1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/txg.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio_impl.h> 33 #include <sys/zio_compress.h> 34 #include <sys/zio_checksum.h> 35 36 /* 37 * ========================================================================== 38 * I/O priority table 39 * ========================================================================== 40 */ 41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 42 0, /* ZIO_PRIORITY_NOW */ 43 0, /* ZIO_PRIORITY_SYNC_READ */ 44 0, /* ZIO_PRIORITY_SYNC_WRITE */ 45 6, /* ZIO_PRIORITY_ASYNC_READ */ 46 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 47 4, /* ZIO_PRIORITY_FREE */ 48 0, /* ZIO_PRIORITY_CACHE_FILL */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 10, /* ZIO_PRIORITY_RESILVER */ 51 20, /* ZIO_PRIORITY_SCRUB */ 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 char *zio_type_name[ZIO_TYPES] = { 60 "null", "read", "write", "free", "claim", "ioctl" }; 61 62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ 63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ 64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_link_cache; 73 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 75 76 #ifdef _KERNEL 77 extern vmem_t *zio_alloc_arena; 78 #endif 79 80 /* 81 * An allocating zio is one that either currently has the DVA allocate 82 * stage set or will have it later in its lifetime. 83 */ 84 #define IO_IS_ALLOCATING(zio) \ 85 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 86 87 void 88 zio_init(void) 89 { 90 size_t c; 91 vmem_t *data_alloc_arena = NULL; 92 93 #ifdef _KERNEL 94 data_alloc_arena = zio_alloc_arena; 95 #endif 96 zio_cache = kmem_cache_create("zio_cache", 97 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 98 zio_link_cache = kmem_cache_create("zio_link_cache", 99 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 100 101 /* 102 * For small buffers, we want a cache for each multiple of 103 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 104 * for each quarter-power of 2. For large buffers, we want 105 * a cache for each multiple of PAGESIZE. 106 */ 107 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 108 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 109 size_t p2 = size; 110 size_t align = 0; 111 112 while (p2 & (p2 - 1)) 113 p2 &= p2 - 1; 114 115 if (size <= 4 * SPA_MINBLOCKSIZE) { 116 align = SPA_MINBLOCKSIZE; 117 } else if (P2PHASE(size, PAGESIZE) == 0) { 118 align = PAGESIZE; 119 } else if (P2PHASE(size, p2 >> 2) == 0) { 120 align = p2 >> 2; 121 } 122 123 if (align != 0) { 124 char name[36]; 125 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 126 zio_buf_cache[c] = kmem_cache_create(name, size, 127 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 128 129 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 130 zio_data_buf_cache[c] = kmem_cache_create(name, size, 131 align, NULL, NULL, NULL, NULL, data_alloc_arena, 132 KMC_NODEBUG); 133 } 134 } 135 136 while (--c != 0) { 137 ASSERT(zio_buf_cache[c] != NULL); 138 if (zio_buf_cache[c - 1] == NULL) 139 zio_buf_cache[c - 1] = zio_buf_cache[c]; 140 141 ASSERT(zio_data_buf_cache[c] != NULL); 142 if (zio_data_buf_cache[c - 1] == NULL) 143 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 144 } 145 146 zio_inject_init(); 147 } 148 149 void 150 zio_fini(void) 151 { 152 size_t c; 153 kmem_cache_t *last_cache = NULL; 154 kmem_cache_t *last_data_cache = NULL; 155 156 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 157 if (zio_buf_cache[c] != last_cache) { 158 last_cache = zio_buf_cache[c]; 159 kmem_cache_destroy(zio_buf_cache[c]); 160 } 161 zio_buf_cache[c] = NULL; 162 163 if (zio_data_buf_cache[c] != last_data_cache) { 164 last_data_cache = zio_data_buf_cache[c]; 165 kmem_cache_destroy(zio_data_buf_cache[c]); 166 } 167 zio_data_buf_cache[c] = NULL; 168 } 169 170 kmem_cache_destroy(zio_link_cache); 171 kmem_cache_destroy(zio_cache); 172 173 zio_inject_fini(); 174 } 175 176 /* 177 * ========================================================================== 178 * Allocate and free I/O buffers 179 * ========================================================================== 180 */ 181 182 /* 183 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 184 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 185 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 186 * excess / transient data in-core during a crashdump. 187 */ 188 void * 189 zio_buf_alloc(size_t size) 190 { 191 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 192 193 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 194 195 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 196 } 197 198 /* 199 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 200 * crashdump if the kernel panics. This exists so that we will limit the amount 201 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 202 * of kernel heap dumped to disk when the kernel panics) 203 */ 204 void * 205 zio_data_buf_alloc(size_t size) 206 { 207 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 208 209 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 210 211 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 212 } 213 214 void 215 zio_buf_free(void *buf, size_t size) 216 { 217 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 218 219 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 220 221 kmem_cache_free(zio_buf_cache[c], buf); 222 } 223 224 void 225 zio_data_buf_free(void *buf, size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 kmem_cache_free(zio_data_buf_cache[c], buf); 232 } 233 234 /* 235 * ========================================================================== 236 * Push and pop I/O transform buffers 237 * ========================================================================== 238 */ 239 static void 240 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 241 zio_transform_func_t *transform) 242 { 243 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 244 245 zt->zt_orig_data = zio->io_data; 246 zt->zt_orig_size = zio->io_size; 247 zt->zt_bufsize = bufsize; 248 zt->zt_transform = transform; 249 250 zt->zt_next = zio->io_transform_stack; 251 zio->io_transform_stack = zt; 252 253 zio->io_data = data; 254 zio->io_size = size; 255 } 256 257 static void 258 zio_pop_transforms(zio_t *zio) 259 { 260 zio_transform_t *zt; 261 262 while ((zt = zio->io_transform_stack) != NULL) { 263 if (zt->zt_transform != NULL) 264 zt->zt_transform(zio, 265 zt->zt_orig_data, zt->zt_orig_size); 266 267 zio_buf_free(zio->io_data, zt->zt_bufsize); 268 269 zio->io_data = zt->zt_orig_data; 270 zio->io_size = zt->zt_orig_size; 271 zio->io_transform_stack = zt->zt_next; 272 273 kmem_free(zt, sizeof (zio_transform_t)); 274 } 275 } 276 277 /* 278 * ========================================================================== 279 * I/O transform callbacks for subblocks and decompression 280 * ========================================================================== 281 */ 282 static void 283 zio_subblock(zio_t *zio, void *data, uint64_t size) 284 { 285 ASSERT(zio->io_size > size); 286 287 if (zio->io_type == ZIO_TYPE_READ) 288 bcopy(zio->io_data, data, size); 289 } 290 291 static void 292 zio_decompress(zio_t *zio, void *data, uint64_t size) 293 { 294 if (zio->io_error == 0 && 295 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 296 zio->io_data, zio->io_size, data, size) != 0) 297 zio->io_error = EIO; 298 } 299 300 /* 301 * ========================================================================== 302 * I/O parent/child relationships and pipeline interlocks 303 * ========================================================================== 304 */ 305 /* 306 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 307 * continue calling these functions until they return NULL. 308 * Otherwise, the next caller will pick up the list walk in 309 * some indeterminate state. (Otherwise every caller would 310 * have to pass in a cookie to keep the state represented by 311 * io_walk_link, which gets annoying.) 312 */ 313 zio_t * 314 zio_walk_parents(zio_t *cio) 315 { 316 zio_link_t *zl = cio->io_walk_link; 317 list_t *pl = &cio->io_parent_list; 318 319 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 320 cio->io_walk_link = zl; 321 322 if (zl == NULL) 323 return (NULL); 324 325 ASSERT(zl->zl_child == cio); 326 return (zl->zl_parent); 327 } 328 329 zio_t * 330 zio_walk_children(zio_t *pio) 331 { 332 zio_link_t *zl = pio->io_walk_link; 333 list_t *cl = &pio->io_child_list; 334 335 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 336 pio->io_walk_link = zl; 337 338 if (zl == NULL) 339 return (NULL); 340 341 ASSERT(zl->zl_parent == pio); 342 return (zl->zl_child); 343 } 344 345 zio_t * 346 zio_unique_parent(zio_t *cio) 347 { 348 zio_t *pio = zio_walk_parents(cio); 349 350 VERIFY(zio_walk_parents(cio) == NULL); 351 return (pio); 352 } 353 354 void 355 zio_add_child(zio_t *pio, zio_t *cio) 356 { 357 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 358 359 /* 360 * Logical I/Os can have logical, gang, or vdev children. 