/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ /* This file contains all TCP input processing functions. */ #include #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include /* * RFC1323-recommended phrasing of TSTAMP option, for easier parsing */ #ifdef _BIG_ENDIAN #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ (TCPOPT_TSTAMP << 8) | 10) #else #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ (TCPOPT_NOP << 8) | TCPOPT_NOP) #endif /* * Flags returned from tcp_parse_options. */ #define TCP_OPT_MSS_PRESENT 1 #define TCP_OPT_WSCALE_PRESENT 2 #define TCP_OPT_TSTAMP_PRESENT 4 #define TCP_OPT_SACK_OK_PRESENT 8 #define TCP_OPT_SACK_PRESENT 16 /* * PAWS needs a timer for 24 days. This is the number of ticks in 24 days */ #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) /* * Since tcp_listener is not cleared atomically with tcp_detached * being cleared we need this extra bit to tell a detached connection * apart from one that is in the process of being accepted. */ #define TCP_IS_DETACHED_NONEAGER(tcp) \ (TCP_IS_DETACHED(tcp) && \ (!(tcp)->tcp_hard_binding)) /* * Steps to do when a tcp_t moves to TIME-WAIT state. * * This connection is done, we don't need to account for it. Decrement * the listener connection counter if needed. * * Decrement the connection counter of the stack. Note that this counter * is per CPU. So the total number of connections in a stack is the sum of all * of them. Since there is no lock for handling all of them exclusively, the * resulting sum is only an approximation. * * Unconditionally clear the exclusive binding bit so this TIME-WAIT * connection won't interfere with new ones. * * Start the TIME-WAIT timer. If upper layer has not closed the connection, * the timer is handled within the context of this tcp_t. When the timer * fires, tcp_clean_death() is called. If upper layer closes the connection * during this period, tcp_time_wait_append() will be called to add this * tcp_t to the global TIME-WAIT list. Note that this means that the * actual wait time in TIME-WAIT state will be longer than the * tcps_time_wait_interval since the period before upper layer closes the * connection is not accounted for when tcp_time_wait_append() is called. * * If uppser layer has closed the connection, call tcp_time_wait_append() * directly. * */ #define SET_TIME_WAIT(tcps, tcp, connp) \ { \ (tcp)->tcp_state = TCPS_TIME_WAIT; \ if ((tcp)->tcp_listen_cnt != NULL) \ TCP_DECR_LISTEN_CNT(tcp); \ atomic_dec_64( \ (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ (connp)->conn_exclbind = 0; \ if (!TCP_IS_DETACHED(tcp)) { \ TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ } else { \ tcp_time_wait_append(tcp); \ TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ } \ } /* * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent * data, TCP will not respond with an ACK. RFC 793 requires that * TCP responds with an ACK for such a bogus ACK. By not following * the RFC, we prevent TCP from getting into an ACK storm if somehow * an attacker successfully spoofs an acceptable segment to our * peer; or when our peer is "confused." */ static uint32_t tcp_drop_ack_unsent_cnt = 10; /* * To protect TCP against attacker using a small window and requesting * large amount of data (DoS attack by conuming memory), TCP checks the * window advertised in the last ACK of the 3-way handshake. TCP uses * the tcp_mss (the size of one packet) value for comparion. The window * should be larger than tcp_mss. But while a sane TCP should advertise * a receive window larger than or equal to 4*MSS to avoid stop and go * tarrfic, not all TCP stacks do that. This is especially true when * tcp_mss is a big value. * * To work around this issue, an additional fixed value for comparison * is also used. If the advertised window is smaller than both tcp_mss * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but * smaller than 8K is considered to be OK. */ static uint32_t tcp_init_wnd_chk = 4096; /* Process ICMP source quench message or not. */ static boolean_t tcp_icmp_source_quench = B_FALSE; static boolean_t tcp_outbound_squeue_switch = B_FALSE; static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, ip_recv_attr_t *); static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, ip_recv_attr_t *); static boolean_t tcp_drop_q0(tcp_t *); static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, ip_recv_attr_t *); static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); static int tcp_parse_options(tcpha_t *, tcp_opt_t *); static void tcp_process_options(tcp_t *, tcpha_t *); static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); static void tcp_set_rto(tcp_t *, time_t); static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); /* * Set the MSS associated with a particular tcp based on its current value, * and a new one passed in. Observe minimums and maximums, and reset other * state variables that we want to view as multiples of MSS. * * The value of MSS could be either increased or descreased. */ void tcp_mss_set(tcp_t *tcp, uint32_t mss) { uint32_t mss_max; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; if (connp->conn_ipversion == IPV4_VERSION) mss_max = tcps->tcps_mss_max_ipv4; else mss_max = tcps->tcps_mss_max_ipv6; if (mss < tcps->tcps_mss_min) mss = tcps->tcps_mss_min; if (mss > mss_max) mss = mss_max; /* * Unless naglim has been set by our client to * a non-mss value, force naglim to track mss. * This can help to aggregate small writes. */ if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) tcp->tcp_naglim = mss; /* * TCP should be able to buffer at least 4 MSS data for obvious * performance reason. */ if ((mss << 2) > connp->conn_sndbuf) connp->conn_sndbuf = mss << 2; /* * Set the send lowater to at least twice of MSS. */ if ((mss << 1) > connp->conn_sndlowat) connp->conn_sndlowat = mss << 1; /* * Update tcp_cwnd according to the new value of MSS. Keep the * previous ratio to preserve the transmit rate. */ tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; tcp->tcp_cwnd_cnt = 0; tcp->tcp_mss = mss; (void) tcp_maxpsz_set(tcp, B_TRUE); } /* * Extract option values from a tcp header. We put any found values into the * tcpopt struct and return a bitmask saying which options were found. */ static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) { uchar_t *endp; int len; uint32_t mss; uchar_t *up = (uchar_t *)tcpha; int found = 0; int32_t sack_len; tcp_seq sack_begin, sack_end; tcp_t *tcp; endp = up + TCP_HDR_LENGTH(tcpha); up += TCP_MIN_HEADER_LENGTH; while (up < endp) { len = endp - up; switch (*up) { case TCPOPT_EOL: break; case TCPOPT_NOP: up++; continue; case TCPOPT_MAXSEG: if (len < TCPOPT_MAXSEG_LEN || up[1] != TCPOPT_MAXSEG_LEN) break; mss = BE16_TO_U16(up+2); /* Caller must handle tcp_mss_min and tcp_mss_max_* */ tcpopt->tcp_opt_mss = mss; found |= TCP_OPT_MSS_PRESENT; up += TCPOPT_MAXSEG_LEN; continue; case TCPOPT_WSCALE: if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) break; if (up[2] > TCP_MAX_WINSHIFT) tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; else tcpopt->tcp_opt_wscale = up[2]; found |= TCP_OPT_WSCALE_PRESENT; up += TCPOPT_WS_LEN; continue; case TCPOPT_SACK_PERMITTED: if (len < TCPOPT_SACK_OK_LEN || up[1] != TCPOPT_SACK_OK_LEN) break; found |= TCP_OPT_SACK_OK_PRESENT; up += TCPOPT_SACK_OK_LEN; continue; case TCPOPT_SACK: if (len <= 2 || up[1] <= 2 || len < up[1]) break; /* If TCP is not interested in SACK blks... */ if ((tcp = tcpopt->tcp) == NULL) { up += up[1]; continue; } sack_len = up[1] - TCPOPT_HEADER_LEN; up += TCPOPT_HEADER_LEN; /* * If the list is empty, allocate one and assume * nothing is sack'ed. */ if (tcp->tcp_notsack_list == NULL) { tcp_notsack_update(&(tcp->tcp_notsack_list), tcp->tcp_suna, tcp->tcp_snxt, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); /* * Make sure tcp_notsack_list is not NULL. * This happens when kmem_alloc(KM_NOSLEEP) * returns NULL. */ if (tcp->tcp_notsack_list == NULL) { up += sack_len; continue; } tcp->tcp_fack = tcp->tcp_suna; } while (sack_len > 0) { if (up + 8 > endp) { up = endp; break; } sack_begin = BE32_TO_U32(up); up += 4; sack_end = BE32_TO_U32(up); up += 4; sack_len -= 8; /* * Bounds checking. Make sure the SACK * info is within tcp_suna and tcp_snxt. * If this SACK blk is out of bound, ignore * it but continue to parse the following * blks. */ if (SEQ_LEQ(sack_end, sack_begin) || SEQ_LT(sack_begin, tcp->tcp_suna) || SEQ_GT(sack_end, tcp->tcp_snxt)) { continue; } tcp_notsack_insert(&(tcp->tcp_notsack_list), sack_begin, sack_end, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); if (SEQ_GT(sack_end, tcp->tcp_fack)) { tcp->tcp_fack = sack_end; } } found |= TCP_OPT_SACK_PRESENT; continue; case TCPOPT_TSTAMP: if (len < TCPOPT_TSTAMP_LEN || up[1] != TCPOPT_TSTAMP_LEN) break; tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); found |= TCP_OPT_TSTAMP_PRESENT; up += TCPOPT_TSTAMP_LEN; continue; default: if (len <= 1 || len < (int)up[1] || up[1] == 0) break; up += up[1]; continue; } break; } return (found); } /* * Process all TCP option in SYN segment. Note that this function should * be called after tcp_set_destination() is called so that the necessary info * from IRE is already set in the tcp structure. * * This function sets up the correct tcp_mss value according to the * MSS option value and our header size. It also sets up the window scale * and timestamp values, and initialize SACK info blocks. But it does not * change receive window size after setting the tcp_mss value. The caller * should do the appropriate change. */ static void tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) { int options; tcp_opt_t tcpopt; uint32_t mss_max; char *tmp_tcph; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; tcpopt.tcp = NULL; options = tcp_parse_options(tcpha, &tcpopt); /* * Process MSS option. Note that MSS option value does not account * for IP or TCP options. This means that it is equal to MTU - minimum * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for * IPv6. */ if (!(options & TCP_OPT_MSS_PRESENT)) { if (connp->conn_ipversion == IPV4_VERSION) tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; else tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; } else { if (connp->conn_ipversion == IPV4_VERSION) mss_max = tcps->tcps_mss_max_ipv4; else mss_max = tcps->tcps_mss_max_ipv6; if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) tcpopt.tcp_opt_mss = tcps->tcps_mss_min; else if (tcpopt.tcp_opt_mss > mss_max) tcpopt.tcp_opt_mss = mss_max; } /* Process Window Scale option. */ if (options & TCP_OPT_WSCALE_PRESENT) { tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; tcp->tcp_snd_ws_ok = B_TRUE; } else { tcp->tcp_snd_ws = B_FALSE; tcp->tcp_snd_ws_ok = B_FALSE; tcp->tcp_rcv_ws = B_FALSE; } /* Process Timestamp option. */ if ((options & TCP_OPT_TSTAMP_PRESENT) && (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { tmp_tcph = (char *)tcp->tcp_tcpha; tcp->tcp_snd_ts_ok = B_TRUE; tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); ASSERT(OK_32PTR(tmp_tcph)); ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); /* Fill in our template header with basic timestamp option. */ tmp_tcph += connp->conn_ht_ulp_len; tmp_tcph[0] = TCPOPT_NOP; tmp_tcph[1] = TCPOPT_NOP; tmp_tcph[2] = TCPOPT_TSTAMP; tmp_tcph[3] = TCPOPT_TSTAMP_LEN; connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); } else { tcp->tcp_snd_ts_ok = B_FALSE; } /* * Process SACK options. If SACK is enabled for this connection, * then allocate the SACK info structure. Note the following ways * when tcp_snd_sack_ok is set to true. * * For active connection: in tcp_set_destination() called in * tcp_connect(). * * For passive connection: in tcp_set_destination() called in * tcp_input_listener(). * * That's the reason why the extra TCP_IS_DETACHED() check is there. * That check makes sure that if we did not send a SACK OK option, * we will not enable SACK for this connection even though the other * side sends us SACK OK option. For active connection, the SACK * info structure has already been allocated. So we need to free * it if SACK is disabled. */ if ((options & TCP_OPT_SACK_OK_PRESENT) && (tcp->tcp_snd_sack_ok || (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { ASSERT(tcp->tcp_num_sack_blk == 0); ASSERT(tcp->tcp_notsack_list == NULL); tcp->tcp_snd_sack_ok = B_TRUE; if (tcp->tcp_snd_ts_ok) { tcp->tcp_max_sack_blk = 3; } else { tcp->tcp_max_sack_blk = 4; } } else if (tcp->tcp_snd_sack_ok) { /* * Resetting tcp_snd_sack_ok to B_FALSE so that * no SACK info will be used for this * connection. This assumes that SACK usage * permission is negotiated. This may need * to be changed once this is clarified. */ ASSERT(tcp->tcp_num_sack_blk == 0); ASSERT(tcp->tcp_notsack_list == NULL); tcp->tcp_snd_sack_ok = B_FALSE; } /* * Now we know the exact TCP/IP header length, subtract * that from tcp_mss to get our side's MSS. */ tcp->tcp_mss -= connp->conn_ht_iphc_len; /* * Here we assume that the other side's header size will be equal to * our header size. We calculate the real MSS accordingly. Need to * take into additional stuffs IPsec puts in. * * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) */ tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + tcp->tcp_ipsec_overhead - ((connp->conn_ipversion == IPV4_VERSION ? IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); /* * Set MSS to the smaller one of both ends of the connection. * We should not have called tcp_mss_set() before, but our * side of the MSS should have been set to a proper value * by tcp_set_destination(). tcp_mss_set() will also set up the * STREAM head parameters properly. * * If we have a larger-than-16-bit window but the other side * didn't want to do window scale, tcp_rwnd_set() will take * care of that. */ tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); /* * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been * updated properly. */ TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); } /* * Add a new piece to the tcp reassembly queue. If the gap at the beginning * is filled, return as much as we can. The message passed in may be * multi-part, chained using b_cont. "start" is the starting sequence * number for this piece. */ static mblk_t * tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) { uint32_t end; mblk_t *mp1; mblk_t *mp2; mblk_t *next_mp; uint32_t u1; tcp_stack_t *tcps = tcp->tcp_tcps; /* Walk through all the new pieces. */ do { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); end = start + (int)(mp->b_wptr - mp->b_rptr); next_mp = mp->b_cont; if (start == end) { /* Empty. Blast it. */ freeb(mp); continue; } mp->b_cont = NULL; TCP_REASS_SET_SEQ(mp, start); TCP_REASS_SET_END(mp, end); mp1 = tcp->tcp_reass_tail; if (!mp1) { tcp->tcp_reass_tail = mp; tcp->tcp_reass_head = mp; TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, end - start); continue; } /* New stuff completely beyond tail? */ if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { /* Link it on end. */ mp1->b_cont = mp; tcp->tcp_reass_tail = mp; TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, end - start); continue; } mp1 = tcp->tcp_reass_head; u1 = TCP_REASS_SEQ(mp1); /* New stuff at the front? */ if (SEQ_LT(start, u1)) { /* Yes... Check for overlap. */ mp->b_cont = mp1; tcp->tcp_reass_head = mp; tcp_reass_elim_overlap(tcp, mp); continue; } /* * The new piece fits somewhere between the head and tail. * We find our slot, where mp1 precedes us and mp2 trails. */ for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { u1 = TCP_REASS_SEQ(mp2); if (SEQ_LEQ(start, u1)) break; } /* Link ourselves in */ mp->b_cont = mp2; mp1->b_cont = mp; /* Trim overlap with following mblk(s) first */ tcp_reass_elim_overlap(tcp, mp); /* Trim overlap with preceding mblk */ tcp_reass_elim_overlap(tcp, mp1); } while (start = end, mp = next_mp); mp1 = tcp->tcp_reass_head; /* Anything ready to go? */ if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) return (NULL); /* Eat what we can off the queue */ for (;;) { mp = mp1->b_cont; end = TCP_REASS_END(mp1); TCP_REASS_SET_SEQ(mp1, 0); TCP_REASS_SET_END(mp1, 0); if (!mp) { tcp->tcp_reass_tail = NULL; break; } if (end != TCP_REASS_SEQ(mp)) { mp1->b_cont = NULL; break; } mp1 = mp; } mp1 = tcp->tcp_reass_head; tcp->tcp_reass_head = mp; return (mp1); } /* Eliminate any overlap that mp may have over later mblks */ static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) { uint32_t end; mblk_t *mp1; uint32_t u1; tcp_stack_t *tcps = tcp->tcp_tcps; end = TCP_REASS_END(mp); while ((mp1 = mp->b_cont) != NULL) { u1 = TCP_REASS_SEQ(mp1); if (!SEQ_GT(end, u1)) break; if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { mp->b_wptr -= end - u1; TCP_REASS_SET_END(mp, u1); TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, end - u1); break; } mp->b_cont = mp1->b_cont; TCP_REASS_SET_SEQ(mp1, 0); TCP_REASS_SET_END(mp1, 0); freeb(mp1); TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); } if (!mp1) tcp->tcp_reass_tail = mp; } /* * This function does PAWS protection check. Returns B_TRUE if the * segment passes the PAWS test, else returns B_FALSE. */ boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) { uint8_t flags; int options; uint8_t *up; conn_t *connp = tcp->tcp_connp; flags = (unsigned int)tcpha->tha_flags & 0xFF; /* * If timestamp option is aligned nicely, get values inline, * otherwise call general routine to parse. Only do that * if timestamp is the only option. */ if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + TCPOPT_REAL_TS_LEN && OK_32PTR((up = ((uint8_t *)tcpha) + TCP_MIN_HEADER_LENGTH)) && *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); options = TCP_OPT_TSTAMP_PRESENT; } else { if (tcp->tcp_snd_sack_ok) { tcpoptp->tcp = tcp; } else { tcpoptp->tcp = NULL; } options = tcp_parse_options(tcpha, tcpoptp); } if (options & TCP_OPT_TSTAMP_PRESENT) { /* * Do