1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 587 588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 591 node; \ 592 node = interval_tree_iter_next(node, start, last)) \ 593 594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 595 const struct kvm_mmu_notifier_range *range) 596 { 597 struct kvm_mmu_notifier_return r = { 598 .ret = false, 599 .found_memslot = false, 600 }; 601 struct kvm_gfn_range gfn_range; 602 struct kvm_memory_slot *slot; 603 struct kvm_memslots *slots; 604 int i, idx; 605 606 if (WARN_ON_ONCE(range->end <= range->start)) 607 return r; 608 609 /* A null handler is allowed if and only if on_lock() is provided. */ 610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 611 IS_KVM_NULL_FN(range->handler))) 612 return r; 613 614 idx = srcu_read_lock(&kvm->srcu); 615 616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 617 struct interval_tree_node *node; 618 619 slots = __kvm_memslots(kvm, i); 620 kvm_for_each_memslot_in_hva_range(node, slots, 621 range->start, range->end - 1) { 622 unsigned long hva_start, hva_end; 623 624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 626 hva_end = min_t(unsigned long, range->end, 627 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 628 629 /* 630 * To optimize for the likely case where the address 631 * range is covered by zero or one memslots, don't 632 * bother making these conditional (to avoid writes on 633 * the second or later invocation of the handler). 634 */ 635 gfn_range.arg = range->arg; 636 gfn_range.may_block = range->may_block; 637 638 /* 639 * {gfn(page) | page intersects with [hva_start, hva_end)} = 640 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 641 */ 642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 644 gfn_range.slot = slot; 645 646 if (!r.found_memslot) { 647 r.found_memslot = true; 648 KVM_MMU_LOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_lock)) 650 range->on_lock(kvm); 651 652 if (IS_KVM_NULL_FN(range->handler)) 653 break; 654 } 655 r.ret |= range->handler(kvm, &gfn_range); 656 } 657 } 658 659 if (range->flush_on_ret && r.ret) 660 kvm_flush_remote_tlbs(kvm); 661 662 if (r.found_memslot) 663 KVM_MMU_UNLOCK(kvm); 664 665 srcu_read_unlock(&kvm->srcu, idx); 666 667 return r; 668 } 669 670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 union kvm_mmu_notifier_arg arg, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .arg = arg, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 709 { 710 /* 711 * Skipping invalid memslots is correct if and only change_pte() is 712 * surrounded by invalidate_range_{start,end}(), which is currently 713 * guaranteed by the primary MMU. If that ever changes, KVM needs to 714 * unmap the memslot instead of skipping the memslot to ensure that KVM 715 * doesn't hold references to the old PFN. 716 */ 717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 718 719 if (range->slot->flags & KVM_MEMSLOT_INVALID) 720 return false; 721 722 return kvm_set_spte_gfn(kvm, range); 723 } 724 725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 726 struct mm_struct *mm, 727 unsigned long address, 728 pte_t pte) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 732 733 trace_kvm_set_spte_hva(address); 734 735 /* 736 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 737 * If mmu_invalidate_in_progress is zero, then no in-progress 738 * invalidations, including this one, found a relevant memslot at 739 * start(); rechecking memslots here is unnecessary. Note, a false 740 * positive (count elevated by a different invalidation) is sub-optimal 741 * but functionally ok. 742 */ 743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 745 return; 746 747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 748 } 749 750 void kvm_mmu_invalidate_begin(struct kvm *kvm) 751 { 752 lockdep_assert_held_write(&kvm->mmu_lock); 753 /* 754 * The count increase must become visible at unlock time as no 755 * spte can be established without taking the mmu_lock and 756 * count is also read inside the mmu_lock critical section. 757 */ 758 kvm->mmu_invalidate_in_progress++; 759 760 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 761 kvm->mmu_invalidate_range_start = INVALID_GPA; 762 kvm->mmu_invalidate_range_end = INVALID_GPA; 763 } 764 } 765 766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 767 { 768 lockdep_assert_held_write(&kvm->mmu_lock); 769 770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 771 772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 773 kvm->mmu_invalidate_range_start = start; 774 kvm->mmu_invalidate_range_end = end; 775 } else { 776 /* 777 * Fully tracking multiple concurrent ranges has diminishing 778 * returns. Keep things simple and just find the minimal range 779 * which includes the current and new ranges. As there won't be 780 * enough information to subtract a range after its invalidate 781 * completes, any ranges invalidated concurrently will 782 * accumulate and persist until all outstanding invalidates 783 * complete. 784 */ 785 kvm->mmu_invalidate_range_start = 786 min(kvm->mmu_invalidate_range_start, start); 787 kvm->mmu_invalidate_range_end = 788 max(kvm->mmu_invalidate_range_end, end); 789 } 790 } 791 792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 793 { 794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 795 return kvm_unmap_gfn_range(kvm, range); 796 } 797 798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 799 const struct mmu_notifier_range *range) 800 { 801 struct kvm *kvm = mmu_notifier_to_kvm(mn); 802 const struct kvm_mmu_notifier_range hva_range = { 803 .start = range->start, 804 .end = range->end, 805 .handler = kvm_mmu_unmap_gfn_range, 806 .on_lock = kvm_mmu_invalidate_begin, 807 .flush_on_ret = true, 808 .may_block = mmu_notifier_range_blockable(range), 809 }; 810 811 trace_kvm_unmap_hva_range(range->start, range->end); 812 813 /* 814 * Prevent memslot modification between range_start() and range_end() 815 * so that conditionally locking provides the same result in both 816 * functions. Without that guarantee, the mmu_invalidate_in_progress 817 * adjustments will be imbalanced. 818 * 819 * Pairs with the decrement in range_end(). 820 */ 821 spin_lock(&kvm->mn_invalidate_lock); 822 kvm->mn_active_invalidate_count++; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 828 * each cache's lock. There are relatively few caches in existence at 829 * any given time, and the caches themselves can check for hva overlap, 830 * i.e. don't need to rely on memslot overlap checks for performance. 831 * Because this runs without holding mmu_lock, the pfn caches must use 832 * mn_active_invalidate_count (see above) instead of 833 * mmu_invalidate_in_progress. 834 */ 835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 836 837 /* 838 * If one or more memslots were found and thus zapped, notify arch code 839 * that guest memory has been reclaimed. This needs to be done *after* 840 * dropping mmu_lock, as x86's reclaim path is slooooow. 841 */ 842 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 843 kvm_arch_guest_memory_reclaimed(kvm); 844 845 return 0; 846 } 847 848 void kvm_mmu_invalidate_end(struct kvm *kvm) 849 { 850 lockdep_assert_held_write(&kvm->mmu_lock); 851 852 /* 853 * This sequence increase will notify the kvm page fault that 854 * the page that is going to be mapped in the spte could have 855 * been freed. 856 */ 857 kvm->mmu_invalidate_seq++; 858 smp_wmb(); 859 /* 860 * The above sequence increase must be visible before the 861 * below count decrease, which is ensured by the smp_wmb above 862 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 863 */ 864 kvm->mmu_invalidate_in_progress--; 865 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 866 867 /* 868 * Assert that at least one range was added between start() and end(). 869 * Not adding a range isn't fatal, but it is a KVM bug. 870 */ 871 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 872 } 873 874 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 875 const struct mmu_notifier_range *range) 876 { 877 struct kvm *kvm = mmu_notifier_to_kvm(mn); 878 const struct kvm_mmu_notifier_range hva_range = { 879 .start = range->start, 880 .end = range->end, 881 .handler = (void *)kvm_null_fn, 882 .on_lock = kvm_mmu_invalidate_end, 883 .flush_on_ret = false, 884 .may_block = mmu_notifier_range_blockable(range), 885 }; 886 bool wake; 887 888 __kvm_handle_hva_range(kvm, &hva_range); 889 890 /* Pairs with the increment in range_start(). */ 891 spin_lock(&kvm->mn_invalidate_lock); 892 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 893 --kvm->mn_active_invalidate_count; 894 wake = !kvm->mn_active_invalidate_count; 895 spin_unlock(&kvm->mn_invalidate_lock); 896 897 /* 898 * There can only be one waiter, since the wait happens under 899 * slots_lock. 900 */ 901 if (wake) 902 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 903 } 904 905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 906 struct mm_struct *mm, 907 unsigned long start, 908 unsigned long end) 909 { 910 trace_kvm_age_hva(start, end); 911 912 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 913 kvm_age_gfn); 914 } 915 916 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 917 struct mm_struct *mm, 918 unsigned long start, 919 unsigned long end) 920 { 921 trace_kvm_age_hva(start, end); 922 923 /* 924 * Even though we do not flush TLB, this will still adversely 925 * affect performance on pre-Haswell Intel EPT, where there is 926 * no EPT Access Bit to clear so that we have to tear down EPT 927 * tables instead. If we find this unacceptable, we can always 928 * add a parameter to kvm_age_hva so that it effectively doesn't 929 * do anything on clear_young. 930 * 931 * Also note that currently we never issue secondary TLB flushes 932 * from clear_young, leaving this job up to the regular system 933 * cadence. If we find this inaccurate, we might come up with a 934 * more sophisticated heuristic later. 935 */ 936 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 937 } 938 939 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 940 struct mm_struct *mm, 941 unsigned long address) 942 { 943 trace_kvm_test_age_hva(address); 944 945 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 946 kvm_test_age_gfn); 947 } 948 949 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 950 struct mm_struct *mm) 951 { 952 struct kvm *kvm = mmu_notifier_to_kvm(mn); 953 int idx; 954 955 idx = srcu_read_lock(&kvm->srcu); 956 kvm_flush_shadow_all(kvm); 957 srcu_read_unlock(&kvm->srcu, idx); 958 } 959 960 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 961 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 962 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 963 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 964 .clear_young = kvm_mmu_notifier_clear_young, 965 .test_young = kvm_mmu_notifier_test_young, 966 .change_pte = kvm_mmu_notifier_change_pte, 967 .release = kvm_mmu_notifier_release, 968 }; 969 970 static int kvm_init_mmu_notifier(struct kvm *kvm) 971 { 972 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 973 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 974 } 975 976 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 977 978 static int kvm_init_mmu_notifier(struct kvm *kvm) 979 { 980 return 0; 981 } 982 983 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 984 985 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 986 static int kvm_pm_notifier_call(struct notifier_block *bl, 987 unsigned long state, 988 void *unused) 989 { 990 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 991 992 return kvm_arch_pm_notifier(kvm, state); 993 } 994 995 static void kvm_init_pm_notifier(struct kvm *kvm) 996 { 997 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 998 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 999 kvm->pm_notifier.priority = INT_MAX; 1000 register_pm_notifier(&kvm->pm_notifier); 1001 } 1002 1003 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1004 { 1005 unregister_pm_notifier(&kvm->pm_notifier); 1006 } 1007 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 1008 static void kvm_init_pm_notifier(struct kvm *kvm) 1009 { 1010 } 1011 1012 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1013 { 1014 } 1015 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 1016 1017 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 1018 { 1019 if (!memslot->dirty_bitmap) 1020 return; 1021 1022 kvfree(memslot->dirty_bitmap); 1023 memslot->dirty_bitmap = NULL; 1024 } 1025 1026 /* This does not remove the slot from struct kvm_memslots data structures */ 1027 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1028 { 1029 if (slot->flags & KVM_MEM_GUEST_MEMFD) 1030 kvm_gmem_unbind(slot); 1031 1032 kvm_destroy_dirty_bitmap(slot); 1033 1034 kvm_arch_free_memslot(kvm, slot); 1035 1036 kfree(slot); 1037 } 1038 1039 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1040 { 1041 struct hlist_node *idnode; 1042 struct kvm_memory_slot *memslot; 1043 int bkt; 1044 1045 /* 1046 * The same memslot objects live in both active and inactive sets, 1047 * arbitrarily free using index '1' so the second invocation of this 1048 * function isn't operating over a structure with dangling pointers 1049 * (even though this function isn't actually touching them). 1050 */ 1051 if (!slots->node_idx) 1052 return; 1053 1054 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1055 kvm_free_memslot(kvm, memslot); 1056 } 1057 1058 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1059 { 1060 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1061 case KVM_STATS_TYPE_INSTANT: 1062 return 0444; 1063 case KVM_STATS_TYPE_CUMULATIVE: 1064 case KVM_STATS_TYPE_PEAK: 1065 default: 1066 return 0644; 1067 } 1068 } 1069 1070 1071 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1072 { 1073 int i; 1074 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1075 kvm_vcpu_stats_header.num_desc; 1076 1077 if (IS_ERR(kvm->debugfs_dentry)) 1078 return; 1079 1080 debugfs_remove_recursive(kvm->debugfs_dentry); 1081 1082 if (kvm->debugfs_stat_data) { 1083 for (i = 0; i < kvm_debugfs_num_entries; i++) 1084 kfree(kvm->debugfs_stat_data[i]); 1085 kfree(kvm->debugfs_stat_data); 1086 } 1087 } 1088 1089 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1090 { 1091 static DEFINE_MUTEX(kvm_debugfs_lock); 1092 struct dentry *dent; 1093 char dir_name[ITOA_MAX_LEN * 2]; 1094 struct kvm_stat_data *stat_data; 1095 const struct _kvm_stats_desc *pdesc; 1096 int i, ret = -ENOMEM; 1097 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1098 kvm_vcpu_stats_header.num_desc; 1099 1100 if (!debugfs_initialized()) 1101 return 0; 1102 1103 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1104 mutex_lock(&kvm_debugfs_lock); 1105 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1106 if (dent) { 1107 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1108 dput(dent); 1109 mutex_unlock(&kvm_debugfs_lock); 1110 return 0; 1111 } 1112 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1113 mutex_unlock(&kvm_debugfs_lock); 1114 if (IS_ERR(dent)) 1115 return 0; 1116 1117 kvm->debugfs_dentry = dent; 1118 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1119 sizeof(*kvm->debugfs_stat_data), 1120 GFP_KERNEL_ACCOUNT); 1121 if (!kvm->debugfs_stat_data) 1122 goto out_err; 1123 1124 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1125 pdesc = &kvm_vm_stats_desc[i]; 1126 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1127 if (!stat_data) 1128 goto out_err; 1129 1130 stat_data->kvm = kvm; 1131 stat_data->desc = pdesc; 1132 stat_data->kind = KVM_STAT_VM; 1133 kvm->debugfs_stat_data[i] = stat_data; 1134 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1135 kvm->debugfs_dentry, stat_data, 1136 &stat_fops_per_vm); 1137 } 1138 1139 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1140 pdesc = &kvm_vcpu_stats_desc[i]; 1141 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1142 if (!stat_data) 1143 goto out_err; 1144 1145 stat_data->kvm = kvm; 1146 stat_data->desc = pdesc; 1147 stat_data->kind = KVM_STAT_VCPU; 1148 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1149 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1150 kvm->debugfs_dentry, stat_data, 1151 &stat_fops_per_vm); 1152 } 1153 1154 kvm_arch_create_vm_debugfs(kvm); 1155 return 0; 1156 out_err: 1157 kvm_destroy_vm_debugfs(kvm); 1158 return ret; 1159 } 1160 1161 /* 1162 * Called after the VM is otherwise initialized, but just before adding it to 1163 * the vm_list. 1164 */ 1165 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1166 { 1167 return 0; 1168 } 1169 1170 /* 1171 * Called just after removing the VM from the vm_list, but before doing any 1172 * other destruction. 1173 */ 1174 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1175 { 1176 } 1177 1178 /* 1179 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1180 * be setup already, so we can create arch-specific debugfs entries under it. 1181 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1182 * a per-arch destroy interface is not needed. 1183 */ 1184 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1185 { 1186 } 1187 1188 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1189 { 1190 struct kvm *kvm = kvm_arch_alloc_vm(); 1191 struct kvm_memslots *slots; 1192 int r = -ENOMEM; 1193 int i, j; 1194 1195 if (!kvm) 1196 return ERR_PTR(-ENOMEM); 1197 1198 KVM_MMU_LOCK_INIT(kvm); 1199 mmgrab(current->mm); 1200 kvm->mm = current->mm; 1201 kvm_eventfd_init(kvm); 1202 mutex_init(&kvm->lock); 1203 mutex_init(&kvm->irq_lock); 1204 mutex_init(&kvm->slots_lock); 1205 mutex_init(&kvm->slots_arch_lock); 1206 spin_lock_init(&kvm->mn_invalidate_lock); 1207 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1208 xa_init(&kvm->vcpu_array); 1209 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1210 xa_init(&kvm->mem_attr_array); 1211 #endif 1212 1213 INIT_LIST_HEAD(&kvm->gpc_list); 1214 spin_lock_init(&kvm->gpc_lock); 1215 1216 INIT_LIST_HEAD(&kvm->devices); 1217 kvm->max_vcpus = KVM_MAX_VCPUS; 1218 1219 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1220 1221 /* 1222 * Force subsequent debugfs file creations to fail if the VM directory 1223 * is not created (by kvm_create_vm_debugfs()). 1224 */ 1225 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1226 1227 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1228 task_pid_nr(current)); 1229 1230 if (init_srcu_struct(&kvm->srcu)) 1231 goto out_err_no_srcu; 1232 if (init_srcu_struct(&kvm->irq_srcu)) 1233 goto out_err_no_irq_srcu; 1234 1235 refcount_set(&kvm->users_count, 1); 1236 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1237 for (j = 0; j < 2; j++) { 1238 slots = &kvm->__memslots[i][j]; 1239 1240 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1241 slots->hva_tree = RB_ROOT_CACHED; 1242 slots->gfn_tree = RB_ROOT; 1243 hash_init(slots->id_hash); 1244 slots->node_idx = j; 1245 1246 /* Generations must be different for each address space. */ 1247 slots->generation = i; 1248 } 1249 1250 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1251 } 1252 1253 for (i = 0; i < KVM_NR_BUSES; i++) { 1254 rcu_assign_pointer(kvm->buses[i], 1255 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1256 if (!kvm->buses[i]) 1257 goto out_err_no_arch_destroy_vm; 1258 } 1259 1260 r = kvm_arch_init_vm(kvm, type); 1261 if (r) 1262 goto out_err_no_arch_destroy_vm; 1263 1264 r = hardware_enable_all(); 1265 if (r) 1266 goto out_err_no_disable; 1267 1268 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1269 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1270 #endif 1271 1272 r = kvm_init_mmu_notifier(kvm); 1273 if (r) 1274 goto out_err_no_mmu_notifier; 1275 1276 r = kvm_coalesced_mmio_init(kvm); 1277 if (r < 0) 1278 goto out_no_coalesced_mmio; 1279 1280 r = kvm_create_vm_debugfs(kvm, fdname); 1281 if (r) 1282 goto out_err_no_debugfs; 1283 1284 r = kvm_arch_post_init_vm(kvm); 1285 if (r) 1286 goto out_err; 1287 1288 mutex_lock(&kvm_lock); 1289 list_add(&kvm->vm_list, &vm_list); 1290 mutex_unlock(&kvm_lock); 1291 1292 preempt_notifier_inc(); 1293 kvm_init_pm_notifier(kvm); 1294 1295 return kvm; 1296 1297 out_err: 1298 kvm_destroy_vm_debugfs(kvm); 1299 out_err_no_debugfs: 1300 kvm_coalesced_mmio_free(kvm); 1301 out_no_coalesced_mmio: 1302 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1303 if (kvm->mmu_notifier.ops) 1304 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1305 #endif 1306 out_err_no_mmu_notifier: 1307 hardware_disable_all(); 1308 out_err_no_disable: 1309 kvm_arch_destroy_vm(kvm); 1310 out_err_no_arch_destroy_vm: 1311 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1312 for (i = 0; i < KVM_NR_BUSES; i++) 1313 kfree(kvm_get_bus(kvm, i)); 1314 cleanup_srcu_struct(&kvm->irq_srcu); 1315 out_err_no_irq_srcu: 1316 cleanup_srcu_struct(&kvm->srcu); 1317 out_err_no_srcu: 1318 kvm_arch_free_vm(kvm); 1319 mmdrop(current->mm); 1320 return ERR_PTR(r); 1321 } 1322 1323 static void kvm_destroy_devices(struct kvm *kvm) 1324 { 1325 struct kvm_device *dev, *tmp; 1326 1327 /* 1328 * We do not need to take the kvm->lock here, because nobody else 1329 * has a reference to the struct kvm at this point and therefore 1330 * cannot access the devices list anyhow. 