361 * Gang I/Os can have gang or vdev children. 362 * Vdev I/Os can only have vdev children. 363 * The following ASSERT captures all of these constraints. 364 */ 365 ASSERT(cio->io_child_type <= pio->io_child_type); 366 367 zl->zl_parent = pio; 368 zl->zl_child = cio; 369 370 mutex_enter(&cio->io_lock); 371 mutex_enter(&pio->io_lock); 372 373 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 374 375 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 376 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 377 378 list_insert_head(&pio->io_child_list, zl); 379 list_insert_head(&cio->io_parent_list, zl); 380 381 mutex_exit(&pio->io_lock); 382 mutex_exit(&cio->io_lock); 383 } 384 385 static void 386 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 387 { 388 ASSERT(zl->zl_parent == pio); 389 ASSERT(zl->zl_child == cio); 390 391 mutex_enter(&cio->io_lock); 392 mutex_enter(&pio->io_lock); 393 394 list_remove(&pio->io_child_list, zl); 395 list_remove(&cio->io_parent_list, zl); 396 397 mutex_exit(&pio->io_lock); 398 mutex_exit(&cio->io_lock); 399 400 kmem_cache_free(zio_link_cache, zl); 401 } 402 403 static boolean_t 404 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 405 { 406 uint64_t *countp = &zio->io_children[child][wait]; 407 boolean_t waiting = B_FALSE; 408 409 mutex_enter(&zio->io_lock); 410 ASSERT(zio->io_stall == NULL); 411 if (*countp != 0) { 412 zio->io_stage--; 413 zio->io_stall = countp; 414 waiting = B_TRUE; 415 } 416 mutex_exit(&zio->io_lock); 417 418 return (waiting); 419 } 420 421 static void 422 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 423 { 424 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 425 int *errorp = &pio->io_child_error[zio->io_child_type]; 426 427 mutex_enter(&pio->io_lock); 428 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 429 *errorp = zio_worst_error(*errorp, zio->io_error); 430 pio->io_reexecute |= zio->io_reexecute; 431 ASSERT3U(*countp, >, 0); 432 if (--*countp == 0 && pio->io_stall == countp) { 433 pio->io_stall = NULL; 434 mutex_exit(&pio->io_lock); 435 zio_execute(pio); 436 } else { 437 mutex_exit(&pio->io_lock); 438 } 439 } 440 441 static void 442 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 443 { 444 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 445 zio->io_error = zio->io_child_error[c]; 446 } 447 448 /* 449 * ========================================================================== 450 * Create the various types of I/O (read, write, free, etc) 451 * ========================================================================== 452 */ 453 static zio_t * 454 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 455 void *data, uint64_t size, zio_done_func_t *done, void *private, 456 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, 457 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) 458 { 459 zio_t *zio; 460 461 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 462 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 463 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 464 465 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 466 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 467 ASSERT(vd || stage == ZIO_STAGE_OPEN); 468 469 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 470 bzero(zio, sizeof (zio_t)); 471 472 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 473 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 474 475 list_create(&zio->io_parent_list, sizeof (zio_link_t), 476 offsetof(zio_link_t, zl_parent_node)); 477 list_create(&zio->io_child_list, sizeof (zio_link_t), 478 offsetof(zio_link_t, zl_child_node)); 479 480 if (vd != NULL) 481 zio->io_child_type = ZIO_CHILD_VDEV; 482 else if (flags & ZIO_FLAG_GANG_CHILD) 483 zio->io_child_type = ZIO_CHILD_GANG; 484 else 485 zio->io_child_type = ZIO_CHILD_LOGICAL; 486 487 if (bp != NULL) { 488 zio->io_bp = bp; 489 zio->io_bp_copy = *bp; 490 zio->io_bp_orig = *bp; 491 if (type != ZIO_TYPE_WRITE) 492 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 493 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 494 if (BP_IS_GANG(bp)) 495 pipeline |= ZIO_GANG_STAGES; 496 zio->io_logical = zio; 497 } 498 } 499 500 zio->io_spa = spa; 501 zio->io_txg = txg; 502 zio->io_data = data; 503 zio->io_size = size; 504 zio->io_done = done; 505 zio->io_private = private; 506 zio->io_type = type; 507 zio->io_priority = priority; 508 zio->io_vd = vd; 509 zio->io_offset = offset; 510 zio->io_orig_flags = zio->io_flags = flags; 511 zio->io_orig_stage = zio->io_stage = stage; 512 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 513 514 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 515 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 516 517 if (zb != NULL) 518 zio->io_bookmark = *zb; 519 520 if (pio != NULL) { 521 if (zio->io_logical == NULL) 522 zio->io_logical = pio->io_logical; 523 zio_add_child(pio, zio); 524 } 525 526 return (zio); 527 } 528 529 static void 530 zio_destroy(zio_t *zio) 531 { 532 list_destroy(&zio->io_parent_list); 533 list_destroy(&zio->io_child_list); 534 mutex_destroy(&zio->io_lock); 535 cv_destroy(&zio->io_cv); 536 kmem_cache_free(zio_cache, zio); 537 } 538 539 zio_t * 540 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 541 void *private, int flags) 542 { 543 zio_t *zio; 544 545 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 546 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 547 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 548 549 return (zio); 550 } 551 552 zio_t * 553 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 554 { 555 return (zio_null(NULL, spa, NULL, done, private, flags)); 556 } 557 558 zio_t * 559 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 560 void *data, uint64_t size, zio_done_func_t *done, void *private, 561 int priority, int flags, const zbookmark_t *zb) 562 { 563 zio_t *zio; 564 565 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, 566 data, size, done, private, 567 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 568 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 569 570 return (zio); 571 } 572 573 void 574 zio_skip_write(zio_t *zio) 575 { 576 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 577 ASSERT(zio->io_stage == ZIO_STAGE_READY); 578 ASSERT(!BP_IS_GANG(zio->io_bp)); 579 580 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 581 } 582 583 zio_t * 584 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 585 void *data, uint64_t size, zio_prop_t *zp, 586 zio_done_func_t *ready, zio_done_func_t *done, void *private, 587 int priority, int flags, const zbookmark_t *zb) 588 { 589 zio_t *zio; 590 591 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 592 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 593 zp->zp_compress >= ZIO_COMPRESS_OFF && 594 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 595 zp->zp_type < DMU_OT_NUMTYPES && 596 zp->zp_level < 32 && 597 zp->zp_ndvas > 0 && 598 zp->zp_ndvas <= spa_max_replication(spa)); 599 ASSERT(ready != NULL); 600 601 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 602 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 603 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 604 605 zio->io_ready = ready; 606 zio->io_prop = *zp; 607 608 return (zio); 609 } 610 611 zio_t * 612 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 613 uint64_t size, zio_done_func_t *done, void *private, int priority, 614 int flags, zbookmark_t *zb) 615 { 616 zio_t *zio; 617 618 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 619 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 620 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 621 622 return (zio); 623 } 624 625 zio_t * 626 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 627 zio_done_func_t *done, void *private, int flags) 628 { 629 zio_t *zio; 630 631 ASSERT(!BP_IS_HOLE(bp)); 632 633 if (bp->blk_fill == BLK_FILL_ALREADY_FREED) 634 return (zio_null(pio, spa, NULL, NULL, NULL, flags)); 635 636 if (txg == spa->spa_syncing_txg && 637 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { 638 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 639 return (zio_null(pio, spa, NULL, NULL, NULL, flags)); 640 } 641 642 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 643 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 644 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 645 646 return (zio); 647 } 648 649 zio_t * 650 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 651 zio_done_func_t *done, void *private, int flags) 652 { 653 zio_t *zio; 654 655 /* 656 * A claim is an allocation of a specific block. Claims are needed 657 * to support immediate writes in the intent log. The issue is that 658 * immediate writes contain committed data, but in a txg that was 659 * *not* committed. Upon opening the pool after an unclean shutdown, 660 * the intent log claims all blocks that contain immediate write data 661 * so that the SPA knows they're in use. 662 * 663 * All claims *must* be resolved in the first txg -- before the SPA 664 * starts allocating blocks -- so that nothing is allocated twice. 