xref: /titanic_41/usr/src/uts/common/fs/zfs/zio.c (revision 4b0d01e9d944e10498c80bc88d80a2f5cdd9be22)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 #include <sys/zfeature.h>
40 
41 /*
42  * ==========================================================================
43  * I/O type descriptions
44  * ==========================================================================
45  */
46 const char *zio_type_name[ZIO_TYPES] = {
47 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
48 	"zio_ioctl"
49 };
50 
51 /*
52  * ==========================================================================
53  * I/O kmem caches
54  * ==========================================================================
55  */
56 kmem_cache_t *zio_cache;
57 kmem_cache_t *zio_link_cache;
58 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
59 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
60 
61 #ifdef _KERNEL
62 extern vmem_t *zio_alloc_arena;
63 #endif
64 
65 /*
66  * The following actions directly effect the spa's sync-to-convergence logic.
67  * The values below define the sync pass when we start performing the action.
68  * Care should be taken when changing these values as they directly impact
69  * spa_sync() performance. Tuning these values may introduce subtle performance
70  * pathologies and should only be done in the context of performance analysis.
71  * These tunables will eventually be removed and replaced with #defines once
72  * enough analysis has been done to determine optimal values.
73  *
74  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
75  * regular blocks are not deferred.
76  */
77 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
78 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
79 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
80 
81 /*
82  * An allocating zio is one that either currently has the DVA allocate
83  * stage set or will have it later in its lifetime.
84  */
85 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
86 
87 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
88 
89 #ifdef ZFS_DEBUG
90 int zio_buf_debug_limit = 16384;
91 #else
92 int zio_buf_debug_limit = 0;
93 #endif
94 
95 void
96 zio_init(void)
97 {
98 	size_t c;
99 	vmem_t *data_alloc_arena = NULL;
100 
101 #ifdef _KERNEL
102 	data_alloc_arena = zio_alloc_arena;
103 #endif
104 	zio_cache = kmem_cache_create("zio_cache",
105 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
106 	zio_link_cache = kmem_cache_create("zio_link_cache",
107 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
108 
109 	/*
110 	 * For small buffers, we want a cache for each multiple of
111 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
112 	 * for each quarter-power of 2.  For large buffers, we want
113 	 * a cache for each multiple of PAGESIZE.
114 	 */
115 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
116 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
117 		size_t p2 = size;
118 		size_t align = 0;
119 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
120 
121 		while (p2 & (p2 - 1))
122 			p2 &= p2 - 1;
123 
124 #ifndef _KERNEL
125 		/*
126 		 * If we are using watchpoints, put each buffer on its own page,
127 		 * to eliminate the performance overhead of trapping to the
128 		 * kernel when modifying a non-watched buffer that shares the
129 		 * page with a watched buffer.
130 		 */
131 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
132 			continue;
133 #endif
134 		if (size <= 4 * SPA_MINBLOCKSIZE) {
135 			align = SPA_MINBLOCKSIZE;
136 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
137 			align = PAGESIZE;
138 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
139 			align = p2 >> 2;
140 		}
141 
142 		if (align != 0) {
143 			char name[36];
144 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
145 			zio_buf_cache[c] = kmem_cache_create(name, size,
146 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
147 
148 			/*
149 			 * Since zio_data bufs do not appear in crash dumps, we
150 			 * pass KMC_NOTOUCH so that no allocator metadata is
151 			 * stored with the buffers.
152 			 */
153 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
154 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
155 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
156 			    cflags | KMC_NOTOUCH);
157 		}
158 	}
159 
160 	while (--c != 0) {
161 		ASSERT(zio_buf_cache[c] != NULL);
162 		if (zio_buf_cache[c - 1] == NULL)
163 			zio_buf_cache[c - 1] = zio_buf_cache[c];
164 
165 		ASSERT(zio_data_buf_cache[c] != NULL);
166 		if (zio_data_buf_cache[c - 1] == NULL)
167 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
168 	}
169 
170 	zio_inject_init();
171 }
172 
173 void
174 zio_fini(void)
175 {
176 	size_t c;
177 	kmem_cache_t *last_cache = NULL;
178 	kmem_cache_t *last_data_cache = NULL;
179 
180 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
181 		if (zio_buf_cache[c] != last_cache) {
182 			last_cache = zio_buf_cache[c];
183 			kmem_cache_destroy(zio_buf_cache[c]);
184 		}
185 		zio_buf_cache[c] = NULL;
186 
187 		if (zio_data_buf_cache[c] != last_data_cache) {
188 			last_data_cache = zio_data_buf_cache[c];
189 			kmem_cache_destroy(zio_data_buf_cache[c]);
190 		}
191 		zio_data_buf_cache[c] = NULL;
192 	}
193 
194 	kmem_cache_destroy(zio_link_cache);
195 	kmem_cache_destroy(zio_cache);
196 
197 	zio_inject_fini();
198 }
199 
200 /*
201  * ==========================================================================
202  * Allocate and free I/O buffers
203  * ==========================================================================
204  */
205 
206 /*
207  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
208  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
209  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
210  * excess / transient data in-core during a crashdump.
211  */
212 void *
213 zio_buf_alloc(size_t size)
214 {
215 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
216 
217 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
218 
219 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
220 }
221 
222 /*
223  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
224  * crashdump if the kernel panics.  This exists so that we will limit the amount
225  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
226  * of kernel heap dumped to disk when the kernel panics)
227  */
228 void *
229 zio_data_buf_alloc(size_t size)
230 {
231 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
232 
233 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
234 
235 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
236 }
237 
238 void
239 zio_buf_free(void *buf, size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	kmem_cache_free(zio_buf_cache[c], buf);
246 }
247 
248 void
249 zio_data_buf_free(void *buf, size_t size)
250 {
251 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
252 
253 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
254 
255 	kmem_cache_free(zio_data_buf_cache[c], buf);
256 }
257 
258 /*
259  * ==========================================================================
260  * Push and pop I/O transform buffers
261  * ==========================================================================
262  */
263 static void
264 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
265 	zio_transform_func_t *transform)
266 {
267 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
268 
269 	zt->zt_orig_data = zio->io_data;
270 	zt->zt_orig_size = zio->io_size;
271 	zt->zt_bufsize = bufsize;
272 	zt->zt_transform = transform;
273 
274 	zt->zt_next = zio->io_transform_stack;
275 	zio->io_transform_stack = zt;
276 
277 	zio->io_data = data;
278 	zio->io_size = size;
279 }
280 
281 static void
282 zio_pop_transforms(zio_t *zio)
283 {
284 	zio_transform_t *zt;
285 
286 	while ((zt = zio->io_transform_stack) != NULL) {
287 		if (zt->zt_transform != NULL)
288 			zt->zt_transform(zio,
289 			    zt->zt_orig_data, zt->zt_orig_size);
290 
291 		if (zt->zt_bufsize != 0)
292 			zio_buf_free(zio->io_data, zt->zt_bufsize);
293 
294 		zio->io_data = zt->zt_orig_data;
295 		zio->io_size = zt->zt_orig_size;
296 		zio->io_transform_stack = zt->zt_next;
297 
298 		kmem_free(zt, sizeof (zio_transform_t));
299 	}
300 }
301 
302 /*
303  * ==========================================================================
304  * I/O transform callbacks for subblocks and decompression
305  * ==========================================================================
306  */
307 static void
308 zio_subblock(zio_t *zio, void *data, uint64_t size)
309 {
310 	ASSERT(zio->io_size > size);
311 
312 	if (zio->io_type == ZIO_TYPE_READ)
313 		bcopy(zio->io_data, data, size);
314 }
315 
316 static void
317 zio_decompress(zio_t *zio, void *data, uint64_t size)
318 {
319 	if (zio->io_error == 0 &&
320 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
321 	    zio->io_data, data, zio->io_size, size) != 0)
322 		zio->io_error = SET_ERROR(EIO);
323 }
324 
325 /*
326  * ==========================================================================
327  * I/O parent/child relationships and pipeline interlocks
328  * ==========================================================================
329  */
330 /*
331  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
332  *        continue calling these functions until they return NULL.
333  *        Otherwise, the next caller will pick up the list walk in
334  *        some indeterminate state.  (Otherwise every caller would
335  *        have to pass in a cookie to keep the state represented by
336  *        io_walk_link, which gets annoying.)
337  */
338 zio_t *
339 zio_walk_parents(zio_t *cio)
340 {
341 	zio_link_t *zl = cio->io_walk_link;
342 	list_t *pl = &cio->io_parent_list;
343 
344 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
345 	cio->io_walk_link = zl;
346 
347 	if (zl == NULL)
348 		return (NULL);
349 
350 	ASSERT(zl->zl_child == cio);
351 	return (zl->zl_parent);
352 }
353 
354 zio_t *
355 zio_walk_children(zio_t *pio)
356 {
357 	zio_link_t *zl = pio->io_walk_link;
358 	list_t *cl = &pio->io_child_list;
359 
360 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
361 	pio->io_walk_link = zl;
362 
363 	if (zl == NULL)
364 		return (NULL);
365 
366 	ASSERT(zl->zl_parent == pio);
367 	return (zl->zl_child);
368 }
369 
370 zio_t *
371 zio_unique_parent(zio_t *cio)
372 {
373 	zio_t *pio = zio_walk_parents(cio);
374 
375 	VERIFY(zio_walk_parents(cio) == NULL);
376 	return (pio);
377 }
378 
379 void
380 zio_add_child(zio_t *pio, zio_t *cio)
381 {
382 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
383 
384 	/*
385 	 * Logical I/Os can have logical, gang, or vdev children.
386 	 * Gang I/Os can have gang or vdev children.
387 	 * Vdev I/Os can only have vdev children.
388 	 * The following ASSERT captures all of these constraints.
