1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14 * Copyright (c) 2017, Joyent, Inc.
15 * Copyright 2017 Tegile Systems, Inc. All rights reserved.
16 */
17
18 /*
19 * i40e - Intel 10/40 Gb Ethernet driver
20 *
21 * The i40e driver is the main software device driver for the Intel 40 Gb family
22 * of devices. Note that these devices come in many flavors with both 40 GbE
23 * ports and 10 GbE ports. This device is the successor to the 82599 family of
24 * devices (ixgbe).
25 *
26 * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
27 * devices defined in the XL710 controller (previously known as Fortville) are a
28 * rather different beast and have a small switch embedded inside of them. In
29 * addition, the way that most of the programming is done has been overhauled.
30 * As opposed to just using PCIe memory mapped registers, it also has an
31 * administrative queue which is used to communicate with firmware running on
32 * the chip.
33 *
34 * Each physical function in the hardware shows up as a device that this driver
35 * will bind to. The hardware splits many resources evenly across all of the
36 * physical functions present on the device, while other resources are instead
37 * shared across the entire card and its up to the device driver to
38 * intelligently partition them.
39 *
40 * ------------
41 * Organization
42 * ------------
43 *
44 * This driver is made up of several files which have their own theory
45 * statements spread across them. We'll touch on the high level purpose of each
46 * file here, and then we'll get into more discussion on how the device is
47 * generally modelled with respect to the interfaces in illumos.
48 *
49 * i40e_gld.c: This file contains all of the bindings to MAC and the networking
50 * stack.
51 *
52 * i40e_intr.c: This file contains all of the interrupt service routines and
53 * contains logic to enable and disable interrupts on the hardware.
54 * It also contains the logic to map hardware resources such as the
55 * rings to and from interrupts and controls their ability to fire.
56 *
57 * There is a big theory statement on interrupts present there.
58 *
59 * i40e_main.c: The file that you're currently in. It interfaces with the
60 * traditional OS DDI interfaces and is in charge of configuring
61 * the device.
62 *
63 * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
64 * work with Intel's common code for the device.
65 *
66 * i40e_stats.c: This file contains the general work and logic around our
67 * kstats. A theory statement on their organization and use of the
68 * hardware exists there.
69 *
70 * i40e_sw.h: This header file contains all of the primary structure definitions
71 * and constants that are used across the entire driver.
72 *
73 * i40e_transceiver.c: This file contains all of the logic for sending and
74 * receiving data. It contains all of the ring and DMA
75 * allocation logic, as well as, the actual interfaces to
76 * send and receive data.
77 *
78 * A big theory statement on ring management, descriptors,
79 * and how it ties into the OS is present there.
80 *
81 * --------------
82 * General Design
83 * --------------
84 *
85 * Before we go too far into the general way we've laid out data structures and
86 * the like, it's worth taking some time to explain how the hardware is
87 * organized. This organization informs a lot of how we do things at this time
88 * in the driver.
89 *
90 * Each physical device consists of a number of one or more ports, which are
91 * considered physical functions in the PCI sense and thus each get enumerated
92 * by the system, resulting in an instance being created and attached to. While
93 * there are many resources that are unique to each physical function eg.
94 * instance of the device, there are many that are shared across all of them.
95 * Several resources have an amount reserved for each Virtual Station Interface
96 * (VSI) and then a static pool of resources, available for all functions on the
97 * card.
98 *
99 * The most important resource in hardware are its transmit and receive queue
100 * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
101 * parlance. There are a set number of these on each device; however, they are
102 * statically partitioned among all of the different physical functions.
103 *
104 * 'Fortville' (the code name for this device family) is basically a switch. To
105 * map MAC addresses and other things to queues, we end up having to create
106 * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
107 * traffic to a queue. A VSI owns a collection of queues and has a series of
108 * forwarding rules that point to it. One way to think of this is to treat it
109 * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
110 * classification resources, that is a VSI in i40e.
111 *
112 * The sets of VSIs is shared across the entire device, though there may be some
113 * amount that are reserved to each PF. Because the GLDv3 does not let us change
114 * the number of groups dynamically, we instead statically divide this amount
115 * evenly between all the functions that exist. In addition, we have the same
116 * problem with the mac address forwarding rules. There are a static number that
117 * exist shared across all the functions.
118 *
119 * To handle both of these resources, what we end up doing is going through and
120 * determining which functions belong to the same device. Nominally one might do
121 * this by having a nexus driver; however, a prime requirement for a nexus
122 * driver is identifying the various children and activating them. While it is
123 * possible to get this information from NVRAM, we would end up duplicating a
124 * lot of the PCI enumeration logic. Really, at the end of the day, the device
125 * doesn't give us the traditional identification properties we want from a
126 * nexus driver.
127 *
128 * Instead, we rely on some properties that are guaranteed to be unique. While
129 * it might be tempting to leverage the PBA or serial number of the device from
130 * NVRAM, there is nothing that says that two devices can't be mis-programmed to
131 * have the same values in NVRAM. Instead, we uniquely identify a group of
132 * functions based on their parent in the /devices tree, their PCI bus and PCI
133 * function identifiers. Using either on their own may not be sufficient.
134 *
135 * For each unique PCI device that we encounter, we'll create a i40e_device_t.
136 * From there, because we don't have a good way to tell the GLDv3 about sharing
137 * resources between everything, we'll end up just dividing the resources
138 * evenly between all of the functions. Longer term, if we don't have to declare
139 * to the GLDv3 that these resources are shared, then we'll maintain a pool and
140 * have each PF allocate from the pool in the device, thus if only two of four
141 * ports are being used, for example, then all of the resources can still be
142 * used.
143 *
144 * -------------------------------------------
145 * Transmit and Receive Queue Pair Allocations
146 * -------------------------------------------
147 *
148 * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
149 * queue pairs, we have no way of modifying it, only observing it. From there,
150 * it's up to us to map these queues to VSIs and VFs. Since we don't support any
151 * VFs at this time, we only focus on assignments to VSIs.
152 *
153 * At the moment, we used a static mapping of transmit/receive queue pairs to a
154 * given VSI (eg. rings to a group). Though in the fullness of time, we want to
155 * make this something which is fully dynamic and take advantage of documented,
156 * but not yet available functionality for adding filters based on VXLAN and
157 * other encapsulation technologies.
158 *
159 * -------------------------------------
160 * Broadcast, Multicast, and Promiscuous
161 * -------------------------------------
162 *
163 * As part of the GLDv3, we need to make sure that we can handle receiving
164 * broadcast and multicast traffic. As well as enabling promiscuous mode when
165 * requested. GLDv3 requires that all broadcast and multicast traffic be
166 * retrieved by the default group, eg. the first one. This is the same thing as
167 * the default VSI.
168 *
169 * To receieve broadcast traffic, we enable it through the admin queue, rather
170 * than use one of our filters for it. For multicast traffic, we reserve a
171 * certain number of the hash filters and assign them to a given PF. When we
172 * exceed those, we then switch to using promiscuous mode for multicast traffic.
173 *
174 * More specifically, once we exceed the number of filters (indicated because
175 * the i40e_t`i40e_resources.ifr_nmcastfilt ==
176 * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
177 * promiscuous mode. If promiscuous mode is toggled then we keep track of the
178 * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
179 * That will stay enabled until that count reaches zero indicating that we have
180 * only added multicast addresses that we have a corresponding entry for.
181 *
182 * Because MAC itself wants to toggle promiscuous mode, which includes both
183 * unicast and multicast traffic, we go through and keep track of that
184 * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
185 * member.
186 *
187 * --------------
188 * VSI Management
189 * --------------
190 *
191 * At this time, we currently only support a single MAC group, and thus a single
192 * VSI. This VSI is considered the default VSI and should be the only one that
193 * exists after a reset. Currently it is stored as the member
194 * i40e_t`i40e_vsi_id. While this works for the moment and for an initial
195 * driver, it's not sufficient for the longer-term path of the driver. Instead,
196 * we'll want to actually have a unique i40e_vsi_t structure which is used
197 * everywhere. Note that this means that every place that uses the
198 * i40e_t`i40e_vsi_id will need to be refactored.
199 *
200 * ----------------
201 * Structure Layout
202 * ----------------
203 *
204 * The following images relates the core data structures together. The primary
205 * structure in the system is the i40e_t. It itself contains multiple rings,
206 * i40e_trqpair_t's which contain the various transmit and receive data. The
207 * receive data is stored outside of the i40e_trqpair_t and instead in the
208 * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
209 * track of per-physical device state. Finally, for every active descriptor,
210 * there is a corresponding control block, which is where the
211 * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
212 *
213 * +-----------------------+ +-----------------------+
214 * | Global i40e_t list | | Global Device list |
215 * | | +--| |
216 * | i40e_glist | | | i40e_dlist |
217 * +-----------------------+ | +-----------------------+
218 * | v
219 * | +------------------------+ +-----------------------+
220 * | | Device-wide Structure |----->| Device-wide Structure |--> ...
221 * | | i40e_device_t | | i40e_device_t |
222 * | | | +-----------------------+
223 * | | dev_info_t * ------+--> Parent in devices tree.
224 * | | uint_t ------+--> PCI bus number
225 * | | uint_t ------+--> PCI device number
226 * | | uint_t ------+--> Number of functions
227 * | | i40e_switch_rsrcs_t ---+--> Captured total switch resources
228 * | | list_t ------+-------------+
229 * | +------------------------+ |
230 * | ^ |
231 * | +--------+ |
232 * | | v
233 * | +---------------------------+ | +-------------------+
234 * +->| GLDv3 Device, per PF |-----|-->| GLDv3 Device (PF) |--> ...
235 * | i40e_t | | | i40e_t |
236 * | **Primary Structure** | | +-------------------+
237 * | | |
238 * | i40e_device_t * --+-----+
239 * | i40e_state_t --+---> Device State
240 * | i40e_hw_t --+---> Intel common code structure
241 * | mac_handle_t --+---> GLDv3 handle to MAC
242 * | ddi_periodic_t --+---> Link activity timer
243 * | int (vsi_id) --+---> VSI ID, main identifier
244 * | i40e_func_rsrc_t --+---> Available hardware resources
245 * | i40e_switch_rsrc_t * --+---> Switch resource snapshot
246 * | i40e_sdu --+---> Current MTU
247 * | i40e_frame_max --+---> Current HW frame size
248 * | i40e_uaddr_t * --+---> Array of assigned unicast MACs
249 * | i40e_maddr_t * --+---> Array of assigned multicast MACs
250 * | i40e_mcast_promisccount --+---> Active multicast state
251 * | i40e_promisc_on --+---> Current promiscuous mode state
252 * | int --+---> Number of transmit/receive pairs
253 * | kstat_t * --+---> PF kstats
254 * | kstat_t * --+---> VSI kstats
255 * | i40e_pf_stats_t --+---> PF kstat backing data
256 * | i40e_vsi_stats_t --+---> VSI kstat backing data
257 * | i40e_trqpair_t * --+---------+
258 * +---------------------------+ |
259 * |
260 * v
261 * +-------------------------------+ +-----------------------------+
262 * | Transmit/Receive Queue Pair |-------| Transmit/Receive Queue Pair |->...
263 * | i40e_trqpair_t | | i40e_trqpair_t |
264 * + Ring Data Structure | +-----------------------------+
265 * | |
266 * | mac_ring_handle_t +--> MAC RX ring handle
267 * | mac_ring_handle_t +--> MAC TX ring handle
268 * | i40e_rxq_stat_t --+--> RX Queue stats
269 * | i40e_txq_stat_t --+--> TX Queue stats
270 * | uint32_t (tx ring size) +--> TX Ring Size
271 * | uint32_t (tx free list size) +--> TX Free List Size
272 * | i40e_dma_buffer_t --------+--> TX Descriptor ring DMA
273 * | i40e_tx_desc_t * --------+--> TX descriptor ring
274 * | volatile unt32_t * +--> TX Write back head
275 * | uint32_t -------+--> TX ring head
276 * | uint32_t -------+--> TX ring tail
277 * | uint32_t -------+--> Num TX desc free
278 * | i40e_tx_control_block_t * --+--> TX control block array ---+
279 * | i40e_tx_control_block_t ** --+--> TCB work list ----+
280 * | i40e_tx_control_block_t ** --+--> TCB free list ---+
281 * | uint32_t -------+--> Free TCB count |
282 * | i40e_rx_data_t * -------+--+ v
283 * +-------------------------------+ | +---------------------------+
284 * | | Per-TX Frame Metadata |
285 * | | i40e_tx_control_block_t |
286 * +--------------------+ | |
287 * | mblk to transmit <--+--- mblk_t * |
288 * | type of transmit <--+--- i40e_tx_type_t |
289 * | TX DMA handle <--+--- ddi_dma_handle_t |
290 * v TX DMA buffer <--+--- i40e_dma_buffer_t |
291 * +------------------------------+ +---------------------------+
292 * | Core Receive Data |
293 * | i40e_rx_data_t |
294 * | |
295 * | i40e_dma_buffer_t --+--> RX descriptor DMA Data
296 * | i40e_rx_desc_t --+--> RX descriptor ring
297 * | uint32_t --+--> Next free desc.
