1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42
43 /*
44 * ==========================================================================
45 * I/O type descriptions
46 * ==========================================================================
47 */
48 const char *zio_type_name[ZIO_TYPES] = {
49 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
50 "zio_ioctl"
51 };
52
53 /*
54 * ==========================================================================
55 * I/O kmem caches
56 * ==========================================================================
57 */
58 kmem_cache_t *zio_cache;
59 kmem_cache_t *zio_link_cache;
60 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
61 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
62
63 #ifdef _KERNEL
64 extern vmem_t *zio_alloc_arena;
65 #endif
66
67 #define ZIO_PIPELINE_CONTINUE 0x100
68 #define ZIO_PIPELINE_STOP 0x101
69
70 #define BP_SPANB(indblkshift, level) \
71 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
72 #define COMPARE_META_LEVEL 0x80000000ul
73 /*
74 * The following actions directly effect the spa's sync-to-convergence logic.
75 * The values below define the sync pass when we start performing the action.
76 * Care should be taken when changing these values as they directly impact
77 * spa_sync() performance. Tuning these values may introduce subtle performance
78 * pathologies and should only be done in the context of performance analysis.
79 * These tunables will eventually be removed and replaced with #defines once
80 * enough analysis has been done to determine optimal values.
81 *
82 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
83 * regular blocks are not deferred.
84 */
85 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
86 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
87 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
88
89 /*
90 * An allocating zio is one that either currently has the DVA allocate
91 * stage set or will have it later in its lifetime.
92 */
93 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
94
95 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
96
97 #ifdef ZFS_DEBUG
98 int zio_buf_debug_limit = 16384;
99 #else
100 int zio_buf_debug_limit = 0;
101 #endif
102
103 void
zio_init(void)104 zio_init(void)
105 {
106 size_t c;
107 vmem_t *data_alloc_arena = NULL;
108
109 #ifdef _KERNEL
110 data_alloc_arena = zio_alloc_arena;
111 #endif
112 zio_cache = kmem_cache_create("zio_cache",
113 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
114 zio_link_cache = kmem_cache_create("zio_link_cache",
115 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
116
117 /*
118 * For small buffers, we want a cache for each multiple of
119 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
120 * for each quarter-power of 2.
121 */
122 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
123 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
124 size_t p2 = size;
125 size_t align = 0;
126 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
127
128 while (!ISP2(p2))
129 p2 &= p2 - 1;
130
131 #ifndef _KERNEL
132 /*
133 * If we are using watchpoints, put each buffer on its own page,
134 * to eliminate the performance overhead of trapping to the
135 * kernel when modifying a non-watched buffer that shares the
136 * page with a watched buffer.
137 */
138 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
139 continue;
140 #endif
141 if (size <= 4 * SPA_MINBLOCKSIZE) {
142 align = SPA_MINBLOCKSIZE;
143 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
144 align = MIN(p2 >> 2, PAGESIZE);
145 }
146
147 if (align != 0) {
148 char name[36];
149 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
150 zio_buf_cache[c] = kmem_cache_create(name, size,
151 align, NULL, NULL, NULL, NULL, NULL, cflags);
152
153 /*
154 * Since zio_data bufs do not appear in crash dumps, we
155 * pass KMC_NOTOUCH so that no allocator metadata is
156 * stored with the buffers.
157 */
158 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
159 zio_data_buf_cache[c] = kmem_cache_create(name, size,
160 align, NULL, NULL, NULL, NULL, data_alloc_arena,
161 cflags | KMC_NOTOUCH);
162 }
163 }
164
165 while (--c != 0) {
166 ASSERT(zio_buf_cache[c] != NULL);
167 if (zio_buf_cache[c - 1] == NULL)
168 zio_buf_cache[c - 1] = zio_buf_cache[c];
169
170 ASSERT(zio_data_buf_cache[c] != NULL);
171 if (zio_data_buf_cache[c - 1] == NULL)
172 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
173 }
174
175 zio_inject_init();
176 }
177
178 void
zio_fini(void)179 zio_fini(void)
180 {
181 size_t c;
182 kmem_cache_t *last_cache = NULL;
183 kmem_cache_t *last_data_cache = NULL;
184
185 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
186 if (zio_buf_cache[c] != last_cache) {
187 last_cache = zio_buf_cache[c];
188 kmem_cache_destroy(zio_buf_cache[c]);
189 }
190 zio_buf_cache[c] = NULL;
191
192 if (zio_data_buf_cache[c] != last_data_cache) {
193 last_data_cache = zio_data_buf_cache[c];
194 kmem_cache_destroy(zio_data_buf_cache[c]);
195 }
196 zio_data_buf_cache[c] = NULL;
197 }
198
199 kmem_cache_destroy(zio_link_cache);
200 kmem_cache_destroy(zio_cache);
201
202 zio_inject_fini();
203 }
204
205 /*
206 * ==========================================================================
207 * Allocate and free I/O buffers
208 * ==========================================================================
209 */
210
211 /*
212 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
213 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
214 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
215 * excess / transient data in-core during a crashdump.
216 */
217 void *
zio_buf_alloc(size_t size)218 zio_buf_alloc(size_t size)
219 {
220 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
221
222 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
223
224 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
225 }
226
227 /*
228 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
229 * crashdump if the kernel panics. This exists so that we will limit the amount
230 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
231 * of kernel heap dumped to disk when the kernel panics)
232 */
233 void *
zio_data_buf_alloc(size_t size)234 zio_data_buf_alloc(size_t size)
235 {
236 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
237
238 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
239
240 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
241 }
242
243 void
zio_buf_free(void * buf,size_t size)244 zio_buf_free(void *buf, size_t size)
245 {
246 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
247
248 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
249
250 kmem_cache_free(zio_buf_cache[c], buf);
251 }
252
253 void
zio_data_buf_free(void * buf,size_t size)254 zio_data_buf_free(void *buf, size_t size)
255 {
256 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
257
258 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
259
260 kmem_cache_free(zio_data_buf_cache[c], buf);
261 }
262
263 /*
264 * ==========================================================================
265 * Push and pop I/O transform buffers
266 * ==========================================================================
267 */
268 static void
zio_push_transform(zio_t * zio,void * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)269 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
270 zio_transform_func_t *transform)
271 {
272 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
273
274 zt->zt_orig_data = zio->io_data;
275 zt->zt_orig_size = zio->io_size;
276 zt->zt_bufsize = bufsize;
277 zt->zt_transform = transform;
278
279 zt->zt_next = zio->io_transform_stack;
280 zio->io_transform_stack = zt;
281
282 zio->io_data = data;
283 zio->io_size = size;
284 }
285
286 static void
zio_pop_transforms(zio_t * zio)287 zio_pop_transforms(zio_t *zio)
288 {
289 zio_transform_t *zt;
290
291 while ((zt = zio->io_transform_stack) != NULL) {
292 if (zt->zt_transform != NULL)
293 zt->zt_transform(zio,
294 zt->zt_orig_data, zt->zt_orig_size);
295
296 if (zt->zt_bufsize != 0)
297 zio_buf_free(zio->io_data, zt->zt_bufsize);
298
299 zio->io_data = zt->zt_orig_data;
300 zio->io_size = zt->zt_orig_size;
301 zio->io_transform_stack = zt->zt_next;
302
303 kmem_free(zt, sizeof (zio_transform_t));
304 }
305 }
306
307 /*
308 * ==========================================================================
309 * I/O transform callbacks for subblocks and decompression
310 * ==========================================================================
311 */
312 static void
zio_subblock(zio_t * zio,void * data,uint64_t size)313 zio_subblock(zio_t *zio, void *data, uint64_t size)
314 {
315 ASSERT(zio->io_size > size);
316
317 if (zio->io_type == ZIO_TYPE_READ)
318 bcopy(zio->io_data, data, size);
319 }
320
321 static void
zio_decompress(zio_t * zio,void * data,uint64_t size)322 zio_decompress(zio_t *zio, void *data, uint64_t size)
323 {
324 if (zio->io_error == 0 &&
325 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
326 zio->io_data, data, zio->io_size, size) != 0)
327 zio->io_error = SET_ERROR(EIO);
328 }
329
330 /*
331 * ==========================================================================
332 * I/O parent/child relationships and pipeline interlocks
333 * ==========================================================================
334 */
335 /*
336 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
337 * continue calling these functions until they return NULL.
338 * Otherwise, the next caller will pick up the list walk in
339 * some indeterminate state. (Otherwise every caller would
340 * have to pass in a cookie to keep the state represented by
341 * io_walk_link, which gets annoying.)
342 */
343 zio_t *
zio_walk_parents(zio_t * cio)344 zio_walk_parents(zio_t *cio)
345 {
346 zio_link_t *zl = cio->io_walk_link;
347 list_t *pl = &cio->io_parent_list;
348
349 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
350 cio->io_walk_link = zl;
351
352 if (zl == NULL)
353 return (NULL);
354
355 ASSERT(zl->zl_child == cio);
356 return (zl->zl_parent);
357 }
358
359 zio_t *
zio_walk_children(zio_t * pio)360 zio_walk_children(zio_t *pio)
361 {
362 zio_link_t *zl = pio->io_walk_link;
363 list_t *cl = &pio->io_child_list;
364
365 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
366 pio->io_walk_link = zl;
367
368 if (zl == NULL)
369 return (NULL);
370
371 ASSERT(zl->zl_parent == pio);
372 return (zl->zl_child);
373 }
374
375 zio_t *
zio_unique_parent(zio_t * cio)376 zio_unique_parent(zio_t *cio)
377 {
378 zio_t *pio = zio_walk_parents(cio);
379
380 VERIFY(zio_walk_parents(cio) == NULL);
381 return (pio);
382 }
383
384 void
zio_add_child(zio_t * pio,zio_t * cio)385 zio_add_child(zio_t *pio, zio_t *cio)
386 {
387 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
388
389 /*
390 * Logical I/Os can have logical, gang, or vdev children.
391 * Gang I/Os can have gang or vdev children.
392 * Vdev I/Os can only have vdev children.
393 * The following ASSERT captures all of these constraints.
