xref: /titanic_41/usr/src/uts/common/fs/zfs/zio.c (revision 7c667cfc4d78bd7223e69f45e4cc4db8188d1537)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42 
43 /*
44  * ==========================================================================
45  * I/O type descriptions
46  * ==========================================================================
47  */
48 const char *zio_type_name[ZIO_TYPES] = {
49 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
50 	"zio_ioctl"
51 };
52 
53 /*
54  * ==========================================================================
55  * I/O kmem caches
56  * ==========================================================================
57  */
58 kmem_cache_t *zio_cache;
59 kmem_cache_t *zio_link_cache;
60 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
61 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
62 
63 #ifdef _KERNEL
64 extern vmem_t *zio_alloc_arena;
65 #endif
66 
67 #define	ZIO_PIPELINE_CONTINUE		0x100
68 #define	ZIO_PIPELINE_STOP		0x101
69 
70 /*
71  * The following actions directly effect the spa's sync-to-convergence logic.
72  * The values below define the sync pass when we start performing the action.
73  * Care should be taken when changing these values as they directly impact
74  * spa_sync() performance. Tuning these values may introduce subtle performance
75  * pathologies and should only be done in the context of performance analysis.
76  * These tunables will eventually be removed and replaced with #defines once
77  * enough analysis has been done to determine optimal values.
78  *
79  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
80  * regular blocks are not deferred.
81  */
82 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
83 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
84 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
85 
86 /*
87  * An allocating zio is one that either currently has the DVA allocate
88  * stage set or will have it later in its lifetime.
89  */
90 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
91 
92 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
93 
94 #ifdef ZFS_DEBUG
95 int zio_buf_debug_limit = 16384;
96 #else
97 int zio_buf_debug_limit = 0;
98 #endif
99 
100 void
101 zio_init(void)
102 {
103 	size_t c;
104 	vmem_t *data_alloc_arena = NULL;
105 
106 #ifdef _KERNEL
107 	data_alloc_arena = zio_alloc_arena;
108 #endif
109 	zio_cache = kmem_cache_create("zio_cache",
110 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
111 	zio_link_cache = kmem_cache_create("zio_link_cache",
112 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
113 
114 	/*
115 	 * For small buffers, we want a cache for each multiple of
116 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
117 	 * for each quarter-power of 2.
118 	 */
119 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
120 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
121 		size_t p2 = size;
122 		size_t align = 0;
123 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
124 
125 		while (!ISP2(p2))
126 			p2 &= p2 - 1;
127 
128 #ifndef _KERNEL
129 		/*
130 		 * If we are using watchpoints, put each buffer on its own page,
131 		 * to eliminate the performance overhead of trapping to the
132 		 * kernel when modifying a non-watched buffer that shares the
133 		 * page with a watched buffer.
134 		 */
135 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
136 			continue;
137 #endif
138 		if (size <= 4 * SPA_MINBLOCKSIZE) {
139 			align = SPA_MINBLOCKSIZE;
140 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
141 			align = MIN(p2 >> 2, PAGESIZE);
142 		}
143 
144 		if (align != 0) {
145 			char name[36];
146 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
147 			zio_buf_cache[c] = kmem_cache_create(name, size,
148 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
149 
150 			/*
151 			 * Since zio_data bufs do not appear in crash dumps, we
152 			 * pass KMC_NOTOUCH so that no allocator metadata is
153 			 * stored with the buffers.
154 			 */
155 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
156 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
157 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
158 			    cflags | KMC_NOTOUCH);
159 		}
160 	}
161 
162 	while (--c != 0) {
163 		ASSERT(zio_buf_cache[c] != NULL);
164 		if (zio_buf_cache[c - 1] == NULL)
165 			zio_buf_cache[c - 1] = zio_buf_cache[c];
166 
167 		ASSERT(zio_data_buf_cache[c] != NULL);
168 		if (zio_data_buf_cache[c - 1] == NULL)
169 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
170 	}
171 
172 	zio_inject_init();
173 }
174 
175 void
176 zio_fini(void)
177 {
178 	size_t c;
179 	kmem_cache_t *last_cache = NULL;
180 	kmem_cache_t *last_data_cache = NULL;
181 
182 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
183 		if (zio_buf_cache[c] != last_cache) {
184 			last_cache = zio_buf_cache[c];
185 			kmem_cache_destroy(zio_buf_cache[c]);
186 		}
187 		zio_buf_cache[c] = NULL;
188 
189 		if (zio_data_buf_cache[c] != last_data_cache) {
190 			last_data_cache = zio_data_buf_cache[c];
191 			kmem_cache_destroy(zio_data_buf_cache[c]);
192 		}
193 		zio_data_buf_cache[c] = NULL;
194 	}
195 
196 	kmem_cache_destroy(zio_link_cache);
197 	kmem_cache_destroy(zio_cache);
198 
199 	zio_inject_fini();
200 }
201 
202 /*
203  * ==========================================================================
204  * Allocate and free I/O buffers
205  * ==========================================================================
206  */
207 
208 /*
209  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
210  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
211  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
212  * excess / transient data in-core during a crashdump.
213  */
214 void *
215 zio_buf_alloc(size_t size)
216 {
217 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
218 
219 	ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
220 
221 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
222 }
223 
224 /*
225  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
226  * crashdump if the kernel panics.  This exists so that we will limit the amount
227  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
228  * of kernel heap dumped to disk when the kernel panics)
229  */
230 void *
231 zio_data_buf_alloc(size_t size)
232 {
233 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
234 
235 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
236 
237 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
238 }
239 
240 void
241 zio_buf_free(void *buf, size_t size)
242 {
243 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
244 
245 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
246 
247 	kmem_cache_free(zio_buf_cache[c], buf);
248 }
249 
250 void
251 zio_data_buf_free(void *buf, size_t size)
252 {
253 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254 
255 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256 
257 	kmem_cache_free(zio_data_buf_cache[c], buf);
258 }
259 
260 /*
261  * ==========================================================================
262  * Push and pop I/O transform buffers
263  * ==========================================================================
264  */
265 static void
266 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
267 	zio_transform_func_t *transform)
268 {
269 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
270 
271 	zt->zt_orig_data = zio->io_data;
272 	zt->zt_orig_size = zio->io_size;
273 	zt->zt_bufsize = bufsize;
274 	zt->zt_transform = transform;
275 
276 	zt->zt_next = zio->io_transform_stack;
277 	zio->io_transform_stack = zt;
278 
279 	zio->io_data = data;
280 	zio->io_size = size;
281 }
282 
283 static void
284 zio_pop_transforms(zio_t *zio)
285 {
286 	zio_transform_t *zt;
287 
288 	while ((zt = zio->io_transform_stack) != NULL) {
289 		if (zt->zt_transform != NULL)
290 			zt->zt_transform(zio,
291 			    zt->zt_orig_data, zt->zt_orig_size);
292 
293 		if (zt->zt_bufsize != 0)
294 			zio_buf_free(zio->io_data, zt->zt_bufsize);
295 
296 		zio->io_data = zt->zt_orig_data;
297 		zio->io_size = zt->zt_orig_size;
298 		zio->io_transform_stack = zt->zt_next;
299 
300 		kmem_free(zt, sizeof (zio_transform_t));
301 	}
302 }
303 
304 /*
305  * ==========================================================================
306  * I/O transform callbacks for subblocks and decompression
307  * ==========================================================================
308  */
309 static void
310 zio_subblock(zio_t *zio, void *data, uint64_t size)
311 {
312 	ASSERT(zio->io_size > size);
313 
314 	if (zio->io_type == ZIO_TYPE_READ)
315 		bcopy(zio->io_data, data, size);
316 }
317 
318 static void
319 zio_decompress(zio_t *zio, void *data, uint64_t size)
320 {
321 	if (zio->io_error == 0 &&
322 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
323 	    zio->io_data, data, zio->io_size, size) != 0)
324 		zio->io_error = SET_ERROR(EIO);
325 }
326 
327 /*
328  * ==========================================================================
329  * I/O parent/child relationships and pipeline interlocks
330  * ==========================================================================
331  */
332 /*
333  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
334  *        continue calling these functions until they return NULL.
335  *        Otherwise, the next caller will pick up the list walk in
336  *        some indeterminate state.  (Otherwise every caller would
337  *        have to pass in a cookie to keep the state represented by
338  *        io_walk_link, which gets annoying.)
339  */
340 zio_t *
341 zio_walk_parents(zio_t *cio)
342 {
343 	zio_link_t *zl = cio->io_walk_link;
344 	list_t *pl = &cio->io_parent_list;
345 
346 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
347 	cio->io_walk_link = zl;
348 
349 	if (zl == NULL)
350 		return (NULL);
351 
352 	ASSERT(zl->zl_child == cio);
353 	return (zl->zl_parent);
354 }
355 
356 zio_t *
357 zio_walk_children(zio_t *pio)
358 {
359 	zio_link_t *zl = pio->io_walk_link;
360 	list_t *cl = &pio->io_child_list;
361 
362 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
363 	pio->io_walk_link = zl;
364 
365 	if (zl == NULL)
366 		return (NULL);
367 
368 	ASSERT(zl->zl_parent == pio);
369 	return (zl->zl_child);
370 }
371 
372 zio_t *
373 zio_unique_parent(zio_t *cio)
374 {
375 	zio_t *pio = zio_walk_parents(cio);
376 
377 	VERIFY(zio_walk_parents(cio) == NULL);
378 	return (pio);
379 }
380 
381 void
382 zio_add_child(zio_t *pio, zio_t *cio)
383 {
384 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
385 
386 	/*
387 	 * Logical I/Os can have logical, gang, or vdev children.
388 	 * Gang I/Os can have gang or vdev children.
389 	 * Vdev I/Os can only have vdev children.
390 	 * The following ASSERT captures all of these constraints.