665 */ 666 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 667 ASSERT3U(spa_first_txg(spa), <=, txg); 668 669 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 670 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 671 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 672 673 return (zio); 674 } 675 676 zio_t * 677 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 678 zio_done_func_t *done, void *private, int priority, int flags) 679 { 680 zio_t *zio; 681 int c; 682 683 if (vd->vdev_children == 0) { 684 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 685 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 686 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 687 688 zio->io_cmd = cmd; 689 } else { 690 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 691 692 for (c = 0; c < vd->vdev_children; c++) 693 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 694 done, private, priority, flags)); 695 } 696 697 return (zio); 698 } 699 700 zio_t * 701 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 702 void *data, int checksum, zio_done_func_t *done, void *private, 703 int priority, int flags, boolean_t labels) 704 { 705 zio_t *zio; 706 707 ASSERT(vd->vdev_children == 0); 708 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 709 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 710 ASSERT3U(offset + size, <=, vd->vdev_psize); 711 712 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 713 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 714 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 715 716 zio->io_prop.zp_checksum = checksum; 717 718 return (zio); 719 } 720 721 zio_t * 722 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 723 void *data, int checksum, zio_done_func_t *done, void *private, 724 int priority, int flags, boolean_t labels) 725 { 726 zio_t *zio; 727 728 ASSERT(vd->vdev_children == 0); 729 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 730 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 731 ASSERT3U(offset + size, <=, vd->vdev_psize); 732 733 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 734 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 735 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 736 737 zio->io_prop.zp_checksum = checksum; 738 739 if (zio_checksum_table[checksum].ci_zbt) { 740 /* 741 * zbt checksums are necessarily destructive -- they modify 742 * the end of the write buffer to hold the verifier/checksum. 743 * Therefore, we must make a local copy in case the data is 744 * being written to multiple places in parallel. 745 */ 746 void *wbuf = zio_buf_alloc(size); 747 bcopy(data, wbuf, size); 748 zio_push_transform(zio, wbuf, size, size, NULL); 749 } 750 751 return (zio); 752 } 753 754 /* 755 * Create a child I/O to do some work for us. 756 */ 757 zio_t * 758 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 759 void *data, uint64_t size, int type, int priority, int flags, 760 zio_done_func_t *done, void *private) 761 { 762 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 763 zio_t *zio; 764 765 ASSERT(vd->vdev_parent == 766 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 767 768 if (type == ZIO_TYPE_READ && bp != NULL) { 769 /* 770 * If we have the bp, then the child should perform the 771 * checksum and the parent need not. This pushes error 772 * detection as close to the leaves as possible and 773 * eliminates redundant checksums in the interior nodes. 774 */ 775 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 776 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 777 } 778 779 if (vd->vdev_children == 0) 780 offset += VDEV_LABEL_START_SIZE; 781 782 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 783 done, private, type, priority, 784 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | 785 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, 786 vd, offset, &pio->io_bookmark, 787 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 788 789 return (zio); 790 } 791 792 zio_t * 793 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 794 int type, int priority, int flags, zio_done_func_t *done, void *private) 795 { 796 zio_t *zio; 797 798 ASSERT(vd->vdev_ops->vdev_op_leaf); 799 800 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 801 data, size, done, private, type, priority, 802 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 803 vd, offset, NULL, 804 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); 805 806 return (zio); 807 } 808 809 void 810 zio_flush(zio_t *zio, vdev_t *vd) 811 { 812 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 813 NULL, NULL, ZIO_PRIORITY_NOW, 814 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 815 } 816 817 /* 818 * ========================================================================== 819 * Prepare to read and write logical blocks 820 * ========================================================================== 821 */ 822 823 static int 824 zio_read_bp_init(zio_t *zio) 825 { 826 blkptr_t *bp = zio->io_bp; 827 828 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 829 zio->io_logical == zio && !(zio->io_flags & ZIO_FLAG_RAW)) { 830 uint64_t csize = BP_GET_PSIZE(bp); 831 void *cbuf = zio_buf_alloc(csize); 832 833 zio_push_transform(zio, cbuf, csize, csize, zio_decompress); 834 } 835 836 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 837 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 838 839 return (ZIO_PIPELINE_CONTINUE); 840 } 841 842 static int 843 zio_write_bp_init(zio_t *zio) 844 { 845 zio_prop_t *zp = &zio->io_prop; 846 int compress = zp->zp_compress; 847 blkptr_t *bp = zio->io_bp; 848 void *cbuf; 849 uint64_t lsize = zio->io_size; 850 uint64_t csize = lsize; 851 uint64_t cbufsize = 0; 852 int pass = 1; 853 854 /* 855 * If our children haven't all reached the ready stage, 856 * wait for them and then repeat this pipeline stage. 857 */ 858 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 859 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 860 return (ZIO_PIPELINE_STOP); 861 862 if (!IO_IS_ALLOCATING(zio)) 863 return (ZIO_PIPELINE_CONTINUE); 864 865 ASSERT(compress != ZIO_COMPRESS_INHERIT); 866 867 if (bp->blk_birth == zio->io_txg) { 868 /* 869 * We're rewriting an existing block, which means we're 870 * working on behalf of spa_sync(). For spa_sync() to 871 * converge, it must eventually be the case that we don't 872 * have to allocate new blocks. But compression changes 873 * the blocksize, which forces a reallocate, and makes 874 * convergence take longer. Therefore, after the first 875 * few passes, stop compressing to ensure convergence. 876 */ 877 pass = spa_sync_pass(zio->io_spa); 878 ASSERT(pass > 1); 879 880 if (pass > SYNC_PASS_DONT_COMPRESS) 881 compress = ZIO_COMPRESS_OFF; 882 883 /* 884 * Only MOS (objset 0) data should need to be rewritten. 885 */ 886 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0); 887 888 /* Make sure someone doesn't change their mind on overwrites */ 889 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), 890 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); 891 } 892 893 if (compress != ZIO_COMPRESS_OFF) { 894 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 895 &cbuf, &csize, &cbufsize)) { 896 compress = ZIO_COMPRESS_OFF; 897 } else if (csize != 0) { 898 zio_push_transform(zio, cbuf, csize, cbufsize, NULL); 899 } 900 } 901 902 /* 903 * The final pass of spa_sync() must be all rewrites, but the first 904 * few passes offer a trade-off: allocating blocks defers convergence, 905 * but newly allocated blocks are sequential, so they can be written 906 * to disk faster. Therefore, we allow the first few passes of 907 * spa_sync() to allocate new blocks, but force rewrites after that. 908 * There should only be a handful of blocks after pass 1 in any case. 909 */ 910 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 911 pass > SYNC_PASS_REWRITE) { 912 ASSERT(csize != 0); 913 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 914 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 915 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 916 } else { 917 BP_ZERO(bp); 918 zio->io_pipeline = ZIO_WRITE_PIPELINE; 919 } 920 921 if (csize == 0) { 922 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 923 } else { 924 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 925 BP_SET_LSIZE(bp, lsize); 926 BP_SET_PSIZE(bp, csize); 927 BP_SET_COMPRESS(bp, compress); 928 BP_SET_CHECKSUM(bp, zp->zp_checksum); 929 BP_SET_TYPE(bp, zp->zp_type); 