1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static struct file_operations kvm_chardev_ops; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 #define KVM_EVENT_CREATE_VM 0 150 #define KVM_EVENT_DESTROY_VM 1 151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 152 static unsigned long long kvm_createvm_count; 153 static unsigned long long kvm_active_vms; 154 155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 156 157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 158 unsigned long start, unsigned long end) 159 { 160 } 161 162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 163 { 164 } 165 166 bool kvm_is_zone_device_page(struct page *page) 167 { 168 /* 169 * The metadata used by is_zone_device_page() to determine whether or 170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 171 * the device has been pinned, e.g. by get_user_pages(). WARN if the 172 * page_count() is zero to help detect bad usage of this helper. 173 */ 174 if (WARN_ON_ONCE(!page_count(page))) 175 return false; 176 177 return is_zone_device_page(page); 178 } 179 180 /* 181 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 182 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 183 * is likely incomplete, it has been compiled purely through people wanting to 184 * back guest with a certain type of memory and encountering issues. 185 */ 186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 187 { 188 struct page *page; 189 190 if (!pfn_valid(pfn)) 191 return NULL; 192 193 page = pfn_to_page(pfn); 194 if (!PageReserved(page)) 195 return page; 196 197 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 198 if (is_zero_pfn(pfn)) 199 return page; 200 201 /* 202 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 203 * perspective they are "normal" pages, albeit with slightly different 204 * usage rules. 205 */ 206 if (kvm_is_zone_device_page(page)) 207 return page; 208 209 return NULL; 210 } 211 212 /* 213 * Switches to specified vcpu, until a matching vcpu_put() 214 */ 215 void vcpu_load(struct kvm_vcpu *vcpu) 216 { 217 int cpu = get_cpu(); 218 219 __this_cpu_write(kvm_running_vcpu, vcpu); 220 preempt_notifier_register(&vcpu->preempt_notifier); 221 kvm_arch_vcpu_load(vcpu, cpu); 222 put_cpu(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_load); 225 226 void vcpu_put(struct kvm_vcpu *vcpu) 227 { 228 preempt_disable(); 229 kvm_arch_vcpu_put(vcpu); 230 preempt_notifier_unregister(&vcpu->preempt_notifier); 231 __this_cpu_write(kvm_running_vcpu, NULL); 232 preempt_enable(); 233 } 234 EXPORT_SYMBOL_GPL(vcpu_put); 235 236 /* TODO: merge with kvm_arch_vcpu_should_kick */ 237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 238 { 239 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 240 241 /* 242 * We need to wait for the VCPU to reenable interrupts and get out of 243 * READING_SHADOW_PAGE_TABLES mode. 244 */ 245 if (req & KVM_REQUEST_WAIT) 246 return mode != OUTSIDE_GUEST_MODE; 247 248 /* 249 * Need to kick a running VCPU, but otherwise there is nothing to do. 250 */ 251 return mode == IN_GUEST_MODE; 252 } 253 254 static void ack_kick(void *_completed) 255 { 256 } 257 258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 259 { 260 if (cpumask_empty(cpus)) 261 return false; 262 263 smp_call_function_many(cpus, ack_kick, NULL, wait); 264 return true; 265 } 266 267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 268 struct cpumask *tmp, int current_cpu) 269 { 270 int cpu; 271 272 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 273 __kvm_make_request(req, vcpu); 274 275 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 276 return; 277 278 /* 279 * Note, the vCPU could get migrated to a different pCPU at any point 280 * after kvm_request_needs_ipi(), which could result in sending an IPI 281 * to the previous pCPU. But, that's OK because the purpose of the IPI 282 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 283 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 284 * after this point is also OK, as the requirement is only that KVM wait 285 * for vCPUs that were reading SPTEs _before_ any changes were 286 * finalized. See kvm_vcpu_kick() for more details on handling requests. 287 */ 288 if (kvm_request_needs_ipi(vcpu, req)) { 289 cpu = READ_ONCE(vcpu->cpu); 290 if (cpu != -1 && cpu != current_cpu) 291 __cpumask_set_cpu(cpu, tmp); 292 } 293 } 294 295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 296 unsigned long *vcpu_bitmap) 297 { 298 struct kvm_vcpu *vcpu; 299 struct cpumask *cpus; 300 int i, me; 301 bool called; 302 303 me = get_cpu(); 304 305 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 306 cpumask_clear(cpus); 307 308 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 309 vcpu = kvm_get_vcpu(kvm, i); 310 if (!vcpu) 311 continue; 312 kvm_make_vcpu_request(vcpu, req, cpus, me); 313 } 314 315 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 316 put_cpu(); 317 318 return called; 319 } 320 321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 322 struct kvm_vcpu *except) 323 { 324 struct kvm_vcpu *vcpu; 325 struct cpumask *cpus; 326 unsigned long i; 327 bool called; 328 int me; 329 330 me = get_cpu(); 331 332 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 333 cpumask_clear(cpus); 334 335 kvm_for_each_vcpu(i, vcpu, kvm) { 336 if (vcpu == except) 337 continue; 338 kvm_make_vcpu_request(vcpu, req, cpus, me); 339 } 340 341 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 342 put_cpu(); 343 344 return called; 345 } 346 347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 348 { 349 return kvm_make_all_cpus_request_except(kvm, req, NULL); 350 } 351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 352 353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 354 void kvm_flush_remote_tlbs(struct kvm *kvm) 355 { 356 ++kvm->stat.generic.remote_tlb_flush_requests; 357 358 /* 359 * We want to publish modifications to the page tables before reading 360 * mode. Pairs with a memory barrier in arch-specific code. 361 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 362 * and smp_mb in walk_shadow_page_lockless_begin/end. 363 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 364 * 365 * There is already an smp_mb__after_atomic() before 366 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 367 * barrier here. 368 */ 369 if (!kvm_arch_flush_remote_tlb(kvm) 370 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 371 ++kvm->stat.generic.remote_tlb_flush; 372 } 373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 374 #endif 375 376 static void kvm_flush_shadow_all(struct kvm *kvm) 377 { 378 kvm_arch_flush_shadow_all(kvm); 379 kvm_arch_guest_memory_reclaimed(kvm); 380 } 381 382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 384 gfp_t gfp_flags) 385 { 386 gfp_flags |= mc->gfp_zero; 387 388 if (mc->kmem_cache) 389 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 390 else 391 return (void *)__get_free_page(gfp_flags); 392 } 393 394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 395 { 396 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 397 void *obj; 398 399 if (mc->nobjs >= min) 400 return 0; 401 402 if (unlikely(!mc->objects)) { 403 if (WARN_ON_ONCE(!capacity)) 404 return -EIO; 405 406 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 407 if (!mc->objects) 408 return -ENOMEM; 409 410 mc->capacity = capacity; 411 } 412 413 /* It is illegal to request a different capacity across topups. */ 414 if (WARN_ON_ONCE(mc->capacity != capacity)) 415 return -EIO; 416 417 while (mc->nobjs < mc->capacity) { 418 obj = mmu_memory_cache_alloc_obj(mc, gfp); 419 if (!obj) 420 return mc->nobjs >= min ? 0 : -ENOMEM; 421 mc->objects[mc->nobjs++] = obj; 422 } 423 return 0; 424 } 425 426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 427 { 428 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 429 } 430 431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 432 { 433 return mc->nobjs; 434 } 435 436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 437 { 438 while (mc->nobjs) { 439 if (mc->kmem_cache) 440 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 441 else 442 free_page((unsigned long)mc->objects[--mc->nobjs]); 443 } 444 445 kvfree(mc->objects); 446 447 mc->objects = NULL; 448 mc->capacity = 0; 449 } 450 451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 452 { 453 void *p; 454 455 if (WARN_ON(!mc->nobjs)) 456 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 457 else 458 p = mc->objects[--mc->nobjs]; 459 BUG_ON(!p); 460 return p; 461 } 462 #endif 463 464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 465 { 466 mutex_init(&vcpu->mutex); 467 vcpu->cpu = -1; 468 vcpu->kvm = kvm; 469 vcpu->vcpu_id = id; 470 vcpu->pid = NULL; 471 #ifndef __KVM_HAVE_ARCH_WQP 472 rcuwait_init(&vcpu->wait); 473 #endif 474 kvm_async_pf_vcpu_init(vcpu); 475 476 kvm_vcpu_set_in_spin_loop(vcpu, false); 477 kvm_vcpu_set_dy_eligible(vcpu, false); 478 vcpu->preempted = false; 479 vcpu->ready = false; 480 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 481 vcpu->last_used_slot = NULL; 482 483 /* Fill the stats id string for the vcpu */ 484 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 485 task_pid_nr(current), id); 486 } 487 488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 489 { 490 kvm_arch_vcpu_destroy(vcpu); 491 kvm_dirty_ring_free(&vcpu->dirty_ring); 492 493 /* 494 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 495 * the vcpu->pid pointer, and at destruction time all file descriptors 496 * are already gone. 497 */ 498 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 499 500 free_page((unsigned long)vcpu->run); 501 kmem_cache_free(kvm_vcpu_cache, vcpu); 502 } 503 504 void kvm_destroy_vcpus(struct kvm *kvm) 505 { 506 unsigned long i; 507 struct kvm_vcpu *vcpu; 508 509 kvm_for_each_vcpu(i, vcpu, kvm) { 510 kvm_vcpu_destroy(vcpu); 511 xa_erase(&kvm->vcpu_array, i); 512 } 513 514 atomic_set(&kvm->online_vcpus, 0); 515 } 516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 517 518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 520 { 521 return container_of(mn, struct kvm, mmu_notifier); 522 } 523 524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 525 struct mm_struct *mm, 526 unsigned long start, unsigned long end) 527 { 528 struct kvm *kvm = mmu_notifier_to_kvm(mn); 529 int idx; 530 531 idx = srcu_read_lock(&kvm->srcu); 532 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 533 srcu_read_unlock(&kvm->srcu, idx); 534 } 535 536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 537 538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 539 unsigned long end); 540 541 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 542 543 struct kvm_hva_range { 544 unsigned long start; 545 unsigned long end; 546 pte_t pte; 547 hva_handler_t handler; 548 on_lock_fn_t on_lock; 549 on_unlock_fn_t on_unlock; 550 bool flush_on_ret; 551 bool may_block; 552 }; 553 554 /* 555 * Use a dedicated stub instead of NULL to indicate that there is no callback 556 * function/handler. The compiler technically can't guarantee that a real 557 * function will have a non-zero address, and so it will generate code to 558 * check for !NULL, whereas comparing against a stub will be elided at compile 559 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 560 */ 561 static void kvm_null_fn(void) 562 { 563 564 } 565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 566 567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 569 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 570 node; \ 571 node = interval_tree_iter_next(node, start, last)) \ 572 573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 574 const struct kvm_hva_range *range) 575 { 576 bool ret = false, locked = false; 577 struct kvm_gfn_range gfn_range; 578 struct kvm_memory_slot *slot; 579 struct kvm_memslots *slots; 580 int i, idx; 581 582 if (WARN_ON_ONCE(range->end <= range->start)) 583 return 0; 584 585 /* A null handler is allowed if and only if on_lock() is provided. */ 586 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 587 IS_KVM_NULL_FN(range->handler))) 588 return 0; 589 590 idx = srcu_read_lock(&kvm->srcu); 591 592 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 593 struct interval_tree_node *node; 594 595 slots = __kvm_memslots(kvm, i); 596 kvm_for_each_memslot_in_hva_range(node, slots, 597 range->start, range->end - 1) { 598 unsigned long hva_start, hva_end; 599 600 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 601 hva_start = max(range->start, slot->userspace_addr); 602 hva_end = min(range->end, slot->userspace_addr + 603 (slot->npages << PAGE_SHIFT)); 604 605 /* 606 * To optimize for the likely case where the address 607 * range is covered by zero or one memslots, don't 608 * bother making these conditional (to avoid writes on 609 * the second or later invocation of the handler). 