1331 */ 1332 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1333 list_del(&dev->vm_node); 1334 dev->ops->destroy(dev); 1335 } 1336 } 1337 1338 static void kvm_destroy_vm(struct kvm *kvm) 1339 { 1340 int i; 1341 struct mm_struct *mm = kvm->mm; 1342 1343 kvm_destroy_pm_notifier(kvm); 1344 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1345 kvm_destroy_vm_debugfs(kvm); 1346 kvm_arch_sync_events(kvm); 1347 mutex_lock(&kvm_lock); 1348 list_del(&kvm->vm_list); 1349 mutex_unlock(&kvm_lock); 1350 kvm_arch_pre_destroy_vm(kvm); 1351 1352 kvm_free_irq_routing(kvm); 1353 for (i = 0; i < KVM_NR_BUSES; i++) { 1354 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1355 1356 if (bus) 1357 kvm_io_bus_destroy(bus); 1358 kvm->buses[i] = NULL; 1359 } 1360 kvm_coalesced_mmio_free(kvm); 1361 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1362 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1363 /* 1364 * At this point, pending calls to invalidate_range_start() 1365 * have completed but no more MMU notifiers will run, so 1366 * mn_active_invalidate_count may remain unbalanced. 1367 * No threads can be waiting in kvm_swap_active_memslots() as the 1368 * last reference on KVM has been dropped, but freeing 1369 * memslots would deadlock without this manual intervention. 1370 * 1371 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1372 * notifier between a start() and end(), then there shouldn't be any 1373 * in-progress invalidations. 1374 */ 1375 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1376 if (kvm->mn_active_invalidate_count) 1377 kvm->mn_active_invalidate_count = 0; 1378 else 1379 WARN_ON(kvm->mmu_invalidate_in_progress); 1380 #else 1381 kvm_flush_shadow_all(kvm); 1382 #endif 1383 kvm_arch_destroy_vm(kvm); 1384 kvm_destroy_devices(kvm); 1385 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1386 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1387 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1388 } 1389 cleanup_srcu_struct(&kvm->irq_srcu); 1390 cleanup_srcu_struct(&kvm->srcu); 1391 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1392 xa_destroy(&kvm->mem_attr_array); 1393 #endif 1394 kvm_arch_free_vm(kvm); 1395 preempt_notifier_dec(); 1396 hardware_disable_all(); 1397 mmdrop(mm); 1398 } 1399 1400 void kvm_get_kvm(struct kvm *kvm) 1401 { 1402 refcount_inc(&kvm->users_count); 1403 } 1404 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1405 1406 /* 1407 * Make sure the vm is not during destruction, which is a safe version of 1408 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1409 */ 1410 bool kvm_get_kvm_safe(struct kvm *kvm) 1411 { 1412 return refcount_inc_not_zero(&kvm->users_count); 1413 } 1414 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1415 1416 void kvm_put_kvm(struct kvm *kvm) 1417 { 1418 if (refcount_dec_and_test(&kvm->users_count)) 1419 kvm_destroy_vm(kvm); 1420 } 1421 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1422 1423 /* 1424 * Used to put a reference that was taken on behalf of an object associated 1425 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1426 * of the new file descriptor fails and the reference cannot be transferred to 1427 * its final owner. In such cases, the caller is still actively using @kvm and 1428 * will fail miserably if the refcount unexpectedly hits zero. 1429 */ 1430 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1431 { 1432 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1435 1436 static int kvm_vm_release(struct inode *inode, struct file *filp) 1437 { 1438 struct kvm *kvm = filp->private_data; 1439 1440 kvm_irqfd_release(kvm); 1441 1442 kvm_put_kvm(kvm); 1443 return 0; 1444 } 1445 1446 /* 1447 * Allocation size is twice as large as the actual dirty bitmap size. 1448 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1449 */ 1450 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1451 { 1452 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1453 1454 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1455 if (!memslot->dirty_bitmap) 1456 return -ENOMEM; 1457 1458 return 0; 1459 } 1460 1461 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1462 { 1463 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1464 int node_idx_inactive = active->node_idx ^ 1; 1465 1466 return &kvm->__memslots[as_id][node_idx_inactive]; 1467 } 1468 1469 /* 1470 * Helper to get the address space ID when one of memslot pointers may be NULL. 1471 * This also serves as a sanity that at least one of the pointers is non-NULL, 1472 * and that their address space IDs don't diverge. 1473 */ 1474 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1475 struct kvm_memory_slot *b) 1476 { 1477 if (WARN_ON_ONCE(!a && !b)) 1478 return 0; 1479 1480 if (!a) 1481 return b->as_id; 1482 if (!b) 1483 return a->as_id; 1484 1485 WARN_ON_ONCE(a->as_id != b->as_id); 1486 return a->as_id; 1487 } 1488 1489 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1490 struct kvm_memory_slot *slot) 1491 { 1492 struct rb_root *gfn_tree = &slots->gfn_tree; 1493 struct rb_node **node, *parent; 1494 int idx = slots->node_idx; 1495 1496 parent = NULL; 1497 for (node = &gfn_tree->rb_node; *node; ) { 1498 struct kvm_memory_slot *tmp; 1499 1500 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1501 parent = *node; 1502 if (slot->base_gfn < tmp->base_gfn) 1503 node = &(*node)->rb_left; 1504 else if (slot->base_gfn > tmp->base_gfn) 1505 node = &(*node)->rb_right; 1506 else 1507 BUG(); 1508 } 1509 1510 rb_link_node(&slot->gfn_node[idx], parent, node); 1511 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1512 } 1513 1514 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1515 struct kvm_memory_slot *slot) 1516 { 1517 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1518 } 1519 1520 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1521 struct kvm_memory_slot *old, 1522 struct kvm_memory_slot *new) 1523 { 1524 int idx = slots->node_idx; 1525 1526 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1527 1528 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1529 &slots->gfn_tree); 1530 } 1531 1532 /* 1533 * Replace @old with @new in the inactive memslots. 1534 * 1535 * With NULL @old this simply adds @new. 1536 * With NULL @new this simply removes @old. 1537 * 1538 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1539 * appropriately. 1540 */ 1541 static void kvm_replace_memslot(struct kvm *kvm, 1542 struct kvm_memory_slot *old, 1543 struct kvm_memory_slot *new) 1544 { 1545 int as_id = kvm_memslots_get_as_id(old, new); 1546 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1547 int idx = slots->node_idx; 1548 1549 if (old) { 1550 hash_del(&old->id_node[idx]); 1551 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1552 1553 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1554 atomic_long_set(&slots->last_used_slot, (long)new); 1555 1556 if (!new) { 1557 kvm_erase_gfn_node(slots, old); 1558 return; 1559 } 1560 } 1561 1562 /* 1563 * Initialize @new's hva range. Do this even when replacing an @old 1564 * slot, kvm_copy_memslot() deliberately does not touch node data. 1565 */ 1566 new->hva_node[idx].start = new->userspace_addr; 1567 new->hva_node[idx].last = new->userspace_addr + 1568 (new->npages << PAGE_SHIFT) - 1; 1569 1570 /* 1571 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1572 * hva_node needs to be swapped with remove+insert even though hva can't 1573 * change when replacing an existing slot. 1574 */ 1575 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1576 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1577 1578 /* 1579 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1580 * switch the node in the gfn tree instead of removing the old and 1581 * inserting the new as two separate operations. Replacement is a 1582 * single O(1) operation versus two O(log(n)) operations for 1583 * remove+insert. 1584 */ 1585 if (old && old->base_gfn == new->base_gfn) { 1586 kvm_replace_gfn_node(slots, old, new); 1587 } else { 1588 if (old) 1589 kvm_erase_gfn_node(slots, old); 1590 kvm_insert_gfn_node(slots, new); 1591 } 1592 } 1593 1594 /* 1595 * Flags that do not access any of the extra space of struct 1596 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1597 * only allows these. 1598 */ 1599 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1600 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1601 1602 static int check_memory_region_flags(struct kvm *kvm, 1603 const struct kvm_userspace_memory_region2 *mem) 1604 { 1605 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1606 1607 if (kvm_arch_has_private_mem(kvm)) 1608 valid_flags |= KVM_MEM_GUEST_MEMFD; 1609 1610 /* Dirty logging private memory is not currently supported. */ 1611 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1612 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1613 1614 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1615 /* 1616 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1617 * read-only memslots have emulated MMIO, not page fault, semantics, 1618 * and KVM doesn't allow emulated MMIO for private memory. 1619 */ 1620 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1621 valid_flags |= KVM_MEM_READONLY; 1622 #endif 1623 1624 if (mem->flags & ~valid_flags) 1625 return -EINVAL; 1626 1627 return 0; 1628 } 1629 1630 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1631 { 1632 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1633 1634 /* Grab the generation from the activate memslots. */ 1635 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1636 1637 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1638 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1639 1640 /* 1641 * Do not store the new memslots while there are invalidations in 1642 * progress, otherwise the locking in invalidate_range_start and 1643 * invalidate_range_end will be unbalanced. 1644 */ 1645 spin_lock(&kvm->mn_invalidate_lock); 1646 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1647 while (kvm->mn_active_invalidate_count) { 1648 set_current_state(TASK_UNINTERRUPTIBLE); 1649 spin_unlock(&kvm->mn_invalidate_lock); 1650 schedule(); 1651 spin_lock(&kvm->mn_invalidate_lock); 1652 } 1653 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1654 rcu_assign_pointer(kvm->memslots[as_id], slots); 1655 spin_unlock(&kvm->mn_invalidate_lock); 1656 1657 /* 1658 * Acquired in kvm_set_memslot. Must be released before synchronize 1659 * SRCU below in order to avoid deadlock with another thread 1660 * acquiring the slots_arch_lock in an srcu critical section. 1661 */ 1662 mutex_unlock(&kvm->slots_arch_lock); 1663 1664 synchronize_srcu_expedited(&kvm->srcu); 1665 1666 /* 1667 * Increment the new memslot generation a second time, dropping the 1668 * update in-progress flag and incrementing the generation based on 1669 * the number of address spaces. This provides a unique and easily 1670 * identifiable generation number while the memslots are in flux. 1671 */ 1672 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1673 1674 /* 1675 * Generations must be unique even across address spaces. We do not need 1676 * a global counter for that, instead the generation space is evenly split 1677 * across address spaces. For example, with two address spaces, address 1678 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1679 * use generations 1, 3, 5, ... 1680 */ 1681 gen += kvm_arch_nr_memslot_as_ids(kvm); 1682 1683 kvm_arch_memslots_updated(kvm, gen); 1684 1685 slots->generation = gen; 1686 } 1687 1688 static int kvm_prepare_memory_region(struct kvm *kvm, 1689 const struct kvm_memory_slot *old, 1690 struct kvm_memory_slot *new, 1691 enum kvm_mr_change change) 1692 { 1693 int r; 1694 1695 /* 1696 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1697 * will be freed on "commit". If logging is enabled in both old and 1698 * new, reuse the existing bitmap. If logging is enabled only in the 1699 * new and KVM isn't using a ring buffer, allocate and initialize a 1700 * new bitmap. 1701 */ 1702 if (change != KVM_MR_DELETE) { 1703 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1704 new->dirty_bitmap = NULL; 1705 else if (old && old->dirty_bitmap) 1706 new->dirty_bitmap = old->dirty_bitmap; 1707 else if (kvm_use_dirty_bitmap(kvm)) { 1708 r = kvm_alloc_dirty_bitmap(new); 1709 if (r) 1710 return r; 1711 1712 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1713 bitmap_set(new->dirty_bitmap, 0, new->npages); 1714 } 1715 } 1716 1717 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1718 1719 /* Free the bitmap on failure if it was allocated above. */ 1720 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1721 kvm_destroy_dirty_bitmap(new); 1722 1723 return r; 1724 } 1725 1726 static void kvm_commit_memory_region(struct kvm *kvm, 1727 struct kvm_memory_slot *old, 1728 const struct kvm_memory_slot *new, 1729 enum kvm_mr_change change) 1730 { 1731 int old_flags = old ? old->flags : 0; 1732 int new_flags = new ? new->flags : 0; 1733 /* 1734 * Update the total number of memslot pages before calling the arch 1735 * hook so that architectures can consume the result directly. 1736 */ 1737 if (change == KVM_MR_DELETE) 1738 kvm->nr_memslot_pages -= old->npages; 1739 else if (change == KVM_MR_CREATE) 1740 kvm->nr_memslot_pages += new->npages; 1741 1742 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1743 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1744 atomic_set(&kvm->nr_memslots_dirty_logging, 1745 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1746 } 1747 1748 kvm_arch_commit_memory_region(kvm, old, new, change); 1749 1750 switch (change) { 1751 case KVM_MR_CREATE: 1752 /* Nothing more to do. */ 1753 break; 1754 case KVM_MR_DELETE: 1755 /* Free the old memslot and all its metadata. */ 1756 kvm_free_memslot(kvm, old); 1757 break; 1758 case KVM_MR_MOVE: 1759 case KVM_MR_FLAGS_ONLY: 1760 /* 1761 * Free the dirty bitmap as needed; the below check encompasses 1762 * both the flags and whether a ring buffer is being used) 1763 */ 1764 if (old->dirty_bitmap && !new->dirty_bitmap) 1765 kvm_destroy_dirty_bitmap(old); 1766 1767 /* 1768 * The final quirk. Free the detached, old slot, but only its 1769 * memory, not any metadata. Metadata, including arch specific 1770 * data, may be reused by @new. 1771 */ 1772 kfree(old); 1773 break; 1774 default: 1775 BUG(); 1776 } 1777 } 1778 1779 /* 1780 * Activate @new, which must be installed in the inactive slots by the caller, 1781 * by swapping the active slots and then propagating @new to @old once @old is 1782 * unreachable and can be safely modified. 1783 * 1784 * With NULL @old this simply adds @new to @active (while swapping the sets). 1785 * With NULL @new this simply removes @old from @active and frees it 1786 * (while also swapping the sets). 1787 */ 1788 static void kvm_activate_memslot(struct kvm *kvm, 1789 struct kvm_memory_slot *old, 1790 struct kvm_memory_slot *new) 1791 { 1792 int as_id = kvm_memslots_get_as_id(old, new); 1793 1794 kvm_swap_active_memslots(kvm, as_id); 1795 1796 /* Propagate the new memslot to the now inactive memslots. */ 1797 kvm_replace_memslot(kvm, old, new); 1798 } 1799 1800 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1801 const struct kvm_memory_slot *src) 1802 { 1803 dest->base_gfn = src->base_gfn; 1804 dest->npages = src->npages; 1805 dest->dirty_bitmap = src->dirty_bitmap; 1806 dest->arch = src->arch; 1807 dest->userspace_addr = src->userspace_addr; 1808 dest->flags = src->flags; 1809 dest->id = src->id; 1810 dest->as_id = src->as_id; 1811 } 1812 1813 static void kvm_invalidate_memslot(struct kvm *kvm, 1814 struct kvm_memory_slot *old, 1815 struct kvm_memory_slot *invalid_slot) 1816 { 1817 /* 1818 * Mark the current slot INVALID. As with all memslot modifications, 1819 * this must be done on an unreachable slot to avoid modifying the 1820 * current slot in the active tree. 1821 */ 1822 kvm_copy_memslot(invalid_slot, old); 1823 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1824 kvm_replace_memslot(kvm, old, invalid_slot); 1825 1826 /* 1827 * Activate the slot that is now marked INVALID, but don't propagate 1828 * the slot to the now inactive slots. The slot is either going to be 1829 * deleted or recreated as a new slot. 1830 */ 1831 kvm_swap_active_memslots(kvm, old->as_id); 1832 1833 /* 1834 * From this point no new shadow pages pointing to a deleted, or moved, 1835 * memslot will be created. Validation of sp->gfn happens in: 1836 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1837 * - kvm_is_visible_gfn (mmu_check_root) 1838 */ 1839 kvm_arch_flush_shadow_memslot(kvm, old); 1840 kvm_arch_guest_memory_reclaimed(kvm); 1841 1842 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1843 mutex_lock(&kvm->slots_arch_lock); 1844 1845 /* 1846 * Copy the arch-specific field of the newly-installed slot back to the 1847 * old slot as the arch data could have changed between releasing 1848 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1849 * above. Writers are required to retrieve memslots *after* acquiring 1850 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1851 */ 1852 old->arch = invalid_slot->arch; 1853 } 1854 1855 static void kvm_create_memslot(struct kvm *kvm, 1856 struct kvm_memory_slot *new) 1857 { 1858 /* Add the new memslot to the inactive set and activate. */ 1859 kvm_replace_memslot(kvm, NULL, new); 1860 kvm_activate_memslot(kvm, NULL, new); 1861 } 1862 1863 static void kvm_delete_memslot(struct kvm *kvm, 1864 struct kvm_memory_slot *old, 1865 struct kvm_memory_slot *invalid_slot) 1866 { 1867 /* 1868 * Remove the old memslot (in the inactive memslots) by passing NULL as 1869 * the "new" slot, and for the invalid version in the active slots. 1870 */ 1871 kvm_replace_memslot(kvm, old, NULL); 1872 kvm_activate_memslot(kvm, invalid_slot, NULL); 1873 } 1874 1875 static void kvm_move_memslot(struct kvm *kvm, 1876 struct kvm_memory_slot *old, 1877 struct kvm_memory_slot *new, 1878 struct kvm_memory_slot *invalid_slot) 1879 { 1880 /* 1881 * Replace the old memslot in the inactive slots, and then swap slots 1882 * and replace the current INVALID with the new as well. 1883 */ 1884 kvm_replace_memslot(kvm, old, new); 1885 kvm_activate_memslot(kvm, invalid_slot, new); 1886 } 1887 1888 static void kvm_update_flags_memslot(struct kvm *kvm, 1889 struct kvm_memory_slot *old, 1890 struct kvm_memory_slot *new) 1891 { 1892 /* 1893 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1894 * an intermediate step. Instead, the old memslot is simply replaced 1895 * with a new, updated copy in both memslot sets. 1896 */ 1897 kvm_replace_memslot(kvm, old, new); 1898 kvm_activate_memslot(kvm, old, new); 1899 } 1900 1901 static int kvm_set_memslot(struct kvm *kvm, 1902 struct kvm_memory_slot *old, 1903 struct kvm_memory_slot *new, 1904 enum kvm_mr_change change) 1905 { 1906 struct kvm_memory_slot *invalid_slot; 1907 int r; 1908 1909 /* 1910 * Released in kvm_swap_active_memslots(). 1911 * 1912 * Must be held from before the current memslots are copied until after 1913 * the new memslots are installed with rcu_assign_pointer, then 1914 * released before the synchronize srcu in kvm_swap_active_memslots(). 1915 * 1916 * When modifying memslots outside of the slots_lock, must be held 1917 * before reading the pointer to the current memslots until after all 1918 * changes to those memslots are complete. 1919 * 1920 * These rules ensure that installing new memslots does not lose 1921 * changes made to the previous memslots. 1922 */ 1923 mutex_lock(&kvm->slots_arch_lock); 1924 1925 /* 1926 * Invalidate the old slot if it's being deleted or moved. This is 1927 * done prior to actually deleting/moving the memslot to allow vCPUs to 1928 * continue running by ensuring there are no mappings or shadow pages 1929 * for the memslot when it is deleted/moved. Without pre-invalidation 1930 * (and without a lock), a window would exist between effecting the 1931 * delete/move and committing the changes in arch code where KVM or a 1932 * guest could access a non-existent memslot. 1933 * 1934 * Modifications are done on a temporary, unreachable slot. The old 1935 * slot needs to be preserved in case a later step fails and the 1936 * invalidation needs to be reverted. 1937 */ 1938 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1939 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1940 if (!invalid_slot) { 1941 mutex_unlock(&kvm->slots_arch_lock); 1942 return -ENOMEM; 1943 } 1944 kvm_invalidate_memslot(kvm, old, invalid_slot); 1945 } 1946 1947 r = kvm_prepare_memory_region(kvm, old, new, change); 1948 if (r) { 1949 /* 1950 * For DELETE/MOVE, revert the above INVALID change. No 1951 * modifications required since the original slot was preserved 1952 * in the inactive slots. Changing the active memslots also 1953 * release slots_arch_lock. 1954 */ 1955 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1956 kvm_activate_memslot(kvm, invalid_slot, old); 1957 kfree(invalid_slot); 1958 } else { 1959 mutex_unlock(&kvm->slots_arch_lock); 1960 } 1961 return r; 1962 } 1963 1964 /* 1965 * For DELETE and MOVE, the working slot is now active as the INVALID 1966 * version of the old slot. MOVE is particularly special as it reuses 1967 * the old slot and returns a copy of the old slot (in working_slot). 1968 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1969 * old slot is detached but otherwise preserved. 