394 */
395 ASSERT(cio->io_child_type <= pio->io_child_type);
396
397 zl->zl_parent = pio;
398 zl->zl_child = cio;
399
400 mutex_enter(&cio->io_lock);
401 mutex_enter(&pio->io_lock);
402
403 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
404
405 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
406 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
407
408 list_insert_head(&pio->io_child_list, zl);
409 list_insert_head(&cio->io_parent_list, zl);
410
411 pio->io_child_count++;
412 cio->io_parent_count++;
413
414 mutex_exit(&pio->io_lock);
415 mutex_exit(&cio->io_lock);
416 }
417
418 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)419 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
420 {
421 ASSERT(zl->zl_parent == pio);
422 ASSERT(zl->zl_child == cio);
423
424 mutex_enter(&cio->io_lock);
425 mutex_enter(&pio->io_lock);
426
427 list_remove(&pio->io_child_list, zl);
428 list_remove(&cio->io_parent_list, zl);
429
430 pio->io_child_count--;
431 cio->io_parent_count--;
432
433 mutex_exit(&pio->io_lock);
434 mutex_exit(&cio->io_lock);
435
436 kmem_cache_free(zio_link_cache, zl);
437 }
438
439 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)440 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
441 {
442 boolean_t waiting = B_FALSE;
443
444 mutex_enter(&zio->io_lock);
445 ASSERT(zio->io_stall == NULL);
446 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
447 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
448 continue;
449
450 uint64_t *countp = &zio->io_children[c][wait];
451 if (*countp != 0) {
452 zio->io_stage >>= 1;
453 zio->io_stall = countp;
454 waiting = B_TRUE;
455 break;
456 }
457 }
458 mutex_exit(&zio->io_lock);
459 return (waiting);
460 }
461
462 static void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait)463 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
464 {
465 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
466 int *errorp = &pio->io_child_error[zio->io_child_type];
467
468 mutex_enter(&pio->io_lock);
469 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
470 *errorp = zio_worst_error(*errorp, zio->io_error);
471 pio->io_reexecute |= zio->io_reexecute;
472 ASSERT3U(*countp, >, 0);
473
474 (*countp)--;
475
476 if (*countp == 0 && pio->io_stall == countp) {
477 pio->io_stall = NULL;
478 mutex_exit(&pio->io_lock);
479 zio_execute(pio);
480 } else {
481 mutex_exit(&pio->io_lock);
482 }
483 }
484
485 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)486 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
487 {
488 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
489 zio->io_error = zio->io_child_error[c];
490 }
491
492 /*
493 * ==========================================================================
494 * Create the various types of I/O (read, write, free, etc)
495 * ==========================================================================
496 */
497 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,void * data,uint64_t size,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,enum zio_flag flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)498 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
499 void *data, uint64_t size, zio_done_func_t *done, void *private,
500 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
501 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
502 enum zio_stage stage, enum zio_stage pipeline)
503 {
504 zio_t *zio;
505
506 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
507 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
508 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
509
510 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
511 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
512 ASSERT(vd || stage == ZIO_STAGE_OPEN);
513
514 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
515 bzero(zio, sizeof (zio_t));
516
517 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
518 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
519
520 list_create(&zio->io_parent_list, sizeof (zio_link_t),
521 offsetof(zio_link_t, zl_parent_node));
522 list_create(&zio->io_child_list, sizeof (zio_link_t),
523 offsetof(zio_link_t, zl_child_node));
524
525 if (vd != NULL)
526 zio->io_child_type = ZIO_CHILD_VDEV;
527 else if (flags & ZIO_FLAG_GANG_CHILD)
528 zio->io_child_type = ZIO_CHILD_GANG;
529 else if (flags & ZIO_FLAG_DDT_CHILD)
530 zio->io_child_type = ZIO_CHILD_DDT;
531 else
532 zio->io_child_type = ZIO_CHILD_LOGICAL;
533
534 if (bp != NULL) {
535 zio->io_bp = (blkptr_t *)bp;
536 zio->io_bp_copy = *bp;
537 zio->io_bp_orig = *bp;
538 if (type != ZIO_TYPE_WRITE ||
539 zio->io_child_type == ZIO_CHILD_DDT)
540 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
541 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
542 zio->io_logical = zio;
543 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
544 pipeline |= ZIO_GANG_STAGES;
545 }
546
547 zio->io_spa = spa;
548 zio->io_txg = txg;
549 zio->io_done = done;
550 zio->io_private = private;
551 zio->io_type = type;
552 zio->io_priority = priority;
553 zio->io_vd = vd;
554 zio->io_offset = offset;
555 zio->io_orig_data = zio->io_data = data;
556 zio->io_orig_size = zio->io_size = size;
557 zio->io_orig_flags = zio->io_flags = flags;
558 zio->io_orig_stage = zio->io_stage = stage;
559 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
560
561 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
562 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
563
564 if (zb != NULL)
565 zio->io_bookmark = *zb;
566
567 if (pio != NULL) {
568 if (zio->io_logical == NULL)
569 zio->io_logical = pio->io_logical;
570 if (zio->io_child_type == ZIO_CHILD_GANG)
571 zio->io_gang_leader = pio->io_gang_leader;
572 zio_add_child(pio, zio);
573 }
574
575 return (zio);
576 }
577
578 static void
zio_destroy(zio_t * zio)579 zio_destroy(zio_t *zio)
580 {
581 list_destroy(&zio->io_parent_list);
582 list_destroy(&zio->io_child_list);
583 mutex_destroy(&zio->io_lock);
584 cv_destroy(&zio->io_cv);
585 kmem_cache_free(zio_cache, zio);
586 }
587
588 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,enum zio_flag flags)589 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
590 void *private, enum zio_flag flags)
591 {
592 zio_t *zio;
593
594 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
595 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
596 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
597
598 return (zio);
599 }
600
601 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,enum zio_flag flags)602 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
603 {
604 return (zio_null(NULL, spa, NULL, done, private, flags));
605 }
606
607 void
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp)608 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
609 {
610 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
611 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
612 bp, (longlong_t)BP_GET_TYPE(bp));
613 }
614 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
615 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
616 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
617 bp, (longlong_t)BP_GET_CHECKSUM(bp));
618 }
619 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
620 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
621 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
622 bp, (longlong_t)BP_GET_COMPRESS(bp));
623 }
624 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
625 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
626 bp, (longlong_t)BP_GET_LSIZE(bp));
627 }
628 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
629 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
630 bp, (longlong_t)BP_GET_PSIZE(bp));
631 }
632
633 if (BP_IS_EMBEDDED(bp)) {
634 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
635 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
636 bp, (longlong_t)BPE_GET_ETYPE(bp));
637 }
638 }
639
640 /*
641 * Pool-specific checks.
642 *
643 * Note: it would be nice to verify that the blk_birth and
644 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
645 * allows the birth time of log blocks (and dmu_sync()-ed blocks
646 * that are in the log) to be arbitrarily large.
647 */
648 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
649 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
650 if (vdevid >= spa->spa_root_vdev->vdev_children) {
651 zfs_panic_recover("blkptr at %p DVA %u has invalid "
652 "VDEV %llu",
653 bp, i, (longlong_t)vdevid);
654 continue;
655 }
656 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
657 if (vd == NULL) {
658 zfs_panic_recover("blkptr at %p DVA %u has invalid "
659 "VDEV %llu",
660 bp, i, (longlong_t)vdevid);
661 continue;
662 }
663 if (vd->vdev_ops == &vdev_hole_ops) {
664 zfs_panic_recover("blkptr at %p DVA %u has hole "
665 "VDEV %llu",
666 bp, i, (longlong_t)vdevid);
667 continue;
668 }
669 if (vd->vdev_ops == &vdev_missing_ops) {
670 /*
671 * "missing" vdevs are valid during import, but we
672 * don't have their detailed info (e.g. asize), so
673 * we can't perform any more checks on them.
674 */
675 continue;
676 }
677 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
678 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
679 if (BP_IS_GANG(bp))
680 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
681 if (offset + asize > vd->vdev_asize) {
682 zfs_panic_recover("blkptr at %p DVA %u has invalid "
683 "OFFSET %llu",
684 bp, i, (longlong_t)offset);
685 }
686 }
687 }
688
689 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,void * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,const zbookmark_phys_t * zb)690 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
691 void *data, uint64_t size, zio_done_func_t *done, void *private,
692 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
693 {
694 zio_t *zio;
695
696 zfs_blkptr_verify(spa, bp);
697
698 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
699 data, size, done, private,
700 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
701 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
702 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
703
704 return (zio);
705 }
706
707 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,void * data,uint64_t size,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * physdone,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,const zbookmark_phys_t * zb)708 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
709 void *data, uint64_t size, const zio_prop_t *zp,
710 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
711 void *private,
712 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
713 {
714 zio_t *zio;
715
716 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
717 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
718 zp->zp_compress >= ZIO_COMPRESS_OFF &&
719 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
720 DMU_OT_IS_VALID(zp->zp_type) &&
721 zp->zp_level < 32 &&
722 zp->zp_copies > 0 &&
723 zp->zp_copies <= spa_max_replication(spa));
724
725 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
726 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
727 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
728 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
729
730 zio->io_ready = ready;
731 zio->io_physdone = physdone;
732 zio->io_prop = *zp;
733
734 /*
735 * Data can be NULL if we are going to call zio_write_override() to
736 * provide the already-allocated BP. But we may need the data to
737 * verify a dedup hit (if requested). In this case, don't try to
738 * dedup (just take the already-allocated BP verbatim).
739 */
740 if (data == NULL && zio->io_prop.zp_dedup_verify) {
741 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
742 }
743
744 return (zio);
745 }
746
747 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,void * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,zbookmark_phys_t * zb)748 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
749 uint64_t size, zio_done_func_t *done, void *private,
750 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
751 {
752 zio_t *zio;
753
754 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
755 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
756 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
757
758 return (zio);
759 }
760
761 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,boolean_t nopwrite)762 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
763 {
764 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
765 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
766 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
767 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
768
769 /*
770 * We must reset the io_prop to match the values that existed
771 * when the bp was first written by dmu_sync() keeping in mind
772 * that nopwrite and dedup are mutually exclusive.
773 */
774 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
775 zio->io_prop.zp_nopwrite = nopwrite;
776 zio->io_prop.zp_copies = copies;
777 zio->io_bp_override = bp;
778 }
779
780 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)781 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
782 {
783
784 /*
785 * The check for EMBEDDED is a performance optimization. We
786 * process the free here (by ignoring it) rather than
787 * putting it on the list and then processing it in zio_free_sync().
788 */
789 if (BP_IS_EMBEDDED(bp))
790 return;
791 metaslab_check_free(spa, bp);
792
793 /*
794 * Frees that are for the currently-syncing txg, are not going to be
795 * deferred, and which will not need to do a read (i.e. not GANG or
796 * DEDUP), can be processed immediately. Otherwise, put them on the
797 * in-memory list for later processing.
798 */
799 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
800 txg != spa->spa_syncing_txg ||
801 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
802 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
803 } else {
804 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
805 }
806 }
807
808 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,enum zio_flag flags)809 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
810 enum zio_flag flags)
811 {
812 zio_t *zio;
813 enum zio_stage stage = ZIO_FREE_PIPELINE;
814
815 ASSERT(!BP_IS_HOLE(bp));
816 ASSERT(spa_syncing_txg(spa) == txg);
817 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
818
819 if (BP_IS_EMBEDDED(bp))
820 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
821
822 metaslab_check_free(spa, bp);
823 arc_freed(spa, bp);
824
825 /*
826 * GANG and DEDUP blocks can induce a read (for the gang block header,
827 * or the DDT), so issue them asynchronously so that this thread is
828 * not tied up.
829 */
830 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
831 stage |= ZIO_STAGE_ISSUE_ASYNC;
832
833 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
834 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
835 NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
836
837 return (zio);
838 }
839
840 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,enum zio_flag flags)841 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
842 zio_done_func_t *done, void *private, enum zio_flag flags)
843 {
844 zio_t *zio;
845
846 dprintf_bp(bp, "claiming in txg %llu", txg);
847
848 if (BP_IS_EMBEDDED(bp))
849 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
850
851 /*
852 * A claim is an allocation of a specific block. Claims are needed
853 * to support immediate writes in the intent log. The issue is that
854 * immediate writes contain committed data, but in a txg that was
855 * *not* committed. Upon opening the pool after an unclean shutdown,
856 * the intent log claims all blocks that contain immediate write data
857 * so that the SPA knows they're in use.
858 *
859 * All claims *must* be resolved in the first txg -- before the SPA
860 * starts allocating blocks -- so that nothing is allocated twice.
861 * If txg == 0 we just verify that the block is claimable.
862 */
863 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
864 ASSERT(txg == spa_first_txg(spa) || txg == 0);
865 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
866
867 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
868 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
869 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
870
871 return (zio);
872 }
873
874 zio_t *
zio_ioctl(zio_t * pio,spa_t * spa,vdev_t * vd,int cmd,zio_done_func_t * done,void * private,enum zio_flag flags)875 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
876 zio_done_func_t *done, void *private, enum zio_flag flags)
877 {
878 zio_t *zio;
879 int c;
880
881 if (vd->vdev_children == 0) {
882 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
883 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
884 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
885
886 zio->io_cmd = cmd;
887 } else {
888 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
889
890 for (c = 0; c < vd->vdev_children; c++)
891 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
892 done, private, flags));
893 }
894
895 return (zio);
896 }
897
898 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,void * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,boolean_t labels)899 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
900 void *data, int checksum, zio_done_func_t *done, void *private,
901 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
902 {
903 zio_t *zio;
904
905 ASSERT(vd->vdev_children == 0);
906 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
907 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
908 ASSERT3U(offset + size, <=, vd->vdev_psize);
909
910 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
911 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
912 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
913
914 zio->io_prop.zp_checksum = checksum;
915
916 return (zio);
917 }
918
919 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,void * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,boolean_t labels)920 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
921 void *data, int checksum, zio_done_func_t *done, void *private,
922 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
923 {
924 zio_t *zio;
925
926 ASSERT(vd->vdev_children == 0);
927 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
928 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
929 ASSERT3U(offset + size, <=, vd->vdev_psize);
930
931 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
932 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
933 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
934
935 zio->io_prop.zp_checksum = checksum;
936
937 if (zio_checksum_table[checksum].ci_eck) {
938 /*
939 * zec checksums are necessarily destructive -- they modify
940 * the end of the write buffer to hold the verifier/checksum.
941 * Therefore, we must make a local copy in case the data is
942 * being written to multiple places in parallel.
943 */
944 void *wbuf = zio_buf_alloc(size);
945 bcopy(data, wbuf, size);
946 zio_push_transform(zio, wbuf, size, size, NULL);
947 }
948
949 return (zio);
950 }
951
952 /*
953 * Create a child I/O to do some work for us.
