xref: /titanic_41/usr/src/uts/common/fs/zfs/zio.c (revision 13faa91230bde46da937bf33010b9accc5bdeb59)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 
38 /*
39  * ==========================================================================
40  * I/O priority table
41  * ==========================================================================
42  */
43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
44 	0,	/* ZIO_PRIORITY_NOW		*/
45 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
46 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
47 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
48 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
49 	4,	/* ZIO_PRIORITY_FREE		*/
50 	0,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
52 	10,	/* ZIO_PRIORITY_RESILVER	*/
53 	20,	/* ZIO_PRIORITY_SCRUB		*/
54 };
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 char *zio_type_name[ZIO_TYPES] = {
62 	"null", "read", "write", "free", "claim", "ioctl" };
63 
64 /* At or above this size, force gang blocking - for testing */
65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1;
66 
67 /* Force an allocation failure when non-zero */
68 uint16_t zio_zil_fail_shift = 0;
69 uint16_t zio_io_fail_shift = 0;
70 
71 /* Enable/disable the write-retry logic */
72 int zio_write_retry = 1;
73 
74 /* Taskq to handle reissuing of I/Os */
75 taskq_t *zio_taskq;
76 int zio_resume_threads = 4;
77 
78 typedef struct zio_sync_pass {
79 	int	zp_defer_free;		/* defer frees after this pass */
80 	int	zp_dontcompress;	/* don't compress after this pass */
81 	int	zp_rewrite;		/* rewrite new bps after this pass */
82 } zio_sync_pass_t;
83 
84 zio_sync_pass_t zio_sync_pass = {
85 	1,	/* zp_defer_free */
86 	4,	/* zp_dontcompress */
87 	1,	/* zp_rewrite */
88 };
89 
90 static boolean_t zio_io_should_fail(uint16_t);
91 
92 /*
93  * ==========================================================================
94  * I/O kmem caches
95  * ==========================================================================
96  */
97 kmem_cache_t *zio_cache;
98 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
99 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
100 
101 #ifdef _KERNEL
102 extern vmem_t *zio_alloc_arena;
103 #endif
104 
105 /*
106  * Determine if we are allowed to issue the IO based on the
107  * pool state. If we must wait then block until we are told
108  * that we may continue.
109  */
110 #define	ZIO_ENTER(spa) {						\
111 	if (spa->spa_state == POOL_STATE_IO_FAILURE) {			\
112 		mutex_enter(&spa->spa_zio_lock);			\
113 		while (spa->spa_state == POOL_STATE_IO_FAILURE)		\
114 			cv_wait(&spa->spa_zio_cv, &spa->spa_zio_lock);	\
115 		mutex_exit(&spa->spa_zio_lock);				\
116 	}								\
117 }
118 
119 /*
120  * An allocation zio is one that either currently has the DVA allocate
121  * stage set or will have it later in it's lifetime.
122  */
123 #define	IO_IS_ALLOCATING(zio) \
124 	((zio)->io_orig_pipeline == ZIO_WRITE_PIPELINE ||		\
125 	(zio)->io_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE))
126 
127 void
128 zio_init(void)
129 {
130 	size_t c;
131 	vmem_t *data_alloc_arena = NULL;
132 
133 #ifdef _KERNEL
134 	data_alloc_arena = zio_alloc_arena;
135 #endif
136 
137 	zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
138 	    NULL, NULL, NULL, NULL, NULL, 0);
139 
140 	/*
141 	 * For small buffers, we want a cache for each multiple of
142 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
143 	 * for each quarter-power of 2.  For large buffers, we want
144 	 * a cache for each multiple of PAGESIZE.
145 	 */
146 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
147 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
148 		size_t p2 = size;
149 		size_t align = 0;
150 
151 		while (p2 & (p2 - 1))
152 			p2 &= p2 - 1;
153 
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (P2PHASE(size, PAGESIZE) == 0) {
157 			align = PAGESIZE;
158 		} else if (P2PHASE(size, p2 >> 2) == 0) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
167 
168 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
169 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
170 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
171 			    KMC_NODEBUG);
172 
173 			dprintf("creating cache for size %5lx align %5lx\n",
174 			    size, align);
175 		}
176 	}
177 
178 	while (--c != 0) {
179 		ASSERT(zio_buf_cache[c] != NULL);
180 		if (zio_buf_cache[c - 1] == NULL)
181 			zio_buf_cache[c - 1] = zio_buf_cache[c];
182 
183 		ASSERT(zio_data_buf_cache[c] != NULL);
184 		if (zio_data_buf_cache[c - 1] == NULL)
185 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
186 	}
187 
188 	zio_taskq = taskq_create("zio_taskq", zio_resume_threads,
189 	    maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE);
190 
191 	zio_inject_init();
192 }
193 
194 void
195 zio_fini(void)
196 {
197 	size_t c;
198 	kmem_cache_t *last_cache = NULL;
199 	kmem_cache_t *last_data_cache = NULL;
200 
201 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
202 		if (zio_buf_cache[c] != last_cache) {
203 			last_cache = zio_buf_cache[c];
204 			kmem_cache_destroy(zio_buf_cache[c]);
205 		}
206 		zio_buf_cache[c] = NULL;
207 
208 		if (zio_data_buf_cache[c] != last_data_cache) {
209 			last_data_cache = zio_data_buf_cache[c];
210 			kmem_cache_destroy(zio_data_buf_cache[c]);
211 		}
212 		zio_data_buf_cache[c] = NULL;
213 	}
214 
215 	taskq_destroy(zio_taskq);
216 
217 	kmem_cache_destroy(zio_cache);
218 
219 	zio_inject_fini();
220 }
221 
222 /*
223  * ==========================================================================
224  * Allocate and free I/O buffers
225  * ==========================================================================
226  */
227 
228 /*
229  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
230  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
231  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
232  * excess / transient data in-core during a crashdump.
233  */
234 void *
235 zio_buf_alloc(size_t size)
236 {
237 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
238 
239 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
240 
241 	return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP));
242 }
243 
244 /*
245  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
246  * crashdump if the kernel panics.  This exists so that we will limit the amount
247  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
248  * of kernel heap dumped to disk when the kernel panics)
249  */
250 void *
251 zio_data_buf_alloc(size_t size)
252 {
253 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254 
255 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256 
257 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP));
258 }
259 
260 void
261 zio_buf_free(void *buf, size_t size)
262 {
263 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
264 
265 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
266 
267 	kmem_cache_free(zio_buf_cache[c], buf);
268 }
269 
270 void
271 zio_data_buf_free(void *buf, size_t size)
272 {
273 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
274 
275 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
276 
277 	kmem_cache_free(zio_data_buf_cache[c], buf);
278 }
279 
280 /*
281  * ==========================================================================
282  * Push and pop I/O transform buffers
283  * ==========================================================================
284  */
285 static void
286 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize)
287 {
288 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
289 
290 	zt->zt_data = data;
291 	zt->zt_size = size;
292 	zt->zt_bufsize = bufsize;
293 
294 	zt->zt_next = zio->io_transform_stack;
295 	zio->io_transform_stack = zt;
296 
297 	zio->io_data = data;
298 	zio->io_size = size;
299 }
300 
301 static void
302 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize)
303 {
304 	zio_transform_t *zt = zio->io_transform_stack;
305 
306 	*data = zt->zt_data;
307 	*size = zt->zt_size;
308 	*bufsize = zt->zt_bufsize;
309 
310 	zio->io_transform_stack = zt->zt_next;
311 	kmem_free(zt, sizeof (zio_transform_t));
312 
313 	if ((zt = zio->io_transform_stack) != NULL) {
314 		zio->io_data = zt->zt_data;
315 		zio->io_size = zt->zt_size;
316 	}
317 }
318 
319 static void
320 zio_clear_transform_stack(zio_t *zio)
321 {
322 	void *data;
323 	uint64_t size, bufsize;
324 
325 	ASSERT(zio->io_transform_stack != NULL);
326 
327 	zio_pop_transform(zio, &data, &size, &bufsize);
328 	while (zio->io_transform_stack != NULL) {
329 		zio_buf_free(data, bufsize);
330 		zio_pop_transform(zio, &data, &size, &bufsize);
331 	}
332 }
333 
334 /*
335  * ==========================================================================
336  * Create the various types of I/O (read, write, free)
337  * ==========================================================================
338  */
339 static zio_t *
340 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
341     void *data, uint64_t size, zio_done_func_t *done, void *private,
342     zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline)
343 {
344 	zio_t *zio;
345 
346 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
347 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
348 
349 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
350 	bzero(zio, sizeof (zio_t));
351 	zio->io_parent = pio;
352 	zio->io_spa = spa;
353 	zio->io_txg = txg;
354 	zio->io_flags = flags;
355 	if (bp != NULL) {
356 		zio->io_bp = bp;
357 		zio->io_bp_copy = *bp;
358 		zio->io_bp_orig = *bp;
359 		if (dmu_ot[BP_GET_TYPE(bp)].ot_metadata ||
360 		    BP_GET_LEVEL(bp) != 0)
361 			zio->io_flags |= ZIO_FLAG_METADATA;
362 	}
363 	zio->io_done = done;
364 	zio->io_private = private;
365 	zio->io_type = type;
366 	zio->io_priority = priority;
367 	zio->io_stage = stage;
368 	zio->io_pipeline = pipeline;
369 	zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES;
370 	zio->io_timestamp = lbolt64;
371 	if (pio != NULL)
372 		zio->io_flags |= (pio->io_flags & ZIO_FLAG_METADATA);
373 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
374 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
375 	zio_push_transform(zio, data, size, size);
376 
377 	/*
378 	 * Note on config lock:
379 	 *
380 	 * If CONFIG_HELD is set, then the caller already has the config
381 	 * lock, so we don't need it for this io.