1970 */ 1971 if (change == KVM_MR_CREATE) 1972 kvm_create_memslot(kvm, new); 1973 else if (change == KVM_MR_DELETE) 1974 kvm_delete_memslot(kvm, old, invalid_slot); 1975 else if (change == KVM_MR_MOVE) 1976 kvm_move_memslot(kvm, old, new, invalid_slot); 1977 else if (change == KVM_MR_FLAGS_ONLY) 1978 kvm_update_flags_memslot(kvm, old, new); 1979 else 1980 BUG(); 1981 1982 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1983 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1984 kfree(invalid_slot); 1985 1986 /* 1987 * No need to refresh new->arch, changes after dropping slots_arch_lock 1988 * will directly hit the final, active memslot. Architectures are 1989 * responsible for knowing that new->arch may be stale. 1990 */ 1991 kvm_commit_memory_region(kvm, old, new, change); 1992 1993 return 0; 1994 } 1995 1996 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1997 gfn_t start, gfn_t end) 1998 { 1999 struct kvm_memslot_iter iter; 2000 2001 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 2002 if (iter.slot->id != id) 2003 return true; 2004 } 2005 2006 return false; 2007 } 2008 2009 /* 2010 * Allocate some memory and give it an address in the guest physical address 2011 * space. 2012 * 2013 * Discontiguous memory is allowed, mostly for framebuffers. 2014 * 2015 * Must be called holding kvm->slots_lock for write. 2016 */ 2017 int __kvm_set_memory_region(struct kvm *kvm, 2018 const struct kvm_userspace_memory_region2 *mem) 2019 { 2020 struct kvm_memory_slot *old, *new; 2021 struct kvm_memslots *slots; 2022 enum kvm_mr_change change; 2023 unsigned long npages; 2024 gfn_t base_gfn; 2025 int as_id, id; 2026 int r; 2027 2028 r = check_memory_region_flags(kvm, mem); 2029 if (r) 2030 return r; 2031 2032 as_id = mem->slot >> 16; 2033 id = (u16)mem->slot; 2034 2035 /* General sanity checks */ 2036 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2037 (mem->memory_size != (unsigned long)mem->memory_size)) 2038 return -EINVAL; 2039 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2040 return -EINVAL; 2041 /* We can read the guest memory with __xxx_user() later on. */ 2042 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2043 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2044 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2045 mem->memory_size)) 2046 return -EINVAL; 2047 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2048 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2049 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2050 return -EINVAL; 2051 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2052 return -EINVAL; 2053 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2054 return -EINVAL; 2055 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2056 return -EINVAL; 2057 2058 slots = __kvm_memslots(kvm, as_id); 2059 2060 /* 2061 * Note, the old memslot (and the pointer itself!) may be invalidated 2062 * and/or destroyed by kvm_set_memslot(). 2063 */ 2064 old = id_to_memslot(slots, id); 2065 2066 if (!mem->memory_size) { 2067 if (!old || !old->npages) 2068 return -EINVAL; 2069 2070 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2071 return -EIO; 2072 2073 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2074 } 2075 2076 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2077 npages = (mem->memory_size >> PAGE_SHIFT); 2078 2079 if (!old || !old->npages) { 2080 change = KVM_MR_CREATE; 2081 2082 /* 2083 * To simplify KVM internals, the total number of pages across 2084 * all memslots must fit in an unsigned long. 2085 */ 2086 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2087 return -EINVAL; 2088 } else { /* Modify an existing slot. */ 2089 /* Private memslots are immutable, they can only be deleted. */ 2090 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2091 return -EINVAL; 2092 if ((mem->userspace_addr != old->userspace_addr) || 2093 (npages != old->npages) || 2094 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2095 return -EINVAL; 2096 2097 if (base_gfn != old->base_gfn) 2098 change = KVM_MR_MOVE; 2099 else if (mem->flags != old->flags) 2100 change = KVM_MR_FLAGS_ONLY; 2101 else /* Nothing to change. */ 2102 return 0; 2103 } 2104 2105 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2106 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2107 return -EEXIST; 2108 2109 /* Allocate a slot that will persist in the memslot. */ 2110 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2111 if (!new) 2112 return -ENOMEM; 2113 2114 new->as_id = as_id; 2115 new->id = id; 2116 new->base_gfn = base_gfn; 2117 new->npages = npages; 2118 new->flags = mem->flags; 2119 new->userspace_addr = mem->userspace_addr; 2120 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2121 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2122 if (r) 2123 goto out; 2124 } 2125 2126 r = kvm_set_memslot(kvm, old, new, change); 2127 if (r) 2128 goto out_unbind; 2129 2130 return 0; 2131 2132 out_unbind: 2133 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2134 kvm_gmem_unbind(new); 2135 out: 2136 kfree(new); 2137 return r; 2138 } 2139 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2140 2141 int kvm_set_memory_region(struct kvm *kvm, 2142 const struct kvm_userspace_memory_region2 *mem) 2143 { 2144 int r; 2145 2146 mutex_lock(&kvm->slots_lock); 2147 r = __kvm_set_memory_region(kvm, mem); 2148 mutex_unlock(&kvm->slots_lock); 2149 return r; 2150 } 2151 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2152 2153 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2154 struct kvm_userspace_memory_region2 *mem) 2155 { 2156 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2157 return -EINVAL; 2158 2159 return kvm_set_memory_region(kvm, mem); 2160 } 2161 2162 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2163 /** 2164 * kvm_get_dirty_log - get a snapshot of dirty pages 2165 * @kvm: pointer to kvm instance 2166 * @log: slot id and address to which we copy the log 2167 * @is_dirty: set to '1' if any dirty pages were found 2168 * @memslot: set to the associated memslot, always valid on success 2169 */ 2170 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2171 int *is_dirty, struct kvm_memory_slot **memslot) 2172 { 2173 struct kvm_memslots *slots; 2174 int i, as_id, id; 2175 unsigned long n; 2176 unsigned long any = 0; 2177 2178 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2179 if (!kvm_use_dirty_bitmap(kvm)) 2180 return -ENXIO; 2181 2182 *memslot = NULL; 2183 *is_dirty = 0; 2184 2185 as_id = log->slot >> 16; 2186 id = (u16)log->slot; 2187 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2188 return -EINVAL; 2189 2190 slots = __kvm_memslots(kvm, as_id); 2191 *memslot = id_to_memslot(slots, id); 2192 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2193 return -ENOENT; 2194 2195 kvm_arch_sync_dirty_log(kvm, *memslot); 2196 2197 n = kvm_dirty_bitmap_bytes(*memslot); 2198 2199 for (i = 0; !any && i < n/sizeof(long); ++i) 2200 any = (*memslot)->dirty_bitmap[i]; 2201 2202 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2203 return -EFAULT; 2204 2205 if (any) 2206 *is_dirty = 1; 2207 return 0; 2208 } 2209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2210 2211 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2212 /** 2213 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2214 * and reenable dirty page tracking for the corresponding pages. 2215 * @kvm: pointer to kvm instance 2216 * @log: slot id and address to which we copy the log 2217 * 2218 * We need to keep it in mind that VCPU threads can write to the bitmap 2219 * concurrently. So, to avoid losing track of dirty pages we keep the 2220 * following order: 2221 * 2222 * 1. Take a snapshot of the bit and clear it if needed. 2223 * 2. Write protect the corresponding page. 2224 * 3. Copy the snapshot to the userspace. 2225 * 4. Upon return caller flushes TLB's if needed. 2226 * 2227 * Between 2 and 4, the guest may write to the page using the remaining TLB 2228 * entry. This is not a problem because the page is reported dirty using 2229 * the snapshot taken before and step 4 ensures that writes done after 2230 * exiting to userspace will be logged for the next call. 2231 * 2232 */ 2233 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2234 { 2235 struct kvm_memslots *slots; 2236 struct kvm_memory_slot *memslot; 2237 int i, as_id, id; 2238 unsigned long n; 2239 unsigned long *dirty_bitmap; 2240 unsigned long *dirty_bitmap_buffer; 2241 bool flush; 2242 2243 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2244 if (!kvm_use_dirty_bitmap(kvm)) 2245 return -ENXIO; 2246 2247 as_id = log->slot >> 16; 2248 id = (u16)log->slot; 2249 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2250 return -EINVAL; 2251 2252 slots = __kvm_memslots(kvm, as_id); 2253 memslot = id_to_memslot(slots, id); 2254 if (!memslot || !memslot->dirty_bitmap) 2255 return -ENOENT; 2256 2257 dirty_bitmap = memslot->dirty_bitmap; 2258 2259 kvm_arch_sync_dirty_log(kvm, memslot); 2260 2261 n = kvm_dirty_bitmap_bytes(memslot); 2262 flush = false; 2263 if (kvm->manual_dirty_log_protect) { 2264 /* 2265 * Unlike kvm_get_dirty_log, we always return false in *flush, 2266 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2267 * is some code duplication between this function and 2268 * kvm_get_dirty_log, but hopefully all architecture 2269 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2270 * can be eliminated. 2271 */ 2272 dirty_bitmap_buffer = dirty_bitmap; 2273 } else { 2274 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2275 memset(dirty_bitmap_buffer, 0, n); 2276 2277 KVM_MMU_LOCK(kvm); 2278 for (i = 0; i < n / sizeof(long); i++) { 2279 unsigned long mask; 2280 gfn_t offset; 2281 2282 if (!dirty_bitmap[i]) 2283 continue; 2284 2285 flush = true; 2286 mask = xchg(&dirty_bitmap[i], 0); 2287 dirty_bitmap_buffer[i] = mask; 2288 2289 offset = i * BITS_PER_LONG; 2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2291 offset, mask); 2292 } 2293 KVM_MMU_UNLOCK(kvm); 2294 } 2295 2296 if (flush) 2297 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2298 2299 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2300 return -EFAULT; 2301 return 0; 2302 } 2303 2304 2305 /** 2306 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2307 * @kvm: kvm instance 2308 * @log: slot id and address to which we copy the log 2309 * 2310 * Steps 1-4 below provide general overview of dirty page logging. See 2311 * kvm_get_dirty_log_protect() function description for additional details. 2312 * 2313 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2314 * always flush the TLB (step 4) even if previous step failed and the dirty 2315 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2316 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2317 * writes will be marked dirty for next log read. 2318 * 2319 * 1. Take a snapshot of the bit and clear it if needed. 2320 * 2. Write protect the corresponding page. 2321 * 3. Copy the snapshot to the userspace. 2322 * 4. Flush TLB's if needed. 2323 */ 2324 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2325 struct kvm_dirty_log *log) 2326 { 2327 int r; 2328 2329 mutex_lock(&kvm->slots_lock); 2330 2331 r = kvm_get_dirty_log_protect(kvm, log); 2332 2333 mutex_unlock(&kvm->slots_lock); 2334 return r; 2335 } 2336 2337 /** 2338 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2339 * and reenable dirty page tracking for the corresponding pages. 2340 * @kvm: pointer to kvm instance 2341 * @log: slot id and address from which to fetch the bitmap of dirty pages 2342 */ 2343 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2344 struct kvm_clear_dirty_log *log) 2345 { 2346 struct kvm_memslots *slots; 2347 struct kvm_memory_slot *memslot; 2348 int as_id, id; 2349 gfn_t offset; 2350 unsigned long i, n; 2351 unsigned long *dirty_bitmap; 2352 unsigned long *dirty_bitmap_buffer; 2353 bool flush; 2354 2355 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2356 if (!kvm_use_dirty_bitmap(kvm)) 2357 return -ENXIO; 2358 2359 as_id = log->slot >> 16; 2360 id = (u16)log->slot; 2361 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2362 return -EINVAL; 2363 2364 if (log->first_page & 63) 2365 return -EINVAL; 2366 2367 slots = __kvm_memslots(kvm, as_id); 2368 memslot = id_to_memslot(slots, id); 2369 if (!memslot || !memslot->dirty_bitmap) 2370 return -ENOENT; 2371 2372 dirty_bitmap = memslot->dirty_bitmap; 2373 2374 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2375 2376 if (log->first_page > memslot->npages || 2377 log->num_pages > memslot->npages - log->first_page || 2378 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2379 return -EINVAL; 2380 2381 kvm_arch_sync_dirty_log(kvm, memslot); 2382 2383 flush = false; 2384 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2385 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2386 return -EFAULT; 2387 2388 KVM_MMU_LOCK(kvm); 2389 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2390 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2391 i++, offset += BITS_PER_LONG) { 2392 unsigned long mask = *dirty_bitmap_buffer++; 2393 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2394 if (!mask) 2395 continue; 2396 2397 mask &= atomic_long_fetch_andnot(mask, p); 2398 2399 /* 2400 * mask contains the bits that really have been cleared. This 2401 * never includes any bits beyond the length of the memslot (if 2402 * the length is not aligned to 64 pages), therefore it is not 2403 * a problem if userspace sets them in log->dirty_bitmap. 2404 */ 2405 if (mask) { 2406 flush = true; 2407 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2408 offset, mask); 2409 } 2410 } 2411 KVM_MMU_UNLOCK(kvm); 2412 2413 if (flush) 2414 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2415 2416 return 0; 2417 } 2418 2419 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2420 struct kvm_clear_dirty_log *log) 2421 { 2422 int r; 2423 2424 mutex_lock(&kvm->slots_lock); 2425 2426 r = kvm_clear_dirty_log_protect(kvm, log); 2427 2428 mutex_unlock(&kvm->slots_lock); 2429 return r; 2430 } 2431 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2432 2433 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2434 /* 2435 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2436 * matching @attrs. 2437 */ 2438 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2439 unsigned long attrs) 2440 { 2441 XA_STATE(xas, &kvm->mem_attr_array, start); 2442 unsigned long index; 2443 bool has_attrs; 2444 void *entry; 2445 2446 rcu_read_lock(); 2447 2448 if (!attrs) { 2449 has_attrs = !xas_find(&xas, end - 1); 2450 goto out; 2451 } 2452 2453 has_attrs = true; 2454 for (index = start; index < end; index++) { 2455 do { 2456 entry = xas_next(&xas); 2457 } while (xas_retry(&xas, entry)); 2458 2459 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2460 has_attrs = false; 2461 break; 2462 } 2463 } 2464 2465 out: 2466 rcu_read_unlock(); 2467 return has_attrs; 2468 } 2469 2470 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2471 { 2472 if (!kvm || kvm_arch_has_private_mem(kvm)) 2473 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2474 2475 return 0; 2476 } 2477 2478 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2479 struct kvm_mmu_notifier_range *range) 2480 { 2481 struct kvm_gfn_range gfn_range; 2482 struct kvm_memory_slot *slot; 2483 struct kvm_memslots *slots; 2484 struct kvm_memslot_iter iter; 2485 bool found_memslot = false; 2486 bool ret = false; 2487 int i; 2488 2489 gfn_range.arg = range->arg; 2490 gfn_range.may_block = range->may_block; 2491 2492 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2493 slots = __kvm_memslots(kvm, i); 2494 2495 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2496 slot = iter.slot; 2497 gfn_range.slot = slot; 2498 2499 gfn_range.start = max(range->start, slot->base_gfn); 2500 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2501 if (gfn_range.start >= gfn_range.end) 2502 continue; 2503 2504 if (!found_memslot) { 2505 found_memslot = true; 2506 KVM_MMU_LOCK(kvm); 2507 if (!IS_KVM_NULL_FN(range->on_lock)) 2508 range->on_lock(kvm); 2509 } 2510 2511 ret |= range->handler(kvm, &gfn_range); 2512 } 2513 } 2514 2515 if (range->flush_on_ret && ret) 2516 kvm_flush_remote_tlbs(kvm); 2517 2518 if (found_memslot) 2519 KVM_MMU_UNLOCK(kvm); 2520 } 2521 2522 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2523 struct kvm_gfn_range *range) 2524 { 2525 /* 2526 * Unconditionally add the range to the invalidation set, regardless of 2527 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2528 * if KVM supports RWX attributes in the future and the attributes are 2529 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2530 * adding the range allows KVM to require that MMU invalidations add at 2531 * least one range between begin() and end(), e.g. allows KVM to detect 2532 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2533 * but it's not obvious that allowing new mappings while the attributes 2534 * are in flux is desirable or worth the complexity. 2535 */ 2536 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2537 2538 return kvm_arch_pre_set_memory_attributes(kvm, range); 2539 } 2540 2541 /* Set @attributes for the gfn range [@start, @end). */ 2542 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2543 unsigned long attributes) 2544 { 2545 struct kvm_mmu_notifier_range pre_set_range = { 2546 .start = start, 2547 .end = end, 2548 .handler = kvm_pre_set_memory_attributes, 2549 .on_lock = kvm_mmu_invalidate_begin, 2550 .flush_on_ret = true, 2551 .may_block = true, 2552 }; 2553 struct kvm_mmu_notifier_range post_set_range = { 2554 .start = start, 2555 .end = end, 2556 .arg.attributes = attributes, 2557 .handler = kvm_arch_post_set_memory_attributes, 2558 .on_lock = kvm_mmu_invalidate_end, 2559 .may_block = true, 2560 }; 2561 unsigned long i; 2562 void *entry; 2563 int r = 0; 2564 2565 entry = attributes ? xa_mk_value(attributes) : NULL; 2566 2567 mutex_lock(&kvm->slots_lock); 2568 2569 /* Nothing to do if the entire range as the desired attributes. */ 2570 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2571 goto out_unlock; 2572 2573 /* 2574 * Reserve memory ahead of time to avoid having to deal with failures 2575 * partway through setting the new attributes. 2576 */ 2577 for (i = start; i < end; i++) { 2578 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2579 if (r) 2580 goto out_unlock; 2581 } 2582 2583 kvm_handle_gfn_range(kvm, &pre_set_range); 2584 2585 for (i = start; i < end; i++) { 2586 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2587 GFP_KERNEL_ACCOUNT)); 2588 KVM_BUG_ON(r, kvm); 2589 } 2590 2591 kvm_handle_gfn_range(kvm, &post_set_range); 2592 2593 out_unlock: 2594 mutex_unlock(&kvm->slots_lock); 2595 2596 return r; 2597 } 2598 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2599 struct kvm_memory_attributes *attrs) 2600 { 2601 gfn_t start, end; 2602 2603 /* flags is currently not used. */ 2604 if (attrs->flags) 2605 return -EINVAL; 2606 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2607 return -EINVAL; 2608 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2609 return -EINVAL; 2610 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2611 return -EINVAL; 2612 2613 start = attrs->address >> PAGE_SHIFT; 2614 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2615 2616 /* 2617 * xarray tracks data using "unsigned long", and as a result so does 2618 * KVM. For simplicity, supports generic attributes only on 64-bit 2619 * architectures. 2620 */ 2621 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2622 2623 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2624 } 2625 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2626 2627 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2628 { 2629 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2630 } 2631 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2632 2633 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2634 { 2635 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2636 u64 gen = slots->generation; 2637 struct kvm_memory_slot *slot; 2638 2639 /* 2640 * This also protects against using a memslot from a different address space, 2641 * since different address spaces have different generation numbers. 2642 */ 2643 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2644 vcpu->last_used_slot = NULL; 2645 vcpu->last_used_slot_gen = gen; 2646 } 2647 2648 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2649 if (slot) 2650 return slot; 2651 2652 /* 2653 * Fall back to searching all memslots. We purposely use 2654 * search_memslots() instead of __gfn_to_memslot() to avoid 2655 * thrashing the VM-wide last_used_slot in kvm_memslots. 