1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 #pragma ident "%Z%%M% %I% %E% SMI"
28
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/cred.h>
32 #include <sys/modctl.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/sysmacros.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stat.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/file.h>
41 #include <sys/kstat.h>
42 #include <sys/port_impl.h>
43 #include <sys/task.h>
44 #include <sys/project.h>
45
46 /*
47 * Event Ports can be shared across threads or across processes.
48 * Every thread/process can use an own event port or a group of them
49 * can use a single port. A major request was also to get the ability
50 * to submit user-defined events to a port. The idea of the
51 * user-defined events is to use the event ports for communication between
52 * threads/processes (like message queues). User defined-events are queued
53 * in a port with the same priority as other event types.
54 *
55 * Events are delivered only once. The thread/process which is waiting
56 * for events with the "highest priority" (priority here is related to the
57 * internal strategy to wakeup waiting threads) will retrieve the event,
58 * all other threads/processes will not be notified. There is also
59 * the requirement to have events which should be submitted immediately
60 * to all "waiting" threads. That is the main task of the alert event.
61 * The alert event is submitted by the application to a port. The port
62 * changes from a standard mode to the alert mode. Now all waiting threads
63 * will be awaken immediately and they will return with the alert event.
64 * Threads trying to retrieve events from a port in alert mode will
65 * return immediately with the alert event.
66 *
67 *
68 * An event port is like a kernel queue, which accept events submitted from
69 * user level as well as events submitted from kernel sub-systems. Sub-systems
70 * able to submit events to a port are the so-called "event sources".
71 * Current event sources:
72 * PORT_SOURCE_AIO : events submitted per transaction completion from
73 * POSIX-I/O framework.
74 * PORT_SOURCE_TIMER : events submitted when a timer fires
75 * (see timer_create(3RT)).
76 * PORT_SOURCE_FD : events submitted per file descriptor (see poll(2)).
77 * PORT_SOURCE_ALERT : events submitted from user. This is not really a
78 * single event, this is actually a port mode
79 * (see port_alert(3c)).
80 * PORT_SOURCE_USER : events submitted by applications with
81 * port_send(3c) or port_sendn(3c).
82 * PORT_SOURCE_FILE : events submitted per file being watched for file
83 * change events (see port_create(3c).
84 *
85 * There is a user API implemented in the libc library as well as a
86 * kernel API implemented in port_subr.c in genunix.
87 * The available user API functions are:
88 * port_create() : create a port as a file descriptor of portfs file system
89 * The standard close(2) function closes a port.
90 * port_associate() : associate a file descriptor with a port to be able to
91 * retrieve events from that file descriptor.
92 * port_dissociate(): remove the association of a file descriptor with a port.
93 * port_alert() : set/unset a port in alert mode
94 * port_send() : send an event of type PORT_SOURCE_USER to a port
95 * port_sendn() : send an event of type PORT_SOURCE_USER to a list of ports
96 * port_get() : retrieve a single event from a port
97 * port_getn() : retrieve a list of events from a port
98 *
99 * The available kernel API functions are:
100 * port_allocate_event(): allocate an event slot/structure of/from a port
101 * port_init_event() : set event data in the event structure
102 * port_send_event() : send event to a port
103 * port_free_event() : deliver allocated slot/structure back to a port
104 * port_associate_ksource(): associate a kernel event source with a port
105 * port_dissociate_ksource(): dissociate a kernel event source from a port
106 *
107 * The libc implementation consists of small functions which pass the
108 * arguments to the kernel using the "portfs" system call. It means, all the
109 * synchronisation work is being done in the kernel. The "portfs" system
110 * call loads the portfs file system into the kernel.
111 *
112 * PORT CREATION
113 * The first function to be used is port_create() which internally creates
114 * a vnode and a portfs node. The portfs node is represented by the port_t
115 * structure, which again includes all the data necessary to control a port.
116 * port_create() returns a file descriptor, which needs to be used in almost
117 * all other event port functions.
118 * The maximum number of ports per system is controlled by the resource
119 * control: project:port-max-ids.
120 *
121 * EVENT GENERATION
122 * The second step is the triggering of events, which could be sent to a port.
123 * Every event source implements an own method to generate events for a port:
124 * PORT_SOURCE_AIO:
125 * The sigevent structure of the standard POSIX-IO functions
126 * was extended by an additional notification type.
127 * Standard notification types:
128 * SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD
129 * Event ports introduced now SIGEV_PORT.
130 * The notification type SIGEV_PORT specifies that a structure
131 * of type port_notify_t has to be attached to the sigev_value.
132 * The port_notify_t structure contains the event port file
133 * descriptor and a user-defined pointer.
134 * Internally the AIO implementation will use the kernel API
135 * functions to allocate an event port slot per transaction (aiocb)
136 * and sent the event to the port as soon as the transaction completes.
137 * All the events submitted per transaction are of type
138 * PORT_SOURCE_AIO.
139 * PORT_SOURCE_TIMER:
140 * The timer_create() function uses the same method as the
141 * PORT_SOURCE_AIO event source. It also uses the sigevent structure
142 * to deliver the port information.
143 * Internally the timer code will allocate a single event slot/struct
144 * per timer and it will send the timer event as soon as the timer
145 * fires. If the timer-fired event is not delivered to the application
146 * before the next period elapsed, then an overrun counter will be
147 * incremented. The timer event source uses a callback function to
148 * detect the delivery of the event to the application. At that time
149 * the timer callback function will update the event overrun counter.
150 * PORT_SOURCE_FD:
151 * This event source uses the port_associate() function to allocate
152 * an event slot/struct from a port. The application defines in the
153 * events argument of port_associate() the type of events which it is
154 * interested on.
155 * The internal pollwakeup() function is used by all the file
156 * systems --which are supporting the VOP_POLL() interface- to notify
157 * the upper layer (poll(2), devpoll(7d) and now event ports) about
158 * the event triggered (see valid events in poll(2)).
159 * The pollwakeup() function forwards the event to the layer registered
160 * to receive the current event.
161 * The port_dissociate() function can be used to free the allocated
162 * event slot from the port. Anyway, file descriptors deliver events
163 * only one time and remain deactivated until the application
164 * reactivates the association of a file descriptor with port_associate().
165 * If an associated file descriptor is closed then the file descriptor
166 * will be dissociated automatically from the port.
167 *
168 * PORT_SOURCE_ALERT:
169 * This event type is generated when the port was previously set in
170 * alert mode using the port_alert() function.
171 * A single alert event is delivered to every thread which tries to
172 * retrieve events from a port.
173 * PORT_SOURCE_USER:
174 * This type of event is generated from user level using the port_send()
175 * function to send a user event to a port or the port_sendn() function
176 * to send an event to a list of ports.
177 * PORT_SOURCE_FILE:
178 * This event source uses the port_associate() interface to register
179 * a file to be monitored for changes. The file name that needs to be
180 * monitored is specified in the file_obj_t structure, a pointer to which
181 * is passed as an argument. The event types to be monitored are specified
182 * in the events argument.
183 * A file events monitor is represented internal per port per object
184 * address(the file_obj_t pointer). Which means there can be multiple
185 * watches registered on the same file using different file_obj_t
186 * structure pointer. With the help of the FEM(File Event Monitoring)
187 * hooks, the file's vnode ops are intercepted and relevant events
188 * delivered. The port_dissociate() function is used to de-register a
189 * file events monitor on a file. When the specified file is
190 * removed/renamed, the file events watch/monitor is automatically
191 * removed.
192 *
193 * EVENT DELIVERY / RETRIEVING EVENTS
194 * Events remain in the port queue until:
195 * - the application uses port_get() or port_getn() to retrieve events,
196 * - the event source cancel the event,
197 * - the event port is closed or
198 * - the process exits.
199 * The maximal number of events in a port queue is the maximal number
200 * of event slots/structures which can be allocated by event sources.
201 * The allocation of event slots/structures is controlled by the resource
202 * control: process.port-max-events.
203 * The port_get() function retrieves a single event and the port_getn()
204 * function retrieves a list of events.
205 * Events are classified as shareable and non-shareable events across processes.
206 * Non-shareable events are invisible for the port_get(n)() functions of
207 * processes other than the owner of the event.
