1
2 #pragma ident "%Z%%M% %I% %E% SMI"
3
4 /*
5 ** This file contains all sources (including headers) to the LEMON
6 ** LALR(1) parser generator. The sources have been combined into a
7 ** single file to make it easy to include LEMON in the source tree
8 ** and Makefile of another program.
9 **
10 ** The author of this program disclaims copyright.
11 */
12 #include <stdio.h>
13 #include <stdarg.h>
14 #include <string.h>
15 #include <ctype.h>
16 #include <stdlib.h>
17
18 #ifndef __WIN32__
19 # if defined(_WIN32) || defined(WIN32)
20 # define __WIN32__
21 # endif
22 #endif
23
24 /* #define PRIVATE static */
25 #define PRIVATE
26
27 #ifdef TEST
28 #define MAXRHS 5 /* Set low to exercise exception code */
29 #else
30 #define MAXRHS 1000
31 #endif
32
33 char *msort();
34 extern void *malloc();
35
36 /******** From the file "action.h" *************************************/
37 struct action *Action_new();
38 struct action *Action_sort();
39
40 /********* From the file "assert.h" ************************************/
41 void myassert();
42 #ifndef NDEBUG
43 # define assert(X) if(!(X))myassert(__FILE__,__LINE__)
44 #else
45 # define assert(X)
46 #endif
47
48 /********** From the file "build.h" ************************************/
49 void FindRulePrecedences();
50 void FindFirstSets();
51 void FindStates();
52 void FindLinks();
53 void FindFollowSets();
54 void FindActions();
55
56 /********* From the file "configlist.h" *********************************/
57 void Configlist_init(/* void */);
58 struct config *Configlist_add(/* struct rule *, int */);
59 struct config *Configlist_addbasis(/* struct rule *, int */);
60 void Configlist_closure(/* void */);
61 void Configlist_sort(/* void */);
62 void Configlist_sortbasis(/* void */);
63 struct config *Configlist_return(/* void */);
64 struct config *Configlist_basis(/* void */);
65 void Configlist_eat(/* struct config * */);
66 void Configlist_reset(/* void */);
67
68 /********* From the file "error.h" ***************************************/
69 void ErrorMsg(const char *, int,const char *, ...);
70
71 /****** From the file "option.h" ******************************************/
72 struct s_options {
73 enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
74 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
75 char *label;
76 char *arg;
77 char *message;
78 };
79 int OptInit(/* char**,struct s_options*,FILE* */);
80 int OptNArgs(/* void */);
81 char *OptArg(/* int */);
82 void OptErr(/* int */);
83 void OptPrint(/* void */);
84
85 /******** From the file "parse.h" *****************************************/
86 void Parse(/* struct lemon *lemp */);
87
88 /********* From the file "plink.h" ***************************************/
89 struct plink *Plink_new(/* void */);
90 void Plink_add(/* struct plink **, struct config * */);
91 void Plink_copy(/* struct plink **, struct plink * */);
92 void Plink_delete(/* struct plink * */);
93
94 /********** From the file "report.h" *************************************/
95 void Reprint(/* struct lemon * */);
96 void ReportOutput(/* struct lemon * */);
97 void ReportTable(/* struct lemon * */);
98 void ReportHeader(/* struct lemon * */);
99 void CompressTables(/* struct lemon * */);
100
101 /********** From the file "set.h" ****************************************/
102 void SetSize(/* int N */); /* All sets will be of size N */
103 char *SetNew(/* void */); /* A new set for element 0..N */
104 void SetFree(/* char* */); /* Deallocate a set */
105
106 int SetAdd(/* char*,int */); /* Add element to a set */
107 int SetUnion(/* char *A,char *B */); /* A <- A U B, thru element N */
108
109 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
110
111 /********** From the file "struct.h" *************************************/
112 /*
113 ** Principal data structures for the LEMON parser generator.
114 */
115
116 typedef enum {B_FALSE=0, B_TRUE} Boolean;
117
118 /* Symbols (terminals and nonterminals) of the grammar are stored
119 ** in the following: */
120 struct symbol {
121 char *name; /* Name of the symbol */
122 int index; /* Index number for this symbol */
123 enum {
124 TERMINAL,
125 NONTERMINAL
126 } type; /* Symbols are all either TERMINALS or NTs */
127 struct rule *rule; /* Linked list of rules of this (if an NT) */
128 struct symbol *fallback; /* fallback token in case this token doesn't parse */
129 int prec; /* Precedence if defined (-1 otherwise) */
130 enum e_assoc {
131 LEFT,
132 RIGHT,
133 NONE,
134 UNK
135 } assoc; /* Associativity if predecence is defined */
136 char *firstset; /* First-set for all rules of this symbol */
137 Boolean lambda; /* True if NT and can generate an empty string */
138 char *destructor; /* Code which executes whenever this symbol is
139 ** popped from the stack during error processing */
140 int destructorln; /* Line number of destructor code */
141 char *datatype; /* The data type of information held by this
142 ** object. Only used if type==NONTERMINAL */
143 int dtnum; /* The data type number. In the parser, the value
144 ** stack is a union. The .yy%d element of this
145 ** union is the correct data type for this object */
146 };
147
148 /* Each production rule in the grammar is stored in the following
149 ** structure. */
150 struct rule {
151 struct symbol *lhs; /* Left-hand side of the rule */
152 char *lhsalias; /* Alias for the LHS (NULL if none) */
153 int ruleline; /* Line number for the rule */
154 int nrhs; /* Number of RHS symbols */
155 struct symbol **rhs; /* The RHS symbols */
156 char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
157 int line; /* Line number at which code begins */
158 char *code; /* The code executed when this rule is reduced */
159 struct symbol *precsym; /* Precedence symbol for this rule */
160 int index; /* An index number for this rule */
161 Boolean canReduce; /* True if this rule is ever reduced */
162 struct rule *nextlhs; /* Next rule with the same LHS */
163 struct rule *next; /* Next rule in the global list */
164 };
165
166 /* A configuration is a production rule of the grammar together with
167 ** a mark (dot) showing how much of that rule has been processed so far.
168 ** Configurations also contain a follow-set which is a list of terminal
169 ** symbols which are allowed to immediately follow the end of the rule.
170 ** Every configuration is recorded as an instance of the following: */
171 struct config {
172 struct rule *rp; /* The rule upon which the configuration is based */
173 int dot; /* The parse point */
174 char *fws; /* Follow-set for this configuration only */
175 struct plink *fplp; /* Follow-set forward propagation links */
176 struct plink *bplp; /* Follow-set backwards propagation links */
177 struct state *stp; /* Pointer to state which contains this */
178 enum {
179 COMPLETE, /* The status is used during followset and */
180 INCOMPLETE /* shift computations */
181 } status;
182 struct config *next; /* Next configuration in the state */
183 struct config *bp; /* The next basis configuration */
184 };
185
186 /* Every shift or reduce operation is stored as one of the following */
187 struct action {
188 struct symbol *sp; /* The look-ahead symbol */
189 enum e_action {
190 SHIFT,
191 ACCEPT,
192 REDUCE,
193 ERROR,
194 CONFLICT, /* Was a reduce, but part of a conflict */
195 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
196 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
197 NOT_USED /* Deleted by compression */
198 } type;
199 union {
200 struct state *stp; /* The new state, if a shift */
201 struct rule *rp; /* The rule, if a reduce */
202 } x;
203 struct action *next; /* Next action for this state */
204 struct action *collide; /* Next action with the same hash */
205 };
206
207 /* Each state of the generated parser's finite state machine
208 ** is encoded as an instance of the following structure. */
209 struct state {
210 struct config *bp; /* The basis configurations for this state */
211 struct config *cfp; /* All configurations in this set */
212 int index; /* Sequencial number for this state */
213 struct action *ap; /* Array of actions for this state */
214 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
215 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
216 int iDflt; /* Default action */
217 };
218 #define NO_OFFSET (-2147483647)
219
220 /* A followset propagation link indicates that the contents of one
221 ** configuration followset should be propagated to another whenever
222 ** the first changes. */
223 struct plink {
224 struct config *cfp; /* The configuration to which linked */
225 struct plink *next; /* The next propagate link */
226 };
227
228 /* The state vector for the entire parser generator is recorded as
229 ** follows. (LEMON uses no global variables and makes little use of
230 ** static variables. Fields in the following structure can be thought
231 ** of as begin global variables in the program.) */
232 struct lemon {
233 struct state **sorted; /* Table of states sorted by state number */
234 struct rule *rule; /* List of all rules */
235 int nstate; /* Number of states */
236 int nrule; /* Number of rules */
237 int nsymbol; /* Number of terminal and nonterminal symbols */
238 int nterminal; /* Number of terminal symbols */
239 struct symbol **symbols; /* Sorted array of pointers to symbols */
240 int errorcnt; /* Number of errors */
241 struct symbol *errsym; /* The error symbol */
242 char *name; /* Name of the generated parser */
243 char *arg; /* Declaration of the 3th argument to parser */
244 char *tokentype; /* Type of terminal symbols in the parser stack */
245 char *vartype; /* The default type of non-terminal symbols */
246 char *start; /* Name of the start symbol for the grammar */
247 char *stacksize; /* Size of the parser stack */
248 char *include; /* Code to put at the start of the C file */
249 int includeln; /* Line number for start of include code */
250 char *error; /* Code to execute when an error is seen */
251 int errorln; /* Line number for start of error code */
252 char *overflow; /* Code to execute on a stack overflow */
253 int overflowln; /* Line number for start of overflow code */
254 char *failure; /* Code to execute on parser failure */
255 int failureln; /* Line number for start of failure code */
256 char *accept; /* Code to execute when the parser excepts */
257 int acceptln; /* Line number for the start of accept code */
258 char *extracode; /* Code appended to the generated file */
259 int extracodeln; /* Line number for the start of the extra code */
260 char *tokendest; /* Code to execute to destroy token data */
261 int tokendestln; /* Line number for token destroyer code */
262 char *vardest; /* Code for the default non-terminal destructor */
263 int vardestln; /* Line number for default non-term destructor code*/
264 char *filename; /* Name of the input file */
265 char *outname; /* Name of the current output file */
266 char *tokenprefix; /* A prefix added to token names in the .h file */
267 int nconflict; /* Number of parsing conflicts */
268 int tablesize; /* Size of the parse tables */
269 int basisflag; /* Print only basis configurations */
270 int has_fallback; /* True if any %fallback is seen in the grammer */
271 char *argv0; /* Name of the program */
272 };
273
274 #define MemoryCheck(X) if((X)==0){ \
275 extern void memory_error(); \
276 memory_error(); \
277 }
278
279 /**************** From the file "table.h" *********************************/
280 /*
281 ** All code in this file has been automatically generated
282 ** from a specification in the file
283 ** "table.q"
284 ** by the associative array code building program "aagen".
285 ** Do not edit this file! Instead, edit the specification
286 ** file, then rerun aagen.
287 */
288 /*
289 ** Code for processing tables in the LEMON parser generator.
290 */
291
292 /* Routines for handling a strings */
293
294 char *Strsafe();
295
296 void Strsafe_init(/* void */);
297 int Strsafe_insert(/* char * */);
298 char *Strsafe_find(/* char * */);
299
300 /* Routines for handling symbols of the grammar */
301
302 struct symbol *Symbol_new();
303 int Symbolcmpp(/* struct symbol **, struct symbol ** */);
304 void Symbol_init(/* void */);
305 int Symbol_insert(/* struct symbol *, char * */);
306 struct symbol *Symbol_find(/* char * */);
307 struct symbol *Symbol_Nth(/* int */);
308 int Symbol_count(/* */);
309 struct symbol **Symbol_arrayof(/* */);
310
311 /* Routines to manage the state table */
312
313 int Configcmp(/* struct config *, struct config * */);
314 struct state *State_new();
315 void State_init(/* void */);
316 int State_insert(/* struct state *, struct config * */);
317 struct state *State_find(/* struct config * */);
318 struct state **State_arrayof(/* */);
319
320 /* Routines used for efficiency in Configlist_add */
321
322 void Configtable_init(/* void */);
323 int Configtable_insert(/* struct config * */);
324 struct config *Configtable_find(/* struct config * */);
325 void Configtable_clear(/* int(*)(struct config *) */);
326 /****************** From the file "action.c" *******************************/
327 /*
328 ** Routines processing parser actions in the LEMON parser generator.
329 */
330
331 /* Allocate a new parser action */
Action_new()332 struct action *Action_new(){
333 static struct action *freelist = 0;
334 struct action *new;
335
336 if( freelist==0 ){
337 int i;
338 int amt = 100;
339 freelist = (struct action *)malloc( sizeof(struct action)*amt );
340 if( freelist==0 ){
341 fprintf(stderr,"Unable to allocate memory for a new parser action.");
342 exit(1);
343 }
344 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
345 freelist[amt-1].next = 0;
346 }
347 new = freelist;
348 freelist = freelist->next;
349 return new;
350 }
351
352 /* Compare two actions */
actioncmp(ap1,ap2)353 static int actioncmp(ap1,ap2)
354 struct action *ap1;
355 struct action *ap2;
356 {
357 int rc;
358 rc = ap1->sp->index - ap2->sp->index;
359 if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
360 if( rc==0 ){
361 assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
362 assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
363 rc = ap1->x.rp->index - ap2->x.rp->index;
364 }
365 return rc;
366 }
367
368 /* Sort parser actions */
Action_sort(ap)369 struct action *Action_sort(ap)
370 struct action *ap;
371 {
372 ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp);
373 return ap;
374 }
375
Action_add(app,type,sp,arg)376 void Action_add(app,type,sp,arg)
377 struct action **app;
378 enum e_action type;
379 struct symbol *sp;
380 char *arg;
381 {
382 struct action *new;
383 new = Action_new();
384 new->next = *app;
385 *app = new;
386 new->type = type;
387 new->sp = sp;
388 if( type==SHIFT ){
389 new->x.stp = (struct state *)arg;
390 }else{
391 new->x.rp = (struct rule *)arg;
392 }
393 }
394 /********************** New code to implement the "acttab" module ***********/
395 /*
396 ** This module implements routines use to construct the yy_action[] table.
397 */
398
399 /*
400 ** The state of the yy_action table under construction is an instance of
401 ** the following structure
402 */
403 typedef struct acttab acttab;
404 struct acttab {
405 int nAction; /* Number of used slots in aAction[] */
406 int nActionAlloc; /* Slots allocated for aAction[] */
407 struct {
408 int lookahead; /* Value of the lookahead token */
409 int action; /* Action to take on the given lookahead */
410 } *aAction, /* The yy_action[] table under construction */
411 *aLookahead; /* A single new transaction set */
412 int mnLookahead; /* Minimum aLookahead[].lookahead */
413 int mnAction; /* Action associated with mnLookahead */
414 int mxLookahead; /* Maximum aLookahead[].lookahead */
415 int nLookahead; /* Used slots in aLookahead[] */
416 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
417 };
418
419 /* Return the number of entries in the yy_action table */
420 #define acttab_size(X) ((X)->nAction)
421
422 /* The value for the N-th entry in yy_action */
423 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
424
425 /* The value for the N-th entry in yy_lookahead */
426 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
427
428 /* Free all memory associated with the given acttab */
acttab_free(acttab * p)429 void acttab_free(acttab *p){
430 free( p->aAction );
431 free( p->aLookahead );
432 free( p );
433 }
434
435 /* Allocate a new acttab structure */
acttab_alloc(void)436 acttab *acttab_alloc(void){
437 acttab *p = malloc( sizeof(*p) );
438 if( p==0 ){
439 fprintf(stderr,"Unable to allocate memory for a new acttab.");
440 exit(1);
441 }
442 memset(p, 0, sizeof(*p));
443 return p;
444 }
445
446 /* Add a new action to the current transaction set
447 */
acttab_action(acttab * p,int lookahead,int action)448 void acttab_action(acttab *p, int lookahead, int action){
449 if( p->nLookahead>=p->nLookaheadAlloc ){
450 p->nLookaheadAlloc += 25;
451 p->aLookahead = realloc( p->aLookahead,
452 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
453 if( p->aLookahead==0 ){
454 fprintf(stderr,"malloc failed\n");
455 exit(1);
456 }
457 }
458 if( p->nLookahead==0 ){
459 p->mxLookahead = lookahead;
460 p->mnLookahead = lookahead;
461 p->mnAction = action;
462 }else{
463 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
464 if( p->mnLookahead>lookahead ){
465 p->mnLookahead = lookahead;
466 p->mnAction = action;
467 }
468 }
469 p->aLookahead[p->nLookahead].lookahead = lookahead;
470 p->aLookahead[p->nLookahead].action = action;
471 p->nLookahead++;
472 }
473
474 /*
475 ** Add the transaction set built up with prior calls to acttab_action()
476 ** into the current action table. Then reset the transaction set back
477 ** to an empty set in preparation for a new round of acttab_action() calls.
478 **
479 ** Return the offset into the action table of the new transaction.
480 */
acttab_insert(acttab * p)481 int acttab_insert(acttab *p){
482 int i, j, k, n;
483 assert( p->nLookahead>0 );
484
485 /* Make sure we have enough space to hold the expanded action table
486 ** in the worst case. The worst case occurs if the transaction set
487 ** must be appended to the current action table
488 */
489 n = p->mxLookahead + 1;
490 if( p->nAction + n >= p->nActionAlloc ){
491 int oldAlloc = p->nActionAlloc;
492 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
493 p->aAction = realloc( p->aAction,
494 sizeof(p->aAction[0])*p->nActionAlloc);
495 if( p->aAction==0 ){
496 fprintf(stderr,"malloc failed\n");
497 exit(1);
498 }
499 for(i=oldAlloc; i<p->nActionAlloc; i++){
500 p->aAction[i].lookahead = -1;
501 p->aAction[i].action = -1;
502 }
503 }
504
505 /* Scan the existing action table looking for an offset where we can
506 ** insert the current transaction set. Fall out of the loop when that
507 ** offset is found. In the worst case, we fall out of the loop when
508 ** i reaches p->nAction, which means we append the new transaction set.