2656 */ 2657 slot = search_memslots(slots, gfn, false); 2658 if (slot) { 2659 vcpu->last_used_slot = slot; 2660 return slot; 2661 } 2662 2663 return NULL; 2664 } 2665 2666 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2667 { 2668 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2669 2670 return kvm_is_visible_memslot(memslot); 2671 } 2672 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2673 2674 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2675 { 2676 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2677 2678 return kvm_is_visible_memslot(memslot); 2679 } 2680 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2681 2682 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2683 { 2684 struct vm_area_struct *vma; 2685 unsigned long addr, size; 2686 2687 size = PAGE_SIZE; 2688 2689 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2690 if (kvm_is_error_hva(addr)) 2691 return PAGE_SIZE; 2692 2693 mmap_read_lock(current->mm); 2694 vma = find_vma(current->mm, addr); 2695 if (!vma) 2696 goto out; 2697 2698 size = vma_kernel_pagesize(vma); 2699 2700 out: 2701 mmap_read_unlock(current->mm); 2702 2703 return size; 2704 } 2705 2706 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2707 { 2708 return slot->flags & KVM_MEM_READONLY; 2709 } 2710 2711 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2712 gfn_t *nr_pages, bool write) 2713 { 2714 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2715 return KVM_HVA_ERR_BAD; 2716 2717 if (memslot_is_readonly(slot) && write) 2718 return KVM_HVA_ERR_RO_BAD; 2719 2720 if (nr_pages) 2721 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2722 2723 return __gfn_to_hva_memslot(slot, gfn); 2724 } 2725 2726 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2727 gfn_t *nr_pages) 2728 { 2729 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2730 } 2731 2732 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2733 gfn_t gfn) 2734 { 2735 return gfn_to_hva_many(slot, gfn, NULL); 2736 } 2737 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2738 2739 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2740 { 2741 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2742 } 2743 EXPORT_SYMBOL_GPL(gfn_to_hva); 2744 2745 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2746 { 2747 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2748 } 2749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2750 2751 /* 2752 * Return the hva of a @gfn and the R/W attribute if possible. 2753 * 2754 * @slot: the kvm_memory_slot which contains @gfn 2755 * @gfn: the gfn to be translated 2756 * @writable: used to return the read/write attribute of the @slot if the hva 2757 * is valid and @writable is not NULL 2758 */ 2759 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2760 gfn_t gfn, bool *writable) 2761 { 2762 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2763 2764 if (!kvm_is_error_hva(hva) && writable) 2765 *writable = !memslot_is_readonly(slot); 2766 2767 return hva; 2768 } 2769 2770 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2771 { 2772 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2773 2774 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2775 } 2776 2777 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2778 { 2779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2780 2781 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2782 } 2783 2784 static inline int check_user_page_hwpoison(unsigned long addr) 2785 { 2786 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2787 2788 rc = get_user_pages(addr, 1, flags, NULL); 2789 return rc == -EHWPOISON; 2790 } 2791 2792 /* 2793 * The fast path to get the writable pfn which will be stored in @pfn, 2794 * true indicates success, otherwise false is returned. It's also the 2795 * only part that runs if we can in atomic context. 2796 */ 2797 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2798 bool *writable, kvm_pfn_t *pfn) 2799 { 2800 struct page *page[1]; 2801 2802 /* 2803 * Fast pin a writable pfn only if it is a write fault request 2804 * or the caller allows to map a writable pfn for a read fault 2805 * request. 2806 */ 2807 if (!(write_fault || writable)) 2808 return false; 2809 2810 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2811 *pfn = page_to_pfn(page[0]); 2812 2813 if (writable) 2814 *writable = true; 2815 return true; 2816 } 2817 2818 return false; 2819 } 2820 2821 /* 2822 * The slow path to get the pfn of the specified host virtual address, 2823 * 1 indicates success, -errno is returned if error is detected. 2824 */ 2825 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2826 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2827 { 2828 /* 2829 * When a VCPU accesses a page that is not mapped into the secondary 2830 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2831 * make progress. We always want to honor NUMA hinting faults in that 2832 * case, because GUP usage corresponds to memory accesses from the VCPU. 2833 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2834 * mapped into the secondary MMU and gets accessed by a VCPU. 2835 * 2836 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2837 * implicitly honor NUMA hinting faults and don't need this flag. 2838 */ 2839 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2840 struct page *page; 2841 int npages; 2842 2843 might_sleep(); 2844 2845 if (writable) 2846 *writable = write_fault; 2847 2848 if (write_fault) 2849 flags |= FOLL_WRITE; 2850 if (async) 2851 flags |= FOLL_NOWAIT; 2852 if (interruptible) 2853 flags |= FOLL_INTERRUPTIBLE; 2854 2855 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2856 if (npages != 1) 2857 return npages; 2858 2859 /* map read fault as writable if possible */ 2860 if (unlikely(!write_fault) && writable) { 2861 struct page *wpage; 2862 2863 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2864 *writable = true; 2865 put_page(page); 2866 page = wpage; 2867 } 2868 } 2869 *pfn = page_to_pfn(page); 2870 return npages; 2871 } 2872 2873 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2874 { 2875 if (unlikely(!(vma->vm_flags & VM_READ))) 2876 return false; 2877 2878 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2879 return false; 2880 2881 return true; 2882 } 2883 2884 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2885 { 2886 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2887 2888 if (!page) 2889 return 1; 2890 2891 return get_page_unless_zero(page); 2892 } 2893 2894 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2895 unsigned long addr, bool write_fault, 2896 bool *writable, kvm_pfn_t *p_pfn) 2897 { 2898 kvm_pfn_t pfn; 2899 pte_t *ptep; 2900 pte_t pte; 2901 spinlock_t *ptl; 2902 int r; 2903 2904 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2905 if (r) { 2906 /* 2907 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2908 * not call the fault handler, so do it here. 2909 */ 2910 bool unlocked = false; 2911 r = fixup_user_fault(current->mm, addr, 2912 (write_fault ? FAULT_FLAG_WRITE : 0), 2913 &unlocked); 2914 if (unlocked) 2915 return -EAGAIN; 2916 if (r) 2917 return r; 2918 2919 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2920 if (r) 2921 return r; 2922 } 2923 2924 pte = ptep_get(ptep); 2925 2926 if (write_fault && !pte_write(pte)) { 2927 pfn = KVM_PFN_ERR_RO_FAULT; 2928 goto out; 2929 } 2930 2931 if (writable) 2932 *writable = pte_write(pte); 2933 pfn = pte_pfn(pte); 2934 2935 /* 2936 * Get a reference here because callers of *hva_to_pfn* and 2937 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2938 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2939 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2940 * simply do nothing for reserved pfns. 2941 * 2942 * Whoever called remap_pfn_range is also going to call e.g. 2943 * unmap_mapping_range before the underlying pages are freed, 2944 * causing a call to our MMU notifier. 2945 * 2946 * Certain IO or PFNMAP mappings can be backed with valid 2947 * struct pages, but be allocated without refcounting e.g., 2948 * tail pages of non-compound higher order allocations, which 2949 * would then underflow the refcount when the caller does the 2950 * required put_page. Don't allow those pages here. 2951 */ 2952 if (!kvm_try_get_pfn(pfn)) 2953 r = -EFAULT; 2954 2955 out: 2956 pte_unmap_unlock(ptep, ptl); 2957 *p_pfn = pfn; 2958 2959 return r; 2960 } 2961 2962 /* 2963 * Pin guest page in memory and return its pfn. 2964 * @addr: host virtual address which maps memory to the guest 2965 * @atomic: whether this function can sleep 2966 * @interruptible: whether the process can be interrupted by non-fatal signals 2967 * @async: whether this function need to wait IO complete if the 2968 * host page is not in the memory 2969 * @write_fault: whether we should get a writable host page 2970 * @writable: whether it allows to map a writable host page for !@write_fault 2971 * 2972 * The function will map a writable host page for these two cases: 2973 * 1): @write_fault = true 2974 * 2): @write_fault = false && @writable, @writable will tell the caller 2975 * whether the mapping is writable. 2976 */ 2977 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2978 bool *async, bool write_fault, bool *writable) 2979 { 2980 struct vm_area_struct *vma; 2981 kvm_pfn_t pfn; 2982 int npages, r; 2983 2984 /* we can do it either atomically or asynchronously, not both */ 2985 BUG_ON(atomic && async); 2986 2987 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2988 return pfn; 2989 2990 if (atomic) 2991 return KVM_PFN_ERR_FAULT; 2992 2993 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2994 writable, &pfn); 2995 if (npages == 1) 2996 return pfn; 2997 if (npages == -EINTR) 2998 return KVM_PFN_ERR_SIGPENDING; 2999 3000 mmap_read_lock(current->mm); 3001 if (npages == -EHWPOISON || 3002 (!async && check_user_page_hwpoison(addr))) { 3003 pfn = KVM_PFN_ERR_HWPOISON; 3004 goto exit; 3005 } 3006 3007 retry: 3008 vma = vma_lookup(current->mm, addr); 3009 3010 if (vma == NULL) 3011 pfn = KVM_PFN_ERR_FAULT; 3012 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3013 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 3014 if (r == -EAGAIN) 3015 goto retry; 3016 if (r < 0) 3017 pfn = KVM_PFN_ERR_FAULT; 3018 } else { 3019 if (async && vma_is_valid(vma, write_fault)) 3020 *async = true; 3021 pfn = KVM_PFN_ERR_FAULT; 3022 } 3023 exit: 3024 mmap_read_unlock(current->mm); 3025 return pfn; 3026 } 3027 3028 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 3029 bool atomic, bool interruptible, bool *async, 3030 bool write_fault, bool *writable, hva_t *hva) 3031 { 3032 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3033 3034 if (hva) 3035 *hva = addr; 3036 3037 if (addr == KVM_HVA_ERR_RO_BAD) { 3038 if (writable) 3039 *writable = false; 3040 return KVM_PFN_ERR_RO_FAULT; 3041 } 3042 3043 if (kvm_is_error_hva(addr)) { 3044 if (writable) 3045 *writable = false; 3046 return KVM_PFN_NOSLOT; 3047 } 3048 3049 /* Do not map writable pfn in the readonly memslot. */ 3050 if (writable && memslot_is_readonly(slot)) { 3051 *writable = false; 3052 writable = NULL; 3053 } 3054 3055 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3056 writable); 3057 } 3058 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3059 3060 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3061 bool *writable) 3062 { 3063 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3064 NULL, write_fault, writable, NULL); 3065 } 3066 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3067 3068 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3069 { 3070 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3071 NULL, NULL); 3072 } 3073 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3074 3075 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3076 { 3077 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3078 NULL, NULL); 3079 } 3080 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3081 3082 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3083 { 3084 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3085 } 3086 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3087 3088 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3089 { 3090 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3091 } 3092 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3093 3094 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3095 { 3096 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3097 } 3098 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3099 3100 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3101 struct page **pages, int nr_pages) 3102 { 3103 unsigned long addr; 3104 gfn_t entry = 0; 3105 3106 addr = gfn_to_hva_many(slot, gfn, &entry); 3107 if (kvm_is_error_hva(addr)) 3108 return -1; 3109 3110 if (entry < nr_pages) 3111 return 0; 3112 3113 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3114 } 3115 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3116 3117 /* 3118 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3119 * backed by 'struct page'. A valid example is if the backing memslot is 3120 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3121 * been elevated by gfn_to_pfn(). 3122 */ 3123 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3124 { 3125 struct page *page; 3126 kvm_pfn_t pfn; 3127 3128 pfn = gfn_to_pfn(kvm, gfn); 3129 3130 if (is_error_noslot_pfn(pfn)) 3131 return KVM_ERR_PTR_BAD_PAGE; 3132 3133 page = kvm_pfn_to_refcounted_page(pfn); 3134 if (!page) 3135 return KVM_ERR_PTR_BAD_PAGE; 3136 3137 return page; 3138 } 3139 EXPORT_SYMBOL_GPL(gfn_to_page); 3140 3141 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3142 { 3143 if (dirty) 3144 kvm_release_pfn_dirty(pfn); 3145 else 3146 kvm_release_pfn_clean(pfn); 3147 } 3148 3149 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3150 { 3151 kvm_pfn_t pfn; 3152 void *hva = NULL; 3153 struct page *page = KVM_UNMAPPED_PAGE; 3154 3155 if (!map) 3156 return -EINVAL; 3157 3158 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3159 if (is_error_noslot_pfn(pfn)) 3160 return -EINVAL; 3161 3162 if (pfn_valid(pfn)) { 3163 page = pfn_to_page(pfn); 3164 hva = kmap(page); 3165 #ifdef CONFIG_HAS_IOMEM 3166 } else { 3167 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3168 #endif 3169 } 3170 3171 if (!hva) 3172 return -EFAULT; 3173 3174 map->page = page; 3175 map->hva = hva; 3176 map->pfn = pfn; 3177 map->gfn = gfn; 3178 3179 return 0; 3180 } 3181 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3182 3183 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3184 { 3185 if (!map) 3186 return; 3187 3188 if (!map->hva) 3189 return; 3190 3191 if (map->page != KVM_UNMAPPED_PAGE) 3192 kunmap(map->page); 3193 #ifdef CONFIG_HAS_IOMEM 3194 else 3195 memunmap(map->hva); 3196 #endif 3197 3198 if (dirty) 3199 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3200 3201 kvm_release_pfn(map->pfn, dirty); 3202 3203 map->hva = NULL; 3204 map->page = NULL; 3205 } 3206 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3207 3208 static bool kvm_is_ad_tracked_page(struct page *page) 3209 { 3210 /* 3211 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3212 * touched (e.g. set dirty) except by its owner". 3213 */ 3214 return !PageReserved(page); 3215 } 3216 3217 static void kvm_set_page_dirty(struct page *page) 3218 { 3219 if (kvm_is_ad_tracked_page(page)) 3220 SetPageDirty(page); 3221 } 3222 3223 static void kvm_set_page_accessed(struct page *page) 3224 { 3225 if (kvm_is_ad_tracked_page(page)) 3226 mark_page_accessed(page); 3227 } 3228 3229 void kvm_release_page_clean(struct page *page) 3230 { 3231 WARN_ON(is_error_page(page)); 3232 3233 kvm_set_page_accessed(page); 3234 put_page(page); 3235 } 3236 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3237 3238 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3239 { 3240 struct page *page; 3241 3242 if (is_error_noslot_pfn(pfn)) 3243 return; 3244 3245 page = kvm_pfn_to_refcounted_page(pfn); 3246 if (!page) 3247 return; 3248 3249 kvm_release_page_clean(page); 3250 } 3251 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3252 3253 void kvm_release_page_dirty(struct page *page) 3254 { 3255 WARN_ON(is_error_page(page)); 3256 3257 kvm_set_page_dirty(page); 3258 kvm_release_page_clean(page); 3259 } 3260 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3261 3262 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3263 { 3264 struct page *page; 3265 3266 if (is_error_noslot_pfn(pfn)) 3267 return; 3268 3269 page = kvm_pfn_to_refcounted_page(pfn); 3270 if (!page) 3271 return; 3272 3273 kvm_release_page_dirty(page); 3274 } 3275 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3276 3277 /* 3278 * Note, checking for an error/noslot pfn is the caller's responsibility when 3279 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3280 * "set" helpers are not to be used when the pfn might point at garbage. 3281 */ 3282 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3283 { 3284 if (WARN_ON(is_error_noslot_pfn(pfn))) 3285 return; 3286 3287 if (pfn_valid(pfn)) 3288 kvm_set_page_dirty(pfn_to_page(pfn)); 3289 } 3290 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3291 3292 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3293 { 3294 if (WARN_ON(is_error_noslot_pfn(pfn))) 3295 return; 3296 3297 if (pfn_valid(pfn)) 3298 kvm_set_page_accessed(pfn_to_page(pfn)); 3299 } 3300 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3301 3302 static int next_segment(unsigned long len, int offset) 3303 { 3304 if (len > PAGE_SIZE - offset) 3305 return PAGE_SIZE - offset; 3306 else 3307 return len; 3308 } 3309 3310 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3311 void *data, int offset, int len) 3312 { 3313 int r; 3314 unsigned long addr; 3315 3316 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3317 if (kvm_is_error_hva(addr)) 3318 return -EFAULT; 3319 r = __copy_from_user(data, (void __user *)addr + offset, len); 3320 if (r) 3321 return -EFAULT; 3322 return 0; 3323 } 3324 3325 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3326 int len) 3327 { 3328 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3329 3330 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3331 } 3332 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3333 3334 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3335 int offset, int len) 3336 { 3337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3338 3339 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3340 } 3341 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3342 3343 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3344 { 3345 gfn_t gfn = gpa >> PAGE_SHIFT; 3346 int seg; 3347 int offset = offset_in_page(gpa); 3348 int ret; 3349 3350 while ((seg = next_segment(len, offset)) != 0) { 3351 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3352 if (ret < 0) 3353 return ret; 3354 offset = 0; 3355 len -= seg; 3356 data += seg; 3357 ++gfn; 3358 } 3359 return 0; 3360 } 3361 EXPORT_SYMBOL_GPL(kvm_read_guest); 3362 3363 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3364 { 3365 gfn_t gfn = gpa >> PAGE_SHIFT; 3366 int seg; 3367 int offset = offset_in_page(gpa); 3368 int ret; 3369 3370 while ((seg = next_segment(len, offset)) != 0) { 3371 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3372 if (ret < 0) 3373 return ret; 3374 offset = 0; 3375 len -= seg; 3376 data += seg; 3377 ++gfn; 3378 } 3379 return 0; 3380 } 3381 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3382 3383 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3384 void *data, int offset, unsigned long len) 3385 { 3386 int r; 3387 unsigned long addr; 3388 3389 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3390 if (kvm_is_error_hva(addr)) 3391 return -EFAULT; 3392 pagefault_disable(); 3393 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3394 pagefault_enable(); 3395 if (r) 3396 return -EFAULT; 3397 return 0; 3398 } 3399 3400 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3401 void *data, unsigned long len) 3402 { 3403 gfn_t gfn = gpa >> PAGE_SHIFT; 3404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3405 int offset = offset_in_page(gpa); 3406 3407 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3408 } 3409 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3410 3411 static int __kvm_write_guest_page(struct kvm *kvm, 3412 struct kvm_memory_slot *memslot, gfn_t gfn, 3413 const void *data, int offset, int len) 3414 { 3415 int r; 3416 unsigned long addr; 3417 3418 addr = gfn_to_hva_memslot(memslot, gfn); 3419 if (kvm_is_error_hva(addr)) 3420 return -EFAULT; 3421 r = __copy_to_user((void __user *)addr + offset, data, len); 3422 if (r) 3423 return -EFAULT; 3424 mark_page_dirty_in_slot(kvm, memslot, gfn); 3425 return 0; 3426 } 3427 3428 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3429 const void *data, int offset, int len) 3430 { 3431 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3432 3433 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3434 } 3435 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3436 3437 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3438 const void *data, int offset, int len) 3439 { 3440 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3441 3442 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3443 } 3444 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3445 3446 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3447 unsigned long len) 3448 { 3449 gfn_t gfn = gpa >> PAGE_SHIFT; 3450 int seg; 3451 int offset = offset_in_page(gpa); 3452 int ret; 3453 3454 while ((seg = next_segment(len, offset)) != 0) { 3455 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3456 if (ret < 0) 3457 return ret; 3458 offset = 0; 3459 len -= seg; 3460 data += seg; 3461 ++gfn; 3462 } 3463 return 0; 3464 } 3465 EXPORT_SYMBOL_GPL(kvm_write_guest); 3466 3467 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3468 unsigned long len) 3469 { 3470 gfn_t gfn = gpa >> PAGE_SHIFT; 3471 int seg; 3472 int offset = offset_in_page(gpa); 3473 int ret; 3474 3475 while ((seg = next_segment(len, offset)) != 0) { 3476 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3477 if (ret < 0) 3478 return ret; 3479 offset = 0; 3480 len -= seg; 3481 data += seg; 3482 ++gfn; 3483 } 3484 