382 	 *
383 	 * We set CONFIG_GRABBED to indicate that we have grabbed the
384 	 * config lock on behalf of this io, so it should be released
385 	 * in zio_done.
386 	 *
387 	 * Unless CONFIG_HELD is set, we will grab the config lock for
388 	 * any top-level (parent-less) io, *except* NULL top-level ios.
389 	 * The NULL top-level ios rarely have any children, so we delay
390 	 * grabbing the lock until the first child is added (but it is
391 	 * still grabbed on behalf of the top-level i/o, so additional
392 	 * children don't need to also grab it).  This greatly reduces
393 	 * contention on the config lock.
394 	 */
395 	if (pio == NULL) {
396 		if (type != ZIO_TYPE_NULL &&
397 		    !(flags & ZIO_FLAG_CONFIG_HELD)) {
398 			spa_config_enter(zio->io_spa, RW_READER, zio);
399 			zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED;
400 		}
401 		zio->io_root = zio;
402 	} else {
403 		zio->io_root = pio->io_root;
404 		if (!(flags & ZIO_FLAG_NOBOOKMARK))
405 			zio->io_logical = pio->io_logical;
406 		mutex_enter(&pio->io_lock);
407 		if (pio->io_parent == NULL &&
408 		    pio->io_type == ZIO_TYPE_NULL &&
409 		    !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) &&
410 		    !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) {
411 			pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED;
412 			spa_config_enter(zio->io_spa, RW_READER, pio);
413 		}
414 		if (stage < ZIO_STAGE_READY)
415 			pio->io_children_notready++;
416 		pio->io_children_notdone++;
417 		zio->io_sibling_next = pio->io_child;
418 		zio->io_sibling_prev = NULL;
419 		if (pio->io_child != NULL)
420 			pio->io_child->io_sibling_prev = zio;
421 		pio->io_child = zio;
422 		zio->io_ndvas = pio->io_ndvas;
423 		mutex_exit(&pio->io_lock);
424 	}
425 
426 	/*
427 	 * Save off the original state incase we need to retry later.
428 	 */
429 	zio->io_orig_stage = zio->io_stage;
430 	zio->io_orig_pipeline = zio->io_pipeline;
431 	zio->io_orig_flags = zio->io_flags;
432 
433 	return (zio);
434 }
435 
436 static void
437 zio_reset(zio_t *zio)
438 {
439 	zio_clear_transform_stack(zio);
440 
441 	zio->io_flags = zio->io_orig_flags;
442 	zio->io_stage = zio->io_orig_stage;
443 	zio->io_pipeline = zio->io_orig_pipeline;
444 	zio_push_transform(zio, zio->io_data, zio->io_size, zio->io_size);
445 }
446 
447 zio_t *
448 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private,
449 	int flags)
450 {
451 	zio_t *zio;
452 
453 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
454 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN,
455 	    ZIO_WAIT_FOR_CHILDREN_PIPELINE);
456 
457 	return (zio);
458 }
459 
460 zio_t *
461 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags)
462 {
463 	return (zio_null(NULL, spa, done, private, flags));
464 }
465 
466 zio_t *
467 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data,
468     uint64_t size, zio_done_func_t *done, void *private,
469     int priority, int flags, zbookmark_t *zb)
470 {
471 	zio_t *zio;
472 
473 	ASSERT3U(size, ==, BP_GET_LSIZE(bp));
474 
475 	/*
476 	 * If the user has specified that we allow I/Os to continue
477 	 * then attempt to satisfy the read.
478 	 */
479 	if (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
480 		ZIO_ENTER(spa);
481 
482 	zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private,
483 	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER,
484 	    ZIO_STAGE_OPEN, ZIO_READ_PIPELINE);
485 	zio->io_bookmark = *zb;
486 
487 	zio->io_logical = zio;
488 
489 	/*
490 	 * Work off our copy of the bp so the caller can free it.
491 	 */
492 	zio->io_bp = &zio->io_bp_copy;
493 
494 	return (zio);
495 }
496 
497 zio_t *
498 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
499     uint64_t txg, blkptr_t *bp, void *data, uint64_t size,
500     zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority,
501     int flags, zbookmark_t *zb)
502 {
503 	zio_t *zio;
504 
505 	ASSERT(checksum >= ZIO_CHECKSUM_OFF &&
506 	    checksum < ZIO_CHECKSUM_FUNCTIONS);
507 
508 	ASSERT(compress >= ZIO_COMPRESS_OFF &&
509 	    compress < ZIO_COMPRESS_FUNCTIONS);
510 
511 	ZIO_ENTER(spa);
512 
513 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
514 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER,
515 	    ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE);
516 
517 	zio->io_ready = ready;
518 
519 	zio->io_bookmark = *zb;
520 
521 	zio->io_logical = zio;
522 
523 	zio->io_checksum = checksum;
524 	zio->io_compress = compress;
525 	zio->io_ndvas = ncopies;
526 
527 	if (compress != ZIO_COMPRESS_OFF)
528 		zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS;
529 
530 	if (bp->blk_birth != txg) {
531 		/* XXX the bp usually (always?) gets re-zeroed later */
532 		BP_ZERO(bp);
533 		BP_SET_LSIZE(bp, size);
534 		BP_SET_PSIZE(bp, size);
535 	} else {
536 		/* Make sure someone doesn't change their mind on overwrites */
537 		ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp),
538 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
539 	}
540 
541 	return (zio);
542 }
543 
544 zio_t *
545 zio_rewrite(zio_t *pio, spa_t *spa, int checksum,
546     uint64_t txg, blkptr_t *bp, void *data, uint64_t size,
547     zio_done_func_t *done, void *private, int priority, int flags,
548     zbookmark_t *zb)
549 {
550 	zio_t *zio;
551 
552 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
553 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER,
554 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
555 
556 	zio->io_bookmark = *zb;
557 	zio->io_checksum = checksum;
558 	zio->io_compress = ZIO_COMPRESS_OFF;
559 
560 	if (pio != NULL)
561 		ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp));
562 
563 	return (zio);
564 }
565 
566 static void
567 zio_write_allocate_ready(zio_t *zio)
568 {
569 	/* Free up the previous block */
570 	if (!BP_IS_HOLE(&zio->io_bp_orig)) {
571 		zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
572 		    &zio->io_bp_orig, NULL, NULL));
573 	}
574 }
575 
576 static zio_t *
577 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum,
578     uint64_t txg, blkptr_t *bp, void *data, uint64_t size,
579     zio_done_func_t *done, void *private, int priority, int flags)
580 {
581 	zio_t *zio;
582 
583 	BP_ZERO(bp);
584 	BP_SET_LSIZE(bp, size);
585 	BP_SET_PSIZE(bp, size);
586 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
587 
588 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
589 	    ZIO_TYPE_WRITE, priority, flags,
590 	    ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE);
591 
592 	zio->io_checksum = checksum;
593 	zio->io_compress = ZIO_COMPRESS_OFF;
594 	zio->io_ready = zio_write_allocate_ready;
595 
596 	return (zio);
597 }
598 
599 zio_t *
600 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
601     zio_done_func_t *done, void *private)
602 {
603 	zio_t *zio;
604 
605 	ASSERT(!BP_IS_HOLE(bp));
606 
607 	if (txg == spa->spa_syncing_txg &&
608 	    spa->spa_sync_pass > zio_sync_pass.zp_defer_free) {
609 		bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
610 		return (zio_null(pio, spa, NULL, NULL, 0));
611 	}
612 
613 	zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private,
614 	    ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER,
615 	    ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
616 
617 	zio->io_bp = &zio->io_bp_copy;
618 
619 	return (zio);
620 }
621 
622 zio_t *
623 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
624     zio_done_func_t *done, void *private)
625 {
626 	zio_t *zio;
627 
628 	/*
629 	 * A claim is an allocation of a specific block.  Claims are needed
630 	 * to support immediate writes in the intent log.  The issue is that
631 	 * immediate writes contain committed data, but in a txg that was
632 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
633 	 * the intent log claims all blocks that contain immediate write data
634 	 * so that the SPA knows they're in use.