610 */ 611 gfn_range.pte = range->pte; 612 gfn_range.may_block = range->may_block; 613 614 /* 615 * {gfn(page) | page intersects with [hva_start, hva_end)} = 616 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 617 */ 618 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 619 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 620 gfn_range.slot = slot; 621 622 if (!locked) { 623 locked = true; 624 KVM_MMU_LOCK(kvm); 625 if (!IS_KVM_NULL_FN(range->on_lock)) 626 range->on_lock(kvm, range->start, range->end); 627 if (IS_KVM_NULL_FN(range->handler)) 628 break; 629 } 630 ret |= range->handler(kvm, &gfn_range); 631 } 632 } 633 634 if (range->flush_on_ret && ret) 635 kvm_flush_remote_tlbs(kvm); 636 637 if (locked) { 638 KVM_MMU_UNLOCK(kvm); 639 if (!IS_KVM_NULL_FN(range->on_unlock)) 640 range->on_unlock(kvm); 641 } 642 643 srcu_read_unlock(&kvm->srcu, idx); 644 645 /* The notifiers are averse to booleans. :-( */ 646 return (int)ret; 647 } 648 649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 650 unsigned long start, 651 unsigned long end, 652 pte_t pte, 653 hva_handler_t handler) 654 { 655 struct kvm *kvm = mmu_notifier_to_kvm(mn); 656 const struct kvm_hva_range range = { 657 .start = start, 658 .end = end, 659 .pte = pte, 660 .handler = handler, 661 .on_lock = (void *)kvm_null_fn, 662 .on_unlock = (void *)kvm_null_fn, 663 .flush_on_ret = true, 664 .may_block = false, 665 }; 666 667 return __kvm_handle_hva_range(kvm, &range); 668 } 669 670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 hva_handler_t handler) 674 { 675 struct kvm *kvm = mmu_notifier_to_kvm(mn); 676 const struct kvm_hva_range range = { 677 .start = start, 678 .end = end, 679 .pte = __pte(0), 680 .handler = handler, 681 .on_lock = (void *)kvm_null_fn, 682 .on_unlock = (void *)kvm_null_fn, 683 .flush_on_ret = false, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range); 688 } 689 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 690 struct mm_struct *mm, 691 unsigned long address, 692 pte_t pte) 693 { 694 struct kvm *kvm = mmu_notifier_to_kvm(mn); 695 696 trace_kvm_set_spte_hva(address); 697 698 /* 699 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 700 * If mmu_invalidate_in_progress is zero, then no in-progress 701 * invalidations, including this one, found a relevant memslot at 702 * start(); rechecking memslots here is unnecessary. Note, a false 703 * positive (count elevated by a different invalidation) is sub-optimal 704 * but functionally ok. 705 */ 706 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 707 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 708 return; 709 710 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 711 } 712 713 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 714 unsigned long end) 715 { 716 /* 717 * The count increase must become visible at unlock time as no 718 * spte can be established without taking the mmu_lock and 719 * count is also read inside the mmu_lock critical section. 720 */ 721 kvm->mmu_invalidate_in_progress++; 722 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 723 kvm->mmu_invalidate_range_start = start; 724 kvm->mmu_invalidate_range_end = end; 725 } else { 726 /* 727 * Fully tracking multiple concurrent ranges has diminishing 728 * returns. Keep things simple and just find the minimal range 729 * which includes the current and new ranges. As there won't be 730 * enough information to subtract a range after its invalidate 731 * completes, any ranges invalidated concurrently will 732 * accumulate and persist until all outstanding invalidates 733 * complete. 734 */ 735 kvm->mmu_invalidate_range_start = 736 min(kvm->mmu_invalidate_range_start, start); 737 kvm->mmu_invalidate_range_end = 738 max(kvm->mmu_invalidate_range_end, end); 739 } 740 } 741 742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 743 const struct mmu_notifier_range *range) 744 { 745 struct kvm *kvm = mmu_notifier_to_kvm(mn); 746 const struct kvm_hva_range hva_range = { 747 .start = range->start, 748 .end = range->end, 749 .pte = __pte(0), 750 .handler = kvm_unmap_gfn_range, 751 .on_lock = kvm_mmu_invalidate_begin, 752 .on_unlock = kvm_arch_guest_memory_reclaimed, 753 .flush_on_ret = true, 754 .may_block = mmu_notifier_range_blockable(range), 755 }; 756 757 trace_kvm_unmap_hva_range(range->start, range->end); 758 759 /* 760 * Prevent memslot modification between range_start() and range_end() 761 * so that conditionally locking provides the same result in both 762 * functions. Without that guarantee, the mmu_invalidate_in_progress 763 * adjustments will be imbalanced. 764 * 765 * Pairs with the decrement in range_end(). 766 */ 767 spin_lock(&kvm->mn_invalidate_lock); 768 kvm->mn_active_invalidate_count++; 769 spin_unlock(&kvm->mn_invalidate_lock); 770 771 /* 772 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 773 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 774 * each cache's lock. There are relatively few caches in existence at 775 * any given time, and the caches themselves can check for hva overlap, 776 * i.e. don't need to rely on memslot overlap checks for performance. 777 * Because this runs without holding mmu_lock, the pfn caches must use 778 * mn_active_invalidate_count (see above) instead of 779 * mmu_invalidate_in_progress. 780 */ 781 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 782 hva_range.may_block); 783 784 __kvm_handle_hva_range(kvm, &hva_range); 785 786 return 0; 787 } 788 789 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 790 unsigned long end) 791 { 792 /* 793 * This sequence increase will notify the kvm page fault that 794 * the page that is going to be mapped in the spte could have 795 * been freed. 796 */ 797 kvm->mmu_invalidate_seq++; 798 smp_wmb(); 799 /* 800 * The above sequence increase must be visible before the 801 * below count decrease, which is ensured by the smp_wmb above 802 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 803 */ 804 kvm->mmu_invalidate_in_progress--; 805 } 806 807 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 808 const struct mmu_notifier_range *range) 809 { 810 struct kvm *kvm = mmu_notifier_to_kvm(mn); 811 const struct kvm_hva_range hva_range = { 812 .start = range->start, 813 .end = range->end, 814 .pte = __pte(0), 815 .handler = (void *)kvm_null_fn, 816 .on_lock = kvm_mmu_invalidate_end, 817 .on_unlock = (void *)kvm_null_fn, 818 .flush_on_ret = false, 819 .may_block = mmu_notifier_range_blockable(range), 820 }; 821 bool wake; 822 823 __kvm_handle_hva_range(kvm, &hva_range); 824 825 /* Pairs with the increment in range_start(). */ 826 spin_lock(&kvm->mn_invalidate_lock); 827 wake = (--kvm->mn_active_invalidate_count == 0); 828 spin_unlock(&kvm->mn_invalidate_lock); 829 830 /* 831 * There can only be one waiter, since the wait happens under 832 * slots_lock. 833 */ 834 if (wake) 835 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 836 837 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 838 } 839 840 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 841 struct mm_struct *mm, 842 unsigned long start, 843 unsigned long end) 844 { 845 trace_kvm_age_hva(start, end); 846 847 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 848 } 849 850 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 851 struct mm_struct *mm, 852 unsigned long start, 853 unsigned long end) 854 { 855 trace_kvm_age_hva(start, end); 856 857 /* 858 * Even though we do not flush TLB, this will still adversely 859 * affect performance on pre-Haswell Intel EPT, where there is 860 * no EPT Access Bit to clear so that we have to tear down EPT 861 * tables instead. If we find this unacceptable, we can always 862 * add a parameter to kvm_age_hva so that it effectively doesn't 863 * do anything on clear_young. 864 * 865 * Also note that currently we never issue secondary TLB flushes 866 * from clear_young, leaving this job up to the regular system 867 * cadence. If we find this inaccurate, we might come up with a 868 * more sophisticated heuristic later. 869 */ 870 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 871 } 872 873 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 874 struct mm_struct *mm, 875 unsigned long address) 876 { 877 trace_kvm_test_age_hva(address); 878 879 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 880 kvm_test_age_gfn); 881 } 882 883 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 884 struct mm_struct *mm) 885 { 886 struct kvm *kvm = mmu_notifier_to_kvm(mn); 887 int idx; 888 889 idx = srcu_read_lock(&kvm->srcu); 890 kvm_flush_shadow_all(kvm); 891 srcu_read_unlock(&kvm->srcu, idx); 892 } 893 894 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 895 .invalidate_range = kvm_mmu_notifier_invalidate_range, 896 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 897 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 898 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 899 .clear_young = kvm_mmu_notifier_clear_young, 900 .test_young = kvm_mmu_notifier_test_young, 901 .change_pte = kvm_mmu_notifier_change_pte, 902 .release = kvm_mmu_notifier_release, 903 }; 904 905 static int kvm_init_mmu_notifier(struct kvm *kvm) 906 { 907 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 908 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 909 } 910 911 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 912 913 static int kvm_init_mmu_notifier(struct kvm *kvm) 914 { 915 return 0; 916 } 917 918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 919 920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 921 static int kvm_pm_notifier_call(struct notifier_block *bl, 922 unsigned long state, 923 void *unused) 924 { 925 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 926 927 return kvm_arch_pm_notifier(kvm, state); 928 } 929 930 static void kvm_init_pm_notifier(struct kvm *kvm) 931 { 932 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 933 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 934 kvm->pm_notifier.priority = INT_MAX; 935 register_pm_notifier(&kvm->pm_notifier); 936 } 937 938 static void kvm_destroy_pm_notifier(struct kvm *kvm) 939 { 940 unregister_pm_notifier(&kvm->pm_notifier); 941 } 942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 943 static void kvm_init_pm_notifier(struct kvm *kvm) 944 { 945 } 946 947 static void kvm_destroy_pm_notifier(struct kvm *kvm) 948 { 949 } 950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 951 952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 953 { 954 if (!memslot->dirty_bitmap) 955 return; 956 957 kvfree(memslot->dirty_bitmap); 958 memslot->dirty_bitmap = NULL; 959 } 960 961 /* This does not remove the slot from struct kvm_memslots data structures */ 962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 963 { 964 kvm_destroy_dirty_bitmap(slot); 965 966 kvm_arch_free_memslot(kvm, slot); 967 968 kfree(slot); 969 } 970 971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 972 { 973 struct hlist_node *idnode; 974 struct kvm_memory_slot *memslot; 975 int bkt; 976 977 /* 978 * The same memslot objects live in both active and inactive sets, 979 * arbitrarily free using index '1' so the second invocation of this 980 * function isn't operating over a structure with dangling pointers 981 * (even though this function isn't actually touching them). 