return 0; 3485 } 3486 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3487 3488 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3489 struct gfn_to_hva_cache *ghc, 3490 gpa_t gpa, unsigned long len) 3491 { 3492 int offset = offset_in_page(gpa); 3493 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3494 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3495 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3496 gfn_t nr_pages_avail; 3497 3498 /* Update ghc->generation before performing any error checks. */ 3499 ghc->generation = slots->generation; 3500 3501 if (start_gfn > end_gfn) { 3502 ghc->hva = KVM_HVA_ERR_BAD; 3503 return -EINVAL; 3504 } 3505 3506 /* 3507 * If the requested region crosses two memslots, we still 3508 * verify that the entire region is valid here. 3509 */ 3510 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3511 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3512 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3513 &nr_pages_avail); 3514 if (kvm_is_error_hva(ghc->hva)) 3515 return -EFAULT; 3516 } 3517 3518 /* Use the slow path for cross page reads and writes. */ 3519 if (nr_pages_needed == 1) 3520 ghc->hva += offset; 3521 else 3522 ghc->memslot = NULL; 3523 3524 ghc->gpa = gpa; 3525 ghc->len = len; 3526 return 0; 3527 } 3528 3529 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3530 gpa_t gpa, unsigned long len) 3531 { 3532 struct kvm_memslots *slots = kvm_memslots(kvm); 3533 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3534 } 3535 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3536 3537 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3538 void *data, unsigned int offset, 3539 unsigned long len) 3540 { 3541 struct kvm_memslots *slots = kvm_memslots(kvm); 3542 int r; 3543 gpa_t gpa = ghc->gpa + offset; 3544 3545 if (WARN_ON_ONCE(len + offset > ghc->len)) 3546 return -EINVAL; 3547 3548 if (slots->generation != ghc->generation) { 3549 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3550 return -EFAULT; 3551 } 3552 3553 if (kvm_is_error_hva(ghc->hva)) 3554 return -EFAULT; 3555 3556 if (unlikely(!ghc->memslot)) 3557 return kvm_write_guest(kvm, gpa, data, len); 3558 3559 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3560 if (r) 3561 return -EFAULT; 3562 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3563 3564 return 0; 3565 } 3566 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3567 3568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3569 void *data, unsigned long len) 3570 { 3571 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3572 } 3573 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3574 3575 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3576 void *data, unsigned int offset, 3577 unsigned long len) 3578 { 3579 struct kvm_memslots *slots = kvm_memslots(kvm); 3580 int r; 3581 gpa_t gpa = ghc->gpa + offset; 3582 3583 if (WARN_ON_ONCE(len + offset > ghc->len)) 3584 return -EINVAL; 3585 3586 if (slots->generation != ghc->generation) { 3587 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3588 return -EFAULT; 3589 } 3590 3591 if (kvm_is_error_hva(ghc->hva)) 3592 return -EFAULT; 3593 3594 if (unlikely(!ghc->memslot)) 3595 return kvm_read_guest(kvm, gpa, data, len); 3596 3597 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3598 if (r) 3599 return -EFAULT; 3600 3601 return 0; 3602 } 3603 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3604 3605 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3606 void *data, unsigned long len) 3607 { 3608 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3609 } 3610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3611 3612 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3613 { 3614 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3615 gfn_t gfn = gpa >> PAGE_SHIFT; 3616 int seg; 3617 int offset = offset_in_page(gpa); 3618 int ret; 3619 3620 while ((seg = next_segment(len, offset)) != 0) { 3621 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3622 if (ret < 0) 3623 return ret; 3624 offset = 0; 3625 len -= seg; 3626 ++gfn; 3627 } 3628 return 0; 3629 } 3630 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3631 3632 void mark_page_dirty_in_slot(struct kvm *kvm, 3633 const struct kvm_memory_slot *memslot, 3634 gfn_t gfn) 3635 { 3636 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3637 3638 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3639 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3640 return; 3641 3642 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3643 #endif 3644 3645 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3646 unsigned long rel_gfn = gfn - memslot->base_gfn; 3647 u32 slot = (memslot->as_id << 16) | memslot->id; 3648 3649 if (kvm->dirty_ring_size && vcpu) 3650 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3651 else if (memslot->dirty_bitmap) 3652 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3653 } 3654 } 3655 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3656 3657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3658 { 3659 struct kvm_memory_slot *memslot; 3660 3661 memslot = gfn_to_memslot(kvm, gfn); 3662 mark_page_dirty_in_slot(kvm, memslot, gfn); 3663 } 3664 EXPORT_SYMBOL_GPL(mark_page_dirty); 3665 3666 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3667 { 3668 struct kvm_memory_slot *memslot; 3669 3670 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3671 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3672 } 3673 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3674 3675 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3676 { 3677 if (!vcpu->sigset_active) 3678 return; 3679 3680 /* 3681 * This does a lockless modification of ->real_blocked, which is fine 3682 * because, only current can change ->real_blocked and all readers of 3683 * ->real_blocked don't care as long ->real_blocked is always a subset 3684 * of ->blocked. 3685 */ 3686 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3687 } 3688 3689 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3690 { 3691 if (!vcpu->sigset_active) 3692 return; 3693 3694 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3695 sigemptyset(¤t->real_blocked); 3696 } 3697 3698 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3699 { 3700 unsigned int old, val, grow, grow_start; 3701 3702 old = val = vcpu->halt_poll_ns; 3703 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3704 grow = READ_ONCE(halt_poll_ns_grow); 3705 if (!grow) 3706 goto out; 3707 3708 val *= grow; 3709 if (val < grow_start) 3710 val = grow_start; 3711 3712 vcpu->halt_poll_ns = val; 3713 out: 3714 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3715 } 3716 3717 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3718 { 3719 unsigned int old, val, shrink, grow_start; 3720 3721 old = val = vcpu->halt_poll_ns; 3722 shrink = READ_ONCE(halt_poll_ns_shrink); 3723 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3724 if (shrink == 0) 3725 val = 0; 3726 else 3727 val /= shrink; 3728 3729 if (val < grow_start) 3730 val = 0; 3731 3732 vcpu->halt_poll_ns = val; 3733 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3734 } 3735 3736 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3737 { 3738 int ret = -EINTR; 3739 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3740 3741 if (kvm_arch_vcpu_runnable(vcpu)) 3742 goto out; 3743 if (kvm_cpu_has_pending_timer(vcpu)) 3744 goto out; 3745 if (signal_pending(current)) 3746 goto out; 3747 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3748 goto out; 3749 3750 ret = 0; 3751 out: 3752 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3753 return ret; 3754 } 3755 3756 /* 3757 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3758 * pending. This is mostly used when halting a vCPU, but may also be used 3759 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3760 */ 3761 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3762 { 3763 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3764 bool waited = false; 3765 3766 vcpu->stat.generic.blocking = 1; 3767 3768 preempt_disable(); 3769 kvm_arch_vcpu_blocking(vcpu); 3770 prepare_to_rcuwait(wait); 3771 preempt_enable(); 3772 3773 for (;;) { 3774 set_current_state(TASK_INTERRUPTIBLE); 3775 3776 if (kvm_vcpu_check_block(vcpu) < 0) 3777 break; 3778 3779 waited = true; 3780 schedule(); 3781 } 3782 3783 preempt_disable(); 3784 finish_rcuwait(wait); 3785 kvm_arch_vcpu_unblocking(vcpu); 3786 preempt_enable(); 3787 3788 vcpu->stat.generic.blocking = 0; 3789 3790 return waited; 3791 } 3792 3793 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3794 ktime_t end, bool success) 3795 { 3796 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3797 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3798 3799 ++vcpu->stat.generic.halt_attempted_poll; 3800 3801 if (success) { 3802 ++vcpu->stat.generic.halt_successful_poll; 3803 3804 if (!vcpu_valid_wakeup(vcpu)) 3805 ++vcpu->stat.generic.halt_poll_invalid; 3806 3807 stats->halt_poll_success_ns += poll_ns; 3808 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3809 } else { 3810 stats->halt_poll_fail_ns += poll_ns; 3811 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3812 } 3813 } 3814 3815 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3816 { 3817 struct kvm *kvm = vcpu->kvm; 3818 3819 if (kvm->override_halt_poll_ns) { 3820 /* 3821 * Ensure kvm->max_halt_poll_ns is not read before 3822 * kvm->override_halt_poll_ns. 3823 * 3824 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3825 */ 3826 smp_rmb(); 3827 return READ_ONCE(kvm->max_halt_poll_ns); 3828 } 3829 3830 return READ_ONCE(halt_poll_ns); 3831 } 3832 3833 /* 3834 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3835 * polling is enabled, busy wait for a short time before blocking to avoid the 3836 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3837 * is halted. 3838 */ 3839 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3840 { 3841 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3842 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3843 ktime_t start, cur, poll_end; 3844 bool waited = false; 3845 bool do_halt_poll; 3846 u64 halt_ns; 3847 3848 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3849 vcpu->halt_poll_ns = max_halt_poll_ns; 3850 3851 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3852 3853 start = cur = poll_end = ktime_get(); 3854 if (do_halt_poll) { 3855 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3856 3857 do { 3858 if (kvm_vcpu_check_block(vcpu) < 0) 3859 goto out; 3860 cpu_relax(); 3861 poll_end = cur = ktime_get(); 3862 } while (kvm_vcpu_can_poll(cur, stop)); 3863 } 3864 3865 waited = kvm_vcpu_block(vcpu); 3866 3867 cur = ktime_get(); 3868 if (waited) { 3869 vcpu->stat.generic.halt_wait_ns += 3870 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3871 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3872 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3873 } 3874 out: 3875 /* The total time the vCPU was "halted", including polling time. */ 3876 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3877 3878 /* 3879 * Note, halt-polling is considered successful so long as the vCPU was 3880 * never actually scheduled out, i.e. even if the wake event arrived 3881 * after of the halt-polling loop itself, but before the full wait. 3882 */ 3883 if (do_halt_poll) 3884 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3885 3886 if (halt_poll_allowed) { 3887 /* Recompute the max halt poll time in case it changed. */ 3888 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3889 3890 if (!vcpu_valid_wakeup(vcpu)) { 3891 shrink_halt_poll_ns(vcpu); 3892 } else if (max_halt_poll_ns) { 3893 if (halt_ns <= vcpu->halt_poll_ns) 3894 ; 3895 /* we had a long block, shrink polling */ 3896 else if (vcpu->halt_poll_ns && 3897 halt_ns > max_halt_poll_ns) 3898 shrink_halt_poll_ns(vcpu); 3899 /* we had a short halt and our poll time is too small */ 3900 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3901 halt_ns < max_halt_poll_ns) 3902 grow_halt_poll_ns(vcpu); 3903 } else { 3904 vcpu->halt_poll_ns = 0; 3905 } 3906 } 3907 3908 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3909 } 3910 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3911 3912 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3913 { 3914 if (__kvm_vcpu_wake_up(vcpu)) { 3915 WRITE_ONCE(vcpu->ready, true); 3916 ++vcpu->stat.generic.halt_wakeup; 3917 return true; 3918 } 3919 3920 return false; 3921 } 3922 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3923 3924 #ifndef CONFIG_S390 3925 /* 3926 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3927 */ 3928 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3929 { 3930 int me, cpu; 3931 3932 if (kvm_vcpu_wake_up(vcpu)) 3933 return; 3934 3935 me = get_cpu(); 3936 /* 3937 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3938 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3939 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3940 * within the vCPU thread itself. 3941 */ 3942 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3943 if (vcpu->mode == IN_GUEST_MODE) 3944 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3945 goto out; 3946 } 3947 3948 /* 3949 * Note, the vCPU could get migrated to a different pCPU at any point 3950 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3951 * IPI to the previous pCPU. But, that's ok because the purpose of the 3952 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3953 * vCPU also requires it to leave IN_GUEST_MODE. 3954 */ 3955 if (kvm_arch_vcpu_should_kick(vcpu)) { 3956 cpu = READ_ONCE(vcpu->cpu); 3957 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3958 smp_send_reschedule(cpu); 3959 } 3960 out: 3961 put_cpu(); 3962 } 3963 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3964 #endif /* !CONFIG_S390 */ 3965 3966 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3967 { 3968 struct pid *pid; 3969 struct task_struct *task = NULL; 3970 int ret = 0; 3971 3972 rcu_read_lock(); 3973 pid = rcu_dereference(target->pid); 3974 if (pid) 3975 task = get_pid_task(pid, PIDTYPE_PID); 3976 rcu_read_unlock(); 3977 if (!task) 3978 return ret; 3979 ret = yield_to(task, 1); 3980 put_task_struct(task); 3981 3982 return ret; 3983 } 3984 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3985 3986 /* 3987 * Helper that checks whether a VCPU is eligible for directed yield. 3988 * Most eligible candidate to yield is decided by following heuristics: 3989 * 3990 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3991 * (preempted lock holder), indicated by @in_spin_loop. 3992 * Set at the beginning and cleared at the end of interception/PLE handler. 3993 * 3994 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3995 * chance last time (mostly it has become eligible now since we have probably 3996 * yielded to lockholder in last iteration. This is done by toggling 3997 * @dy_eligible each time a VCPU checked for eligibility.) 3998 * 3999 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 4000 * to preempted lock-holder could result in wrong VCPU selection and CPU 4001 * burning. Giving priority for a potential lock-holder increases lock 4002 * progress. 4003 * 4004 * Since algorithm is based on heuristics, accessing another VCPU data without 4005 * locking does not harm. It may result in trying to yield to same VCPU, fail 4006 * and continue with next VCPU and so on. 4007 */ 4008 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 4009 { 4010 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 4011 bool eligible; 4012 4013 eligible = !vcpu->spin_loop.in_spin_loop || 4014 vcpu->spin_loop.dy_eligible; 4015 4016 if (vcpu->spin_loop.in_spin_loop) 4017 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 4018 4019 return eligible; 4020 #else 4021 return true; 4022 #endif 4023 } 4024 4025 /* 4026 * Unlike kvm_arch_vcpu_runnable, this function is called outside 4027 * a vcpu_load/vcpu_put pair. However, for most architectures 4028 * kvm_arch_vcpu_runnable does not require vcpu_load. 4029 */ 4030 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 4031 { 4032 return kvm_arch_vcpu_runnable(vcpu); 4033 } 4034 4035 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4036 { 4037 if (kvm_arch_dy_runnable(vcpu)) 4038 return true; 4039 4040 #ifdef CONFIG_KVM_ASYNC_PF 4041 if (!list_empty_careful(&vcpu->async_pf.done)) 4042 return true; 4043 #endif 4044 4045 return false; 4046 } 4047 4048 /* 4049 * By default, simply query the target vCPU's current mode when checking if a 4050 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4051 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4052 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4053 * directly for cross-vCPU checks is functionally correct and accurate. 4054 */ 4055 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4056 { 4057 return kvm_arch_vcpu_in_kernel(vcpu); 4058 } 4059 4060 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4061 { 4062 return false; 4063 } 4064 4065 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4066 { 4067 struct kvm *kvm = me->kvm; 4068 struct kvm_vcpu *vcpu; 4069 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4070 unsigned long i; 4071 int yielded = 0; 4072 int try = 3; 4073 int pass; 4074 4075 kvm_vcpu_set_in_spin_loop(me, true); 4076 /* 4077 * We boost the priority of a VCPU that is runnable but not 4078 * currently running, because it got preempted by something 4079 * else and called schedule in __vcpu_run. Hopefully that 4080 * VCPU is holding the lock that we need and will release it. 4081 * We approximate round-robin by starting at the last boosted VCPU. 4082 */ 4083 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4084 kvm_for_each_vcpu(i, vcpu, kvm) { 4085 if (!pass && i <= last_boosted_vcpu) { 4086 i = last_boosted_vcpu; 4087 continue; 4088 } else if (pass && i > last_boosted_vcpu) 4089 break; 4090 if (!READ_ONCE(vcpu->ready)) 4091 continue; 4092 if (vcpu == me) 4093 continue; 4094 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4095 continue; 4096 4097 /* 4098 * Treat the target vCPU as being in-kernel if it has a 4099 * pending interrupt, as the vCPU trying to yield may 4100 * be spinning waiting on IPI delivery, i.e. the target 4101 * vCPU is in-kernel for the purposes of directed yield. 4102 */ 4103 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4104 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4105 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4106 continue; 4107 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4108 continue; 4109 4110 yielded = kvm_vcpu_yield_to(vcpu); 4111 if (yielded > 0) { 4112 kvm->last_boosted_vcpu = i; 4113 break; 4114 } else if (yielded < 0) { 4115 try--; 4116 if (!try) 4117 break; 4118 } 4119 } 4120 } 4121 kvm_vcpu_set_in_spin_loop(me, false); 4122 4123 /* Ensure vcpu is not eligible during next spinloop */ 4124 kvm_vcpu_set_dy_eligible(me, false); 4125 } 4126 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4127 4128 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4129 { 4130 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4131 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4132 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4133 kvm->dirty_ring_size / PAGE_SIZE); 4134 #else 4135 return false; 4136 #endif 4137 } 4138 4139 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4140 { 4141 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4142 struct page *page; 4143 4144 if (vmf->pgoff == 0) 4145 page = virt_to_page(vcpu->run); 4146 #ifdef CONFIG_X86 4147 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4148 page = virt_to_page(vcpu->arch.pio_data); 4149 #endif 4150 #ifdef CONFIG_KVM_MMIO 4151 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4152 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4153 #endif 4154 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4155 page = kvm_dirty_ring_get_page( 4156 &vcpu->dirty_ring, 4157 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4158 else 4159 return kvm_arch_vcpu_fault(vcpu, vmf); 4160 get_page(page); 4161 vmf->page = page; 4162 return 0; 4163 } 4164 4165 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4166 .fault = kvm_vcpu_fault, 4167 }; 4168 4169 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4170 { 4171 struct kvm_vcpu *vcpu = file->private_data; 4172 unsigned long pages = vma_pages(vma); 4173 4174 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4175 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4176 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4177 return -EINVAL; 4178 4179 vma->vm_ops = &kvm_vcpu_vm_ops; 4180 return 0; 4181 } 4182 4183 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4184 { 4185 struct kvm_vcpu *vcpu = filp->private_data; 4186 4187 kvm_put_kvm(vcpu->kvm); 4188 return 0; 4189 } 4190 4191 static struct file_operations kvm_vcpu_fops = { 4192 .release = kvm_vcpu_release, 4193 .unlocked_ioctl = kvm_vcpu_ioctl, 4194 .mmap = kvm_vcpu_mmap, 4195 .llseek = noop_llseek, 4196 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4197 }; 4198 4199 /* 4200 * Allocates an inode for the vcpu. 4201 */ 4202 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4203 { 4204 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4205 4206 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4207 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4208 } 4209 4210 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4211 static int vcpu_get_pid(void *data, u64 *val) 4212 { 4213 struct kvm_vcpu *vcpu = data; 4214 4215 rcu_read_lock(); 4216 *val = pid_nr(rcu_dereference(vcpu->pid)); 4217 rcu_read_unlock(); 4218 return 0; 4219 } 4220 4221 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4222 4223 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4224 { 4225 struct dentry *debugfs_dentry; 4226 char dir_name[ITOA_MAX_LEN * 2]; 4227 4228 if (!debugfs_initialized()) 4229 return; 4230 4231 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4232 debugfs_dentry = debugfs_create_dir(dir_name, 4233 vcpu->kvm->debugfs_dentry); 4234 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4235 &vcpu_get_pid_fops); 4236 4237 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4238 } 4239 #endif 4240 4241 /* 4242 * Creates some virtual cpus. Good luck creating more than one. 4243 */ 4244 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4245 { 4246 int r; 4247 struct kvm_vcpu *vcpu; 4248 struct page *page; 4249 4250 if (id >= KVM_MAX_VCPU_IDS) 4251 return -EINVAL; 4252 4253 mutex_lock(&kvm->lock); 4254 if (kvm->created_vcpus >= kvm->max_vcpus) { 4255 mutex_unlock(&kvm->lock); 4256 return -EINVAL; 4257 } 4258 4259 r = kvm_arch_vcpu_precreate(kvm, id); 4260 if (r) { 4261 mutex_unlock(&kvm->lock); 4262 return r; 4263 } 4264 4265 kvm->created_vcpus++; 4266 mutex_unlock(&kvm->lock); 4267 4268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4269 if (!vcpu) { 4270 r = -ENOMEM; 4271 goto vcpu_decrement; 4272 } 4273 4274 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4275 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4276 if (!page) { 4277 r = -ENOMEM; 4278 goto vcpu_free; 4279 } 4280 vcpu->run = page_address(page); 4281 4282 kvm_vcpu_init(vcpu, kvm, id); 4283 4284 r = kvm_arch_vcpu_create(vcpu); 4285 if (r) 4286 goto vcpu_free_run_page; 4287 4288 if (kvm->dirty_ring_size) { 4289 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4290 id, kvm->dirty_ring_size); 4291 if (r) 4292 goto arch_vcpu_destroy; 4293 } 4294 4295 mutex_lock(&kvm->lock); 4296 4297 #ifdef CONFIG_LOCKDEP 4298 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4299 mutex_lock(&vcpu->mutex); 4300 mutex_unlock(&vcpu->mutex); 4301 #endif 4302 4303 if (kvm_get_vcpu_by_id(kvm, id)) { 4304 r = -EEXIST; 4305 goto unlock_vcpu_destroy; 4306 } 4307 4308 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4309 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4310 if (r) 4311 goto unlock_vcpu_destroy; 4312 4313 /* Now it's all set up, let userspace reach it */ 4314 kvm_get_kvm(kvm); 4315 r = create_vcpu_fd(vcpu); 4316 if (r < 0) 4317 goto kvm_put_xa_release; 4318 4319 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4320 r = -EINVAL; 4321 goto kvm_put_xa_release; 4322 } 4323 4324 /* 4325 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4326 * pointer before kvm->online_vcpu's incremented value. 