635 	 *
636 	 * All claims *must* be resolved in the first txg -- before the SPA
637 	 * starts allocating blocks -- so that nothing is allocated twice.
638 	 */
639 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
640 	ASSERT3U(spa_first_txg(spa), <=, txg);
641 
642 	zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private,
643 	    ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0,
644 	    ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
645 
646 	zio->io_bp = &zio->io_bp_copy;
647 
648 	return (zio);
649 }
650 
651 zio_t *
652 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
653     zio_done_func_t *done, void *private, int priority, int flags)
654 {
655 	zio_t *zio;
656 	int c;
657 
658 	if (vd->vdev_children == 0) {
659 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
660 		    ZIO_TYPE_IOCTL, priority, flags,
661 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
662 
663 		zio->io_vd = vd;
664 		zio->io_cmd = cmd;
665 	} else {
666 		zio = zio_null(pio, spa, NULL, NULL, flags);
667 
668 		for (c = 0; c < vd->vdev_children; c++)
669 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
670 			    done, private, priority, flags));
671 	}
672 
673 	return (zio);
674 }
675 
676 static void
677 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size,
678     int checksum)
679 {
680 	ASSERT(vd->vdev_children == 0);
681 
682 	ASSERT(size <= SPA_MAXBLOCKSIZE);
683 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
684 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
685 
686 	ASSERT(offset + size <= VDEV_LABEL_START_SIZE ||
687 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
688 	ASSERT3U(offset + size, <=, vd->vdev_psize);
689 
690 	BP_ZERO(bp);
691 
692 	BP_SET_LSIZE(bp, size);
693 	BP_SET_PSIZE(bp, size);
694 
695 	BP_SET_CHECKSUM(bp, checksum);
696 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
697 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
698 
699 	if (checksum != ZIO_CHECKSUM_OFF)
700 		ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0);
701 }
702 
703 zio_t *
704 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
705     void *data, int checksum, zio_done_func_t *done, void *private,
706     int priority, int flags)
707 {
708 	zio_t *zio;
709 	blkptr_t blk;
710 
711 	ZIO_ENTER(vd->vdev_spa);
712 
713 	zio_phys_bp_init(vd, &blk, offset, size, checksum);
714 
715 	zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private,
716 	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL,
717 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
718 
719 	zio->io_vd = vd;
720 	zio->io_offset = offset;
721 
722 	/*
723 	 * Work off our copy of the bp so the caller can free it.
724 	 */
725 	zio->io_bp = &zio->io_bp_copy;
726 
727 	return (zio);
728 }
729 
730 zio_t *
731 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
732     void *data, int checksum, zio_done_func_t *done, void *private,
733     int priority, int flags)
734 {
735 	zio_block_tail_t *zbt;
736 	void *wbuf;
737 	zio_t *zio;
738 	blkptr_t blk;
739 
740 	ZIO_ENTER(vd->vdev_spa);
741 
742 	zio_phys_bp_init(vd, &blk, offset, size, checksum);
743 
744 	zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private,
745 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL,
746 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
747 
748 	zio->io_vd = vd;
749 	zio->io_offset = offset;
750 
751 	zio->io_bp = &zio->io_bp_copy;
752 	zio->io_checksum = checksum;
753 
754 	if (zio_checksum_table[checksum].ci_zbt) {
755 		/*
756 		 * zbt checksums are necessarily destructive -- they modify
757 		 * one word of the write buffer to hold the verifier/checksum.
758 		 * Therefore, we must make a local copy in case the data is
759 		 * being written to multiple places.
760 		 */
761 		wbuf = zio_buf_alloc(size);
762 		bcopy(data, wbuf, size);
763 		zio_push_transform(zio, wbuf, size, size);
764 
765 		zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1;
766 		zbt->zbt_cksum = blk.blk_cksum;
767 	}
768 
769 	return (zio);
770 }
771 
772 /*
773  * Create a child I/O to do some work for us.  It has no associated bp.
774  */
775 zio_t *
776 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
777 	void *data, uint64_t size, int type, int priority, int flags,
778 	zio_done_func_t *done, void *private)
779 {
780 	uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE;
781 	zio_t *cio;
782 
783 	if (type == ZIO_TYPE_READ && bp != NULL) {
784 		/*
785 		 * If we have the bp, then the child should perform the
786 		 * checksum and the parent need not.  This pushes error
787 		 * detection as close to the leaves as possible and
788 		 * eliminates redundant checksums in the interior nodes.
789 		 */
790 		pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY;
791 		zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
792 	}
793 
794 	cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size,
795 	    done, private, type, priority,
796 	    (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags,
797 	    ZIO_STAGE_VDEV_IO_START - 1, pipeline);
798 
799 	cio->io_vd = vd;
800 	cio->io_offset = offset;
801 
802 	return (cio);
803 }
804 
805 /*
806  * ==========================================================================
807  * Initiate I/O, either sync or async
808  * ==========================================================================
809  */
810 int
811 zio_wait(zio_t *zio)
812 {
813 	int error;
814 
815 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
816 
817 	zio->io_waiter = curthread;
818 
819 	zio_next_stage_async(zio);
820 
821 	mutex_enter(&zio->io_lock);
822 	while (zio->io_stalled != ZIO_STAGE_DONE)
823 		cv_wait(&zio->io_cv, &zio->io_lock);
824 	mutex_exit(&zio->io_lock);
825 
826 	error = zio->io_error;
827 	mutex_destroy(&zio->io_lock);
828 	cv_destroy(&zio->io_cv);
829 	kmem_cache_free(zio_cache, zio);
830 
831 	return (error);
832 }
833 
834 void
835 zio_nowait(zio_t *zio)
836 {
837 	zio_next_stage_async(zio);
838 }
839 
840 /*
841  * ==========================================================================
842  * I/O pipeline interlocks: parent/child dependency scoreboarding
843  * ==========================================================================
844  */
845 static void
846 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp)
847 {
848 	mutex_enter(&zio->io_lock);
849 	if (*countp == 0) {
850 		ASSERT(zio->io_stalled == 0);
851 		mutex_exit(&zio->io_lock);
852 		zio_next_stage(zio);
853 	} else {
854 		zio->io_stalled = stage;
855 		mutex_exit(&zio->io_lock);
856 	}
857 }
858 
859 static void
860 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp)
861 {
862 	zio_t *pio = zio->io_parent;
863 
864 	mutex_enter(&pio->io_lock);
865 	if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
866 		pio->io_error = zio->io_error;
867 	ASSERT3U(*countp, >, 0);
868 	if (--*countp == 0 && pio->io_stalled == stage) {
869 		pio->io_stalled = 0;
870 		mutex_exit(&pio->io_lock);
871 		zio_next_stage_async(pio);
872 	} else {
873 		mutex_exit(&pio->io_lock);
874 	}
875 }
876 
877 static void
878 zio_wait_children_ready(zio_t *zio)
879 {
880 	zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY,
881 	    &zio->io_children_notready);
882 }
883 
884 void
885 zio_wait_children_done(zio_t *zio)
886 {
887 	zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE,
888 	    &zio->io_children_notdone);
889 }
890 
891 static void
892 zio_read_init(zio_t *zio)
893 {
894 	if (BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF) {
895 		uint64_t csize = BP_GET_PSIZE(zio->io_bp);
896 		void *cbuf = zio_buf_alloc(csize);
897 
898 		zio_push_transform(zio, cbuf, csize, csize);
899 		zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS;
900 	}
901 
902 	if (BP_IS_GANG(zio->io_bp)) {
903 		uint64_t gsize = SPA_GANGBLOCKSIZE;
904 		void *gbuf = zio_buf_alloc(gsize);
905 
906 		zio_push_transform(zio, gbuf, gsize, gsize);
907 		zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS;
908 	}
909 	zio_next_stage(zio);
910 }
911 
912 static void
913 zio_ready(zio_t *zio)
914 {
915 	zio_t *pio = zio->io_parent;
916 
917 	if (zio->io_ready)
918 		zio->io_ready(zio);
919 
920 	if (pio != NULL)
921 		zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY,
922 		    &pio->io_children_notready);
923 
924 	if (zio->io_bp)
925 		zio->io_bp_copy = *zio->io_bp;
926 
927 	zio_next_stage(zio);
928 }
929 
930 static void
931 zio_vdev_retry_io(zio_t *zio)
932 {
933 	zio_t *pio = zio->io_parent;
934 
935 	/*
936 	 * Preserve the failed bp so that the io_ready() callback can
937 	 * update the accounting accordingly. The callback will also be
938 	 * responsible for freeing the previously allocated block, if one
939 	 * exists.