509 **
510 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
511 */
512 for(i=0; i<p->nAction+p->mnLookahead; i++){
513 if( p->aAction[i].lookahead<0 ){
514 for(j=0; j<p->nLookahead; j++){
515 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
516 if( k<0 ) break;
517 if( p->aAction[k].lookahead>=0 ) break;
518 }
519 if( j<p->nLookahead ) continue;
520 for(j=0; j<p->nAction; j++){
521 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
522 }
523 if( j==p->nAction ){
524 break; /* Fits in empty slots */
525 }
526 }else if( p->aAction[i].lookahead==p->mnLookahead ){
527 if( p->aAction[i].action!=p->mnAction ) continue;
528 for(j=0; j<p->nLookahead; j++){
529 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
530 if( k<0 || k>=p->nAction ) break;
531 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
532 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
533 }
534 if( j<p->nLookahead ) continue;
535 n = 0;
536 for(j=0; j<p->nAction; j++){
537 if( p->aAction[j].lookahead<0 ) continue;
538 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
539 }
540 if( n==p->nLookahead ){
541 break; /* Same as a prior transaction set */
542 }
543 }
544 }
545 /* Insert transaction set at index i. */
546 for(j=0; j<p->nLookahead; j++){
547 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
548 p->aAction[k] = p->aLookahead[j];
549 if( k>=p->nAction ) p->nAction = k+1;
550 }
551 p->nLookahead = 0;
552
553 /* Return the offset that is added to the lookahead in order to get the
554 ** index into yy_action of the action */
555 return i - p->mnLookahead;
556 }
557
558 /********************** From the file "assert.c" ****************************/
559 /*
560 ** A more efficient way of handling assertions.
561 */
myassert(file,line)562 void myassert(file,line)
563 char *file;
564 int line;
565 {
566 fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
567 exit(1);
568 }
569 /********************** From the file "build.c" *****************************/
570 /*
571 ** Routines to construction the finite state machine for the LEMON
572 ** parser generator.
573 */
574
575 /* Find a precedence symbol of every rule in the grammar.
576 **
577 ** Those rules which have a precedence symbol coded in the input
578 ** grammar using the "[symbol]" construct will already have the
579 ** rp->precsym field filled. Other rules take as their precedence
580 ** symbol the first RHS symbol with a defined precedence. If there
581 ** are not RHS symbols with a defined precedence, the precedence
582 ** symbol field is left blank.
583 */
FindRulePrecedences(xp)584 void FindRulePrecedences(xp)
585 struct lemon *xp;
586 {
587 struct rule *rp;
588 for(rp=xp->rule; rp; rp=rp->next){
589 if( rp->precsym==0 ){
590 int i;
591 for(i=0; i<rp->nrhs; i++){
592 if( rp->rhs[i]->prec>=0 ){
593 rp->precsym = rp->rhs[i];
594 break;
595 }
596 }
597 }
598 }
599 return;
600 }
601
602 /* Find all nonterminals which will generate the empty string.
603 ** Then go back and compute the first sets of every nonterminal.
604 ** The first set is the set of all terminal symbols which can begin
605 ** a string generated by that nonterminal.
606 */
FindFirstSets(lemp)607 void FindFirstSets(lemp)
608 struct lemon *lemp;
609 {
610 int i;
611 struct rule *rp;
612 int progress;
613
614 for(i=0; i<lemp->nsymbol; i++){
615 lemp->symbols[i]->lambda = B_FALSE;
616 }
617 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
618 lemp->symbols[i]->firstset = SetNew();
619 }
620
621 /* First compute all lambdas */
622 do{
623 progress = 0;
624 for(rp=lemp->rule; rp; rp=rp->next){
625 if( rp->lhs->lambda ) continue;
626 for(i=0; i<rp->nrhs; i++){
627 if( rp->rhs[i]->lambda==B_FALSE ) break;
628 }
629 if( i==rp->nrhs ){
630 rp->lhs->lambda = B_TRUE;
631 progress = 1;
632 }
633 }
634 }while( progress );
635
636 /* Now compute all first sets */
637 do{
638 struct symbol *s1, *s2;
639 progress = 0;
640 for(rp=lemp->rule; rp; rp=rp->next){
641 s1 = rp->lhs;
642 for(i=0; i<rp->nrhs; i++){
643 s2 = rp->rhs[i];
644 if( s2->type==TERMINAL ){
645 progress += SetAdd(s1->firstset,s2->index);
646 break;
647 }else if( s1==s2 ){
648 if( s1->lambda==B_FALSE ) break;
649 }else{
650 progress += SetUnion(s1->firstset,s2->firstset);
651 if( s2->lambda==B_FALSE ) break;
652 }
653 }
654 }
655 }while( progress );
656 return;
657 }
658
659 /* Compute all LR(0) states for the grammar. Links
660 ** are added to between some states so that the LR(1) follow sets
661 ** can be computed later.
662 */
663 PRIVATE struct state *getstate(/* struct lemon * */); /* forward reference */
FindStates(lemp)664 void FindStates(lemp)
665 struct lemon *lemp;
666 {
667 struct symbol *sp;
668 struct rule *rp;
669
670 Configlist_init();
671
672 /* Find the start symbol */
673 if( lemp->start ){
674 sp = Symbol_find(lemp->start);
675 if( sp==0 ){
676 ErrorMsg(lemp->filename,0,
677 "The specified start symbol \"%s\" is not \
678 in a nonterminal of the grammar. \"%s\" will be used as the start \
679 symbol instead.",lemp->start,lemp->rule->lhs->name);
680 lemp->errorcnt++;
681 sp = lemp->rule->lhs;
682 }
683 }else{
684 sp = lemp->rule->lhs;
685 }
686
687 /* Make sure the start symbol doesn't occur on the right-hand side of
688 ** any rule. Report an error if it does. (YACC would generate a new
689 ** start symbol in this case.) */
690 for(rp=lemp->rule; rp; rp=rp->next){
691 int i;
692 for(i=0; i<rp->nrhs; i++){
693 if( rp->rhs[i]==sp ){
694 ErrorMsg(lemp->filename,0,
695 "The start symbol \"%s\" occurs on the \
696 right-hand side of a rule. This will result in a parser which \
697 does not work properly.",sp->name);
698 lemp->errorcnt++;
699 }
700 }
701 }
702
703 /* The basis configuration set for the first state
704 ** is all rules which have the start symbol as their
705 ** left-hand side */
706 for(rp=sp->rule; rp; rp=rp->nextlhs){
707 struct config *newcfp;
708 newcfp = Configlist_addbasis(rp,0);
709 SetAdd(newcfp->fws,0);
710 }
711
712 /* Compute the first state. All other states will be
713 ** computed automatically during the computation of the first one.
714 ** The returned pointer to the first state is not used. */
715 (void)getstate(lemp);
716 return;
717 }
718
719 /* Return a pointer to a state which is described by the configuration
720 ** list which has been built from calls to Configlist_add.
721 */
722 PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
getstate(lemp)723 PRIVATE struct state *getstate(lemp)
724 struct lemon *lemp;
725 {
726 struct config *cfp, *bp;
727 struct state *stp;
728
729 /* Extract the sorted basis of the new state. The basis was constructed
730 ** by prior calls to "Configlist_addbasis()". */
731 Configlist_sortbasis();
732 bp = Configlist_basis();
733
734 /* Get a state with the same basis */
735 stp = State_find(bp);
736 if( stp ){
737 /* A state with the same basis already exists! Copy all the follow-set
738 ** propagation links from the state under construction into the
739 ** preexisting state, then return a pointer to the preexisting state */
740 struct config *x, *y;
741 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
742 Plink_copy(&y->bplp,x->bplp);
743 Plink_delete(x->fplp);
744 x->fplp = x->bplp = 0;
745 }
746 cfp = Configlist_return();
747 Configlist_eat(cfp);
748 }else{
749 /* This really is a new state. Construct all the details */
750 Configlist_closure(lemp); /* Compute the configuration closure */
751 Configlist_sort(); /* Sort the configuration closure */
752 cfp = Configlist_return(); /* Get a pointer to the config list */
753 stp = State_new(); /* A new state structure */
754 MemoryCheck(stp);
755 stp->bp = bp; /* Remember the configuration basis */
756 stp->cfp = cfp; /* Remember the configuration closure */
757 stp->index = lemp->nstate++; /* Every state gets a sequence number */
758 stp->ap = 0; /* No actions, yet. */
759 State_insert(stp,stp->bp); /* Add to the state table */
760 buildshifts(lemp,stp); /* Recursively compute successor states */
761 }
762 return stp;
763 }
764
765 /* Construct all successor states to the given state. A "successor"
766 ** state is any state which can be reached by a shift action.
767 */
buildshifts(lemp,stp)768 PRIVATE void buildshifts(lemp,stp)
769 struct lemon *lemp;
770 struct state *stp; /* The state from which successors are computed */
771 {
772 struct config *cfp; /* For looping thru the config closure of "stp" */
773 struct config *bcfp; /* For the inner loop on config closure of "stp" */
774 struct config *new; /* */
775 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
776 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
777 struct state *newstp; /* A pointer to a successor state */
778
779 /* Each configuration becomes complete after it contibutes to a successor
780 ** state. Initially, all configurations are incomplete */
781 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
782
783 /* Loop through all configurations of the state "stp" */
784 for(cfp=stp->cfp; cfp; cfp=cfp->next){
785 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
786 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
787 Configlist_reset(); /* Reset the new config set */
788 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
789
790 /* For every configuration in the state "stp" which has the symbol "sp"
791 ** following its dot, add the same configuration to the basis set under
792 ** construction but with the dot shifted one symbol to the right. */
793 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
794 if( bcfp->status==COMPLETE ) continue; /* Already used */
795 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
796 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
797 if( bsp!=sp ) continue; /* Must be same as for "cfp" */
798 bcfp->status = COMPLETE; /* Mark this config as used */
799 new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
800 Plink_add(&new->bplp,bcfp);
801 }
802
803 /* Get a pointer to the state described by the basis configuration set
804 ** constructed in the preceding loop */
805 newstp = getstate(lemp);
806
807 /* The state "newstp" is reached from the state "stp" by a shift action
808 ** on the symbol "sp" */
809 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
810 }
811 }
812
813 /*
814 ** Construct the propagation links
815 */
FindLinks(lemp)816 void FindLinks(lemp)
817 struct lemon *lemp;
818 {
819 int i;
820 struct config *cfp, *other;
821 struct state *stp;
822 struct plink *plp;
823
824 /* Housekeeping detail:
825 ** Add to every propagate link a pointer back to the state to
826 ** which the link is attached. */
827 for(i=0; i<lemp->nstate; i++){
828 stp = lemp->sorted[i];
829 for(cfp=stp->cfp; cfp; cfp=cfp->next){
830 cfp->stp = stp;
831 }
832 }
833
834 /* Convert all backlinks into forward links. Only the forward
835 ** links are used in the follow-set computation. */
836 for(i=0; i<lemp->nstate; i++){
837 stp = lemp->sorted[i];
838 for(cfp=stp->cfp; cfp; cfp=cfp->next){
839 for(plp=cfp->bplp; plp; plp=plp->next){
840 other = plp->cfp;
841 Plink_add(&other->fplp,cfp);
842 }
843 }
844 }
845 }
846
847 /* Compute all followsets.
848 **
849 ** A followset is the set of all symbols which can come immediately
850 ** after a configuration.
851 */
FindFollowSets(lemp)852 void FindFollowSets(lemp)
853 struct lemon *lemp;
854 {
855 int i;
856 struct config *cfp;
857 struct plink *plp;
858 int progress;
859 int change;
860
861 for(i=0; i<lemp->nstate; i++){
862 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
863 cfp->status = INCOMPLETE;
864 }
865 }
866
867 do{
868 progress = 0;
869 for(i=0; i<lemp->nstate; i++){
870 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
871 if( cfp->status==COMPLETE ) continue;
872 for(plp=cfp->fplp; plp; plp=plp->next){
873 change = SetUnion(plp->cfp->fws,cfp->fws);
874 if( change ){
875 plp->cfp->status = INCOMPLETE;
876 progress = 1;
877 }
878 }
879 cfp->status = COMPLETE;
880 }
881 }
882 }while( progress );
883 }
884
885 static int resolve_conflict();
886
887 /* Compute the reduce actions, and resolve conflicts.
888 */
FindActions(lemp)889 void FindActions(lemp)
890 struct lemon *lemp;
891 {
892 int i,j;
893 struct config *cfp;
894 struct state *stp;
895 struct symbol *sp;
896 struct rule *rp;
897
898 /* Add all of the reduce actions
899 ** A reduce action is added for each element of the followset of
900 ** a configuration which has its dot at the extreme right.
901 */
902 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
903 stp = lemp->sorted[i];
904 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
905 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
906 for(j=0; j<lemp->nterminal; j++){
907 if( SetFind(cfp->fws,j) ){
908 /* Add a reduce action to the state "stp" which will reduce by the
909 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
910 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
911 }
912 }
913 }
914 }
915 }
916
917 /* Add the accepting token */
918 if( lemp->start ){
919 sp = Symbol_find(lemp->start);
920 if( sp==0 ) sp = lemp->rule->lhs;
921 }else{
922 sp = lemp->rule->lhs;
923 }
924 /* Add to the first state (which is always the starting state of the
925 ** finite state machine) an action to ACCEPT if the lookahead is the
926 ** start nonterminal. */
927 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
928
929 /* Resolve conflicts */
930 for(i=0; i<lemp->nstate; i++){
931 struct action *ap, *nap;
932 struct state *stp;
933 stp = lemp->sorted[i];
934 assert( stp->ap );
935 stp->ap = Action_sort(stp->ap);
936 for(ap=stp->ap; ap && ap->next; ap=ap->next){
937 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
938 /* The two actions "ap" and "nap" have the same lookahead.
939 ** Figure out which one should be used */
940 lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
941 }
942 }
943 }
944
945 /* Report an error for each rule that can never be reduced. */
946 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = B_FALSE;
947 for(i=0; i<lemp->nstate; i++){
948 struct action *ap;
949 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
950 if( ap->type==REDUCE ) ap->x.rp->canReduce = B_TRUE;
951 }
952 }
953 for(rp=lemp->rule; rp; rp=rp->next){
954 if( rp->canReduce ) continue;
955 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
956 lemp->errorcnt++;
957 }
958 }
959
960 /* Resolve a conflict between the two given actions. If the
961 ** conflict can't be resolve, return non-zero.
962 **
963 ** NO LONGER TRUE:
964 ** To resolve a conflict, first look to see if either action
965 ** is on an error rule. In that case, take the action which
966 ** is not associated with the error rule. If neither or both
967 ** actions are associated with an error rule, then try to
968 ** use precedence to resolve the conflict.
969 **
970 ** If either action is a SHIFT, then it must be apx. This
971 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
972 */
resolve_conflict(apx,apy,errsym)973 static int resolve_conflict(apx,apy,errsym)
974 struct action *apx;
975 struct action *apy;
976 struct symbol *errsym; /* The error symbol (if defined. NULL otherwise) */
977 {
978 struct symbol *spx, *spy;
979 int errcnt = 0;
980 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
981 if( apx->type==SHIFT && apy->type==REDUCE ){
982 spx = apx->sp;
983 spy = apy->x.rp->precsym;
984 if( spy==0 || spx->prec<0 || spy->prec<0 ){
985 /* Not enough precedence information. */
986 apy->type = CONFLICT;
987 errcnt++;
988 }else if( spx->prec>spy->prec ){ /* Lower precedence wins */
989 apy->type = RD_RESOLVED;
990 }else if( spx->prec<spy->prec ){
991 apx->type = SH_RESOLVED;
992 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
993 apy->type = RD_RESOLVED; /* associativity */
994 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
995 apx->type = SH_RESOLVED;
996 }else{
997 assert( spx->prec==spy->prec && spx->assoc==NONE );
998 apy->type = CONFLICT;
999 errcnt++;
1000 }
1001 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1002 spx = apx->x.rp->precsym;
1003 spy = apy->x.rp->precsym;
1004 if( spx==0 || spy==0 || spx->prec<0 ||
1005 spy->prec<0 || spx->prec==spy->prec ){
1006 apy->type = CONFLICT;
1007 errcnt++;
1008 }else if( spx->prec>spy->prec ){
1009 apy->type = RD_RESOLVED;
1010 }else if( spx->prec<spy->prec ){
1011 apx->type = RD_RESOLVED;
1012 }
1013 }else{
1014 assert(
1015 apx->type==SH_RESOLVED ||
1016 apx->type==RD_RESOLVED ||
1017 apx->type==CONFLICT ||
1018 apy->type==SH_RESOLVED ||
1019 apy->type==RD_RESOLVED ||
1020 apy->type==CONFLICT
1021 );
1022 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1023 ** REDUCEs on the list. If we reach this point it must be because
1024 ** the parser conflict had already been resolved. */
1025 }
1026 return errcnt;
1027 }
1028 /********************* From the file "configlist.c" *************************/
1029 /*
1030 ** Routines to processing a configuration list and building a state
1031 ** in the LEMON parser generator.