4327 */ 4328 smp_wmb(); 4329 atomic_inc(&kvm->online_vcpus); 4330 4331 mutex_unlock(&kvm->lock); 4332 kvm_arch_vcpu_postcreate(vcpu); 4333 kvm_create_vcpu_debugfs(vcpu); 4334 return r; 4335 4336 kvm_put_xa_release: 4337 kvm_put_kvm_no_destroy(kvm); 4338 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4339 unlock_vcpu_destroy: 4340 mutex_unlock(&kvm->lock); 4341 kvm_dirty_ring_free(&vcpu->dirty_ring); 4342 arch_vcpu_destroy: 4343 kvm_arch_vcpu_destroy(vcpu); 4344 vcpu_free_run_page: 4345 free_page((unsigned long)vcpu->run); 4346 vcpu_free: 4347 kmem_cache_free(kvm_vcpu_cache, vcpu); 4348 vcpu_decrement: 4349 mutex_lock(&kvm->lock); 4350 kvm->created_vcpus--; 4351 mutex_unlock(&kvm->lock); 4352 return r; 4353 } 4354 4355 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4356 { 4357 if (sigset) { 4358 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4359 vcpu->sigset_active = 1; 4360 vcpu->sigset = *sigset; 4361 } else 4362 vcpu->sigset_active = 0; 4363 return 0; 4364 } 4365 4366 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4367 size_t size, loff_t *offset) 4368 { 4369 struct kvm_vcpu *vcpu = file->private_data; 4370 4371 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4372 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4373 sizeof(vcpu->stat), user_buffer, size, offset); 4374 } 4375 4376 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4377 { 4378 struct kvm_vcpu *vcpu = file->private_data; 4379 4380 kvm_put_kvm(vcpu->kvm); 4381 return 0; 4382 } 4383 4384 static const struct file_operations kvm_vcpu_stats_fops = { 4385 .owner = THIS_MODULE, 4386 .read = kvm_vcpu_stats_read, 4387 .release = kvm_vcpu_stats_release, 4388 .llseek = noop_llseek, 4389 }; 4390 4391 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4392 { 4393 int fd; 4394 struct file *file; 4395 char name[15 + ITOA_MAX_LEN + 1]; 4396 4397 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4398 4399 fd = get_unused_fd_flags(O_CLOEXEC); 4400 if (fd < 0) 4401 return fd; 4402 4403 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4404 if (IS_ERR(file)) { 4405 put_unused_fd(fd); 4406 return PTR_ERR(file); 4407 } 4408 4409 kvm_get_kvm(vcpu->kvm); 4410 4411 file->f_mode |= FMODE_PREAD; 4412 fd_install(fd, file); 4413 4414 return fd; 4415 } 4416 4417 static long kvm_vcpu_ioctl(struct file *filp, 4418 unsigned int ioctl, unsigned long arg) 4419 { 4420 struct kvm_vcpu *vcpu = filp->private_data; 4421 void __user *argp = (void __user *)arg; 4422 int r; 4423 struct kvm_fpu *fpu = NULL; 4424 struct kvm_sregs *kvm_sregs = NULL; 4425 4426 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4427 return -EIO; 4428 4429 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4430 return -EINVAL; 4431 4432 /* 4433 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4434 * execution; mutex_lock() would break them. 4435 */ 4436 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4437 if (r != -ENOIOCTLCMD) 4438 return r; 4439 4440 if (mutex_lock_killable(&vcpu->mutex)) 4441 return -EINTR; 4442 switch (ioctl) { 4443 case KVM_RUN: { 4444 struct pid *oldpid; 4445 r = -EINVAL; 4446 if (arg) 4447 goto out; 4448 oldpid = rcu_access_pointer(vcpu->pid); 4449 if (unlikely(oldpid != task_pid(current))) { 4450 /* The thread running this VCPU changed. */ 4451 struct pid *newpid; 4452 4453 r = kvm_arch_vcpu_run_pid_change(vcpu); 4454 if (r) 4455 break; 4456 4457 newpid = get_task_pid(current, PIDTYPE_PID); 4458 rcu_assign_pointer(vcpu->pid, newpid); 4459 if (oldpid) 4460 synchronize_rcu(); 4461 put_pid(oldpid); 4462 } 4463 r = kvm_arch_vcpu_ioctl_run(vcpu); 4464 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4465 break; 4466 } 4467 case KVM_GET_REGS: { 4468 struct kvm_regs *kvm_regs; 4469 4470 r = -ENOMEM; 4471 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4472 if (!kvm_regs) 4473 goto out; 4474 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4475 if (r) 4476 goto out_free1; 4477 r = -EFAULT; 4478 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4479 goto out_free1; 4480 r = 0; 4481 out_free1: 4482 kfree(kvm_regs); 4483 break; 4484 } 4485 case KVM_SET_REGS: { 4486 struct kvm_regs *kvm_regs; 4487 4488 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4489 if (IS_ERR(kvm_regs)) { 4490 r = PTR_ERR(kvm_regs); 4491 goto out; 4492 } 4493 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4494 kfree(kvm_regs); 4495 break; 4496 } 4497 case KVM_GET_SREGS: { 4498 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4499 GFP_KERNEL_ACCOUNT); 4500 r = -ENOMEM; 4501 if (!kvm_sregs) 4502 goto out; 4503 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4504 if (r) 4505 goto out; 4506 r = -EFAULT; 4507 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4508 goto out; 4509 r = 0; 4510 break; 4511 } 4512 case KVM_SET_SREGS: { 4513 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4514 if (IS_ERR(kvm_sregs)) { 4515 r = PTR_ERR(kvm_sregs); 4516 kvm_sregs = NULL; 4517 goto out; 4518 } 4519 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4520 break; 4521 } 4522 case KVM_GET_MP_STATE: { 4523 struct kvm_mp_state mp_state; 4524 4525 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4526 if (r) 4527 goto out; 4528 r = -EFAULT; 4529 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4530 goto out; 4531 r = 0; 4532 break; 4533 } 4534 case KVM_SET_MP_STATE: { 4535 struct kvm_mp_state mp_state; 4536 4537 r = -EFAULT; 4538 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4539 goto out; 4540 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4541 break; 4542 } 4543 case KVM_TRANSLATE: { 4544 struct kvm_translation tr; 4545 4546 r = -EFAULT; 4547 if (copy_from_user(&tr, argp, sizeof(tr))) 4548 goto out; 4549 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4550 if (r) 4551 goto out; 4552 r = -EFAULT; 4553 if (copy_to_user(argp, &tr, sizeof(tr))) 4554 goto out; 4555 r = 0; 4556 break; 4557 } 4558 case KVM_SET_GUEST_DEBUG: { 4559 struct kvm_guest_debug dbg; 4560 4561 r = -EFAULT; 4562 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4563 goto out; 4564 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4565 break; 4566 } 4567 case KVM_SET_SIGNAL_MASK: { 4568 struct kvm_signal_mask __user *sigmask_arg = argp; 4569 struct kvm_signal_mask kvm_sigmask; 4570 sigset_t sigset, *p; 4571 4572 p = NULL; 4573 if (argp) { 4574 r = -EFAULT; 4575 if (copy_from_user(&kvm_sigmask, argp, 4576 sizeof(kvm_sigmask))) 4577 goto out; 4578 r = -EINVAL; 4579 if (kvm_sigmask.len != sizeof(sigset)) 4580 goto out; 4581 r = -EFAULT; 4582 if (copy_from_user(&sigset, sigmask_arg->sigset, 4583 sizeof(sigset))) 4584 goto out; 4585 p = &sigset; 4586 } 4587 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4588 break; 4589 } 4590 case KVM_GET_FPU: { 4591 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4592 r = -ENOMEM; 4593 if (!fpu) 4594 goto out; 4595 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4596 if (r) 4597 goto out; 4598 r = -EFAULT; 4599 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4600 goto out; 4601 r = 0; 4602 break; 4603 } 4604 case KVM_SET_FPU: { 4605 fpu = memdup_user(argp, sizeof(*fpu)); 4606 if (IS_ERR(fpu)) { 4607 r = PTR_ERR(fpu); 4608 fpu = NULL; 4609 goto out; 4610 } 4611 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4612 break; 4613 } 4614 case KVM_GET_STATS_FD: { 4615 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4616 break; 4617 } 4618 default: 4619 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4620 } 4621 out: 4622 mutex_unlock(&vcpu->mutex); 4623 kfree(fpu); 4624 kfree(kvm_sregs); 4625 return r; 4626 } 4627 4628 #ifdef CONFIG_KVM_COMPAT 4629 static long kvm_vcpu_compat_ioctl(struct file *filp, 4630 unsigned int ioctl, unsigned long arg) 4631 { 4632 struct kvm_vcpu *vcpu = filp->private_data; 4633 void __user *argp = compat_ptr(arg); 4634 int r; 4635 4636 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4637 return -EIO; 4638 4639 switch (ioctl) { 4640 case KVM_SET_SIGNAL_MASK: { 4641 struct kvm_signal_mask __user *sigmask_arg = argp; 4642 struct kvm_signal_mask kvm_sigmask; 4643 sigset_t sigset; 4644 4645 if (argp) { 4646 r = -EFAULT; 4647 if (copy_from_user(&kvm_sigmask, argp, 4648 sizeof(kvm_sigmask))) 4649 goto out; 4650 r = -EINVAL; 4651 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4652 goto out; 4653 r = -EFAULT; 4654 if (get_compat_sigset(&sigset, 4655 (compat_sigset_t __user *)sigmask_arg->sigset)) 4656 goto out; 4657 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4658 } else 4659 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4660 break; 4661 } 4662 default: 4663 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4664 } 4665 4666 out: 4667 return r; 4668 } 4669 #endif 4670 4671 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4672 { 4673 struct kvm_device *dev = filp->private_data; 4674 4675 if (dev->ops->mmap) 4676 return dev->ops->mmap(dev, vma); 4677 4678 return -ENODEV; 4679 } 4680 4681 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4682 int (*accessor)(struct kvm_device *dev, 4683 struct kvm_device_attr *attr), 4684 unsigned long arg) 4685 { 4686 struct kvm_device_attr attr; 4687 4688 if (!accessor) 4689 return -EPERM; 4690 4691 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4692 return -EFAULT; 4693 4694 return accessor(dev, &attr); 4695 } 4696 4697 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4698 unsigned long arg) 4699 { 4700 struct kvm_device *dev = filp->private_data; 4701 4702 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4703 return -EIO; 4704 4705 switch (ioctl) { 4706 case KVM_SET_DEVICE_ATTR: 4707 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4708 case KVM_GET_DEVICE_ATTR: 4709 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4710 case KVM_HAS_DEVICE_ATTR: 4711 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4712 default: 4713 if (dev->ops->ioctl) 4714 return dev->ops->ioctl(dev, ioctl, arg); 4715 4716 return -ENOTTY; 4717 } 4718 } 4719 4720 static int kvm_device_release(struct inode *inode, struct file *filp) 4721 { 4722 struct kvm_device *dev = filp->private_data; 4723 struct kvm *kvm = dev->kvm; 4724 4725 if (dev->ops->release) { 4726 mutex_lock(&kvm->lock); 4727 list_del(&dev->vm_node); 4728 dev->ops->release(dev); 4729 mutex_unlock(&kvm->lock); 4730 } 4731 4732 kvm_put_kvm(kvm); 4733 return 0; 4734 } 4735 4736 static struct file_operations kvm_device_fops = { 4737 .unlocked_ioctl = kvm_device_ioctl, 4738 .release = kvm_device_release, 4739 KVM_COMPAT(kvm_device_ioctl), 4740 .mmap = kvm_device_mmap, 4741 }; 4742 4743 struct kvm_device *kvm_device_from_filp(struct file *filp) 4744 { 4745 if (filp->f_op != &kvm_device_fops) 4746 return NULL; 4747 4748 return filp->private_data; 4749 } 4750 4751 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4752 #ifdef CONFIG_KVM_MPIC 4753 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4754 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4755 #endif 4756 }; 4757 4758 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4759 { 4760 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4761 return -ENOSPC; 4762 4763 if (kvm_device_ops_table[type] != NULL) 4764 return -EEXIST; 4765 4766 kvm_device_ops_table[type] = ops; 4767 return 0; 4768 } 4769 4770 void kvm_unregister_device_ops(u32 type) 4771 { 4772 if (kvm_device_ops_table[type] != NULL) 4773 kvm_device_ops_table[type] = NULL; 4774 } 4775 4776 static int kvm_ioctl_create_device(struct kvm *kvm, 4777 struct kvm_create_device *cd) 4778 { 4779 const struct kvm_device_ops *ops; 4780 struct kvm_device *dev; 4781 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4782 int type; 4783 int ret; 4784 4785 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4786 return -ENODEV; 4787 4788 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4789 ops = kvm_device_ops_table[type]; 4790 if (ops == NULL) 4791 return -ENODEV; 4792 4793 if (test) 4794 return 0; 4795 4796 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4797 if (!dev) 4798 return -ENOMEM; 4799 4800 dev->ops = ops; 4801 dev->kvm = kvm; 4802 4803 mutex_lock(&kvm->lock); 4804 ret = ops->create(dev, type); 4805 if (ret < 0) { 4806 mutex_unlock(&kvm->lock); 4807 kfree(dev); 4808 return ret; 4809 } 4810 list_add(&dev->vm_node, &kvm->devices); 4811 mutex_unlock(&kvm->lock); 4812 4813 if (ops->init) 4814 ops->init(dev); 4815 4816 kvm_get_kvm(kvm); 4817 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4818 if (ret < 0) { 4819 kvm_put_kvm_no_destroy(kvm); 4820 mutex_lock(&kvm->lock); 4821 list_del(&dev->vm_node); 4822 if (ops->release) 4823 ops->release(dev); 4824 mutex_unlock(&kvm->lock); 4825 if (ops->destroy) 4826 ops->destroy(dev); 4827 return ret; 4828 } 4829 4830 cd->fd = ret; 4831 return 0; 4832 } 4833 4834 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4835 { 4836 switch (arg) { 4837 case KVM_CAP_USER_MEMORY: 4838 case KVM_CAP_USER_MEMORY2: 4839 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4840 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4841 case KVM_CAP_INTERNAL_ERROR_DATA: 4842 #ifdef CONFIG_HAVE_KVM_MSI 4843 case KVM_CAP_SIGNAL_MSI: 4844 #endif 4845 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4846 case KVM_CAP_IRQFD: 4847 #endif 4848 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4849 case KVM_CAP_CHECK_EXTENSION_VM: 4850 case KVM_CAP_ENABLE_CAP_VM: 4851 case KVM_CAP_HALT_POLL: 4852 return 1; 4853 #ifdef CONFIG_KVM_MMIO 4854 case KVM_CAP_COALESCED_MMIO: 4855 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4856 case KVM_CAP_COALESCED_PIO: 4857 return 1; 4858 #endif 4859 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4860 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4861 return KVM_DIRTY_LOG_MANUAL_CAPS; 4862 #endif 4863 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4864 case KVM_CAP_IRQ_ROUTING: 4865 return KVM_MAX_IRQ_ROUTES; 4866 #endif 4867 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4868 case KVM_CAP_MULTI_ADDRESS_SPACE: 4869 if (kvm) 4870 return kvm_arch_nr_memslot_as_ids(kvm); 4871 return KVM_MAX_NR_ADDRESS_SPACES; 4872 #endif 4873 case KVM_CAP_NR_MEMSLOTS: 4874 return KVM_USER_MEM_SLOTS; 4875 case KVM_CAP_DIRTY_LOG_RING: 4876 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4877 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4878 #else 4879 return 0; 4880 #endif 4881 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4882 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4883 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4884 #else 4885 return 0; 4886 #endif 4887 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4888 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4889 #endif 4890 case KVM_CAP_BINARY_STATS_FD: 4891 case KVM_CAP_SYSTEM_EVENT_DATA: 4892 case KVM_CAP_DEVICE_CTRL: 4893 return 1; 4894 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4895 case KVM_CAP_MEMORY_ATTRIBUTES: 4896 return kvm_supported_mem_attributes(kvm); 4897 #endif 4898 #ifdef CONFIG_KVM_PRIVATE_MEM 4899 case KVM_CAP_GUEST_MEMFD: 4900 return !kvm || kvm_arch_has_private_mem(kvm); 4901 #endif 4902 default: 4903 break; 4904 } 4905 return kvm_vm_ioctl_check_extension(kvm, arg); 4906 } 4907 4908 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4909 { 4910 int r; 4911 4912 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4913 return -EINVAL; 4914 4915 /* the size should be power of 2 */ 4916 if (!size || (size & (size - 1))) 4917 return -EINVAL; 4918 4919 /* Should be bigger to keep the reserved entries, or a page */ 4920 if (size < kvm_dirty_ring_get_rsvd_entries() * 4921 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4922 return -EINVAL; 4923 4924 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4925 sizeof(struct kvm_dirty_gfn)) 4926 return -E2BIG; 4927 4928 /* We only allow it to set once */ 4929 if (kvm->dirty_ring_size) 4930 return -EINVAL; 4931 4932 mutex_lock(&kvm->lock); 4933 4934 if (kvm->created_vcpus) { 4935 /* We don't allow to change this value after vcpu created */ 4936 r = -EINVAL; 4937 } else { 4938 kvm->dirty_ring_size = size; 4939 r = 0; 4940 } 4941 4942 mutex_unlock(&kvm->lock); 4943 return r; 4944 } 4945 4946 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4947 { 4948 unsigned long i; 4949 struct kvm_vcpu *vcpu; 4950 int cleared = 0; 4951 4952 if (!kvm->dirty_ring_size) 4953 return -EINVAL; 4954 4955 mutex_lock(&kvm->slots_lock); 4956 4957 kvm_for_each_vcpu(i, vcpu, kvm) 4958 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4959 4960 mutex_unlock(&kvm->slots_lock); 4961 4962 if (cleared) 4963 kvm_flush_remote_tlbs(kvm); 4964 4965 return cleared; 4966 } 4967 4968 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4969 struct kvm_enable_cap *cap) 4970 { 4971 return -EINVAL; 4972 } 4973 4974 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4975 { 4976 int i; 4977 4978 lockdep_assert_held(&kvm->slots_lock); 4979 4980 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4981 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4982 return false; 4983 } 4984 4985 return true; 4986 } 4987 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4988 4989 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4990 struct kvm_enable_cap *cap) 4991 { 4992 switch (cap->cap) { 4993 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4994 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4995 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4996 4997 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4998 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4999 5000 if (cap->flags || (cap->args[0] & ~allowed_options)) 5001 return -EINVAL; 5002 kvm->manual_dirty_log_protect = cap->args[0]; 5003 return 0; 5004 } 5005 #endif 5006 case KVM_CAP_HALT_POLL: { 5007 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5008 return -EINVAL; 5009 5010 kvm->max_halt_poll_ns = cap->args[0]; 5011 5012 /* 5013 * Ensure kvm->override_halt_poll_ns does not become visible 5014 * before kvm->max_halt_poll_ns. 5015 * 5016 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5017 */ 5018 smp_wmb(); 5019 kvm->override_halt_poll_ns = true; 5020 5021 return 0; 5022 } 5023 case KVM_CAP_DIRTY_LOG_RING: 5024 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5025 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5026 return -EINVAL; 5027 5028 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5029 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5030 int r = -EINVAL; 5031 5032 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5033 !kvm->dirty_ring_size || cap->flags) 5034 return r; 5035 5036 mutex_lock(&kvm->slots_lock); 5037 5038 /* 5039 * For simplicity, allow enabling ring+bitmap if and only if 5040 * there are no memslots, e.g. to ensure all memslots allocate 5041 * a bitmap after the capability is enabled. 