/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Public interface to routines implemented by CPU modules */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Set to force cmi_init to fail. */ int cmi_no_init = 0; /* * Set to avoid MCA initialization. */ int cmi_no_mca_init = 0; /* * If cleared for debugging we will not attempt to load a model-specific * cpu module but will load the generic cpu module instead. */ int cmi_force_generic = 0; /* * If cleared for debugging, we will suppress panicking on fatal hardware * errors. This should *only* be used for debugging; it use can and will * cause data corruption if actual hardware errors are detected by the system. */ int cmi_panic_on_uncorrectable_error = 1; #ifndef __xpv /* * Set to indicate whether we are able to enable cmci interrupt. */ int cmi_enable_cmci = 0; #endif /* * Subdirectory (relative to the module search path) in which we will * look for cpu modules. */ #define CPUMOD_SUBDIR "cpu" /* * CPU modules have a filenames such as "cpu.AuthenticAMD.15" and * "cpu.generic" - the "cpu" prefix is specified by the following. */ #define CPUMOD_PREFIX "cpu" /* * Structure used to keep track of cpu modules we have loaded and their ops */ typedef struct cmi { struct cmi *cmi_next; struct cmi *cmi_prev; const cmi_ops_t *cmi_ops; struct modctl *cmi_modp; uint_t cmi_refcnt; } cmi_t; static cmi_t *cmi_list; static kmutex_t cmi_load_lock; /* * Functions we need from cmi_hw.c that are not part of the cpu_module.h * interface. */ extern cmi_hdl_t cmi_hdl_create(enum cmi_hdl_class, uint_t, uint_t, uint_t); extern void cmi_hdl_setcmi(cmi_hdl_t, void *, void *); extern void *cmi_hdl_getcmi(cmi_hdl_t); extern void cmi_hdl_setmc(cmi_hdl_t, const struct cmi_mc_ops *, void *); extern void cmi_hdl_inj_begin(cmi_hdl_t); extern void cmi_hdl_inj_end(cmi_hdl_t); extern void cmi_read_smbios(cmi_hdl_t); #define HDL2CMI(hdl) cmi_hdl_getcmi(hdl) #define CMI_OPS(cmi) (cmi)->cmi_ops #define CMI_OP_PRESENT(cmi, op) ((cmi) && CMI_OPS(cmi)->op != NULL) #define CMI_MATCH_VENDOR 0 /* Just match on vendor */ #define CMI_MATCH_FAMILY 1 /* Match down to family */ #define CMI_MATCH_MODEL 2 /* Match down to model */ #define CMI_MATCH_STEPPING 3 /* Match down to stepping */ static void cmi_link(cmi_t *cmi) { ASSERT(MUTEX_HELD(&cmi_load_lock)); cmi->cmi_prev = NULL; cmi->cmi_next = cmi_list; if (cmi_list != NULL) cmi_list->cmi_prev = cmi; cmi_list = cmi; } static void cmi_unlink(cmi_t *cmi) { ASSERT(MUTEX_HELD(&cmi_load_lock)); ASSERT(cmi->cmi_refcnt == 0); if (cmi->cmi_prev != NULL) cmi->cmi_prev = cmi->cmi_next; if (cmi->cmi_next != NULL) cmi->cmi_next->cmi_prev = cmi->cmi_prev; if (cmi_list == cmi) cmi_list = cmi->cmi_next; } /* * Hold the module in memory. We call to CPU modules without using the * stubs mechanism, so these modules must be manually held in memory. * The mod_ref acts as if another loaded module has a dependency on us. */ static void cmi_hold(cmi_t *cmi) { ASSERT(MUTEX_HELD(&cmi_load_lock)); mutex_enter(&mod_lock); cmi->cmi_modp->mod_ref++; mutex_exit(&mod_lock); cmi->cmi_refcnt++; } static void cmi_rele(cmi_t *cmi) { ASSERT(MUTEX_HELD(&cmi_load_lock)); mutex_enter(&mod_lock); cmi->cmi_modp->mod_ref--; mutex_exit(&mod_lock); if (--cmi->cmi_refcnt == 0) { cmi_unlink(cmi); kmem_free(cmi, sizeof (cmi_t)); } } static cmi_ops_t * cmi_getops(modctl_t *modp) { cmi_ops_t *ops; if ((ops = (cmi_ops_t *)modlookup_by_modctl(modp, "_cmi_ops")) == NULL) { cmn_err(CE_WARN, "cpu module '%s' is invalid: no _cmi_ops " "found", modp->mod_modname); return (NULL); } if (ops->cmi_init == NULL) { cmn_err(CE_WARN, "cpu module '%s' is invalid: no cmi_init " "entry point", modp->mod_modname); return (NULL); } return (ops); } static cmi_t * cmi_load_modctl(modctl_t *modp) { cmi_ops_t *ops; uintptr_t ver; cmi_t *cmi; cmi_api_ver_t apiver; ASSERT(MUTEX_HELD(&cmi_load_lock)); for (cmi = cmi_list; cmi != NULL; cmi = cmi->cmi_next) { if (cmi->cmi_modp == modp) return (cmi); } if ((ver = modlookup_by_modctl(modp, "_cmi_api_version")) == NULL) { /* * Apparently a cpu module before versioning was introduced - * we call this version 0. */ apiver = CMI_API_VERSION_0; } else { apiver = *((cmi_api_ver_t *)ver); if (!CMI_API_VERSION_CHKMAGIC(apiver)) { cmn_err(CE_WARN, "cpu module '%s' is invalid: " "_cmi_api_version 0x%x has bad magic", modp->mod_modname, apiver); return (NULL); } } if (apiver != CMI_API_VERSION) { cmn_err(CE_WARN, "cpu module '%s' has API version %d, " "kernel requires API version %d", modp->mod_modname, CMI_API_VERSION_TOPRINT(apiver), CMI_API_VERSION_TOPRINT(CMI_API_VERSION)); return (NULL); } if ((ops = cmi_getops(modp)) == NULL) return (NULL); cmi = kmem_zalloc(sizeof (*cmi), KM_SLEEP); cmi->cmi_ops = ops; cmi->cmi_modp = modp; cmi_link(cmi); return (cmi); } static int cmi_cpu_match(cmi_hdl_t hdl1, cmi_hdl_t hdl2, int match) { if (match >= CMI_MATCH_VENDOR && cmi_hdl_vendor(hdl1) != cmi_hdl_vendor(hdl2)) return (0); if (match >= CMI_MATCH_FAMILY && cmi_hdl_family(hdl1) != cmi_hdl_family(hdl2)) return (0); if (match >= CMI_MATCH_MODEL && cmi_hdl_model(hdl1) != cmi_hdl_model(hdl2)) return (0); if (match >= CMI_MATCH_STEPPING && cmi_hdl_stepping(hdl1) != cmi_hdl_stepping(hdl2)) return (0); return (1); } static int cmi_search_list_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3) { cmi_hdl_t thdl = (cmi_hdl_t)arg1; int match = *((int *)arg2); cmi_hdl_t *rsltp = (cmi_hdl_t *)arg3; if (cmi_cpu_match(thdl, whdl, match)) { cmi_hdl_hold(whdl); /* short-term hold */ *rsltp = whdl; return (CMI_HDL_WALK_DONE); } else { return (CMI_HDL_WALK_NEXT); } } static cmi_t * cmi_search_list(cmi_hdl_t hdl, int match) { cmi_hdl_t dhdl = NULL; cmi_t *cmi = NULL; ASSERT(MUTEX_HELD(&cmi_load_lock)); cmi_hdl_walk(cmi_search_list_cb, (void *)hdl, (void *)&match, &dhdl); if (dhdl) { cmi = HDL2CMI(dhdl); cmi_hdl_rele(dhdl); /* held in cmi_search_list_cb */ } return (cmi); } static cmi_t * cmi_load_module(cmi_hdl_t hdl, int match, int *chosenp) { modctl_t *modp; cmi_t *cmi; int modid; uint_t s[3]; ASSERT(MUTEX_HELD(&cmi_load_lock)); ASSERT(match == CMI_MATCH_STEPPING || match == CMI_MATCH_MODEL || match == CMI_MATCH_FAMILY || match == CMI_MATCH_VENDOR); /* * Have we already loaded a module for a cpu with