930 BP_SET_LEVEL(bp, zp->zp_level); 931 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 932 } 933 934 return (ZIO_PIPELINE_CONTINUE); 935 } 936 937 /* 938 * ========================================================================== 939 * Execute the I/O pipeline 940 * ========================================================================== 941 */ 942 943 static void 944 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) 945 { 946 zio_type_t t = zio->io_type; 947 948 /* 949 * If we're a config writer, the normal issue and interrupt threads 950 * may all be blocked waiting for the config lock. In this case, 951 * select the otherwise-unused taskq for ZIO_TYPE_NULL. 952 */ 953 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) 954 t = ZIO_TYPE_NULL; 955 956 /* 957 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 958 */ 959 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 960 t = ZIO_TYPE_NULL; 961 962 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], 963 (task_func_t *)zio_execute, zio, TQ_SLEEP); 964 } 965 966 static boolean_t 967 zio_taskq_member(zio_t *zio, enum zio_taskq_type q) 968 { 969 kthread_t *executor = zio->io_executor; 970 spa_t *spa = zio->io_spa; 971 972 for (zio_type_t t = 0; t < ZIO_TYPES; t++) 973 if (taskq_member(spa->spa_zio_taskq[t][q], executor)) 974 return (B_TRUE); 975 976 return (B_FALSE); 977 } 978 979 static int 980 zio_issue_async(zio_t *zio) 981 { 982 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 983 984 return (ZIO_PIPELINE_STOP); 985 } 986 987 void 988 zio_interrupt(zio_t *zio) 989 { 990 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); 991 } 992 993 /* 994 * Execute the I/O pipeline until one of the following occurs: 995 * (1) the I/O completes; (2) the pipeline stalls waiting for 996 * dependent child I/Os; (3) the I/O issues, so we're waiting 997 * for an I/O completion interrupt; (4) the I/O is delegated by 998 * vdev-level caching or aggregation; (5) the I/O is deferred 999 * due to vdev-level queueing; (6) the I/O is handed off to 1000 * another thread. In all cases, the pipeline stops whenever 1001 * there's no CPU work; it never burns a thread in cv_wait(). 1002 * 1003 * There's no locking on io_stage because there's no legitimate way 1004 * for multiple threads to be attempting to process the same I/O. 1005 */ 1006 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; 1007 1008 void 1009 zio_execute(zio_t *zio) 1010 { 1011 zio->io_executor = curthread; 1012 1013 while (zio->io_stage < ZIO_STAGE_DONE) { 1014 uint32_t pipeline = zio->io_pipeline; 1015 zio_stage_t stage = zio->io_stage; 1016 int rv; 1017 1018 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1019 1020 while (((1U << ++stage) & pipeline) == 0) 1021 continue; 1022 1023 ASSERT(stage <= ZIO_STAGE_DONE); 1024 ASSERT(zio->io_stall == NULL); 1025 1026 /* 1027 * If we are in interrupt context and this pipeline stage 1028 * will grab a config lock that is held across I/O, 1029 * issue async to avoid deadlock. 1030 */ 1031 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && 1032 zio->io_vd == NULL && 1033 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1034 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1035 return; 1036 } 1037 1038 zio->io_stage = stage; 1039 rv = zio_pipeline[stage](zio); 1040 1041 if (rv == ZIO_PIPELINE_STOP) 1042 return; 1043 1044 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1045 } 1046 } 1047 1048 /* 1049 * ========================================================================== 1050 * Initiate I/O, either sync or async 1051 * ========================================================================== 1052 */ 1053 int 1054 zio_wait(zio_t *zio) 1055 { 1056 int error; 1057 1058 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1059 ASSERT(zio->io_executor == NULL); 1060 1061 zio->io_waiter = curthread; 1062 1063 zio_execute(zio); 1064 1065 mutex_enter(&zio->io_lock); 1066 while (zio->io_executor != NULL) 1067 cv_wait(&zio->io_cv, &zio->io_lock); 1068 mutex_exit(&zio->io_lock); 1069 1070 error = zio->io_error; 1071 zio_destroy(zio); 1072 1073 return (error); 1074 } 1075 1076 void 1077 zio_nowait(zio_t *zio) 1078 { 1079 ASSERT(zio->io_executor == NULL); 1080 1081 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1082 zio_unique_parent(zio) == NULL) { 1083 /* 1084 * This is a logical async I/O with no parent to wait for it. 1085 * We add it to the spa_async_root_zio "Godfather" I/O which 1086 * will ensure they complete prior to unloading the pool. 1087 */ 1088 spa_t *spa = zio->io_spa; 1089 1090 zio_add_child(spa->spa_async_zio_root, zio); 1091 } 1092 1093 zio_execute(zio); 1094 } 1095 1096 /* 1097 * ========================================================================== 1098 * Reexecute or suspend/resume failed I/O 1099 * ========================================================================== 1100 */ 1101 1102 static void 1103 zio_reexecute(zio_t *pio) 1104 { 1105 zio_t *cio, *cio_next; 1106 1107 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1108 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1109 1110 pio->io_flags = pio->io_orig_flags; 1111 pio->io_stage = pio->io_orig_stage; 1112 pio->io_pipeline = pio->io_orig_pipeline; 1113 pio->io_reexecute = 0; 1114 pio->io_error = 0; 1115 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1116 pio->io_state[w] = 0; 1117 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1118 pio->io_child_error[c] = 0; 1119 1120 if (IO_IS_ALLOCATING(pio)) { 1121 /* 1122 * Remember the failed bp so that the io_ready() callback 1123 * can update its accounting upon reexecution. The block 1124 * was already freed in zio_done(); we indicate this with 1125 * a fill count of -1 so that zio_free() knows to skip it. 1126 */ 1127 blkptr_t *bp = pio->io_bp; 1128 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); 1129 bp->blk_fill = BLK_FILL_ALREADY_FREED; 1130 pio->io_bp_orig = *bp; 1131 BP_ZERO(bp); 1132 } 1133 1134 /* 1135 * As we reexecute pio's children, new children could be created. 1136 * New children go to the head of pio's io_child_list, however, 1137 * so we will (correctly) not reexecute them. The key is that 1138 * the remainder of pio's io_child_list, from 'cio_next' onward, 1139 * cannot be affected by any side effects of reexecuting 'cio'. 1140 */ 1141 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1142 cio_next = zio_walk_children(pio); 1143 mutex_enter(&pio->io_lock); 1144 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1145 pio->io_children[cio->io_child_type][w]++; 1146 mutex_exit(&pio->io_lock); 1147 zio_reexecute(cio); 1148 } 1149 1150 /* 1151 * Now that all children have been reexecuted, execute the parent. 1152 * We don't reexecute "The Godfather" I/O here as it's the 1153 * responsibility of the caller to wait on him. 1154 */ 1155 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1156 zio_execute(pio); 1157 } 1158 1159 void 1160 zio_suspend(spa_t *spa, zio_t *zio) 1161 { 1162 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1163 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1164 "failure and the failure mode property for this pool " 1165 "is set to panic.", spa_name(spa)); 1166 1167 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1168 1169 mutex_enter(&spa->spa_suspend_lock); 1170 1171 if (spa->spa_suspend_zio_root == NULL) 1172 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1173 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1174 ZIO_FLAG_GODFATHER); 1175 1176 spa->spa_suspended = B_TRUE; 1177 1178 if (zio != NULL) { 1179 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1180 ASSERT(zio != spa->spa_suspend_zio_root); 1181 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1182 ASSERT(zio_unique_parent(zio) == NULL); 1183 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1184 zio_add_child(spa->spa_suspend_zio_root, zio); 1185 } 1186 1187 mutex_exit(&spa->spa_suspend_lock); 1188 } 1189 1190 int 1191 zio_resume(spa_t *spa) 1192 { 1193 zio_t *pio; 1194 1195 /* 1196 * Reexecute all previously suspended i/o. 1197 */ 1198 mutex_enter(&spa->spa_suspend_lock); 1199 spa->spa_suspended = B_FALSE; 1200 cv_broadcast(&spa->spa_suspend_cv); 1201 pio = spa->spa_suspend_zio_root; 1202 spa->spa_suspend_zio_root = NULL; 1203 mutex_exit(&spa->spa_suspend_lock); 1204 1205 if (pio == NULL) 1206 return (0); 1207 1208 zio_reexecute(pio); 1209 return (zio_wait(pio)); 1210 } 1211 1212 void 1213 zio_resume_wait(spa_t *spa) 1214 { 1215 mutex_enter(&spa->spa_suspend_lock); 1216 while (spa_suspended(spa)) 1217 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1218 mutex_exit(&spa->spa_suspend_lock); 1219 } 1220 1221 /* 1222 * ========================================================================== 1223 * Gang blocks. 