1032 */
1033
1034 static struct config *freelist = 0; /* List of free configurations */
1035 static struct config *current = 0; /* Top of list of configurations */
1036 static struct config **currentend = 0; /* Last on list of configs */
1037 static struct config *basis = 0; /* Top of list of basis configs */
1038 static struct config **basisend = 0; /* End of list of basis configs */
1039
1040 /* Return a pointer to a new configuration */
newconfig()1041 PRIVATE struct config *newconfig(){
1042 struct config *new;
1043 if( freelist==0 ){
1044 int i;
1045 int amt = 3;
1046 freelist = (struct config *)malloc( sizeof(struct config)*amt );
1047 if( freelist==0 ){
1048 fprintf(stderr,"Unable to allocate memory for a new configuration.");
1049 exit(1);
1050 }
1051 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1052 freelist[amt-1].next = 0;
1053 }
1054 new = freelist;
1055 freelist = freelist->next;
1056 return new;
1057 }
1058
1059 /* The configuration "old" is no longer used */
deleteconfig(old)1060 PRIVATE void deleteconfig(old)
1061 struct config *old;
1062 {
1063 old->next = freelist;
1064 freelist = old;
1065 }
1066
1067 /* Initialized the configuration list builder */
Configlist_init()1068 void Configlist_init(){
1069 current = 0;
1070 currentend = ¤t;
1071 basis = 0;
1072 basisend = &basis;
1073 Configtable_init();
1074 return;
1075 }
1076
1077 /* Initialized the configuration list builder */
Configlist_reset()1078 void Configlist_reset(){
1079 current = 0;
1080 currentend = ¤t;
1081 basis = 0;
1082 basisend = &basis;
1083 Configtable_clear(0);
1084 return;
1085 }
1086
1087 /* Add another configuration to the configuration list */
Configlist_add(rp,dot)1088 struct config *Configlist_add(rp,dot)
1089 struct rule *rp; /* The rule */
1090 int dot; /* Index into the RHS of the rule where the dot goes */
1091 {
1092 struct config *cfp, model;
1093
1094 assert( currentend!=0 );
1095 model.rp = rp;
1096 model.dot = dot;
1097 cfp = Configtable_find(&model);
1098 if( cfp==0 ){
1099 cfp = newconfig();
1100 cfp->rp = rp;
1101 cfp->dot = dot;
1102 cfp->fws = SetNew();
1103 cfp->stp = 0;
1104 cfp->fplp = cfp->bplp = 0;
1105 cfp->next = 0;
1106 cfp->bp = 0;
1107 *currentend = cfp;
1108 currentend = &cfp->next;
1109 Configtable_insert(cfp);
1110 }
1111 return cfp;
1112 }
1113
1114 /* Add a basis configuration to the configuration list */
Configlist_addbasis(rp,dot)1115 struct config *Configlist_addbasis(rp,dot)
1116 struct rule *rp;
1117 int dot;
1118 {
1119 struct config *cfp, model;
1120
1121 assert( basisend!=0 );
1122 assert( currentend!=0 );
1123 model.rp = rp;
1124 model.dot = dot;
1125 cfp = Configtable_find(&model);
1126 if( cfp==0 ){
1127 cfp = newconfig();
1128 cfp->rp = rp;
1129 cfp->dot = dot;
1130 cfp->fws = SetNew();
1131 cfp->stp = 0;
1132 cfp->fplp = cfp->bplp = 0;
1133 cfp->next = 0;
1134 cfp->bp = 0;
1135 *currentend = cfp;
1136 currentend = &cfp->next;
1137 *basisend = cfp;
1138 basisend = &cfp->bp;
1139 Configtable_insert(cfp);
1140 }
1141 return cfp;
1142 }
1143
1144 /* Compute the closure of the configuration list */
Configlist_closure(lemp)1145 void Configlist_closure(lemp)
1146 struct lemon *lemp;
1147 {
1148 struct config *cfp, *newcfp;
1149 struct rule *rp, *newrp;
1150 struct symbol *sp, *xsp;
1151 int i, dot;
1152
1153 assert( currentend!=0 );
1154 for(cfp=current; cfp; cfp=cfp->next){
1155 rp = cfp->rp;
1156 dot = cfp->dot;
1157 if( dot>=rp->nrhs ) continue;
1158 sp = rp->rhs[dot];
1159 if( sp->type==NONTERMINAL ){
1160 if( sp->rule==0 && sp!=lemp->errsym ){
1161 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1162 sp->name);
1163 lemp->errorcnt++;
1164 }
1165 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1166 newcfp = Configlist_add(newrp,0);
1167 for(i=dot+1; i<rp->nrhs; i++){
1168 xsp = rp->rhs[i];
1169 if( xsp->type==TERMINAL ){
1170 SetAdd(newcfp->fws,xsp->index);
1171 break;
1172 }else{
1173 SetUnion(newcfp->fws,xsp->firstset);
1174 if( xsp->lambda==B_FALSE ) break;
1175 }
1176 }
1177 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1178 }
1179 }
1180 }
1181 return;
1182 }
1183
1184 /* Sort the configuration list */
Configlist_sort()1185 void Configlist_sort(){
1186 current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1187 currentend = 0;
1188 return;
1189 }
1190
1191 /* Sort the basis configuration list */
Configlist_sortbasis()1192 void Configlist_sortbasis(){
1193 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1194 basisend = 0;
1195 return;
1196 }
1197
1198 /* Return a pointer to the head of the configuration list and
1199 ** reset the list */
Configlist_return()1200 struct config *Configlist_return(){
1201 struct config *old;
1202 old = current;
1203 current = 0;
1204 currentend = 0;
1205 return old;
1206 }
1207
1208 /* Return a pointer to the head of the configuration list and
1209 ** reset the list */
Configlist_basis()1210 struct config *Configlist_basis(){
1211 struct config *old;
1212 old = basis;
1213 basis = 0;
1214 basisend = 0;
1215 return old;
1216 }
1217
1218 /* Free all elements of the given configuration list */
Configlist_eat(cfp)1219 void Configlist_eat(cfp)
1220 struct config *cfp;
1221 {
1222 struct config *nextcfp;
1223 for(; cfp; cfp=nextcfp){
1224 nextcfp = cfp->next;
1225 assert( cfp->fplp==0 );
1226 assert( cfp->bplp==0 );
1227 if( cfp->fws ) SetFree(cfp->fws);
1228 deleteconfig(cfp);
1229 }
1230 return;
1231 }
1232 /***************** From the file "error.c" *********************************/
1233 /*
1234 ** Code for printing error message.
1235 */
1236
1237 /* Find a good place to break "msg" so that its length is at least "min"
1238 ** but no more than "max". Make the point as close to max as possible.
1239 */
findbreak(msg,min,max)1240 static int findbreak(msg,min,max)
1241 char *msg;
1242 int min;
1243 int max;
1244 {
1245 int i,spot;
1246 char c;
1247 for(i=spot=min; i<=max; i++){
1248 c = msg[i];
1249 if( c=='\t' ) msg[i] = ' ';
1250 if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
1251 if( c==0 ){ spot = i; break; }
1252 if( c=='-' && i<max-1 ) spot = i+1;
1253 if( c==' ' ) spot = i;
1254 }
1255 return spot;
1256 }
1257
1258 /*
1259 ** The error message is split across multiple lines if necessary. The
1260 ** splits occur at a space, if there is a space available near the end
1261 ** of the line.
1262 */
1263 #define ERRMSGSIZE 10000 /* Hope this is big enough. No way to error check */
1264 #define LINEWIDTH 79 /* Max width of any output line */
1265 #define PREFIXLIMIT 30 /* Max width of the prefix on each line */
ErrorMsg(const char * filename,int lineno,const char * format,...)1266 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1267 char errmsg[ERRMSGSIZE];
1268 char prefix[PREFIXLIMIT+10];
1269 int errmsgsize;
1270 int prefixsize;
1271 int availablewidth;
1272 va_list ap;
1273 int end, restart, base;
1274
1275 va_start(ap, format);
1276 /* Prepare a prefix to be prepended to every output line */
1277 if( lineno>0 ){
1278 sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
1279 }else{
1280 sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
1281 }
1282 prefixsize = strlen(prefix);
1283 availablewidth = LINEWIDTH - prefixsize;
1284
1285 /* Generate the error message */
1286 vsprintf(errmsg,format,ap);
1287 va_end(ap);
1288 errmsgsize = strlen(errmsg);
1289 /* Remove trailing '\n's from the error message. */
1290 while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
1291 errmsg[--errmsgsize] = 0;
1292 }
1293
1294 /* Print the error message */
1295 base = 0;
1296 while( errmsg[base]!=0 ){
1297 end = restart = findbreak(&errmsg[base],0,availablewidth);
1298 restart += base;
1299 while( errmsg[restart]==' ' ) restart++;
1300 fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
1301 base = restart;
1302 }
1303 }
1304 /**************** From the file "main.c" ************************************/
1305 /*
1306 ** Main program file for the LEMON parser generator.
1307 */
1308
1309 /* Report an out-of-memory condition and abort. This function
1310 ** is used mostly by the "MemoryCheck" macro in struct.h
1311 */
memory_error()1312 void memory_error(){
1313 fprintf(stderr,"Out of memory. Aborting...\n");
1314 exit(1);
1315 }
1316
1317
1318 /* The main program. Parse the command line and do it... */
main(argc,argv)1319 int main(argc,argv)
1320 int argc;
1321 char **argv;
1322 {
1323 static int version = 0;
1324 static int rpflag = 0;
1325 static int basisflag = 0;
1326 static int compress = 0;
1327 static int quiet = 0;
1328 static int statistics = 0;
1329 static int mhflag = 0;
1330 static struct s_options options[] = {
1331 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1332 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1333 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1334 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
1335 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1336 {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
1337 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1338 {OPT_FLAG,0,0,0}
1339 };
1340 int i;
1341 struct lemon lem;
1342
1343 OptInit(argv,options,stderr);
1344 if( version ){
1345 printf("Lemon version 1.0\n");
1346 exit(0);
1347 }
1348 if( OptNArgs()!=1 ){
1349 fprintf(stderr,"Exactly one filename argument is required.\n");
1350 exit(1);
1351 }
1352 lem.errorcnt = 0;
1353
1354 /* Initialize the machine */
1355 Strsafe_init();
1356 Symbol_init();
1357 State_init();
1358 lem.argv0 = argv[0];
1359 lem.filename = OptArg(0);
1360 lem.basisflag = basisflag;
1361 lem.has_fallback = 0;
1362 lem.nconflict = 0;
1363 lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
1364 lem.vartype = 0;
1365 lem.stacksize = 0;
1366 lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
1367 lem.tokenprefix = lem.outname = lem.extracode = 0;
1368 lem.vardest = 0;
1369 lem.tablesize = 0;
1370 Symbol_new("$");
1371 lem.errsym = Symbol_new("error");
1372
1373 /* Parse the input file */
1374 Parse(&lem);
1375 if( lem.errorcnt ) exit(lem.errorcnt);
1376 if( lem.rule==0 ){
1377 fprintf(stderr,"Empty grammar.\n");
1378 exit(1);
1379 }
1380
1381 /* Count and index the symbols of the grammar */
1382 lem.nsymbol = Symbol_count();
1383 Symbol_new("{default}");
1384 lem.symbols = Symbol_arrayof();
1385 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1386 qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
1387 (int(*)())Symbolcmpp);
1388 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1389 for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1390 lem.nterminal = i;
1391
1392 /* Generate a reprint of the grammar, if requested on the command line */
1393 if( rpflag ){
1394 Reprint(&lem);
1395 }else{
1396 /* Initialize the size for all follow and first sets */
1397 SetSize(lem.nterminal);
1398
1399 /* Find the precedence for every production rule (that has one) */
1400 FindRulePrecedences(&lem);
1401
1402 /* Compute the lambda-nonterminals and the first-sets for every
1403 ** nonterminal */
1404 FindFirstSets(&lem);
1405
1406 /* Compute all LR(0) states. Also record follow-set propagation
1407 ** links so that the follow-set can be computed later */
1408 lem.nstate = 0;
1409 FindStates(&lem);
1410 lem.sorted = State_arrayof();
1411
1412 /* Tie up loose ends on the propagation links */
1413 FindLinks(&lem);
1414
1415 /* Compute the follow set of every reducible configuration */
1416 FindFollowSets(&lem);
1417
1418 /* Compute the action tables */
1419 FindActions(&lem);
1420
1421 /* Compress the action tables */
1422 if( compress==0 ) CompressTables(&lem);
1423
1424 /* Generate a report of the parser generated. (the "y.output" file) */
1425 if( !quiet ) ReportOutput(&lem);
1426
1427 /* Generate the source code for the parser */
1428 ReportTable(&lem, mhflag);
1429
1430 /* Produce a header file for use by the scanner. (This step is
1431 ** omitted if the "-m" option is used because makeheaders will
1432 ** generate the file for us.) */
1433 if( !mhflag ) ReportHeader(&lem);
1434 }
1435 if( statistics ){
1436 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1437 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1438 printf(" %d states, %d parser table entries, %d conflicts\n",
1439 lem.nstate, lem.tablesize, lem.nconflict);
1440 }
1441 if( lem.nconflict ){
1442 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1443 }
1444 exit(lem.errorcnt + lem.nconflict);
1445 return (lem.errorcnt + lem.nconflict);
1446 }
1447 /******************** From the file "msort.c" *******************************/
1448 /*
1449 ** A generic merge-sort program.
1450 **
1451 ** USAGE:
1452 ** Let "ptr" be a pointer to some structure which is at the head of
1453 ** a null-terminated list. Then to sort the list call:
1454 **
1455 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1456 **
1457 ** In the above, "cmpfnc" is a pointer to a function which compares
1458 ** two instances of the structure and returns an integer, as in
1459 ** strcmp. The second argument is a pointer to the pointer to the
1460 ** second element of the linked list. This address is used to compute
1461 ** the offset to the "next" field within the structure. The offset to
1462 ** the "next" field must be constant for all structures in the list.
1463 **
1464 ** The function returns a new pointer which is the head of the list
1465 ** after sorting.
1466 **
1467 ** ALGORITHM:
1468 ** Merge-sort.
1469 */
1470
1471 /*
1472 ** Return a pointer to the next structure in the linked list.
1473 */
1474 #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1475
1476 /*
1477 ** Inputs:
1478 ** a: A sorted, null-terminated linked list. (May be null).
1479 ** b: A sorted, null-terminated linked list. (May be null).
1480 ** cmp: A pointer to the comparison function.
1481 ** offset: Offset in the structure to the "next" field.
1482 **
1483 ** Return Value:
1484 ** A pointer to the head of a sorted list containing the elements
1485 ** of both a and b.
1486 **
1487 ** Side effects:
1488 ** The "next" pointers for elements in the lists a and b are
1489 ** changed.
1490 */
merge(a,b,cmp,offset)1491 static char *merge(a,b,cmp,offset)
1492 char *a;
1493 char *b;
1494 int (*cmp)();
1495 int offset;
1496 {
1497 char *ptr, *head;
1498
1499 if( a==0 ){
1500 head = b;
1501 }else if( b==0 ){
1502 head = a;
1503 }else{
1504 if( (*cmp)(a,b)<0 ){
1505 ptr = a;
1506 a = NEXT(a);
1507 }else{
1508 ptr = b;
1509 b = NEXT(b);
1510 }
1511 head = ptr;
1512 while( a && b ){
1513 if( (*cmp)(a,b)<0 ){
1514 NEXT(ptr) = a;
1515 ptr = a;
1516 a = NEXT(a);
1517 }else{
1518 NEXT(ptr) = b;
1519 ptr = b;
1520 b = NEXT(b);
1521 }
1522 }
1523 if( a ) NEXT(ptr) = a;
1524 else NEXT(ptr) = b;
1525 }
1526 return head;
1527 }
1528
1529 /*
1530 ** Inputs:
1531 ** list: Pointer to a singly-linked list of structures.
1532 ** next: Pointer to pointer to the second element of the list.
1533 ** cmp: A comparison function.
1534 **
1535 ** Return Value:
1536 ** A pointer to the head of a sorted list containing the elements
1537 ** orginally in list.
1538 **
1539 ** Side effects:
1540 ** The "next" pointers for elements in list are changed.
1541 */
1542 #define LISTSIZE 30
msort(list,next,cmp)1543 char *msort(list,next,cmp)
1544 char *list;
1545 char **next;
1546 int (*cmp)();
1547 {
1548 unsigned long offset;
1549 char *ep;
1550 char *set[LISTSIZE];
1551 int i;
1552 offset = (unsigned long)next - (unsigned long)list;
1553 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1554 while( list ){
1555 ep = list;
1556 list = NEXT(list);
1557 NEXT(ep) = 0;
1558 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1559 ep = merge(ep,set[i],cmp,offset);
1560 set[i] = 0;
1561 }
1562 set[i] = ep;
1563 }
1564 ep = 0;
1565 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
1566 return ep;
1567 }
1568 /************************ From the file "option.c" **************************/
1569 static char **argv;
1570 static struct s_options *op;
1571 static FILE *errstream;
1572
1573 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1574
1575 /*
1576 ** Print the command line with a carrot pointing to the k-th character
1577 ** of the n-th field.
1578 */
errline(n,k,err)1579 static void errline(n,k,err)
1580 int n;
1581 int k;
1582 FILE *err;
1583 {
1584 int spcnt, i;
1585 spcnt = 0;
1586 if( argv[0] ) fprintf(err,"%s",argv[0]);
1587 spcnt = strlen(argv[0]) + 1;
1588 for(i=1; i<n && argv[i]; i++){
1589 fprintf(err," %s",argv[i]);
1590 spcnt += strlen(argv[i]+1);
1591 }
1592 spcnt += k;
1593 for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1594 if( spcnt<20 ){
1595 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1596 }else{
1597 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1598 }
1599 }
1600
1601 /*
1602 ** Return the index of the N-th non-switch argument. Return -1
1603 ** if N is out of range.
1604 */
argindex(n)1605 static int argindex(n)
1606 int n;
1607 {
1608 int i;
1609 int dashdash = 0;
1610 if( argv!=0 && *argv!=0 ){
1611 for(i=1; argv[i]; i++){
1612 if( dashdash || !ISOPT(argv[i]) ){
1613 if( n==0 ) return i;
1614 n--;
1615 }
1616 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1617 }
1618 }
1619 return -1;
1620 }
1621
1622 static char emsg[] = "Command line syntax error: ";
1623
1624 /*
1625 ** Process a flag command line argument.
1626 */
handleflags(i,err)1627 static int handleflags(i,err)
1628 int i;
1629 FILE *err;
1630 {
1631 int v;
1632 int errcnt = 0;
1633 int j;
1634 for(j=0; op[j].label; j++){
1635 if( strcmp(&argv[i][1],op[j].label)==0 ) break;
1636 }
1637 v = argv[i][0]=='-' ? 1 : 0;
1638 if( op[j].label==0 ){
1639 if( err ){
1640 fprintf(err,"%sundefined option.\n",emsg);
1641 errline(i,1,err);
1642 }
1643 errcnt++;
1644 }else if( op[j].type==OPT_FLAG ){
1645 *((int*)op[j].arg) = v;
1646 }else if( op[j].type==OPT_FFLAG ){
1647 (*(void(*)())(op[j].arg))(v);
1648 }else{
1649 if( err ){
1650 fprintf(err,"%smissing argument on switch.\n",emsg);
1651 errline(i,1,err);
1652 }
1653 errcnt++;
1654 }
1655 return errcnt;
1656 }
1657
1658 /*
1659 ** Process a command line switch which has an argument.