954 */
955 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,void * data,uint64_t size,int type,zio_priority_t priority,enum zio_flag flags,zio_done_func_t * done,void * private)956 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
957 void *data, uint64_t size, int type, zio_priority_t priority,
958 enum zio_flag flags, zio_done_func_t *done, void *private)
959 {
960 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
961 zio_t *zio;
962
963 ASSERT(vd->vdev_parent ==
964 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
965
966 if (type == ZIO_TYPE_READ && bp != NULL) {
967 /*
968 * If we have the bp, then the child should perform the
969 * checksum and the parent need not. This pushes error
970 * detection as close to the leaves as possible and
971 * eliminates redundant checksums in the interior nodes.
972 */
973 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
974 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
975 }
976
977 if (vd->vdev_children == 0)
978 offset += VDEV_LABEL_START_SIZE;
979
980 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
981
982 /*
983 * If we've decided to do a repair, the write is not speculative --
984 * even if the original read was.
985 */
986 if (flags & ZIO_FLAG_IO_REPAIR)
987 flags &= ~ZIO_FLAG_SPECULATIVE;
988
989 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
990 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
991 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
992
993 zio->io_physdone = pio->io_physdone;
994 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
995 zio->io_logical->io_phys_children++;
996
997 return (zio);
998 }
999
1000 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,void * data,uint64_t size,int type,zio_priority_t priority,enum zio_flag flags,zio_done_func_t * done,void * private)1001 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1002 int type, zio_priority_t priority, enum zio_flag flags,
1003 zio_done_func_t *done, void *private)
1004 {
1005 zio_t *zio;
1006
1007 ASSERT(vd->vdev_ops->vdev_op_leaf);
1008
1009 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1010 data, size, done, private, type, priority,
1011 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1012 vd, offset, NULL,
1013 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1014
1015 return (zio);
1016 }
1017
1018 void
zio_flush(zio_t * zio,vdev_t * vd)1019 zio_flush(zio_t *zio, vdev_t *vd)
1020 {
1021 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1022 NULL, NULL,
1023 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1024 }
1025
1026 void
zio_shrink(zio_t * zio,uint64_t size)1027 zio_shrink(zio_t *zio, uint64_t size)
1028 {
1029 ASSERT(zio->io_executor == NULL);
1030 ASSERT(zio->io_orig_size == zio->io_size);
1031 ASSERT(size <= zio->io_size);
1032
1033 /*
1034 * We don't shrink for raidz because of problems with the
1035 * reconstruction when reading back less than the block size.
1036 * Note, BP_IS_RAIDZ() assumes no compression.
1037 */
1038 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1039 if (!BP_IS_RAIDZ(zio->io_bp))
1040 zio->io_orig_size = zio->io_size = size;
1041 }
1042
1043 /*
1044 * ==========================================================================
1045 * Prepare to read and write logical blocks
1046 * ==========================================================================
1047 */
1048
1049 static int
zio_read_bp_init(zio_t * zio)1050 zio_read_bp_init(zio_t *zio)
1051 {
1052 blkptr_t *bp = zio->io_bp;
1053
1054 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1055 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1056 !(zio->io_flags & ZIO_FLAG_RAW)) {
1057 uint64_t psize =
1058 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1059 void *cbuf = zio_buf_alloc(psize);
1060
1061 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1062 }
1063
1064 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1065 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1066 decode_embedded_bp_compressed(bp, zio->io_data);
1067 } else {
1068 ASSERT(!BP_IS_EMBEDDED(bp));
1069 }
1070
1071 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1072 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1073
1074 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1075 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1076
1077 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1078 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1079
1080 return (ZIO_PIPELINE_CONTINUE);
1081 }
1082
1083 static int
zio_write_bp_init(zio_t * zio)1084 zio_write_bp_init(zio_t *zio)
1085 {
1086 spa_t *spa = zio->io_spa;
1087 zio_prop_t *zp = &zio->io_prop;
1088 enum zio_compress compress = zp->zp_compress;
1089 blkptr_t *bp = zio->io_bp;
1090 uint64_t lsize = zio->io_size;
1091 uint64_t psize = lsize;
1092 int pass = 1;
1093
1094 /*
1095 * If our children haven't all reached the ready stage,
1096 * wait for them and then repeat this pipeline stage.
1097 */
1098 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1099 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1100 return (ZIO_PIPELINE_STOP);
1101 }
1102
1103 if (!IO_IS_ALLOCATING(zio))
1104 return (ZIO_PIPELINE_CONTINUE);
1105
1106 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1107
1108 if (zio->io_bp_override) {
1109 ASSERT(bp->blk_birth != zio->io_txg);
1110 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1111
1112 *bp = *zio->io_bp_override;
1113 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1114
1115 if (BP_IS_EMBEDDED(bp))
1116 return (ZIO_PIPELINE_CONTINUE);
1117
1118 /*
1119 * If we've been overridden and nopwrite is set then
1120 * set the flag accordingly to indicate that a nopwrite
1121 * has already occurred.
1122 */
1123 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1124 ASSERT(!zp->zp_dedup);
1125 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1126 return (ZIO_PIPELINE_CONTINUE);
1127 }
1128
1129 ASSERT(!zp->zp_nopwrite);
1130
1131 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1132 return (ZIO_PIPELINE_CONTINUE);
1133
1134 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1135 zp->zp_dedup_verify);
1136
1137 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1138 BP_SET_DEDUP(bp, 1);
1139 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1140 return (ZIO_PIPELINE_CONTINUE);
1141 }
1142 }
1143
1144 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1145 /*
1146 * We're rewriting an existing block, which means we're
1147 * working on behalf of spa_sync(). For spa_sync() to
1148 * converge, it must eventually be the case that we don't
1149 * have to allocate new blocks. But compression changes
1150 * the blocksize, which forces a reallocate, and makes
1151 * convergence take longer. Therefore, after the first
1152 * few passes, stop compressing to ensure convergence.
1153 */
1154 pass = spa_sync_pass(spa);
1155
1156 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1157 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1158 ASSERT(!BP_GET_DEDUP(bp));
1159
1160 if (pass >= zfs_sync_pass_dont_compress)
1161 compress = ZIO_COMPRESS_OFF;
1162
1163 /* Make sure someone doesn't change their mind on overwrites */
1164 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1165 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1166 }
1167
1168 if (compress != ZIO_COMPRESS_OFF) {
1169 void *cbuf = zio_buf_alloc(lsize);
1170 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1171 if (psize == 0 || psize == lsize) {
1172 compress = ZIO_COMPRESS_OFF;
1173 zio_buf_free(cbuf, lsize);
1174 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1175 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1176 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1177 encode_embedded_bp_compressed(bp,
1178 cbuf, compress, lsize, psize);
1179 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1180 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1181 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1182 zio_buf_free(cbuf, lsize);
1183 bp->blk_birth = zio->io_txg;
1184 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1185 ASSERT(spa_feature_is_active(spa,
1186 SPA_FEATURE_EMBEDDED_DATA));
1187 return (ZIO_PIPELINE_CONTINUE);
1188 } else {
1189 /*
1190 * Round up compressed size up to the ashift
1191 * of the smallest-ashift device, and zero the tail.
1192 * This ensures that the compressed size of the BP
1193 * (and thus compressratio property) are correct,
1194 * in that we charge for the padding used to fill out
1195 * the last sector.
1196 */
1197 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1198 size_t rounded = (size_t)P2ROUNDUP(psize,
1199 1ULL << spa->spa_min_ashift);
1200 if (rounded >= lsize) {
1201 compress = ZIO_COMPRESS_OFF;
1202 zio_buf_free(cbuf, lsize);
1203 psize = lsize;
1204 } else {
1205 bzero((char *)cbuf + psize, rounded - psize);
1206 psize = rounded;
1207 zio_push_transform(zio, cbuf,
1208 psize, lsize, NULL);
1209 }
1210 }
1211 }
1212
1213 /*
1214 * The final pass of spa_sync() must be all rewrites, but the first
1215 * few passes offer a trade-off: allocating blocks defers convergence,
1216 * but newly allocated blocks are sequential, so they can be written
1217 * to disk faster. Therefore, we allow the first few passes of
1218 * spa_sync() to allocate new blocks, but force rewrites after that.
1219 * There should only be a handful of blocks after pass 1 in any case.
1220 */
1221 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1222 BP_GET_PSIZE(bp) == psize &&
1223 pass >= zfs_sync_pass_rewrite) {
1224 ASSERT(psize != 0);
1225 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1226 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1227 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1228 } else {
1229 BP_ZERO(bp);
1230 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1231 }
1232
1233 if (psize == 0) {
1234 if (zio->io_bp_orig.blk_birth != 0 &&
1235 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1236 BP_SET_LSIZE(bp, lsize);
1237 BP_SET_TYPE(bp, zp->zp_type);
1238 BP_SET_LEVEL(bp, zp->zp_level);
1239 BP_SET_BIRTH(bp, zio->io_txg, 0);
1240 }
1241 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1242 } else {
1243 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1244 BP_SET_LSIZE(bp, lsize);
1245 BP_SET_TYPE(bp, zp->zp_type);
1246 BP_SET_LEVEL(bp, zp->zp_level);
1247 BP_SET_PSIZE(bp, psize);
1248 BP_SET_COMPRESS(bp, compress);
1249 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1250 BP_SET_DEDUP(bp, zp->zp_dedup);
1251 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1252 if (zp->zp_dedup) {
1253 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1254 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1255 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1256 }
1257 if (zp->zp_nopwrite) {
1258 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1259 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1260 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1261 }
1262 }
1263
1264 return (ZIO_PIPELINE_CONTINUE);
1265 }
1266
1267 static int
zio_free_bp_init(zio_t * zio)1268 zio_free_bp_init(zio_t *zio)
1269 {
1270 blkptr_t *bp = zio->io_bp;
1271
1272 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1273 if (BP_GET_DEDUP(bp))
1274 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1275 }
1276
1277 return (ZIO_PIPELINE_CONTINUE);
1278 }
1279
1280 /*
1281 * ==========================================================================
1282 * Execute the I/O pipeline
1283 * ==========================================================================
1284 */
1285
1286 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)1287 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1288 {
1289 spa_t *spa = zio->io_spa;
1290 zio_type_t t = zio->io_type;
1291 int flags = (cutinline ? TQ_FRONT : 0);
1292
1293 /*
1294 * If we're a config writer or a probe, the normal issue and
1295 * interrupt threads may all be blocked waiting for the config lock.
1296 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1297 */
1298 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1299 t = ZIO_TYPE_NULL;
1300
1301 /*
1302 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1303 */
1304 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1305 t = ZIO_TYPE_NULL;
1306
1307 /*
1308 * If this is a high priority I/O, then use the high priority taskq if
1309 * available.
1310 */
1311 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1312 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1313 q++;
1314
1315 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1316
1317 /*
1318 * NB: We are assuming that the zio can only be dispatched
1319 * to a single taskq at a time. It would be a grievous error
1320 * to dispatch the zio to another taskq at the same time.
1321 */
1322 ASSERT(zio->io_tqent.tqent_next == NULL);
1323 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1324 flags, &zio->io_tqent);
1325 }
1326
1327 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)1328 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1329 {
1330 kthread_t *executor = zio->io_executor;
1331 spa_t *spa = zio->io_spa;
1332
1333 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1334 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1335 uint_t i;
1336 for (i = 0; i < tqs->stqs_count; i++) {
1337 if (taskq_member(tqs->stqs_taskq[i], executor))
1338 return (B_TRUE);
1339 }
1340 }
1341
1342 return (B_FALSE);
1343 }
1344
1345 static int
zio_issue_async(zio_t * zio)1346 zio_issue_async(zio_t *zio)
1347 {
1348 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1349
1350 return (ZIO_PIPELINE_STOP);
1351 }
1352
1353 void
zio_interrupt(zio_t * zio)1354 zio_interrupt(zio_t *zio)
1355 {
1356 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1357 }
1358
1359 /*
1360 * Execute the I/O pipeline until one of the following occurs:
1361 *
1362 * (1) the I/O completes
1363 * (2) the pipeline stalls waiting for dependent child I/Os
1364 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1365 * (4) the I/O is delegated by vdev-level caching or aggregation
1366 * (5) the I/O is deferred due to vdev-level queueing
1367 * (6) the I/O is handed off to another thread.
1368 *
1369 * In all cases, the pipeline stops whenever there's no CPU work; it never
1370 * burns a thread in cv_wait().
1371 *
1372 * There's no locking on io_stage because there's no legitimate way
1373 * for multiple threads to be attempting to process the same I/O.