208 * Shareable event types are:
209 * PORT_SOURCE_USER events
210 * This type of event is unconditionally shareable and without
211 * limitations. If the parent process sends a user event and closes
212 * the port afterwards, the event remains in the port and the child
213 * process will still be able to retrieve the user event.
214 * PORT_SOURCE_ALERT events
215 * This type of event is shareable between processes.
216 * Limitation: The alert mode of the port is removed if the owner
217 * (process which set the port in alert mode) of the
218 * alert event closes the port.
219 * PORT_SOURCE_FD events
220 * This type of event is conditional shareable between processes.
221 * After fork(2) all forked file descriptors are shareable between
222 * the processes. The child process is allowed to retrieve events
223 * from the associated file descriptors and it can also re-associate
224 * the fd with the port.
225 * Limitations: The child process is not allowed to dissociate
226 * the file descriptor from the port. Only the
227 * owner (process) of the association is allowed to
228 * dissociate the file descriptor from the port.
229 * If the owner of the association closes the port
230 * the association will be removed.
231 * PORT_SOURCE_AIO events
232 * This type of event is not shareable between processes.
233 * PORT_SOURCE_TIMER events
234 * This type of event is not shareable between processes.
235 * PORT_SOURCE_FILE events
236 * This type of event is not shareable between processes.
237 *
238 * FORK BEHAVIOUR
239 * On fork(2) the child process inherits all opened file descriptors from
240 * the parent process. This is also valid for port file descriptors.
241 * Associated file descriptors with a port maintain the association across the
242 * fork(2). It means, the child process gets full access to the port and
243 * it can retrieve events from all common associated file descriptors.
244 * Events of file descriptors created and associated with a port after the
245 * fork(2) are non-shareable and can only be retrieved by the same process.
246 *
247 * If the parent or the child process closes an exported port (using fork(2)
248 * or I_SENDFD) all the file descriptors associated with the port by the
249 * process will be dissociated from the port. Events of dissociated file
250 * descriptors as well as all non-shareable events will be discarded.
251 * The other process can continue working with the port as usual.
252 *
253 * CLOSING A PORT
254 * close(2) has to be used to close a port. See FORK BEHAVIOUR for details.
255 *
256 * PORT EVENT STRUCTURES
257 * The global control structure of the event ports framework is port_control_t.
258 * port_control_t keeps track of the number of created ports in the system.
259 * The cache of the port event structures is also located in port_control_t.
260 *
261 * On port_create() the vnode and the portfs node is also created.
262 * The portfs node is represented by the port_t structure.
263 * The port_t structure manages all port specific tasks:
264 * - management of resource control values
265 * - port VOP_POLL interface
266 * - creation time
267 * - uid and gid of the port
268 *
269 * The port_t structure contains the port_queue_t structure.
270 * The port_queue_t structure contains all the data necessary for the
271 * queue management:
272 * - locking
273 * - condition variables
274 * - event counters
275 * - submitted events (represented by port_kevent_t structures)
276 * - threads waiting for event delivery (check portget_t structure)
277 * - PORT_SOURCE_FD cache (managed by the port_fdcache_t structure)
278 * - event source management (managed by the port_source_t structure)
279 * - alert mode management (check port_alert_t structure)
280 *
281 * EVENT MANAGEMENT
282 * The event port file system creates a kmem_cache for internal allocation of
283 * event port structures.
284 *
285 * 1. Event source association with a port:
286 * The first step to do for event sources is to get associated with a port
287 * using the port_associate_ksource() function or adding an entry to the
288 * port_ksource_tab[]. An event source can get dissociated from a port
289 * using the port_dissociate_ksource() function. An entry in the
290 * port_ksource_tab[] implies that the source will be associated
291 * automatically with every new created port.
292 * The event source can deliver a callback function, which is used by the
293 * port to notify the event source about close(2). The idea is that
294 * in such a case the event source should free all allocated resources
295 * and it must return to the port all allocated slots/structures.
296 * The port_close() function will wait until all allocated event
297 * structures/slots are returned to the port.
298 * The callback function is not necessary when the event source does not
299 * maintain local resources, a second condition is that the event source
300 * can guarantee that allocated event slots will be returned without
301 * delay to the port (it will not block and sleep somewhere).
302 *
303 * 2. Reservation of an event slot / event structure
304 * The event port reliability is based on the reservation of an event "slot"
305 * (allocation of an event structure) by the event source as part of the
306 * application call. If the maximal number of event slots is exhausted then
307 * the event source can return a corresponding error code to the application.
308 *
309 * The port_alloc_event() function has to be used by event sources to
310 * allocate an event slot (reserve an event structure). The port_alloc_event()
311 * doesn not block and it will return a 0 value on success or an error code
312 * if it fails.
313 * An argument of port_alloc_event() is a flag which determines the behavior
314 * of the event after it was delivered to the application:
315 * PORT_ALLOC_DEFAULT : event slot becomes free after delivery to the
316 * application.
317 * PORT_ALLOC_PRIVATE : event slot remains under the control of the event
318 * source. This kind of slots can not be used for
319 * event delivery and should only be used internally
320 * by the event source.
321 * PORT_KEV_CACHED : event slot remains under the control of an event
322 * port cache. It does not become free after delivery
323 * to the application.
324 * PORT_ALLOC_SCACHED : event slot remains under the control of the event
325 * source. The event source takes the control over
326 * the slot after the event is delivered to the
327 * application.
328 *
329 * 3. Delivery of events to the event port
330 * Earlier allocated event structure/slot has to be used to deliver
331 * event data to the port. Event source has to use the function
332 * port_send_event(). The single argument is a pointer to the previously
333 * reserved event structure/slot.
334 * The portkev_events field of the port_kevent_t structure can be updated/set
335 * in two ways:
336 * 1. using the port_set_event() function, or
337 * 2. updating the portkev_events field out of the callback function:
338 * The event source can deliver a callback function to the port as an
339 * argument of port_init_event().
340 * One of the arguments of the callback function is a pointer to the
341 * events field, which will be delivered to the application.
342 * (see Delivery of events to the application).
343 * Event structures/slots can be delivered to the event port only one time,
344 * they remain blocked until the data is delivered to the application and the
345 * slot becomes free or it is delivered back to the event source
346 * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above
347 * is at the same time the indicator for the event source that the event
348 * structure/slot is free for reuse.
349 *
350 * 4. Delivery of events to the application
351 * The events structures/slots delivered by event sources remain in the
352 * port queue until they are retrieved by the application or the port
353 * is closed (exit(2) also closes all opened file descriptors)..
354 * The application uses port_get() or port_getn() to retrieve events from
355 * a port. port_get() retrieves a single event structure/slot and port_getn()
356 * retrieves a list of event structures/slots.
357 * Both functions are able to poll for events and return immediately or they
358 * can specify a timeout value.
359 * Before the events are delivered to the application they are moved to a
360 * second temporary internal queue. The idea is to avoid lock collisions or
361 * contentions of the global queue lock.
362 * The global queue lock is used every time when an event source delivers
363 * new events to the port.
364 * The port_get() and port_getn() functions
365 * a) retrieve single events from the temporary queue,
366 * b) prepare the data to be passed to the application memory,
367 * c) activate the callback function of the event sources:
368 * - to get the latest event data,
369 * - the event source can free all allocated resources associated with the
370 * current event,
371 * - the event source can re-use the current event slot/structure
372 * - the event source can deny the delivery of the event to the application
373 * (e.g. because of the wrong process).
374 * d) put the event back to the temporary queue if the event delivery was denied
375 * e) repeat a) until d) as long as there are events in the queue and
376 * there is enough user space available.
377 *
378 * The loop described above could block for a very long time the global mutex,
379 * to avoid that a second mutex was introduced to synchronized concurrent
380 * threads accessing the temporary queue.
