xref: /titanic_41/usr/src/uts/i86pc/os/cmi.c (revision d24234c24aeaca4ca56ee3ac2794507968f274c4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Public interface to routines implemented by CPU modules
29  */
30 
31 #include <sys/types.h>
32 #include <sys/atomic.h>
33 #include <sys/x86_archext.h>
34 #include <sys/cpu_module_impl.h>
35 #include <sys/cpu_module_ms.h>
36 #include <sys/fm/util.h>
37 #include <sys/reboot.h>
38 #include <sys/modctl.h>
39 #include <sys/param.h>
40 #include <sys/cmn_err.h>
41 #include <sys/systm.h>
42 #include <sys/fm/protocol.h>
43 #include <sys/pcb.h>
44 #include <sys/ontrap.h>
45 #include <sys/psw.h>
46 #include <sys/privregs.h>
47 #include <sys/machsystm.h>
48 
49 /*
50  * Set to force cmi_init to fail.
51  */
52 int cmi_no_init = 0;
53 
54 /*
55  * Set to avoid MCA initialization.
56  */
57 int cmi_no_mca_init = 0;
58 
59 /*
60  * If cleared for debugging we will not attempt to load a model-specific
61  * cpu module but will load the generic cpu module instead.
62  */
63 int cmi_force_generic = 0;
64 
65 /*
66  * If cleared for debugging, we will suppress panicking on fatal hardware
67  * errors.  This should *only* be used for debugging; it use can and will
68  * cause data corruption if actual hardware errors are detected by the system.
69  */
70 int cmi_panic_on_uncorrectable_error = 1;
71 
72 #ifndef __xpv
73 /*
74  * Set to indicate whether we are able to enable cmci interrupt.
75  */
76 int cmi_enable_cmci = 0;
77 #endif
78 
79 /*
80  * Subdirectory (relative to the module search path) in which we will
81  * look for cpu modules.
82  */
83 #define	CPUMOD_SUBDIR	"cpu"
84 
85 /*
86  * CPU modules have a filenames such as "cpu.AuthenticAMD.15" and
87  * "cpu.generic" - the "cpu" prefix is specified by the following.
88  */
89 #define	CPUMOD_PREFIX	"cpu"
90 
91 /*
92  * Structure used to keep track of cpu modules we have loaded and their ops
93  */
94 typedef struct cmi {
95 	struct cmi *cmi_next;
96 	struct cmi *cmi_prev;
97 	const cmi_ops_t *cmi_ops;
98 	struct modctl *cmi_modp;
99 	uint_t cmi_refcnt;
100 } cmi_t;
101 
102 static cmi_t *cmi_list;
103 static kmutex_t cmi_load_lock;
104 
105 /*
106  * Functions we need from cmi_hw.c that are not part of the cpu_module.h
107  * interface.
108  */
109 extern cmi_hdl_t cmi_hdl_create(enum cmi_hdl_class, uint_t, uint_t, uint_t);
110 extern void cmi_hdl_setcmi(cmi_hdl_t, void *, void *);
111 extern void *cmi_hdl_getcmi(cmi_hdl_t);
112 extern void cmi_hdl_setmc(cmi_hdl_t, const struct cmi_mc_ops *, void *);
113 extern void cmi_hdl_inj_begin(cmi_hdl_t);
114 extern void cmi_hdl_inj_end(cmi_hdl_t);
115 extern void cmi_read_smbios(cmi_hdl_t);
116 
117 #define	HDL2CMI(hdl)		cmi_hdl_getcmi(hdl)
118 
119 #define	CMI_OPS(cmi)		(cmi)->cmi_ops
120 #define	CMI_OP_PRESENT(cmi, op)	((cmi) && CMI_OPS(cmi)->op != NULL)
121 
122 #define	CMI_MATCH_VENDOR	0	/* Just match on vendor */
123 #define	CMI_MATCH_FAMILY	1	/* Match down to family */
124 #define	CMI_MATCH_MODEL		2	/* Match down to model */
125 #define	CMI_MATCH_STEPPING	3	/* Match down to stepping */
126 
127 static void
128 cmi_link(cmi_t *cmi)
129 {
130 	ASSERT(MUTEX_HELD(&cmi_load_lock));
131 
132 	cmi->cmi_prev = NULL;
133 	cmi->cmi_next = cmi_list;
134 	if (cmi_list != NULL)
135 		cmi_list->cmi_prev = cmi;
136 	cmi_list = cmi;
137 }
138 
139 static void
140 cmi_unlink(cmi_t *cmi)
141 {
142 	ASSERT(MUTEX_HELD(&cmi_load_lock));
143 	ASSERT(cmi->cmi_refcnt == 0);
144 
145 	if (cmi->cmi_prev != NULL)
146 		cmi->cmi_prev = cmi->cmi_next;
147 
148 	if (cmi->cmi_next != NULL)
149 		cmi->cmi_next->cmi_prev = cmi->cmi_prev;
150 
151 	if (cmi_list == cmi)
152 		cmi_list = cmi->cmi_next;
153 }
154 
155 /*
156  * Hold the module in memory.  We call to CPU modules without using the
157  * stubs mechanism, so these modules must be manually held in memory.