PAWS per RFC 1323 section 4.2. Accept RST * regardless of the timestamp, page 18 RFC 1323.bis. */ if ((flags & TH_RST) == 0 && TSTMP_LT(tcpoptp->tcp_opt_ts_val, tcp->tcp_ts_recent)) { if (LBOLT_FASTPATH64 < (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { /* This segment is not acceptable. */ return (B_FALSE); } else { /* * Connection has been idle for * too long. Reset the timestamp * and assume the segment is valid. */ tcp->tcp_ts_recent = tcpoptp->tcp_opt_ts_val; } } } else { /* * If we don't get a timestamp on every packet, we * figure we can't really trust 'em, so we stop sending * and parsing them. */ tcp->tcp_snd_ts_ok = B_FALSE; connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); /* * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid * doing a slow start here so as to not to lose on the * transfer rate built up so far. */ tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); if (tcp->tcp_snd_sack_ok) tcp->tcp_max_sack_blk = 4; } return (B_TRUE); } /* * Defense for the SYN attack - * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest * one from the list of droppable eagers. This list is a subset of q0. * see comments before the definition of MAKE_DROPPABLE(). * 2. Don't drop a SYN request before its first timeout. This gives every * request at least til the first timeout to complete its 3-way handshake. * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many * requests currently on the queue that has timed out. This will be used * as an indicator of whether an attack is under way, so that appropriate * actions can be taken. (It's incremented in tcp_timer() and decremented * either when eager goes into ESTABLISHED, or gets freed up.) * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on * # of timeout drops back to <= q0len/32 => SYN alert off */ static boolean_t tcp_drop_q0(tcp_t *tcp) { tcp_t *eager; mblk_t *mp; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); /* Pick oldest eager from the list of droppable eagers */ eager = tcp->tcp_eager_prev_drop_q0; /* If list is empty. return B_FALSE */ if (eager == tcp) { return (B_FALSE); } /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ if ((mp = allocb(0, BPRI_HI)) == NULL) return (B_FALSE); /* * Take this eager out from the list of droppable eagers since we are * going to drop it. */ MAKE_UNDROPPABLE(eager); if (tcp->tcp_connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, "tcp_drop_q0: listen half-open queue (max=%d) overflow" " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, tcp->tcp_conn_req_cnt_q0, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); /* Put a reference on the conn as we are enqueueing it in the sqeue */ CONN_INC_REF(eager->tcp_connp); SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_clean_death_wrapper, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_DROP_Q0); return (B_TRUE); } /* * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 */ static mblk_t * tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira) { tcp_t *ltcp = lconnp->conn_tcp; tcp_t *tcp = connp->conn_tcp; mblk_t *tpi_mp; ipha_t *ipha; ip6_t *ip6h; sin6_t sin6; uint_t ifindex = ira->ira_ruifindex; tcp_stack_t *tcps = tcp->tcp_tcps; if (ira->ira_flags & IRAF_IS_IPV4) { ipha = (ipha_t *)mp->b_rptr; connp->conn_ipversion = IPV4_VERSION; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); connp->conn_saddr_v6 = connp->conn_laddr_v6; sin6 = sin6_null; sin6.sin6_addr = connp->conn_faddr_v6; sin6.sin6_port = connp->conn_fport; sin6.sin6_family = AF_INET6; sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, IPCL_ZONEID(lconnp), tcps->tcps_netstack); if (connp->conn_recv_ancillary.crb_recvdstaddr) { sin6_t sin6d; sin6d = sin6_null; sin6d.sin6_addr = connp->conn_laddr_v6; sin6d.sin6_port = connp->conn_lport; sin6d.sin6_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sin6d, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sin6d, sizeof (sin6_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin6, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } } else { ip6h = (ip6_t *)mp->b_rptr; connp->conn_ipversion = IPV6_VERSION; connp->conn_laddr_v6 = ip6h->ip6_dst; connp->conn_faddr_v6 = ip6h->ip6_src; connp->conn_saddr_v6 = connp->conn_laddr_v6; sin6 = sin6_null; sin6.sin6_addr = connp->conn_faddr_v6; sin6.sin6_port = connp->conn_fport; sin6.sin6_family = AF_INET6; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, IPCL_ZONEID(lconnp), tcps->tcps_netstack); if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { /* Pass up the scope_id of remote addr */ sin6.sin6_scope_id = ifindex; } else { sin6.sin6_scope_id = 0; } if (connp->conn_recv_ancillary.crb_recvdstaddr) { sin6_t sin6d; sin6d = sin6_null; sin6.sin6_addr = connp->conn_laddr_v6; sin6d.sin6_port = connp->conn_lport; sin6d.sin6_family = AF_INET6; if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) sin6d.sin6_scope_id = ifindex; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sin6d, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sin6d, sizeof (sin6_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin6, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } } tcp->tcp_mss = tcps->tcps_mss_def_ipv6; return (tpi_mp); } /* Handle a SYN on an AF_INET socket */ static mblk_t * tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira) { tcp_t *ltcp = lconnp->conn_tcp; tcp_t *tcp = connp->conn_tcp; sin_t sin; mblk_t *tpi_mp = NULL; tcp_stack_t *tcps = tcp->tcp_tcps; ipha_t *ipha; ASSERT(ira->ira_flags & IRAF_IS_IPV4); ipha = (ipha_t *)mp->b_rptr; connp->conn_ipversion = IPV4_VERSION; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); connp->conn_saddr_v6 = connp->conn_laddr_v6; sin = sin_null; sin.sin_addr.s_addr = connp->conn_faddr_v4; sin.sin_port = connp->conn_fport; sin.sin_family = AF_INET; if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { sin_t sind; sind = sin_null; sind.sin_addr.s_addr = connp->conn_laddr_v4; sind.sin_port = connp->conn_lport; sind.sin_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sind, sizeof (sin_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sind, sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin, sizeof (sin_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } tcp->tcp_mss = tcps->tcps_mss_def_ipv4; return (tpi_mp); } /* * Called via squeue to get on to eager's perimeter. It sends a * TH_RST if eager is in the fanout table. The listener wants the * eager to disappear either by means of tcp_eager_blowoff() or * tcp_eager_cleanup() being called. tcp_eager_kill() can also be * called (via squeue) if the eager cannot be inserted in the * fanout table in tcp_input_listener(). */ /* ARGSUSED */ void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *econnp = (conn_t *)arg; tcp_t *eager = econnp->conn_tcp; tcp_t *listener = eager->tcp_listener; /* * We could be called because listener is closing. Since * the eager was using listener's queue's, we avoid * using the listeners queues from now on. */ ASSERT(eager->tcp_detached); econnp->conn_rq = NULL; econnp->conn_wq = NULL; /* * An eager's conn_fanout will be NULL if it's a duplicate * for an existing 4-tuples in the conn fanout table. * We don't want to send an RST out in such case. */ if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { tcp_xmit_ctl("tcp_eager_kill, can't wait", eager, eager->tcp_snxt, 0, TH_RST); } /* We are here because listener wants this eager gone */ if (listener != NULL) { mutex_enter(&listener->tcp_eager_lock); tcp_eager_unlink(eager); if (eager->tcp_tconnind_started) { /* * The eager has sent a conn_ind up to the * listener but listener decides to close * instead. We need to drop the extra ref * placed on eager in tcp_input_data() before * sending the conn_ind to listener. */ CONN_DEC_REF(econnp); } mutex_exit(&listener->tcp_eager_lock); CONN_DEC_REF(listener->tcp_connp); } if (eager->tcp_state != TCPS_CLOSED) tcp_close_detached(eager); } /* * Reset any eager connection hanging off this listener marked * with 'seqnum' and then reclaim it's resources. */ boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) { tcp_t *eager; mblk_t *mp; eager = listener; mutex_enter(&listener->tcp_eager_lock); do { eager = eager->tcp_eager_next_q; if (eager == NULL) { mutex_exit(&listener->tcp_eager_lock); return (B_FALSE); } } while (eager->tcp_conn_req_seqnum != seqnum); if (eager->tcp_closemp_used) { mutex_exit(&listener->tcp_eager_lock); return (B_TRUE); } eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); CONN_INC_REF(eager->tcp_connp); mutex_exit(&listener->tcp_eager_lock); mp = &eager->tcp_closemp; SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); return (B_TRUE); } /* * Reset any eager connection hanging off this listener * and then reclaim it's resources. */ void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) { tcp_t *eager; mblk_t *mp; tcp_stack_t *tcps = listener->tcp_tcps; ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); if (!q0_only) { /* First cleanup q */ TCP_STAT(tcps, tcp_eager_blowoff_q); eager = listener->tcp_eager_next_q; while (eager != NULL) { if (!eager->tcp_closemp_used) { eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); CONN_INC_REF(eager->tcp_connp); mp = &eager->tcp_closemp; SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); } eager = eager->tcp_eager_next_q; } } /* Then cleanup q0 */ TCP_STAT(tcps, tcp_eager_blowoff_q0); eager = listener->tcp_eager_next_q0; while (eager != listener) { if (!eager->tcp_closemp_used) { eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); CONN_INC_REF(eager->tcp_connp); mp = &eager->tcp_closemp; SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_CLEANUP_Q0); } eager = eager->tcp_eager_next_q0; } } /* * If we are an eager connection hanging off a listener that hasn't * formally accepted the connection yet, get off his list and blow off * any data that we have accumulated. */ void tcp_eager_unlink(tcp_t *tcp) { tcp_t *listener = tcp->tcp_listener; ASSERT(listener != NULL); ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); if (tcp->tcp_eager_next_q0 != NULL) { ASSERT(tcp->tcp_eager_prev_q0 != NULL); /* Remove the eager tcp from q0 */ tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_eager_prev_q0 = NULL; /* * Take the eager out, if it is in the list of droppable * eagers. */ MAKE_UNDROPPABLE(tcp); if (tcp->tcp_syn_rcvd_timeout != 0) { /* we have timed out before */ ASSERT(listener->tcp_syn_rcvd_timeout > 0); listener->tcp_syn_rcvd_timeout--; } } else { tcp_t **tcpp = &listener->tcp_eager_next_q; tcp_t *prev = NULL; for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { if (tcpp[0] == tcp) { if (listener->tcp_eager_last_q == tcp) { /* * If we are unlinking the last * element on the list, adjust * tail pointer. Set tail pointer * to nil when list is empty. */ ASSERT(tcp->tcp_eager_next_q == NULL); if (listener->tcp_eager_last_q == listener->tcp_eager_next_q) { listener->tcp_eager_last_q = NULL; } else { /* * We won't get here if there * is only one eager in the * list. */ ASSERT(prev != NULL); listener->tcp_eager_last_q = prev; } } tcpp[0] = tcp->tcp_eager_next_q; tcp->tcp_eager_next_q = NULL; tcp->tcp_eager_last_q = NULL; ASSERT(listener->tcp_conn_req_cnt_q > 0); listener->tcp_conn_req_cnt_q--; break; } prev = tcpp[0]; } } tcp->tcp_listener = NULL; } /* BEGIN CSTYLED */ /* * * The sockfs ACCEPT path: * ======================= * * The eager is now established in its own perimeter as soon as SYN is * received in tcp_input_listener(). When sockfs receives conn_ind, it * completes the accept processing on the acceptor STREAM. The sending * of conn_ind part is common for both sockfs listener and a TLI/XTI * listener but a TLI/XTI listener completes the accept processing * on the listener perimeter. * * Common control flow for 3 way handshake: * ---------------------------------------- * * incoming SYN (listener perimeter) -> tcp_input_listener() * * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() * * Sockfs ACCEPT Path: * ------------------- * * open acceptor stream (tcp_open allocates tcp_tli_accept() * as STREAM entry point) * * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() * * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager * association (we are not behind eager's squeue but sockfs is protecting us * and no one knows about this stream yet. The STREAMS entry point q->q_info * is changed to point at tcp_wput(). * * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to * listener (done on listener's perimeter). * * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish * accept. * * TLI/XTI client ACCEPT path: * --------------------------- * * soaccept() sends T_CONN_RES on the listener STREAM. * * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). * * Locks: * ====== * * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and * and listeners->tcp_eager_next_q. * * Referencing: * ============ * * 1) We start out in tcp_input_listener by eager placing a ref on * listener and listener adding eager to listeners->tcp_eager_next_q0. * * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before * doing so we place a ref on the eager. This ref is finally dropped at the * end of tcp_accept_finish() while unwinding from the squeue, i.e. the * reference is dropped by the squeue framework. * * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish * * The reference must be released by the same entity that added the reference * In the above scheme, the eager is the entity that adds and releases the * references. Note that tcp_accept_finish executes in the squeue of the eager * (albeit after it is attached to the acceptor stream). Though 1. executes * in the listener's squeue, the eager is nascent at this point and the * reference can be considered to have been added on behalf of the eager. * * Eager getting a Reset or listener closing: * ========================================== * * Once the listener and eager are linked, the listener never does the unlink. * If the listener needs to close, tcp_eager_cleanup() is called which queues * a message on all eager perimeter. The eager then does the unlink, clears * any pointers to the listener's queue and drops the reference to the * listener. The listener waits in tcp_close outside the squeue until its * refcount has dropped to 1. This ensures that the listener has waited for * all eagers to clear their association with the listener. * * Similarly, if eager decides to go away, it can unlink itself and close. * When the T_CONN_RES comes down, we check if eager has closed. Note that * the reference to eager is still valid because of the extra ref we put * in tcp_send_conn_ind. * * Listener can always locate the eager under the protection * of the listener->tcp_eager_lock, and then do a refhold * on the eager during the accept processing. * * The acceptor stream accesses the eager in the accept processing * based on the ref placed on eager before sending T_conn_ind. * The only entity that can negate this refhold is a listener close * which is mutually exclusive with an active acceptor stream. * * Eager's reference on the listener * =================================== * * If the accept happens (even on a closed eager) the eager drops its * reference on the listener at the start of tcp_accept_finish. If the * eager is killed due to an incoming RST before the T_conn_ind is sent up, * the reference is dropped in tcp_closei_local. If the listener closes, * the reference is dropped in tcp_eager_kill. In all cases the reference * is dropped while executing in the eager's context (squeue). */ /* END CSTYLED */ /* Process the SYN packet, mp, directed at the listener 'tcp' */ /* * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. * tcp_input_data will not see any packets for listeners since the listener * has conn_recv set to tcp_input_listener. */ /* ARGSUSED */ static void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { tcpha_t *tcpha; uint32_t seg_seq; tcp_t *eager; int err; conn_t *econnp = NULL; squeue_t *new_sqp; mblk_t *mp1; uint_t ip_hdr_len; conn_t *lconnp = (conn_t *)arg; tcp_t *listener = lconnp->conn_tcp; tcp_stack_t *tcps = listener->tcp_tcps; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; uint_t flags; mblk_t *tpi_mp; uint_t ifindex = ira->ira_ruifindex; boolean_t tlc_set = B_FALSE; ip_hdr_len = ira->ira_ip_hdr_length; tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; flags = (unsigned int)tcpha->tha_flags & 0xFF; DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, __dtrace_tcp_tcph_t *, tcpha); if (!