1224 * 1225 * A gang block is a collection of small blocks that looks to the DMU 1226 * like one large block. When zio_dva_allocate() cannot find a block 1227 * of the requested size, due to either severe fragmentation or the pool 1228 * being nearly full, it calls zio_write_gang_block() to construct the 1229 * block from smaller fragments. 1230 * 1231 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1232 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1233 * an indirect block: it's an array of block pointers. It consumes 1234 * only one sector and hence is allocatable regardless of fragmentation. 1235 * The gang header's bps point to its gang members, which hold the data. 1236 * 1237 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1238 * as the verifier to ensure uniqueness of the SHA256 checksum. 1239 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1240 * not the gang header. This ensures that data block signatures (needed for 1241 * deduplication) are independent of how the block is physically stored. 1242 * 1243 * Gang blocks can be nested: a gang member may itself be a gang block. 1244 * Thus every gang block is a tree in which root and all interior nodes are 1245 * gang headers, and the leaves are normal blocks that contain user data. 1246 * The root of the gang tree is called the gang leader. 1247 * 1248 * To perform any operation (read, rewrite, free, claim) on a gang block, 1249 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1250 * in the io_gang_tree field of the original logical i/o by recursively 1251 * reading the gang leader and all gang headers below it. This yields 1252 * an in-core tree containing the contents of every gang header and the 1253 * bps for every constituent of the gang block. 1254 * 1255 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1256 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1257 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1258 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1259 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1260 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1261 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1262 * of the gang header plus zio_checksum_compute() of the data to update the 1263 * gang header's blk_cksum as described above. 1264 * 1265 * The two-phase assemble/issue model solves the problem of partial failure -- 1266 * what if you'd freed part of a gang block but then couldn't read the 1267 * gang header for another part? Assembling the entire gang tree first 1268 * ensures that all the necessary gang header I/O has succeeded before 1269 * starting the actual work of free, claim, or write. Once the gang tree 1270 * is assembled, free and claim are in-memory operations that cannot fail. 1271 * 1272 * In the event that a gang write fails, zio_dva_unallocate() walks the 1273 * gang tree to immediately free (i.e. insert back into the space map) 1274 * everything we've allocated. This ensures that we don't get ENOSPC 1275 * errors during repeated suspend/resume cycles due to a flaky device. 1276 * 1277 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1278 * the gang tree, we won't modify the block, so we can safely defer the free 1279 * (knowing that the block is still intact). If we *can* assemble the gang 1280 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1281 * each constituent bp and we can allocate a new block on the next sync pass. 1282 * 1283 * In all cases, the gang tree allows complete recovery from partial failure. 1284 * ========================================================================== 1285 */ 1286 1287 static zio_t * 1288 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1289 { 1290 if (gn != NULL) 1291 return (pio); 1292 1293 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1294 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1295 &pio->io_bookmark)); 1296 } 1297 1298 zio_t * 1299 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1300 { 1301 zio_t *zio; 1302 1303 if (gn != NULL) { 1304 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1305 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1306 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1307 /* 1308 * As we rewrite each gang header, the pipeline will compute 1309 * a new gang block header checksum for it; but no one will 1310 * compute a new data checksum, so we do that here. The one 1311 * exception is the gang leader: the pipeline already computed 1312 * its data checksum because that stage precedes gang assembly. 1313 * (Presently, nothing actually uses interior data checksums; 1314 * this is just good hygiene.) 1315 */ 1316 if (gn != pio->io_logical->io_gang_tree) { 1317 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1318 data, BP_GET_PSIZE(bp)); 1319 } 1320 } else { 1321 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1322 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1323 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1324 } 1325 1326 return (zio); 1327 } 1328 1329 /* ARGSUSED */ 1330 zio_t * 1331 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1332 { 1333 return (zio_free(pio, pio->io_spa, pio->io_txg, bp, 1334 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1335 } 1336 1337 /* ARGSUSED */ 1338 zio_t * 1339 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1340 { 1341 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1342 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1343 } 1344 1345 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1346 NULL, 1347 zio_read_gang, 1348 zio_rewrite_gang, 1349 zio_free_gang, 1350 zio_claim_gang, 1351 NULL 1352 }; 1353 1354 static void zio_gang_tree_assemble_done(zio_t *zio); 1355 1356 static zio_gang_node_t * 1357 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1358 { 1359 zio_gang_node_t *gn; 1360 1361 ASSERT(*gnpp == NULL); 1362 1363 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1364 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1365 *gnpp = gn; 1366 1367 return (gn); 1368 } 1369 1370 static void 1371 zio_gang_node_free(zio_gang_node_t **gnpp) 1372 { 1373 zio_gang_node_t *gn = *gnpp; 1374 1375 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1376 ASSERT(gn->gn_child[g] == NULL); 1377 1378 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1379 kmem_free(gn, sizeof (*gn)); 1380 *gnpp = NULL; 1381 } 1382 1383 static void 1384 zio_gang_tree_free(zio_gang_node_t **gnpp) 1385 { 1386 zio_gang_node_t *gn = *gnpp; 1387 1388 if (gn == NULL) 1389 return; 1390 1391 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1392 zio_gang_tree_free(&gn->gn_child[g]); 1393 1394 zio_gang_node_free(gnpp); 1395 } 1396 1397 static void 1398 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp) 1399 { 1400 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1401 1402 ASSERT(lio->io_logical == lio); 1403 ASSERT(BP_IS_GANG(bp)); 1404 1405 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh, 1406 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1407 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark)); 1408 } 1409 1410 static void 1411 zio_gang_tree_assemble_done(zio_t *zio) 1412 { 1413 zio_t *lio = zio->io_logical; 1414 zio_gang_node_t *gn = zio->io_private; 1415 blkptr_t *bp = zio->io_bp; 1416 zio_t *pio = zio_unique_parent(zio); 1417 1418 ASSERT(pio == lio); 1419 ASSERT(zio_walk_children(zio) == NULL); 1420 1421 if (zio->io_error) 1422 return; 1423 1424 if (BP_SHOULD_BYTESWAP(bp)) 1425 byteswap_uint64_array(zio->io_data, zio->io_size); 1426 1427 ASSERT(zio->io_data == gn->gn_gbh); 1428 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1429 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1430 1431 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1432 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1433 if (!BP_IS_GANG(gbp)) 1434 continue; 1435 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]); 1436 } 1437 } 1438 1439 static void 1440 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1441 { 1442 zio_t *lio = pio->io_logical; 1443 zio_t *zio; 1444 1445 ASSERT(BP_IS_GANG(bp) == !!gn); 1446 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp)); 1447 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree); 1448 1449 /* 1450 * If you're a gang header, your data is in gn->gn_gbh. 1451 * If you're a gang member, your data is in 'data' and gn == NULL. 1452 */ 1453 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data); 1454 1455 if (gn != NULL) { 1456 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1457 1458 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1459 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1460 if (BP_IS_HOLE(gbp)) 1461 continue; 1462 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1463 data = (char *)data + BP_GET_PSIZE(gbp); 1464 } 1465 } 1466 1467 if (gn == lio->io_gang_tree) 1468 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data); 1469 1470 if (zio != pio) 1471 zio_nowait(zio); 