1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/txg.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio_impl.h> 33 #include <sys/zio_compress.h> 34 #include <sys/zio_checksum.h> 35 36 /* 37 * ========================================================================== 38 * I/O priority table 39 * ========================================================================== 40 */ 41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 42 0, /* ZIO_PRIORITY_NOW */ 43 0, /* ZIO_PRIORITY_SYNC_READ */ 44 0, /* ZIO_PRIORITY_SYNC_WRITE */ 45 6, /* ZIO_PRIORITY_ASYNC_READ */ 46 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 47 4, /* ZIO_PRIORITY_FREE */ 48 0, /* ZIO_PRIORITY_CACHE_FILL */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 10, /* ZIO_PRIORITY_RESILVER */ 51 20, /* ZIO_PRIORITY_SCRUB */ 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 char *zio_type_name[ZIO_TYPES] = { 60 "null", "read", "write", "free", "claim", "ioctl" }; 61 62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ 63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ 64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_link_cache; 73 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 75 76 #ifdef _KERNEL 77 extern vmem_t *zio_alloc_arena; 78 #endif 79 80 /* 81 * An allocating zio is one that either currently has the DVA allocate 82 * stage set or will have it later in its lifetime. 83 */ 84 #define IO_IS_ALLOCATING(zio) \ 85 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 86 87 void 88 zio_init(void) 89 { 90 size_t c; 91 vmem_t *data_alloc_arena = NULL; 92 93 #ifdef _KERNEL 94 data_alloc_arena = zio_alloc_arena; 95 #endif 96 zio_cache = kmem_cache_create("zio_cache", 97 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 98 zio_link_cache = kmem_cache_create("zio_link_cache", 99 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 100 101 /* 102 * For small buffers, we want a cache for each multiple of 103 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 104 * for each quarter-power of 2. For large buffers, we want 105 * a cache for each multiple of PAGESIZE. 106 */ 107 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 108 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 109 size_t p2 = size; 110 size_t align = 0; 111 112 while (p2 & (p2 - 1)) 113 p2 &= p2 - 1; 114 115 if (size <= 4 * SPA_MINBLOCKSIZE) { 116 align = SPA_MINBLOCKSIZE; 117 } else if (P2PHASE(size, PAGESIZE) == 0) { 118 align = PAGESIZE; 119 } else if (P2PHASE(size, p2 >> 2) == 0) { 120 align = p2 >> 2; 121 } 122 123 if (align != 0) { 124 char name[36]; 125 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 126 zio_buf_cache[c] = kmem_cache_create(name, size, 127 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 128 129 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 130 zio_data_buf_cache[c] = kmem_cache_create(name, size, 131 align, NULL, NULL, NULL, NULL, data_alloc_arena, 132 KMC_NODEBUG); 133 } 134 } 135 136 while (--c != 0) { 137 ASSERT(zio_buf_cache[c] != NULL); 138 if (zio_buf_cache[c - 1] == NULL) 139 zio_buf_cache[c - 1] = zio_buf_cache[c]; 140 141 ASSERT(zio_data_buf_cache[c] != NULL); 142 if (zio_data_buf_cache[c - 1] == NULL) 143 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 144 } 145 146 zio_inject_init(); 147 } 148 149 void 150 zio_fini(void) 151 { 152 size_t c; 153 kmem_cache_t *last_cache = NULL; 154 kmem_cache_t *last_data_cache = NULL; 155 156 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 157 if (zio_buf_cache[c] != last_cache) { 158 last_cache = zio_buf_cache[c]; 159 kmem_cache_destroy(zio_buf_cache[c]); 160 } 161 zio_buf_cache[c] = NULL; 162 163 if (zio_data_buf_cache[c] != last_data_cache) { 164 last_data_cache = zio_data_buf_cache[c]; 165 kmem_cache_destroy(zio_data_buf_cache[c]); 166 } 167 zio_data_buf_cache[c] = NULL; 168 } 169 170 kmem_cache_destroy(zio_link_cache); 171 kmem_cache_destroy(zio_cache); 172 173 zio_inject_fini(); 174 } 175 176 /* 177 * ========================================================================== 178 * Allocate and free I/O buffers 179 * ========================================================================== 180 */ 181 182 /* 183 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 184 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 185 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 186 * excess / transient data in-core during a crashdump. 187 */ 188 void * 189 zio_buf_alloc(size_t size) 190 { 191 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 192 193 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 194 195 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 196 } 197 198 /* 199 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 200 * crashdump if the kernel panics. This exists so that we will limit the amount 201 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 202 * of kernel heap dumped to disk when the kernel panics) 203 */ 204 void * 205 zio_data_buf_alloc(size_t size) 206 { 207 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 208 209 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 210 211 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 212 } 213 214 void 215 zio_buf_free(void *buf, size_t size) 216 { 217 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 218 219 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 220 221 kmem_cache_free(zio_buf_cache[c], buf); 222 } 223 224 void 225 zio_data_buf_free(void *buf, size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 kmem_cache_free(zio_data_buf_cache[c], buf); 232 } 233 234 /* 235 * ========================================================================== 236 * Push and pop I/O transform buffers 237 * ========================================================================== 238 */ 239 static void 240 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 241 zio_transform_func_t *transform) 242 { 243 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 244 245 zt->zt_orig_data = zio->io_data; 246 zt->zt_orig_size = zio->io_size; 247 zt->zt_bufsize = bufsize; 248 zt->zt_transform = transform; 249 250 zt->zt_next = zio->io_transform_stack; 251 zio->io_transform_stack = zt; 252 253 zio->io_data = data; 254 zio->io_size = size; 255 } 256 257 static void 258 zio_pop_transforms(zio_t *zio) 259 { 260 zio_transform_t *zt; 261 262 while ((zt = zio->io_transform_stack) != NULL) { 263 if (zt->zt_transform != NULL) 264 zt->zt_transform(zio, 265 zt->zt_orig_data, zt->zt_orig_size); 266 267 zio_buf_free(zio->io_data, zt->zt_bufsize); 268 269 zio->io_data = zt->zt_orig_data; 270 zio->io_size = zt->zt_orig_size; 271 zio->io_transform_stack = zt->zt_next; 272 273 kmem_free(zt, sizeof (zio_transform_t)); 274 } 275 } 276 277 /* 278 * ========================================================================== 279 * I/O transform callbacks for subblocks and decompression 280 * ========================================================================== 281 */ 282 static void 283 zio_subblock(zio_t *zio, void *data, uint64_t size) 284 { 285 ASSERT(zio->io_size > size); 286 287 if (zio->io_type == ZIO_TYPE_READ) 288 bcopy(zio->io_data, data, size); 289 } 290 291 static void 292 zio_decompress(zio_t *zio, void *data, uint64_t size) 293 { 294 if (zio->io_error == 0 && 295 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 296 zio->io_data, zio->io_size, data, size) != 0) 297 zio->io_error = EIO; 298 } 299 300 /* 301 * ========================================================================== 302 * I/O parent/child relationships and pipeline interlocks 303 * ========================================================================== 304 */ 305 /* 306 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 307 * continue calling these functions until they return NULL. 308 * Otherwise, the next caller will pick up the list walk in 309 * some indeterminate state. (Otherwise every caller would 310 * have to pass in a cookie to keep the state represented by 311 * io_walk_link, which gets annoying.) 312 */ 313 zio_t * 314 zio_walk_parents(zio_t *cio) 315 { 316 zio_link_t *zl = cio->io_walk_link; 317 list_t *pl = &cio->io_parent_list; 318 319 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 320 cio->io_walk_link = zl; 321 322 if (zl == NULL) 323 return (NULL); 324 325 ASSERT(zl->zl_child == cio); 326 return (zl->zl_parent); 327 } 328 329 zio_t * 330 zio_walk_children(zio_t *pio) 331 { 332 zio_link_t *zl = pio->io_walk_link; 333 list_t *cl = &pio->io_child_list; 334 335 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 336 pio->io_walk_link = zl; 337 338 if (zl == NULL) 339 return (NULL); 340 341 ASSERT(zl->zl_parent == pio); 342 return (zl->zl_child); 343 } 344 345 zio_t * 346 zio_unique_parent(zio_t *cio) 347 { 348 zio_t *pio = zio_walk_parents(cio); 349 350 VERIFY(zio_walk_parents(cio) == NULL); 351 return (pio); 352 } 353 354 void 355 zio_add_child(zio_t *pio, zio_t *cio) 356 { 357 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 358 359 /* 360 * Logical I/Os can have logical, gang, or vdev children. 