381 */
382
383 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
384 uintptr_t);
385
386 static struct sysent port_sysent = {
387 6,
388 SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
389 (int (*)())portfs,
390 };
391
392 static struct modlsys modlsys = {
393 &mod_syscallops, "event ports", &port_sysent
394 };
395
396 #ifdef _SYSCALL32_IMPL
397
398 static int64_t
399 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4,
400 uint32_t arg5, uint32_t arg6);
401
402 static struct sysent port_sysent32 = {
403 6,
404 SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
405 (int (*)())portfs32,
406 };
407
408 static struct modlsys modlsys32 = {
409 &mod_syscallops32,
410 "32-bit event ports syscalls",
411 &port_sysent32
412 };
413 #endif /* _SYSCALL32_IMPL */
414
415 static struct modlinkage modlinkage = {
416 MODREV_1,
417 &modlsys,
418 #ifdef _SYSCALL32_IMPL
419 &modlsys32,
420 #endif
421 NULL
422 };
423
424 port_kstat_t port_kstat = {
425 { "ports", KSTAT_DATA_UINT32 }
426 };
427
428 dev_t portdev;
429 struct vnodeops *port_vnodeops;
430 struct vfs port_vfs;
431
432 extern rctl_hndl_t rc_process_portev;
433 extern rctl_hndl_t rc_project_portids;
434 extern void aio_close_port(void *, int, pid_t, int);
435
436 /*
437 * This table contains a list of event sources which need a static
438 * association with a port (every port).
439 * The last NULL entry in the table is required to detect "end of table".
440 */
441 struct port_ksource port_ksource_tab[] = {
442 {PORT_SOURCE_AIO, aio_close_port, NULL, NULL},
443 {0, NULL, NULL, NULL}
444 };
445
446 /* local functions */
447 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *,
448 port_gettimer_t *);
449 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *);
450 static int port_alert(port_t *, int, int, void *);
451 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *);
452 static int port_send(port_t *, int, int, void *);
453 static int port_create(int *);
454 static int port_get_alert(port_alert_t *, port_event_t *);
455 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *);
456 static int *port_errorn(int *, int, int, int);
457 static int port_noshare(void *, int *, pid_t, int, void *);
458 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *,
459 int);
460 static void port_init(port_t *);
461 static void port_remove_alert(port_queue_t *);
462 static void port_add_ksource_local(port_t *, port_ksource_t *);
463 static void port_check_return_cond(port_queue_t *);
464 static void port_dequeue_thread(port_queue_t *, portget_t *);
465 static portget_t *port_queue_thread(port_queue_t *, uint_t);
466 static void port_kstat_init(void);
467
468 #ifdef _SYSCALL32_IMPL
469 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *);
470 #endif
471
472 int
_init(void)473 _init(void)
474 {
475 static const fs_operation_def_t port_vfsops_template[] = {
476 NULL, NULL
477 };
478 extern const fs_operation_def_t port_vnodeops_template[];
479 vfsops_t *port_vfsops;
480 int error;
481 major_t major;
482
483 if ((major = getudev()) == (major_t)-1)
484 return (ENXIO);
485 portdev = makedevice(major, 0);
486
487 /* Create a dummy vfs */
488 error = vfs_makefsops(port_vfsops_template, &port_vfsops);
489 if (error) {
490 cmn_err(CE_WARN, "port init: bad vfs ops");
491 return (error);
492 }
493 vfs_setops(&port_vfs, port_vfsops);
494 port_vfs.vfs_flag = VFS_RDONLY;
495 port_vfs.vfs_dev = portdev;
496 vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0);
497
498 error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops);
499 if (error) {
500 vfs_freevfsops(port_vfsops);
501 cmn_err(CE_WARN, "port init: bad vnode ops");
502 return (error);
503 }
504
505 mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL);
506 port_control.pc_nents = 0; /* number of active ports */
507
508 /* create kmem_cache for port event structures */
509 port_control.pc_cache = kmem_cache_create("port_cache",
510 sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
511
512 port_kstat_init(); /* init port kstats */
513 return (mod_install(&modlinkage));
514 }
515
516 int
_info(struct modinfo * modinfop)517 _info(struct modinfo *modinfop)
518 {
519 return (mod_info(&modlinkage, modinfop));
520 }
521
522 /*
523 * System call wrapper for all port related system calls from 32-bit programs.
524 */
525 #ifdef _SYSCALL32_IMPL
526 static int64_t
portfs32(uint32_t opcode,int32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4)527 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
528 uint32_t a4)
529 {
530 int64_t error;
531
532 switch (opcode & PORT_CODE_MASK) {
533 case PORT_GET:
534 error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4);
535 break;
536 case PORT_SENDN:
537 error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4);
538 break;
539 default:
540 error = portfs(opcode, a0, a1, a2, a3, a4);
541 break;
542 }
543 return (error);
544 }
545 #endif /* _SYSCALL32_IMPL */
546
547 /*
548 * System entry point for port functions.
549 * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE).
550 * The libc uses PORT_SYS_NOPORT in functions which do not deliver a
551 * port file descriptor as first argument.
552 */
553 static int64_t
portfs(int opcode,uintptr_t a0,uintptr_t a1,uintptr_t a2,uintptr_t a3,uintptr_t a4)554 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3,
555 uintptr_t a4)
556 {
557 rval_t r;
558 port_t *pp;
559 int error = 0;
560 uint_t nget;
561 file_t *fp;
562 port_gettimer_t port_timer;
563
564 r.r_vals = 0;
565 if (opcode & PORT_SYS_NOPORT) {
566 opcode &= PORT_CODE_MASK;
567 if (opcode == PORT_SENDN) {
568 error = port_sendn((int *)a0, (int *)a1, (uint_t)a2,
569 (int)a3, (void *)a4, (uint_t *)&r.r_val1);
570 if (error && (error != EIO))
571 return ((int64_t)set_errno(error));
572 return (r.r_vals);
573 }
574
575 if (opcode == PORT_CREATE) {
576 error = port_create(&r.r_val1);
577 if (error)
578 return ((int64_t)set_errno(error));
579 return (r.r_vals);
580 }
581 }
582
583 /* opcodes using port as first argument (a0) */
584
585 if ((fp = getf((int)a0)) == NULL)
586 return ((uintptr_t)set_errno(EBADF));
587
588 if (fp->f_vnode->v_type != VPORT) {
589 releasef((int)a0);
590 return ((uintptr_t)set_errno(EBADFD));
591 }
592
593 pp = VTOEP(fp->f_vnode);
594
595 switch (opcode & PORT_CODE_MASK) {
596 case PORT_GET:
597 {
598 /* see PORT_GETN description */
599 struct timespec timeout;
600
601 port_timer.pgt_flags = PORTGET_ONE;
602 port_timer.pgt_loop = 0;
603 port_timer.pgt_rqtp = NULL;
604 if (a4 != NULL) {
605 port_timer.pgt_timeout = &timeout;
606 timeout.tv_sec = (time_t)a2;
607 timeout.tv_nsec = (long)a3;
608 } else {
609 port_timer.pgt_timeout = NULL;
610 }
611 do {
612 nget = 1;
613 error = port_getn(pp, (port_event_t *)a1, 1,
614 (uint_t *)&nget, &port_timer);
615 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
616 break;
617 }
618 case PORT_GETN:
619 {
620 /*
621 * port_getn() can only retrieve own or shareable events from
622 * other processes. The port_getn() function remains in the
623 * kernel until own or shareable events are available or the
624 * timeout elapses.
625 */
626 port_timer.pgt_flags = 0;
627 port_timer.pgt_loop = 0;
628 port_timer.pgt_rqtp = NULL;
629 port_timer.pgt_timeout = (struct timespec *)a4;
630 do {
631 nget = a3;
632 error = port_getn(pp, (port_event_t *)a1, (uint_t)a2,
633 (uint_t *)&nget, &port_timer);
634 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
635 r.r_val1 = nget;
636 r.r_val2 = error;
637 releasef((int)a0);
638 if (error && error != ETIME)
639 return ((int64_t)set_errno(error));
640 return (r.r_vals);
641 }
642 case PORT_ASSOCIATE:
643 {
644 switch ((int)a1) {
645 case PORT_SOURCE_FD:
646 error = port_associate_fd(pp, (int)a1, (uintptr_t)a2,
647 (int)a3, (void *)a4);
648 break;
649 case PORT_SOURCE_FILE:
650 error = port_associate_fop(pp, (int)a1, (uintptr_t)a2,
651 (int)a3, (void *)a4);
652 break;
653 default:
654 error = EINVAL;
655 break;
656 }
657 break;
658 }
659 case PORT_SEND:
660 {
661 /* user-defined events */
662 error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2);
663 break;
664 }
665 case PORT_DISPATCH:
666 {
667 /*
668 * library events, blocking
669 * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ
670 * are currently allowed.
