1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* This file contains all TCP input processing functions. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/suntpi.h> 37 #include <sys/xti_inet.h> 38 #include <sys/squeue_impl.h> 39 #include <sys/squeue.h> 40 #include <sys/tsol/tnet.h> 41 42 #include <inet/common.h> 43 #include <inet/ip.h> 44 #include <inet/tcp.h> 45 #include <inet/tcp_impl.h> 46 #include <inet/tcp_cluster.h> 47 #include <inet/proto_set.h> 48 #include <inet/ipsec_impl.h> 49 50 /* 51 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 52 */ 53 54 #ifdef _BIG_ENDIAN 55 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 56 (TCPOPT_TSTAMP << 8) | 10) 57 #else 58 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 59 (TCPOPT_NOP << 8) | TCPOPT_NOP) 60 #endif 61 62 /* 63 * Flags returned from tcp_parse_options. 64 */ 65 #define TCP_OPT_MSS_PRESENT 1 66 #define TCP_OPT_WSCALE_PRESENT 2 67 #define TCP_OPT_TSTAMP_PRESENT 4 68 #define TCP_OPT_SACK_OK_PRESENT 8 69 #define TCP_OPT_SACK_PRESENT 16 70 71 /* 72 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 73 */ 74 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 75 76 /* 77 * Since tcp_listener is not cleared atomically with tcp_detached 78 * being cleared we need this extra bit to tell a detached connection 79 * apart from one that is in the process of being accepted. 80 */ 81 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 82 (TCP_IS_DETACHED(tcp) && \ 83 (!(tcp)->tcp_hard_binding)) 84 85 /* 86 * Steps to do when a tcp_t moves to TIME-WAIT state. 87 * 88 * This connection is done, we don't need to account for it. Decrement 89 * the listener connection counter if needed. 90 * 91 * Decrement the connection counter of the stack. Note that this counter 92 * is per CPU. So the total number of connections in a stack is the sum of all 93 * of them. Since there is no lock for handling all of them exclusively, the 94 * resulting sum is only an approximation. 95 * 96 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 97 * connection won't interfere with new ones. 98 * 99 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 100 * the timer is handled within the context of this tcp_t. When the timer 101 * fires, tcp_clean_death() is called. If upper layer closes the connection 102 * during this period, tcp_time_wait_append() will be called to add this 103 * tcp_t to the global TIME-WAIT list. Note that this means that the 104 * actual wait time in TIME-WAIT state will be longer than the 105 * tcps_time_wait_interval since the period before upper layer closes the 106 * connection is not accounted for when tcp_time_wait_append() is called. 107 * 108 * If uppser layer has closed the connection, call tcp_time_wait_append() 109 * directly. 110 * 111 */ 112 #define SET_TIME_WAIT(tcps, tcp, connp) \ 113 { \ 114 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 115 if ((tcp)->tcp_listen_cnt != NULL) \ 116 TCP_DECR_LISTEN_CNT(tcp); \ 117 atomic_dec_64( \ 118 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 119 (connp)->conn_exclbind = 0; \ 120 if (!TCP_IS_DETACHED(tcp)) { \ 121 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 122 } else { \ 123 tcp_time_wait_append(tcp); \ 124 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 125 } \ 126 } 127 128 /* 129 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 130 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 131 * data, TCP will not respond with an ACK. RFC 793 requires that 132 * TCP responds with an ACK for such a bogus ACK. By not following 133 * the RFC, we prevent TCP from getting into an ACK storm if somehow 134 * an attacker successfully spoofs an acceptable segment to our 135 * peer; or when our peer is "confused." 136 */ 137 static uint32_t tcp_drop_ack_unsent_cnt = 10; 138 139 /* 140 * To protect TCP against attacker using a small window and requesting 141 * large amount of data (DoS attack by conuming memory), TCP checks the 142 * window advertised in the last ACK of the 3-way handshake. TCP uses 143 * the tcp_mss (the size of one packet) value for comparion. The window 144 * should be larger than tcp_mss. But while a sane TCP should advertise 145 * a receive window larger than or equal to 4*MSS to avoid stop and go 146 * tarrfic, not all TCP stacks do that. This is especially true when 147 * tcp_mss is a big value. 148 * 149 * To work around this issue, an additional fixed value for comparison 150 * is also used. If the advertised window is smaller than both tcp_mss 151 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large 152 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but 153 * smaller than 8K is considered to be OK. 154 */ 155 static uint32_t tcp_init_wnd_chk = 4096; 156 157 /* Process ICMP source quench message or not. */ 158 static boolean_t tcp_icmp_source_quench = B_FALSE; 159 160 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 161 162 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 163 ip_recv_attr_t *); 164 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 165 ip_recv_attr_t *); 166 static boolean_t tcp_drop_q0(tcp_t *); 167 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 168 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 169 ip_recv_attr_t *); 170 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 171 static int tcp_parse_options(tcpha_t *, tcp_opt_t *); 172 static void tcp_process_options(tcp_t *, tcpha_t *); 173 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 174 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 175 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 176 static void tcp_set_rto(tcp_t *, time_t); 177 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 178 179 /* 180 * Set the MSS associated with a particular tcp based on its current value, 181 * and a new one passed in. Observe minimums and maximums, and reset other 182 * state variables that we want to view as multiples of MSS. 183 * 184 * The value of MSS could be either increased or descreased. 185 */ 186 void 187 tcp_mss_set(tcp_t *tcp, uint32_t mss) 188 { 189 uint32_t mss_max; 190 tcp_stack_t *tcps = tcp->tcp_tcps; 191 conn_t *connp = tcp->tcp_connp; 192 193 if (connp->conn_ipversion == IPV4_VERSION) 194 mss_max = tcps->tcps_mss_max_ipv4; 195 else 196 mss_max = tcps->tcps_mss_max_ipv6; 197 198 if (mss < tcps->tcps_mss_min) 199 mss = tcps->tcps_mss_min; 200 if (mss > mss_max) 201 mss = mss_max; 202 /* 203 * Unless naglim has been set by our client to 204 * a non-mss value, force naglim to track mss. 205 * This can help to aggregate small writes. 206 */ 207 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 208 tcp->tcp_naglim = mss; 209 /* 210 * TCP should be able to buffer at least 4 MSS data for obvious 211 * performance reason. 212 */ 213 if ((mss << 2) > connp->conn_sndbuf) 214 connp->conn_sndbuf = mss << 2; 215 216 /* 217 * Set the send lowater to at least twice of MSS. 218 */ 219 if ((mss << 1) > connp->conn_sndlowat) 220 connp->conn_sndlowat = mss << 1; 221 222 /* 223 * Update tcp_cwnd according to the new value of MSS. Keep the 224 * previous ratio to preserve the transmit rate. 225 */ 226 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 227 tcp->tcp_cwnd_cnt = 0; 228 229 tcp->tcp_mss = mss; 230 (void) tcp_maxpsz_set(tcp, B_TRUE); 231 } 232 233 /* 234 * Extract option values from a tcp header. We put any found values into the 235 * tcpopt struct and return a bitmask saying which options were found. 236 */ 237 static int 238 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 239 { 240 uchar_t *endp; 241 int len; 242 uint32_t mss; 243 uchar_t *up = (uchar_t *)tcpha; 244 int found = 0; 245 int32_t sack_len; 246 tcp_seq sack_begin, sack_end; 247 tcp_t *tcp; 248 249 endp = up + TCP_HDR_LENGTH(tcpha); 250 up += TCP_MIN_HEADER_LENGTH; 251 while (up < endp) { 252 len = endp - up; 253 switch (*up) { 254 case TCPOPT_EOL: 255 break; 256 257 case TCPOPT_NOP: 258 up++; 259 continue; 260 261 case TCPOPT_MAXSEG: 262 if (len < TCPOPT_MAXSEG_LEN || 263 up[1] != TCPOPT_MAXSEG_LEN) 264 break; 265 266 mss = BE16_TO_U16(up+2); 267 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 268 tcpopt->tcp_opt_mss = mss; 269 found |= TCP_OPT_MSS_PRESENT; 270 271 up += TCPOPT_MAXSEG_LEN; 272 continue; 273 274 case TCPOPT_WSCALE: 275 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 276 break; 277 278 if (up[2] > TCP_MAX_WINSHIFT) 279 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 280 else 281 tcpopt->tcp_opt_wscale = up[2]; 282 found |= TCP_OPT_WSCALE_PRESENT; 283 284 up += TCPOPT_WS_LEN; 285 continue; 286 287 case TCPOPT_SACK_PERMITTED: 288 if (len < TCPOPT_SACK_OK_LEN || 289 up[1] != TCPOPT_SACK_OK_LEN) 290 break; 291 found |= TCP_OPT_SACK_OK_PRESENT; 292 up += TCPOPT_SACK_OK_LEN; 293 continue; 294 295 case TCPOPT_SACK: 296 if (len <= 2 || up[1] <= 2 || len < up[1]) 297 break; 298 299 /* If TCP is not interested in SACK blks... */ 300 if ((tcp = tcpopt->tcp) == NULL) { 301 up += up[1]; 302 continue; 303 } 304 sack_len = up[1] - TCPOPT_HEADER_LEN; 305 up += TCPOPT_HEADER_LEN; 306 307 /* 308 * If the list is empty, allocate one and assume 309 * nothing is sack'ed. 310 */ 311 if (tcp->tcp_notsack_list == NULL) { 312 tcp_notsack_update(&(tcp->tcp_notsack_list), 313 tcp->tcp_suna, tcp->tcp_snxt, 314 &(tcp->tcp_num_notsack_blk), 315 &(tcp->tcp_cnt_notsack_list)); 316 317 /* 318 * Make sure tcp_notsack_list is not NULL. 319 * This happens when kmem_alloc(KM_NOSLEEP) 320 * returns NULL. 321 */ 322 if (tcp->tcp_notsack_list == NULL) { 323 up += sack_len; 324 continue; 325 } 326 tcp->tcp_fack = tcp->tcp_suna; 327 } 328 329 while (sack_len > 0) { 330 if (up + 8 > endp) { 331 up = endp; 332 break; 333 } 334 sack_begin = BE32_TO_U32(up); 335 up += 4; 336 sack_end = BE32_TO_U32(up); 337 up += 4; 338 sack_len -= 8; 339 /* 340 * Bounds checking. Make sure the SACK 341 * info is within tcp_suna and tcp_snxt. 342 * If this SACK blk is out of bound, ignore 343 * it but continue to parse the following 344 * blks. 345 */ 346 if (SEQ_LEQ(sack_end, sack_begin) || 347 SEQ_LT(sack_begin, tcp->tcp_suna) || 348 SEQ_GT(sack_end, tcp->tcp_snxt)) { 349 continue; 350 } 351 tcp_notsack_insert(&(tcp->tcp_notsack_list), 352 sack_begin, sack_end, 353 &(tcp->tcp_num_notsack_blk), 354 &(tcp->tcp_cnt_notsack_list)); 355 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 356 tcp->tcp_fack = sack_end; 357 } 358 } 359 found |= TCP_OPT_SACK_PRESENT; 360 continue; 361 362 case TCPOPT_TSTAMP: 363 if (len < TCPOPT_TSTAMP_LEN || 364 up[1] != TCPOPT_TSTAMP_LEN) 365 break; 366 367 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 368 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 369 370 found |= TCP_OPT_TSTAMP_PRESENT; 371 372 up += TCPOPT_TSTAMP_LEN; 373 continue; 374 375 default: 376 if (len <= 1 || len < (int)up[1] || up[1] == 0) 377 break; 378 up += up[1]; 379 continue; 380 } 381 break; 382 } 383 return (found); 384 } 385 386 /* 387 * Process all TCP option in SYN segment. Note that this function should 388 * be called after tcp_set_destination() is called so that the necessary info 389 * from IRE is already set in the tcp structure. 390 * 391 * This function sets up the correct tcp_mss value according to the 392 * MSS option value and our header size. It also sets up the window scale 393 * and timestamp values, and initialize SACK info blocks. But it does not 394 * change receive window size after setting the tcp_mss value. The caller 395 * should do the appropriate change. 396 */ 397 static void 398 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 399 { 400 int options; 401 tcp_opt_t tcpopt; 402 uint32_t mss_max; 403 char *tmp_tcph; 404 tcp_stack_t *tcps = tcp->tcp_tcps; 405 conn_t *connp = tcp->tcp_connp; 406 407 tcpopt.tcp = NULL; 408 options = tcp_parse_options(tcpha, &tcpopt); 409 410 /* 411 * Process MSS option. Note that MSS option value does not account 412 * for IP or TCP options. This means that it is equal to MTU - minimum 413 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 414 * IPv6. 415 */ 416 if (!(options & TCP_OPT_MSS_PRESENT)) { 417 if (connp->conn_ipversion == IPV4_VERSION) 418 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 419 else 420 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 421 } else { 422 if (connp->conn_ipversion == IPV4_VERSION) 423 mss_max = tcps->tcps_mss_max_ipv4; 424 else 425 mss_max = tcps->tcps_mss_max_ipv6; 426 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 427 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 428 else if (tcpopt.tcp_opt_mss > mss_max) 429 tcpopt.tcp_opt_mss = mss_max; 430 } 431 432 /* Process Window Scale option. */ 433 if (options & TCP_OPT_WSCALE_PRESENT) { 434 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 435 tcp->tcp_snd_ws_ok = B_TRUE; 436 } else { 437 tcp->tcp_snd_ws = B_FALSE; 438 tcp->tcp_snd_ws_ok = B_FALSE; 439 tcp->tcp_rcv_ws = B_FALSE; 440 } 441 442 /* Process Timestamp option. */ 443 if ((options & TCP_OPT_TSTAMP_PRESENT) && 444 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 445 tmp_tcph = (char *)tcp->tcp_tcpha; 446 447 tcp->tcp_snd_ts_ok = B_TRUE; 448 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 449 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 450 ASSERT(OK_32PTR(tmp_tcph)); 451 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 452 453 /* Fill in our template header with basic timestamp option. */ 454 tmp_tcph += connp->conn_ht_ulp_len; 455 tmp_tcph[0] = TCPOPT_NOP; 456 tmp_tcph[1] = TCPOPT_NOP; 457 tmp_tcph[2] = TCPOPT_TSTAMP; 458 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 459 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 460 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 461 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 462 } else { 463 tcp->tcp_snd_ts_ok = B_FALSE; 464 } 465 466 /* 467 * Process SACK options. If SACK is enabled for this connection, 468 * then allocate the SACK info structure. Note the following ways 469 * when tcp_snd_sack_ok is set to true. 470 * 471 * For active connection: in tcp_set_destination() called in 472 * tcp_connect(). 473 * 474 * For passive connection: in tcp_set_destination() called in 475 * tcp_input_listener(). 476 * 477 * That's the reason why the extra TCP_IS_DETACHED() check is there. 478 * That check makes sure that if we did not send a SACK OK option, 479 * we will not enable SACK for this connection even though the other 480 * side sends us SACK OK option. For active connection, the SACK 481 * info structure has already been allocated. So we need to free 482 * it if SACK is disabled. 483 */ 484 if ((options & TCP_OPT_SACK_OK_PRESENT) && 485 (tcp->tcp_snd_sack_ok || 486 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 487 ASSERT(tcp->tcp_num_sack_blk == 0); 488 ASSERT(tcp->tcp_notsack_list == NULL); 489 490 tcp->tcp_snd_sack_ok = B_TRUE; 491 if (tcp->tcp_snd_ts_ok) { 492 tcp->tcp_max_sack_blk = 3; 493 } else { 494 tcp->tcp_max_sack_blk = 4; 495 } 496 } else if (tcp->tcp_snd_sack_ok) { 497 /* 498 * Resetting tcp_snd_sack_ok to B_FALSE so that 499 * no SACK info will be used for this 500 * connection. This assumes that SACK usage 501 * permission is negotiated. This may need 502 * to be changed once this is clarified. 503 */ 504 ASSERT(tcp->tcp_num_sack_blk == 0); 505 ASSERT(tcp->tcp_notsack_list == NULL); 506 tcp->tcp_snd_sack_ok = B_FALSE; 507 } 508 509 /* 510 * Now we know the exact TCP/IP header length, subtract 511 * that from tcp_mss to get our side's MSS. 512 */ 513 tcp->tcp_mss -= connp->conn_ht_iphc_len; 514 515 /* 516 * Here we assume that the other side's header size will be equal to 517 * our header size. We calculate the real MSS accordingly. Need to 518 * take into additional stuffs IPsec puts in. 519 * 520 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 521 */ 522 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 523 tcp->tcp_ipsec_overhead - 524 ((connp->conn_ipversion == IPV4_VERSION ? 525 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 526 527 /* 528 * Set MSS to the smaller one of both ends of the connection. 529 * We should not have called tcp_mss_set() before, but our 530 * side of the MSS should have been set to a proper value 531 * by tcp_set_destination(). tcp_mss_set() will also set up the 532 * STREAM head parameters properly. 533 * 534 * If we have a larger-than-16-bit window but the other side 535 * didn't want to do window scale, tcp_rwnd_set() will take 536 * care of that. 537 */ 538 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 539 540 /* 541 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 542 * updated properly. 543 */ 544 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 545 } 546 547 /* 548 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 549 * is filled, return as much as we can. The message passed in may be 550 * multi-part, chained using b_cont. "start" is the starting sequence 551 * number for this piece. 552 */ 553 static mblk_t * 554 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 555 { 556 uint32_t end; 557 mblk_t *mp1; 558 mblk_t *mp2; 559 mblk_t *next_mp; 560 uint32_t u1; 561 tcp_stack_t *tcps = tcp->tcp_tcps; 562 563 564 /* Walk through all the new pieces. */ 565 do { 566 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 567 (uintptr_t)INT_MAX); 568 end = start + (int)(mp->b_wptr - mp->b_rptr); 569 next_mp = mp->b_cont; 570 if (start == end) { 571 /* Empty. Blast it. */ 572 freeb(mp); 573 continue; 574 } 575 mp->b_cont = NULL; 576 TCP_REASS_SET_SEQ(mp, start); 577 TCP_REASS_SET_END(mp, end); 578 mp1 = tcp->tcp_reass_tail; 579 if (!mp1) { 580 tcp->tcp_reass_tail = mp; 581 tcp->tcp_reass_head = mp; 582 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 583 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 584 end - start); 585 continue; 586 } 587 /* New stuff completely beyond tail? */ 588 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 589 /* Link it on end. */ 590 mp1->b_cont = mp; 591 tcp->tcp_reass_tail = mp; 592 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 593 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 594 end - start); 595 continue; 596 } 597 mp1 = tcp->tcp_reass_head; 598 u1 = TCP_REASS_SEQ(mp1); 599 /* New stuff at the front? */ 600 if (SEQ_LT(start, u1)) { 601 /* Yes... Check for overlap. */ 602 mp->b_cont = mp1; 603 tcp->tcp_reass_head = mp; 604 tcp_reass_elim_overlap(tcp, mp); 605 continue; 606 } 607 /* 608 * The new piece fits somewhere between the head and tail. 609 * We find our slot, where mp1 precedes us and mp2 trails. 610 */ 611 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 612 u1 = TCP_REASS_SEQ(mp2); 613 if (SEQ_LEQ(start, u1)) 614 break; 615 } 616 /* Link ourselves in */ 617 mp->b_cont = mp2; 618 mp1->b_cont = mp; 619 620 /* Trim overlap with following mblk(s) first */ 621 tcp_reass_elim_overlap(tcp, mp); 622 623 /* Trim overlap with preceding mblk */ 624 tcp_reass_elim_overlap(tcp, mp1); 625 626 } while (start = end, mp = next_mp); 627 mp1 = tcp->tcp_reass_head; 628 /* Anything ready to go? */ 629 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 630 return (NULL); 631 /* Eat what we can off the queue */ 632 for (;;) { 633 mp = mp1->b_cont; 634 end = TCP_REASS_END(mp1); 635 TCP_REASS_SET_SEQ(mp1, 0); 636 TCP_REASS_SET_END(mp1, 0); 637 if (!mp) { 638 tcp->tcp_reass_tail = NULL; 639 break; 640 } 641 if (end != TCP_REASS_SEQ(mp)) { 642 mp1->b_cont = NULL; 643 break; 644 } 645 mp1 = mp; 646 } 647 mp1 = tcp->tcp_reass_head; 648 tcp->tcp_reass_head = mp; 649 return (mp1); 650 } 651 652 /* Eliminate any overlap that mp may have over later mblks */ 653 static void 654 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 655 { 656 uint32_t end; 657 mblk_t *mp1; 658 uint32_t u1; 659 tcp_stack_t *tcps = tcp->tcp_tcps; 660 661 end = TCP_REASS_END(mp); 662 while ((mp1 = mp->b_cont) != NULL) { 663 u1 = TCP_REASS_SEQ(mp1); 664 if (!SEQ_GT(end, u1)) 665 break; 666 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 667 mp->b_wptr -= end - u1; 668 TCP_REASS_SET_END(mp, u1); 669 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 670 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 671 end - u1); 672 break; 673 } 674 mp->b_cont = mp1->b_cont; 675 TCP_REASS_SET_SEQ(mp1, 0); 676 TCP_REASS_SET_END(mp1, 0); 677 freeb(mp1); 678 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 679 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 680 } 681 if (!mp1) 682 tcp->tcp_reass_tail = mp; 683 } 684 685 /* 686 * This function does PAWS protection check. Returns B_TRUE if the 687 * segment passes the PAWS test, else returns B_FALSE. 688 */ 689 boolean_t 690 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 691 { 692 uint8_t flags; 693 int options; 694 uint8_t *up; 695 conn_t *connp = tcp->tcp_connp; 696 697 flags = (unsigned int)tcpha->tha_flags & 0xFF; 698 /* 699 * If timestamp option is aligned nicely, get values inline, 700 * otherwise call general routine to parse. Only do that 701 * if timestamp is the only option. 702 */ 703 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 704 TCPOPT_REAL_TS_LEN && 705 OK_32PTR((up = ((uint8_t *)tcpha) + 706 TCP_MIN_HEADER_LENGTH)) && 707 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 708 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 709 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 710 711 options = TCP_OPT_TSTAMP_PRESENT; 712 } else { 713 if (tcp->tcp_snd_sack_ok) { 714 tcpoptp->tcp = tcp; 715 } else { 716 tcpoptp->tcp = NULL; 717 } 718 options = tcp_parse_options(tcpha, tcpoptp); 719 } 720 721 if (options & TCP_OPT_TSTAMP_PRESENT) { 722 /* 723 * Do PAWS per RFC 1323 section 4.2. Accept RST 724 * regardless of the timestamp, page 18 RFC 1323.bis. 725 */ 726 if ((flags & TH_RST) == 0 && 727 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 728 tcp->tcp_ts_recent)) { 729 if (LBOLT_FASTPATH64 < 730 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 731 /* This segment is not acceptable. */ 732 return (B_FALSE); 733 } else { 734 /* 735 * Connection has been idle for 736 * too long. Reset the timestamp 737 * and assume the segment is valid. 738 */ 739 tcp->tcp_ts_recent = 740 tcpoptp->tcp_opt_ts_val; 741 } 742 } 743 } else { 744 /* 745 * If we don't get a timestamp on every packet, we 746 * figure we can't really trust 'em, so we stop sending 747 * and parsing them. 748 */ 749 tcp->tcp_snd_ts_ok = B_FALSE; 750 751 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 752 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 753 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 754 /* 755 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 756 * doing a slow start here so as to not to lose on the 757 * transfer rate built up so far. 758 */ 759 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 760 if (tcp->tcp_snd_sack_ok) 761 tcp->tcp_max_sack_blk = 4; 762 } 763 return (B_TRUE); 764 } 765 766 /* 767 * Defense for the SYN attack - 768 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 769 * one from the list of droppable eagers. This list is a subset of q0. 