1374 */
1375 static zio_pipe_stage_t *zio_pipeline[];
1376
1377 void
zio_execute(zio_t * zio)1378 zio_execute(zio_t *zio)
1379 {
1380 zio->io_executor = curthread;
1381
1382 while (zio->io_stage < ZIO_STAGE_DONE) {
1383 enum zio_stage pipeline = zio->io_pipeline;
1384 enum zio_stage stage = zio->io_stage;
1385 int rv;
1386
1387 ASSERT(!MUTEX_HELD(&zio->io_lock));
1388 ASSERT(ISP2(stage));
1389 ASSERT(zio->io_stall == NULL);
1390
1391 do {
1392 stage <<= 1;
1393 } while ((stage & pipeline) == 0);
1394
1395 ASSERT(stage <= ZIO_STAGE_DONE);
1396
1397 /*
1398 * If we are in interrupt context and this pipeline stage
1399 * will grab a config lock that is held across I/O,
1400 * or may wait for an I/O that needs an interrupt thread
1401 * to complete, issue async to avoid deadlock.
1402 *
1403 * For VDEV_IO_START, we cut in line so that the io will
1404 * be sent to disk promptly.
1405 */
1406 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1407 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1408 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1409 zio_requeue_io_start_cut_in_line : B_FALSE;
1410 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1411 return;
1412 }
1413
1414 zio->io_stage = stage;
1415 rv = zio_pipeline[highbit64(stage) - 1](zio);
1416
1417 if (rv == ZIO_PIPELINE_STOP)
1418 return;
1419
1420 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1421 }
1422 }
1423
1424 /*
1425 * ==========================================================================
1426 * Initiate I/O, either sync or async
1427 * ==========================================================================
1428 */
1429 int
zio_wait(zio_t * zio)1430 zio_wait(zio_t *zio)
1431 {
1432 int error;
1433
1434 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1435 ASSERT(zio->io_executor == NULL);
1436
1437 zio->io_waiter = curthread;
1438
1439 zio_execute(zio);
1440
1441 mutex_enter(&zio->io_lock);
1442 while (zio->io_executor != NULL)
1443 cv_wait(&zio->io_cv, &zio->io_lock);
1444 mutex_exit(&zio->io_lock);
1445
1446 error = zio->io_error;
1447 zio_destroy(zio);
1448
1449 return (error);
1450 }
1451
1452 void
zio_nowait(zio_t * zio)1453 zio_nowait(zio_t *zio)
1454 {
1455 ASSERT(zio->io_executor == NULL);
1456
1457 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1458 zio_unique_parent(zio) == NULL) {
1459 /*
1460 * This is a logical async I/O with no parent to wait for it.
1461 * We add it to the spa_async_root_zio "Godfather" I/O which
1462 * will ensure they complete prior to unloading the pool.
1463 */
1464 spa_t *spa = zio->io_spa;
1465
1466 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1467 }
1468
1469 zio_execute(zio);
1470 }
1471
1472 /*
1473 * ==========================================================================
1474 * Reexecute or suspend/resume failed I/O
1475 * ==========================================================================
1476 */
1477
1478 static void
zio_reexecute(zio_t * pio)1479 zio_reexecute(zio_t *pio)
1480 {
1481 zio_t *cio, *cio_next;
1482
1483 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1484 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1485 ASSERT(pio->io_gang_leader == NULL);
1486 ASSERT(pio->io_gang_tree == NULL);
1487
1488 pio->io_flags = pio->io_orig_flags;
1489 pio->io_stage = pio->io_orig_stage;
1490 pio->io_pipeline = pio->io_orig_pipeline;
1491 pio->io_reexecute = 0;
1492 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1493 pio->io_error = 0;
1494 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1495 pio->io_state[w] = 0;
1496 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1497 pio->io_child_error[c] = 0;
1498
1499 if (IO_IS_ALLOCATING(pio))
1500 BP_ZERO(pio->io_bp);
1501
1502 /*
1503 * As we reexecute pio's children, new children could be created.
1504 * New children go to the head of pio's io_child_list, however,
1505 * so we will (correctly) not reexecute them. The key is that
1506 * the remainder of pio's io_child_list, from 'cio_next' onward,
1507 * cannot be affected by any side effects of reexecuting 'cio'.
1508 */
1509 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1510 cio_next = zio_walk_children(pio);
1511 mutex_enter(&pio->io_lock);
1512 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1513 pio->io_children[cio->io_child_type][w]++;
1514 mutex_exit(&pio->io_lock);
1515 zio_reexecute(cio);
1516 }
1517
1518 /*
1519 * Now that all children have been reexecuted, execute the parent.
1520 * We don't reexecute "The Godfather" I/O here as it's the
1521 * responsibility of the caller to wait on him.
1522 */
1523 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1524 zio_execute(pio);
1525 }
1526
1527 void
zio_suspend(spa_t * spa,zio_t * zio)1528 zio_suspend(spa_t *spa, zio_t *zio)
1529 {
1530 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1531 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1532 "failure and the failure mode property for this pool "
1533 "is set to panic.", spa_name(spa));
1534
1535 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1536
1537 mutex_enter(&spa->spa_suspend_lock);
1538
1539 if (spa->spa_suspend_zio_root == NULL)
1540 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1541 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1542 ZIO_FLAG_GODFATHER);
1543
1544 spa->spa_suspended = B_TRUE;
1545
1546 if (zio != NULL) {
1547 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1548 ASSERT(zio != spa->spa_suspend_zio_root);
1549 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1550 ASSERT(zio_unique_parent(zio) == NULL);
1551 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1552 zio_add_child(spa->spa_suspend_zio_root, zio);
1553 }
1554
1555 mutex_exit(&spa->spa_suspend_lock);
1556 }
1557
1558 int
zio_resume(spa_t * spa)1559 zio_resume(spa_t *spa)
1560 {
1561 zio_t *pio;
1562
1563 /*
1564 * Reexecute all previously suspended i/o.
1565 */
1566 mutex_enter(&spa->spa_suspend_lock);
1567 spa->spa_suspended = B_FALSE;
1568 cv_broadcast(&spa->spa_suspend_cv);
1569 pio = spa->spa_suspend_zio_root;
1570 spa->spa_suspend_zio_root = NULL;
1571 mutex_exit(&spa->spa_suspend_lock);
1572
1573 if (pio == NULL)
1574 return (0);
1575
1576 zio_reexecute(pio);
1577 return (zio_wait(pio));
1578 }
1579
1580 void
zio_resume_wait(spa_t * spa)1581 zio_resume_wait(spa_t *spa)
1582 {
1583 mutex_enter(&spa->spa_suspend_lock);
1584 while (spa_suspended(spa))
1585 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1586 mutex_exit(&spa->spa_suspend_lock);
1587 }
1588
1589 /*
1590 * ==========================================================================
1591 * Gang blocks.
1592 *
1593 * A gang block is a collection of small blocks that looks to the DMU
1594 * like one large block. When zio_dva_allocate() cannot find a block
1595 * of the requested size, due to either severe fragmentation or the pool
1596 * being nearly full, it calls zio_write_gang_block() to construct the
1597 * block from smaller fragments.
1598 *
1599 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1600 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1601 * an indirect block: it's an array of block pointers. It consumes
1602 * only one sector and hence is allocatable regardless of fragmentation.
1603 * The gang header's bps point to its gang members, which hold the data.
1604 *
1605 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1606 * as the verifier to ensure uniqueness of the SHA256 checksum.
1607 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1608 * not the gang header. This ensures that data block signatures (needed for
1609 * deduplication) are independent of how the block is physically stored.
1610 *
1611 * Gang blocks can be nested: a gang member may itself be a gang block.
1612 * Thus every gang block is a tree in which root and all interior nodes are
1613 * gang headers, and the leaves are normal blocks that contain user data.
1614 * The root of the gang tree is called the gang leader.
1615 *
1616 * To perform any operation (read, rewrite, free, claim) on a gang block,
1617 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1618 * in the io_gang_tree field of the original logical i/o by recursively
1619 * reading the gang leader and all gang headers below it. This yields
1620 * an in-core tree containing the contents of every gang header and the
1621 * bps for every constituent of the gang block.
1622 *
1623 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1624 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1625 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1626 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1627 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1628 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1629 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1630 * of the gang header plus zio_checksum_compute() of the data to update the
1631 * gang header's blk_cksum as described above.
1632 *
1633 * The two-phase assemble/issue model solves the problem of partial failure --
1634 * what if you'd freed part of a gang block but then couldn't read the
1635 * gang header for another part? Assembling the entire gang tree first
1636 * ensures that all the necessary gang header I/O has succeeded before
1637 * starting the actual work of free, claim, or write. Once the gang tree
1638 * is assembled, free and claim are in-memory operations that cannot fail.
1639 *
1640 * In the event that a gang write fails, zio_dva_unallocate() walks the
1641 * gang tree to immediately free (i.e. insert back into the space map)
1642 * everything we've allocated. This ensures that we don't get ENOSPC
1643 * errors during repeated suspend/resume cycles due to a flaky device.
1644 *
1645 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1646 * the gang tree, we won't modify the block, so we can safely defer the free
1647 * (knowing that the block is still intact). If we *can* assemble the gang
1648 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1649 * each constituent bp and we can allocate a new block on the next sync pass.
1650 *
1651 * In all cases, the gang tree allows complete recovery from partial failure.
1652 * ==========================================================================
1653 */
1654
1655 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1656 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1657 {
1658 if (gn != NULL)
1659 return (pio);
1660
1661 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1662 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1663 &pio->io_bookmark));
1664 }
1665
1666 zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1667 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1668 {
1669 zio_t *zio;
1670
1671 if (gn != NULL) {
1672 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1673 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1674 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1675 /*
1676 * As we rewrite each gang header, the pipeline will compute
1677 * a new gang block header checksum for it; but no one will
1678 * compute a new data checksum, so we do that here. The one
1679 * exception is the gang leader: the pipeline already computed
1680 * its data checksum because that stage precedes gang assembly.
1681 * (Presently, nothing actually uses interior data checksums;
1682 * this is just good hygiene.)
1683 */
1684 if (gn != pio->io_gang_leader->io_gang_tree) {
1685 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1686 data, BP_GET_PSIZE(bp));
1687 }
1688 /*
1689 * If we are here to damage data for testing purposes,
1690 * leave the GBH alone so that we can detect the damage.
1691 */
1692 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1693 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1694 } else {
1695 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1696 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1697 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1698 }
1699
1700 return (zio);
1701 }
1702
1703 /* ARGSUSED */
1704 zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1705 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1706 {
1707 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1708 ZIO_GANG_CHILD_FLAGS(pio)));
1709 }
1710
1711 /* ARGSUSED */
1712 zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1713 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1714 {
1715 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1716 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1717 }
1718
1719 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1720 NULL,
1721 zio_read_gang,
1722 zio_rewrite_gang,
1723 zio_free_gang,
1724 zio_claim_gang,
1725 NULL
1726 };
1727
1728 static void zio_gang_tree_assemble_done(zio_t *zio);
1729
1730 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)1731 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1732 {
1733 zio_gang_node_t *gn;
1734
1735 ASSERT(*gnpp == NULL);
1736
1737 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1738 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1739 *gnpp = gn;
1740
1741 return (gn);
1742 }
1743
1744 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)1745 zio_gang_node_free(zio_gang_node_t **gnpp)
1746 {
1747 zio_gang_node_t *gn = *gnpp;
1748
1749 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1750 ASSERT(gn->gn_child[g] == NULL);
1751
1752 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1753 kmem_free(gn, sizeof (*gn));
1754 *gnpp = NULL;
1755 }
1756
1757 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)1758 zio_gang_tree_free(zio_gang_node_t **gnpp)
1759 {
1760 zio_gang_node_t *gn = *gnpp;
1761
1762 if (gn == NULL)
1763 return;
1764
1765 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1766 zio_gang_tree_free(&gn->gn_child[g]);
1767
1768 zio_gang_node_free(gnpp);
1769 }
1770
1771 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)1772 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1773 {
1774 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1775
1776 ASSERT(gio->io_gang_leader == gio);
1777 ASSERT(BP_IS_GANG(bp));
1778
1779 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1780 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1781 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1782 }
1783
1784 static void
zio_gang_tree_assemble_done(zio_t * zio)1785 zio_gang_tree_assemble_done(zio_t *zio)
1786 {
1787 zio_t *gio = zio->io_gang_leader;
1788 zio_gang_node_t *gn = zio->io_private;
1789 blkptr_t *bp = zio->io_bp;
1790
1791 ASSERT(gio == zio_unique_parent(zio));
1792 ASSERT(zio->io_child_count == 0);
1793
1794 if (zio->io_error)
1795 return;
1796
1797 if (BP_SHOULD_BYTESWAP(bp))
1798 byteswap_uint64_array(zio->io_data, zio->io_size);
1799
1800 ASSERT(zio->io_data == gn->gn_gbh);
1801 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1802 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1803
1804 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1805 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1806 if (!BP_IS_GANG(gbp))
1807 continue;
1808 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1809 }
1810 }
1811
1812 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,void * data)1813 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1814 {
1815 zio_t *gio = pio->io_gang_leader;
1816 zio_t *zio;
1817
1818 ASSERT(BP_IS_GANG(bp) == !!gn);
1819 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1820 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1821
1822 /*
1823 * If you're a gang header, your data is in gn->gn_gbh.