298 * | i40e_rx_control_block_t * --+--> RX Control Block Array ---+
299 * | i40e_rx_control_block_t ** --+--> RCB work list ---+
300 * | i40e_rx_control_block_t ** --+--> RCB free list ---+
301 * +------------------------------+ |
302 * ^ |
303 * | +---------------------------+ |
304 * | | Per-RX Frame Metadata |<---------------+
305 * | | i40e_rx_control_block_t |
306 * | | |
307 * | | mblk_t * ----+--> Received mblk_t data
308 * | | uint32_t ----+--> Reference count
309 * | | i40e_dma_buffer_t ----+--> Receive data DMA info
310 * | | frtn_t ----+--> mblk free function info
311 * +-----+-- i40e_rx_data_t * |
312 * +---------------------------+
313 *
314 * -------------
315 * Lock Ordering
316 * -------------
317 *
318 * In order to ensure that we don't deadlock, the following represents the
319 * lock order being used. When grabbing locks, follow the following order. Lower
320 * numbers are more important. Thus, the i40e_glock which is number 0, must be
321 * taken before any other locks in the driver. On the other hand, the
322 * i40e_t`i40e_stat_lock, has the highest number because it's the least
323 * important lock. Note, that just because one lock is higher than another does
324 * not mean that all intermediary locks are required.
325 *
326 * 0) i40e_glock
327 * 1) i40e_t`i40e_general_lock
328 *
329 * 2) i40e_trqpair_t`itrq_rx_lock
330 * 3) i40e_trqpair_t`itrq_tx_lock
331 * 4) i40e_t`i40e_rx_pending_lock
332 * 5) i40e_trqpair_t`itrq_tcb_lock
333 *
334 * 6) i40e_t`i40e_stat_lock
335 *
336 * Rules and expectations:
337 *
338 * 1) A thread holding locks belong to one PF should not hold locks belonging to
339 * a second. If for some reason this becomes necessary, locks should be grabbed
340 * based on the list order in the i40e_device_t, which implies that the
341 * i40e_glock is held.
342 *
343 * 2) When grabbing locks between multiple transmit and receive queues, the
344 * locks for the lowest number transmit/receive queue should be grabbed first.
345 *
346 * 3) When grabbing both the transmit and receive lock for a given queue, always
347 * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
348 *
349 * 4) The following pairs of locks are not expected to be held at the same time:
350 *
351 * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
352 *
353 * -----------
354 * Future Work
355 * -----------
356 *
357 * At the moment the i40e_t driver is rather bare bones, allowing us to start
358 * getting data flowing and folks using it while we develop additional features.
359 * While bugs have been filed to cover this future work, the following gives an
360 * overview of expected work:
361 *
362 * o TSO support
363 * o Multiple group support
364 * o DMA binding and breaking up the locking in ring recycling.
365 * o Enhanced detection of device errors
366 * o Participation in IRM
367 * o FMA device reset
368 * o Stall detection, temperature error detection, etc.
369 * o More dynamic resource pools
370 */
371
372 #include "i40e_sw.h"
373
374 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.1";
375
376 /*
377 * The i40e_glock primarily protects the lists below and the i40e_device_t
378 * structures.
379 */
380 static kmutex_t i40e_glock;
381 static list_t i40e_glist;
382 static list_t i40e_dlist;
383
384 /*
385 * Access attributes for register mapping.
386 */
387 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
388 DDI_DEVICE_ATTR_V1,
389 DDI_STRUCTURE_LE_ACC,
390 DDI_STRICTORDER_ACC,
391 DDI_FLAGERR_ACC
392 };
393
394 /*
395 * Logging function for this driver.
396 */
397 static void
i40e_dev_err(i40e_t * i40e,int level,boolean_t console,const char * fmt,va_list ap)398 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
399 va_list ap)
400 {
401 char buf[1024];
402
403 (void) vsnprintf(buf, sizeof (buf), fmt, ap);
404
405 if (i40e == NULL) {
406 cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
407 I40E_MODULE_NAME, buf);
408 } else {
409 dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
410 buf);
411 }
412 }
413
414 /*
415 * Because there's the stupid trailing-comma problem with the C preprocessor
416 * and variable arguments, I need to instantiate these. Pardon the redundant
417 * code.
418 */
419 /*PRINTFLIKE2*/
420 void
i40e_error(i40e_t * i40e,const char * fmt,...)421 i40e_error(i40e_t *i40e, const char *fmt, ...)
422 {
423 va_list ap;
424
425 va_start(ap, fmt);
426 i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
427 va_end(ap);
428 }
429
430 /*PRINTFLIKE2*/
431 void
i40e_log(i40e_t * i40e,const char * fmt,...)432 i40e_log(i40e_t *i40e, const char *fmt, ...)
433 {
434 va_list ap;
435
436 va_start(ap, fmt);
437 i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
438 va_end(ap);
439 }
440
441 /*PRINTFLIKE2*/
442 void
i40e_notice(i40e_t * i40e,const char * fmt,...)443 i40e_notice(i40e_t *i40e, const char *fmt, ...)
444 {
445 va_list ap;
446
447 va_start(ap, fmt);
448 i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
449 va_end(ap);
450 }
451
452 /*
453 * Various parts of the driver need to know if the controller is from the X722
454 * family, which has a few additional capabilities and different programming
455 * means. We don't consider virtual functions as part of this as they are quite
456 * different and will require substantially more work.
457 */
458 static boolean_t
i40e_is_x722(i40e_t * i40e)459 i40e_is_x722(i40e_t *i40e)
460 {
461 return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
462 }
463
464 static void
i40e_device_rele(i40e_t * i40e)465 i40e_device_rele(i40e_t *i40e)
466 {
467 i40e_device_t *idp = i40e->i40e_device;
468
469 if (idp == NULL)
470 return;
471
472 mutex_enter(&i40e_glock);
473 VERIFY(idp->id_nreg > 0);
474 list_remove(&idp->id_i40e_list, i40e);
475 idp->id_nreg--;
476 if (idp->id_nreg == 0) {
477 list_remove(&i40e_dlist, idp);
478 list_destroy(&idp->id_i40e_list);
479 kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
480 idp->id_rsrcs_alloc);
481 kmem_free(idp, sizeof (i40e_device_t));
482 }
483 i40e->i40e_device = NULL;
484 mutex_exit(&i40e_glock);
485 }
486
487 static i40e_device_t *
i40e_device_find(i40e_t * i40e,dev_info_t * parent,uint_t bus,uint_t device)488 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
489 {
490 i40e_device_t *idp;
491 mutex_enter(&i40e_glock);
492 for (idp = list_head(&i40e_dlist); idp != NULL;
493 idp = list_next(&i40e_dlist, idp)) {
494 if (idp->id_parent == parent && idp->id_pci_bus == bus &&
495 idp->id_pci_device == device) {
496 break;
497 }
498 }
499
500 if (idp != NULL) {
501 VERIFY(idp->id_nreg < idp->id_nfuncs);
502 idp->id_nreg++;
503 } else {
504 i40e_hw_t *hw = &i40e->i40e_hw_space;
505 ASSERT(hw->num_ports > 0);
506 ASSERT(hw->num_partitions > 0);
507
508 /*
509 * The Intel common code doesn't exactly keep the number of PCI
510 * functions. But it calculates it during discovery of
511 * partitions and ports. So what we do is undo the calculation
512 * that it does originally, as functions are evenly spread
513 * across ports in the rare case of partitions.
514 */
515 idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
516 idp->id_parent = parent;
517 idp->id_pci_bus = bus;
518 idp->id_pci_device = device;
519 idp->id_nfuncs = hw->num_ports * hw->num_partitions;
520 idp->id_nreg = 1;
521 idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
522 idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
523 idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
524 idp->id_rsrcs_alloc, KM_SLEEP);
525 bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
526 sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
527 list_create(&idp->id_i40e_list, sizeof (i40e_t),
528 offsetof(i40e_t, i40e_dlink));
529
530 list_insert_tail(&i40e_dlist, idp);
531 }
532
533 list_insert_tail(&idp->id_i40e_list, i40e);
534 mutex_exit(&i40e_glock);
535
536 return (idp);
537 }
538
539 static void
i40e_link_state_set(i40e_t * i40e,link_state_t state)540 i40e_link_state_set(i40e_t *i40e, link_state_t state)
541 {
542 if (i40e->i40e_link_state == state)
543 return;
544
545 i40e->i40e_link_state = state;
546 mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
547 }
548
549 /*
550 * This is a basic link check routine. Mostly we're using this just to see
551 * if we can get any accurate information about the state of the link being
552 * up or down, as well as updating the link state, speed, etc. information.
553 */
554 void
i40e_link_check(i40e_t * i40e)555 i40e_link_check(i40e_t *i40e)
556 {
557 i40e_hw_t *hw = &i40e->i40e_hw_space;
558 boolean_t ls;
559 int ret;
560
561 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
562
563 hw->phy.get_link_info = B_TRUE;
564 if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
565 i40e->i40e_s_link_status_errs++;
566 i40e->i40e_s_link_status_lasterr = ret;
567 return;
568 }
569
570 /*
571 * Firmware abstracts all of the mac and phy information for us, so we
572 * can use i40e_get_link_status to determine the current state.
573 */
574 if (ls == B_TRUE) {
575 enum i40e_aq_link_speed speed;
576
577 speed = i40e_get_link_speed(hw);
578
579 /*
580 * Translate from an i40e value to a value in Mbits/s.
581 */
582 switch (speed) {
583 case I40E_LINK_SPEED_100MB:
584 i40e->i40e_link_speed = 100;
585 break;
586 case I40E_LINK_SPEED_1GB:
587 i40e->i40e_link_speed = 1000;
588 break;
589 case I40E_LINK_SPEED_10GB:
590 i40e->i40e_link_speed = 10000;
591 break;
592 case I40E_LINK_SPEED_20GB:
593 i40e->i40e_link_speed = 20000;
594 break;
595 case I40E_LINK_SPEED_40GB:
596 i40e->i40e_link_speed = 40000;
597 break;
598 case I40E_LINK_SPEED_25GB:
599 i40e->i40e_link_speed = 25000;
600 break;
601 default:
602 i40e->i40e_link_speed = 0;
603 break;
604 }
605
606 /*
607 * At this time, hardware does not support half-duplex
608 * operation, hence why we don't ask the hardware about our
609 * current speed.
610 */
611 i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
612 i40e_link_state_set(i40e, LINK_STATE_UP);
613 } else {
614 i40e->i40e_link_speed = 0;
615 i40e->i40e_link_duplex = 0;
616 i40e_link_state_set(i40e, LINK_STATE_DOWN);
617 }
618 }
619
620 static void
i40e_rem_intrs(i40e_t * i40e)621 i40e_rem_intrs(i40e_t *i40e)
622 {
623 int i, rc;
624
625 for (i = 0; i < i40e->i40e_intr_count; i++) {
626 rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
627 if (rc != DDI_SUCCESS) {
628 i40e_log(i40e, "failed to free interrupt %d: %d",
629 i, rc);
630 }
631 }
632
633 kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
634 i40e->i40e_intr_handles = NULL;
635 }
636
637 static void
i40e_rem_intr_handlers(i40e_t * i40e)638 i40e_rem_intr_handlers(i40e_t *i40e)
639 {
640 int i, rc;
641
642 for (i = 0; i < i40e->i40e_intr_count; i++) {
643 rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
644 if (rc != DDI_SUCCESS) {
645 i40e_log(i40e, "failed to remove interrupt %d: %d",
646 i, rc);
647 }
648 }
649 }
650
651 /*
652 * illumos Fault Management Architecture (FMA) support.