361 * Gang I/Os can have gang or vdev children. 362 * Vdev I/Os can only have vdev children. 363 * The following ASSERT captures all of these constraints. 364 */ 365 ASSERT(cio->io_child_type <= pio->io_child_type); 366 367 zl->zl_parent = pio; 368 zl->zl_child = cio; 369 370 mutex_enter(&cio->io_lock); 371 mutex_enter(&pio->io_lock); 372 373 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 374 375 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 376 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 377 378 list_insert_head(&pio->io_child_list, zl); 379 list_insert_head(&cio->io_parent_list, zl); 380 381 mutex_exit(&pio->io_lock); 382 mutex_exit(&cio->io_lock); 383 } 384 385 static void 386 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 387 { 388 ASSERT(zl->zl_parent == pio); 389 ASSERT(zl->zl_child == cio); 390 391 mutex_enter(&cio->io_lock); 392 mutex_enter(&pio->io_lock); 393 394 list_remove(&pio->io_child_list, zl); 395 list_remove(&cio->io_parent_list, zl); 396 397 mutex_exit(&pio->io_lock); 398 mutex_exit(&cio->io_lock); 399 400 kmem_cache_free(zio_link_cache, zl); 401 } 402 403 static boolean_t 404 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 405 { 406 uint64_t *countp = &zio->io_children[child][wait]; 407 boolean_t waiting = B_FALSE; 408 409 mutex_enter(&zio->io_lock); 410 ASSERT(zio->io_stall == NULL); 411 if (*countp != 0) { 412 zio->io_stage--; 413 zio->io_stall = countp; 414 waiting = B_TRUE; 415 } 416 mutex_exit(&zio->io_lock); 417 418 return (waiting); 419 } 420 421 static void 422 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 423 { 424 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 425 int *errorp = &pio->io_child_error[zio->io_child_type]; 426 427 mutex_enter(&pio->io_lock); 428 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 429 *errorp = zio_worst_error(*errorp, zio->io_error); 430 pio->io_reexecute |= zio->io_reexecute; 431 ASSERT3U(*countp, >, 0); 432 if (--*countp == 0 && pio->io_stall == countp) { 433 pio->io_stall = NULL; 434 mutex_exit(&pio->io_lock); 435 zio_execute(pio); 436 } else { 437 mutex_exit(&pio->io_lock); 438 } 439 } 440 441 static void 442 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 443 { 444 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 445 zio->io_error = zio->io_child_error[c]; 446 } 447 448 /* 449 * ========================================================================== 450 * Create the various types of I/O (read, write, free, etc) 451 * ========================================================================== 452 */ 453 static zio_t * 454 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 455 void *data, uint64_t size, zio_done_func_t *done, void *private, 456 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, 457 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) 458 { 459 zio_t *zio; 460 461 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 462 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 463 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 464 465 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 466 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 467 ASSERT(vd || stage == ZIO_STAGE_OPEN); 468 469 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 470 bzero(zio, sizeof (zio_t)); 471 472 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 473 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 474 475 list_create(&zio->io_parent_list, sizeof (zio_link_t), 476 offsetof(zio_link_t, zl_parent_node)); 477 list_create(&zio->io_child_list, sizeof (zio_link_t), 478 offsetof(zio_link_t, zl_child_node)); 479 480 if (vd != NULL) 481 zio->io_child_type = ZIO_CHILD_VDEV; 482 else if (flags & ZIO_FLAG_GANG_CHILD) 483 zio->io_child_type = ZIO_CHILD_GANG; 484 else 485 zio->io_child_type = ZIO_CHILD_LOGICAL; 486 487 if (bp != NULL) { 488 zio->io_bp = bp; 489 zio->io_bp_copy = *bp; 490 zio->io_bp_orig = *bp; 491 if (type != ZIO_TYPE_WRITE) 492 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 493 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 494 if (BP_IS_GANG(bp)) 495 pipeline |= ZIO_GANG_STAGES; 496 zio->io_logical = zio; 497 } 498 } 499 500 zio->io_spa = spa; 501 zio->io_txg = txg; 502 zio->io_data = data; 503 zio->io_size = size; 504 zio->io_done = done; 505 zio->io_private = private; 506 zio->io_type = type; 507 zio->io_priority = priority; 508 zio->io_vd = vd; 509 zio->io_offset = offset; 510 zio->io_orig_flags = zio->io_flags = flags; 511 zio->io_orig_stage = zio->io_stage = stage; 512 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 513 514 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 515 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 516 517 if (zb != NULL) 518 zio->io_bookmark = *zb; 519 520 if (pio != NULL) { 521 if (zio->io_logical == NULL) 522 zio->io_logical = pio->io_logical; 523 zio_add_child(pio, zio); 524 } 525 526 return (zio); 527 } 528 529 static void 530 zio_destroy(zio_t *zio) 531 { 532 spa_t *spa = zio->io_spa; 533 uint8_t async_root = zio->io_async_root; 534 535 list_destroy(&zio->io_parent_list); 536 list_destroy(&zio->io_child_list); 537 mutex_destroy(&zio->io_lock); 538 cv_destroy(&zio->io_cv); 539 kmem_cache_free(zio_cache, zio); 540 541 if (async_root) { 542 mutex_enter(&spa->spa_async_root_lock); 543 if (--spa->spa_async_root_count == 0) 544 cv_broadcast(&spa->spa_async_root_cv); 545 mutex_exit(&spa->spa_async_root_lock); 546 } 547 } 548 549 zio_t * 550 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 551 void *private, int flags) 552 { 553 zio_t *zio; 554 555 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 556 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 557 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 558 559 return (zio); 560 } 561 562 zio_t * 563 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 564 { 565 return (zio_null(NULL, spa, NULL, done, private, flags)); 566 } 567 568 zio_t * 569 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 570 void *data, uint64_t size, zio_done_func_t *done, void *private, 571 int priority, int flags, const zbookmark_t *zb) 572 { 573 zio_t *zio; 574 575 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, 576 data, size, done, private, 577 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 578 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 579 580 return (zio); 581 } 582 583 void 584 zio_skip_write(zio_t *zio) 585 { 586 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 587 ASSERT(zio->io_stage == ZIO_STAGE_READY); 588 ASSERT(!BP_IS_GANG(zio->io_bp)); 589 590 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 591 } 592 593 zio_t * 594 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 595 void *data, uint64_t size, zio_prop_t *zp, 596 zio_done_func_t *ready, zio_done_func_t *done, void *private, 597 int priority, int flags, const zbookmark_t *zb) 598 { 599 zio_t *zio; 600 601 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 602 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 603 zp->zp_compress >= ZIO_COMPRESS_OFF && 604 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 605 zp->zp_type < DMU_OT_NUMTYPES && 606 zp->zp_level < 32 && 607 zp->zp_ndvas > 0 && 608 zp->zp_ndvas <= spa_max_replication(spa)); 609 ASSERT(ready != NULL); 610 611 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 612 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 613 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 614 615 zio->io_ready = ready; 616 zio->io_prop = *zp; 617 618 return (zio); 619 } 620 621 zio_t * 622 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 623 uint64_t size, zio_done_func_t *done, void *private, int priority, 624 int flags, zbookmark_t *zb) 625 { 626 zio_t *zio; 627 628 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 629 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 630 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 631 632 return (zio); 633 } 634 635 zio_t * 636 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 637 zio_done_func_t *done, void *private, int flags) 638 { 639 zio_t *zio; 640 641 ASSERT(!BP_IS_HOLE(bp)); 642 643 if (bp->blk_fill == BLK_FILL_ALREADY_FREED) 644 return (zio_null(pio, spa, NULL, NULL, NULL, flags)); 645 646 if (txg == spa->spa_syncing_txg && 647 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { 648 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 649 return (zio_null(pio, spa, NULL, NULL, NULL, flags)); 650 } 651 652 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 653 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 654 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 655 656 return (zio); 657 } 658 659 zio_t * 660 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 661 zio_done_func_t *done, void *private, int flags) 662 { 663 zio_t *zio; 664 665 /* 666 * A claim is an allocation of a specific block. Claims are needed 667 * to support immediate writes in the intent log. The issue is that 668 * immediate writes contain committed data, but in a txg that was 669 * *not* committed. Upon opening the pool after an unclean shutdown, 670 * the intent log claims all blocks that contain immediate write data 671 * so that the SPA knows they're in use. 672 * 673 * All claims *must* be resolved in the first txg -- before the SPA 674 * starts allocating blocks -- so that nothing is allocated twice. 