770 * see comments before the definition of MAKE_DROPPABLE(). 771 * 2. Don't drop a SYN request before its first timeout. This gives every 772 * request at least til the first timeout to complete its 3-way handshake. 773 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 774 * requests currently on the queue that has timed out. This will be used 775 * as an indicator of whether an attack is under way, so that appropriate 776 * actions can be taken. (It's incremented in tcp_timer() and decremented 777 * either when eager goes into ESTABLISHED, or gets freed up.) 778 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 779 * # of timeout drops back to <= q0len/32 => SYN alert off 780 */ 781 static boolean_t 782 tcp_drop_q0(tcp_t *tcp) 783 { 784 tcp_t *eager; 785 mblk_t *mp; 786 tcp_stack_t *tcps = tcp->tcp_tcps; 787 788 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 789 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 790 791 /* Pick oldest eager from the list of droppable eagers */ 792 eager = tcp->tcp_eager_prev_drop_q0; 793 794 /* If list is empty. return B_FALSE */ 795 if (eager == tcp) { 796 return (B_FALSE); 797 } 798 799 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 800 if ((mp = allocb(0, BPRI_HI)) == NULL) 801 return (B_FALSE); 802 803 /* 804 * Take this eager out from the list of droppable eagers since we are 805 * going to drop it. 806 */ 807 MAKE_UNDROPPABLE(eager); 808 809 if (tcp->tcp_connp->conn_debug) { 810 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 811 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 812 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 813 tcp->tcp_conn_req_cnt_q0, 814 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 815 } 816 817 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 818 819 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 820 CONN_INC_REF(eager->tcp_connp); 821 822 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 823 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 824 SQ_FILL, SQTAG_TCP_DROP_Q0); 825 826 return (B_TRUE); 827 } 828 829 /* 830 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 831 */ 832 static mblk_t * 833 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 834 ip_recv_attr_t *ira) 835 { 836 tcp_t *ltcp = lconnp->conn_tcp; 837 tcp_t *tcp = connp->conn_tcp; 838 mblk_t *tpi_mp; 839 ipha_t *ipha; 840 ip6_t *ip6h; 841 sin6_t sin6; 842 uint_t ifindex = ira->ira_ruifindex; 843 tcp_stack_t *tcps = tcp->tcp_tcps; 844 845 if (ira->ira_flags & IRAF_IS_IPV4) { 846 ipha = (ipha_t *)mp->b_rptr; 847 848 connp->conn_ipversion = IPV4_VERSION; 849 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 850 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 851 connp->conn_saddr_v6 = connp->conn_laddr_v6; 852 853 sin6 = sin6_null; 854 sin6.sin6_addr = connp->conn_faddr_v6; 855 sin6.sin6_port = connp->conn_fport; 856 sin6.sin6_family = AF_INET6; 857 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 858 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 859 860 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 861 sin6_t sin6d; 862 863 sin6d = sin6_null; 864 sin6d.sin6_addr = connp->conn_laddr_v6; 865 sin6d.sin6_port = connp->conn_lport; 866 sin6d.sin6_family = AF_INET; 867 tpi_mp = mi_tpi_extconn_ind(NULL, 868 (char *)&sin6d, sizeof (sin6_t), 869 (char *)&tcp, 870 (t_scalar_t)sizeof (intptr_t), 871 (char *)&sin6d, sizeof (sin6_t), 872 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 873 } else { 874 tpi_mp = mi_tpi_conn_ind(NULL, 875 (char *)&sin6, sizeof (sin6_t), 876 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 877 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 878 } 879 } else { 880 ip6h = (ip6_t *)mp->b_rptr; 881 882 connp->conn_ipversion = IPV6_VERSION; 883 connp->conn_laddr_v6 = ip6h->ip6_dst; 884 connp->conn_faddr_v6 = ip6h->ip6_src; 885 connp->conn_saddr_v6 = connp->conn_laddr_v6; 886 887 sin6 = sin6_null; 888 sin6.sin6_addr = connp->conn_faddr_v6; 889 sin6.sin6_port = connp->conn_fport; 890 sin6.sin6_family = AF_INET6; 891 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 892 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 893 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 894 895 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 896 /* Pass up the scope_id of remote addr */ 897 sin6.sin6_scope_id = ifindex; 898 } else { 899 sin6.sin6_scope_id = 0; 900 } 901 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 902 sin6_t sin6d; 903 904 sin6d = sin6_null; 905 sin6.sin6_addr = connp->conn_laddr_v6; 906 sin6d.sin6_port = connp->conn_lport; 907 sin6d.sin6_family = AF_INET6; 908 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 909 sin6d.sin6_scope_id = ifindex; 910 911 tpi_mp = mi_tpi_extconn_ind(NULL, 912 (char *)&sin6d, sizeof (sin6_t), 913 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 914 (char *)&sin6d, sizeof (sin6_t), 915 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 916 } else { 917 tpi_mp = mi_tpi_conn_ind(NULL, 918 (char *)&sin6, sizeof (sin6_t), 919 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 920 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 921 } 922 } 923 924 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 925 return (tpi_mp); 926 } 927 928 /* Handle a SYN on an AF_INET socket */ 929 static mblk_t * 930 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 931 ip_recv_attr_t *ira) 932 { 933 tcp_t *ltcp = lconnp->conn_tcp; 934 tcp_t *tcp = connp->conn_tcp; 935 sin_t sin; 936 mblk_t *tpi_mp = NULL; 937 tcp_stack_t *tcps = tcp->tcp_tcps; 938 ipha_t *ipha; 939 940 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 941 ipha = (ipha_t *)mp->b_rptr; 942 943 connp->conn_ipversion = IPV4_VERSION; 944 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 945 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 946 connp->conn_saddr_v6 = connp->conn_laddr_v6; 947 948 sin = sin_null; 949 sin.sin_addr.s_addr = connp->conn_faddr_v4; 950 sin.sin_port = connp->conn_fport; 951 sin.sin_family = AF_INET; 952 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 953 sin_t sind; 954 955 sind = sin_null; 956 sind.sin_addr.s_addr = connp->conn_laddr_v4; 957 sind.sin_port = connp->conn_lport; 958 sind.sin_family = AF_INET; 959 tpi_mp = mi_tpi_extconn_ind(NULL, 960 (char *)&sind, sizeof (sin_t), (char *)&tcp, 961 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 962 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 963 } else { 964 tpi_mp = mi_tpi_conn_ind(NULL, 965 (char *)&sin, sizeof (sin_t), 966 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 967 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 968 } 969 970 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 971 return (tpi_mp); 972 } 973 974 /* 975 * Called via squeue to get on to eager's perimeter. It sends a 976 * TH_RST if eager is in the fanout table. The listener wants the 977 * eager to disappear either by means of tcp_eager_blowoff() or 978 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 979 * called (via squeue) if the eager cannot be inserted in the 980 * fanout table in tcp_input_listener(). 981 */ 982 /* ARGSUSED */ 983 void 984 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 985 { 986 conn_t *econnp = (conn_t *)arg; 987 tcp_t *eager = econnp->conn_tcp; 988 tcp_t *listener = eager->tcp_listener; 989 990 /* 991 * We could be called because listener is closing. Since 992 * the eager was using listener's queue's, we avoid 993 * using the listeners queues from now on. 994 */ 995 ASSERT(eager->tcp_detached); 996 econnp->conn_rq = NULL; 997 econnp->conn_wq = NULL; 998 999 /* 1000 * An eager's conn_fanout will be NULL if it's a duplicate 1001 * for an existing 4-tuples in the conn fanout table. 1002 * We don't want to send an RST out in such case. 1003 */ 1004 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1005 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1006 eager, eager->tcp_snxt, 0, TH_RST); 1007 } 1008 1009 /* We are here because listener wants this eager gone */ 1010 if (listener != NULL) { 1011 mutex_enter(&listener->tcp_eager_lock); 1012 tcp_eager_unlink(eager); 1013 if (eager->tcp_tconnind_started) { 1014 /* 1015 * The eager has sent a conn_ind up to the 1016 * listener but listener decides to close 1017 * instead. We need to drop the extra ref 1018 * placed on eager in tcp_input_data() before 1019 * sending the conn_ind to listener. 1020 */ 1021 CONN_DEC_REF(econnp); 1022 } 1023 mutex_exit(&listener->tcp_eager_lock); 1024 CONN_DEC_REF(listener->tcp_connp); 1025 } 1026 1027 if (eager->tcp_state != TCPS_CLOSED) 1028 tcp_close_detached(eager); 1029 } 1030 1031 /* 1032 * Reset any eager connection hanging off this listener marked 1033 * with 'seqnum' and then reclaim it's resources. 1034 */ 1035 boolean_t 1036 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1037 { 1038 tcp_t *eager; 1039 mblk_t *mp; 1040 1041 eager = listener; 1042 mutex_enter(&listener->tcp_eager_lock); 1043 do { 1044 eager = eager->tcp_eager_next_q; 1045 if (eager == NULL) { 1046 mutex_exit(&listener->tcp_eager_lock); 1047 return (B_FALSE); 1048 } 1049 } while (eager->tcp_conn_req_seqnum != seqnum); 1050 1051 if (eager->tcp_closemp_used) { 1052 mutex_exit(&listener->tcp_eager_lock); 1053 return (B_TRUE); 1054 } 1055 eager->tcp_closemp_used = B_TRUE; 1056 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1057 CONN_INC_REF(eager->tcp_connp); 1058 mutex_exit(&listener->tcp_eager_lock); 1059 mp = &eager->tcp_closemp; 1060 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1061 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1062 return (B_TRUE); 1063 } 1064 1065 /* 1066 * Reset any eager connection hanging off this listener 1067 * and then reclaim it's resources. 1068 */ 1069 void 1070 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1071 { 1072 tcp_t *eager; 1073 mblk_t *mp; 1074 tcp_stack_t *tcps = listener->tcp_tcps; 1075 1076 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1077 1078 if (!q0_only) { 1079 /* First cleanup q */ 1080 TCP_STAT(tcps, tcp_eager_blowoff_q); 1081 eager = listener->tcp_eager_next_q; 1082 while (eager != NULL) { 1083 if (!eager->tcp_closemp_used) { 1084 eager->tcp_closemp_used = B_TRUE; 1085 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1086 CONN_INC_REF(eager->tcp_connp); 1087 mp = &eager->tcp_closemp; 1088 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1089 tcp_eager_kill, eager->tcp_connp, NULL, 1090 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1091 } 1092 eager = eager->tcp_eager_next_q; 1093 } 1094 } 1095 /* Then cleanup q0 */ 1096 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1097 eager = listener->tcp_eager_next_q0; 1098 while (eager != listener) { 1099 if (!eager->tcp_closemp_used) { 1100 eager->tcp_closemp_used = B_TRUE; 1101 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1102 CONN_INC_REF(eager->tcp_connp); 1103 mp = &eager->tcp_closemp; 1104 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1105 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1106 SQTAG_TCP_EAGER_CLEANUP_Q0); 1107 } 1108 eager = eager->tcp_eager_next_q0; 1109 } 1110 } 1111 1112 /* 1113 * If we are an eager connection hanging off a listener that hasn't 1114 * formally accepted the connection yet, get off his list and blow off 1115 * any data that we have accumulated. 1116 */ 1117 void 1118 tcp_eager_unlink(tcp_t *tcp) 1119 { 1120 tcp_t *listener = tcp->tcp_listener; 1121 1122 ASSERT(listener != NULL); 1123 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1124 if (tcp->tcp_eager_next_q0 != NULL) { 1125 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1126 1127 /* Remove the eager tcp from q0 */ 1128 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1129 tcp->tcp_eager_prev_q0; 1130 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1131 tcp->tcp_eager_next_q0; 1132 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1133 listener->tcp_conn_req_cnt_q0--; 1134 1135 tcp->tcp_eager_next_q0 = NULL; 1136 tcp->tcp_eager_prev_q0 = NULL; 1137 1138 /* 1139 * Take the eager out, if it is in the list of droppable 1140 * eagers. 1141 */ 1142 MAKE_UNDROPPABLE(tcp); 1143 1144 if (tcp->tcp_syn_rcvd_timeout != 0) { 1145 /* we have timed out before */ 1146 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1147 listener->tcp_syn_rcvd_timeout--; 1148 } 1149 } else { 1150 tcp_t **tcpp = &listener->tcp_eager_next_q; 1151 tcp_t *prev = NULL; 1152 1153 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1154 if (tcpp[0] == tcp) { 1155 if (listener->tcp_eager_last_q == tcp) { 1156 /* 1157 * If we are unlinking the last 1158 * element on the list, adjust 1159 * tail pointer. Set tail pointer 1160 * to nil when list is empty. 1161 */ 1162 ASSERT(tcp->tcp_eager_next_q == NULL); 1163 if (listener->tcp_eager_last_q == 1164 listener->tcp_eager_next_q) { 1165 listener->tcp_eager_last_q = 1166 NULL; 1167 } else { 1168 /* 1169 * We won't get here if there 1170 * is only one eager in the 1171 * list. 1172 */ 1173 ASSERT(prev != NULL); 1174 listener->tcp_eager_last_q = 1175 prev; 1176 } 1177 } 1178 tcpp[0] = tcp->tcp_eager_next_q; 1179 tcp->tcp_eager_next_q = NULL; 1180 tcp->tcp_eager_last_q = NULL; 1181 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1182 listener->tcp_conn_req_cnt_q--; 1183 break; 1184 } 1185 prev = tcpp[0]; 1186 } 1187 } 1188 tcp->tcp_listener = NULL; 1189 } 1190 1191 /* BEGIN CSTYLED */ 1192 /* 1193 * 1194 * The sockfs ACCEPT path: 1195 * ======================= 1196 * 1197 * The eager is now established in its own perimeter as soon as SYN is 1198 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1199 * completes the accept processing on the acceptor STREAM. The sending 1200 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1201 * listener but a TLI/XTI listener completes the accept processing 1202 * on the listener perimeter. 1203 * 1204 * Common control flow for 3 way handshake: 1205 * ---------------------------------------- 1206 * 1207 * incoming SYN (listener perimeter) -> tcp_input_listener() 1208 * 1209 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1210 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1211 * 1212 * Sockfs ACCEPT Path: 1213 * ------------------- 1214 * 1215 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1216 * as STREAM entry point) 1217 * 1218 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1219 * 1220 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1221 * association (we are not behind eager's squeue but sockfs is protecting us 1222 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1223 * is changed to point at tcp_wput(). 1224 * 1225 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1226 * listener (done on listener's perimeter). 1227 * 1228 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1229 * accept. 1230 * 1231 * TLI/XTI client ACCEPT path: 1232 * --------------------------- 1233 * 1234 * soaccept() sends T_CONN_RES on the listener STREAM. 1235 * 1236 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1237 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1238 * 1239 * Locks: 1240 * ====== 1241 * 1242 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1243 * and listeners->tcp_eager_next_q. 1244 * 1245 * Referencing: 1246 * ============ 1247 * 1248 * 1) We start out in tcp_input_listener by eager placing a ref on 1249 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1250 * 1251 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1252 * doing so we place a ref on the eager. This ref is finally dropped at the 1253 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1254 * reference is dropped by the squeue framework. 1255 * 1256 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1257 * 1258 * The reference must be released by the same entity that added the reference 1259 * In the above scheme, the eager is the entity that adds and releases the 1260 * references. Note that tcp_accept_finish executes in the squeue of the eager 1261 * (albeit after it is attached to the acceptor stream). Though 1. executes 1262 * in the listener's squeue, the eager is nascent at this point and the 1263 * reference can be considered to have been added on behalf of the eager. 1264 * 1265 * Eager getting a Reset or listener closing: 1266 * ========================================== 1267 * 1268 * Once the listener and eager are linked, the listener never does the unlink. 1269 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1270 * a message on all eager perimeter. The eager then does the unlink, clears 1271 * any pointers to the listener's queue and drops the reference to the 1272 * listener. The listener waits in tcp_close outside the squeue until its 1273 * refcount has dropped to 1. This ensures that the listener has waited for 1274 * all eagers to clear their association with the listener. 1275 * 1276 * Similarly, if eager decides to go away, it can unlink itself and close. 1277 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1278 * the reference to eager is still valid because of the extra ref we put 1279 * in tcp_send_conn_ind. 1280 * 1281 * Listener can always locate the eager under the protection 1282 * of the listener->tcp_eager_lock, and then do a refhold 1283 * on the eager during the accept processing. 1284 * 1285 * The acceptor stream accesses the eager in the accept processing 1286 * based on the ref placed on eager before sending T_conn_ind. 1287 * The only entity that can negate this refhold is a listener close 1288 * which is mutually exclusive with an active acceptor stream. 1289 * 1290 * Eager's reference on the listener 1291 * =================================== 1292 * 1293 * If the accept happens (even on a closed eager) the eager drops its 1294 * reference on the listener at the start of tcp_accept_finish. If the 1295 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1296 * the reference is dropped in tcp_closei_local. If the listener closes, 1297 * the reference is dropped in tcp_eager_kill. In all cases the reference 1298 * is dropped while executing in the eager's context (squeue). 1299 */ 1300 /* END CSTYLED */ 1301 1302 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1303 1304 /* 1305 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1306 * tcp_input_data will not see any packets for listeners since the listener 1307 * has conn_recv set to tcp_input_listener. 1308 */ 1309 /* ARGSUSED */ 1310 static void 1311 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1312 { 1313 tcpha_t *tcpha; 1314 uint32_t seg_seq; 1315 tcp_t *eager; 1316 int err; 1317 conn_t *econnp = NULL; 1318 squeue_t *new_sqp; 1319 mblk_t *mp1; 1320 uint_t ip_hdr_len; 1321 conn_t *lconnp = (conn_t *)arg; 1322 tcp_t *listener = lconnp->conn_tcp; 1323 tcp_stack_t *tcps = listener->tcp_tcps; 1324 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1325 uint_t flags; 1326 mblk_t *tpi_mp; 1327 uint_t ifindex = ira->ira_ruifindex; 1328 boolean_t tlc_set = B_FALSE; 1329 1330 ip_hdr_len = ira->ira_ip_hdr_length; 1331 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1332 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1333 1334 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, 1335 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, 1336 __dtrace_tcp_tcph_t *, tcpha); 1337 1338 if (!(flags & TH_SYN)) { 1339 if ((flags & TH_RST) || (flags & TH_URG)) { 1340 freemsg(mp); 1341 return; 1342 } 1343 if (flags & TH_ACK) { 1344 /* Note this executes in listener's squeue */ 1345 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1346 return; 1347 } 1348 1349 freemsg(mp); 1350 return; 1351 } 1352 1353 if (listener->tcp_state != TCPS_LISTEN) 1354 goto error2; 1355 1356 ASSERT(IPCL_IS_BOUND(lconnp)); 1357 1358 mutex_enter(&listener->tcp_eager_lock); 1359 1360 /* 1361 * The system is under memory pressure, so we need to do our part 1362 * to relieve the pressure. So we only accept new request if there 1363 * is nothing waiting to be accepted or waiting to complete the 3-way 1364 * handshake. This means that busy listener will not get too many 1365 * new requests which they cannot handle in time while non-busy 1366 * listener is still functioning properly. 1367 */ 1368 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1369 listener->tcp_conn_req_cnt_q0 > 0)) { 1370 mutex_exit(&listener->tcp_eager_lock); 1371 TCP_STAT(tcps, tcp_listen_mem_drop); 1372 goto error2; 1373 } 1374 1375 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1376 mutex_exit(&listener->tcp_eager_lock); 1377 TCP_STAT(tcps, tcp_listendrop); 1378 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1379 if (lconnp->conn_debug) { 1380 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1381 "tcp_input_listener: listen backlog (max=%d) " 1382 "overflow (%d pending) on %s", 1383 listener->tcp_conn_req_max, 1384 listener->tcp_conn_req_cnt_q, 1385 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1386 } 1387 goto error2; 1388 } 1389 1390 if (listener->tcp_conn_req_cnt_q0 >= 1391 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1392 /* 1393 * Q0 is full. Drop a pending half-open req from the queue 1394 * to make room for the new SYN req. Also mark the time we 1395 * drop a SYN. 1396 * 1397 * A more aggressive defense against SYN attack will 1398 * be to set the "tcp_syn_defense" flag now. 1399 */ 1400 TCP_STAT(tcps, tcp_listendropq0); 1401 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1402 if (!tcp_drop_q0(listener)) { 1403 mutex_exit(&listener->tcp_eager_lock); 1404 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1405 if (lconnp->conn_debug) { 1406 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1407 "tcp_input_listener: listen half-open " 1408 "queue (max=%d) full (%d pending) on %s", 1409 tcps->tcps_conn_req_max_q0, 1410 listener->tcp_conn_req_cnt_q0, 1411 tcp_display(listener, NULL, 1412 DISP_PORT_ONLY)); 1413 } 1414 goto error2; 1415 } 1416 } 1417 1418 /* 1419 * Enforce the limit set on the number of connections per listener. 1420 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1421 * for comparison. 