1660 */
handleswitch(i,err)1661 static int handleswitch(i,err)
1662 int i;
1663 FILE *err;
1664 {
1665 int lv = 0;
1666 double dv = 0.0;
1667 char *sv = 0, *end;
1668 char *cp;
1669 int j;
1670 int errcnt = 0;
1671 cp = strchr(argv[i],'=');
1672 *cp = 0;
1673 for(j=0; op[j].label; j++){
1674 if( strcmp(argv[i],op[j].label)==0 ) break;
1675 }
1676 *cp = '=';
1677 if( op[j].label==0 ){
1678 if( err ){
1679 fprintf(err,"%sundefined option.\n",emsg);
1680 errline(i,0,err);
1681 }
1682 errcnt++;
1683 }else{
1684 cp++;
1685 switch( op[j].type ){
1686 case OPT_FLAG:
1687 case OPT_FFLAG:
1688 if( err ){
1689 fprintf(err,"%soption requires an argument.\n",emsg);
1690 errline(i,0,err);
1691 }
1692 errcnt++;
1693 break;
1694 case OPT_DBL:
1695 case OPT_FDBL:
1696 dv = strtod(cp,&end);
1697 if( *end ){
1698 if( err ){
1699 fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1700 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1701 }
1702 errcnt++;
1703 }
1704 break;
1705 case OPT_INT:
1706 case OPT_FINT:
1707 lv = strtol(cp,&end,0);
1708 if( *end ){
1709 if( err ){
1710 fprintf(err,"%sillegal character in integer argument.\n",emsg);
1711 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1712 }
1713 errcnt++;
1714 }
1715 break;
1716 case OPT_STR:
1717 case OPT_FSTR:
1718 sv = cp;
1719 break;
1720 }
1721 switch( op[j].type ){
1722 case OPT_FLAG:
1723 case OPT_FFLAG:
1724 break;
1725 case OPT_DBL:
1726 *(double*)(op[j].arg) = dv;
1727 break;
1728 case OPT_FDBL:
1729 (*(void(*)())(op[j].arg))(dv);
1730 break;
1731 case OPT_INT:
1732 *(int*)(op[j].arg) = lv;
1733 break;
1734 case OPT_FINT:
1735 (*(void(*)())(op[j].arg))((int)lv);
1736 break;
1737 case OPT_STR:
1738 *(char**)(op[j].arg) = sv;
1739 break;
1740 case OPT_FSTR:
1741 (*(void(*)())(op[j].arg))(sv);
1742 break;
1743 }
1744 }
1745 return errcnt;
1746 }
1747
OptInit(a,o,err)1748 int OptInit(a,o,err)
1749 char **a;
1750 struct s_options *o;
1751 FILE *err;
1752 {
1753 int errcnt = 0;
1754 argv = a;
1755 op = o;
1756 errstream = err;
1757 if( argv && *argv && op ){
1758 int i;
1759 for(i=1; argv[i]; i++){
1760 if( argv[i][0]=='+' || argv[i][0]=='-' ){
1761 errcnt += handleflags(i,err);
1762 }else if( strchr(argv[i],'=') ){
1763 errcnt += handleswitch(i,err);
1764 }
1765 }
1766 }
1767 if( errcnt>0 ){
1768 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1769 OptPrint();
1770 exit(1);
1771 }
1772 return 0;
1773 }
1774
OptNArgs()1775 int OptNArgs(){
1776 int cnt = 0;
1777 int dashdash = 0;
1778 int i;
1779 if( argv!=0 && argv[0]!=0 ){
1780 for(i=1; argv[i]; i++){
1781 if( dashdash || !ISOPT(argv[i]) ) cnt++;
1782 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1783 }
1784 }
1785 return cnt;
1786 }
1787
OptArg(n)1788 char *OptArg(n)
1789 int n;
1790 {
1791 int i;
1792 i = argindex(n);
1793 return i>=0 ? argv[i] : 0;
1794 }
1795
OptErr(n)1796 void OptErr(n)
1797 int n;
1798 {
1799 int i;
1800 i = argindex(n);
1801 if( i>=0 ) errline(i,0,errstream);
1802 }
1803
OptPrint()1804 void OptPrint(){
1805 int i;
1806 int max, len;
1807 max = 0;
1808 for(i=0; op[i].label; i++){
1809 len = strlen(op[i].label) + 1;
1810 switch( op[i].type ){
1811 case OPT_FLAG:
1812 case OPT_FFLAG:
1813 break;
1814 case OPT_INT:
1815 case OPT_FINT:
1816 len += 9; /* length of "<integer>" */
1817 break;
1818 case OPT_DBL:
1819 case OPT_FDBL:
1820 len += 6; /* length of "<real>" */
1821 break;
1822 case OPT_STR:
1823 case OPT_FSTR:
1824 len += 8; /* length of "<string>" */
1825 break;
1826 }
1827 if( len>max ) max = len;
1828 }
1829 for(i=0; op[i].label; i++){
1830 switch( op[i].type ){
1831 case OPT_FLAG:
1832 case OPT_FFLAG:
1833 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
1834 break;
1835 case OPT_INT:
1836 case OPT_FINT:
1837 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
1838 (int)(max-strlen(op[i].label)-9),"",op[i].message);
1839 break;
1840 case OPT_DBL:
1841 case OPT_FDBL:
1842 fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
1843 (int)(max-strlen(op[i].label)-6),"",op[i].message);
1844 break;
1845 case OPT_STR:
1846 case OPT_FSTR:
1847 fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
1848 (int)(max-strlen(op[i].label)-8),"",op[i].message);
1849 break;
1850 }
1851 }
1852 }
1853 /*********************** From the file "parse.c" ****************************/
1854 /*
1855 ** Input file parser for the LEMON parser generator.
1856 */
1857
1858 /* The state of the parser */
1859 struct pstate {
1860 char *filename; /* Name of the input file */
1861 int tokenlineno; /* Linenumber at which current token starts */
1862 int errorcnt; /* Number of errors so far */
1863 char *tokenstart; /* Text of current token */
1864 struct lemon *gp; /* Global state vector */
1865 enum e_state {
1866 INITIALIZE,
1867 WAITING_FOR_DECL_OR_RULE,
1868 WAITING_FOR_DECL_KEYWORD,
1869 WAITING_FOR_DECL_ARG,
1870 WAITING_FOR_PRECEDENCE_SYMBOL,
1871 WAITING_FOR_ARROW,
1872 IN_RHS,
1873 LHS_ALIAS_1,
1874 LHS_ALIAS_2,
1875 LHS_ALIAS_3,
1876 RHS_ALIAS_1,
1877 RHS_ALIAS_2,
1878 PRECEDENCE_MARK_1,
1879 PRECEDENCE_MARK_2,
1880 RESYNC_AFTER_RULE_ERROR,
1881 RESYNC_AFTER_DECL_ERROR,
1882 WAITING_FOR_DESTRUCTOR_SYMBOL,
1883 WAITING_FOR_DATATYPE_SYMBOL,
1884 WAITING_FOR_FALLBACK_ID
1885 } state; /* The state of the parser */
1886 struct symbol *fallback; /* The fallback token */
1887 struct symbol *lhs; /* Left-hand side of current rule */
1888 char *lhsalias; /* Alias for the LHS */
1889 int nrhs; /* Number of right-hand side symbols seen */
1890 struct symbol *rhs[MAXRHS]; /* RHS symbols */
1891 char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
1892 struct rule *prevrule; /* Previous rule parsed */
1893 char *declkeyword; /* Keyword of a declaration */
1894 char **declargslot; /* Where the declaration argument should be put */
1895 int *decllnslot; /* Where the declaration linenumber is put */
1896 enum e_assoc declassoc; /* Assign this association to decl arguments */
1897 int preccounter; /* Assign this precedence to decl arguments */
1898 struct rule *firstrule; /* Pointer to first rule in the grammar */
1899 struct rule *lastrule; /* Pointer to the most recently parsed rule */
1900 };
1901
1902 /* Parse a single token */
parseonetoken(psp)1903 static void parseonetoken(psp)
1904 struct pstate *psp;
1905 {
1906 char *x;
1907 x = Strsafe(psp->tokenstart); /* Save the token permanently */
1908 #if 0
1909 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1910 x,psp->state);
1911 #endif
1912 switch( psp->state ){
1913 case INITIALIZE:
1914 psp->prevrule = 0;
1915 psp->preccounter = 0;
1916 psp->firstrule = psp->lastrule = 0;
1917 psp->gp->nrule = 0;
1918 /* Fall thru to next case */
1919 case WAITING_FOR_DECL_OR_RULE:
1920 if( x[0]=='%' ){
1921 psp->state = WAITING_FOR_DECL_KEYWORD;
1922 }else if( islower(x[0]) ){
1923 psp->lhs = Symbol_new(x);
1924 psp->nrhs = 0;
1925 psp->lhsalias = 0;
1926 psp->state = WAITING_FOR_ARROW;
1927 }else if( x[0]=='{' ){
1928 if( psp->prevrule==0 ){
1929 ErrorMsg(psp->filename,psp->tokenlineno,
1930 "There is not prior rule opon which to attach the code \
1931 fragment which begins on this line.");
1932 psp->errorcnt++;
1933 }else if( psp->prevrule->code!=0 ){
1934 ErrorMsg(psp->filename,psp->tokenlineno,
1935 "Code fragment beginning on this line is not the first \
1936 to follow the previous rule.");
1937 psp->errorcnt++;
1938 }else{
1939 psp->prevrule->line = psp->tokenlineno;
1940 psp->prevrule->code = &x[1];
1941 }
1942 }else if( x[0]=='[' ){
1943 psp->state = PRECEDENCE_MARK_1;
1944 }else{
1945 ErrorMsg(psp->filename,psp->tokenlineno,
1946 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
1947 x);
1948 psp->errorcnt++;
1949 }
1950 break;
1951 case PRECEDENCE_MARK_1:
1952 if( !isupper(x[0]) ){
1953 ErrorMsg(psp->filename,psp->tokenlineno,
1954 "The precedence symbol must be a terminal.");
1955 psp->errorcnt++;
1956 }else if( psp->prevrule==0 ){
1957 ErrorMsg(psp->filename,psp->tokenlineno,
1958 "There is no prior rule to assign precedence \"[%s]\".",x);
1959 psp->errorcnt++;
1960 }else if( psp->prevrule->precsym!=0 ){
1961 ErrorMsg(psp->filename,psp->tokenlineno,
1962 "Precedence mark on this line is not the first \
1963 to follow the previous rule.");
1964 psp->errorcnt++;
1965 }else{
1966 psp->prevrule->precsym = Symbol_new(x);
1967 }
1968 psp->state = PRECEDENCE_MARK_2;
1969 break;
1970 case PRECEDENCE_MARK_2:
1971 if( x[0]!=']' ){
1972 ErrorMsg(psp->filename,psp->tokenlineno,
1973 "Missing \"]\" on precedence mark.");
1974 psp->errorcnt++;
1975 }
1976 psp->state = WAITING_FOR_DECL_OR_RULE;
1977 break;
1978 case WAITING_FOR_ARROW:
1979 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
1980 psp->state = IN_RHS;
1981 }else if( x[0]=='(' ){
1982 psp->state = LHS_ALIAS_1;
1983 }else{
1984 ErrorMsg(psp->filename,psp->tokenlineno,
1985 "Expected to see a \":\" following the LHS symbol \"%s\".",
1986 psp->lhs->name);
1987 psp->errorcnt++;
1988 psp->state = RESYNC_AFTER_RULE_ERROR;
1989 }
1990 break;
1991 case LHS_ALIAS_1:
1992 if( isalpha(x[0]) ){
1993 psp->lhsalias = x;
1994 psp->state = LHS_ALIAS_2;
1995 }else{
1996 ErrorMsg(psp->filename,psp->tokenlineno,
1997 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
1998 x,psp->lhs->name);
1999 psp->errorcnt++;
2000 psp->state = RESYNC_AFTER_RULE_ERROR;
2001 }
2002 break;
2003 case LHS_ALIAS_2:
2004 if( x[0]==')' ){
2005 psp->state = LHS_ALIAS_3;
2006 }else{
2007 ErrorMsg(psp->filename,psp->tokenlineno,
2008 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2009 psp->errorcnt++;
2010 psp->state = RESYNC_AFTER_RULE_ERROR;
2011 }
2012 break;
2013 case LHS_ALIAS_3:
2014 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2015 psp->state = IN_RHS;
2016 }else{
2017 ErrorMsg(psp->filename,psp->tokenlineno,
2018 "Missing \"->\" following: \"%s(%s)\".",
2019 psp->lhs->name,psp->lhsalias);
2020 psp->errorcnt++;
2021 psp->state = RESYNC_AFTER_RULE_ERROR;
2022 }
2023 break;
2024 case IN_RHS:
2025 if( x[0]=='.' ){
2026 struct rule *rp;
2027 rp = (struct rule *)malloc( sizeof(struct rule) +
2028 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
2029 if( rp==0 ){
2030 ErrorMsg(psp->filename,psp->tokenlineno,
2031 "Can't allocate enough memory for this rule.");
2032 psp->errorcnt++;
2033 psp->prevrule = 0;
2034 }else{
2035 int i;
2036 rp->ruleline = psp->tokenlineno;
2037 rp->rhs = (struct symbol**)&rp[1];
2038 rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
2039 for(i=0; i<psp->nrhs; i++){
2040 rp->rhs[i] = psp->rhs[i];
2041 rp->rhsalias[i] = psp->alias[i];
2042 }
2043 rp->lhs = psp->lhs;
2044 rp->lhsalias = psp->lhsalias;
2045 rp->nrhs = psp->nrhs;
2046 rp->code = 0;
2047 rp->precsym = 0;
2048 rp->index = psp->gp->nrule++;
2049 rp->nextlhs = rp->lhs->rule;
2050 rp->lhs->rule = rp;
2051 rp->next = 0;
2052 if( psp->firstrule==0 ){
2053 psp->firstrule = psp->lastrule = rp;
2054 }else{
2055 psp->lastrule->next = rp;
2056 psp->lastrule = rp;
2057 }
2058 psp->prevrule = rp;
2059 }
2060 psp->state = WAITING_FOR_DECL_OR_RULE;
2061 }else if( isalpha(x[0]) ){
2062 if( psp->nrhs>=MAXRHS ){
2063 ErrorMsg(psp->filename,psp->tokenlineno,
2064 "Too many symbol on RHS or rule beginning at \"%s\".",
2065 x);
2066 psp->errorcnt++;
2067 psp->state = RESYNC_AFTER_RULE_ERROR;
2068 }else{
2069 psp->rhs[psp->nrhs] = Symbol_new(x);
2070 psp->alias[psp->nrhs] = 0;
2071 psp->nrhs++;
2072 }
2073 }else if( x[0]=='(' && psp->nrhs>0 ){
2074 psp->state = RHS_ALIAS_1;
2075 }else{
2076 ErrorMsg(psp->filename,psp->tokenlineno,
2077 "Illegal character on RHS of rule: \"%s\".",x);
2078 psp->errorcnt++;
2079 psp->state = RESYNC_AFTER_RULE_ERROR;
2080 }
2081 break;
2082 case RHS_ALIAS_1:
2083 if( isalpha(x[0]) ){
2084 psp->alias[psp->nrhs-1] = x;
2085 psp->state = RHS_ALIAS_2;
2086 }else{
2087 ErrorMsg(psp->filename,psp->tokenlineno,
2088 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2089 x,psp->rhs[psp->nrhs-1]->name);
2090 psp->errorcnt++;
2091 psp->state = RESYNC_AFTER_RULE_ERROR;
2092 }
2093 break;
2094 case RHS_ALIAS_2:
2095 if( x[0]==')' ){
2096 psp->state = IN_RHS;
2097 }else{
2098 ErrorMsg(psp->filename,psp->tokenlineno,
2099 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2100 psp->errorcnt++;
2101 psp->state = RESYNC_AFTER_RULE_ERROR;
2102 }
2103 break;
2104 case WAITING_FOR_DECL_KEYWORD:
2105 if( isalpha(x[0]) ){
2106 psp->declkeyword = x;
2107 psp->declargslot = 0;
2108 psp->decllnslot = 0;
2109 psp->state = WAITING_FOR_DECL_ARG;
2110 if( strcmp(x,"name")==0 ){
2111 psp->declargslot = &(psp->gp->name);
2112 }else if( strcmp(x,"include")==0 ){
2113 psp->declargslot = &(psp->gp->include);
2114 psp->decllnslot = &psp->gp->includeln;
2115 }else if( strcmp(x,"code")==0 ){
2116 psp->declargslot = &(psp->gp->extracode);
2117 psp->decllnslot = &psp->gp->extracodeln;
2118 }else if( strcmp(x,"token_destructor")==0 ){
2119 psp->declargslot = &psp->gp->tokendest;
2120 psp->decllnslot = &psp->gp->tokendestln;
2121 }else if( strcmp(x,"default_destructor")==0 ){
2122 psp->declargslot = &psp->gp->vardest;
2123 psp->decllnslot = &psp->gp->vardestln;
2124 }else if( strcmp(x,"token_prefix")==0 ){
2125 psp->declargslot = &psp->gp->tokenprefix;
2126 }else if( strcmp(x,"syntax_error")==0 ){
2127 psp->declargslot = &(psp->gp->error);
2128 psp->decllnslot = &psp->gp->errorln;
2129 }else if( strcmp(x,"parse_accept")==0 ){
2130 psp->declargslot = &(psp->gp->accept);
2131 psp->decllnslot = &psp->gp->acceptln;
2132 }else if( strcmp(x,"parse_failure")==0 ){
2133 psp->declargslot = &(psp->gp->failure);
2134 psp->decllnslot = &psp->gp->failureln;
2135 }else if( strcmp(x,"stack_overflow")==0 ){
2136 psp->declargslot = &(psp->gp->overflow);
2137 psp->decllnslot = &psp->gp->overflowln;
2138 }else if( strcmp(x,"extra_argument")==0 ){
2139 psp->declargslot = &(psp->gp->arg);
2140 }else if( strcmp(x,"token_type")==0 ){
2141 psp->declargslot = &(psp->gp->tokentype);
2142 }else if( strcmp(x,"default_type")==0 ){
2143 psp->declargslot = &(psp->gp->vartype);
2144 }else if( strcmp(x,"stack_size")==0 ){
2145 psp->declargslot = &(psp->gp->stacksize);
2146 }else if( strcmp(x,"start_symbol")==0 ){
2147 psp->declargslot = &(psp->gp->start);
2148 }else if( strcmp(x,"left")==0 ){
2149 psp->preccounter++;
2150 psp->declassoc = LEFT;
2151 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2152 }else if( strcmp(x,"right")==0 ){
2153 psp->preccounter++;
2154 psp->declassoc = RIGHT;
2155 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2156 }else if( strcmp(x,"nonassoc")==0 ){
2157 psp->preccounter++;
2158 psp->declassoc = NONE;
2159 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2160 }else if( strcmp(x,"destructor")==0 ){
2161 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2162 }else if( strcmp(x,"type")==0 ){
2163 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2164 }else if( strcmp(x,"fallback")==0 ){
2165 psp->fallback = 0;
2166 psp->state = WAITING_FOR_FALLBACK_ID;
2167 }else{
2168 ErrorMsg(psp->filename,psp->tokenlineno,
2169 "Unknown declaration keyword: \"%%%s\".",x);
2170 psp->errorcnt++;
2171 psp->state = RESYNC_AFTER_DECL_ERROR;
2172 }
2173 }else{
2174 ErrorMsg(psp->filename,psp->tokenlineno,
2175 "Illegal declaration keyword: \"%s\".",x);
2176 psp->errorcnt++;
2177 psp->state = RESYNC_AFTER_DECL_ERROR;
2178 }
2179 break;
2180 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2181 if( !isalpha(x[0]) ){
2182 ErrorMsg(psp->filename,psp->tokenlineno,
2183 "Symbol name missing after %destructor keyword");
2184 psp->errorcnt++;
2185 psp->state = RESYNC_AFTER_DECL_ERROR;
2186 }else{
2187 struct symbol *sp = Symbol_new(x);
2188 psp->declargslot = &sp->destructor;
2189 psp->decllnslot = &sp->destructorln;
2190 psp->state = WAITING_FOR_DECL_ARG;
2191 }
2192 break;
2193 case WAITING_FOR_DATATYPE_SYMBOL:
2194 if( !isalpha(x[0]) ){
2195 ErrorMsg(psp->filename,psp->tokenlineno,
2196 "Symbol name missing after %destructor keyword");
2197 psp->errorcnt++;
2198 psp->state = RESYNC_AFTER_DECL_ERROR;
2199 }else{
2200 struct symbol *sp = Symbol_new(x);
2201 psp->declargslot = &sp->datatype;
2202 psp->decllnslot = 0;
2203 psp->state = WAITING_FOR_DECL_ARG;
2204 }
2205 break;
2206 case WAITING_FOR_PRECEDENCE_SYMBOL:
2207 if( x[0]=='.' ){
2208 psp->state = WAITING_FOR_DECL_OR_RULE;
2209 }else if( isupper(x[0]) ){
2210 struct symbol *sp;
2211 sp = Symbol_new(x);
2212 if( sp->prec>=0 ){
2213 ErrorMsg(psp->filename,psp->tokenlineno,
2214 "Symbol \"%s\" has already be given a precedence.",x);
2215 psp->errorcnt++;
2216 }else{
2217 sp->prec = psp->preccounter;
2218 sp->assoc = psp->declassoc;
2219 }
2220 }else{
2221 ErrorMsg(psp->filename,psp->tokenlineno,
2222 "Can't assign a precedence to \"%s\".",x);
2223 psp->errorcnt++;
2224 }
2225 break;
2226 case WAITING_FOR_DECL_ARG:
2227 if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
2228 if( *(psp->declargslot)!=0 ){
2229 ErrorMsg(psp->filename,psp->tokenlineno,
2230 "The argument \"%s\" to declaration \"%%%s\" is not the first.",
2231 x[0]=='\"' ? &x[1] : x,psp->declkeyword);
2232 psp->errorcnt++;
2233 psp->state = RESYNC_AFTER_DECL_ERROR;
2234 }else{
2235 *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
2236 if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
2237 psp->state = WAITING_FOR_DECL_OR_RULE;
2238 }
2239 }else{
2240 ErrorMsg(psp->filename,psp->tokenlineno,
2241 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2242 psp->errorcnt++;
2243 psp->state = RESYNC_AFTER_DECL_ERROR;
2244 }
2245 break;
2246 case WAITING_FOR_FALLBACK_ID:
2247 if( x[0]=='.' ){
2248 psp->state = WAITING_FOR_DECL_OR_RULE;
2249 }else if( !isupper(x[0]) ){
2250 ErrorMsg(psp->filename, psp->tokenlineno,
2251 "%%fallback argument \"%s\" should be a token", x);
2252 psp->errorcnt++;
2253 }else{
2254 struct symbol *sp = Symbol_new(x);
2255 if( psp->fallback==0 ){
2256 psp->fallback = sp;
2257 }else if( sp->fallback ){
2258 ErrorMsg(psp->filename, psp->tokenlineno,
2259 "More than one fallback assigned to token %s", x);
2260 psp->errorcnt++;
2261 }else{
2262 sp->fallback = psp->fallback;
2263 psp->gp->has_fallback = 1;
2264 }
2265 }
2266 break;
2267 case RESYNC_AFTER_RULE_ERROR:
2268 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2269 ** break; */
2270 case RESYNC_AFTER_DECL_ERROR:
2271 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2272 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2273 break;
2274 }
2275 }
2276
2277 /* In spite of its name, this function is really a scanner. It read
2278 ** in the entire input file (all at once) then tokenizes it. Each
2279 ** token is passed to the function "parseonetoken" which builds all
2280 ** the appropriate data structures in the global state vector "gp".