675 */ 676 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 677 ASSERT3U(spa_first_txg(spa), <=, txg); 678 679 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 680 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 681 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 682 683 return (zio); 684 } 685 686 zio_t * 687 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 688 zio_done_func_t *done, void *private, int priority, int flags) 689 { 690 zio_t *zio; 691 int c; 692 693 if (vd->vdev_children == 0) { 694 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 695 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 696 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 697 698 zio->io_cmd = cmd; 699 } else { 700 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 701 702 for (c = 0; c < vd->vdev_children; c++) 703 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 704 done, private, priority, flags)); 705 } 706 707 return (zio); 708 } 709 710 zio_t * 711 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 712 void *data, int checksum, zio_done_func_t *done, void *private, 713 int priority, int flags, boolean_t labels) 714 { 715 zio_t *zio; 716 717 ASSERT(vd->vdev_children == 0); 718 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 719 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 720 ASSERT3U(offset + size, <=, vd->vdev_psize); 721 722 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 723 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 724 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 725 726 zio->io_prop.zp_checksum = checksum; 727 728 return (zio); 729 } 730 731 zio_t * 732 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 733 void *data, int checksum, zio_done_func_t *done, void *private, 734 int priority, int flags, boolean_t labels) 735 { 736 zio_t *zio; 737 738 ASSERT(vd->vdev_children == 0); 739 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 740 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 741 ASSERT3U(offset + size, <=, vd->vdev_psize); 742 743 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 744 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 745 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 746 747 zio->io_prop.zp_checksum = checksum; 748 749 if (zio_checksum_table[checksum].ci_zbt) { 750 /* 751 * zbt checksums are necessarily destructive -- they modify 752 * the end of the write buffer to hold the verifier/checksum. 753 * Therefore, we must make a local copy in case the data is 754 * being written to multiple places in parallel. 755 */ 756 void *wbuf = zio_buf_alloc(size); 757 bcopy(data, wbuf, size); 758 zio_push_transform(zio, wbuf, size, size, NULL); 759 } 760 761 return (zio); 762 } 763 764 /* 765 * Create a child I/O to do some work for us. 766 */ 767 zio_t * 768 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 769 void *data, uint64_t size, int type, int priority, int flags, 770 zio_done_func_t *done, void *private) 771 { 772 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 773 zio_t *zio; 774 775 ASSERT(vd->vdev_parent == 776 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 777 778 if (type == ZIO_TYPE_READ && bp != NULL) { 779 /* 780 * If we have the bp, then the child should perform the 781 * checksum and the parent need not. This pushes error 782 * detection as close to the leaves as possible and 783 * eliminates redundant checksums in the interior nodes. 784 */ 785 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 786 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 787 } 788 789 if (vd->vdev_children == 0) 790 offset += VDEV_LABEL_START_SIZE; 791 792 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 793 done, private, type, priority, 794 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | 795 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, 796 vd, offset, &pio->io_bookmark, 797 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 798 799 return (zio); 800 } 801 802 zio_t * 803 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 804 int type, int priority, int flags, zio_done_func_t *done, void *private) 805 { 806 zio_t *zio; 807 808 ASSERT(vd->vdev_ops->vdev_op_leaf); 809 810 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 811 data, size, done, private, type, priority, 812 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 813 vd, offset, NULL, 814 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); 815 816 return (zio); 817 } 818 819 void 820 zio_flush(zio_t *zio, vdev_t *vd) 821 { 822 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 823 NULL, NULL, ZIO_PRIORITY_NOW, 824 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 825 } 826 827 /* 828 * ========================================================================== 829 * Prepare to read and write logical blocks 830 * ========================================================================== 831 */ 832 833 static int 834 zio_read_bp_init(zio_t *zio) 835 { 836 blkptr_t *bp = zio->io_bp; 837 838 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 839 zio->io_logical == zio && !(zio->io_flags & ZIO_FLAG_RAW)) { 840 uint64_t csize = BP_GET_PSIZE(bp); 841 void *cbuf = zio_buf_alloc(csize); 842 843 zio_push_transform(zio, cbuf, csize, csize, zio_decompress); 844 } 845 846 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 847 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 848 849 return (ZIO_PIPELINE_CONTINUE); 850 } 851 852 static int 853 zio_write_bp_init(zio_t *zio) 854 { 855 zio_prop_t *zp = &zio->io_prop; 856 int compress = zp->zp_compress; 857 blkptr_t *bp = zio->io_bp; 858 void *cbuf; 859 uint64_t lsize = zio->io_size; 860 uint64_t csize = lsize; 861 uint64_t cbufsize = 0; 862 int pass = 1; 863 864 /* 865 * If our children haven't all reached the ready stage, 866 * wait for them and then repeat this pipeline stage. 867 */ 868 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 869 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 870 return (ZIO_PIPELINE_STOP); 871 872 if (!IO_IS_ALLOCATING(zio)) 873 return (ZIO_PIPELINE_CONTINUE); 874 875 ASSERT(compress != ZIO_COMPRESS_INHERIT); 876 877 if (bp->blk_birth == zio->io_txg) { 878 /* 879 * We're rewriting an existing block, which means we're 880 * working on behalf of spa_sync(). For spa_sync() to 881 * converge, it must eventually be the case that we don't 882 * have to allocate new blocks. But compression changes 883 * the blocksize, which forces a reallocate, and makes 884 * convergence take longer. Therefore, after the first 885 * few passes, stop compressing to ensure convergence. 886 */ 887 pass = spa_sync_pass(zio->io_spa); 888 ASSERT(pass > 1); 889 890 if (pass > SYNC_PASS_DONT_COMPRESS) 891 compress = ZIO_COMPRESS_OFF; 892 893 /* 894 * Only MOS (objset 0) data should need to be rewritten. 