389 	 */
390 	ASSERT(cio->io_child_type <= pio->io_child_type);
391 
392 	zl->zl_parent = pio;
393 	zl->zl_child = cio;
394 
395 	mutex_enter(&cio->io_lock);
396 	mutex_enter(&pio->io_lock);
397 
398 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
399 
400 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
401 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
402 
403 	list_insert_head(&pio->io_child_list, zl);
404 	list_insert_head(&cio->io_parent_list, zl);
405 
406 	pio->io_child_count++;
407 	cio->io_parent_count++;
408 
409 	mutex_exit(&pio->io_lock);
410 	mutex_exit(&cio->io_lock);
411 }
412 
413 static void
414 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
415 {
416 	ASSERT(zl->zl_parent == pio);
417 	ASSERT(zl->zl_child == cio);
418 
419 	mutex_enter(&cio->io_lock);
420 	mutex_enter(&pio->io_lock);
421 
422 	list_remove(&pio->io_child_list, zl);
423 	list_remove(&cio->io_parent_list, zl);
424 
425 	pio->io_child_count--;
426 	cio->io_parent_count--;
427 
428 	mutex_exit(&pio->io_lock);
429 	mutex_exit(&cio->io_lock);
430 
431 	kmem_cache_free(zio_link_cache, zl);
432 }
433 
434 static boolean_t
435 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
436 {
437 	uint64_t *countp = &zio->io_children[child][wait];
438 	boolean_t waiting = B_FALSE;
439 
440 	mutex_enter(&zio->io_lock);
441 	ASSERT(zio->io_stall == NULL);
442 	if (*countp != 0) {
443 		zio->io_stage >>= 1;
444 		zio->io_stall = countp;
445 		waiting = B_TRUE;
446 	}
447 	mutex_exit(&zio->io_lock);
448 
449 	return (waiting);
450 }
451 
452 static void
453 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
454 {
455 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
456 	int *errorp = &pio->io_child_error[zio->io_child_type];
457 
458 	mutex_enter(&pio->io_lock);
459 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
460 		*errorp = zio_worst_error(*errorp, zio->io_error);
461 	pio->io_reexecute |= zio->io_reexecute;
462 	ASSERT3U(*countp, >, 0);
463 
464 	(*countp)--;
465 
466 	if (*countp == 0 && pio->io_stall == countp) {
467 		pio->io_stall = NULL;
468 		mutex_exit(&pio->io_lock);
469 		zio_execute(pio);
470 	} else {
471 		mutex_exit(&pio->io_lock);
472 	}
473 }
474 
475 static void
476 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
477 {
478 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
479 		zio->io_error = zio->io_child_error[c];
480 }
481 
482 /*
483  * ==========================================================================
484  * Create the various types of I/O (read, write, free, etc)
485  * ==========================================================================
486  */
487 static zio_t *
488 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
489     void *data, uint64_t size, zio_done_func_t *done, void *private,
490     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
491     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
492     enum zio_stage stage, enum zio_stage pipeline)
493 {
494 	zio_t *zio;
495 
496 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
497 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
498 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
499 
500 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
501 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
502 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
503 
504 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
505 	bzero(zio, sizeof (zio_t));
506 
507 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
508 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
509 
510 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
511 	    offsetof(zio_link_t, zl_parent_node));
512 	list_create(&zio->io_child_list, sizeof (zio_link_t),
513 	    offsetof(zio_link_t, zl_child_node));
514 
515 	if (vd != NULL)
516 		zio->io_child_type = ZIO_CHILD_VDEV;
517 	else if (flags & ZIO_FLAG_GANG_CHILD)
518 		zio->io_child_type = ZIO_CHILD_GANG;
519 	else if (flags & ZIO_FLAG_DDT_CHILD)
520 		zio->io_child_type = ZIO_CHILD_DDT;
521 	else
522 		zio->io_child_type = ZIO_CHILD_LOGICAL;
523 
524 	if (bp != NULL) {
525 		zio->io_bp = (blkptr_t *)bp;
526 		zio->io_bp_copy = *bp;
527 		zio->io_bp_orig = *bp;
528 		if (type != ZIO_TYPE_WRITE ||
529 		    zio->io_child_type == ZIO_CHILD_DDT)
530 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
531 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
532 			zio->io_logical = zio;
533 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
534 			pipeline |= ZIO_GANG_STAGES;
535 	}
536 
537 	zio->io_spa = spa;
538 	zio->io_txg = txg;
539 	zio->io_done = done;
540 	zio->io_private = private;
541 	zio->io_type = type;
542 	zio->io_priority = priority;
543 	zio->io_vd = vd;
544 	zio->io_offset = offset;
545 	zio->io_orig_data = zio->io_data = data;
546 	zio->io_orig_size = zio->io_size = size;
547 	zio->io_orig_flags = zio->io_flags = flags;
548 	zio->io_orig_stage = zio->io_stage = stage;
549 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
550 
551 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
552 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
553 
554 	if (zb != NULL)
555 		zio->io_bookmark = *zb;
556 
557 	if (pio != NULL) {
558 		if (zio->io_logical == NULL)
559 			zio->io_logical = pio->io_logical;
560 		if (zio->io_child_type == ZIO_CHILD_GANG)
561 			zio->io_gang_leader = pio->io_gang_leader;
562 		zio_add_child(pio, zio);
563 	}
564 
565 	return (zio);
566 }
567 
568 static void
569 zio_destroy(zio_t *zio)
570 {
571 	list_destroy(&zio->io_parent_list);
572 	list_destroy(&zio->io_child_list);
573 	mutex_destroy(&zio->io_lock);
574 	cv_destroy(&zio->io_cv);
575 	kmem_cache_free(zio_cache, zio);
576 }
577 
578 zio_t *
579 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
580     void *private, enum zio_flag flags)
581 {
582 	zio_t *zio;
583 
584 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
585 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
586 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
587 
588 	return (zio);
589 }
590 
591 zio_t *
592 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
593 {
594 	return (zio_null(NULL, spa, NULL, done, private, flags));
595 }
596 
597 zio_t *
598 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
599     void *data, uint64_t size, zio_done_func_t *done, void *private,
600     zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
601 {
602 	zio_t *zio;
603 
604 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
605 	    data, size, done, private,
606 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
607 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
608 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
609 
610 	return (zio);
611 }
612 
613 zio_t *
614 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
615     void *data, uint64_t size, const zio_prop_t *zp,
616     zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
617     void *private,
618     zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
619 {
620 	zio_t *zio;
621 
622 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
623 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
624 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
625 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
626 	    DMU_OT_IS_VALID(zp->zp_type) &&
627 	    zp->zp_level < 32 &&
628 	    zp->zp_copies > 0 &&
629 	    zp->zp_copies <= spa_max_replication(spa));
630 
631 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
632 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
633 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
634 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
635 
636 	zio->io_ready = ready;
637 	zio->io_physdone = physdone;
638 	zio->io_prop = *zp;
639 
640 	return (zio);
641 }
642 
643 zio_t *
644 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
645     uint64_t size, zio_done_func_t *done, void *private,
646     zio_priority_t priority, enum zio_flag flags, zbookmark_t *zb)
647 {
648 	zio_t *zio;
649 
650 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
651 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
652 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
653 
654 	return (zio);
655 }
656 
657 void
658 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
659 {
660 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
661 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
662 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
663 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
664 
665 	/*
666 	 * We must reset the io_prop to match the values that existed
667 	 * when the bp was first written by dmu_sync() keeping in mind
668 	 * that nopwrite and dedup are mutually exclusive.
669 	 */
670 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
671 	zio->io_prop.zp_nopwrite = nopwrite;
672 	zio->io_prop.zp_copies = copies;
673 	zio->io_bp_override = bp;
674 }
675 
676 void
677 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
678 {
679 	metaslab_check_free(spa, bp);
680 
681 	/*
682 	 * Frees that are for the currently-syncing txg, are not going to be
683 	 * deferred, and which will not need to do a read (i.e. not GANG or
684 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
685 	 * in-memory list for later processing.
686 	 */
687 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
688 	    txg != spa->spa_syncing_txg ||
689 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
690 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
691 	} else {
692 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
693 	}
694 }
695 
696 zio_t *
697 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
698     enum zio_flag flags)
699 {
700 	zio_t *zio;
701 	enum zio_stage stage = ZIO_FREE_PIPELINE;
702 
703 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
704 	    (longlong_t)txg, spa->spa_sync_pass);
705 
706 	ASSERT(!BP_IS_HOLE(bp));
707 	ASSERT(spa_syncing_txg(spa) == txg);
708 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
709 
710 	metaslab_check_free(spa, bp);
711 	arc_freed(spa, bp);
712 
713 	/*
714 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
715 	 * or the DDT), so issue them asynchronously so that this thread is
716 	 * not tied up.
717 	 */
718 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
719 		stage |= ZIO_STAGE_ISSUE_ASYNC;
720 
721 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
722 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
723 	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
724 
725 
726 	return (zio);
727 }
728 
729 zio_t *
730 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
731     zio_done_func_t *done, void *private, enum zio_flag flags)
732 {
733 	zio_t *zio;
734 
735 	/*
736 	 * A claim is an allocation of a specific block.  Claims are needed
737 	 * to support immediate writes in the intent log.  The issue is that
738 	 * immediate writes contain committed data, but in a txg that was
739 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
740 	 * the intent log claims all blocks that contain immediate write data
741 	 * so that the SPA knows they're in use.
742 	 *
743 	 * All claims *must* be resolved in the first txg -- before the SPA
744 	 * starts allocating blocks -- so that nothing is allocated twice.
745 	 * If txg == 0 we just verify that the block is claimable.
746 	 */
747 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
748 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
749 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
750 
751 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
752 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
753 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
754 
755 	return (zio);
756 }
757 
758 zio_t *
759 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
760     zio_done_func_t *done, void *private, enum zio_flag flags)
761 {
762 	zio_t *zio;
763 	int c;
764 
765 	if (vd->vdev_children == 0) {
766 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
767 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
768 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
769 
770 		zio->io_cmd = cmd;
771 	} else {
772 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
773 
774 		for (c = 0; c < vd->vdev_children; c++)
775 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
776 			    done, private, flags));
777 	}
778 
779 	return (zio);
780 }
781 
782 zio_t *
783 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
784     void *data, int checksum, zio_done_func_t *done, void *private,
785     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
786 {
787 	zio_t *zio;
788 
789 	ASSERT(vd->vdev_children == 0);
790 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
791 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
792 	ASSERT3U(offset + size, <=, vd->vdev_psize);
793 
794 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
795 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
796 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
797 
798 	zio->io_prop.zp_checksum = checksum;
799 
800 	return (zio);
801 }
802 
803 zio_t *
804 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
805     void *data, int checksum, zio_done_func_t *done, void *private,
806     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
807 {
808 	zio_t *zio;
809 
810 	ASSERT(vd->vdev_children == 0);
811 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
812 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
813 	ASSERT3U(offset + size, <=, vd->vdev_psize);
814 
815 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
816 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
817 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
818 
819 	zio->io_prop.zp_checksum = checksum;
820 
821 	if (zio_checksum_table[checksum].ci_eck) {
822 		/*
823 		 * zec checksums are necessarily destructive -- they modify
824 		 * the end of the write buffer to hold the verifier/checksum.
825 		 * Therefore, we must make a local copy in case the data is
826 		 * being written to multiple places in parallel.
827 		 */
828 		void *wbuf = zio_buf_alloc(size);
829 		bcopy(data, wbuf, size);
830 		zio_push_transform(zio, wbuf, size, size, NULL);
831 	}
832 
833 	return (zio);
834 }
835 
836 /*
837  * Create a child I/O to do some work for us.
838  */
839 zio_t *
840 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
841 	void *data, uint64_t size, int type, zio_priority_t priority,
842 	enum zio_flag flags, zio_done_func_t *done, void *private)
843 {
844 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
845 	zio_t *zio;
846 
847 	ASSERT(vd->vdev_parent ==
848 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
849 
850 	if (type == ZIO_TYPE_READ && bp != NULL) {
851 		/*
852 		 * If we have the bp, then the child should perform the
853 		 * checksum and the parent need not.  This pushes error
854 		 * detection as close to the leaves as possible and
855 		 * eliminates redundant checksums in the interior nodes.
856 		 */
857 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
858 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
859 	}
860 
861 	if (vd->vdev_children == 0)
862 		offset += VDEV_LABEL_START_SIZE;
863 
864 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
865 
866 	/*
867 	 * If we've decided to do a repair, the write is not speculative --
868 	 * even if the original read was.