158  * The mod_ref acts as if another loaded module has a dependency on us.
159  */
160 static void
161 cmi_hold(cmi_t *cmi)
162 {
163 	ASSERT(MUTEX_HELD(&cmi_load_lock));
164 
165 	mutex_enter(&mod_lock);
166 	cmi->cmi_modp->mod_ref++;
167 	mutex_exit(&mod_lock);
168 	cmi->cmi_refcnt++;
169 }
170 
171 static void
172 cmi_rele(cmi_t *cmi)
173 {
174 	ASSERT(MUTEX_HELD(&cmi_load_lock));
175 
176 	mutex_enter(&mod_lock);
177 	cmi->cmi_modp->mod_ref--;
178 	mutex_exit(&mod_lock);
179 
180 	if (--cmi->cmi_refcnt == 0) {
181 		cmi_unlink(cmi);
182 		kmem_free(cmi, sizeof (cmi_t));
183 	}
184 }
185 
186 static cmi_ops_t *
187 cmi_getops(modctl_t *modp)
188 {
189 	cmi_ops_t *ops;
190 
191 	if ((ops = (cmi_ops_t *)modlookup_by_modctl(modp, "_cmi_ops")) ==
192 	    NULL) {
193 		cmn_err(CE_WARN, "cpu module '%s' is invalid: no _cmi_ops "
194 		    "found", modp->mod_modname);
195 		return (NULL);
196 	}
197 
198 	if (ops->cmi_init == NULL) {
199 		cmn_err(CE_WARN, "cpu module '%s' is invalid: no cmi_init "
200 		    "entry point", modp->mod_modname);
201 		return (NULL);
202 	}
203 
204 	return (ops);
205 }
206 
207 static cmi_t *
208 cmi_load_modctl(modctl_t *modp)
209 {
210 	cmi_ops_t *ops;
211 	uintptr_t ver;
212 	cmi_t *cmi;
213 	cmi_api_ver_t apiver;
214 
215 	ASSERT(MUTEX_HELD(&cmi_load_lock));
216 
217 	for (cmi = cmi_list; cmi != NULL; cmi = cmi->cmi_next) {
218 		if (cmi->cmi_modp == modp)
219 			return (cmi);
220 	}
221 
222 	if ((ver = modlookup_by_modctl(modp, "_cmi_api_version")) == NULL) {
223 		/*
224 		 * Apparently a cpu module before versioning was introduced -
225 		 * we call this version 0.