671 */
672 if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) {
673 error = EINVAL;
674 break;
675 }
676 error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2,
677 (uintptr_t)a3, (void *)a4);
678 break;
679 }
680 case PORT_DISSOCIATE:
681 {
682 switch ((int)a1) {
683 case PORT_SOURCE_FD:
684 error = port_dissociate_fd(pp, (uintptr_t)a2);
685 break;
686 case PORT_SOURCE_FILE:
687 error = port_dissociate_fop(pp, (uintptr_t)a2);
688 break;
689 default:
690 error = EINVAL;
691 break;
692 }
693 break;
694 }
695 case PORT_ALERT:
696 {
697 if ((int)a2) /* a2 = events */
698 error = port_alert(pp, (int)a1, (int)a2, (void *)a3);
699 else
700 port_remove_alert(&pp->port_queue);
701 break;
702 }
703 default:
704 error = EINVAL;
705 break;
706 }
707
708 releasef((int)a0);
709 if (error)
710 return ((int64_t)set_errno(error));
711 return (r.r_vals);
712 }
713
714 /*
715 * System call to create a port.
716 *
717 * The port_create() function creates a vnode of type VPORT per port.
718 * The port control data is associated with the vnode as vnode private data.
719 * The port_create() function returns an event port file descriptor.
720 */
721 static int
port_create(int * fdp)722 port_create(int *fdp)
723 {
724 port_t *pp;
725 vnode_t *vp;
726 struct file *fp;
727 proc_t *p = curproc;
728
729 /* initialize vnode and port private data */
730 pp = kmem_zalloc(sizeof (port_t), KM_SLEEP);
731
732 pp->port_vnode = vn_alloc(KM_SLEEP);
733 vp = EPTOV(pp);
734 vn_setops(vp, port_vnodeops);
735 vp->v_type = VPORT;
736 vp->v_vfsp = &port_vfs;
737 vp->v_data = (caddr_t)pp;
738
739 mutex_enter(&port_control.pc_mutex);
740 /*
741 * Retrieve the maximal number of event ports allowed per system from
742 * the resource control: project.port-max-ids.
743 */
744 mutex_enter(&p->p_lock);
745 if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p,
746 port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) {
747 mutex_exit(&p->p_lock);
748 vn_free(vp);
749 kmem_free(pp, sizeof (port_t));
750 mutex_exit(&port_control.pc_mutex);
751 return (EAGAIN);
752 }
753
754 /*
755 * Retrieve the maximal number of events allowed per port from
756 * the resource control: process.port-max-events.
757 */
758 pp->port_max_events = rctl_enforced_value(rc_process_portev,
759 p->p_rctls, p);
760 mutex_exit(&p->p_lock);
761
762 /* allocate a new user file descriptor and a file structure */
763 if (falloc(vp, 0, &fp, fdp)) {
764 /*
765 * If the file table is full, free allocated resources.
766 */
767 vn_free(vp);
768 kmem_free(pp, sizeof (port_t));
769 mutex_exit(&port_control.pc_mutex);
770 return (EMFILE);
771 }
772
773 mutex_exit(&fp->f_tlock);
774
775 pp->port_fd = *fdp;
776 port_control.pc_nents++;
777 p->p_portcnt++;
778 port_kstat.pks_ports.value.ui32++;
779 mutex_exit(&port_control.pc_mutex);
780
781 /* initializes port private data */
782 port_init(pp);
783 /* set user file pointer */
784 setf(*fdp, fp);
785 return (0);
786 }
787
788 /*
789 * port_init() initializes event port specific data
790 */
791 static void
port_init(port_t * pp)792 port_init(port_t *pp)
793 {
794 port_queue_t *portq;
795 port_ksource_t *pks;
796
797 mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL);
798 portq = &pp->port_queue;
799 mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL);
800 pp->port_flags |= PORT_INIT;
801
802 /*
803 * If it is not enough memory available to satisfy a user
804 * request using a single port_getn() call then port_getn()
805 * will reduce the size of the list to PORT_MAX_LIST.
806 */
807 pp->port_max_list = port_max_list;
808
809 /* Set timestamp entries required for fstat(2) requests */
810 gethrestime(&pp->port_ctime);
811 pp->port_uid = crgetuid(curproc->p_cred);
812 pp->port_gid = crgetgid(curproc->p_cred);
813
814 /* initialize port queue structs */
815 list_create(&portq->portq_list, sizeof (port_kevent_t),
816 offsetof(port_kevent_t, portkev_node));
817 list_create(&portq->portq_get_list, sizeof (port_kevent_t),
818 offsetof(port_kevent_t, portkev_node));
819 portq->portq_flags = 0;
820 pp->port_pid = curproc->p_pid;
821
822 /* Allocate cache skeleton for PORT_SOURCE_FD events */
823 portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP);
824 mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL);
825
826 /*
827 * Allocate cache skeleton for association of event sources.
828 */
829 mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL);
830 portq->portq_scache = kmem_zalloc(
831 PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP);
832
833 /*
834 * pre-associate some kernel sources with this port.
835 * The pre-association is required to create port_source_t
836 * structures for object association.
837 * Some sources can not get associated with a port before the first
838 * object association is requested. Another reason to pre_associate
839 * a particular source with a port is because of performance.
840 */
841
842 for (pks = port_ksource_tab; pks->pks_source != 0; pks++)
843 port_add_ksource_local(pp, pks);
844 }
845
846 /*
847 * The port_add_ksource_local() function is being used to associate
848 * event sources with every new port.
849 * The event sources need to be added to port_ksource_tab[].
850 */
851 static void
port_add_ksource_local(port_t * pp,port_ksource_t * pks)852 port_add_ksource_local(port_t *pp, port_ksource_t *pks)
853 {
854 port_source_t *pse;
855 port_source_t **ps;
856
857 mutex_enter(&pp->port_queue.portq_source_mutex);
858 ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)];
859 for (pse = *ps; pse != NULL; pse = pse->portsrc_next) {
860 if (pse->portsrc_source == pks->pks_source)
861 break;
862 }
863
864 if (pse == NULL) {
865 /* associate new source with the port */
866 pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP);
867 pse->portsrc_source = pks->pks_source;
868 pse->portsrc_close = pks->pks_close;
869 pse->portsrc_closearg = pks->pks_closearg;
870 pse->portsrc_cnt = 1;
871
872 pks->pks_portsrc = pse;
873 if (*ps != NULL)
874 pse->portsrc_next = (*ps)->portsrc_next;
875 *ps = pse;
876 }
877 mutex_exit(&pp->port_queue.portq_source_mutex);
878 }
879
880 /*
881 * The port_send() function sends an event of type "source" to a
882 * port. This function is non-blocking. An event can be sent to
883 * a port as long as the number of events per port does not achieve the
884 * maximal allowed number of events. The max. number of events per port is
885 * defined by the resource control process.max-port-events.
886 * This function is used by the port library function port_send()
887 * and port_dispatch(). The port_send(3c) function is part of the
888 * event ports API and submits events of type PORT_SOURCE_USER. The
889 * port_dispatch() function is project private and it is used by library
890 * functions to submit events of other types than PORT_SOURCE_USER
891 * (e.g. PORT_SOURCE_AIO).
892 */
893 static int
port_send(port_t * pp,int source,int events,void * user)894 port_send(port_t *pp, int source, int events, void *user)
895 {
896 port_kevent_t *pev;
897 int error;
898
899 error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev);
900 if (error)
901 return (error);
902
903 pev->portkev_object = 0;
904 pev->portkev_events = events;
905 pev->portkev_user = user;
906 pev->portkev_callback = NULL;
907 pev->portkev_arg = NULL;
908 pev->portkev_flags = 0;
909
910 port_send_event(pev);
911 return (0);
912 }
913
914 /*
915 * The port_noshare() function returns 0 if the current event was generated
916 * by the same process. Otherwise is returns a value other than 0 and the
917 * event should not be delivered to the current processe.
918 * The port_noshare() function is normally used by the port_dispatch()
919 * function. The port_dispatch() function is project private and can only be
920 * used within the event port project.
921 * Currently the libaio uses the port_dispatch() function to deliver events
922 * of types PORT_SOURCE_AIO.