895 */ 896 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0); 897 898 /* Make sure someone doesn't change their mind on overwrites */ 899 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), 900 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); 901 } 902 903 if (compress != ZIO_COMPRESS_OFF) { 904 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 905 &cbuf, &csize, &cbufsize)) { 906 compress = ZIO_COMPRESS_OFF; 907 } else if (csize != 0) { 908 zio_push_transform(zio, cbuf, csize, cbufsize, NULL); 909 } 910 } 911 912 /* 913 * The final pass of spa_sync() must be all rewrites, but the first 914 * few passes offer a trade-off: allocating blocks defers convergence, 915 * but newly allocated blocks are sequential, so they can be written 916 * to disk faster. Therefore, we allow the first few passes of 917 * spa_sync() to allocate new blocks, but force rewrites after that. 918 * There should only be a handful of blocks after pass 1 in any case. 919 */ 920 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 921 pass > SYNC_PASS_REWRITE) { 922 ASSERT(csize != 0); 923 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 924 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 925 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 926 } else { 927 BP_ZERO(bp); 928 zio->io_pipeline = ZIO_WRITE_PIPELINE; 929 } 930 931 if (csize == 0) { 932 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 933 } else { 934 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 935 BP_SET_LSIZE(bp, lsize); 936 BP_SET_PSIZE(bp, csize); 937 BP_SET_COMPRESS(bp, compress); 938 BP_SET_CHECKSUM(bp, zp->zp_checksum); 939 BP_SET_TYPE(bp, zp->zp_type); 940 BP_SET_LEVEL(bp, zp->zp_level); 941 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 942 } 943 944 return (ZIO_PIPELINE_CONTINUE); 945 } 946 947 /* 948 * ========================================================================== 949 * Execute the I/O pipeline 950 * ========================================================================== 951 */ 952 953 static void 954 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) 955 { 956 zio_type_t t = zio->io_type; 957 958 /* 959 * If we're a config writer, the normal issue and interrupt threads 960 * may all be blocked waiting for the config lock. In this case, 961 * select the otherwise-unused taskq for ZIO_TYPE_NULL. 962 */ 963 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) 964 t = ZIO_TYPE_NULL; 965 966 /* 967 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 968 */ 969 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 970 t = ZIO_TYPE_NULL; 971 972 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], 973 (task_func_t *)zio_execute, zio, TQ_SLEEP); 974 } 975 976 static boolean_t 977 zio_taskq_member(zio_t *zio, enum zio_taskq_type q) 978 { 979 kthread_t *executor = zio->io_executor; 980 spa_t *spa = zio->io_spa; 981 982 for (zio_type_t t = 0; t < ZIO_TYPES; t++) 983 if (taskq_member(spa->spa_zio_taskq[t][q], executor)) 984 return (B_TRUE); 985 986 return (B_FALSE); 987 } 988 989 static int 990 zio_issue_async(zio_t *zio) 991 { 992 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 993 994 return (ZIO_PIPELINE_STOP); 995 } 996 997 void 998 zio_interrupt(zio_t *zio) 999 { 1000 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); 1001 } 1002 1003 /* 1004 * Execute the I/O pipeline until one of the following occurs: 1005 * (1) the I/O completes; (2) the pipeline stalls waiting for 1006 * dependent child I/Os; (3) the I/O issues, so we're waiting 1007 * for an I/O completion interrupt; (4) the I/O is delegated by 1008 * vdev-level caching or aggregation; (5) the I/O is deferred 1009 * due to vdev-level queueing; (6) the I/O is handed off to 1010 * another thread. In all cases, the pipeline stops whenever 1011 * there's no CPU work; it never burns a thread in cv_wait(). 1012 * 1013 * There's no locking on io_stage because there's no legitimate way 1014 * for multiple threads to be attempting to process the same I/O. 1015 */ 1016 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; 1017 1018 void 1019 zio_execute(zio_t *zio) 1020 { 1021 zio->io_executor = curthread; 1022 1023 while (zio->io_stage < ZIO_STAGE_DONE) { 1024 uint32_t pipeline = zio->io_pipeline; 1025 zio_stage_t stage = zio->io_stage; 1026 int rv; 1027 1028 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1029 1030 while (((1U << ++stage) & pipeline) == 0) 1031 continue; 1032 1033 ASSERT(stage <= ZIO_STAGE_DONE); 1034 ASSERT(zio->io_stall == NULL); 1035 1036 /* 1037 * If we are in interrupt context and this pipeline stage 1038 * will grab a config lock that is held across I/O, 1039 * issue async to avoid deadlock. 1040 */ 1041 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && 1042 zio->io_vd == NULL && 1043 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1044 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1045 return; 1046 } 1047 1048 zio->io_stage = stage; 1049 rv = zio_pipeline[stage](zio); 1050 1051 if (rv == ZIO_PIPELINE_STOP) 1052 return; 1053 1054 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1055 } 1056 } 1057 1058 /* 1059 * ========================================================================== 1060 * Initiate I/O, either sync or async 1061 * ========================================================================== 1062 */ 1063 int 1064 zio_wait(zio_t *zio) 1065 { 1066 int error; 1067 1068 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1069 ASSERT(zio->io_executor == NULL); 1070 1071 zio->io_waiter = curthread; 1072 1073 zio_execute(zio); 1074 1075 mutex_enter(&zio->io_lock); 1076 while (zio->io_executor != NULL) 1077 cv_wait(&zio->io_cv, &zio->io_lock); 1078 mutex_exit(&zio->io_lock); 1079 1080 error = zio->io_error; 1081 zio_destroy(zio); 1082 1083 return (error); 1084 } 1085 1086 void 1087 zio_nowait(zio_t *zio) 1088 { 1089 ASSERT(zio->io_executor == NULL); 1090 1091 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1092 zio_unique_parent(zio) == NULL) { 1093 /* 1094 * This is a logical async I/O with no parent to wait for it. 1095 * Track how many outstanding I/Os of this type exist so 1096 * that spa_unload() knows when they are all done. 1097 */ 1098 spa_t *spa = zio->io_spa; 1099 zio->io_async_root = B_TRUE; 1100 mutex_enter(&spa->spa_async_root_lock); 1101 spa->spa_async_root_count++; 1102 mutex_exit(&spa->spa_async_root_lock); 1103 } 1104 1105 zio_execute(zio); 1106 } 1107 1108 /* 1109 * ========================================================================== 1110 * Reexecute or suspend/resume failed I/O 1111 * ========================================================================== 1112 */ 1113 1114 static void 1115 zio_reexecute(zio_t *pio) 1116 { 1117 zio_t *cio, *cio_next; 1118 1119 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1120 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1121 1122 pio->io_flags = pio->io_orig_flags; 1123 pio->io_stage = pio->io_orig_stage; 1124 pio->io_pipeline = pio->io_orig_pipeline; 1125 pio->io_reexecute = 0; 1126 pio->io_error = 0; 1127 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1128 pio->io_state[w] = 0; 1129 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1130 pio->io_child_error[c] = 0; 1131 1132 if (IO_IS_ALLOCATING(pio)) { 1133 /* 1134 * Remember the failed bp so that the io_ready() callback 1135 * can update its accounting upon reexecution. The block 1136 * was already freed in zio_done(); we indicate this with 1137 * a fill count of -1 so that zio_free() knows to skip it. 1138 */ 1139 blkptr_t *bp = pio->io_bp; 1140 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); 1141 bp->blk_fill = BLK_FILL_ALREADY_FREED; 1142 pio->io_bp_orig = *bp; 1143 BP_ZERO(bp); 1144 } 1145 1146 /* 1147 * As we reexecute pio's children, new children could be created. 1148 * New children go to the head of pio's io_child_list, however, 1149 * so we will (correctly) not reexecute them. The key is that 1150 * the remainder of pio's io_child_list, from 'cio_next' onward, 1151 * cannot be affected by any side effects of reexecuting 'cio'. 1152 */ 1153 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1154 cio_next = zio_walk_children(pio); 1155 mutex_enter(&pio->io_lock); 1156 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1157 pio->io_children[cio->io_child_type][w]++; 1158 mutex_exit(&pio->io_lock); 1159 zio_reexecute(cio); 1160 } 1161 1162 /* 1163 * Now that all children have been reexecuted, execute the parent. 1164 */ 1165 zio_execute(pio); 1166 } 1167 1168 void 1169 zio_suspend(spa_t *spa, zio_t *zio) 1170 { 1171 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1172 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1173 "failure and the failure mode property for this pool " 1174 "is set to panic.", spa_name(spa)); 1175 1176 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1177 1178 mutex_enter(&spa->spa_suspend_lock); 1179 1180 if (spa->spa_suspend_zio_root == NULL) 1181 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0); 1182 1183 spa->spa_suspended = B_TRUE; 1184 1185 if (zio != NULL) { 1186 ASSERT(zio != spa->spa_suspend_zio_root); 1187 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1188 ASSERT(zio_unique_parent(zio) == NULL); 1189 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1190 zio_add_child(spa->spa_suspend_zio_root, zio); 1191 } 1192 1193 mutex_exit(&spa->spa_suspend_lock); 1194 } 1195 1196 void 1197 zio_resume(spa_t *spa) 1198 { 1199 zio_t *pio, *cio, *cio_next; 1200 1201 /* 1202 * Reexecute all previously suspended i/o. 1203 */ 1204 mutex_enter(&spa->spa_suspend_lock); 1205 spa->spa_suspended = B_FALSE; 1206 cv_broadcast(&spa->spa_suspend_cv); 1207 pio = spa->spa_suspend_zio_root; 1208 spa->spa_suspend_zio_root = NULL; 1209 mutex_exit(&spa->spa_suspend_lock); 1210 1211 if (pio == NULL) 1212 return; 1213 1214 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1215 zio_link_t *zl = pio->io_walk_link; 1216 cio_next = zio_walk_children(pio); 1217 zio_remove_child(pio, cio, zl); 1218 zio_reexecute(cio); 1219 } 1220 1221 ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0); 1222 1223 (void) zio_wait(pio); 1224 } 1225 1226 void 1227 zio_resume_wait(spa_t *spa) 1228 { 1229 mutex_enter(&spa->spa_suspend_lock); 1230 while (spa_suspended(spa)) 1231 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1232 mutex_exit(&spa->spa_suspend_lock); 1233 } 1234 1235 /* 1236 * ========================================================================== 1237 * Gang blocks. 