(flags & TH_SYN)) { if ((flags & TH_RST) || (flags & TH_URG)) { freemsg(mp); return; } if (flags & TH_ACK) { /* Note this executes in listener's squeue */ tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); return; } freemsg(mp); return; } if (listener->tcp_state != TCPS_LISTEN) goto error2; ASSERT(IPCL_IS_BOUND(lconnp)); mutex_enter(&listener->tcp_eager_lock); /* * The system is under memory pressure, so we need to do our part * to relieve the pressure. So we only accept new request if there * is nothing waiting to be accepted or waiting to complete the 3-way * handshake. This means that busy listener will not get too many * new requests which they cannot handle in time while non-busy * listener is still functioning properly. */ if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || listener->tcp_conn_req_cnt_q0 > 0)) { mutex_exit(&listener->tcp_eager_lock); TCP_STAT(tcps, tcp_listen_mem_drop); goto error2; } if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { mutex_exit(&listener->tcp_eager_lock); TCP_STAT(tcps, tcp_listendrop); TCPS_BUMP_MIB(tcps, tcpListenDrop); if (lconnp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_input_listener: listen backlog (max=%d) " "overflow (%d pending) on %s", listener->tcp_conn_req_max, listener->tcp_conn_req_cnt_q, tcp_display(listener, NULL, DISP_PORT_ONLY)); } goto error2; } if (listener->tcp_conn_req_cnt_q0 >= listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { /* * Q0 is full. Drop a pending half-open req from the queue * to make room for the new SYN req. Also mark the time we * drop a SYN. * * A more aggressive defense against SYN attack will * be to set the "tcp_syn_defense" flag now. */ TCP_STAT(tcps, tcp_listendropq0); listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); if (!tcp_drop_q0(listener)) { mutex_exit(&listener->tcp_eager_lock); TCPS_BUMP_MIB(tcps, tcpListenDropQ0); if (lconnp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, "tcp_input_listener: listen half-open " "queue (max=%d) full (%d pending) on %s", tcps->tcps_conn_req_max_q0, listener->tcp_conn_req_cnt_q0, tcp_display(listener, NULL, DISP_PORT_ONLY)); } goto error2; } } /* * Enforce the limit set on the number of connections per listener. * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max * for comparison. */ if (listener->tcp_listen_cnt != NULL) { tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; int64_t now; if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { mutex_exit(&listener->tcp_eager_lock); now = ddi_get_lbolt64(); atomic_add_32(&tlc->tlc_cnt, -1); TCP_STAT(tcps, tcp_listen_cnt_drop); tlc->tlc_drop++; if (now - tlc->tlc_report_time > MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { zcmn_err(lconnp->conn_zoneid, CE_WARN, "Listener (port %d) connection max (%u) " "reached: %u attempts dropped total\n", ntohs(listener->tcp_connp->conn_lport), tlc->tlc_max, tlc->tlc_drop); tlc->tlc_report_time = now; } goto error2; } tlc_set = B_TRUE; } mutex_exit(&listener->tcp_eager_lock); /* * IP sets ira_sqp to either the senders conn_sqp (for loopback) * or based on the ring (for packets from GLD). Otherwise it is * set based on lbolt i.e., a somewhat random number. */ ASSERT(ira->ira_sqp != NULL); new_sqp = ira->ira_sqp; econnp = (conn_t *)tcp_get_conn(arg2, tcps); if (econnp == NULL) goto error2; ASSERT(econnp->conn_netstack == lconnp->conn_netstack); econnp->conn_sqp = new_sqp; econnp->conn_initial_sqp = new_sqp; econnp->conn_ixa->ixa_sqp = new_sqp; econnp->conn_fport = tcpha->tha_lport; econnp->conn_lport = tcpha->tha_fport; err = conn_inherit_parent(lconnp, econnp); if (err != 0) goto error3; /* We already know the laddr of the new connection is ours */ econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; ASSERT(OK_32PTR(mp->b_rptr)); ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); if (lconnp->conn_family == AF_INET) { ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); } else { tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); } if (tpi_mp == NULL) goto error3; eager = econnp->conn_tcp; eager->tcp_detached = B_TRUE; SOCK_CONNID_INIT(eager->tcp_connid); /* * Initialize the eager's tcp_t and inherit some parameters from * the listener. */ tcp_init_values(eager, listener); ASSERT((econnp->conn_ixa->ixa_flags & (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); if (!tcps->tcps_dev_flow_ctl) econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; /* Prepare for diffing against previous packets */ eager->tcp_recvifindex = 0; eager->tcp_recvhops = 0xffffffffU; if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { econnp->conn_incoming_ifindex = ifindex; econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; econnp->conn_ixa->ixa_scopeid = ifindex; } } if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && tcps->tcps_rev_src_routes) { ipha_t *ipha = (ipha_t *)mp->b_rptr; ip_pkt_t *ipp = &econnp->conn_xmit_ipp; /* Source routing option copyover (reverse it) */ err = ip_find_hdr_v4(ipha, ipp, B_TRUE); if (err != 0) { freemsg(tpi_mp); goto error3; } ip_pkt_source_route_reverse_v4(ipp); } ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); ASSERT(!eager->tcp_tconnind_started); /* * If the SYN came with a credential, it's a loopback packet or a * labeled packet; attach the credential to the TPI message. */ if (ira->ira_cred != NULL) mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; ASSERT(eager->tcp_ordrel_mp == NULL); /* Inherit the listener's non-STREAMS flag */ if (IPCL_IS_NONSTR(lconnp)) { econnp->conn_flags |= IPCL_NONSTR; /* All non-STREAMS tcp_ts are sockets */ eager->tcp_issocket = B_TRUE; } else { /* * Pre-allocate the T_ordrel_ind mblk for TPI socket so that * at close time, we will always have that to send up. * Otherwise, we need to do special handling in case the * allocation fails at that time. */ if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) goto error3; } /* * Now that the IP addresses and ports are setup in econnp we * can do the IPsec policy work. */ if (ira->ira_flags & IRAF_IPSEC_SECURE) { if (lconnp->conn_policy != NULL) { /* * Inherit the policy from the listener; use * actions from ira */ if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { CONN_DEC_REF(econnp); freemsg(mp); goto error3; } } } /* * tcp_set_destination() may set tcp_rwnd according to the route * metrics. If it does not, the eager's receive window will be set * to the listener's receive window later in this function. */ eager->tcp_rwnd = 0; if (is_system_labeled()) { ip_xmit_attr_t *ixa = econnp->conn_ixa; ASSERT(ira->ira_tsl != NULL); /* Discard any old label */ if (ixa->ixa_free_flags & IXA_FREE_TSL) { ASSERT(ixa->ixa_tsl != NULL); label_rele(ixa->ixa_tsl); ixa->ixa_free_flags &= ~IXA_FREE_TSL; ixa->ixa_tsl = NULL; } if ((lconnp->conn_mlp_type != mlptSingle || lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && ira->ira_tsl != NULL) { /* * If this is an MLP connection or a MAC-Exempt * connection with an unlabeled node, packets are to be * exchanged using the security label of the received * SYN packet instead of the server application's label. * tsol_check_dest called from ip_set_destination * might later update TSF_UNLABELED by replacing * ixa_tsl with a new label. */ label_hold(ira->ira_tsl); ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); DTRACE_PROBE2(mlp_syn_accept, conn_t *, econnp, ts_label_t *, ixa->ixa_tsl) } else { ixa->ixa_tsl = crgetlabel(econnp->conn_cred); DTRACE_PROBE2(syn_accept, conn_t *, econnp, ts_label_t *, ixa->ixa_tsl) } /* * conn_connect() called from tcp_set_destination will verify * the destination is allowed to receive packets at the * security label of the SYN-ACK we are generating. As part of * that, tsol_check_dest() may create a new effective label for * this connection. * Finally conn_connect() will call conn_update_label. * All that remains for TCP to do is to call * conn_build_hdr_template which is done as part of * tcp_set_destination. */ } /* * Since we will clear tcp_listener before we clear tcp_detached * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress * so we can tell a TCP_IS_DETACHED_NONEAGER apart. */ eager->tcp_hard_binding = B_TRUE; tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ TCP_BIND_HASH(econnp->conn_lport)], eager, 0); CL_INET_CONNECT(econnp, B_FALSE, err); if (err != 0) { tcp_bind_hash_remove(eager); goto error3; } SOCK_CONNID_BUMP(eager->tcp_connid); /* * Adapt our mss, ttl, ... based on the remote address. */ if (tcp_set_destination(eager) != 0) { TCPS_BUMP_MIB(tcps, tcpAttemptFails); /* Undo the bind_hash_insert */ tcp_bind_hash_remove(eager); goto error3; } /* Process all TCP options. */ tcp_process_options(eager, tcpha); /* Is the other end ECN capable? */ if (tcps->tcps_ecn_permitted >= 1 && (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { eager->tcp_ecn_ok = B_TRUE; } /* * The listener's conn_rcvbuf should be the default window size or a * window size changed via SO_RCVBUF option. First round up the * eager's tcp_rwnd to the nearest MSS. Then find out the window * scale option value if needed. Call tcp_rwnd_set() to finish the * setting. * * Note if there is a rpipe metric associated with the remote host, * we should not inherit receive window size from listener. */ eager->tcp_rwnd = MSS_ROUNDUP( (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : eager->tcp_rwnd), eager->tcp_mss); if (eager->tcp_snd_ws_ok) tcp_set_ws_value(eager); /* * Note that this is the only place tcp_rwnd_set() is called for * accepting a connection. We need to call it here instead of * after the 3-way handshake because we need to tell the other * side our rwnd in the SYN-ACK segment. */ (void) tcp_rwnd_set(eager, eager->tcp_rwnd); ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); ASSERT(econnp->conn_rcvbuf != 0 && econnp->conn_rcvbuf == eager->tcp_rwnd); /* Put a ref on the listener for the eager. */ CONN_INC_REF(lconnp); mutex_enter(&listener->tcp_eager_lock); listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; listener->tcp_eager_next_q0 = eager; eager->tcp_eager_prev_q0 = listener; /* Set tcp_listener before adding it to tcp_conn_fanout */ eager->tcp_listener = listener; eager->tcp_saved_listener = listener; /* * Set tcp_listen_cnt so that when the connection is done, the counter * is decremented. */ eager->tcp_listen_cnt = listener->tcp_listen_cnt; /* * Tag this detached tcp vector for later retrieval * by our listener client in tcp_accept(). */ eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; listener->tcp_conn_req_cnt_q0++; if (++listener->tcp_conn_req_seqnum == -1) { /* * -1 is "special" and defined in TPI as something * that should never be used in T_CONN_IND */ ++listener->tcp_conn_req_seqnum; } mutex_exit(&listener->tcp_eager_lock); if (listener->tcp_syn_defense) { /* Don't drop the SYN that comes from a good IP source */ ipaddr_t *addr_cache; addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); if (addr_cache != NULL && econnp->conn_faddr_v4 == addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { eager->tcp_dontdrop = B_TRUE; } } /* * We need to insert the eager in its own perimeter but as soon * as we do that, we expose the eager to the classifier and * should not touch any field outside the eager's perimeter. * So do all the work necessary before inserting the eager * in its own perimeter. Be optimistic that conn_connect() * will succeed but undo everything if it fails. */ seg_seq = ntohl(tcpha->tha_seq); eager->tcp_irs = seg_seq; eager->tcp_rack = seg_seq; eager->tcp_rnxt = seg_seq + 1; eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); TCPS_BUMP_MIB(tcps, tcpPassiveOpens); eager->tcp_state = TCPS_SYN_RCVD; DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, int32_t, TCPS_LISTEN); mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); if (mp1 == NULL) { /* * Increment the ref count as we are going to * enqueueing an mp in squeue */ CONN_INC_REF(econnp); goto error; } /* * We need to start the rto timer. In normal case, we start * the timer after sending the packet on the wire (or at * least believing that packet was sent by waiting for * conn_ip_output() to return). Since this is the first packet * being sent on the wire for the eager, our initial tcp_rto * is at least tcp_rexmit_interval_min which is a fairly * large value to allow the algorithm to adjust slowly to large * fluctuations of RTT during first few transmissions. * * Starting the timer first and then sending the packet in this * case shouldn't make much difference since tcp_rexmit_interval_min * is of the order of several 100ms and starting the timer * first and then sending the packet will result in difference * of few micro seconds. * * Without this optimization, we are forced to hold the fanout * lock across the ipcl_bind_insert() and sending the packet * so that we don't race against an incoming packet (maybe RST) * for this eager. * * It is necessary to acquire an extra reference on the eager * at this point and hold it until after tcp_send_data() to * ensure against an eager close race. */ CONN_INC_REF(econnp); TCP_TIMER_RESTART(eager, eager->tcp_rto); /* * Insert the eager in its own perimeter now. We are ready to deal * with any packets on eager. */ if (ipcl_conn_insert(econnp) != 0) goto error; ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); freemsg(mp); /* * Send the SYN-ACK. Use the right squeue so that conn_ixa is * only used by one thread at a time. */ if (econnp->conn_sqp == lconnp->conn_sqp) { DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, tcp_t *, eager, __dtrace_tcp_tcph_t *, &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); (void) conn_ip_output(mp1, econnp->conn_ixa); CONN_DEC_REF(econnp); } else { SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); } return; error: freemsg(mp1); eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); mp1 = &eager->tcp_closemp; SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); /* * If a connection already exists, send the mp to that connections so * that it can be appropriately dealt with. */ ipst = tcps->tcps_netstack->netstack_ip; if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { if (!IPCL_IS_CONNECTED(econnp)) { /* * Something bad happened. ipcl_conn_insert() * failed because a connection already existed * in connected hash but we can't find it * anymore (someone blew it away). Just * free this message and hopefully remote * will retransmit at which time the SYN can be * treated as a new connection or dealth with * a TH_RST if a connection already exists. */ CONN_DEC_REF(econnp); freemsg(mp); } else { SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); } } else { /* Nobody wants this packet */ freemsg(mp); } return; error3: CONN_DEC_REF(econnp); error2: freemsg(mp); if (tlc_set) atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); } /* * In an ideal case of vertical partition in NUMA architecture, its * beneficial to have the listener and all the incoming connections * tied to the same squeue. The other constraint is that incoming * connections should be tied to the squeue attached to interrupted * CPU for obvious locality reason so this leaves the listener to * be tied to the same squeue. Our only problem is that when listener * is binding, the CPU that will get interrupted by the NIC whose * IP address the listener is binding to is not even known. So * the code below allows us to change that binding at the time the * CPU is interrupted by virtue of incoming connection's squeue. * * This is usefull only in case of a listener bound to a specific IP * address. For other kind of listeners, they get bound the * very first time and there is no attempt to rebind them. */ void tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { conn_t *connp = (conn_t *)arg; squeue_t *sqp = (squeue_t *)arg2; squeue_t *new_sqp; uint32_t conn_flags; /* * IP sets ira_sqp to either the senders conn_sqp (for loopback) * or based on the ring (for packets from GLD). Otherwise it is * set based on lbolt i.e., a somewhat random number. */ ASSERT(ira->ira_sqp != NULL); new_sqp = ira->ira_sqp; if (connp->conn_fanout == NULL) goto done; if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { mutex_enter(&connp->conn_fanout->connf_lock); mutex_enter(&connp->conn_lock); /* * No one from read or write side can access us now * except for already queued packets on this squeue. * But since we haven't changed the squeue yet, they * can't execute. If they are processed after we have * changed the squeue, they are sent back to the * correct squeue down below. * But a listner close can race with processing of * incoming SYN. If incoming SYN processing changes * the squeue then the listener close which is waiting * to enter the squeue would operate on the wrong * squeue. Hence we don't change the squeue here unless * the refcount is exactly the minimum refcount. The * minimum refcount of 4 is counted as - 1 each for * TCP and IP, 1 for being in the classifier hash, and * 1 for the mblk being processed. */ if (connp->conn_ref != 4 || connp->conn_tcp->tcp_state != TCPS_LISTEN) { mutex_exit(&connp->conn_lock); mutex_exit(&connp->conn_fanout->connf_lock); goto done; } if (connp->conn_sqp != new_sqp) { while (connp->conn_sqp != new_sqp) (void) casptr(&connp->conn_sqp, sqp, new_sqp); /* No special MT issues for outbound ixa_sqp hint */ connp->conn_ixa->ixa_sqp = new_sqp; } do { conn_flags = connp->conn_flags; conn_flags |= IPCL_FULLY_BOUND; (void) cas32(&connp->conn_flags, connp->conn_flags, conn_flags); } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); mutex_exit(&connp->conn_fanout->connf_lock); mutex_exit(&connp->conn_lock); /* * Assume we have picked a good squeue for the listener. Make * subsequent SYNs not try to change the squeue. */ connp->conn_recv = tcp_input_listener; } done: if (connp->conn_sqp != sqp) { CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); } else { tcp_input_listener(connp, mp, sqp, ira); } } /* * Send up all messages queued on tcp_rcv_list. */ uint_t tcp_rcv_drain(tcp_t *tcp) { mblk_t *mp; uint_t ret = 0; #ifdef DEBUG uint_t cnt = 0; #endif queue_t *q = tcp->tcp_connp->conn_rq; /* Can't drain on an eager connection */ if (tcp->tcp_listener != NULL) return (ret); /* Can't be a non-STREAMS connection */ ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); /* No need for the push timer now. */ if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } /* * Handle two cases here: we are currently fused or we were * previously fused and have some urgent data to be delivered * upstream. The latter happens because we either ran out of * memory or were detached and therefore sending the SIGURG was * deferred until this point. In either case we pass control * over to tcp_fuse_rcv_drain() since it may need to complete * some work. */ if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : &tcp->tcp_fused_sigurg_mp)) return (ret); } while ((mp = tcp->tcp_rcv_list) != NULL) { tcp->tcp_rcv_list = mp->b_next; mp->b_next = NULL; #ifdef DEBUG cnt += msgdsize(mp); #endif putnext(q, mp); } #ifdef DEBUG ASSERT(cnt == tcp->tcp_rcv_cnt); #endif tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; if (canputnext(q)) return (tcp_rwnd_reopen(tcp)); return (ret); } /* * Queue data on tcp_rcv_list which is a b_next chain. * tcp_rcv_last_head/tail is the last element of this chain. * Each element of the chain is a b_cont chain. * * M_DATA messages are added to the current element. * Other messages are added as new (b_next) elements. */ void tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) { ASSERT(seg_len == msgdsize(mp)); ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); if (is_system_labeled()) { ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); /* * Provide for protocols above TCP such as RPC. NOPID leaves * db_cpid unchanged. * The cred could have already been set. */ if (cr != NULL) mblk_setcred(mp, cr, NOPID); } if (tcp->tcp_rcv_list == NULL) { ASSERT(tcp->tcp_rcv_last_head == NULL); tcp->tcp_rcv_list = mp; tcp->tcp_rcv_last_head = mp; } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { tcp->tcp_rcv_last_tail->b_cont = mp; } else { tcp->tcp_rcv_last_head->b_next = mp; tcp->tcp_rcv_last_head = mp; } while (mp->b_cont) mp = mp->b_cont; tcp->tcp_rcv_last_tail = mp; tcp->tcp_rcv_cnt += seg_len; tcp->tcp_rwnd -= seg_len; } /* Generate an ACK-only (no data) segment for a TCP endpoint */ mblk_t * tcp_ack_mp(tcp_t *tcp) { uint32_t seq_no; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; /* * There are a few cases to be considered while setting the sequence no. * Essentially, we can come here while processing an unacceptable pkt * in the TCPS_SYN_RCVD state, in which case we set the sequence number * to snxt (per RFC 793), note the swnd wouldn't have been set yet. * If we are here for a zero window probe, stick with suna. In all * other cases, we check if suna + swnd encompasses snxt and set * the sequence number to snxt, if so. If snxt falls outside the * window (the receiver probably shrunk its window), we will go with * suna + swnd, otherwise the sequence no will be unacceptable to the * receiver. */ if (tcp->tcp_zero_win_probe) { seq_no = tcp->tcp_suna; } else if (tcp->tcp_state == TCPS_SYN_RCVD) { ASSERT(tcp->tcp_swnd == 0); seq_no = tcp->tcp_snxt; } else { seq_no = SEQ_GT(tcp->tcp_snxt, (tcp->tcp_suna + tcp->tcp_swnd)) ? (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; } if (tcp->tcp_valid_bits) { /* * For the complex case where we have to send some * controls (FIN or SYN), let tcp_xmit_mp do it. */ return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, NULL, B_FALSE)); } else { /* Generate a simple ACK */ int data_length; uchar_t *rptr; tcpha_t *tcpha; mblk_t *mp1; int32_t total_hdr_len; int32_t tcp_hdr_len; int32_t num_sack_blk = 0; int32_t sack_opt_len; ip_xmit_attr_t *ixa = connp->conn_ixa; /* * Allocate space for TCP + IP headers * and link-level header */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; } else { total_hdr_len = connp->conn_ht_iphc_len; tcp_hdr_len = connp->conn_ht_ulp_len; } mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); if (!mp1) return (NULL); /* Update the latest receive window size in TCP header. */ tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); /* copy in prototype TCP + IP header */ rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; mp1->b_rptr = rptr; mp1->b_wptr = rptr + total_hdr_len; bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; /* Set the TCP sequence number. */ tcpha->tha_seq = htonl(seq_no); /* Set up the TCP flag field. */ tcpha->tha_flags = (uchar_t)TH_ACK; if (tcp->tcp_ecn_echo_on) tcpha->tha_flags |= TH_ECE; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; /* fill in timestamp option if in use */ if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; U32_TO_BE32(llbolt, (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); } /* Fill in SACK options */ if (num_sack_blk > 0) { uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); } ixa->ixa_pktlen = total_hdr_len; if (ixa->ixa_flags & IXAF_IS_IPV4) { ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); } else { ip6_t *ip6 = (ip6_t *)rptr; ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); } /* * Prime pump for checksum calculation in IP. Include the * adjustment for a source route if any. */ data_length = tcp_hdr_len + connp->conn_sum; data_length = (data_length >> 16) + (data_length & 0xFFFF); tcpha->tha_sum = htons(data_length); if (tcp->tcp_ip_forward_progress) { tcp->tcp_ip_forward_progress = B_FALSE; connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; } else { connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; } return (mp1); } } /* * Handle M_DATA messages from IP. Its called directly from IP via * squeue for received IP packets. * * The first argument is always the connp/tcp to which the mp belongs. * There are no exceptions to this rule. The caller has already put * a reference on this connp/tcp and once tcp_input_data() returns, * the squeue will do the refrele. * * The TH_SYN for the listener directly go to tcp_input_listener via * squeue. ICMP errors go directly to tcp_icmp_input(). * * sqp: NULL = recursive, sqp != NULL means called from squeue */ void tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { int32_t bytes_acked; int32_t gap; mblk_t *mp1; uint_t flags; uint32_t new_swnd = 0; uchar_t *iphdr; uchar_t *rptr; int32_t rgap; uint32_t seg_ack; int seg_len; uint_t ip_hdr_len; uint32_t seg_seq; tcpha_t *tcpha; int urp; tcp_opt_t tcpopt; ip_pkt_t ipp; boolean_t ofo_seg = B_FALSE; /* Out of order segment */ uint32_t cwnd; uint32_t add; int npkt; int mss; conn_t *connp = (conn_t *)arg; squeue_t *sqp = (squeue_t *)arg2; tcp_t *tcp = connp->conn_tcp; tcp_stack_t *tcps = tcp->tcp_tcps; /* * RST from fused tcp loopback peer should trigger an unfuse. */ if (tcp->tcp_fused) { TCP_STAT(tcps, tcp_fusion_aborted); tcp_unfuse(tcp); } iphdr = mp->b_rptr; rptr = mp->b_rptr; ASSERT(OK_32PTR(rptr)); ip_hdr_len = ira->ira_ip_hdr_length; if (connp->conn_recv_ancillary.crb_all != 0) { /* * Record packet information in the ip_pkt_t */ ipp.ipp_fields = 0; if (ira->ira_flags & IRAF_IS_IPV4) { (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, B_FALSE); } else { uint8_t nexthdrp; /* * IPv6 packets can only be received by applications * that are prepared to receive IPv6 addresses. * The IP fanout must ensure this. */ ASSERT(connp->conn_family == AF_INET6); (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, &nexthdrp); ASSERT(nexthdrp == IPPROTO_TCP); /* Could have caused a pullup? */ iphdr = mp->b_rptr; rptr = mp->b_rptr; } } ASSERT(DB_TYPE(mp) == M_DATA); ASSERT(mp->b_next == NULL); tcpha = (tcpha_t *)&rptr[ip_hdr_len]; seg_seq = ntohl(tcpha->tha_seq); seg_ack = ntohl(tcpha->tha_ack); ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); seg_len = (int)(mp->b_wptr - rptr) - (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { do { ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); seg_len += (int)(mp1->b_wptr - mp1->b_rptr); } while ((mp1 = mp1->b_cont) != NULL && mp1->b_datap->db_type == M_DATA); } DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, __dtrace_tcp_tcph_t *, tcpha); if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, seg_len, tcpha, ira); return; } if (sqp != NULL) { /* * This is the correct place to update tcp_last_recv_time. Note * that it is also updated for tcp structure that belongs to * global and listener queues which do not really need updating. * But that should not cause any harm. And it is updated for * all kinds of incoming segments, not only for data segments. */ tcp->tcp_last_recv_time = LBOLT_FASTPATH; } flags = (unsigned int)tcpha->tha_flags & 0xFF; BUMP_LOCAL(tcp->tcp_ibsegs); DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); if ((flags & TH_URG) && sqp != NULL) { /* * TCP can't handle urgent pointers that arrive before * the connection has been accept()ed since it can't * buffer OOB data. Discard segment if this happens. * * We can't just rely on a non-null tcp_listener to indicate * that the accept() has completed since unlinking of the * eager and completion of the accept are not atomic. * tcp_detached, when it is not set (B_FALSE) indicates * that the accept() has completed. * * Nor can it reassemble urgent pointers, so discard * if it's not the next segment expected. * * Otherwise, collapse chain into one mblk (discard if * that fails). This makes sure the headers, retransmitted * data, and new data all are in the same mblk. */ ASSERT(mp != NULL); if (tcp->tcp_detached || !pullupmsg(mp, -1)) { freemsg(mp); return; } /* Update pointers into message */ iphdr = rptr = mp->b_rptr; tcpha = (tcpha_t *)&rptr[ip_hdr_len]; if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { /* * Since we can't handle any data with this urgent * pointer that is out of sequence, we expunge * the data. This allows us to still register * the urgent mark and generate the M_PCSIG, * which we can do. */ mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); seg_len = 0; } } switch (tcp->tcp_state) { case TCPS_SYN_SENT: if (connp->conn_final_sqp == NULL && tcp_outbound_squeue_switch && sqp != NULL) { ASSERT(connp->conn_initial_sqp == connp->conn_sqp); connp->conn_final_sqp = sqp; if (connp->conn_final_sqp != connp->conn_sqp) { DTRACE_PROBE1(conn__final__sqp__switch, conn_t *, connp); CONN_INC_REF(connp); SQUEUE_SWITCH(connp, connp->conn_final_sqp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_input_data, connp, ira, ip_squeue_flag, SQTAG_CONNECT_FINISH); return; } DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); } if (flags & TH_ACK) { /* * Note that our stack cannot send data before a * connection is established, therefore the * following check is valid. Otherwise, it has * to be changed. */ if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || SEQ_GT(seg_ack, tcp->tcp_snxt)) { freemsg(mp); if (flags & TH_RST) return; tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", tcp, seg_ack, 0, TH_RST); return; } ASSERT(tcp->tcp_suna + 1 == seg_ack); } if (flags & TH_RST) { if (flags & TH_ACK) { DTRACE_TCP5(connect__refused, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); (void) tcp_clean_death(tcp, ECONNREFUSED); } freemsg(mp); return; } if (!(flags & TH_SYN)) { freemsg(mp); return; } /* Process all TCP options. */ tcp_process_options(tcp, tcpha); /* * The following changes our rwnd to be a multiple of the * MIN(peer MSS, our MSS) for performance reason. */ (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, tcp->tcp_mss)); /* Is the other end ECN capable? */ if (tcp->tcp_ecn_ok) { if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { tcp->tcp_ecn_ok = B_FALSE; } } /* * Clear ECN flags because it may interfere with later * processing. */ flags &= ~(TH_ECE|TH_CWR); tcp->tcp_irs = seg_seq; tcp->tcp_rack = seg_seq; tcp->tcp_rnxt = seg_seq + 1; tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); if (!TCP_IS_DETACHED(tcp)) { /* Allocate room for SACK options if needed. */ connp->conn_wroff = connp->conn_ht_iphc_len; if (tcp->tcp_snd_sack_ok) connp->conn_wroff += TCPOPT_MAX_SACK_LEN; if (!tcp->tcp_loopback) connp->conn_wroff += tcps->tcps_wroff_xtra; (void) proto_set_tx_wroff(connp->conn_rq, connp, connp->conn_wroff); } if (flags & TH_ACK) { /* * If we can't get the confirmation upstream, pretend * we didn't even see this one. * * XXX: how can we pretend we didn't see it if we * have updated rnxt et. al. * * For loopback we defer sending up the T_CONN_CON * until after some checks below. */ mp1 = NULL; /* * tcp_sendmsg() checks tcp_state without entering * the squeue so tcp_state should be updated before * sending up connection confirmation. Probe the * state change below when we are sure the connection * confirmation has been sent. */ tcp->tcp_state = TCPS_ESTABLISHED; if (!tcp_conn_con(tcp, iphdr, mp, tcp->tcp_loopback ? &mp1 : NULL, ira)) { tcp->tcp_state = TCPS_SYN_SENT; freemsg(mp); return; } TCPS_CONN_INC(tcps); /* SYN was acked - making progress */ tcp->tcp_ip_forward_progress = B_TRUE; /* One for the SYN */ tcp->tcp_suna = tcp->tcp_iss + 1; tcp->tcp_valid_bits &= ~TCP_ISS_VALID; /* * If SYN was retransmitted, need to reset all * retransmission info. This is because this * segment will be treated as a dup ACK. */ if (tcp->tcp_rexmit) { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; tcp->tcp_ms_we_have_waited = 0; /* * Set tcp_cwnd back to 1 MSS, per * recommendation from * draft-floyd-incr-init-win-01.txt, * Increasing TCP's Initial Window. */ tcp->tcp_cwnd = tcp->tcp_mss; } tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; new_swnd = ntohs(tcpha->tha_win); tcp->tcp_swnd = new_swnd; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; /* * Always send the three-way handshake ack immediately * in order to make the connection complete as soon as * possible on the accepting host. */ flags |= TH_ACK_NEEDED; /* * Trace connect-established here. */ DTRACE_TCP5(connect__established, mblk_t *, NULL, ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); /* Trace change from SYN_SENT -> ESTABLISHED here */ DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_SYN_SENT); /* * Special case for loopback. At this point we have * received SYN-ACK from the remote endpoint. In * order to ensure that both endpoints reach the * fused state prior to any data exchange, the final * ACK needs to be sent before we indicate T_CONN_CON * to the module upstream. */ if (tcp->tcp_loopback) { mblk_t *ack_mp; ASSERT(!tcp->tcp_unfusable); ASSERT(mp1 != NULL); /* * For loopback, we always get a pure SYN-ACK * and only need to send back the final ACK * with no data (this is because the other * tcp is ours and we don't do T/TCP). This * final ACK triggers the passive side to * perform fusion in ESTABLISHED state. */ if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } tcp_send_data(tcp, ack_mp); BUMP_LOCAL(tcp->tcp_obsegs); TCPS_BUMP_MIB(tcps, tcpOutAck); if (!IPCL_IS_NONSTR(connp)) { /* Send up T_CONN_CON */ if (ira->ira_cred != NULL) { mblk_setcred(mp1, ira->ira_cred, ira->ira_cpid); } putnext(connp->conn_rq, mp1); } else { (*connp->conn_upcalls-> su_connected) (connp->conn_upper_handle, tcp->tcp_connid, ira->ira_cred, ira->ira_cpid); freemsg(mp1); } freemsg(mp); return; } /* * Forget fusion; we need to handle more * complex cases below. Send the deferred * T_CONN_CON message upstream and proceed * as usual. Mark this tcp as not capable * of fusion. */ TCP_STAT(tcps, tcp_fusion_unfusable); tcp->tcp_unfusable = B_TRUE; if (!IPCL_IS_NONSTR(connp)) { if (ira->ira_cred != NULL) { mblk_setcred(mp1, ira->ira_cred, ira->ira_cpid); } putnext(connp->conn_rq, mp1); } else { (*connp->conn_upcalls->su_connected) (connp->conn_upper_handle, tcp->tcp_connid, ira->ira_cred, ira->ira_cpid); freemsg(mp1); } } /* * Check to see if there is data to be sent. If * yes, set the transmit flag. Then check to see * if received data processing needs to be done. * If not, go straight to xmit_check. This short * cut is OK as we don't support T/TCP. */ if (tcp->tcp_unsent) flags |= TH_XMIT_NEEDED; if (seg_len == 0 && !(flags & TH_URG)) { freemsg(mp); goto xmit_check; } flags &= ~TH_SYN; seg_seq++; break; } tcp->tcp_state = TCPS_SYN_RCVD; DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, tcph_t *, NULL, int32_t, TCPS_SYN_SENT); mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); if (mp1 != NULL) { tcp_send_data(tcp, mp1); TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } freemsg(mp); return; case TCPS_SYN_RCVD: if (flags & TH_ACK) { uint32_t pinit_wnd; /* * In this state, a SYN|ACK packet is either bogus * because the other side must be ACKing our SYN which * indicates it has seen the ACK for their SYN and * shouldn't retransmit it or we're crossing SYNs * on active open. */ if ((flags & TH_SYN) && !tcp->tcp_active_open) { freemsg(mp); tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", tcp, seg_ack, 0, TH_RST); return; } /* * NOTE: RFC 793 pg. 72 says this should be * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt * but that would mean we have an ack that ignored * our SYN. */ if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || SEQ_GT(seg_ack, tcp->tcp_snxt)) { freemsg(mp); tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", tcp, seg_ack, 0, TH_RST); return; } /* * No sane TCP stack will send such a small window * without receiving any data. Just drop this invalid * ACK. We also shorten the abort timeout in case * this is an attack. */ pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; if (pinit_wnd < tcp->tcp_mss && pinit_wnd < tcp_init_wnd_chk) { freemsg(mp); TCP_STAT(tcps, tcp_zwin_ack_syn); tcp->tcp_second_ctimer_threshold = tcp_early_abort * SECONDS; return; } } break; case TCPS_LISTEN: /* * Only a TLI listener can come through this path when a * acceptor is going back to be a listener and a packet * for the acceptor hits the classifier. For a socket * listener, this can never happen because a listener * can never accept connection on itself and hence a * socket acceptor can not go back to being a listener. */ ASSERT(!TCP_IS_SOCKET(tcp)); /*FALLTHRU*/ case TCPS_CLOSED: case TCPS_BOUND: { conn_t *new_connp; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; /* * Don't accept any input on a closed tcp as this TCP logically * does not exist on the system. Don't proceed further with * this TCP. For instance, this packet could trigger another * close of this tcp which would be disastrous for tcp_refcnt. * tcp_close_detached / tcp_clean_death / tcp_closei_local must * be called at most once on a TCP. In this case we need to * refeed the packet into the classifier and figure out where * the packet should go. */ new_connp = ipcl_classify(mp, ira, ipst); if (new_connp != NULL) { /* Drops ref on new_connp */ tcp_reinput(new_connp, mp, ira, ipst); return; } /* We failed to classify. For now just drop the packet */ freemsg(mp); return; } case TCPS_IDLE: /* * Handle the case where the tcp_clean_death() has happened * on a connection (application hasn't closed yet) but a packet * was