1422 */ 1423 if (listener->tcp_listen_cnt != NULL) { 1424 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1425 int64_t now; 1426 1427 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 1428 mutex_exit(&listener->tcp_eager_lock); 1429 now = ddi_get_lbolt64(); 1430 atomic_add_32(&tlc->tlc_cnt, -1); 1431 TCP_STAT(tcps, tcp_listen_cnt_drop); 1432 tlc->tlc_drop++; 1433 if (now - tlc->tlc_report_time > 1434 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1435 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1436 "Listener (port %d) connection max (%u) " 1437 "reached: %u attempts dropped total\n", 1438 ntohs(listener->tcp_connp->conn_lport), 1439 tlc->tlc_max, tlc->tlc_drop); 1440 tlc->tlc_report_time = now; 1441 } 1442 goto error2; 1443 } 1444 tlc_set = B_TRUE; 1445 } 1446 1447 mutex_exit(&listener->tcp_eager_lock); 1448 1449 /* 1450 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1451 * or based on the ring (for packets from GLD). Otherwise it is 1452 * set based on lbolt i.e., a somewhat random number. 1453 */ 1454 ASSERT(ira->ira_sqp != NULL); 1455 new_sqp = ira->ira_sqp; 1456 1457 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 1458 if (econnp == NULL) 1459 goto error2; 1460 1461 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1462 econnp->conn_sqp = new_sqp; 1463 econnp->conn_initial_sqp = new_sqp; 1464 econnp->conn_ixa->ixa_sqp = new_sqp; 1465 1466 econnp->conn_fport = tcpha->tha_lport; 1467 econnp->conn_lport = tcpha->tha_fport; 1468 1469 err = conn_inherit_parent(lconnp, econnp); 1470 if (err != 0) 1471 goto error3; 1472 1473 /* We already know the laddr of the new connection is ours */ 1474 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1475 1476 ASSERT(OK_32PTR(mp->b_rptr)); 1477 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1478 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1479 1480 if (lconnp->conn_family == AF_INET) { 1481 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1482 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1483 } else { 1484 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1485 } 1486 1487 if (tpi_mp == NULL) 1488 goto error3; 1489 1490 eager = econnp->conn_tcp; 1491 eager->tcp_detached = B_TRUE; 1492 SOCK_CONNID_INIT(eager->tcp_connid); 1493 1494 /* 1495 * Initialize the eager's tcp_t and inherit some parameters from 1496 * the listener. 1497 */ 1498 tcp_init_values(eager, listener); 1499 1500 ASSERT((econnp->conn_ixa->ixa_flags & 1501 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1502 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1503 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1504 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1505 1506 if (!tcps->tcps_dev_flow_ctl) 1507 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1508 1509 /* Prepare for diffing against previous packets */ 1510 eager->tcp_recvifindex = 0; 1511 eager->tcp_recvhops = 0xffffffffU; 1512 1513 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1514 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1515 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1516 econnp->conn_incoming_ifindex = ifindex; 1517 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1518 econnp->conn_ixa->ixa_scopeid = ifindex; 1519 } 1520 } 1521 1522 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1523 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1524 tcps->tcps_rev_src_routes) { 1525 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1526 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1527 1528 /* Source routing option copyover (reverse it) */ 1529 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1530 if (err != 0) { 1531 freemsg(tpi_mp); 1532 goto error3; 1533 } 1534 ip_pkt_source_route_reverse_v4(ipp); 1535 } 1536 1537 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1538 ASSERT(!eager->tcp_tconnind_started); 1539 /* 1540 * If the SYN came with a credential, it's a loopback packet or a 1541 * labeled packet; attach the credential to the TPI message. 1542 */ 1543 if (ira->ira_cred != NULL) 1544 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1545 1546 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1547 ASSERT(eager->tcp_ordrel_mp == NULL); 1548 1549 /* Inherit the listener's non-STREAMS flag */ 1550 if (IPCL_IS_NONSTR(lconnp)) { 1551 econnp->conn_flags |= IPCL_NONSTR; 1552 /* All non-STREAMS tcp_ts are sockets */ 1553 eager->tcp_issocket = B_TRUE; 1554 } else { 1555 /* 1556 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1557 * at close time, we will always have that to send up. 1558 * Otherwise, we need to do special handling in case the 1559 * allocation fails at that time. 1560 */ 1561 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1562 goto error3; 1563 } 1564 /* 1565 * Now that the IP addresses and ports are setup in econnp we 1566 * can do the IPsec policy work. 1567 */ 1568 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1569 if (lconnp->conn_policy != NULL) { 1570 /* 1571 * Inherit the policy from the listener; use 1572 * actions from ira 1573 */ 1574 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1575 CONN_DEC_REF(econnp); 1576 freemsg(mp); 1577 goto error3; 1578 } 1579 } 1580 } 1581 1582 /* 1583 * tcp_set_destination() may set tcp_rwnd according to the route 1584 * metrics. If it does not, the eager's receive window will be set 1585 * to the listener's receive window later in this function. 1586 */ 1587 eager->tcp_rwnd = 0; 1588 1589 if (is_system_labeled()) { 1590 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1591 1592 ASSERT(ira->ira_tsl != NULL); 1593 /* Discard any old label */ 1594 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1595 ASSERT(ixa->ixa_tsl != NULL); 1596 label_rele(ixa->ixa_tsl); 1597 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1598 ixa->ixa_tsl = NULL; 1599 } 1600 if ((lconnp->conn_mlp_type != mlptSingle || 1601 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1602 ira->ira_tsl != NULL) { 1603 /* 1604 * If this is an MLP connection or a MAC-Exempt 1605 * connection with an unlabeled node, packets are to be 1606 * exchanged using the security label of the received 1607 * SYN packet instead of the server application's label. 1608 * tsol_check_dest called from ip_set_destination 1609 * might later update TSF_UNLABELED by replacing 1610 * ixa_tsl with a new label. 1611 */ 1612 label_hold(ira->ira_tsl); 1613 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1614 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1615 econnp, ts_label_t *, ixa->ixa_tsl) 1616 } else { 1617 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1618 DTRACE_PROBE2(syn_accept, conn_t *, 1619 econnp, ts_label_t *, ixa->ixa_tsl) 1620 } 1621 /* 1622 * conn_connect() called from tcp_set_destination will verify 1623 * the destination is allowed to receive packets at the 1624 * security label of the SYN-ACK we are generating. As part of 1625 * that, tsol_check_dest() may create a new effective label for 1626 * this connection. 1627 * Finally conn_connect() will call conn_update_label. 1628 * All that remains for TCP to do is to call 1629 * conn_build_hdr_template which is done as part of 1630 * tcp_set_destination. 1631 */ 1632 } 1633 1634 /* 1635 * Since we will clear tcp_listener before we clear tcp_detached 1636 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1637 * so we can tell a TCP_IS_DETACHED_NONEAGER apart. 1638 */ 1639 eager->tcp_hard_binding = B_TRUE; 1640 1641 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1642 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1643 1644 CL_INET_CONNECT(econnp, B_FALSE, err); 1645 if (err != 0) { 1646 tcp_bind_hash_remove(eager); 1647 goto error3; 1648 } 1649 1650 SOCK_CONNID_BUMP(eager->tcp_connid); 1651 1652 /* 1653 * Adapt our mss, ttl, ... based on the remote address. 1654 */ 1655 1656 if (tcp_set_destination(eager) != 0) { 1657 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1658 /* Undo the bind_hash_insert */ 1659 tcp_bind_hash_remove(eager); 1660 goto error3; 1661 } 1662 1663 /* Process all TCP options. */ 1664 tcp_process_options(eager, tcpha); 1665 1666 /* Is the other end ECN capable? */ 1667 if (tcps->tcps_ecn_permitted >= 1 && 1668 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1669 eager->tcp_ecn_ok = B_TRUE; 1670 } 1671 1672 /* 1673 * The listener's conn_rcvbuf should be the default window size or a 1674 * window size changed via SO_RCVBUF option. First round up the 1675 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1676 * scale option value if needed. Call tcp_rwnd_set() to finish the 1677 * setting. 1678 * 1679 * Note if there is a rpipe metric associated with the remote host, 1680 * we should not inherit receive window size from listener. 1681 */ 1682 eager->tcp_rwnd = MSS_ROUNDUP( 1683 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1684 eager->tcp_rwnd), eager->tcp_mss); 1685 if (eager->tcp_snd_ws_ok) 1686 tcp_set_ws_value(eager); 1687 /* 1688 * Note that this is the only place tcp_rwnd_set() is called for 1689 * accepting a connection. We need to call it here instead of 1690 * after the 3-way handshake because we need to tell the other 1691 * side our rwnd in the SYN-ACK segment. 1692 */ 1693 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1694 1695 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1696 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1697 1698 ASSERT(econnp->conn_rcvbuf != 0 && 1699 econnp->conn_rcvbuf == eager->tcp_rwnd); 1700 1701 /* Put a ref on the listener for the eager. */ 1702 CONN_INC_REF(lconnp); 1703 mutex_enter(&listener->tcp_eager_lock); 1704 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1705 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1706 listener->tcp_eager_next_q0 = eager; 1707 eager->tcp_eager_prev_q0 = listener; 1708 1709 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1710 eager->tcp_listener = listener; 1711 eager->tcp_saved_listener = listener; 1712 1713 /* 1714 * Set tcp_listen_cnt so that when the connection is done, the counter 1715 * is decremented. 1716 */ 1717 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1718 1719 /* 1720 * Tag this detached tcp vector for later retrieval 1721 * by our listener client in tcp_accept(). 1722 */ 1723 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1724 listener->tcp_conn_req_cnt_q0++; 1725 if (++listener->tcp_conn_req_seqnum == -1) { 1726 /* 1727 * -1 is "special" and defined in TPI as something 1728 * that should never be used in T_CONN_IND 1729 */ 1730 ++listener->tcp_conn_req_seqnum; 1731 } 1732 mutex_exit(&listener->tcp_eager_lock); 1733 1734 if (listener->tcp_syn_defense) { 1735 /* Don't drop the SYN that comes from a good IP source */ 1736 ipaddr_t *addr_cache; 1737 1738 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1739 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1740 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1741 eager->tcp_dontdrop = B_TRUE; 1742 } 1743 } 1744 1745 /* 1746 * We need to insert the eager in its own perimeter but as soon 1747 * as we do that, we expose the eager to the classifier and 1748 * should not touch any field outside the eager's perimeter. 1749 * So do all the work necessary before inserting the eager 1750 * in its own perimeter. Be optimistic that conn_connect() 1751 * will succeed but undo everything if it fails. 1752 */ 1753 seg_seq = ntohl(tcpha->tha_seq); 1754 eager->tcp_irs = seg_seq; 1755 eager->tcp_rack = seg_seq; 1756 eager->tcp_rnxt = seg_seq + 1; 1757 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1758 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1759 eager->tcp_state = TCPS_SYN_RCVD; 1760 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1761 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, 1762 int32_t, TCPS_LISTEN); 1763 1764 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1765 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1766 if (mp1 == NULL) { 1767 /* 1768 * Increment the ref count as we are going to 1769 * enqueueing an mp in squeue 1770 */ 1771 CONN_INC_REF(econnp); 1772 goto error; 1773 } 1774 1775 /* 1776 * We need to start the rto timer. In normal case, we start 1777 * the timer after sending the packet on the wire (or at 1778 * least believing that packet was sent by waiting for 1779 * conn_ip_output() to return). Since this is the first packet 1780 * being sent on the wire for the eager, our initial tcp_rto 1781 * is at least tcp_rexmit_interval_min which is a fairly 1782 * large value to allow the algorithm to adjust slowly to large 1783 * fluctuations of RTT during first few transmissions. 1784 * 1785 * Starting the timer first and then sending the packet in this 1786 * case shouldn't make much difference since tcp_rexmit_interval_min 1787 * is of the order of several 100ms and starting the timer 1788 * first and then sending the packet will result in difference 1789 * of few micro seconds. 1790 * 1791 * Without this optimization, we are forced to hold the fanout 1792 * lock across the ipcl_bind_insert() and sending the packet 1793 * so that we don't race against an incoming packet (maybe RST) 1794 * for this eager. 1795 * 1796 * It is necessary to acquire an extra reference on the eager 1797 * at this point and hold it until after tcp_send_data() to 1798 * ensure against an eager close race. 1799 */ 1800 1801 CONN_INC_REF(econnp); 1802 1803 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1804 1805 /* 1806 * Insert the eager in its own perimeter now. We are ready to deal 1807 * with any packets on eager. 1808 */ 1809 if (ipcl_conn_insert(econnp) != 0) 1810 goto error; 1811 1812 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1813 freemsg(mp); 1814 /* 1815 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1816 * only used by one thread at a time. 1817 */ 1818 if (econnp->conn_sqp == lconnp->conn_sqp) { 1819 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, 1820 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, 1821 tcp_t *, eager, __dtrace_tcp_tcph_t *, 1822 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); 1823 (void) conn_ip_output(mp1, econnp->conn_ixa); 1824 CONN_DEC_REF(econnp); 1825 } else { 1826 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1827 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1828 } 1829 return; 1830 error: 1831 freemsg(mp1); 1832 eager->tcp_closemp_used = B_TRUE; 1833 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1834 mp1 = &eager->tcp_closemp; 1835 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1836 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1837 1838 /* 1839 * If a connection already exists, send the mp to that connections so 1840 * that it can be appropriately dealt with. 1841 */ 1842 ipst = tcps->tcps_netstack->netstack_ip; 1843 1844 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1845 if (!IPCL_IS_CONNECTED(econnp)) { 1846 /* 1847 * Something bad happened. ipcl_conn_insert() 1848 * failed because a connection already existed 1849 * in connected hash but we can't find it 1850 * anymore (someone blew it away). Just 1851 * free this message and hopefully remote 1852 * will retransmit at which time the SYN can be 1853 * treated as a new connection or dealth with 1854 * a TH_RST if a connection already exists. 1855 */ 1856 CONN_DEC_REF(econnp); 1857 freemsg(mp); 1858 } else { 1859 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1860 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1861 } 1862 } else { 1863 /* Nobody wants this packet */ 1864 freemsg(mp); 1865 } 1866 return; 1867 error3: 1868 CONN_DEC_REF(econnp); 1869 error2: 1870 freemsg(mp); 1871 if (tlc_set) 1872 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 1873 } 1874 1875 /* 1876 * In an ideal case of vertical partition in NUMA architecture, its 1877 * beneficial to have the listener and all the incoming connections 1878 * tied to the same squeue. The other constraint is that incoming 1879 * connections should be tied to the squeue attached to interrupted 1880 * CPU for obvious locality reason so this leaves the listener to 1881 * be tied to the same squeue. Our only problem is that when listener 1882 * is binding, the CPU that will get interrupted by the NIC whose 1883 * IP address the listener is binding to is not even known. So 1884 * the code below allows us to change that binding at the time the 1885 * CPU is interrupted by virtue of incoming connection's squeue. 1886 * 1887 * This is usefull only in case of a listener bound to a specific IP 1888 * address. For other kind of listeners, they get bound the 1889 * very first time and there is no attempt to rebind them. 1890 */ 1891 void 1892 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1893 ip_recv_attr_t *ira) 1894 { 1895 conn_t *connp = (conn_t *)arg; 1896 squeue_t *sqp = (squeue_t *)arg2; 1897 squeue_t *new_sqp; 1898 uint32_t conn_flags; 1899 1900 /* 1901 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1902 * or based on the ring (for packets from GLD). Otherwise it is 1903 * set based on lbolt i.e., a somewhat random number. 1904 */ 1905 ASSERT(ira->ira_sqp != NULL); 1906 new_sqp = ira->ira_sqp; 1907 1908 if (connp->conn_fanout == NULL) 1909 goto done; 1910 1911 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1912 mutex_enter(&connp->conn_fanout->connf_lock); 1913 mutex_enter(&connp->conn_lock); 1914 /* 1915 * No one from read or write side can access us now 1916 * except for already queued packets on this squeue. 1917 * But since we haven't changed the squeue yet, they 1918 * can't execute. If they are processed after we have 1919 * changed the squeue, they are sent back to the 1920 * correct squeue down below. 1921 * But a listner close can race with processing of 1922 * incoming SYN. If incoming SYN processing changes 1923 * the squeue then the listener close which is waiting 1924 * to enter the squeue would operate on the wrong 1925 * squeue. Hence we don't change the squeue here unless 1926 * the refcount is exactly the minimum refcount. The 1927 * minimum refcount of 4 is counted as - 1 each for 1928 * TCP and IP, 1 for being in the classifier hash, and 1929 * 1 for the mblk being processed. 1930 */ 1931 1932 if (connp->conn_ref != 4 || 1933 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 1934 mutex_exit(&connp->conn_lock); 1935 mutex_exit(&connp->conn_fanout->connf_lock); 1936 goto done; 1937 } 1938 if (connp->conn_sqp != new_sqp) { 1939 while (connp->conn_sqp != new_sqp) 1940 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 1941 /* No special MT issues for outbound ixa_sqp hint */ 1942 connp->conn_ixa->ixa_sqp = new_sqp; 1943 } 1944 1945 do { 1946 conn_flags = connp->conn_flags; 1947 conn_flags |= IPCL_FULLY_BOUND; 1948 (void) cas32(&connp->conn_flags, connp->conn_flags, 1949 conn_flags); 1950 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 1951 1952 mutex_exit(&connp->conn_fanout->connf_lock); 1953 mutex_exit(&connp->conn_lock); 1954 1955 /* 1956 * Assume we have picked a good squeue for the listener. Make 1957 * subsequent SYNs not try to change the squeue. 1958 */ 1959 connp->conn_recv = tcp_input_listener; 1960 } 1961 1962 done: 1963 if (connp->conn_sqp != sqp) { 1964 CONN_INC_REF(connp); 1965 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 1966 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 1967 } else { 1968 tcp_input_listener(connp, mp, sqp, ira); 1969 } 1970 } 1971 1972 /* 1973 * Send up all messages queued on tcp_rcv_list. 1974 */ 1975 uint_t 1976 tcp_rcv_drain(tcp_t *tcp) 1977 { 1978 mblk_t *mp; 1979 uint_t ret = 0; 1980 #ifdef DEBUG 1981 uint_t cnt = 0; 1982 #endif 1983 queue_t *q = tcp->tcp_connp->conn_rq; 1984 1985 /* Can't drain on an eager connection */ 1986 if (tcp->tcp_listener != NULL) 1987 return (ret); 1988 1989 /* Can't be a non-STREAMS connection */ 1990 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1991 1992 /* No need for the push timer now. */ 1993 if (tcp->tcp_push_tid != 0) { 1994 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1995 tcp->tcp_push_tid = 0; 1996 } 1997 1998 /* 1999 * Handle two cases here: we are currently fused or we were 2000 * previously fused and have some urgent data to be delivered 2001 * upstream. The latter happens because we either ran out of 2002 * memory or were detached and therefore sending the SIGURG was 2003 * deferred until this point. In either case we pass control 2004 * over to tcp_fuse_rcv_drain() since it may need to complete 2005 * some work. 2006 */ 2007 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2008 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2009 &tcp->tcp_fused_sigurg_mp)) 2010 return (ret); 2011 } 2012 2013 while ((mp = tcp->tcp_rcv_list) != NULL) { 2014 tcp->tcp_rcv_list = mp->b_next; 2015 mp->b_next = NULL; 2016 #ifdef DEBUG 2017 cnt += msgdsize(mp); 2018 #endif 2019 putnext(q, mp); 2020 } 2021 #ifdef DEBUG 2022 ASSERT(cnt == tcp->tcp_rcv_cnt); 2023 #endif 2024 tcp->tcp_rcv_last_head = NULL; 2025 tcp->tcp_rcv_last_tail = NULL; 2026 tcp->tcp_rcv_cnt = 0; 2027 2028 if (canputnext(q)) 2029 return (tcp_rwnd_reopen(tcp)); 2030 2031 return (ret); 2032 } 2033 2034 /* 2035 * Queue data on tcp_rcv_list which is a b_next chain. 2036 * tcp_rcv_last_head/tail is the last element of this chain. 2037 * Each element of the chain is a b_cont chain. 2038 * 2039 * M_DATA messages are added to the current element. 2040 * Other messages are added as new (b_next) elements. 2041 */ 2042 void 2043 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2044 { 2045 ASSERT(seg_len == msgdsize(mp)); 2046 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2047 2048 if (is_system_labeled()) { 2049 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2050 /* 2051 * Provide for protocols above TCP such as RPC. NOPID leaves 2052 * db_cpid unchanged. 2053 * The cred could have already been set. 2054 */ 2055 if (cr != NULL) 2056 mblk_setcred(mp, cr, NOPID); 2057 } 2058 2059 if (tcp->tcp_rcv_list == NULL) { 2060 ASSERT(tcp->tcp_rcv_last_head == NULL); 2061 tcp->tcp_rcv_list = mp; 2062 tcp->tcp_rcv_last_head = mp; 2063 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2064 tcp->tcp_rcv_last_tail->b_cont = mp; 2065 } else { 2066 tcp->tcp_rcv_last_head->b_next = mp; 2067 tcp->tcp_rcv_last_head = mp; 2068 } 2069 2070 while (mp->b_cont) 2071 mp = mp->b_cont; 2072 2073 tcp->tcp_rcv_last_tail = mp; 2074 tcp->tcp_rcv_cnt += seg_len; 2075 tcp->tcp_rwnd -= seg_len; 2076 } 2077 2078 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2079 mblk_t * 2080 tcp_ack_mp(tcp_t *tcp) 2081 { 2082 uint32_t seq_no; 2083 tcp_stack_t *tcps = tcp->tcp_tcps; 2084 conn_t *connp = tcp->tcp_connp; 2085 2086 /* 2087 * There are a few cases to be considered while setting the sequence no. 2088 * Essentially, we can come here while processing an unacceptable pkt 2089 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2090 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2091 * If we are here for a zero window probe, stick with suna. In all 2092 * other cases, we check if suna + swnd encompasses snxt and set 2093 * the sequence number to snxt, if so. If snxt falls outside the 2094 * window (the receiver probably shrunk its window), we will go with 2095 * suna + swnd, otherwise the sequence no will be unacceptable to the 2096 * receiver. 