2281 */
Parse(gp)2282 void Parse(gp)
2283 struct lemon *gp;
2284 {
2285 struct pstate ps;
2286 FILE *fp;
2287 char *filebuf;
2288 int filesize;
2289 int lineno;
2290 int c;
2291 char *cp, *nextcp;
2292 int startline = 0;
2293
2294 ps.gp = gp;
2295 ps.filename = gp->filename;
2296 ps.errorcnt = 0;
2297 ps.state = INITIALIZE;
2298
2299 /* Begin by reading the input file */
2300 fp = fopen(ps.filename,"rb");
2301 if( fp==0 ){
2302 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2303 gp->errorcnt++;
2304 return;
2305 }
2306 fseek(fp,0,2);
2307 filesize = ftell(fp);
2308 rewind(fp);
2309 filebuf = (char *)malloc( filesize+1 );
2310 if( filebuf==0 ){
2311 ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2312 filesize+1);
2313 gp->errorcnt++;
2314 return;
2315 }
2316 if( fread(filebuf,1,filesize,fp)!=filesize ){
2317 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2318 filesize);
2319 free(filebuf);
2320 gp->errorcnt++;
2321 return;
2322 }
2323 fclose(fp);
2324 filebuf[filesize] = 0;
2325
2326 /* Now scan the text of the input file */
2327 lineno = 1;
2328 for(cp=filebuf; (c= *cp)!=0; ){
2329 if( c=='\n' ) lineno++; /* Keep track of the line number */
2330 if( isspace(c) ){ cp++; continue; } /* Skip all white space */
2331 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2332 cp+=2;
2333 while( (c= *cp)!=0 && c!='\n' ) cp++;
2334 continue;
2335 }
2336 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2337 cp+=2;
2338 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2339 if( c=='\n' ) lineno++;
2340 cp++;
2341 }
2342 if( c ) cp++;
2343 continue;
2344 }
2345 ps.tokenstart = cp; /* Mark the beginning of the token */
2346 ps.tokenlineno = lineno; /* Linenumber on which token begins */
2347 if( c=='\"' ){ /* String literals */
2348 cp++;
2349 while( (c= *cp)!=0 && c!='\"' ){
2350 if( c=='\n' ) lineno++;
2351 cp++;
2352 }
2353 if( c==0 ){
2354 ErrorMsg(ps.filename,startline,
2355 "String starting on this line is not terminated before the end of the file.");
2356 ps.errorcnt++;
2357 nextcp = cp;
2358 }else{
2359 nextcp = cp+1;
2360 }
2361 }else if( c=='{' ){ /* A block of C code */
2362 int level;
2363 cp++;
2364 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2365 if( c=='\n' ) lineno++;
2366 else if( c=='{' ) level++;
2367 else if( c=='}' ) level--;
2368 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2369 int prevc;
2370 cp = &cp[2];
2371 prevc = 0;
2372 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2373 if( c=='\n' ) lineno++;
2374 prevc = c;
2375 cp++;
2376 }
2377 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2378 cp = &cp[2];
2379 while( (c= *cp)!=0 && c!='\n' ) cp++;
2380 if( c ) lineno++;
2381 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2382 int startchar, prevc;
2383 startchar = c;
2384 prevc = 0;
2385 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2386 if( c=='\n' ) lineno++;
2387 if( prevc=='\\' ) prevc = 0;
2388 else prevc = c;
2389 }
2390 }
2391 }
2392 if( c==0 ){
2393 ErrorMsg(ps.filename,ps.tokenlineno,
2394 "C code starting on this line is not terminated before the end of the file.");
2395 ps.errorcnt++;
2396 nextcp = cp;
2397 }else{
2398 nextcp = cp+1;
2399 }
2400 }else if( isalnum(c) ){ /* Identifiers */
2401 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2402 nextcp = cp;
2403 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2404 cp += 3;
2405 nextcp = cp;
2406 }else{ /* All other (one character) operators */
2407 cp++;
2408 nextcp = cp;
2409 }
2410 c = *cp;
2411 *cp = 0; /* Null terminate the token */
2412 parseonetoken(&ps); /* Parse the token */
2413 *cp = c; /* Restore the buffer */
2414 cp = nextcp;
2415 }
2416 free(filebuf); /* Release the buffer after parsing */
2417 gp->rule = ps.firstrule;
2418 gp->errorcnt = ps.errorcnt;
2419 }
2420 /*************************** From the file "plink.c" *********************/
2421 /*
2422 ** Routines processing configuration follow-set propagation links
2423 ** in the LEMON parser generator.
2424 */
2425 static struct plink *plink_freelist = 0;
2426
2427 /* Allocate a new plink */
Plink_new()2428 struct plink *Plink_new(){
2429 struct plink *new;
2430
2431 if( plink_freelist==0 ){
2432 int i;
2433 int amt = 100;
2434 plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
2435 if( plink_freelist==0 ){
2436 fprintf(stderr,
2437 "Unable to allocate memory for a new follow-set propagation link.\n");
2438 exit(1);
2439 }
2440 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2441 plink_freelist[amt-1].next = 0;
2442 }
2443 new = plink_freelist;
2444 plink_freelist = plink_freelist->next;
2445 return new;
2446 }
2447
2448 /* Add a plink to a plink list */
Plink_add(plpp,cfp)2449 void Plink_add(plpp,cfp)
2450 struct plink **plpp;
2451 struct config *cfp;
2452 {
2453 struct plink *new;
2454 new = Plink_new();
2455 new->next = *plpp;
2456 *plpp = new;
2457 new->cfp = cfp;
2458 }
2459
2460 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(to,from)2461 void Plink_copy(to,from)
2462 struct plink **to;
2463 struct plink *from;
2464 {
2465 struct plink *nextpl;
2466 while( from ){
2467 nextpl = from->next;
2468 from->next = *to;
2469 *to = from;
2470 from = nextpl;
2471 }
2472 }
2473
2474 /* Delete every plink on the list */
Plink_delete(plp)2475 void Plink_delete(plp)
2476 struct plink *plp;
2477 {
2478 struct plink *nextpl;
2479
2480 while( plp ){
2481 nextpl = plp->next;
2482 plp->next = plink_freelist;
2483 plink_freelist = plp;
2484 plp = nextpl;
2485 }
2486 }
2487 /*********************** From the file "report.c" **************************/
2488 /*
2489 ** Procedures for generating reports and tables in the LEMON parser generator.
2490 */
2491
2492 /* Generate a filename with the given suffix. Space to hold the
2493 ** name comes from malloc() and must be freed by the calling
2494 ** function.
2495 */
file_makename(lemp,suffix)2496 PRIVATE char *file_makename(lemp,suffix)
2497 struct lemon *lemp;
2498 char *suffix;
2499 {
2500 char *name;
2501 char *cp;
2502
2503 name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
2504 if( name==0 ){
2505 fprintf(stderr,"Can't allocate space for a filename.\n");
2506 exit(1);
2507 }
2508 strcpy(name,lemp->filename);
2509 cp = strrchr(name,'.');
2510 if( cp ) *cp = 0;
2511 strcat(name,suffix);
2512 return name;
2513 }
2514
2515 /* Open a file with a name based on the name of the input file,
2516 ** but with a different (specified) suffix, and return a pointer
2517 ** to the stream */
file_open(lemp,suffix,mode)2518 PRIVATE FILE *file_open(lemp,suffix,mode)
2519 struct lemon *lemp;
2520 char *suffix;
2521 char *mode;
2522 {
2523 FILE *fp;
2524
2525 if( lemp->outname ) free(lemp->outname);
2526 lemp->outname = file_makename(lemp, suffix);
2527 fp = fopen(lemp->outname,mode);
2528 if( fp==0 && *mode=='w' ){
2529 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2530 lemp->errorcnt++;
2531 return 0;
2532 }
2533 return fp;
2534 }
2535
2536 /* Duplicate the input file without comments and without actions
2537 ** on rules */
Reprint(lemp)2538 void Reprint(lemp)
2539 struct lemon *lemp;
2540 {
2541 struct rule *rp;
2542 struct symbol *sp;
2543 int i, j, maxlen, len, ncolumns, skip;
2544 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2545 maxlen = 10;
2546 for(i=0; i<lemp->nsymbol; i++){
2547 sp = lemp->symbols[i];
2548 len = strlen(sp->name);
2549 if( len>maxlen ) maxlen = len;
2550 }
2551 ncolumns = 76/(maxlen+5);
2552 if( ncolumns<1 ) ncolumns = 1;
2553 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2554 for(i=0; i<skip; i++){
2555 printf("//");
2556 for(j=i; j<lemp->nsymbol; j+=skip){
2557 sp = lemp->symbols[j];
2558 assert( sp->index==j );
2559 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2560 }
2561 printf("\n");
2562 }
2563 for(rp=lemp->rule; rp; rp=rp->next){
2564 printf("%s",rp->lhs->name);
2565 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2566 printf(" ::=");
2567 for(i=0; i<rp->nrhs; i++){
2568 printf(" %s",rp->rhs[i]->name);
2569 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2570 }
2571 printf(".");
2572 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2573 /* if( rp->code ) printf("\n %s",rp->code); */
2574 printf("\n");
2575 }
2576 }
2577
ConfigPrint(fp,cfp)2578 void ConfigPrint(fp,cfp)
2579 FILE *fp;
2580 struct config *cfp;
2581 {
2582 struct rule *rp;
2583 int i;
2584 rp = cfp->rp;
2585 fprintf(fp,"%s ::=",rp->lhs->name);
2586 for(i=0; i<=rp->nrhs; i++){
2587 if( i==cfp->dot ) fprintf(fp," *");
2588 if( i==rp->nrhs ) break;
2589 fprintf(fp," %s",rp->rhs[i]->name);
2590 }
2591 }
2592
2593 /* #define TEST */
2594 #ifdef TEST
2595 /* Print a set */
SetPrint(out,set,lemp)2596 PRIVATE void SetPrint(out,set,lemp)
2597 FILE *out;
2598 char *set;
2599 struct lemon *lemp;
2600 {
2601 int i;
2602 char *spacer;
2603 spacer = "";
2604 fprintf(out,"%12s[","");
2605 for(i=0; i<lemp->nterminal; i++){
2606 if( SetFind(set,i) ){
2607 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2608 spacer = " ";
2609 }
2610 }
2611 fprintf(out,"]\n");
2612 }
2613
2614 /* Print a plink chain */
PlinkPrint(out,plp,tag)2615 PRIVATE void PlinkPrint(out,plp,tag)
2616 FILE *out;
2617 struct plink *plp;
2618 char *tag;
2619 {
2620 while( plp ){
2621 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
2622 ConfigPrint(out,plp->cfp);
2623 fprintf(out,"\n");
2624 plp = plp->next;
2625 }
2626 }
2627 #endif
2628
2629 /* Print an action to the given file descriptor. Return FALSE if
2630 ** nothing was actually printed.
2631 */
PrintAction(struct action * ap,FILE * fp,int indent)2632 int PrintAction(struct action *ap, FILE *fp, int indent){
2633 int result = 1;
2634 switch( ap->type ){
2635 case SHIFT:
2636 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->index);
2637 break;
2638 case REDUCE:
2639 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2640 break;
2641 case ACCEPT:
2642 fprintf(fp,"%*s accept",indent,ap->sp->name);
2643 break;
2644 case ERROR:
2645 fprintf(fp,"%*s error",indent,ap->sp->name);
2646 break;
2647 case CONFLICT:
2648 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2649 indent,ap->sp->name,ap->x.rp->index);
2650 break;
2651 case SH_RESOLVED:
2652 case RD_RESOLVED:
2653 case NOT_USED:
2654 result = 0;
2655 break;
2656 }
2657 return result;
2658 }
2659
2660 /* Generate the "y.output" log file */
ReportOutput(lemp)2661 void ReportOutput(lemp)
2662 struct lemon *lemp;
2663 {
2664 int i;
2665 struct state *stp;
2666 struct config *cfp;
2667 struct action *ap;
2668 FILE *fp;
2669
2670 fp = file_open(lemp,".out","w");
2671 if( fp==0 ) return;
2672 fprintf(fp," \b");
2673 for(i=0; i<lemp->nstate; i++){
2674 stp = lemp->sorted[i];
2675 fprintf(fp,"State %d:\n",stp->index);
2676 if( lemp->basisflag ) cfp=stp->bp;
2677 else cfp=stp->cfp;
2678 while( cfp ){
2679 char buf[20];
2680 if( cfp->dot==cfp->rp->nrhs ){
2681 sprintf(buf,"(%d)",cfp->rp->index);
2682 fprintf(fp," %5s ",buf);
2683 }else{
2684 fprintf(fp," ");
2685 }
2686 ConfigPrint(fp,cfp);
2687 fprintf(fp,"\n");
2688 #ifdef TEST
2689 SetPrint(fp,cfp->fws,lemp);
2690 PlinkPrint(fp,cfp->fplp,"To ");
2691 PlinkPrint(fp,cfp->bplp,"From");
2692 #endif
2693 if( lemp->basisflag ) cfp=cfp->bp;
2694 else cfp=cfp->next;
2695 }
2696 fprintf(fp,"\n");
2697 for(ap=stp->ap; ap; ap=ap->next){
2698 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2699 }
2700 fprintf(fp,"\n");
2701 }
2702 fclose(fp);
2703 return;
2704 }
2705
2706 /* Search for the file "name" which is in the same directory as
2707 ** the exacutable */
pathsearch(argv0,name,modemask)2708 PRIVATE char *pathsearch(argv0,name,modemask)
2709 char *argv0;
2710 char *name;
2711 int modemask;
2712 {
2713 char *pathlist;
2714 char *path,*cp;
2715 char c;
2716 extern int access();
2717
2718 #ifdef __WIN32__
2719 cp = strrchr(argv0,'\\');
2720 #else
2721 cp = strrchr(argv0,'/');
2722 #endif
2723 if( cp ){
2724 c = *cp;
2725 *cp = 0;
2726 path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
2727 if( path ) sprintf(path,"%s/%s",argv0,name);
2728 *cp = c;
2729 }else{
2730 extern char *getenv();
2731 pathlist = getenv("PATH");
2732 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
2733 path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
2734 if( path!=0 ){
2735 while( *pathlist ){
2736 cp = strchr(pathlist,':');
2737 if( cp==0 ) cp = &pathlist[strlen(pathlist)];
2738 c = *cp;
2739 *cp = 0;
2740 sprintf(path,"%s/%s",pathlist,name);
2741 *cp = c;
2742 if( c==0 ) pathlist = "";
2743 else pathlist = &cp[1];
2744 if( access(path,modemask)==0 ) break;
2745 }
2746 }
2747 }
2748 return path;
2749 }
2750
2751 /* Given an action, compute the integer value for that action
2752 ** which is to be put in the action table of the generated machine.