923 */
924 /* ARGSUSED */
925 static int
port_noshare(void * arg,int * events,pid_t pid,int flag,void * evp)926 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp)
927 {
928 if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid)
929 return (1);
930 return (0);
931 }
932
933 /*
934 * The port_dispatch_event() function is project private and it is used by
935 * libraries involved in the project to deliver events to the port.
936 * port_dispatch will sleep and wait for enough resources to satisfy the
937 * request, if necessary.
938 * The library can specify if the delivered event is shareable with other
939 * processes (see PORT_SYS_NOSHARE flag).
940 */
941 static int
port_dispatch_event(port_t * pp,int opcode,int source,int events,uintptr_t object,void * user)942 port_dispatch_event(port_t *pp, int opcode, int source, int events,
943 uintptr_t object, void *user)
944 {
945 port_kevent_t *pev;
946 int error;
947
948 error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev);
949 if (error)
950 return (error);
951
952 pev->portkev_object = object;
953 pev->portkev_events = events;
954 pev->portkev_user = user;
955 pev->portkev_arg = NULL;
956 if (opcode & PORT_SYS_NOSHARE) {
957 pev->portkev_flags = PORT_KEV_NOSHARE;
958 pev->portkev_callback = port_noshare;
959 } else {
960 pev->portkev_flags = 0;
961 pev->portkev_callback = NULL;
962 }
963
964 port_send_event(pev);
965 return (0);
966 }
967
968
969 /*
970 * The port_sendn() function is the kernel implementation of the event
971 * port API function port_sendn(3c).
972 * This function is able to send an event to a list of event ports.
973 */
974 static int
port_sendn(int ports[],int errors[],uint_t nent,int events,void * user,uint_t * nget)975 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user,
976 uint_t *nget)
977 {
978 port_kevent_t *pev;
979 int errorcnt = 0;
980 int error = 0;
981 int count;
982 int port;
983 int *plist;
984 int *elist = NULL;
985 file_t *fp;
986 port_t *pp;
987
988 if (nent == 0 || nent > port_max_list)
989 return (EINVAL);
990
991 plist = kmem_alloc(nent * sizeof (int), KM_SLEEP);
992 if (copyin((void *)ports, plist, nent * sizeof (int))) {
993 kmem_free(plist, nent * sizeof (int));
994 return (EFAULT);
995 }
996
997 /*
998 * Scan the list for event port file descriptors and send the
999 * attached user event data embedded in a event of type
1000 * PORT_SOURCE_USER to every event port in the list.
1001 * If a list entry is not a valid event port then the corresponding
1002 * error code will be stored in the errors[] list with the same
1003 * list offset as in the ports[] list.
1004 */
1005
1006 for (count = 0; count < nent; count++) {
1007 port = plist[count];
1008 if ((fp = getf(port)) == NULL) {
1009 elist = port_errorn(elist, nent, EBADF, count);
1010 errorcnt++;
1011 continue;
1012 }
1013
1014 pp = VTOEP(fp->f_vnode);
1015 if (fp->f_vnode->v_type != VPORT) {
1016 releasef(port);
1017 elist = port_errorn(elist, nent, EBADFD, count);
1018 errorcnt++;
1019 continue;
1020 }
1021
1022 error = port_alloc_event_local(pp, PORT_SOURCE_USER,
1023 PORT_ALLOC_DEFAULT, &pev);
1024 if (error) {
1025 releasef(port);
1026 elist = port_errorn(elist, nent, error, count);
1027 errorcnt++;
1028 continue;
1029 }
1030
1031 pev->portkev_object = 0;
1032 pev->portkev_events = events;
1033 pev->portkev_user = user;
1034 pev->portkev_callback = NULL;
1035 pev->portkev_arg = NULL;
1036 pev->portkev_flags = 0;
1037
1038 port_send_event(pev);
1039 releasef(port);
1040 }
1041 if (errorcnt) {
1042 error = EIO;
1043 if (copyout(elist, (void *)errors, nent * sizeof (int)))
1044 error = EFAULT;
1045 kmem_free(elist, nent * sizeof (int));
1046 }
1047 *nget = nent - errorcnt;
1048 kmem_free(plist, nent * sizeof (int));
1049 return (error);
1050 }
1051
1052 static int *
port_errorn(int * elist,int nent,int error,int index)1053 port_errorn(int *elist, int nent, int error, int index)
1054 {
1055 if (elist == NULL)
1056 elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP);
1057 elist[index] = error;
1058 return (elist);
1059 }
1060
1061 /*
1062 * port_alert()
1063 * The port_alert() funcion is a high priority event and it is always set
1064 * on top of the queue. It is also delivered as single event.
1065 * flags:
1066 * - SET :overwrite current alert data
1067 * - UPDATE:set alert data or return EBUSY if alert mode is already set
1068 *
1069 * - set the ALERT flag
1070 * - wakeup all sleeping threads
1071 */
1072 static int
port_alert(port_t * pp,int flags,int events,void * user)1073 port_alert(port_t *pp, int flags, int events, void *user)
1074 {
1075 port_queue_t *portq;
1076 portget_t *pgetp;
1077 port_alert_t *pa;
1078
1079 if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID)
1080 return (EINVAL);
1081
1082 portq = &pp->port_queue;
1083 pa = &portq->portq_alert;
1084 mutex_enter(&portq->portq_mutex);
1085
1086 /* check alert conditions */
1087 if (flags == PORT_ALERT_UPDATE) {
1088 if (portq->portq_flags & PORTQ_ALERT) {
1089 mutex_exit(&portq->portq_mutex);
1090 return (EBUSY);
1091 }
1092 }
1093
1094 /*
1095 * Store alert data in the port to be delivered to threads
1096 * which are using port_get(n) to retrieve events.
1097 */
1098
1099 portq->portq_flags |= PORTQ_ALERT;
1100 pa->portal_events = events; /* alert info */
1101 pa->portal_pid = curproc->p_pid; /* process owner */
1102 pa->portal_object = 0; /* no object */
1103 pa->portal_user = user; /* user alert data */
1104
1105 /* alert and deliver alert data to waiting threads */
1106 pgetp = portq->portq_thread;
1107 if (pgetp == NULL) {
1108 /* no threads waiting for events */
1109 mutex_exit(&portq->portq_mutex);
1110 return (0);
1111 }
1112
1113 /*
1114 * Set waiting threads in alert mode (PORTGET_ALERT)..
1115 * Every thread waiting for events already allocated a portget_t
1116 * structure to sleep on.
1117 * The port alert arguments are stored in the portget_t structure.
1118 * The PORTGET_ALERT flag is set to indicate the thread to return
1119 * immediately with the alert event.
1120 */
1121 do {
1122 if ((pgetp->portget_state & PORTGET_ALERT) == 0) {
1123 pa = &pgetp->portget_alert;
1124 pa->portal_events = events;
1125 pa->portal_object = 0;
1126 pa->portal_user = user;
1127 pgetp->portget_state |= PORTGET_ALERT;
1128 cv_signal(&pgetp->portget_cv);
1129 }
1130 } while ((pgetp = pgetp->portget_next) != portq->portq_thread);
1131 mutex_exit(&portq->portq_mutex);
1132 return (0);
1133 }
1134
1135 /*
1136 * Clear alert state of the port
1137 */
1138 static void
port_remove_alert(port_queue_t * portq)1139 port_remove_alert(port_queue_t *portq)
1140 {
1141 mutex_enter(&portq->portq_mutex);
1142 portq->portq_flags &= ~PORTQ_ALERT;
1143 mutex_exit(&portq->portq_mutex);
1144 }
1145
1146 /*
1147 * The port_getn() function is used to retrieve events from a port.
1148 *
1149 * The port_getn() function returns immediately if there are enough events
1150 * available in the port to satisfy the request or if the port is in alert
1151 * mode (see port_alert(3c)).
1152 * The timeout argument of port_getn(3c) -which is embedded in the
1153 * port_gettimer_t structure- specifies if the system call should block or if it
1154 * should return immediately depending on the number of events available.
1155 * This function is internally used by port_getn(3c) as well as by
1156 * port_get(3c).