2097 */ 2098 if (tcp->tcp_zero_win_probe) { 2099 seq_no = tcp->tcp_suna; 2100 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2101 ASSERT(tcp->tcp_swnd == 0); 2102 seq_no = tcp->tcp_snxt; 2103 } else { 2104 seq_no = SEQ_GT(tcp->tcp_snxt, 2105 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2106 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2107 } 2108 2109 if (tcp->tcp_valid_bits) { 2110 /* 2111 * For the complex case where we have to send some 2112 * controls (FIN or SYN), let tcp_xmit_mp do it. 2113 */ 2114 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2115 NULL, B_FALSE)); 2116 } else { 2117 /* Generate a simple ACK */ 2118 int data_length; 2119 uchar_t *rptr; 2120 tcpha_t *tcpha; 2121 mblk_t *mp1; 2122 int32_t total_hdr_len; 2123 int32_t tcp_hdr_len; 2124 int32_t num_sack_blk = 0; 2125 int32_t sack_opt_len; 2126 ip_xmit_attr_t *ixa = connp->conn_ixa; 2127 2128 /* 2129 * Allocate space for TCP + IP headers 2130 * and link-level header 2131 */ 2132 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2133 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2134 tcp->tcp_num_sack_blk); 2135 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2136 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2137 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2138 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2139 } else { 2140 total_hdr_len = connp->conn_ht_iphc_len; 2141 tcp_hdr_len = connp->conn_ht_ulp_len; 2142 } 2143 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2144 if (!mp1) 2145 return (NULL); 2146 2147 /* Update the latest receive window size in TCP header. */ 2148 tcp->tcp_tcpha->tha_win = 2149 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2150 /* copy in prototype TCP + IP header */ 2151 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2152 mp1->b_rptr = rptr; 2153 mp1->b_wptr = rptr + total_hdr_len; 2154 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2155 2156 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2157 2158 /* Set the TCP sequence number. */ 2159 tcpha->tha_seq = htonl(seq_no); 2160 2161 /* Set up the TCP flag field. */ 2162 tcpha->tha_flags = (uchar_t)TH_ACK; 2163 if (tcp->tcp_ecn_echo_on) 2164 tcpha->tha_flags |= TH_ECE; 2165 2166 tcp->tcp_rack = tcp->tcp_rnxt; 2167 tcp->tcp_rack_cnt = 0; 2168 2169 /* fill in timestamp option if in use */ 2170 if (tcp->tcp_snd_ts_ok) { 2171 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2172 2173 U32_TO_BE32(llbolt, 2174 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2175 U32_TO_BE32(tcp->tcp_ts_recent, 2176 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2177 } 2178 2179 /* Fill in SACK options */ 2180 if (num_sack_blk > 0) { 2181 uchar_t *wptr = (uchar_t *)tcpha + 2182 connp->conn_ht_ulp_len; 2183 sack_blk_t *tmp; 2184 int32_t i; 2185 2186 wptr[0] = TCPOPT_NOP; 2187 wptr[1] = TCPOPT_NOP; 2188 wptr[2] = TCPOPT_SACK; 2189 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2190 sizeof (sack_blk_t); 2191 wptr += TCPOPT_REAL_SACK_LEN; 2192 2193 tmp = tcp->tcp_sack_list; 2194 for (i = 0; i < num_sack_blk; i++) { 2195 U32_TO_BE32(tmp[i].begin, wptr); 2196 wptr += sizeof (tcp_seq); 2197 U32_TO_BE32(tmp[i].end, wptr); 2198 wptr += sizeof (tcp_seq); 2199 } 2200 tcpha->tha_offset_and_reserved += 2201 ((num_sack_blk * 2 + 1) << 4); 2202 } 2203 2204 ixa->ixa_pktlen = total_hdr_len; 2205 2206 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2207 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2208 } else { 2209 ip6_t *ip6 = (ip6_t *)rptr; 2210 2211 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2212 } 2213 2214 /* 2215 * Prime pump for checksum calculation in IP. Include the 2216 * adjustment for a source route if any. 2217 */ 2218 data_length = tcp_hdr_len + connp->conn_sum; 2219 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2220 tcpha->tha_sum = htons(data_length); 2221 2222 if (tcp->tcp_ip_forward_progress) { 2223 tcp->tcp_ip_forward_progress = B_FALSE; 2224 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2225 } else { 2226 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2227 } 2228 return (mp1); 2229 } 2230 } 2231 2232 /* 2233 * Handle M_DATA messages from IP. Its called directly from IP via 2234 * squeue for received IP packets. 2235 * 2236 * The first argument is always the connp/tcp to which the mp belongs. 2237 * There are no exceptions to this rule. The caller has already put 2238 * a reference on this connp/tcp and once tcp_input_data() returns, 2239 * the squeue will do the refrele. 2240 * 2241 * The TH_SYN for the listener directly go to tcp_input_listener via 2242 * squeue. ICMP errors go directly to tcp_icmp_input(). 2243 * 2244 * sqp: NULL = recursive, sqp != NULL means called from squeue 2245 */ 2246 void 2247 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2248 { 2249 int32_t bytes_acked; 2250 int32_t gap; 2251 mblk_t *mp1; 2252 uint_t flags; 2253 uint32_t new_swnd = 0; 2254 uchar_t *iphdr; 2255 uchar_t *rptr; 2256 int32_t rgap; 2257 uint32_t seg_ack; 2258 int seg_len; 2259 uint_t ip_hdr_len; 2260 uint32_t seg_seq; 2261 tcpha_t *tcpha; 2262 int urp; 2263 tcp_opt_t tcpopt; 2264 ip_pkt_t ipp; 2265 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2266 uint32_t cwnd; 2267 uint32_t add; 2268 int npkt; 2269 int mss; 2270 conn_t *connp = (conn_t *)arg; 2271 squeue_t *sqp = (squeue_t *)arg2; 2272 tcp_t *tcp = connp->conn_tcp; 2273 tcp_stack_t *tcps = tcp->tcp_tcps; 2274 2275 /* 2276 * RST from fused tcp loopback peer should trigger an unfuse. 2277 */ 2278 if (tcp->tcp_fused) { 2279 TCP_STAT(tcps, tcp_fusion_aborted); 2280 tcp_unfuse(tcp); 2281 } 2282 2283 iphdr = mp->b_rptr; 2284 rptr = mp->b_rptr; 2285 ASSERT(OK_32PTR(rptr)); 2286 2287 ip_hdr_len = ira->ira_ip_hdr_length; 2288 if (connp->conn_recv_ancillary.crb_all != 0) { 2289 /* 2290 * Record packet information in the ip_pkt_t 2291 */ 2292 ipp.ipp_fields = 0; 2293 if (ira->ira_flags & IRAF_IS_IPV4) { 2294 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2295 B_FALSE); 2296 } else { 2297 uint8_t nexthdrp; 2298 2299 /* 2300 * IPv6 packets can only be received by applications 2301 * that are prepared to receive IPv6 addresses. 2302 * The IP fanout must ensure this. 2303 */ 2304 ASSERT(connp->conn_family == AF_INET6); 2305 2306 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2307 &nexthdrp); 2308 ASSERT(nexthdrp == IPPROTO_TCP); 2309 2310 /* Could have caused a pullup? */ 2311 iphdr = mp->b_rptr; 2312 rptr = mp->b_rptr; 2313 } 2314 } 2315 ASSERT(DB_TYPE(mp) == M_DATA); 2316 ASSERT(mp->b_next == NULL); 2317 2318 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2319 seg_seq = ntohl(tcpha->tha_seq); 2320 seg_ack = ntohl(tcpha->tha_ack); 2321 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2322 seg_len = (int)(mp->b_wptr - rptr) - 2323 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2324 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2325 do { 2326 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2327 (uintptr_t)INT_MAX); 2328 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2329 } while ((mp1 = mp1->b_cont) != NULL && 2330 mp1->b_datap->db_type == M_DATA); 2331 } 2332 2333 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, 2334 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, 2335 __dtrace_tcp_tcph_t *, tcpha); 2336 2337 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2338 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2339 seg_len, tcpha, ira); 2340 return; 2341 } 2342 2343 if (sqp != NULL) { 2344 /* 2345 * This is the correct place to update tcp_last_recv_time. Note 2346 * that it is also updated for tcp structure that belongs to 2347 * global and listener queues which do not really need updating. 2348 * But that should not cause any harm. And it is updated for 2349 * all kinds of incoming segments, not only for data segments. 2350 */ 2351 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2352 } 2353 2354 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2355 2356 BUMP_LOCAL(tcp->tcp_ibsegs); 2357 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2358 2359 if ((flags & TH_URG) && sqp != NULL) { 2360 /* 2361 * TCP can't handle urgent pointers that arrive before 2362 * the connection has been accept()ed since it can't 2363 * buffer OOB data. Discard segment if this happens. 2364 * 2365 * We can't just rely on a non-null tcp_listener to indicate 2366 * that the accept() has completed since unlinking of the 2367 * eager and completion of the accept are not atomic. 2368 * tcp_detached, when it is not set (B_FALSE) indicates 2369 * that the accept() has completed. 2370 * 2371 * Nor can it reassemble urgent pointers, so discard 2372 * if it's not the next segment expected. 2373 * 2374 * Otherwise, collapse chain into one mblk (discard if 2375 * that fails). This makes sure the headers, retransmitted 2376 * data, and new data all are in the same mblk. 2377 */ 2378 ASSERT(mp != NULL); 2379 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2380 freemsg(mp); 2381 return; 2382 } 2383 /* Update pointers into message */ 2384 iphdr = rptr = mp->b_rptr; 2385 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2386 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2387 /* 2388 * Since we can't handle any data with this urgent 2389 * pointer that is out of sequence, we expunge 2390 * the data. This allows us to still register 2391 * the urgent mark and generate the M_PCSIG, 2392 * which we can do. 2393 */ 2394 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2395 seg_len = 0; 2396 } 2397 } 2398 2399 switch (tcp->tcp_state) { 2400 case TCPS_SYN_SENT: 2401 if (connp->conn_final_sqp == NULL && 2402 tcp_outbound_squeue_switch && sqp != NULL) { 2403 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2404 connp->conn_final_sqp = sqp; 2405 if (connp->conn_final_sqp != connp->conn_sqp) { 2406 DTRACE_PROBE1(conn__final__sqp__switch, 2407 conn_t *, connp); 2408 CONN_INC_REF(connp); 2409 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2410 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2411 tcp_input_data, connp, ira, ip_squeue_flag, 2412 SQTAG_CONNECT_FINISH); 2413 return; 2414 } 2415 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2416 } 2417 if (flags & TH_ACK) { 2418 /* 2419 * Note that our stack cannot send data before a 2420 * connection is established, therefore the 2421 * following check is valid. Otherwise, it has 2422 * to be changed. 2423 */ 2424 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2425 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2426 freemsg(mp); 2427 if (flags & TH_RST) 2428 return; 2429 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2430 tcp, seg_ack, 0, TH_RST); 2431 return; 2432 } 2433 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2434 } 2435 if (flags & TH_RST) { 2436 if (flags & TH_ACK) { 2437 DTRACE_TCP5(connect__refused, mblk_t *, NULL, 2438 ip_xmit_attr_t *, connp->conn_ixa, 2439 void_ip_t *, iphdr, tcp_t *, tcp, 2440 tcph_t *, tcpha); 2441 (void) tcp_clean_death(tcp, ECONNREFUSED); 2442 } 2443 freemsg(mp); 2444 return; 2445 } 2446 if (!(flags & TH_SYN)) { 2447 freemsg(mp); 2448 return; 2449 } 2450 2451 /* Process all TCP options. */ 2452 tcp_process_options(tcp, tcpha); 2453 /* 2454 * The following changes our rwnd to be a multiple of the 2455 * MIN(peer MSS, our MSS) for performance reason. 2456 */ 2457 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2458 tcp->tcp_mss)); 2459 2460 /* Is the other end ECN capable? */ 2461 if (tcp->tcp_ecn_ok) { 2462 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2463 tcp->tcp_ecn_ok = B_FALSE; 2464 } 2465 } 2466 /* 2467 * Clear ECN flags because it may interfere with later 2468 * processing. 2469 */ 2470 flags &= ~(TH_ECE|TH_CWR); 2471 2472 tcp->tcp_irs = seg_seq; 2473 tcp->tcp_rack = seg_seq; 2474 tcp->tcp_rnxt = seg_seq + 1; 2475 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2476 if (!TCP_IS_DETACHED(tcp)) { 2477 /* Allocate room for SACK options if needed. */ 2478 connp->conn_wroff = connp->conn_ht_iphc_len; 2479 if (tcp->tcp_snd_sack_ok) 2480 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2481 if (!tcp->tcp_loopback) 2482 connp->conn_wroff += tcps->tcps_wroff_xtra; 2483 2484 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2485 connp->conn_wroff); 2486 } 2487 if (flags & TH_ACK) { 2488 /* 2489 * If we can't get the confirmation upstream, pretend 2490 * we didn't even see this one. 2491 * 2492 * XXX: how can we pretend we didn't see it if we 2493 * have updated rnxt et. al. 2494 * 2495 * For loopback we defer sending up the T_CONN_CON 2496 * until after some checks below. 2497 */ 2498 mp1 = NULL; 2499 /* 2500 * tcp_sendmsg() checks tcp_state without entering 2501 * the squeue so tcp_state should be updated before 2502 * sending up connection confirmation. Probe the 2503 * state change below when we are sure the connection 2504 * confirmation has been sent. 2505 */ 2506 tcp->tcp_state = TCPS_ESTABLISHED; 2507 if (!tcp_conn_con(tcp, iphdr, mp, 2508 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2509 tcp->tcp_state = TCPS_SYN_SENT; 2510 freemsg(mp); 2511 return; 2512 } 2513 TCPS_CONN_INC(tcps); 2514 /* SYN was acked - making progress */ 2515 tcp->tcp_ip_forward_progress = B_TRUE; 2516 2517 /* One for the SYN */ 2518 tcp->tcp_suna = tcp->tcp_iss + 1; 2519 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2520 2521 /* 2522 * If SYN was retransmitted, need to reset all 2523 * retransmission info. This is because this 2524 * segment will be treated as a dup ACK. 2525 */ 2526 if (tcp->tcp_rexmit) { 2527 tcp->tcp_rexmit = B_FALSE; 2528 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2529 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2530 tcp->tcp_snd_burst = tcp->tcp_localnet ? 2531 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 2532 tcp->tcp_ms_we_have_waited = 0; 2533 2534 /* 2535 * Set tcp_cwnd back to 1 MSS, per 2536 * recommendation from 2537 * draft-floyd-incr-init-win-01.txt, 2538 * Increasing TCP's Initial Window. 2539 */ 2540 tcp->tcp_cwnd = tcp->tcp_mss; 2541 } 2542 2543 tcp->tcp_swl1 = seg_seq; 2544 tcp->tcp_swl2 = seg_ack; 2545 2546 new_swnd = ntohs(tcpha->tha_win); 2547 tcp->tcp_swnd = new_swnd; 2548 if (new_swnd > tcp->tcp_max_swnd) 2549 tcp->tcp_max_swnd = new_swnd; 2550 2551 /* 2552 * Always send the three-way handshake ack immediately 2553 * in order to make the connection complete as soon as 2554 * possible on the accepting host. 2555 */ 2556 flags |= TH_ACK_NEEDED; 2557 2558 /* 2559 * Trace connect-established here. 2560 */ 2561 DTRACE_TCP5(connect__established, mblk_t *, NULL, 2562 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, 2563 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); 2564 2565 /* Trace change from SYN_SENT -> ESTABLISHED here */ 2566 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2567 connp->conn_ixa, void, NULL, tcp_t *, tcp, 2568 void, NULL, int32_t, TCPS_SYN_SENT); 2569 2570 /* 2571 * Special case for loopback. At this point we have 2572 * received SYN-ACK from the remote endpoint. In 2573 * order to ensure that both endpoints reach the 2574 * fused state prior to any data exchange, the final 2575 * ACK needs to be sent before we indicate T_CONN_CON 2576 * to the module upstream. 2577 */ 2578 if (tcp->tcp_loopback) { 2579 mblk_t *ack_mp; 2580 2581 ASSERT(!tcp->tcp_unfusable); 2582 ASSERT(mp1 != NULL); 2583 /* 2584 * For loopback, we always get a pure SYN-ACK 2585 * and only need to send back the final ACK 2586 * with no data (this is because the other 2587 * tcp is ours and we don't do T/TCP). This 2588 * final ACK triggers the passive side to 2589 * perform fusion in ESTABLISHED state. 2590 */ 2591 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2592 if (tcp->tcp_ack_tid != 0) { 2593 (void) TCP_TIMER_CANCEL(tcp, 2594 tcp->tcp_ack_tid); 2595 tcp->tcp_ack_tid = 0; 2596 } 2597 tcp_send_data(tcp, ack_mp); 2598 BUMP_LOCAL(tcp->tcp_obsegs); 2599 TCPS_BUMP_MIB(tcps, tcpOutAck); 2600 2601 if (!IPCL_IS_NONSTR(connp)) { 2602 /* Send up T_CONN_CON */ 2603 if (ira->ira_cred != NULL) { 2604 mblk_setcred(mp1, 2605 ira->ira_cred, 2606 ira->ira_cpid); 2607 } 2608 putnext(connp->conn_rq, mp1); 2609 } else { 2610 (*connp->conn_upcalls-> 2611 su_connected) 2612 (connp->conn_upper_handle, 2613 tcp->tcp_connid, 2614 ira->ira_cred, 2615 ira->ira_cpid); 2616 freemsg(mp1); 2617 } 2618 2619 freemsg(mp); 2620 return; 2621 } 2622 /* 2623 * Forget fusion; we need to handle more 2624 * complex cases below. Send the deferred 2625 * T_CONN_CON message upstream and proceed 2626 * as usual. Mark this tcp as not capable 2627 * of fusion. 2628 */ 2629 TCP_STAT(tcps, tcp_fusion_unfusable); 2630 tcp->tcp_unfusable = B_TRUE; 2631 if (!IPCL_IS_NONSTR(connp)) { 2632 if (ira->ira_cred != NULL) { 2633 mblk_setcred(mp1, ira->ira_cred, 2634 ira->ira_cpid); 2635 } 2636 putnext(connp->conn_rq, mp1); 2637 } else { 2638 (*connp->conn_upcalls->su_connected) 2639 (connp->conn_upper_handle, 2640 tcp->tcp_connid, ira->ira_cred, 2641 ira->ira_cpid); 2642 freemsg(mp1); 2643 } 2644 } 2645 2646 /* 2647 * Check to see if there is data to be sent. If 2648 * yes, set the transmit flag. Then check to see 2649 * if received data processing needs to be done. 2650 * If not, go straight to xmit_check. This short 2651 * cut is OK as we don't support T/TCP. 2652 */ 2653 if (tcp->tcp_unsent) 2654 flags |= TH_XMIT_NEEDED; 2655 2656 if (seg_len == 0 && !(flags & TH_URG)) { 2657 freemsg(mp); 2658 goto xmit_check; 2659 } 2660 2661 flags &= ~TH_SYN; 2662 seg_seq++; 2663 break; 2664 } 2665 tcp->tcp_state = TCPS_SYN_RCVD; 2666 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2667 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, 2668 tcph_t *, NULL, int32_t, TCPS_SYN_SENT); 2669 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2670 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2671 if (mp1 != NULL) { 2672 tcp_send_data(tcp, mp1); 2673 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2674 } 2675 freemsg(mp); 2676 return; 2677 case TCPS_SYN_RCVD: 2678 if (flags & TH_ACK) { 2679 uint32_t pinit_wnd; 2680 2681 /* 2682 * In this state, a SYN|ACK packet is either bogus 2683 * because the other side must be ACKing our SYN which 2684 * indicates it has seen the ACK for their SYN and 2685 * shouldn't retransmit it or we're crossing SYNs 2686 * on active open. 2687 */ 2688 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2689 freemsg(mp); 2690 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2691 tcp, seg_ack, 0, TH_RST); 2692 return; 2693 } 2694 /* 2695 * NOTE: RFC 793 pg. 72 says this should be 2696 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2697 * but that would mean we have an ack that ignored 2698 * our SYN. 2699 */ 2700 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2701 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2702 freemsg(mp); 2703 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2704 tcp, seg_ack, 0, TH_RST); 2705 return; 2706 } 2707 /* 2708 * No sane TCP stack will send such a small window 2709 * without receiving any data. Just drop this invalid 2710 * ACK. We also shorten the abort timeout in case 2711 * this is an attack. 2712 */ 2713 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; 2714 if (pinit_wnd < tcp->tcp_mss && 2715 pinit_wnd < tcp_init_wnd_chk) { 2716 freemsg(mp); 2717 TCP_STAT(tcps, tcp_zwin_ack_syn); 2718 tcp->tcp_second_ctimer_threshold = 2719 tcp_early_abort * SECONDS; 2720 return; 2721 } 2722 } 2723 break; 2724 case TCPS_LISTEN: 2725 /* 2726 * Only a TLI listener can come through this path when a 2727 * acceptor is going back to be a listener and a packet 2728 * for the acceptor hits the classifier. For a socket 2729 * listener, this can never happen because a listener 2730 * can never accept connection on itself and hence a 2731 * socket acceptor can not go back to being a listener. 2732 */ 2733 ASSERT(!TCP_IS_SOCKET(tcp)); 2734 /*FALLTHRU*/ 2735 case TCPS_CLOSED: 2736 case TCPS_BOUND: { 2737 conn_t *new_connp; 2738 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2739 2740 /* 2741 * Don't accept any input on a closed tcp as this TCP logically 2742 * does not exist on the system. Don't proceed further with 2743 * this TCP. For instance, this packet could trigger another 2744 * close of this tcp which would be disastrous for tcp_refcnt. 2745 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2746 * be called at most once on a TCP. In this case we need to 2747 * refeed the packet into the classifier and figure out where 2748 * the packet should go. 2749 */ 2750 new_connp = ipcl_classify(mp, ira, ipst); 2751 if (new_connp != NULL) { 2752 /* Drops ref on new_connp */ 2753 tcp_reinput(new_connp, mp, ira, ipst); 2754 return; 2755 } 2756 /* We failed to classify. For now just drop the packet */ 2757 freemsg(mp); 2758 return; 2759 } 2760 case TCPS_IDLE: 2761 /* 2762 * Handle the case where the tcp_clean_death() has happened 2763 * on a connection (application hasn't closed yet) but a packet 2764 * was already queued on squeue before tcp_clean_death() 2765 * was processed. Calling tcp_clean_death() twice on same 2766 * connection can result in weird behaviour. 2767 */ 2768 freemsg(mp); 2769 return; 2770 default: 2771 break; 2772 } 2773 2774 /* 2775 * Already on the correct queue/perimeter. 2776 * If this is a detached connection and not an eager 2777 * connection hanging off a listener then new data 2778 * (past the FIN) will cause a reset. 2779 * We do a special check here where it 2780 * is out of the main line, rather than check 2781 * if we are detached every time we see new 2782 * data down below. 2783 */ 2784 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2785 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2786 TCPS_BUMP_MIB(tcps, tcpInClosed); 2787 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2788 freemsg(mp); 2789 tcp_xmit_ctl("new data when detached", tcp, 2790 tcp->tcp_snxt, 0, TH_RST); 2791 (void) tcp_clean_death(tcp, EPROTO); 2792 return; 2793 } 2794 2795 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2796 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2797 new_swnd = ntohs(tcpha->tha_win) << 2798 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2799 2800 if (tcp->tcp_snd_ts_ok) { 2801 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 2802 /* 2803 * This segment is not acceptable. 2804 * Drop it and send back an ACK. 2805 */ 2806 freemsg(mp); 2807 flags |= TH_ACK_NEEDED; 2808 goto ack_check; 2809 } 2810 } else if (tcp->tcp_snd_sack_ok) { 2811 tcpopt.tcp = tcp; 2812 /* 2813 * SACK info in already updated in tcp_parse_options. Ignore 2814 * all other TCP options... 