391 	 */
392 	ASSERT(cio->io_child_type <= pio->io_child_type);
393 
394 	zl->zl_parent = pio;
395 	zl->zl_child = cio;
396 
397 	mutex_enter(&cio->io_lock);
398 	mutex_enter(&pio->io_lock);
399 
400 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
401 
402 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
403 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
404 
405 	list_insert_head(&pio->io_child_list, zl);
406 	list_insert_head(&cio->io_parent_list, zl);
407 
408 	pio->io_child_count++;
409 	cio->io_parent_count++;
410 
411 	mutex_exit(&pio->io_lock);
412 	mutex_exit(&cio->io_lock);
413 }
414 
415 static void
416 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
417 {
418 	ASSERT(zl->zl_parent == pio);
419 	ASSERT(zl->zl_child == cio);
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	list_remove(&pio->io_child_list, zl);
425 	list_remove(&cio->io_parent_list, zl);
426 
427 	pio->io_child_count--;
428 	cio->io_parent_count--;
429 
430 	mutex_exit(&pio->io_lock);
431 	mutex_exit(&cio->io_lock);
432 
433 	kmem_cache_free(zio_link_cache, zl);
434 }
435 
436 static boolean_t
437 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
438 {
439 	uint64_t *countp = &zio->io_children[child][wait];
440 	boolean_t waiting = B_FALSE;
441 
442 	mutex_enter(&zio->io_lock);
443 	ASSERT(zio->io_stall == NULL);
444 	if (*countp != 0) {
445 		zio->io_stage >>= 1;
446 		zio->io_stall = countp;
447 		waiting = B_TRUE;
448 	}
449 	mutex_exit(&zio->io_lock);
450 
451 	return (waiting);
452 }
453 
454 static void
455 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
456 {
457 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
458 	int *errorp = &pio->io_child_error[zio->io_child_type];
459 
460 	mutex_enter(&pio->io_lock);
461 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
462 		*errorp = zio_worst_error(*errorp, zio->io_error);
463 	pio->io_reexecute |= zio->io_reexecute;
464 	ASSERT3U(*countp, >, 0);
465 
466 	(*countp)--;
467 
468 	if (*countp == 0 && pio->io_stall == countp) {
469 		pio->io_stall = NULL;
470 		mutex_exit(&pio->io_lock);
471 		zio_execute(pio);
472 	} else {
473 		mutex_exit(&pio->io_lock);
474 	}
475 }
476 
477 static void
478 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
479 {
480 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
481 		zio->io_error = zio->io_child_error[c];
482 }
483 
484 /*
485  * ==========================================================================
486  * Create the various types of I/O (read, write, free, etc)
487  * ==========================================================================
488  */
489 static zio_t *
490 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
491     void *data, uint64_t size, zio_done_func_t *done, void *private,
492     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
493     vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
494     enum zio_stage stage, enum zio_stage pipeline)
495 {
496 	zio_t *zio;
497 
498 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
499 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
500 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
501 
502 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
503 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
504 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
505 
506 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
507 	bzero(zio, sizeof (zio_t));
508 
509 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
510 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
511 
512 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
513 	    offsetof(zio_link_t, zl_parent_node));
514 	list_create(&zio->io_child_list, sizeof (zio_link_t),
515 	    offsetof(zio_link_t, zl_child_node));
516 
517 	if (vd != NULL)
518 		zio->io_child_type = ZIO_CHILD_VDEV;
519 	else if (flags & ZIO_FLAG_GANG_CHILD)
520 		zio->io_child_type = ZIO_CHILD_GANG;
521 	else if (flags & ZIO_FLAG_DDT_CHILD)
522 		zio->io_child_type = ZIO_CHILD_DDT;
523 	else
524 		zio->io_child_type = ZIO_CHILD_LOGICAL;
525 
526 	if (bp != NULL) {
527 		zio->io_bp = (blkptr_t *)bp;
528 		zio->io_bp_copy = *bp;
529 		zio->io_bp_orig = *bp;
530 		if (type != ZIO_TYPE_WRITE ||
531 		    zio->io_child_type == ZIO_CHILD_DDT)
532 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
533 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
534 			zio->io_logical = zio;
535 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
536 			pipeline |= ZIO_GANG_STAGES;
537 	}
538 
539 	zio->io_spa = spa;
540 	zio->io_txg = txg;
541 	zio->io_done = done;
542 	zio->io_private = private;
543 	zio->io_type = type;
544 	zio->io_priority = priority;
545 	zio->io_vd = vd;
546 	zio->io_offset = offset;
547 	zio->io_orig_data = zio->io_data = data;
548 	zio->io_orig_size = zio->io_size = size;
549 	zio->io_orig_flags = zio->io_flags = flags;
550 	zio->io_orig_stage = zio->io_stage = stage;
551 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
552 
553 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
554 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
555 
556 	if (zb != NULL)
557 		zio->io_bookmark = *zb;
558 
559 	if (pio != NULL) {
560 		if (zio->io_logical == NULL)
561 			zio->io_logical = pio->io_logical;
562 		if (zio->io_child_type == ZIO_CHILD_GANG)
563 			zio->io_gang_leader = pio->io_gang_leader;
564 		zio_add_child(pio, zio);
565 	}
566 
567 	return (zio);
568 }
569 
570 static void
571 zio_destroy(zio_t *zio)
572 {
573 	list_destroy(&zio->io_parent_list);
574 	list_destroy(&zio->io_child_list);
575 	mutex_destroy(&zio->io_lock);
576 	cv_destroy(&zio->io_cv);
577 	kmem_cache_free(zio_cache, zio);
578 }
579 
580 zio_t *
581 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
582     void *private, enum zio_flag flags)
583 {
584 	zio_t *zio;
585 
586 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
587 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
588 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
589 
590 	return (zio);
591 }
592 
593 zio_t *
594 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
595 {
596 	return (zio_null(NULL, spa, NULL, done, private, flags));
597 }
598 
599 zio_t *
600 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
601     void *data, uint64_t size, zio_done_func_t *done, void *private,
602     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
603 {
604 	zio_t *zio;
605 
606 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
607 	    data, size, done, private,
608 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
609 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
610 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
611 
612 	return (zio);
613 }
614 
615 zio_t *
616 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
617     void *data, uint64_t size, const zio_prop_t *zp,
618     zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
619     void *private,
620     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
621 {
622 	zio_t *zio;
623 
624 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
625 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
626 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
627 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
628 	    DMU_OT_IS_VALID(zp->zp_type) &&
629 	    zp->zp_level < 32 &&
630 	    zp->zp_copies > 0 &&
631 	    zp->zp_copies <= spa_max_replication(spa));
632 
633 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
634 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
635 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
636 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
637 
638 	zio->io_ready = ready;
639 	zio->io_physdone = physdone;
640 	zio->io_prop = *zp;
641 
642 	/*
643 	 * Data can be NULL if we are going to call zio_write_override() to
644 	 * provide the already-allocated BP.  But we may need the data to
645 	 * verify a dedup hit (if requested).  In this case, don't try to
646 	 * dedup (just take the already-allocated BP verbatim).
647 	 */
648 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
649 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
650 	}
651 
652 	return (zio);
653 }
654 
655 zio_t *
656 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
657     uint64_t size, zio_done_func_t *done, void *private,
658     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
659 {
660 	zio_t *zio;
661 
662 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
663 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
664 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
665 
666 	return (zio);
667 }
668 
669 void
670 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
671 {
672 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
673 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
674 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
675 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
676 
677 	/*
678 	 * We must reset the io_prop to match the values that existed
679 	 * when the bp was first written by dmu_sync() keeping in mind
680 	 * that nopwrite and dedup are mutually exclusive.
681 	 */
682 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
683 	zio->io_prop.zp_nopwrite = nopwrite;
684 	zio->io_prop.zp_copies = copies;
685 	zio->io_bp_override = bp;
686 }
687 
688 void
689 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
690 {
691 
692 	/*
693 	 * The check for EMBEDDED is a performance optimization.  We
694 	 * process the free here (by ignoring it) rather than
695 	 * putting it on the list and then processing it in zio_free_sync().
696 	 */
697 	if (BP_IS_EMBEDDED(bp))
698 		return;
699 	metaslab_check_free(spa, bp);
700 
701 	/*
702 	 * Frees that are for the currently-syncing txg, are not going to be
703 	 * deferred, and which will not need to do a read (i.e. not GANG or
704 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
705 	 * in-memory list for later processing.
706 	 */
707 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
708 	    txg != spa->spa_syncing_txg ||
709 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
710 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
711 	} else {
712 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
713 	}
714 }
715 
716 zio_t *
717 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
718     enum zio_flag flags)
719 {
720 	zio_t *zio;
721 	enum zio_stage stage = ZIO_FREE_PIPELINE;
722 
723 	ASSERT(!BP_IS_HOLE(bp));
724 	ASSERT(spa_syncing_txg(spa) == txg);
725 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
726 
727 	if (BP_IS_EMBEDDED(bp))
728 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
729 
730 	metaslab_check_free(spa, bp);
731 	arc_freed(spa, bp);
732 
733 	/*
734 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
735 	 * or the DDT), so issue them asynchronously so that this thread is
736 	 * not tied up.
737 	 */
738 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
739 		stage |= ZIO_STAGE_ISSUE_ASYNC;
740 
741 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
742 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
743 	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
744 
745 	return (zio);
746 }
747 
748 zio_t *
749 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
750     zio_done_func_t *done, void *private, enum zio_flag flags)
751 {
752 	zio_t *zio;
753 
754 	dprintf_bp(bp, "claiming in txg %llu", txg);
755 
756 	if (BP_IS_EMBEDDED(bp))
757 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
758 
759 	/*
760 	 * A claim is an allocation of a specific block.  Claims are needed
761 	 * to support immediate writes in the intent log.  The issue is that
762 	 * immediate writes contain committed data, but in a txg that was
763 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
764 	 * the intent log claims all blocks that contain immediate write data
765 	 * so that the SPA knows they're in use.
766 	 *
767 	 * All claims *must* be resolved in the first txg -- before the SPA
768 	 * starts allocating blocks -- so that nothing is allocated twice.
769 	 * If txg == 0 we just verify that the block is claimable.
770 	 */
771 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
772 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
773 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
774 
775 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
776 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
777 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
778 
779 	return (zio);
780 }
781 
782 zio_t *
783 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
784     zio_done_func_t *done, void *private, enum zio_flag flags)
785 {
786 	zio_t *zio;
787 	int c;
788 
789 	if (vd->vdev_children == 0) {
790 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
791 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
792 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
793 
794 		zio->io_cmd = cmd;
795 	} else {
796 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
797 
798 		for (c = 0; c < vd->vdev_children; c++)
799 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
800 			    done, private, flags));
801 	}
802 
803 	return (zio);
804 }
805 
806 zio_t *
807 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
808     void *data, int checksum, zio_done_func_t *done, void *private,
809     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
810 {
811 	zio_t *zio;
812 
813 	ASSERT(vd->vdev_children == 0);
814 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
815 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
816 	ASSERT3U(offset + size, <=, vd->vdev_psize);
817 
818 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
819 	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
820 	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
821 
822 	zio->io_prop.zp_checksum = checksum;
823 
824 	return (zio);
825 }
826 
827 zio_t *
828 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
829     void *data, int checksum, zio_done_func_t *done, void *private,
830     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
831 {
832 	zio_t *zio;
833 
834 	ASSERT(vd->vdev_children == 0);
835 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
836 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
837 	ASSERT3U(offset + size, <=, vd->vdev_psize);
838 
839 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
840 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
841 	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
842 
843 	zio->io_prop.zp_checksum = checksum;
844 
845 	if (zio_checksum_table[checksum].ci_eck) {
846 		/*
847 		 * zec checksums are necessarily destructive -- they modify
848 		 * the end of the write buffer to hold the verifier/checksum.
849 		 * Therefore, we must make a local copy in case the data is
850 		 * being written to multiple places in parallel.
851 		 */
852 		void *wbuf = zio_buf_alloc(size);
853 		bcopy(data, wbuf, size);
854 		zio_push_transform(zio, wbuf, size, size, NULL);
855 	}
856 
857 	return (zio);
858 }
859 
860 /*
861  * Create a child I/O to do some work for us.
862  */
863 zio_t *
864 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
865 	void *data, uint64_t size, int type, zio_priority_t priority,
866 	enum zio_flag flags, zio_done_func_t *done, void *private)
867 {
868 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
869 	zio_t *zio;
870 
871 	ASSERT(vd->vdev_parent ==
872 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
873 
874 	if (type == ZIO_TYPE_READ && bp != NULL) {
875 		/*
876 		 * If we have the bp, then the child should perform the
877 		 * checksum and the parent need not.  This pushes error
878 		 * detection as close to the leaves as possible and
879 		 * eliminates redundant checksums in the interior nodes.
880 		 */
881 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
882 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
883 	}
884 
885 	if (vd->vdev_children == 0)
886 		offset += VDEV_LABEL_START_SIZE;
887 
888 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
889 
890 	/*
891 	 * If we've decided to do a repair, the write is not speculative --
892 	 * even if the original read was.