226 		 */
227 		apiver = CMI_API_VERSION_0;
228 	} else {
229 		apiver = *((cmi_api_ver_t *)ver);
230 		if (!CMI_API_VERSION_CHKMAGIC(apiver)) {
231 			cmn_err(CE_WARN, "cpu module '%s' is invalid: "
232 			    "_cmi_api_version 0x%x has bad magic",
233 			    modp->mod_modname, apiver);
234 			return (NULL);
235 		}
236 	}
237 
238 	if (apiver != CMI_API_VERSION) {
239 		cmn_err(CE_WARN, "cpu module '%s' has API version %d, "
240 		    "kernel requires API version %d", modp->mod_modname,
241 		    CMI_API_VERSION_TOPRINT(apiver),
242 		    CMI_API_VERSION_TOPRINT(CMI_API_VERSION));
243 		return (NULL);
244 	}
245 
246 	if ((ops = cmi_getops(modp)) == NULL)
247 		return (NULL);
248 
249 	cmi = kmem_zalloc(sizeof (*cmi), KM_SLEEP);
250 	cmi->cmi_ops = ops;
251 	cmi->cmi_modp = modp;
252 
253 	cmi_link(cmi);
254 
255 	return (cmi);
256 }
257 
258 static int
259 cmi_cpu_match(cmi_hdl_t hdl1, cmi_hdl_t hdl2, int match)
260 {
261 	if (match >= CMI_MATCH_VENDOR &&
262 	    cmi_hdl_vendor(hdl1) != cmi_hdl_vendor(hdl2))
263 		return (0);
264 
265 	if (match >= CMI_MATCH_FAMILY &&
266 	    cmi_hdl_family(hdl1) != cmi_hdl_family(hdl2))
267 		return (0);
268 
269 	if (match >= CMI_MATCH_MODEL &&
270 	    cmi_hdl_model(hdl1) != cmi_hdl_model(hdl2))
271 		return (0);
272 
273 	if (match >= CMI_MATCH_STEPPING &&
274 	    cmi_hdl_stepping(hdl1) != cmi_hdl_stepping(hdl2))
275 		return (0);
276 
277 	return (1);
278 }
279 
280 static int
281 cmi_search_list_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
282 {
283 	cmi_hdl_t thdl = (cmi_hdl_t)arg1;
284 	int match = *((int *)arg2);
285 	cmi_hdl_t *rsltp = (cmi_hdl_t *)arg3;
286 
287 	if (cmi_cpu_match(thdl, whdl, match)) {
288 		cmi_hdl_hold(whdl);	/* short-term hold */
289 		*rsltp = whdl;
290 		return (CMI_HDL_WALK_DONE);
291 	} else {
292 		return (CMI_HDL_WALK_NEXT);
293 	}
294 }
295 
296 static cmi_t *
297 cmi_search_list(cmi_hdl_t hdl, int match)
298 {
299 	cmi_hdl_t dhdl = NULL;
300 	cmi_t *cmi = NULL;
301 
302 	ASSERT(MUTEX_HELD(&cmi_load_lock));
303 
304 	cmi_hdl_walk(cmi_search_list_cb, (void *)hdl, (void *)&match, &dhdl);
305 	if (dhdl) {
306 		cmi = HDL2CMI(dhdl);
307 		cmi_hdl_rele(dhdl);	/* held in cmi_search_list_cb */
308 	}
309 
310 	return (cmi);
311 }
312 
313 static cmi_t *
314 cmi_load_module(cmi_hdl_t hdl, int match, int *chosenp)
315 {
316 	modctl_t *modp;
317 	cmi_t *cmi;
318 	int modid;
319 	uint_t s[3];
320 
321 	ASSERT(MUTEX_HELD(&cmi_load_lock));
322 	ASSERT(match == CMI_MATCH_STEPPING || match == CMI_MATCH_MODEL ||
323 	    match == CMI_MATCH_FAMILY || match == CMI_MATCH_VENDOR);
324 
325 	/*
326 	 * Have we already loaded a module for a cpu with the same
327 	 * vendor/family/model/stepping?
328 	 */
329 	if ((cmi = cmi_search_list(hdl, match)) != NULL) {
330 		cmi_hold(cmi);
331 		return (cmi);
332 	}
333 
334 	s[0] = cmi_hdl_family(hdl);
335 	s[1] = cmi_hdl_model(hdl);
336 	s[2] = cmi_hdl_stepping(hdl);
337 	modid = modload_qualified(CPUMOD_SUBDIR, CPUMOD_PREFIX,
338 	    cmi_hdl_vendorstr(hdl), ".", s, match, chosenp);
339 
340 	if (modid == -1)
341 		return (NULL);
342 
343 	modp = mod_hold_by_id(modid);
344 	cmi = cmi_load_modctl(modp);
345 	if (cmi)
346 		cmi_hold(cmi);
347 	mod_release_mod(modp);
348 
349 	return (cmi);
350 }
351 
352 /*
353  * Try to load a cpu module with specific support for this chip type.