1157 */
1158 static int
port_getn(port_t * pp,port_event_t * uevp,uint_t max,uint_t * nget,port_gettimer_t * pgt)1159 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget,
1160 port_gettimer_t *pgt)
1161 {
1162 port_queue_t *portq;
1163 port_kevent_t *pev;
1164 port_kevent_t *lev;
1165 int error = 0;
1166 uint_t nmax;
1167 uint_t nevents;
1168 uint_t eventsz;
1169 port_event_t *kevp;
1170 list_t *glist;
1171 uint_t tnent;
1172 int rval;
1173 int blocking = -1;
1174 int timecheck;
1175 int flag;
1176 timespec_t rqtime;
1177 timespec_t *rqtp = NULL;
1178 portget_t *pgetp;
1179 void *results;
1180 model_t model = get_udatamodel();
1181
1182 flag = pgt->pgt_flags;
1183
1184 if (*nget > max && max > 0)
1185 return (EINVAL);
1186
1187 portq = &pp->port_queue;
1188 mutex_enter(&portq->portq_mutex);
1189 if (max == 0) {
1190 /*
1191 * Return number of objects with events.
1192 * The port_block() call is required to synchronize this
1193 * thread with another possible thread, which could be
1194 * retrieving events from the port queue.
1195 */
1196 port_block(portq);
1197 /*
1198 * Check if a second thread is currently retrieving events
1199 * and it is using the temporary event queue.
1200 */
1201 if (portq->portq_tnent) {
1202 /* put remaining events back to the port queue */
1203 port_push_eventq(portq);
1204 }
1205 *nget = portq->portq_nent;
1206 port_unblock(portq);
1207 mutex_exit(&portq->portq_mutex);
1208 return (0);
1209 }
1210
1211 if (uevp == NULL) {
1212 mutex_exit(&portq->portq_mutex);
1213 return (EFAULT);
1214 }
1215 if (*nget == 0) { /* no events required */
1216 mutex_exit(&portq->portq_mutex);
1217 return (0);
1218 }
1219
1220 /* port is being closed ... */
1221 if (portq->portq_flags & PORTQ_CLOSE) {
1222 mutex_exit(&portq->portq_mutex);
1223 return (EBADFD);
1224 }
1225
1226 /* return immediately if port in alert mode */
1227 if (portq->portq_flags & PORTQ_ALERT) {
1228 error = port_get_alert(&portq->portq_alert, uevp);
1229 if (error == 0)
1230 *nget = 1;
1231 mutex_exit(&portq->portq_mutex);
1232 return (error);
1233 }
1234
1235 portq->portq_thrcnt++;
1236
1237 /*
1238 * Now check if the completed events satisfy the
1239 * "wait" requirements of the current thread:
1240 */
1241
1242 if (pgt->pgt_loop) {
1243 /*
1244 * loop entry of same thread
1245 * pgt_loop is set when the current thread returns
1246 * prematurely from this function. That could happen
1247 * when a port is being shared between processes and
1248 * this thread could not find events to return.
1249 * It is not allowed to a thread to retrieve non-shareable
1250 * events generated in other processes.
1251 * PORTQ_WAIT_EVENTS is set when a thread already
1252 * checked the current event queue and no new events
1253 * are added to the queue.
1254 */
1255 if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) &&
1256 (portq->portq_nent >= *nget)) {
1257 /* some new events arrived ...check them */
1258 goto portnowait;
1259 }
1260 rqtp = pgt->pgt_rqtp;
1261 timecheck = pgt->pgt_timecheck;
1262 pgt->pgt_flags |= PORTGET_WAIT_EVENTS;
1263 } else {
1264 /* check if enough events are available ... */
1265 if (portq->portq_nent >= *nget)
1266 goto portnowait;
1267 /*
1268 * There are not enough events available to satisfy
1269 * the request, check timeout value and wait for
1270 * incoming events.
1271 */
1272 error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp,
1273 &blocking, flag);
1274 if (error) {
1275 port_check_return_cond(portq);
1276 mutex_exit(&portq->portq_mutex);
1277 return (error);
1278 }
1279
1280 if (blocking == 0) /* don't block, check fired events */
1281 goto portnowait;
1282
1283 if (rqtp != NULL) {
1284 timespec_t now;
1285 timecheck = timechanged;
1286 gethrestime(&now);
1287 timespecadd(rqtp, &now);
1288 }
1289 }
1290
1291 /* enqueue thread in the list of waiting threads */
1292 pgetp = port_queue_thread(portq, *nget);
1293
1294
1295 /* Wait here until return conditions met */
1296 for (;;) {
1297 if (pgetp->portget_state & PORTGET_ALERT) {
1298 /* reap alert event and return */
1299 error = port_get_alert(&pgetp->portget_alert, uevp);
1300 if (error)
1301 *nget = 0;
1302 else
1303 *nget = 1;
1304 port_dequeue_thread(&pp->port_queue, pgetp);
1305 portq->portq_thrcnt--;
1306 mutex_exit(&portq->portq_mutex);
1307 return (error);
1308 }
1309
1310 /*
1311 * Check if some other thread is already retrieving
1312 * events (portq_getn > 0).
1313 */
1314
1315 if ((portq->portq_getn == 0) &&
1316 ((portq)->portq_nent >= *nget) &&
1317 (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) ||
1318 !((portq)->portq_flags & PORTQ_WAIT_EVENTS)))
1319 break;
1320
1321 if (portq->portq_flags & PORTQ_CLOSE) {
1322 error = EBADFD;
1323 break;
1324 }
1325
1326 rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex,
1327 rqtp, timecheck);
1328
1329 if (rval <= 0) {
1330 error = (rval == 0) ? EINTR : ETIME;
1331 break;
1332 }
1333 }
1334
1335 /* take thread out of the wait queue */
1336 port_dequeue_thread(portq, pgetp);
1337
1338 if (error != 0 && (error == EINTR || error == EBADFD ||
1339 (error == ETIME && flag))) {
1340 /* return without events */
1341 port_check_return_cond(portq);
1342 mutex_exit(&portq->portq_mutex);
1343 return (error);
1344 }
1345
1346 portnowait:
1347 /*
1348 * Move port event queue to a temporary event queue .
1349 * New incoming events will be continue be posted to the event queue
1350 * and they will not be considered by the current thread.
1351 * The idea is to avoid lock contentions or an often locking/unlocking
1352 * of the port queue mutex. The contention and performance degradation
1353 * could happen because:
1354 * a) incoming events use the port queue mutex to enqueue new events and
1355 * b) before the event can be delivered to the application it is
1356 * necessary to notify the event sources about the event delivery.
1357 * Sometimes the event sources can require a long time to return and
1358 * the queue mutex would block incoming events.
1359 * During this time incoming events (port_send_event()) do not need
1360 * to awake threads waiting for events. Before the current thread
1361 * returns it will check the conditions to awake other waiting threads.
1362 */
1363 portq->portq_getn++; /* number of threads retrieving events */
1364 port_block(portq); /* block other threads here */
1365 nmax = max < portq->portq_nent ? max : portq->portq_nent;
1366
1367 if (portq->portq_tnent) {
1368 /*
1369 * Move remaining events from previous thread back to the
1370 * port event queue.
1371 */
1372 port_push_eventq(portq);
1373 }
1374 /* move port event queue to a temporary queue */
1375 list_move_tail(&portq->portq_get_list, &portq->portq_list);
1376 glist = &portq->portq_get_list; /* use temporary event queue */
1377 tnent = portq->portq_nent; /* get current number of events */
1378 portq->portq_nent = 0; /* no events in the port event queue */
1379 portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */
1380 mutex_exit(&portq->portq_mutex); /* event queue can be reused now */
1381
1382 if (model == DATAMODEL_NATIVE) {
1383 eventsz = sizeof (port_event_t);
1384 kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1385 if (kevp == NULL) {
1386 if (nmax > pp->port_max_list)
1387 nmax = pp->port_max_list;
1388 kevp = kmem_alloc(eventsz * nmax, KM_SLEEP);
1389 }
1390 results = kevp;
1391 lev = NULL; /* start with first event in the queue */
1392 for (nevents = 0; nevents < nmax; ) {
1393 pev = port_get_kevent(glist, lev);
1394 if (pev == NULL) /* no more events available */
1395 break;
1396 if (pev->portkev_flags & PORT_KEV_FREE) {
1397 /* Just discard event */
1398 list_remove(glist, pev);
1399 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1400 if (PORT_FREE_EVENT(pev))
1401 port_free_event_local(pev, 0);
1402 tnent--;
1403 continue;
1404 }
1405
1406 /* move event data to copyout list */
1407 if (port_copy_event(&kevp[nevents], pev, glist)) {
1408 /*
1409 * Event can not be delivered to the
1410 * current process.