869 	 */
870 	if (flags & ZIO_FLAG_IO_REPAIR)
871 		flags &= ~ZIO_FLAG_SPECULATIVE;
872 
873 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
874 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
875 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
876 
877 	zio->io_physdone = pio->io_physdone;
878 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
879 		zio->io_logical->io_phys_children++;
880 
881 	return (zio);
882 }
883 
884 zio_t *
885 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
886 	int type, zio_priority_t priority, enum zio_flag flags,
887 	zio_done_func_t *done, void *private)
888 {
889 	zio_t *zio;
890 
891 	ASSERT(vd->vdev_ops->vdev_op_leaf);
892 
893 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
894 	    data, size, done, private, type, priority,
895 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
896 	    vd, offset, NULL,
897 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
898 
899 	return (zio);
900 }
901 
902 void
903 zio_flush(zio_t *zio, vdev_t *vd)
904 {
905 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
906 	    NULL, NULL,
907 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
908 }
909 
910 void
911 zio_shrink(zio_t *zio, uint64_t size)
912 {
913 	ASSERT(zio->io_executor == NULL);
914 	ASSERT(zio->io_orig_size == zio->io_size);
915 	ASSERT(size <= zio->io_size);
916 
917 	/*
918 	 * We don't shrink for raidz because of problems with the
919 	 * reconstruction when reading back less than the block size.
920 	 * Note, BP_IS_RAIDZ() assumes no compression.
921 	 */
922 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
923 	if (!BP_IS_RAIDZ(zio->io_bp))
924 		zio->io_orig_size = zio->io_size = size;
925 }
926 
927 /*
928  * ==========================================================================
929  * Prepare to read and write logical blocks
930  * ==========================================================================
931  */
932 
933 static int
934 zio_read_bp_init(zio_t *zio)
935 {
936 	blkptr_t *bp = zio->io_bp;
937 
938 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
939 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
940 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
941 		uint64_t psize = BP_GET_PSIZE(bp);
942 		void *cbuf = zio_buf_alloc(psize);
943 
944 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
945 	}
946 
947 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
948 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
949 
950 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
951 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
952 
953 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
954 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
955 
956 	return (ZIO_PIPELINE_CONTINUE);
957 }
958 
959 static int
960 zio_write_bp_init(zio_t *zio)
961 {
962 	spa_t *spa = zio->io_spa;
963 	zio_prop_t *zp = &zio->io_prop;
964 	enum zio_compress compress = zp->zp_compress;
965 	blkptr_t *bp = zio->io_bp;
966 	uint64_t lsize = zio->io_size;
967 	uint64_t psize = lsize;
968 	int pass = 1;
969 
970 	/*
971 	 * If our children haven't all reached the ready stage,
972 	 * wait for them and then repeat this pipeline stage.
973 	 */
974 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
975 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
976 		return (ZIO_PIPELINE_STOP);
977 
978 	if (!IO_IS_ALLOCATING(zio))
979 		return (ZIO_PIPELINE_CONTINUE);
980 
981 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
982 
983 	if (zio->io_bp_override) {
984 		ASSERT(bp->blk_birth != zio->io_txg);
985 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
986 
987 		*bp = *zio->io_bp_override;
988 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
989 
990 		/*
991 		 * If we've been overridden and nopwrite is set then
992 		 * set the flag accordingly to indicate that a nopwrite
993 		 * has already occurred.
994 		 */
995 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
996 			ASSERT(!zp->zp_dedup);
997 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
998 			return (ZIO_PIPELINE_CONTINUE);
999 		}
1000 
1001 		ASSERT(!zp->zp_nopwrite);
1002 
1003 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1004 			return (ZIO_PIPELINE_CONTINUE);
1005 
1006 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1007 		    zp->zp_dedup_verify);
1008 
1009 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1010 			BP_SET_DEDUP(bp, 1);
1011 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1012 			return (ZIO_PIPELINE_CONTINUE);
1013 		}
1014 		zio->io_bp_override = NULL;
1015 		BP_ZERO(bp);
1016 	}
1017 
1018 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1019 		/*
1020 		 * We're rewriting an existing block, which means we're
1021 		 * working on behalf of spa_sync().  For spa_sync() to
1022 		 * converge, it must eventually be the case that we don't
1023 		 * have to allocate new blocks.  But compression changes
1024 		 * the blocksize, which forces a reallocate, and makes
1025 		 * convergence take longer.  Therefore, after the first
1026 		 * few passes, stop compressing to ensure convergence.
1027 		 */
1028 		pass = spa_sync_pass(spa);
1029 
1030 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1031 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1032 		ASSERT(!BP_GET_DEDUP(bp));
1033 
1034 		if (pass >= zfs_sync_pass_dont_compress)
1035 			compress = ZIO_COMPRESS_OFF;
1036 
1037 		/* Make sure someone doesn't change their mind on overwrites */
1038 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1039 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1040 	}
1041 
1042 	if (compress != ZIO_COMPRESS_OFF) {
1043 		void *cbuf = zio_buf_alloc(lsize);
1044 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1045 		if (psize == 0 || psize == lsize) {
1046 			compress = ZIO_COMPRESS_OFF;
1047 			zio_buf_free(cbuf, lsize);
1048 		} else {
1049 			ASSERT(psize < lsize);
1050 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * The final pass of spa_sync() must be all rewrites, but the first
1056 	 * few passes offer a trade-off: allocating blocks defers convergence,
1057 	 * but newly allocated blocks are sequential, so they can be written
1058 	 * to disk faster.  Therefore, we allow the first few passes of
1059 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1060 	 * There should only be a handful of blocks after pass 1 in any case.
1061 	 */
1062 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1063 	    BP_GET_PSIZE(bp) == psize &&
1064 	    pass >= zfs_sync_pass_rewrite) {
1065 		ASSERT(psize != 0);
1066 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1067 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1068 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1069 	} else {
1070 		BP_ZERO(bp);
1071 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1072 	}
1073 
1074 	if (psize == 0) {
1075 		if (zio->io_bp_orig.blk_birth != 0 &&
1076 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1077 			BP_SET_LSIZE(bp, lsize);
1078 			BP_SET_TYPE(bp, zp->zp_type);
1079 			BP_SET_LEVEL(bp, zp->zp_level);
1080 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1081 		}
1082 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1083 	} else {
1084 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1085 		BP_SET_LSIZE(bp, lsize);
1086 		BP_SET_TYPE(bp, zp->zp_type);
1087 		BP_SET_LEVEL(bp, zp->zp_level);
1088 		BP_SET_PSIZE(bp, psize);
1089 		BP_SET_COMPRESS(bp, compress);
1090 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1091 		BP_SET_DEDUP(bp, zp->zp_dedup);
1092 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1093 		if (zp->zp_dedup) {
1094 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1095 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1096 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1097 		}
1098 		if (zp->zp_nopwrite) {
1099 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1100 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1101 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1102 		}
1103 	}
1104 
1105 	return (ZIO_PIPELINE_CONTINUE);
1106 }
1107 
1108 static int
1109 zio_free_bp_init(zio_t *zio)
1110 {
1111 	blkptr_t *bp = zio->io_bp;
1112 
1113 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1114 		if (BP_GET_DEDUP(bp))
1115 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1116 	}
1117 
1118 	return (ZIO_PIPELINE_CONTINUE);
1119 }
1120 
1121 /*
1122  * ==========================================================================
1123  * Execute the I/O pipeline
1124  * ==========================================================================
1125  */
1126 
1127 static void
1128 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1129 {
1130 	spa_t *spa = zio->io_spa;
1131 	zio_type_t t = zio->io_type;
1132 	int flags = (cutinline ? TQ_FRONT : 0);
1133 
1134 	/*
1135 	 * If we're a config writer or a probe, the normal issue and
1136 	 * interrupt threads may all be blocked waiting for the config lock.
1137 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1138 	 */
1139 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1140 		t = ZIO_TYPE_NULL;
1141 
1142 	/*
1143 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1144 	 */
1145 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1146 		t = ZIO_TYPE_NULL;
1147 
1148 	/*
1149 	 * If this is a high priority I/O, then use the high priority taskq if
1150 	 * available.
1151 	 */
1152 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1153 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1154 		q++;
1155 
1156 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1157 
1158 	/*
1159 	 * NB: We are assuming that the zio can only be dispatched
1160 	 * to a single taskq at a time.  It would be a grievous error
1161 	 * to dispatch the zio to another taskq at the same time.
1162 	 */
1163 	ASSERT(zio->io_tqent.tqent_next == NULL);
1164 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1165 	    flags, &zio->io_tqent);
1166 }
1167 
1168 static boolean_t
1169 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1170 {
1171 	kthread_t *executor = zio->io_executor;
1172 	spa_t *spa = zio->io_spa;
1173 
1174 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1175 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1176 		uint_t i;
1177 		for (i = 0; i < tqs->stqs_count; i++) {
1178 			if (taskq_member(tqs->stqs_taskq[i], executor))
1179 				return (B_TRUE);
1180 		}
1181 	}
1182 
1183 	return (B_FALSE);
1184 }
1185 
1186 static int
1187 zio_issue_async(zio_t *zio)
1188 {
1189 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1190 
1191 	return (ZIO_PIPELINE_STOP);
1192 }
1193 
1194 void
1195 zio_interrupt(zio_t *zio)
1196 {
1197 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1198 }
1199 
1200 /*
1201  * Execute the I/O pipeline until one of the following occurs:
1202  *
1203  *	(1) the I/O completes
1204  *	(2) the pipeline stalls waiting for dependent child I/Os
1205  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1206  *	(4) the I/O is delegated by vdev-level caching or aggregation
1207  *	(5) the I/O is deferred due to vdev-level queueing
1208  *	(6) the I/O is handed off to another thread.
1209  *
1210  * In all cases, the pipeline stops whenever there's no CPU work; it never
1211  * burns a thread in cv_wait().
1212  *
1213  * There's no locking on io_stage because there's no legitimate way
1214  * for multiple threads to be attempting to process the same I/O.
1215  */
1216 static zio_pipe_stage_t *zio_pipeline[];
1217 
1218 void
1219 zio_execute(zio_t *zio)
1220 {
1221 	zio->io_executor = curthread;
1222 
1223 	while (zio->io_stage < ZIO_STAGE_DONE) {
1224 		enum zio_stage pipeline = zio->io_pipeline;
1225 		enum zio_stage stage = zio->io_stage;
1226 		int rv;
1227 
1228 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1229 		ASSERT(ISP2(stage));
1230 		ASSERT(zio->io_stall == NULL);
1231 
1232 		do {
1233 			stage <<= 1;
1234 		} while ((stage & pipeline) == 0);
1235 
1236 		ASSERT(stage <= ZIO_STAGE_DONE);
1237 
1238 		/*
1239 		 * If we are in interrupt context and this pipeline stage
1240 		 * will grab a config lock that is held across I/O,
1241 		 * or may wait for an I/O that needs an interrupt thread
1242 		 * to complete, issue async to avoid deadlock.
1243 		 *
1244 		 * For VDEV_IO_START, we cut in line so that the io will
1245 		 * be sent to disk promptly.
1246 		 */
1247 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1248 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1249 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1250 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1251 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1252 			return;
1253 		}
1254 
1255 		zio->io_stage = stage;
1256 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1257 
1258 		if (rv == ZIO_PIPELINE_STOP)
1259 			return;
1260 
1261 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1262 	}
1263 }
1264 
1265 /*
1266  * ==========================================================================
1267  * Initiate I/O, either sync or async
1268  * ==========================================================================
1269  */
1270 int
1271 zio_wait(zio_t *zio)
1272 {
1273 	int error;
1274 
1275 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1276 	ASSERT(zio->io_executor == NULL);
1277 
1278 	zio->io_waiter = curthread;
1279 
1280 	zio_execute(zio);
1281 
1282 	mutex_enter(&zio->io_lock);
1283 	while (zio->io_executor != NULL)
1284 		cv_wait(&zio->io_cv, &zio->io_lock);
1285 	mutex_exit(&zio->io_lock);
1286 
1287 	error = zio->io_error;
1288 	zio_destroy(zio);
1289 
1290 	return (error);
1291 }
1292 
1293 void
1294 zio_nowait(zio_t *zio)
1295 {
1296 	ASSERT(zio->io_executor == NULL);
1297 
1298 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1299 	    zio_unique_parent(zio) == NULL) {
1300 		/*
1301 		 * This is a logical async I/O with no parent to wait for it.