354  */
355 static cmi_t *
356 cmi_load_specific(cmi_hdl_t hdl, void **datap)
357 {
358 	cmi_t *cmi;
359 	int err;
360 	int i;
361 
362 	ASSERT(MUTEX_HELD(&cmi_load_lock));
363 
364 	for (i = CMI_MATCH_STEPPING; i >= CMI_MATCH_VENDOR; i--) {
365 		int suffixlevel;
366 
367 		if ((cmi = cmi_load_module(hdl, i, &suffixlevel)) == NULL)
368 			return (NULL);
369 
370 		/*
371 		 * A module has loaded and has a _cmi_ops structure, and the
372 		 * module has been held for this instance.  Call its cmi_init
373 		 * entry point - we expect success (0) or ENOTSUP.
374 		 */
375 		if ((err = cmi->cmi_ops->cmi_init(hdl, datap)) == 0) {
376 			if (boothowto & RB_VERBOSE) {
377 				printf("initialized cpu module '%s' on "
378 				    "chip %d core %d strand %d\n",
379 				    cmi->cmi_modp->mod_modname,
380 				    cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl),
381 				    cmi_hdl_strandid(hdl));
382 			}
383 			return (cmi);
384 		} else if (err != ENOTSUP) {
385 			cmn_err(CE_WARN, "failed to init cpu module '%s' on "
386 			    "chip %d core %d strand %d: err=%d\n",
387 			    cmi->cmi_modp->mod_modname,
388 			    cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl),
389 			    cmi_hdl_strandid(hdl), err);
390 		}
391 
392 		/*
393 		 * The module failed or declined to init, so release
394 		 * it and update i to be equal to the number
395 		 * of suffices actually used in the last module path.
396 		 */
397 		cmi_rele(cmi);
398 		i = suffixlevel;
399 	}
400 
401 	return (NULL);
402 }
403 
404 /*
405  * Load the generic IA32 MCA cpu module, which may still supplement
406  * itself with model-specific support through cpu model-specific modules.
407  */
408 static cmi_t *
409 cmi_load_generic(cmi_hdl_t hdl, void **datap)
410 {
411 	modctl_t *modp;
412 	cmi_t *cmi;
413 	int modid;
414 	int err;
415 
416 	ASSERT(MUTEX_HELD(&cmi_load_lock));
417 
418 	if ((modid = modload(CPUMOD_SUBDIR, CPUMOD_PREFIX ".generic")) == -1)
419 		return (NULL);
420 
421 	modp = mod_hold_by_id(modid);
422 	cmi = cmi_load_modctl(modp);
423 	if (cmi)
424 		cmi_hold(cmi);
425 	mod_release_mod(modp);
426 
427 	if (cmi == NULL)
428 		return (NULL);
429 
430 	if ((err = cmi->cmi_ops->cmi_init(hdl, datap)) != 0) {
431 		if (err != ENOTSUP)
432 			cmn_err(CE_WARN, CPUMOD_PREFIX ".generic failed to "
433 			    "init: err=%d", err);
434 		cmi_rele(cmi);
435 		return (NULL);
436 	}
437 
438 	return (cmi);
439 }
440 
441 cmi_hdl_t
442 cmi_init(enum cmi_hdl_class class, uint_t chipid, uint_t coreid,
443     uint_t strandid)
444 {
445 	cmi_t *cmi = NULL;
446 	cmi_hdl_t hdl;
447 	void *data;
448 
449 	if (cmi_no_init) {
450 		cmi_no_mca_init = 1;
451 		return (NULL);
452 	}
453 
454 	mutex_enter(&cmi_load_lock);
455 
456 	if ((hdl = cmi_hdl_create(class, chipid, coreid, strandid)) == NULL) {
457 		mutex_exit(&cmi_load_lock);
458 		cmn_err(CE_WARN, "There will be no MCA support on chip %d "
459 		    "core %d strand %d (cmi_hdl_create returned NULL)\n",
460 		    chipid, coreid, strandid);
461 		return (NULL);
462 	}
463 
464 	if (!cmi_force_generic)
465 		cmi = cmi_load_specific(hdl, &data);
466 
467 	if (cmi == NULL && (cmi = cmi_load_generic(hdl, &data)) == NULL) {
468 		cmn_err(CE_WARN, "There will be no MCA support on chip %d "
469 		    "core %d strand %d\n", chipid, coreid, strandid);
470 		cmi_hdl_rele(hdl);
471 		mutex_exit(&cmi_load_lock);
472 		return (NULL);
473 	}
474 
475 	cmi_hdl_setcmi(hdl, cmi, data);
476 
477 	cms_init(hdl);
478 
479 	cmi_read_smbios(hdl);
480 
481 	mutex_exit(&cmi_load_lock);
482 
483 	return (hdl);
484 }
485 
486 /*
487  * cmi_fini is not called at the moment.  It is intended to be called
488  * on DR deconfigure of a cpu resource.  It should not be called at
489  * simple offline of a cpu.