982 */ 983 if (!slots->node_idx) 984 return; 985 986 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 987 kvm_free_memslot(kvm, memslot); 988 } 989 990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 991 { 992 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 993 case KVM_STATS_TYPE_INSTANT: 994 return 0444; 995 case KVM_STATS_TYPE_CUMULATIVE: 996 case KVM_STATS_TYPE_PEAK: 997 default: 998 return 0644; 999 } 1000 } 1001 1002 1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1004 { 1005 int i; 1006 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1007 kvm_vcpu_stats_header.num_desc; 1008 1009 if (IS_ERR(kvm->debugfs_dentry)) 1010 return; 1011 1012 debugfs_remove_recursive(kvm->debugfs_dentry); 1013 1014 if (kvm->debugfs_stat_data) { 1015 for (i = 0; i < kvm_debugfs_num_entries; i++) 1016 kfree(kvm->debugfs_stat_data[i]); 1017 kfree(kvm->debugfs_stat_data); 1018 } 1019 } 1020 1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1022 { 1023 static DEFINE_MUTEX(kvm_debugfs_lock); 1024 struct dentry *dent; 1025 char dir_name[ITOA_MAX_LEN * 2]; 1026 struct kvm_stat_data *stat_data; 1027 const struct _kvm_stats_desc *pdesc; 1028 int i, ret = -ENOMEM; 1029 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1030 kvm_vcpu_stats_header.num_desc; 1031 1032 if (!debugfs_initialized()) 1033 return 0; 1034 1035 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1036 mutex_lock(&kvm_debugfs_lock); 1037 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1038 if (dent) { 1039 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1040 dput(dent); 1041 mutex_unlock(&kvm_debugfs_lock); 1042 return 0; 1043 } 1044 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1045 mutex_unlock(&kvm_debugfs_lock); 1046 if (IS_ERR(dent)) 1047 return 0; 1048 1049 kvm->debugfs_dentry = dent; 1050 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1051 sizeof(*kvm->debugfs_stat_data), 1052 GFP_KERNEL_ACCOUNT); 1053 if (!kvm->debugfs_stat_data) 1054 goto out_err; 1055 1056 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1057 pdesc = &kvm_vm_stats_desc[i]; 1058 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1059 if (!stat_data) 1060 goto out_err; 1061 1062 stat_data->kvm = kvm; 1063 stat_data->desc = pdesc; 1064 stat_data->kind = KVM_STAT_VM; 1065 kvm->debugfs_stat_data[i] = stat_data; 1066 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1067 kvm->debugfs_dentry, stat_data, 1068 &stat_fops_per_vm); 1069 } 1070 1071 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1072 pdesc = &kvm_vcpu_stats_desc[i]; 1073 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1074 if (!stat_data) 1075 goto out_err; 1076 1077 stat_data->kvm = kvm; 1078 stat_data->desc = pdesc; 1079 stat_data->kind = KVM_STAT_VCPU; 1080 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1081 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1082 kvm->debugfs_dentry, stat_data, 1083 &stat_fops_per_vm); 1084 } 1085 1086 ret = kvm_arch_create_vm_debugfs(kvm); 1087 if (ret) 1088 goto out_err; 1089 1090 return 0; 1091 out_err: 1092 kvm_destroy_vm_debugfs(kvm); 1093 return ret; 1094 } 1095 1096 /* 1097 * Called after the VM is otherwise initialized, but just before adding it to 1098 * the vm_list. 1099 */ 1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1101 { 1102 return 0; 1103 } 1104 1105 /* 1106 * Called just after removing the VM from the vm_list, but before doing any 1107 * other destruction. 1108 */ 1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1110 { 1111 } 1112 1113 /* 1114 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1115 * be setup already, so we can create arch-specific debugfs entries under it. 1116 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1117 * a per-arch destroy interface is not needed. 1118 */ 1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1120 { 1121 return 0; 1122 } 1123 1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1125 { 1126 struct kvm *kvm = kvm_arch_alloc_vm(); 1127 struct kvm_memslots *slots; 1128 int r = -ENOMEM; 1129 int i, j; 1130 1131 if (!kvm) 1132 return ERR_PTR(-ENOMEM); 1133 1134 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1135 __module_get(kvm_chardev_ops.owner); 1136 1137 KVM_MMU_LOCK_INIT(kvm); 1138 mmgrab(current->mm); 1139 kvm->mm = current->mm; 1140 kvm_eventfd_init(kvm); 1141 mutex_init(&kvm->lock); 1142 mutex_init(&kvm->irq_lock); 1143 mutex_init(&kvm->slots_lock); 1144 mutex_init(&kvm->slots_arch_lock); 1145 spin_lock_init(&kvm->mn_invalidate_lock); 1146 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1147 xa_init(&kvm->vcpu_array); 1148 1149 INIT_LIST_HEAD(&kvm->gpc_list); 1150 spin_lock_init(&kvm->gpc_lock); 1151 1152 INIT_LIST_HEAD(&kvm->devices); 1153 kvm->max_vcpus = KVM_MAX_VCPUS; 1154 1155 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1156 1157 /* 1158 * Force subsequent debugfs file creations to fail if the VM directory 1159 * is not created (by kvm_create_vm_debugfs()). 1160 */ 1161 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1162 1163 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1164 task_pid_nr(current)); 1165 1166 if (init_srcu_struct(&kvm->srcu)) 1167 goto out_err_no_srcu; 1168 if (init_srcu_struct(&kvm->irq_srcu)) 1169 goto out_err_no_irq_srcu; 1170 1171 refcount_set(&kvm->users_count, 1); 1172 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1173 for (j = 0; j < 2; j++) { 1174 slots = &kvm->__memslots[i][j]; 1175 1176 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1177 slots->hva_tree = RB_ROOT_CACHED; 1178 slots->gfn_tree = RB_ROOT; 1179 hash_init(slots->id_hash); 1180 slots->node_idx = j; 1181 1182 /* Generations must be different for each address space. */ 1183 slots->generation = i; 1184 } 1185 1186 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1187 } 1188 1189 for (i = 0; i < KVM_NR_BUSES; i++) { 1190 rcu_assign_pointer(kvm->buses[i], 1191 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1192 if (!kvm->buses[i]) 1193 goto out_err_no_arch_destroy_vm; 1194 } 1195 1196 r = kvm_arch_init_vm(kvm, type); 1197 if (r) 1198 goto out_err_no_arch_destroy_vm; 1199 1200 r = hardware_enable_all(); 1201 if (r) 1202 goto out_err_no_disable; 1203 1204 #ifdef CONFIG_HAVE_KVM_IRQFD 1205 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1206 #endif 1207 1208 r = kvm_init_mmu_notifier(kvm); 1209 if (r) 1210 goto out_err_no_mmu_notifier; 1211 1212 r = kvm_coalesced_mmio_init(kvm); 1213 if (r < 0) 1214 goto out_no_coalesced_mmio; 1215 1216 r = kvm_create_vm_debugfs(kvm, fdname); 1217 if (r) 1218 goto out_err_no_debugfs; 1219 1220 r = kvm_arch_post_init_vm(kvm); 1221 if (r) 1222 goto out_err; 1223 1224 mutex_lock(&kvm_lock); 1225 list_add(&kvm->vm_list, &vm_list); 1226 mutex_unlock(&kvm_lock); 1227 1228 preempt_notifier_inc(); 1229 kvm_init_pm_notifier(kvm); 1230 1231 return kvm; 1232 1233 out_err: 1234 kvm_destroy_vm_debugfs(kvm); 1235 out_err_no_debugfs: 1236 kvm_coalesced_mmio_free(kvm); 1237 out_no_coalesced_mmio: 1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1239 if (kvm->mmu_notifier.ops) 1240 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1241 #endif 1242 out_err_no_mmu_notifier: 1243 hardware_disable_all(); 1244 out_err_no_disable: 1245 kvm_arch_destroy_vm(kvm); 1246 out_err_no_arch_destroy_vm: 1247 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1248 for (i = 0; i < KVM_NR_BUSES; i++) 1249 kfree(kvm_get_bus(kvm, i)); 1250 cleanup_srcu_struct(&kvm->irq_srcu); 1251 out_err_no_irq_srcu: 1252 cleanup_srcu_struct(&kvm->srcu); 1253 out_err_no_srcu: 1254 kvm_arch_free_vm(kvm); 1255 mmdrop(current->mm); 1256 module_put(kvm_chardev_ops.owner); 1257 return ERR_PTR(r); 1258 } 1259 1260 static void kvm_destroy_devices(struct kvm *kvm) 1261 { 1262 struct kvm_device *dev, *tmp; 1263 1264 /* 1265 * We do not need to take the kvm->lock here, because nobody else 1266 * has a reference to the struct kvm at this point and therefore 1267 * cannot access the devices list anyhow. 1268 */ 1269 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1270 list_del(&dev->vm_node); 1271 dev->ops->destroy(dev); 1272 } 1273 } 1274 1275 static void kvm_destroy_vm(struct kvm *kvm) 1276 { 1277 int i; 1278 struct mm_struct *mm = kvm->mm; 1279 1280 kvm_destroy_pm_notifier(kvm); 1281 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1282 kvm_destroy_vm_debugfs(kvm); 1283 kvm_arch_sync_events(kvm); 1284 mutex_lock(&kvm_lock); 1285 list_del(&kvm->vm_list); 1286 mutex_unlock(&kvm_lock); 1287 kvm_arch_pre_destroy_vm(kvm); 1288 1289 kvm_free_irq_routing(kvm); 1290 for (i = 0; i < KVM_NR_BUSES; i++) { 1291 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1292 1293 if (bus) 1294 kvm_io_bus_destroy(bus); 1295 kvm->buses[i] = NULL; 1296 } 1297 kvm_coalesced_mmio_free(kvm); 1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1299 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1300 /* 1301 * At this point, pending calls to invalidate_range_start() 1302 * have completed but no more MMU notifiers will run, so 1303 * mn_active_invalidate_count may remain unbalanced. 1304 * No threads can be waiting in kvm_swap_active_memslots() as the 1305 * last reference on KVM has been dropped, but freeing 1306 * memslots would deadlock without this manual intervention. 