893 	 */
894 	if (flags & ZIO_FLAG_IO_REPAIR)
895 		flags &= ~ZIO_FLAG_SPECULATIVE;
896 
897 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
898 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
899 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
900 
901 	zio->io_physdone = pio->io_physdone;
902 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
903 		zio->io_logical->io_phys_children++;
904 
905 	return (zio);
906 }
907 
908 zio_t *
909 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
910 	int type, zio_priority_t priority, enum zio_flag flags,
911 	zio_done_func_t *done, void *private)
912 {
913 	zio_t *zio;
914 
915 	ASSERT(vd->vdev_ops->vdev_op_leaf);
916 
917 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
918 	    data, size, done, private, type, priority,
919 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
920 	    vd, offset, NULL,
921 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
922 
923 	return (zio);
924 }
925 
926 void
927 zio_flush(zio_t *zio, vdev_t *vd)
928 {
929 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
930 	    NULL, NULL,
931 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
932 }
933 
934 void
935 zio_shrink(zio_t *zio, uint64_t size)
936 {
937 	ASSERT(zio->io_executor == NULL);
938 	ASSERT(zio->io_orig_size == zio->io_size);
939 	ASSERT(size <= zio->io_size);
940 
941 	/*
942 	 * We don't shrink for raidz because of problems with the
943 	 * reconstruction when reading back less than the block size.
944 	 * Note, BP_IS_RAIDZ() assumes no compression.
945 	 */
946 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
947 	if (!BP_IS_RAIDZ(zio->io_bp))
948 		zio->io_orig_size = zio->io_size = size;
949 }
950 
951 /*
952  * ==========================================================================
953  * Prepare to read and write logical blocks
954  * ==========================================================================
955  */
956 
957 static int
958 zio_read_bp_init(zio_t *zio)
959 {
960 	blkptr_t *bp = zio->io_bp;
961 
962 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
963 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
964 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
965 		uint64_t psize =
966 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
967 		void *cbuf = zio_buf_alloc(psize);
968 
969 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
970 	}
971 
972 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
973 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
974 		decode_embedded_bp_compressed(bp, zio->io_data);
975 	} else {
976 		ASSERT(!BP_IS_EMBEDDED(bp));
977 	}
978 
979 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
980 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
981 
982 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
983 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
984 
985 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
986 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
987 
988 	return (ZIO_PIPELINE_CONTINUE);
989 }
990 
991 static int
992 zio_write_bp_init(zio_t *zio)
993 {
994 	spa_t *spa = zio->io_spa;
995 	zio_prop_t *zp = &zio->io_prop;
996 	enum zio_compress compress = zp->zp_compress;
997 	blkptr_t *bp = zio->io_bp;
998 	uint64_t lsize = zio->io_size;
999 	uint64_t psize = lsize;
1000 	int pass = 1;
1001 
1002 	/*
1003 	 * If our children haven't all reached the ready stage,
1004 	 * wait for them and then repeat this pipeline stage.
1005 	 */
1006 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1007 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1008 		return (ZIO_PIPELINE_STOP);
1009 
1010 	if (!IO_IS_ALLOCATING(zio))
1011 		return (ZIO_PIPELINE_CONTINUE);
1012 
1013 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1014 
1015 	if (zio->io_bp_override) {
1016 		ASSERT(bp->blk_birth != zio->io_txg);
1017 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1018 
1019 		*bp = *zio->io_bp_override;
1020 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1021 
1022 		if (BP_IS_EMBEDDED(bp))
1023 			return (ZIO_PIPELINE_CONTINUE);
1024 
1025 		/*
1026 		 * If we've been overridden and nopwrite is set then
1027 		 * set the flag accordingly to indicate that a nopwrite
1028 		 * has already occurred.
1029 		 */
1030 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1031 			ASSERT(!zp->zp_dedup);
1032 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1033 			return (ZIO_PIPELINE_CONTINUE);
1034 		}
1035 
1036 		ASSERT(!zp->zp_nopwrite);
1037 
1038 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1039 			return (ZIO_PIPELINE_CONTINUE);
1040 
1041 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1042 		    zp->zp_dedup_verify);
1043 
1044 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1045 			BP_SET_DEDUP(bp, 1);
1046 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1047 			return (ZIO_PIPELINE_CONTINUE);
1048 		}
1049 		zio->io_bp_override = NULL;
1050 		BP_ZERO(bp);
1051 	}
1052 
1053 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1054 		/*
1055 		 * We're rewriting an existing block, which means we're
1056 		 * working on behalf of spa_sync().  For spa_sync() to
1057 		 * converge, it must eventually be the case that we don't
1058 		 * have to allocate new blocks.  But compression changes
1059 		 * the blocksize, which forces a reallocate, and makes
1060 		 * convergence take longer.  Therefore, after the first
1061 		 * few passes, stop compressing to ensure convergence.
1062 		 */
1063 		pass = spa_sync_pass(spa);
1064 
1065 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1066 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1067 		ASSERT(!BP_GET_DEDUP(bp));
1068 
1069 		if (pass >= zfs_sync_pass_dont_compress)
1070 			compress = ZIO_COMPRESS_OFF;
1071 
1072 		/* Make sure someone doesn't change their mind on overwrites */
1073 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1074 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1075 	}
1076 
1077 	if (compress != ZIO_COMPRESS_OFF) {
1078 		void *cbuf = zio_buf_alloc(lsize);
1079 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1080 		if (psize == 0 || psize == lsize) {
1081 			compress = ZIO_COMPRESS_OFF;
1082 			zio_buf_free(cbuf, lsize);
1083 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1084 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1085 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1086 			encode_embedded_bp_compressed(bp,
1087 			    cbuf, compress, lsize, psize);
1088 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1089 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1090 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1091 			zio_buf_free(cbuf, lsize);
1092 			bp->blk_birth = zio->io_txg;
1093 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1094 			ASSERT(spa_feature_is_active(spa,
1095 			    SPA_FEATURE_EMBEDDED_DATA));
1096 			return (ZIO_PIPELINE_CONTINUE);
1097 		} else {
1098 			/*
1099 			 * Round up compressed size to MINBLOCKSIZE and
1100 			 * zero the tail.
1101 			 */
1102 			size_t rounded =
1103 			    P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1104 			if (rounded > psize) {
1105 				bzero((char *)cbuf + psize, rounded - psize);
1106 				psize = rounded;
1107 			}
1108 			if (psize == lsize) {
1109 				compress = ZIO_COMPRESS_OFF;
1110 				zio_buf_free(cbuf, lsize);
1111 			} else {
1112 				zio_push_transform(zio, cbuf,
1113 				    psize, lsize, NULL);
1114 			}
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * The final pass of spa_sync() must be all rewrites, but the first
1120 	 * few passes offer a trade-off: allocating blocks defers convergence,
1121 	 * but newly allocated blocks are sequential, so they can be written
1122 	 * to disk faster.  Therefore, we allow the first few passes of
1123 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1124 	 * There should only be a handful of blocks after pass 1 in any case.
1125 	 */
1126 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1127 	    BP_GET_PSIZE(bp) == psize &&
1128 	    pass >= zfs_sync_pass_rewrite) {
1129 		ASSERT(psize != 0);
1130 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1131 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1132 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1133 	} else {
1134 		BP_ZERO(bp);
1135 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1136 	}
1137 
1138 	if (psize == 0) {
1139 		if (zio->io_bp_orig.blk_birth != 0 &&
1140 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1141 			BP_SET_LSIZE(bp, lsize);
1142 			BP_SET_TYPE(bp, zp->zp_type);
1143 			BP_SET_LEVEL(bp, zp->zp_level);
1144 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1145 		}
1146 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1147 	} else {
1148 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1149 		BP_SET_LSIZE(bp, lsize);
1150 		BP_SET_TYPE(bp, zp->zp_type);
1151 		BP_SET_LEVEL(bp, zp->zp_level);
1152 		BP_SET_PSIZE(bp, psize);
1153 		BP_SET_COMPRESS(bp, compress);
1154 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1155 		BP_SET_DEDUP(bp, zp->zp_dedup);
1156 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1157 		if (zp->zp_dedup) {
1158 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1159 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1160 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1161 		}
1162 		if (zp->zp_nopwrite) {
1163 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1164 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1165 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1166 		}
1167 	}
1168 
1169 	return (ZIO_PIPELINE_CONTINUE);
1170 }
1171 
1172 static int
1173 zio_free_bp_init(zio_t *zio)
1174 {
1175 	blkptr_t *bp = zio->io_bp;
1176 
1177 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1178 		if (BP_GET_DEDUP(bp))
1179 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1180 	}
1181 
1182 	return (ZIO_PIPELINE_CONTINUE);
1183 }
1184 
1185 /*
1186  * ==========================================================================
1187  * Execute the I/O pipeline
1188  * ==========================================================================
1189  */
1190 
1191 static void
1192 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1193 {
1194 	spa_t *spa = zio->io_spa;
1195 	zio_type_t t = zio->io_type;
1196 	int flags = (cutinline ? TQ_FRONT : 0);
1197 
1198 	/*
1199 	 * If we're a config writer or a probe, the normal issue and
1200 	 * interrupt threads may all be blocked waiting for the config lock.
1201 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1202 	 */
1203 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1204 		t = ZIO_TYPE_NULL;
1205 
1206 	/*
1207 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1208 	 */
1209 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1210 		t = ZIO_TYPE_NULL;
1211 
1212 	/*
1213 	 * If this is a high priority I/O, then use the high priority taskq if
1214 	 * available.
1215 	 */
1216 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1217 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1218 		q++;
1219 
1220 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1221 
1222 	/*
1223 	 * NB: We are assuming that the zio can only be dispatched
1224 	 * to a single taskq at a time.  It would be a grievous error
1225 	 * to dispatch the zio to another taskq at the same time.
1226 	 */
1227 	ASSERT(zio->io_tqent.tqent_next == NULL);
1228 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1229 	    flags, &zio->io_tqent);
1230 }
1231 
1232 static boolean_t
1233 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1234 {
1235 	kthread_t *executor = zio->io_executor;
1236 	spa_t *spa = zio->io_spa;
1237 
1238 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1239 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1240 		uint_t i;
1241 		for (i = 0; i < tqs->stqs_count; i++) {
1242 			if (taskq_member(tqs->stqs_taskq[i], executor))
1243 				return (B_TRUE);
1244 		}
1245 	}
1246 
1247 	return (B_FALSE);
1248 }
1249 
1250 static int
1251 zio_issue_async(zio_t *zio)
1252 {
1253 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1254 
1255 	return (ZIO_PIPELINE_STOP);
1256 }
1257 
1258 void
1259 zio_interrupt(zio_t *zio)
1260 {
1261 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1262 }
1263 
1264 /*
1265  * Execute the I/O pipeline until one of the following occurs:
1266  *
1267  *	(1) the I/O completes
1268  *	(2) the pipeline stalls waiting for dependent child I/Os
1269  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1270  *	(4) the I/O is delegated by vdev-level caching or aggregation
1271  *	(5) the I/O is deferred due to vdev-level queueing
1272  *	(6) the I/O is handed off to another thread.
1273  *
1274  * In all cases, the pipeline stops whenever there's no CPU work; it never
1275  * burns a thread in cv_wait().
1276  *
1277  * There's no locking on io_stage because there's no legitimate way
1278  * for multiple threads to be attempting to process the same I/O.
1279  */
1280 static zio_pipe_stage_t *zio_pipeline[];
1281 
1282 void
1283 zio_execute(zio_t *zio)
1284 {
1285 	zio->io_executor = curthread;
1286 
1287 	while (zio->io_stage < ZIO_STAGE_DONE) {
1288 		enum zio_stage pipeline = zio->io_pipeline;
1289 		enum zio_stage stage = zio->io_stage;
1290 		int rv;
1291 
1292 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1293 		ASSERT(ISP2(stage));
1294 		ASSERT(zio->io_stall == NULL);
1295 
1296 		do {
1297 			stage <<= 1;
1298 		} while ((stage & pipeline) == 0);
1299 
1300 		ASSERT(stage <= ZIO_STAGE_DONE);
1301 
1302 		/*
1303 		 * If we are in interrupt context and this pipeline stage
1304 		 * will grab a config lock that is held across I/O,
1305 		 * or may wait for an I/O that needs an interrupt thread
1306 		 * to complete, issue async to avoid deadlock.