490  */
491 void
492 cmi_fini(cmi_hdl_t hdl)
493 {
494 	cmi_t *cmi = HDL2CMI(hdl);
495 
496 	if (cms_present(hdl))
497 		cms_fini(hdl);
498 
499 	if (CMI_OP_PRESENT(cmi, cmi_fini))
500 		CMI_OPS(cmi)->cmi_fini(hdl);
501 
502 	cmi_hdl_rele(hdl);	/* release hold obtained in cmi_hdl_create */
503 }
504 
505 /*
506  * cmi_post_startup is called from post_startup for the boot cpu only (no
507  * other cpus are started yet).
508  */
509 void
510 cmi_post_startup(void)
511 {
512 	cmi_hdl_t hdl;
513 	cmi_t *cmi;
514 
515 	if (cmi_no_mca_init != 0 ||
516 	    (hdl = cmi_hdl_any()) == NULL)	/* short-term hold */
517 		return;
518 
519 	cmi = HDL2CMI(hdl);
520 
521 	if (CMI_OP_PRESENT(cmi, cmi_post_startup))
522 		CMI_OPS(cmi)->cmi_post_startup(hdl);
523 
524 	cmi_hdl_rele(hdl);
525 }
526 
527 /*
528  * Called just once from start_other_cpus when all processors are started.
529  * This will not be called for each cpu, so the registered op must not
530  * assume it is called as such.  We are not necessarily executing on
531  * the boot cpu.
532  */
533 void
534 cmi_post_mpstartup(void)
535 {
536 	cmi_hdl_t hdl;
537 	cmi_t *cmi;
538 
539 	if (cmi_no_mca_init != 0 ||
540 	    (hdl = cmi_hdl_any()) == NULL)	/* short-term hold */
541 		return;
542 
543 	cmi = HDL2CMI(hdl);
544 
545 	if (CMI_OP_PRESENT(cmi, cmi_post_mpstartup))
546 		CMI_OPS(cmi)->cmi_post_mpstartup(hdl);
547 
548 	cmi_hdl_rele(hdl);
549 }
550 
551 void
552 cmi_faulted_enter(cmi_hdl_t hdl)
553 {
554 	cmi_t *cmi = HDL2CMI(hdl);
555 
556 	if (cmi_no_mca_init != 0)
557 		return;
558 
559 	if (CMI_OP_PRESENT(cmi, cmi_faulted_enter))
560 		CMI_OPS(cmi)->cmi_faulted_enter(hdl);
561 }
562 
563 void
564 cmi_faulted_exit(cmi_hdl_t hdl)
565 {
566 	cmi_t *cmi = HDL2CMI(hdl);
567 
568 	if (cmi_no_mca_init != 0)
569 		return;
570 
571 	if (CMI_OP_PRESENT(cmi, cmi_faulted_exit))
572 		CMI_OPS(cmi)->cmi_faulted_exit(hdl);
573 }
574 
575 void
576 cmi_mca_init(cmi_hdl_t hdl)
577 {
578 	cmi_t *cmi;
579 
580 	if (cmi_no_mca_init != 0)
581 		return;
582 
583 	cmi = HDL2CMI(hdl);
584 
585 	if (CMI_OP_PRESENT(cmi, cmi_mca_init))
586 		CMI_OPS(cmi)->cmi_mca_init(hdl);
587 }
588 
589 #define	CMI_RESPONSE_PANIC		0x0	/* panic must have value 0 */
590 #define	CMI_RESPONSE_NONE		0x1
591 #define	CMI_RESPONSE_CKILL		0x2
592 #define	CMI_RESPONSE_REBOOT		0x3	/* not implemented */
593 #define	CMI_RESPONSE_ONTRAP_PROT	0x4
594 #define	CMI_RESPONSE_LOFAULT_PROT	0x5
595 
596 /*
597  * Return 0 if we will panic in response to this machine check, otherwise
598  * non-zero.  If the caller is cmi_mca_trap in this file then the nonzero
599  * return values are to be interpreted from CMI_RESPONSE_* above.