1472 } 1473 1474 static int 1475 zio_gang_assemble(zio_t *zio) 1476 { 1477 blkptr_t *bp = zio->io_bp; 1478 1479 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical); 1480 1481 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1482 1483 return (ZIO_PIPELINE_CONTINUE); 1484 } 1485 1486 static int 1487 zio_gang_issue(zio_t *zio) 1488 { 1489 zio_t *lio = zio->io_logical; 1490 blkptr_t *bp = zio->io_bp; 1491 1492 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1493 return (ZIO_PIPELINE_STOP); 1494 1495 ASSERT(BP_IS_GANG(bp) && zio == lio); 1496 1497 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1498 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data); 1499 else 1500 zio_gang_tree_free(&lio->io_gang_tree); 1501 1502 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1503 1504 return (ZIO_PIPELINE_CONTINUE); 1505 } 1506 1507 static void 1508 zio_write_gang_member_ready(zio_t *zio) 1509 { 1510 zio_t *pio = zio_unique_parent(zio); 1511 zio_t *lio = zio->io_logical; 1512 dva_t *cdva = zio->io_bp->blk_dva; 1513 dva_t *pdva = pio->io_bp->blk_dva; 1514 uint64_t asize; 1515 1516 if (BP_IS_HOLE(zio->io_bp)) 1517 return; 1518 1519 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1520 1521 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1522 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas); 1523 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1524 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1525 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1526 1527 mutex_enter(&pio->io_lock); 1528 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1529 ASSERT(DVA_GET_GANG(&pdva[d])); 1530 asize = DVA_GET_ASIZE(&pdva[d]); 1531 asize += DVA_GET_ASIZE(&cdva[d]); 1532 DVA_SET_ASIZE(&pdva[d], asize); 1533 } 1534 mutex_exit(&pio->io_lock); 1535 } 1536 1537 static int 1538 zio_write_gang_block(zio_t *pio) 1539 { 1540 spa_t *spa = pio->io_spa; 1541 blkptr_t *bp = pio->io_bp; 1542 zio_t *lio = pio->io_logical; 1543 zio_t *zio; 1544 zio_gang_node_t *gn, **gnpp; 1545 zio_gbh_phys_t *gbh; 1546 uint64_t txg = pio->io_txg; 1547 uint64_t resid = pio->io_size; 1548 uint64_t lsize; 1549 int ndvas = lio->io_prop.zp_ndvas; 1550 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1551 zio_prop_t zp; 1552 int error; 1553 1554 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, 1555 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp, 1556 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1557 if (error) { 1558 pio->io_error = error; 1559 return (ZIO_PIPELINE_CONTINUE); 1560 } 1561 1562 if (pio == lio) { 1563 gnpp = &lio->io_gang_tree; 1564 } else { 1565 gnpp = pio->io_private; 1566 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1567 } 1568 1569 gn = zio_gang_node_alloc(gnpp); 1570 gbh = gn->gn_gbh; 1571 bzero(gbh, SPA_GANGBLOCKSIZE); 1572 1573 /* 1574 * Create the gang header. 1575 */ 1576 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1577 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1578 1579 /* 1580 * Create and nowait the gang children. 1581 */ 1582 for (int g = 0; resid != 0; resid -= lsize, g++) { 1583 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1584 SPA_MINBLOCKSIZE); 1585 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1586 1587 zp.zp_checksum = lio->io_prop.zp_checksum; 1588 zp.zp_compress = ZIO_COMPRESS_OFF; 1589 zp.zp_type = DMU_OT_NONE; 1590 zp.zp_level = 0; 1591 zp.zp_ndvas = lio->io_prop.zp_ndvas; 1592 1593 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1594 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1595 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1596 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1597 &pio->io_bookmark)); 1598 } 1599 1600 /* 1601 * Set pio's pipeline to just wait for zio to finish. 1602 */ 1603 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1604 1605 zio_nowait(zio); 1606 1607 return (ZIO_PIPELINE_CONTINUE); 1608 } 1609 1610 /* 1611 * ========================================================================== 1612 * Allocate and free blocks 1613 * ========================================================================== 1614 */ 1615 1616 static int 1617 zio_dva_allocate(zio_t *zio) 1618 { 1619 spa_t *spa = zio->io_spa; 1620 metaslab_class_t *mc = spa->spa_normal_class; 1621 blkptr_t *bp = zio->io_bp; 1622 int error; 1623 1624 ASSERT(BP_IS_HOLE(bp)); 1625 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1626 ASSERT3U(zio->io_prop.zp_ndvas, >, 0); 1627 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); 1628 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1629 1630 error = metaslab_alloc(spa, mc, zio->io_size, bp, 1631 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); 1632 1633 if (error) { 1634 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 1635 return (zio_write_gang_block(zio)); 1636 zio->io_error = error; 1637 } 1638 1639 return (ZIO_PIPELINE_CONTINUE); 1640 } 1641 1642 static int 1643 zio_dva_free(zio_t *zio) 1644 { 1645 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 1646 1647 return (ZIO_PIPELINE_CONTINUE); 1648 } 1649 1650 static int 1651 zio_dva_claim(zio_t *zio) 1652 { 1653 int error; 1654 1655 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1656 if (error) 1657 zio->io_error = error; 1658 1659 return (ZIO_PIPELINE_CONTINUE); 1660 } 1661 1662 /* 1663 * Undo an allocation. This is used by zio_done() when an I/O fails 1664 * and we want to give back the block we just allocated. 1665 * This handles both normal blocks and gang blocks. 1666 */ 1667 static void 1668 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 1669 { 1670 spa_t *spa = zio->io_spa; 1671 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); 1672 1673 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 1674 1675 if (zio->io_bp == bp && !now) { 1676 /* 1677 * This is a rewrite for sync-to-convergence. 1678 * We can't do a metaslab_free(NOW) because bp wasn't allocated 1679 * during this sync pass, which means that metaslab_sync() 1680 * already committed the allocation. 1681 */ 1682 ASSERT(DVA_EQUAL(BP_IDENTITY(bp), 1683 BP_IDENTITY(&zio->io_bp_orig))); 1684 ASSERT(spa_sync_pass(spa) > 1); 1685 1686 if (BP_IS_GANG(bp) && gn == NULL) { 1687 /* 1688 * This is a gang leader whose gang header(s) we 1689 * couldn't read now, so defer the free until later. 1690 * The block should still be intact because without 1691 * the headers, we'd never even start the rewrite. 1692 */ 1693 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 1694 return; 1695 } 1696 } 1697 1698 if (!BP_IS_HOLE(bp)) 1699 metaslab_free(spa, bp, bp->blk_birth, now); 1700 1701 if (gn != NULL) { 1702 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1703 zio_dva_unallocate(zio, gn->gn_child[g], 1704 &gn->gn_gbh->zg_blkptr[g]); 1705 } 1706 } 1707 } 1708 1709 /* 1710 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1711 */ 1712 int 1713 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1714 uint64_t txg) 1715 { 1716 int error; 1717 1718 error = metaslab_alloc(spa, spa->spa_log_class, size, 1719 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1720 1721 if (error) 1722 error = metaslab_alloc(spa, spa->spa_normal_class, size, 1723 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1724 1725 if (error == 0) { 1726 BP_SET_LSIZE(new_bp, size); 1727 BP_SET_PSIZE(new_bp, size); 1728 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1729 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1730 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1731 BP_SET_LEVEL(new_bp, 0); 1732 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1733 } 1734 1735 return (error); 1736 } 1737 1738 /* 1739 * Free an intent log block. We know it can't be a gang block, so there's 1740 * nothing to do except metaslab_free() it. 1741 */ 1742 void 1743 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1744 { 1745 ASSERT(!BP_IS_GANG(bp)); 1746 1747 metaslab_free(spa, bp, txg, B_FALSE); 1748 } 1749 1750 /* 1751 * ========================================================================== 1752 * Read and write to physical devices 1753 * ========================================================================== 1754 */ 1755 static int 1756 zio_vdev_io_start(zio_t *zio) 1757 { 1758 vdev_t *vd = zio->io_vd; 1759 uint64_t align; 1760 spa_t *spa = zio->io_spa; 1761 1762 ASSERT(zio->io_error == 0); 1763 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 1764 1765 if (vd == NULL) { 1766 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1767 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 1768 1769 /* 1770 * The mirror_ops handle multiple DVAs in a single BP. 1771 */ 1772 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1773 } 1774 1775 align = 1ULL << vd->vdev_top->vdev_ashift; 1776 1777 if (P2PHASE(zio->io_size, align) != 0) { 1778 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1779 char *abuf = zio_buf_alloc(asize); 1780 ASSERT(vd == vd->vdev_top); 1781 if (zio->io_type == ZIO_TYPE_WRITE) { 1782 bcopy(zio->io_data, abuf, zio->io_size); 1783 bzero(abuf + zio->io_size, asize - zio->io_size); 1784 } 1785 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 1786 } 1787 1788 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1789 ASSERT(P2PHASE(zio->io_size, align) == 0); 1790 ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 1791 1792 /* 1793 * If this is a repair I/O, and there's no self-healing involved -- 1794 * that is, we're just resilvering what we expect to resilver -- 1795 * then don't do the I/O unless zio's txg is actually in vd's DTL. 1796 * This prevents spurious resilvering with nested replication. 