring_task[i].request = NULL; 6776 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 6777 vdp->dring_task[i].msg = NULL; 6778 } 6779 kmem_free(vdp->dring_task, 6780 (sizeof (*vdp->dring_task)) * vdp->dring_len); 6781 vdp->dring_task = NULL; 6782 } 6783 6784 if (vdp->write_queue != NULL) { 6785 kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len); 6786 vdp->write_queue = NULL; 6787 } 6788 } 6789 6790 /* 6791 * Destroy the state associated with a virtual disk 6792 */ 6793 static void 6794 vds_destroy_vd(void *arg) 6795 { 6796 vd_t *vd = (vd_t *)arg; 6797 int retry = 0, rv; 6798 6799 if (vd == NULL) 6800 return; 6801 6802 PR0("Destroying vdisk state"); 6803 6804 /* Disable queuing requests for the vdisk */ 6805 if (vd->initialized & VD_LOCKING) { 6806 mutex_enter(&vd->lock); 6807 vd->enabled = 0; 6808 mutex_exit(&vd->lock); 6809 } 6810 6811 /* Drain and destroy start queue (*before* destroying ioq) */ 6812 if (vd->startq != NULL) 6813 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 6814 6815 /* Drain and destroy the I/O queue (*before* destroying completionq) */ 6816 if (vd->ioq != NULL) 6817 ddi_taskq_destroy(vd->ioq); 6818 6819 /* Drain and destroy completion queue (*before* shutting down LDC) */ 6820 if (vd->completionq != NULL) 6821 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 6822 6823 vd_free_dring_task(vd); 6824 6825 /* Free the inband task memory handle */ 6826 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 6827 6828 /* Shut down LDC */ 6829 if (vd->initialized & VD_LDC) { 6830 /* unmap the dring */ 6831 if (vd->initialized & VD_DRING) 6832 (void) ldc_mem_dring_unmap(vd->dring_handle); 6833 6834 /* close LDC channel - retry on EAGAIN */ 6835 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 6836 if (++retry > vds_ldc_retries) { 6837 PR0("Timed out closing channel"); 6838 break; 6839 } 6840 drv_usecwait(vds_ldc_delay); 6841 } 6842 if (rv == 0) { 6843 (void) ldc_unreg_callback(vd->ldc_handle); 6844 (void) ldc_fini(vd->ldc_handle); 6845 } else { 6846 /* 6847 * Closing the LDC channel has failed. Ideally we should 6848 * fail here but there is no Zeus level infrastructure 6849 * to handle this. The MD has already been changed and 6850 * we have to do the close. So we try to do as much 6851 * clean up as we can. 6852 */ 6853 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 6854 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 6855 drv_usecwait(vds_ldc_delay); 6856 } 6857 } 6858 6859 /* Free the staging buffer for msgs */ 6860 if (vd->vio_msgp != NULL) { 6861 kmem_free(vd->vio_msgp, vd->max_msglen); 6862 vd->vio_msgp = NULL; 6863 } 6864 6865 /* Free the inband message buffer */ 6866 if (vd->inband_task.msg != NULL) { 6867 kmem_free(vd->inband_task.msg, vd->max_msglen); 6868 vd->inband_task.msg = NULL; 6869 } 6870 6871 if (vd->file) { 6872 /* Close file */ 6873 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1, 6874 0, kcred, NULL); 6875 VN_RELE(vd->file_vnode); 6876 } else { 6877 /* Close any open backing-device slices */ 6878 for (uint_t slice = 0; slice < V_NUMPAR; slice++) { 6879 if (vd->ldi_handle[slice] != NULL) { 6880 PR0("Closing slice %u", slice); 6881 (void) ldi_close(vd->ldi_handle[slice], 6882 vd->open_flags, kcred); 6883 } 6884 } 6885 } 6886 6887 /* Free disk image devid */ 6888 if (vd->dskimg_devid != NULL) 6889 ddi_devid_free(vd->dskimg_devid); 6890 6891 /* Free any fake label */ 6892 if (vd->flabel) { 6893 kmem_free(vd->flabel, vd->flabel_size); 6894 vd->flabel = NULL; 6895 vd->flabel_size = 0; 6896 } 6897 6898 /* Free lock */ 6899 if (vd->initialized & VD_LOCKING) 6900 mutex_destroy(&vd->lock); 6901 6902 /* Finally, free the vdisk structure itself */ 6903 kmem_free(vd, sizeof (*vd)); 6904 } 6905 6906 static int 6907 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6908 