600  *
601  * This function must just return what will be done without actually
602  * doing anything; this includes not changing the regs.
603  */
604 int
605 cmi_mce_response(struct regs *rp, uint64_t disp)
606 {
607 	int panicrsp = cmi_panic_on_uncorrectable_error ? CMI_RESPONSE_PANIC :
608 	    CMI_RESPONSE_NONE;
609 	on_trap_data_t *otp;
610 
611 	ASSERT(rp != NULL);	/* don't call for polling, only on #MC */
612 
613 	/*
614 	 * If no bits are set in the disposition then there is nothing to
615 	 * worry about and we do not need to trampoline to ontrap or
616 	 * lofault handlers.
617 	 */
618 	if (disp == 0)
619 		return (CMI_RESPONSE_NONE);
620 
621 	/*
622 	 * Unconstrained errors cannot be forgiven, even by ontrap or
623 	 * lofault protection.  The data is not poisoned and may not
624 	 * even belong to the trapped context - eg a writeback of
625 	 * data that is found to be bad.
626 	 */
627 	if (disp & CMI_ERRDISP_UC_UNCONSTRAINED)
628 		return (panicrsp);
629 
630 	/*
631 	 * ontrap OT_DATA_EC and lofault protection forgive any disposition
632 	 * other than unconstrained, even those normally forced fatal.
633 	 */
634 	if ((otp = curthread->t_ontrap) != NULL && otp->ot_prot & OT_DATA_EC)
635 		return (CMI_RESPONSE_ONTRAP_PROT);
636 	else if (curthread->t_lofault)
637 		return (CMI_RESPONSE_LOFAULT_PROT);
638 
639 	/*
640 	 * Forced-fatal errors are terminal even in user mode.
641 	 */
642 	if (disp & CMI_ERRDISP_FORCEFATAL)
643 		return (panicrsp);
644 
645 	/*
646 	 * If the trapped context is corrupt or we have no instruction pointer
647 	 * to resume at (and aren't trampolining to a fault handler)
648 	 * then in the kernel case we must panic and in usermode we
649 	 * kill the affected contract.
650 	 */
651 	if (disp & (CMI_ERRDISP_CURCTXBAD | CMI_ERRDISP_RIPV_INVALID))
652 		return (USERMODE(rp->r_cs) ?  CMI_RESPONSE_CKILL : panicrsp);
653 
654 	/*
655 	 * Anything else is harmless
656 	 */
657 	return (CMI_RESPONSE_NONE);
658 }
659 
660 int cma_mca_trap_panic_suppressed = 0;
661 
662 static void
663 cmi_mca_panic(void)
664 {
665 	if (cmi_panic_on_uncorrectable_error) {
666 		fm_panic("Unrecoverable Machine-Check Exception");
667 	} else {
668 		cmn_err(CE_WARN, "suppressing panic from fatal #mc");
669 		cma_mca_trap_panic_suppressed++;
670 	}
671 }
672 
673 
674 int cma_mca_trap_contract_kills = 0;
675 int cma_mca_trap_ontrap_forgiven = 0;
676 int cma_mca_trap_lofault_forgiven = 0;
677 
678 /*
679  * Native #MC handler - we branch to here from mcetrap
680  */
681 /*ARGSUSED*/
682 void
683 cmi_mca_trap(struct regs *rp)
684 {
685 #ifndef	__xpv
686 	cmi_hdl_t hdl = NULL;
687 	uint64_t disp;
688 	cmi_t *cmi;
689 	int s;
690 
691 	if (cmi_no_mca_init != 0)
692 		return;
693 
694 	/*
695 	 * This function can call cmn_err, and the cpu module cmi_mca_trap
696 	 * entry point may also elect to call cmn_err (e.g., if it can't
697 	 * log the error onto an errorq, say very early in boot).
698 	 * We need to let cprintf know that we must not block.