940 	 */
941 	zio->io_bp_orig = *zio->io_bp;
942 
943 	/*
944 	 * We must zero out the old DVA and blk_birth before reallocating
945 	 * the bp.
946 	 */
947 	BP_ZERO_DVAS(zio->io_bp);
948 	zio_reset(zio);
949 
950 	if (pio) {
951 		/*
952 		 * Let the parent know that we will
953 		 * re-alloc the write (=> new bp info).
954 		 */
955 		mutex_enter(&pio->io_lock);
956 		pio->io_children_notready++;
957 
958 		/*
959 		 * If the parent I/O is still in the open stage, then
960 		 * don't bother telling it to retry since it hasn't
961 		 * progressed far enough for it to care.
962 		 */
963 		if (pio->io_stage > ZIO_STAGE_OPEN && IO_IS_ALLOCATING(pio))
964 			pio->io_flags |= ZIO_FLAG_WRITE_RETRY;
965 
966 		ASSERT(pio->io_stage <= ZIO_STAGE_WAIT_CHILDREN_DONE);
967 		mutex_exit(&pio->io_lock);
968 	}
969 
970 	/*
971 	 * We are getting ready to process the retry request so clear
972 	 * the flag and the zio's current error status.
973 	 */
974 	zio->io_flags &= ~ZIO_FLAG_WRITE_RETRY;
975 	zio->io_error = 0;
976 	zio_next_stage_async(zio);
977 }
978 
979 int
980 zio_vdev_resume_io(spa_t *spa)
981 {
982 	zio_t *zio;
983 
984 	mutex_enter(&spa->spa_zio_lock);
985 
986 	/*
987 	 * Probe all of vdevs that have experienced an I/O error.
988 	 * If we are still unable to verify the integrity of the vdev
989 	 * then we prevent the resume from proceeeding.
990 	 */
991 	for (zio = list_head(&spa->spa_zio_list); zio != NULL;
992 	    zio = list_next(&spa->spa_zio_list, zio)) {
993 		int error = 0;
994 
995 		/* We only care about I/Os that must succeed */
996 		if (zio->io_vd == NULL || zio->io_flags & ZIO_FLAG_CANFAIL)
997 			continue;
998 		error = vdev_probe(zio->io_vd);
999 		if (error) {
1000 			mutex_exit(&spa->spa_zio_lock);
1001 			return (error);
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Clear the vdev stats so that I/O can flow.
1007 	 */
1008 	vdev_clear(spa, NULL, B_FALSE);
1009 
1010 	spa->spa_state = POOL_STATE_ACTIVE;
1011 	while ((zio = list_head(&spa->spa_zio_list)) != NULL) {
1012 		list_remove(&spa->spa_zio_list, zio);
1013 		zio->io_error = 0;
1014 
1015 		/*
1016 		 * If we are resuming an allocating I/O then we force it
1017 		 * to retry and let it resume operation where it left off.
1018 		 * Otherwise, go back to the ready stage and pick up from
1019 		 * there.
1020 		 */
1021 		if (zio_write_retry && IO_IS_ALLOCATING(zio)) {
1022 			zio->io_flags |= ZIO_FLAG_WRITE_RETRY;
1023 			zio->io_stage--;
1024 		} else {
1025 			zio->io_stage = ZIO_STAGE_READY;
1026 		}
1027 
1028 		(void) taskq_dispatch(zio_taskq, zio_resubmit_stage_async,
1029 		    zio, TQ_SLEEP);
1030 	}
1031 	mutex_exit(&spa->spa_zio_lock);
1032 
1033 	/*
1034 	 * Wait for the taskqs to finish and recheck the pool state since
1035 	 * it's possible that a resumed I/O has failed again.
1036 	 */
1037 	taskq_wait(zio_taskq);
1038 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1039 		return (EIO);
1040 
1041 	mutex_enter(&spa->spa_zio_lock);
1042 	cv_broadcast(&spa->spa_zio_cv);
1043 	mutex_exit(&spa->spa_zio_lock);
1044 
1045 	return (0);
1046 }
1047 
1048 static void
1049 zio_vdev_suspend_io(zio_t *zio)
1050 {
1051 	spa_t *spa = zio->io_spa;
1052 
1053 	/*
1054 	 * We've experienced an unrecoverable failure so
1055 	 * set the pool state accordingly and queue all
1056 	 * failed IOs.
1057 	 */
1058 	spa->spa_state = POOL_STATE_IO_FAILURE;
1059 
1060 	mutex_enter(&spa->spa_zio_lock);
1061 	list_insert_tail(&spa->spa_zio_list, zio);
1062 
1063 #ifndef _KERNEL
1064 	/* Used to notify ztest that the pool has suspended */
1065 	cv_broadcast(&spa->spa_zio_cv);
1066 #endif
1067 	mutex_exit(&spa->spa_zio_lock);
1068 }
1069 
1070 static void
1071 zio_assess(zio_t *zio)
1072 {
1073 	spa_t *spa = zio->io_spa;
1074 	blkptr_t *bp = zio->io_bp;
1075 	vdev_t *vd = zio->io_vd;
1076 
1077 	ASSERT(zio->io_children_notready == 0);
1078 	ASSERT(zio->io_children_notdone == 0);
1079 
1080 	if (bp != NULL) {
1081 		ASSERT(bp->blk_pad[0] == 0);
1082 		ASSERT(bp->blk_pad[1] == 0);
1083 		ASSERT(bp->blk_pad[2] == 0);
1084 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0);
1085 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
1086 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
1087 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
1088 			if (zio->io_ndvas != 0)
1089 				ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp));
1090 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
1091 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * Some child I/O has indicated that a retry is necessary, so
1097 	 * we set an error on the I/O and let the logic below do the
1098 	 * rest.
1099 	 */
1100 	if (zio->io_flags & ZIO_FLAG_WRITE_RETRY)
1101 		zio->io_error = ERESTART;
1102 
1103 	if (vd != NULL)
1104 		vdev_stat_update(zio);
1105 
1106 	if (zio->io_error) {
1107 		/*
1108 		 * If this I/O is attached to a particular vdev,
1109 		 * generate an error message describing the I/O failure
1110 		 * at the block level.  We ignore these errors if the
1111 		 * device is currently unavailable.
1112 		 */
1113 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
1114 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
1115 
1116 		if ((zio->io_error == EIO ||
1117 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) &&
1118 		    zio->io_logical == zio) {
1119 			/*
1120 			 * For root I/O requests, tell the SPA to log the error
1121 			 * appropriately.  Also, generate a logical data
1122 			 * ereport.
1123 			 */
1124 			spa_log_error(spa, zio);
1125 
1126 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
1127 			    0, 0);
1128 		}
1129 
1130 		/*
1131 		 * If we are an allocating I/O then we attempt to reissue
1132 		 * the I/O on another vdev unless the pool is out of space.
1133 		 * We handle this condition based on the spa's failmode
1134 		 * property.
1135 		 */
1136 		if (zio_write_retry && zio->io_error != ENOSPC &&
1137 		    IO_IS_ALLOCATING(zio)) {
1138 			zio_vdev_retry_io(zio);
1139 			return;
1140 		}
1141 		ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY));
1142 
1143 		/*
1144 		 * For I/O requests that cannot fail, we carry out
1145 		 * the requested behavior based on the failmode pool
1146 		 * property.
1147 		 *
1148 		 * XXX - Need to differentiate between an ENOSPC as
1149 		 * a result of vdev failures vs. a full pool.
1150 		 */
1151 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) {
1152 			char *blkbuf;
1153 
1154 #ifdef ZFS_DEBUG
1155 			blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP);
1156 			if (blkbuf) {
1157 				sprintf_blkptr(blkbuf, BP_SPRINTF_LEN,
1158 				    bp ? bp : &zio->io_bp_copy);
1159 			}
1160 			cmn_err(CE_WARN, "ZFS: %s (%s on %s off %llx: zio %p "
1161 			    "%s): error %d", zio->io_error == ECKSUM ?