2753 ** Return negative if no action should be generated.
2754 */
compute_action(lemp,ap)2755 PRIVATE int compute_action(lemp,ap)
2756 struct lemon *lemp;
2757 struct action *ap;
2758 {
2759 int act;
2760 switch( ap->type ){
2761 case SHIFT: act = ap->x.stp->index; break;
2762 case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
2763 case ERROR: act = lemp->nstate + lemp->nrule; break;
2764 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
2765 default: act = -1; break;
2766 }
2767 return act;
2768 }
2769
2770 #define LINESIZE 1000
2771 /* The next cluster of routines are for reading the template file
2772 ** and writing the results to the generated parser */
2773 /* The first function transfers data from "in" to "out" until
2774 ** a line is seen which begins with "%%". The line number is
2775 ** tracked.
2776 **
2777 ** if name!=0, then any word that begin with "Parse" is changed to
2778 ** begin with *name instead.
2779 */
tplt_xfer(name,in,out,lineno)2780 PRIVATE void tplt_xfer(name,in,out,lineno)
2781 char *name;
2782 FILE *in;
2783 FILE *out;
2784 int *lineno;
2785 {
2786 int i, iStart;
2787 char line[LINESIZE];
2788 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
2789 (*lineno)++;
2790 iStart = 0;
2791 if( name ){
2792 for(i=0; line[i]; i++){
2793 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
2794 && (i==0 || !isalpha(line[i-1]))
2795 ){
2796 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
2797 fprintf(out,"%s",name);
2798 i += 4;
2799 iStart = i+1;
2800 }
2801 }
2802 }
2803 fprintf(out,"%s",&line[iStart]);
2804 }
2805 }
2806
2807 /* The next function finds the template file and opens it, returning
2808 ** a pointer to the opened file. */
tplt_open(lemp)2809 PRIVATE FILE *tplt_open(lemp)
2810 struct lemon *lemp;
2811 {
2812 static char templatename[] = "lempar.c";
2813 char buf[1000];
2814 FILE *in;
2815 char *tpltname;
2816 char *cp;
2817
2818 cp = strrchr(lemp->filename,'.');
2819 if( cp ){
2820 sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
2821 }else{
2822 sprintf(buf,"%s.lt",lemp->filename);
2823 }
2824 if( access(buf,004)==0 ){
2825 tpltname = buf;
2826 }else if( access(templatename,004)==0 ){
2827 tpltname = templatename;
2828 }else{
2829 tpltname = pathsearch(lemp->argv0,templatename,0);
2830 }
2831 if( tpltname==0 ){
2832 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
2833 templatename);
2834 lemp->errorcnt++;
2835 return 0;
2836 }
2837 in = fopen(tpltname,"r");
2838 if( in==0 ){
2839 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
2840 lemp->errorcnt++;
2841 return 0;
2842 }
2843 return in;
2844 }
2845
2846 /* Print a string to the file and keep the linenumber up to date */
tplt_print(out,lemp,str,strln,lineno)2847 PRIVATE void tplt_print(out,lemp,str,strln,lineno)
2848 FILE *out;
2849 struct lemon *lemp;
2850 char *str;
2851 int strln;
2852 int *lineno;
2853 {
2854 if( str==0 ) return;
2855 fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
2856 while( *str ){
2857 if( *str=='\n' ) (*lineno)++;
2858 putc(*str,out);
2859 str++;
2860 }
2861 fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
2862 return;
2863 }
2864
2865 /*
2866 ** The following routine emits code for the destructor for the
2867 ** symbol sp
2868 */
emit_destructor_code(out,sp,lemp,lineno)2869 void emit_destructor_code(out,sp,lemp,lineno)
2870 FILE *out;
2871 struct symbol *sp;
2872 struct lemon *lemp;
2873 int *lineno;
2874 {
2875 char *cp = 0;
2876
2877 int linecnt = 0;
2878 if( sp->type==TERMINAL ){
2879 cp = lemp->tokendest;
2880 if( cp==0 ) return;
2881 fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
2882 }else if( sp->destructor ){
2883 cp = sp->destructor;
2884 fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
2885 }else if( lemp->vardest ){
2886 cp = lemp->vardest;
2887 if( cp==0 ) return;
2888 fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
2889 }else{
2890 assert( 0 ); /* Cannot happen */
2891 }
2892 for(; *cp; cp++){
2893 if( *cp=='$' && cp[1]=='$' ){
2894 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
2895 cp++;
2896 continue;
2897 }
2898 if( *cp=='\n' ) linecnt++;
2899 fputc(*cp,out);
2900 }
2901 (*lineno) += 3 + linecnt;
2902 fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2903 return;
2904 }
2905
2906 /*
2907 ** Return TRUE (non-zero) if the given symbol has a destructor.
2908 */
has_destructor(sp,lemp)2909 int has_destructor(sp, lemp)
2910 struct symbol *sp;
2911 struct lemon *lemp;
2912 {
2913 int ret;
2914 if( sp->type==TERMINAL ){
2915 ret = lemp->tokendest!=0;
2916 }else{
2917 ret = lemp->vardest!=0 || sp->destructor!=0;
2918 }
2919 return ret;
2920 }
2921
2922 /*
2923 ** Generate code which executes when the rule "rp" is reduced. Write
2924 ** the code to "out". Make sure lineno stays up-to-date.
2925 */
emit_code(out,rp,lemp,lineno)2926 PRIVATE void emit_code(out,rp,lemp,lineno)
2927 FILE *out;
2928 struct rule *rp;
2929 struct lemon *lemp;
2930 int *lineno;
2931 {
2932 char *cp, *xp;
2933 int linecnt = 0;
2934 int i;
2935 char lhsused = 0; /* True if the LHS element has been used */
2936 char used[MAXRHS]; /* True for each RHS element which is used */
2937
2938 for(i=0; i<rp->nrhs; i++) used[i] = 0;
2939 lhsused = 0;
2940
2941 /* Generate code to do the reduce action */
2942 if( rp->code ){
2943 fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
2944 for(cp=rp->code; *cp; cp++){
2945 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
2946 char saved;
2947 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
2948 saved = *xp;
2949 *xp = 0;
2950 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
2951 fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
2952 cp = xp;
2953 lhsused = 1;
2954 }else{
2955 for(i=0; i<rp->nrhs; i++){
2956 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
2957 fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
2958 cp = xp;
2959 used[i] = 1;
2960 break;
2961 }
2962 }
2963 }
2964 *xp = saved;
2965 }
2966 if( *cp=='\n' ) linecnt++;
2967 fputc(*cp,out);
2968 } /* End loop */
2969 (*lineno) += 3 + linecnt;
2970 fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2971 } /* End if( rp->code ) */
2972
2973 /* Check to make sure the LHS has been used */
2974 if( rp->lhsalias && !lhsused ){
2975 ErrorMsg(lemp->filename,rp->ruleline,
2976 "Label \"%s\" for \"%s(%s)\" is never used.",
2977 rp->lhsalias,rp->lhs->name,rp->lhsalias);
2978 lemp->errorcnt++;
2979 }
2980
2981 /* Generate destructor code for RHS symbols which are not used in the
2982 ** reduce code */
2983 for(i=0; i<rp->nrhs; i++){
2984 if( rp->rhsalias[i] && !used[i] ){
2985 ErrorMsg(lemp->filename,rp->ruleline,
2986 "Label %s for \"%s(%s)\" is never used.",
2987 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
2988 lemp->errorcnt++;
2989 }else if( rp->rhsalias[i]==0 ){
2990 if( has_destructor(rp->rhs[i],lemp) ){
2991 fprintf(out," yy_destructor(%d,&yymsp[%d].minor);\n",
2992 rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
2993 }else{
2994 fprintf(out," /* No destructor defined for %s */\n",
2995 rp->rhs[i]->name);
2996 (*lineno)++;
2997 }
2998 }
2999 }
3000 return;
3001 }
3002
3003 /*
3004 ** Print the definition of the union used for the parser's data stack.
3005 ** This union contains fields for every possible data type for tokens
3006 ** and nonterminals. In the process of computing and printing this
3007 ** union, also set the ".dtnum" field of every terminal and nonterminal
3008 ** symbol.
3009 */
print_stack_union(out,lemp,plineno,mhflag)3010 void print_stack_union(out,lemp,plineno,mhflag)
3011 FILE *out; /* The output stream */
3012 struct lemon *lemp; /* The main info structure for this parser */
3013 int *plineno; /* Pointer to the line number */
3014 int mhflag; /* True if generating makeheaders output */
3015 {
3016 int lineno = *plineno; /* The line number of the output */
3017 char **types; /* A hash table of datatypes */
3018 int arraysize; /* Size of the "types" array */
3019 int maxdtlength; /* Maximum length of any ".datatype" field. */
3020 char *stddt; /* Standardized name for a datatype */
3021 int i,j; /* Loop counters */
3022 int hash; /* For hashing the name of a type */
3023 char *name; /* Name of the parser */
3024
3025 /* Allocate and initialize types[] and allocate stddt[] */
3026 arraysize = lemp->nsymbol * 2;
3027 types = (char**)malloc( arraysize * sizeof(char*) );
3028 for(i=0; i<arraysize; i++) types[i] = 0;
3029 maxdtlength = 0;
3030 if( lemp->vartype ){
3031 maxdtlength = strlen(lemp->vartype);
3032 }
3033 for(i=0; i<lemp->nsymbol; i++){
3034 int len;
3035 struct symbol *sp = lemp->symbols[i];
3036 if( sp->datatype==0 ) continue;
3037 len = strlen(sp->datatype);
3038 if( len>maxdtlength ) maxdtlength = len;
3039 }
3040 stddt = (char*)malloc( maxdtlength*2 + 1 );
3041 if( types==0 || stddt==0 ){
3042 fprintf(stderr,"Out of memory.\n");
3043 exit(1);
3044 }
3045
3046 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3047 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3048 ** used for terminal symbols. If there is no %default_type defined then
3049 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3050 ** a datatype using the %type directive.
3051 */
3052 for(i=0; i<lemp->nsymbol; i++){
3053 struct symbol *sp = lemp->symbols[i];
3054 char *cp;
3055 if( sp==lemp->errsym ){
3056 sp->dtnum = arraysize+1;
3057 continue;
3058 }
3059 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3060 sp->dtnum = 0;
3061 continue;
3062 }
3063 cp = sp->datatype;
3064 if( cp==0 ) cp = lemp->vartype;
3065 j = 0;
3066 while( isspace(*cp) ) cp++;
3067 while( *cp ) stddt[j++] = *cp++;
3068 while( j>0 && isspace(stddt[j-1]) ) j--;
3069 stddt[j] = 0;
3070 hash = 0;
3071 for(j=0; stddt[j]; j++){
3072 hash = hash*53 + stddt[j];
3073 }
3074 hash = (hash & 0x7fffffff)%arraysize;
3075 while( types[hash] ){
3076 if( strcmp(types[hash],stddt)==0 ){
3077 sp->dtnum = hash + 1;
3078 break;
3079 }
3080 hash++;
3081 if( hash>=arraysize ) hash = 0;
3082 }
3083 if( types[hash]==0 ){
3084 sp->dtnum = hash + 1;
3085 types[hash] = (char*)malloc( strlen(stddt)+1 );
3086 if( types[hash]==0 ){
3087 fprintf(stderr,"Out of memory.\n");
3088 exit(1);
3089 }
3090 strcpy(types[hash],stddt);
3091 }
3092 }
3093
3094 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3095 name = lemp->name ? lemp->name : "Parse";
3096 lineno = *plineno;
3097 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3098 fprintf(out,"#define %sTOKENTYPE %s\n",name,
3099 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3100 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3101 fprintf(out,"typedef union {\n"); lineno++;
3102 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3103 for(i=0; i<arraysize; i++){
3104 if( types[i]==0 ) continue;
3105 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3106 free(types[i]);
3107 }
3108 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3109 free(stddt);
3110 free(types);
3111 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3112 *plineno = lineno;
3113 }
3114
3115 /*
3116 ** Return the name of a C datatype able to represent values between
3117 ** lwr and upr, inclusive.
3118 */
minimum_size_type(int lwr,int upr)3119 static const char *minimum_size_type(int lwr, int upr){
3120 if( lwr>=0 ){
3121 if( upr<=255 ){
3122 return "unsigned char";
3123 }else if( upr<65535 ){
3124 return "unsigned short int";
3125 }else{
3126 return "unsigned int";
3127 }
3128 }else if( lwr>=-127 && upr<=127 ){
3129 return "signed char";
3130 }else if( lwr>=-32767 && upr<32767 ){
3131 return "short";
3132 }else{
3133 return "int";
3134 }
3135 }
3136
3137 /*
3138 ** Each state contains a set of token transaction and a set of
3139 ** nonterminal transactions. Each of these sets makes an instance
3140 ** of the following structure. An array of these structures is used
3141 ** to order the creation of entries in the yy_action[] table.
3142 */
3143 struct axset {
3144 struct state *stp; /* A pointer to a state */
3145 int isTkn; /* True to use tokens. False for non-terminals */
3146 int nAction; /* Number of actions */
3147 };
3148
3149 /*
3150 ** Compare to axset structures for sorting purposes
3151 */
axset_compare(const void * a,const void * b)3152 static int axset_compare(const void *a, const void *b){
3153 struct axset *p1 = (struct axset*)a;
3154 struct axset *p2 = (struct axset*)b;
3155 return p2->nAction - p1->nAction;
3156 }
3157
3158 /* Generate C source code for the parser */
ReportTable(lemp,mhflag)3159 void ReportTable(lemp, mhflag)
3160 struct lemon *lemp;
3161 int mhflag; /* Output in makeheaders format if true */
3162 {
3163 FILE *out, *in;
3164 char line[LINESIZE];
3165 int lineno;
3166 struct state *stp;
3167 struct action *ap;
3168 struct rule *rp;
3169 struct acttab *pActtab;
3170 int i, j, n;
3171 char *name;
3172 int mnTknOfst, mxTknOfst;
3173 int mnNtOfst, mxNtOfst;
3174 struct axset *ax;
3175
3176 in = tplt_open(lemp);
3177 if( in==0 ) return;
3178 out = file_open(lemp,".c","w");
3179 if( out==0 ){
3180 fclose(in);
3181 return;
3182 }
3183 lineno = 1;
3184 tplt_xfer(lemp->name,in,out,&lineno);
3185
3186 /* Generate the include code, if any */
3187 tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
3188 if( mhflag ){
3189 char *name = file_makename(lemp, ".h");
3190 fprintf(out,"#include \"%s\"\n", name); lineno++;
3191 free(name);
3192 }
3193 tplt_xfer(lemp->name,in,out,&lineno);
3194
3195 /* Generate #defines for all tokens */
3196 if( mhflag ){
3197 char *prefix;
3198 fprintf(out,"#if INTERFACE\n"); lineno++;
3199 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3200 else prefix = "";
3201 for(i=1; i<lemp->nterminal; i++){
3202 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3203 lineno++;
3204 }
3205 fprintf(out,"#endif\n"); lineno++;
3206 }
3207 tplt_xfer(lemp->name,in,out,&lineno);
3208
3209 /* Generate the defines */
3210 fprintf(out,"/* \001 */\n");
3211 fprintf(out,"#define YYCODETYPE %s\n",
3212 minimum_size_type(0, lemp->nsymbol+5)); lineno++;
3213 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
3214 fprintf(out,"#define YYACTIONTYPE %s\n",
3215 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
3216 print_stack_union(out,lemp,&lineno,mhflag);
3217 if( lemp->stacksize ){
3218 if( atoi(lemp->stacksize)<=0 ){
3219 ErrorMsg(lemp->filename,0,
3220 "Illegal stack size: [%s]. The stack size should be an integer constant.",
3221 lemp->stacksize);
3222 lemp->errorcnt++;
3223 lemp->stacksize = "100";
3224 }
3225 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
3226 }else{
3227 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
3228 }
3229 if( mhflag ){
3230 fprintf(out,"#if INTERFACE\n"); lineno++;
3231 }
3232 name = lemp->name ? lemp->name : "Parse";
3233 if( lemp->arg && lemp->arg[0] ){
3234 int i;
3235 i = strlen(lemp->arg);
3236 while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3237 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3238 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
3239 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
3240 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3241 name,lemp->arg,&lemp->arg[i]); lineno++;
3242 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3243 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
3244 }else{
3245 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
3246 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
3247 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3248 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3249 }
3250 if( mhflag ){
3251 fprintf(out,"#endif\n"); lineno++;
3252 }
3253 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
3254 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
3255 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
3256 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
3257 if( lemp->has_fallback ){
3258 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
3259 }
3260 tplt_xfer(lemp->name,in,out,&lineno);
3261
3262 /* Generate the action table and its associates:
3263 **
3264 ** yy_action[] A single table containing all actions.
3265 ** yy_lookahead[] A table containing the lookahead for each entry in
3266 ** yy_action. Used to detect hash collisions.
3267 ** yy_shift_ofst[] For each state, the offset into yy_action for
3268 ** shifting terminals.
3269 ** yy_reduce_ofst[] For each state, the offset into yy_action for
3270 ** shifting non-terminals after a reduce.
3271 ** yy_default[] Default action for each state.