already queued on squeue before tcp_clean_death() * was processed. Calling tcp_clean_death() twice on same * connection can result in weird behaviour. */ freemsg(mp); return; default: break; } /* * Already on the correct queue/perimeter. * If this is a detached connection and not an eager * connection hanging off a listener then new data * (past the FIN) will cause a reset. * We do a special check here where it * is out of the main line, rather than check * if we are detached every time we see new * data down below. */ if (TCP_IS_DETACHED_NONEAGER(tcp) && (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { TCPS_BUMP_MIB(tcps, tcpInClosed); DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); freemsg(mp); tcp_xmit_ctl("new data when detached", tcp, tcp->tcp_snxt, 0, TH_RST); (void) tcp_clean_death(tcp, EPROTO); return; } mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; new_swnd = ntohs(tcpha->tha_win) << ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); if (tcp->tcp_snd_ts_ok) { if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { /* * This segment is not acceptable. * Drop it and send back an ACK. */ freemsg(mp); flags |= TH_ACK_NEEDED; goto ack_check; } } else if (tcp->tcp_snd_sack_ok) { tcpopt.tcp = tcp; /* * SACK info in already updated in tcp_parse_options. Ignore * all other TCP options... */ (void) tcp_parse_options(tcpha, &tcpopt); } try_again:; mss = tcp->tcp_mss; gap = seg_seq - tcp->tcp_rnxt; rgap = tcp->tcp_rwnd - (gap + seg_len); /* * gap is the amount of sequence space between what we expect to see * and what we got for seg_seq. A positive value for gap means * something got lost. A negative value means we got some old stuff. */ if (gap < 0) { /* Old stuff present. Is the SYN in there? */ if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && (seg_len != 0)) { flags &= ~TH_SYN; seg_seq++; urp--; /* Recompute the gaps after noting the SYN. */ goto try_again; } TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, (seg_len > -gap ? -gap : seg_len)); /* Remove the old stuff from seg_len. */ seg_len += gap; /* * Anything left? * Make sure to check for unack'd FIN when rest of data * has been previously ack'd. */ if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { /* * Resets are only valid if they lie within our offered * window. If the RST bit is set, we just ignore this * segment. */ if (flags & TH_RST) { freemsg(mp); return; } /* * The arriving of dup data packets indicate that we * may have postponed an ack for too long, or the other * side's RTT estimate is out of shape. Start acking * more often. */ if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && tcp->tcp_rack_cnt >= 1 && tcp->tcp_rack_abs_max > 2) { tcp->tcp_rack_abs_max--; } tcp->tcp_rack_cur_max = 1; /* * This segment is "unacceptable". None of its * sequence space lies within our advertized window. * * Adjust seg_len to the original value for tracing. */ seg_len -= gap; if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: unacceptable, gap %d, rgap %d, " "flags 0x%x, seg_seq %u, seg_ack %u, " "seg_len %d, rnxt %u, snxt %u, %s", gap, rgap, flags, seg_seq, seg_ack, seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } /* * Arrange to send an ACK in response to the * unacceptable segment per RFC 793 page 69. There * is only one small difference between ours and the * acceptability test in the RFC - we accept ACK-only * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK * will be generated. * * Note that we have to ACK an ACK-only packet at least * for stacks that send 0-length keep-alives with * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, * section 4.2.3.6. As long as we don't ever generate * an unacceptable packet in response to an incoming * packet that is unacceptable, it should not cause * "ACK wars". */ flags |= TH_ACK_NEEDED; /* * Continue processing this segment in order to use the * ACK information it contains, but skip all other * sequence-number processing. Processing the ACK * information is necessary in order to * re-synchronize connections that may have lost * synchronization. * * We clear seg_len and flag fields related to * sequence number processing as they are not * to be trusted for an unacceptable segment. */ seg_len = 0; flags &= ~(TH_SYN | TH_FIN | TH_URG); goto process_ack; } /* Fix seg_seq, and chew the gap off the front. */ seg_seq = tcp->tcp_rnxt; urp += gap; do { mblk_t *mp2; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)UINT_MAX); gap += (uint_t)(mp->b_wptr - mp->b_rptr); if (gap > 0) { mp->b_rptr = mp->b_wptr - gap; break; } mp2 = mp; mp = mp->b_cont; freeb(mp2); } while (gap < 0); /* * If the urgent data has already been acknowledged, we * should ignore TH_URG below */ if (urp < 0) flags &= ~TH_URG; } /* * rgap is the amount of stuff received out of window. A negative * value is the amount out of window. */ if (rgap < 0) { mblk_t *mp2; if (tcp->tcp_rwnd == 0) { TCPS_BUMP_MIB(tcps, tcpInWinProbe); } else { TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); } /* * seg_len does not include the FIN, so if more than * just the FIN is out of window, we act like we don't * see it. (If just the FIN is out of window, rgap * will be zero and we will go ahead and acknowledge * the FIN.) */ flags &= ~TH_FIN; /* Fix seg_len and make sure there is something left. */ seg_len += rgap; if (seg_len <= 0) { /* * Resets are only valid if they lie within our offered * window. If the RST bit is set, we just ignore this * segment. */ if (flags & TH_RST) { freemsg(mp); return; } /* Per RFC 793, we need to send back an ACK. */ flags |= TH_ACK_NEEDED; /* * Send SIGURG as soon as possible i.e. even * if the TH_URG was delivered in a window probe * packet (which will be unacceptable). * * We generate a signal if none has been generated * for this connection or if this is a new urgent * byte. Also send a zero-length "unmarked" message * to inform SIOCATMARK that this is not the mark. * * tcp_urp_last_valid is cleared when the T_exdata_ind * is sent up. This plus the check for old data * (gap >= 0) handles the wraparound of the sequence * number space without having to always track the * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks * this max in its rcv_up variable). * * This prevents duplicate SIGURGS due to a "late" * zero-window probe when the T_EXDATA_IND has already * been sent up. */ if ((flags & TH_URG) && (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, tcp->tcp_urp_last))) { if (IPCL_IS_NONSTR(connp)) { if (!TCP_IS_DETACHED(tcp)) { (*connp->conn_upcalls-> su_signal_oob) (connp->conn_upper_handle, urp); } } else { mp1 = allocb(0, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return; } if (!TCP_IS_DETACHED(tcp) && !putnextctl1(connp->conn_rq, M_PCSIG, SIGURG)) { /* Try again on the rexmit. */ freemsg(mp1); freemsg(mp); return; } /* * If the next byte would be the mark * then mark with MARKNEXT else mark * with NOTMARKNEXT. */ if (gap == 0 && urp == 0) mp1->b_flag |= MSGMARKNEXT; else mp1->b_flag |= MSGNOTMARKNEXT; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = mp1; flags |= TH_SEND_URP_MARK; } tcp->tcp_urp_last_valid = B_TRUE; tcp->tcp_urp_last = urp + seg_seq; } /* * If this is a zero window probe, continue to * process the ACK part. But we need to set seg_len * to 0 to avoid data processing. Otherwise just * drop the segment and send back an ACK. */ if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { flags &= ~(TH_SYN | TH_URG); seg_len = 0; goto process_ack; } else { freemsg(mp); goto ack_check; } } /* Pitch out of window stuff off the end. */ rgap = seg_len; mp2 = mp; do { ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= (uintptr_t)INT_MAX); rgap -= (int)(mp2->b_wptr - mp2->b_rptr); if (rgap < 0) { mp2->b_wptr += rgap; if ((mp1 = mp2->b_cont) != NULL) { mp2->b_cont = NULL; freemsg(mp1); } break; } } while ((mp2 = mp2->b_cont) != NULL); } ok:; /* * TCP should check ECN info for segments inside the window only. * Therefore the check should be done here. */ if (tcp->tcp_ecn_ok) { if (flags & TH_CWR) { tcp->tcp_ecn_echo_on = B_FALSE; } /* * Note that both ECN_CE and CWR can be set in the * same segment. In this case, we once again turn * on ECN_ECHO. */ if (connp->conn_ipversion == IPV4_VERSION) { uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { tcp->tcp_ecn_echo_on = B_TRUE; } } else { uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; if ((vcf & htonl(IPH_ECN_CE << 20)) == htonl(IPH_ECN_CE << 20)) { tcp->tcp_ecn_echo_on = B_TRUE; } } } /* * Check whether we can update tcp_ts_recent. This test is * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP * Extensions for High Performance: An Update", Internet Draft. */ if (tcp->tcp_snd_ts_ok && TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && SEQ_LEQ(seg_seq, tcp->tcp_rack)) { tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; } if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { /* * FIN in an out of order segment. We record this in * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. * Clear the FIN so that any check on FIN flag will fail. * Remember that FIN also counts in the sequence number * space. So we need to ack out of order FIN only segments. */ if (flags & TH_FIN) { tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; tcp->tcp_ofo_fin_seq = seg_seq + seg_len; flags &= ~TH_FIN; flags |= TH_ACK_NEEDED; } if (seg_len > 0) { /* Fill in the SACK blk list. */ if (tcp->tcp_snd_sack_ok) { tcp_sack_insert(tcp->tcp_sack_list, seg_seq, seg_seq + seg_len, &(tcp->tcp_num_sack_blk)); } /* * Attempt reassembly and see if we have something * ready to go. */ mp = tcp_reass(tcp, mp, seg_seq); /* Always ack out of order packets */ flags |= TH_ACK_NEEDED | TH_PUSH; if (mp) { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); seg_len = mp->b_cont ? msgdsize(mp) : (int)(mp->b_wptr - mp->b_rptr); seg_seq = tcp->tcp_rnxt; /* * A gap is filled and the seq num and len * of the gap match that of a previously * received FIN, put the FIN flag back in. */ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { flags |= TH_FIN; tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; } if (tcp->tcp_reass_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); /* * Restart the timer if there is still * data in the reassembly queue. */ if (tcp->tcp_reass_head != NULL) { tcp->tcp_reass_tid = TCP_TIMER( tcp, tcp_reass_timer, tcps->tcps_reass_timeout); } else { tcp->tcp_reass_tid = 0; } } } else { /* * Keep going even with NULL mp. * There may be a useful ACK or something else * we don't want to miss. * * But TCP should not perform fast retransmit * because of the ack number. TCP uses * seg_len == 0 to determine if it is a pure * ACK. And this is not a pure ACK. */ seg_len = 0; ofo_seg = B_TRUE; if (tcps->tcps_reass_timeout != 0 && tcp->tcp_reass_tid == 0) { tcp->tcp_reass_tid = TCP_TIMER(tcp, tcp_reass_timer, tcps->tcps_reass_timeout); } } } } else if (seg_len > 0) { TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); /* * If an out of order FIN was received before, and the seq * num and len of the new segment match that of the FIN, * put the FIN flag back in. */ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { flags |= TH_FIN; tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; } } if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { if (flags & TH_RST) { freemsg(mp); switch (tcp->tcp_state) { case TCPS_SYN_RCVD: (void) tcp_clean_death(tcp, ECONNREFUSED); break; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: (void) tcp_clean_death(tcp, ECONNRESET); break; case TCPS_CLOSING: case TCPS_LAST_ACK: (void) tcp_clean_death(tcp, 0); break; default: ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); (void) tcp_clean_death(tcp, ENXIO); break; } return; } if (flags & TH_SYN) { /* * See RFC 793, Page 71 * * The seq number must be in the window as it should * be "fixed" above. If it is outside window, it should * be already rejected. Note that we allow seg_seq to be * rnxt + rwnd because we want to accept 0 window probe. */ ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); freemsg(mp); /* * If the ACK flag is not set, just use our snxt as the * seq number of the RST segment. */ if (!(flags & TH_ACK)) { seg_ack = tcp->tcp_snxt; } tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, TH_RST|TH_ACK); ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); (void) tcp_clean_death(tcp, ECONNRESET); return; } /* * urp could be -1 when the urp field in the packet is 0 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent * byte was at seg_seq - 1, in which case we ignore the urgent flag. */ if (flags & TH_URG && urp >= 0) { if (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { /* * Non-STREAMS sockets handle the urgent data a litte * differently from STREAMS based sockets. There is no * need to mark any mblks with the MSG{NOT,}MARKNEXT * flags to keep SIOCATMARK happy. Instead a * su_signal_oob upcall is made to update the mark. * Neither is a T_EXDATA_IND mblk needed to be * prepended to the urgent data. The urgent data is * delivered using the su_recv upcall, where we set * the MSG_OOB flag to indicate that it is urg data. * * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED * are used by non-STREAMS sockets. */ if (IPCL_IS_NONSTR(connp)) { if (!TCP_IS_DETACHED(tcp)) { (*connp->conn_upcalls->su_signal_oob) (connp->conn_upper_handle, urp); } } else { /* * If we haven't generated the signal yet for * this urgent pointer value, do it now. Also, * send up a zero-length M_DATA indicating * whether or not this is the mark. The latter * is not needed when a T_EXDATA_IND is sent up. * However, if there are allocation failures * this code relies on the sender retransmitting * and the socket code for determining the mark * should not block waiting for the peer to * transmit. Thus, for simplicity we always * send up the mark indication. */ mp1 = allocb(0, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return; } if (!TCP_IS_DETACHED(tcp) && !putnextctl1(connp->conn_rq, M_PCSIG, SIGURG)) { /* Try again on the rexmit. */ freemsg(mp1); freemsg(mp); return; } /* * Mark with NOTMARKNEXT for now. * The code below will change this to MARKNEXT * if we are at the mark. * * If there are allocation failures (e.g. in * dupmsg below) the next time tcp_input_data * sees the urgent segment it will send up the * MSGMARKNEXT message. */ mp1->b_flag |= MSGNOTMARKNEXT; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = mp1; flags |= TH_SEND_URP_MARK; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sent M_PCSIG 2 seq %x urp %x " "last %x, %s", seg_seq, urp, tcp->tcp_urp_last, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } tcp->tcp_urp_last_valid = B_TRUE; tcp->tcp_urp_last = urp + seg_seq; } else if (tcp->tcp_urp_mark_mp != NULL) { /* * An allocation failure prevented the previous * tcp_input_data from sending up the allocated * MSG*MARKNEXT message - send it up this time * around. */ flags |= TH_SEND_URP_MARK; } /* * If the urgent byte is in this segment, make sure that it is * all by itself. This makes it much easier to deal with the * possibility of an allocation failure on the T_exdata_ind. * Note that seg_len is the number of bytes in the segment, and * urp is the offset into the segment of the urgent byte. * urp < seg_len means that the urgent byte is in this segment. */ if (urp < seg_len) { if (seg_len != 1) { uint32_t tmp_rnxt; /* * Break it up and feed it back in. * Re-attach the IP header. */ mp->b_rptr = iphdr; if (urp > 0) { /* * There is stuff before the urgent * byte. */ mp1 = dupmsg(mp); if (!mp1) { /* * Trim from urgent byte on. * The rest will come back. */ (void) adjmsg(mp, urp - seg_len); tcp_input_data(connp, mp, NULL, ira); return; } (void) adjmsg(mp1, urp - seg_len); /* Feed this piece back in. */ tmp_rnxt = tcp->tcp_rnxt; tcp_input_data(connp, mp1, NULL, ira); /* * If the data passed back in was not * processed (ie: bad ACK) sending * the remainder back in will cause a * loop. In this case, drop the * packet and let the sender try * sending a good packet. */ if (tmp_rnxt == tcp->tcp_rnxt) { freemsg(mp); return; } } if (urp != seg_len - 1) { uint32_t tmp_rnxt; /* * There is stuff after the urgent * byte. */ mp1 = dupmsg(mp); if (!mp1) { /* * Trim everything beyond the * urgent byte. The rest will * come back. */ (void) adjmsg(mp, urp + 1 - seg_len); tcp_input_data(connp, mp, NULL, ira); return; } (void) adjmsg(mp1, urp + 1 - seg_len); tmp_rnxt = tcp->tcp_rnxt; tcp_input_data(connp, mp1, NULL, ira); /* * If the data passed back in was not * processed (ie: bad ACK) sending * the remainder back in will cause a * loop. In this case, drop the * packet and let the sender try * sending a good packet. */ if (tmp_rnxt == tcp->tcp_rnxt) { freemsg(mp); return; } } tcp_input_data(connp, mp, NULL, ira); return; } /* * This segment contains only the urgent byte. We * have to allocate the T_exdata_ind, if we can. */ if (IPCL_IS_NONSTR(connp)) { int error; (*connp->conn_upcalls->su_recv) (connp->conn_upper_handle, mp, seg_len, MSG_OOB, &error, NULL); /* * We should never be in middle of a * fallback, the squeue guarantees that. */ ASSERT(error != EOPNOTSUPP); mp = NULL; goto update_ack; } else if (!tcp->tcp_urp_mp) { struct T_exdata_ind *tei; mp1 = allocb(sizeof (struct T_exdata_ind), BPRI_MED); if (!mp1) { /* * Sigh... It'll be back. * Generate any MSG*MARK message now. */ freemsg(mp); seg_len = 0; if (flags & TH_SEND_URP_MARK) { ASSERT(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp->b_flag &= ~MSGNOTMARKNEXT; tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; } goto ack_check; } mp1->b_datap->db_type = M_PROTO; tei = (struct T_exdata_ind *)mp1->b_rptr; tei->PRIM_type = T_EXDATA_IND; tei->MORE_flag = 0; mp1->b_wptr = (uchar_t *)&tei[1]; tcp->tcp_urp_mp = mp1; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: allocated exdata_ind %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ /* * There is no need to send a separate MSG*MARK * message since the T_EXDATA_IND will be sent * now. */ flags &= ~TH_SEND_URP_MARK; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = NULL; } /* * Now we are all set. On the next putnext upstream, * tcp_urp_mp will be non-NULL and will get prepended * to what has to be this piece containing the urgent * byte. If for any reason we abort this segment below, * if it comes back, we will have this ready, or it * will get blown off in close. */ } else if (urp == seg_len) { /* * The urgent byte is the next byte after this sequence * number. If this endpoint is non-STREAMS, then there * is nothing to do here since the socket has already * been notified about the urg pointer by the * su_signal_oob call above. * * In case of STREAMS, some more work might be needed. * If there is data it is marked with MSGMARKNEXT and * and any tcp_urp_mark_mp is discarded since it is not * needed. Otherwise, if the code above just allocated * a zero-length tcp_urp_mark_mp message, that message * is tagged with MSGMARKNEXT. Sending up these * MSGMARKNEXT messages makes SIOCATMARK work correctly * even though the T_EXDATA_IND will not be sent up * until the urgent byte arrives. */ if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { if (seg_len != 0) { flags |= TH_MARKNEXT_NEEDED; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = NULL; flags &= ~TH_SEND_URP_MARK; } else if (tcp->tcp_urp_mark_mp != NULL) { flags |= TH_SEND_URP_MARK; tcp->tcp_urp_mark_mp->b_flag &= ~MSGNOTMARKNEXT; tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; } } #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: AT MARK, len %d, flags 0x%x, %s", seg_len, flags, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } #ifdef DEBUG else { /* Data left until we hit mark */ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: URP %d bytes left, %s", urp - seg_len, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } #endif /* DEBUG */ } process_ack: if (!