653 */
654
655 int
i40e_check_acc_handle(ddi_acc_handle_t handle)656 i40e_check_acc_handle(ddi_acc_handle_t handle)
657 {
658 ddi_fm_error_t de;
659
660 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
661 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
662 return (de.fme_status);
663 }
664
665 int
i40e_check_dma_handle(ddi_dma_handle_t handle)666 i40e_check_dma_handle(ddi_dma_handle_t handle)
667 {
668 ddi_fm_error_t de;
669
670 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
671 return (de.fme_status);
672 }
673
674 /*
675 * Fault service error handling callback function.
676 */
677 /* ARGSUSED */
678 static int
i40e_fm_error_cb(dev_info_t * dip,ddi_fm_error_t * err,const void * impl_data)679 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
680 {
681 pci_ereport_post(dip, err, NULL);
682 return (err->fme_status);
683 }
684
685 static void
i40e_fm_init(i40e_t * i40e)686 i40e_fm_init(i40e_t *i40e)
687 {
688 ddi_iblock_cookie_t iblk;
689
690 i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
691 i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
692 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
693 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
694
695 if (i40e->i40e_fm_capabilities < 0) {
696 i40e->i40e_fm_capabilities = 0;
697 } else if (i40e->i40e_fm_capabilities > 0xf) {
698 i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
699 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
700 DDI_FM_ERRCB_CAPABLE;
701 }
702
703 /*
704 * Only register with IO Fault Services if we have some capability
705 */
706 if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
707 i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
708 } else {
709 i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
710 }
711
712 if (i40e->i40e_fm_capabilities) {
713 ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
714
715 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
716 DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
717 pci_ereport_setup(i40e->i40e_dip);
718 }
719
720 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
721 ddi_fm_handler_register(i40e->i40e_dip,
722 i40e_fm_error_cb, (void*)i40e);
723 }
724 }
725
726 if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
727 i40e_init_dma_attrs(i40e, B_TRUE);
728 } else {
729 i40e_init_dma_attrs(i40e, B_FALSE);
730 }
731 }
732
733 static void
i40e_fm_fini(i40e_t * i40e)734 i40e_fm_fini(i40e_t *i40e)
735 {
736 if (i40e->i40e_fm_capabilities) {
737
738 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
739 DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
740 pci_ereport_teardown(i40e->i40e_dip);
741
742 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
743 ddi_fm_handler_unregister(i40e->i40e_dip);
744
745 ddi_fm_fini(i40e->i40e_dip);
746 }
747 }
748
749 void
i40e_fm_ereport(i40e_t * i40e,char * detail)750 i40e_fm_ereport(i40e_t *i40e, char *detail)
751 {
752 uint64_t ena;
753 char buf[FM_MAX_CLASS];
754
755 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
756 ena = fm_ena_generate(0, FM_ENA_FMT1);
757 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
758 ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
759 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
760 }
761 }
762
763 /*
764 * Here we're trying to get the ID of the default VSI. In general, when we come
765 * through and look at this shortly after attach, we expect there to only be a
766 * single element present, which is the default VSI. Importantly, each PF seems
767 * to not see any other devices, in part because of the simple switch mode that
768 * we're using. If for some reason, we see more artifact, we'll need to revisit
769 * what we're doing here.
770 */
771 static int
i40e_get_vsi_id(i40e_t * i40e)772 i40e_get_vsi_id(i40e_t *i40e)
773 {
774 i40e_hw_t *hw = &i40e->i40e_hw_space;
775 struct i40e_aqc_get_switch_config_resp *sw_config;
776 uint8_t aq_buf[I40E_AQ_LARGE_BUF];
777 uint16_t next = 0;
778 int rc;
779
780 /* LINTED: E_BAD_PTR_CAST_ALIGN */
781 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
782 rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
783 NULL);
784 if (rc != I40E_SUCCESS) {
785 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
786 rc, hw->aq.asq_last_status);
787 return (-1);
788 }
789
790 if (LE_16(sw_config->header.num_reported) != 1) {
791 i40e_error(i40e, "encountered multiple (%d) switching units "
792 "during attach, not proceeding",
793 LE_16(sw_config->header.num_reported));
794 return (-1);
795 }
796
797 return (sw_config->element[0].seid);
798 }
799
800 /*
801 * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
802 * must also provide the memory for it; however, we don't need to keep it around
803 * to the call to the common code. It takes it and parses it into an internal
804 * structure.
805 */
806 static boolean_t
i40e_get_hw_capabilities(i40e_t * i40e,i40e_hw_t * hw)807 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
808 {
809 struct i40e_aqc_list_capabilities_element_resp *buf;
810 int rc;
811 size_t len;
812 uint16_t needed;
813 int nelems = I40E_HW_CAP_DEFAULT;
814
815 len = nelems * sizeof (*buf);
816
817 for (;;) {
818 ASSERT(len > 0);
819 buf = kmem_alloc(len, KM_SLEEP);
820 rc = i40e_aq_discover_capabilities(hw, buf, len,
821 &needed, i40e_aqc_opc_list_func_capabilities, NULL);
822 kmem_free(buf, len);
823
824 if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
825 nelems == I40E_HW_CAP_DEFAULT) {
826 if (nelems == needed) {
827 i40e_error(i40e, "Capability discovery failed "
828 "due to byzantine common code");
829 return (B_FALSE);
830 }
831 len = needed;
832 continue;
833 } else if (rc != I40E_SUCCESS ||
834 hw->aq.asq_last_status != I40E_AQ_RC_OK) {
835 i40e_error(i40e, "Capability discovery failed: %d", rc);
836 return (B_FALSE);
837 }
838
839 break;
840 }
841
842 return (B_TRUE);
843 }
844
845 /*
846 * Obtain the switch's capabilities as seen by this PF and keep it around for
847 * our later use.
848 */
849 static boolean_t
i40e_get_switch_resources(i40e_t * i40e)850 i40e_get_switch_resources(i40e_t *i40e)
851 {
852 i40e_hw_t *hw = &i40e->i40e_hw_space;
853 uint8_t cnt = 2;
854 uint8_t act;
855 size_t size;
856 i40e_switch_rsrc_t *buf;
857
858 for (;;) {
859 enum i40e_status_code ret;
860 size = cnt * sizeof (i40e_switch_rsrc_t);
861 ASSERT(size > 0);
862 if (size > UINT16_MAX)
863 return (B_FALSE);
864 buf = kmem_alloc(size, KM_SLEEP);
865
866 ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
867 cnt, NULL);
868 if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
869 hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
870 kmem_free(buf, size);
871 cnt += I40E_SWITCH_CAP_DEFAULT;
872 continue;
873 } else if (ret != I40E_SUCCESS) {
874 kmem_free(buf, size);
875 i40e_error(i40e,
876 "failed to retrieve switch statistics: %d", ret);
877 return (B_FALSE);
878 }
879
880 break;
881 }
882
883 i40e->i40e_switch_rsrc_alloc = cnt;
884 i40e->i40e_switch_rsrc_actual = act;
885 i40e->i40e_switch_rsrcs = buf;
886
887 return (B_TRUE);
888 }
889
890 static void
i40e_cleanup_resources(i40e_t * i40e)891 i40e_cleanup_resources(i40e_t *i40e)
892 {
893 if (i40e->i40e_uaddrs != NULL) {
894 kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
895 i40e->i40e_resources.ifr_nmacfilt);
896 i40e->i40e_uaddrs = NULL;
897 }
898
899 if (i40e->i40e_maddrs != NULL) {
900 kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
901 i40e->i40e_resources.ifr_nmcastfilt);
902 i40e->i40e_maddrs = NULL;
903 }
904
905 if (i40e->i40e_switch_rsrcs != NULL) {
906 size_t sz = sizeof (i40e_switch_rsrc_t) *
907 i40e->i40e_switch_rsrc_alloc;
908 ASSERT(sz > 0);
909 kmem_free(i40e->i40e_switch_rsrcs, sz);
910 i40e->i40e_switch_rsrcs = NULL;
911 }
912
913 if (i40e->i40e_device != NULL)
914 i40e_device_rele(i40e);
915 }
916
917 static boolean_t
i40e_get_available_resources(i40e_t * i40e)918 i40e_get_available_resources(i40e_t *i40e)
919 {
920 dev_info_t *parent;
921 uint16_t bus, device, func;
922 uint_t nregs;
923 int *regs, i;
924 i40e_device_t *idp;
925 i40e_hw_t *hw = &i40e->i40e_hw_space;
926
927 parent = ddi_get_parent(i40e->i40e_dip);
928
929 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
930 ®s, &nregs) != DDI_PROP_SUCCESS) {
931 return (B_FALSE);
932 }
933
934 if (nregs < 1) {
935 ddi_prop_free(regs);
936 return (B_FALSE);
937 }
938
939 bus = PCI_REG_BUS_G(regs[0]);
940 device = PCI_REG_DEV_G(regs[0]);
941 func = PCI_REG_FUNC_G(regs[0]);
942 ddi_prop_free(regs);
943
944 i40e->i40e_hw_space.bus.func = func;
945 i40e->i40e_hw_space.bus.device = device;
946
947 if (i40e_get_switch_resources(i40e) == B_FALSE) {
948 return (B_FALSE);
949 }
950
951 /*
952 * To calculate the total amount of a resource we have available, we
953 * need to add how many our i40e_t thinks it has guaranteed, if any, and
954 * then we need to go through and divide the number of available on the
955 * device, which was snapshotted before anyone should have allocated
956 * anything, and use that to derive how many are available from the
957 * pool. Longer term, we may want to turn this into something that's
958 * more of a pool-like resource that everything can share (though that
959 * may require some more assistance from MAC).
960 *
961 * Though for transmit and receive queue pairs, we just have to ask
962 * firmware instead.
963 */
964 idp = i40e_device_find(i40e, parent, bus, device);
965 i40e->i40e_device = idp;
966 i40e->i40e_resources.ifr_nvsis = 0;
967 i40e->i40e_resources.ifr_nvsis_used = 0;
968 i40e->i40e_resources.ifr_nmacfilt = 0;
969 i40e->i40e_resources.ifr_nmacfilt_used = 0;
970 i40e->i40e_resources.ifr_nmcastfilt = 0;
971 i40e->i40e_resources.ifr_nmcastfilt_used = 0;
972
973 for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
974 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
975
976 switch (srp->resource_type) {
977 case I40E_AQ_RESOURCE_TYPE_VSI:
978 i40e->i40e_resources.ifr_nvsis +=
979 LE_16(srp->guaranteed);
980 i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
981 break;
982 case I40E_AQ_RESOURCE_TYPE_MACADDR:
983 i40e->i40e_resources.ifr_nmacfilt +=
984 LE_16(srp->guaranteed);
985 i40e->i40e_resources.ifr_nmacfilt_used =
986 LE_16(srp->used);
987 break;
988 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
989 i40e->i40e_resources.ifr_nmcastfilt +=
990 LE_16(srp->guaranteed);
991 i40e->i40e_resources.ifr_nmcastfilt_used =
992 LE_16(srp->used);
993 break;
994 default:
995 break;
996 }
997 }
998
999 for (i = 0; i < idp->id_rsrcs_act; i++) {
1000 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1001 switch (srp->resource_type) {
1002 case I40E_AQ_RESOURCE_TYPE_VSI:
1003 i40e->i40e_resources.ifr_nvsis +=
1004 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1005 break;
1006 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1007 i40e->i40e_resources.ifr_nmacfilt +=
1008 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1009 break;
1010 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1011 i40e->i40e_resources.ifr_nmcastfilt +=
1012 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1013 default:
1014 break;
1015 }
1016 }
1017
1018 i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1019 i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1020
1021 i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1022 i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1023 i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1024 i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1025
1026 /*
1027 * Initialize these as multicast addresses to indicate it's invalid for
1028 * sanity purposes. Think of it like 0xdeadbeef.