1162 			    "bad checksum" : "I/O failure",
1163 			    zio_type_name[zio->io_type],
1164 			    vdev_description(vd),
1165 			    (u_longlong_t)zio->io_offset,
1166 			    (void *)zio, blkbuf ? blkbuf : "", zio->io_error);
1167 #endif
1168 
1169 			if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) {
1170 				fm_panic("Pool '%s' has encountered an "
1171 				    "uncorrectable I/O failure and the "
1172 				    "failure mode property for this pool "
1173 				    "is set to panic.", spa_name(spa));
1174 			} else {
1175 				cmn_err(CE_WARN, "Pool '%s' has encountered "
1176 				    "an uncorrectable I/O error. Manual "
1177 				    "intervention is required.",
1178 				    spa_name(spa));
1179 				zio_vdev_suspend_io(zio);
1180 			}
1181 			return;
1182 		}
1183 	}
1184 	ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY));
1185 	ASSERT(zio->io_children_notready == 0);
1186 	zio_next_stage(zio);
1187 }
1188 
1189 static void
1190 zio_done(zio_t *zio)
1191 {
1192 	zio_t *pio = zio->io_parent;
1193 	spa_t *spa = zio->io_spa;
1194 
1195 	ASSERT(zio->io_children_notready == 0);
1196 	ASSERT(zio->io_children_notdone == 0);
1197 
1198 	zio_clear_transform_stack(zio);
1199 
1200 	if (zio->io_done)
1201 		zio->io_done(zio);
1202 
1203 	ASSERT(zio->io_delegate_list == NULL);
1204 	ASSERT(zio->io_delegate_next == NULL);
1205 
1206 	if (pio != NULL) {
1207 		zio_t *next, *prev;
1208 
1209 		mutex_enter(&pio->io_lock);
1210 		next = zio->io_sibling_next;
1211 		prev = zio->io_sibling_prev;
1212 		if (next != NULL)
1213 			next->io_sibling_prev = prev;
1214 		if (prev != NULL)
1215 			prev->io_sibling_next = next;
1216 		if (pio->io_child == zio)
1217 			pio->io_child = next;
1218 		mutex_exit(&pio->io_lock);
1219 
1220 		zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE,
1221 		    &pio->io_children_notdone);
1222 	}
1223 
1224 	/*
1225 	 * Note: this I/O is now done, and will shortly be freed, so there is no
1226 	 * need to clear this (or any other) flag.
1227 	 */
1228 	if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED)
1229 		spa_config_exit(spa, zio);
1230 
1231 	if (zio->io_waiter != NULL) {
1232 		mutex_enter(&zio->io_lock);
1233 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1234 		zio->io_stalled = zio->io_stage;
1235 		cv_broadcast(&zio->io_cv);
1236 		mutex_exit(&zio->io_lock);
1237 	} else {
1238 		mutex_destroy(&zio->io_lock);
1239 		cv_destroy(&zio->io_cv);
1240 		kmem_cache_free(zio_cache, zio);
1241 	}
1242 }
1243 
1244 /*
1245  * ==========================================================================
1246  * Compression support
1247  * ==========================================================================
1248  */
1249 static void
1250 zio_write_compress(zio_t *zio)
1251 {
1252 	int compress = zio->io_compress;
1253 	blkptr_t *bp = zio->io_bp;
1254 	void *cbuf;
1255 	uint64_t lsize = zio->io_size;
1256 	uint64_t csize = lsize;
1257 	uint64_t cbufsize = 0;
1258 	int pass;
1259 
1260 	if (bp->blk_birth == zio->io_txg) {
1261 		/*
1262 		 * We're rewriting an existing block, which means we're
1263 		 * working on behalf of spa_sync().  For spa_sync() to
1264 		 * converge, it must eventually be the case that we don't
1265 		 * have to allocate new blocks.  But compression changes
1266 		 * the blocksize, which forces a reallocate, and makes
1267 		 * convergence take longer.  Therefore, after the first
1268 		 * few passes, stop compressing to ensure convergence.
1269 		 */
1270 		pass = spa_sync_pass(zio->io_spa);
1271 		if (pass > zio_sync_pass.zp_dontcompress)
1272 			compress = ZIO_COMPRESS_OFF;
1273 	} else {
1274 		ASSERT(BP_IS_HOLE(bp));
1275 		pass = 1;
1276 	}
1277 
1278 	if (compress != ZIO_COMPRESS_OFF)
1279 		if (!zio_compress_data(compress, zio->io_data, zio->io_size,
1280 		    &cbuf, &csize, &cbufsize))
1281 			compress = ZIO_COMPRESS_OFF;
1282 
1283 	if (compress != ZIO_COMPRESS_OFF && csize != 0)
1284 		zio_push_transform(zio, cbuf, csize, cbufsize);
1285 
1286 	/*
1287 	 * The final pass of spa_sync() must be all rewrites, but the first
1288 	 * few passes offer a trade-off: allocating blocks defers convergence,
1289 	 * but newly allocated blocks are sequential, so they can be written
1290 	 * to disk faster.  Therefore, we allow the first few passes of
1291 	 * spa_sync() to reallocate new blocks, but force rewrites after that.
1292 	 * There should only be a handful of blocks after pass 1 in any case.
1293 	 */
1294 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize &&
1295 	    pass > zio_sync_pass.zp_rewrite) {
1296 		ASSERT(csize != 0);
1297 		BP_SET_LSIZE(bp, lsize);
1298 		BP_SET_COMPRESS(bp, compress);
1299 		zio->io_pipeline = ZIO_REWRITE_PIPELINE;
1300 	} else {
1301 		if (bp->blk_birth == zio->io_txg)
1302 			BP_ZERO(bp);
1303 		if (csize == 0) {
1304 			BP_ZERO(bp);
1305 			zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE;
1306 		} else {
1307 			ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
1308 			BP_SET_LSIZE(bp, lsize);
1309 			BP_SET_PSIZE(bp, csize);
1310 			BP_SET_COMPRESS(bp, compress);
1311 			zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE;
1312 		}
1313 	}
1314 
1315 	zio_next_stage(zio);
1316 }
1317 
1318 static void
1319 zio_read_decompress(zio_t *zio)
1320 {
1321 	blkptr_t *bp = zio->io_bp;
1322 	void *data;
1323 	uint64_t size;
1324 	uint64_t bufsize;
1325 	int compress = BP_GET_COMPRESS(bp);
1326 
1327 	ASSERT(compress != ZIO_COMPRESS_OFF);
1328 
1329 	zio_pop_transform(zio, &data, &size, &bufsize);
1330 
1331 	if (zio_decompress_data(compress, data, size,
1332 	    zio->io_data, zio->io_size))
1333 		zio->io_error = EIO;
1334 
1335 	zio_buf_free(data, bufsize);
1336 
1337 	zio_next_stage(zio);
1338 }
1339 
1340 /*
1341  * ==========================================================================
1342  * Gang block support
1343  * ==========================================================================
1344  */
1345 static void
1346 zio_gang_pipeline(zio_t *zio)
1347 {
1348 	/*
1349 	 * By default, the pipeline assumes that we're dealing with a gang
1350 	 * block.  If we're not, strip out any gang-specific stages.