1302 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1303 		 * will ensure they complete prior to unloading the pool.
1304 		 */
1305 		spa_t *spa = zio->io_spa;
1306 
1307 		zio_add_child(spa->spa_async_zio_root, zio);
1308 	}
1309 
1310 	zio_execute(zio);
1311 }
1312 
1313 /*
1314  * ==========================================================================
1315  * Reexecute or suspend/resume failed I/O
1316  * ==========================================================================
1317  */
1318 
1319 static void
1320 zio_reexecute(zio_t *pio)
1321 {
1322 	zio_t *cio, *cio_next;
1323 
1324 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1325 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1326 	ASSERT(pio->io_gang_leader == NULL);
1327 	ASSERT(pio->io_gang_tree == NULL);
1328 
1329 	pio->io_flags = pio->io_orig_flags;
1330 	pio->io_stage = pio->io_orig_stage;
1331 	pio->io_pipeline = pio->io_orig_pipeline;
1332 	pio->io_reexecute = 0;
1333 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1334 	pio->io_error = 0;
1335 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1336 		pio->io_state[w] = 0;
1337 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1338 		pio->io_child_error[c] = 0;
1339 
1340 	if (IO_IS_ALLOCATING(pio))
1341 		BP_ZERO(pio->io_bp);
1342 
1343 	/*
1344 	 * As we reexecute pio's children, new children could be created.
1345 	 * New children go to the head of pio's io_child_list, however,
1346 	 * so we will (correctly) not reexecute them.  The key is that
1347 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1348 	 * cannot be affected by any side effects of reexecuting 'cio'.
1349 	 */
1350 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1351 		cio_next = zio_walk_children(pio);
1352 		mutex_enter(&pio->io_lock);
1353 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1354 			pio->io_children[cio->io_child_type][w]++;
1355 		mutex_exit(&pio->io_lock);
1356 		zio_reexecute(cio);
1357 	}
1358 
1359 	/*
1360 	 * Now that all children have been reexecuted, execute the parent.
1361 	 * We don't reexecute "The Godfather" I/O here as it's the
1362 	 * responsibility of the caller to wait on him.
1363 	 */
1364 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1365 		zio_execute(pio);
1366 }
1367 
1368 void
1369 zio_suspend(spa_t *spa, zio_t *zio)
1370 {
1371 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1372 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1373 		    "failure and the failure mode property for this pool "
1374 		    "is set to panic.", spa_name(spa));
1375 
1376 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1377 
1378 	mutex_enter(&spa->spa_suspend_lock);
1379 
1380 	if (spa->spa_suspend_zio_root == NULL)
1381 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1382 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1383 		    ZIO_FLAG_GODFATHER);
1384 
1385 	spa->spa_suspended = B_TRUE;
1386 
1387 	if (zio != NULL) {
1388 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1389 		ASSERT(zio != spa->spa_suspend_zio_root);
1390 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1391 		ASSERT(zio_unique_parent(zio) == NULL);
1392 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1393 		zio_add_child(spa->spa_suspend_zio_root, zio);
1394 	}
1395 
1396 	mutex_exit(&spa->spa_suspend_lock);
1397 }
1398 
1399 int
1400 zio_resume(spa_t *spa)
1401 {
1402 	zio_t *pio;
1403 
1404 	/*
1405 	 * Reexecute all previously suspended i/o.
1406 	 */
1407 	mutex_enter(&spa->spa_suspend_lock);
1408 	spa->spa_suspended = B_FALSE;
1409 	cv_broadcast(&spa->spa_suspend_cv);
1410 	pio = spa->spa_suspend_zio_root;
1411 	spa->spa_suspend_zio_root = NULL;
1412 	mutex_exit(&spa->spa_suspend_lock);
1413 
1414 	if (pio == NULL)
1415 		return (0);
1416 
1417 	zio_reexecute(pio);
1418 	return (zio_wait(pio));
1419 }
1420 
1421 void
1422 zio_resume_wait(spa_t *spa)
1423 {
1424 	mutex_enter(&spa->spa_suspend_lock);
1425 	while (spa_suspended(spa))
1426 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1427 	mutex_exit(&spa->spa_suspend_lock);
1428 }
1429 
1430 /*
1431  * ==========================================================================
1432  * Gang blocks.
1433  *
1434  * A gang block is a collection of small blocks that looks to the DMU
1435  * like one large block.  When zio_dva_allocate() cannot find a block
1436  * of the requested size, due to either severe fragmentation or the pool
1437  * being nearly full, it calls zio_write_gang_block() to construct the
1438  * block from smaller fragments.
1439  *
1440  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1441  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1442  * an indirect block: it's an array of block pointers.  It consumes
1443  * only one sector and hence is allocatable regardless of fragmentation.
1444  * The gang header's bps point to its gang members, which hold the data.
1445  *
1446  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1447  * as the verifier to ensure uniqueness of the SHA256 checksum.
1448  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1449  * not the gang header.  This ensures that data block signatures (needed for
1450  * deduplication) are independent of how the block is physically stored.
1451  *
1452  * Gang blocks can be nested: a gang member may itself be a gang block.
1453  * Thus every gang block is a tree in which root and all interior nodes are
1454  * gang headers, and the leaves are normal blocks that contain user data.
1455  * The root of the gang tree is called the gang leader.
1456  *
1457  * To perform any operation (read, rewrite, free, claim) on a gang block,
1458  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1459  * in the io_gang_tree field of the original logical i/o by recursively
1460  * reading the gang leader and all gang headers below it.  This yields
1461  * an in-core tree containing the contents of every gang header and the
1462  * bps for every constituent of the gang block.
1463  *
1464  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1465  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1466  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1467  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1468  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1469  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1470  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1471  * of the gang header plus zio_checksum_compute() of the data to update the
1472  * gang header's blk_cksum as described above.
1473  *
1474  * The two-phase assemble/issue model solves the problem of partial failure --
1475  * what if you'd freed part of a gang block but then couldn't read the
1476  * gang header for another part?  Assembling the entire gang tree first
1477  * ensures that all the necessary gang header I/O has succeeded before
1478  * starting the actual work of free, claim, or write.  Once the gang tree
1479  * is assembled, free and claim are in-memory operations that cannot fail.
1480  *
1481  * In the event that a gang write fails, zio_dva_unallocate() walks the
1482  * gang tree to immediately free (i.e. insert back into the space map)
1483  * everything we've allocated.  This ensures that we don't get ENOSPC
1484  * errors during repeated suspend/resume cycles due to a flaky device.
1485  *
1486  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1487  * the gang tree, we won't modify the block, so we can safely defer the free
1488  * (knowing that the block is still intact).  If we *can* assemble the gang
1489  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1490  * each constituent bp and we can allocate a new block on the next sync pass.
1491  *
1492  * In all cases, the gang tree allows complete recovery from partial failure.
1493  * ==========================================================================
1494  */
1495 
1496 static zio_t *
1497 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1498 {
1499 	if (gn != NULL)
1500 		return (pio);
1501 
1502 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1503 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1504 	    &pio->io_bookmark));
1505 }
1506 
1507 zio_t *
1508 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1509 {
1510 	zio_t *zio;
1511 
1512 	if (gn != NULL) {
1513 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1514 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1515 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1516 		/*
1517 		 * As we rewrite each gang header, the pipeline will compute
1518 		 * a new gang block header checksum for it; but no one will
1519 		 * compute a new data checksum, so we do that here.  The one
1520 		 * exception is the gang leader: the pipeline already computed
1521 		 * its data checksum because that stage precedes gang assembly.
1522 		 * (Presently, nothing actually uses interior data checksums;
1523 		 * this is just good hygiene.)
1524 		 */
1525 		if (gn != pio->io_gang_leader->io_gang_tree) {
1526 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1527 			    data, BP_GET_PSIZE(bp));
1528 		}
1529 		/*
1530 		 * If we are here to damage data for testing purposes,
1531 		 * leave the GBH alone so that we can detect the damage.
1532 		 */
1533 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1534 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1535 	} else {
1536 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1537 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1538 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1539 	}
1540 
1541 	return (zio);
1542 }
1543 
1544 /* ARGSUSED */
1545 zio_t *
1546 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1547 {
1548 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1549 	    ZIO_GANG_CHILD_FLAGS(pio)));
1550 }
1551 
1552 /* ARGSUSED */
1553 zio_t *
1554 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1555 {
1556 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1557 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1558 }
1559 
1560 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1561 	NULL,
1562 	zio_read_gang,
1563 	zio_rewrite_gang,
1564 	zio_free_gang,
1565 	zio_claim_gang,
1566 	NULL
1567 };
1568 
1569 static void zio_gang_tree_assemble_done(zio_t *zio);
1570 
1571 static zio_gang_node_t *
1572 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1573 {
1574 	zio_gang_node_t *gn;
1575 
1576 	ASSERT(*gnpp == NULL);
1577 
1578 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1579 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1580 	*gnpp = gn;
1581 
1582 	return (gn);
1583 }
1584 
1585 static void
1586 zio_gang_node_free(zio_gang_node_t **gnpp)
1587 {
1588 	zio_gang_node_t *gn = *gnpp;
1589 
1590 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1591 		ASSERT(gn->gn_child[g] == NULL);
1592 
1593 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1594 	kmem_free(gn, sizeof (*gn));
1595 	*gnpp = NULL;
1596 }
1597 
1598 static void
1599 zio_gang_tree_free(zio_gang_node_t **gnpp)
1600 {
1601 	zio_gang_node_t *gn = *gnpp;
1602 
1603 	if (gn == NULL)
1604 		return;
1605 
1606 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1607 		zio_gang_tree_free(&gn->gn_child[g]);
1608 
1609 	zio_gang_node_free(gnpp);
1610 }
1611 
1612 static void
1613 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1614 {
1615 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1616 
1617 	ASSERT(gio->io_gang_leader == gio);
1618 	ASSERT(BP_IS_GANG(bp));
1619 
1620 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1621 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1622 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1623 }
1624 
1625 static void
1626 zio_gang_tree_assemble_done(zio_t *zio)
1627 {
1628 	zio_t *gio = zio->io_gang_leader;
1629 	zio_gang_node_t *gn = zio->io_private;
1630 	blkptr_t *bp = zio->io_bp;
1631 
1632 	ASSERT(gio == zio_unique_parent(zio));
1633 	ASSERT(zio->io_child_count == 0);
1634 
1635 	if (zio->io_error)
1636 		return;
1637 
1638 	if (BP_SHOULD_BYTESWAP(bp))
1639 		byteswap_uint64_array(zio->io_data, zio->io_size);
1640 
1641 	ASSERT(zio->io_data == gn->gn_gbh);
1642 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1643 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1644 
1645 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1646 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1647 		if (!BP_IS_GANG(gbp))
1648 			continue;
1649 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1650 	}
1651 }
1652 
1653 static void
1654 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1655 {
1656 	zio_t *gio = pio->io_gang_leader;
1657 	zio_t *zio;
1658 
1659 	ASSERT(BP_IS_GANG(bp) == !!gn);
1660 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1661 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1662 
1663 	/*
1664 	 * If you're a gang header, your data is in gn->gn_gbh.