1797 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 1798 * A is out of date, we'll read from C+D, then use the data to 1799 * resilver A+B -- but we don't actually want to resilver B, just A. 1800 * The top-level mirror has no way to know this, so instead we just 1801 * discard unnecessary repairs as we work our way down the vdev tree. 1802 * The same logic applies to any form of nested replication: 1803 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 1804 */ 1805 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 1806 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 1807 zio->io_txg != 0 && /* not a delegated i/o */ 1808 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 1809 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1810 zio_vdev_io_bypass(zio); 1811 return (ZIO_PIPELINE_CONTINUE); 1812 } 1813 1814 if (vd->vdev_ops->vdev_op_leaf && 1815 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 1816 1817 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 1818 return (ZIO_PIPELINE_CONTINUE); 1819 1820 if ((zio = vdev_queue_io(zio)) == NULL) 1821 return (ZIO_PIPELINE_STOP); 1822 1823 if (!vdev_accessible(vd, zio)) { 1824 zio->io_error = ENXIO; 1825 zio_interrupt(zio); 1826 return (ZIO_PIPELINE_STOP); 1827 } 1828 } 1829 1830 return (vd->vdev_ops->vdev_op_io_start(zio)); 1831 } 1832 1833 static int 1834 zio_vdev_io_done(zio_t *zio) 1835 { 1836 vdev_t *vd = zio->io_vd; 1837 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 1838 boolean_t unexpected_error = B_FALSE; 1839 1840 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1841 return (ZIO_PIPELINE_STOP); 1842 1843 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 1844 1845 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 1846 1847 vdev_queue_io_done(zio); 1848 1849 if (zio->io_type == ZIO_TYPE_WRITE) 1850 vdev_cache_write(zio); 1851 1852 if (zio_injection_enabled && zio->io_error == 0) 1853 zio->io_error = zio_handle_device_injection(vd, EIO); 1854 1855 if (zio_injection_enabled && zio->io_error == 0) 1856 zio->io_error = zio_handle_label_injection(zio, EIO); 1857 1858 if (zio->io_error) { 1859 if (!vdev_accessible(vd, zio)) { 1860 zio->io_error = ENXIO; 1861 } else { 1862 unexpected_error = B_TRUE; 1863 } 1864 } 1865 } 1866 1867 ops->vdev_op_io_done(zio); 1868 1869 if (unexpected_error) 1870 VERIFY(vdev_probe(vd, zio) == NULL); 1871 1872 return (ZIO_PIPELINE_CONTINUE); 1873 } 1874 1875 static int 1876 zio_vdev_io_assess(zio_t *zio) 1877 { 1878 vdev_t *vd = zio->io_vd; 1879 1880 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1881 return (ZIO_PIPELINE_STOP); 1882 1883 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1884 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 1885 1886 if (zio->io_vsd != NULL) { 1887 zio->io_vsd_free(zio); 1888 zio->io_vsd = NULL; 1889 } 1890 1891 if (zio_injection_enabled && zio->io_error == 0) 1892 zio->io_error = zio_handle_fault_injection(zio, EIO); 1893 1894 /* 1895 * If the I/O failed, determine whether we should attempt to retry it. 1896 */ 1897 if (zio->io_error && vd == NULL && 1898 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 1899 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 1900 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 1901 zio->io_error = 0; 1902 zio->io_flags |= ZIO_FLAG_IO_RETRY | 1903 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 1904 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1905 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1906 return (ZIO_PIPELINE_STOP); 1907 } 1908 1909 /* 1910 * If we got an error on a leaf device, convert it to ENXIO 1911 * if the device is not accessible at all. 1912 */ 1913 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 1914 !vdev_accessible(vd, zio)) 1915 zio->io_error = ENXIO; 1916 1917 /* 1918 * If we can't write to an interior vdev (mirror or RAID-Z), 1919 * set vdev_cant_write so that we stop trying to allocate from it. 1920 */ 1921 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 1922 vd != NULL && !vd->vdev_ops->vdev_op_leaf) 1923 vd->vdev_cant_write = B_TRUE; 1924 1925 if (zio->io_error) 1926 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1927 1928 return (ZIO_PIPELINE_CONTINUE); 1929 } 1930 1931 void 1932 zio_vdev_io_reissue(zio_t *zio) 1933 { 1934 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1935 ASSERT(zio->io_error == 0); 1936 1937 zio->io_stage--; 1938 } 1939 1940 void 1941 zio_vdev_io_redone(zio_t *zio) 1942 { 1943 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1944 1945 zio->io_stage--; 1946 } 1947 1948 void 1949 zio_vdev_io_bypass(zio_t *zio) 1950 { 1951 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1952 ASSERT(zio->io_error == 0); 1953 1954 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1955 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1956 } 1957 1958 /* 1959 * ========================================================================== 1960 * Generate and verify checksums 1961 * ========================================================================== 1962 */ 1963 static int 1964 zio_checksum_generate(zio_t *zio) 1965 { 1966 blkptr_t *bp = zio->io_bp; 1967 enum zio_checksum checksum; 1968 1969 if (bp == NULL) { 1970 /* 1971 * This is zio_write_phys(). 1972 * We're either generating a label checksum, or none at all. 1973 */ 1974 checksum = zio->io_prop.zp_checksum; 1975 1976 if (checksum == ZIO_CHECKSUM_OFF) 1977 return (ZIO_PIPELINE_CONTINUE); 1978 1979 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 1980 } else { 1981 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 1982 ASSERT(!IO_IS_ALLOCATING(zio)); 1983 checksum = ZIO_CHECKSUM_GANG_HEADER; 1984 } else { 1985 checksum = BP_GET_CHECKSUM(bp); 1986 } 1987 } 1988 1989 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 1990 1991 return (ZIO_PIPELINE_CONTINUE); 1992 } 1993 1994 static int 1995 zio_checksum_verify(zio_t *zio) 1996 { 1997 blkptr_t *bp = zio->io_bp; 1998 int error; 1999 2000 if (bp == NULL) { 2001 /* 2002 * This is zio_read_phys(). 2003 * We're either verifying a label checksum, or nothing at all. 2004 */ 2005 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2006 return (ZIO_PIPELINE_CONTINUE); 2007 2008 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2009 } 2010 2011 if ((error = zio_checksum_error(zio)) != 0) { 2012 zio->io_error = error; 2013 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2014 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 2015 zio->io_spa, zio->io_vd, zio, 0, 0); 2016 } 2017 } 2018 2019 return (ZIO_PIPELINE_CONTINUE); 2020 } 2021 2022 /* 2023 * Called by RAID-Z to ensure we don't compute the checksum twice. 2024 */ 2025 void 2026 zio_checksum_verified(zio_t *zio) 2027 { 2028 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 2029 } 2030 2031 /* 2032 * ========================================================================== 2033 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2034 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2035 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2036 * indicate errors that are specific to one I/O, and most likely permanent. 2037 * Any other error is presumed to be worse because we weren't expecting it. 2038 * ========================================================================== 2039 */ 2040 int 2041 zio_worst_error(int e1, int e2) 2042 { 2043 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2044 int r1, r2; 2045 2046 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2047 if (e1 == zio_error_rank[r1]) 2048 break; 2049 2050 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2051 if (e2 == zio_error_rank[r2]) 2052 break; 2053 2054 return (r1 > r2 ? e1 : e2); 2055 } 2056 2057 /* 2058 * ========================================================================== 2059 * I/O completion 2060 * ========================================================================== 2061 */ 2062 static int 2063 zio_ready(zio_t *zio) 2064 { 2065 blkptr_t *bp = zio->io_bp; 2066 zio_t *pio, *pio_next; 2067 2068 if (zio->io_ready) { 2069 if (BP_IS_GANG(bp) && 2070 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) 2071 return (ZIO_PIPELINE_STOP); 2072 2073 ASSERT(IO_IS_ALLOCATING(zio)); 2074 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2075 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2076 2077 zio->io_ready(zio); 2078 } 2079 2080 if (bp != NULL && bp != &zio->io_bp_copy) 2081 zio->io_bp_copy = *bp; 2082 2083 if (zio->io_error) 2084 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2085 2086 mutex_enter(&zio->io_lock); 2087 zio->io_state[ZIO_WAIT_READY] = 1; 2088 pio = zio_walk_parents(zio); 2089 mutex_exit(&zio->io_lock); 2090 2091 /* 2092 * As we notify zio's parents, new parents could be added. 