5042 */ 5043 if (kvm_are_all_memslots_empty(kvm)) { 5044 kvm->dirty_ring_with_bitmap = true; 5045 r = 0; 5046 } 5047 5048 mutex_unlock(&kvm->slots_lock); 5049 5050 return r; 5051 } 5052 default: 5053 return kvm_vm_ioctl_enable_cap(kvm, cap); 5054 } 5055 } 5056 5057 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5058 size_t size, loff_t *offset) 5059 { 5060 struct kvm *kvm = file->private_data; 5061 5062 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5063 &kvm_vm_stats_desc[0], &kvm->stat, 5064 sizeof(kvm->stat), user_buffer, size, offset); 5065 } 5066 5067 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5068 { 5069 struct kvm *kvm = file->private_data; 5070 5071 kvm_put_kvm(kvm); 5072 return 0; 5073 } 5074 5075 static const struct file_operations kvm_vm_stats_fops = { 5076 .owner = THIS_MODULE, 5077 .read = kvm_vm_stats_read, 5078 .release = kvm_vm_stats_release, 5079 .llseek = noop_llseek, 5080 }; 5081 5082 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5083 { 5084 int fd; 5085 struct file *file; 5086 5087 fd = get_unused_fd_flags(O_CLOEXEC); 5088 if (fd < 0) 5089 return fd; 5090 5091 file = anon_inode_getfile("kvm-vm-stats", 5092 &kvm_vm_stats_fops, kvm, O_RDONLY); 5093 if (IS_ERR(file)) { 5094 put_unused_fd(fd); 5095 return PTR_ERR(file); 5096 } 5097 5098 kvm_get_kvm(kvm); 5099 5100 file->f_mode |= FMODE_PREAD; 5101 fd_install(fd, file); 5102 5103 return fd; 5104 } 5105 5106 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5107 do { \ 5108 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5109 offsetof(struct kvm_userspace_memory_region2, field)); \ 5110 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5111 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5112 } while (0) 5113 5114 static long kvm_vm_ioctl(struct file *filp, 5115 unsigned int ioctl, unsigned long arg) 5116 { 5117 struct kvm *kvm = filp->private_data; 5118 void __user *argp = (void __user *)arg; 5119 int r; 5120 5121 if (kvm->mm != current->mm || kvm->vm_dead) 5122 return -EIO; 5123 switch (ioctl) { 5124 case KVM_CREATE_VCPU: 5125 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5126 break; 5127 case KVM_ENABLE_CAP: { 5128 struct kvm_enable_cap cap; 5129 5130 r = -EFAULT; 5131 if (copy_from_user(&cap, argp, sizeof(cap))) 5132 goto out; 5133 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5134 break; 5135 } 5136 case KVM_SET_USER_MEMORY_REGION2: 5137 case KVM_SET_USER_MEMORY_REGION: { 5138 struct kvm_userspace_memory_region2 mem; 5139 unsigned long size; 5140 5141 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5142 /* 5143 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5144 * accessed, but avoid leaking kernel memory in case of a bug. 5145 */ 5146 memset(&mem, 0, sizeof(mem)); 5147 size = sizeof(struct kvm_userspace_memory_region); 5148 } else { 5149 size = sizeof(struct kvm_userspace_memory_region2); 5150 } 5151 5152 /* Ensure the common parts of the two structs are identical. */ 5153 SANITY_CHECK_MEM_REGION_FIELD(slot); 5154 SANITY_CHECK_MEM_REGION_FIELD(flags); 5155 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5156 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5157 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5158 5159 r = -EFAULT; 5160 if (copy_from_user(&mem, argp, size)) 5161 goto out; 5162 5163 r = -EINVAL; 5164 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5165 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5166 goto out; 5167 5168 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5169 break; 5170 } 5171 case KVM_GET_DIRTY_LOG: { 5172 struct kvm_dirty_log log; 5173 5174 r = -EFAULT; 5175 if (copy_from_user(&log, argp, sizeof(log))) 5176 goto out; 5177 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5178 break; 5179 } 5180 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5181 case KVM_CLEAR_DIRTY_LOG: { 5182 struct kvm_clear_dirty_log log; 5183 5184 r = -EFAULT; 5185 if (copy_from_user(&log, argp, sizeof(log))) 5186 goto out; 5187 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5188 break; 5189 } 5190 #endif 5191 #ifdef CONFIG_KVM_MMIO 5192 case KVM_REGISTER_COALESCED_MMIO: { 5193 struct kvm_coalesced_mmio_zone zone; 5194 5195 r = -EFAULT; 5196 if (copy_from_user(&zone, argp, sizeof(zone))) 5197 goto out; 5198 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5199 break; 5200 } 5201 case KVM_UNREGISTER_COALESCED_MMIO: { 5202 struct kvm_coalesced_mmio_zone zone; 5203 5204 r = -EFAULT; 5205 if (copy_from_user(&zone, argp, sizeof(zone))) 5206 goto out; 5207 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5208 break; 5209 } 5210 #endif 5211 case KVM_IRQFD: { 5212 struct kvm_irqfd data; 5213 5214 r = -EFAULT; 5215 if (copy_from_user(&data, argp, sizeof(data))) 5216 goto out; 5217 r = kvm_irqfd(kvm, &data); 5218 break; 5219 } 5220 case KVM_IOEVENTFD: { 5221 struct kvm_ioeventfd data; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&data, argp, sizeof(data))) 5225 goto out; 5226 r = kvm_ioeventfd(kvm, &data); 5227 break; 5228 } 5229 #ifdef CONFIG_HAVE_KVM_MSI 5230 case KVM_SIGNAL_MSI: { 5231 struct kvm_msi msi; 5232 5233 r = -EFAULT; 5234 if (copy_from_user(&msi, argp, sizeof(msi))) 5235 goto out; 5236 r = kvm_send_userspace_msi(kvm, &msi); 5237 break; 5238 } 5239 #endif 5240 #ifdef __KVM_HAVE_IRQ_LINE 5241 case KVM_IRQ_LINE_STATUS: 5242 case KVM_IRQ_LINE: { 5243 struct kvm_irq_level irq_event; 5244 5245 r = -EFAULT; 5246 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5247 goto out; 5248 5249 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5250 ioctl == KVM_IRQ_LINE_STATUS); 5251 if (r) 5252 goto out; 5253 5254 r = -EFAULT; 5255 if (ioctl == KVM_IRQ_LINE_STATUS) { 5256 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5257 goto out; 5258 } 5259 5260 r = 0; 5261 break; 5262 } 5263 #endif 5264 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5265 case KVM_SET_GSI_ROUTING: { 5266 struct kvm_irq_routing routing; 5267 struct kvm_irq_routing __user *urouting; 5268 struct kvm_irq_routing_entry *entries = NULL; 5269 5270 r = -EFAULT; 5271 if (copy_from_user(&routing, argp, sizeof(routing))) 5272 goto out; 5273 r = -EINVAL; 5274 if (!kvm_arch_can_set_irq_routing(kvm)) 5275 goto out; 5276 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5277 goto out; 5278 if (routing.flags) 5279 goto out; 5280 if (routing.nr) { 5281 urouting = argp; 5282 entries = vmemdup_array_user(urouting->entries, 5283 routing.nr, sizeof(*entries)); 5284 if (IS_ERR(entries)) { 5285 r = PTR_ERR(entries); 5286 goto out; 5287 } 5288 } 5289 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5290 routing.flags); 5291 kvfree(entries); 5292 break; 5293 } 5294 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5295 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5296 case KVM_SET_MEMORY_ATTRIBUTES: { 5297 struct kvm_memory_attributes attrs; 5298 5299 r = -EFAULT; 5300 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5301 goto out; 5302 5303 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5304 break; 5305 } 5306 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5307 case KVM_CREATE_DEVICE: { 5308 struct kvm_create_device cd; 5309 5310 r = -EFAULT; 5311 if (copy_from_user(&cd, argp, sizeof(cd))) 5312 goto out; 5313 5314 r = kvm_ioctl_create_device(kvm, &cd); 5315 if (r) 5316 goto out; 5317 5318 r = -EFAULT; 5319 if (copy_to_user(argp, &cd, sizeof(cd))) 5320 goto out; 5321 5322 r = 0; 5323 break; 5324 } 5325 case KVM_CHECK_EXTENSION: 5326 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5327 break; 5328 case KVM_RESET_DIRTY_RINGS: 5329 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5330 break; 5331 case KVM_GET_STATS_FD: 5332 r = kvm_vm_ioctl_get_stats_fd(kvm); 5333 break; 5334 #ifdef CONFIG_KVM_PRIVATE_MEM 5335 case KVM_CREATE_GUEST_MEMFD: { 5336 struct kvm_create_guest_memfd guest_memfd; 5337 5338 r = -EFAULT; 5339 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5340 goto out; 5341 5342 r = kvm_gmem_create(kvm, &guest_memfd); 5343 break; 5344 } 5345 #endif 5346 default: 5347 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5348 } 5349 out: 5350 return r; 5351 } 5352 5353 #ifdef CONFIG_KVM_COMPAT 5354 struct compat_kvm_dirty_log { 5355 __u32 slot; 5356 __u32 padding1; 5357 union { 5358 compat_uptr_t dirty_bitmap; /* one bit per page */ 5359 __u64 padding2; 5360 }; 5361 }; 5362 5363 struct compat_kvm_clear_dirty_log { 5364 __u32 slot; 5365 __u32 num_pages; 5366 __u64 first_page; 5367 union { 5368 compat_uptr_t dirty_bitmap; /* one bit per page */ 5369 __u64 padding2; 5370 }; 5371 }; 5372 5373 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5374 unsigned long arg) 5375 { 5376 return -ENOTTY; 5377 } 5378 5379 static long kvm_vm_compat_ioctl(struct file *filp, 5380 unsigned int ioctl, unsigned long arg) 5381 { 5382 struct kvm *kvm = filp->private_data; 5383 int r; 5384 5385 if (kvm->mm != current->mm || kvm->vm_dead) 5386 return -EIO; 5387 5388 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5389 if (r != -ENOTTY) 5390 return r; 5391 5392 switch (ioctl) { 5393 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5394 case KVM_CLEAR_DIRTY_LOG: { 5395 struct compat_kvm_clear_dirty_log compat_log; 5396 struct kvm_clear_dirty_log log; 5397 5398 if (copy_from_user(&compat_log, (void __user *)arg, 5399 sizeof(compat_log))) 5400 return -EFAULT; 5401 log.slot = compat_log.slot; 5402 log.num_pages = compat_log.num_pages; 5403 log.first_page = compat_log.first_page; 5404 log.padding2 = compat_log.padding2; 5405 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5406 5407 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5408 break; 5409 } 5410 #endif 5411 case KVM_GET_DIRTY_LOG: { 5412 struct compat_kvm_dirty_log compat_log; 5413 struct kvm_dirty_log log; 5414 5415 if (copy_from_user(&compat_log, (void __user *)arg, 5416 sizeof(compat_log))) 5417 return -EFAULT; 5418 log.slot = compat_log.slot; 5419 log.padding1 = compat_log.padding1; 5420 log.padding2 = compat_log.padding2; 5421 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5422 5423 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5424 break; 5425 } 5426 default: 5427 r = kvm_vm_ioctl(filp, ioctl, arg); 5428 } 5429 return r; 5430 } 5431 #endif 5432 5433 static struct file_operations kvm_vm_fops = { 5434 .release = kvm_vm_release, 5435 .unlocked_ioctl = kvm_vm_ioctl, 5436 .llseek = noop_llseek, 5437 KVM_COMPAT(kvm_vm_compat_ioctl), 5438 }; 5439 5440 bool file_is_kvm(struct file *file) 5441 { 5442 return file && file->f_op == &kvm_vm_fops; 5443 } 5444 EXPORT_SYMBOL_GPL(file_is_kvm); 5445 5446 static int kvm_dev_ioctl_create_vm(unsigned long type) 5447 { 5448 char fdname[ITOA_MAX_LEN + 1]; 5449 int r, fd; 5450 struct kvm *kvm; 5451 struct file *file; 5452 5453 fd = get_unused_fd_flags(O_CLOEXEC); 5454 if (fd < 0) 5455 return fd; 5456 5457 snprintf(fdname, sizeof(fdname), "%d", fd); 5458 5459 kvm = kvm_create_vm(type, fdname); 5460 if (IS_ERR(kvm)) { 5461 r = PTR_ERR(kvm); 5462 goto put_fd; 5463 } 5464 5465 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5466 if (IS_ERR(file)) { 5467 r = PTR_ERR(file); 5468 goto put_kvm; 5469 } 5470 5471 /* 5472 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5473 * already set, with ->release() being kvm_vm_release(). In error 5474 * cases it will be called by the final fput(file) and will take 5475 * care of doing kvm_put_kvm(kvm). 5476 */ 5477 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5478 5479 fd_install(fd, file); 5480 return fd; 5481 5482 put_kvm: 5483 kvm_put_kvm(kvm); 5484 put_fd: 5485 put_unused_fd(fd); 5486 return r; 5487 } 5488 5489 static long kvm_dev_ioctl(struct file *filp, 5490 unsigned int ioctl, unsigned long arg) 5491 { 5492 int r = -EINVAL; 5493 5494 switch (ioctl) { 5495 case KVM_GET_API_VERSION: 5496 if (arg) 5497 goto out; 5498 r = KVM_API_VERSION; 5499 break; 5500 case KVM_CREATE_VM: 5501 r = kvm_dev_ioctl_create_vm(arg); 5502 break; 5503 case KVM_CHECK_EXTENSION: 5504 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5505 break; 5506 case KVM_GET_VCPU_MMAP_SIZE: 5507 if (arg) 5508 goto out; 5509 r = PAGE_SIZE; /* struct kvm_run */ 5510 #ifdef CONFIG_X86 5511 r += PAGE_SIZE; /* pio data page */ 5512 #endif 5513 #ifdef CONFIG_KVM_MMIO 5514 r += PAGE_SIZE; /* coalesced mmio ring page */ 5515 #endif 5516 break; 5517 default: 5518 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5519 } 5520 out: 5521 return r; 5522 } 5523 5524 static struct file_operations kvm_chardev_ops = { 5525 .unlocked_ioctl = kvm_dev_ioctl, 5526 .llseek = noop_llseek, 5527 KVM_COMPAT(kvm_dev_ioctl), 5528 }; 5529 5530 static struct miscdevice kvm_dev = { 5531 KVM_MINOR, 5532 "kvm", 5533 &kvm_chardev_ops, 5534 }; 5535 5536 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5537 __visible bool kvm_rebooting; 5538 EXPORT_SYMBOL_GPL(kvm_rebooting); 5539 5540 static DEFINE_PER_CPU(bool, hardware_enabled); 5541 static int kvm_usage_count; 5542 5543 static int __hardware_enable_nolock(void) 5544 { 5545 if (__this_cpu_read(hardware_enabled)) 5546 return 0; 5547 5548 if (kvm_arch_hardware_enable()) { 5549 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5550 raw_smp_processor_id()); 5551 return -EIO; 5552 } 5553 5554 __this_cpu_write(hardware_enabled, true); 5555 return 0; 5556 } 5557 5558 static void hardware_enable_nolock(void *failed) 5559 { 5560 if (__hardware_enable_nolock()) 5561 atomic_inc(failed); 5562 } 5563 5564 static int kvm_online_cpu(unsigned int cpu) 5565 { 5566 int ret = 0; 5567 5568 /* 5569 * Abort the CPU online process if hardware virtualization cannot 5570 * be enabled. Otherwise running VMs would encounter unrecoverable 5571 * errors when scheduled to this CPU. 5572 */ 5573 mutex_lock(&kvm_lock); 5574 if (kvm_usage_count) 5575 ret = __hardware_enable_nolock(); 5576 mutex_unlock(&kvm_lock); 5577 return ret; 5578 } 5579 5580 static void hardware_disable_nolock(void *junk) 5581 { 5582 /* 5583 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5584 * hardware, not just CPUs that successfully enabled hardware! 5585 */ 5586 if (!__this_cpu_read(hardware_enabled)) 5587 return; 5588 5589 kvm_arch_hardware_disable(); 5590 5591 __this_cpu_write(hardware_enabled, false); 5592 } 5593 5594 static int kvm_offline_cpu(unsigned int cpu) 5595 { 5596 mutex_lock(&kvm_lock); 5597 if (kvm_usage_count) 5598 hardware_disable_nolock(NULL); 5599 mutex_unlock(&kvm_lock); 5600 return 0; 5601 } 5602 5603 static void hardware_disable_all_nolock(void) 5604 { 5605 BUG_ON(!kvm_usage_count); 5606 5607 kvm_usage_count--; 5608 if (!kvm_usage_count) 5609 on_each_cpu(hardware_disable_nolock, NULL, 1); 5610 } 5611 5612 static void hardware_disable_all(void) 5613 { 5614 cpus_read_lock(); 5615 mutex_lock(&kvm_lock); 5616 hardware_disable_all_nolock(); 5617 mutex_unlock(&kvm_lock); 5618 cpus_read_unlock(); 5619 } 5620 5621 static int hardware_enable_all(void) 5622 { 5623 atomic_t failed = ATOMIC_INIT(0); 5624 int r; 5625 5626 /* 5627 * Do not enable hardware virtualization if the system is going down. 5628 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5629 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5630 * after kvm_reboot() is called. Note, this relies on system_state 5631 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5632 * hook instead of registering a dedicated reboot notifier (the latter 5633 * runs before system_state is updated). 5634 */ 5635 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5636 system_state == SYSTEM_RESTART) 5637 return -EBUSY; 5638 5639 /* 5640 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5641 * is called, and so on_each_cpu() between them includes the CPU that 5642 * is being onlined. As a result, hardware_enable_nolock() may get 5643 * invoked before kvm_online_cpu(), which also enables hardware if the 5644 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5645 * enable hardware multiple times. 5646 */ 5647 cpus_read_lock(); 5648 mutex_lock(&kvm_lock); 5649 5650 r = 0; 5651 5652 kvm_usage_count++; 5653 if (kvm_usage_count == 1) { 5654 on_each_cpu(hardware_enable_nolock, &failed, 1); 5655 5656 if (atomic_read(&failed)) { 5657 hardware_disable_all_nolock(); 5658 r = -EBUSY; 5659 } 5660 } 5661 5662 mutex_unlock(&kvm_lock); 5663 cpus_read_unlock(); 5664 5665 return r; 5666 } 5667 5668 static void kvm_shutdown(void) 5669 { 5670 /* 5671 * Disable hardware virtualization and set kvm_rebooting to indicate 5672 * that KVM has asynchronously disabled hardware virtualization, i.e. 5673 * that relevant errors and exceptions aren't entirely unexpected. 5674 * Some flavors of hardware virtualization need to be disabled before 5675 * transferring control to firmware (to perform shutdown/reboot), e.g. 5676 * on x86, virtualization can block INIT interrupts, which are used by 5677 * firmware to pull APs back under firmware control. Note, this path 5678 * is used for both shutdown and reboot scenarios, i.e. neither name is 5679 * 100% comprehensive. 5680 */ 5681 pr_info("kvm: exiting hardware virtualization\n"); 5682 kvm_rebooting = true; 5683 on_each_cpu(hardware_disable_nolock, NULL, 1); 5684 } 5685 5686 static int kvm_suspend(void) 5687 { 5688 /* 5689 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5690 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5691 * is stable. Assert that kvm_lock is not held to ensure the system 5692 * isn't suspended while KVM is enabling hardware. Hardware enabling 5693 * can be preempted, but the task cannot be frozen until it has dropped 5694 * all locks (userspace tasks are frozen via a fake signal). 5695 */ 5696 lockdep_assert_not_held(&kvm_lock); 5697 lockdep_assert_irqs_disabled(); 5698 5699 if (kvm_usage_count) 5700 hardware_disable_nolock(NULL); 5701 return 0; 5702 } 5703 5704 static void kvm_resume(void) 5705 { 5706 lockdep_assert_not_held(&kvm_lock); 5707 lockdep_assert_irqs_disabled(); 5708 5709 if (kvm_usage_count) 5710 WARN_ON_ONCE(__hardware_enable_nolock()); 5711 } 5712 5713 static struct syscore_ops kvm_syscore_ops = { 5714 .suspend = kvm_suspend, 5715 .resume = kvm_resume, 5716 .shutdown = kvm_shutdown, 5717 }; 5718 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5719 static int hardware_enable_all(void) 5720 { 5721 return 0; 5722 } 5723 5724 static void hardware_disable_all(void) 5725 { 5726 5727 } 5728 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5729 5730 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5731 { 5732 if (dev->ops->destructor) 5733 dev->ops->destructor(dev); 5734 } 5735 5736 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5737 { 5738 int i; 5739 5740 for (i = 0; i < bus->dev_count; i++) { 5741 struct kvm_io_device *pos = bus->range[i].dev; 5742 5743 kvm_iodevice_destructor(pos); 5744 } 5745 kfree(bus); 5746 } 5747 5748 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5749 const struct kvm_io_range *r2) 5750 { 5751 gpa_t addr1 = r1->addr; 5752 gpa_t addr2 = r2->addr; 5753 5754 if (addr1 < addr2) 5755 return -1; 5756 5757 /* If r2->len == 0, match the exact address. If r2->len != 0, 5758 * accept any overlapping write. Any order is acceptable for 5759 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5760 * we process all of them. 5761 */ 5762 if (r2->len) { 5763 addr1 += r1->len; 5764 addr2 += r2->len; 5765 } 5766 5767 if (addr1 > addr2) 5768 return 1; 5769 5770 return 0; 5771 } 5772 5773 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5774 { 5775 return kvm_io_bus_cmp(p1, p2); 5776 } 5777 5778 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5779 gpa_t addr, int len) 5780 { 5781 struct kvm_io_range *range, key; 5782 int off; 5783 5784 key = (struct kvm_io_range) { 5785 .addr = addr, 5786 .len = len, 5787 }; 5788 5789 range = bsearch(&key, bus->range, bus->dev_count, 5790 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5791 if (range == NULL) 5792 return -ENOENT; 5793 5794 off = range - bus->range; 5795 5796 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5797 off--; 5798 5799 return off; 5800 } 5801 5802 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5803 struct kvm_io_range *range, const void *val) 5804 { 5805 int idx; 5806 5807 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5808 if (idx < 0) 5809 return -EOPNOTSUPP; 5810 5811 while (idx < bus->dev_count && 5812 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5813 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5814 range->len, val)) 5815 return idx; 5816 idx++; 5817 } 5818 5819 return -EOPNOTSUPP; 5820 } 5821 5822 /* kvm_io_bus_write - called under kvm->slots_lock */ 5823 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5824 int len, const void *val) 5825 { 5826 struct kvm_io_bus *bus; 5827 struct kvm_io_range range; 5828 int r; 5829 5830 range = (struct kvm_io_range) { 5831 .addr = addr, 5832 .len = len, 5833 }; 5834 5835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5836 if (!bus) 5837 return -ENOMEM; 5838 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5839 return r < 0 ? r : 0; 5840 } 5841 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5842 5843 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5844 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5845 gpa_t addr, int len, const void *val, long cookie) 5846 { 5847 struct kvm_io_bus *bus; 5848 struct kvm_io_range range; 5849 5850 range = (struct kvm_io_range) { 5851 .addr = addr, 5852 .len = len, 5853 }; 5854 5855 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5856 if (!bus) 5857 return -ENOMEM; 5858 5859 /* First try the device referenced by cookie. */ 5860 if ((cookie >= 0) && (cookie < bus->dev_count) && 5861 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5862 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5863 val)) 5864 return cookie; 5865 5866 /* 5867 * cookie contained garbage; fall back to search and return the 5868 * correct cookie value. 