1307 		 *
1308 		 * For VDEV_IO_START, we cut in line so that the io will
1309 		 * be sent to disk promptly.
1310 		 */
1311 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1312 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1313 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1314 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1315 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1316 			return;
1317 		}
1318 
1319 		zio->io_stage = stage;
1320 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1321 
1322 		if (rv == ZIO_PIPELINE_STOP)
1323 			return;
1324 
1325 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1326 	}
1327 }
1328 
1329 /*
1330  * ==========================================================================
1331  * Initiate I/O, either sync or async
1332  * ==========================================================================
1333  */
1334 int
1335 zio_wait(zio_t *zio)
1336 {
1337 	int error;
1338 
1339 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1340 	ASSERT(zio->io_executor == NULL);
1341 
1342 	zio->io_waiter = curthread;
1343 
1344 	zio_execute(zio);
1345 
1346 	mutex_enter(&zio->io_lock);
1347 	while (zio->io_executor != NULL)
1348 		cv_wait(&zio->io_cv, &zio->io_lock);
1349 	mutex_exit(&zio->io_lock);
1350 
1351 	error = zio->io_error;
1352 	zio_destroy(zio);
1353 
1354 	return (error);
1355 }
1356 
1357 void
1358 zio_nowait(zio_t *zio)
1359 {
1360 	ASSERT(zio->io_executor == NULL);
1361 
1362 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1363 	    zio_unique_parent(zio) == NULL) {
1364 		/*
1365 		 * This is a logical async I/O with no parent to wait for it.
1366 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1367 		 * will ensure they complete prior to unloading the pool.
1368 		 */
1369 		spa_t *spa = zio->io_spa;
1370 
1371 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1372 	}
1373 
1374 	zio_execute(zio);
1375 }
1376 
1377 /*
1378  * ==========================================================================
1379  * Reexecute or suspend/resume failed I/O
1380  * ==========================================================================
1381  */
1382 
1383 static void
1384 zio_reexecute(zio_t *pio)
1385 {
1386 	zio_t *cio, *cio_next;
1387 
1388 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1389 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1390 	ASSERT(pio->io_gang_leader == NULL);
1391 	ASSERT(pio->io_gang_tree == NULL);
1392 
1393 	pio->io_flags = pio->io_orig_flags;
1394 	pio->io_stage = pio->io_orig_stage;
1395 	pio->io_pipeline = pio->io_orig_pipeline;
1396 	pio->io_reexecute = 0;
1397 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1398 	pio->io_error = 0;
1399 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1400 		pio->io_state[w] = 0;
1401 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1402 		pio->io_child_error[c] = 0;
1403 
1404 	if (IO_IS_ALLOCATING(pio))
1405 		BP_ZERO(pio->io_bp);
1406 
1407 	/*
1408 	 * As we reexecute pio's children, new children could be created.
1409 	 * New children go to the head of pio's io_child_list, however,
1410 	 * so we will (correctly) not reexecute them.  The key is that
1411 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1412 	 * cannot be affected by any side effects of reexecuting 'cio'.
1413 	 */
1414 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1415 		cio_next = zio_walk_children(pio);
1416 		mutex_enter(&pio->io_lock);
1417 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1418 			pio->io_children[cio->io_child_type][w]++;
1419 		mutex_exit(&pio->io_lock);
1420 		zio_reexecute(cio);
1421 	}
1422 
1423 	/*
1424 	 * Now that all children have been reexecuted, execute the parent.
1425 	 * We don't reexecute "The Godfather" I/O here as it's the
1426 	 * responsibility of the caller to wait on him.
1427 	 */
1428 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1429 		zio_execute(pio);
1430 }
1431 
1432 void
1433 zio_suspend(spa_t *spa, zio_t *zio)
1434 {
1435 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1436 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1437 		    "failure and the failure mode property for this pool "
1438 		    "is set to panic.", spa_name(spa));
1439 
1440 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1441 
1442 	mutex_enter(&spa->spa_suspend_lock);
1443 
1444 	if (spa->spa_suspend_zio_root == NULL)
1445 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1446 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1447 		    ZIO_FLAG_GODFATHER);
1448 
1449 	spa->spa_suspended = B_TRUE;
1450 
1451 	if (zio != NULL) {
1452 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1453 		ASSERT(zio != spa->spa_suspend_zio_root);
1454 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1455 		ASSERT(zio_unique_parent(zio) == NULL);
1456 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1457 		zio_add_child(spa->spa_suspend_zio_root, zio);
1458 	}
1459 
1460 	mutex_exit(&spa->spa_suspend_lock);
1461 }
1462 
1463 int
1464 zio_resume(spa_t *spa)
1465 {
1466 	zio_t *pio;
1467 
1468 	/*
1469 	 * Reexecute all previously suspended i/o.
1470 	 */
1471 	mutex_enter(&spa->spa_suspend_lock);
1472 	spa->spa_suspended = B_FALSE;
1473 	cv_broadcast(&spa->spa_suspend_cv);
1474 	pio = spa->spa_suspend_zio_root;
1475 	spa->spa_suspend_zio_root = NULL;
1476 	mutex_exit(&spa->spa_suspend_lock);
1477 
1478 	if (pio == NULL)
1479 		return (0);
1480 
1481 	zio_reexecute(pio);
1482 	return (zio_wait(pio));
1483 }
1484 
1485 void
1486 zio_resume_wait(spa_t *spa)
1487 {
1488 	mutex_enter(&spa->spa_suspend_lock);
1489 	while (spa_suspended(spa))
1490 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1491 	mutex_exit(&spa->spa_suspend_lock);
1492 }
1493 
1494 /*
1495  * ==========================================================================
1496  * Gang blocks.
1497  *
1498  * A gang block is a collection of small blocks that looks to the DMU
1499  * like one large block.  When zio_dva_allocate() cannot find a block
1500  * of the requested size, due to either severe fragmentation or the pool
1501  * being nearly full, it calls zio_write_gang_block() to construct the
1502  * block from smaller fragments.
1503  *
1504  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1505  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1506  * an indirect block: it's an array of block pointers.  It consumes
1507  * only one sector and hence is allocatable regardless of fragmentation.
1508  * The gang header's bps point to its gang members, which hold the data.
1509  *
1510  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1511  * as the verifier to ensure uniqueness of the SHA256 checksum.
1512  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1513  * not the gang header.  This ensures that data block signatures (needed for
1514  * deduplication) are independent of how the block is physically stored.
1515  *
1516  * Gang blocks can be nested: a gang member may itself be a gang block.
1517  * Thus every gang block is a tree in which root and all interior nodes are
1518  * gang headers, and the leaves are normal blocks that contain user data.
1519  * The root of the gang tree is called the gang leader.
1520  *
1521  * To perform any operation (read, rewrite, free, claim) on a gang block,
1522  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1523  * in the io_gang_tree field of the original logical i/o by recursively
1524  * reading the gang leader and all gang headers below it.  This yields
1525  * an in-core tree containing the contents of every gang header and the
1526  * bps for every constituent of the gang block.
1527  *
1528  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1529  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1530  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1531  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1532  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1533  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1534  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1535  * of the gang header plus zio_checksum_compute() of the data to update the
1536  * gang header's blk_cksum as described above.
1537  *
1538  * The two-phase assemble/issue model solves the problem of partial failure --
1539  * what if you'd freed part of a gang block but then couldn't read the
1540  * gang header for another part?  Assembling the entire gang tree first
1541  * ensures that all the necessary gang header I/O has succeeded before
1542  * starting the actual work of free, claim, or write.  Once the gang tree
1543  * is assembled, free and claim are in-memory operations that cannot fail.
1544  *
1545  * In the event that a gang write fails, zio_dva_unallocate() walks the
1546  * gang tree to immediately free (i.e. insert back into the space map)
1547  * everything we've allocated.  This ensures that we don't get ENOSPC
1548  * errors during repeated suspend/resume cycles due to a flaky device.
1549  *
1550  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1551  * the gang tree, we won't modify the block, so we can safely defer the free
1552  * (knowing that the block is still intact).  If we *can* assemble the gang
1553  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1554  * each constituent bp and we can allocate a new block on the next sync pass.
1555  *
1556  * In all cases, the gang tree allows complete recovery from partial failure.
1557  * ==========================================================================
1558  */
1559 
1560 static zio_t *
1561 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1562 {
1563 	if (gn != NULL)
1564 		return (pio);
1565 
1566 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1567 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1568 	    &pio->io_bookmark));
1569 }
1570 
1571 zio_t *
1572 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1573 {
1574 	zio_t *zio;
1575 
1576 	if (gn != NULL) {
1577 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1578 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1579 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1580 		/*
1581 		 * As we rewrite each gang header, the pipeline will compute
1582 		 * a new gang block header checksum for it; but no one will
1583 		 * compute a new data checksum, so we do that here.  The one
1584 		 * exception is the gang leader: the pipeline already computed
1585 		 * its data checksum because that stage precedes gang assembly.
1586 		 * (Presently, nothing actually uses interior data checksums;
1587 		 * this is just good hygiene.)
1588 		 */
1589 		if (gn != pio->io_gang_leader->io_gang_tree) {
1590 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1591 			    data, BP_GET_PSIZE(bp));
1592 		}
1593 		/*
1594 		 * If we are here to damage data for testing purposes,
1595 		 * leave the GBH alone so that we can detect the damage.
1596 		 */
1597 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1598 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1599 	} else {
1600 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1601 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1602 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1603 	}
1604 
1605 	return (zio);
1606 }
1607 
1608 /* ARGSUSED */
1609 zio_t *
1610 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1611 {
1612 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1613 	    ZIO_GANG_CHILD_FLAGS(pio)));
1614 }
1615 
1616 /* ARGSUSED */
1617 zio_t *
1618 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1619 {
1620 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1621 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1622 }
1623 
1624 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1625 	NULL,
1626 	zio_read_gang,
1627 	zio_rewrite_gang,
1628 	zio_free_gang,
1629 	zio_claim_gang,
1630 	NULL
1631 };
1632 
1633 static void zio_gang_tree_assemble_done(zio_t *zio);
1634 
1635 static zio_gang_node_t *
1636 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1637 {
1638 	zio_gang_node_t *gn;
1639 
1640 	ASSERT(*gnpp == NULL);
1641 
1642 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1643 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1644 	*gnpp = gn;
1645 
1646 	return (gn);
1647 }
1648 
1649 static void
1650 zio_gang_node_free(zio_gang_node_t **gnpp)
1651 {
1652 	zio_gang_node_t *gn = *gnpp;
1653 
1654 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1655 		ASSERT(gn->gn_child[g] == NULL);
1656 
1657 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1658 	kmem_free(gn, sizeof (*gn));
1659 	*gnpp = NULL;
1660 }
1661 
1662 static void
1663 zio_gang_tree_free(zio_gang_node_t **gnpp)
1664 {
1665 	zio_gang_node_t *gn = *gnpp;
1666 
1667 	if (gn == NULL)
1668 		return;
1669 
1670 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1671 		zio_gang_tree_free(&gn->gn_child[g]);
1672 
1673 	zio_gang_node_free(gnpp);
1674 }
1675 
1676 static void
1677 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1678 {
1679 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1680 
1681 	ASSERT(gio->io_gang_leader == gio);
1682 	ASSERT(BP_IS_GANG(bp));
1683 
1684 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1685 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1686 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1687 }
1688 
1689 static void
1690 zio_gang_tree_assemble_done(zio_t *zio)
1691 {
1692 	zio_t *gio = zio->io_gang_leader;
1693 	zio_gang_node_t *gn = zio->io_private;
1694 	blkptr_t *bp = zio->io_bp;
1695 
1696 	ASSERT(gio == zio_unique_parent(zio));
1697 	ASSERT(zio->io_child_count == 0);
1698 
1699 	if (zio->io_error)
1700 		return;
1701 
1702 	if (BP_SHOULD_BYTESWAP(bp))
1703 		byteswap_uint64_array(zio->io_data, zio->io_size);
1704 
1705 	ASSERT(zio->io_data == gn->gn_gbh);
1706 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1707 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1708 
1709 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1710 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1711 		if (!BP_IS_GANG(gbp))
1712 			continue;
1713 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1714 	}
1715 }
1716 
1717 static void
1718 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1719 {
1720 	zio_t *gio = pio->io_gang_leader;
1721 	zio_t *zio;
1722 
1723 	ASSERT(BP_IS_GANG(bp) == !!gn);
1724 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1725 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1726 
1727 	/*
1728 	 * If you're a gang header, your data is in gn->gn_gbh.