2093 * New parents go to the head of zio's io_parent_list, however, 2094 * so we will (correctly) not notify them. The remainder of zio's 2095 * io_parent_list, from 'pio_next' onward, cannot change because 2096 * all parents must wait for us to be done before they can be done. 2097 */ 2098 for (; pio != NULL; pio = pio_next) { 2099 pio_next = zio_walk_parents(zio); 2100 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2101 } 2102 2103 return (ZIO_PIPELINE_CONTINUE); 2104 } 2105 2106 static int 2107 zio_done(zio_t *zio) 2108 { 2109 spa_t *spa = zio->io_spa; 2110 zio_t *lio = zio->io_logical; 2111 blkptr_t *bp = zio->io_bp; 2112 vdev_t *vd = zio->io_vd; 2113 uint64_t psize = zio->io_size; 2114 zio_t *pio, *pio_next; 2115 2116 /* 2117 * If our of children haven't all completed, 2118 * wait for them and then repeat this pipeline stage. 2119 */ 2120 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2121 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2122 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2123 return (ZIO_PIPELINE_STOP); 2124 2125 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2126 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2127 ASSERT(zio->io_children[c][w] == 0); 2128 2129 if (bp != NULL) { 2130 ASSERT(bp->blk_pad[0] == 0); 2131 ASSERT(bp->blk_pad[1] == 0); 2132 ASSERT(bp->blk_pad[2] == 0); 2133 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2134 (bp == zio_unique_parent(zio)->io_bp)); 2135 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2136 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2137 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2138 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); 2139 ASSERT(BP_COUNT_GANG(bp) == 0 || 2140 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2141 } 2142 } 2143 2144 /* 2145 * If there were child vdev or gang errors, they apply to us now. 2146 */ 2147 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2148 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2149 2150 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2151 2152 vdev_stat_update(zio, psize); 2153 2154 if (zio->io_error) { 2155 /* 2156 * If this I/O is attached to a particular vdev, 2157 * generate an error message describing the I/O failure 2158 * at the block level. We ignore these errors if the 2159 * device is currently unavailable. 2160 */ 2161 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2162 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2163 2164 if ((zio->io_error == EIO || 2165 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { 2166 /* 2167 * For logical I/O requests, tell the SPA to log the 2168 * error and generate a logical data ereport. 2169 */ 2170 spa_log_error(spa, zio); 2171 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2172 0, 0); 2173 } 2174 } 2175 2176 if (zio->io_error && zio == lio) { 2177 /* 2178 * Determine whether zio should be reexecuted. This will 2179 * propagate all the way to the root via zio_notify_parent(). 2180 */ 2181 ASSERT(vd == NULL && bp != NULL); 2182 2183 if (IO_IS_ALLOCATING(zio)) 2184 if (zio->io_error != ENOSPC) 2185 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2186 else 2187 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2188 2189 if ((zio->io_type == ZIO_TYPE_READ || 2190 zio->io_type == ZIO_TYPE_FREE) && 2191 zio->io_error == ENXIO && 2192 spa->spa_load_state == SPA_LOAD_NONE && 2193 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2194 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2195 2196 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2197 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2198 } 2199 2200 /* 2201 * If there were logical child errors, they apply to us now. 2202 * We defer this until now to avoid conflating logical child 2203 * errors with errors that happened to the zio itself when 2204 * updating vdev stats and reporting FMA events above. 2205 */ 2206 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2207 2208 if (zio->io_reexecute && !(zio->io_flags & ZIO_FLAG_GODFATHER)) { 2209 /* 2210 * This is a logical I/O that wants to reexecute. 2211 * 2212 * Reexecute is top-down. When an i/o fails, if it's not 2213 * the root, it simply notifies its parent and sticks around. 2214 * The parent, seeing that it still has children in zio_done(), 2215 * does the same. This percolates all the way up to the root. 2216 * The root i/o will reexecute or suspend the entire tree. 2217 * 2218 * This approach ensures that zio_reexecute() honors 2219 * all the original i/o dependency relationships, e.g. 2220 * parents not executing until children are ready. 2221 */ 2222 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2223 2224 if (IO_IS_ALLOCATING(zio)) 2225 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2226 2227 zio_gang_tree_free(&zio->io_gang_tree); 2228 2229 mutex_enter(&zio->io_lock); 2230 zio->io_state[ZIO_WAIT_DONE] = 1; 2231 mutex_exit(&zio->io_lock); 2232 2233 /* 2234 * "The Godfather" I/O monitors its children but is 2235 * not a true parent to them. It will track them through 2236 * the pipeline but severs its ties whenever they get into 2237 * trouble (e.g. suspended). This allows "The Godfather" 2238 * I/O to return status without blocking. 2239 */ 2240 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 2241 zio_link_t *zl = zio->io_walk_link; 2242 pio_next = zio_walk_parents(zio); 2243 2244 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 2245 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 2246 zio_remove_child(pio, zio, zl); 2247 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2248 } 2249 } 2250 2251 if ((pio = zio_unique_parent(zio)) != NULL) { 2252 /* 2253 * We're not a root i/o, so there's nothing to do 2254 * but notify our parent. Don't propagate errors 2255 * upward since we haven't permanently failed yet. 2256 */ 2257 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 2258 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2259 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 2260 /* 2261 * We'd fail again if we reexecuted now, so suspend 2262 * until conditions improve (e.g. device comes online). 2263 */ 2264 zio_suspend(spa, zio); 2265 } else { 2266 /* 2267 * Reexecution is potentially a huge amount of work. 2268 * Hand it off to the otherwise-unused claim taskq. 2269 */ 2270 (void) taskq_dispatch( 2271 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], 2272 (task_func_t *)zio_reexecute, zio, TQ_SLEEP); 2273 } 2274 return (ZIO_PIPELINE_STOP); 2275 } 2276 2277 ASSERT(zio_walk_children(zio) == NULL); 2278 ASSERT(zio->io_reexecute == 0 || (zio->io_flags & ZIO_FLAG_GODFATHER)); 2279 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 2280 2281 /* 2282 * It is the responsibility of the done callback to ensure that this 2283 * particular zio is no longer discoverable for adoption, and as 2284 * such, cannot acquire any new parents. 2285 */ 2286 if (zio->io_done) 2287 zio->io_done(zio); 2288 2289 zio_gang_tree_free(&zio->io_gang_tree); 2290 2291 mutex_enter(&zio->io_lock); 2292 zio->io_state[ZIO_WAIT_DONE] = 1; 2293 mutex_exit(&zio->io_lock); 2294 2295 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 2296 zio_link_t *zl = zio->io_walk_link; 2297 pio_next = zio_walk_parents(zio); 2298 zio_remove_child(pio, zio, zl); 2299 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2300 } 2301 2302 if (zio->io_waiter != NULL) { 2303 mutex_enter(&zio->io_lock); 2304 zio->io_executor = NULL; 2305 cv_broadcast(&zio->io_cv); 2306 mutex_exit(&zio->io_lock); 2307 } else { 2308 zio_destroy(zio); 2309 } 2310 2311 return (ZIO_PIPELINE_STOP); 2312 } 2313 2314 /* 2315 * ========================================================================== 2316 * I/O pipeline definition 2317 * ========================================================================== 2318 */ 2319 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { 2320 NULL, 2321 zio_issue_async, 2322 zio_read_bp_init, 2323 zio_write_bp_init, 2324 zio_checksum_generate, 2325 zio_gang_assemble, 2326 zio_gang_issue, 2327 zio_dva_allocate, 2328 zio_dva_free, 2329 zio_dva_claim, 2330 zio_ready, 2331 zio_vdev_io_start, 2332 zio_vdev_io_done, 2333 zio_vdev_io_assess, 2334 zio_checksum_verify, 2335 zio_done 2336 }; 2337