1824 * If you're a gang member, your data is in 'data' and gn == NULL.
1825 */
1826 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1827
1828 if (gn != NULL) {
1829 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1830
1831 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1832 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1833 if (BP_IS_HOLE(gbp))
1834 continue;
1835 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1836 data = (char *)data + BP_GET_PSIZE(gbp);
1837 }
1838 }
1839
1840 if (gn == gio->io_gang_tree)
1841 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1842
1843 if (zio != pio)
1844 zio_nowait(zio);
1845 }
1846
1847 static int
zio_gang_assemble(zio_t * zio)1848 zio_gang_assemble(zio_t *zio)
1849 {
1850 blkptr_t *bp = zio->io_bp;
1851
1852 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1853 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1854
1855 zio->io_gang_leader = zio;
1856
1857 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1858
1859 return (ZIO_PIPELINE_CONTINUE);
1860 }
1861
1862 static int
zio_gang_issue(zio_t * zio)1863 zio_gang_issue(zio_t *zio)
1864 {
1865 blkptr_t *bp = zio->io_bp;
1866
1867 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
1868 return (ZIO_PIPELINE_STOP);
1869 }
1870
1871 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1872 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1873
1874 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1875 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1876 else
1877 zio_gang_tree_free(&zio->io_gang_tree);
1878
1879 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1880
1881 return (ZIO_PIPELINE_CONTINUE);
1882 }
1883
1884 static void
zio_write_gang_member_ready(zio_t * zio)1885 zio_write_gang_member_ready(zio_t *zio)
1886 {
1887 zio_t *pio = zio_unique_parent(zio);
1888 zio_t *gio = zio->io_gang_leader;
1889 dva_t *cdva = zio->io_bp->blk_dva;
1890 dva_t *pdva = pio->io_bp->blk_dva;
1891 uint64_t asize;
1892
1893 if (BP_IS_HOLE(zio->io_bp))
1894 return;
1895
1896 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1897
1898 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1899 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1900 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1901 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1902 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1903
1904 mutex_enter(&pio->io_lock);
1905 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1906 ASSERT(DVA_GET_GANG(&pdva[d]));
1907 asize = DVA_GET_ASIZE(&pdva[d]);
1908 asize += DVA_GET_ASIZE(&cdva[d]);
1909 DVA_SET_ASIZE(&pdva[d], asize);
1910 }
1911 mutex_exit(&pio->io_lock);
1912 }
1913
1914 static int
zio_write_gang_block(zio_t * pio)1915 zio_write_gang_block(zio_t *pio)
1916 {
1917 spa_t *spa = pio->io_spa;
1918 blkptr_t *bp = pio->io_bp;
1919 zio_t *gio = pio->io_gang_leader;
1920 zio_t *zio;
1921 zio_gang_node_t *gn, **gnpp;
1922 zio_gbh_phys_t *gbh;
1923 uint64_t txg = pio->io_txg;
1924 uint64_t resid = pio->io_size;
1925 uint64_t lsize;
1926 int copies = gio->io_prop.zp_copies;
1927 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1928 zio_prop_t zp;
1929 int error;
1930
1931 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1932 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1933 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1934 if (error) {
1935 pio->io_error = error;
1936 return (ZIO_PIPELINE_CONTINUE);
1937 }
1938
1939 if (pio == gio) {
1940 gnpp = &gio->io_gang_tree;
1941 } else {
1942 gnpp = pio->io_private;
1943 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1944 }
1945
1946 gn = zio_gang_node_alloc(gnpp);
1947 gbh = gn->gn_gbh;
1948 bzero(gbh, SPA_GANGBLOCKSIZE);
1949
1950 /*
1951 * Create the gang header.
1952 */
1953 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1954 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1955
1956 /*
1957 * Create and nowait the gang children.
1958 */
1959 for (int g = 0; resid != 0; resid -= lsize, g++) {
1960 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1961 SPA_MINBLOCKSIZE);
1962 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1963
1964 zp.zp_checksum = gio->io_prop.zp_checksum;
1965 zp.zp_compress = ZIO_COMPRESS_OFF;
1966 zp.zp_type = DMU_OT_NONE;
1967 zp.zp_level = 0;
1968 zp.zp_copies = gio->io_prop.zp_copies;
1969 zp.zp_dedup = B_FALSE;
1970 zp.zp_dedup_verify = B_FALSE;
1971 zp.zp_nopwrite = B_FALSE;
1972
1973 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1974 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1975 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1976 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1977 &pio->io_bookmark));
1978 }
1979
1980 /*
1981 * Set pio's pipeline to just wait for zio to finish.
1982 */
1983 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1984
1985 zio_nowait(zio);
1986
1987 return (ZIO_PIPELINE_CONTINUE);
1988 }
1989
1990 /*
1991 * The zio_nop_write stage in the pipeline determines if allocating
1992 * a new bp is necessary. By leveraging a cryptographically secure checksum,
1993 * such as SHA256, we can compare the checksums of the new data and the old
1994 * to determine if allocating a new block is required. The nopwrite
1995 * feature can handle writes in either syncing or open context (i.e. zil
1996 * writes) and as a result is mutually exclusive with dedup.
1997 */
1998 static int
zio_nop_write(zio_t * zio)1999 zio_nop_write(zio_t *zio)
2000 {
2001 blkptr_t *bp = zio->io_bp;
2002 blkptr_t *bp_orig = &zio->io_bp_orig;
2003 zio_prop_t *zp = &zio->io_prop;
2004
2005 ASSERT(BP_GET_LEVEL(bp) == 0);
2006 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2007 ASSERT(zp->zp_nopwrite);
2008 ASSERT(!zp->zp_dedup);
2009 ASSERT(zio->io_bp_override == NULL);
2010 ASSERT(IO_IS_ALLOCATING(zio));
2011
2012 /*
2013 * Check to see if the original bp and the new bp have matching
2014 * characteristics (i.e. same checksum, compression algorithms, etc).
2015 * If they don't then just continue with the pipeline which will
2016 * allocate a new bp.
2017 */
2018 if (BP_IS_HOLE(bp_orig) ||
2019 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2020 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2021 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2022 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2023 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2024 return (ZIO_PIPELINE_CONTINUE);
2025
2026 /*
2027 * If the checksums match then reset the pipeline so that we
2028 * avoid allocating a new bp and issuing any I/O.
2029 */
2030 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2031 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2032 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2033 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2034 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2035 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2036 sizeof (uint64_t)) == 0);
2037
2038 *bp = *bp_orig;
2039 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2040 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2041 }
2042
2043 return (ZIO_PIPELINE_CONTINUE);
2044 }
2045
2046 /*
2047 * ==========================================================================
2048 * Dedup
2049 * ==========================================================================
2050 */
2051 static void
zio_ddt_child_read_done(zio_t * zio)2052 zio_ddt_child_read_done(zio_t *zio)
2053 {
2054 blkptr_t *bp = zio->io_bp;
2055 ddt_entry_t *dde = zio->io_private;
2056 ddt_phys_t *ddp;
2057 zio_t *pio = zio_unique_parent(zio);
2058
2059 mutex_enter(&pio->io_lock);
2060 ddp = ddt_phys_select(dde, bp);
2061 if (zio->io_error == 0)
2062 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2063 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2064 dde->dde_repair_data = zio->io_data;
2065 else
2066 zio_buf_free(zio->io_data, zio->io_size);
2067 mutex_exit(&pio->io_lock);
2068 }
2069
2070 static int
zio_ddt_read_start(zio_t * zio)2071 zio_ddt_read_start(zio_t *zio)
2072 {
2073 blkptr_t *bp = zio->io_bp;
2074
2075 ASSERT(BP_GET_DEDUP(bp));
2076 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2077 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2078
2079 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2080 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2081 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2082 ddt_phys_t *ddp = dde->dde_phys;
2083 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2084 blkptr_t blk;
2085
2086 ASSERT(zio->io_vsd == NULL);
2087 zio->io_vsd = dde;
2088
2089 if (ddp_self == NULL)
2090 return (ZIO_PIPELINE_CONTINUE);
2091
2092 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2093 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2094 continue;
2095 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2096 &blk);
2097 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2098 zio_buf_alloc(zio->io_size), zio->io_size,
2099 zio_ddt_child_read_done, dde, zio->io_priority,
2100 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2101 &zio->io_bookmark));
2102 }
2103 return (ZIO_PIPELINE_CONTINUE);
2104 }
2105
2106 zio_nowait(zio_read(zio, zio->io_spa, bp,
2107 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2108 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2109
2110 return (ZIO_PIPELINE_CONTINUE);
2111 }
2112
2113 static int
zio_ddt_read_done(zio_t * zio)2114 zio_ddt_read_done(zio_t *zio)
2115 {
2116 blkptr_t *bp = zio->io_bp;
2117
2118 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2119 return (ZIO_PIPELINE_STOP);
2120 }
2121
2122 ASSERT(BP_GET_DEDUP(bp));
2123 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2124 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2125
2126 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2127 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2128 ddt_entry_t *dde = zio->io_vsd;
2129 if (ddt == NULL) {
2130 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2131 return (ZIO_PIPELINE_CONTINUE);
2132 }
2133 if (dde == NULL) {
2134 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2135 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2136 return (ZIO_PIPELINE_STOP);
2137 }
2138 if (dde->dde_repair_data != NULL) {
2139 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2140 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2141 }
2142 ddt_repair_done(ddt, dde);
2143 zio->io_vsd = NULL;
2144 }
2145
2146 ASSERT(zio->io_vsd == NULL);
2147
2148 return (ZIO_PIPELINE_CONTINUE);
2149 }
2150
2151 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)2152 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2153 {
2154 spa_t *spa = zio->io_spa;
2155
2156 /*
2157 * Note: we compare the original data, not the transformed data,
2158 * because when zio->io_bp is an override bp, we will not have
2159 * pushed the I/O transforms. That's an important optimization
2160 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2161 */
2162 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2163 zio_t *lio = dde->dde_lead_zio[p];
2164
2165 if (lio != NULL) {
2166 return (lio->io_orig_size != zio->io_orig_size ||
2167 bcmp(zio->io_orig_data, lio->io_orig_data,
2168 zio->io_orig_size) != 0);
2169 }
2170 }
2171
2172 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2173 ddt_phys_t *ddp = &dde->dde_phys[p];
2174
2175 if (ddp->ddp_phys_birth != 0) {
2176 arc_buf_t *abuf = NULL;
2177 arc_flags_t aflags = ARC_FLAG_WAIT;
2178 blkptr_t blk = *zio->io_bp;
2179 int error;
2180
2181 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2182
2183 ddt_exit(ddt);
2184
2185 error = arc_read(NULL, spa, &blk,
2186 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2187 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2188 &aflags, &zio->io_bookmark);
2189
2190 if (error == 0) {
2191 if (arc_buf_size(abuf) != zio->io_orig_size ||
2192 bcmp(abuf->b_data, zio->io_orig_data,
2193 zio->io_orig_size) != 0)
2194 error = SET_ERROR(EEXIST);
2195 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2196 }
2197
2198 ddt_enter(ddt);
2199 return (error != 0);
2200 }
2201 }
2202
2203 return (B_FALSE);
2204 }
2205
2206 static void
zio_ddt_child_write_ready(zio_t * zio)2207 zio_ddt_child_write_ready(zio_t *zio)
2208 {
2209 int p = zio->io_prop.zp_copies;
2210 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2211 ddt_entry_t *dde = zio->io_private;
2212 ddt_phys_t *ddp = &dde->dde_phys[p];
2213 zio_t *pio;
2214
2215 if (zio->io_error)
2216 return;
2217
2218 ddt_enter(ddt);
2219
2220 ASSERT(dde->dde_lead_zio[p] == zio);
2221
2222 ddt_phys_fill(ddp, zio->io_bp);
2223
2224 while ((pio = zio_walk_parents(zio)) != NULL)
2225 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2226
2227 ddt_exit(ddt);
2228 }
2229
2230 static void
zio_ddt_child_write_done(zio_t * zio)2231 zio_ddt_child_write_done(zio_t *zio)
2232 {
2233 int p = zio->io_prop.zp_copies;
2234 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2235 ddt_entry_t *dde = zio->io_private;
2236 ddt_phys_t *ddp = &dde->dde_phys[p];
2237
2238 ddt_enter(ddt);
2239
2240 ASSERT(ddp->ddp_refcnt == 0);
2241 ASSERT(dde->dde_lead_zio[p] == zio);
2242 dde->dde_lead_zio[p] = NULL;
2243
2244 if (zio->io_error == 0) {
2245 while (zio_walk_parents(zio) != NULL)
2246 ddt_phys_addref(ddp);
2247 } else {
2248 ddt_phys_clear(ddp);
2249 }
2250
2251 ddt_exit(ddt);
2252 }
2253
2254 static void
zio_ddt_ditto_write_done(zio_t * zio)2255 zio_ddt_ditto_write_done(zio_t *zio)
2256 {
2257 int p = DDT_PHYS_DITTO;
2258 zio_prop_t *zp = &zio->io_prop;
2259 blkptr_t *bp = zio->io_bp;
2260 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2261 ddt_entry_t *dde = zio->io_private;
2262 ddt_phys_t *ddp = &dde->dde_phys[p];
2263 ddt_key_t *ddk = &dde->dde_key;
2264
2265 ddt_enter(ddt);
2266
2267 ASSERT(ddp->ddp_refcnt == 0);
2268 ASSERT(dde->dde_lead_zio[p] == zio);
2269 dde->dde_lead_zio[p] = NULL;
2270
2271 if (zio->io_error == 0) {
2272 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2273 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2274 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2275 if (ddp->ddp_phys_birth != 0)
2276 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2277 ddt_phys_fill(ddp, bp);
2278 }
2279
2280 ddt_exit(ddt);
2281 }
2282
2283 static int
zio_ddt_write(zio_t * zio)2284 zio_ddt_write(zio_t *zio)
2285 {
2286 spa_t *spa = zio->io_spa;
2287 blkptr_t *bp = zio->io_bp;
2288 uint64_t txg = zio->io_txg;
2289 zio_prop_t *zp = &zio->io_prop;
2290 int p = zp->zp_copies;
2291 int ditto_copies;
2292 zio_t *cio = NULL;
2293 zio_t *dio = NULL;
2294 ddt_t *ddt = ddt_select(spa, bp);
2295 ddt_entry_t *dde;
2296 ddt_phys_t *ddp;
2297
2298 ASSERT(BP_GET_DEDUP(bp));
2299 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2300 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2301
2302 ddt_enter(ddt);
2303 dde = ddt_lookup(ddt, bp, B_TRUE);
2304 ddp = &dde->dde_phys[p];
2305
2306 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2307 /*
2308 * If we're using a weak checksum, upgrade to a strong checksum
2309 * and try again. If we're already using a strong checksum,
2310 * we can't resolve it, so just convert to an ordinary write.