1729 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1730 	 */
1731 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1732 
1733 	if (gn != NULL) {
1734 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1735 
1736 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1737 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1738 			if (BP_IS_HOLE(gbp))
1739 				continue;
1740 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1741 			data = (char *)data + BP_GET_PSIZE(gbp);
1742 		}
1743 	}
1744 
1745 	if (gn == gio->io_gang_tree)
1746 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1747 
1748 	if (zio != pio)
1749 		zio_nowait(zio);
1750 }
1751 
1752 static int
1753 zio_gang_assemble(zio_t *zio)
1754 {
1755 	blkptr_t *bp = zio->io_bp;
1756 
1757 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1758 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1759 
1760 	zio->io_gang_leader = zio;
1761 
1762 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1763 
1764 	return (ZIO_PIPELINE_CONTINUE);
1765 }
1766 
1767 static int
1768 zio_gang_issue(zio_t *zio)
1769 {
1770 	blkptr_t *bp = zio->io_bp;
1771 
1772 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1773 		return (ZIO_PIPELINE_STOP);
1774 
1775 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1776 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1777 
1778 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1779 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1780 	else
1781 		zio_gang_tree_free(&zio->io_gang_tree);
1782 
1783 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1784 
1785 	return (ZIO_PIPELINE_CONTINUE);
1786 }
1787 
1788 static void
1789 zio_write_gang_member_ready(zio_t *zio)
1790 {
1791 	zio_t *pio = zio_unique_parent(zio);
1792 	zio_t *gio = zio->io_gang_leader;
1793 	dva_t *cdva = zio->io_bp->blk_dva;
1794 	dva_t *pdva = pio->io_bp->blk_dva;
1795 	uint64_t asize;
1796 
1797 	if (BP_IS_HOLE(zio->io_bp))
1798 		return;
1799 
1800 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1801 
1802 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1803 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1804 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1805 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1806 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1807 
1808 	mutex_enter(&pio->io_lock);
1809 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1810 		ASSERT(DVA_GET_GANG(&pdva[d]));
1811 		asize = DVA_GET_ASIZE(&pdva[d]);
1812 		asize += DVA_GET_ASIZE(&cdva[d]);
1813 		DVA_SET_ASIZE(&pdva[d], asize);
1814 	}
1815 	mutex_exit(&pio->io_lock);
1816 }
1817 
1818 static int
1819 zio_write_gang_block(zio_t *pio)
1820 {
1821 	spa_t *spa = pio->io_spa;
1822 	blkptr_t *bp = pio->io_bp;
1823 	zio_t *gio = pio->io_gang_leader;
1824 	zio_t *zio;
1825 	zio_gang_node_t *gn, **gnpp;
1826 	zio_gbh_phys_t *gbh;
1827 	uint64_t txg = pio->io_txg;
1828 	uint64_t resid = pio->io_size;
1829 	uint64_t lsize;
1830 	int copies = gio->io_prop.zp_copies;
1831 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1832 	zio_prop_t zp;
1833 	int error;
1834 
1835 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1836 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1837 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1838 	if (error) {
1839 		pio->io_error = error;
1840 		return (ZIO_PIPELINE_CONTINUE);
1841 	}
1842 
1843 	if (pio == gio) {
1844 		gnpp = &gio->io_gang_tree;
1845 	} else {
1846 		gnpp = pio->io_private;
1847 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1848 	}
1849 
1850 	gn = zio_gang_node_alloc(gnpp);
1851 	gbh = gn->gn_gbh;
1852 	bzero(gbh, SPA_GANGBLOCKSIZE);
1853 
1854 	/*
1855 	 * Create the gang header.
1856 	 */
1857 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1858 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1859 
1860 	/*
1861 	 * Create and nowait the gang children.
1862 	 */
1863 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1864 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1865 		    SPA_MINBLOCKSIZE);
1866 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1867 
1868 		zp.zp_checksum = gio->io_prop.zp_checksum;
1869 		zp.zp_compress = ZIO_COMPRESS_OFF;
1870 		zp.zp_type = DMU_OT_NONE;
1871 		zp.zp_level = 0;
1872 		zp.zp_copies = gio->io_prop.zp_copies;
1873 		zp.zp_dedup = B_FALSE;
1874 		zp.zp_dedup_verify = B_FALSE;
1875 		zp.zp_nopwrite = B_FALSE;
1876 
1877 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1878 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1879 		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1880 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1881 		    &pio->io_bookmark));
1882 	}
1883 
1884 	/*
1885 	 * Set pio's pipeline to just wait for zio to finish.
1886 	 */
1887 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1888 
1889 	zio_nowait(zio);
1890 
1891 	return (ZIO_PIPELINE_CONTINUE);
1892 }
1893 
1894 /*
1895  * The zio_nop_write stage in the pipeline determines if allocating
1896  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1897  * such as SHA256, we can compare the checksums of the new data and the old
1898  * to determine if allocating a new block is required.  The nopwrite
1899  * feature can handle writes in either syncing or open context (i.e. zil
1900  * writes) and as a result is mutually exclusive with dedup.
1901  */
1902 static int
1903 zio_nop_write(zio_t *zio)
1904 {
1905 	blkptr_t *bp = zio->io_bp;
1906 	blkptr_t *bp_orig = &zio->io_bp_orig;
1907 	zio_prop_t *zp = &zio->io_prop;
1908 
1909 	ASSERT(BP_GET_LEVEL(bp) == 0);
1910 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1911 	ASSERT(zp->zp_nopwrite);
1912 	ASSERT(!zp->zp_dedup);
1913 	ASSERT(zio->io_bp_override == NULL);
1914 	ASSERT(IO_IS_ALLOCATING(zio));
1915 
1916 	/*
1917 	 * Check to see if the original bp and the new bp have matching
1918 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1919 	 * If they don't then just continue with the pipeline which will
1920 	 * allocate a new bp.
1921 	 */
1922 	if (BP_IS_HOLE(bp_orig) ||
1923 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1924 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1925 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1926 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1927 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1928 		return (ZIO_PIPELINE_CONTINUE);
1929 
1930 	/*
1931 	 * If the checksums match then reset the pipeline so that we
1932 	 * avoid allocating a new bp and issuing any I/O.
1933 	 */
1934 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1935 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1936 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1937 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1938 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1939 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1940 		    sizeof (uint64_t)) == 0);
1941 
1942 		*bp = *bp_orig;
1943 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1944 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1945 	}
1946 
1947 	return (ZIO_PIPELINE_CONTINUE);
1948 }
1949 
1950 /*
1951  * ==========================================================================
1952  * Dedup
1953  * ==========================================================================
1954  */
1955 static void
1956 zio_ddt_child_read_done(zio_t *zio)
1957 {
1958 	blkptr_t *bp = zio->io_bp;
1959 	ddt_entry_t *dde = zio->io_private;
1960 	ddt_phys_t *ddp;
1961 	zio_t *pio = zio_unique_parent(zio);
1962 
1963 	mutex_enter(&pio->io_lock);
1964 	ddp = ddt_phys_select(dde, bp);
1965 	if (zio->io_error == 0)
1966 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1967 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1968 		dde->dde_repair_data = zio->io_data;
1969 	else
1970 		zio_buf_free(zio->io_data, zio->io_size);
1971 	mutex_exit(&pio->io_lock);
1972 }
1973 
1974 static int
1975 zio_ddt_read_start(zio_t *zio)
1976 {
1977 	blkptr_t *bp = zio->io_bp;
1978 
1979 	ASSERT(BP_GET_DEDUP(bp));
1980 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1981 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1982 
1983 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1984 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1985 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1986 		ddt_phys_t *ddp = dde->dde_phys;
1987 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1988 		blkptr_t blk;
1989 
1990 		ASSERT(zio->io_vsd == NULL);
1991 		zio->io_vsd = dde;
1992 
1993 		if (ddp_self == NULL)
1994 			return (ZIO_PIPELINE_CONTINUE);
1995 
1996 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1997 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1998 				continue;
1999 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2000 			    &blk);
2001 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2002 			    zio_buf_alloc(zio->io_size), zio->io_size,
2003 			    zio_ddt_child_read_done, dde, zio->io_priority,
2004 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2005 			    &zio->io_bookmark));
2006 		}
2007 		return (ZIO_PIPELINE_CONTINUE);
2008 	}
2009 
2010 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2011 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2012 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2013 
2014 	return (ZIO_PIPELINE_CONTINUE);
2015 }
2016 
2017 static int
2018 zio_ddt_read_done(zio_t *zio)
2019 {
2020 	blkptr_t *bp = zio->io_bp;
2021 
2022 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2023 		return (ZIO_PIPELINE_STOP);
2024 
2025 	ASSERT(BP_GET_DEDUP(bp));
2026 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2027 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2028 
2029 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2030 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2031 		ddt_entry_t *dde = zio->io_vsd;
2032 		if (ddt == NULL) {
2033 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2034 			return (ZIO_PIPELINE_CONTINUE);
2035 		}
2036 		if (dde == NULL) {
2037 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2038 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2039 			return (ZIO_PIPELINE_STOP);
2040 		}
2041 		if (dde->dde_repair_data != NULL) {
2042 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2043 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2044 		}
2045 		ddt_repair_done(ddt, dde);
2046 		zio->io_vsd = NULL;
2047 	}
2048 
2049 	ASSERT(zio->io_vsd == NULL);
2050 
2051 	return (ZIO_PIPELINE_CONTINUE);
2052 }
2053 
2054 static boolean_t
2055 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2056 {
2057 	spa_t *spa = zio->io_spa;
2058 
2059 	/*
2060 	 * Note: we compare the original data, not the transformed data,
2061 	 * because when zio->io_bp is an override bp, we will not have
2062 	 * pushed the I/O transforms.  That's an important optimization
2063 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2064 	 */
2065 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2066 		zio_t *lio = dde->dde_lead_zio[p];
2067 
2068 		if (lio != NULL) {
2069 			return (lio->io_orig_size != zio->io_orig_size ||
2070 			    bcmp(zio->io_orig_data, lio->io_orig_data,
2071 			    zio->io_orig_size) != 0);
2072 		}
2073 	}
2074 
2075 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2076 		ddt_phys_t *ddp = &dde->dde_phys[p];
2077 
2078 		if (ddp->ddp_phys_birth != 0) {
2079 			arc_buf_t *abuf = NULL;
2080 			uint32_t aflags = ARC_WAIT;
2081 			blkptr_t blk = *zio->io_bp;
2082 			int error;
2083 
2084 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2085 
2086 			ddt_exit(ddt);
2087 
2088 			error = arc_read(NULL, spa, &blk,
2089 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2090 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2091 			    &aflags, &zio->io_bookmark);
2092 
2093 			if (error == 0) {
2094 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2095 				    bcmp(abuf->b_data, zio->io_orig_data,
2096 				    zio->io_orig_size) != 0)
2097 					error = SET_ERROR(EEXIST);
2098 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2099 			}