uint64_t ldc_id) 6909 { 6910 int status; 6911 vd_t *vd = NULL; 6912 6913 6914 if ((status = vds_do_init_vd(vds, id, device_path, options, 6915 ldc_id, &vd)) != 0) 6916 vds_destroy_vd(vd); 6917 6918 return (status); 6919 } 6920 6921 static int 6922 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 6923 uint64_t *ldc_id) 6924 { 6925 int num_channels; 6926 6927 6928 /* Look for channel endpoint child(ren) of the vdisk MD node */ 6929 if ((num_channels = md_scan_dag(md, vd_node, 6930 md_find_name(md, VD_CHANNEL_ENDPOINT), 6931 md_find_name(md, "fwd"), channel)) <= 0) { 6932 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 6933 return (-1); 6934 } 6935 6936 /* Get the "id" value for the first channel endpoint node */ 6937 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 6938 PRN("No \"%s\" property found for \"%s\" of vdisk", 6939 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 6940 return (-1); 6941 } 6942 6943 if (num_channels > 1) { 6944 PRN("Using ID of first of multiple channels for this vdisk"); 6945 } 6946 6947 return (0); 6948 } 6949 6950 static int 6951 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 6952 { 6953 int num_nodes, status; 6954 size_t size; 6955 mde_cookie_t *channel; 6956 6957 6958 if ((num_nodes = md_node_count(md)) <= 0) { 6959 PRN("Invalid node count in Machine Description subtree"); 6960 return (-1); 6961 } 6962 size = num_nodes*(sizeof (*channel)); 6963 channel = kmem_zalloc(size, KM_SLEEP); 6964 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 6965 kmem_free(channel, size); 6966 6967 return (status); 6968 } 6969 6970 /* 6971 * Function: 6972 * vds_get_options 6973 * 6974 * Description: 6975 * Parse the options of a vds node. Options are defined as an array 6976 * of strings in the vds-block-device-opts property of the vds node 6977 * in the machine description. Options are returned as a bitmask. The 6978 * mapping between the bitmask options and the options strings from the 6979 * machine description is defined in the vd_bdev_options[] array. 6980 * 6981 * The vds-block-device-opts property is optional. If a vds has no such 6982 * property then no option is defined. 6983 * 6984 * Parameters: 6985 * md - machine description. 6986 * vd_node - vds node in the machine description for which 6987 * options have to be parsed. 6988 * options - the returned options. 6989 * 6990 * Return Code: 6991 * none. 6992 */ 6993 static void 6994 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options) 6995 { 6996 char *optstr, *opt; 6997 int len, n, i; 6998 6999 *options = 0; 7000 7001 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS, 7002 (uint8_t **)&optstr, &len) != 0) { 7003 PR0("No options found"); 7004 return; 7005 } 7006 7007 /* parse options */ 7008 opt = optstr; 7009 n = sizeof (vd_bdev_options) / sizeof (vd_option_t); 7010 7011 while (opt < optstr + len) { 7012 for (i = 0; i < n; i++) { 7013 if (strncmp(vd_bdev_options[i].vdo_name, 7014 opt, VD_OPTION_NLEN) == 0) { 7015 *options |= vd_bdev_options[i].vdo_value; 7016 break; 7017 } 7018 } 7019 7020 if (i < n) { 7021 PR0("option: %s", opt); 7022 } else { 7023 PRN("option %s is unknown or unsupported", opt); 7024 } 7025 7026 opt += strlen(opt) + 1; 7027 } 7028 } 7029 7030 static void 7031 vds_driver_types_free(vds_t *vds) 7032 { 7033 if (vds->driver_types != NULL) { 7034 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) * 7035 vds->num_drivers); 7036 vds->driver_types = NULL; 7037 vds->num_drivers = 0; 7038 } 7039 } 7040 7041 /* 7042 * Update the driver type list with information from vds.conf. 7043 */ 7044 static void 7045 vds_driver_types_update(vds_t *vds) 7046 { 7047 char **list, *s; 7048 uint_t i, num, count = 0, len; 7049 7050 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip, 7051 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) != 7052 DDI_PROP_SUCCESS) 7053 return; 7054 7055 /* 7056 * We create a driver_types list with as many as entries as there 7057 * is in the driver-type-list from vds.conf. However only valid 7058 * entries will be populated (i.e. entries from driver-type-list 7059 * with a valid syntax). Invalid entries will be left blank so 7060 * they will have no driver name and the driver type will be 7061 * VD_DRIVER_UNKNOWN (= 0). 