1665 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1666 	 */
1667 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1668 
1669 	if (gn != NULL) {
1670 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1671 
1672 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1673 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1674 			if (BP_IS_HOLE(gbp))
1675 				continue;
1676 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1677 			data = (char *)data + BP_GET_PSIZE(gbp);
1678 		}
1679 	}
1680 
1681 	if (gn == gio->io_gang_tree)
1682 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1683 
1684 	if (zio != pio)
1685 		zio_nowait(zio);
1686 }
1687 
1688 static int
1689 zio_gang_assemble(zio_t *zio)
1690 {
1691 	blkptr_t *bp = zio->io_bp;
1692 
1693 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1694 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1695 
1696 	zio->io_gang_leader = zio;
1697 
1698 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1699 
1700 	return (ZIO_PIPELINE_CONTINUE);
1701 }
1702 
1703 static int
1704 zio_gang_issue(zio_t *zio)
1705 {
1706 	blkptr_t *bp = zio->io_bp;
1707 
1708 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1709 		return (ZIO_PIPELINE_STOP);
1710 
1711 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1712 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1713 
1714 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1715 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1716 	else
1717 		zio_gang_tree_free(&zio->io_gang_tree);
1718 
1719 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1720 
1721 	return (ZIO_PIPELINE_CONTINUE);
1722 }
1723 
1724 static void
1725 zio_write_gang_member_ready(zio_t *zio)
1726 {
1727 	zio_t *pio = zio_unique_parent(zio);
1728 	zio_t *gio = zio->io_gang_leader;
1729 	dva_t *cdva = zio->io_bp->blk_dva;
1730 	dva_t *pdva = pio->io_bp->blk_dva;
1731 	uint64_t asize;
1732 
1733 	if (BP_IS_HOLE(zio->io_bp))
1734 		return;
1735 
1736 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1737 
1738 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1739 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1740 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1741 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1742 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1743 
1744 	mutex_enter(&pio->io_lock);
1745 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1746 		ASSERT(DVA_GET_GANG(&pdva[d]));
1747 		asize = DVA_GET_ASIZE(&pdva[d]);
1748 		asize += DVA_GET_ASIZE(&cdva[d]);
1749 		DVA_SET_ASIZE(&pdva[d], asize);
1750 	}
1751 	mutex_exit(&pio->io_lock);
1752 }
1753 
1754 static int
1755 zio_write_gang_block(zio_t *pio)
1756 {
1757 	spa_t *spa = pio->io_spa;
1758 	blkptr_t *bp = pio->io_bp;
1759 	zio_t *gio = pio->io_gang_leader;
1760 	zio_t *zio;
1761 	zio_gang_node_t *gn, **gnpp;
1762 	zio_gbh_phys_t *gbh;
1763 	uint64_t txg = pio->io_txg;
1764 	uint64_t resid = pio->io_size;
1765 	uint64_t lsize;
1766 	int copies = gio->io_prop.zp_copies;
1767 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1768 	zio_prop_t zp;
1769 	int error;
1770 
1771 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1772 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1773 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1774 	if (error) {
1775 		pio->io_error = error;
1776 		return (ZIO_PIPELINE_CONTINUE);
1777 	}
1778 
1779 	if (pio == gio) {
1780 		gnpp = &gio->io_gang_tree;
1781 	} else {
1782 		gnpp = pio->io_private;
1783 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1784 	}
1785 
1786 	gn = zio_gang_node_alloc(gnpp);
1787 	gbh = gn->gn_gbh;
1788 	bzero(gbh, SPA_GANGBLOCKSIZE);
1789 
1790 	/*
1791 	 * Create the gang header.
1792 	 */
1793 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1794 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1795 
1796 	/*
1797 	 * Create and nowait the gang children.
1798 	 */
1799 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1800 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1801 		    SPA_MINBLOCKSIZE);
1802 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1803 
1804 		zp.zp_checksum = gio->io_prop.zp_checksum;
1805 		zp.zp_compress = ZIO_COMPRESS_OFF;
1806 		zp.zp_type = DMU_OT_NONE;
1807 		zp.zp_level = 0;
1808 		zp.zp_copies = gio->io_prop.zp_copies;
1809 		zp.zp_dedup = B_FALSE;
1810 		zp.zp_dedup_verify = B_FALSE;
1811 		zp.zp_nopwrite = B_FALSE;
1812 
1813 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1814 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1815 		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1816 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1817 		    &pio->io_bookmark));
1818 	}
1819 
1820 	/*
1821 	 * Set pio's pipeline to just wait for zio to finish.
1822 	 */
1823 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1824 
1825 	zio_nowait(zio);
1826 
1827 	return (ZIO_PIPELINE_CONTINUE);
1828 }
1829 
1830 /*
1831  * The zio_nop_write stage in the pipeline determines if allocating
1832  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1833  * such as SHA256, we can compare the checksums of the new data and the old
1834  * to determine if allocating a new block is required.  The nopwrite
1835  * feature can handle writes in either syncing or open context (i.e. zil
1836  * writes) and as a result is mutually exclusive with dedup.
1837  */
1838 static int
1839 zio_nop_write(zio_t *zio)
1840 {
1841 	blkptr_t *bp = zio->io_bp;
1842 	blkptr_t *bp_orig = &zio->io_bp_orig;
1843 	zio_prop_t *zp = &zio->io_prop;
1844 
1845 	ASSERT(BP_GET_LEVEL(bp) == 0);
1846 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1847 	ASSERT(zp->zp_nopwrite);
1848 	ASSERT(!zp->zp_dedup);
1849 	ASSERT(zio->io_bp_override == NULL);
1850 	ASSERT(IO_IS_ALLOCATING(zio));
1851 
1852 	/*
1853 	 * Check to see if the original bp and the new bp have matching
1854 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1855 	 * If they don't then just continue with the pipeline which will
1856 	 * allocate a new bp.
1857 	 */
1858 	if (BP_IS_HOLE(bp_orig) ||
1859 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1860 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1861 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1862 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1863 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1864 		return (ZIO_PIPELINE_CONTINUE);
1865 
1866 	/*
1867 	 * If the checksums match then reset the pipeline so that we
1868 	 * avoid allocating a new bp and issuing any I/O.
1869 	 */
1870 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1871 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1872 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1873 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1874 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1875 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1876 		    sizeof (uint64_t)) == 0);
1877 
1878 		*bp = *bp_orig;
1879 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1880 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1881 	}
1882 
1883 	return (ZIO_PIPELINE_CONTINUE);
1884 }
1885 
1886 /*
1887  * ==========================================================================
1888  * Dedup
1889  * ==========================================================================
1890  */
1891 static void
1892 zio_ddt_child_read_done(zio_t *zio)
1893 {
1894 	blkptr_t *bp = zio->io_bp;
1895 	ddt_entry_t *dde = zio->io_private;
1896 	ddt_phys_t *ddp;
1897 	zio_t *pio = zio_unique_parent(zio);
1898 
1899 	mutex_enter(&pio->io_lock);
1900 	ddp = ddt_phys_select(dde, bp);
1901 	if (zio->io_error == 0)
1902 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1903 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1904 		dde->dde_repair_data = zio->io_data;
1905 	else
1906 		zio_buf_free(zio->io_data, zio->io_size);
1907 	mutex_exit(&pio->io_lock);
1908 }
1909 
1910 static int
1911 zio_ddt_read_start(zio_t *zio)
1912 {
1913 	blkptr_t *bp = zio->io_bp;
1914 
1915 	ASSERT(BP_GET_DEDUP(bp));
1916 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1917 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1918 
1919 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1920 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1921 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1922 		ddt_phys_t *ddp = dde->dde_phys;
1923 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1924 		blkptr_t blk;
1925 
1926 		ASSERT(zio->io_vsd == NULL);
1927 		zio->io_vsd = dde;
1928 
1929 		if (ddp_self == NULL)
1930 			return (ZIO_PIPELINE_CONTINUE);
1931 
1932 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1933 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1934 				continue;
1935 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1936 			    &blk);
1937 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1938 			    zio_buf_alloc(zio->io_size), zio->io_size,
1939 			    zio_ddt_child_read_done, dde, zio->io_priority,
1940 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1941 			    &zio->io_bookmark));
1942 		}
1943 		return (ZIO_PIPELINE_CONTINUE);
1944 	}
1945 
1946 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1947 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1948 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1949 
1950 	return (ZIO_PIPELINE_CONTINUE);
1951 }
1952 
1953 static int
1954 zio_ddt_read_done(zio_t *zio)
1955 {
1956 	blkptr_t *bp = zio->io_bp;
1957 
1958 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1959 		return (ZIO_PIPELINE_STOP);
1960 
1961 	ASSERT(BP_GET_DEDUP(bp));
1962 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1963 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1964 
1965 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1966 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1967 		ddt_entry_t *dde = zio->io_vsd;
1968 		if (ddt == NULL) {
1969 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1970 			return (ZIO_PIPELINE_CONTINUE);
1971 		}
1972 		if (dde == NULL) {
1973 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1974 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1975 			return (ZIO_PIPELINE_STOP);
1976 		}
1977 		if (dde->dde_repair_data != NULL) {
1978 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1979 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1980 		}
1981 		ddt_repair_done(ddt, dde);
1982 		zio->io_vsd = NULL;
1983 	}
1984 
1985 	ASSERT(zio->io_vsd == NULL);
1986 
1987 	return (ZIO_PIPELINE_CONTINUE);
1988 }
1989 
1990 static boolean_t
1991 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1992 {
1993 	spa_t *spa = zio->io_spa;
1994 
1995 	/*
1996 	 * Note: we compare the original data, not the transformed data,
1997 	 * because when zio->io_bp is an override bp, we will not have
1998 	 * pushed the I/O transforms.  That's an important optimization
1999 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2000 	 */
2001 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2002 		zio_t *lio = dde->dde_lead_zio[p];
2003 
2004 		if (lio != NULL) {
2005 			return (lio->io_orig_size != zio->io_orig_size ||
2006 			    bcmp(zio->io_orig_data, lio->io_orig_data,
2007 			    zio->io_orig_size) != 0);
2008 		}
2009 	}
2010 
2011 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2012 		ddt_phys_t *ddp = &dde->dde_phys[p];
2013 
2014 		if (ddp->ddp_phys_birth != 0) {
2015 			arc_buf_t *abuf = NULL;
2016 			uint32_t aflags = ARC_WAIT;
2017 			blkptr_t blk = *zio->io_bp;
2018 			int error;
2019 
2020 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2021 
2022 			ddt_exit(ddt);
2023 
2024 			error = arc_read(NULL, spa, &blk,
2025 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2026 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2027 			    &aflags, &zio->io_bookmark);