2100 
2101 			ddt_enter(ddt);
2102 			return (error != 0);
2103 		}
2104 	}
2105 
2106 	return (B_FALSE);
2107 }
2108 
2109 static void
2110 zio_ddt_child_write_ready(zio_t *zio)
2111 {
2112 	int p = zio->io_prop.zp_copies;
2113 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2114 	ddt_entry_t *dde = zio->io_private;
2115 	ddt_phys_t *ddp = &dde->dde_phys[p];
2116 	zio_t *pio;
2117 
2118 	if (zio->io_error)
2119 		return;
2120 
2121 	ddt_enter(ddt);
2122 
2123 	ASSERT(dde->dde_lead_zio[p] == zio);
2124 
2125 	ddt_phys_fill(ddp, zio->io_bp);
2126 
2127 	while ((pio = zio_walk_parents(zio)) != NULL)
2128 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2129 
2130 	ddt_exit(ddt);
2131 }
2132 
2133 static void
2134 zio_ddt_child_write_done(zio_t *zio)
2135 {
2136 	int p = zio->io_prop.zp_copies;
2137 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2138 	ddt_entry_t *dde = zio->io_private;
2139 	ddt_phys_t *ddp = &dde->dde_phys[p];
2140 
2141 	ddt_enter(ddt);
2142 
2143 	ASSERT(ddp->ddp_refcnt == 0);
2144 	ASSERT(dde->dde_lead_zio[p] == zio);
2145 	dde->dde_lead_zio[p] = NULL;
2146 
2147 	if (zio->io_error == 0) {
2148 		while (zio_walk_parents(zio) != NULL)
2149 			ddt_phys_addref(ddp);
2150 	} else {
2151 		ddt_phys_clear(ddp);
2152 	}
2153 
2154 	ddt_exit(ddt);
2155 }
2156 
2157 static void
2158 zio_ddt_ditto_write_done(zio_t *zio)
2159 {
2160 	int p = DDT_PHYS_DITTO;
2161 	zio_prop_t *zp = &zio->io_prop;
2162 	blkptr_t *bp = zio->io_bp;
2163 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2164 	ddt_entry_t *dde = zio->io_private;
2165 	ddt_phys_t *ddp = &dde->dde_phys[p];
2166 	ddt_key_t *ddk = &dde->dde_key;
2167 
2168 	ddt_enter(ddt);
2169 
2170 	ASSERT(ddp->ddp_refcnt == 0);
2171 	ASSERT(dde->dde_lead_zio[p] == zio);
2172 	dde->dde_lead_zio[p] = NULL;
2173 
2174 	if (zio->io_error == 0) {
2175 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2176 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2177 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2178 		if (ddp->ddp_phys_birth != 0)
2179 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2180 		ddt_phys_fill(ddp, bp);
2181 	}
2182 
2183 	ddt_exit(ddt);
2184 }
2185 
2186 static int
2187 zio_ddt_write(zio_t *zio)
2188 {
2189 	spa_t *spa = zio->io_spa;
2190 	blkptr_t *bp = zio->io_bp;
2191 	uint64_t txg = zio->io_txg;
2192 	zio_prop_t *zp = &zio->io_prop;
2193 	int p = zp->zp_copies;
2194 	int ditto_copies;
2195 	zio_t *cio = NULL;
2196 	zio_t *dio = NULL;
2197 	ddt_t *ddt = ddt_select(spa, bp);
2198 	ddt_entry_t *dde;
2199 	ddt_phys_t *ddp;
2200 
2201 	ASSERT(BP_GET_DEDUP(bp));
2202 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2203 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2204 
2205 	ddt_enter(ddt);
2206 	dde = ddt_lookup(ddt, bp, B_TRUE);
2207 	ddp = &dde->dde_phys[p];
2208 
2209 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2210 		/*
2211 		 * If we're using a weak checksum, upgrade to a strong checksum
2212 		 * and try again.  If we're already using a strong checksum,
2213 		 * we can't resolve it, so just convert to an ordinary write.
2214 		 * (And automatically e-mail a paper to Nature?)
2215 		 */
2216 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2217 			zp->zp_checksum = spa_dedup_checksum(spa);
2218 			zio_pop_transforms(zio);
2219 			zio->io_stage = ZIO_STAGE_OPEN;
2220 			BP_ZERO(bp);
2221 		} else {
2222 			zp->zp_dedup = B_FALSE;
2223 		}
2224 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2225 		ddt_exit(ddt);
2226 		return (ZIO_PIPELINE_CONTINUE);
2227 	}
2228 
2229 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2230 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2231 
2232 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2233 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2234 		zio_prop_t czp = *zp;
2235 
2236 		czp.zp_copies = ditto_copies;
2237 
2238 		/*
2239 		 * If we arrived here with an override bp, we won't have run
2240 		 * the transform stack, so we won't have the data we need to
2241 		 * generate a child i/o.  So, toss the override bp and restart.
2242 		 * This is safe, because using the override bp is just an
2243 		 * optimization; and it's rare, so the cost doesn't matter.
2244 		 */
2245 		if (zio->io_bp_override) {
2246 			zio_pop_transforms(zio);
2247 			zio->io_stage = ZIO_STAGE_OPEN;
2248 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2249 			zio->io_bp_override = NULL;
2250 			BP_ZERO(bp);
2251 			ddt_exit(ddt);
2252 			return (ZIO_PIPELINE_CONTINUE);
2253 		}
2254 
2255 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2256 		    zio->io_orig_size, &czp, NULL, NULL,
2257 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2258 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2259 
2260 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2261 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2262 	}
2263 
2264 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2265 		if (ddp->ddp_phys_birth != 0)
2266 			ddt_bp_fill(ddp, bp, txg);
2267 		if (dde->dde_lead_zio[p] != NULL)
2268 			zio_add_child(zio, dde->dde_lead_zio[p]);
2269 		else
2270 			ddt_phys_addref(ddp);
2271 	} else if (zio->io_bp_override) {
2272 		ASSERT(bp->blk_birth == txg);
2273 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2274 		ddt_phys_fill(ddp, bp);
2275 		ddt_phys_addref(ddp);
2276 	} else {
2277 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2278 		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2279 		    zio_ddt_child_write_done, dde, zio->io_priority,
2280 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2281 
2282 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2283 		dde->dde_lead_zio[p] = cio;
2284 	}
2285 
2286 	ddt_exit(ddt);
2287 
2288 	if (cio)
2289 		zio_nowait(cio);
2290 	if (dio)
2291 		zio_nowait(dio);
2292 
2293 	return (ZIO_PIPELINE_CONTINUE);
2294 }
2295 
2296 ddt_entry_t *freedde; /* for debugging */
2297 
2298 static int
2299 zio_ddt_free(zio_t *zio)
2300 {
2301 	spa_t *spa = zio->io_spa;
2302 	blkptr_t *bp = zio->io_bp;
2303 	ddt_t *ddt = ddt_select(spa, bp);
2304 	ddt_entry_t *dde;
2305 	ddt_phys_t *ddp;
2306 
2307 	ASSERT(BP_GET_DEDUP(bp));
2308 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2309 
2310 	ddt_enter(ddt);
2311 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2312 	ddp = ddt_phys_select(dde, bp);
2313 	ddt_phys_decref(ddp);
2314 	ddt_exit(ddt);
2315 
2316 	return (ZIO_PIPELINE_CONTINUE);
2317 }
2318 
2319 /*
2320  * ==========================================================================
2321  * Allocate and free blocks
2322  * ==========================================================================
2323  */
2324 static int
2325 zio_dva_allocate(zio_t *zio)
2326 {
2327 	spa_t *spa = zio->io_spa;
2328 	metaslab_class_t *mc = spa_normal_class(spa);
2329 	blkptr_t *bp = zio->io_bp;
2330 	int error;
2331 	int flags = 0;
2332 
2333 	if (zio->io_gang_leader == NULL) {
2334 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2335 		zio->io_gang_leader = zio;
2336 	}
2337 
2338 	ASSERT(BP_IS_HOLE(bp));
2339 	ASSERT0(BP_GET_NDVAS(bp));
2340 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2341 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2342 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2343 
2344 	/*
2345 	 * The dump device does not support gang blocks so allocation on
2346 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2347 	 * the "fast" gang feature.
2348 	 */
2349 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2350 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2351 	    METASLAB_GANG_CHILD : 0;
2352 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2353 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2354 
2355 	if (error) {
2356 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2357 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2358 		    error);
2359 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2360 			return (zio_write_gang_block(zio));
2361 		zio->io_error = error;
2362 	}
2363 
2364 	return (ZIO_PIPELINE_CONTINUE);
2365 }
2366 
2367 static int
2368 zio_dva_free(zio_t *zio)
2369 {
2370 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2371 
2372 	return (ZIO_PIPELINE_CONTINUE);
2373 }
2374 
2375 static int
2376 zio_dva_claim(zio_t *zio)
2377 {
2378 	int error;
2379 
2380 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2381 	if (error)
2382 		zio->io_error = error;
2383 
2384 	return (ZIO_PIPELINE_CONTINUE);
2385 }
2386 
2387 /*
2388  * Undo an allocation.  This is used by zio_done() when an I/O fails
2389  * and we want to give back the block we just allocated.
2390  * This handles both normal blocks and gang blocks.
2391  */
2392 static void
2393 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2394 {
2395 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2396 	ASSERT(zio->io_bp_override == NULL);
2397 
2398 	if (!BP_IS_HOLE(bp))
2399 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2400 
2401 	if (gn != NULL) {
2402 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2403 			zio_dva_unallocate(zio, gn->gn_child[g],
2404 			    &gn->gn_gbh->zg_blkptr[g]);
2405 		}
2406 	}
2407 }
2408 
2409 /*
2410  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2411  */
2412 int
2413 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2414     uint64_t size, boolean_t use_slog)
2415 {
2416 	int error = 1;
2417 
2418 	ASSERT(txg > spa_syncing_txg(spa));
2419 
2420 	/*
2421 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2422 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2423 	 * when allocating them.
2424 	 */
2425 	if (use_slog) {
2426 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2427 		    new_bp, 1, txg, old_bp,
2428 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2429 	}
2430 
2431 	if (error) {
2432 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2433 		    new_bp, 1, txg, old_bp,
2434 		    METASLAB_HINTBP_AVOID);
2435 	}
2436 
2437 	if (error == 0) {
2438 		BP_SET_LSIZE(new_bp, size);
2439 		BP_SET_PSIZE(new_bp, size);
2440 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2441 		BP_SET_CHECKSUM(new_bp,
2442 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2443 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2444 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2445 		BP_SET_LEVEL(new_bp, 0);
2446 		BP_SET_DEDUP(new_bp, 0);
2447 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2448 	}
2449 
2450 	return (error);
2451 }
2452 
2453 /*
2454  * Free an intent log block.
2455  */
2456 void
2457 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2458 {
2459 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2460 	ASSERT(!BP_IS_GANG(bp));
2461 
2462 	zio_free(spa, txg, bp);
2463 }
2464 
2465 /*
2466  * ==========================================================================
2467  * Read and write to physical devices
2468  * ==========================================================================
2469  */
2470 
2471 
2472 /*
2473  * Issue an I/O to the underlying vdev. Typically the issue pipeline
2474  * stops after this stage and will resume upon I/O completion.
2475  * However, there are instances where the vdev layer may need to
2476  * continue the pipeline when an I/O was not issued. Since the I/O
2477  * that was sent to the vdev layer might be different than the one
2478  * currently active in the pipeline (see vdev_queue_io()), we explicitly
2479  * force the underlying vdev layers to call either zio_execute() or
2480  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2481  */
2482 static int
2483 zio_vdev_io_start(zio_t *zio)
2484 {
2485 	vdev_t *vd = zio->io_vd;
2486 	uint64_t align;
2487 	spa_t *spa = zio->io_spa;
2488 
2489 	ASSERT(zio->io_error == 0);
2490 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2491 
2492 	if (vd == NULL) {
2493 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2494 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2495 
2496 		/*
2497 		 * The mirror_ops handle multiple DVAs in a single BP.