1029 */
1030 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1031 i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1032
1033 return (B_TRUE);
1034 }
1035
1036 static boolean_t
i40e_enable_interrupts(i40e_t * i40e)1037 i40e_enable_interrupts(i40e_t *i40e)
1038 {
1039 int i, rc;
1040
1041 if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1042 rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1043 i40e->i40e_intr_count);
1044 if (rc != DDI_SUCCESS) {
1045 i40e_error(i40e, "Interrupt block-enable failed: %d",
1046 rc);
1047 return (B_FALSE);
1048 }
1049 } else {
1050 for (i = 0; i < i40e->i40e_intr_count; i++) {
1051 rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1052 if (rc != DDI_SUCCESS) {
1053 i40e_error(i40e,
1054 "Failed to enable interrupt %d: %d", i, rc);
1055 while (--i >= 0) {
1056 (void) ddi_intr_disable(
1057 i40e->i40e_intr_handles[i]);
1058 }
1059 return (B_FALSE);
1060 }
1061 }
1062 }
1063
1064 return (B_TRUE);
1065 }
1066
1067 static boolean_t
i40e_disable_interrupts(i40e_t * i40e)1068 i40e_disable_interrupts(i40e_t *i40e)
1069 {
1070 int i, rc;
1071
1072 if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1073 rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1074 i40e->i40e_intr_count);
1075 if (rc != DDI_SUCCESS) {
1076 i40e_error(i40e,
1077 "Interrupt block-disabled failed: %d", rc);
1078 return (B_FALSE);
1079 }
1080 } else {
1081 for (i = 0; i < i40e->i40e_intr_count; i++) {
1082 rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1083 if (rc != DDI_SUCCESS) {
1084 i40e_error(i40e,
1085 "Failed to disable interrupt %d: %d",
1086 i, rc);
1087 return (B_FALSE);
1088 }
1089 }
1090 }
1091
1092 return (B_TRUE);
1093 }
1094
1095 /*
1096 * Free receive & transmit rings.
1097 */
1098 static void
i40e_free_trqpairs(i40e_t * i40e)1099 i40e_free_trqpairs(i40e_t *i40e)
1100 {
1101 int i;
1102 i40e_trqpair_t *itrq;
1103
1104 if (i40e->i40e_trqpairs != NULL) {
1105 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1106 itrq = &i40e->i40e_trqpairs[i];
1107 mutex_destroy(&itrq->itrq_rx_lock);
1108 mutex_destroy(&itrq->itrq_tx_lock);
1109 mutex_destroy(&itrq->itrq_tcb_lock);
1110
1111 /*
1112 * Should have already been cleaned up by start/stop,
1113 * etc.
1114 */
1115 ASSERT(itrq->itrq_txkstat == NULL);
1116 ASSERT(itrq->itrq_rxkstat == NULL);
1117 }
1118
1119 kmem_free(i40e->i40e_trqpairs,
1120 sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1121 i40e->i40e_trqpairs = NULL;
1122 }
1123
1124 cv_destroy(&i40e->i40e_rx_pending_cv);
1125 mutex_destroy(&i40e->i40e_rx_pending_lock);
1126 mutex_destroy(&i40e->i40e_general_lock);
1127 }
1128
1129 /*
1130 * Allocate transmit and receive rings, as well as other data structures that we
1131 * need.
1132 */
1133 static boolean_t
i40e_alloc_trqpairs(i40e_t * i40e)1134 i40e_alloc_trqpairs(i40e_t *i40e)
1135 {
1136 int i;
1137 void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1138
1139 /*
1140 * Now that we have the priority for the interrupts, initialize
1141 * all relevant locks.
1142 */
1143 mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1144 mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1145 cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1146
1147 i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1148 i40e->i40e_num_trqpairs, KM_SLEEP);
1149 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1150 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1151
1152 itrq->itrq_i40e = i40e;
1153 mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1154 mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1155 mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1156 itrq->itrq_index = i;
1157 }
1158
1159 return (B_TRUE);
1160 }
1161
1162
1163
1164 /*
1165 * Unless a .conf file already overrode i40e_t structure values, they will
1166 * be 0, and need to be set in conjunction with the now-available HW report.
1167 *
1168 * However, at the moment, we cap all of these resources as we only support a
1169 * single receive ring and a single group.
1170 */
1171 /* ARGSUSED */
1172 static void
i40e_hw_to_instance(i40e_t * i40e,i40e_hw_t * hw)1173 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1174 {
1175 if (i40e->i40e_num_trqpairs == 0) {
1176 i40e->i40e_num_trqpairs = I40E_TRQPAIR_MAX;
1177 }
1178
1179 if (i40e->i40e_num_rx_groups == 0) {
1180 i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1181 }
1182 }
1183
1184 /*
1185 * Free any resources required by, or setup by, the Intel common code.
1186 */
1187 static void
i40e_common_code_fini(i40e_t * i40e)1188 i40e_common_code_fini(i40e_t *i40e)
1189 {
1190 i40e_hw_t *hw = &i40e->i40e_hw_space;
1191 int rc;
1192
1193 rc = i40e_shutdown_lan_hmc(hw);
1194 if (rc != I40E_SUCCESS)
1195 i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1196
1197 rc = i40e_shutdown_adminq(hw);
1198 if (rc != I40E_SUCCESS)
1199 i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1200 }
1201
1202 /*
1203 * Initialize and call Intel common-code routines, includes some setup
1204 * the common code expects from the driver. Also prints on failure, so
1205 * the caller doesn't have to.
1206 */
1207 static boolean_t
i40e_common_code_init(i40e_t * i40e,i40e_hw_t * hw)1208 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1209 {
1210 int rc;
1211
1212 i40e_clear_hw(hw);
1213 rc = i40e_pf_reset(hw);
1214 if (rc != 0) {
1215 i40e_error(i40e, "failed to reset hardware: %d", rc);
1216 i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1217 return (B_FALSE);
1218 }
1219
1220 rc = i40e_init_shared_code(hw);
1221 if (rc != 0) {
1222 i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1223 return (B_FALSE);
1224 }
1225
1226 hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1227 hw->aq.num_asq_entries = I40E_DEF_ADMINQ_SIZE;
1228 hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1229 hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1230
1231 rc = i40e_init_adminq(hw);
1232 if (rc != 0) {
1233 i40e_error(i40e, "failed to initialize firmware admin queue: "
1234 "%d, potential firmware version mismatch", rc);
1235 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1236 return (B_FALSE);
1237 }
1238
1239 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1240 hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) {
1241 i40e_log(i40e, "The driver for the device detected a newer "
1242 "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1243 "Please install the most recent version of the network "
1244 "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1245 I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
1246 } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1247 hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) {
1248 i40e_log(i40e, "The driver for the device detected an older"
1249 " version of the NVM image (%d.%d) than expected (%d.%d)."
1250 "\nPlease update the NVM image.\n",
1251 hw->aq.api_maj_ver, hw->aq.api_min_ver,
1252 I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR - 1);
1253 }
1254
1255 i40e_clear_pxe_mode(hw);
1256
1257 /*
1258 * We need to call this so that the common code can discover
1259 * capabilities of the hardware, which it uses throughout the rest.
1260 */
1261 if (!i40e_get_hw_capabilities(i40e, hw)) {
1262 i40e_error(i40e, "failed to obtain hardware capabilities");
1263 return (B_FALSE);
1264 }
1265
1266 if (i40e_get_available_resources(i40e) == B_FALSE) {
1267 i40e_error(i40e, "failed to obtain hardware resources");
1268 return (B_FALSE);
1269 }
1270
1271 i40e_hw_to_instance(i40e, hw);
1272
1273 rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1274 hw->func_caps.num_rx_qp, 0, 0);
1275 if (rc != 0) {
1276 i40e_error(i40e, "failed to initialize hardware memory cache: "
1277 "%d", rc);
1278 return (B_FALSE);
1279 }
1280
1281 rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1282 if (rc != 0) {
1283 i40e_error(i40e, "failed to configure hardware memory cache: "
1284 "%d", rc);
1285 return (B_FALSE);
1286 }
1287
1288 (void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1289
1290 rc = i40e_get_mac_addr(hw, hw->mac.addr);
1291 if (rc != I40E_SUCCESS) {
1292 i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1293 rc);
1294 return (B_FALSE);
1295 }
1296
1297 rc = i40e_validate_mac_addr(hw->mac.addr);
1298 if (rc != 0) {
1299 i40e_error(i40e, "failed to validate internal mac address: "
1300 "%d", rc);
1301 return (B_FALSE);
1302 }
1303 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1304 if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1305 I40E_SUCCESS) {
1306 i40e_error(i40e, "failed to retrieve port mac address: %d",
1307 rc);
1308 return (B_FALSE);
1309 }
1310
1311 /*
1312 * We need to obtain the Virtual Station ID (VSI) before we can
1313 * perform other operations on the device.
1314 */
1315 i40e->i40e_vsi_id = i40e_get_vsi_id(i40e);
1316 if (i40e->i40e_vsi_id == -1) {
1317 i40e_error(i40e, "failed to obtain VSI ID");
1318 return (B_FALSE);
1319 }
1320
1321 return (B_TRUE);
1322 }
1323
1324 static void
i40e_unconfigure(dev_info_t * devinfo,i40e_t * i40e)1325 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1326 {
1327 int rc;
1328
1329 if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1330 (void) i40e_disable_interrupts(i40e);
1331
1332 if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1333 i40e->i40e_periodic_id != 0) {
1334 ddi_periodic_delete(i40e->i40e_periodic_id);
1335 i40e->i40e_periodic_id = 0;
1336 }
1337
1338 if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1339 rc = mac_unregister(i40e->i40e_mac_hdl);
1340 if (rc != 0) {
1341 i40e_error(i40e, "failed to unregister from mac: %d",
1342 rc);
1343 }
1344 }
1345
1346 if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1347 i40e_stats_fini(i40e);
1348 }
1349
1350 if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1351 i40e_rem_intr_handlers(i40e);
1352
1353 if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1354 i40e_free_trqpairs(i40e);
1355
1356 if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1357 i40e_rem_intrs(i40e);
1358
1359 if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1360 i40e_common_code_fini(i40e);
1361
1362 i40e_cleanup_resources(i40e);
1363
1364 if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1365 (void) ddi_prop_remove_all(devinfo);
1366
1367 if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1368 i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1369 ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1370 i40e->i40e_osdep_space.ios_reg_handle = NULL;
1371 }
1372
1373 if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1374 i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1375 pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1376 i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1377 }
1378
1379 if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1380 i40e_fm_fini(i40e);
1381
1382 kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1383 kmem_free(i40e, sizeof (i40e_t));
1384
1385 ddi_set_driver_private(devinfo, NULL);
1386 }
1387
1388 static boolean_t
i40e_final_init(i40e_t * i40e)1389 i40e_final_init(i40e_t *i40e)
1390 {
1391 i40e_hw_t *hw = &i40e->i40e_hw_space;
1392 struct i40e_osdep *osdep = OS_DEP(hw);
1393 uint8_t pbanum[I40E_PBANUM_STRLEN];
1394 enum i40e_status_code irc;
1395 char buf[I40E_DDI_PROP_LEN];
1396
1397 pbanum[0] = '\0';
1398 irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1399 if (irc != I40E_SUCCESS) {
1400 i40e_log(i40e, "failed to read PBA string: %d", irc);
1401 } else {
1402 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1403 "printed-board-assembly", (char *)pbanum);
1404 }
1405
1406 #ifdef DEBUG
1407 ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1408 hw->aq.fw_min_ver) < sizeof (buf));
1409 ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1410 ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1411 hw->aq.api_min_ver) < sizeof (buf));
1412 #endif
1413
1414 (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1415 hw->aq.fw_min_ver);
1416 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1417 "firmware-version", buf);
1418 (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1419 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1420 "firmware-build", buf);
1421 (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1422 hw->aq.api_min_ver);
1423 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1424 "api-version", buf);
1425
1426 if (!i40e_set_hw_bus_info(hw))
1427 return (B_FALSE);
1428
1429 if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1430 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1431 return (B_FALSE);
1432 }
1433
1434 return (B_TRUE);
1435 }
1436
1437 static void
i40e_identify_hardware(i40e_t * i40e)1438 i40e_identify_hardware(i40e_t *i40e)
1439 {
1440 i40e_hw_t *hw = &i40e->i40e_hw_space;
1441 struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1442
1443 hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1444 hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1445 hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1446 PCI_CONF_REVID);
1447 hw->subsystem_device_id =
1448 pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1449 hw->subsystem_vendor_id =
1450 pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1451
1452 /*
1453 * Note that we set the hardware's bus information later on, in
1454 * i40e_get_available_resources(). The common code doesn't seem to
1455 * require that it be set in any ways, it seems to be mostly for
1456 * book-keeping.