(flags & TH_ACK)) { freemsg(mp); goto xmit_check; } } bytes_acked = (int)(seg_ack - tcp->tcp_suna); if (bytes_acked > 0) tcp->tcp_ip_forward_progress = B_TRUE; if (tcp->tcp_state == TCPS_SYN_RCVD) { /* * tcp_sendmsg() checks tcp_state without entering * the squeue so tcp_state should be updated before * sending up a connection confirmation or a new * connection indication. */ tcp->tcp_state = TCPS_ESTABLISHED; /* * We are seeing the final ack in the three way * hand shake of a active open'ed connection * so we must send up a T_CONN_CON */ if (tcp->tcp_active_open) { if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { freemsg(mp); tcp->tcp_state = TCPS_SYN_RCVD; return; } /* * Don't fuse the loopback endpoints for * simultaneous active opens. */ if (tcp->tcp_loopback) { TCP_STAT(tcps, tcp_fusion_unfusable); tcp->tcp_unfusable = B_TRUE; } /* * For simultaneous active open, trace receipt of final * ACK as tcp:::connect-established. */ DTRACE_TCP5(connect__established, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); } else if (IPCL_IS_NONSTR(connp)) { /* * 3-way handshake has completed, so notify socket * of the new connection. * * We are here means eager is fine but it can * get a TH_RST at any point between now and till * accept completes and disappear. We need to * ensure that reference to eager is valid after * we get out of eager's perimeter. So we do * an extra refhold. */ CONN_INC_REF(connp); if (!tcp_newconn_notify(tcp, ira)) { /* * The state-change probe for SYN_RCVD -> * ESTABLISHED has not fired yet. We reset * the state to SYN_RCVD so that future * state-change probes report correct state * transistions. */ tcp->tcp_state = TCPS_SYN_RCVD; freemsg(mp); /* notification did not go up, so drop ref */ CONN_DEC_REF(connp); /* ... and close the eager */ ASSERT(TCP_IS_DETACHED(tcp)); (void) tcp_close_detached(tcp); return; } /* * For passive open, trace receipt of final ACK as * tcp:::accept-established. */ DTRACE_TCP5(accept__established, mlbk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); } else { /* * 3-way handshake complete - this is a STREAMS based * socket, so pass up the T_CONN_IND. */ tcp_t *listener = tcp->tcp_listener; mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; tcp->tcp_tconnind_started = B_TRUE; tcp->tcp_conn.tcp_eager_conn_ind = NULL; ASSERT(mp != NULL); /* * We are here means eager is fine but it can * get a TH_RST at any point between now and till * accept completes and disappear. We need to * ensure that reference to eager is valid after * we get out of eager's perimeter. So we do * an extra refhold. */ CONN_INC_REF(connp); /* * The listener also exists because of the refhold * done in tcp_input_listener. Its possible that it * might have closed. We will check that once we * get inside listeners context. */ CONN_INC_REF(listener->tcp_connp); if (listener->tcp_connp->conn_sqp == connp->conn_sqp) { /* * We optimize by not calling an SQUEUE_ENTER * on the listener since we know that the * listener and eager squeues are the same. * We are able to make this check safely only * because neither the eager nor the listener * can change its squeue. Only an active connect * can change its squeue */ tcp_send_conn_ind(listener->tcp_connp, mp, listener->tcp_connp->conn_sqp); CONN_DEC_REF(listener->tcp_connp); } else if (!tcp->tcp_loopback) { SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp, tcp_send_conn_ind, listener->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_CONN_IND); } else { SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp, tcp_send_conn_ind, listener->tcp_connp, NULL, SQ_NODRAIN, SQTAG_TCP_CONN_IND); } /* * For passive open, trace receipt of final ACK as * tcp:::accept-established. */ DTRACE_TCP5(accept__established, mlbk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); } TCPS_CONN_INC(tcps); tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ bytes_acked--; /* SYN was acked - making progress */ tcp->tcp_ip_forward_progress = B_TRUE; /* * If SYN was retransmitted, need to reset all * retransmission info as this segment will be * treated as a dup ACK. */ if (tcp->tcp_rexmit) { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; tcp->tcp_ms_we_have_waited = 0; tcp->tcp_cwnd = mss; } /* * We set the send window to zero here. * This is needed if there is data to be * processed already on the queue. * Later (at swnd_update label), the * "new_swnd > tcp_swnd" condition is satisfied * the XMIT_NEEDED flag is set in the current * (SYN_RCVD) state. This ensures tcp_wput_data() is * called if there is already data on queue in * this state. */ tcp->tcp_swnd = 0; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; tcp->tcp_valid_bits &= ~TCP_ISS_VALID; /* Trace change from SYN_RCVD -> ESTABLISHED here */ DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_SYN_RCVD); /* Fuse when both sides are in ESTABLISHED state */ if (tcp->tcp_loopback && do_tcp_fusion) tcp_fuse(tcp, iphdr, tcpha); } /* This code follows 4.4BSD-Lite2 mostly. */ if (bytes_acked < 0) goto est; /* * If TCP is ECN capable and the congestion experience bit is * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be * done once per window (or more loosely, per RTT). */ if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) tcp->tcp_cwr = B_FALSE; if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { if (!tcp->tcp_cwr) { npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; tcp->tcp_cwnd = npkt * mss; /* * If the cwnd is 0, use the timer to clock out * new segments. This is required by the ECN spec. */ if (npkt == 0) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); /* * This makes sure that when the ACK comes * back, we will increase tcp_cwnd by 1 MSS. */ tcp->tcp_cwnd_cnt = 0; } tcp->tcp_cwr = B_TRUE; /* * This marks the end of the current window of in * flight data. That is why we don't use * tcp_suna + tcp_swnd. Only data in flight can * provide ECN info. */ tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } } mp1 = tcp->tcp_xmit_head; if (bytes_acked == 0) { if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { int dupack_cnt; TCPS_BUMP_MIB(tcps, tcpInDupAck); /* * Fast retransmit. When we have seen exactly three * identical ACKs while we have unacked data * outstanding we take it as a hint that our peer * dropped something. * * If TCP is retransmitting, don't do fast retransmit. */ if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && ! tcp->tcp_rexmit) { /* Do Limited Transmit */ if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < tcps->tcps_dupack_fast_retransmit) { /* * RFC 3042 * * What we need to do is temporarily * increase tcp_cwnd so that new * data can be sent if it is allowed * by the receive window (tcp_rwnd). * tcp_wput_data() will take care of * the rest. * * If the connection is SACK capable, * only do limited xmit when there * is SACK info. * * Note how tcp_cwnd is incremented. * The first dup ACK will increase * it by 1 MSS. The second dup ACK * will increase it by 2 MSS. This * means that only 1 new segment will * be sent for each dup ACK. */ if (tcp->tcp_unsent > 0 && (!tcp->tcp_snd_sack_ok || (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL))) { tcp->tcp_cwnd += mss << (tcp->tcp_dupack_cnt - 1); flags |= TH_LIMIT_XMIT; } } else if (dupack_cnt == tcps->tcps_dupack_fast_retransmit) { /* * If we have reduced tcp_ssthresh * because of ECN, do not reduce it again * unless it is already one window of data * away. After one window of data, tcp_cwr * should then be cleared. Note that * for non ECN capable connection, tcp_cwr * should always be false. * * Adjust cwnd since the duplicate * ack indicates that a packet was * dropped (due to congestion.) */ if (!tcp->tcp_cwr) { npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; tcp->tcp_cwnd = (npkt + tcp->tcp_dupack_cnt) * mss; } if (tcp->tcp_ecn_ok) { tcp->tcp_cwr = B_TRUE; tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } /* * We do Hoe's algorithm. Refer to her * paper "Improving the Start-up Behavior * of a Congestion Control Scheme for TCP," * appeared in SIGCOMM'96. * * Save highest seq no we have sent so far. * Be careful about the invisible FIN byte. */ if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } /* * Do not allow bursty traffic during. * fast recovery. Refer to Fall and Floyd's * paper "Simulation-based Comparisons of * Tahoe, Reno and SACK TCP" (in CCR?) * This is a best current practise. */ tcp->tcp_snd_burst = TCP_CWND_SS; /* * For SACK: * Calculate tcp_pipe, which is the * estimated number of bytes in * network. * * tcp_fack is the highest sack'ed seq num * TCP has received. * * tcp_pipe is explained in the above quoted * Fall and Floyd's paper. tcp_fack is * explained in Mathis and Mahdavi's * "Forward Acknowledgment: Refining TCP * Congestion Control" in SIGCOMM '96. */ if (tcp->tcp_snd_sack_ok) { if (tcp->tcp_notsack_list != NULL) { tcp->tcp_pipe = tcp->tcp_snxt - tcp->tcp_fack; tcp->tcp_sack_snxt = seg_ack; flags |= TH_NEED_SACK_REXMIT; } else { /* * Always initialize tcp_pipe * even though we don't have * any SACK info. If later * we get SACK info and * tcp_pipe is not initialized, * funny things will happen. */ tcp->tcp_pipe = tcp->tcp_cwnd_ssthresh; } } else { flags |= TH_REXMIT_NEEDED; } /* tcp_snd_sack_ok */ } else { /* * Here we perform congestion * avoidance, but NOT slow start. * This is known as the Fast * Recovery Algorithm. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { flags |= TH_NEED_SACK_REXMIT; tcp->tcp_pipe -= mss; if (tcp->tcp_pipe < 0) tcp->tcp_pipe = 0; } else { /* * We know that one more packet has * left the pipe thus we can update * cwnd. */ cwnd = tcp->tcp_cwnd + mss; if (cwnd > tcp->tcp_cwnd_max) cwnd = tcp->tcp_cwnd_max; tcp->tcp_cwnd = cwnd; if (tcp->tcp_unsent > 0) flags |= TH_XMIT_NEEDED; } } } } else if (tcp->tcp_zero_win_probe) { /* * If the window has opened, need to arrange * to send additional data. */ if (new_swnd != 0) { /* tcp_suna != tcp_snxt */ /* Packet contains a window update */ TCPS_BUMP_MIB(tcps, tcpInWinUpdate); tcp->tcp_zero_win_probe = 0; tcp->tcp_timer_backoff = 0; tcp->tcp_ms_we_have_waited = 0; /* * Transmit starting with tcp_suna since * the one byte probe is not ack'ed. * If TCP has sent more than one identical * probe, tcp_rexmit will be set. That means * tcp_ss_rexmit() will send out the one * byte along with new data. Otherwise, * fake the retransmission. */ flags |= TH_XMIT_NEEDED; if (!tcp->tcp_rexmit) { tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_rexmit_max = tcp->tcp_suna + 1; } } } goto swnd_update; } /* * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. * If the ACK value acks something that we have not yet sent, it might * be an old duplicate segment. Send an ACK to re-synchronize the * other side. * Note: reset in response to unacceptable ACK in SYN_RECEIVE * state is handled above, so we can always just drop the segment and * send an ACK here. * * In the case where the peer shrinks the window, we see the new window * update, but all the data sent previously is queued up by the peer. * To account for this, in tcp_process_shrunk_swnd(), the sequence * number, which was already sent, and within window, is recorded. * tcp_snxt is then updated. * * If the window has previously shrunk, and an ACK for data not yet * sent, according to tcp_snxt is recieved, it may still be valid. If * the ACK is for data within the window at the time the window was * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to * the sequence number ACK'ed. * * If the ACK covers all the data sent at the time the window was * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. * * Should we send ACKs in response to ACK only segments? */ if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { if ((tcp->tcp_is_wnd_shrnk) && (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { uint32_t data_acked_ahead_snxt; data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; tcp_update_xmit_tail(tcp, seg_ack); tcp->tcp_unsent -= data_acked_ahead_snxt; } else { TCPS_BUMP_MIB(tcps, tcpInAckUnsent); /* drop the received segment */ freemsg(mp); /* * Send back an ACK. If tcp_drop_ack_unsent_cnt is * greater than 0, check if the number of such * bogus ACks is greater than that count. If yes, * don't send back any ACK. This prevents TCP from * getting into an ACK storm if somehow an attacker * successfully spoofs an acceptable segment to our * peer. If this continues (count > 2 X threshold), * we should abort this connection. */ if (tcp_drop_ack_unsent_cnt > 0 && ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { TCP_STAT(tcps, tcp_in_ack_unsent_drop); if (tcp->tcp_in_ack_unsent > 2 * tcp_drop_ack_unsent_cnt) { (void) tcp_clean_death(tcp, EPROTO); } return; } mp = tcp_ack_mp(tcp); if (mp != NULL) { BUMP_LOCAL(tcp->tcp_obsegs); TCPS_BUMP_MIB(tcps, tcpOutAck); tcp_send_data(tcp, mp); } return; } } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, tcp->tcp_snxt_shrunk)) { tcp->tcp_is_wnd_shrnk = B_FALSE; } /* * TCP gets a new ACK, update the notsack'ed list to delete those * blocks that are covered by this ACK. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); } /* * If we got an ACK after fast retransmit, check to see * if it is a partial ACK. If it is not and the congestion * window was inflated to account for the other side's * cached packets, retract it. If it is, do Hoe's algorithm. */ if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { ASSERT(tcp->tcp_rexmit == B_FALSE); if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { tcp->tcp_dupack_cnt = 0; /* * Restore the orig tcp_cwnd_ssthresh after * fast retransmit phase. */ if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; } tcp->tcp_rexmit_max = seg_ack; tcp->tcp_cwnd_cnt = 0; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; /* * Remove all notsack info to avoid confusion with * the next fast retrasnmit/recovery phase. */ if (tcp->tcp_snd_sack_ok) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); } } else { if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { flags |= TH_NEED_SACK_REXMIT; tcp->tcp_pipe -= mss; if (tcp->tcp_pipe < 0) tcp->tcp_pipe = 0; } else { /* * Hoe's algorithm: * * Retransmit the unack'ed segment and * restart fast recovery. Note that we * need to scale back tcp_cwnd to the * original value when we started fast * recovery. This is to prevent overly * aggressive behaviour in sending new * segments. */ tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + tcps->tcps_dupack_fast_retransmit * mss; tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; flags |= TH_REXMIT_NEEDED; } } } else { tcp->tcp_dupack_cnt = 0; if (tcp->tcp_rexmit) { /* * TCP is retranmitting. If the ACK ack's all * outstanding data, update tcp_rexmit_max and * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt * to the correct value. * * Note that SEQ_LEQ() is used. This is to avoid * unnecessary fast retransmit caused by dup ACKs * received when TCP does slow start retransmission * after a time out. During this phase, TCP may * send out segments which are already received. * This causes dup ACKs to be sent back. */ if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { tcp->tcp_rexmit_nxt = seg_ack; } if (seg_ack != tcp->tcp_rexmit_max) { flags |= TH_XMIT_NEEDED; } } else { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; } tcp->tcp_ms_we_have_waited = 0; } } TCPS_BUMP_MIB(tcps, tcpInAckSegs); TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); tcp->tcp_suna = seg_ack; if (tcp->tcp_zero_win_probe != 0) { tcp->tcp_zero_win_probe = 0; tcp->tcp_timer_backoff = 0; } /* * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. * Note that it cannot be the SYN being ack'ed. The code flow * will not reach here. */ if (mp1 == NULL) { goto fin_acked; } /* * Update the congestion window. * * If TCP is not