2498 		 */
2499 		vdev_mirror_ops.vdev_op_io_start(zio);
2500 		return (ZIO_PIPELINE_STOP);
2501 	}
2502 
2503 	/*
2504 	 * We keep track of time-sensitive I/Os so that the scan thread
2505 	 * can quickly react to certain workloads.  In particular, we care
2506 	 * about non-scrubbing, top-level reads and writes with the following
2507 	 * characteristics:
2508 	 *	- synchronous writes of user data to non-slog devices
2509 	 *	- any reads of user data
2510 	 * When these conditions are met, adjust the timestamp of spa_last_io
2511 	 * which allows the scan thread to adjust its workload accordingly.
2512 	 */
2513 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2514 	    vd == vd->vdev_top && !vd->vdev_islog &&
2515 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2516 	    zio->io_txg != spa_syncing_txg(spa)) {
2517 		uint64_t old = spa->spa_last_io;
2518 		uint64_t new = ddi_get_lbolt64();
2519 		if (old != new)
2520 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2521 	}
2522 
2523 	align = 1ULL << vd->vdev_top->vdev_ashift;
2524 
2525 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2526 	    P2PHASE(zio->io_size, align) != 0) {
2527 		/* Transform logical writes to be a full physical block size. */
2528 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2529 		char *abuf = zio_buf_alloc(asize);
2530 		ASSERT(vd == vd->vdev_top);
2531 		if (zio->io_type == ZIO_TYPE_WRITE) {
2532 			bcopy(zio->io_data, abuf, zio->io_size);
2533 			bzero(abuf + zio->io_size, asize - zio->io_size);
2534 		}
2535 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2536 	}
2537 
2538 	/*
2539 	 * If this is not a physical io, make sure that it is properly aligned
2540 	 * before proceeding.
2541 	 */
2542 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2543 		ASSERT0(P2PHASE(zio->io_offset, align));
2544 		ASSERT0(P2PHASE(zio->io_size, align));
2545 	} else {
2546 		/*
2547 		 * For physical writes, we allow 512b aligned writes and assume
2548 		 * the device will perform a read-modify-write as necessary.
2549 		 */
2550 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2551 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2552 	}
2553 
2554 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2555 
2556 	/*
2557 	 * If this is a repair I/O, and there's no self-healing involved --
2558 	 * that is, we're just resilvering what we expect to resilver --
2559 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2560 	 * This prevents spurious resilvering with nested replication.
2561 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2562 	 * A is out of date, we'll read from C+D, then use the data to
2563 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2564 	 * The top-level mirror has no way to know this, so instead we just
2565 	 * discard unnecessary repairs as we work our way down the vdev tree.
2566 	 * The same logic applies to any form of nested replication:
2567 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2568 	 */
2569 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2570 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2571 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2572 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2573 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2574 		zio_vdev_io_bypass(zio);
2575 		return (ZIO_PIPELINE_CONTINUE);
2576 	}
2577 
2578 	if (vd->vdev_ops->vdev_op_leaf &&
2579 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2580 
2581 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2582 			return (ZIO_PIPELINE_CONTINUE);
2583 
2584 		if ((zio = vdev_queue_io(zio)) == NULL)
2585 			return (ZIO_PIPELINE_STOP);
2586 
2587 		if (!vdev_accessible(vd, zio)) {
2588 			zio->io_error = SET_ERROR(ENXIO);
2589 			zio_interrupt(zio);
2590 			return (ZIO_PIPELINE_STOP);
2591 		}
2592 	}
2593 
2594 	vd->vdev_ops->vdev_op_io_start(zio);
2595 	return (ZIO_PIPELINE_STOP);
2596 }
2597 
2598 static int
2599 zio_vdev_io_done(zio_t *zio)
2600 {
2601 	vdev_t *vd = zio->io_vd;
2602 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2603 	boolean_t unexpected_error = B_FALSE;
2604 
2605 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2606 		return (ZIO_PIPELINE_STOP);
2607 
2608 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2609 
2610 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2611 
2612 		vdev_queue_io_done(zio);
2613 
2614 		if (zio->io_type == ZIO_TYPE_WRITE)
2615 			vdev_cache_write(zio);
2616 
2617 		if (zio_injection_enabled && zio->io_error == 0)
2618 			zio->io_error = zio_handle_device_injection(vd,
2619 			    zio, EIO);
2620 
2621 		if (zio_injection_enabled && zio->io_error == 0)
2622 			zio->io_error = zio_handle_label_injection(zio, EIO);
2623 
2624 		if (zio->io_error) {
2625 			if (!vdev_accessible(vd, zio)) {
2626 				zio->io_error = SET_ERROR(ENXIO);
2627 			} else {
2628 				unexpected_error = B_TRUE;
2629 			}
2630 		}
2631 	}
2632 
2633 	ops->vdev_op_io_done(zio);
2634 
2635 	if (unexpected_error)
2636 		VERIFY(vdev_probe(vd, zio) == NULL);
2637 
2638 	return (ZIO_PIPELINE_CONTINUE);
2639 }
2640 
2641 /*
2642  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2643  * disk, and use that to finish the checksum ereport later.
2644  */
2645 static void
2646 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2647     const void *good_buf)
2648 {
2649 	/* no processing needed */
2650 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2651 }
2652 
2653 /*ARGSUSED*/
2654 void
2655 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2656 {
2657 	void *buf = zio_buf_alloc(zio->io_size);
2658 
2659 	bcopy(zio->io_data, buf, zio->io_size);
2660 
2661 	zcr->zcr_cbinfo = zio->io_size;
2662 	zcr->zcr_cbdata = buf;
2663 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2664 	zcr->zcr_free = zio_buf_free;
2665 }
2666 
2667 static int
2668 zio_vdev_io_assess(zio_t *zio)
2669 {
2670 	vdev_t *vd = zio->io_vd;
2671 
2672 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2673 		return (ZIO_PIPELINE_STOP);
2674 
2675 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2676 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2677 
2678 	if (zio->io_vsd != NULL) {
2679 		zio->io_vsd_ops->vsd_free(zio);
2680 		zio->io_vsd = NULL;
2681 	}
2682 
2683 	if (zio_injection_enabled && zio->io_error == 0)
2684 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2685 
2686 	/*
2687 	 * If the I/O failed, determine whether we should attempt to retry it.
2688 	 *
2689 	 * On retry, we cut in line in the issue queue, since we don't want
2690 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2691 	 */
2692 	if (zio->io_error && vd == NULL &&
2693 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2694 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2695 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2696 		zio->io_error = 0;
2697 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2698 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2699 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2700 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2701 		    zio_requeue_io_start_cut_in_line);
2702 		return (ZIO_PIPELINE_STOP);
2703 	}
2704 
2705 	/*
2706 	 * If we got an error on a leaf device, convert it to ENXIO
2707 	 * if the device is not accessible at all.
2708 	 */
2709 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2710 	    !vdev_accessible(vd, zio))
2711 		zio->io_error = SET_ERROR(ENXIO);
2712 
2713 	/*
2714 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2715 	 * set vdev_cant_write so that we stop trying to allocate from it.
2716 	 */
2717 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2718 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2719 		vd->vdev_cant_write = B_TRUE;
2720 	}
2721 
2722 	if (zio->io_error)
2723 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2724 
2725 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2726 	    zio->io_physdone != NULL) {
2727 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2728 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2729 		zio->io_physdone(zio->io_logical);
2730 	}
2731 
2732 	return (ZIO_PIPELINE_CONTINUE);
2733 }
2734 
2735 void
2736 zio_vdev_io_reissue(zio_t *zio)
2737 {
2738 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2739 	ASSERT(zio->io_error == 0);
2740 
2741 	zio->io_stage >>= 1;
2742 }
2743 
2744 void
2745 zio_vdev_io_redone(zio_t *zio)
2746 {
2747 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2748 
2749 	zio->io_stage >>= 1;
2750 }
2751 
2752 void
2753 zio_vdev_io_bypass(zio_t *zio)
2754 {
2755 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2756 	ASSERT(zio->io_error == 0);
2757 
2758 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2759 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2760 }
2761 
2762 /*
2763  * ==========================================================================
2764  * Generate and verify checksums
2765  * ==========================================================================
2766  */
2767 static int
2768 zio_checksum_generate(zio_t *zio)
2769 {
2770 	blkptr_t *bp = zio->io_bp;
2771 	enum zio_checksum checksum;
2772 
2773 	if (bp == NULL) {
2774 		/*
2775 		 * This is zio_write_phys().
2776 		 * We're either generating a label checksum, or none at all.
2777 		 */
2778 		checksum = zio->io_prop.zp_checksum;
2779 
2780 		if (checksum == ZIO_CHECKSUM_OFF)
2781 			return (ZIO_PIPELINE_CONTINUE);
2782 
2783 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2784 	} else {
2785 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2786 			ASSERT(!IO_IS_ALLOCATING(zio));
2787 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2788 		} else {
2789 			checksum = BP_GET_CHECKSUM(bp);
2790 		}
2791 	}
2792 
2793 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2794 
2795 	return (ZIO_PIPELINE_CONTINUE);
2796 }
2797 
2798 static int
2799 zio_checksum_verify(zio_t *zio)
2800 {
2801 	zio_bad_cksum_t info;
2802 	blkptr_t *bp = zio->io_bp;
2803 	int error;
2804 
2805 	ASSERT(zio->io_vd != NULL);
2806 
2807 	if (bp == NULL) {
2808 		/*
2809 		 * This is zio_read_phys().
2810 		 * We're either verifying a label checksum, or nothing at all.
2811 		 */
2812 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2813 			return (ZIO_PIPELINE_CONTINUE);
2814 
2815 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2816 	}
2817 
2818 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2819 		zio->io_error = error;
2820 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2821 			zfs_ereport_start_checksum(zio->io_spa,
2822 			    zio->io_vd, zio, zio->io_offset,
2823 			    zio->io_size, NULL, &info);
2824 		}
2825 	}
2826 
2827 	return (ZIO_PIPELINE_CONTINUE);
2828 }
2829 
2830 /*
2831  * Called by RAID-Z to ensure we don't compute the checksum twice.
2832  */
2833 void
2834 zio_checksum_verified(zio_t *zio)
2835 {
2836 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2837 }
2838 
2839 /*
2840  * ==========================================================================
2841  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2842  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
2843  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2844  * indicate errors that are specific to one I/O, and most likely permanent.
2845  * Any other error is presumed to be worse because we weren't expecting it.
2846  * ==========================================================================
2847  */
2848 int
2849 zio_worst_error(int e1, int e2)
2850 {
2851 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2852 	int r1, r2;
2853 
2854 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2855 		if (e1 == zio_error_rank[r1])
2856 			break;
2857 
2858 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2859 		if (e2 == zio_error_rank[r2])
2860 			break;
2861 
2862 	return (r1 > r2 ? e1 : e2);
2863 }
2864 
2865 /*
2866  * ==========================================================================
2867  * I/O completion
2868  * ==========================================================================
2869  */
2870 static int
2871 zio_ready(zio_t *zio)
2872 {
2873 	blkptr_t *bp = zio->io_bp;
2874 	zio_t *pio, *pio_next;
2875 
2876 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2877 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2878 		return (ZIO_PIPELINE_STOP);
2879 
2880 	if (zio->io_ready) {
2881 		ASSERT(IO_IS_ALLOCATING(zio));
2882 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2883 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2884 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2885 
2886 		zio->io_ready(zio);
2887 	}
2888 
2889 	if (bp != NULL && bp != &zio->io_bp_copy)
2890 		zio->io_bp_copy = *bp;
2891 
2892 	if (zio->io_error)
2893 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2894 
2895 	mutex_enter(&zio->io_lock);
2896 	zio->io_state[ZIO_WAIT_READY] = 1;
2897 	pio = zio_walk_parents(zio);
2898 	mutex_exit(&zio->io_lock);
2899 
2900 	/*
2901 	 * As we notify zio's parents, new parents could be added.