7062 */ 7063 vds->num_drivers = num; 7064 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num, 7065 KM_SLEEP); 7066 7067 for (i = 0; i < num; i++) { 7068 7069 s = strchr(list[i], ':'); 7070 7071 if (s == NULL) { 7072 PRN("vds.conf: driver-type-list, entry %d (%s): " 7073 "a colon is expected in the entry", 7074 i, list[i]); 7075 continue; 7076 } 7077 7078 len = (uintptr_t)s - (uintptr_t)list[i]; 7079 7080 if (len == 0) { 7081 PRN("vds.conf: driver-type-list, entry %d (%s): " 7082 "the driver name is empty", 7083 i, list[i]); 7084 continue; 7085 } 7086 7087 if (len >= VD_DRIVER_NAME_LEN) { 7088 PRN("vds.conf: driver-type-list, entry %d (%s): " 7089 "the driver name is too long", 7090 i, list[i]); 7091 continue; 7092 } 7093 7094 if (strcmp(s + 1, "disk") == 0) { 7095 7096 vds->driver_types[i].type = VD_DRIVER_DISK; 7097 7098 } else if (strcmp(s + 1, "volume") == 0) { 7099 7100 vds->driver_types[i].type = VD_DRIVER_VOLUME; 7101 7102 } else { 7103 PRN("vds.conf: driver-type-list, entry %d (%s): " 7104 "the driver type is invalid", 7105 i, list[i]); 7106 continue; 7107 } 7108 7109 (void) strncpy(vds->driver_types[i].name, list[i], len); 7110 7111 PR0("driver-type-list, entry %d (%s) added", 7112 i, list[i]); 7113 7114 count++; 7115 } 7116 7117 ddi_prop_free(list); 7118 7119 if (count == 0) { 7120 /* nothing was added, clean up */ 7121 vds_driver_types_free(vds); 7122 } 7123 } 7124 7125 static void 7126 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 7127 { 7128 char *device_path = NULL; 7129 uint64_t id = 0, ldc_id = 0, options = 0; 7130 7131 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 7132 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 7133 return; 7134 } 7135 PR0("Adding vdisk ID %lu", id); 7136 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 7137 &device_path) != 0) { 7138 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 7139 return; 7140 } 7141 7142 vds_get_options(md, vd_node, &options); 7143 7144 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 7145 PRN("Error getting LDC ID for vdisk %lu", id); 7146 return; 7147 } 7148 7149 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) { 7150 PRN("Failed to add vdisk ID %lu", id); 7151 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 7152 PRN("No vDisk entry found for vdisk ID %lu", id); 7153 return; 7154 } 7155 } 7156 7157 static void 7158 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 7159 { 7160 uint64_t id = 0; 7161 7162 7163 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 7164 PRN("Unable to get \"%s\" property from vdisk's MD node", 7165 VD_ID_PROP); 7166 return; 7167 } 7168 PR0("Removing vdisk ID %lu", id); 7169 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 7170 PRN("No vdisk entry found for vdisk ID %lu", id); 7171 } 7172 7173 static void 7174 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 7175 md_t *curr_md, mde_cookie_t curr_vd_node) 7176 { 7177 char *curr_dev, *prev_dev; 7178 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0; 7179 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0; 7180 size_t len; 7181 7182 7183 /* Validate that vdisk ID has not changed */ 7184 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 7185 PRN("Error getting previous vdisk \"%s\" property", 7186 VD_ID_PROP); 7187 return; 7188 } 7189 