5869 */ 5870 return __kvm_io_bus_write(vcpu, bus, &range, val); 5871 } 5872 5873 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5874 struct kvm_io_range *range, void *val) 5875 { 5876 int idx; 5877 5878 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5879 if (idx < 0) 5880 return -EOPNOTSUPP; 5881 5882 while (idx < bus->dev_count && 5883 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5884 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5885 range->len, val)) 5886 return idx; 5887 idx++; 5888 } 5889 5890 return -EOPNOTSUPP; 5891 } 5892 5893 /* kvm_io_bus_read - called under kvm->slots_lock */ 5894 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5895 int len, void *val) 5896 { 5897 struct kvm_io_bus *bus; 5898 struct kvm_io_range range; 5899 int r; 5900 5901 range = (struct kvm_io_range) { 5902 .addr = addr, 5903 .len = len, 5904 }; 5905 5906 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5907 if (!bus) 5908 return -ENOMEM; 5909 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5910 return r < 0 ? r : 0; 5911 } 5912 5913 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5914 int len, struct kvm_io_device *dev) 5915 { 5916 int i; 5917 struct kvm_io_bus *new_bus, *bus; 5918 struct kvm_io_range range; 5919 5920 lockdep_assert_held(&kvm->slots_lock); 5921 5922 bus = kvm_get_bus(kvm, bus_idx); 5923 if (!bus) 5924 return -ENOMEM; 5925 5926 /* exclude ioeventfd which is limited by maximum fd */ 5927 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5928 return -ENOSPC; 5929 5930 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5931 GFP_KERNEL_ACCOUNT); 5932 if (!new_bus) 5933 return -ENOMEM; 5934 5935 range = (struct kvm_io_range) { 5936 .addr = addr, 5937 .len = len, 5938 .dev = dev, 5939 }; 5940 5941 for (i = 0; i < bus->dev_count; i++) 5942 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5943 break; 5944 5945 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5946 new_bus->dev_count++; 5947 new_bus->range[i] = range; 5948 memcpy(new_bus->range + i + 1, bus->range + i, 5949 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5950 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5951 synchronize_srcu_expedited(&kvm->srcu); 5952 kfree(bus); 5953 5954 return 0; 5955 } 5956 5957 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5958 struct kvm_io_device *dev) 5959 { 5960 int i; 5961 struct kvm_io_bus *new_bus, *bus; 5962 5963 lockdep_assert_held(&kvm->slots_lock); 5964 5965 bus = kvm_get_bus(kvm, bus_idx); 5966 if (!bus) 5967 return 0; 5968 5969 for (i = 0; i < bus->dev_count; i++) { 5970 if (bus->range[i].dev == dev) { 5971 break; 5972 } 5973 } 5974 5975 if (i == bus->dev_count) 5976 return 0; 5977 5978 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5979 GFP_KERNEL_ACCOUNT); 5980 if (new_bus) { 5981 memcpy(new_bus, bus, struct_size(bus, range, i)); 5982 new_bus->dev_count--; 5983 memcpy(new_bus->range + i, bus->range + i + 1, 5984 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5985 } 5986 5987 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5988 synchronize_srcu_expedited(&kvm->srcu); 5989 5990 /* 5991 * If NULL bus is installed, destroy the old bus, including all the 5992 * attached devices. Otherwise, destroy the caller's device only. 5993 */ 5994 if (!new_bus) { 5995 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5996 kvm_io_bus_destroy(bus); 5997 return -ENOMEM; 5998 } 5999 6000 kvm_iodevice_destructor(dev); 6001 kfree(bus); 6002 return 0; 6003 } 6004 6005 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6006 gpa_t addr) 6007 { 6008 struct kvm_io_bus *bus; 6009 int dev_idx, srcu_idx; 6010 struct kvm_io_device *iodev = NULL; 6011 6012 srcu_idx = srcu_read_lock(&kvm->srcu); 6013 6014 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6015 if (!bus) 6016 goto out_unlock; 6017 6018 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6019 if (dev_idx < 0) 6020 goto out_unlock; 6021 6022 iodev = bus->range[dev_idx].dev; 6023 6024 out_unlock: 6025 srcu_read_unlock(&kvm->srcu, srcu_idx); 6026 6027 return iodev; 6028 } 6029 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6030 6031 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6032 int (*get)(void *, u64 *), int (*set)(void *, u64), 6033 const char *fmt) 6034 { 6035 int ret; 6036 struct kvm_stat_data *stat_data = inode->i_private; 6037 6038 /* 6039 * The debugfs files are a reference to the kvm struct which 6040 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6041 * avoids the race between open and the removal of the debugfs directory. 6042 */ 6043 if (!kvm_get_kvm_safe(stat_data->kvm)) 6044 return -ENOENT; 6045 6046 ret = simple_attr_open(inode, file, get, 6047 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6048 ? set : NULL, fmt); 6049 if (ret) 6050 kvm_put_kvm(stat_data->kvm); 6051 6052 return ret; 6053 } 6054 6055 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6056 { 6057 struct kvm_stat_data *stat_data = inode->i_private; 6058 6059 simple_attr_release(inode, file); 6060 kvm_put_kvm(stat_data->kvm); 6061 6062 return 0; 6063 } 6064 6065 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6066 { 6067 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6068 6069 return 0; 6070 } 6071 6072 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6073 { 6074 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6075 6076 return 0; 6077 } 6078 6079 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6080 { 6081 unsigned long i; 6082 struct kvm_vcpu *vcpu; 6083 6084 *val = 0; 6085 6086 kvm_for_each_vcpu(i, vcpu, kvm) 6087 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6088 6089 return 0; 6090 } 6091 6092 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6093 { 6094 unsigned long i; 6095 struct kvm_vcpu *vcpu; 6096 6097 kvm_for_each_vcpu(i, vcpu, kvm) 6098 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6099 6100 return 0; 6101 } 6102 6103 static int kvm_stat_data_get(void *data, u64 *val) 6104 { 6105 int r = -EFAULT; 6106 struct kvm_stat_data *stat_data = data; 6107 6108 switch (stat_data->kind) { 6109 case KVM_STAT_VM: 6110 r = kvm_get_stat_per_vm(stat_data->kvm, 6111 stat_data->desc->desc.offset, val); 6112 break; 6113 case KVM_STAT_VCPU: 6114 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6115 stat_data->desc->desc.offset, val); 6116 break; 6117 } 6118 6119 return r; 6120 } 6121 6122 static int kvm_stat_data_clear(void *data, u64 val) 6123 { 6124 int r = -EFAULT; 6125 struct kvm_stat_data *stat_data = data; 6126 6127 if (val) 6128 return -EINVAL; 6129 6130 switch (stat_data->kind) { 6131 case KVM_STAT_VM: 6132 r = kvm_clear_stat_per_vm(stat_data->kvm, 6133 stat_data->desc->desc.offset); 6134 break; 6135 case KVM_STAT_VCPU: 6136 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6137 stat_data->desc->desc.offset); 6138 break; 6139 } 6140 6141 return r; 6142 } 6143 6144 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6145 { 6146 __simple_attr_check_format("%llu\n", 0ull); 6147 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6148 kvm_stat_data_clear, "%llu\n"); 6149 } 6150 6151 static const struct file_operations stat_fops_per_vm = { 6152 .owner = THIS_MODULE, 6153 .open = kvm_stat_data_open, 6154 .release = kvm_debugfs_release, 6155 .read = simple_attr_read, 6156 .write = simple_attr_write, 6157 .llseek = no_llseek, 6158 }; 6159 6160 static int vm_stat_get(void *_offset, u64 *val) 6161 { 6162 unsigned offset = (long)_offset; 6163 struct kvm *kvm; 6164 u64 tmp_val; 6165 6166 *val = 0; 6167 mutex_lock(&kvm_lock); 6168 list_for_each_entry(kvm, &vm_list, vm_list) { 6169 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6170 *val += tmp_val; 6171 } 6172 mutex_unlock(&kvm_lock); 6173 return 0; 6174 } 6175 6176 static int vm_stat_clear(void *_offset, u64 val) 6177 { 6178 unsigned offset = (long)_offset; 6179 struct kvm *kvm; 6180 6181 if (val) 6182 return -EINVAL; 6183 6184 mutex_lock(&kvm_lock); 6185 list_for_each_entry(kvm, &vm_list, vm_list) { 6186 kvm_clear_stat_per_vm(kvm, offset); 6187 } 6188 mutex_unlock(&kvm_lock); 6189 6190 return 0; 6191 } 6192 6193 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6195 6196 static int vcpu_stat_get(void *_offset, u64 *val) 6197 { 6198 unsigned offset = (long)_offset; 6199 struct kvm *kvm; 6200 u64 tmp_val; 6201 6202 *val = 0; 6203 mutex_lock(&kvm_lock); 6204 list_for_each_entry(kvm, &vm_list, vm_list) { 6205 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6206 *val += tmp_val; 6207 } 6208 mutex_unlock(&kvm_lock); 6209 return 0; 6210 } 6211 6212 static int vcpu_stat_clear(void *_offset, u64 val) 6213 { 6214 unsigned offset = (long)_offset; 6215 struct kvm *kvm; 6216 6217 if (val) 6218 return -EINVAL; 6219 6220 mutex_lock(&kvm_lock); 6221 list_for_each_entry(kvm, &vm_list, vm_list) { 6222 kvm_clear_stat_per_vcpu(kvm, offset); 6223 } 6224 mutex_unlock(&kvm_lock); 6225 6226 return 0; 6227 } 6228 6229 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6230 "%llu\n"); 6231 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6232 6233 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6234 { 6235 struct kobj_uevent_env *env; 6236 unsigned long long created, active; 6237 6238 if (!kvm_dev.this_device || !kvm) 6239 return; 6240 6241 mutex_lock(&kvm_lock); 6242 if (type == KVM_EVENT_CREATE_VM) { 6243 kvm_createvm_count++; 6244 kvm_active_vms++; 6245 } else if (type == KVM_EVENT_DESTROY_VM) { 6246 kvm_active_vms--; 6247 } 6248 created = kvm_createvm_count; 6249 active = kvm_active_vms; 6250 mutex_unlock(&kvm_lock); 6251 6252 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6253 if (!env) 6254 return; 6255 6256 add_uevent_var(env, "CREATED=%llu", created); 6257 add_uevent_var(env, "COUNT=%llu", active); 6258 6259 if (type == KVM_EVENT_CREATE_VM) { 6260 add_uevent_var(env, "EVENT=create"); 6261 kvm->userspace_pid = task_pid_nr(current); 6262 } else if (type == KVM_EVENT_DESTROY_VM) { 6263 add_uevent_var(env, "EVENT=destroy"); 6264 } 6265 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6266 6267 if (!IS_ERR(kvm->debugfs_dentry)) { 6268 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6269 6270 if (p) { 6271 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6272 if (!IS_ERR(tmp)) 6273 add_uevent_var(env, "STATS_PATH=%s", tmp); 6274 kfree(p); 6275 } 6276 } 6277 /* no need for checks, since we are adding at most only 5 keys */ 6278 env->envp[env->envp_idx++] = NULL; 6279 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6280 kfree(env); 6281 } 6282 6283 static void kvm_init_debug(void) 6284 { 6285 const struct file_operations *fops; 6286 const struct _kvm_stats_desc *pdesc; 6287 int i; 6288 6289 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6290 6291 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6292 pdesc = &kvm_vm_stats_desc[i]; 6293 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6294 fops = &vm_stat_fops; 6295 else 6296 fops = &vm_stat_readonly_fops; 6297 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6298 kvm_debugfs_dir, 6299 (void *)(long)pdesc->desc.offset, fops); 6300 } 6301 6302 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6303 pdesc = &kvm_vcpu_stats_desc[i]; 6304 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6305 fops = &vcpu_stat_fops; 6306 else 6307 fops = &vcpu_stat_readonly_fops; 6308 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6309 kvm_debugfs_dir, 6310 (void *)(long)pdesc->desc.offset, fops); 6311 } 6312 } 6313 6314 static inline 6315 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6316 { 6317 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6318 } 6319 6320 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6321 { 6322 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6323 6324 WRITE_ONCE(vcpu->preempted, false); 6325 WRITE_ONCE(vcpu->ready, false); 6326 6327 __this_cpu_write(kvm_running_vcpu, vcpu); 6328 kvm_arch_sched_in(vcpu, cpu); 6329 kvm_arch_vcpu_load(vcpu, cpu); 6330 } 6331 6332 static void kvm_sched_out(struct preempt_notifier *pn, 6333 struct task_struct *next) 6334 { 6335 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6336 6337 if (current->on_rq) { 6338 WRITE_ONCE(vcpu->preempted, true); 6339 WRITE_ONCE(vcpu->ready, true); 6340 } 6341 kvm_arch_vcpu_put(vcpu); 6342 __this_cpu_write(kvm_running_vcpu, NULL); 6343 } 6344 6345 /** 6346 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6347 * 6348 * We can disable preemption locally around accessing the per-CPU variable, 6349 * and use the resolved vcpu pointer after enabling preemption again, 6350 * because even if the current thread is migrated to another CPU, reading 6351 * the per-CPU value later will give us the same value as we update the 6352 * per-CPU variable in the preempt notifier handlers. 6353 */ 6354 struct kvm_vcpu *kvm_get_running_vcpu(void) 6355 { 6356 struct kvm_vcpu *vcpu; 6357 6358 preempt_disable(); 6359 vcpu = __this_cpu_read(kvm_running_vcpu); 6360 preempt_enable(); 6361 6362 return vcpu; 6363 } 6364 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6365 6366 /** 6367 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6368 */ 6369 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6370 { 6371 return &kvm_running_vcpu; 6372 } 6373 6374 #ifdef CONFIG_GUEST_PERF_EVENTS 6375 static unsigned int kvm_guest_state(void) 6376 { 6377 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6378 unsigned int state; 6379 6380 if (!kvm_arch_pmi_in_guest(vcpu)) 6381 return 0; 6382 6383 state = PERF_GUEST_ACTIVE; 6384 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6385 state |= PERF_GUEST_USER; 6386 6387 return state; 6388 } 6389 6390 static unsigned long kvm_guest_get_ip(void) 6391 { 6392 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6393 6394 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6395 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6396 return 0; 6397 6398 return kvm_arch_vcpu_get_ip(vcpu); 6399 } 6400 6401 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6402 .state = kvm_guest_state, 6403 .get_ip = kvm_guest_get_ip, 6404 .handle_intel_pt_intr = NULL, 6405 }; 6406 6407 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6408 { 6409 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6410 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6411 } 6412 void kvm_unregister_perf_callbacks(void) 6413 { 6414 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6415 } 6416 #endif 6417 6418 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6419 { 6420 int r; 6421 int cpu; 6422 6423 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6424 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6425 kvm_online_cpu, kvm_offline_cpu); 6426 if (r) 6427 return r; 6428 6429 register_syscore_ops(&kvm_syscore_ops); 6430 #endif 6431 6432 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6433 if (!vcpu_align) 6434 vcpu_align = __alignof__(struct kvm_vcpu); 6435 kvm_vcpu_cache = 6436 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6437 SLAB_ACCOUNT, 6438 offsetof(struct kvm_vcpu, arch), 6439 offsetofend(struct kvm_vcpu, stats_id) 6440 - offsetof(struct kvm_vcpu, arch), 6441 NULL); 6442 if (!kvm_vcpu_cache) { 6443 r = -ENOMEM; 6444 goto err_vcpu_cache; 6445 } 6446 6447 for_each_possible_cpu(cpu) { 6448 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6449 GFP_KERNEL, cpu_to_node(cpu))) { 6450 r = -ENOMEM; 6451 goto err_cpu_kick_mask; 6452 } 6453 } 6454 6455 r = kvm_irqfd_init(); 6456 if (r) 6457 goto err_irqfd; 6458 6459 r = kvm_async_pf_init(); 6460 if (r) 6461 goto err_async_pf; 6462 6463 kvm_chardev_ops.owner = module; 6464 kvm_vm_fops.owner = module; 6465 kvm_vcpu_fops.owner = module; 6466 kvm_device_fops.owner = module; 6467 6468 kvm_preempt_ops.sched_in = kvm_sched_in; 6469 kvm_preempt_ops.sched_out = kvm_sched_out; 6470 6471 kvm_init_debug(); 6472 6473 r = kvm_vfio_ops_init(); 6474 if (WARN_ON_ONCE(r)) 6475 goto err_vfio; 6476 6477 kvm_gmem_init(module); 6478 6479 /* 6480 * Registration _must_ be the very last thing done, as this exposes 6481 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6482 */ 6483 r = misc_register(&kvm_dev); 6484 if (r) { 6485 pr_err("kvm: misc device register failed\n"); 6486 goto err_register; 6487 } 6488 6489 return 0; 6490 6491 err_register: 6492 kvm_vfio_ops_exit(); 6493 err_vfio: 6494 kvm_async_pf_deinit(); 6495 err_async_pf: 6496 kvm_irqfd_exit(); 6497 err_irqfd: 6498 err_cpu_kick_mask: 6499 for_each_possible_cpu(cpu) 6500 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6501 kmem_cache_destroy(kvm_vcpu_cache); 6502 err_vcpu_cache: 6503 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6504 unregister_syscore_ops(&kvm_syscore_ops); 6505 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6506 #endif 6507 return r; 6508 } 6509 EXPORT_SYMBOL_GPL(kvm_init); 6510 6511 void kvm_exit(void) 6512 { 6513 int cpu; 6514 6515 /* 6516 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6517 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6518 * to KVM while the module is being stopped. 6519 */ 6520 misc_deregister(&kvm_dev); 6521 6522 debugfs_remove_recursive(kvm_debugfs_dir); 6523 for_each_possible_cpu(cpu) 6524 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6525 kmem_cache_destroy(kvm_vcpu_cache); 6526 kvm_vfio_ops_exit(); 6527 kvm_async_pf_deinit(); 6528 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6529 unregister_syscore_ops(&kvm_syscore_ops); 6530 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6531 #endif 6532 kvm_irqfd_exit(); 6533 } 6534 EXPORT_SYMBOL_GPL(kvm_exit); 6535 6536 struct kvm_vm_worker_thread_context { 6537 struct kvm *kvm; 6538 struct task_struct *parent; 6539 struct completion init_done; 6540 kvm_vm_thread_fn_t thread_fn; 6541 uintptr_t data; 6542 int err; 6543 }; 6544 6545 static int kvm_vm_worker_thread(void *context) 6546 { 6547 /* 6548 * The init_context is allocated on the stack of the parent thread, so 6549 * we have to locally copy anything that is needed beyond initialization 6550 */ 6551 struct kvm_vm_worker_thread_context *init_context = context; 6552 struct task_struct *parent; 6553 struct kvm *kvm = init_context->kvm; 6554 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6555 uintptr_t data = init_context->data; 6556 int err; 6557 6558 err = kthread_park(current); 6559 /* kthread_park(current) is never supposed to return an error */ 6560 WARN_ON(err != 0); 6561 if (err) 6562 goto init_complete; 6563 6564 err = cgroup_attach_task_all(init_context->parent, current); 6565 if (err) { 6566 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6567 __func__, err); 6568 goto init_complete; 6569 } 6570 6571 set_user_nice(current, task_nice(init_context->parent)); 6572 6573 init_complete: 6574 init_context->err = err; 6575 complete(&init_context->init_done); 6576 init_context = NULL; 6577 6578 if (err) 6579 goto out; 6580 6581 /* Wait to be woken up by the spawner before proceeding. */ 6582 kthread_parkme(); 6583 6584 if (!kthread_should_stop()) 6585 err = thread_fn(kvm, data); 6586 6587 out: 6588 /* 6589 * Move kthread back to its original cgroup to prevent it lingering in 6590 * the cgroup of the VM process, after the latter finishes its 6591 * execution. 6592 * 6593 * kthread_stop() waits on the 'exited' completion condition which is 6594 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6595 * kthread is removed from the cgroup in the cgroup_exit() which is 6596 * called after the exit_mm(). This causes the kthread_stop() to return 6597 * before the kthread actually quits the cgroup. 6598 */ 6599 rcu_read_lock(); 6600 parent = rcu_dereference(current->real_parent); 6601 get_task_struct(parent); 6602 rcu_read_unlock(); 6603 cgroup_attach_task_all(parent, current); 6604 put_task_struct(parent); 6605 6606 return err; 6607 } 6608 6609 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6610 uintptr_t data, const char *name, 6611 struct task_struct **thread_ptr) 6612 { 6613 struct kvm_vm_worker_thread_context init_context = {}; 6614 struct task_struct *thread; 6615 6616 *thread_ptr = NULL; 6617 init_context.kvm = kvm; 6618 init_context.parent = current; 6619 init_context.thread_fn = thread_fn; 6620 init_context.data = data; 6621 init_completion(&init_context.init_done); 6622 6623 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6624 "%s-%d", name, task_pid_nr(current)); 6625 if (IS_ERR(thread)) 6626 return PTR_ERR(thread); 6627 6628 /* kthread_run is never supposed to return NULL */ 6629 WARN_ON(thread == NULL); 6630 6631 wait_for_completion(&init_context.init_done); 6632 6633 if (!init_context.err) 6634 *thread_ptr = thread; 6635 6636 return init_context.err; 6637 } 6638