1238 * 1239 * A gang block is a collection of small blocks that looks to the DMU 1240 * like one large block. When zio_dva_allocate() cannot find a block 1241 * of the requested size, due to either severe fragmentation or the pool 1242 * being nearly full, it calls zio_write_gang_block() to construct the 1243 * block from smaller fragments. 1244 * 1245 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1246 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1247 * an indirect block: it's an array of block pointers. It consumes 1248 * only one sector and hence is allocatable regardless of fragmentation. 1249 * The gang header's bps point to its gang members, which hold the data. 1250 * 1251 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1252 * as the verifier to ensure uniqueness of the SHA256 checksum. 1253 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1254 * not the gang header. This ensures that data block signatures (needed for 1255 * deduplication) are independent of how the block is physically stored. 1256 * 1257 * Gang blocks can be nested: a gang member may itself be a gang block. 1258 * Thus every gang block is a tree in which root and all interior nodes are 1259 * gang headers, and the leaves are normal blocks that contain user data. 1260 * The root of the gang tree is called the gang leader. 1261 * 1262 * To perform any operation (read, rewrite, free, claim) on a gang block, 1263 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1264 * in the io_gang_tree field of the original logical i/o by recursively 1265 * reading the gang leader and all gang headers below it. This yields 1266 * an in-core tree containing the contents of every gang header and the 1267 * bps for every constituent of the gang block. 1268 * 1269 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1270 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1271 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1272 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1273 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1274 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1275 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1276 * of the gang header plus zio_checksum_compute() of the data to update the 1277 * gang header's blk_cksum as described above. 1278 * 1279 * The two-phase assemble/issue model solves the problem of partial failure -- 1280 * what if you'd freed part of a gang block but then couldn't read the 1281 * gang header for another part? Assembling the entire gang tree first 1282 * ensures that all the necessary gang header I/O has succeeded before 1283 * starting the actual work of free, claim, or write. Once the gang tree 1284 * is assembled, free and claim are in-memory operations that cannot fail. 1285 * 1286 * In the event that a gang write fails, zio_dva_unallocate() walks the 1287 * gang tree to immediately free (i.e. insert back into the space map) 1288 * everything we've allocated. This ensures that we don't get ENOSPC 1289 * errors during repeated suspend/resume cycles due to a flaky device. 1290 * 1291 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1292 * the gang tree, we won't modify the block, so we can safely defer the free 1293 * (knowing that the block is still intact). If we *can* assemble the gang 1294 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1295 * each constituent bp and we can allocate a new block on the next sync pass. 1296 * 1297 * In all cases, the gang tree allows complete recovery from partial failure. 1298 * ========================================================================== 1299 */ 1300 1301 static zio_t * 1302 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1303 { 1304 if (gn != NULL) 1305 return (pio); 1306 1307 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1308 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1309 &pio->io_bookmark)); 1310 } 1311 1312 zio_t * 1313 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1314 { 1315 zio_t *zio; 1316 1317 if (gn != NULL) { 1318 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1319 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1320 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1321 /* 1322 * As we rewrite each gang header, the pipeline will compute 1323 * a new gang block header checksum for it; but no one will 1324 * compute a new data checksum, so we do that here. The one 1325 * exception is the gang leader: the pipeline already computed 1326 * its data checksum because that stage precedes gang assembly. 1327 * (Presently, nothing actually uses interior data checksums; 1328 * this is just good hygiene.) 1329 */ 1330 if (gn != pio->io_logical->io_gang_tree) { 1331 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1332 data, BP_GET_PSIZE(bp)); 1333 } 1334 } else { 1335 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1336 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1337 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1338 } 1339 1340 return (zio); 1341 } 1342 1343 /* ARGSUSED */ 1344 zio_t * 1345 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1346 { 1347 return (zio_free(pio, pio->io_spa, pio->io_txg, bp, 1348 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1349 } 1350 1351 /* ARGSUSED */ 1352 zio_t * 1353 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1354 { 1355 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1356 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1357 } 1358 1359 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1360 NULL, 1361 zio_read_gang, 1362 zio_rewrite_gang, 1363 zio_free_gang, 1364 zio_claim_gang, 1365 NULL 1366 }; 1367 1368 static void zio_gang_tree_assemble_done(zio_t *zio); 1369 1370 static zio_gang_node_t * 1371 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1372 { 1373 zio_gang_node_t *gn; 1374 1375 ASSERT(*gnpp == NULL); 1376 1377 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1378 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1379 *gnpp = gn; 1380 1381 return (gn); 1382 } 1383 1384 static void 1385 zio_gang_node_free(zio_gang_node_t **gnpp) 1386 { 1387 zio_gang_node_t *gn = *gnpp; 1388 1389 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1390 ASSERT(gn->gn_child[g] == NULL); 1391 1392 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1393 kmem_free(gn, sizeof (*gn)); 1394 *gnpp = NULL; 1395 } 1396 1397 static void 1398 zio_gang_tree_free(zio_gang_node_t **gnpp) 1399 { 1400 zio_gang_node_t *gn = *gnpp; 1401 1402 if (gn == NULL) 1403 return; 1404 1405 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1406 zio_gang_tree_free(&gn->gn_child[g]); 1407 1408 zio_gang_node_free(gnpp); 1409 } 1410 1411 static void 1412 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp) 1413 { 1414 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1415 1416 ASSERT(lio->io_logical == lio); 1417 ASSERT(BP_IS_GANG(bp)); 1418 1419 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh, 1420 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1421 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark)); 1422 } 1423 1424 static void 1425 zio_gang_tree_assemble_done(zio_t *zio) 1426 { 1427 zio_t *lio = zio->io_logical; 1428 zio_gang_node_t *gn = zio->io_private; 1429 blkptr_t *bp = zio->io_bp; 1430 zio_t *pio = zio_unique_parent(zio); 1431 1432 ASSERT(pio == lio); 1433 ASSERT(zio_walk_children(zio) == NULL); 1434 1435 if (zio->io_error) 1436 return; 1437 1438 if (BP_SHOULD_BYTESWAP(bp)) 1439 byteswap_uint64_array(zio->io_data, zio->io_size); 1440 1441 ASSERT(zio->io_data == gn->gn_gbh); 1442 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1443 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1444 1445 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1446 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1447 if (!BP_IS_GANG(gbp)) 1448 continue; 1449 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]); 1450 } 1451 } 1452 1453 static void 1454 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1455 { 1456 zio_t *lio = pio->io_logical; 1457 zio_t *zio; 1458 1459 ASSERT(BP_IS_GANG(bp) == !!gn); 1460 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp)); 1461 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree); 1462 1463 /* 1464 * If you're a gang header, your data is in gn->gn_gbh. 1465 * If you're a gang member, your data is in 'data' and