2815 */ 2816 (void) tcp_parse_options(tcpha, &tcpopt); 2817 } 2818 try_again:; 2819 mss = tcp->tcp_mss; 2820 gap = seg_seq - tcp->tcp_rnxt; 2821 rgap = tcp->tcp_rwnd - (gap + seg_len); 2822 /* 2823 * gap is the amount of sequence space between what we expect to see 2824 * and what we got for seg_seq. A positive value for gap means 2825 * something got lost. A negative value means we got some old stuff. 2826 */ 2827 if (gap < 0) { 2828 /* Old stuff present. Is the SYN in there? */ 2829 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 2830 (seg_len != 0)) { 2831 flags &= ~TH_SYN; 2832 seg_seq++; 2833 urp--; 2834 /* Recompute the gaps after noting the SYN. */ 2835 goto try_again; 2836 } 2837 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 2838 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 2839 (seg_len > -gap ? -gap : seg_len)); 2840 /* Remove the old stuff from seg_len. */ 2841 seg_len += gap; 2842 /* 2843 * Anything left? 2844 * Make sure to check for unack'd FIN when rest of data 2845 * has been previously ack'd. 2846 */ 2847 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 2848 /* 2849 * Resets are only valid if they lie within our offered 2850 * window. If the RST bit is set, we just ignore this 2851 * segment. 2852 */ 2853 if (flags & TH_RST) { 2854 freemsg(mp); 2855 return; 2856 } 2857 2858 /* 2859 * The arriving of dup data packets indicate that we 2860 * may have postponed an ack for too long, or the other 2861 * side's RTT estimate is out of shape. Start acking 2862 * more often. 2863 */ 2864 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 2865 tcp->tcp_rack_cnt >= 1 && 2866 tcp->tcp_rack_abs_max > 2) { 2867 tcp->tcp_rack_abs_max--; 2868 } 2869 tcp->tcp_rack_cur_max = 1; 2870 2871 /* 2872 * This segment is "unacceptable". None of its 2873 * sequence space lies within our advertized window. 2874 * 2875 * Adjust seg_len to the original value for tracing. 2876 */ 2877 seg_len -= gap; 2878 if (connp->conn_debug) { 2879 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 2880 "tcp_rput: unacceptable, gap %d, rgap %d, " 2881 "flags 0x%x, seg_seq %u, seg_ack %u, " 2882 "seg_len %d, rnxt %u, snxt %u, %s", 2883 gap, rgap, flags, seg_seq, seg_ack, 2884 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 2885 tcp_display(tcp, NULL, 2886 DISP_ADDR_AND_PORT)); 2887 } 2888 2889 /* 2890 * Arrange to send an ACK in response to the 2891 * unacceptable segment per RFC 793 page 69. There 2892 * is only one small difference between ours and the 2893 * acceptability test in the RFC - we accept ACK-only 2894 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 2895 * will be generated. 2896 * 2897 * Note that we have to ACK an ACK-only packet at least 2898 * for stacks that send 0-length keep-alives with 2899 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 2900 * section 4.2.3.6. As long as we don't ever generate 2901 * an unacceptable packet in response to an incoming 2902 * packet that is unacceptable, it should not cause 2903 * "ACK wars". 2904 */ 2905 flags |= TH_ACK_NEEDED; 2906 2907 /* 2908 * Continue processing this segment in order to use the 2909 * ACK information it contains, but skip all other 2910 * sequence-number processing. Processing the ACK 2911 * information is necessary in order to 2912 * re-synchronize connections that may have lost 2913 * synchronization. 2914 * 2915 * We clear seg_len and flag fields related to 2916 * sequence number processing as they are not 2917 * to be trusted for an unacceptable segment. 2918 */ 2919 seg_len = 0; 2920 flags &= ~(TH_SYN | TH_FIN | TH_URG); 2921 goto process_ack; 2922 } 2923 2924 /* Fix seg_seq, and chew the gap off the front. */ 2925 seg_seq = tcp->tcp_rnxt; 2926 urp += gap; 2927 do { 2928 mblk_t *mp2; 2929 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 2930 (uintptr_t)UINT_MAX); 2931 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 2932 if (gap > 0) { 2933 mp->b_rptr = mp->b_wptr - gap; 2934 break; 2935 } 2936 mp2 = mp; 2937 mp = mp->b_cont; 2938 freeb(mp2); 2939 } while (gap < 0); 2940 /* 2941 * If the urgent data has already been acknowledged, we 2942 * should ignore TH_URG below 2943 */ 2944 if (urp < 0) 2945 flags &= ~TH_URG; 2946 } 2947 /* 2948 * rgap is the amount of stuff received out of window. A negative 2949 * value is the amount out of window. 2950 */ 2951 if (rgap < 0) { 2952 mblk_t *mp2; 2953 2954 if (tcp->tcp_rwnd == 0) { 2955 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 2956 } else { 2957 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 2958 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 2959 } 2960 2961 /* 2962 * seg_len does not include the FIN, so if more than 2963 * just the FIN is out of window, we act like we don't 2964 * see it. (If just the FIN is out of window, rgap 2965 * will be zero and we will go ahead and acknowledge 2966 * the FIN.) 2967 */ 2968 flags &= ~TH_FIN; 2969 2970 /* Fix seg_len and make sure there is something left. */ 2971 seg_len += rgap; 2972 if (seg_len <= 0) { 2973 /* 2974 * Resets are only valid if they lie within our offered 2975 * window. If the RST bit is set, we just ignore this 2976 * segment. 2977 */ 2978 if (flags & TH_RST) { 2979 freemsg(mp); 2980 return; 2981 } 2982 2983 /* Per RFC 793, we need to send back an ACK. */ 2984 flags |= TH_ACK_NEEDED; 2985 2986 /* 2987 * Send SIGURG as soon as possible i.e. even 2988 * if the TH_URG was delivered in a window probe 2989 * packet (which will be unacceptable). 2990 * 2991 * We generate a signal if none has been generated 2992 * for this connection or if this is a new urgent 2993 * byte. Also send a zero-length "unmarked" message 2994 * to inform SIOCATMARK that this is not the mark. 2995 * 2996 * tcp_urp_last_valid is cleared when the T_exdata_ind 2997 * is sent up. This plus the check for old data 2998 * (gap >= 0) handles the wraparound of the sequence 2999 * number space without having to always track the 3000 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3001 * this max in its rcv_up variable). 3002 * 3003 * This prevents duplicate SIGURGS due to a "late" 3004 * zero-window probe when the T_EXDATA_IND has already 3005 * been sent up. 3006 */ 3007 if ((flags & TH_URG) && 3008 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3009 tcp->tcp_urp_last))) { 3010 if (IPCL_IS_NONSTR(connp)) { 3011 if (!TCP_IS_DETACHED(tcp)) { 3012 (*connp->conn_upcalls-> 3013 su_signal_oob) 3014 (connp->conn_upper_handle, 3015 urp); 3016 } 3017 } else { 3018 mp1 = allocb(0, BPRI_MED); 3019 if (mp1 == NULL) { 3020 freemsg(mp); 3021 return; 3022 } 3023 if (!TCP_IS_DETACHED(tcp) && 3024 !putnextctl1(connp->conn_rq, 3025 M_PCSIG, SIGURG)) { 3026 /* Try again on the rexmit. */ 3027 freemsg(mp1); 3028 freemsg(mp); 3029 return; 3030 } 3031 /* 3032 * If the next byte would be the mark 3033 * then mark with MARKNEXT else mark 3034 * with NOTMARKNEXT. 3035 */ 3036 if (gap == 0 && urp == 0) 3037 mp1->b_flag |= MSGMARKNEXT; 3038 else 3039 mp1->b_flag |= MSGNOTMARKNEXT; 3040 freemsg(tcp->tcp_urp_mark_mp); 3041 tcp->tcp_urp_mark_mp = mp1; 3042 flags |= TH_SEND_URP_MARK; 3043 } 3044 tcp->tcp_urp_last_valid = B_TRUE; 3045 tcp->tcp_urp_last = urp + seg_seq; 3046 } 3047 /* 3048 * If this is a zero window probe, continue to 3049 * process the ACK part. But we need to set seg_len 3050 * to 0 to avoid data processing. Otherwise just 3051 * drop the segment and send back an ACK. 3052 */ 3053 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3054 flags &= ~(TH_SYN | TH_URG); 3055 seg_len = 0; 3056 goto process_ack; 3057 } else { 3058 freemsg(mp); 3059 goto ack_check; 3060 } 3061 } 3062 /* Pitch out of window stuff off the end. */ 3063 rgap = seg_len; 3064 mp2 = mp; 3065 do { 3066 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3067 (uintptr_t)INT_MAX); 3068 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3069 if (rgap < 0) { 3070 mp2->b_wptr += rgap; 3071 if ((mp1 = mp2->b_cont) != NULL) { 3072 mp2->b_cont = NULL; 3073 freemsg(mp1); 3074 } 3075 break; 3076 } 3077 } while ((mp2 = mp2->b_cont) != NULL); 3078 } 3079 ok:; 3080 /* 3081 * TCP should check ECN info for segments inside the window only. 3082 * Therefore the check should be done here. 3083 */ 3084 if (tcp->tcp_ecn_ok) { 3085 if (flags & TH_CWR) { 3086 tcp->tcp_ecn_echo_on = B_FALSE; 3087 } 3088 /* 3089 * Note that both ECN_CE and CWR can be set in the 3090 * same segment. In this case, we once again turn 3091 * on ECN_ECHO. 3092 */ 3093 if (connp->conn_ipversion == IPV4_VERSION) { 3094 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3095 3096 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3097 tcp->tcp_ecn_echo_on = B_TRUE; 3098 } 3099 } else { 3100 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3101 3102 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3103 htonl(IPH_ECN_CE << 20)) { 3104 tcp->tcp_ecn_echo_on = B_TRUE; 3105 } 3106 } 3107 } 3108 3109 /* 3110 * Check whether we can update tcp_ts_recent. This test is 3111 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 3112 * Extensions for High Performance: An Update", Internet Draft. 3113 */ 3114 if (tcp->tcp_snd_ts_ok && 3115 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3116 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3117 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3118 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3119 } 3120 3121 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3122 /* 3123 * FIN in an out of order segment. We record this in 3124 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3125 * Clear the FIN so that any check on FIN flag will fail. 3126 * Remember that FIN also counts in the sequence number 3127 * space. So we need to ack out of order FIN only segments. 3128 */ 3129 if (flags & TH_FIN) { 3130 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3131 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3132 flags &= ~TH_FIN; 3133 flags |= TH_ACK_NEEDED; 3134 } 3135 if (seg_len > 0) { 3136 /* Fill in the SACK blk list. */ 3137 if (tcp->tcp_snd_sack_ok) { 3138 tcp_sack_insert(tcp->tcp_sack_list, 3139 seg_seq, seg_seq + seg_len, 3140 &(tcp->tcp_num_sack_blk)); 3141 } 3142 3143 /* 3144 * Attempt reassembly and see if we have something 3145 * ready to go. 3146 */ 3147 mp = tcp_reass(tcp, mp, seg_seq); 3148 /* Always ack out of order packets */ 3149 flags |= TH_ACK_NEEDED | TH_PUSH; 3150 if (mp) { 3151 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3152 (uintptr_t)INT_MAX); 3153 seg_len = mp->b_cont ? msgdsize(mp) : 3154 (int)(mp->b_wptr - mp->b_rptr); 3155 seg_seq = tcp->tcp_rnxt; 3156 /* 3157 * A gap is filled and the seq num and len 3158 * of the gap match that of a previously 3159 * received FIN, put the FIN flag back in. 3160 */ 3161 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3162 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3163 flags |= TH_FIN; 3164 tcp->tcp_valid_bits &= 3165 ~TCP_OFO_FIN_VALID; 3166 } 3167 if (tcp->tcp_reass_tid != 0) { 3168 (void) TCP_TIMER_CANCEL(tcp, 3169 tcp->tcp_reass_tid); 3170 /* 3171 * Restart the timer if there is still 3172 * data in the reassembly queue. 3173 */ 3174 if (tcp->tcp_reass_head != NULL) { 3175 tcp->tcp_reass_tid = TCP_TIMER( 3176 tcp, tcp_reass_timer, 3177 tcps->tcps_reass_timeout); 3178 } else { 3179 tcp->tcp_reass_tid = 0; 3180 } 3181 } 3182 } else { 3183 /* 3184 * Keep going even with NULL mp. 3185 * There may be a useful ACK or something else 3186 * we don't want to miss. 3187 * 3188 * But TCP should not perform fast retransmit 3189 * because of the ack number. TCP uses 3190 * seg_len == 0 to determine if it is a pure 3191 * ACK. And this is not a pure ACK. 3192 */ 3193 seg_len = 0; 3194 ofo_seg = B_TRUE; 3195 3196 if (tcps->tcps_reass_timeout != 0 && 3197 tcp->tcp_reass_tid == 0) { 3198 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3199 tcp_reass_timer, 3200 tcps->tcps_reass_timeout); 3201 } 3202 } 3203 } 3204 } else if (seg_len > 0) { 3205 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3206 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3207 /* 3208 * If an out of order FIN was received before, and the seq 3209 * num and len of the new segment match that of the FIN, 3210 * put the FIN flag back in. 3211 */ 3212 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3213 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3214 flags |= TH_FIN; 3215 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3216 } 3217 } 3218 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3219 if (flags & TH_RST) { 3220 freemsg(mp); 3221 switch (tcp->tcp_state) { 3222 case TCPS_SYN_RCVD: 3223 (void) tcp_clean_death(tcp, ECONNREFUSED); 3224 break; 3225 case TCPS_ESTABLISHED: 3226 case TCPS_FIN_WAIT_1: 3227 case TCPS_FIN_WAIT_2: 3228 case TCPS_CLOSE_WAIT: 3229 (void) tcp_clean_death(tcp, ECONNRESET); 3230 break; 3231 case TCPS_CLOSING: 3232 case TCPS_LAST_ACK: 3233 (void) tcp_clean_death(tcp, 0); 3234 break; 3235 default: 3236 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3237 (void) tcp_clean_death(tcp, ENXIO); 3238 break; 3239 } 3240 return; 3241 } 3242 if (flags & TH_SYN) { 3243 /* 3244 * See RFC 793, Page 71 3245 * 3246 * The seq number must be in the window as it should 3247 * be "fixed" above. If it is outside window, it should 3248 * be already rejected. Note that we allow seg_seq to be 3249 * rnxt + rwnd because we want to accept 0 window probe. 3250 */ 3251 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3252 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3253 freemsg(mp); 3254 /* 3255 * If the ACK flag is not set, just use our snxt as the 3256 * seq number of the RST segment. 3257 */ 3258 if (!(flags & TH_ACK)) { 3259 seg_ack = tcp->tcp_snxt; 3260 } 3261 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3262 TH_RST|TH_ACK); 3263 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3264 (void) tcp_clean_death(tcp, ECONNRESET); 3265 return; 3266 } 3267 /* 3268 * urp could be -1 when the urp field in the packet is 0 3269 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3270 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3271 */ 3272 if (flags & TH_URG && urp >= 0) { 3273 if (!tcp->tcp_urp_last_valid || 3274 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3275 /* 3276 * Non-STREAMS sockets handle the urgent data a litte 3277 * differently from STREAMS based sockets. There is no 3278 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3279 * flags to keep SIOCATMARK happy. Instead a 3280 * su_signal_oob upcall is made to update the mark. 3281 * Neither is a T_EXDATA_IND mblk needed to be 3282 * prepended to the urgent data. The urgent data is 3283 * delivered using the su_recv upcall, where we set 3284 * the MSG_OOB flag to indicate that it is urg data. 3285 * 3286 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3287 * are used by non-STREAMS sockets. 3288 */ 3289 if (IPCL_IS_NONSTR(connp)) { 3290 if (!TCP_IS_DETACHED(tcp)) { 3291 (*connp->conn_upcalls->su_signal_oob) 3292 (connp->conn_upper_handle, urp); 3293 } 3294 } else { 3295 /* 3296 * If we haven't generated the signal yet for 3297 * this urgent pointer value, do it now. Also, 3298 * send up a zero-length M_DATA indicating 3299 * whether or not this is the mark. The latter 3300 * is not needed when a T_EXDATA_IND is sent up. 3301 * However, if there are allocation failures 3302 * this code relies on the sender retransmitting 3303 * and the socket code for determining the mark 3304 * should not block waiting for the peer to 3305 * transmit. Thus, for simplicity we always 3306 * send up the mark indication. 3307 */ 3308 mp1 = allocb(0, BPRI_MED); 3309 if (mp1 == NULL) { 3310 freemsg(mp); 3311 return; 3312 } 3313 if (!TCP_IS_DETACHED(tcp) && 3314 !putnextctl1(connp->conn_rq, M_PCSIG, 3315 SIGURG)) { 3316 /* Try again on the rexmit. */ 3317 freemsg(mp1); 3318 freemsg(mp); 3319 return; 3320 } 3321 /* 3322 * Mark with NOTMARKNEXT for now. 3323 * The code below will change this to MARKNEXT 3324 * if we are at the mark. 3325 * 3326 * If there are allocation failures (e.g. in 3327 * dupmsg below) the next time tcp_input_data 3328 * sees the urgent segment it will send up the 3329 * MSGMARKNEXT message. 3330 */ 3331 mp1->b_flag |= MSGNOTMARKNEXT; 3332 freemsg(tcp->tcp_urp_mark_mp); 3333 tcp->tcp_urp_mark_mp = mp1; 3334 flags |= TH_SEND_URP_MARK; 3335 #ifdef DEBUG 3336 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3337 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3338 "last %x, %s", 3339 seg_seq, urp, tcp->tcp_urp_last, 3340 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3341 #endif /* DEBUG */ 3342 } 3343 tcp->tcp_urp_last_valid = B_TRUE; 3344 tcp->tcp_urp_last = urp + seg_seq; 3345 } else if (tcp->tcp_urp_mark_mp != NULL) { 3346 /* 3347 * An allocation failure prevented the previous 3348 * tcp_input_data from sending up the allocated 3349 * MSG*MARKNEXT message - send it up this time 3350 * around. 3351 */ 3352 flags |= TH_SEND_URP_MARK; 3353 } 3354 3355 /* 3356 * If the urgent byte is in this segment, make sure that it is 3357 * all by itself. This makes it much easier to deal with the 3358 * possibility of an allocation failure on the T_exdata_ind. 3359 * Note that seg_len is the number of bytes in the segment, and 3360 * urp is the offset into the segment of the urgent byte. 3361 * urp < seg_len means that the urgent byte is in this segment. 3362 */ 3363 if (urp < seg_len) { 3364 if (seg_len != 1) { 3365 uint32_t tmp_rnxt; 3366 /* 3367 * Break it up and feed it back in. 3368 * Re-attach the IP header. 3369 */ 3370 mp->b_rptr = iphdr; 3371 if (urp > 0) { 3372 /* 3373 * There is stuff before the urgent 3374 * byte. 3375 */ 3376 mp1 = dupmsg(mp); 3377 if (!mp1) { 3378 /* 3379 * Trim from urgent byte on. 3380 * The rest will come back. 3381 */ 3382 (void) adjmsg(mp, 3383 urp - seg_len); 3384 tcp_input_data(connp, 3385 mp, NULL, ira); 3386 return; 3387 } 3388 (void) adjmsg(mp1, urp - seg_len); 3389 /* Feed this piece back in. */ 3390 tmp_rnxt = tcp->tcp_rnxt; 3391 tcp_input_data(connp, mp1, NULL, ira); 3392 /* 3393 * If the data passed back in was not 3394 * processed (ie: bad ACK) sending 3395 * the remainder back in will cause a 3396 * loop. In this case, drop the 3397 * packet and let the sender try 3398 * sending a good packet. 3399 */ 3400 if (tmp_rnxt == tcp->tcp_rnxt) { 3401 freemsg(mp); 3402 return; 3403 } 3404 } 3405 if (urp != seg_len - 1) { 3406 uint32_t tmp_rnxt; 3407 /* 3408 * There is stuff after the urgent 3409 * byte. 3410 */ 3411 mp1 = dupmsg(mp); 3412 if (!mp1) { 3413 /* 3414 * Trim everything beyond the 3415 * urgent byte. The rest will 3416 * come back. 3417 */ 3418 (void) adjmsg(mp, 3419 urp + 1 - seg_len); 3420 tcp_input_data(connp, 3421 mp, NULL, ira); 3422 return; 3423 } 3424 (void) adjmsg(mp1, urp + 1 - seg_len); 3425 tmp_rnxt = tcp->tcp_rnxt; 3426 tcp_input_data(connp, mp1, NULL, ira); 3427 /* 3428 * If the data passed back in was not 3429 * processed (ie: bad ACK) sending 3430 * the remainder back in will cause a 3431 * loop. In this case, drop the 3432 * packet and let the sender try 3433 * sending a good packet. 3434 */ 3435 if (tmp_rnxt == tcp->tcp_rnxt) { 3436 freemsg(mp); 3437 return; 3438 } 3439 } 3440 tcp_input_data(connp, mp, NULL, ira); 3441 return; 3442 } 3443 /* 3444 * This segment contains only the urgent byte. We 3445 * have to allocate the T_exdata_ind, if we can. 3446 */ 3447 if (IPCL_IS_NONSTR(connp)) { 3448 int error; 3449 3450 (*connp->conn_upcalls->su_recv) 3451 (connp->conn_upper_handle, mp, seg_len, 3452 MSG_OOB, &error, NULL); 3453 /* 3454 * We should never be in middle of a 3455 * fallback, the squeue guarantees that. 3456 */ 3457 ASSERT(error != EOPNOTSUPP); 3458 mp = NULL; 3459 goto update_ack; 3460 } else if (!tcp->tcp_urp_mp) { 3461 struct T_exdata_ind *tei; 3462 mp1 = allocb(sizeof (struct T_exdata_ind), 3463 BPRI_MED); 3464 if (!mp1) { 3465 /* 3466 * Sigh... It'll be back. 3467 * Generate any MSG*MARK message now. 3468 */ 3469 freemsg(mp); 3470 seg_len = 0; 3471 if (flags & TH_SEND_URP_MARK) { 3472 3473 3474 ASSERT(tcp->tcp_urp_mark_mp); 3475 tcp->tcp_urp_mark_mp->b_flag &= 3476 ~MSGNOTMARKNEXT; 3477 tcp->tcp_urp_mark_mp->b_flag |= 3478 MSGMARKNEXT; 3479 } 3480 goto ack_check; 3481 } 3482 mp1->b_datap->db_type = M_PROTO; 3483 tei = (struct T_exdata_ind *)mp1->b_rptr; 3484 tei->PRIM_type = T_EXDATA_IND; 3485 tei->MORE_flag = 0; 3486 mp1->b_wptr = (uchar_t *)&tei[1]; 3487 tcp->tcp_urp_mp = mp1; 3488 #ifdef DEBUG 3489 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3490 "tcp_rput: allocated exdata_ind %s", 3491 tcp_display(tcp, NULL, 3492 DISP_PORT_ONLY)); 3493 #endif /* DEBUG */ 3494 /* 3495 * There is no need to send a separate MSG*MARK 3496 * message since the T_EXDATA_IND will be sent 3497 * now. 3498 */ 3499 flags &= ~TH_SEND_URP_MARK; 3500 freemsg(tcp->tcp_urp_mark_mp); 3501 tcp->tcp_urp_mark_mp = NULL; 3502 } 3503 /* 3504 * Now we are all set. On the next putnext upstream, 3505 * tcp_urp_mp will be non-NULL and will get prepended 3506 * to what has to be this piece containing the urgent 3507 * byte. If for any reason we abort this segment below, 3508 * if it comes back, we will have this ready, or it 3509 * will get blown off in close. 3510 */ 3511 } else if (urp == seg_len) { 3512 /* 3513 * The urgent byte is the next byte after this sequence 3514 * number. If this endpoint is non-STREAMS, then there 3515 * is nothing to do here since the socket has already 3516 * been notified about the urg pointer by the 3517 * su_signal_oob call above. 3518 * 3519 * In case of STREAMS, some more work might be needed. 3520 * If there is data it is marked with MSGMARKNEXT and 3521 * and any tcp_urp_mark_mp is discarded since it is not 3522 * needed. Otherwise, if the code above just allocated 3523 * a zero-length tcp_urp_mark_mp message, that message 3524 * is tagged with MSGMARKNEXT. Sending up these 3525 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3526 * even though the T_EXDATA_IND will not be sent up 3527 * until the urgent byte arrives. 3528 */ 3529 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3530 if (seg_len != 0) { 3531 flags |= TH_MARKNEXT_NEEDED; 3532 freemsg(tcp->tcp_urp_mark_mp); 3533 tcp->tcp_urp_mark_mp = NULL; 3534 flags &= ~TH_SEND_URP_MARK; 3535 } else if (tcp->tcp_urp_mark_mp != NULL) { 3536 flags |= TH_SEND_URP_MARK; 3537 tcp->tcp_urp_mark_mp->b_flag &= 3538 ~MSGNOTMARKNEXT; 3539 tcp->tcp_urp_mark_mp->b_flag |= 3540 MSGMARKNEXT; 3541 } 3542 } 3543 #ifdef DEBUG 3544 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3545 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3546 seg_len, flags, 3547 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3548 #endif /* DEBUG */ 3549 } 3550 #ifdef DEBUG 3551 else { 3552 /* Data left until we hit mark */ 3553 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3554 "tcp_rput: URP %d bytes left, %s", 3555 urp - seg_len, tcp_display(tcp, NULL, 3556 DISP_PORT_ONLY)); 3557 } 3558 #endif /* DEBUG */ 3559 } 3560 3561 process_ack: 3562 if (!