1411 */
1412 if (lev != NULL)
1413 list_insert_after(glist, lev, pev);
1414 else
1415 list_insert_head(glist, pev);
1416 lev = pev; /* last checked event */
1417 } else {
1418 nevents++; /* # of events ready */
1419 }
1420 }
1421 #ifdef _SYSCALL32_IMPL
1422 } else {
1423 port_event32_t *kevp32;
1424
1425 eventsz = sizeof (port_event32_t);
1426 kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1427 if (kevp32 == NULL) {
1428 if (nmax > pp->port_max_list)
1429 nmax = pp->port_max_list;
1430 kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP);
1431 }
1432 results = kevp32;
1433 lev = NULL; /* start with first event in the queue */
1434 for (nevents = 0; nevents < nmax; ) {
1435 pev = port_get_kevent(glist, lev);
1436 if (pev == NULL) /* no more events available */
1437 break;
1438 if (pev->portkev_flags & PORT_KEV_FREE) {
1439 /* Just discard event */
1440 list_remove(glist, pev);
1441 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1442 if (PORT_FREE_EVENT(pev))
1443 port_free_event_local(pev, 0);
1444 tnent--;
1445 continue;
1446 }
1447
1448 /* move event data to copyout list */
1449 if (port_copy_event32(&kevp32[nevents], pev, glist)) {
1450 /*
1451 * Event can not be delivered to the
1452 * current process.
1453 */
1454 if (lev != NULL)
1455 list_insert_after(glist, lev, pev);
1456 else
1457 list_insert_head(glist, pev);
1458 lev = pev; /* last checked event */
1459 } else {
1460 nevents++; /* # of events ready */
1461 }
1462 }
1463 #endif /* _SYSCALL32_IMPL */
1464 }
1465
1466 /*
1467 * Remember number of remaining events in the temporary event queue.
1468 */
1469 portq->portq_tnent = tnent - nevents;
1470
1471 /*
1472 * Work to do before return :
1473 * - push list of remaining events back to the top of the standard
1474 * port queue.
1475 * - if this is the last thread calling port_get(n) then wakeup the
1476 * thread waiting on close(2).
1477 * - check for a deferred cv_signal from port_send_event() and wakeup
1478 * the sleeping thread.
1479 */
1480
1481 mutex_enter(&portq->portq_mutex);
1482 port_unblock(portq);
1483 if (portq->portq_tnent) {
1484 /*
1485 * move remaining events in the temporary event queue back
1486 * to the port event queue
1487 */
1488 port_push_eventq(portq);
1489 }
1490 portq->portq_getn--; /* update # of threads retrieving events */
1491 if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */
1492 /* Last thread => check close(2) conditions ... */
1493 if (portq->portq_flags & PORTQ_CLOSE) {
1494 cv_signal(&portq->portq_closecv);
1495 mutex_exit(&portq->portq_mutex);
1496 kmem_free(results, eventsz * nmax);
1497 /* do not copyout events */
1498 *nget = 0;
1499 return (EBADFD);
1500 }
1501 } else if (portq->portq_getn == 0) {
1502 /*
1503 * no other threads retrieving events ...
1504 * check wakeup conditions of sleeping threads
1505 */
1506 if ((portq->portq_thread != NULL) &&
1507 (portq->portq_nent >= portq->portq_nget))
1508 cv_signal(&portq->portq_thread->portget_cv);
1509 }
1510
1511 /*
1512 * Check PORTQ_POLLIN here because the current thread set temporarily
1513 * the number of events in the queue to zero.
1514 */
1515 if (portq->portq_flags & PORTQ_POLLIN) {
1516 portq->portq_flags &= ~PORTQ_POLLIN;
1517 mutex_exit(&portq->portq_mutex);
1518 pollwakeup(&pp->port_pollhd, POLLIN);
1519 } else {
1520 mutex_exit(&portq->portq_mutex);
1521 }
1522
1523 /* now copyout list of user event structures to user space */
1524 if (nevents) {
1525 if (copyout(results, uevp, nevents * eventsz))
1526 error = EFAULT;
1527 }
1528 kmem_free(results, eventsz * nmax);
1529
1530 if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) {
1531 /* no events retrieved: check loop conditions */
1532 if (blocking == -1) {
1533 /* no timeout checked */
1534 error = port_get_timeout(pgt->pgt_timeout,
1535 &pgt->pgt_rqtime, &rqtp, &blocking, flag);
1536 if (error) {
1537 *nget = nevents;
1538 return (error);
1539 }
1540 if (rqtp != NULL) {
1541 timespec_t now;
1542 pgt->pgt_timecheck = timechanged;
1543 gethrestime(&now);
1544 timespecadd(&pgt->pgt_rqtime, &now);
1545 }
1546 pgt->pgt_rqtp = rqtp;
1547 } else {
1548 /* timeout already checked -> remember values */
1549 pgt->pgt_rqtp = rqtp;
1550 if (rqtp != NULL) {
1551 pgt->pgt_timecheck = timecheck;
1552 pgt->pgt_rqtime = *rqtp;
1553 }
1554 }
1555 if (blocking)
1556 /* timeout remaining */
1557 pgt->pgt_loop = 1;
1558 }
1559
1560 /* set number of user event structures completed */
1561 *nget = nevents;
1562 return (error);
1563 }
1564
1565 /*
1566 * 1. copy kernel event structure to user event structure.
1567 * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1568 * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1569 * 4. Other types of event structures can be delivered back to the port cache
1570 * (port_free_event_local()).
1571 * 5. The event source callback function is the last opportunity for the
1572 * event source to update events, to free local resources associated with
1573 * the event or to deny the delivery of the event.
1574 */
1575 static int
port_copy_event(port_event_t * puevp,port_kevent_t * pkevp,list_t * list)1576 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list)
1577 {
1578 int free_event = 0;
1579 int flags;
1580 int error;
1581
1582 puevp->portev_source = pkevp->portkev_source;
1583 puevp->portev_object = pkevp->portkev_object;
1584 puevp->portev_user = pkevp->portkev_user;
1585 puevp->portev_events = pkevp->portkev_events;
1586
1587 /* remove event from the queue */
1588 list_remove(list, pkevp);
1589
1590 /*
1591 * Events of type PORT_KEV_WIRED remain allocated by the
1592 * event source.
1593 */
1594 flags = pkevp->portkev_flags;
1595 if (pkevp->portkev_flags & PORT_KEV_WIRED)
1596 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1597 else
1598 free_event = 1;
1599
1600 if (pkevp->portkev_callback) {
1601 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1602 &puevp->portev_events, pkevp->portkev_pid,
1603 PORT_CALLBACK_DEFAULT, pkevp);
1604
1605 if (error) {
1606 /*
1607 * Event can not be delivered.
1608 * Caller must reinsert the event into the queue.
1609 */
1610 pkevp->portkev_flags = flags;
1611 return (error);
1612 }
1613 }
1614 if (free_event)
1615 port_free_event_local(pkevp, 0);
1616 return (0);
1617 }
1618
1619 #ifdef _SYSCALL32_IMPL
1620 /*
1621 * 1. copy kernel event structure to user event structure.
1622 * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1623 * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1624 * 4. Other types of event structures can be delivered back to the port cache
1625 * (port_free_event_local()).
1626 * 5. The event source callback function is the last opportunity for the
1627 * event source to update events, to free local resources associated with
1628 * the event or to deny the delivery of the event.
1629 */
1630 static int
port_copy_event32(port_event32_t * puevp,port_kevent_t * pkevp,list_t * list)1631 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list)
1632 {
1633 int free_event = 0;
1634 int error;
1635 int flags;
1636
1637 puevp->portev_source = pkevp->portkev_source;
1638 puevp->portev_object = (daddr32_t)pkevp->portkev_object;
1639 puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user;
1640 puevp->portev_events = pkevp->portkev_events;
1641
1642 /* remove event from the queue */
1643 list_remove(list, pkevp);
1644
1645 /*
1646 * Events if type PORT_KEV_WIRED remain allocated by the
1647 * sub-system (source).