1457 */
1458 }
1459
1460 static boolean_t
i40e_regs_map(i40e_t * i40e)1461 i40e_regs_map(i40e_t *i40e)
1462 {
1463 dev_info_t *devinfo = i40e->i40e_dip;
1464 i40e_hw_t *hw = &i40e->i40e_hw_space;
1465 struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1466 off_t memsize;
1467 int ret;
1468
1469 if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1470 DDI_SUCCESS) {
1471 i40e_error(i40e, "Used invalid register set to map PCIe regs");
1472 return (B_FALSE);
1473 }
1474
1475 if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1476 (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1477 &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1478 i40e_error(i40e, "failed to map device registers: %d", ret);
1479 return (B_FALSE);
1480 }
1481
1482 osdep->ios_reg_size = memsize;
1483 return (B_TRUE);
1484 }
1485
1486 /*
1487 * Update parameters required when a new MTU has been configured. Calculate the
1488 * maximum frame size, as well as, size our DMA buffers which we size in
1489 * increments of 1K.
1490 */
1491 void
i40e_update_mtu(i40e_t * i40e)1492 i40e_update_mtu(i40e_t *i40e)
1493 {
1494 uint32_t rx, tx;
1495
1496 i40e->i40e_frame_max = i40e->i40e_sdu +
1497 sizeof (struct ether_vlan_header) + ETHERFCSL;
1498
1499 rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1500 i40e->i40e_rx_buf_size = ((rx >> 10) +
1501 ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1502
1503 tx = i40e->i40e_frame_max;
1504 i40e->i40e_tx_buf_size = ((tx >> 10) +
1505 ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1506 }
1507
1508 static int
i40e_get_prop(i40e_t * i40e,char * prop,int min,int max,int def)1509 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1510 {
1511 int val;
1512
1513 val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1514 prop, def);
1515 if (val > max)
1516 val = max;
1517 if (val < min)
1518 val = min;
1519 return (val);
1520 }
1521
1522 static void
i40e_init_properties(i40e_t * i40e)1523 i40e_init_properties(i40e_t *i40e)
1524 {
1525 i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1526 I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1527
1528 i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1529 I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1530
1531 i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1532 B_FALSE, B_TRUE, B_TRUE);
1533
1534 i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1535 I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1536 I40E_DEF_TX_RING_SIZE);
1537 if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1538 i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1539 I40E_DESC_ALIGN);
1540 }
1541
1542 i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1543 I40E_MIN_TX_BLOCK_THRESH,
1544 i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1545 I40E_DEF_TX_BLOCK_THRESH);
1546
1547 i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1548 I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1549 I40E_DEF_RX_RING_SIZE);
1550 if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1551 i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1552 I40E_DESC_ALIGN);
1553 }
1554
1555 i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1556 I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1557 I40E_DEF_RX_LIMIT_PER_INTR);
1558
1559 i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1560 B_FALSE, B_TRUE, B_TRUE);
1561
1562 i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1563 B_FALSE, B_TRUE, B_TRUE);
1564
1565 i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1566 I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1567 I40E_DEF_RX_DMA_THRESH);
1568
1569 i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1570 I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1571 I40E_DEF_TX_DMA_THRESH);
1572
1573 i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1574 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1575
1576 i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1577 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1578
1579 i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1580 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1581
1582 if (!i40e->i40e_mr_enable) {
1583 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1584 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1585 }
1586
1587 i40e_update_mtu(i40e);
1588 }
1589
1590 /*
1591 * There are a few constraints on interrupts that we're currently imposing, some
1592 * of which are restrictions from hardware. For a fuller treatment, see
1593 * i40e_intr.c.
1594 *
1595 * Currently, to use MSI-X we require two interrupts be available though in
1596 * theory we should participate in IRM and happily use more interrupts.
1597 *
1598 * Hardware only supports a single MSI being programmed and therefore if we
1599 * don't have MSI-X interrupts available at this time, then we ratchet down the
1600 * number of rings and groups available. Obviously, we only bother with a single
1601 * fixed interrupt.
1602 */
1603 static boolean_t
i40e_alloc_intr_handles(i40e_t * i40e,dev_info_t * devinfo,int intr_type)1604 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1605 {
1606 i40e_hw_t *hw = &i40e->i40e_hw_space;
1607 ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1608 int request, count, actual, rc, min;
1609 uint32_t reg;
1610
1611 switch (intr_type) {
1612 case DDI_INTR_TYPE_FIXED:
1613 case DDI_INTR_TYPE_MSI:
1614 request = 1;
1615 min = 1;
1616 break;
1617 case DDI_INTR_TYPE_MSIX:
1618 min = 2;
1619 if (!i40e->i40e_mr_enable) {
1620 request = 2;
1621 break;
1622 }
1623 reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1624 /*
1625 * Should this read fail, we will drop back to using
1626 * MSI or fixed interrupts.
1627 */
1628 if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1629 ddi_fm_service_impact(i40e->i40e_dip,
1630 DDI_SERVICE_DEGRADED);
1631 return (B_FALSE);
1632 }
1633 request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1634 I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1635 request++; /* the register value is n - 1 */
1636 break;
1637 default:
1638 panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1639 "%d", intr_type);
1640 return (B_FALSE);
1641 }
1642
1643 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1644 if (rc != DDI_SUCCESS || count < min) {
1645 i40e_log(i40e, "Get interrupt number failed, "
1646 "returned %d, count %d", rc, count);
1647 return (B_FALSE);
1648 }
1649
1650 rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1651 if (rc != DDI_SUCCESS || count < min) {
1652 i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1653 "returned %d, count %d", rc, count);
1654 return (B_FALSE);
1655 }
1656
1657 actual = 0;
1658 i40e->i40e_intr_count = 0;
1659 i40e->i40e_intr_count_max = 0;
1660 i40e->i40e_intr_count_min = 0;
1661
1662 i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1663 ASSERT(i40e->i40e_intr_size != 0);
1664 i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1665
1666 rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1667 min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1668 if (rc != DDI_SUCCESS) {
1669 i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1670 goto alloc_handle_fail;
1671 }
1672
1673 i40e->i40e_intr_count = actual;
1674 i40e->i40e_intr_count_max = request;
1675 i40e->i40e_intr_count_min = min;
1676
1677 if (actual < min) {
1678 i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1679 actual, min);
1680 goto alloc_handle_fail;
1681 }
1682
1683 /*
1684 * Record the priority and capabilities for our first vector. Once
1685 * we have it, that's our priority until detach time. Even if we
1686 * eventually participate in IRM, our priority shouldn't change.
1687 */
1688 rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1689 if (rc != DDI_SUCCESS) {
1690 i40e_log(i40e,
1691 "Getting interrupt priority failed with %d.", rc);
1692 goto alloc_handle_fail;
1693 }
1694
1695 rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1696 if (rc != DDI_SUCCESS) {
1697 i40e_log(i40e,
1698 "Getting interrupt capabilities failed with %d.", rc);
1699 goto alloc_handle_fail;
1700 }
1701
1702 i40e->i40e_intr_type = intr_type;
1703 return (B_TRUE);
1704
1705 alloc_handle_fail:
1706
1707 i40e_rem_intrs(i40e);
1708 return (B_FALSE);
1709 }
1710
1711 static boolean_t
i40e_alloc_intrs(i40e_t * i40e,dev_info_t * devinfo)1712 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1713 {
1714 int intr_types, rc;
1715 uint_t max_trqpairs;
1716
1717 if (i40e_is_x722(i40e)) {
1718 max_trqpairs = I40E_722_MAX_TC_QUEUES;
1719 } else {
1720 max_trqpairs = I40E_710_MAX_TC_QUEUES;
1721 }
1722
1723 rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1724 if (rc != DDI_SUCCESS) {
1725 i40e_error(i40e, "failed to get supported interrupt types: %d",
1726 rc);
1727 return (B_FALSE);
1728 }
1729
1730 i40e->i40e_intr_type = 0;
1731
1732 if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1733 i40e->i40e_intr_force <= I40E_INTR_MSIX) {
1734 if (i40e_alloc_intr_handles(i40e, devinfo,
1735 DDI_INTR_TYPE_MSIX)) {
1736 i40e->i40e_num_trqpairs =
1737 MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1738 return (B_TRUE);
1739 }
1740 }
1741
1742 /*
1743 * We only use multiple transmit/receive pairs when MSI-X interrupts are
1744 * available due to the fact that the device basically only supports a
1745 * single MSI interrupt.
1746 */
1747 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1748 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1749
1750 if ((intr_types & DDI_INTR_TYPE_MSI) &&
1751 (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1752 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1753 return (B_TRUE);
1754 }
1755
1756 if (intr_types & DDI_INTR_TYPE_FIXED) {
1757 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1758 return (B_TRUE);
1759 }
1760
1761 return (B_FALSE);
1762 }
1763
1764 /*
1765 * Map different interrupts to MSI-X vectors.
1766 */
1767 static boolean_t
i40e_map_intrs_to_vectors(i40e_t * i40e)1768 i40e_map_intrs_to_vectors(i40e_t *i40e)
1769 {
1770 int i;
1771
1772 if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1773 return (B_TRUE);
1774 }
1775
1776 /*
1777 * Each queue pair is mapped to a single interrupt, so transmit
1778 * and receive interrupts for a given queue share the same vector.
1779 * The number of queue pairs is one less than the number of interrupt
1780 * vectors and is assigned the vector one higher than its index.
1781 * Vector zero is reserved for the admin queue.
1782 */
1783 ASSERT(i40e->i40e_intr_count == i40e->i40e_num_trqpairs + 1);
1784
1785 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1786 i40e->i40e_trqpairs[i].itrq_rx_intrvec = i + 1;
1787 i40e->i40e_trqpairs[i].itrq_tx_intrvec = i + 1;
1788 }
1789
1790 return (B_TRUE);
1791 }
1792
1793 static boolean_t
i40e_add_intr_handlers(i40e_t * i40e)1794 i40e_add_intr_handlers(i40e_t *i40e)
1795 {
1796 int rc, vector;
1797
1798 switch (i40e->i40e_intr_type) {
1799 case DDI_INTR_TYPE_MSIX:
1800 for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1801 rc = ddi_intr_add_handler(
1802 i40e->i40e_intr_handles[vector],
1803 (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1804 (void *)(uintptr_t)vector);
1805 if (rc != DDI_SUCCESS) {
1806 i40e_log(i40e, "Add interrupt handler (MSI-X) "
1807 "failed: return %d, vector %d", rc, vector);
1808 for (vector--; vector >= 0; vector--) {
1809 (void) ddi_intr_remove_handler(
1810 i40e->i40e_intr_handles[vector]);
1811 }
1812 return (B_FALSE);
1813 }
1814 }
1815 break;
1816 case DDI_INTR_TYPE_MSI:
1817 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1818 (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1819 if (rc != DDI_SUCCESS) {
1820 i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1821 "return %d", rc);
1822 return (B_FALSE);
1823 }
1824 break;
1825 case DDI_INTR_TYPE_FIXED:
1826 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1827 (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1828 if (rc != DDI_SUCCESS) {
1829 i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1830 " return %d", rc);
1831 return (B_FALSE);
1832 }
1833 break;
1834 default:
1835 /* Cast to pacify lint */
1836 panic("i40e_intr_type %p contains an unknown type: %d",
1837 (void *)i40e, i40e->i40e_intr_type);
1838 }
1839
1840 return (B_TRUE);
1841 }
1842
1843 /*
1844 * Perform periodic checks. Longer term, we should be thinking about additional
1845 * things here:
1846 *
1847 * o Stall Detection
1848 * o Temperature sensor detection
1849 * o Device resetting
1850 * o Statistics updating to avoid wraparound
1851 */
1852 static void
i40e_timer(void * arg)1853 i40e_timer(void *arg)
1854 {
1855 i40e_t *i40e = arg;
1856
1857 mutex_enter(&i40e->i40e_general_lock);
1858 i40e_link_check(i40e);
1859 mutex_exit(&i40e->i40e_general_lock);
1860 }
1861
1862 /*
1863 * Get the hardware state, and scribble away anything that needs scribbling.
1864 */
1865 static void
i40e_get_hw_state(i40e_t * i40e,i40e_hw_t * hw)1866 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1867 {
1868 int rc;
1869
1870 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1871
1872 (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1873 i40e_link_check(i40e);
1874
1875 /*
1876 * Try and determine our PHY. Note that we may have to retry to and
1877 * delay to detect fiber correctly.