699 	 */
700 	s = spl8();
701 
702 	if ((hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
703 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) == NULL ||
704 	    (cmi = HDL2CMI(hdl)) == NULL ||
705 	    !CMI_OP_PRESENT(cmi, cmi_mca_trap)) {
706 
707 		cmn_err(CE_WARN, "#MC exception on cpuid %d: %s",
708 		    CPU->cpu_id,
709 		    hdl ? "handle lookup ok but no #MC handler found" :
710 		    "handle lookup failed");
711 
712 		if (hdl != NULL)
713 			cmi_hdl_rele(hdl);
714 
715 		splx(s);
716 		return;
717 	}
718 
719 	disp = CMI_OPS(cmi)->cmi_mca_trap(hdl, rp);
720 
721 	switch (cmi_mce_response(rp, disp)) {
722 	default:
723 		cmn_err(CE_WARN, "Invalid response from cmi_mce_response");
724 		/*FALLTHRU*/
725 
726 	case CMI_RESPONSE_PANIC:
727 		cmi_mca_panic();
728 		break;
729 
730 	case CMI_RESPONSE_NONE:
731 		break;
732 
733 	case CMI_RESPONSE_CKILL:
734 		ttolwp(curthread)->lwp_pcb.pcb_flags |= ASYNC_HWERR;
735 		aston(curthread);
736 		cma_mca_trap_contract_kills++;
737 		break;
738 
739 	case CMI_RESPONSE_ONTRAP_PROT: {
740 		on_trap_data_t *otp = curthread->t_ontrap;
741 		otp->ot_trap = OT_DATA_EC;
742 		rp->r_pc = otp->ot_trampoline;
743 		cma_mca_trap_ontrap_forgiven++;
744 		break;
745 	}
746 
747 	case CMI_RESPONSE_LOFAULT_PROT:
748 		rp->r_r0 = EFAULT;
749 		rp->r_pc = curthread->t_lofault;
750 		cma_mca_trap_lofault_forgiven++;
751 		break;
752 	}
753 
754 	cmi_hdl_rele(hdl);
755 	splx(s);
756 #endif	/* __xpv */
757 }
758 
759 void
760 cmi_hdl_poke(cmi_hdl_t hdl)
761 {
762 	cmi_t *cmi = HDL2CMI(hdl);
763 
764 	if (!CMI_OP_PRESENT(cmi, cmi_hdl_poke))
765 		return;
766 
767 	CMI_OPS(cmi)->cmi_hdl_poke(hdl);
768 }
769 
770 #ifndef	__xpv
771 void
772 cmi_cmci_trap()
773 {
774 	cmi_hdl_t hdl = NULL;
775 	cmi_t *cmi;
776 
777 	if (cmi_no_mca_init != 0)
778 		return;
779 
780 	if ((hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
781 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) == NULL ||
782 	    (cmi = HDL2CMI(hdl)) == NULL ||
783 	    !CMI_OP_PRESENT(cmi, cmi_cmci_trap)) {
784 
785 		cmn_err(CE_WARN, "CMCI interrupt on cpuid %d: %s",
786 		    CPU->cpu_id,
787 		    hdl ? "handle lookup ok but no CMCI handler found" :
788 		    "handle lookup failed");
789 
790 		if (hdl != NULL)
791 			cmi_hdl_rele(hdl);
792 
793 		return;
794 	}
795 
796 	CMI_OPS(cmi)->cmi_cmci_trap(hdl);
797 
798 	cmi_hdl_rele(hdl);
799 }
800 #endif	/* __xpv */
801 
802 void
803 cmi_mc_register(cmi_hdl_t hdl, const cmi_mc_ops_t *mcops, void *mcdata)
804 {
805 	if (!cmi_no_mca_init)
806 		cmi_hdl_setmc(hdl, mcops, mcdata);
807 }
808 
809 void
810 cmi_mc_sw_memscrub_disable(void)
811 {
812 	memscrub_disable();
813 }
814 
815 cmi_errno_t
816 cmi_mc_patounum(uint64_t pa, uint8_t valid_hi, uint8_t valid_lo, uint32_t synd,
817     int syndtype, mc_unum_t *up)
818 {
819 	const struct cmi_mc_ops *mcops;