1351 	 */
1352 	if (!BP_IS_GANG(zio->io_bp))
1353 		zio->io_pipeline &= ~ZIO_GANG_STAGES;
1354 
1355 	zio_next_stage(zio);
1356 }
1357 
1358 static void
1359 zio_gang_byteswap(zio_t *zio)
1360 {
1361 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1362 
1363 	if (BP_SHOULD_BYTESWAP(zio->io_bp))
1364 		byteswap_uint64_array(zio->io_data, zio->io_size);
1365 }
1366 
1367 static void
1368 zio_get_gang_header(zio_t *zio)
1369 {
1370 	blkptr_t *bp = zio->io_bp;
1371 	uint64_t gsize = SPA_GANGBLOCKSIZE;
1372 	void *gbuf = zio_buf_alloc(gsize);
1373 
1374 	ASSERT(BP_IS_GANG(bp));
1375 
1376 	zio_push_transform(zio, gbuf, gsize, gsize);
1377 
1378 	zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize,
1379 	    NULL, NULL, ZIO_TYPE_READ, zio->io_priority,
1380 	    zio->io_flags & ZIO_FLAG_GANG_INHERIT,
1381 	    ZIO_STAGE_OPEN, ZIO_READ_GANG_PIPELINE));
1382 
1383 	zio_wait_children_done(zio);
1384 }
1385 
1386 static void
1387 zio_read_gang_members(zio_t *zio)
1388 {
1389 	zio_gbh_phys_t *gbh;
1390 	uint64_t gsize, gbufsize, loff, lsize;
1391 	int i;
1392 
1393 	ASSERT(BP_IS_GANG(zio->io_bp));
1394 
1395 	zio_gang_byteswap(zio);
1396 	zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
1397 
1398 	for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) {
1399 		blkptr_t *gbp = &gbh->zg_blkptr[i];
1400 		lsize = BP_GET_PSIZE(gbp);
1401 
1402 		ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF);
1403 		ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp));
1404 		ASSERT3U(loff + lsize, <=, zio->io_size);
1405 		ASSERT(i < SPA_GBH_NBLKPTRS);
1406 		ASSERT(!BP_IS_HOLE(gbp));
1407 
1408 		zio_nowait(zio_read(zio, zio->io_spa, gbp,
1409 		    (char *)zio->io_data + loff, lsize, NULL, NULL,
1410 		    zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT,
1411 		    &zio->io_bookmark));
1412 	}
1413 
1414 	zio_buf_free(gbh, gbufsize);
1415 	zio_wait_children_done(zio);
1416 }
1417 
1418 static void
1419 zio_rewrite_gang_members(zio_t *zio)
1420 {
1421 	zio_gbh_phys_t *gbh;
1422 	uint64_t gsize, gbufsize, loff, lsize;
1423 	int i;
1424 
1425 	ASSERT(BP_IS_GANG(zio->io_bp));
1426 	ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE);
1427 
1428 	zio_gang_byteswap(zio);
1429 	zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
1430 
1431 	ASSERT(gsize == gbufsize);
1432 
1433 	for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) {
1434 		blkptr_t *gbp = &gbh->zg_blkptr[i];
1435 		lsize = BP_GET_PSIZE(gbp);
1436 
1437 		ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF);
1438 		ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp));
1439 		ASSERT3U(loff + lsize, <=, zio->io_size);
1440 		ASSERT(i < SPA_GBH_NBLKPTRS);
1441 		ASSERT(!BP_IS_HOLE(gbp));
1442 
1443 		zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum,
1444 		    zio->io_txg, gbp, (char *)zio->io_data + loff, lsize,
1445 		    NULL, NULL, zio->io_priority, zio->io_flags,
1446 		    &zio->io_bookmark));
1447 	}
1448 
1449 	zio_push_transform(zio, gbh, gsize, gbufsize);
1450 	zio_wait_children_ready(zio);
1451 }
1452 
1453 static void
1454 zio_free_gang_members(zio_t *zio)
1455 {
1456 	zio_gbh_phys_t *gbh;
1457 	uint64_t gsize, gbufsize;
1458 	int i;
1459 
1460 	ASSERT(BP_IS_GANG(zio->io_bp));
1461 
1462 	zio_gang_byteswap(zio);
1463 	zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
1464 
1465 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1466 		blkptr_t *gbp = &gbh->zg_blkptr[i];
1467 
1468 		if (BP_IS_HOLE(gbp))
1469 			continue;
1470 		zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
1471 		    gbp, NULL, NULL));
1472 	}
1473 
1474 	zio_buf_free(gbh, gbufsize);
1475 	zio_next_stage(zio);
1476 }
1477 
1478 static void
1479 zio_claim_gang_members(zio_t *zio)
1480 {
1481 	zio_gbh_phys_t *gbh;
1482 	uint64_t gsize, gbufsize;
1483 	int i;
1484 
1485 	ASSERT(BP_IS_GANG(zio->io_bp));
1486 
1487 	zio_gang_byteswap(zio);
1488 	zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
1489 
1490 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1491 		blkptr_t *gbp = &gbh->zg_blkptr[i];
1492 		if (BP_IS_HOLE(gbp))
1493 			continue;
1494 		zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg,
1495 		    gbp, NULL, NULL));
1496 	}
1497 
1498 	zio_buf_free(gbh, gbufsize);
1499 	zio_next_stage(zio);
1500 }
1501 
1502 static void
1503 zio_write_allocate_gang_member_done(zio_t *zio)
1504 {
1505 	zio_t *pio = zio->io_parent;
1506 	dva_t *cdva = zio->io_bp->blk_dva;
1507 	dva_t *pdva = pio->io_bp->blk_dva;
1508 	uint64_t asize;
1509 	int d;
1510 
1511 	ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas);
1512 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1513 	ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp));
1514 	ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp));
1515 
1516 	mutex_enter(&pio->io_lock);
1517 	for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) {
1518 		ASSERT(DVA_GET_GANG(&pdva[d]));
1519 		asize = DVA_GET_ASIZE(&pdva[d]);
1520 		asize += DVA_GET_ASIZE(&cdva[d]);
1521 		DVA_SET_ASIZE(&pdva[d], asize);
1522 	}
1523 	mutex_exit(&pio->io_lock);
1524 }
1525 
1526 static int
1527 zio_write_allocate_gang_members(zio_t *zio, metaslab_class_t *mc)
1528 {
1529 	blkptr_t *bp = zio->io_bp;
1530 	dva_t *dva = bp->blk_dva;
1531 	spa_t *spa = zio->io_spa;
1532 	zio_gbh_phys_t *gbh;
1533 	uint64_t txg = zio->io_txg;
1534 	uint64_t resid = zio->io_size;
1535 	uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE);
1536 	uint64_t gsize, loff, lsize;
1537 	uint32_t gbps_left;
1538 	int ndvas = zio->io_ndvas;
1539 	int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa));
1540 	int error;
1541 	int i, d;
1542 
1543 	gsize = SPA_GANGBLOCKSIZE;
1544 	gbps_left = SPA_GBH_NBLKPTRS;
1545 
1546 	error = metaslab_alloc(spa, mc, gsize, bp, gbh_ndvas, txg, NULL,
1547 	    B_FALSE);
1548 	if (error)
1549 		return (error);
1550 
1551 	for (d = 0; d < gbh_ndvas; d++)
1552 		DVA_SET_GANG(&dva[d], 1);
1553 
1554 	bp->blk_birth = txg;
1555 
1556 	gbh = zio_buf_alloc(gsize);
1557 	bzero(gbh, gsize);
1558 
1559 	/* We need to test multi-level gang blocks */
1560 	if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0)
1561 		maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE);
1562 
1563 	for (loff = 0, i = 0; loff != zio->io_size;
1564 	    loff += lsize, resid -= lsize, gbps_left--, i++) {
1565 		blkptr_t *gbp = &gbh->zg_blkptr[i];
1566 		dva = gbp->blk_dva;
1567 
1568 		ASSERT(gbps_left != 0);
1569 		maxalloc = MIN(maxalloc, resid);
1570 
1571 		while (resid <= maxalloc * gbps_left) {
1572 			error = metaslab_alloc(spa, mc, maxalloc, gbp, ndvas,
1573 			    txg, bp, B_FALSE);
1574 			if (error == 0)
1575 				break;
1576 			ASSERT3U(error, ==, ENOSPC);
1577 			/* XXX - free up previous allocations? */
1578 			if (maxalloc == SPA_MINBLOCKSIZE)
1579 				return (error);
1580 			maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE);
1581 		}
1582 
1583 		if (resid <= maxalloc * gbps_left) {
1584 			lsize = maxalloc;
1585 			BP_SET_LSIZE(gbp, lsize);
1586 			BP_SET_PSIZE(gbp, lsize);
1587 			BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF);
1588 			gbp->blk_birth = txg;
1589 			zio_nowait(zio_rewrite(zio, spa,
1590 			    zio->io_checksum, txg, gbp,
1591 			    (char *)zio->io_data + loff, lsize,
1592 			    zio_write_allocate_gang_member_done, NULL,
1593 			    zio->io_priority,
1594 			    zio->io_flags & ZIO_FLAG_GANG_INHERIT,
1595 			    &zio->io_bookmark));
1596 		} else {
1597 			lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE);
1598 			ASSERT(lsize != SPA_MINBLOCKSIZE);
1599 			zio_nowait(zio_write_allocate(zio, spa,
1600 			    zio->io_checksum, txg, gbp,
1601 			    (char *)zio->io_data + loff, lsize,
1602 			    zio_write_allocate_gang_member_done, NULL,
1603 			    zio->io_priority,
1604 			    zio->io_flags & ZIO_FLAG_GANG_INHERIT));
1605 		}
1606 	}
1607 
1608 	ASSERT(resid == 0 && loff == zio->io_size);
1609 
1610 	zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE;
1611 
1612 	zio_push_transform(zio, gbh, gsize, gsize);
1613 	/*
1614 	 * As much as we'd like this to be zio_wait_children_ready(),
1615 	 * updating our ASIZE doesn't happen until the io_done callback,
1616 	 * so we have to wait for that to finish in order for our BP
1617 	 * to be stable.
1618 	 */
1619 	zio_wait_children_done(zio);
1620 	return (0);
1621 }
1622 
1623 /*
1624  * ==========================================================================
1625  * Allocate and free blocks
1626  * ==========================================================================
1627  */
1628 static void
1629 zio_dva_allocate(zio_t *zio)
1630 {
1631 	spa_t *spa = zio->io_spa;
1632 	metaslab_class_t *mc = spa->spa_normal_class;
1633 	blkptr_t *bp = zio->io_bp;
1634 	int error;
1635 
1636 	ASSERT(BP_IS_HOLE(bp));
1637 	ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
1638 	ASSERT3U(zio->io_ndvas, >, 0);
1639 	ASSERT3U(zio->io_ndvas, <=, spa_max_replication(spa));
1640 
1641 	/* For testing, make some blocks above a certain size be gang blocks */
1642 	if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) {
1643 		error = zio_write_allocate_gang_members(zio, mc);
1644 		if (error)
1645 			zio->io_error = error;
1646 		return;
1647 	}
1648 
1649 	/*
1650 	 * For testing purposes, we force I/Os to retry. We don't allow
1651 	 * retries beyond the first pass since those I/Os are non-allocating
1652 	 * writes.