1307 */ 1308 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1309 kvm->mn_active_invalidate_count = 0; 1310 #else 1311 kvm_flush_shadow_all(kvm); 1312 #endif 1313 kvm_arch_destroy_vm(kvm); 1314 kvm_destroy_devices(kvm); 1315 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1316 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1317 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1318 } 1319 cleanup_srcu_struct(&kvm->irq_srcu); 1320 cleanup_srcu_struct(&kvm->srcu); 1321 kvm_arch_free_vm(kvm); 1322 preempt_notifier_dec(); 1323 hardware_disable_all(); 1324 mmdrop(mm); 1325 module_put(kvm_chardev_ops.owner); 1326 } 1327 1328 void kvm_get_kvm(struct kvm *kvm) 1329 { 1330 refcount_inc(&kvm->users_count); 1331 } 1332 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1333 1334 /* 1335 * Make sure the vm is not during destruction, which is a safe version of 1336 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1337 */ 1338 bool kvm_get_kvm_safe(struct kvm *kvm) 1339 { 1340 return refcount_inc_not_zero(&kvm->users_count); 1341 } 1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1343 1344 void kvm_put_kvm(struct kvm *kvm) 1345 { 1346 if (refcount_dec_and_test(&kvm->users_count)) 1347 kvm_destroy_vm(kvm); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1350 1351 /* 1352 * Used to put a reference that was taken on behalf of an object associated 1353 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1354 * of the new file descriptor fails and the reference cannot be transferred to 1355 * its final owner. In such cases, the caller is still actively using @kvm and 1356 * will fail miserably if the refcount unexpectedly hits zero. 1357 */ 1358 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1359 { 1360 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1361 } 1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1363 1364 static int kvm_vm_release(struct inode *inode, struct file *filp) 1365 { 1366 struct kvm *kvm = filp->private_data; 1367 1368 kvm_irqfd_release(kvm); 1369 1370 kvm_put_kvm(kvm); 1371 return 0; 1372 } 1373 1374 /* 1375 * Allocation size is twice as large as the actual dirty bitmap size. 1376 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1377 */ 1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1379 { 1380 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1381 1382 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1383 if (!memslot->dirty_bitmap) 1384 return -ENOMEM; 1385 1386 return 0; 1387 } 1388 1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1390 { 1391 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1392 int node_idx_inactive = active->node_idx ^ 1; 1393 1394 return &kvm->__memslots[as_id][node_idx_inactive]; 1395 } 1396 1397 /* 1398 * Helper to get the address space ID when one of memslot pointers may be NULL. 1399 * This also serves as a sanity that at least one of the pointers is non-NULL, 1400 * and that their address space IDs don't diverge. 1401 */ 1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1403 struct kvm_memory_slot *b) 1404 { 1405 if (WARN_ON_ONCE(!a && !b)) 1406 return 0; 1407 1408 if (!a) 1409 return b->as_id; 1410 if (!b) 1411 return a->as_id; 1412 1413 WARN_ON_ONCE(a->as_id != b->as_id); 1414 return a->as_id; 1415 } 1416 1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1418 struct kvm_memory_slot *slot) 1419 { 1420 struct rb_root *gfn_tree = &slots->gfn_tree; 1421 struct rb_node **node, *parent; 1422 int idx = slots->node_idx; 1423 1424 parent = NULL; 1425 for (node = &gfn_tree->rb_node; *node; ) { 1426 struct kvm_memory_slot *tmp; 1427 1428 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1429 parent = *node; 1430 if (slot->base_gfn < tmp->base_gfn) 1431 node = &(*node)->rb_left; 1432 else if (slot->base_gfn > tmp->base_gfn) 1433 node = &(*node)->rb_right; 1434 else 1435 BUG(); 1436 } 1437 1438 rb_link_node(&slot->gfn_node[idx], parent, node); 1439 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1440 } 1441 1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1443 struct kvm_memory_slot *slot) 1444 { 1445 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1446 } 1447 1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1449 struct kvm_memory_slot *old, 1450 struct kvm_memory_slot *new) 1451 { 1452 int idx = slots->node_idx; 1453 1454 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1455 1456 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1457 &slots->gfn_tree); 1458 } 1459 1460 /* 1461 * Replace @old with @new in the inactive memslots. 1462 * 1463 * With NULL @old this simply adds @new. 1464 * With NULL @new this simply removes @old. 1465 * 1466 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1467 * appropriately. 1468 */ 1469 static void kvm_replace_memslot(struct kvm *kvm, 1470 struct kvm_memory_slot *old, 1471 struct kvm_memory_slot *new) 1472 { 1473 int as_id = kvm_memslots_get_as_id(old, new); 1474 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1475 int idx = slots->node_idx; 1476 1477 if (old) { 1478 hash_del(&old->id_node[idx]); 1479 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1480 1481 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1482 atomic_long_set(&slots->last_used_slot, (long)new); 1483 1484 if (!new) { 1485 kvm_erase_gfn_node(slots, old); 1486 return; 1487 } 1488 } 1489 1490 /* 1491 * Initialize @new's hva range. Do this even when replacing an @old 1492 * slot, kvm_copy_memslot() deliberately does not touch node data. 1493 */ 1494 new->hva_node[idx].start = new->userspace_addr; 1495 new->hva_node[idx].last = new->userspace_addr + 1496 (new->npages << PAGE_SHIFT) - 1; 1497 1498 /* 1499 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1500 * hva_node needs to be swapped with remove+insert even though hva can't 1501 * change when replacing an existing slot. 1502 */ 1503 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1504 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1505 1506 /* 1507 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1508 * switch the node in the gfn tree instead of removing the old and 1509 * inserting the new as two separate operations. Replacement is a 1510 * single O(1) operation versus two O(log(n)) operations for 1511 * remove+insert. 1512 */ 1513 if (old && old->base_gfn == new->base_gfn) { 1514 kvm_replace_gfn_node(slots, old, new); 1515 } else { 1516 if (old) 1517 kvm_erase_gfn_node(slots, old); 1518 kvm_insert_gfn_node(slots, new); 1519 } 1520 } 1521 1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1523 { 1524 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1525 1526 #ifdef __KVM_HAVE_READONLY_MEM 1527 valid_flags |= KVM_MEM_READONLY; 1528 #endif 1529 1530 if (mem->flags & ~valid_flags) 1531 return -EINVAL; 1532 1533 return 0; 1534 } 1535 1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1537 { 1538 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1539 1540 /* Grab the generation from the activate memslots. */ 1541 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1542 1543 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1544 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1545 1546 /* 1547 * Do not store the new memslots while there are invalidations in 1548 * progress, otherwise the locking in invalidate_range_start and 1549 * invalidate_range_end will be unbalanced. 1550 */ 1551 spin_lock(&kvm->mn_invalidate_lock); 1552 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1553 while (kvm->mn_active_invalidate_count) { 1554 set_current_state(TASK_UNINTERRUPTIBLE); 1555 spin_unlock(&kvm->mn_invalidate_lock); 1556 schedule(); 1557 spin_lock(&kvm->mn_invalidate_lock); 1558 } 1559 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1560 rcu_assign_pointer(kvm->memslots[as_id], slots); 1561 spin_unlock(&kvm->mn_invalidate_lock); 1562 1563 /* 1564 * Acquired in kvm_set_memslot. Must be released before synchronize 1565 * SRCU below in order to avoid deadlock with another thread 1566 * acquiring the slots_arch_lock in an srcu critical section. 1567 */ 1568 mutex_unlock(&kvm->slots_arch_lock); 1569 1570 synchronize_srcu_expedited(&kvm->srcu); 1571 1572 /* 1573 * Increment the new memslot generation a second time, dropping the 1574 * update in-progress flag and incrementing the generation based on 1575 * the number of address spaces. This provides a unique and easily 1576 * identifiable generation number while the memslots are in flux. 1577 */ 1578 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1579 1580 /* 1581 * Generations must be unique even across address spaces. We do not need 1582 * a global counter for that, instead the generation space is evenly split 1583 * across address spaces. For example, with two address spaces, address 1584 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1585 * use generations 1, 3, 5, ... 1586 */ 1587 gen += KVM_ADDRESS_SPACE_NUM; 1588 1589 kvm_arch_memslots_updated(kvm, gen); 1590 1591 slots->generation = gen; 1592 } 1593 1594 static int kvm_prepare_memory_region(struct kvm *kvm, 1595 const struct kvm_memory_slot *old, 1596 struct kvm_memory_slot *new, 1597 enum kvm_mr_change change) 1598 { 1599 int r; 1600 1601 /* 1602 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1603 * will be freed on "commit". If logging is enabled in both old and 1604 * new, reuse the existing bitmap. If logging is enabled only in the 1605 * new and KVM isn't using a ring buffer, allocate and initialize a 1606 * new bitmap. 1607 */ 1608 if (change != KVM_MR_DELETE) { 1609 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1610 new->dirty_bitmap = NULL; 1611 else if (old && old->dirty_bitmap) 1612 new->dirty_bitmap = old->dirty_bitmap; 1613 else if (kvm_use_dirty_bitmap(kvm)) { 1614 r = kvm_alloc_dirty_bitmap(new); 1615 if (r) 1616 return r; 1617 1618 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1619 bitmap_set(new->dirty_bitmap, 0, new->npages); 1620 } 1621 } 1622 1623 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1624 1625 /* Free the bitmap on failure if it was allocated above. */ 1626 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1627 kvm_destroy_dirty_bitmap(new); 1628 1629 return r; 1630 } 1631 1632 static void kvm_commit_memory_region(struct kvm *kvm, 1633 struct kvm_memory_slot *old, 1634 const struct kvm_memory_slot *new, 1635 enum kvm_mr_change change) 1636 { 1637 int old_flags = old ? old->flags : 0; 1638 int new_flags = new ? new->flags : 0; 1639 /* 1640 * Update the total number of memslot pages before calling the arch 1641 * hook so that architectures can consume the result directly. 1642 */ 1643 if (change == KVM_MR_DELETE) 1644 kvm->nr_memslot_pages -= old->npages; 1645 else if (change == KVM_MR_CREATE) 1646 kvm->nr_memslot_pages += new->npages; 1647 1648 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1649 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1650 atomic_set(&kvm->nr_memslots_dirty_logging, 1651 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1652 } 1653 1654 kvm_arch_commit_memory_region(kvm, old, new, change); 1655 1656 switch (change) { 1657 case KVM_MR_CREATE: 1658 /* Nothing more to do. */ 1659 break; 1660 case KVM_MR_DELETE: 1661 /* Free the old memslot and all its metadata. */ 1662 kvm_free_memslot(kvm, old); 1663 break; 1664 case KVM_MR_MOVE: 1665 case KVM_MR_FLAGS_ONLY: 1666 /* 1667 * Free the dirty bitmap as needed; the below check encompasses 1668 * both the flags and whether a ring buffer is being used) 1669 */ 1670 if (old->dirty_bitmap && !new->dirty_bitmap) 1671 kvm_destroy_dirty_bitmap(old); 1672 1673 /* 1674 * The final quirk. Free the detached, old slot, but only its 1675 * memory, not any metadata. Metadata, including arch specific 1676 * data, may be reused by @new. 1677 */ 1678 kfree(old); 1679 break; 1680 default: 1681 BUG(); 1682 } 1683 } 1684 1685 /* 1686 * Activate @new, which must be installed in the inactive slots by the caller, 1687 * by swapping the active slots and then propagating @new to @old once @old is 1688 * unreachable and can be safely modified. 