2311 * (And automatically e-mail a paper to Nature?)
2312 */
2313 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2314 zp->zp_checksum = spa_dedup_checksum(spa);
2315 zio_pop_transforms(zio);
2316 zio->io_stage = ZIO_STAGE_OPEN;
2317 BP_ZERO(bp);
2318 } else {
2319 zp->zp_dedup = B_FALSE;
2320 }
2321 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2322 ddt_exit(ddt);
2323 return (ZIO_PIPELINE_CONTINUE);
2324 }
2325
2326 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2327 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2328
2329 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2330 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2331 zio_prop_t czp = *zp;
2332
2333 czp.zp_copies = ditto_copies;
2334
2335 /*
2336 * If we arrived here with an override bp, we won't have run
2337 * the transform stack, so we won't have the data we need to
2338 * generate a child i/o. So, toss the override bp and restart.
2339 * This is safe, because using the override bp is just an
2340 * optimization; and it's rare, so the cost doesn't matter.
2341 */
2342 if (zio->io_bp_override) {
2343 zio_pop_transforms(zio);
2344 zio->io_stage = ZIO_STAGE_OPEN;
2345 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2346 zio->io_bp_override = NULL;
2347 BP_ZERO(bp);
2348 ddt_exit(ddt);
2349 return (ZIO_PIPELINE_CONTINUE);
2350 }
2351
2352 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2353 zio->io_orig_size, &czp, NULL, NULL,
2354 zio_ddt_ditto_write_done, dde, zio->io_priority,
2355 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2356
2357 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2358 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2359 }
2360
2361 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2362 if (ddp->ddp_phys_birth != 0)
2363 ddt_bp_fill(ddp, bp, txg);
2364 if (dde->dde_lead_zio[p] != NULL)
2365 zio_add_child(zio, dde->dde_lead_zio[p]);
2366 else
2367 ddt_phys_addref(ddp);
2368 } else if (zio->io_bp_override) {
2369 ASSERT(bp->blk_birth == txg);
2370 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2371 ddt_phys_fill(ddp, bp);
2372 ddt_phys_addref(ddp);
2373 } else {
2374 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2375 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2376 zio_ddt_child_write_done, dde, zio->io_priority,
2377 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2378
2379 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2380 dde->dde_lead_zio[p] = cio;
2381 }
2382
2383 ddt_exit(ddt);
2384
2385 if (cio)
2386 zio_nowait(cio);
2387 if (dio)
2388 zio_nowait(dio);
2389
2390 return (ZIO_PIPELINE_CONTINUE);
2391 }
2392
2393 ddt_entry_t *freedde; /* for debugging */
2394
2395 static int
zio_ddt_free(zio_t * zio)2396 zio_ddt_free(zio_t *zio)
2397 {
2398 spa_t *spa = zio->io_spa;
2399 blkptr_t *bp = zio->io_bp;
2400 ddt_t *ddt = ddt_select(spa, bp);
2401 ddt_entry_t *dde;
2402 ddt_phys_t *ddp;
2403
2404 ASSERT(BP_GET_DEDUP(bp));
2405 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2406
2407 ddt_enter(ddt);
2408 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2409 ddp = ddt_phys_select(dde, bp);
2410 ddt_phys_decref(ddp);
2411 ddt_exit(ddt);
2412
2413 return (ZIO_PIPELINE_CONTINUE);
2414 }
2415
2416 /*
2417 * ==========================================================================
2418 * Allocate and free blocks
2419 * ==========================================================================
2420 */
2421 static int
zio_dva_allocate(zio_t * zio)2422 zio_dva_allocate(zio_t *zio)
2423 {
2424 spa_t *spa = zio->io_spa;
2425 metaslab_class_t *mc = spa_normal_class(spa);
2426 blkptr_t *bp = zio->io_bp;
2427 int error;
2428 int flags = 0;
2429
2430 if (zio->io_gang_leader == NULL) {
2431 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2432 zio->io_gang_leader = zio;
2433 }
2434
2435 ASSERT(BP_IS_HOLE(bp));
2436 ASSERT0(BP_GET_NDVAS(bp));
2437 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2438 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2439 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2440
2441 /*
2442 * The dump device does not support gang blocks so allocation on
2443 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2444 * the "fast" gang feature.
2445 */
2446 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2447 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2448 METASLAB_GANG_CHILD : 0;
2449 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2450 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2451
2452 if (error) {
2453 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2454 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2455 error);
2456 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2457 return (zio_write_gang_block(zio));
2458 zio->io_error = error;
2459 }
2460
2461 return (ZIO_PIPELINE_CONTINUE);
2462 }
2463
2464 static int
zio_dva_free(zio_t * zio)2465 zio_dva_free(zio_t *zio)
2466 {
2467 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2468
2469 return (ZIO_PIPELINE_CONTINUE);
2470 }
2471
2472 static int
zio_dva_claim(zio_t * zio)2473 zio_dva_claim(zio_t *zio)
2474 {
2475 int error;
2476
2477 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2478 if (error)
2479 zio->io_error = error;
2480
2481 return (ZIO_PIPELINE_CONTINUE);
2482 }
2483
2484 /*
2485 * Undo an allocation. This is used by zio_done() when an I/O fails
2486 * and we want to give back the block we just allocated.
2487 * This handles both normal blocks and gang blocks.
2488 */
2489 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)2490 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2491 {
2492 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2493 ASSERT(zio->io_bp_override == NULL);
2494
2495 if (!BP_IS_HOLE(bp))
2496 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2497
2498 if (gn != NULL) {
2499 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2500 zio_dva_unallocate(zio, gn->gn_child[g],
2501 &gn->gn_gbh->zg_blkptr[g]);
2502 }
2503 }
2504 }
2505
2506 /*
2507 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2508 */
2509 int
zio_alloc_zil(spa_t * spa,uint64_t txg,blkptr_t * new_bp,blkptr_t * old_bp,uint64_t size,boolean_t use_slog)2510 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2511 uint64_t size, boolean_t use_slog)
2512 {
2513 int error = 1;
2514
2515 ASSERT(txg > spa_syncing_txg(spa));
2516
2517 /*
2518 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2519 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2520 * when allocating them.
2521 */
2522 if (use_slog) {
2523 error = metaslab_alloc(spa, spa_log_class(spa), size,
2524 new_bp, 1, txg, old_bp,
2525 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2526 }
2527
2528 if (error) {
2529 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2530 new_bp, 1, txg, old_bp,
2531 METASLAB_HINTBP_AVOID);
2532 }
2533
2534 if (error == 0) {
2535 BP_SET_LSIZE(new_bp, size);
2536 BP_SET_PSIZE(new_bp, size);
2537 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2538 BP_SET_CHECKSUM(new_bp,
2539 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2540 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2541 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2542 BP_SET_LEVEL(new_bp, 0);
2543 BP_SET_DEDUP(new_bp, 0);
2544 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2545 }
2546
2547 return (error);
2548 }
2549
2550 /*
2551 * Free an intent log block.
2552 */
2553 void
zio_free_zil(spa_t * spa,uint64_t txg,blkptr_t * bp)2554 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2555 {
2556 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2557 ASSERT(!BP_IS_GANG(bp));
2558
2559 zio_free(spa, txg, bp);
2560 }
2561
2562 /*
2563 * ==========================================================================
2564 * Read and write to physical devices
2565 * ==========================================================================
2566 */
2567
2568
2569 /*
2570 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2571 * stops after this stage and will resume upon I/O completion.
2572 * However, there are instances where the vdev layer may need to
2573 * continue the pipeline when an I/O was not issued. Since the I/O
2574 * that was sent to the vdev layer might be different than the one
2575 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2576 * force the underlying vdev layers to call either zio_execute() or
2577 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2578 */
2579 static int
zio_vdev_io_start(zio_t * zio)2580 zio_vdev_io_start(zio_t *zio)
2581 {
2582 vdev_t *vd = zio->io_vd;
2583 uint64_t align;
2584 spa_t *spa = zio->io_spa;
2585
2586 ASSERT(zio->io_error == 0);
2587 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2588
2589 if (vd == NULL) {
2590 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2591 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2592
2593 /*
2594 * The mirror_ops handle multiple DVAs in a single BP.
2595 */
2596 vdev_mirror_ops.vdev_op_io_start(zio);
2597 return (ZIO_PIPELINE_STOP);
2598 }
2599
2600 /*
2601 * We keep track of time-sensitive I/Os so that the scan thread
2602 * can quickly react to certain workloads. In particular, we care
2603 * about non-scrubbing, top-level reads and writes with the following
2604 * characteristics:
2605 * - synchronous writes of user data to non-slog devices
2606 * - any reads of user data
2607 * When these conditions are met, adjust the timestamp of spa_last_io
2608 * which allows the scan thread to adjust its workload accordingly.
2609 */
2610 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2611 vd == vd->vdev_top && !vd->vdev_islog &&
2612 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2613 zio->io_txg != spa_syncing_txg(spa)) {
2614 uint64_t old = spa->spa_last_io;
2615 uint64_t new = ddi_get_lbolt64();
2616 if (old != new)
2617 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2618 }
2619
2620 align = 1ULL << vd->vdev_top->vdev_ashift;
2621
2622 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2623 P2PHASE(zio->io_size, align) != 0) {
2624 /* Transform logical writes to be a full physical block size. */
2625 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2626 char *abuf = zio_buf_alloc(asize);
2627 ASSERT(vd == vd->vdev_top);
2628 if (zio->io_type == ZIO_TYPE_WRITE) {
2629 bcopy(zio->io_data, abuf, zio->io_size);
2630 bzero(abuf + zio->io_size, asize - zio->io_size);
2631 }
2632 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2633 }
2634
2635 /*
2636 * If this is not a physical io, make sure that it is properly aligned
2637 * before proceeding.