(flags & TH_ACK)) { 3563 freemsg(mp); 3564 goto xmit_check; 3565 } 3566 } 3567 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3568 3569 if (bytes_acked > 0) 3570 tcp->tcp_ip_forward_progress = B_TRUE; 3571 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3572 /* 3573 * tcp_sendmsg() checks tcp_state without entering 3574 * the squeue so tcp_state should be updated before 3575 * sending up a connection confirmation or a new 3576 * connection indication. 3577 */ 3578 tcp->tcp_state = TCPS_ESTABLISHED; 3579 3580 /* 3581 * We are seeing the final ack in the three way 3582 * hand shake of a active open'ed connection 3583 * so we must send up a T_CONN_CON 3584 */ 3585 if (tcp->tcp_active_open) { 3586 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3587 freemsg(mp); 3588 tcp->tcp_state = TCPS_SYN_RCVD; 3589 return; 3590 } 3591 /* 3592 * Don't fuse the loopback endpoints for 3593 * simultaneous active opens. 3594 */ 3595 if (tcp->tcp_loopback) { 3596 TCP_STAT(tcps, tcp_fusion_unfusable); 3597 tcp->tcp_unfusable = B_TRUE; 3598 } 3599 /* 3600 * For simultaneous active open, trace receipt of final 3601 * ACK as tcp:::connect-established. 3602 */ 3603 DTRACE_TCP5(connect__established, mblk_t *, NULL, 3604 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3605 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3606 } else if (IPCL_IS_NONSTR(connp)) { 3607 /* 3608 * 3-way handshake has completed, so notify socket 3609 * of the new connection. 3610 * 3611 * We are here means eager is fine but it can 3612 * get a TH_RST at any point between now and till 3613 * accept completes and disappear. We need to 3614 * ensure that reference to eager is valid after 3615 * we get out of eager's perimeter. So we do 3616 * an extra refhold. 3617 */ 3618 CONN_INC_REF(connp); 3619 3620 if (!tcp_newconn_notify(tcp, ira)) { 3621 /* 3622 * The state-change probe for SYN_RCVD -> 3623 * ESTABLISHED has not fired yet. We reset 3624 * the state to SYN_RCVD so that future 3625 * state-change probes report correct state 3626 * transistions. 3627 */ 3628 tcp->tcp_state = TCPS_SYN_RCVD; 3629 freemsg(mp); 3630 /* notification did not go up, so drop ref */ 3631 CONN_DEC_REF(connp); 3632 /* ... and close the eager */ 3633 ASSERT(TCP_IS_DETACHED(tcp)); 3634 (void) tcp_close_detached(tcp); 3635 return; 3636 } 3637 /* 3638 * For passive open, trace receipt of final ACK as 3639 * tcp:::accept-established. 3640 */ 3641 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3642 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3643 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3644 } else { 3645 /* 3646 * 3-way handshake complete - this is a STREAMS based 3647 * socket, so pass up the T_CONN_IND. 3648 */ 3649 tcp_t *listener = tcp->tcp_listener; 3650 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3651 3652 tcp->tcp_tconnind_started = B_TRUE; 3653 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3654 ASSERT(mp != NULL); 3655 /* 3656 * We are here means eager is fine but it can 3657 * get a TH_RST at any point between now and till 3658 * accept completes and disappear. We need to 3659 * ensure that reference to eager is valid after 3660 * we get out of eager's perimeter. So we do 3661 * an extra refhold. 3662 */ 3663 CONN_INC_REF(connp); 3664 3665 /* 3666 * The listener also exists because of the refhold 3667 * done in tcp_input_listener. Its possible that it 3668 * might have closed. We will check that once we 3669 * get inside listeners context. 3670 */ 3671 CONN_INC_REF(listener->tcp_connp); 3672 if (listener->tcp_connp->conn_sqp == 3673 connp->conn_sqp) { 3674 /* 3675 * We optimize by not calling an SQUEUE_ENTER 3676 * on the listener since we know that the 3677 * listener and eager squeues are the same. 3678 * We are able to make this check safely only 3679 * because neither the eager nor the listener 3680 * can change its squeue. Only an active connect 3681 * can change its squeue 3682 */ 3683 tcp_send_conn_ind(listener->tcp_connp, mp, 3684 listener->tcp_connp->conn_sqp); 3685 CONN_DEC_REF(listener->tcp_connp); 3686 } else if (!tcp->tcp_loopback) { 3687 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3688 mp, tcp_send_conn_ind, 3689 listener->tcp_connp, NULL, SQ_FILL, 3690 SQTAG_TCP_CONN_IND); 3691 } else { 3692 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3693 mp, tcp_send_conn_ind, 3694 listener->tcp_connp, NULL, SQ_NODRAIN, 3695 SQTAG_TCP_CONN_IND); 3696 } 3697 /* 3698 * For passive open, trace receipt of final ACK as 3699 * tcp:::accept-established. 3700 */ 3701 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3702 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3703 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3704 } 3705 TCPS_CONN_INC(tcps); 3706 3707 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3708 bytes_acked--; 3709 /* SYN was acked - making progress */ 3710 tcp->tcp_ip_forward_progress = B_TRUE; 3711 3712 /* 3713 * If SYN was retransmitted, need to reset all 3714 * retransmission info as this segment will be 3715 * treated as a dup ACK. 3716 */ 3717 if (tcp->tcp_rexmit) { 3718 tcp->tcp_rexmit = B_FALSE; 3719 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3720 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3721 tcp->tcp_snd_burst = tcp->tcp_localnet ? 3722 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 3723 tcp->tcp_ms_we_have_waited = 0; 3724 tcp->tcp_cwnd = mss; 3725 } 3726 3727 /* 3728 * We set the send window to zero here. 3729 * This is needed if there is data to be 3730 * processed already on the queue. 3731 * Later (at swnd_update label), the 3732 * "new_swnd > tcp_swnd" condition is satisfied 3733 * the XMIT_NEEDED flag is set in the current 3734 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3735 * called if there is already data on queue in 3736 * this state. 3737 */ 3738 tcp->tcp_swnd = 0; 3739 3740 if (new_swnd > tcp->tcp_max_swnd) 3741 tcp->tcp_max_swnd = new_swnd; 3742 tcp->tcp_swl1 = seg_seq; 3743 tcp->tcp_swl2 = seg_ack; 3744 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3745 3746 /* Trace change from SYN_RCVD -> ESTABLISHED here */ 3747 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3748 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3749 int32_t, TCPS_SYN_RCVD); 3750 3751 /* Fuse when both sides are in ESTABLISHED state */ 3752 if (tcp->tcp_loopback && do_tcp_fusion) 3753 tcp_fuse(tcp, iphdr, tcpha); 3754 3755 } 3756 /* This code follows 4.4BSD-Lite2 mostly. */ 3757 if (bytes_acked < 0) 3758 goto est; 3759 3760 /* 3761 * If TCP is ECN capable and the congestion experience bit is 3762 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 3763 * done once per window (or more loosely, per RTT). 3764 */ 3765 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 3766 tcp->tcp_cwr = B_FALSE; 3767 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 3768 if (!tcp->tcp_cwr) { 3769 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 3770 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 3771 tcp->tcp_cwnd = npkt * mss; 3772 /* 3773 * If the cwnd is 0, use the timer to clock out 3774 * new segments. This is required by the ECN spec. 3775 */ 3776 if (npkt == 0) { 3777 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 3778 /* 3779 * This makes sure that when the ACK comes 3780 * back, we will increase tcp_cwnd by 1 MSS. 3781 */ 3782 tcp->tcp_cwnd_cnt = 0; 3783 } 3784 tcp->tcp_cwr = B_TRUE; 3785 /* 3786 * This marks the end of the current window of in 3787 * flight data. That is why we don't use 3788 * tcp_suna + tcp_swnd. Only data in flight can 3789 * provide ECN info. 3790 */ 3791 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3792 tcp->tcp_ecn_cwr_sent = B_FALSE; 3793 } 3794 } 3795 3796 mp1 = tcp->tcp_xmit_head; 3797 if (bytes_acked == 0) { 3798 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 3799 int dupack_cnt; 3800 3801 TCPS_BUMP_MIB(tcps, tcpInDupAck); 3802 /* 3803 * Fast retransmit. When we have seen exactly three 3804 * identical ACKs while we have unacked data 3805 * outstanding we take it as a hint that our peer 3806 * dropped something. 3807 * 3808 * If TCP is retransmitting, don't do fast retransmit. 3809 */ 3810 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 3811 ! tcp->tcp_rexmit) { 3812 /* Do Limited Transmit */ 3813 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 3814 tcps->tcps_dupack_fast_retransmit) { 3815 /* 3816 * RFC 3042 3817 * 3818 * What we need to do is temporarily 3819 * increase tcp_cwnd so that new 3820 * data can be sent if it is allowed 3821 * by the receive window (tcp_rwnd). 3822 * tcp_wput_data() will take care of 3823 * the rest. 3824 * 3825 * If the connection is SACK capable, 3826 * only do limited xmit when there 3827 * is SACK info. 3828 * 3829 * Note how tcp_cwnd is incremented. 3830 * The first dup ACK will increase 3831 * it by 1 MSS. The second dup ACK 3832 * will increase it by 2 MSS. This 3833 * means that only 1 new segment will 3834 * be sent for each dup ACK. 3835 */ 3836 if (tcp->tcp_unsent > 0 && 3837 (!tcp->tcp_snd_sack_ok || 3838 (tcp->tcp_snd_sack_ok && 3839 tcp->tcp_notsack_list != NULL))) { 3840 tcp->tcp_cwnd += mss << 3841 (tcp->tcp_dupack_cnt - 1); 3842 flags |= TH_LIMIT_XMIT; 3843 } 3844 } else if (dupack_cnt == 3845 tcps->tcps_dupack_fast_retransmit) { 3846 3847 /* 3848 * If we have reduced tcp_ssthresh 3849 * because of ECN, do not reduce it again 3850 * unless it is already one window of data 3851 * away. After one window of data, tcp_cwr 3852 * should then be cleared. Note that 3853 * for non ECN capable connection, tcp_cwr 3854 * should always be false. 3855 * 3856 * Adjust cwnd since the duplicate 3857 * ack indicates that a packet was 3858 * dropped (due to congestion.) 3859 */ 3860 if (!tcp->tcp_cwr) { 3861 npkt = ((tcp->tcp_snxt - 3862 tcp->tcp_suna) >> 1) / mss; 3863 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 3864 mss; 3865 tcp->tcp_cwnd = (npkt + 3866 tcp->tcp_dupack_cnt) * mss; 3867 } 3868 if (tcp->tcp_ecn_ok) { 3869 tcp->tcp_cwr = B_TRUE; 3870 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3871 tcp->tcp_ecn_cwr_sent = B_FALSE; 3872 } 3873 3874 /* 3875 * We do Hoe's algorithm. Refer to her 3876 * paper "Improving the Start-up Behavior 3877 * of a Congestion Control Scheme for TCP," 3878 * appeared in SIGCOMM'96. 3879 * 3880 * Save highest seq no we have sent so far. 3881 * Be careful about the invisible FIN byte. 3882 */ 3883 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 3884 (tcp->tcp_unsent == 0)) { 3885 tcp->tcp_rexmit_max = tcp->tcp_fss; 3886 } else { 3887 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3888 } 3889 3890 /* 3891 * Do not allow bursty traffic during. 3892 * fast recovery. Refer to Fall and Floyd's 3893 * paper "Simulation-based Comparisons of 3894 * Tahoe, Reno and SACK TCP" (in CCR?) 3895 * This is a best current practise. 3896 */ 3897 tcp->tcp_snd_burst = TCP_CWND_SS; 3898 3899 /* 3900 * For SACK: 3901 * Calculate tcp_pipe, which is the 3902 * estimated number of bytes in 3903 * network. 3904 * 3905 * tcp_fack is the highest sack'ed seq num 3906 * TCP has received. 3907 * 3908 * tcp_pipe is explained in the above quoted 3909 * Fall and Floyd's paper. tcp_fack is 3910 * explained in Mathis and Mahdavi's 3911 * "Forward Acknowledgment: Refining TCP 3912 * Congestion Control" in SIGCOMM '96. 3913 */ 3914 if (tcp->tcp_snd_sack_ok) { 3915 if (tcp->tcp_notsack_list != NULL) { 3916 tcp->tcp_pipe = tcp->tcp_snxt - 3917 tcp->tcp_fack; 3918 tcp->tcp_sack_snxt = seg_ack; 3919 flags |= TH_NEED_SACK_REXMIT; 3920 } else { 3921 /* 3922 * Always initialize tcp_pipe 3923 * even though we don't have 3924 * any SACK info. If later 3925 * we get SACK info and 3926 * tcp_pipe is not initialized, 3927 * funny things will happen. 3928 */ 3929 tcp->tcp_pipe = 3930 tcp->tcp_cwnd_ssthresh; 3931 } 3932 } else { 3933 flags |= TH_REXMIT_NEEDED; 3934 } /* tcp_snd_sack_ok */ 3935 3936 } else { 3937 /* 3938 * Here we perform congestion 3939 * avoidance, but NOT slow start. 3940 * This is known as the Fast 3941 * Recovery Algorithm. 3942 */ 3943 if (tcp->tcp_snd_sack_ok && 3944 tcp->tcp_notsack_list != NULL) { 3945 flags |= TH_NEED_SACK_REXMIT; 3946 tcp->tcp_pipe -= mss; 3947 if (tcp->tcp_pipe < 0) 3948 tcp->tcp_pipe = 0; 3949 } else { 3950 /* 3951 * We know that one more packet has 3952 * left the pipe thus we can update 3953 * cwnd. 3954 */ 3955 cwnd = tcp->tcp_cwnd + mss; 3956 if (cwnd > tcp->tcp_cwnd_max) 3957 cwnd = tcp->tcp_cwnd_max; 3958 tcp->tcp_cwnd = cwnd; 3959 if (tcp->tcp_unsent > 0) 3960 flags |= TH_XMIT_NEEDED; 3961 } 3962 } 3963 } 3964 } else if (tcp->tcp_zero_win_probe) { 3965 /* 3966 * If the window has opened, need to arrange 3967 * to send additional data. 3968 */ 3969 if (new_swnd != 0) { 3970 /* tcp_suna != tcp_snxt */ 3971 /* Packet contains a window update */ 3972 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 3973 tcp->tcp_zero_win_probe = 0; 3974 tcp->tcp_timer_backoff = 0; 3975 tcp->tcp_ms_we_have_waited = 0; 3976 3977 /* 3978 * Transmit starting with tcp_suna since 3979 * the one byte probe is not ack'ed. 3980 * If TCP has sent more than one identical 3981 * probe, tcp_rexmit will be set. That means 3982 * tcp_ss_rexmit() will send out the one 3983 * byte along with new data. Otherwise, 3984 * fake the retransmission. 3985 */ 3986 flags |= TH_XMIT_NEEDED; 3987 if (!tcp->tcp_rexmit) { 3988 tcp->tcp_rexmit = B_TRUE; 3989 tcp->tcp_dupack_cnt = 0; 3990 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 3991 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 3992 } 3993 } 3994 } 3995 goto swnd_update; 3996 } 3997 3998 /* 3999 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 4000 * If the ACK value acks something that we have not yet sent, it might 4001 * be an old duplicate segment. Send an ACK to re-synchronize the 4002 * other side. 4003 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 4004 * state is handled above, so we can always just drop the segment and 4005 * send an ACK here. 4006 * 4007 * In the case where the peer shrinks the window, we see the new window 4008 * update, but all the data sent previously is queued up by the peer. 4009 * To account for this, in tcp_process_shrunk_swnd(), the sequence 4010 * number, which was already sent, and within window, is recorded. 4011 * tcp_snxt is then updated. 4012 * 4013 * If the window has previously shrunk, and an ACK for data not yet 4014 * sent, according to tcp_snxt is recieved, it may still be valid. If 4015 * the ACK is for data within the window at the time the window was 4016 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 4017 * the sequence number ACK'ed. 4018 * 4019 * If the ACK covers all the data sent at the time the window was 4020 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 4021 * 4022 * Should we send ACKs in response to ACK only segments? 4023 */ 4024 4025 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 4026 if ((tcp->tcp_is_wnd_shrnk) && 4027 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 4028 uint32_t data_acked_ahead_snxt; 4029 4030 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 4031 tcp_update_xmit_tail(tcp, seg_ack); 4032 tcp->tcp_unsent -= data_acked_ahead_snxt; 4033 } else { 4034 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 4035 /* drop the received segment */ 4036 freemsg(mp); 4037 4038 /* 4039 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 4040 * greater than 0, check if the number of such 4041 * bogus ACks is greater than that count. If yes, 4042 * don't send back any ACK. This prevents TCP from 4043 * getting into an ACK storm if somehow an attacker 4044 * successfully spoofs an acceptable segment to our 4045 * peer. If this continues (count > 2 X threshold), 4046 * we should abort this connection. 4047 */ 4048 if (tcp_drop_ack_unsent_cnt > 0 && 4049 ++tcp->tcp_in_ack_unsent > 4050 tcp_drop_ack_unsent_cnt) { 4051 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4052 if (tcp->tcp_in_ack_unsent > 2 * 4053 tcp_drop_ack_unsent_cnt) { 4054 (void) tcp_clean_death(tcp, EPROTO); 4055 } 4056 return; 4057 } 4058 mp = tcp_ack_mp(tcp); 4059 if (mp != NULL) { 4060 BUMP_LOCAL(tcp->tcp_obsegs); 4061 TCPS_BUMP_MIB(tcps, tcpOutAck); 4062 tcp_send_data(tcp, mp); 4063 } 4064 return; 4065 } 4066 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4067 tcp->tcp_snxt_shrunk)) { 4068 tcp->tcp_is_wnd_shrnk = B_FALSE; 4069 } 4070 4071 /* 4072 * TCP gets a new ACK, update the notsack'ed list to delete those 4073 * blocks that are covered by this ACK. 4074 */ 4075 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4076 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4077 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4078 } 4079 4080 /* 4081 * If we got an ACK after fast retransmit, check to see 4082 * if it is a partial ACK. If it is not and the congestion 4083 * window was inflated to account for the other side's 4084 * cached packets, retract it. If it is, do Hoe's algorithm. 4085 */ 4086 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4087 ASSERT(tcp->tcp_rexmit == B_FALSE); 4088 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4089 tcp->tcp_dupack_cnt = 0; 4090 /* 4091 * Restore the orig tcp_cwnd_ssthresh after 4092 * fast retransmit phase. 4093 */ 4094 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 4095 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 4096 } 4097 tcp->tcp_rexmit_max = seg_ack; 4098 tcp->tcp_cwnd_cnt = 0; 4099 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4100 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4101 4102 /* 4103 * Remove all notsack info to avoid confusion with 4104 * the next fast retrasnmit/recovery phase. 4105 */ 4106 if (tcp->tcp_snd_sack_ok) { 4107 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4108 tcp); 4109 } 4110 } else { 4111 if (tcp->tcp_snd_sack_ok && 4112 tcp->tcp_notsack_list != NULL) { 4113 flags |= TH_NEED_SACK_REXMIT; 4114 tcp->tcp_pipe -= mss; 4115 if (tcp->tcp_pipe < 0) 4116 tcp->tcp_pipe = 0; 4117 } else { 4118 /* 4119 * Hoe's algorithm: 4120 * 4121 * Retransmit the unack'ed segment and 4122 * restart fast recovery. Note that we 4123 * need to scale back tcp_cwnd to the 4124 * original value when we started fast 4125 * recovery. This is to prevent overly 4126 * aggressive behaviour in sending new 4127 * segments. 4128 */ 4129 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 4130 tcps->tcps_dupack_fast_retransmit * mss; 4131 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4132 flags |= TH_REXMIT_NEEDED; 4133 } 4134 } 4135 } else { 4136 tcp->tcp_dupack_cnt = 0; 4137 if (tcp->tcp_rexmit) { 4138 /* 4139 * TCP is retranmitting. If the ACK ack's all 4140 * outstanding data, update tcp_rexmit_max and 4141 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4142 * to the correct value. 4143 * 4144 * Note that SEQ_LEQ() is used. This is to avoid 4145 * unnecessary fast retransmit caused by dup ACKs 4146 * received when TCP does slow start retransmission 4147 * after a time out. During this phase, TCP may 4148 * send out segments which are already received. 4149 * This causes dup ACKs to be sent back. 4150 */ 4151 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4152 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4153 tcp->tcp_rexmit_nxt = seg_ack; 4154 } 4155 if (seg_ack != tcp->tcp_rexmit_max) { 4156 flags |= TH_XMIT_NEEDED; 4157 } 4158 } else { 4159 tcp->tcp_rexmit = B_FALSE; 4160 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4161 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4162 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4163 } 4164 tcp->tcp_ms_we_have_waited = 0; 4165 } 4166 } 4167 4168 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4169 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4170 tcp->tcp_suna = seg_ack; 4171 if (tcp->tcp_zero_win_probe != 0) { 4172 tcp->tcp_zero_win_probe = 0; 4173 tcp->tcp_timer_backoff = 0; 4174 } 4175 4176 /* 4177 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4178 * Note that it cannot be the SYN being ack'ed. The code flow 4179 * will not reach here. 4180 */ 4181 if (mp1 == NULL) { 4182 goto fin_acked; 4183 } 4184 4185 /* 4186 * Update the congestion window. 4187 * 4188 * If TCP is not ECN capable or TCP is ECN capable but the 4189 * congestion experience bit is not set, increase the tcp_cwnd as 4190 * usual. 4191 */ 4192 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4193 cwnd = tcp->tcp_cwnd; 4194 add = mss; 4195 4196 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 4197 /* 4198 * This is to prevent an increase of less than 1 MSS of 4199 * tcp_cwnd. With partial increase, tcp_wput_data() 4200 * may send out tinygrams in order to preserve mblk 4201 * boundaries. 4202 * 4203 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 4204 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 4205 * increased by 1 MSS for every RTTs. 4206 */ 4207 if (tcp->tcp_cwnd_cnt <= 0) { 4208 tcp->tcp_cwnd_cnt = cwnd + add; 4209 } else { 4210 tcp->tcp_cwnd_cnt -= add; 4211 add = 0; 4212 } 4213 } 4214 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 4215 } 4216 4217 /* See if the latest urgent data has been acknowledged */ 4218 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4219 SEQ_GT(seg_ack, tcp->tcp_urg)) 4220 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4221 4222 /* Can we update the RTT estimates? */ 4223 if (tcp->tcp_snd_ts_ok) { 4224 /* Ignore zero timestamp echo-reply. */ 4225 if (tcpopt.tcp_opt_ts_ecr != 0) { 4226 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4227 (int32_t)tcpopt.tcp_opt_ts_ecr); 4228 } 4229 4230 /* If needed, restart the timer. */ 4231 if (tcp->tcp_set_timer == 1) { 4232 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4233 tcp->tcp_set_timer = 0; 4234 } 4235 /* 4236 * Update tcp_csuna in case the other side stops sending 4237 * us timestamps. 