gn == NULL. 1466 */ 1467 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data); 1468 1469 if (gn != NULL) { 1470 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1471 1472 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1473 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1474 if (BP_IS_HOLE(gbp)) 1475 continue; 1476 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1477 data = (char *)data + BP_GET_PSIZE(gbp); 1478 } 1479 } 1480 1481 if (gn == lio->io_gang_tree) 1482 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data); 1483 1484 if (zio != pio) 1485 zio_nowait(zio); 1486 } 1487 1488 static int 1489 zio_gang_assemble(zio_t *zio) 1490 { 1491 blkptr_t *bp = zio->io_bp; 1492 1493 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical); 1494 1495 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1496 1497 return (ZIO_PIPELINE_CONTINUE); 1498 } 1499 1500 static int 1501 zio_gang_issue(zio_t *zio) 1502 { 1503 zio_t *lio = zio->io_logical; 1504 blkptr_t *bp = zio->io_bp; 1505 1506 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1507 return (ZIO_PIPELINE_STOP); 1508 1509 ASSERT(BP_IS_GANG(bp) && zio == lio); 1510 1511 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1512 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data); 1513 else 1514 zio_gang_tree_free(&lio->io_gang_tree); 1515 1516 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1517 1518 return (ZIO_PIPELINE_CONTINUE); 1519 } 1520 1521 static void 1522 zio_write_gang_member_ready(zio_t *zio) 1523 { 1524 zio_t *pio = zio_unique_parent(zio); 1525 zio_t *lio = zio->io_logical; 1526 dva_t *cdva = zio->io_bp->blk_dva; 1527 dva_t *pdva = pio->io_bp->blk_dva; 1528 uint64_t asize; 1529 1530 if (BP_IS_HOLE(zio->io_bp)) 1531 return; 1532 1533 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1534 1535 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1536 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas); 1537 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1538 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1539 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1540 1541 mutex_enter(&pio->io_lock); 1542 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1543 ASSERT(DVA_GET_GANG(&pdva[d])); 1544 asize = DVA_GET_ASIZE(&pdva[d]); 1545 asize += DVA_GET_ASIZE(&cdva[d]); 1546 DVA_SET_ASIZE(&pdva[d], asize); 1547 } 1548 mutex_exit(&pio->io_lock); 1549 } 1550 1551 static int 1552 zio_write_gang_block(zio_t *pio) 1553 { 1554 spa_t *spa = pio->io_spa; 1555 blkptr_t *bp = pio->io_bp; 1556 zio_t *lio = pio->io_logical; 1557 zio_t *zio; 1558 zio_gang_node_t *gn, **gnpp; 1559 zio_gbh_phys_t *gbh; 1560 uint64_t txg = pio->io_txg; 1561 uint64_t resid = pio->io_size; 1562 uint64_t lsize; 1563 int ndvas = lio->io_prop.zp_ndvas; 1564 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1565 zio_prop_t zp; 1566 int error; 1567 1568 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, 1569 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp, 1570 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1571 if (error) { 1572 pio->io_error = error; 1573 return (ZIO_PIPELINE_CONTINUE); 1574 } 1575 1576 if (pio == lio) { 1577 gnpp = &lio->io_gang_tree; 1578 } else { 1579 gnpp = pio->io_private; 1580 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1581 } 1582 1583 gn = zio_gang_node_alloc(gnpp); 1584 gbh = gn->gn_gbh; 1585 bzero(gbh, SPA_GANGBLOCKSIZE); 1586 1587 /* 1588 * Create the gang header. 1589 */ 1590 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1591 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1592 1593 /* 1594 * Create and nowait the gang children. 1595 */ 1596 for (int g = 0; resid != 0; resid -= lsize, g++) { 1597 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1598 SPA_MINBLOCKSIZE); 1599 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1600 1601 zp.zp_checksum = lio->io_prop.zp_checksum; 1602 zp.zp_compress = ZIO_COMPRESS_OFF; 1603 zp.zp_type = DMU_OT_NONE; 1604 zp.zp_level = 0; 1605 zp.zp_ndvas = lio->io_prop.zp_ndvas; 1606 1607 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1608 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1609 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1610 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1611 &pio->io_bookmark)); 1612 } 1613 1614 /* 1615 * Set pio's pipeline to just wait for zio to finish. 1616 */ 1617 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1618 1619 zio_nowait(zio); 1620 1621 return (ZIO_PIPELINE_CONTINUE); 1622 } 1623 1624 /* 1625 * ========================================================================== 1626 * Allocate and free blocks 1627 * ========================================================================== 1628 */ 1629 1630 static int 1631 zio_dva_allocate(zio_t *zio) 1632 { 1633 spa_t *spa = zio->io_spa; 1634 metaslab_class_t *mc = spa->spa_normal_class; 1635 blkptr_t *bp = zio->io_bp; 1636 int error; 1637 1638 ASSERT(BP_IS_HOLE(bp)); 1639 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1640 ASSERT3U(zio->io_prop.zp_ndvas, >, 0); 1641 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); 1642 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1643 1644 error = metaslab_alloc(spa, mc, zio->io_size, bp, 1645 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); 1646 1647 if (error) { 1648 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 1649 return (zio_write_gang_block(zio)); 1650 zio->io_error = error; 1651 } 1652 1653 return (ZIO_PIPELINE_CONTINUE); 1654 } 1655 1656 static int 1657 zio_dva_free(zio_t *zio) 1658 { 1659 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 1660 1661 return (ZIO_PIPELINE_CONTINUE); 1662 } 1663 1664 static int 1665 zio_dva_claim(zio_t *zio) 1666 { 1667 int error; 1668 1669 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1670 if (error) 1671 zio->io_error = error; 1672 1673 return (ZIO_PIPELINE_CONTINUE); 1674 } 1675 1676 /* 1677 * Undo an allocation. This is used by zio_done() when an I/O fails 1678 * and we want to give back the block we just allocated. 1679 * This handles both normal blocks and gang blocks. 1680 */ 1681 static void 1682 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 1683 { 1684 spa_t *spa = zio->io_spa; 1685 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); 1686 1687 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 1688 1689 if (zio->io_bp == bp && !now) { 1690 /* 1691 * This is a rewrite for sync-to-convergence. 1692 * We can't do a metaslab_free(NOW) because bp wasn't allocated 1693 * during this sync pass, which means that metaslab_sync() 1694 * already committed the allocation. 1695 */ 1696 ASSERT(DVA_EQUAL(BP_IDENTITY(bp), 1697 BP_IDENTITY(&zio->io_bp_orig))); 1698 ASSERT(spa_sync_pass(spa) > 1); 1699 1700 if (BP_IS_GANG(bp) && gn == NULL) { 1701 /* 1702 * This is a gang leader whose gang header(s) we 1703 * couldn't read now, so defer the free until later. 1704 * The block should still be intact because without 1705 * the headers, we'd never even start the rewrite. 1706 */ 1707 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 1708 return; 1709 } 1710 } 1711 1712 if (!BP_IS_HOLE(bp)) 1713 metaslab_free(spa, bp, bp->blk_birth, now); 1714 1715 if (gn != NULL) { 1716 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1717 zio_dva_unallocate(zio, gn->gn_child[g], 1718 &gn->gn_gbh->zg_blkptr[g]); 1719 } 1720 } 1721 } 1722 1723 /* 1724 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1725 */ 1726 int 1727 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1728 uint64_t txg) 1729 { 1730 int error; 1731 1732 error = metaslab_alloc(spa, spa->spa_log_class, size, 1733 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1734 1735 if (error) 1736 error = metaslab_alloc(spa, spa->spa_normal_class, size, 1737 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1738 1739 if (error == 0) { 1740 BP_SET_LSIZE(new_bp, size); 1741 BP_SET_PSIZE(new_bp, size); 1742 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1743 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1744 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1745 BP_SET_LEVEL(new_bp, 0); 1746 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1747 } 1748 1749 return (error); 1750 } 1751 1752 /* 1753 * Free an intent log block. We know it can't be a gang block, so there's 1754 * nothing to do except metaslab_free() it. 1755 */ 1756 void 1757 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1758 { 1759 ASSERT(!BP_IS_GANG(bp)); 1760 1761 metaslab_free(spa, bp, txg, B_FALSE); 1762 } 1763 1764 /* 1765 * ========================================================================== 1766 * Read and write to physical devices 1767 * ========================================================================== 1768 */ 1769 static int 1770 zio_vdev_io_start(zio_t *zio) 