2638 */
2639 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2640 ASSERT0(P2PHASE(zio->io_offset, align));
2641 ASSERT0(P2PHASE(zio->io_size, align));
2642 } else {
2643 /*
2644 * For physical writes, we allow 512b aligned writes and assume
2645 * the device will perform a read-modify-write as necessary.
2646 */
2647 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2648 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2649 }
2650
2651 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2652
2653 /*
2654 * If this is a repair I/O, and there's no self-healing involved --
2655 * that is, we're just resilvering what we expect to resilver --
2656 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2657 * This prevents spurious resilvering with nested replication.
2658 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2659 * A is out of date, we'll read from C+D, then use the data to
2660 * resilver A+B -- but we don't actually want to resilver B, just A.
2661 * The top-level mirror has no way to know this, so instead we just
2662 * discard unnecessary repairs as we work our way down the vdev tree.
2663 * The same logic applies to any form of nested replication:
2664 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2665 */
2666 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2667 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2668 zio->io_txg != 0 && /* not a delegated i/o */
2669 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2670 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2671 zio_vdev_io_bypass(zio);
2672 return (ZIO_PIPELINE_CONTINUE);
2673 }
2674
2675 if (vd->vdev_ops->vdev_op_leaf &&
2676 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2677
2678 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2679 return (ZIO_PIPELINE_CONTINUE);
2680
2681 if ((zio = vdev_queue_io(zio)) == NULL)
2682 return (ZIO_PIPELINE_STOP);
2683
2684 if (!vdev_accessible(vd, zio)) {
2685 zio->io_error = SET_ERROR(ENXIO);
2686 zio_interrupt(zio);
2687 return (ZIO_PIPELINE_STOP);
2688 }
2689 }
2690
2691 vd->vdev_ops->vdev_op_io_start(zio);
2692 return (ZIO_PIPELINE_STOP);
2693 }
2694
2695 static int
zio_vdev_io_done(zio_t * zio)2696 zio_vdev_io_done(zio_t *zio)
2697 {
2698 vdev_t *vd = zio->io_vd;
2699 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2700 boolean_t unexpected_error = B_FALSE;
2701
2702 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
2703 return (ZIO_PIPELINE_STOP);
2704 }
2705
2706 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2707
2708 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2709
2710 vdev_queue_io_done(zio);
2711
2712 if (zio->io_type == ZIO_TYPE_WRITE)
2713 vdev_cache_write(zio);
2714
2715 if (zio_injection_enabled && zio->io_error == 0)
2716 zio->io_error = zio_handle_device_injection(vd,
2717 zio, EIO);
2718
2719 if (zio_injection_enabled && zio->io_error == 0)
2720 zio->io_error = zio_handle_label_injection(zio, EIO);
2721
2722 if (zio->io_error) {
2723 if (!vdev_accessible(vd, zio)) {
2724 zio->io_error = SET_ERROR(ENXIO);
2725 } else {
2726 unexpected_error = B_TRUE;
2727 }
2728 }
2729 }
2730
2731 ops->vdev_op_io_done(zio);
2732
2733 if (unexpected_error)
2734 VERIFY(vdev_probe(vd, zio) == NULL);
2735
2736 return (ZIO_PIPELINE_CONTINUE);
2737 }
2738
2739 /*
2740 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2741 * disk, and use that to finish the checksum ereport later.
2742 */
2743 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const void * good_buf)2744 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2745 const void *good_buf)
2746 {
2747 /* no processing needed */
2748 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2749 }
2750
2751 /*ARGSUSED*/
2752 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr,void * ignored)2753 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2754 {
2755 void *buf = zio_buf_alloc(zio->io_size);
2756
2757 bcopy(zio->io_data, buf, zio->io_size);
2758
2759 zcr->zcr_cbinfo = zio->io_size;
2760 zcr->zcr_cbdata = buf;
2761 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2762 zcr->zcr_free = zio_buf_free;
2763 }
2764
2765 static int
zio_vdev_io_assess(zio_t * zio)2766 zio_vdev_io_assess(zio_t *zio)
2767 {
2768 vdev_t *vd = zio->io_vd;
2769
2770 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
2771 return (ZIO_PIPELINE_STOP);
2772 }
2773
2774 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2775 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2776
2777 if (zio->io_vsd != NULL) {
2778 zio->io_vsd_ops->vsd_free(zio);
2779 zio->io_vsd = NULL;
2780 }
2781
2782 if (zio_injection_enabled && zio->io_error == 0)
2783 zio->io_error = zio_handle_fault_injection(zio, EIO);
2784
2785 /*
2786 * If the I/O failed, determine whether we should attempt to retry it.
2787 *
2788 * On retry, we cut in line in the issue queue, since we don't want
2789 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2790 */
2791 if (zio->io_error && vd == NULL &&
2792 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2793 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2794 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2795 zio->io_error = 0;
2796 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2797 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2798 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2799 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2800 zio_requeue_io_start_cut_in_line);
2801 return (ZIO_PIPELINE_STOP);
2802 }
2803
2804 /*
2805 * If we got an error on a leaf device, convert it to ENXIO
2806 * if the device is not accessible at all.
2807 */
2808 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2809 !vdev_accessible(vd, zio))
2810 zio->io_error = SET_ERROR(ENXIO);
2811
2812 /*
2813 * If we can't write to an interior vdev (mirror or RAID-Z),
2814 * set vdev_cant_write so that we stop trying to allocate from it.
2815 */
2816 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2817 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2818 vd->vdev_cant_write = B_TRUE;
2819 }
2820
2821 if (zio->io_error)
2822 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2823
2824 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2825 zio->io_physdone != NULL) {
2826 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2827 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2828 zio->io_physdone(zio->io_logical);
2829 }
2830
2831 return (ZIO_PIPELINE_CONTINUE);
2832 }
2833
2834 void
zio_vdev_io_reissue(zio_t * zio)2835 zio_vdev_io_reissue(zio_t *zio)
2836 {
2837 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2838 ASSERT(zio->io_error == 0);
2839
2840 zio->io_stage >>= 1;
2841 }
2842
2843 void
zio_vdev_io_redone(zio_t * zio)2844 zio_vdev_io_redone(zio_t *zio)
2845 {
2846 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2847
2848 zio->io_stage >>= 1;
2849 }
2850
2851 void
zio_vdev_io_bypass(zio_t * zio)2852 zio_vdev_io_bypass(zio_t *zio)
2853 {
2854 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2855 ASSERT(zio->io_error == 0);
2856
2857 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2858 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2859 }
2860
2861 /*
2862 * ==========================================================================
2863 * Generate and verify checksums
2864 * ==========================================================================
2865 */
2866 static int
zio_checksum_generate(zio_t * zio)2867 zio_checksum_generate(zio_t *zio)
2868 {
2869 blkptr_t *bp = zio->io_bp;
2870 enum zio_checksum checksum;
2871
2872 if (bp == NULL) {
2873 /*
2874 * This is zio_write_phys().
2875 * We're either generating a label checksum, or none at all.
2876 */
2877 checksum = zio->io_prop.zp_checksum;
2878
2879 if (checksum == ZIO_CHECKSUM_OFF)
2880 return (ZIO_PIPELINE_CONTINUE);
2881
2882 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2883 } else {
2884 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2885 ASSERT(!IO_IS_ALLOCATING(zio));
2886 checksum = ZIO_CHECKSUM_GANG_HEADER;
2887 } else {
2888 checksum = BP_GET_CHECKSUM(bp);
2889 }
2890 }
2891
2892 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2893
2894 return (ZIO_PIPELINE_CONTINUE);
2895 }
2896
2897 static int
zio_checksum_verify(zio_t * zio)2898 zio_checksum_verify(zio_t *zio)
2899 {
2900 zio_bad_cksum_t info;
2901 blkptr_t *bp = zio->io_bp;
2902 int error;
2903
2904 ASSERT(zio->io_vd != NULL);
2905
2906 if (bp == NULL) {
2907 /*
2908 * This is zio_read_phys().
2909 * We're either verifying a label checksum, or nothing at all.
2910 */
2911 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2912 return (ZIO_PIPELINE_CONTINUE);
2913
2914 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2915 }
2916
2917 if ((error = zio_checksum_error(zio, &info)) != 0) {
2918 zio->io_error = error;
2919 if (error == ECKSUM &&
2920 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2921 zfs_ereport_start_checksum(zio->io_spa,
2922 zio->io_vd, zio, zio->io_offset,
2923 zio->io_size, NULL, &info);
2924 }
2925 }
2926
2927 return (ZIO_PIPELINE_CONTINUE);
2928 }
2929
2930 /*
2931 * Called by RAID-Z to ensure we don't compute the checksum twice.
2932 */
2933 void
zio_checksum_verified(zio_t * zio)2934 zio_checksum_verified(zio_t *zio)
2935 {
2936 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2937 }
2938
2939 /*
2940 * ==========================================================================
2941 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2942 * An error of 0 indicates success. ENXIO indicates whole-device failure,
2943 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2944 * indicate errors that are specific to one I/O, and most likely permanent.
2945 * Any other error is presumed to be worse because we weren't expecting it.
2946 * ==========================================================================
2947 */
2948 int
zio_worst_error(int e1,int e2)2949 zio_worst_error(int e1, int e2)
2950 {
2951 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2952 int r1, r2;
2953
2954 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2955 if (e1 == zio_error_rank[r1])
2956 break;
2957
2958 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2959 if (e2 == zio_error_rank[r2])
2960 break;
2961
2962 return (r1 > r2 ? e1 : e2);
2963 }
2964
2965 /*
2966 * ==========================================================================
2967 * I/O completion
2968 * ==========================================================================
2969 */
2970 static int
zio_ready(zio_t * zio)2971 zio_ready(zio_t *zio)
2972 {
2973 blkptr_t *bp = zio->io_bp;
2974 zio_t *pio, *pio_next;
2975
2976 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
2977 ZIO_WAIT_READY)) {
2978 return (ZIO_PIPELINE_STOP);
2979 }
2980
2981 if (zio->io_ready) {
2982 ASSERT(IO_IS_ALLOCATING(zio));
2983 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2984 (zio->io_flags & ZIO_FLAG_NOPWRITE));
2985 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2986
2987 zio->io_ready(zio);
2988 }
2989
2990 if (bp != NULL && bp != &zio->io_bp_copy)
2991 zio->io_bp_copy = *bp;
2992
2993 if (zio->io_error)
2994 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2995
2996 mutex_enter(&zio->io_lock);
2997 zio->io_state[ZIO_WAIT_READY] = 1;
2998 pio = zio_walk_parents(zio);
2999 mutex_exit(&zio->io_lock);
3000
3001 /*
3002 * As we notify zio's parents, new parents could be added.
3003 * New parents go to the head of zio's io_parent_list, however,
3004 * so we will (correctly) not notify them. The remainder of zio's
3005 * io_parent_list, from 'pio_next' onward, cannot change because
3006 * all parents must wait for us to be done before they can be done.
3007 */
3008 for (; pio != NULL; pio = pio_next) {
3009 pio_next = zio_walk_parents(zio);
3010 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3011 }
3012
3013 if (zio->io_flags & ZIO_FLAG_NODATA) {
3014 if (BP_IS_GANG(bp)) {
3015 zio->io_flags &= ~ZIO_FLAG_NODATA;
3016 } else {
3017 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3018 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3019 }
3020 }
3021
3022 if (zio_injection_enabled &&
3023 zio->io_spa->spa_syncing_txg == zio->io_txg)
3024 zio_handle_ignored_writes(zio);
3025
3026 return (ZIO_PIPELINE_CONTINUE);
3027 }
3028
3029 static int
zio_done(zio_t * zio)3030 zio_done(zio_t *zio)
3031 {
3032 spa_t *spa = zio->io_spa;
3033 zio_t *lio = zio->io_logical;
3034 blkptr_t *bp = zio->io_bp;
3035 vdev_t *vd = zio->io_vd;
3036 uint64_t psize = zio->io_size;
3037 zio_t *pio, *pio_next;
3038
3039 /*
3040 * If our children haven't all completed,
3041 * wait for them and then repeat this pipeline stage.
3042 */
3043 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3044 return (ZIO_PIPELINE_STOP);
3045 }
3046
3047 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3048 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3049 ASSERT(zio->io_children[c][w] == 0);
3050
3051 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3052 ASSERT(bp->blk_pad[0] == 0);
3053 ASSERT(bp->blk_pad[1] == 0);
3054 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3055 (bp == zio_unique_parent(zio)->io_bp));
3056 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3057 zio->io_bp_override == NULL &&
3058 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3059 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3060 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3061 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3062 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3063 }
3064 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3065 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3066 }
3067
3068 /*
3069 * If there were child vdev/gang/ddt errors, they apply to us now.