2028 
2029 			if (error == 0) {
2030 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2031 				    bcmp(abuf->b_data, zio->io_orig_data,
2032 				    zio->io_orig_size) != 0)
2033 					error = SET_ERROR(EEXIST);
2034 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2035 			}
2036 
2037 			ddt_enter(ddt);
2038 			return (error != 0);
2039 		}
2040 	}
2041 
2042 	return (B_FALSE);
2043 }
2044 
2045 static void
2046 zio_ddt_child_write_ready(zio_t *zio)
2047 {
2048 	int p = zio->io_prop.zp_copies;
2049 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2050 	ddt_entry_t *dde = zio->io_private;
2051 	ddt_phys_t *ddp = &dde->dde_phys[p];
2052 	zio_t *pio;
2053 
2054 	if (zio->io_error)
2055 		return;
2056 
2057 	ddt_enter(ddt);
2058 
2059 	ASSERT(dde->dde_lead_zio[p] == zio);
2060 
2061 	ddt_phys_fill(ddp, zio->io_bp);
2062 
2063 	while ((pio = zio_walk_parents(zio)) != NULL)
2064 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2065 
2066 	ddt_exit(ddt);
2067 }
2068 
2069 static void
2070 zio_ddt_child_write_done(zio_t *zio)
2071 {
2072 	int p = zio->io_prop.zp_copies;
2073 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2074 	ddt_entry_t *dde = zio->io_private;
2075 	ddt_phys_t *ddp = &dde->dde_phys[p];
2076 
2077 	ddt_enter(ddt);
2078 
2079 	ASSERT(ddp->ddp_refcnt == 0);
2080 	ASSERT(dde->dde_lead_zio[p] == zio);
2081 	dde->dde_lead_zio[p] = NULL;
2082 
2083 	if (zio->io_error == 0) {
2084 		while (zio_walk_parents(zio) != NULL)
2085 			ddt_phys_addref(ddp);
2086 	} else {
2087 		ddt_phys_clear(ddp);
2088 	}
2089 
2090 	ddt_exit(ddt);
2091 }
2092 
2093 static void
2094 zio_ddt_ditto_write_done(zio_t *zio)
2095 {
2096 	int p = DDT_PHYS_DITTO;
2097 	zio_prop_t *zp = &zio->io_prop;
2098 	blkptr_t *bp = zio->io_bp;
2099 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2100 	ddt_entry_t *dde = zio->io_private;
2101 	ddt_phys_t *ddp = &dde->dde_phys[p];
2102 	ddt_key_t *ddk = &dde->dde_key;
2103 
2104 	ddt_enter(ddt);
2105 
2106 	ASSERT(ddp->ddp_refcnt == 0);
2107 	ASSERT(dde->dde_lead_zio[p] == zio);
2108 	dde->dde_lead_zio[p] = NULL;
2109 
2110 	if (zio->io_error == 0) {
2111 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2112 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2113 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2114 		if (ddp->ddp_phys_birth != 0)
2115 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2116 		ddt_phys_fill(ddp, bp);
2117 	}
2118 
2119 	ddt_exit(ddt);
2120 }
2121 
2122 static int
2123 zio_ddt_write(zio_t *zio)
2124 {
2125 	spa_t *spa = zio->io_spa;
2126 	blkptr_t *bp = zio->io_bp;
2127 	uint64_t txg = zio->io_txg;
2128 	zio_prop_t *zp = &zio->io_prop;
2129 	int p = zp->zp_copies;
2130 	int ditto_copies;
2131 	zio_t *cio = NULL;
2132 	zio_t *dio = NULL;
2133 	ddt_t *ddt = ddt_select(spa, bp);
2134 	ddt_entry_t *dde;
2135 	ddt_phys_t *ddp;
2136 
2137 	ASSERT(BP_GET_DEDUP(bp));
2138 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2139 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2140 
2141 	ddt_enter(ddt);
2142 	dde = ddt_lookup(ddt, bp, B_TRUE);
2143 	ddp = &dde->dde_phys[p];
2144 
2145 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2146 		/*
2147 		 * If we're using a weak checksum, upgrade to a strong checksum
2148 		 * and try again.  If we're already using a strong checksum,
2149 		 * we can't resolve it, so just convert to an ordinary write.
2150 		 * (And automatically e-mail a paper to Nature?)
2151 		 */
2152 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2153 			zp->zp_checksum = spa_dedup_checksum(spa);
2154 			zio_pop_transforms(zio);
2155 			zio->io_stage = ZIO_STAGE_OPEN;
2156 			BP_ZERO(bp);
2157 		} else {
2158 			zp->zp_dedup = B_FALSE;
2159 		}
2160 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2161 		ddt_exit(ddt);
2162 		return (ZIO_PIPELINE_CONTINUE);
2163 	}
2164 
2165 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2166 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2167 
2168 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2169 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2170 		zio_prop_t czp = *zp;
2171 
2172 		czp.zp_copies = ditto_copies;
2173 
2174 		/*
2175 		 * If we arrived here with an override bp, we won't have run
2176 		 * the transform stack, so we won't have the data we need to
2177 		 * generate a child i/o.  So, toss the override bp and restart.
2178 		 * This is safe, because using the override bp is just an
2179 		 * optimization; and it's rare, so the cost doesn't matter.
2180 		 */
2181 		if (zio->io_bp_override) {
2182 			zio_pop_transforms(zio);
2183 			zio->io_stage = ZIO_STAGE_OPEN;
2184 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2185 			zio->io_bp_override = NULL;
2186 			BP_ZERO(bp);
2187 			ddt_exit(ddt);
2188 			return (ZIO_PIPELINE_CONTINUE);
2189 		}
2190 
2191 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2192 		    zio->io_orig_size, &czp, NULL, NULL,
2193 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2194 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2195 
2196 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2197 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2198 	}
2199 
2200 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2201 		if (ddp->ddp_phys_birth != 0)
2202 			ddt_bp_fill(ddp, bp, txg);
2203 		if (dde->dde_lead_zio[p] != NULL)
2204 			zio_add_child(zio, dde->dde_lead_zio[p]);
2205 		else
2206 			ddt_phys_addref(ddp);
2207 	} else if (zio->io_bp_override) {
2208 		ASSERT(bp->blk_birth == txg);
2209 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2210 		ddt_phys_fill(ddp, bp);
2211 		ddt_phys_addref(ddp);
2212 	} else {
2213 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2214 		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2215 		    zio_ddt_child_write_done, dde, zio->io_priority,
2216 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2217 
2218 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2219 		dde->dde_lead_zio[p] = cio;
2220 	}
2221 
2222 	ddt_exit(ddt);
2223 
2224 	if (cio)
2225 		zio_nowait(cio);
2226 	if (dio)
2227 		zio_nowait(dio);
2228 
2229 	return (ZIO_PIPELINE_CONTINUE);
2230 }
2231 
2232 ddt_entry_t *freedde; /* for debugging */
2233 
2234 static int
2235 zio_ddt_free(zio_t *zio)
2236 {
2237 	spa_t *spa = zio->io_spa;
2238 	blkptr_t *bp = zio->io_bp;
2239 	ddt_t *ddt = ddt_select(spa, bp);
2240 	ddt_entry_t *dde;
2241 	ddt_phys_t *ddp;
2242 
2243 	ASSERT(BP_GET_DEDUP(bp));
2244 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2245 
2246 	ddt_enter(ddt);
2247 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2248 	ddp = ddt_phys_select(dde, bp);
2249 	ddt_phys_decref(ddp);
2250 	ddt_exit(ddt);
2251 
2252 	return (ZIO_PIPELINE_CONTINUE);
2253 }
2254 
2255 /*
2256  * ==========================================================================
2257  * Allocate and free blocks
2258  * ==========================================================================
2259  */
2260 static int
2261 zio_dva_allocate(zio_t *zio)
2262 {
2263 	spa_t *spa = zio->io_spa;
2264 	metaslab_class_t *mc = spa_normal_class(spa);
2265 	blkptr_t *bp = zio->io_bp;
2266 	int error;
2267 	int flags = 0;
2268 
2269 	if (zio->io_gang_leader == NULL) {
2270 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2271 		zio->io_gang_leader = zio;
2272 	}
2273 
2274 	ASSERT(BP_IS_HOLE(bp));
2275 	ASSERT0(BP_GET_NDVAS(bp));
2276 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2277 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2278 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2279 
2280 	/*
2281 	 * The dump device does not support gang blocks so allocation on
2282 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2283 	 * the "fast" gang feature.
2284 	 */
2285 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2286 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2287 	    METASLAB_GANG_CHILD : 0;
2288 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2289 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2290 
2291 	if (error) {
2292 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2293 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2294 		    error);
2295 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2296 			return (zio_write_gang_block(zio));
2297 		zio->io_error = error;
2298 	}
2299 
2300 	return (ZIO_PIPELINE_CONTINUE);
2301 }
2302 
2303 static int
2304 zio_dva_free(zio_t *zio)
2305 {
2306 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2307 
2308 	return (ZIO_PIPELINE_CONTINUE);
2309 }
2310 
2311 static int
2312 zio_dva_claim(zio_t *zio)
2313 {
2314 	int error;
2315 
2316 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2317 	if (error)
2318 		zio->io_error = error;
2319 
2320 	return (ZIO_PIPELINE_CONTINUE);
2321 }
2322 
2323 /*
2324  * Undo an allocation.  This is used by zio_done() when an I/O fails
2325  * and we want to give back the block we just allocated.
2326  * This handles both normal blocks and gang blocks.
2327  */
2328 static void
2329 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2330 {
2331 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2332 	ASSERT(zio->io_bp_override == NULL);
2333 
2334 	if (!BP_IS_HOLE(bp))
2335 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2336 
2337 	if (gn != NULL) {
2338 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2339 			zio_dva_unallocate(zio, gn->gn_child[g],
2340 			    &gn->gn_gbh->zg_blkptr[g]);
2341 		}
2342 	}
2343 }
2344 
2345 /*
2346  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2347  */
2348 int
2349 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2350     uint64_t size, boolean_t use_slog)
2351 {
2352 	int error = 1;
2353 
2354 	ASSERT(txg > spa_syncing_txg(spa));
2355 
2356 	/*
2357 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2358 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2359 	 * when allocating them.
2360 	 */
2361 	if (use_slog) {
2362 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2363 		    new_bp, 1, txg, old_bp,
2364 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2365 	}
2366 
2367 	if (error) {
2368 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2369 		    new_bp, 1, txg, old_bp,
2370 		    METASLAB_HINTBP_AVOID);
2371 	}
2372 
2373 	if (error == 0) {
2374 		BP_SET_LSIZE(new_bp, size);
2375 		BP_SET_PSIZE(new_bp, size);
2376 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2377 		BP_SET_CHECKSUM(new_bp,
2378 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2379 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2380 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2381 		BP_SET_LEVEL(new_bp, 0);
2382 		BP_SET_DEDUP(new_bp, 0);
2383 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2384 	}
2385 
2386 	return (error);
2387 }
2388 
2389 /*
2390  * Free an intent log block.
2391  */
2392 void
2393 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2394 {
2395 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2396 	ASSERT(!BP_IS_GANG(bp));
2397 
2398 	zio_free(spa, txg, bp);
2399 }
2400 
2401 /*
2402  * ==========================================================================
2403  * Read and write to physical devices
2404  * ==========================================================================
2405  */
2406 static int
2407 zio_vdev_io_start(zio_t *zio)
2408 {
2409 	vdev_t *vd = zio->io_vd;
2410 	uint64_t align;
2411 	spa_t *spa = zio->io_spa;
2412 
2413 	ASSERT(zio->io_error == 0);
2414 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2415 
2416 	if (vd == NULL) {
2417 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2418 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2419 
2420 		/*
2421 		 * The mirror_ops handle multiple DVAs in a single BP.