1771 { 1772 vdev_t *vd = zio->io_vd; 1773 uint64_t align; 1774 spa_t *spa = zio->io_spa; 1775 1776 ASSERT(zio->io_error == 0); 1777 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 1778 1779 if (vd == NULL) { 1780 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1781 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 1782 1783 /* 1784 * The mirror_ops handle multiple DVAs in a single BP. 1785 */ 1786 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1787 } 1788 1789 align = 1ULL << vd->vdev_top->vdev_ashift; 1790 1791 if (P2PHASE(zio->io_size, align) != 0) { 1792 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1793 char *abuf = zio_buf_alloc(asize); 1794 ASSERT(vd == vd->vdev_top); 1795 if (zio->io_type == ZIO_TYPE_WRITE) { 1796 bcopy(zio->io_data, abuf, zio->io_size); 1797 bzero(abuf + zio->io_size, asize - zio->io_size); 1798 } 1799 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 1800 } 1801 1802 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1803 ASSERT(P2PHASE(zio->io_size, align) == 0); 1804 ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 1805 1806 /* 1807 * If this is a repair I/O, and there's no self-healing involved -- 1808 * that is, we're just resilvering what we expect to resilver -- 1809 * then don't do the I/O unless zio's txg is actually in vd's DTL. 1810 * This prevents spurious resilvering with nested replication. 1811 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 1812 * A is out of date, we'll read from C+D, then use the data to 1813 * resilver A+B -- but we don't actually want to resilver B, just A. 1814 * The top-level mirror has no way to know this, so instead we just 1815 * discard unnecessary repairs as we work our way down the vdev tree. 1816 * The same logic applies to any form of nested replication: 1817 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 1818 */ 1819 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 1820 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 1821 zio->io_txg != 0 && /* not a delegated i/o */ 1822 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 1823 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1824 zio_vdev_io_bypass(zio); 1825 return (ZIO_PIPELINE_CONTINUE); 1826 } 1827 1828 if (vd->vdev_ops->vdev_op_leaf && 1829 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 1830 1831 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 1832 return (ZIO_PIPELINE_CONTINUE); 1833 1834 if ((zio = vdev_queue_io(zio)) == NULL) 1835 return (ZIO_PIPELINE_STOP); 1836 1837 if (!vdev_accessible(vd, zio)) { 1838 zio->io_error = ENXIO; 1839 zio_interrupt(zio); 1840 return (ZIO_PIPELINE_STOP); 1841 } 1842 } 1843 1844 return (vd->vdev_ops->vdev_op_io_start(zio)); 1845 } 1846 1847 static int 1848 zio_vdev_io_done(zio_t *zio) 1849 { 1850 vdev_t *vd = zio->io_vd; 1851 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 1852 boolean_t unexpected_error = B_FALSE; 1853 1854 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1855 return (ZIO_PIPELINE_STOP); 1856 1857 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 1858 1859 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 1860 1861 vdev_queue_io_done(zio); 1862 1863 if (zio->io_type == ZIO_TYPE_WRITE) 1864 vdev_cache_write(zio); 1865 1866 if (zio_injection_enabled && zio->io_error == 0) 1867 zio->io_error = zio_handle_device_injection(vd, EIO); 1868 1869 if (zio_injection_enabled && zio->io_error == 0) 1870 zio->io_error = zio_handle_label_injection(zio, EIO); 1871 1872 if (zio->io_error) { 1873 if (!vdev_accessible(vd, zio)) { 1874 zio->io_error = ENXIO; 1875 } else { 1876 unexpected_error = B_TRUE; 1877 } 1878 } 1879 } 1880 1881 ops->vdev_op_io_done(zio); 1882 1883 if (unexpected_error) 1884 VERIFY(vdev_probe(vd, zio) == NULL); 1885 1886 return (ZIO_PIPELINE_CONTINUE); 1887 } 1888 1889 static int 1890 zio_vdev_io_assess(zio_t *zio) 1891 { 1892 vdev_t *vd = zio->io_vd; 1893 1894 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1895 return (ZIO_PIPELINE_STOP); 1896 1897 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1898 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 1899 1900 if (zio->io_vsd != NULL) { 1901 zio->io_vsd_free(zio); 1902 zio->io_vsd = NULL; 1903 } 1904 1905 if (zio_injection_enabled && zio->io_error == 0) 1906 zio->io_error = zio_handle_fault_injection(zio, EIO); 1907 1908 /* 1909 * If the I/O failed, determine whether we should attempt to retry it. 1910 */ 1911 if (zio->io_error && vd == NULL && 1912 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 1913 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 1914 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 1915 zio->io_error = 0; 1916 zio->io_flags |= ZIO_FLAG_IO_RETRY | 1917 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 1918 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1919 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1920 return (ZIO_PIPELINE_STOP); 1921 } 1922 1923 /* 1924 * If we got an error on a leaf device, convert it to ENXIO 1925 * if the device is not accessible at all. 1926 */ 1927 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 1928 !vdev_accessible(vd, zio)) 1929 zio->io_error = ENXIO; 1930 1931 /* 1932 * If we can't write to an interior vdev (mirror or RAID-Z), 1933 * set vdev_cant_write so that we stop trying to allocate from it. 1934 */ 1935 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 1936 vd != NULL && !vd->vdev_ops->vdev_op_leaf) 1937 vd->vdev_cant_write = B_TRUE; 1938 1939 if (zio->io_error) 1940 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1941 1942 return (ZIO_PIPELINE_CONTINUE); 1943 } 1944 1945 void 1946 zio_vdev_io_reissue(zio_t *zio) 1947 { 1948 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1949 ASSERT(zio->io_error == 0); 1950 1951 zio->io_stage--; 1952 } 1953 1954 void 1955 zio_vdev_io_redone(zio_t *zio) 1956 { 1957 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1958 1959 zio->io_stage--; 1960 } 1961 1962 void 1963 zio_vdev_io_bypass(zio_t *zio) 1964 { 1965 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1966 ASSERT(zio->io_error == 0); 1967 1968 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1969 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1970 } 1971 1972 /* 1973 * ========================================================================== 1974 * Generate and verify checksums 1975 * ========================================================================== 1976 */ 1977 static int 1978 zio_checksum_generate(zio_t *zio) 1979 { 1980 blkptr_t *bp = zio->io_bp; 1981 enum zio_checksum checksum; 1982 1983 if (bp == NULL) { 1984 /* 1985 * This is zio_write_phys(). 1986 * We're either generating a label checksum, or none at all. 1987 */ 1988 checksum = zio->io_prop.zp_checksum; 1989 1990 if (checksum == ZIO_CHECKSUM_OFF) 1991 return (ZIO_PIPELINE_CONTINUE); 1992 1993 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 1994 } else { 1995 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 1996 ASSERT(!IO_IS_ALLOCATING(zio)); 1997 checksum = ZIO_CHECKSUM_GANG_HEADER; 1998 } else { 1999 checksum = BP_GET_CHECKSUM(bp); 2000 } 2001 } 2002 2003 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2004 2005 return (ZIO_PIPELINE_CONTINUE); 2006 } 2007 2008 static int 2009 zio_checksum_verify(zio_t *zio) 2010 { 2011 blkptr_t *bp = zio->io_bp; 2012 int error; 2013 2014 if (bp == NULL) { 2015 /* 2016 * This is zio_read_phys(). 2017 * We're either verifying a label checksum, or nothing at all. 2018 */ 2019 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2020 return (ZIO_PIPELINE_CONTINUE); 2021 2022 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2023 } 2024 2025 if ((error = zio_checksum_error(zio)) != 0) { 2026 zio->io_error = error; 2027 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2028 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 2029 zio->io_spa, zio->io_vd, zio, 0, 0); 2030 } 2031 } 2032 2033 return (ZIO_PIPELINE_CONTINUE); 2034 } 2035 2036 /* 2037 * Called by RAID-Z to ensure we don't compute the checksum twice. 2038 */ 2039 void 2040 zio_checksum_verified(zio_t *zio) 2041 { 2042 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 2043 } 2044 2045 /* 2046 * ========================================================================== 2047 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2048 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2049 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2050 * indicate errors that are specific to one I/O, and most likely permanent. 