3070 */
3071 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3072 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3073 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3074
3075 /*
3076 * If the I/O on the transformed data was successful, generate any
3077 * checksum reports now while we still have the transformed data.
3078 */
3079 if (zio->io_error == 0) {
3080 while (zio->io_cksum_report != NULL) {
3081 zio_cksum_report_t *zcr = zio->io_cksum_report;
3082 uint64_t align = zcr->zcr_align;
3083 uint64_t asize = P2ROUNDUP(psize, align);
3084 char *abuf = zio->io_data;
3085
3086 if (asize != psize) {
3087 abuf = zio_buf_alloc(asize);
3088 bcopy(zio->io_data, abuf, psize);
3089 bzero(abuf + psize, asize - psize);
3090 }
3091
3092 zio->io_cksum_report = zcr->zcr_next;
3093 zcr->zcr_next = NULL;
3094 zcr->zcr_finish(zcr, abuf);
3095 zfs_ereport_free_checksum(zcr);
3096
3097 if (asize != psize)
3098 zio_buf_free(abuf, asize);
3099 }
3100 }
3101
3102 zio_pop_transforms(zio); /* note: may set zio->io_error */
3103
3104 vdev_stat_update(zio, psize);
3105
3106 if (zio->io_error) {
3107 /*
3108 * If this I/O is attached to a particular vdev,
3109 * generate an error message describing the I/O failure
3110 * at the block level. We ignore these errors if the
3111 * device is currently unavailable.
3112 */
3113 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3114 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3115
3116 if ((zio->io_error == EIO || !(zio->io_flags &
3117 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3118 zio == lio) {
3119 /*
3120 * For logical I/O requests, tell the SPA to log the
3121 * error and generate a logical data ereport.
3122 */
3123 spa_log_error(spa, zio);
3124 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3125 0, 0);
3126 }
3127 }
3128
3129 if (zio->io_error && zio == lio) {
3130 /*
3131 * Determine whether zio should be reexecuted. This will
3132 * propagate all the way to the root via zio_notify_parent().
3133 */
3134 ASSERT(vd == NULL && bp != NULL);
3135 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3136
3137 if (IO_IS_ALLOCATING(zio) &&
3138 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3139 if (zio->io_error != ENOSPC)
3140 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3141 else
3142 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3143 }
3144
3145 if ((zio->io_type == ZIO_TYPE_READ ||
3146 zio->io_type == ZIO_TYPE_FREE) &&
3147 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3148 zio->io_error == ENXIO &&
3149 spa_load_state(spa) == SPA_LOAD_NONE &&
3150 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3151 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3152
3153 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3154 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3155
3156 /*
3157 * Here is a possibly good place to attempt to do
3158 * either combinatorial reconstruction or error correction
3159 * based on checksums. It also might be a good place
3160 * to send out preliminary ereports before we suspend
3161 * processing.
3162 */
3163 }
3164
3165 /*
3166 * If there were logical child errors, they apply to us now.
3167 * We defer this until now to avoid conflating logical child
3168 * errors with errors that happened to the zio itself when
3169 * updating vdev stats and reporting FMA events above.
3170 */
3171 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3172
3173 if ((zio->io_error || zio->io_reexecute) &&
3174 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3175 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3176 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3177
3178 zio_gang_tree_free(&zio->io_gang_tree);
3179
3180 /*
3181 * Godfather I/Os should never suspend.
3182 */
3183 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3184 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3185 zio->io_reexecute = 0;
3186
3187 if (zio->io_reexecute) {
3188 /*
3189 * This is a logical I/O that wants to reexecute.
3190 *
3191 * Reexecute is top-down. When an i/o fails, if it's not
3192 * the root, it simply notifies its parent and sticks around.
3193 * The parent, seeing that it still has children in zio_done(),
3194 * does the same. This percolates all the way up to the root.
3195 * The root i/o will reexecute or suspend the entire tree.
3196 *
3197 * This approach ensures that zio_reexecute() honors
3198 * all the original i/o dependency relationships, e.g.
3199 * parents not executing until children are ready.
3200 */
3201 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3202
3203 zio->io_gang_leader = NULL;
3204
3205 mutex_enter(&zio->io_lock);
3206 zio->io_state[ZIO_WAIT_DONE] = 1;
3207 mutex_exit(&zio->io_lock);
3208
3209 /*
3210 * "The Godfather" I/O monitors its children but is
3211 * not a true parent to them. It will track them through
3212 * the pipeline but severs its ties whenever they get into
3213 * trouble (e.g. suspended). This allows "The Godfather"
3214 * I/O to return status without blocking.
3215 */
3216 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3217 zio_link_t *zl = zio->io_walk_link;
3218 pio_next = zio_walk_parents(zio);
3219
3220 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3221 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3222 zio_remove_child(pio, zio, zl);
3223 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3224 }
3225 }
3226
3227 if ((pio = zio_unique_parent(zio)) != NULL) {
3228 /*
3229 * We're not a root i/o, so there's nothing to do
3230 * but notify our parent. Don't propagate errors
3231 * upward since we haven't permanently failed yet.
3232 */
3233 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3234 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3235 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3236 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3237 /*
3238 * We'd fail again if we reexecuted now, so suspend
3239 * until conditions improve (e.g. device comes online).
3240 */
3241 zio_suspend(spa, zio);
3242 } else {
3243 /*
3244 * Reexecution is potentially a huge amount of work.
3245 * Hand it off to the otherwise-unused claim taskq.
3246 */
3247 ASSERT(zio->io_tqent.tqent_next == NULL);
3248 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3249 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3250 0, &zio->io_tqent);
3251 }
3252 return (ZIO_PIPELINE_STOP);
3253 }
3254
3255 ASSERT(zio->io_child_count == 0);
3256 ASSERT(zio->io_reexecute == 0);
3257 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3258
3259 /*
3260 * Report any checksum errors, since the I/O is complete.
3261 */
3262 while (zio->io_cksum_report != NULL) {
3263 zio_cksum_report_t *zcr = zio->io_cksum_report;
3264 zio->io_cksum_report = zcr->zcr_next;
3265 zcr->zcr_next = NULL;
3266 zcr->zcr_finish(zcr, NULL);
3267 zfs_ereport_free_checksum(zcr);
3268 }
3269
3270 /*
3271 * It is the responsibility of the done callback to ensure that this
3272 * particular zio is no longer discoverable for adoption, and as
3273 * such, cannot acquire any new parents.
3274 */
3275 if (zio->io_done)
3276 zio->io_done(zio);
3277
3278 mutex_enter(&zio->io_lock);
3279 zio->io_state[ZIO_WAIT_DONE] = 1;
3280 mutex_exit(&zio->io_lock);
3281
3282 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3283 zio_link_t *zl = zio->io_walk_link;
3284 pio_next = zio_walk_parents(zio);
3285 zio_remove_child(pio, zio, zl);
3286 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3287 }
3288
3289 if (zio->io_waiter != NULL) {
3290 mutex_enter(&zio->io_lock);
3291 zio->io_executor = NULL;
3292 cv_broadcast(&zio->io_cv);
3293 mutex_exit(&zio->io_lock);
3294 } else {
3295 zio_destroy(zio);
3296 }
3297
3298 return (ZIO_PIPELINE_STOP);
3299 }
3300
3301 /*
3302 * ==========================================================================
3303 * I/O pipeline definition
3304 * ==========================================================================
3305 */
3306 static zio_pipe_stage_t *zio_pipeline[] = {
3307 NULL,
3308 zio_read_bp_init,
3309 zio_free_bp_init,
3310 zio_issue_async,
3311 zio_write_bp_init,
3312 zio_checksum_generate,
3313 zio_nop_write,
3314 zio_ddt_read_start,
3315 zio_ddt_read_done,
3316 zio_ddt_write,
3317 zio_ddt_free,
3318 zio_gang_assemble,
3319 zio_gang_issue,
3320 zio_dva_allocate,
3321 zio_dva_free,
3322 zio_dva_claim,
3323 zio_ready,
3324 zio_vdev_io_start,
3325 zio_vdev_io_done,
3326 zio_vdev_io_assess,
3327 zio_checksum_verify,
3328 zio_done
3329 };
3330
3331
3332
3333
3334 /*
3335 * Compare two zbookmark_phys_t's to see which we would reach first in a
3336 * pre-order traversal of the object tree.
3337 *
3338 * This is simple in every case aside from the meta-dnode object. For all other
3339 * objects, we traverse them in order (object 1 before object 2, and so on).
3340 * However, all of these objects are traversed while traversing object 0, since
3341 * the data it points to is the list of objects. Thus, we need to convert to a
3342 * canonical representation so we can compare meta-dnode bookmarks to
3343 * non-meta-dnode bookmarks.
3344 *
3345 * We do this by calculating "equivalents" for each field of the zbookmark.
3346 * zbookmarks outside of the meta-dnode use their own object and level, and
3347 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3348 * blocks this bookmark refers to) by multiplying their blkid by their span
3349 * (the number of L0 blocks contained within one block at their level).
3350 * zbookmarks inside the meta-dnode calculate their object equivalent
3351 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3352 * level + 1<<31 (any value larger than a level could ever be) for their level.
3353 * This causes them to always compare before a bookmark in their object
3354 * equivalent, compare appropriately to bookmarks in other objects, and to
3355 * compare appropriately to other bookmarks in the meta-dnode.
3356 */
3357 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)3358 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3359 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3360 {
3361 /*
3362 * These variables represent the "equivalent" values for the zbookmark,
3363 * after converting zbookmarks inside the meta dnode to their
3364 * normal-object equivalents.
3365 */
3366 uint64_t zb1obj, zb2obj;
3367 uint64_t zb1L0, zb2L0;
3368 uint64_t zb1level, zb2level;
3369
3370 if (zb1->zb_object == zb2->zb_object &&
3371 zb1->zb_level == zb2->zb_level &&
3372 zb1->zb_blkid == zb2->zb_blkid)
3373 return (0);
3374
3375 /*
3376 * BP_SPANB calculates the span in blocks.
3377 */
3378 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3379 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3380
3381 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3382 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3383 zb1L0 = 0;
3384 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3385 } else {
3386 zb1obj = zb1->zb_object;
3387 zb1level = zb1->zb_level;
3388 }
3389
3390 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3391 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3392 zb2L0 = 0;
3393 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3394 } else {
3395 zb2obj = zb2->zb_object;
3396 zb2level = zb2->zb_level;
3397 }
3398
3399 /* Now that we have a canonical representation, do the comparison. */
3400 if (zb1obj != zb2obj)
3401 return (zb1obj < zb2obj ? -1 : 1);
3402 else if (zb1L0 != zb2L0)
3403 return (zb1L0 < zb2L0 ? -1 : 1);
3404 else if (zb1level != zb2level)
3405 return (zb1level > zb2level ? -1 : 1);
3406 /*
3407 * This can (theoretically) happen if the bookmarks have the same object
3408 * and level, but different blkids, if the block sizes are not the same.
3409 * There is presently no way to change the indirect block sizes
3410 */
3411 return (0);
3412 }
3413
3414 /*
3415 * This function checks the following: given that last_block is the place that
3416 * our traversal stopped last time, does that guarantee that we've visited
3417 * every node under subtree_root? Therefore, we can't just use the raw output
3418 * of zbookmark_compare. We have to pass in a modified version of
3419 * subtree_root; by incrementing the block id, and then checking whether
3420 * last_block is before or equal to that, we can tell whether or not having
3421 * visited last_block implies that all of subtree_root's children have been
3422 * visited.
3423 */
3424 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)3425 zbookmark_subtree_completed(const dnode_phys_t *dnp,
3426 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3427 {
3428 zbookmark_phys_t mod_zb = *subtree_root;
3429 mod_zb.zb_blkid++;
3430 ASSERT(last_block->zb_level == 0);
3431
3432 /* The objset_phys_t isn't before anything. */
3433 if (dnp == NULL)
3434 return (B_FALSE);
3435
3436 /*
3437 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3438 * data block size in sectors, because that variable is only used if
3439 * the bookmark refers to a block in the meta-dnode. Since we don't
3440 * know without examining it what object it refers to, and there's no
3441 * harm in passing in this value in other cases, we always pass it in.
3442 *
3443 * We pass in 0 for the indirect block size shift because zb2 must be
3444 * level 0. The indirect block size is only used to calculate the span
3445 * of the bookmark, but since the bookmark must be level 0, the span is
3446 * always 1, so the math works out.
3447 *
3448 * If you make changes to how the zbookmark_compare code works, be sure
3449 * to make sure that this code still works afterwards.
3450 */
3451 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3452 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3453 last_block) <= 0);
3454 }
3455