4238 */ 4239 tcp->tcp_csuna = tcp->tcp_snxt; 4240 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4241 /* 4242 * An ACK sequence we haven't seen before, so get the RTT 4243 * and update the RTO. But first check if the timestamp is 4244 * valid to use. 4245 */ 4246 if ((mp1->b_next != NULL) && 4247 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 4248 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4249 (int32_t)(intptr_t)mp1->b_prev); 4250 else 4251 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4252 4253 /* Remeber the last sequence to be ACKed */ 4254 tcp->tcp_csuna = seg_ack; 4255 if (tcp->tcp_set_timer == 1) { 4256 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4257 tcp->tcp_set_timer = 0; 4258 } 4259 } else { 4260 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4261 } 4262 4263 /* Eat acknowledged bytes off the xmit queue. */ 4264 for (;;) { 4265 mblk_t *mp2; 4266 uchar_t *wptr; 4267 4268 wptr = mp1->b_wptr; 4269 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4270 bytes_acked -= (int)(wptr - mp1->b_rptr); 4271 if (bytes_acked < 0) { 4272 mp1->b_rptr = wptr + bytes_acked; 4273 /* 4274 * Set a new timestamp if all the bytes timed by the 4275 * old timestamp have been ack'ed. 4276 */ 4277 if (SEQ_GT(seg_ack, 4278 (uint32_t)(uintptr_t)(mp1->b_next))) { 4279 mp1->b_prev = 4280 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 4281 mp1->b_next = NULL; 4282 } 4283 break; 4284 } 4285 mp1->b_next = NULL; 4286 mp1->b_prev = NULL; 4287 mp2 = mp1; 4288 mp1 = mp1->b_cont; 4289 4290 /* 4291 * This notification is required for some zero-copy 4292 * clients to maintain a copy semantic. After the data 4293 * is ack'ed, client is safe to modify or reuse the buffer. 4294 */ 4295 if (tcp->tcp_snd_zcopy_aware && 4296 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4297 tcp_zcopy_notify(tcp); 4298 freeb(mp2); 4299 if (bytes_acked == 0) { 4300 if (mp1 == NULL) { 4301 /* Everything is ack'ed, clear the tail. */ 4302 tcp->tcp_xmit_tail = NULL; 4303 /* 4304 * Cancel the timer unless we are still 4305 * waiting for an ACK for the FIN packet. 4306 */ 4307 if (tcp->tcp_timer_tid != 0 && 4308 tcp->tcp_snxt == tcp->tcp_suna) { 4309 (void) TCP_TIMER_CANCEL(tcp, 4310 tcp->tcp_timer_tid); 4311 tcp->tcp_timer_tid = 0; 4312 } 4313 goto pre_swnd_update; 4314 } 4315 if (mp2 != tcp->tcp_xmit_tail) 4316 break; 4317 tcp->tcp_xmit_tail = mp1; 4318 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4319 (uintptr_t)INT_MAX); 4320 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4321 mp1->b_rptr); 4322 break; 4323 } 4324 if (mp1 == NULL) { 4325 /* 4326 * More was acked but there is nothing more 4327 * outstanding. This means that the FIN was 4328 * just acked or that we're talking to a clown. 4329 */ 4330 fin_acked: 4331 ASSERT(tcp->tcp_fin_sent); 4332 tcp->tcp_xmit_tail = NULL; 4333 if (tcp->tcp_fin_sent) { 4334 /* FIN was acked - making progress */ 4335 if (!tcp->tcp_fin_acked) 4336 tcp->tcp_ip_forward_progress = B_TRUE; 4337 tcp->tcp_fin_acked = B_TRUE; 4338 if (tcp->tcp_linger_tid != 0 && 4339 TCP_TIMER_CANCEL(tcp, 4340 tcp->tcp_linger_tid) >= 0) { 4341 tcp_stop_lingering(tcp); 4342 freemsg(mp); 4343 mp = NULL; 4344 } 4345 } else { 4346 /* 4347 * We should never get here because 4348 * we have already checked that the 4349 * number of bytes ack'ed should be 4350 * smaller than or equal to what we 4351 * have sent so far (it is the 4352 * acceptability check of the ACK). 4353 * We can only get here if the send 4354 * queue is corrupted. 4355 * 4356 * Terminate the connection and 4357 * panic the system. It is better 4358 * for us to panic instead of 4359 * continuing to avoid other disaster. 4360 */ 4361 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4362 tcp->tcp_rnxt, TH_RST|TH_ACK); 4363 panic("Memory corruption " 4364 "detected for connection %s.", 4365 tcp_display(tcp, NULL, 4366 DISP_ADDR_AND_PORT)); 4367 /*NOTREACHED*/ 4368 } 4369 goto pre_swnd_update; 4370 } 4371 ASSERT(mp2 != tcp->tcp_xmit_tail); 4372 } 4373 if (tcp->tcp_unsent) { 4374 flags |= TH_XMIT_NEEDED; 4375 } 4376 pre_swnd_update: 4377 tcp->tcp_xmit_head = mp1; 4378 swnd_update: 4379 /* 4380 * The following check is different from most other implementations. 4381 * For bi-directional transfer, when segments are dropped, the 4382 * "normal" check will not accept a window update in those 4383 * retransmitted segemnts. Failing to do that, TCP may send out 4384 * segments which are outside receiver's window. As TCP accepts 4385 * the ack in those retransmitted segments, if the window update in 4386 * the same segment is not accepted, TCP will incorrectly calculates 4387 * that it can send more segments. This can create a deadlock 4388 * with the receiver if its window becomes zero. 4389 */ 4390 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4391 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4392 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4393 /* 4394 * The criteria for update is: 4395 * 4396 * 1. the segment acknowledges some data. Or 4397 * 2. the segment is new, i.e. it has a higher seq num. Or 4398 * 3. the segment is not old and the advertised window is 4399 * larger than the previous advertised window. 4400 */ 4401 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4402 flags |= TH_XMIT_NEEDED; 4403 tcp->tcp_swnd = new_swnd; 4404 if (new_swnd > tcp->tcp_max_swnd) 4405 tcp->tcp_max_swnd = new_swnd; 4406 tcp->tcp_swl1 = seg_seq; 4407 tcp->tcp_swl2 = seg_ack; 4408 } 4409 est: 4410 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4411 4412 switch (tcp->tcp_state) { 4413 case TCPS_FIN_WAIT_1: 4414 if (tcp->tcp_fin_acked) { 4415 tcp->tcp_state = TCPS_FIN_WAIT_2; 4416 DTRACE_TCP6(state__change, void, NULL, 4417 ip_xmit_attr_t *, connp->conn_ixa, 4418 void, NULL, tcp_t *, tcp, void, NULL, 4419 int32_t, TCPS_FIN_WAIT_1); 4420 /* 4421 * We implement the non-standard BSD/SunOS 4422 * FIN_WAIT_2 flushing algorithm. 4423 * If there is no user attached to this 4424 * TCP endpoint, then this TCP struct 4425 * could hang around forever in FIN_WAIT_2 4426 * state if the peer forgets to send us 4427 * a FIN. To prevent this, we wait only 4428 * 2*MSL (a convenient time value) for 4429 * the FIN to arrive. If it doesn't show up, 4430 * we flush the TCP endpoint. This algorithm, 4431 * though a violation of RFC-793, has worked 4432 * for over 10 years in BSD systems. 4433 * Note: SunOS 4.x waits 675 seconds before 4434 * flushing the FIN_WAIT_2 connection. 4435 */ 4436 TCP_TIMER_RESTART(tcp, 4437 tcp->tcp_fin_wait_2_flush_interval); 4438 } 4439 break; 4440 case TCPS_FIN_WAIT_2: 4441 break; /* Shutdown hook? */ 4442 case TCPS_LAST_ACK: 4443 freemsg(mp); 4444 if (tcp->tcp_fin_acked) { 4445 (void) tcp_clean_death(tcp, 0); 4446 return; 4447 } 4448 goto xmit_check; 4449 case TCPS_CLOSING: 4450 if (tcp->tcp_fin_acked) { 4451 SET_TIME_WAIT(tcps, tcp, connp); 4452 DTRACE_TCP6(state__change, void, NULL, 4453 ip_xmit_attr_t *, connp->conn_ixa, void, 4454 NULL, tcp_t *, tcp, void, NULL, int32_t, 4455 TCPS_CLOSING); 4456 } 4457 /*FALLTHRU*/ 4458 case TCPS_CLOSE_WAIT: 4459 freemsg(mp); 4460 goto xmit_check; 4461 default: 4462 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4463 break; 4464 } 4465 } 4466 if (flags & TH_FIN) { 4467 /* Make sure we ack the fin */ 4468 flags |= TH_ACK_NEEDED; 4469 if (!tcp->tcp_fin_rcvd) { 4470 tcp->tcp_fin_rcvd = B_TRUE; 4471 tcp->tcp_rnxt++; 4472 tcpha = tcp->tcp_tcpha; 4473 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4474 4475 /* 4476 * Generate the ordrel_ind at the end unless the 4477 * conn is detached or it is a STREAMS based eager. 4478 * In the eager case we defer the notification until 4479 * tcp_accept_finish has run. 4480 */ 4481 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || 4482 (tcp->tcp_listener == NULL && 4483 !tcp->tcp_hard_binding))) 4484 flags |= TH_ORDREL_NEEDED; 4485 switch (tcp->tcp_state) { 4486 case TCPS_SYN_RCVD: 4487 tcp->tcp_state = TCPS_CLOSE_WAIT; 4488 DTRACE_TCP6(state__change, void, NULL, 4489 ip_xmit_attr_t *, connp->conn_ixa, 4490 void, NULL, tcp_t *, tcp, void, NULL, 4491 int32_t, TCPS_SYN_RCVD); 4492 /* Keepalive? */ 4493 break; 4494 case TCPS_ESTABLISHED: 4495 tcp->tcp_state = TCPS_CLOSE_WAIT; 4496 DTRACE_TCP6(state__change, void, NULL, 4497 ip_xmit_attr_t *, connp->conn_ixa, 4498 void, NULL, tcp_t *, tcp, void, NULL, 4499 int32_t, TCPS_ESTABLISHED); 4500 /* Keepalive? */ 4501 break; 4502 case TCPS_FIN_WAIT_1: 4503 if (!tcp->tcp_fin_acked) { 4504 tcp->tcp_state = TCPS_CLOSING; 4505 DTRACE_TCP6(state__change, void, NULL, 4506 ip_xmit_attr_t *, connp->conn_ixa, 4507 void, NULL, tcp_t *, tcp, void, 4508 NULL, int32_t, TCPS_FIN_WAIT_1); 4509 break; 4510 } 4511 /* FALLTHRU */ 4512 case TCPS_FIN_WAIT_2: 4513 SET_TIME_WAIT(tcps, tcp, connp); 4514 DTRACE_TCP6(state__change, void, NULL, 4515 ip_xmit_attr_t *, connp->conn_ixa, void, 4516 NULL, tcp_t *, tcp, void, NULL, int32_t, 4517 TCPS_FIN_WAIT_2); 4518 if (seg_len) { 4519 /* 4520 * implies data piggybacked on FIN. 4521 * break to handle data. 4522 */ 4523 break; 4524 } 4525 freemsg(mp); 4526 goto ack_check; 4527 } 4528 } 4529 } 4530 if (mp == NULL) 4531 goto xmit_check; 4532 if (seg_len == 0) { 4533 freemsg(mp); 4534 goto xmit_check; 4535 } 4536 if (mp->b_rptr == mp->b_wptr) { 4537 /* 4538 * The header has been consumed, so we remove the 4539 * zero-length mblk here. 4540 */ 4541 mp1 = mp; 4542 mp = mp->b_cont; 4543 freeb(mp1); 4544 } 4545 update_ack: 4546 tcpha = tcp->tcp_tcpha; 4547 tcp->tcp_rack_cnt++; 4548 { 4549 uint32_t cur_max; 4550 4551 cur_max = tcp->tcp_rack_cur_max; 4552 if (tcp->tcp_rack_cnt >= cur_max) { 4553 /* 4554 * We have more unacked data than we should - send 4555 * an ACK now. 4556 */ 4557 flags |= TH_ACK_NEEDED; 4558 cur_max++; 4559 if (cur_max > tcp->tcp_rack_abs_max) 4560 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4561 else 4562 tcp->tcp_rack_cur_max = cur_max; 4563 } else if (TCP_IS_DETACHED(tcp)) { 4564 /* We don't have an ACK timer for detached TCP. */ 4565 flags |= TH_ACK_NEEDED; 4566 } else if (seg_len < mss) { 4567 /* 4568 * If we get a segment that is less than an mss, and we 4569 * already have unacknowledged data, and the amount 4570 * unacknowledged is not a multiple of mss, then we 4571 * better generate an ACK now. Otherwise, this may be 4572 * the tail piece of a transaction, and we would rather 4573 * wait for the response. 4574 */ 4575 uint32_t udif; 4576 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4577 (uintptr_t)INT_MAX); 4578 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4579 if (udif && (udif % mss)) 4580 flags |= TH_ACK_NEEDED; 4581 else 4582 flags |= TH_ACK_TIMER_NEEDED; 4583 } else { 4584 /* Start delayed ack timer */ 4585 flags |= TH_ACK_TIMER_NEEDED; 4586 } 4587 } 4588 tcp->tcp_rnxt += seg_len; 4589 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4590 4591 if (mp == NULL) 4592 goto xmit_check; 4593 4594 /* Update SACK list */ 4595 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4596 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4597 &(tcp->tcp_num_sack_blk)); 4598 } 4599 4600 if (tcp->tcp_urp_mp) { 4601 tcp->tcp_urp_mp->b_cont = mp; 4602 mp = tcp->tcp_urp_mp; 4603 tcp->tcp_urp_mp = NULL; 4604 /* Ready for a new signal. */ 4605 tcp->tcp_urp_last_valid = B_FALSE; 4606 #ifdef DEBUG 4607 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4608 "tcp_rput: sending exdata_ind %s", 4609 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4610 #endif /* DEBUG */ 4611 } 4612 4613 /* 4614 * Check for ancillary data changes compared to last segment. 4615 */ 4616 if (connp->conn_recv_ancillary.crb_all != 0) { 4617 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4618 if (mp == NULL) 4619 return; 4620 } 4621 4622 if (IPCL_IS_NONSTR(connp)) { 4623 /* 4624 * Non-STREAMS socket 4625 */ 4626 boolean_t push = flags & (TH_PUSH|TH_FIN); 4627 int error; 4628 4629 if ((*connp->conn_upcalls->su_recv)( 4630 connp->conn_upper_handle, 4631 mp, seg_len, 0, &error, &push) <= 0) { 4632 /* 4633 * We should never be in middle of a 4634 * fallback, the squeue guarantees that. 4635 */ 4636 ASSERT(error != EOPNOTSUPP); 4637 if (error == ENOSPC) 4638 tcp->tcp_rwnd -= seg_len; 4639 } else if (push) { 4640 /* PUSH bit set and sockfs is not flow controlled */ 4641 flags |= tcp_rwnd_reopen(tcp); 4642 } 4643 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4644 /* 4645 * Side queue inbound data until the accept happens. 4646 * tcp_accept/tcp_rput drains this when the accept happens. 4647 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4648 * T_EXDATA_IND) it is queued on b_next. 4649 * XXX Make urgent data use this. Requires: 4650 * Removing tcp_listener check for TH_URG 4651 * Making M_PCPROTO and MARK messages skip the eager case 4652 */ 4653 4654 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4655 } else { 4656 /* Active STREAMS socket */ 4657 if (mp->b_datap->db_type != M_DATA || 4658 (flags & TH_MARKNEXT_NEEDED)) { 4659 if (tcp->tcp_rcv_list != NULL) { 4660 flags |= tcp_rcv_drain(tcp); 4661 } 4662 ASSERT(tcp->tcp_rcv_list == NULL || 4663 tcp->tcp_fused_sigurg); 4664 4665 if (flags & TH_MARKNEXT_NEEDED) { 4666 #ifdef DEBUG 4667 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4668 "tcp_rput: sending MSGMARKNEXT %s", 4669 tcp_display(tcp, NULL, 4670 DISP_PORT_ONLY)); 4671 #endif /* DEBUG */ 4672 mp->b_flag |= MSGMARKNEXT; 4673 flags &= ~TH_MARKNEXT_NEEDED; 4674 } 4675 4676 if (is_system_labeled()) 4677 tcp_setcred_data(mp, ira); 4678 4679 putnext(connp->conn_rq, mp); 4680 if (!canputnext(connp->conn_rq)) 4681 tcp->tcp_rwnd -= seg_len; 4682 } else if ((flags & (TH_PUSH|TH_FIN)) || 4683 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4684 if (tcp->tcp_rcv_list != NULL) { 4685 /* 4686 * Enqueue the new segment first and then 4687 * call tcp_rcv_drain() to send all data 4688 * up. The other way to do this is to 4689 * send all queued data up and then call 4690 * putnext() to send the new segment up. 4691 * This way can remove the else part later 4692 * on. 4693 * 4694 * We don't do this to avoid one more call to 4695 * canputnext() as tcp_rcv_drain() needs to 4696 * call canputnext(). 4697 */ 4698 tcp_rcv_enqueue(tcp, mp, seg_len, 4699 ira->ira_cred); 4700 flags |= tcp_rcv_drain(tcp); 4701 } else { 4702 if (is_system_labeled()) 4703 tcp_setcred_data(mp, ira); 4704 4705 putnext(connp->conn_rq, mp); 4706 if (!canputnext(connp->conn_rq)) 4707 tcp->tcp_rwnd -= seg_len; 4708 } 4709 } else { 4710 /* 4711 * Enqueue all packets when processing an mblk 4712 * from the co queue and also enqueue normal packets. 4713 */ 4714 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4715 } 4716 /* 4717 * Make sure the timer is running if we have data waiting 4718 * for a push bit. This provides resiliency against 4719 * implementations that do not correctly generate push bits. 4720 */ 4721 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4722 /* 4723 * The connection may be closed at this point, so don't 4724 * do anything for a detached tcp. 4725 */ 4726 if (!TCP_IS_DETACHED(tcp)) 4727 tcp->tcp_push_tid = TCP_TIMER(tcp, 4728 tcp_push_timer, 4729 tcps->tcps_push_timer_interval); 4730 } 4731 } 4732 4733 xmit_check: 4734 /* Is there anything left to do? */ 4735 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4736 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4737 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4738 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4739 goto done; 4740 4741 /* Any transmit work to do and a non-zero window? */ 4742 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4743 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4744 if (flags & TH_REXMIT_NEEDED) { 4745 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4746 4747 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4748 if (snd_size > mss) 4749 snd_size = mss; 4750 if (snd_size > tcp->tcp_swnd) 4751 snd_size = tcp->tcp_swnd; 4752 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4753 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4754 B_TRUE); 4755 4756 if (mp1 != NULL) { 4757 tcp->tcp_xmit_head->b_prev = 4758 (mblk_t *)LBOLT_FASTPATH; 4759 tcp->tcp_csuna = tcp->tcp_snxt; 4760 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4761 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4762 snd_size); 4763 tcp_send_data(tcp, mp1); 4764 } 4765 } 4766 if (flags & TH_NEED_SACK_REXMIT) { 4767 tcp_sack_rexmit(tcp, &flags); 4768 } 4769 /* 4770 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4771 * out new segment. Note that tcp_rexmit should not be 4772 * set, otherwise TH_LIMIT_XMIT should not be set. 4773 */ 4774 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4775 if (!tcp->tcp_rexmit) { 4776 tcp_wput_data(tcp, NULL, B_FALSE); 4777 } else { 4778 tcp_ss_rexmit(tcp); 4779 } 4780 } 4781 /* 4782 * Adjust tcp_cwnd back to normal value after sending 4783 * new data segments. 4784 */ 4785 if (flags & TH_LIMIT_XMIT) { 4786 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4787 /* 4788 * This will restart the timer. Restarting the 4789 * timer is used to avoid a timeout before the 4790 * limited transmitted segment's ACK gets back. 4791 */ 4792 if (tcp->tcp_xmit_head != NULL) 4793 tcp->tcp_xmit_head->b_prev = 4794 (mblk_t *)LBOLT_FASTPATH; 4795 } 4796 4797 /* Anything more to do? */ 4798 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4799 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4800 goto done; 4801 } 4802 ack_check: 4803 if (flags & TH_SEND_URP_MARK) { 4804 ASSERT(tcp->tcp_urp_mark_mp); 4805 ASSERT(!IPCL_IS_NONSTR(connp)); 4806 /* 4807 * Send up any queued data and then send the mark message 4808 */ 4809 if (tcp->tcp_rcv_list != NULL) { 4810 flags |= tcp_rcv_drain(tcp); 4811 4812 } 4813 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4814 mp1 = tcp->tcp_urp_mark_mp; 4815 tcp->tcp_urp_mark_mp = NULL; 4816 if (is_system_labeled()) 4817 tcp_setcred_data(mp1, ira); 4818 4819 putnext(connp->conn_rq, mp1); 4820 #ifdef DEBUG 4821 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4822 "tcp_rput: sending zero-length %s %s", 4823 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 4824 "MSGNOTMARKNEXT"), 4825 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4826 #endif /* DEBUG */ 4827 flags &= ~TH_SEND_URP_MARK; 4828 } 4829 if (flags & TH_ACK_NEEDED) { 4830 /* 4831 * Time to send an ack for some reason. 4832 */ 4833 mp1 = tcp_ack_mp(tcp); 4834 4835 if (mp1 != NULL) { 4836 tcp_send_data(tcp, mp1); 4837 BUMP_LOCAL(tcp->tcp_obsegs); 4838 TCPS_BUMP_MIB(tcps, tcpOutAck); 4839 } 4840 if (tcp->tcp_ack_tid != 0) { 4841 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4842 tcp->tcp_ack_tid = 0; 4843 } 4844 } 4845 if (flags & TH_ACK_TIMER_NEEDED) { 4846 /* 4847 * Arrange for deferred ACK or push wait timeout. 4848 * Start timer if it is not already running. 4849 */ 4850 if (tcp->tcp_ack_tid == 0) { 4851 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 4852 tcp->tcp_localnet ? 4853 tcps->tcps_local_dack_interval : 4854 tcps->tcps_deferred_ack_interval); 4855 } 4856 } 4857 if (flags & TH_ORDREL_NEEDED) { 4858 /* 4859 * Notify upper layer about an orderly release. If this is 4860 * a non-STREAMS socket, then just make an upcall. For STREAMS 4861 * we send up an ordrel_ind, unless this is an eager, in which 4862 * case the ordrel will be sent when tcp_accept_finish runs. 4863 * Note that for non-STREAMS we make an upcall even if it is an 4864 * eager, because we have an upper handle to send it to. 4865 */ 4866 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); 4867 ASSERT(!tcp->tcp_detached); 4868 4869 if (IPCL_IS_NONSTR(connp)) { 4870 ASSERT(tcp->tcp_ordrel_mp == NULL); 4871 tcp->tcp_ordrel_done = B_TRUE; 4872 (*connp->conn_upcalls->su_opctl) 4873 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 4874 goto done; 4875 } 4876 4877 if (tcp->tcp_rcv_list != NULL) { 4878 /* 4879 * Push any mblk(s) enqueued from co processing. 4880 */ 4881 flags |= tcp_rcv_drain(tcp); 4882 } 4883 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4884 4885 mp1 = tcp->tcp_ordrel_mp; 4886 tcp->tcp_ordrel_mp = NULL; 4887 tcp->tcp_ordrel_done = B_TRUE; 4888 putnext(connp->conn_rq, mp1); 4889 } 4890 done: 4891 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4892 } 4893 4894 /* 4895 * Attach ancillary data to a received TCP segments for the 4896 * ancillary pieces requested by the application that are 4897 * different than they were in the previous data segment. 4898 * 4899 * Save the "current" values once memory allocation is ok so that 4900 * when memory allocation fails we can just wait for the next data segment. 4901 */ 4902 static mblk_t * 4903 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 4904 ip_recv_attr_t *ira) 4905 { 4906 struct T_optdata_ind *todi; 4907 int optlen; 4908 uchar_t *optptr; 4909 struct T_opthdr *toh; 4910 crb_t addflag; /* Which pieces to add */ 4911 mblk_t *mp1; 4912 conn_t *connp = tcp->tcp_connp; 4913 4914 optlen = 0; 4915 addflag.crb_all = 0; 4916 /* If app asked for pktinfo and the index has changed ... */ 4917 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 4918 ira->ira_ruifindex != tcp->tcp_recvifindex) { 4919 optlen += sizeof (struct T_opthdr) + 4920 sizeof (struct in6_pktinfo); 4921 addflag.crb_ip_recvpktinfo = 1; 4922 } 4923 /* If app asked for hoplimit and it has changed ... */ 4924 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 4925 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 4926 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 4927 addflag.crb_ipv6_recvhoplimit = 1; 4928 } 4929 /* If app asked for tclass and it has changed ... */ 4930 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 4931 ipp->ipp_tclass != tcp->tcp_recvtclass) { 4932 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 4933 addflag.crb_ipv6_recvtclass = 1; 4934 } 4935 /* 4936 * If app asked for hopbyhop headers and it has changed ... 4937 * For security labels, note that (1) security labels can't change on 4938 * a connected socket at all, (2) we're connected to at most one peer, 4939 * (3) if anything changes, then it must be some other extra option. 