3272 */
3273
3274 /* Compute the actions on all states and count them up */
3275 ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
3276 if( ax==0 ){
3277 fprintf(stderr,"malloc failed\n");
3278 exit(1);
3279 }
3280 for(i=0; i<lemp->nstate; i++){
3281 stp = lemp->sorted[i];
3282 stp->nTknAct = stp->nNtAct = 0;
3283 stp->iDflt = lemp->nstate + lemp->nrule;
3284 stp->iTknOfst = NO_OFFSET;
3285 stp->iNtOfst = NO_OFFSET;
3286 for(ap=stp->ap; ap; ap=ap->next){
3287 if( compute_action(lemp,ap)>=0 ){
3288 if( ap->sp->index<lemp->nterminal ){
3289 stp->nTknAct++;
3290 }else if( ap->sp->index<lemp->nsymbol ){
3291 stp->nNtAct++;
3292 }else{
3293 stp->iDflt = compute_action(lemp, ap);
3294 }
3295 }
3296 }
3297 ax[i*2].stp = stp;
3298 ax[i*2].isTkn = 1;
3299 ax[i*2].nAction = stp->nTknAct;
3300 ax[i*2+1].stp = stp;
3301 ax[i*2+1].isTkn = 0;
3302 ax[i*2+1].nAction = stp->nNtAct;
3303 }
3304 mxTknOfst = mnTknOfst = 0;
3305 mxNtOfst = mnNtOfst = 0;
3306
3307 /* Compute the action table. In order to try to keep the size of the
3308 ** action table to a minimum, the heuristic of placing the largest action
3309 ** sets first is used.
3310 */
3311 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3312 pActtab = acttab_alloc();
3313 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3314 stp = ax[i].stp;
3315 if( ax[i].isTkn ){
3316 for(ap=stp->ap; ap; ap=ap->next){
3317 int action;
3318 if( ap->sp->index>=lemp->nterminal ) continue;
3319 action = compute_action(lemp, ap);
3320 if( action<0 ) continue;
3321 acttab_action(pActtab, ap->sp->index, action);
3322 }
3323 stp->iTknOfst = acttab_insert(pActtab);
3324 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3325 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3326 }else{
3327 for(ap=stp->ap; ap; ap=ap->next){
3328 int action;
3329 if( ap->sp->index<lemp->nterminal ) continue;
3330 if( ap->sp->index==lemp->nsymbol ) continue;
3331 action = compute_action(lemp, ap);
3332 if( action<0 ) continue;
3333 acttab_action(pActtab, ap->sp->index, action);
3334 }
3335 stp->iNtOfst = acttab_insert(pActtab);
3336 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3337 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3338 }
3339 }
3340 free(ax);
3341
3342 /* Output the yy_action table */
3343 fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
3344 n = acttab_size(pActtab);
3345 for(i=j=0; i<n; i++){
3346 int action = acttab_yyaction(pActtab, i);
3347 if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
3348 if( j==0 ) fprintf(out," /* %5d */ ", i);
3349 fprintf(out, " %4d,", action);
3350 if( j==9 || i==n-1 ){
3351 fprintf(out, "\n"); lineno++;
3352 j = 0;
3353 }else{
3354 j++;
3355 }
3356 }
3357 fprintf(out, "};\n"); lineno++;
3358
3359 /* Output the yy_lookahead table */
3360 fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3361 for(i=j=0; i<n; i++){
3362 int la = acttab_yylookahead(pActtab, i);
3363 if( la<0 ) la = lemp->nsymbol;
3364 if( j==0 ) fprintf(out," /* %5d */ ", i);
3365 fprintf(out, " %4d,", la);
3366 if( j==9 || i==n-1 ){
3367 fprintf(out, "\n"); lineno++;
3368 j = 0;
3369 }else{
3370 j++;
3371 }
3372 }
3373 fprintf(out, "};\n"); lineno++;
3374
3375 /* Output the yy_shift_ofst[] table */
3376 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3377 fprintf(out, "static %s yy_shift_ofst[] = {\n",
3378 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3379 n = lemp->nstate;
3380 for(i=j=0; i<n; i++){
3381 int ofst;
3382 stp = lemp->sorted[i];
3383 ofst = stp->iTknOfst;
3384 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3385 if( j==0 ) fprintf(out," /* %5d */ ", i);
3386 fprintf(out, " %4d,", ofst);
3387 if( j==9 || i==n-1 ){
3388 fprintf(out, "\n"); lineno++;
3389 j = 0;
3390 }else{
3391 j++;
3392 }
3393 }
3394 fprintf(out, "};\n"); lineno++;
3395
3396 /* Output the yy_reduce_ofst[] table */
3397 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3398 fprintf(out, "static %s yy_reduce_ofst[] = {\n",
3399 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3400 n = lemp->nstate;
3401 for(i=j=0; i<n; i++){
3402 int ofst;
3403 stp = lemp->sorted[i];
3404 ofst = stp->iNtOfst;
3405 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3406 if( j==0 ) fprintf(out," /* %5d */ ", i);
3407 fprintf(out, " %4d,", ofst);
3408 if( j==9 || i==n-1 ){
3409 fprintf(out, "\n"); lineno++;
3410 j = 0;
3411 }else{
3412 j++;
3413 }
3414 }
3415 fprintf(out, "};\n"); lineno++;
3416
3417 /* Output the default action table */
3418 fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
3419 n = lemp->nstate;
3420 for(i=j=0; i<n; i++){
3421 stp = lemp->sorted[i];
3422 if( j==0 ) fprintf(out," /* %5d */ ", i);
3423 fprintf(out, " %4d,", stp->iDflt);
3424 if( j==9 || i==n-1 ){
3425 fprintf(out, "\n"); lineno++;
3426 j = 0;
3427 }else{
3428 j++;
3429 }
3430 }
3431 fprintf(out, "};\n"); lineno++;
3432 tplt_xfer(lemp->name,in,out,&lineno);
3433
3434 /* Generate the table of fallback tokens.
3435 */
3436 if( lemp->has_fallback ){
3437 for(i=0; i<lemp->nterminal; i++){
3438 struct symbol *p = lemp->symbols[i];
3439 if( p->fallback==0 ){
3440 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
3441 }else{
3442 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
3443 p->name, p->fallback->name);
3444 }
3445 lineno++;
3446 }
3447 }
3448 tplt_xfer(lemp->name, in, out, &lineno);
3449
3450 /* Generate a table containing the symbolic name of every symbol
3451 */
3452 for(i=0; i<lemp->nsymbol; i++){
3453 sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3454 fprintf(out," %-15s",line);
3455 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3456 }
3457 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3458 tplt_xfer(lemp->name,in,out,&lineno);
3459
3460 /* Generate a table containing a text string that describes every
3461 ** rule in the rule set of the grammer. This information is used
3462 ** when tracing REDUCE actions.
3463 */
3464 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3465 assert( rp->index==i );
3466 fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
3467 for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
3468 fprintf(out,"\",\n"); lineno++;
3469 }
3470 tplt_xfer(lemp->name,in,out,&lineno);
3471
3472 /* Generate code which executes every time a symbol is popped from
3473 ** the stack while processing errors or while destroying the parser.
3474 ** (In other words, generate the %destructor actions)
3475 */
3476 if( lemp->tokendest ){
3477 for(i=0; i<lemp->nsymbol; i++){
3478 struct symbol *sp = lemp->symbols[i];
3479 if( sp==0 || sp->type!=TERMINAL ) continue;
3480 fprintf(out," case %d:\n",sp->index); lineno++;
3481 }
3482 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3483 if( i<lemp->nsymbol ){
3484 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3485 fprintf(out," break;\n"); lineno++;
3486 }
3487 }
3488 for(i=0; i<lemp->nsymbol; i++){
3489 struct symbol *sp = lemp->symbols[i];
3490 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3491 fprintf(out," case %d:\n",sp->index); lineno++;
3492 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3493 fprintf(out," break;\n"); lineno++;
3494 }
3495 if( lemp->vardest ){
3496 struct symbol *dflt_sp = 0;
3497 for(i=0; i<lemp->nsymbol; i++){
3498 struct symbol *sp = lemp->symbols[i];
3499 if( sp==0 || sp->type==TERMINAL ||
3500 sp->index<=0 || sp->destructor!=0 ) continue;
3501 fprintf(out," case %d:\n",sp->index); lineno++;
3502 dflt_sp = sp;
3503 }
3504 if( dflt_sp!=0 ){
3505 emit_destructor_code(out,dflt_sp,lemp,&lineno);
3506 fprintf(out," break;\n"); lineno++;
3507 }
3508 }
3509 tplt_xfer(lemp->name,in,out,&lineno);
3510
3511 /* Generate code which executes whenever the parser stack overflows */
3512 tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
3513 tplt_xfer(lemp->name,in,out,&lineno);
3514
3515 /* Generate the table of rule information
3516 **
3517 ** Note: This code depends on the fact that rules are number
3518 ** sequentually beginning with 0.
3519 */
3520 for(rp=lemp->rule; rp; rp=rp->next){
3521 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3522 }
3523 tplt_xfer(lemp->name,in,out,&lineno);
3524
3525 /* Generate code which execution during each REDUCE action */
3526 for(rp=lemp->rule; rp; rp=rp->next){
3527 fprintf(out," case %d:\n",rp->index); lineno++;
3528 emit_code(out,rp,lemp,&lineno);
3529 fprintf(out," break;\n"); lineno++;
3530 }
3531 tplt_xfer(lemp->name,in,out,&lineno);
3532
3533 /* Generate code which executes if a parse fails */
3534 tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
3535 tplt_xfer(lemp->name,in,out,&lineno);
3536
3537 /* Generate code which executes when a syntax error occurs */
3538 tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
3539 tplt_xfer(lemp->name,in,out,&lineno);
3540
3541 /* Generate code which executes when the parser accepts its input */
3542 tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
3543 tplt_xfer(lemp->name,in,out,&lineno);
3544
3545 /* Append any addition code the user desires */
3546 tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
3547
3548 fclose(in);
3549 fclose(out);
3550 return;
3551 }
3552
3553 /* Generate a header file for the parser */
ReportHeader(lemp)3554 void ReportHeader(lemp)
3555 struct lemon *lemp;
3556 {
3557 FILE *out, *in;
3558 char *prefix;
3559 char line[LINESIZE];
3560 char pattern[LINESIZE];
3561 int i;
3562
3563 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3564 else prefix = "";
3565 in = file_open(lemp,".h","r");
3566 if( in ){
3567 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
3568 sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3569 if( strcmp(line,pattern) ) break;
3570 }
3571 fclose(in);
3572 if( i==lemp->nterminal ){
3573 /* No change in the file. Don't rewrite it. */
3574 return;
3575 }
3576 }
3577 out = file_open(lemp,".h","w");
3578 if( out ){
3579 for(i=1; i<lemp->nterminal; i++){
3580 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3581 }
3582 fclose(out);
3583 }
3584 return;
3585 }
3586
3587 /* Reduce the size of the action tables, if possible, by making use
3588 ** of defaults.
3589 **
3590 ** In this version, we take the most frequent REDUCE action and make
3591 ** it the default. Only default a reduce if there are more than one.
3592 */
CompressTables(lemp)3593 void CompressTables(lemp)
3594 struct lemon *lemp;
3595 {
3596 struct state *stp;
3597 struct action *ap, *ap2;
3598 struct rule *rp, *rp2, *rbest;
3599 int nbest, n;
3600 int i;
3601
3602 for(i=0; i<lemp->nstate; i++){
3603 stp = lemp->sorted[i];
3604 nbest = 0;
3605 rbest = 0;
3606
3607 for(ap=stp->ap; ap; ap=ap->next){
3608 if( ap->type!=REDUCE ) continue;
3609 rp = ap->x.rp;
3610 if( rp==rbest ) continue;
3611 n = 1;
3612 for(ap2=ap->next; ap2; ap2=ap2->next){
3613 if( ap2->type!=REDUCE ) continue;
3614 rp2 = ap2->x.rp;
3615 if( rp2==rbest ) continue;
3616 if( rp2==rp ) n++;
3617 }
3618 if( n>nbest ){
3619 nbest = n;
3620 rbest = rp;
3621 }
3622 }
3623
3624 /* Do not make a default if the number of rules to default
3625 ** is not at least 2 */
3626 if( nbest<2 ) continue;
3627
3628
3629 /* Combine matching REDUCE actions into a single default */
3630 for(ap=stp->ap; ap; ap=ap->next){
3631 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
3632 }
3633 assert( ap );
3634 ap->sp = Symbol_new("{default}");
3635 for(ap=ap->next; ap; ap=ap->next){
3636 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
3637 }
3638 stp->ap = Action_sort(stp->ap);
3639 }
3640 }
3641
3642 /***************** From the file "set.c" ************************************/
3643 /*
3644 ** Set manipulation routines for the LEMON parser generator.
3645 */
3646
3647 static int size = 0;
3648
3649 /* Set the set size */
SetSize(n)3650 void SetSize(n)
3651 int n;
3652 {
3653 size = n+1;
3654 }
3655
3656 /* Allocate a new set */
SetNew()3657 char *SetNew(){
3658 char *s;
3659 int i;
3660 s = (char*)malloc( size );
3661 if( s==0 ){
3662 extern void memory_error();
3663 memory_error();
3664 }
3665 for(i=0; i<size; i++) s[i] = 0;
3666 return s;
3667 }
3668
3669 /* Deallocate a set */
SetFree(s)3670 void SetFree(s)
3671 char *s;
3672 {
3673 free(s);
3674 }
3675
3676 /* Add a new element to the set. Return TRUE if the element was added
3677 ** and FALSE if it was already there. */
SetAdd(s,e)3678 int SetAdd(s,e)
3679 char *s;
3680 int e;
3681 {
3682 int rv;
3683 rv = s[e];
3684 s[e] = 1;
3685 return !rv;
3686 }
3687
3688 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
SetUnion(s1,s2)3689 int SetUnion(s1,s2)
3690 char *s1;
3691 char *s2;
3692 {
3693 int i, progress;
3694 progress = 0;
3695 for(i=0; i<size; i++){
3696 if( s2[i]==0 ) continue;
3697 if( s1[i]==0 ){
3698 progress = 1;
3699 s1[i] = 1;
3700 }
3701 }
3702 return progress;
3703 }
3704 /********************** From the file "table.c" ****************************/
3705 /*
3706 ** All code in this file has been automatically generated
3707 ** from a specification in the file
3708 ** "table.q"
3709 ** by the associative array code building program "aagen".
3710 ** Do not edit this file! Instead, edit the specification
3711 ** file, then rerun aagen.
3712 */
3713 /*
3714 ** Code for processing tables in the LEMON parser generator.
3715 */
3716
strhash(x)3717 PRIVATE int strhash(x)
3718 char *x;
3719 {
3720 int h = 0;
3721 while( *x) h = h*13 + *(x++);
3722 return h;
3723 }
3724
3725 /* Works like strdup, sort of. Save a string in malloced memory, but
3726 ** keep strings in a table so that the same string is not in more
3727 ** than one place.
3728 */
Strsafe(y)3729 char *Strsafe(y)
3730 char *y;
3731 {
3732 char *z;
3733
3734 z = Strsafe_find(y);
3735 if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
3736 strcpy(z,y);
3737 Strsafe_insert(z);
3738 }
3739 MemoryCheck(z);
3740 return z;
3741 }
3742
3743 /* There is one instance of the following structure for each
3744 ** associative array of type "x1".
3745 */
3746 struct s_x1 {
3747 int size; /* The number of available slots. */
3748 /* Must be a power of 2 greater than or */
3749 /* equal to 1 */
3750 int count; /* Number of currently slots filled */
3751 struct s_x1node *tbl; /* The data stored here */
3752 struct s_x1node **ht; /* Hash table for lookups */
3753 };
3754
3755 /* There is one instance of this structure for every data element
3756 ** in an associative array of type "x1".
3757 */
3758 typedef struct s_x1node {
3759 char *data; /* The data */
3760 struct s_x1node *next; /* Next entry with the same hash */
3761 struct s_x1node **from; /* Previous link */
3762 } x1node;
3763
3764 /* There is only one instance of the array, which is the following */
3765 static struct s_x1 *x1a;
3766
3767 /* Allocate a new associative array */
Strsafe_init()3768 void Strsafe_init(){
3769 if( x1a ) return;
3770 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
3771 if( x1a ){
3772 x1a->size = 1024;
3773 x1a->count = 0;
3774 x1a->tbl = (x1node*)malloc(
3775 (sizeof(x1node) + sizeof(x1node*))*1024 );
3776 if( x1a->tbl==0 ){
3777 free(x1a);
3778 x1a = 0;
3779 }else{
3780 int i;
3781 x1a->ht = (x1node**)&(x1a->tbl[1024]);
3782 for(i=0; i<1024; i++) x1a->ht[i] = 0;
3783 }
3784 }
3785 }
3786 /* Insert a new record into the array. Return TRUE if successful.
3787 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(data)3788 int Strsafe_insert(data)
3789 char *data;
3790 {
3791 x1node *np;
3792 int h;
3793 int ph;
3794
3795 if( x1a==0 ) return 0;
3796 ph = strhash(data);
3797 h = ph & (x1a->size-1);
3798 np = x1a->ht[h];
3799 while( np ){
3800 if( strcmp(np->data,data)==0 ){
3801 /* An existing entry with the same key is found. */
3802 /* Fail because overwrite is not allows. */
3803 return 0;
3804 }
3805 np = np->next;
3806 }
3807 if( x1a->count>=x1a->size ){
3808 /* Need to make the hash table bigger */
3809 int i,size;
3810 struct s_x1 array;
3811 array.size = size = x1a->size*2;
3812 array.count = x1a->count;
3813 array.tbl = (x1node*)malloc(
3814 (sizeof(x1node) + sizeof(x1node*))*size );
3815 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
3816 array.ht = (x1node**)&(array.tbl[size]);
3817 for(i=0; i<size; i++) array.ht[i] = 0;
3818 for(i=0; i<x1a->count; i++){
3819 x1node *oldnp, *newnp;
3820 oldnp = &(x1a->tbl[i]);
3821 h = strhash(oldnp->data) & (size-1);
3822 newnp = &(array.tbl[i]);
3823 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3824 newnp->next = array.ht[h];
3825 newnp->data = oldnp->data;
3826 newnp->from = &(array.ht[h]);
3827 array.ht[h] = newnp;
3828 }
3829 free(x1a->tbl);
3830 *x1a = array;
3831 }
3832 /* Insert the new data */
3833 h = ph & (x1a->size-1);
3834 np = &(x1a->tbl[x1a->count++]);
3835 np->data = data;
3836 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
3837 np->next = x1a->ht[h];
3838 x1a->ht[h] = np;
3839 np->from = &(x1a->ht[h]);
3840 return 1;
3841 }
3842
3843 /* Return a pointer to data assigned to the given key. Return NULL
3844 ** if no such key. */
Strsafe_find(key)3845 char *Strsafe_find(key)
3846 char *key;
3847 {
3848 int h;
3849 x1node *np;
3850
3851 if( x1a==0 ) return 0;
3852 h = strhash(key) & (x1a->size-1);
3853 np = x1a->ht[h];
3854 while( np ){
3855 if( strcmp(np->data,key)==0 ) break;
3856 np = np->next;
3857 }
3858 return np ? np->data : 0;
3859 }
3860
3861 /* Return a pointer to the (terminal or nonterminal) symbol "x".