2422 		 */
2423 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2424 	}
2425 
2426 	/*
2427 	 * We keep track of time-sensitive I/Os so that the scan thread
2428 	 * can quickly react to certain workloads.  In particular, we care
2429 	 * about non-scrubbing, top-level reads and writes with the following
2430 	 * characteristics:
2431 	 * 	- synchronous writes of user data to non-slog devices
2432 	 *	- any reads of user data
2433 	 * When these conditions are met, adjust the timestamp of spa_last_io
2434 	 * which allows the scan thread to adjust its workload accordingly.
2435 	 */
2436 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2437 	    vd == vd->vdev_top && !vd->vdev_islog &&
2438 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2439 	    zio->io_txg != spa_syncing_txg(spa)) {
2440 		uint64_t old = spa->spa_last_io;
2441 		uint64_t new = ddi_get_lbolt64();
2442 		if (old != new)
2443 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2444 	}
2445 
2446 	align = 1ULL << vd->vdev_top->vdev_ashift;
2447 
2448 	if (P2PHASE(zio->io_size, align) != 0) {
2449 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2450 		char *abuf = zio_buf_alloc(asize);
2451 		ASSERT(vd == vd->vdev_top);
2452 		if (zio->io_type == ZIO_TYPE_WRITE) {
2453 			bcopy(zio->io_data, abuf, zio->io_size);
2454 			bzero(abuf + zio->io_size, asize - zio->io_size);
2455 		}
2456 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2457 	}
2458 
2459 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2460 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2461 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2462 
2463 	/*
2464 	 * If this is a repair I/O, and there's no self-healing involved --
2465 	 * that is, we're just resilvering what we expect to resilver --
2466 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2467 	 * This prevents spurious resilvering with nested replication.
2468 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2469 	 * A is out of date, we'll read from C+D, then use the data to
2470 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2471 	 * The top-level mirror has no way to know this, so instead we just
2472 	 * discard unnecessary repairs as we work our way down the vdev tree.
2473 	 * The same logic applies to any form of nested replication:
2474 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2475 	 */
2476 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2477 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2478 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2479 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2480 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2481 		zio_vdev_io_bypass(zio);
2482 		return (ZIO_PIPELINE_CONTINUE);
2483 	}
2484 
2485 	if (vd->vdev_ops->vdev_op_leaf &&
2486 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2487 
2488 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2489 			return (ZIO_PIPELINE_CONTINUE);
2490 
2491 		if ((zio = vdev_queue_io(zio)) == NULL)
2492 			return (ZIO_PIPELINE_STOP);
2493 
2494 		if (!vdev_accessible(vd, zio)) {
2495 			zio->io_error = SET_ERROR(ENXIO);
2496 			zio_interrupt(zio);
2497 			return (ZIO_PIPELINE_STOP);
2498 		}
2499 	}
2500 
2501 	return (vd->vdev_ops->vdev_op_io_start(zio));
2502 }
2503 
2504 static int
2505 zio_vdev_io_done(zio_t *zio)
2506 {
2507 	vdev_t *vd = zio->io_vd;
2508 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2509 	boolean_t unexpected_error = B_FALSE;
2510 
2511 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2512 		return (ZIO_PIPELINE_STOP);
2513 
2514 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2515 
2516 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2517 
2518 		vdev_queue_io_done(zio);
2519 
2520 		if (zio->io_type == ZIO_TYPE_WRITE)
2521 			vdev_cache_write(zio);
2522 
2523 		if (zio_injection_enabled && zio->io_error == 0)
2524 			zio->io_error = zio_handle_device_injection(vd,
2525 			    zio, EIO);
2526 
2527 		if (zio_injection_enabled && zio->io_error == 0)
2528 			zio->io_error = zio_handle_label_injection(zio, EIO);
2529 
2530 		if (zio->io_error) {
2531 			if (!vdev_accessible(vd, zio)) {
2532 				zio->io_error = SET_ERROR(ENXIO);
2533 			} else {
2534 				unexpected_error = B_TRUE;
2535 			}
2536 		}
2537 	}
2538 
2539 	ops->vdev_op_io_done(zio);
2540 
2541 	if (unexpected_error)
2542 		VERIFY(vdev_probe(vd, zio) == NULL);
2543 
2544 	return (ZIO_PIPELINE_CONTINUE);
2545 }
2546 
2547 /*
2548  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2549  * disk, and use that to finish the checksum ereport later.
2550  */
2551 static void
2552 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2553     const void *good_buf)
2554 {
2555 	/* no processing needed */
2556 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2557 }
2558 
2559 /*ARGSUSED*/
2560 void
2561 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2562 {
2563 	void *buf = zio_buf_alloc(zio->io_size);
2564 
2565 	bcopy(zio->io_data, buf, zio->io_size);
2566 
2567 	zcr->zcr_cbinfo = zio->io_size;
2568 	zcr->zcr_cbdata = buf;
2569 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2570 	zcr->zcr_free = zio_buf_free;
2571 }
2572 
2573 static int
2574 zio_vdev_io_assess(zio_t *zio)
2575 {
2576 	vdev_t *vd = zio->io_vd;
2577 
2578 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2579 		return (ZIO_PIPELINE_STOP);
2580 
2581 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2582 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2583 
2584 	if (zio->io_vsd != NULL) {
2585 		zio->io_vsd_ops->vsd_free(zio);
2586 		zio->io_vsd = NULL;
2587 	}
2588 
2589 	if (zio_injection_enabled && zio->io_error == 0)
2590 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2591 
2592 	/*
2593 	 * If the I/O failed, determine whether we should attempt to retry it.
2594 	 *
2595 	 * On retry, we cut in line in the issue queue, since we don't want
2596 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2597 	 */
2598 	if (zio->io_error && vd == NULL &&
2599 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2600 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2601 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2602 		zio->io_error = 0;
2603 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2604 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2605 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2606 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2607 		    zio_requeue_io_start_cut_in_line);
2608 		return (ZIO_PIPELINE_STOP);
2609 	}
2610 
2611 	/*
2612 	 * If we got an error on a leaf device, convert it to ENXIO
2613 	 * if the device is not accessible at all.
2614 	 */
2615 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2616 	    !vdev_accessible(vd, zio))
2617 		zio->io_error = SET_ERROR(ENXIO);
2618 
2619 	/*
2620 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2621 	 * set vdev_cant_write so that we stop trying to allocate from it.
2622 	 */
2623 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2624 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2625 		vd->vdev_cant_write = B_TRUE;
2626 	}
2627 
2628 	if (zio->io_error)
2629 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2630 
2631 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2632 	    zio->io_physdone != NULL) {
2633 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2634 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2635 		zio->io_physdone(zio->io_logical);
2636 	}
2637 
2638 	return (ZIO_PIPELINE_CONTINUE);
2639 }
2640 
2641 void
2642 zio_vdev_io_reissue(zio_t *zio)
2643 {
2644 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2645 	ASSERT(zio->io_error == 0);
2646 
2647 	zio->io_stage >>= 1;
2648 }
2649 
2650 void
2651 zio_vdev_io_redone(zio_t *zio)
2652 {
2653 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2654 
2655 	zio->io_stage >>= 1;
2656 }
2657 
2658 void
2659 zio_vdev_io_bypass(zio_t *zio)
2660 {
2661 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2662 	ASSERT(zio->io_error == 0);
2663 
2664 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2665 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2666 }
2667 
2668 /*
2669  * ==========================================================================
2670  * Generate and verify checksums
2671  * ==========================================================================
2672  */
2673 static int
2674 zio_checksum_generate(zio_t *zio)
2675 {
2676 	blkptr_t *bp = zio->io_bp;
2677 	enum zio_checksum checksum;
2678 
2679 	if (bp == NULL) {
2680 		/*
2681 		 * This is zio_write_phys().
2682 		 * We're either generating a label checksum, or none at all.
2683 		 */
2684 		checksum = zio->io_prop.zp_checksum;
2685 
2686 		if (checksum == ZIO_CHECKSUM_OFF)
2687 			return (ZIO_PIPELINE_CONTINUE);
2688 
2689 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2690 	} else {
2691 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2692 			ASSERT(!IO_IS_ALLOCATING(zio));
2693 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2694 		} else {
2695 			checksum = BP_GET_CHECKSUM(bp);
2696 		}
2697 	}
2698 
2699 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2700 
2701 	return (ZIO_PIPELINE_CONTINUE);
2702 }
2703 
2704 static int
2705 zio_checksum_verify(zio_t *zio)
2706 {
2707 	zio_bad_cksum_t info;
2708 	blkptr_t *bp = zio->io_bp;
2709 	int error;
2710 
2711 	ASSERT(zio->io_vd != NULL);
2712 
2713 	if (bp == NULL) {
2714 		/*
2715 		 * This is zio_read_phys().
2716 		 * We're either verifying a label checksum, or nothing at all.
2717 		 */
2718 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2719 			return (ZIO_PIPELINE_CONTINUE);
2720 
2721 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2722 	}
2723 
2724 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2725 		zio->io_error = error;
2726 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2727 			zfs_ereport_start_checksum(zio->io_spa,
2728 			    zio->io_vd, zio, zio->io_offset,
2729 			    zio->io_size, NULL, &info);
2730 		}
2731 	}
2732 
2733 	return (ZIO_PIPELINE_CONTINUE);
2734 }
2735 
2736 /*
2737  * Called by RAID-Z to ensure we don't compute the checksum twice.
2738  */
2739 void
2740 zio_checksum_verified(zio_t *zio)
2741 {
2742 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2743 }
2744 
2745 /*
2746  * ==========================================================================
2747  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2748  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2749  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2750  * indicate errors that are specific to one I/O, and most likely permanent.
2751  * Any other error is presumed to be worse because we weren't expecting it.
2752  * ==========================================================================
2753  */
2754 int
2755 zio_worst_error(int e1, int e2)
2756 {
2757 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2758 	int r1, r2;
2759 
2760 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2761 		if (e1 == zio_error_rank[r1])
2762 			break;
2763 
2764 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2765 		if (e2 == zio_error_rank[r2])
2766 			break;
2767 
2768 	return (r1 > r2 ? e1 : e2);
2769 }
2770 
2771 /*
2772  * ==========================================================================
2773  * I/O completion
2774  * ==========================================================================
2775  */
2776 static int
2777 zio_ready(zio_t *zio)
2778 {
2779 	blkptr_t *bp = zio->io_bp;
2780 	zio_t *pio, *pio_next;
2781 
2782 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2783 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2784 		return (ZIO_PIPELINE_STOP);
2785 
2786 	if (zio->io_ready) {
2787 		ASSERT(IO_IS_ALLOCATING(zio));
2788 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2789 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2790 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2791 
2792 		zio->io_ready(zio);
2793 	}
2794 
2795 	if (bp != NULL && bp != &zio->io_bp_copy)
2796 		zio->io_bp_copy = *bp;
2797 
2798 	if (zio->io_error)
2799 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2800 
2801 	mutex_enter(&zio->io_lock);
2802 	zio->io_state[ZIO_WAIT_READY] = 1;
2803 	pio = zio_walk_parents(zio);
2804 	mutex_exit(&zio->io_lock);
2805 
2806 	/*
2807 	 * As we notify zio's parents, new parents could be added.
2808 	 * New parents go to the head of zio's io_parent_list, however,
2809 	 * so we will (correctly) not notify them.  The remainder of zio's
2810 	 * io_parent_list, from 'pio_next' onward, cannot change because
2811 	 * all parents must wait for us to be done before they can be done.