1689 * 1690 * With NULL @old this simply adds @new to @active (while swapping the sets). 1691 * With NULL @new this simply removes @old from @active and frees it 1692 * (while also swapping the sets). 1693 */ 1694 static void kvm_activate_memslot(struct kvm *kvm, 1695 struct kvm_memory_slot *old, 1696 struct kvm_memory_slot *new) 1697 { 1698 int as_id = kvm_memslots_get_as_id(old, new); 1699 1700 kvm_swap_active_memslots(kvm, as_id); 1701 1702 /* Propagate the new memslot to the now inactive memslots. */ 1703 kvm_replace_memslot(kvm, old, new); 1704 } 1705 1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1707 const struct kvm_memory_slot *src) 1708 { 1709 dest->base_gfn = src->base_gfn; 1710 dest->npages = src->npages; 1711 dest->dirty_bitmap = src->dirty_bitmap; 1712 dest->arch = src->arch; 1713 dest->userspace_addr = src->userspace_addr; 1714 dest->flags = src->flags; 1715 dest->id = src->id; 1716 dest->as_id = src->as_id; 1717 } 1718 1719 static void kvm_invalidate_memslot(struct kvm *kvm, 1720 struct kvm_memory_slot *old, 1721 struct kvm_memory_slot *invalid_slot) 1722 { 1723 /* 1724 * Mark the current slot INVALID. As with all memslot modifications, 1725 * this must be done on an unreachable slot to avoid modifying the 1726 * current slot in the active tree. 1727 */ 1728 kvm_copy_memslot(invalid_slot, old); 1729 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1730 kvm_replace_memslot(kvm, old, invalid_slot); 1731 1732 /* 1733 * Activate the slot that is now marked INVALID, but don't propagate 1734 * the slot to the now inactive slots. The slot is either going to be 1735 * deleted or recreated as a new slot. 1736 */ 1737 kvm_swap_active_memslots(kvm, old->as_id); 1738 1739 /* 1740 * From this point no new shadow pages pointing to a deleted, or moved, 1741 * memslot will be created. Validation of sp->gfn happens in: 1742 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1743 * - kvm_is_visible_gfn (mmu_check_root) 1744 */ 1745 kvm_arch_flush_shadow_memslot(kvm, old); 1746 kvm_arch_guest_memory_reclaimed(kvm); 1747 1748 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1749 mutex_lock(&kvm->slots_arch_lock); 1750 1751 /* 1752 * Copy the arch-specific field of the newly-installed slot back to the 1753 * old slot as the arch data could have changed between releasing 1754 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1755 * above. Writers are required to retrieve memslots *after* acquiring 1756 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1757 */ 1758 old->arch = invalid_slot->arch; 1759 } 1760 1761 static void kvm_create_memslot(struct kvm *kvm, 1762 struct kvm_memory_slot *new) 1763 { 1764 /* Add the new memslot to the inactive set and activate. */ 1765 kvm_replace_memslot(kvm, NULL, new); 1766 kvm_activate_memslot(kvm, NULL, new); 1767 } 1768 1769 static void kvm_delete_memslot(struct kvm *kvm, 1770 struct kvm_memory_slot *old, 1771 struct kvm_memory_slot *invalid_slot) 1772 { 1773 /* 1774 * Remove the old memslot (in the inactive memslots) by passing NULL as 1775 * the "new" slot, and for the invalid version in the active slots. 1776 */ 1777 kvm_replace_memslot(kvm, old, NULL); 1778 kvm_activate_memslot(kvm, invalid_slot, NULL); 1779 } 1780 1781 static void kvm_move_memslot(struct kvm *kvm, 1782 struct kvm_memory_slot *old, 1783 struct kvm_memory_slot *new, 1784 struct kvm_memory_slot *invalid_slot) 1785 { 1786 /* 1787 * Replace the old memslot in the inactive slots, and then swap slots 1788 * and replace the current INVALID with the new as well. 1789 */ 1790 kvm_replace_memslot(kvm, old, new); 1791 kvm_activate_memslot(kvm, invalid_slot, new); 1792 } 1793 1794 static void kvm_update_flags_memslot(struct kvm *kvm, 1795 struct kvm_memory_slot *old, 1796 struct kvm_memory_slot *new) 1797 { 1798 /* 1799 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1800 * an intermediate step. Instead, the old memslot is simply replaced 1801 * with a new, updated copy in both memslot sets. 1802 */ 1803 kvm_replace_memslot(kvm, old, new); 1804 kvm_activate_memslot(kvm, old, new); 1805 } 1806 1807 static int kvm_set_memslot(struct kvm *kvm, 1808 struct kvm_memory_slot *old, 1809 struct kvm_memory_slot *new, 1810 enum kvm_mr_change change) 1811 { 1812 struct kvm_memory_slot *invalid_slot; 1813 int r; 1814 1815 /* 1816 * Released in kvm_swap_active_memslots(). 1817 * 1818 * Must be held from before the current memslots are copied until after 1819 * the new memslots are installed with rcu_assign_pointer, then 1820 * released before the synchronize srcu in kvm_swap_active_memslots(). 1821 * 1822 * When modifying memslots outside of the slots_lock, must be held 1823 * before reading the pointer to the current memslots until after all 1824 * changes to those memslots are complete. 1825 * 1826 * These rules ensure that installing new memslots does not lose 1827 * changes made to the previous memslots. 1828 */ 1829 mutex_lock(&kvm->slots_arch_lock); 1830 1831 /* 1832 * Invalidate the old slot if it's being deleted or moved. This is 1833 * done prior to actually deleting/moving the memslot to allow vCPUs to 1834 * continue running by ensuring there are no mappings or shadow pages 1835 * for the memslot when it is deleted/moved. Without pre-invalidation 1836 * (and without a lock), a window would exist between effecting the 1837 * delete/move and committing the changes in arch code where KVM or a 1838 * guest could access a non-existent memslot. 1839 * 1840 * Modifications are done on a temporary, unreachable slot. The old 1841 * slot needs to be preserved in case a later step fails and the 1842 * invalidation needs to be reverted. 1843 */ 1844 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1845 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1846 if (!invalid_slot) { 1847 mutex_unlock(&kvm->slots_arch_lock); 1848 return -ENOMEM; 1849 } 1850 kvm_invalidate_memslot(kvm, old, invalid_slot); 1851 } 1852 1853 r = kvm_prepare_memory_region(kvm, old, new, change); 1854 if (r) { 1855 /* 1856 * For DELETE/MOVE, revert the above INVALID change. No 1857 * modifications required since the original slot was preserved 1858 * in the inactive slots. Changing the active memslots also 1859 * release slots_arch_lock. 1860 */ 1861 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1862 kvm_activate_memslot(kvm, invalid_slot, old); 1863 kfree(invalid_slot); 1864 } else { 1865 mutex_unlock(&kvm->slots_arch_lock); 1866 } 1867 return r; 1868 } 1869 1870 /* 1871 * For DELETE and MOVE, the working slot is now active as the INVALID 1872 * version of the old slot. MOVE is particularly special as it reuses 1873 * the old slot and returns a copy of the old slot (in working_slot). 1874 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1875 * old slot is detached but otherwise preserved. 1876 */ 1877 if (change == KVM_MR_CREATE) 1878 kvm_create_memslot(kvm, new); 1879 else if (change == KVM_MR_DELETE) 1880 kvm_delete_memslot(kvm, old, invalid_slot); 1881 else if (change == KVM_MR_MOVE) 1882 kvm_move_memslot(kvm, old, new, invalid_slot); 1883 else if (change == KVM_MR_FLAGS_ONLY) 1884 kvm_update_flags_memslot(kvm, old, new); 1885 else 1886 BUG(); 1887 1888 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1889 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1890 kfree(invalid_slot); 1891 1892 /* 1893 * No need to refresh new->arch, changes after dropping slots_arch_lock 1894 * will directly hit the final, active memslot. Architectures are 1895 * responsible for knowing that new->arch may be stale. 1896 */ 1897 kvm_commit_memory_region(kvm, old, new, change); 1898 1899 return 0; 1900 } 1901 1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1903 gfn_t start, gfn_t end) 1904 { 1905 struct kvm_memslot_iter iter; 1906 1907 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1908 if (iter.slot->id != id) 1909 return true; 1910 } 1911 1912 return false; 1913 } 1914 1915 /* 1916 * Allocate some memory and give it an address in the guest physical address 1917 * space. 1918 * 1919 * Discontiguous memory is allowed, mostly for framebuffers. 1920 * 1921 * Must be called holding kvm->slots_lock for write. 1922 */ 1923 int __kvm_set_memory_region(struct kvm *kvm, 1924 const struct kvm_userspace_memory_region *mem) 1925 { 1926 struct kvm_memory_slot *old, *new; 1927 struct kvm_memslots *slots; 1928 enum kvm_mr_change change; 1929 unsigned long npages; 1930 gfn_t base_gfn; 1931 int as_id, id; 1932 int r; 1933 1934 r = check_memory_region_flags(mem); 1935 if (r) 1936 return r; 1937 1938 as_id = mem->slot >> 16; 1939 id = (u16)mem->slot; 1940 1941 /* General sanity checks */ 1942 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1943 (mem->memory_size != (unsigned long)mem->memory_size)) 1944 return -EINVAL; 1945 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1946 return -EINVAL; 1947 /* We can read the guest memory with __xxx_user() later on. */ 1948 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1949 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1950 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1951 mem->memory_size)) 1952 return -EINVAL; 1953 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1954 return -EINVAL; 1955 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1956 return -EINVAL; 1957 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1958 return -EINVAL; 1959 1960 slots = __kvm_memslots(kvm, as_id); 1961 1962 /* 1963 * Note, the old memslot (and the pointer itself!) may be invalidated 1964 * and/or destroyed by kvm_set_memslot(). 