3862 ** Create a new symbol if this is the first time "x" has been seen.
3863 */
Symbol_new(x)3864 struct symbol *Symbol_new(x)
3865 char *x;
3866 {
3867 struct symbol *sp;
3868
3869 sp = Symbol_find(x);
3870 if( sp==0 ){
3871 sp = (struct symbol *)malloc( sizeof(struct symbol) );
3872 MemoryCheck(sp);
3873 sp->name = Strsafe(x);
3874 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
3875 sp->rule = 0;
3876 sp->fallback = 0;
3877 sp->prec = -1;
3878 sp->assoc = UNK;
3879 sp->firstset = 0;
3880 sp->lambda = B_FALSE;
3881 sp->destructor = 0;
3882 sp->datatype = 0;
3883 Symbol_insert(sp,sp->name);
3884 }
3885 return sp;
3886 }
3887
3888 /* Compare two symbols for working purposes
3889 **
3890 ** Symbols that begin with upper case letters (terminals or tokens)
3891 ** must sort before symbols that begin with lower case letters
3892 ** (non-terminals). Other than that, the order does not matter.
3893 **
3894 ** We find experimentally that leaving the symbols in their original
3895 ** order (the order they appeared in the grammar file) gives the
3896 ** smallest parser tables in SQLite.
3897 */
Symbolcmpp(struct symbol ** a,struct symbol ** b)3898 int Symbolcmpp(struct symbol **a, struct symbol **b){
3899 int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
3900 int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
3901 return i1-i2;
3902 }
3903
3904 /* There is one instance of the following structure for each
3905 ** associative array of type "x2".
3906 */
3907 struct s_x2 {
3908 int size; /* The number of available slots. */
3909 /* Must be a power of 2 greater than or */
3910 /* equal to 1 */
3911 int count; /* Number of currently slots filled */
3912 struct s_x2node *tbl; /* The data stored here */
3913 struct s_x2node **ht; /* Hash table for lookups */
3914 };
3915
3916 /* There is one instance of this structure for every data element
3917 ** in an associative array of type "x2".
3918 */
3919 typedef struct s_x2node {
3920 struct symbol *data; /* The data */
3921 char *key; /* The key */
3922 struct s_x2node *next; /* Next entry with the same hash */
3923 struct s_x2node **from; /* Previous link */
3924 } x2node;
3925
3926 /* There is only one instance of the array, which is the following */
3927 static struct s_x2 *x2a;
3928
3929 /* Allocate a new associative array */
Symbol_init()3930 void Symbol_init(){
3931 if( x2a ) return;
3932 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
3933 if( x2a ){
3934 x2a->size = 128;
3935 x2a->count = 0;
3936 x2a->tbl = (x2node*)malloc(
3937 (sizeof(x2node) + sizeof(x2node*))*128 );
3938 if( x2a->tbl==0 ){
3939 free(x2a);
3940 x2a = 0;
3941 }else{
3942 int i;
3943 x2a->ht = (x2node**)&(x2a->tbl[128]);
3944 for(i=0; i<128; i++) x2a->ht[i] = 0;
3945 }
3946 }
3947 }
3948 /* Insert a new record into the array. Return TRUE if successful.
3949 ** Prior data with the same key is NOT overwritten */
Symbol_insert(data,key)3950 int Symbol_insert(data,key)
3951 struct symbol *data;
3952 char *key;
3953 {
3954 x2node *np;
3955 int h;
3956 int ph;
3957
3958 if( x2a==0 ) return 0;
3959 ph = strhash(key);
3960 h = ph & (x2a->size-1);
3961 np = x2a->ht[h];
3962 while( np ){
3963 if( strcmp(np->key,key)==0 ){
3964 /* An existing entry with the same key is found. */
3965 /* Fail because overwrite is not allows. */
3966 return 0;
3967 }
3968 np = np->next;
3969 }
3970 if( x2a->count>=x2a->size ){
3971 /* Need to make the hash table bigger */
3972 int i,size;
3973 struct s_x2 array;
3974 array.size = size = x2a->size*2;
3975 array.count = x2a->count;
3976 array.tbl = (x2node*)malloc(
3977 (sizeof(x2node) + sizeof(x2node*))*size );
3978 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
3979 array.ht = (x2node**)&(array.tbl[size]);
3980 for(i=0; i<size; i++) array.ht[i] = 0;
3981 for(i=0; i<x2a->count; i++){
3982 x2node *oldnp, *newnp;
3983 oldnp = &(x2a->tbl[i]);
3984 h = strhash(oldnp->key) & (size-1);
3985 newnp = &(array.tbl[i]);
3986 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3987 newnp->next = array.ht[h];
3988 newnp->key = oldnp->key;
3989 newnp->data = oldnp->data;
3990 newnp->from = &(array.ht[h]);
3991 array.ht[h] = newnp;
3992 }
3993 free(x2a->tbl);
3994 *x2a = array;
3995 }
3996 /* Insert the new data */
3997 h = ph & (x2a->size-1);
3998 np = &(x2a->tbl[x2a->count++]);
3999 np->key = key;
4000 np->data = data;
4001 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
4002 np->next = x2a->ht[h];
4003 x2a->ht[h] = np;
4004 np->from = &(x2a->ht[h]);
4005 return 1;
4006 }
4007
4008 /* Return a pointer to data assigned to the given key. Return NULL
4009 ** if no such key. */
Symbol_find(key)4010 struct symbol *Symbol_find(key)
4011 char *key;
4012 {
4013 int h;
4014 x2node *np;
4015
4016 if( x2a==0 ) return 0;
4017 h = strhash(key) & (x2a->size-1);
4018 np = x2a->ht[h];
4019 while( np ){
4020 if( strcmp(np->key,key)==0 ) break;
4021 np = np->next;
4022 }
4023 return np ? np->data : 0;
4024 }
4025
4026 /* Return the n-th data. Return NULL if n is out of range. */
Symbol_Nth(n)4027 struct symbol *Symbol_Nth(n)
4028 int n;
4029 {
4030 struct symbol *data;
4031 if( x2a && n>0 && n<=x2a->count ){
4032 data = x2a->tbl[n-1].data;
4033 }else{
4034 data = 0;
4035 }
4036 return data;
4037 }
4038
4039 /* Return the size of the array */
Symbol_count()4040 int Symbol_count()
4041 {
4042 return x2a ? x2a->count : 0;
4043 }
4044
4045 /* Return an array of pointers to all data in the table.
4046 ** The array is obtained from malloc. Return NULL if memory allocation
4047 ** problems, or if the array is empty. */
Symbol_arrayof()4048 struct symbol **Symbol_arrayof()
4049 {
4050 struct symbol **array;
4051 int i,size;
4052 if( x2a==0 ) return 0;
4053 size = x2a->count;
4054 array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
4055 if( array ){
4056 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4057 }
4058 return array;
4059 }
4060
4061 /* Compare two configurations */
Configcmp(a,b)4062 int Configcmp(a,b)
4063 struct config *a;
4064 struct config *b;
4065 {
4066 int x;
4067 x = a->rp->index - b->rp->index;
4068 if( x==0 ) x = a->dot - b->dot;
4069 return x;
4070 }
4071
4072 /* Compare two states */
statecmp(a,b)4073 PRIVATE int statecmp(a,b)
4074 struct config *a;
4075 struct config *b;
4076 {
4077 int rc;
4078 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
4079 rc = a->rp->index - b->rp->index;
4080 if( rc==0 ) rc = a->dot - b->dot;
4081 }
4082 if( rc==0 ){
4083 if( a ) rc = 1;
4084 if( b ) rc = -1;
4085 }
4086 return rc;
4087 }
4088
4089 /* Hash a state */
statehash(a)4090 PRIVATE int statehash(a)
4091 struct config *a;
4092 {
4093 int h=0;
4094 while( a ){
4095 h = h*571 + a->rp->index*37 + a->dot;
4096 a = a->bp;
4097 }
4098 return h;
4099 }
4100
4101 /* Allocate a new state structure */
State_new()4102 struct state *State_new()
4103 {
4104 struct state *new;
4105 new = (struct state *)malloc( sizeof(struct state) );
4106 MemoryCheck(new);
4107 return new;
4108 }
4109
4110 /* There is one instance of the following structure for each
4111 ** associative array of type "x3".
4112 */
4113 struct s_x3 {
4114 int size; /* The number of available slots. */
4115 /* Must be a power of 2 greater than or */
4116 /* equal to 1 */
4117 int count; /* Number of currently slots filled */
4118 struct s_x3node *tbl; /* The data stored here */
4119 struct s_x3node **ht; /* Hash table for lookups */
4120 };
4121
4122 /* There is one instance of this structure for every data element
4123 ** in an associative array of type "x3".
4124 */
4125 typedef struct s_x3node {
4126 struct state *data; /* The data */
4127 struct config *key; /* The key */
4128 struct s_x3node *next; /* Next entry with the same hash */
4129 struct s_x3node **from; /* Previous link */
4130 } x3node;
4131
4132 /* There is only one instance of the array, which is the following */
4133 static struct s_x3 *x3a;
4134
4135 /* Allocate a new associative array */
State_init()4136 void State_init(){
4137 if( x3a ) return;
4138 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4139 if( x3a ){
4140 x3a->size = 128;
4141 x3a->count = 0;
4142 x3a->tbl = (x3node*)malloc(
4143 (sizeof(x3node) + sizeof(x3node*))*128 );
4144 if( x3a->tbl==0 ){
4145 free(x3a);
4146 x3a = 0;
4147 }else{
4148 int i;
4149 x3a->ht = (x3node**)&(x3a->tbl[128]);
4150 for(i=0; i<128; i++) x3a->ht[i] = 0;
4151 }
4152 }
4153 }
4154 /* Insert a new record into the array. Return TRUE if successful.
4155 ** Prior data with the same key is NOT overwritten */
State_insert(data,key)4156 int State_insert(data,key)
4157 struct state *data;
4158 struct config *key;
4159 {
4160 x3node *np;
4161 int h;
4162 int ph;
4163
4164 if( x3a==0 ) return 0;
4165 ph = statehash(key);
4166 h = ph & (x3a->size-1);
4167 np = x3a->ht[h];
4168 while( np ){
4169 if( statecmp(np->key,key)==0 ){
4170 /* An existing entry with the same key is found. */
4171 /* Fail because overwrite is not allows. */
4172 return 0;
4173 }
4174 np = np->next;
4175 }
4176 if( x3a->count>=x3a->size ){
4177 /* Need to make the hash table bigger */
4178 int i,size;
4179 struct s_x3 array;
4180 array.size = size = x3a->size*2;
4181 array.count = x3a->count;
4182 array.tbl = (x3node*)malloc(
4183 (sizeof(x3node) + sizeof(x3node*))*size );
4184 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4185 array.ht = (x3node**)&(array.tbl[size]);
4186 for(i=0; i<size; i++) array.ht[i] = 0;
4187 for(i=0; i<x3a->count; i++){
4188 x3node *oldnp, *newnp;
4189 oldnp = &(x3a->tbl[i]);
4190 h = statehash(oldnp->key) & (size-1);
4191 newnp = &(array.tbl[i]);
4192 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4193 newnp->next = array.ht[h];
4194 newnp->key = oldnp->key;
4195 newnp->data = oldnp->data;
4196 newnp->from = &(array.ht[h]);
4197 array.ht[h] = newnp;
4198 }
4199 free(x3a->tbl);
4200 *x3a = array;
4201 }
4202 /* Insert the new data */
4203 h = ph & (x3a->size-1);
4204 np = &(x3a->tbl[x3a->count++]);
4205 np->key = key;
4206 np->data = data;
4207 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4208 np->next = x3a->ht[h];
4209 x3a->ht[h] = np;
4210 np->from = &(x3a->ht[h]);
4211 return 1;
4212 }
4213
4214 /* Return a pointer to data assigned to the given key. Return NULL
4215 ** if no such key. */
State_find(key)4216 struct state *State_find(key)
4217 struct config *key;
4218 {
4219 int h;
4220 x3node *np;
4221
4222 if( x3a==0 ) return 0;
4223 h = statehash(key) & (x3a->size-1);
4224 np = x3a->ht[h];
4225 while( np ){
4226 if( statecmp(np->key,key)==0 ) break;
4227 np = np->next;
4228 }
4229 return np ? np->data : 0;
4230 }
4231
4232 /* Return an array of pointers to all data in the table.
4233 ** The array is obtained from malloc. Return NULL if memory allocation
4234 ** problems, or if the array is empty. */
State_arrayof()4235 struct state **State_arrayof()
4236 {
4237 struct state **array;
4238 int i,size;
4239 if( x3a==0 ) return 0;
4240 size = x3a->count;
4241 array = (struct state **)malloc( sizeof(struct state *)*size );
4242 if( array ){
4243 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4244 }
4245 return array;
4246 }
4247
4248 /* Hash a configuration */
confighash(a)4249 PRIVATE int confighash(a)
4250 struct config *a;
4251 {
4252 int h=0;
4253 h = h*571 + a->rp->index*37 + a->dot;
4254 return h;
4255 }
4256
4257 /* There is one instance of the following structure for each
4258 ** associative array of type "x4".
4259 */
4260 struct s_x4 {
4261 int size; /* The number of available slots. */
4262 /* Must be a power of 2 greater than or */
4263 /* equal to 1 */
4264 int count; /* Number of currently slots filled */
4265 struct s_x4node *tbl; /* The data stored here */
4266 struct s_x4node **ht; /* Hash table for lookups */
4267 };
4268
4269 /* There is one instance of this structure for every data element
4270 ** in an associative array of type "x4".
4271 */
4272 typedef struct s_x4node {
4273 struct config *data; /* The data */
4274 struct s_x4node *next; /* Next entry with the same hash */
4275 struct s_x4node **from; /* Previous link */
4276 } x4node;
4277
4278 /* There is only one instance of the array, which is the following */
4279 static struct s_x4 *x4a;
4280
4281 /* Allocate a new associative array */
Configtable_init()4282 void Configtable_init(){
4283 if( x4a ) return;
4284 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4285 if( x4a ){
4286 x4a->size = 64;
4287 x4a->count = 0;
4288 x4a->tbl = (x4node*)malloc(
4289 (sizeof(x4node) + sizeof(x4node*))*64 );
4290 if( x4a->tbl==0 ){
4291 free(x4a);
4292 x4a = 0;
4293 }else{
4294 int i;
4295 x4a->ht = (x4node**)&(x4a->tbl[64]);
4296 for(i=0; i<64; i++) x4a->ht[i] = 0;
4297 }
4298 }
4299 }
4300 /* Insert a new record into the array. Return TRUE if successful.
4301 ** Prior data with the same key is NOT overwritten */
Configtable_insert(data)4302 int Configtable_insert(data)
4303 struct config *data;
4304 {
4305 x4node *np;
4306 int h;
4307 int ph;
4308
4309 if( x4a==0 ) return 0;
4310 ph = confighash(data);
4311 h = ph & (x4a->size-1);
4312 np = x4a->ht[h];
4313 while( np ){
4314 if( Configcmp(np->data,data)==0 ){
4315 /* An existing entry with the same key is found. */
4316 /* Fail because overwrite is not allows. */
4317 return 0;
4318 }
4319 np = np->next;
4320 }
4321 if( x4a->count>=x4a->size ){
4322 /* Need to make the hash table bigger */
4323 int i,size;
4324 struct s_x4 array;
4325 array.size = size = x4a->size*2;
4326 array.count = x4a->count;
4327 array.tbl = (x4node*)malloc(
4328 (sizeof(x4node) + sizeof(x4node*))*size );
4329 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4330 array.ht = (x4node**)&(array.tbl[size]);
4331 for(i=0; i<size; i++) array.ht[i] = 0;
4332 for(i=0; i<x4a->count; i++){
4333 x4node *oldnp, *newnp;
4334 oldnp = &(x4a->tbl[i]);
4335 h = confighash(oldnp->data) & (size-1);
4336 newnp = &(array.tbl[i]);
4337 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4338 newnp->next = array.ht[h];
4339 newnp->data = oldnp->data;
4340 newnp->from = &(array.ht[h]);
4341 array.ht[h] = newnp;
4342 }
4343 free(x4a->tbl);
4344 *x4a = array;
4345 }
4346 /* Insert the new data */
4347 h = ph & (x4a->size-1);
4348 np = &(x4a->tbl[x4a->count++]);
4349 np->data = data;
4350 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4351 np->next = x4a->ht[h];
4352 x4a->ht[h] = np;
4353 np->from = &(x4a->ht[h]);
4354 return 1;
4355 }
4356
4357 /* Return a pointer to data assigned to the given key. Return NULL
4358 ** if no such key. */
Configtable_find(key)4359 struct config *Configtable_find(key)
4360 struct config *key;
4361 {
4362 int h;
4363 x4node *np;
4364
4365 if( x4a==0 ) return 0;
4366 h = confighash(key) & (x4a->size-1);
4367 np = x4a->ht[h];
4368 while( np ){
4369 if( Configcmp(np->data,key)==0 ) break;
4370 np = np->next;
4371 }
4372 return np ? np->data : 0;
4373 }
4374
4375 /* Remove all data from the table. Pass each data to the function "f"
4376 ** as it is removed. ("f" may be null to avoid this step.) */
4377 void Configtable_clear(f)
4378 int(*f)(/* struct config * */);
4379 {
4380 int i;
4381 if( x4a==0 || x4a->count==0 ) return;
4382 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4383 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4384 x4a->count = 0;
4385 return;
4386 }
4387