ECN capable or TCP is ECN capable but the * congestion experience bit is not set, increase the tcp_cwnd as * usual. */ if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { cwnd = tcp->tcp_cwnd; add = mss; if (cwnd >= tcp->tcp_cwnd_ssthresh) { /* * This is to prevent an increase of less than 1 MSS of * tcp_cwnd. With partial increase, tcp_wput_data() * may send out tinygrams in order to preserve mblk * boundaries. * * By initializing tcp_cwnd_cnt to new tcp_cwnd and * decrementing it by 1 MSS for every ACKs, tcp_cwnd is * increased by 1 MSS for every RTTs. */ if (tcp->tcp_cwnd_cnt <= 0) { tcp->tcp_cwnd_cnt = cwnd + add; } else { tcp->tcp_cwnd_cnt -= add; add = 0; } } tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); } /* See if the latest urgent data has been acknowledged */ if ((tcp->tcp_valid_bits & TCP_URG_VALID) && SEQ_GT(seg_ack, tcp->tcp_urg)) tcp->tcp_valid_bits &= ~TCP_URG_VALID; /* Can we update the RTT estimates? */ if (tcp->tcp_snd_ts_ok) { /* Ignore zero timestamp echo-reply. */ if (tcpopt.tcp_opt_ts_ecr != 0) { tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - (int32_t)tcpopt.tcp_opt_ts_ecr); } /* If needed, restart the timer. */ if (tcp->tcp_set_timer == 1) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_set_timer = 0; } /* * Update tcp_csuna in case the other side stops sending * us timestamps. */ tcp->tcp_csuna = tcp->tcp_snxt; } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { /* * An ACK sequence we haven't seen before, so get the RTT * and update the RTO. But first check if the timestamp is * valid to use. */ if ((mp1->b_next != NULL) && SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - (int32_t)(intptr_t)mp1->b_prev); else TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); /* Remeber the last sequence to be ACKed */ tcp->tcp_csuna = seg_ack; if (tcp->tcp_set_timer == 1) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_set_timer = 0; } } else { TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); } /* Eat acknowledged bytes off the xmit queue. */ for (;;) { mblk_t *mp2; uchar_t *wptr; wptr = mp1->b_wptr; ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); bytes_acked -= (int)(wptr - mp1->b_rptr); if (bytes_acked < 0) { mp1->b_rptr = wptr + bytes_acked; /* * Set a new timestamp if all the bytes timed by the * old timestamp have been ack'ed. */ if (SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) { mp1->b_prev = (mblk_t *)(uintptr_t)LBOLT_FASTPATH; mp1->b_next = NULL; } break; } mp1->b_next = NULL; mp1->b_prev = NULL; mp2 = mp1; mp1 = mp1->b_cont; /* * This notification is required for some zero-copy * clients to maintain a copy semantic. After the data * is ack'ed, client is safe to modify or reuse the buffer. */ if (tcp->tcp_snd_zcopy_aware && (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) tcp_zcopy_notify(tcp); freeb(mp2); if (bytes_acked == 0) { if (mp1 == NULL) { /* Everything is ack'ed, clear the tail. */ tcp->tcp_xmit_tail = NULL; /* * Cancel the timer unless we are still * waiting for an ACK for the FIN packet. */ if (tcp->tcp_timer_tid != 0 && tcp->tcp_snxt == tcp->tcp_suna) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } goto pre_swnd_update; } if (mp2 != tcp->tcp_xmit_tail) break; tcp->tcp_xmit_tail = mp1; ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - mp1->b_rptr); break; } if (mp1 == NULL) { /* * More was acked but there is nothing more * outstanding. This means that the FIN was * just acked or that we're talking to a clown. */ fin_acked: ASSERT(tcp->tcp_fin_sent); tcp->tcp_xmit_tail = NULL; if (tcp->tcp_fin_sent) { /* FIN was acked - making progress */ if (!tcp->tcp_fin_acked) tcp->tcp_ip_forward_progress = B_TRUE; tcp->tcp_fin_acked = B_TRUE; if (tcp->tcp_linger_tid != 0 && TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { tcp_stop_lingering(tcp); freemsg(mp); mp = NULL; } } else { /* * We should never get here because * we have already checked that the * number of bytes ack'ed should be * smaller than or equal to what we * have sent so far (it is the * acceptability check of the ACK). * We can only get here if the send * queue is corrupted. * * Terminate the connection and * panic the system. It is better * for us to panic instead of * continuing to avoid other disaster. */ tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST|TH_ACK); panic("Memory corruption " "detected for connection %s.", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); /*NOTREACHED*/ } goto pre_swnd_update; } ASSERT(mp2 != tcp->tcp_xmit_tail); } if (tcp->tcp_unsent) { flags |= TH_XMIT_NEEDED; } pre_swnd_update: tcp->tcp_xmit_head = mp1; swnd_update: /* * The following check is different from most other implementations. * For bi-directional transfer, when segments are dropped, the * "normal" check will not accept a window update in those * retransmitted segemnts. Failing to do that, TCP may send out * segments which are outside receiver's window. As TCP accepts * the ack in those retransmitted segments, if the window update in * the same segment is not accepted, TCP will incorrectly calculates * that it can send more segments. This can create a deadlock * with the receiver if its window becomes zero. */ if (SEQ_LT(tcp->tcp_swl2, seg_ack) || SEQ_LT(tcp->tcp_swl1, seg_seq) || (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { /* * The criteria for update is: * * 1. the segment acknowledges some data. Or * 2. the segment is new, i.e. it has a higher seq num. Or * 3. the segment is not old and the advertised window is * larger than the previous advertised window. */ if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) flags |= TH_XMIT_NEEDED; tcp->tcp_swnd = new_swnd; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; } est: if (tcp->tcp_state > TCPS_ESTABLISHED) { switch (tcp->tcp_state) { case TCPS_FIN_WAIT_1: if (tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_FIN_WAIT_2; DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_FIN_WAIT_1); /* * We implement the non-standard BSD/SunOS * FIN_WAIT_2 flushing algorithm. * If there is no user attached to this * TCP endpoint, then this TCP struct * could hang around forever in FIN_WAIT_2 * state if the peer forgets to send us * a FIN. To prevent this, we wait only * 2*MSL (a convenient time value) for * the FIN to arrive. If it doesn't show up, * we flush the TCP endpoint. This algorithm, * though a violation of RFC-793, has worked * for over 10 years in BSD systems. * Note: SunOS 4.x waits 675 seconds before * flushing the FIN_WAIT_2 connection. */ TCP_TIMER_RESTART(tcp, tcp->tcp_fin_wait_2_flush_interval); } break; case TCPS_FIN_WAIT_2: break; /* Shutdown hook? */ case TCPS_LAST_ACK: freemsg(mp); if (tcp->tcp_fin_acked) { (void) tcp_clean_death(tcp, 0); return; } goto xmit_check; case TCPS_CLOSING: if (tcp->tcp_fin_acked) { SET_TIME_WAIT(tcps, tcp, connp); DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_CLOSING); } /*FALLTHRU*/ case TCPS_CLOSE_WAIT: freemsg(mp); goto xmit_check; default: ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); break; } } if (flags & TH_FIN) { /* Make sure we ack the fin */ flags |= TH_ACK_NEEDED; if (!tcp->tcp_fin_rcvd) { tcp->tcp_fin_rcvd = B_TRUE; tcp->tcp_rnxt++; tcpha = tcp->tcp_tcpha; tcpha->tha_ack = htonl(tcp->tcp_rnxt); /* * Generate the ordrel_ind at the end unless the * conn is detached or it is a STREAMS based eager. * In the eager case we defer the notification until * tcp_accept_finish has run. */ if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || (tcp->tcp_listener == NULL && !tcp->tcp_hard_binding))) flags |= TH_ORDREL_NEEDED; switch (tcp->tcp_state) { case TCPS_SYN_RCVD: tcp->tcp_state = TCPS_CLOSE_WAIT; DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_SYN_RCVD); /* Keepalive? */ break; case TCPS_ESTABLISHED: tcp->tcp_state = TCPS_CLOSE_WAIT; DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_ESTABLISHED); /* Keepalive? */ break; case TCPS_FIN_WAIT_1: if (!tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_CLOSING; DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_FIN_WAIT_1); break; } /* FALLTHRU */ case TCPS_FIN_WAIT_2: SET_TIME_WAIT(tcps, tcp, connp); DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, int32_t, TCPS_FIN_WAIT_2); if (seg_len) { /* * implies data piggybacked on FIN. * break to handle data. */ break; } freemsg(mp); goto ack_check; } } } if (mp == NULL) goto xmit_check; if (seg_len == 0) { freemsg(mp); goto xmit_check; } if (mp->b_rptr == mp->b_wptr) { /* * The header has been consumed, so we remove the * zero-length mblk here. */ mp1 = mp; mp = mp->b_cont; freeb(mp1); } update_ack: tcpha = tcp->tcp_tcpha; tcp->tcp_rack_cnt++; { uint32_t cur_max; cur_max = tcp->tcp_rack_cur_max; if (tcp->tcp_rack_cnt >= cur_max) { /* * We have more unacked data than we should - send * an ACK now. */ flags |= TH_ACK_NEEDED; cur_max++; if (cur_max > tcp->tcp_rack_abs_max) tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; else tcp->tcp_rack_cur_max = cur_max; } else if (TCP_IS_DETACHED(tcp)) { /* We don't have an ACK timer for detached TCP. */ flags |= TH_ACK_NEEDED; } else if (seg_len < mss) { /* * If we get a segment that is less than an mss, and we * already have unacknowledged data, and the amount * unacknowledged is not a multiple of mss, then we * better generate an ACK now. Otherwise, this may be * the tail piece of a transaction, and we would rather * wait for the response. */ uint32_t udif; ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= (uintptr_t)INT_MAX); udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); if (udif && (udif % mss)) flags |= TH_ACK_NEEDED; else flags |= TH_ACK_TIMER_NEEDED; } else { /* Start delayed ack timer */ flags |= TH_ACK_TIMER_NEEDED; } } tcp->tcp_rnxt += seg_len; tcpha->tha_ack = htonl(tcp->tcp_rnxt); if (mp == NULL) goto xmit_check; /* Update SACK list */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, &(tcp->tcp_num_sack_blk)); } if (tcp->tcp_urp_mp) { tcp->tcp_urp_mp->b_cont = mp; mp = tcp->tcp_urp_mp; tcp->tcp_urp_mp = NULL; /* Ready for a new signal. */ tcp->tcp_urp_last_valid = B_FALSE; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending exdata_ind %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } /* * Check for ancillary data changes compared to last segment. */ if (connp->conn_recv_ancillary.crb_all != 0) { mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); if (mp == NULL) return; } if (IPCL_IS_NONSTR(connp)) { /* * Non-STREAMS socket */ boolean_t push = flags & (TH_PUSH|TH_FIN); int error; if ((*connp->conn_upcalls->su_recv)( connp->conn_upper_handle, mp, seg_len, 0, &error, &push) <= 0) { /* * We should never be in middle of a * fallback, the squeue guarantees that. */ ASSERT(error != EOPNOTSUPP); if (error == ENOSPC) tcp->tcp_rwnd -= seg_len; } else if (push) { /* PUSH bit set and sockfs is not flow controlled */ flags |= tcp_rwnd_reopen(tcp); } } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { /* * Side queue inbound data until the accept happens. * tcp_accept/tcp_rput drains this when the accept happens. * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or * T_EXDATA_IND) it is queued on b_next. * XXX Make urgent data use this. Requires: * Removing tcp_listener check for TH_URG * Making M_PCPROTO and MARK messages skip the eager case */ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); } else { /* Active STREAMS socket */ if (mp->b_datap->db_type != M_DATA || (flags & TH_MARKNEXT_NEEDED)) { if (tcp->tcp_rcv_list != NULL) { flags |= tcp_rcv_drain(tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); if (flags & TH_MARKNEXT_NEEDED) { #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending MSGMARKNEXT %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ mp->b_flag |= MSGMARKNEXT; flags &= ~TH_MARKNEXT_NEEDED; } if (is_system_labeled()) tcp_setcred_data(mp, ira); putnext(connp->conn_rq, mp); if (!canputnext(connp->conn_rq)) tcp->tcp_rwnd -= seg_len; } else if ((flags & (TH_PUSH|TH_FIN)) || tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { if (tcp->tcp_rcv_list != NULL) { /* * Enqueue the new segment first and then * call tcp_rcv_drain() to send all data * up. The other way to do this is to * send all queued data up and then call * putnext() to send the new segment up. * This way can remove the else part later * on. * * We don't do this to avoid one more call to * canputnext() as tcp_rcv_drain() needs to * call canputnext(). */ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); flags |= tcp_rcv_drain(tcp); } else { if (is_system_labeled()) tcp_setcred_data(mp, ira); putnext(connp->conn_rq, mp); if (!canputnext(connp->conn_rq)) tcp->tcp_rwnd -= seg_len; } } else { /* * Enqueue all packets when processing an mblk * from the co queue and also enqueue normal packets. */ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); } /* * Make sure the timer is running if we have data waiting * for a push bit. This provides resiliency against * implementations that do not correctly generate push bits. */ if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { /* * The connection may be closed at this point, so don't * do anything for a detached tcp. */ if (!TCP_IS_DETACHED(tcp)) tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, tcps->tcps_push_timer_interval); } } xmit_check: /* Is there anything left to do? */ ASSERT(!(flags & TH_MARKNEXT_NEEDED)); if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) goto done; /* Any transmit work to do and a non-zero window? */ if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { if (flags & TH_REXMIT_NEEDED) { uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); if (snd_size > mss) snd_size = mss; if (snd_size > tcp->tcp_swnd) snd_size = tcp->tcp_swnd; mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, B_TRUE); if (mp1 != NULL) { tcp->tcp_xmit_head->b_prev = (mblk_t *)LBOLT_FASTPATH; tcp->tcp_csuna = tcp->tcp_snxt; TCPS_BUMP_MIB(tcps, tcpRetransSegs); TCPS_UPDATE_MIB(tcps, tcpRetransBytes, snd_size); tcp_send_data(tcp, mp1); } } if (flags & TH_NEED_SACK_REXMIT) { tcp_sack_rexmit(tcp, &flags); } /* * For TH_LIMIT_XMIT, tcp_wput_data() is called to send * out new segment. Note that tcp_rexmit should not be * set, otherwise TH_LIMIT_XMIT should not be set. */ if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { if (!tcp->tcp_rexmit) { tcp_wput_data(tcp, NULL, B_FALSE); } else { tcp_ss_rexmit(tcp); } } /* * Adjust tcp_cwnd back to normal value after sending * new data segments. */ if (flags & TH_LIMIT_XMIT) { tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); /* * This will restart the timer. Restarting the * timer is used to avoid a timeout before the * limited transmitted segment's ACK gets back. */ if (tcp->tcp_xmit_head != NULL) tcp->tcp_xmit_head->b_prev = (mblk_t *)LBOLT_FASTPATH; } /* Anything more to do? */ if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) goto done; } ack_check: if (flags & TH_SEND_URP_MARK) { ASSERT(tcp->tcp_urp_mark_mp); ASSERT(!IPCL_IS_NONSTR(connp)); /* * Send up any queued data and then send the mark message */ if (tcp->tcp_rcv_list != NULL) { flags |= tcp_rcv_drain(tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); mp1 = tcp->tcp_urp_mark_mp; tcp->tcp_urp_mark_mp = NULL; if (is_system_labeled()) tcp_setcred_data(mp1, ira); putnext(connp->conn_rq, mp1); #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending zero-length %s %s", ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : "MSGNOTMARKNEXT"), tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ flags &= ~TH_SEND_URP_MARK; } if (flags & TH_ACK_NEEDED) { /* * Time to send an ack for some reason. */ mp1 = tcp_ack_mp(tcp); if (mp1 != NULL) { tcp_send_data(tcp, mp1); BUMP_LOCAL(tcp->tcp_obsegs); TCPS_BUMP_MIB(tcps, tcpOutAck); } if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } } if (flags & TH_ACK_TIMER_NEEDED) { /* * Arrange for deferred ACK or push wait timeout. * Start timer if it is not already running. */ if (tcp->tcp_ack_tid == 0) { tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, tcp->tcp_localnet ? tcps->tcps_local_dack_interval : tcps->tcps_deferred_ack_interval); } } if (flags & TH_ORDREL_NEEDED) { /* * Notify upper layer about an orderly release. If this is * a non-STREAMS socket, then just make an upcall. For STREAMS * we send up an ordrel_ind, unless this is an eager, in which * case the ordrel will be sent when tcp_accept_finish runs. * Note that for non-STREAMS we make an upcall even if it is an * eager, because we have an upper handle to send it to. */ ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); ASSERT(!tcp->tcp_detached); if (IPCL_IS_NONSTR(connp)) { ASSERT(tcp->tcp_ordrel_mp == NULL); tcp->tcp_ordrel_done = B_TRUE; (*connp->conn_upcalls->su_opctl) (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); goto done; } if (tcp->tcp_rcv_list != NULL) { /* * Push any mblk(s) enqueued from co processing. */ flags |= tcp_rcv_drain(tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); mp1 = tcp->tcp_ordrel_mp; tcp->tcp_ordrel_mp = NULL; tcp->tcp_ordrel_done = B_TRUE; putnext(connp->conn_rq, mp1); } done: ASSERT(!