1965 */ 1966 old = id_to_memslot(slots, id); 1967 1968 if (!mem->memory_size) { 1969 if (!old || !old->npages) 1970 return -EINVAL; 1971 1972 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1973 return -EIO; 1974 1975 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1976 } 1977 1978 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1979 npages = (mem->memory_size >> PAGE_SHIFT); 1980 1981 if (!old || !old->npages) { 1982 change = KVM_MR_CREATE; 1983 1984 /* 1985 * To simplify KVM internals, the total number of pages across 1986 * all memslots must fit in an unsigned long. 1987 */ 1988 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1989 return -EINVAL; 1990 } else { /* Modify an existing slot. */ 1991 if ((mem->userspace_addr != old->userspace_addr) || 1992 (npages != old->npages) || 1993 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1994 return -EINVAL; 1995 1996 if (base_gfn != old->base_gfn) 1997 change = KVM_MR_MOVE; 1998 else if (mem->flags != old->flags) 1999 change = KVM_MR_FLAGS_ONLY; 2000 else /* Nothing to change. */ 2001 return 0; 2002 } 2003 2004 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2005 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2006 return -EEXIST; 2007 2008 /* Allocate a slot that will persist in the memslot. */ 2009 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2010 if (!new) 2011 return -ENOMEM; 2012 2013 new->as_id = as_id; 2014 new->id = id; 2015 new->base_gfn = base_gfn; 2016 new->npages = npages; 2017 new->flags = mem->flags; 2018 new->userspace_addr = mem->userspace_addr; 2019 2020 r = kvm_set_memslot(kvm, old, new, change); 2021 if (r) 2022 kfree(new); 2023 return r; 2024 } 2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2026 2027 int kvm_set_memory_region(struct kvm *kvm, 2028 const struct kvm_userspace_memory_region *mem) 2029 { 2030 int r; 2031 2032 mutex_lock(&kvm->slots_lock); 2033 r = __kvm_set_memory_region(kvm, mem); 2034 mutex_unlock(&kvm->slots_lock); 2035 return r; 2036 } 2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2038 2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2040 struct kvm_userspace_memory_region *mem) 2041 { 2042 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2043 return -EINVAL; 2044 2045 return kvm_set_memory_region(kvm, mem); 2046 } 2047 2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2049 /** 2050 * kvm_get_dirty_log - get a snapshot of dirty pages 2051 * @kvm: pointer to kvm instance 2052 * @log: slot id and address to which we copy the log 2053 * @is_dirty: set to '1' if any dirty pages were found 2054 * @memslot: set to the associated memslot, always valid on success 2055 */ 2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2057 int *is_dirty, struct kvm_memory_slot **memslot) 2058 { 2059 struct kvm_memslots *slots; 2060 int i, as_id, id; 2061 unsigned long n; 2062 unsigned long any = 0; 2063 2064 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2065 if (!kvm_use_dirty_bitmap(kvm)) 2066 return -ENXIO; 2067 2068 *memslot = NULL; 2069 *is_dirty = 0; 2070 2071 as_id = log->slot >> 16; 2072 id = (u16)log->slot; 2073 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2074 return -EINVAL; 2075 2076 slots = __kvm_memslots(kvm, as_id); 2077 *memslot = id_to_memslot(slots, id); 2078 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2079 return -ENOENT; 2080 2081 kvm_arch_sync_dirty_log(kvm, *memslot); 2082 2083 n = kvm_dirty_bitmap_bytes(*memslot); 2084 2085 for (i = 0; !any && i < n/sizeof(long); ++i) 2086 any = (*memslot)->dirty_bitmap[i]; 2087 2088 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2089 return -EFAULT; 2090 2091 if (any) 2092 *is_dirty = 1; 2093 return 0; 2094 } 2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2096 2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2098 /** 2099 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2100 * and reenable dirty page tracking for the corresponding pages. 2101 * @kvm: pointer to kvm instance 2102 * @log: slot id and address to which we copy the log 2103 * 2104 * We need to keep it in mind that VCPU threads can write to the bitmap 2105 * concurrently. So, to avoid losing track of dirty pages we keep the 2106 * following order: 2107 * 2108 * 1. Take a snapshot of the bit and clear it if needed. 2109 * 2. Write protect the corresponding page. 2110 * 3. Copy the snapshot to the userspace. 2111 * 4. Upon return caller flushes TLB's if needed. 2112 * 2113 * Between 2 and 4, the guest may write to the page using the remaining TLB 2114 * entry. This is not a problem because the page is reported dirty using 2115 * the snapshot taken before and step 4 ensures that writes done after 2116 * exiting to userspace will be logged for the next call. 2117 * 2118 */ 2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2120 { 2121 struct kvm_memslots *slots; 2122 struct kvm_memory_slot *memslot; 2123 int i, as_id, id; 2124 unsigned long n; 2125 unsigned long *dirty_bitmap; 2126 unsigned long *dirty_bitmap_buffer; 2127 bool flush; 2128 2129 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2130 if (!kvm_use_dirty_bitmap(kvm)) 2131 return -ENXIO; 2132 2133 as_id = log->slot >> 16; 2134 id = (u16)log->slot; 2135 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2136 return -EINVAL; 2137 2138 slots = __kvm_memslots(kvm, as_id); 2139 memslot = id_to_memslot(slots, id); 2140 if (!memslot || !memslot->dirty_bitmap) 2141 return -ENOENT; 2142 2143 dirty_bitmap = memslot->dirty_bitmap; 2144 2145 kvm_arch_sync_dirty_log(kvm, memslot); 2146 2147 n = kvm_dirty_bitmap_bytes(memslot); 2148 flush = false; 2149 if (kvm->manual_dirty_log_protect) { 2150 /* 2151 * Unlike kvm_get_dirty_log, we always return false in *flush, 2152 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2153 * is some code duplication between this function and 2154 * kvm_get_dirty_log, but hopefully all architecture 2155 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2156 * can be eliminated. 2157 */ 2158 dirty_bitmap_buffer = dirty_bitmap; 2159 } else { 2160 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2161 memset(dirty_bitmap_buffer, 0, n); 2162 2163 KVM_MMU_LOCK(kvm); 2164 for (i = 0; i < n / sizeof(long); i++) { 2165 unsigned long mask; 2166 gfn_t offset; 2167 2168 if (!dirty_bitmap[i]) 2169 continue; 2170 2171 flush = true; 2172 mask = xchg(&dirty_bitmap[i], 0); 2173 dirty_bitmap_buffer[i] = mask; 2174 2175 offset = i * BITS_PER_LONG; 2176 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2177 offset, mask); 2178 } 2179 KVM_MMU_UNLOCK(kvm); 2180 } 2181 2182 if (flush) 2183 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2184 2185 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2186 return -EFAULT; 2187 return 0; 2188 } 2189 2190 2191 /** 2192 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2193 * @kvm: kvm instance 2194 * @log: slot id and address to which we copy the log 2195 * 2196 * Steps 1-4 below provide general overview of dirty page logging. See 2197 * kvm_get_dirty_log_protect() function description for additional details. 2198 * 2199 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2200 * always flush the TLB (step 4) even if previous step failed and the dirty 2201 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2202 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2203 * writes will be marked dirty for next log read. 2204 * 2205 * 1. Take a snapshot of the bit and clear it if needed. 2206 * 2. Write protect the corresponding page. 2207 * 3. Copy the snapshot to the userspace. 2208 * 4. Flush TLB's if needed. 2209 */ 2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2211 struct kvm_dirty_log *log) 2212 { 2213 int r; 2214 2215 mutex_lock(&kvm->slots_lock); 2216 2217 r = kvm_get_dirty_log_protect(kvm, log); 2218 2219 mutex_unlock(&kvm->slots_lock); 2220 return r; 2221 } 2222 2223 /** 2224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2225 * and reenable dirty page tracking for the corresponding pages. 2226 * @kvm: pointer to kvm instance 2227 * @log: slot id and address from which to fetch the bitmap of dirty pages 2228 */ 2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2230 struct kvm_clear_dirty_log *log) 2231 { 2232 struct kvm_memslots *slots; 2233 struct kvm_memory_slot *memslot; 2234 int as_id, id; 2235 gfn_t offset; 2236 unsigned long i, n; 2237 unsigned long *dirty_bitmap; 2238 unsigned long *dirty_bitmap_buffer; 2239 bool flush; 2240 2241 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2242 if (!kvm_use_dirty_bitmap(kvm)) 2243 return -ENXIO; 2244 2245 as_id = log->slot >> 16; 2246 id = (u16)log->slot; 2247 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2248 return -EINVAL; 2249 2250 if (log->first_page & 63) 2251 return -EINVAL; 2252 2253 slots = __kvm_memslots(kvm, as_id); 2254 memslot = id_to_memslot(slots, id); 2255 if (!memslot || !memslot->dirty_bitmap) 2256 return -ENOENT; 2257 2258 dirty_bitmap = memslot->dirty_bitmap; 2259 2260 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2261 2262 if (log->first_page > memslot->npages || 2263 log->num_pages > memslot->npages - log->first_page || 2264 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2265 return -EINVAL; 2266 2267 kvm_arch_sync_dirty_log(kvm, memslot); 2268 2269 flush = false; 2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2271 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2272 return -EFAULT; 2273 2274 KVM_MMU_LOCK(kvm); 2275 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2276 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2277 i++, offset += BITS_PER_LONG) { 2278 unsigned long mask = *dirty_bitmap_buffer++; 2279 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2280 if (!mask) 2281 continue; 2282 2283 mask &= atomic_long_fetch_andnot(mask, p); 2284 2285 /* 2286 * mask contains the bits that really have been cleared. This 2287 * never includes any bits beyond the length of the memslot (if 2288 * the length is not aligned to 64 pages), therefore it is not 2289 * a problem if userspace sets them in log->dirty_bitmap. 2290 */ 2291 if (mask) { 2292 flush = true; 2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2294 offset, mask); 2295 } 2296 } 2297 KVM_MMU_UNLOCK(kvm); 2298 2299 if (flush) 2300 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2301 2302 return 0; 2303 } 2304 2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2306 struct kvm_clear_dirty_log *log) 2307 { 2308 int r; 2309 2310 mutex_lock(&kvm->slots_lock); 2311 2312 r = kvm_clear_dirty_log_protect(kvm, log); 2313 2314 mutex_unlock(&kvm->slots_lock); 2315 return r; 2316 } 2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2318 2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2320 { 2321 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2322 } 2323 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2324 2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2326 { 2327 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2328 u64 gen = slots->generation; 2329 struct kvm_memory_slot *slot; 2330 2331 /* 2332 * This also protects against using a memslot from a different address space, 2333 * since different address spaces have different generation numbers. 2334 */ 2335 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2336 vcpu->last_used_slot = NULL; 2337 vcpu->last_used_slot_gen = gen; 2338 } 2339 2340 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2341 if (slot) 2342 return slot; 2343 2344 /* 2345 * Fall back to searching all memslots. We purposely use 2346 * search_memslots() instead of __gfn_to_memslot() to avoid 2347 * thrashing the VM-wide last_used_slot in kvm_memslots. 