the same * vendor/family/model/stepping? */ if ((cmi = cmi_search_list(hdl, match)) != NULL) { cmi_hold(cmi); return (cmi); } s[0] = cmi_hdl_family(hdl); s[1] = cmi_hdl_model(hdl); s[2] = cmi_hdl_stepping(hdl); modid = modload_qualified(CPUMOD_SUBDIR, CPUMOD_PREFIX, cmi_hdl_vendorstr(hdl), ".", s, match, chosenp); if (modid == -1) return (NULL); modp = mod_hold_by_id(modid); cmi = cmi_load_modctl(modp); if (cmi) cmi_hold(cmi); mod_release_mod(modp); return (cmi); } /* * Try to load a cpu module with specific support for this chip type. */ static cmi_t * cmi_load_specific(cmi_hdl_t hdl, void **datap) { cmi_t *cmi; int err; int i; ASSERT(MUTEX_HELD(&cmi_load_lock)); for (i = CMI_MATCH_STEPPING; i >= CMI_MATCH_VENDOR; i--) { int suffixlevel; if ((cmi = cmi_load_module(hdl, i, &suffixlevel)) == NULL) return (NULL); /* * A module has loaded and has a _cmi_ops structure, and the * module has been held for this instance. Call its cmi_init * entry point - we expect success (0) or ENOTSUP. */ if ((err = cmi->cmi_ops->cmi_init(hdl, datap)) == 0) { if (boothowto & RB_VERBOSE) { printf("initialized cpu module '%s' on " "chip %d core %d strand %d\n", cmi->cmi_modp->mod_modname, cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl), cmi_hdl_strandid(hdl)); } return (cmi); } else if (err != ENOTSUP) { cmn_err(CE_WARN, "failed to init cpu module '%s' on " "chip %d core %d strand %d: err=%d\n", cmi->cmi_modp->mod_modname, cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl), cmi_hdl_strandid(hdl), err); } /* * The module failed or declined to init, so release * it and update i to be equal to the number * of suffices actually used in the last module path. */ cmi_rele(cmi); i = suffixlevel; } return (NULL); } /* * Load the generic IA32 MCA cpu module, which may still supplement * itself with model-specific support through cpu model-specific modules. */ static cmi_t * cmi_load_generic(cmi_hdl_t hdl, void **datap) { modctl_t *modp; cmi_t *cmi; int modid; int err; ASSERT(MUTEX_HELD(&cmi_load_lock)); if ((modid = modload(CPUMOD_SUBDIR, CPUMOD_PREFIX ".generic")) == -1) return (NULL); modp = mod_hold_by_id(modid); cmi = cmi_load_modctl(modp); if (cmi) cmi_hold(cmi); mod_release_mod(modp); if (cmi == NULL) return (NULL); if ((err = cmi->cmi_ops->cmi_init(hdl, datap)) != 0) { if (err != ENOTSUP) cmn_err(CE_WARN, CPUMOD_PREFIX ".generic failed to " "init: err=%d", err); cmi_rele(cmi); return (NULL); } return (cmi); } cmi_hdl_t cmi_init(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, uint_t strandid) { cmi_t *cmi = NULL; cmi_hdl_t hdl; void *data; if (cmi_no_init) { cmi_no_mca_init = 1; return (NULL); } mutex_enter(&cmi_load_lock); if ((hdl = cmi_hdl_create(class, chipid, coreid, strandid)) == NULL) { mutex_exit(&cmi_load_lock); cmn_err(CE_WARN, "There will be no MCA support on chip %d " "core %d strand %d (cmi_hdl_create returned NULL)\n", chipid, coreid, strandid); return (NULL); } if (!cmi_force_generic) cmi = cmi_load_specific(hdl, &data); if (cmi == NULL && (cmi = cmi_load_generic(hdl, &data)) == NULL) { cmn_err(CE_WARN, "There will be no MCA support on chip %d " "core %d strand %d\n", chipid, coreid, strandid); cmi_hdl_rele(hdl); mutex_exit(&cmi_load_lock); return (NULL); } cmi_hdl_setcmi(hdl, cmi, data); cms_init(hdl); cmi_read_smbios(hdl); mutex_exit(&cmi_load_lock); return (hdl); } /* * cmi_fini is not called at the moment. It is intended to be called * on DR deconfigure of a cpu resource. It should not be called at * simple offline of a cpu. */ void cmi_fini(cmi_hdl_t hdl) { cmi_t *cmi = HDL2CMI(hdl); if (cms_present(hdl)) cms_fini(hdl); if (CMI_OP_PRESENT(cmi, cmi_fini)) CMI_OPS(cmi)->cmi_fini(hdl); cmi_hdl_rele(hdl); /* release hold obtained in cmi_hdl_create */ } /* * cmi_post_startup is called from post_startup for the boot cpu only (no * other cpus are started yet). */ void cmi_post_startup(void) { cmi_hdl_t hdl; cmi_t *cmi; if (cmi_no_mca_init != 0 || (hdl = cmi_hdl_any()) == NULL) /* short-term hold */ return; cmi = HDL2CMI(hdl); if (CMI_OP_PRESENT(cmi, cmi_post_startup)) CMI_OPS(cmi)->cmi_post_startup(hdl); cmi_hdl_rele(hdl); } /* * Called just once from start_other_cpus when all processors are started. * This will not be called for each cpu, so the registered op must not * assume it is called as such. We are not necessarily executing on * the boot cpu. */ void cmi_post_mpstartup(void) { cmi_hdl_t hdl; cmi_t *cmi; if (cmi_no_mca_init != 0 || (hdl = cmi_hdl_any()) == NULL) /* short-term hold */ return; cmi = HDL2CMI(hdl); if (CMI_OP_PRESENT(cmi, cmi_post_mpstartup)) CMI_OPS(cmi)->cmi_post_mpstartup(hdl); cmi_hdl_rele(hdl); } void cmi_faulted_enter(cmi_hdl_t hdl) { cmi_t *cmi = HDL2CMI(hdl); if (cmi_no_mca_init != 0) return; if (CMI_OP_PRESENT(cmi, cmi_faulted_enter)) CMI_OPS(cmi)->cmi_faulted_enter(hdl); } void cmi_faulted_exit(cmi_hdl_t hdl) { cmi_t *cmi = HDL2CMI(hdl); if (cmi_no_mca_init != 0) return; if (CMI_OP_PRESENT(cmi, cmi_faulted_exit)) CMI_OPS(cmi)->cmi_faulted_exit(hdl); } void cmi_mca_init(cmi_hdl_t hdl) { cmi_t *cmi; if (cmi_no_mca_init != 0) return; cmi = HDL2CMI(hdl); if (CMI_OP_PRESENT(cmi, cmi_mca_init)) CMI_OPS(cmi)->cmi_mca_init(hdl); } #define CMI_RESPONSE_PANIC 0x0 /* panic must have value 0 */ #define CMI_RESPONSE_NONE 0x1 #define CMI_RESPONSE_CKILL 0x2 #define CMI_RESPONSE_REBOOT 0x3 /* not implemented */ #define CMI_RESPONSE_ONTRAP_PROT 0x4 #define CMI_RESPONSE_LOFAULT_PROT 0x5 /* * Return 0 if we will panic in response to this machine check, otherwise * non-zero. If the caller is cmi_mca_trap in this file then the nonzero * return values are to be interpreted from CMI_RESPONSE_* above. * * This function must just return what will be done without actually * doing anything; this includes not changing the regs. */ int cmi_mce_response(struct regs *rp, uint64_t disp) { int panicrsp = cmi_panic_on_uncorrectable_error ? CMI_RESPONSE_PANIC : CMI_RESPONSE_NONE; on_trap_data_t *otp; ASSERT(rp != NULL); /* don't call for polling, only on #MC */ /* * If no bits are set in the disposition then there is nothing to * worry about and we do not need to trampoline to ontrap or * lofault handlers. */ if (disp == 0) return (CMI_RESPONSE_NONE); /* * Unconstrained errors cannot be