(flags & TH_MARKNEXT_NEEDED)); } /* * Attach ancillary data to a received TCP segments for the * ancillary pieces requested by the application that are * different than they were in the previous data segment. * * Save the "current" values once memory allocation is ok so that * when memory allocation fails we can just wait for the next data segment. */ static mblk_t * tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, ip_recv_attr_t *ira) { struct T_optdata_ind *todi; int optlen; uchar_t *optptr; struct T_opthdr *toh; crb_t addflag; /* Which pieces to add */ mblk_t *mp1; conn_t *connp = tcp->tcp_connp; optlen = 0; addflag.crb_all = 0; /* If app asked for pktinfo and the index has changed ... */ if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && ira->ira_ruifindex != tcp->tcp_recvifindex) { optlen += sizeof (struct T_opthdr) + sizeof (struct in6_pktinfo); addflag.crb_ip_recvpktinfo = 1; } /* If app asked for hoplimit and it has changed ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && ipp->ipp_hoplimit != tcp->tcp_recvhops) { optlen += sizeof (struct T_opthdr) + sizeof (uint_t); addflag.crb_ipv6_recvhoplimit = 1; } /* If app asked for tclass and it has changed ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && ipp->ipp_tclass != tcp->tcp_recvtclass) { optlen += sizeof (struct T_opthdr) + sizeof (uint_t); addflag.crb_ipv6_recvtclass = 1; } /* * If app asked for hopbyhop headers and it has changed ... * For security labels, note that (1) security labels can't change on * a connected socket at all, (2) we're connected to at most one peer, * (3) if anything changes, then it must be some other extra option. */ if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; addflag.crb_ipv6_recvhopopts = 1; if (!ip_allocbuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) return (mp); } /* If app asked for dst headers before routing headers ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrdstoptslen; addflag.crb_ipv6_recvrthdrdstopts = 1; if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, &tcp->tcp_rthdrdstoptslen, (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) return (mp); } /* If app asked for routing headers and it has changed ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; addflag.crb_ipv6_recvrthdr = 1; if (!ip_allocbuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) return (mp); } /* If app asked for dest headers and it has changed ... */ if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; addflag.crb_ipv6_recvdstopts = 1; if (!ip_allocbuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) return (mp); } if (optlen == 0) { /* Nothing to add */ return (mp); } mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); if (mp1 == NULL) { /* * Defer sending ancillary data until the next TCP segment * arrives. */ return (mp); } mp1->b_cont = mp; mp = mp1; mp->b_wptr += sizeof (*todi) + optlen; mp->b_datap->db_type = M_PROTO; todi = (struct T_optdata_ind *)mp->b_rptr; todi->PRIM_type = T_OPTDATA_IND; todi->DATA_flag = 1; /* MORE data */ todi->OPT_length = optlen; todi->OPT_offset = sizeof (*todi); optptr = (uchar_t *)&todi[1]; /* * If app asked for pktinfo and the index has changed ... * Note that the local address never changes for the connection. */ if (addflag.crb_ip_recvpktinfo) { struct in6_pktinfo *pkti; uint_t ifindex; ifindex = ira->ira_ruifindex; toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_PKTINFO; toh->len = sizeof (*toh) + sizeof (*pkti); toh->status = 0; optptr += sizeof (*toh); pkti = (struct in6_pktinfo *)optptr; pkti->ipi6_addr = connp->conn_laddr_v6; pkti->ipi6_ifindex = ifindex; optptr += sizeof (*pkti); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvifindex = ifindex; } /* If app asked for hoplimit and it has changed ... */ if (addflag.crb_ipv6_recvhoplimit) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPLIMIT; toh->len = sizeof (*toh) + sizeof (uint_t); toh->status = 0; optptr += sizeof (*toh); *(uint_t *)optptr = ipp->ipp_hoplimit; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvhops = ipp->ipp_hoplimit; } /* If app asked for tclass and it has changed ... */ if (addflag.crb_ipv6_recvtclass) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_TCLASS; toh->len = sizeof (*toh) + sizeof (uint_t); toh->status = 0; optptr += sizeof (*toh); *(uint_t *)optptr = ipp->ipp_tclass; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvtclass = ipp->ipp_tclass; } if (addflag.crb_ipv6_recvhopopts) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPOPTS; toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); optptr += ipp->ipp_hopoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen); } if (addflag.crb_ipv6_recvrthdrdstopts) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDRDSTOPTS; toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); optptr += ipp->ipp_rthdrdstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_rthdrdstopts, &tcp->tcp_rthdrdstoptslen, (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); } if (addflag.crb_ipv6_recvrthdr) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDR; toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); optptr += ipp->ipp_rthdrlen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen); } if (addflag.crb_ipv6_recvdstopts) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); optptr += ipp->ipp_dstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen); } ASSERT(optptr == mp->b_wptr); return (mp); } /* The minimum of smoothed mean deviation in RTO calculation. */ #define TCP_SD_MIN 400 /* * Set RTO for this connection. The formula is from Jacobson and Karels' * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names * are the same as those in Appendix A.2 of that paper. * * m = new measurement * sa = smoothed RTT average (8 * average estimates). * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). */ static void tcp_set_rto(tcp_t *tcp, clock_t rtt) { long m = TICK_TO_MSEC(rtt); clock_t sa = tcp->tcp_rtt_sa; clock_t sv = tcp->tcp_rtt_sd; clock_t rto; tcp_stack_t *tcps = tcp->tcp_tcps; TCPS_BUMP_MIB(tcps, tcpRttUpdate); tcp->tcp_rtt_update++; /* tcp_rtt_sa is not 0 means this is a new sample. */ if (sa != 0) { /* * Update average estimator: * new rtt = 7/8 old rtt + 1/8 Error */ /* m is now Error in estimate. */ m -= sa >> 3; if ((sa += m) <= 0) { /* * Don't allow the smoothed average to be negative. * We use 0 to denote reinitialization of the * variables. */ sa = 1; } /* * Update deviation estimator: * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) */ if (m < 0) m = -m; m -= sv >> 2; sv += m; } else { /* * This follows BSD's implementation. So the reinitialized * RTO is 3 * m. We cannot go less than 2 because if the * link is bandwidth dominated, doubling the window size * during slow start means doubling the RTT. We want to be * more conservative when we reinitialize our estimates. 3 * is just a convenient number. */ sa = m << 3; sv = m << 1; } if (sv < TCP_SD_MIN) { /* * We do not know that if sa captures the delay ACK * effect as in a long train of segments, a receiver * does not delay its ACKs. So set the minimum of sv * to be TCP_SD_MIN, which is default to 400 ms, twice * of BSD DATO. That means the minimum of mean * deviation is 100 ms. * */ sv = TCP_SD_MIN; } tcp->tcp_rtt_sa = sa; tcp->tcp_rtt_sd = sv; /* * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) * * Add tcp_rexmit_interval extra in case of extreme environment * where the algorithm fails to work. The default value of * tcp_rexmit_interval_extra should be 0. * * As we use a finer grained clock than BSD and update * RTO for every ACKs, add in another .25 of RTT to the * deviation of RTO to accomodate burstiness of 1/4 of * window size. */ rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); TCP_SET_RTO(tcp, rto); /* Now, we can reset tcp_timer_backoff to use the new RTO... */ tcp->tcp_timer_backoff = 0; } /* * On a labeled system we have some protocols above TCP, such as RPC, which * appear to assume that every mblk in a chain has a db_credp. */ static void tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) { ASSERT(is_system_labeled()); ASSERT(ira->ira_cred != NULL); while (mp != NULL) { mblk_setcred(mp, ira->ira_cred, NOPID); mp = mp->b_cont; } } uint_t tcp_rwnd_reopen(tcp_t *tcp) { uint_t ret = 0; uint_t thwin; conn_t *connp = tcp->tcp_connp; /* Learn the latest rwnd information that we sent to the other side. */ thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) << tcp->tcp_rcv_ws; /* This is peer's calculated send window (our receive window). */ thwin -= tcp->tcp_rnxt - tcp->tcp_rack; /* * Increase the receive window to max. But we need to do receiver * SWS avoidance. This means that we need to check the increase of * of receive window is at least 1 MSS. */ if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { /* * If the window that the other side knows is less than max * deferred acks segments, send an update immediately. */ if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); ret = TH_ACK_NEEDED; } tcp->tcp_rwnd = connp->conn_rcvbuf; } return (ret); } /* * Handle a packet that has been reclassified by TCP. * This function drops the ref on connp that the caller had. */ void tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) { ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; if (connp->conn_incoming_ifindex != 0 && connp->conn_incoming_ifindex != ira->ira_ruifindex) { freemsg(mp); CONN_DEC_REF(connp); return; } if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || (ira->ira_flags & IRAF_IPSEC_SECURE)) { ip6_t *ip6h; ipha_t *ipha; if (ira->ira_flags & IRAF_IS_IPV4) { ipha = (ipha_t *)mp->b_rptr; ip6h = NULL; } else { ipha = NULL; ip6h = (ip6_t *)mp->b_rptr; } mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); if (mp == NULL) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); /* Note that mp is NULL */ ip_drop_input("ipIfStatsInDiscards", mp, NULL); CONN_DEC_REF(connp); return; } } if (IPCL_IS_TCP(connp)) { /* * do not drain, certain use cases can blow * the stack */ SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, ira, SQ_NODRAIN, SQTAG_IP_TCP_INPUT); } else { /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ (connp->conn_recv)(connp, mp, NULL, ira); CONN_DEC_REF(connp); } } /* ARGSUSED */ static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = connp->conn_rq; ASSERT(!IPCL_IS_NONSTR(connp)); mutex_enter(&tcp->tcp_rsrv_mp_lock); tcp->tcp_rsrv_mp = mp; mutex_exit(&tcp->tcp_rsrv_mp_lock); if (TCP_IS_DETACHED(tcp) || q == NULL) { return; } if (tcp->tcp_fused) { tcp_fuse_backenable(tcp); return; } if (canputnext(q)) { /* Not flow-controlled, open rwnd */ tcp->tcp_rwnd = connp->conn_rcvbuf; /* * Send back a window update immediately if TCP is above * ESTABLISHED state and the increase of the rcv window * that the other side knows is at least 1 MSS after flow * control is lifted. */ if (tcp->tcp_state >= TCPS_ESTABLISHED && tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } } } /* * The read side service routine is called mostly when we get back-enabled as a * result of flow control relief. Since we don't actually queue anything in * TCP, we have no data to send out of here. What we do is clear the receive * window, and send out a window update. */ void tcp_rsrv(queue_t *q) { conn_t *connp = Q_TO_CONN(q); tcp_t *tcp = connp->conn_tcp; mblk_t *mp; /* No code does a putq on the read side */ ASSERT(q->q_first == NULL); /* * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already * been run. So just return. */ mutex_enter(&tcp->tcp_rsrv_mp_lock); if ((mp = tcp->tcp_rsrv_mp) == NULL) { mutex_exit(&tcp->tcp_rsrv_mp_lock); return; } tcp->tcp_rsrv_mp = NULL; mutex_exit(&tcp->tcp_rsrv_mp_lock); CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, NULL, SQ_PROCESS, SQTAG_TCP_RSRV); } /* At minimum we need 8 bytes in the TCP header for the lookup */ #define ICMP_MIN_TCP_HDR 8 /* * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages * passed up by IP. The message is always received on the correct tcp_t. * Assumes that IP has pulled up everything up to and including the ICMP header. */ /* ARGSUSED2 */ void tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { conn_t *connp = (conn_t *)arg1; icmph_t *icmph; ipha_t *ipha; int iph_hdr_length; tcpha_t *tcpha; uint32_t seg_seq; tcp_t *tcp = connp->conn_tcp; /* Assume IP provides aligned packets */ ASSERT(OK_32PTR(mp->b_rptr)); ASSERT((MBLKL(mp) >= sizeof (ipha_t))); /* * Verify IP version. Anything other than IPv4 or IPv6 packet is sent * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. */ if (!(ira->ira_flags & IRAF_IS_IPV4)) { tcp_icmp_error_ipv6(tcp, mp, ira); return; } /* Skip past the outer IP and ICMP headers */ iph_hdr_length = ira->ira_ip_hdr_length; icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; /* * If we don't have the correct outer IP header length * or if we don't have a complete inner IP header * drop it. */ if (iph_hdr_length < sizeof (ipha_t) || (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { noticmpv4: freemsg(mp); return; } ipha = (ipha_t *)&icmph[1]; /* Skip past the inner IP and find the ULP header */ iph_hdr_length = IPH_HDR_LENGTH(ipha); tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); /* * If we don't have the correct inner IP header length or if the ULP * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR * bytes of TCP header, drop it. */ if (iph_hdr_length < sizeof (ipha_t) || ipha->ipha_protocol != IPPROTO_TCP || (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { goto noticmpv4; } seg_seq = ntohl(tcpha->tha_seq); switch (icmph->icmph_type) { case ICMP_DEST_UNREACHABLE: switch (icmph->icmph_code) { case ICMP_FRAGMENTATION_NEEDED: /* * Update Path MTU, then try to send something out. */ tcp_update_pmtu(tcp, B_TRUE); tcp_rexmit_after_error(tcp); break; case ICMP_PORT_UNREACHABLE: case ICMP_PROTOCOL_UNREACHABLE: switch (tcp->tcp_state) { case TCPS_SYN_SENT: case TCPS_SYN_RCVD: /* * ICMP can snipe away incipient * TCP connections as long as * seq number is same as initial * send seq number. */ if (seg_seq == tcp->tcp_iss) { (void) tcp_clean_death(tcp, ECONNREFUSED); } break; } break; case ICMP_HOST_UNREACHABLE: case ICMP_NET_UNREACHABLE: /* Record the error in case we finally time out. */ if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) tcp->tcp_client_errno = EHOSTUNREACH; else tcp->tcp_client_errno = ENETUNREACH; if (tcp->tcp_state == TCPS_SYN_RCVD) { if (tcp->tcp_listener != NULL && tcp->tcp_listener->tcp_syn_defense) { /* * Ditch the half-open connection if we * suspect a SYN attack is under way. */ (void) tcp_clean_death(tcp, tcp->tcp_client_errno); } } break; default: break; } break; case ICMP_SOURCE_QUENCH: { /* * use a global boolean to control * whether TCP should respond to ICMP_SOURCE_QUENCH. * The default is false. */ if (tcp_icmp_source_quench) { /* * Reduce the sending rate as if we got a * retransmit timeout */ uint32_t npkt; npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / tcp->tcp_mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; tcp->tcp_cwnd = tcp->tcp_mss; tcp->tcp_cwnd_cnt = 0; } break; } } freemsg(mp); } /* * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 * error messages passed up by IP. * Assumes that IP has pulled up all the extension headers as well * as the ICMPv6 header. */ static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) { icmp6_t *icmp6; ip6_t *ip6h; uint16_t iph_hdr_length = ira->ira_ip_hdr_length; tcpha_t *tcpha; uint8_t *nexthdrp; uint32_t seg_seq; /* * Verify that we have a complete IP header. */ ASSERT((MBLKL(mp) >= sizeof (ip6_t))); icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; ip6h = (ip6_t *)&icmp6[1]; /* * Verify if we have a complete ICMP and inner IP header. */ if ((uchar_t *)&ip6h[1] > mp->b_wptr) { noticmpv6: freemsg(mp); return; } if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) goto noticmpv6; tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); /* * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the * packet. */ if ((*nexthdrp != IPPROTO_TCP) || ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { goto noticmpv6; } seg_seq = ntohl(tcpha->tha_seq); switch (icmp6->icmp6_type) { case ICMP6_PACKET_TOO_BIG: /* * Update Path MTU, then try to send something out. */ tcp_update_pmtu(tcp, B_TRUE); tcp_rexmit_after_error(tcp); break; case ICMP6_DST_UNREACH: switch (icmp6->icmp6_code) { case ICMP6_DST_UNREACH_NOPORT: if (((tcp->tcp_state == TCPS_SYN_SENT) || (tcp->tcp_state == TCPS_SYN_RCVD)) && (seg_seq == tcp->tcp_iss)) { (void) tcp_clean_death(tcp, ECONNREFUSED); } break; case ICMP6_DST_UNREACH_ADMIN: case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: /* Record the error in case we finally time out. */ tcp->tcp_client_errno = EHOSTUNREACH; if (((tcp->tcp_state == TCPS_SYN_SENT) || (tcp->tcp_state == TCPS_SYN_RCVD)) && (seg_seq == tcp->tcp_iss)) { if (tcp->tcp_listener != NULL && tcp->tcp_listener->tcp_syn_defense) { /* * Ditch the half-open connection if we * suspect a SYN attack is under way. */ (void) tcp_clean_death(tcp, tcp->tcp_client_errno); } } break; default: break; } break; case ICMP6_PARAM_PROB: /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && (uchar_t *)ip6h + icmp6->icmp6_pptr == (uchar_t *)nexthdrp) { if (tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD) { (void) tcp_clean_death(tcp, ECONNREFUSED); } break; } break; case ICMP6_TIME_EXCEEDED: default: break; } freemsg(mp); } /* * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might * change. But it can refer to fields like tcp_suna and tcp_snxt. * * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP * error messages received by IP. The message is always received on the correct * tcp_t. */ /* ARGSUSED */ boolean_t tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, ip_recv_attr_t *ira) { tcpha_t *tcpha = (tcpha_t *)arg2; uint32_t seq = ntohl(tcpha->tha_seq); tcp_t *tcp = connp->conn_tcp; /* * TCP sequence number contained in payload of the ICMP error message * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, * the message is either a stale ICMP error, or an attack from the * network. Fail the verification. */ if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) return (B_FALSE); /* For "too big" we also check the ignore flag */ if (ira->ira_flags & IRAF_IS_IPV4) { ASSERT(icmph != NULL); if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && tcp->tcp_tcps->tcps_ignore_path_mtu) return (B_FALSE); } else { ASSERT(icmp6 != NULL); if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && tcp->tcp_tcps->tcps_ignore_path_mtu) return (B_FALSE); } return (B_TRUE); }