1878 */
1879 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
1880 NULL);
1881 if (rc == I40E_ERR_UNKNOWN_PHY) {
1882 i40e_msec_delay(200);
1883 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
1884 &i40e->i40e_phy, NULL);
1885 }
1886
1887 if (rc != I40E_SUCCESS) {
1888 if (rc == I40E_ERR_UNKNOWN_PHY) {
1889 i40e_error(i40e, "encountered unknown PHY type, "
1890 "not attaching.");
1891 } else {
1892 i40e_error(i40e, "error getting physical capabilities: "
1893 "%d, %d", rc, hw->aq.asq_last_status);
1894 }
1895 }
1896
1897 rc = i40e_update_link_info(hw);
1898 if (rc != I40E_SUCCESS) {
1899 i40e_error(i40e, "failed to update link information: %d", rc);
1900 }
1901
1902 /*
1903 * In general, we don't want to mask off (as in stop from being a cause)
1904 * any of the interrupts that the phy might be able to generate.
1905 */
1906 rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
1907 if (rc != I40E_SUCCESS) {
1908 i40e_error(i40e, "failed to update phy link mask: %d", rc);
1909 }
1910 }
1911
1912 /*
1913 * Go through and re-initialize any existing filters that we may have set up for
1914 * this device. Note that we would only expect them to exist if hardware had
1915 * already been initialized and we had just reset it. While we're not
1916 * implementing this yet, we're keeping this around for when we add reset
1917 * capabilities, so this isn't forgotten.
1918 */
1919 /* ARGSUSED */
1920 static void
i40e_init_macaddrs(i40e_t * i40e,i40e_hw_t * hw)1921 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
1922 {
1923 }
1924
1925 /*
1926 * Configure the hardware for the Virtual Station Interface (VSI). Currently
1927 * we only support one, but in the future we could instantiate more than one
1928 * per attach-point.
1929 */
1930 static boolean_t
i40e_config_vsi(i40e_t * i40e,i40e_hw_t * hw)1931 i40e_config_vsi(i40e_t *i40e, i40e_hw_t *hw)
1932 {
1933 struct i40e_vsi_context context;
1934 int err, tc_queues;
1935
1936 bzero(&context, sizeof (struct i40e_vsi_context));
1937 context.seid = i40e->i40e_vsi_id;
1938 context.pf_num = hw->pf_id;
1939 err = i40e_aq_get_vsi_params(hw, &context, NULL);
1940 if (err != I40E_SUCCESS) {
1941 i40e_error(i40e, "get VSI params failed with %d", err);
1942 return (B_FALSE);
1943 }
1944
1945 i40e->i40e_vsi_num = context.vsi_number;
1946
1947 /*
1948 * Set the queue and traffic class bits. Keep it simple for now.
1949 */
1950 context.info.valid_sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1951 context.info.mapping_flags = I40E_AQ_VSI_QUE_MAP_CONTIG;
1952 context.info.queue_mapping[0] = I40E_ASSIGN_ALL_QUEUES;
1953
1954 /*
1955 * tc_queues determines the size of the traffic class, where the size is
1956 * 2^^tc_queues to a maximum of 64 for the X710 and 128 for the X722.
1957 *
1958 * Some examples:
1959 * i40e_num_trqpairs == 1 => tc_queues = 0, 2^^0 = 1.
1960 * i40e_num_trqpairs == 7 => tc_queues = 3, 2^^3 = 8.
1961 * i40e_num_trqpairs == 8 => tc_queues = 3, 2^^3 = 8.
1962 * i40e_num_trqpairs == 9 => tc_queues = 4, 2^^4 = 16.
1963 * i40e_num_trqpairs == 17 => tc_queues = 5, 2^^5 = 32.
1964 * i40e_num_trqpairs == 64 => tc_queues = 6, 2^^6 = 64.
1965 */
1966 tc_queues = ddi_fls(i40e->i40e_num_trqpairs - 1);
1967
1968 context.info.tc_mapping[0] = ((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
1969 I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
1970 ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
1971 I40E_AQ_VSI_TC_QUE_NUMBER_MASK);
1972
1973 context.info.valid_sections |= I40E_AQ_VSI_PROP_VLAN_VALID;
1974 context.info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
1975 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
1976
1977 context.flags = LE16_TO_CPU(I40E_AQ_VSI_TYPE_PF);
1978
1979 i40e->i40e_vsi_stat_id = LE16_TO_CPU(context.info.stat_counter_idx);
1980 if (i40e_stat_vsi_init(i40e) == B_FALSE)
1981 return (B_FALSE);
1982
1983 err = i40e_aq_update_vsi_params(hw, &context, NULL);
1984 if (err != I40E_SUCCESS) {
1985 i40e_error(i40e, "Update VSI params failed with %d", err);
1986 return (B_FALSE);
1987 }
1988
1989
1990 return (B_TRUE);
1991 }
1992
1993 /*
1994 * Configure the RSS key. For the X710 controller family, this is set on a
1995 * per-PF basis via registers. For the X722, this is done on a per-VSI basis
1996 * through the admin queue.
1997 */
1998 static boolean_t
i40e_config_rss_key(i40e_t * i40e,i40e_hw_t * hw)1999 i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2000 {
2001 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2002
2003 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2004
2005 if (i40e_is_x722(i40e)) {
2006 struct i40e_aqc_get_set_rss_key_data key;
2007 const char *u8seed = (char *)seed;
2008 enum i40e_status_code status;
2009
2010 CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2011 sizeof (key.extended_hash_key)));
2012
2013 bcopy(u8seed, key.standard_rss_key,
2014 sizeof (key.standard_rss_key));
2015 bcopy(&u8seed[sizeof (key.standard_rss_key)],
2016 key.extended_hash_key, sizeof (key.extended_hash_key));
2017
2018 status = i40e_aq_set_rss_key(hw, i40e->i40e_vsi_num, &key);
2019 if (status != I40E_SUCCESS) {
2020 i40e_error(i40e, "failed to set rss key: %d", status);
2021 return (B_FALSE);
2022 }
2023 } else {
2024 uint_t i;
2025 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2026 i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2027 }
2028
2029 return (B_TRUE);
2030 }
2031
2032 /*
2033 * Populate the LUT. The size of each entry in the LUT depends on the controller
2034 * family, with the X722 using a known 7-bit width. On the X710 controller, this
2035 * is programmed through its control registers where as on the X722 this is
2036 * configured through the admin queue. Also of note, the X722 allows the LUT to
2037 * be set on a per-PF or VSI basis. At this time, as we only have a single VSI,
2038 * we use the PF setting as it is the primary VSI.
2039 *
2040 * We populate the LUT in a round robin fashion with the rx queue indices from 0
2041 * to i40e_num_trqpairs - 1.
2042 */
2043 static boolean_t
i40e_config_rss_hlut(i40e_t * i40e,i40e_hw_t * hw)2044 i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2045 {
2046 uint32_t *hlut;
2047 uint8_t lut_mask;
2048 uint_t i;
2049 boolean_t ret = B_FALSE;
2050
2051 /*
2052 * We always configure the PF with a table size of 512 bytes in
2053 * i40e_chip_start().
2054 */
2055 hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2056 if (hlut == NULL) {
2057 i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2058 return (B_FALSE);
2059 }
2060
2061 /*
2062 * The width of the X722 is apparently defined to be 7 bits, regardless
2063 * of the capability.
2064 */
2065 if (i40e_is_x722(i40e)) {
2066 lut_mask = (1 << 7) - 1;
2067 } else {
2068 lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2069 }
2070
2071 for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++)
2072 ((uint8_t *)hlut)[i] = (i % i40e->i40e_num_trqpairs) & lut_mask;
2073
2074 if (i40e_is_x722(i40e)) {
2075 enum i40e_status_code status;
2076 status = i40e_aq_set_rss_lut(hw, i40e->i40e_vsi_num, B_TRUE,
2077 (uint8_t *)hlut, I40E_HLUT_TABLE_SIZE);
2078 if (status != I40E_SUCCESS) {
2079 i40e_error(i40e, "failed to set RSS LUT: %d", status);
2080 goto out;
2081 }
2082 } else {
2083 for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2084 I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2085 }
2086 }
2087 ret = B_TRUE;
2088 out:
2089 kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2090 return (ret);
2091 }
2092
2093 /*
2094 * Set up RSS.
2095 * 1. Seed the hash key.
2096 * 2. Enable PCTYPEs for the hash filter.
2097 * 3. Populate the LUT.
2098 */
2099 static boolean_t
i40e_config_rss(i40e_t * i40e,i40e_hw_t * hw)2100 i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2101 {
2102 uint64_t hena;
2103
2104 /*
2105 * 1. Seed the hash key
2106 */
2107 if (!i40e_config_rss_key(i40e, hw))
2108 return (B_FALSE);
2109
2110 /*
2111 * 2. Configure PCTYPES
2112 */
2113 hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2114 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2115 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2116 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2117 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2118 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2119 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2120 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2121 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2122 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2123 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2124
2125 /*
2126 * Add additional types supported by the X722 controller.
2127 */
2128 if (i40e_is_x722(i40e)) {
2129 hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2130 (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2131 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2132 (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2133 (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2134 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2135 }
2136
2137 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2138 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2139
2140 /*
2141 * 3. Populate LUT
2142 */
2143 return (i40e_config_rss_hlut(i40e, hw));
2144 }
2145
2146 /*
2147 * Wrapper to kick the chipset on.
2148 */
2149 static boolean_t
i40e_chip_start(i40e_t * i40e)2150 i40e_chip_start(i40e_t *i40e)
2151 {
2152 i40e_hw_t *hw = &i40e->i40e_hw_space;
2153 struct i40e_filter_control_settings filter;
2154 int rc;
2155
2156 if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2157 (hw->aq.fw_maj_ver < 4)) {
2158 i40e_msec_delay(75);
2159 if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2160 I40E_SUCCESS) {
2161 i40e_error(i40e, "failed to restart link: admin queue "
2162 "error: %d", hw->aq.asq_last_status);
2163 return (B_FALSE);
2164 }
2165 }
2166
2167 /* Determine hardware state */
2168 i40e_get_hw_state(i40e, hw);
2169
2170 /* Initialize mac addresses. */
2171 i40e_init_macaddrs(i40e, hw);
2172
2173 /*
2174 * Set up the filter control. If the hash lut size is changed from
2175 * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2176 * i40e_config_rss_hlut() will need to be updated.
2177 */
2178 bzero(&filter, sizeof (filter));
2179 filter.enable_ethtype = TRUE;
2180 filter.enable_macvlan = TRUE;
2181 filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2182
2183 rc = i40e_set_filter_control(hw, &filter);
2184 if (rc != I40E_SUCCESS) {
2185 i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2186 return (B_FALSE);
2187 }
2188
2189 i40e_intr_chip_init(i40e);
2190
2191 if (!i40e_config_vsi(i40e, hw))
2192 return (B_FALSE);
2193
2194 if (!i40e_config_rss(i40e, hw))
2195 return (B_FALSE);
2196
2197 i40e_flush(hw);
2198
2199 return (B_TRUE);
2200 }
2201
2202 /*
2203 * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2204 */
2205 static void
i40e_shutdown_rx_rings(i40e_t * i40e)2206 i40e_shutdown_rx_rings(i40e_t *i40e)
2207 {
2208 int i;
2209 uint32_t reg;
2210
2211 i40e_hw_t *hw = &i40e->i40e_hw_space;
2212
2213 /*
2214 * Step 1. The interrupt linked list (see i40e_intr.c for more
2215 * information) should have already been cleared before calling this
2216 * function.
2217 */
2218 #ifdef DEBUG
2219 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2220 for (i = 1; i < i40e->i40e_intr_count; i++) {
2221 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2222 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2223 }
2224 } else {
2225 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2226 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2227 }
2228
2229 #endif /* DEBUG */
2230
2231 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2232 /*
2233 * Step 1. Request the queue by clearing QENA_REQ. It may not be
2234 * set due to unwinding from failures and a partially enabled
2235 * ring set.
2236 */
2237 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2238 if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2239 continue;
2240 VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2241 I40E_QRX_ENA_QENA_REQ_MASK);
2242 reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2243 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2244 }
2245
2246 /*
2247 * Step 2. Wait for the disable to take, by having QENA_STAT in the FPM
2248 * be cleared. Note that we could still receive data in the queue during
2249 * this time. We don't actually wait for this now and instead defer this
2250 * to i40e_shutdown_rings_wait(), after we've interleaved disabling the
2251 * TX queues as well.