4940 */ 4941 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 4942 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 4943 (ipp->ipp_fields & IPPF_HOPOPTS), 4944 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 4945 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 4946 addflag.crb_ipv6_recvhopopts = 1; 4947 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 4948 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 4949 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 4950 return (mp); 4951 } 4952 /* If app asked for dst headers before routing headers ... */ 4953 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 4954 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 4955 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 4956 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 4957 optlen += sizeof (struct T_opthdr) + 4958 ipp->ipp_rthdrdstoptslen; 4959 addflag.crb_ipv6_recvrthdrdstopts = 1; 4960 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 4961 &tcp->tcp_rthdrdstoptslen, 4962 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 4963 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 4964 return (mp); 4965 } 4966 /* If app asked for routing headers and it has changed ... */ 4967 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 4968 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 4969 (ipp->ipp_fields & IPPF_RTHDR), 4970 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 4971 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 4972 addflag.crb_ipv6_recvrthdr = 1; 4973 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 4974 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 4975 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 4976 return (mp); 4977 } 4978 /* If app asked for dest headers and it has changed ... */ 4979 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 4980 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 4981 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 4982 (ipp->ipp_fields & IPPF_DSTOPTS), 4983 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 4984 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 4985 addflag.crb_ipv6_recvdstopts = 1; 4986 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 4987 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 4988 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 4989 return (mp); 4990 } 4991 4992 if (optlen == 0) { 4993 /* Nothing to add */ 4994 return (mp); 4995 } 4996 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 4997 if (mp1 == NULL) { 4998 /* 4999 * Defer sending ancillary data until the next TCP segment 5000 * arrives. 5001 */ 5002 return (mp); 5003 } 5004 mp1->b_cont = mp; 5005 mp = mp1; 5006 mp->b_wptr += sizeof (*todi) + optlen; 5007 mp->b_datap->db_type = M_PROTO; 5008 todi = (struct T_optdata_ind *)mp->b_rptr; 5009 todi->PRIM_type = T_OPTDATA_IND; 5010 todi->DATA_flag = 1; /* MORE data */ 5011 todi->OPT_length = optlen; 5012 todi->OPT_offset = sizeof (*todi); 5013 optptr = (uchar_t *)&todi[1]; 5014 /* 5015 * If app asked for pktinfo and the index has changed ... 5016 * Note that the local address never changes for the connection. 5017 */ 5018 if (addflag.crb_ip_recvpktinfo) { 5019 struct in6_pktinfo *pkti; 5020 uint_t ifindex; 5021 5022 ifindex = ira->ira_ruifindex; 5023 toh = (struct T_opthdr *)optptr; 5024 toh->level = IPPROTO_IPV6; 5025 toh->name = IPV6_PKTINFO; 5026 toh->len = sizeof (*toh) + sizeof (*pkti); 5027 toh->status = 0; 5028 optptr += sizeof (*toh); 5029 pkti = (struct in6_pktinfo *)optptr; 5030 pkti->ipi6_addr = connp->conn_laddr_v6; 5031 pkti->ipi6_ifindex = ifindex; 5032 optptr += sizeof (*pkti); 5033 ASSERT(OK_32PTR(optptr)); 5034 /* Save as "last" value */ 5035 tcp->tcp_recvifindex = ifindex; 5036 } 5037 /* If app asked for hoplimit and it has changed ... */ 5038 if (addflag.crb_ipv6_recvhoplimit) { 5039 toh = (struct T_opthdr *)optptr; 5040 toh->level = IPPROTO_IPV6; 5041 toh->name = IPV6_HOPLIMIT; 5042 toh->len = sizeof (*toh) + sizeof (uint_t); 5043 toh->status = 0; 5044 optptr += sizeof (*toh); 5045 *(uint_t *)optptr = ipp->ipp_hoplimit; 5046 optptr += sizeof (uint_t); 5047 ASSERT(OK_32PTR(optptr)); 5048 /* Save as "last" value */ 5049 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5050 } 5051 /* If app asked for tclass and it has changed ... */ 5052 if (addflag.crb_ipv6_recvtclass) { 5053 toh = (struct T_opthdr *)optptr; 5054 toh->level = IPPROTO_IPV6; 5055 toh->name = IPV6_TCLASS; 5056 toh->len = sizeof (*toh) + sizeof (uint_t); 5057 toh->status = 0; 5058 optptr += sizeof (*toh); 5059 *(uint_t *)optptr = ipp->ipp_tclass; 5060 optptr += sizeof (uint_t); 5061 ASSERT(OK_32PTR(optptr)); 5062 /* Save as "last" value */ 5063 tcp->tcp_recvtclass = ipp->ipp_tclass; 5064 } 5065 if (addflag.crb_ipv6_recvhopopts) { 5066 toh = (struct T_opthdr *)optptr; 5067 toh->level = IPPROTO_IPV6; 5068 toh->name = IPV6_HOPOPTS; 5069 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5070 toh->status = 0; 5071 optptr += sizeof (*toh); 5072 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5073 optptr += ipp->ipp_hopoptslen; 5074 ASSERT(OK_32PTR(optptr)); 5075 /* Save as last value */ 5076 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5077 (ipp->ipp_fields & IPPF_HOPOPTS), 5078 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5079 } 5080 if (addflag.crb_ipv6_recvrthdrdstopts) { 5081 toh = (struct T_opthdr *)optptr; 5082 toh->level = IPPROTO_IPV6; 5083 toh->name = IPV6_RTHDRDSTOPTS; 5084 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5085 toh->status = 0; 5086 optptr += sizeof (*toh); 5087 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5088 optptr += ipp->ipp_rthdrdstoptslen; 5089 ASSERT(OK_32PTR(optptr)); 5090 /* Save as last value */ 5091 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5092 &tcp->tcp_rthdrdstoptslen, 5093 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5094 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5095 } 5096 if (addflag.crb_ipv6_recvrthdr) { 5097 toh = (struct T_opthdr *)optptr; 5098 toh->level = IPPROTO_IPV6; 5099 toh->name = IPV6_RTHDR; 5100 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5101 toh->status = 0; 5102 optptr += sizeof (*toh); 5103 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5104 optptr += ipp->ipp_rthdrlen; 5105 ASSERT(OK_32PTR(optptr)); 5106 /* Save as last value */ 5107 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5108 (ipp->ipp_fields & IPPF_RTHDR), 5109 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5110 } 5111 if (addflag.crb_ipv6_recvdstopts) { 5112 toh = (struct T_opthdr *)optptr; 5113 toh->level = IPPROTO_IPV6; 5114 toh->name = IPV6_DSTOPTS; 5115 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5116 toh->status = 0; 5117 optptr += sizeof (*toh); 5118 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5119 optptr += ipp->ipp_dstoptslen; 5120 ASSERT(OK_32PTR(optptr)); 5121 /* Save as last value */ 5122 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5123 (ipp->ipp_fields & IPPF_DSTOPTS), 5124 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5125 } 5126 ASSERT(optptr == mp->b_wptr); 5127 return (mp); 5128 } 5129 5130 /* The minimum of smoothed mean deviation in RTO calculation. */ 5131 #define TCP_SD_MIN 400 5132 5133 /* 5134 * Set RTO for this connection. The formula is from Jacobson and Karels' 5135 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 5136 * are the same as those in Appendix A.2 of that paper. 5137 * 5138 * m = new measurement 5139 * sa = smoothed RTT average (8 * average estimates). 5140 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5141 */ 5142 static void 5143 tcp_set_rto(tcp_t *tcp, clock_t rtt) 5144 { 5145 long m = TICK_TO_MSEC(rtt); 5146 clock_t sa = tcp->tcp_rtt_sa; 5147 clock_t sv = tcp->tcp_rtt_sd; 5148 clock_t rto; 5149 tcp_stack_t *tcps = tcp->tcp_tcps; 5150 5151 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5152 tcp->tcp_rtt_update++; 5153 5154 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5155 if (sa != 0) { 5156 /* 5157 * Update average estimator: 5158 * new rtt = 7/8 old rtt + 1/8 Error 5159 */ 5160 5161 /* m is now Error in estimate. */ 5162 m -= sa >> 3; 5163 if ((sa += m) <= 0) { 5164 /* 5165 * Don't allow the smoothed average to be negative. 5166 * We use 0 to denote reinitialization of the 5167 * variables. 5168 */ 5169 sa = 1; 5170 } 5171 5172 /* 5173 * Update deviation estimator: 5174 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 5175 */ 5176 if (m < 0) 5177 m = -m; 5178 m -= sv >> 2; 5179 sv += m; 5180 } else { 5181 /* 5182 * This follows BSD's implementation. So the reinitialized 5183 * RTO is 3 * m. We cannot go less than 2 because if the 5184 * link is bandwidth dominated, doubling the window size 5185 * during slow start means doubling the RTT. We want to be 5186 * more conservative when we reinitialize our estimates. 3 5187 * is just a convenient number. 5188 */ 5189 sa = m << 3; 5190 sv = m << 1; 5191 } 5192 if (sv < TCP_SD_MIN) { 5193 /* 5194 * We do not know that if sa captures the delay ACK 5195 * effect as in a long train of segments, a receiver 5196 * does not delay its ACKs. So set the minimum of sv 5197 * to be TCP_SD_MIN, which is default to 400 ms, twice 5198 * of BSD DATO. That means the minimum of mean 5199 * deviation is 100 ms. 5200 * 5201 */ 5202 sv = TCP_SD_MIN; 5203 } 5204 tcp->tcp_rtt_sa = sa; 5205 tcp->tcp_rtt_sd = sv; 5206 /* 5207 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 5208 * 5209 * Add tcp_rexmit_interval extra in case of extreme environment 5210 * where the algorithm fails to work. The default value of 5211 * tcp_rexmit_interval_extra should be 0. 5212 * 5213 * As we use a finer grained clock than BSD and update 5214 * RTO for every ACKs, add in another .25 of RTT to the 5215 * deviation of RTO to accomodate burstiness of 1/4 of 5216 * window size. 5217 */ 5218 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 5219 5220 TCP_SET_RTO(tcp, rto); 5221 5222 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5223 tcp->tcp_timer_backoff = 0; 5224 } 5225 5226 /* 5227 * On a labeled system we have some protocols above TCP, such as RPC, which 5228 * appear to assume that every mblk in a chain has a db_credp. 5229 */ 5230 static void 5231 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5232 { 5233 ASSERT(is_system_labeled()); 5234 ASSERT(ira->ira_cred != NULL); 5235 5236 while (mp != NULL) { 5237 mblk_setcred(mp, ira->ira_cred, NOPID); 5238 mp = mp->b_cont; 5239 } 5240 } 5241 5242 uint_t 5243 tcp_rwnd_reopen(tcp_t *tcp) 5244 { 5245 uint_t ret = 0; 5246 uint_t thwin; 5247 conn_t *connp = tcp->tcp_connp; 5248 5249 /* Learn the latest rwnd information that we sent to the other side. */ 5250 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5251 << tcp->tcp_rcv_ws; 5252 /* This is peer's calculated send window (our receive window). */ 5253 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5254 /* 5255 * Increase the receive window to max. But we need to do receiver 5256 * SWS avoidance. This means that we need to check the increase of 5257 * of receive window is at least 1 MSS. 5258 */ 5259 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5260 /* 5261 * If the window that the other side knows is less than max 5262 * deferred acks segments, send an update immediately. 5263 */ 5264 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5265 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5266 ret = TH_ACK_NEEDED; 5267 } 5268 tcp->tcp_rwnd = connp->conn_rcvbuf; 5269 } 5270 return (ret); 5271 } 5272 5273 /* 5274 * Handle a packet that has been reclassified by TCP. 5275 * This function drops the ref on connp that the caller had. 5276 */ 5277 void 5278 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5279 { 5280 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5281 5282 if (connp->conn_incoming_ifindex != 0 && 5283 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5284 freemsg(mp); 5285 CONN_DEC_REF(connp); 5286 return; 5287 } 5288 5289 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5290 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5291 ip6_t *ip6h; 5292 ipha_t *ipha; 5293 5294 if (ira->ira_flags & IRAF_IS_IPV4) { 5295 ipha = (ipha_t *)mp->b_rptr; 5296 ip6h = NULL; 5297 } else { 5298 ipha = NULL; 5299 ip6h = (ip6_t *)mp->b_rptr; 5300 } 5301 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5302 if (mp == NULL) { 5303 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5304 /* Note that mp is NULL */ 5305 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5306 CONN_DEC_REF(connp); 5307 return; 5308 } 5309 } 5310 5311 if (IPCL_IS_TCP(connp)) { 5312 /* 5313 * do not drain, certain use cases can blow 5314 * the stack 5315 */ 5316 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5317 connp->conn_recv, connp, ira, 5318 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5319 } else { 5320 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5321 (connp->conn_recv)(connp, mp, NULL, 5322 ira); 5323 CONN_DEC_REF(connp); 5324 } 5325 5326 } 5327 5328 /* ARGSUSED */ 5329 static void 5330 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5331 { 5332 conn_t *connp = (conn_t *)arg; 5333 tcp_t *tcp = connp->conn_tcp; 5334 queue_t *q = connp->conn_rq; 5335 5336 ASSERT(!IPCL_IS_NONSTR(connp)); 5337 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5338 tcp->tcp_rsrv_mp = mp; 5339 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5340 5341 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5342 return; 5343 } 5344 5345 if (tcp->tcp_fused) { 5346 tcp_fuse_backenable(tcp); 5347 return; 5348 } 5349 5350 if (canputnext(q)) { 5351 /* Not flow-controlled, open rwnd */ 5352 tcp->tcp_rwnd = connp->conn_rcvbuf; 5353 5354 /* 5355 * Send back a window update immediately if TCP is above 5356 * ESTABLISHED state and the increase of the rcv window 5357 * that the other side knows is at least 1 MSS after flow 5358 * control is lifted. 5359 */ 5360 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5361 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5362 tcp_xmit_ctl(NULL, tcp, 5363 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5364 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5365 } 5366 } 5367 } 5368 5369 /* 5370 * The read side service routine is called mostly when we get back-enabled as a 5371 * result of flow control relief. Since we don't actually queue anything in 5372 * TCP, we have no data to send out of here. What we do is clear the receive 5373 * window, and send out a window update. 5374 */ 5375 void 5376 tcp_rsrv(queue_t *q) 5377 { 5378 conn_t *connp = Q_TO_CONN(q); 5379 tcp_t *tcp = connp->conn_tcp; 5380 mblk_t *mp; 5381 5382 /* No code does a putq on the read side */ 5383 ASSERT(q->q_first == NULL); 5384 5385 /* 5386 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5387 * been run. So just return. 5388 */ 5389 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5390 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5391 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5392 return; 5393 } 5394 tcp->tcp_rsrv_mp = NULL; 5395 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5396 5397 CONN_INC_REF(connp); 5398 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5399 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5400 } 5401 5402 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5403 #define ICMP_MIN_TCP_HDR 8 5404 5405 /* 5406 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5407 * passed up by IP. The message is always received on the correct tcp_t. 5408 * Assumes that IP has pulled up everything up to and including the ICMP header. 5409 */ 5410 /* ARGSUSED2 */ 5411 void 5412 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5413 { 5414 conn_t *connp = (conn_t *)arg1; 5415 icmph_t *icmph; 5416 ipha_t *ipha; 5417 int iph_hdr_length; 5418 tcpha_t *tcpha; 5419 uint32_t seg_seq; 5420 tcp_t *tcp = connp->conn_tcp; 5421 5422 /* Assume IP provides aligned packets */ 5423 ASSERT(OK_32PTR(mp->b_rptr)); 5424 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5425 5426 /* 5427 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5428 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5429 */ 5430 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5431 tcp_icmp_error_ipv6(tcp, mp, ira); 5432 return; 5433 } 5434 5435 /* Skip past the outer IP and ICMP headers */ 5436 iph_hdr_length = ira->ira_ip_hdr_length; 5437 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5438 /* 5439 * If we don't have the correct outer IP header length 5440 * or if we don't have a complete inner IP header 5441 * drop it. 5442 */ 5443 if (iph_hdr_length < sizeof (ipha_t) || 5444 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5445 noticmpv4: 5446 freemsg(mp); 5447 return; 5448 } 5449 ipha = (ipha_t *)&icmph[1]; 5450 5451 /* Skip past the inner IP and find the ULP header */ 5452 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5453 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5454 /* 5455 * If we don't have the correct inner IP header length or if the ULP 5456 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5457 * bytes of TCP header, drop it. 5458 */ 5459 if (iph_hdr_length < sizeof (ipha_t) || 5460 ipha->ipha_protocol != IPPROTO_TCP || 5461 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5462 goto noticmpv4; 5463 } 5464 5465 seg_seq = ntohl(tcpha->tha_seq); 5466 switch (icmph->icmph_type) { 5467 case ICMP_DEST_UNREACHABLE: 5468 switch (icmph->icmph_code) { 5469 case ICMP_FRAGMENTATION_NEEDED: 5470 /* 5471 * Update Path MTU, then try to send something out. 5472 */ 5473 tcp_update_pmtu(tcp, B_TRUE); 5474 tcp_rexmit_after_error(tcp); 5475 break; 5476 case ICMP_PORT_UNREACHABLE: 5477 case ICMP_PROTOCOL_UNREACHABLE: 5478 switch (tcp->tcp_state) { 5479 case TCPS_SYN_SENT: 5480 case TCPS_SYN_RCVD: 5481 /* 5482 * ICMP can snipe away incipient 5483 * TCP connections as long as 5484 * seq number is same as initial 5485 * send seq number. 5486 */ 5487 if (seg_seq == tcp->tcp_iss) { 5488 (void) tcp_clean_death(tcp, 5489 ECONNREFUSED); 5490 } 5491 break; 5492 } 5493 break; 5494 case ICMP_HOST_UNREACHABLE: 5495 case ICMP_NET_UNREACHABLE: 5496 /* Record the error in case we finally time out. */ 5497 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5498 tcp->tcp_client_errno = EHOSTUNREACH; 5499 else 5500 tcp->tcp_client_errno = ENETUNREACH; 5501 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5502 if (tcp->tcp_listener != NULL && 5503 tcp->tcp_listener->tcp_syn_defense) { 5504 /* 5505 * Ditch the half-open connection if we 5506 * suspect a SYN attack is under way. 5507 */ 5508 (void) tcp_clean_death(tcp, 5509 tcp->tcp_client_errno); 5510 } 5511 } 5512 break; 5513 default: 5514 break; 5515 } 5516 break; 5517 case ICMP_SOURCE_QUENCH: { 5518 /* 5519 * use a global boolean to control 5520 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5521 * The default is false. 5522 */ 5523 if (tcp_icmp_source_quench) { 5524 /* 5525 * Reduce the sending rate as if we got a 5526 * retransmit timeout 5527 */ 5528 uint32_t npkt; 5529 5530 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5531 tcp->tcp_mss; 5532 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5533 tcp->tcp_cwnd = tcp->tcp_mss; 5534 tcp->tcp_cwnd_cnt = 0; 5535 } 5536 break; 5537 } 5538 } 5539 freemsg(mp); 5540 } 5541 5542 /* 5543 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5544 * error messages passed up by IP. 5545 * Assumes that IP has pulled up all the extension headers as well 5546 * as the ICMPv6 header. 5547 */ 5548 static void 5549 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5550 { 5551 icmp6_t *icmp6; 5552 ip6_t *ip6h; 5553 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5554 tcpha_t *tcpha; 5555 uint8_t *nexthdrp; 5556 uint32_t seg_seq; 5557 5558 /* 5559 * Verify that we have a complete IP header. 5560 */ 5561 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5562 5563 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5564 ip6h = (ip6_t *)&icmp6[1]; 5565 /* 5566 * Verify if we have a complete ICMP and inner IP header. 5567 */ 5568 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5569 noticmpv6: 5570 freemsg(mp); 5571 return; 5572 } 5573 5574 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5575 goto noticmpv6; 5576 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5577 /* 5578 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5579 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5580 * packet. 5581 */ 5582 if ((*nexthdrp != IPPROTO_TCP) || 5583 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5584 goto noticmpv6; 5585 } 5586 5587 seg_seq = ntohl(tcpha->tha_seq); 5588 switch (icmp6->icmp6_type) { 5589 case ICMP6_PACKET_TOO_BIG: 5590 /* 5591 * Update Path MTU, then try to send something out. 5592 */ 5593 tcp_update_pmtu(tcp, B_TRUE); 5594 tcp_rexmit_after_error(tcp); 5595 break; 5596 case ICMP6_DST_UNREACH: 5597 switch (icmp6->icmp6_code) { 5598 case ICMP6_DST_UNREACH_NOPORT: 5599 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5600 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5601 (seg_seq == tcp->tcp_iss)) { 5602 (void) tcp_clean_death(tcp, ECONNREFUSED); 5603 } 5604 break; 5605 case ICMP6_DST_UNREACH_ADMIN: 5606 case ICMP6_DST_UNREACH_NOROUTE: 5607 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5608 case ICMP6_DST_UNREACH_ADDR: 5609 /* Record the error in case we finally time out. */ 5610 tcp->tcp_client_errno = EHOSTUNREACH; 5611 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5612 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5613 (seg_seq == tcp->tcp_iss)) { 5614 if (tcp->tcp_listener != NULL && 5615 tcp->tcp_listener->tcp_syn_defense) { 5616 /* 5617 * Ditch the half-open connection if we 5618 * suspect a SYN attack is under way. 5619 */ 5620 (void) tcp_clean_death(tcp, 5621 tcp->tcp_client_errno); 5622 } 5623 } 5624 5625 5626 break; 5627 default: 5628 break; 5629 } 5630 break; 5631 case ICMP6_PARAM_PROB: 5632 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5633 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5634 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5635 (uchar_t *)nexthdrp) { 5636 if (tcp->tcp_state == TCPS_SYN_SENT || 5637 tcp->tcp_state == TCPS_SYN_RCVD) { 5638 (void) tcp_clean_death(tcp, ECONNREFUSED); 5639 } 5640 break; 5641 } 5642 break; 5643 5644 case ICMP6_TIME_EXCEEDED: 5645 default: 5646 break; 5647 } 5648 freemsg(mp); 5649 } 5650 5651 /* 5652 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5653 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5654 * 5655 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5656 * error messages received by IP. The message is always received on the correct 5657 * tcp_t. 5658 */ 5659 /* ARGSUSED */ 5660 boolean_t 5661 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5662 ip_recv_attr_t *ira) 5663 { 5664 tcpha_t *tcpha = (tcpha_t *)arg2; 5665 uint32_t seq = ntohl(tcpha->tha_seq); 5666 tcp_t *tcp = connp->conn_tcp; 5667 5668 /* 5669 * TCP sequence number contained in payload of the ICMP error message 5670 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5671 * the message is either a stale ICMP error, or an attack from the 5672 * network. Fail the verification. 5673 */ 5674 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5675 return (B_FALSE); 5676 5677 /* For "too big" we also check the ignore flag */ 5678 if (ira->ira_flags & IRAF_IS_IPV4) { 5679 ASSERT(icmph != NULL); 5680 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5681 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5682 tcp->tcp_tcps->tcps_ignore_path_mtu) 5683 return (B_FALSE); 5684 } else { 5685 ASSERT(icmp6 != NULL); 5686 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5687 tcp->tcp_tcps->tcps_ignore_path_mtu) 5688 return (B_FALSE); 5689 } 5690 return (B_TRUE); 5691 } 5692