2348 */ 2349 slot = search_memslots(slots, gfn, false); 2350 if (slot) { 2351 vcpu->last_used_slot = slot; 2352 return slot; 2353 } 2354 2355 return NULL; 2356 } 2357 2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2359 { 2360 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2361 2362 return kvm_is_visible_memslot(memslot); 2363 } 2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2365 2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2367 { 2368 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2369 2370 return kvm_is_visible_memslot(memslot); 2371 } 2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2373 2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2375 { 2376 struct vm_area_struct *vma; 2377 unsigned long addr, size; 2378 2379 size = PAGE_SIZE; 2380 2381 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2382 if (kvm_is_error_hva(addr)) 2383 return PAGE_SIZE; 2384 2385 mmap_read_lock(current->mm); 2386 vma = find_vma(current->mm, addr); 2387 if (!vma) 2388 goto out; 2389 2390 size = vma_kernel_pagesize(vma); 2391 2392 out: 2393 mmap_read_unlock(current->mm); 2394 2395 return size; 2396 } 2397 2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2399 { 2400 return slot->flags & KVM_MEM_READONLY; 2401 } 2402 2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2404 gfn_t *nr_pages, bool write) 2405 { 2406 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2407 return KVM_HVA_ERR_BAD; 2408 2409 if (memslot_is_readonly(slot) && write) 2410 return KVM_HVA_ERR_RO_BAD; 2411 2412 if (nr_pages) 2413 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2414 2415 return __gfn_to_hva_memslot(slot, gfn); 2416 } 2417 2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2419 gfn_t *nr_pages) 2420 { 2421 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2422 } 2423 2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2425 gfn_t gfn) 2426 { 2427 return gfn_to_hva_many(slot, gfn, NULL); 2428 } 2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2430 2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2432 { 2433 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2434 } 2435 EXPORT_SYMBOL_GPL(gfn_to_hva); 2436 2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2438 { 2439 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2440 } 2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2442 2443 /* 2444 * Return the hva of a @gfn and the R/W attribute if possible. 2445 * 2446 * @slot: the kvm_memory_slot which contains @gfn 2447 * @gfn: the gfn to be translated 2448 * @writable: used to return the read/write attribute of the @slot if the hva 2449 * is valid and @writable is not NULL 2450 */ 2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2452 gfn_t gfn, bool *writable) 2453 { 2454 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2455 2456 if (!kvm_is_error_hva(hva) && writable) 2457 *writable = !memslot_is_readonly(slot); 2458 2459 return hva; 2460 } 2461 2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2463 { 2464 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2465 2466 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2467 } 2468 2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2470 { 2471 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2472 2473 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2474 } 2475 2476 static inline int check_user_page_hwpoison(unsigned long addr) 2477 { 2478 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2479 2480 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2481 return rc == -EHWPOISON; 2482 } 2483 2484 /* 2485 * The fast path to get the writable pfn which will be stored in @pfn, 2486 * true indicates success, otherwise false is returned. It's also the 2487 * only part that runs if we can in atomic context. 2488 */ 2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2490 bool *writable, kvm_pfn_t *pfn) 2491 { 2492 struct page *page[1]; 2493 2494 /* 2495 * Fast pin a writable pfn only if it is a write fault request 2496 * or the caller allows to map a writable pfn for a read fault 2497 * request. 2498 */ 2499 if (!(write_fault || writable)) 2500 return false; 2501 2502 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2503 *pfn = page_to_pfn(page[0]); 2504 2505 if (writable) 2506 *writable = true; 2507 return true; 2508 } 2509 2510 return false; 2511 } 2512 2513 /* 2514 * The slow path to get the pfn of the specified host virtual address, 2515 * 1 indicates success, -errno is returned if error is detected. 2516 */ 2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2518 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2519 { 2520 unsigned int flags = FOLL_HWPOISON; 2521 struct page *page; 2522 int npages; 2523 2524 might_sleep(); 2525 2526 if (writable) 2527 *writable = write_fault; 2528 2529 if (write_fault) 2530 flags |= FOLL_WRITE; 2531 if (async) 2532 flags |= FOLL_NOWAIT; 2533 if (interruptible) 2534 flags |= FOLL_INTERRUPTIBLE; 2535 2536 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2537 if (npages != 1) 2538 return npages; 2539 2540 /* map read fault as writable if possible */ 2541 if (unlikely(!write_fault) && writable) { 2542 struct page *wpage; 2543 2544 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2545 *writable = true; 2546 put_page(page); 2547 page = wpage; 2548 } 2549 } 2550 *pfn = page_to_pfn(page); 2551 return npages; 2552 } 2553 2554 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2555 { 2556 if (unlikely(!(vma->vm_flags & VM_READ))) 2557 return false; 2558 2559 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2560 return false; 2561 2562 return true; 2563 } 2564 2565 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2566 { 2567 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2568 2569 if (!page) 2570 return 1; 2571 2572 return get_page_unless_zero(page); 2573 } 2574 2575 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2576 unsigned long addr, bool write_fault, 2577 bool *writable, kvm_pfn_t *p_pfn) 2578 { 2579 kvm_pfn_t pfn; 2580 pte_t *ptep; 2581 spinlock_t *ptl; 2582 int r; 2583 2584 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2585 if (r) { 2586 /* 2587 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2588 * not call the fault handler, so do it here. 2589 */ 2590 bool unlocked = false; 2591 r = fixup_user_fault(current->mm, addr, 2592 (write_fault ? FAULT_FLAG_WRITE : 0), 2593 &unlocked); 2594 if (unlocked) 2595 return -EAGAIN; 2596 if (r) 2597 return r; 2598 2599 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2600 if (r) 2601 return r; 2602 } 2603 2604 if (write_fault && !pte_write(*ptep)) { 2605 pfn = KVM_PFN_ERR_RO_FAULT; 2606 goto out; 2607 } 2608 2609 if (writable) 2610 *writable = pte_write(*ptep); 2611 pfn = pte_pfn(*ptep); 2612 2613 /* 2614 * Get a reference here because callers of *hva_to_pfn* and 2615 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2616 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2617 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2618 * simply do nothing for reserved pfns. 2619 * 2620 * Whoever called remap_pfn_range is also going to call e.g. 2621 * unmap_mapping_range before the underlying pages are freed, 2622 * causing a call to our MMU notifier. 2623 * 2624 * Certain IO or PFNMAP mappings can be backed with valid 2625 * struct pages, but be allocated without refcounting e.g., 2626 * tail pages of non-compound higher order allocations, which 2627 * would then underflow the refcount when the caller does the 2628 * required put_page. Don't allow those pages here. 2629 */ 2630 if (!kvm_try_get_pfn(pfn)) 2631 r = -EFAULT; 2632 2633 out: 2634 pte_unmap_unlock(ptep, ptl); 2635 *p_pfn = pfn; 2636 2637 return r; 2638 } 2639 2640 /* 2641 * Pin guest page in memory and return its pfn. 2642 * @addr: host virtual address which maps memory to the guest 2643 * @atomic: whether this function can sleep 2644 * @interruptible: whether the process can be interrupted by non-fatal signals 2645 * @async: whether this function need to wait IO complete if the 2646 * host page is not in the memory 2647 * @write_fault: whether we should get a writable host page 2648 * @writable: whether it allows to map a writable host page for !@write_fault 2649 * 2650 * The function will map a writable host page for these two cases: 2651 * 1): @write_fault = true 2652 * 2): @write_fault = false && @writable, @writable will tell the caller 2653 * whether the mapping is writable. 2654 */ 2655 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2656 bool *async, bool write_fault, bool *writable) 2657 { 2658 struct vm_area_struct *vma; 2659 kvm_pfn_t pfn; 2660 int npages, r; 2661 2662 /* we can do it either atomically or asynchronously, not both */ 2663 BUG_ON(atomic && async); 2664 2665 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2666 return pfn; 2667 2668 if (atomic) 2669 return KVM_PFN_ERR_FAULT; 2670 2671 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2672 writable, &pfn); 2673 if (npages == 1) 2674 return pfn; 2675 if (npages == -EINTR) 2676 return KVM_PFN_ERR_SIGPENDING; 2677 2678 mmap_read_lock(current->mm); 2679 if (npages == -EHWPOISON || 2680 (!async && check_user_page_hwpoison(addr))) { 2681 pfn = KVM_PFN_ERR_HWPOISON; 2682 goto exit; 2683 } 2684 2685 retry: 2686 vma = vma_lookup(current->mm, addr); 2687 2688 if (vma == NULL) 2689 pfn = KVM_PFN_ERR_FAULT; 2690 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2691 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2692 if (r == -EAGAIN) 2693 goto retry; 2694 if (r < 0) 2695 pfn = KVM_PFN_ERR_FAULT; 2696 } else { 2697 if (async && vma_is_valid(vma, write_fault)) 2698 *async = true; 2699 pfn = KVM_PFN_ERR_FAULT; 2700 } 2701 exit: 2702 mmap_read_unlock(current->mm); 2703 return pfn; 2704 } 2705 2706 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2707 bool atomic, bool interruptible, bool *async, 2708 bool write_fault, bool *writable, hva_t *hva) 2709 { 2710 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2711 2712 if (hva) 2713 *hva = addr; 2714 2715 if (addr == KVM_HVA_ERR_RO_BAD) { 2716 if (writable) 2717 *writable = false; 2718 return KVM_PFN_ERR_RO_FAULT; 2719 } 2720 2721 if (kvm_is_error_hva(addr)) { 2722 if (writable) 2723 *writable = false; 2724 return KVM_PFN_NOSLOT; 2725 } 2726 2727 /* Do not map writable pfn in the readonly memslot. */ 2728 if (writable && memslot_is_readonly(slot)) { 2729 *writable = false; 2730 writable = NULL; 2731 } 2732 2733 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 2734 writable); 2735 } 2736 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2737 2738 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2739 bool *writable) 2740 { 2741 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 2742 NULL, write_fault, writable, NULL); 2743 } 2744 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2745 2746 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2747 { 2748 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 2749 NULL, NULL); 2750 } 2751 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2752 2753 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2754 { 2755 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 2756 NULL, NULL); 2757 } 2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2759 2760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2761 { 2762 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2763 } 2764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2765 2766 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2767 { 2768 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2769 } 2770 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2771 2772 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2773 { 2774 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2775 } 2776 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2777 2778 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2779 struct page **pages, int nr_pages) 2780 { 2781 unsigned long addr; 2782 gfn_t entry = 0; 2783 2784 addr = gfn_to_hva_many(slot, gfn, &entry); 2785 if (kvm_is_error_hva(addr)) 2786 return -1; 2787 2788 if (entry < nr_pages) 2789 return 0; 2790 2791 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2792 } 2793 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2794 2795 /* 2796 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2797 * backed by 'struct page'. A valid example is if the backing memslot is 2798 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2799 * been elevated by gfn_to_pfn(). 