forgiven, even by ontrap or * lofault protection. The data is not poisoned and may not * even belong to the trapped context - eg a writeback of * data that is found to be bad. */ if (disp & CMI_ERRDISP_UC_UNCONSTRAINED) return (panicrsp); /* * ontrap OT_DATA_EC and lofault protection forgive any disposition * other than unconstrained, even those normally forced fatal. */ if ((otp = curthread->t_ontrap) != NULL && otp->ot_prot & OT_DATA_EC) return (CMI_RESPONSE_ONTRAP_PROT); else if (curthread->t_lofault) return (CMI_RESPONSE_LOFAULT_PROT); /* * Forced-fatal errors are terminal even in user mode. */ if (disp & CMI_ERRDISP_FORCEFATAL) return (panicrsp); /* * If the trapped context is corrupt or we have no instruction pointer * to resume at (and aren't trampolining to a fault handler) * then in the kernel case we must panic and in usermode we * kill the affected contract. */ if (disp & (CMI_ERRDISP_CURCTXBAD | CMI_ERRDISP_RIPV_INVALID)) return (USERMODE(rp->r_cs) ? CMI_RESPONSE_CKILL : panicrsp); /* * Anything else is harmless */ return (CMI_RESPONSE_NONE); } int cma_mca_trap_panic_suppressed = 0; static void cmi_mca_panic(void) { if (cmi_panic_on_uncorrectable_error) { fm_panic("Unrecoverable Machine-Check Exception"); } else { cmn_err(CE_WARN, "suppressing panic from fatal #mc"); cma_mca_trap_panic_suppressed++; } } int cma_mca_trap_contract_kills = 0; int cma_mca_trap_ontrap_forgiven = 0; int cma_mca_trap_lofault_forgiven = 0; /* * Native #MC handler - we branch to here from mcetrap */ /*ARGSUSED*/ void cmi_mca_trap(struct regs *rp) { #ifndef __xpv cmi_hdl_t hdl = NULL; uint64_t disp; cmi_t *cmi; int s; if (cmi_no_mca_init != 0) return; /* * This function can call cmn_err, and the cpu module cmi_mca_trap * entry point may also elect to call cmn_err (e.g., if it can't * log the error onto an errorq, say very early in boot). * We need to let cprintf know that we must not block. */ s = spl8(); if ((hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) == NULL || (cmi = HDL2CMI(hdl)) == NULL || !CMI_OP_PRESENT(cmi, cmi_mca_trap)) { cmn_err(CE_WARN, "#MC exception on cpuid %d: %s", CPU->cpu_id, hdl ? "handle lookup ok but no #MC handler found" : "handle lookup failed"); if (hdl != NULL) cmi_hdl_rele(hdl); splx(s); return; } disp = CMI_OPS(cmi)->cmi_mca_trap(hdl, rp); switch (cmi_mce_response(rp, disp)) { default: cmn_err(CE_WARN, "Invalid response from cmi_mce_response"); /*FALLTHRU*/ case CMI_RESPONSE_PANIC: cmi_mca_panic(); break; case CMI_RESPONSE_NONE: break; case CMI_RESPONSE_CKILL: ttolwp(curthread)->lwp_pcb.pcb_flags |= ASYNC_HWERR; aston(curthread); cma_mca_trap_contract_kills++; break; case CMI_RESPONSE_ONTRAP_PROT: { on_trap_data_t *otp = curthread->t_ontrap; otp->ot_trap = OT_DATA_EC; rp->r_pc = otp->ot_trampoline; cma_mca_trap_ontrap_forgiven++; break; } case CMI_RESPONSE_LOFAULT_PROT: rp->r_r0 = EFAULT; rp->r_pc = curthread->t_lofault; cma_mca_trap_lofault_forgiven++; break; } cmi_hdl_rele(hdl); splx(s); #endif /* __xpv */ } void cmi_hdl_poke(cmi_hdl_t hdl) { cmi_t *cmi = HDL2CMI(hdl); if (!CMI_OP_PRESENT(cmi, cmi_hdl_poke)) return; CMI_OPS(cmi)->cmi_hdl_poke(hdl); } #ifndef __xpv void cmi_cmci_trap() { cmi_hdl_t hdl = NULL; cmi_t *cmi; if (cmi_no_mca_init != 0) return; if ((hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) == NULL || (cmi = HDL2CMI(hdl)) == NULL || !CMI_OP_PRESENT(cmi, cmi_cmci_trap)) { cmn_err(CE_WARN, "CMCI interrupt on cpuid %d: %s", CPU->cpu_id, hdl ? "handle lookup ok but no CMCI handler found" : "handle lookup failed"); if (hdl != NULL) cmi_hdl_rele(hdl); return; } CMI_OPS(cmi)->cmi_cmci_trap(hdl); cmi_hdl_rele(hdl); } #endif /* __xpv */ void cmi_mc_register(cmi_hdl_t hdl, const cmi_mc_ops_t *mcops, void *mcdata) { if (!cmi_no_mca_init) cmi_hdl_setmc(hdl, mcops, mcdata); } void cmi_mc_sw_memscrub_disable(void) { memscrub_disable(); } cmi_errno_t cmi_mc_patounum(uint64_t pa, uint8_t valid_hi, uint8_t valid_lo, uint32_t synd, int syndtype, mc_unum_t *up) { const struct cmi_mc_ops *mcops; cmi_hdl_t hdl; cmi_errno_t rv; if (cmi_no_mca_init || (hdl = cmi_hdl_any()) == NULL) /* short-term hold */ return (CMIERR_MC_ABSENT); if ((mcops = cmi_hdl_getmcops(hdl)) == NULL || mcops->cmi_mc_patounum == NULL) { cmi_hdl_rele(hdl); return (CMIERR_MC_NOTSUP); } rv = mcops->cmi_mc_patounum(cmi_hdl_getmcdata(hdl), pa, valid_hi, valid_lo, synd, syndtype, up); cmi_hdl_rele(hdl); return (rv); } cmi_errno_t cmi_mc_unumtopa(mc_unum_t *up, nvlist_t *nvl, uint64_t *pap) { const struct cmi_mc_ops *mcops; cmi_hdl_t hdl; cmi_errno_t rv; nvlist_t *hcsp; if (up != NULL && nvl != NULL) return (CMIERR_API); /* convert from just one form */ if (cmi_no_mca_init || (hdl = cmi_hdl_any()) == NULL) /* short-term hold */ return (CMIERR_MC_ABSENT); if ((mcops = cmi_hdl_getmcops(hdl)) == NULL || mcops->cmi_mc_unumtopa == NULL) { cmi_hdl_rele(hdl); if (nvl != NULL && nvlist_lookup_nvlist(nvl, FM_FMRI_HC_SPECIFIC, &hcsp) == 0 && (nvlist_lookup_uint64(hcsp, "asru-" FM_FMRI_HC_SPECIFIC_PHYSADDR, pap) == 0 || nvlist_lookup_uint64(hcsp, FM_FMRI_HC_SPECIFIC_PHYSADDR, pap) == 0)) { return (CMIERR_MC_PARTIALUNUMTOPA); } else { return (mcops && mcops->cmi_mc_unumtopa ? CMIERR_MC_NOTSUP : CMIERR_MC_ABSENT); } } rv = mcops->cmi_mc_unumtopa(cmi_hdl_getmcdata(hdl), up, nvl, pap); cmi_hdl_rele(hdl); return (rv); } void cmi_mc_logout(cmi_hdl_t hdl, boolean_t ismc, boolean_t sync) { const struct cmi_mc_ops *mcops; if (cmi_no_mca_init || (mcops = cmi_hdl_getmcops(hdl)) == NULL) return; if (mcops->cmi_mc_logout != NULL) mcops->cmi_mc_logout(hdl, ismc, sync); } cmi_errno_t cmi_hdl_msrinject(cmi_hdl_t hdl, cmi_mca_regs_t *regs, uint_t nregs, int force) { cmi_t *cmi = cmi_hdl_getcmi(hdl); cmi_errno_t rc; if (!CMI_OP_PRESENT(cmi, cmi_msrinject)) return (CMIERR_NOTSUP); cmi_hdl_inj_begin(hdl); rc = CMI_OPS(cmi)->cmi_msrinject(hdl, regs, nregs, force); cmi_hdl_inj_end(hdl); return (rc); } boolean_t cmi_panic_on_ue(void) { return (cmi_panic_on_uncorrectable_error ? B_TRUE : B_FALSE); } void cmi_panic_callback(void) { cmi_hdl_t hdl; cmi_t *cmi; if (cmi_no_mca_init || (hdl = cmi_hdl_any()) == NULL) return; cmi = cmi_hdl_getcmi(hdl); if (CMI_OP_PRESENT(cmi, cmi_panic_callback)) CMI_OPS(cmi)->cmi_panic_callback(); cmi_hdl_rele(hdl); }