820 	cmi_hdl_t hdl;
821 	cmi_errno_t rv;
822 
823 	if (cmi_no_mca_init ||
824 	    (hdl = cmi_hdl_any()) == NULL)	/* short-term hold */
825 		return (CMIERR_MC_ABSENT);
826 
827 	if ((mcops = cmi_hdl_getmcops(hdl)) == NULL ||
828 	    mcops->cmi_mc_patounum == NULL) {
829 		cmi_hdl_rele(hdl);
830 		return (CMIERR_MC_NOTSUP);
831 	}
832 
833 	rv = mcops->cmi_mc_patounum(cmi_hdl_getmcdata(hdl), pa, valid_hi,
834 	    valid_lo, synd, syndtype, up);
835 
836 	cmi_hdl_rele(hdl);
837 
838 	return (rv);
839 }
840 
841 cmi_errno_t
842 cmi_mc_unumtopa(mc_unum_t *up, nvlist_t *nvl, uint64_t *pap)
843 {
844 	const struct cmi_mc_ops *mcops;
845 	cmi_hdl_t hdl;
846 	cmi_errno_t rv;
847 	nvlist_t *hcsp;
848 
849 	if (up != NULL && nvl != NULL)
850 		return (CMIERR_API);	/* convert from just one form */
851 
852 	if (cmi_no_mca_init ||
853 	    (hdl = cmi_hdl_any()) == NULL)	/* short-term hold */
854 		return (CMIERR_MC_ABSENT);
855 
856 	if ((mcops = cmi_hdl_getmcops(hdl)) == NULL ||
857 	    mcops->cmi_mc_unumtopa == NULL) {
858 		cmi_hdl_rele(hdl);
859 
860 		if (nvl != NULL && nvlist_lookup_nvlist(nvl,
861 		    FM_FMRI_HC_SPECIFIC, &hcsp) == 0 &&
862 		    (nvlist_lookup_uint64(hcsp,
863 		    "asru-" FM_FMRI_HC_SPECIFIC_PHYSADDR, pap) == 0 ||
864 		    nvlist_lookup_uint64(hcsp, FM_FMRI_HC_SPECIFIC_PHYSADDR,
865 		    pap) == 0)) {
866 			return (CMIERR_MC_PARTIALUNUMTOPA);
867 		} else {
868 			return (mcops && mcops->cmi_mc_unumtopa ?
869 			    CMIERR_MC_NOTSUP : CMIERR_MC_ABSENT);
870 		}
871 	}
872 
873 	rv = mcops->cmi_mc_unumtopa(cmi_hdl_getmcdata(hdl), up, nvl, pap);
874 
875 	cmi_hdl_rele(hdl);
876 
877 	return (rv);
878 }
879 
880 void
881 cmi_mc_logout(cmi_hdl_t hdl, boolean_t ismc, boolean_t sync)
882 {
883 	const struct cmi_mc_ops *mcops;
884 
885 	if (cmi_no_mca_init || (mcops = cmi_hdl_getmcops(hdl)) == NULL)
886 		return;
887 
888 	if (mcops->cmi_mc_logout != NULL)
889 		mcops->cmi_mc_logout(hdl, ismc, sync);
890 }
891 
892 cmi_errno_t
893 cmi_hdl_msrinject(cmi_hdl_t hdl, cmi_mca_regs_t *regs, uint_t nregs,
894     int force)
895 {
896 	cmi_t *cmi = cmi_hdl_getcmi(hdl);
897 	cmi_errno_t rc;
898 
899 	if (!CMI_OP_PRESENT(cmi, cmi_msrinject))
900 		return (CMIERR_NOTSUP);
901 
902 	cmi_hdl_inj_begin(hdl);
903 	rc = CMI_OPS(cmi)->cmi_msrinject(hdl, regs, nregs, force);
904 	cmi_hdl_inj_end(hdl);
905 
906 	return (rc);
907 }
908 
909 boolean_t
910 cmi_panic_on_ue(void)
911 {
912 	return (cmi_panic_on_uncorrectable_error ? B_TRUE : B_FALSE);
913 }
914 
915 void
916 cmi_panic_callback(void)
917 {
918 	cmi_hdl_t hdl;
919 	cmi_t *cmi;
920 
921 	if (cmi_no_mca_init || (hdl = cmi_hdl_any()) == NULL)
922 		return;
923 
924 	cmi = cmi_hdl_getcmi(hdl);
925 	if (CMI_OP_PRESENT(cmi, cmi_panic_callback))
926 		CMI_OPS(cmi)->cmi_panic_callback();
927 
928 	cmi_hdl_rele(hdl);
929 }
930