2812 	 */
2813 	for (; pio != NULL; pio = pio_next) {
2814 		pio_next = zio_walk_parents(zio);
2815 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2816 	}
2817 
2818 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2819 		if (BP_IS_GANG(bp)) {
2820 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2821 		} else {
2822 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2823 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2824 		}
2825 	}
2826 
2827 	if (zio_injection_enabled &&
2828 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2829 		zio_handle_ignored_writes(zio);
2830 
2831 	return (ZIO_PIPELINE_CONTINUE);
2832 }
2833 
2834 static int
2835 zio_done(zio_t *zio)
2836 {
2837 	spa_t *spa = zio->io_spa;
2838 	zio_t *lio = zio->io_logical;
2839 	blkptr_t *bp = zio->io_bp;
2840 	vdev_t *vd = zio->io_vd;
2841 	uint64_t psize = zio->io_size;
2842 	zio_t *pio, *pio_next;
2843 
2844 	/*
2845 	 * If our children haven't all completed,
2846 	 * wait for them and then repeat this pipeline stage.
2847 	 */
2848 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2849 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2850 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2851 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2852 		return (ZIO_PIPELINE_STOP);
2853 
2854 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2855 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2856 			ASSERT(zio->io_children[c][w] == 0);
2857 
2858 	if (bp != NULL) {
2859 		ASSERT(bp->blk_pad[0] == 0);
2860 		ASSERT(bp->blk_pad[1] == 0);
2861 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2862 		    (bp == zio_unique_parent(zio)->io_bp));
2863 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2864 		    zio->io_bp_override == NULL &&
2865 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2866 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2867 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2868 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2869 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2870 		}
2871 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2872 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2873 	}
2874 
2875 	/*
2876 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2877 	 */
2878 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2879 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2880 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2881 
2882 	/*
2883 	 * If the I/O on the transformed data was successful, generate any
2884 	 * checksum reports now while we still have the transformed data.
2885 	 */
2886 	if (zio->io_error == 0) {
2887 		while (zio->io_cksum_report != NULL) {
2888 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2889 			uint64_t align = zcr->zcr_align;
2890 			uint64_t asize = P2ROUNDUP(psize, align);
2891 			char *abuf = zio->io_data;
2892 
2893 			if (asize != psize) {
2894 				abuf = zio_buf_alloc(asize);
2895 				bcopy(zio->io_data, abuf, psize);
2896 				bzero(abuf + psize, asize - psize);
2897 			}
2898 
2899 			zio->io_cksum_report = zcr->zcr_next;
2900 			zcr->zcr_next = NULL;
2901 			zcr->zcr_finish(zcr, abuf);
2902 			zfs_ereport_free_checksum(zcr);
2903 
2904 			if (asize != psize)
2905 				zio_buf_free(abuf, asize);
2906 		}
2907 	}
2908 
2909 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2910 
2911 	vdev_stat_update(zio, psize);
2912 
2913 	if (zio->io_error) {
2914 		/*
2915 		 * If this I/O is attached to a particular vdev,
2916 		 * generate an error message describing the I/O failure
2917 		 * at the block level.  We ignore these errors if the
2918 		 * device is currently unavailable.
2919 		 */
2920 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2921 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2922 
2923 		if ((zio->io_error == EIO || !(zio->io_flags &
2924 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2925 		    zio == lio) {
2926 			/*
2927 			 * For logical I/O requests, tell the SPA to log the
2928 			 * error and generate a logical data ereport.
2929 			 */
2930 			spa_log_error(spa, zio);
2931 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2932 			    0, 0);
2933 		}
2934 	}
2935 
2936 	if (zio->io_error && zio == lio) {
2937 		/*
2938 		 * Determine whether zio should be reexecuted.  This will
2939 		 * propagate all the way to the root via zio_notify_parent().
2940 		 */
2941 		ASSERT(vd == NULL && bp != NULL);
2942 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2943 
2944 		if (IO_IS_ALLOCATING(zio) &&
2945 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2946 			if (zio->io_error != ENOSPC)
2947 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2948 			else
2949 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2950 		}
2951 
2952 		if ((zio->io_type == ZIO_TYPE_READ ||
2953 		    zio->io_type == ZIO_TYPE_FREE) &&
2954 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2955 		    zio->io_error == ENXIO &&
2956 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2957 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2958 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2959 
2960 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2961 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2962 
2963 		/*
2964 		 * Here is a possibly good place to attempt to do
2965 		 * either combinatorial reconstruction or error correction
2966 		 * based on checksums.  It also might be a good place
2967 		 * to send out preliminary ereports before we suspend
2968 		 * processing.
2969 		 */
2970 	}
2971 
2972 	/*
2973 	 * If there were logical child errors, they apply to us now.
2974 	 * We defer this until now to avoid conflating logical child
2975 	 * errors with errors that happened to the zio itself when
2976 	 * updating vdev stats and reporting FMA events above.
2977 	 */
2978 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2979 
2980 	if ((zio->io_error || zio->io_reexecute) &&
2981 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2982 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2983 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2984 
2985 	zio_gang_tree_free(&zio->io_gang_tree);
2986 
2987 	/*
2988 	 * Godfather I/Os should never suspend.
2989 	 */
2990 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2991 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2992 		zio->io_reexecute = 0;
2993 
2994 	if (zio->io_reexecute) {
2995 		/*
2996 		 * This is a logical I/O that wants to reexecute.
2997 		 *
2998 		 * Reexecute is top-down.  When an i/o fails, if it's not
2999 		 * the root, it simply notifies its parent and sticks around.
3000 		 * The parent, seeing that it still has children in zio_done(),
3001 		 * does the same.  This percolates all the way up to the root.
3002 		 * The root i/o will reexecute or suspend the entire tree.
3003 		 *
3004 		 * This approach ensures that zio_reexecute() honors
3005 		 * all the original i/o dependency relationships, e.g.
3006 		 * parents not executing until children are ready.
3007 		 */
3008 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3009 
3010 		zio->io_gang_leader = NULL;
3011 
3012 		mutex_enter(&zio->io_lock);
3013 		zio->io_state[ZIO_WAIT_DONE] = 1;
3014 		mutex_exit(&zio->io_lock);
3015 
3016 		/*
3017 		 * "The Godfather" I/O monitors its children but is
3018 		 * not a true parent to them. It will track them through
3019 		 * the pipeline but severs its ties whenever they get into
3020 		 * trouble (e.g. suspended). This allows "The Godfather"
3021 		 * I/O to return status without blocking.
3022 		 */
3023 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3024 			zio_link_t *zl = zio->io_walk_link;
3025 			pio_next = zio_walk_parents(zio);
3026 
3027 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3028 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3029 				zio_remove_child(pio, zio, zl);
3030 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3031 			}
3032 		}
3033 
3034 		if ((pio = zio_unique_parent(zio)) != NULL) {
3035 			/*
3036 			 * We're not a root i/o, so there's nothing to do
3037 			 * but notify our parent.  Don't propagate errors
3038 			 * upward since we haven't permanently failed yet.
3039 			 */
3040 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3041 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3042 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3043 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3044 			/*
3045 			 * We'd fail again if we reexecuted now, so suspend
3046 			 * until conditions improve (e.g. device comes online).
3047 			 */
3048 			zio_suspend(spa, zio);
3049 		} else {
3050 			/*
3051 			 * Reexecution is potentially a huge amount of work.
3052 			 * Hand it off to the otherwise-unused claim taskq.
3053 			 */
3054 			ASSERT(zio->io_tqent.tqent_next == NULL);
3055 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3056 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3057 			    0, &zio->io_tqent);
3058 		}
3059 		return (ZIO_PIPELINE_STOP);
3060 	}
3061 
3062 	ASSERT(zio->io_child_count == 0);
3063 	ASSERT(zio->io_reexecute == 0);
3064 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3065 
3066 	/*
3067 	 * Report any checksum errors, since the I/O is complete.
3068 	 */
3069 	while (zio->io_cksum_report != NULL) {
3070 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3071 		zio->io_cksum_report = zcr->zcr_next;
3072 		zcr->zcr_next = NULL;
3073 		zcr->zcr_finish(zcr, NULL);
3074 		zfs_ereport_free_checksum(zcr);
3075 	}
3076 
3077 	/*
3078 	 * It is the responsibility of the done callback to ensure that this
3079 	 * particular zio is no longer discoverable for adoption, and as
3080 	 * such, cannot acquire any new parents.
3081 	 */
3082 	if (zio->io_done)
3083 		zio->io_done(zio);
3084 
3085 	mutex_enter(&zio->io_lock);
3086 	zio->io_state[ZIO_WAIT_DONE] = 1;
3087 	mutex_exit(&zio->io_lock);
3088 
3089 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3090 		zio_link_t *zl = zio->io_walk_link;
3091 		pio_next = zio_walk_parents(zio);
3092 		zio_remove_child(pio, zio, zl);
3093 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3094 	}
3095 
3096 	if (zio->io_waiter != NULL) {
3097 		mutex_enter(&zio->io_lock);
3098 		zio->io_executor = NULL;
3099 		cv_broadcast(&zio->io_cv);
3100 		mutex_exit(&zio->io_lock);
3101 	} else {
3102 		zio_destroy(zio);
3103 	}
3104 
3105 	return (ZIO_PIPELINE_STOP);
3106 }
3107 
3108 /*
3109  * ==========================================================================
3110  * I/O pipeline definition
3111  * ==========================================================================
3112  */
3113 static zio_pipe_stage_t *zio_pipeline[] = {
3114 	NULL,
3115 	zio_read_bp_init,
3116 	zio_free_bp_init,
3117 	zio_issue_async,
3118 	zio_write_bp_init,
3119 	zio_checksum_generate,
3120 	zio_nop_write,
3121 	zio_ddt_read_start,
3122 	zio_ddt_read_done,
3123 	zio_ddt_write,
3124 	zio_ddt_free,
3125 	zio_gang_assemble,
3126 	zio_gang_issue,
3127 	zio_dva_allocate,
3128 	zio_dva_free,
3129 	zio_dva_claim,
3130 	zio_ready,
3131 	zio_vdev_io_start,
3132 	zio_vdev_io_done,
3133 	zio_vdev_io_assess,
3134 	zio_checksum_verify,
3135 	zio_done
3136 };
3137 
3138 /* dnp is the dnode for zb1->zb_object */
3139 boolean_t
3140 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3141     const zbookmark_t *zb2)
3142 {
3143 	uint64_t zb1nextL0, zb2thisobj;
3144 
3145 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3146 	ASSERT(zb2->zb_level == 0);
3147 
3148 	/*
3149 	 * A bookmark in the deadlist is considered to be after
3150 	 * everything else.
3151 	 */
3152 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3153 		return (B_TRUE);
3154 
3155 	/* The objset_phys_t isn't before anything. */
3156 	if (dnp == NULL)
3157 		return (B_FALSE);
3158 
3159 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3160 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3161 
3162 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3163 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3164 
3165 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3166 		uint64_t nextobj = zb1nextL0 *
3167 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3168 		return (nextobj <= zb2thisobj);
3169 	}
3170 
3171 	if (zb1->zb_object < zb2thisobj)
3172 		return (B_TRUE);
3173 	if (zb1->zb_object > zb2thisobj)
3174 		return (B_FALSE);
3175 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3176 		return (B_FALSE);
3177 	return (zb1nextL0 <= zb2->zb_blkid);
3178 }
3179