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 7190 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 7191 return; 7192 } 7193 if (curr_id != prev_id) { 7194 PRN("Not changing vdisk: ID changed from %lu to %lu", 7195 prev_id, curr_id); 7196 return; 7197 } 7198 7199 /* Validate that LDC ID has not changed */ 7200 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 7201 PRN("Error getting LDC ID for vdisk %lu", prev_id); 7202 return; 7203 } 7204 7205 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 7206 PRN("Error getting LDC ID for vdisk %lu", curr_id); 7207 return; 7208 } 7209 if (curr_ldc_id != prev_ldc_id) { 7210 _NOTE(NOTREACHED); /* lint is confused */ 7211 PRN("Not changing vdisk: " 7212 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 7213 return; 7214 } 7215 7216 /* Determine whether device path has changed */ 7217 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 7218 &prev_dev) != 0) { 7219 PRN("Error getting previous vdisk \"%s\"", 7220 VD_BLOCK_DEVICE_PROP); 7221 return; 7222 } 7223 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 7224 &curr_dev) != 0) { 7225 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 7226 return; 7227 } 7228 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 7229 (strncmp(curr_dev, prev_dev, len) == 0)) 7230 return; /* no relevant (supported) change */ 7231 7232 /* Validate that options have not changed */ 7233 vds_get_options(prev_md, prev_vd_node, &prev_options); 7234 vds_get_options(curr_md, curr_vd_node, &curr_options); 7235 if (prev_options != curr_options) { 7236 PRN("Not changing vdisk: options changed from %lx to %lx", 7237 prev_options, curr_options); 7238 return; 7239 } 7240 7241 PR0("Changing vdisk ID %lu", prev_id); 7242 7243 /* Remove old state, which will close vdisk and reset */ 7244 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 7245 PRN("No entry found for vdisk ID %lu", prev_id); 7246 7247 /* Re-initialize vdisk with new state */ 7248 if (vds_init_vd(vds, curr_id, curr_dev, curr_options, 7249 curr_ldc_id) != 0) { 7250 PRN("Failed to change vdisk ID %lu", curr_id); 7251 return; 7252 } 7253 } 7254 7255 static int 7256 vds_process_md(void *arg, mdeg_result_t *md) 7257 { 7258 int i; 7259 vds_t *vds = arg; 7260 7261 7262 if (md == NULL) 7263 return (MDEG_FAILURE); 7264 ASSERT(vds != NULL); 7265 7266 for (i = 0; i < md->removed.nelem; i++) 7267 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 7268 for (i = 0; i < md->match_curr.nelem; i++) 7269 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 7270 md->match_curr.mdp, md->match_curr.mdep[i]); 7271 for (i = 0; i < md->added.nelem; i++) 7272 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 7273 7274 return (MDEG_SUCCESS); 7275 } 7276 7277 7278 static int 7279 vds_do_attach(dev_info_t *dip) 7280 { 7281 int status, sz; 7282 int cfg_handle; 7283 minor_t instance = ddi_get_instance(dip); 7284 vds_t *vds; 7285 mdeg_prop_spec_t *pspecp; 7286 mdeg_node_spec_t *ispecp; 7287 7288 /* 7289 * The "cfg-handle" property of a vds node in an MD contains the MD's 7290 * notion of "instance", or unique identifier, for that node; OBP 7291 * stores the value of the "cfg-handle" MD property as the value of 7292 * the "reg" property on the node in the device tree it builds from 7293 * the MD and passes to Solaris. Thus, we look up the devinfo node's 7294 * "reg" property value to uniquely identify this device instance when 7295 * registering with the MD event-generation framework. If the "reg" 7296 * property cannot be found, the device tree state is presumably so 7297 * broken that there is no point in continuing. 