2252 */
2253 }
2254
2255 static void
i40e_shutdown_tx_rings(i40e_t * i40e)2256 i40e_shutdown_tx_rings(i40e_t *i40e)
2257 {
2258 int i;
2259 uint32_t reg;
2260
2261 i40e_hw_t *hw = &i40e->i40e_hw_space;
2262
2263 /*
2264 * Step 1. The interrupt linked list should already have been cleared.
2265 */
2266 #ifdef DEBUG
2267 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2268 for (i = 1; i < i40e->i40e_intr_count; i++) {
2269 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2270 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2271 }
2272 } else {
2273 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2274 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2275
2276 }
2277 #endif /* DEBUG */
2278
2279 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2280 /*
2281 * Step 2. Set the SET_QDIS flag for every queue.
2282 */
2283 i40e_pre_tx_queue_cfg(hw, i, B_FALSE);
2284 }
2285
2286 /*
2287 * Step 3. Wait at least 400 usec (can be done once for all queues).
2288 */
2289 drv_usecwait(500);
2290
2291 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2292 /*
2293 * Step 4. Clear the QENA_REQ flag which tells hardware to
2294 * quiesce. If QENA_REQ is not already set then that means that
2295 * we likely already tried to disable this queue.
2296 */
2297 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2298 if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK))
2299 continue;
2300 reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2301 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2302 }
2303
2304 /*
2305 * Step 5. Wait for all drains to finish. This will be done by the
2306 * hardware removing the QENA_STAT flag from the queue. Rather than
2307 * waiting here, we interleave it with all the others in
2308 * i40e_shutdown_rings_wait().
2309 */
2310 }
2311
2312 /*
2313 * Wait for all the rings to be shut down. e.g. Steps 2 and 5 from the above
2314 * functions.
2315 */
2316 static boolean_t
i40e_shutdown_rings_wait(i40e_t * i40e)2317 i40e_shutdown_rings_wait(i40e_t *i40e)
2318 {
2319 int i, try;
2320 i40e_hw_t *hw = &i40e->i40e_hw_space;
2321
2322 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2323 uint32_t reg;
2324
2325 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2326 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2327 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2328 break;
2329 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2330 }
2331
2332 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2333 i40e_error(i40e, "timed out disabling rx queue %d",
2334 i);
2335 return (B_FALSE);
2336 }
2337
2338 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2339 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2340 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2341 break;
2342 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2343 }
2344
2345 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2346 i40e_error(i40e, "timed out disabling tx queue %d",
2347 i);
2348 return (B_FALSE);
2349 }
2350 }
2351
2352 return (B_TRUE);
2353 }
2354
2355 static boolean_t
i40e_shutdown_rings(i40e_t * i40e)2356 i40e_shutdown_rings(i40e_t *i40e)
2357 {
2358 i40e_shutdown_rx_rings(i40e);
2359 i40e_shutdown_tx_rings(i40e);
2360 return (i40e_shutdown_rings_wait(i40e));
2361 }
2362
2363 static void
i40e_setup_rx_descs(i40e_trqpair_t * itrq)2364 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2365 {
2366 int i;
2367 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2368
2369 for (i = 0; i < rxd->rxd_ring_size; i++) {
2370 i40e_rx_control_block_t *rcb;
2371 i40e_rx_desc_t *rdesc;
2372
2373 rcb = rxd->rxd_work_list[i];
2374 rdesc = &rxd->rxd_desc_ring[i];
2375
2376 rdesc->read.pkt_addr =
2377 CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2378 rdesc->read.hdr_addr = 0;
2379 }
2380 }
2381
2382 static boolean_t
i40e_setup_rx_hmc(i40e_trqpair_t * itrq)2383 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2384 {
2385 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2386 i40e_t *i40e = itrq->itrq_i40e;
2387 i40e_hw_t *hw = &i40e->i40e_hw_space;
2388
2389 struct i40e_hmc_obj_rxq rctx;
2390 int err;
2391
2392 bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2393 rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2394 I40E_HMC_RX_CTX_UNIT;
2395 rctx.qlen = rxd->rxd_ring_size;
2396 VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2397 VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2398 rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2399 rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2400 rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2401 rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2402 rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2403 rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2404 rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2405 rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2406 rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2407 rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2408 rctx.rxmax = i40e->i40e_frame_max;
2409 rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2410 rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2411 rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2412 rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2413 rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2414
2415 /*
2416 * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2417 */
2418 rctx.prefena = I40E_HMC_RX_PREFENA;
2419
2420 err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2421 if (err != I40E_SUCCESS) {
2422 i40e_error(i40e, "failed to clear rx queue %d context: %d",
2423 itrq->itrq_index, err);
2424 return (B_FALSE);
2425 }
2426
2427 err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2428 if (err != I40E_SUCCESS) {
2429 i40e_error(i40e, "failed to set rx queue %d context: %d",
2430 itrq->itrq_index, err);
2431 return (B_FALSE);
2432 }
2433
2434 return (B_TRUE);
2435 }
2436
2437 /*
2438 * Take care of setting up the descriptor rings and actually programming the
2439 * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2440 * rx rings.
2441 */
2442 static boolean_t
i40e_setup_rx_rings(i40e_t * i40e)2443 i40e_setup_rx_rings(i40e_t *i40e)
2444 {
2445 int i;
2446 i40e_hw_t *hw = &i40e->i40e_hw_space;
2447
2448 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2449 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2450 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2451 uint32_t reg;
2452
2453 /*
2454 * Step 1. Program all receive ring descriptors.
2455 */
2456 i40e_setup_rx_descs(itrq);
2457
2458 /*
2459 * Step 2. Program the queue's FPM/HMC context.
2460 */
2461 if (i40e_setup_rx_hmc(itrq) == B_FALSE)
2462 return (B_FALSE);
2463
2464 /*
2465 * Step 3. Clear the queue's tail pointer and set it to the end
2466 * of the space.
2467 */
2468 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), 0);
2469 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), rxd->rxd_ring_size - 1);
2470
2471 /*
2472 * Step 4. Enable the queue via the QENA_REQ.
2473 */
2474 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2475 VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2476 I40E_QRX_ENA_QENA_STAT_MASK));
2477 reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2478 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2479 }
2480
2481 /*
2482 * Note, we wait for every queue to be enabled before we start checking.
2483 * This will hopefully cause most queues to be enabled at this point.
2484 */
2485 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2486 uint32_t j, reg;
2487
2488 /*
2489 * Step 5. Verify that QENA_STAT has been set. It's promised
2490 * that this should occur within about 10 us, but like other
2491 * systems, we give the card a bit more time.
2492 */
2493 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2494 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2495
2496 if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2497 break;
2498 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2499 }
2500
2501 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2502 i40e_error(i40e, "failed to enable rx queue %d, timed "
2503 "out.", i);
2504 return (B_FALSE);
2505 }
2506 }
2507
2508 return (B_TRUE);
2509 }
2510
2511 static boolean_t
i40e_setup_tx_hmc(i40e_trqpair_t * itrq)2512 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2513 {
2514 i40e_t *i40e = itrq->itrq_i40e;
2515 i40e_hw_t *hw = &i40e->i40e_hw_space;
2516
2517 struct i40e_hmc_obj_txq tctx;
2518 struct i40e_vsi_context context;
2519 int err;
2520
2521 bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2522 tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2523 tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2524 I40E_HMC_TX_CTX_UNIT;
2525 tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2526 tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2527 tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2528 tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2529 tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2530 tctx.qlen = itrq->itrq_tx_ring_size;
2531 tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2532 tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2533 tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2534 tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2535 sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2536
2537 /*
2538 * This field isn't actually documented, like crc, but it suggests that
2539 * it should be zeroed. We leave both of these here because of that for
2540 * now. We should check with Intel on why these are here even.
2541 */
2542 tctx.crc = 0;
2543 tctx.rdylist_act = 0;
2544
2545 /*
2546 * We're supposed to assign the rdylist field with the value of the
2547 * traffic class index for the first device. We query the VSI parameters
2548 * again to get what the handle is. Note that every queue is always
2549 * assigned to traffic class zero, because we don't actually use them.
2550 */
2551 bzero(&context, sizeof (struct i40e_vsi_context));
2552 context.seid = i40e->i40e_vsi_id;
2553 context.pf_num = hw->pf_id;
2554 err = i40e_aq_get_vsi_params(hw, &context, NULL);
2555 if (err != I40E_SUCCESS) {
2556 i40e_error(i40e, "get VSI params failed with %d", err);
2557 return (B_FALSE);
2558 }
2559 tctx.rdylist = LE_16(context.info.qs_handle[0]);
2560
2561 err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2562 if (err != I40E_SUCCESS) {
2563 i40e_error(i40e, "failed to clear tx queue %d context: %d",
2564 itrq->itrq_index, err);
2565 return (B_FALSE);
2566 }
2567
2568 err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2569 if (err != I40E_SUCCESS) {
2570 i40e_error(i40e, "failed to set tx queue %d context: %d",
2571 itrq->itrq_index, err);
2572 return (B_FALSE);
2573 }
2574
2575 return (B_TRUE);
2576 }
2577
2578 /*
2579 * Take care of setting up the descriptor rings and actually programming the
2580 * device. See 8.4.3.1.1 for what we need to do here.
2581 */
2582 static boolean_t
i40e_setup_tx_rings(i40e_t * i40e)2583 i40e_setup_tx_rings(i40e_t *i40e)
2584 {
2585 int i;
2586 i40e_hw_t *hw = &i40e->i40e_hw_space;
2587
2588 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2589 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2590 uint32_t reg;
2591
2592 /*
2593 * Step 1. Clear the queue disable flag and verify that the
2594 * index is set correctly.
2595 */
2596 i40e_pre_tx_queue_cfg(hw, i, B_TRUE);
2597
2598 /*
2599 * Step 2. Prepare the queue's FPM/HMC context.
2600 */
2601 if (i40e_setup_tx_hmc(itrq) == B_FALSE)
2602 return (B_FALSE);
2603
2604 /*
2605 * Step 3. Verify that it's clear that this PF owns this queue.
2606 */
2607 reg = I40E_QTX_CTL_PF_QUEUE;
2608 reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2609 I40E_QTX_CTL_PF_INDX_MASK;
2610 I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2611 i40e_flush(hw);
2612
2613 /*
2614 * Step 4. Set the QENA_REQ flag.
2615 */
2616 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2617 VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
2618 I40E_QTX_ENA_QENA_STAT_MASK));
2619 reg |= I40E_QTX_ENA_QENA_REQ_MASK;
2620 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2621 }
2622
2623 /*
2624 * Note, we wait for every queue to be enabled before we start checking.
2625 * This will hopefully cause most queues to be enabled at this point.
2626 */
2627 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2628 uint32_t j, reg;
2629
2630 /*
2631 * Step 5. Verify that QENA_STAT has been set. It's promised
2632 * that this should occur within about 10 us, but like BSD,
2633 * we'll try for up to 100 ms for this queue.
2634 */
2635 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2636 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2637
2638 if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
2639 break;
2640 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2641 }
2642
2643 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
2644 i40e_error(i40e, "failed to enable tx queue %d, timed "
2645 "out", i);
2646 return (B_FALSE);
2647 }
2648 }
2649
2650 return (B_TRUE);
2651 }
2652
2653 void
i40e_stop(i40e_t * i40e,boolean_t free_allocations)2654 i40e_stop(i40e_t *i40e, boolean_t free_allocations)
2655 {
2656 int i;
2657
2658 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2659
2660 /*
2661 * Shutdown and drain the tx and rx pipeline. We do this using the
2662 * following steps.
2663 *
2664 * 1) Shutdown interrupts to all the queues (trying to keep the admin
2665 * queue alive).
2666 *
2667 * 2) Remove all of the interrupt tx and rx causes by setting the
2668 * interrupt linked lists to zero.
2669 *
2670 * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
2671 * wait for all the queues to be disabled, once we reach that point
2672 * it should be safe to free associated data.
2673 *
2674 * 4) Wait 50ms after all that is done. This ensures that the rings are
2675 * ready for programming again and we don't have to think about this
2676 * in other parts of the driver.
2677 *
2678 * 5) Disable remaining chip interrupts, (admin queue, etc.)
2679 *
2680 * 6) Verify that FM is happy with all the register accesses we
2681 * performed.
2682 */
2683 i40e_intr_io_disable_all(i40e);
2684 i40e_intr_io_clear_cause(i40e);
2685
2686 if (i40e_shutdown_rings(i40e) == B_FALSE) {
2687 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2688 }
2689
2690 delay(50 * drv_usectohz(1000));
2691
2692 i40e_intr_chip_fini(i40e);
2693
2694 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2695 mutex_enter(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2696 mutex_enter(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2697 }
2698
2699 /*
2700 * We should consider refactoring this to be part of the ring start /
2701 * stop routines at some point.