2902 	 * New parents go to the head of zio's io_parent_list, however,
2903 	 * so we will (correctly) not notify them.  The remainder of zio's
2904 	 * io_parent_list, from 'pio_next' onward, cannot change because
2905 	 * all parents must wait for us to be done before they can be done.
2906 	 */
2907 	for (; pio != NULL; pio = pio_next) {
2908 		pio_next = zio_walk_parents(zio);
2909 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2910 	}
2911 
2912 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2913 		if (BP_IS_GANG(bp)) {
2914 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2915 		} else {
2916 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2917 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2918 		}
2919 	}
2920 
2921 	if (zio_injection_enabled &&
2922 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2923 		zio_handle_ignored_writes(zio);
2924 
2925 	return (ZIO_PIPELINE_CONTINUE);
2926 }
2927 
2928 static int
2929 zio_done(zio_t *zio)
2930 {
2931 	spa_t *spa = zio->io_spa;
2932 	zio_t *lio = zio->io_logical;
2933 	blkptr_t *bp = zio->io_bp;
2934 	vdev_t *vd = zio->io_vd;
2935 	uint64_t psize = zio->io_size;
2936 	zio_t *pio, *pio_next;
2937 
2938 	/*
2939 	 * If our children haven't all completed,
2940 	 * wait for them and then repeat this pipeline stage.
2941 	 */
2942 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2943 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2944 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2945 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2946 		return (ZIO_PIPELINE_STOP);
2947 
2948 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2949 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2950 			ASSERT(zio->io_children[c][w] == 0);
2951 
2952 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
2953 		ASSERT(bp->blk_pad[0] == 0);
2954 		ASSERT(bp->blk_pad[1] == 0);
2955 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2956 		    (bp == zio_unique_parent(zio)->io_bp));
2957 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2958 		    zio->io_bp_override == NULL &&
2959 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2960 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2961 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2962 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2963 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2964 		}
2965 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2966 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2967 	}
2968 
2969 	/*
2970 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2971 	 */
2972 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2973 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2974 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2975 
2976 	/*
2977 	 * If the I/O on the transformed data was successful, generate any
2978 	 * checksum reports now while we still have the transformed data.
2979 	 */
2980 	if (zio->io_error == 0) {
2981 		while (zio->io_cksum_report != NULL) {
2982 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2983 			uint64_t align = zcr->zcr_align;
2984 			uint64_t asize = P2ROUNDUP(psize, align);
2985 			char *abuf = zio->io_data;
2986 
2987 			if (asize != psize) {
2988 				abuf = zio_buf_alloc(asize);
2989 				bcopy(zio->io_data, abuf, psize);
2990 				bzero(abuf + psize, asize - psize);
2991 			}
2992 
2993 			zio->io_cksum_report = zcr->zcr_next;
2994 			zcr->zcr_next = NULL;
2995 			zcr->zcr_finish(zcr, abuf);
2996 			zfs_ereport_free_checksum(zcr);
2997 
2998 			if (asize != psize)
2999 				zio_buf_free(abuf, asize);
3000 		}
3001 	}
3002 
3003 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3004 
3005 	vdev_stat_update(zio, psize);
3006 
3007 	if (zio->io_error) {
3008 		/*
3009 		 * If this I/O is attached to a particular vdev,
3010 		 * generate an error message describing the I/O failure
3011 		 * at the block level.  We ignore these errors if the
3012 		 * device is currently unavailable.
3013 		 */
3014 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3015 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3016 
3017 		if ((zio->io_error == EIO || !(zio->io_flags &
3018 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3019 		    zio == lio) {
3020 			/*
3021 			 * For logical I/O requests, tell the SPA to log the
3022 			 * error and generate a logical data ereport.
3023 			 */
3024 			spa_log_error(spa, zio);
3025 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3026 			    0, 0);
3027 		}
3028 	}
3029 
3030 	if (zio->io_error && zio == lio) {
3031 		/*
3032 		 * Determine whether zio should be reexecuted.  This will
3033 		 * propagate all the way to the root via zio_notify_parent().
3034 		 */
3035 		ASSERT(vd == NULL && bp != NULL);
3036 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3037 
3038 		if (IO_IS_ALLOCATING(zio) &&
3039 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3040 			if (zio->io_error != ENOSPC)
3041 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3042 			else
3043 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3044 		}
3045 
3046 		if ((zio->io_type == ZIO_TYPE_READ ||
3047 		    zio->io_type == ZIO_TYPE_FREE) &&
3048 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3049 		    zio->io_error == ENXIO &&
3050 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3051 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3052 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3053 
3054 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3055 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3056 
3057 		/*
3058 		 * Here is a possibly good place to attempt to do
3059 		 * either combinatorial reconstruction or error correction
3060 		 * based on checksums.  It also might be a good place
3061 		 * to send out preliminary ereports before we suspend
3062 		 * processing.
3063 		 */
3064 	}
3065 
3066 	/*
3067 	 * If there were logical child errors, they apply to us now.
3068 	 * We defer this until now to avoid conflating logical child
3069 	 * errors with errors that happened to the zio itself when
3070 	 * updating vdev stats and reporting FMA events above.
3071 	 */
3072 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3073 
3074 	if ((zio->io_error || zio->io_reexecute) &&
3075 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3076 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3077 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3078 
3079 	zio_gang_tree_free(&zio->io_gang_tree);
3080 
3081 	/*
3082 	 * Godfather I/Os should never suspend.
3083 	 */
3084 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3085 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3086 		zio->io_reexecute = 0;
3087 
3088 	if (zio->io_reexecute) {
3089 		/*
3090 		 * This is a logical I/O that wants to reexecute.
3091 		 *
3092 		 * Reexecute is top-down.  When an i/o fails, if it's not
3093 		 * the root, it simply notifies its parent and sticks around.
3094 		 * The parent, seeing that it still has children in zio_done(),
3095 		 * does the same.  This percolates all the way up to the root.
3096 		 * The root i/o will reexecute or suspend the entire tree.
3097 		 *
3098 		 * This approach ensures that zio_reexecute() honors
3099 		 * all the original i/o dependency relationships, e.g.
3100 		 * parents not executing until children are ready.
3101 		 */
3102 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3103 
3104 		zio->io_gang_leader = NULL;
3105 
3106 		mutex_enter(&zio->io_lock);
3107 		zio->io_state[ZIO_WAIT_DONE] = 1;
3108 		mutex_exit(&zio->io_lock);
3109 
3110 		/*
3111 		 * "The Godfather" I/O monitors its children but is
3112 		 * not a true parent to them. It will track them through
3113 		 * the pipeline but severs its ties whenever they get into
3114 		 * trouble (e.g. suspended). This allows "The Godfather"
3115 		 * I/O to return status without blocking.
3116 		 */
3117 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3118 			zio_link_t *zl = zio->io_walk_link;
3119 			pio_next = zio_walk_parents(zio);
3120 
3121 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3122 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3123 				zio_remove_child(pio, zio, zl);
3124 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3125 			}
3126 		}
3127 
3128 		if ((pio = zio_unique_parent(zio)) != NULL) {
3129 			/*
3130 			 * We're not a root i/o, so there's nothing to do
3131 			 * but notify our parent.  Don't propagate errors
3132 			 * upward since we haven't permanently failed yet.
3133 			 */
3134 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3135 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3136 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3137 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3138 			/*
3139 			 * We'd fail again if we reexecuted now, so suspend
3140 			 * until conditions improve (e.g. device comes online).
3141 			 */
3142 			zio_suspend(spa, zio);
3143 		} else {
3144 			/*
3145 			 * Reexecution is potentially a huge amount of work.
3146 			 * Hand it off to the otherwise-unused claim taskq.
3147 			 */
3148 			ASSERT(zio->io_tqent.tqent_next == NULL);
3149 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3150 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3151 			    0, &zio->io_tqent);
3152 		}
3153 		return (ZIO_PIPELINE_STOP);
3154 	}
3155 
3156 	ASSERT(zio->io_child_count == 0);
3157 	ASSERT(zio->io_reexecute == 0);
3158 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3159 
3160 	/*
3161 	 * Report any checksum errors, since the I/O is complete.
3162 	 */
3163 	while (zio->io_cksum_report != NULL) {
3164 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3165 		zio->io_cksum_report = zcr->zcr_next;
3166 		zcr->zcr_next = NULL;
3167 		zcr->zcr_finish(zcr, NULL);
3168 		zfs_ereport_free_checksum(zcr);
3169 	}
3170 
3171 	/*
3172 	 * It is the responsibility of the done callback to ensure that this
3173 	 * particular zio is no longer discoverable for adoption, and as
3174 	 * such, cannot acquire any new parents.
3175 	 */
3176 	if (zio->io_done)
3177 		zio->io_done(zio);
3178 
3179 	mutex_enter(&zio->io_lock);
3180 	zio->io_state[ZIO_WAIT_DONE] = 1;
3181 	mutex_exit(&zio->io_lock);
3182 
3183 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3184 		zio_link_t *zl = zio->io_walk_link;
3185 		pio_next = zio_walk_parents(zio);
3186 		zio_remove_child(pio, zio, zl);
3187 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3188 	}
3189 
3190 	if (zio->io_waiter != NULL) {
3191 		mutex_enter(&zio->io_lock);
3192 		zio->io_executor = NULL;
3193 		cv_broadcast(&zio->io_cv);
3194 		mutex_exit(&zio->io_lock);
3195 	} else {
3196 		zio_destroy(zio);
3197 	}
3198 
3199 	return (ZIO_PIPELINE_STOP);
3200 }
3201 
3202 /*
3203  * ==========================================================================
3204  * I/O pipeline definition
3205  * ==========================================================================
3206  */
3207 static zio_pipe_stage_t *zio_pipeline[] = {
3208 	NULL,
3209 	zio_read_bp_init,
3210 	zio_free_bp_init,
3211 	zio_issue_async,
3212 	zio_write_bp_init,
3213 	zio_checksum_generate,
3214 	zio_nop_write,
3215 	zio_ddt_read_start,
3216 	zio_ddt_read_done,
3217 	zio_ddt_write,
3218 	zio_ddt_free,
3219 	zio_gang_assemble,
3220 	zio_gang_issue,
3221 	zio_dva_allocate,
3222 	zio_dva_free,
3223 	zio_dva_claim,
3224 	zio_ready,
3225 	zio_vdev_io_start,
3226 	zio_vdev_io_done,
3227 	zio_vdev_io_assess,
3228 	zio_checksum_verify,
3229 	zio_done
3230 };
3231 
3232 /* dnp is the dnode for zb1->zb_object */
3233 boolean_t
3234 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3235     const zbookmark_phys_t *zb2)
3236 {
3237 	uint64_t zb1nextL0, zb2thisobj;
3238 
3239 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3240 	ASSERT(zb2->zb_level == 0);
3241 
3242 	/* The objset_phys_t isn't before anything. */
3243 	if (dnp == NULL)
3244 		return (B_FALSE);
3245 
3246 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3247 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3248 
3249 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3250 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3251 
3252 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3253 		uint64_t nextobj = zb1nextL0 *
3254 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3255 		return (nextobj <= zb2thisobj);
3256 	}
3257 
3258 	if (zb1->zb_object < zb2thisobj)
3259 		return (B_TRUE);
3260 	if (zb1->zb_object > zb2thisobj)
3261 		return (B_FALSE);
3262 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3263 		return (B_FALSE);
3264 	return (zb1nextL0 <= zb2->zb_blkid);
3265 }
3266