1653 	 */
1654 	if (zio_io_fail_shift &&
1655 	    spa_sync_pass(zio->io_spa) <= zio_sync_pass.zp_rewrite &&
1656 	    zio_io_should_fail(zio_io_fail_shift))
1657 		zio->io_flags |= ZIO_FLAG_WRITE_RETRY;
1658 
1659 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
1660 
1661 	error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_ndvas,
1662 	    zio->io_txg, NULL, B_FALSE);
1663 
1664 	if (error == 0) {
1665 		bp->blk_birth = zio->io_txg;
1666 	} else if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
1667 		error = zio_write_allocate_gang_members(zio, mc);
1668 		if (error == 0)
1669 			return;
1670 		zio->io_error = error;
1671 	} else {
1672 		zio->io_error = error;
1673 	}
1674 	zio_next_stage(zio);
1675 }
1676 
1677 static void
1678 zio_dva_free(zio_t *zio)
1679 {
1680 	blkptr_t *bp = zio->io_bp;
1681 
1682 	metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE);
1683 
1684 	BP_ZERO(bp);
1685 
1686 	zio_next_stage(zio);
1687 }
1688 
1689 static void
1690 zio_dva_claim(zio_t *zio)
1691 {
1692 	zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
1693 
1694 	zio_next_stage(zio);
1695 }
1696 
1697 /*
1698  * ==========================================================================
1699  * Read and write to physical devices
1700  * ==========================================================================
1701  */
1702 
1703 static void
1704 zio_vdev_io_start(zio_t *zio)
1705 {
1706 	vdev_t *vd = zio->io_vd;
1707 	vdev_t *tvd = vd ? vd->vdev_top : NULL;
1708 	blkptr_t *bp = zio->io_bp;
1709 	uint64_t align;
1710 	spa_t *spa = zio->io_spa;
1711 
1712 	/*
1713 	 * If the pool is already in a failure state then just suspend
1714 	 * this IO until the problem is resolved. We will reissue them
1715 	 * at that time.
1716 	 */
1717 	if (spa_state(spa) == POOL_STATE_IO_FAILURE &&
1718 	    zio->io_type == ZIO_TYPE_WRITE) {
1719 		zio_vdev_suspend_io(zio);
1720 		return;
1721 	}
1722 
1723 	if (vd == NULL) {
1724 		/* The mirror_ops handle multiple DVAs in a single BP */
1725 		vdev_mirror_ops.vdev_op_io_start(zio);
1726 		return;
1727 	}
1728 
1729 	align = 1ULL << tvd->vdev_ashift;
1730 
1731 	if (zio->io_retries == 0 && vd == tvd)
1732 		zio->io_flags |= ZIO_FLAG_FAILFAST;
1733 
1734 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
1735 	    vd->vdev_children == 0) {
1736 		zio->io_flags |= ZIO_FLAG_PHYSICAL;
1737 		zio->io_offset += VDEV_LABEL_START_SIZE;
1738 	}
1739 
1740 	if (P2PHASE(zio->io_size, align) != 0) {
1741 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
1742 		char *abuf = zio_buf_alloc(asize);
1743 		ASSERT(vd == tvd);
1744 		if (zio->io_type == ZIO_TYPE_WRITE) {
1745 			bcopy(zio->io_data, abuf, zio->io_size);
1746 			bzero(abuf + zio->io_size, asize - zio->io_size);
1747 		}
1748 		zio_push_transform(zio, abuf, asize, asize);
1749 		ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK));
1750 		zio->io_flags |= ZIO_FLAG_SUBBLOCK;
1751 	}
1752 
1753 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
1754 	ASSERT(P2PHASE(zio->io_size, align) == 0);
1755 	ASSERT(bp == NULL ||
1756 	    P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size);
1757 	ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE));
1758 
1759 	vdev_io_start(zio);
1760 
1761 	/* zio_next_stage_async() gets called from io completion interrupt */
1762 }
1763 
1764 static void
1765 zio_vdev_io_done(zio_t *zio)
1766 {
1767 	if (zio->io_vd == NULL)
1768 		/* The mirror_ops handle multiple DVAs in a single BP */
1769 		vdev_mirror_ops.vdev_op_io_done(zio);
1770 	else
1771 		vdev_io_done(zio);
1772 }
1773 
1774 /* XXPOLICY */
1775 boolean_t
1776 zio_should_retry(zio_t *zio)
1777 {
1778 	vdev_t *vd = zio->io_vd;
1779 
1780 	if (zio->io_error == 0)
1781 		return (B_FALSE);
1782 	if (zio->io_delegate_list != NULL)
1783 		return (B_FALSE);
1784 	if (vd && vd != vd->vdev_top)
1785 		return (B_FALSE);
1786 	if (zio->io_flags & ZIO_FLAG_DONT_RETRY)
1787 		return (B_FALSE);
1788 	if (zio->io_retries > 0)
1789 		return (B_FALSE);
1790 
1791 	return (B_TRUE);
1792 }
1793 
1794 static void
1795 zio_vdev_io_assess(zio_t *zio)
1796 {
1797 	vdev_t *vd = zio->io_vd;
1798 	vdev_t *tvd = vd ? vd->vdev_top : NULL;
1799 
1800 	ASSERT(zio->io_vsd == NULL);
1801 
1802 	if (zio->io_flags & ZIO_FLAG_SUBBLOCK) {
1803 		void *abuf;
1804 		uint64_t asize;
1805 		ASSERT(vd == tvd);
1806 		zio_pop_transform(zio, &abuf, &asize, &asize);
1807 		if (zio->io_type == ZIO_TYPE_READ)
1808 			bcopy(abuf, zio->io_data, zio->io_size);
1809 		zio_buf_free(abuf, asize);
1810 		zio->io_flags &= ~ZIO_FLAG_SUBBLOCK;
1811 	}
1812 
1813 	if (zio_injection_enabled && !zio->io_error)
1814 		zio->io_error = zio_handle_fault_injection(zio, EIO);
1815 
1816 	/*
1817 	 * If the I/O failed, determine whether we should attempt to retry it.
1818 	 */
1819 	/* XXPOLICY */
1820 	if (zio_should_retry(zio)) {
1821 		ASSERT(tvd == vd);
1822 
1823 		zio->io_retries++;
1824 		zio->io_error = 0;
1825 		zio->io_flags &= ZIO_FLAG_VDEV_INHERIT |
1826 		    ZIO_FLAG_CONFIG_GRABBED;
1827 		/* XXPOLICY */
1828 		zio->io_flags &= ~ZIO_FLAG_FAILFAST;
1829 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1830 		zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1;
1831 
1832 		dprintf("retry #%d for %s to %s offset %llx\n",
1833 		    zio->io_retries, zio_type_name[zio->io_type],
1834 		    vdev_description(vd), zio->io_offset);
1835 
1836 		zio_next_stage_async(zio);
1837 		return;
1838 	}
1839 
1840 	zio_next_stage(zio);
1841 }
1842 
1843 void
1844 zio_vdev_io_reissue(zio_t *zio)
1845 {
1846 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1847 	ASSERT(zio->io_error == 0);
1848 
1849 	zio->io_stage--;
1850 }
1851 
1852 void
1853 zio_vdev_io_redone(zio_t *zio)
1854 {
1855 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
1856 
1857 	zio->io_stage--;
1858 }
1859 
1860 void
1861 zio_vdev_io_bypass(zio_t *zio)
1862 {
1863 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1864 	ASSERT(zio->io_error == 0);
1865 
1866 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
1867 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1;
1868 }
1869 
1870 /*
1871  * ==========================================================================
1872  * Generate and verify checksums
1873  * ==========================================================================
1874  */
1875 static void
1876 zio_checksum_generate(zio_t *zio)
1877 {
1878 	int checksum = zio->io_checksum;
1879 	blkptr_t *bp = zio->io_bp;
1880 
1881 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
1882 
1883 	BP_SET_CHECKSUM(bp, checksum);
1884 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1885 
1886 	zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size);
1887 
1888 	zio_next_stage(zio);
1889 }
1890 
1891 static void
1892 zio_gang_checksum_generate(zio_t *zio)
1893 {
1894 	zio_cksum_t zc;
1895 	zio_gbh_phys_t *gbh = zio->io_data;
1896 
1897 	ASSERT(BP_IS_GANG(zio->io_bp));
1898 	ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE);
1899 
1900 	zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum);
1901 
1902 	zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size);
1903 
1904 	zio_next_stage(zio);
1905 }
1906 
1907 static void
1908 zio_checksum_verify(zio_t *zio)
1909 {
1910 	if (zio->io_bp != NULL) {
1911 		zio->io_error = zio_checksum_error(zio);
1912 		if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE))
1913 			zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
1914 			    zio->io_spa, zio->io_vd, zio, 0, 0);
1915 	}
1916 
1917 	zio_next_stage(zio);
1918 }
1919 
1920 /*
1921  * Called by RAID-Z to ensure we don't compute the checksum twice.