2702 */
2703 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2704 i40e_stats_trqpair_fini(&i40e->i40e_trqpairs[i]);
2705 }
2706
2707 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2708 DDI_FM_OK) {
2709 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2710 }
2711
2712 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2713 i40e_tx_cleanup_ring(&i40e->i40e_trqpairs[i]);
2714 }
2715
2716 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2717 mutex_exit(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2718 mutex_exit(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2719 }
2720
2721 i40e_stat_vsi_fini(i40e);
2722
2723 i40e->i40e_link_speed = 0;
2724 i40e->i40e_link_duplex = 0;
2725 i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
2726
2727 if (free_allocations) {
2728 i40e_free_ring_mem(i40e, B_FALSE);
2729 }
2730 }
2731
2732 boolean_t
i40e_start(i40e_t * i40e,boolean_t alloc)2733 i40e_start(i40e_t *i40e, boolean_t alloc)
2734 {
2735 i40e_hw_t *hw = &i40e->i40e_hw_space;
2736 boolean_t rc = B_TRUE;
2737 int i, err;
2738
2739 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2740
2741 if (alloc) {
2742 if (i40e_alloc_ring_mem(i40e) == B_FALSE) {
2743 i40e_error(i40e,
2744 "Failed to allocate ring memory");
2745 return (B_FALSE);
2746 }
2747 }
2748
2749 /*
2750 * This should get refactored to be part of ring start and stop at
2751 * some point, along with most of the logic here.
2752 */
2753 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2754 if (i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i]) ==
2755 B_FALSE) {
2756 int j;
2757
2758 for (j = 0; j < i; j++) {
2759 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[j];
2760 i40e_stats_trqpair_fini(itrq);
2761 }
2762 return (B_FALSE);
2763 }
2764 }
2765
2766 if (!i40e_chip_start(i40e)) {
2767 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
2768 rc = B_FALSE;
2769 goto done;
2770 }
2771
2772 if (i40e_setup_rx_rings(i40e) == B_FALSE) {
2773 rc = B_FALSE;
2774 goto done;
2775 }
2776
2777 if (i40e_setup_tx_rings(i40e) == B_FALSE) {
2778 rc = B_FALSE;
2779 goto done;
2780 }
2781
2782 /*
2783 * Enable broadcast traffic; however, do not enable multicast traffic.
2784 * That's handle exclusively through MAC's mc_multicst routines.
2785 */
2786 err = i40e_aq_set_vsi_broadcast(hw, i40e->i40e_vsi_id, B_TRUE, NULL);
2787 if (err != I40E_SUCCESS) {
2788 i40e_error(i40e, "failed to set default VSI: %d", err);
2789 rc = B_FALSE;
2790 goto done;
2791 }
2792
2793 err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
2794 if (err != I40E_SUCCESS) {
2795 i40e_error(i40e, "failed to set MAC config: %d", err);
2796 rc = B_FALSE;
2797 goto done;
2798 }
2799
2800 /*
2801 * Finally, make sure that we're happy from an FM perspective.
2802 */
2803 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
2804 DDI_FM_OK) {
2805 rc = B_FALSE;
2806 goto done;
2807 }
2808
2809 /* Clear state bits prior to final interrupt enabling. */
2810 atomic_and_32(&i40e->i40e_state,
2811 ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
2812
2813 i40e_intr_io_enable_all(i40e);
2814
2815 done:
2816 if (rc == B_FALSE) {
2817 i40e_stop(i40e, B_FALSE);
2818 if (alloc == B_TRUE) {
2819 i40e_free_ring_mem(i40e, B_TRUE);
2820 }
2821 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2822 }
2823
2824 return (rc);
2825 }
2826
2827 /*
2828 * We may have loaned up descriptors to the stack. As such, if we still have
2829 * them outstanding, then we will not continue with detach.
2830 */
2831 static boolean_t
i40e_drain_rx(i40e_t * i40e)2832 i40e_drain_rx(i40e_t *i40e)
2833 {
2834 mutex_enter(&i40e->i40e_rx_pending_lock);
2835 while (i40e->i40e_rx_pending > 0) {
2836 if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
2837 &i40e->i40e_rx_pending_lock,
2838 drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
2839 mutex_exit(&i40e->i40e_rx_pending_lock);
2840 return (B_FALSE);
2841 }
2842 }
2843 mutex_exit(&i40e->i40e_rx_pending_lock);
2844
2845 return (B_TRUE);
2846 }
2847
2848 static int
i40e_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)2849 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2850 {
2851 i40e_t *i40e;
2852 struct i40e_osdep *osdep;
2853 i40e_hw_t *hw;
2854 int instance;
2855
2856 if (cmd != DDI_ATTACH)
2857 return (DDI_FAILURE);
2858
2859 instance = ddi_get_instance(devinfo);
2860 i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
2861
2862 i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
2863 i40e->i40e_instance = instance;
2864 i40e->i40e_dip = devinfo;
2865
2866 hw = &i40e->i40e_hw_space;
2867 osdep = &i40e->i40e_osdep_space;
2868 hw->back = osdep;
2869 osdep->ios_i40e = i40e;
2870
2871 ddi_set_driver_private(devinfo, i40e);
2872
2873 i40e_fm_init(i40e);
2874 i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
2875
2876 if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
2877 i40e_error(i40e, "Failed to map PCI configurations.");
2878 goto attach_fail;
2879 }
2880 i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
2881
2882 i40e_identify_hardware(i40e);
2883
2884 if (!i40e_regs_map(i40e)) {
2885 i40e_error(i40e, "Failed to map device registers.");
2886 goto attach_fail;
2887 }
2888 i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
2889
2890 i40e_init_properties(i40e);
2891 i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
2892
2893 if (!i40e_common_code_init(i40e, hw))
2894 goto attach_fail;
2895 i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
2896
2897 /*
2898 * When we participate in IRM, we should make sure that we register
2899 * ourselves with it before callbacks.
2900 */
2901 if (!i40e_alloc_intrs(i40e, devinfo)) {
2902 i40e_error(i40e, "Failed to allocate interrupts.");
2903 goto attach_fail;
2904 }
2905 i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
2906
2907 if (!i40e_alloc_trqpairs(i40e)) {
2908 i40e_error(i40e,
2909 "Failed to allocate receive & transmit rings.");
2910 goto attach_fail;
2911 }
2912 i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
2913
2914 if (!i40e_map_intrs_to_vectors(i40e)) {
2915 i40e_error(i40e, "Failed to map interrupts to vectors.");
2916 goto attach_fail;
2917 }
2918
2919 if (!i40e_add_intr_handlers(i40e)) {
2920 i40e_error(i40e, "Failed to add the interrupt handlers.");
2921 goto attach_fail;
2922 }
2923 i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
2924
2925 if (!i40e_final_init(i40e)) {
2926 i40e_error(i40e, "Final initialization failed.");
2927 goto attach_fail;
2928 }
2929 i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
2930
2931 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2932 DDI_FM_OK) {
2933 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2934 goto attach_fail;
2935 }
2936
2937 if (!i40e_stats_init(i40e)) {
2938 i40e_error(i40e, "Stats initialization failed.");
2939 goto attach_fail;
2940 }
2941 i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
2942
2943 if (!i40e_register_mac(i40e)) {
2944 i40e_error(i40e, "Failed to register to MAC/GLDv3");
2945 goto attach_fail;
2946 }
2947 i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
2948
2949 i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
2950 I40E_CYCLIC_PERIOD, DDI_IPL_0);
2951 if (i40e->i40e_periodic_id == 0) {
2952 i40e_error(i40e, "Failed to add the link-check timer");
2953 goto attach_fail;
2954 }
2955 i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
2956
2957 if (!i40e_enable_interrupts(i40e)) {
2958 i40e_error(i40e, "Failed to enable DDI interrupts");
2959 goto attach_fail;
2960 }
2961 i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
2962
2963 atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
2964
2965 mutex_enter(&i40e_glock);
2966 list_insert_tail(&i40e_glist, i40e);
2967 mutex_exit(&i40e_glock);
2968
2969 return (DDI_SUCCESS);
2970
2971 attach_fail:
2972 i40e_unconfigure(devinfo, i40e);
2973 return (DDI_FAILURE);
2974 }
2975
2976 static int
i40e_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)2977 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2978 {
2979 i40e_t *i40e;
2980
2981 if (cmd != DDI_DETACH)
2982 return (DDI_FAILURE);
2983
2984 i40e = (i40e_t *)ddi_get_driver_private(devinfo);
2985 if (i40e == NULL) {
2986 i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
2987 return (DDI_FAILURE);
2988 }
2989
2990 if (i40e_drain_rx(i40e) == B_FALSE) {
2991 i40e_log(i40e, "timed out draining DMA resources, %d buffers "
2992 "remain", i40e->i40e_rx_pending);
2993 return (DDI_FAILURE);
2994 }
2995
2996 mutex_enter(&i40e_glock);
2997 list_remove(&i40e_glist, i40e);
2998 mutex_exit(&i40e_glock);
2999
3000 i40e_unconfigure(devinfo, i40e);
3001
3002 return (DDI_SUCCESS);
3003 }
3004
3005 static struct cb_ops i40e_cb_ops = {
3006 nulldev, /* cb_open */
3007 nulldev, /* cb_close */
3008 nodev, /* cb_strategy */
3009 nodev, /* cb_print */
3010 nodev, /* cb_dump */
3011 nodev, /* cb_read */
3012 nodev, /* cb_write */
3013 nodev, /* cb_ioctl */
3014 nodev, /* cb_devmap */
3015 nodev, /* cb_mmap */
3016 nodev, /* cb_segmap */
3017 nochpoll, /* cb_chpoll */
3018 ddi_prop_op, /* cb_prop_op */
3019 NULL, /* cb_stream */
3020 D_MP | D_HOTPLUG, /* cb_flag */
3021 CB_REV, /* cb_rev */
3022 nodev, /* cb_aread */
3023 nodev /* cb_awrite */
3024 };
3025
3026 static struct dev_ops i40e_dev_ops = {
3027 DEVO_REV, /* devo_rev */
3028 0, /* devo_refcnt */
3029 NULL, /* devo_getinfo */
3030 nulldev, /* devo_identify */
3031 nulldev, /* devo_probe */
3032 i40e_attach, /* devo_attach */
3033 i40e_detach, /* devo_detach */
3034 nodev, /* devo_reset */
3035 &i40e_cb_ops, /* devo_cb_ops */
3036 NULL, /* devo_bus_ops */
3037 ddi_power, /* devo_power */
3038 ddi_quiesce_not_supported /* devo_quiesce */
3039 };
3040
3041 static struct modldrv i40e_modldrv = {
3042 &mod_driverops,
3043 i40e_ident,
3044 &i40e_dev_ops
3045 };
3046
3047 static struct modlinkage i40e_modlinkage = {
3048 MODREV_1,
3049 &i40e_modldrv,
3050 NULL
3051 };
3052
3053 /*
3054 * Module Initialization Functions.
3055 */
3056 int
_init(void)3057 _init(void)
3058 {
3059 int status;
3060
3061 list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3062 list_create(&i40e_dlist, sizeof (i40e_device_t),
3063 offsetof(i40e_device_t, id_link));
3064 mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3065 mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3066
3067 status = mod_install(&i40e_modlinkage);
3068 if (status != DDI_SUCCESS) {
3069 mac_fini_ops(&i40e_dev_ops);
3070 mutex_destroy(&i40e_glock);
3071 list_destroy(&i40e_dlist);
3072 list_destroy(&i40e_glist);
3073 }
3074
3075 return (status);
3076 }
3077
3078 int
_info(struct modinfo * modinfop)3079 _info(struct modinfo *modinfop)
3080 {
3081 return (mod_info(&i40e_modlinkage, modinfop));
3082 }
3083
3084 int
_fini(void)3085 _fini(void)
3086 {
3087 int status;
3088
3089 status = mod_remove(&i40e_modlinkage);
3090 if (status == DDI_SUCCESS) {
3091 mac_fini_ops(&i40e_dev_ops);
3092 mutex_destroy(&i40e_glock);
3093 list_destroy(&i40e_dlist);
3094 list_destroy(&i40e_glist);
3095 }
3096
3097 return (status);
3098 }
3099