2051 * Any other error is presumed to be worse because we weren't expecting it. 2052 * ========================================================================== 2053 */ 2054 int 2055 zio_worst_error(int e1, int e2) 2056 { 2057 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2058 int r1, r2; 2059 2060 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2061 if (e1 == zio_error_rank[r1]) 2062 break; 2063 2064 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2065 if (e2 == zio_error_rank[r2]) 2066 break; 2067 2068 return (r1 > r2 ? e1 : e2); 2069 } 2070 2071 /* 2072 * ========================================================================== 2073 * I/O completion 2074 * ========================================================================== 2075 */ 2076 static int 2077 zio_ready(zio_t *zio) 2078 { 2079 blkptr_t *bp = zio->io_bp; 2080 zio_t *pio, *pio_next; 2081 2082 if (zio->io_ready) { 2083 if (BP_IS_GANG(bp) && 2084 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) 2085 return (ZIO_PIPELINE_STOP); 2086 2087 ASSERT(IO_IS_ALLOCATING(zio)); 2088 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2089 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2090 2091 zio->io_ready(zio); 2092 } 2093 2094 if (bp != NULL && bp != &zio->io_bp_copy) 2095 zio->io_bp_copy = *bp; 2096 2097 if (zio->io_error) 2098 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2099 2100 mutex_enter(&zio->io_lock); 2101 zio->io_state[ZIO_WAIT_READY] = 1; 2102 pio = zio_walk_parents(zio); 2103 mutex_exit(&zio->io_lock); 2104 2105 /* 2106 * As we notify zio's parents, new parents could be added. 2107 * New parents go to the head of zio's io_parent_list, however, 2108 * so we will (correctly) not notify them. The remainder of zio's 2109 * io_parent_list, from 'pio_next' onward, cannot change because 2110 * all parents must wait for us to be done before they can be done. 2111 */ 2112 for (; pio != NULL; pio = pio_next) { 2113 pio_next = zio_walk_parents(zio); 2114 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2115 } 2116 2117 return (ZIO_PIPELINE_CONTINUE); 2118 } 2119 2120 static int 2121 zio_done(zio_t *zio) 2122 { 2123 spa_t *spa = zio->io_spa; 2124 zio_t *lio = zio->io_logical; 2125 blkptr_t *bp = zio->io_bp; 2126 vdev_t *vd = zio->io_vd; 2127 uint64_t psize = zio->io_size; 2128 zio_t *pio, *pio_next; 2129 2130 /* 2131 * If our of children haven't all completed, 2132 * wait for them and then repeat this pipeline stage. 2133 */ 2134 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2135 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2136 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2137 return (ZIO_PIPELINE_STOP); 2138 2139 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2140 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2141 ASSERT(zio->io_children[c][w] == 0); 2142 2143 if (bp != NULL) { 2144 ASSERT(bp->blk_pad[0] == 0); 2145 ASSERT(bp->blk_pad[1] == 0); 2146 ASSERT(bp->blk_pad[2] == 0); 2147 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2148 (bp == zio_unique_parent(zio)->io_bp)); 2149 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2150 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2151 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2152 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); 2153 ASSERT(BP_COUNT_GANG(bp) == 0 || 2154 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2155 } 2156 } 2157 2158 /* 2159 * If there were child vdev or gang errors, they apply to us now. 2160 */ 2161 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2162 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2163 2164 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2165 2166 vdev_stat_update(zio, psize); 2167 2168 if (zio->io_error) { 2169 /* 2170 * If this I/O is attached to a particular vdev, 2171 * generate an error message describing the I/O failure 2172 * at the block level. We ignore these errors if the 2173 * device is currently unavailable. 2174 */ 2175 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2176 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2177 2178 if ((zio->io_error == EIO || 2179 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { 2180 /* 2181 * For logical I/O requests, tell the SPA to log the 2182 * error and generate a logical data ereport. 2183 */ 2184 spa_log_error(spa, zio); 2185 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2186 0, 0); 2187 } 2188 } 2189 2190 if (zio->io_error && zio == lio) { 2191 /* 2192 * Determine whether zio should be reexecuted. This will 2193 * propagate all the way to the root via zio_notify_parent(). 2194 */ 2195 ASSERT(vd == NULL && bp != NULL); 2196 2197 if (IO_IS_ALLOCATING(zio)) 2198 if (zio->io_error != ENOSPC) 2199 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2200 else 2201 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2202 2203 if ((zio->io_type == ZIO_TYPE_READ || 2204 zio->io_type == ZIO_TYPE_FREE) && 2205 zio->io_error == ENXIO && 2206 spa->spa_load_state == SPA_LOAD_NONE && 2207 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2208 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2209 2210 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2211 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2212 } 2213 2214 /* 2215 * If there were logical child errors, they apply to us now. 2216 * We defer this until now to avoid conflating logical child 2217 * errors with errors that happened to the zio itself when 2218 * updating vdev stats and reporting FMA events above. 2219 */ 2220 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2221 2222 if (zio->io_reexecute) { 2223 /* 2224 * This is a logical I/O that wants to reexecute. 2225 * 2226 * Reexecute is top-down. When an i/o fails, if it's not 2227 * the root, it simply notifies its parent and sticks around. 2228 * The parent, seeing that it still has children in zio_done(), 2229 * does the same. This percolates all the way up to the root. 2230 * The root i/o will reexecute or suspend the entire tree. 2231 * 2232 * This approach ensures that zio_reexecute() honors 2233 * all the original i/o dependency relationships, e.g. 2234 * parents not executing until children are ready. 2235 */ 2236 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2237 2238 if (IO_IS_ALLOCATING(zio)) 2239 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2240 2241 zio_gang_tree_free(&zio->io_gang_tree); 2242 2243 mutex_enter(&zio->io_lock); 2244 zio->io_state[ZIO_WAIT_DONE] = 1; 2245 mutex_exit(&zio->io_lock); 2246 2247 if ((pio = zio_unique_parent(zio)) != NULL) { 2248 /* 2249 * We're not a root i/o, so there's nothing to do 2250 * but notify our parent. Don't propagate errors 2251 * upward since we haven't permanently failed yet. 2252 */ 2253 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 2254 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2255 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 2256 /* 2257 * We'd fail again if we reexecuted now, so suspend 2258 * until conditions improve (e.g. device comes online). 2259 */ 2260 zio_suspend(spa, zio); 2261 } else { 2262 /* 2263 * Reexecution is potentially a huge amount of work. 2264 * Hand it off to the otherwise-unused claim taskq. 2265 */ 2266 (void) taskq_dispatch( 2267 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], 2268 (task_func_t *)zio_reexecute, zio, TQ_SLEEP); 2269 } 2270 return (ZIO_PIPELINE_STOP); 2271 } 2272 2273 ASSERT(zio_walk_children(zio) == NULL); 2274 ASSERT(zio->io_reexecute == 0); 2275 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 2276 2277 /* 2278 * It is the responsibility of the done callback to ensure that this 2279 * particular zio is no longer discoverable for adoption, and as 2280 * such, cannot acquire any new parents. 2281 */ 2282 if (zio->io_done) 2283 zio->io_done(zio); 2284 2285 zio_gang_tree_free(&zio->io_gang_tree); 2286 2287 mutex_enter(&zio->io_lock); 2288 zio->io_state[ZIO_WAIT_DONE] = 1; 2289 mutex_exit(&zio->io_lock); 2290 2291 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 2292 zio_link_t *zl = zio->io_walk_link; 2293 pio_next = zio_walk_parents(zio); 2294 zio_remove_child(pio, zio, zl); 2295 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2296 } 2297 2298 if (zio->io_waiter != NULL) { 2299 mutex_enter(&zio->io_lock); 2300 zio->io_executor = NULL; 2301 cv_broadcast(&zio->io_cv); 2302 mutex_exit(&zio->io_lock); 2303 } else { 2304 zio_destroy(zio); 2305 } 2306 2307 return (ZIO_PIPELINE_STOP); 2308 } 2309 2310 /* 2311 * ========================================================================== 2312 * I/O pipeline definition 2313 * ========================================================================== 2314 */ 2315 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { 2316 NULL, 2317 zio_issue_async, 2318 zio_read_bp_init, 2319 zio_write_bp_init, 2320 zio_checksum_generate, 2321 zio_gang_assemble, 2322 zio_gang_issue, 2323 zio_dva_allocate, 2324 zio_dva_free, 2325 zio_dva_claim, 2326 zio_ready, 2327 zio_vdev_io_start, 2328 zio_vdev_io_done, 2329 zio_vdev_io_assess, 2330 zio_checksum_verify, 2331 zio_done 2332 }; 2333