7298 */ 7299 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 7300 VD_REG_PROP)) { 7301 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 7302 return (DDI_FAILURE); 7303 } 7304 7305 /* Get the MD instance for later MDEG registration */ 7306 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 7307 VD_REG_PROP, -1); 7308 7309 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 7310 PRN("Could not allocate state for instance %u", instance); 7311 return (DDI_FAILURE); 7312 } 7313 7314 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 7315 PRN("Could not get state for instance %u", instance); 7316 ddi_soft_state_free(vds_state, instance); 7317 return (DDI_FAILURE); 7318 } 7319 7320 vds->dip = dip; 7321 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 7322 vds_destroy_vd, sizeof (void *)); 7323 7324 ASSERT(vds->vd_table != NULL); 7325 7326 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 7327 PRN("ldi_ident_from_dip() returned errno %d", status); 7328 return (DDI_FAILURE); 7329 } 7330 vds->initialized |= VDS_LDI; 7331 7332 /* Register for MD updates */ 7333 sz = sizeof (vds_prop_template); 7334 pspecp = kmem_alloc(sz, KM_SLEEP); 7335 bcopy(vds_prop_template, pspecp, sz); 7336 7337 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 7338 7339 /* initialize the complete prop spec structure */ 7340 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 7341 ispecp->namep = "virtual-device"; 7342 ispecp->specp = pspecp; 7343 7344 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 7345 &vds->mdeg) != MDEG_SUCCESS) { 7346 PRN("Unable to register for MD updates"); 7347 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 7348 kmem_free(pspecp, sz); 7349 return (DDI_FAILURE); 7350 } 7351 7352 vds->ispecp = ispecp; 7353 vds->initialized |= VDS_MDEG; 7354 7355 /* Prevent auto-detaching so driver is available whenever MD changes */ 7356 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 7357 DDI_PROP_SUCCESS) { 7358 PRN("failed to set \"%s\" property for instance %u", 7359 DDI_NO_AUTODETACH, instance); 7360 } 7361 7362 /* read any user defined driver types from conf file and update list */ 7363 vds_driver_types_update(vds); 7364 7365 ddi_report_dev(dip); 7366 return (DDI_SUCCESS); 7367 } 7368 7369 static int 7370 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 7371 { 7372 int status; 7373 7374 switch (cmd) { 7375 case DDI_ATTACH: 7376 PR0("Attaching"); 7377 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 7378 (void) vds_detach(dip, DDI_DETACH); 7379 return (status); 7380 case DDI_RESUME: 7381 PR0("No action required for DDI_RESUME"); 7382 return (DDI_SUCCESS); 7383 default: 7384 return (DDI_FAILURE); 7385 } 7386 } 7387 7388 static struct dev_ops vds_ops = { 7389 DEVO_REV, /* devo_rev */ 7390 0, /* devo_refcnt */ 7391 ddi_no_info, /* devo_getinfo */ 7392 nulldev, /* devo_identify */ 7393 nulldev, /* devo_probe */ 7394 vds_attach, /* devo_attach */ 7395 vds_detach, /* devo_detach */ 7396 nodev, /* devo_reset */ 7397 NULL, /* devo_cb_ops */ 7398 NULL, /* devo_bus_ops */ 7399 nulldev, /* devo_power */ 7400 ddi_quiesce_not_needed, /* devo_quiesce */ 7401 }; 7402 7403 static struct modldrv modldrv = { 7404 &mod_driverops, 7405 "virtual disk server", 7406 &vds_ops, 7407 }; 7408 7409 static struct modlinkage modlinkage = { 7410 MODREV_1, 7411 &modldrv, 7412 NULL 7413 }; 7414 7415 7416 int 7417 _init(void) 7418 { 7419 int status; 7420 7421 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 7422 return (status); 7423 7424 if ((status = mod_install(&modlinkage)) != 0) { 7425 ddi_soft_state_fini(&vds_state); 7426 return (status); 7427 } 7428 7429 return (0); 7430 } 7431 7432 int 7433 _info(struct modinfo *modinfop) 7434 { 7435 return (mod_info(&modlinkage, modinfop)); 7436 } 7437 7438 int 7439 _fini(void) 7440 { 7441 int status; 7442 7443 if ((status = mod_remove(&modlinkage)) != 0) 7444 return (status); 7445 ddi_soft_state_fini(&vds_state); 7446 return (0); 7447 } 7448