1922  */
1923 void
1924 zio_checksum_verified(zio_t *zio)
1925 {
1926 	zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
1927 }
1928 
1929 /*
1930  * Set the external verifier for a gang block based on stuff in the bp
1931  */
1932 void
1933 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp)
1934 {
1935 	blkptr_t *bp = zio->io_bp;
1936 
1937 	zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp));
1938 	zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp));
1939 	zcp->zc_word[2] = bp->blk_birth;
1940 	zcp->zc_word[3] = 0;
1941 }
1942 
1943 /*
1944  * ==========================================================================
1945  * Define the pipeline
1946  * ==========================================================================
1947  */
1948 typedef void zio_pipe_stage_t(zio_t *zio);
1949 
1950 static void
1951 zio_badop(zio_t *zio)
1952 {
1953 	panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio);
1954 }
1955 
1956 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = {
1957 	zio_badop,
1958 	zio_wait_children_ready,
1959 	zio_write_compress,
1960 	zio_checksum_generate,
1961 	zio_gang_pipeline,
1962 	zio_get_gang_header,
1963 	zio_rewrite_gang_members,
1964 	zio_free_gang_members,
1965 	zio_claim_gang_members,
1966 	zio_dva_allocate,
1967 	zio_dva_free,
1968 	zio_dva_claim,
1969 	zio_gang_checksum_generate,
1970 	zio_ready,
1971 	zio_read_init,
1972 	zio_vdev_io_start,
1973 	zio_vdev_io_done,
1974 	zio_vdev_io_assess,
1975 	zio_wait_children_done,
1976 	zio_checksum_verify,
1977 	zio_read_gang_members,
1978 	zio_read_decompress,
1979 	zio_assess,
1980 	zio_done,
1981 	zio_badop
1982 };
1983 
1984 /*
1985  * Move an I/O to the next stage of the pipeline and execute that stage.
1986  * There's no locking on io_stage because there's no legitimate way for
1987  * multiple threads to be attempting to process the same I/O.
1988  */
1989 void
1990 zio_next_stage(zio_t *zio)
1991 {
1992 	uint32_t pipeline = zio->io_pipeline;
1993 
1994 	ASSERT(!MUTEX_HELD(&zio->io_lock));
1995 
1996 	if (zio->io_error) {
1997 		dprintf("zio %p vdev %s offset %llx stage %d error %d\n",
1998 		    zio, vdev_description(zio->io_vd),
1999 		    zio->io_offset, zio->io_stage, zio->io_error);
2000 		if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0)
2001 			pipeline &= ZIO_ERROR_PIPELINE_MASK;
2002 	}
2003 
2004 	while (((1U << ++zio->io_stage) & pipeline) == 0)
2005 		continue;
2006 
2007 	ASSERT(zio->io_stage <= ZIO_STAGE_DONE);
2008 	ASSERT(zio->io_stalled == 0);
2009 
2010 	/*
2011 	 * See the comment in zio_next_stage_async() about per-CPU taskqs.
2012 	 */
2013 	if (((1U << zio->io_stage) & zio->io_async_stages) &&
2014 	    (zio->io_stage == ZIO_STAGE_WRITE_COMPRESS) &&
2015 	    !(zio->io_flags & ZIO_FLAG_METADATA)) {
2016 		taskq_t *tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type];
2017 		(void) taskq_dispatch(tq,
2018 		    (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP);
2019 	} else {
2020 		zio_pipeline[zio->io_stage](zio);
2021 	}
2022 }
2023 
2024 void
2025 zio_next_stage_async(zio_t *zio)
2026 {
2027 	taskq_t *tq;
2028 	uint32_t pipeline = zio->io_pipeline;
2029 
2030 	ASSERT(!MUTEX_HELD(&zio->io_lock));
2031 
2032 	if (zio->io_error) {
2033 		dprintf("zio %p vdev %s offset %llx stage %d error %d\n",
2034 		    zio, vdev_description(zio->io_vd),
2035 		    zio->io_offset, zio->io_stage, zio->io_error);
2036 		if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0)
2037 			pipeline &= ZIO_ERROR_PIPELINE_MASK;
2038 	}
2039 
2040 	while (((1U << ++zio->io_stage) & pipeline) == 0)
2041 		continue;
2042 
2043 	ASSERT(zio->io_stage <= ZIO_STAGE_DONE);
2044 	ASSERT(zio->io_stalled == 0);
2045 
2046 	/*
2047 	 * For performance, we'll probably want two sets of task queues:
2048 	 * per-CPU issue taskqs and per-CPU completion taskqs.  The per-CPU
2049 	 * part is for read performance: since we have to make a pass over
2050 	 * the data to checksum it anyway, we want to do this on the same CPU
2051 	 * that issued the read, because (assuming CPU scheduling affinity)
2052 	 * that thread is probably still there.  Getting this optimization
2053 	 * right avoids performance-hostile cache-to-cache transfers.
2054 	 *
2055 	 * Note that having two sets of task queues is also necessary for
2056 	 * correctness: if all of the issue threads get bogged down waiting
2057 	 * for dependent reads (e.g. metaslab freelist) to complete, then
2058 	 * there won't be any threads available to service I/O completion
2059 	 * interrupts.
2060 	 */
2061 	if ((1U << zio->io_stage) & zio->io_async_stages) {
2062 		if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE)
2063 			tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type];
2064 		else
2065 			tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type];
2066 		(void) taskq_dispatch(tq,
2067 		    (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP);
2068 	} else {
2069 		zio_pipeline[zio->io_stage](zio);
2070 	}
2071 }
2072 
2073 void
2074 zio_resubmit_stage_async(void *arg)
2075 {
2076 	zio_t *zio = (zio_t *)(uintptr_t)arg;
2077 
2078 	zio_next_stage_async(zio);
2079 }
2080 
2081 static boolean_t
2082 zio_io_should_fail(uint16_t range)
2083 {
2084 	static uint16_t	allocs = 0;
2085 
2086 	return (P2PHASE(allocs++, 1U<<range) == 0);
2087 }
2088 
2089 /*
2090  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2091  */
2092 int
2093 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp,
2094     uint64_t txg)
2095 {
2096 	int error;
2097 
2098 	spa_config_enter(spa, RW_READER, FTAG);
2099 
2100 	if (zio_zil_fail_shift && zio_io_should_fail(zio_zil_fail_shift)) {
2101 		spa_config_exit(spa, FTAG);
2102 		return (ENOSPC);
2103 	}
2104 
2105 	/*
2106 	 * We were passed the previous log block's DVA in bp->blk_dva[0].
2107 	 * We use that as a hint for which vdev to allocate from next.
2108 	 */
2109 	error = metaslab_alloc(spa, spa->spa_log_class, size,
2110 	    new_bp, 1, txg, old_bp, B_TRUE);
2111 
2112 	if (error)
2113 		error = metaslab_alloc(spa, spa->spa_normal_class, size,
2114 		    new_bp, 1, txg, old_bp, B_TRUE);
2115 
2116 	if (error == 0) {
2117 		BP_SET_LSIZE(new_bp, size);
2118 		BP_SET_PSIZE(new_bp, size);
2119 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2120 		BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG);
2121 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2122 		BP_SET_LEVEL(new_bp, 0);
2123 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2124 		new_bp->blk_birth = txg;
2125 	}
2126 
2127 	spa_config_exit(spa, FTAG);
2128 
2129 	return (error);
2130 }
2131 
2132 /*
2133  * Free an intent log block.  We know it can't be a gang block, so there's
2134  * nothing to do except metaslab_free() it.
2135  */
2136 void
2137 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg)
2138 {
2139 	ASSERT(!BP_IS_GANG(bp));
2140 
2141 	spa_config_enter(spa, RW_READER, FTAG);
2142 
2143 	metaslab_free(spa, bp, txg, B_FALSE);
2144 
2145 	spa_config_exit(spa, FTAG);
2146 }
2147 
2148 /*
2149  * start an async flush of the write cache for this vdev
2150  */
2151 void
2152 zio_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio)
2153 {
2154 	vdev_t *vd;
2155 
2156 	/*
2157 	 * Lock out configuration changes.
2158 	 */
2159 	spa_config_enter(spa, RW_READER, FTAG);
2160 
2161 	if (*zio == NULL)
2162 		*zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
2163 
2164 	vd = vdev_lookup_top(spa, vdev);
2165 	ASSERT(vd);
2166 
2167 	(void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE,
2168 	    NULL, NULL, ZIO_PRIORITY_NOW,
2169 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
2170 
2171 	spa_config_exit(spa, FTAG);
2172 }
2173