1648 */
1649
1650 flags = pkevp->portkev_flags;
1651 if (pkevp->portkev_flags & PORT_KEV_WIRED)
1652 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1653 else
1654 free_event = 1;
1655
1656 if (pkevp->portkev_callback != NULL) {
1657 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1658 &puevp->portev_events, pkevp->portkev_pid,
1659 PORT_CALLBACK_DEFAULT, pkevp);
1660 if (error) {
1661 /*
1662 * Event can not be delivered.
1663 * Caller must reinsert the event into the queue.
1664 */
1665 pkevp->portkev_flags = flags;
1666 return (error);
1667 }
1668 }
1669 if (free_event)
1670 port_free_event_local(pkevp, 0);
1671 return (0);
1672 }
1673 #endif /* _SYSCALL32_IMPL */
1674
1675 /*
1676 * copyout alert event.
1677 */
1678 static int
port_get_alert(port_alert_t * pa,port_event_t * uevp)1679 port_get_alert(port_alert_t *pa, port_event_t *uevp)
1680 {
1681 model_t model = get_udatamodel();
1682
1683 /* copyout alert event structures to user space */
1684 if (model == DATAMODEL_NATIVE) {
1685 port_event_t uev;
1686 uev.portev_source = PORT_SOURCE_ALERT;
1687 uev.portev_object = pa->portal_object;
1688 uev.portev_events = pa->portal_events;
1689 uev.portev_user = pa->portal_user;
1690 if (copyout(&uev, uevp, sizeof (port_event_t)))
1691 return (EFAULT);
1692 #ifdef _SYSCALL32_IMPL
1693 } else {
1694 port_event32_t uev32;
1695 uev32.portev_source = PORT_SOURCE_ALERT;
1696 uev32.portev_object = (daddr32_t)pa->portal_object;
1697 uev32.portev_events = pa->portal_events;
1698 uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user;
1699 if (copyout(&uev32, uevp, sizeof (port_event32_t)))
1700 return (EFAULT);
1701 #endif /* _SYSCALL32_IMPL */
1702 }
1703 return (0);
1704 }
1705
1706 /*
1707 * Check return conditions :
1708 * - pending port close(2)
1709 * - threads waiting for events
1710 */
1711 static void
port_check_return_cond(port_queue_t * portq)1712 port_check_return_cond(port_queue_t *portq)
1713 {
1714 ASSERT(MUTEX_HELD(&portq->portq_mutex));
1715 portq->portq_thrcnt--;
1716 if (portq->portq_flags & PORTQ_CLOSE) {
1717 if (portq->portq_thrcnt == 0)
1718 cv_signal(&portq->portq_closecv);
1719 else
1720 cv_signal(&portq->portq_thread->portget_cv);
1721 }
1722 }
1723
1724 /*
1725 * The port_get_kevent() function returns
1726 * - the event located at the head of the queue if 'last' pointer is NULL
1727 * - the next event after the event pointed by 'last'
1728 * The caller of this function is responsible for the integrity of the queue
1729 * in use:
1730 * - port_getn() is using a temporary queue protected with port_block().
1731 * - port_close_events() is working on the global event queue and protects
1732 * the queue with portq->portq_mutex.
1733 */
1734 port_kevent_t *
port_get_kevent(list_t * list,port_kevent_t * last)1735 port_get_kevent(list_t *list, port_kevent_t *last)
1736 {
1737 if (last == NULL)
1738 return (list_head(list));
1739 else
1740 return (list_next(list, last));
1741 }
1742
1743 /*
1744 * The port_get_timeout() function gets the timeout data from user space
1745 * and converts that info into a corresponding internal representation.
1746 * The kerneldata flag means that the timeout data is already loaded.
1747 */
1748 static int
port_get_timeout(timespec_t * timeout,timespec_t * rqtime,timespec_t ** rqtp,int * blocking,int kerneldata)1749 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp,
1750 int *blocking, int kerneldata)
1751 {
1752 model_t model = get_udatamodel();
1753
1754 *rqtp = NULL;
1755 if (timeout == NULL) {
1756 *blocking = 1;
1757 return (0);
1758 }
1759
1760 if (kerneldata) {
1761 *rqtime = *timeout;
1762 } else {
1763 if (model == DATAMODEL_NATIVE) {
1764 if (copyin(timeout, rqtime, sizeof (*rqtime)))
1765 return (EFAULT);
1766 #ifdef _SYSCALL32_IMPL
1767 } else {
1768 timespec32_t wait_time_32;
1769 if (copyin(timeout, &wait_time_32,
1770 sizeof (wait_time_32)))
1771 return (EFAULT);
1772 TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
1773 #endif /* _SYSCALL32_IMPL */
1774 }
1775 }
1776
1777 if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
1778 *blocking = 0;
1779 return (0);
1780 }
1781
1782 if (rqtime->tv_sec < 0 ||
1783 rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
1784 return (EINVAL);
1785
1786 *rqtp = rqtime;
1787 *blocking = 1;
1788 return (0);
1789 }
1790
1791 /*
1792 * port_queue_thread()
1793 * Threads requiring more events than available will be put in a wait queue.
1794 * There is a "thread wait queue" per port.
1795 * Threads requiring less events get a higher priority than others and they
1796 * will be awoken first.
1797 */
1798 static portget_t *
port_queue_thread(port_queue_t * portq,uint_t nget)1799 port_queue_thread(port_queue_t *portq, uint_t nget)
1800 {
1801 portget_t *pgetp;
1802 portget_t *ttp;
1803 portget_t *htp;
1804
1805 pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP);
1806 pgetp->portget_nget = nget;
1807 pgetp->portget_pid = curproc->p_pid;
1808 if (portq->portq_thread == NULL) {
1809 /* first waiting thread */
1810 portq->portq_thread = pgetp;
1811 portq->portq_nget = nget;
1812 pgetp->portget_prev = pgetp;
1813 pgetp->portget_next = pgetp;
1814 return (pgetp);
1815 }
1816
1817 /*
1818 * thread waiting for less events will be set on top of the queue.
1819 */
1820 ttp = portq->portq_thread;
1821 htp = ttp;
1822 for (;;) {
1823 if (nget <= ttp->portget_nget)
1824 break;
1825 if (htp == ttp->portget_next)
1826 break; /* last event */
1827 ttp = ttp->portget_next;
1828 }
1829
1830 /* add thread to the queue */
1831 pgetp->portget_next = ttp;
1832 pgetp->portget_prev = ttp->portget_prev;
1833 ttp->portget_prev->portget_next = pgetp;
1834 ttp->portget_prev = pgetp;
1835 if (portq->portq_thread == ttp)
1836 portq->portq_thread = pgetp;
1837 portq->portq_nget = portq->portq_thread->portget_nget;
1838 return (pgetp);
1839 }
1840
1841 /*
1842 * Take thread out of the queue.
1843 */
1844 static void
port_dequeue_thread(port_queue_t * portq,portget_t * pgetp)1845 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp)
1846 {
1847 if (pgetp->portget_next == pgetp) {
1848 /* last (single) waiting thread */
1849 portq->portq_thread = NULL;
1850 portq->portq_nget = 0;
1851 } else {
1852 pgetp->portget_prev->portget_next = pgetp->portget_next;
1853 pgetp->portget_next->portget_prev = pgetp->portget_prev;
1854 if (portq->portq_thread == pgetp)
1855 portq->portq_thread = pgetp->portget_next;
1856 portq->portq_nget = portq->portq_thread->portget_nget;
1857 }
1858 kmem_free(pgetp, sizeof (portget_t));
1859 }
1860
1861 /*
1862 * Set up event port kstats.
1863 */
1864 static void
port_kstat_init()1865 port_kstat_init()
1866 {
1867 kstat_t *ksp;
1868 uint_t ndata;
1869
1870 ndata = sizeof (port_kstat) / sizeof (kstat_named_t);
1871 ksp = kstat_create("portfs", 0, "Event Ports", "misc",
1872 KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL);
1873 if (ksp) {
1874 ksp->ks_data = &port_kstat;
1875 kstat_install(ksp);
1876 }
1877 }
1878