2800 */ 2801 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2802 { 2803 struct page *page; 2804 kvm_pfn_t pfn; 2805 2806 pfn = gfn_to_pfn(kvm, gfn); 2807 2808 if (is_error_noslot_pfn(pfn)) 2809 return KVM_ERR_PTR_BAD_PAGE; 2810 2811 page = kvm_pfn_to_refcounted_page(pfn); 2812 if (!page) 2813 return KVM_ERR_PTR_BAD_PAGE; 2814 2815 return page; 2816 } 2817 EXPORT_SYMBOL_GPL(gfn_to_page); 2818 2819 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2820 { 2821 if (dirty) 2822 kvm_release_pfn_dirty(pfn); 2823 else 2824 kvm_release_pfn_clean(pfn); 2825 } 2826 2827 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2828 { 2829 kvm_pfn_t pfn; 2830 void *hva = NULL; 2831 struct page *page = KVM_UNMAPPED_PAGE; 2832 2833 if (!map) 2834 return -EINVAL; 2835 2836 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2837 if (is_error_noslot_pfn(pfn)) 2838 return -EINVAL; 2839 2840 if (pfn_valid(pfn)) { 2841 page = pfn_to_page(pfn); 2842 hva = kmap(page); 2843 #ifdef CONFIG_HAS_IOMEM 2844 } else { 2845 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2846 #endif 2847 } 2848 2849 if (!hva) 2850 return -EFAULT; 2851 2852 map->page = page; 2853 map->hva = hva; 2854 map->pfn = pfn; 2855 map->gfn = gfn; 2856 2857 return 0; 2858 } 2859 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2860 2861 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2862 { 2863 if (!map) 2864 return; 2865 2866 if (!map->hva) 2867 return; 2868 2869 if (map->page != KVM_UNMAPPED_PAGE) 2870 kunmap(map->page); 2871 #ifdef CONFIG_HAS_IOMEM 2872 else 2873 memunmap(map->hva); 2874 #endif 2875 2876 if (dirty) 2877 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2878 2879 kvm_release_pfn(map->pfn, dirty); 2880 2881 map->hva = NULL; 2882 map->page = NULL; 2883 } 2884 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2885 2886 static bool kvm_is_ad_tracked_page(struct page *page) 2887 { 2888 /* 2889 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2890 * touched (e.g. set dirty) except by its owner". 2891 */ 2892 return !PageReserved(page); 2893 } 2894 2895 static void kvm_set_page_dirty(struct page *page) 2896 { 2897 if (kvm_is_ad_tracked_page(page)) 2898 SetPageDirty(page); 2899 } 2900 2901 static void kvm_set_page_accessed(struct page *page) 2902 { 2903 if (kvm_is_ad_tracked_page(page)) 2904 mark_page_accessed(page); 2905 } 2906 2907 void kvm_release_page_clean(struct page *page) 2908 { 2909 WARN_ON(is_error_page(page)); 2910 2911 kvm_set_page_accessed(page); 2912 put_page(page); 2913 } 2914 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2915 2916 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2917 { 2918 struct page *page; 2919 2920 if (is_error_noslot_pfn(pfn)) 2921 return; 2922 2923 page = kvm_pfn_to_refcounted_page(pfn); 2924 if (!page) 2925 return; 2926 2927 kvm_release_page_clean(page); 2928 } 2929 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2930 2931 void kvm_release_page_dirty(struct page *page) 2932 { 2933 WARN_ON(is_error_page(page)); 2934 2935 kvm_set_page_dirty(page); 2936 kvm_release_page_clean(page); 2937 } 2938 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2939 2940 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2941 { 2942 struct page *page; 2943 2944 if (is_error_noslot_pfn(pfn)) 2945 return; 2946 2947 page = kvm_pfn_to_refcounted_page(pfn); 2948 if (!page) 2949 return; 2950 2951 kvm_release_page_dirty(page); 2952 } 2953 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2954 2955 /* 2956 * Note, checking for an error/noslot pfn is the caller's responsibility when 2957 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2958 * "set" helpers are not to be used when the pfn might point at garbage. 2959 */ 2960 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2961 { 2962 if (WARN_ON(is_error_noslot_pfn(pfn))) 2963 return; 2964 2965 if (pfn_valid(pfn)) 2966 kvm_set_page_dirty(pfn_to_page(pfn)); 2967 } 2968 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2969 2970 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2971 { 2972 if (WARN_ON(is_error_noslot_pfn(pfn))) 2973 return; 2974 2975 if (pfn_valid(pfn)) 2976 kvm_set_page_accessed(pfn_to_page(pfn)); 2977 } 2978 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2979 2980 static int next_segment(unsigned long len, int offset) 2981 { 2982 if (len > PAGE_SIZE - offset) 2983 return PAGE_SIZE - offset; 2984 else 2985 return len; 2986 } 2987 2988 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2989 void *data, int offset, int len) 2990 { 2991 int r; 2992 unsigned long addr; 2993 2994 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2995 if (kvm_is_error_hva(addr)) 2996 return -EFAULT; 2997 r = __copy_from_user(data, (void __user *)addr + offset, len); 2998 if (r) 2999 return -EFAULT; 3000 return 0; 3001 } 3002 3003 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3004 int len) 3005 { 3006 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3007 3008 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3009 } 3010 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3011 3012 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3013 int offset, int len) 3014 { 3015 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3016 3017 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3018 } 3019 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3020 3021 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3022 { 3023 gfn_t gfn = gpa >> PAGE_SHIFT; 3024 int seg; 3025 int offset = offset_in_page(gpa); 3026 int ret; 3027 3028 while ((seg = next_segment(len, offset)) != 0) { 3029 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3030 if (ret < 0) 3031 return ret; 3032 offset = 0; 3033 len -= seg; 3034 data += seg; 3035 ++gfn; 3036 } 3037 return 0; 3038 } 3039 EXPORT_SYMBOL_GPL(kvm_read_guest); 3040 3041 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3042 { 3043 gfn_t gfn = gpa >> PAGE_SHIFT; 3044 int seg; 3045 int offset = offset_in_page(gpa); 3046 int ret; 3047 3048 while ((seg = next_segment(len, offset)) != 0) { 3049 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3050 if (ret < 0) 3051 return ret; 3052 offset = 0; 3053 len -= seg; 3054 data += seg; 3055 ++gfn; 3056 } 3057 return 0; 3058 } 3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3060 3061 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3062 void *data, int offset, unsigned long len) 3063 { 3064 int r; 3065 unsigned long addr; 3066 3067 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3068 if (kvm_is_error_hva(addr)) 3069 return -EFAULT; 3070 pagefault_disable(); 3071 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3072 pagefault_enable(); 3073 if (r) 3074 return -EFAULT; 3075 return 0; 3076 } 3077 3078 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3079 void *data, unsigned long len) 3080 { 3081 gfn_t gfn = gpa >> PAGE_SHIFT; 3082 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3083 int offset = offset_in_page(gpa); 3084 3085 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3086 } 3087 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3088 3089 static int __kvm_write_guest_page(struct kvm *kvm, 3090 struct kvm_memory_slot *memslot, gfn_t gfn, 3091 const void *data, int offset, int len) 3092 { 3093 int r; 3094 unsigned long addr; 3095 3096 addr = gfn_to_hva_memslot(memslot, gfn); 3097 if (kvm_is_error_hva(addr)) 3098 return -EFAULT; 3099 r = __copy_to_user((void __user *)addr + offset, data, len); 3100 if (r) 3101 return -EFAULT; 3102 mark_page_dirty_in_slot(kvm, memslot, gfn); 3103 return 0; 3104 } 3105 3106 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3107 const void *data, int offset, int len) 3108 { 3109 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3110 3111 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3112 } 3113 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3114 3115 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3116 const void *data, int offset, int len) 3117 { 3118 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3119 3120 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3121 } 3122 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3123 3124 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3125 unsigned long len) 3126 { 3127 gfn_t gfn = gpa >> PAGE_SHIFT; 3128 int seg; 3129 int offset = offset_in_page(gpa); 3130 int ret; 3131 3132 while ((seg = next_segment(len, offset)) != 0) { 3133 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3134 if (ret < 0) 3135 return ret; 3136 offset = 0; 3137 len -= seg; 3138 data += seg; 3139 ++gfn; 3140 } 3141 return 0; 3142 } 3143 EXPORT_SYMBOL_GPL(kvm_write_guest); 3144 3145 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3146 unsigned long len) 3147 { 3148 gfn_t gfn = gpa >> PAGE_SHIFT; 3149 int seg; 3150 int offset = offset_in_page(gpa); 3151 int ret; 3152 3153 while ((seg = next_segment(len, offset)) != 0) { 3154 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3155 if (ret < 0) 3156 return ret; 3157 offset = 0; 3158 len -= seg; 3159 data += seg; 3160 ++gfn; 3161 } 3162 return 0; 3163 } 3164 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3165 3166 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3167 struct gfn_to_hva_cache *ghc, 3168 gpa_t gpa, unsigned long len) 3169 { 3170 int offset = offset_in_page(gpa); 3171 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3172 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3173 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3174 gfn_t nr_pages_avail; 3175 3176 /* Update ghc->generation before performing any error checks. */ 3177 ghc->generation = slots->generation; 3178 3179 if (start_gfn > end_gfn) { 3180 ghc->hva = KVM_HVA_ERR_BAD; 3181 return -EINVAL; 3182 } 3183 3184 /* 3185 * If the requested region crosses two memslots, we still 3186 * verify that the entire region is valid here. 3187 */ 3188 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3189 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3190 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3191 &nr_pages_avail); 3192 if (kvm_is_error_hva(ghc->hva)) 3193 return -EFAULT; 3194 } 3195 3196 /* Use the slow path for cross page reads and writes. */ 3197 if (nr_pages_needed == 1) 3198 ghc->hva += offset; 3199 else 3200 ghc->memslot = NULL; 3201 3202 ghc->gpa = gpa; 3203 ghc->len = len; 3204 return 0; 3205 } 3206 3207 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3208 gpa_t gpa, unsigned long len) 3209 { 3210 struct kvm_memslots *slots = kvm_memslots(kvm); 3211 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3212 } 3213 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3214 3215 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3216 void *data, unsigned int offset, 3217 unsigned long len) 3218 { 3219 struct kvm_memslots *slots = kvm_memslots(kvm); 3220 int r; 3221 gpa_t gpa = ghc->gpa + offset; 3222 3223 if (WARN_ON_ONCE(len + offset > ghc->len)) 3224 return -EINVAL; 3225 3226 if (slots->generation != ghc->generation) { 3227 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3228 return -EFAULT; 3229 } 3230 3231 if (kvm_is_error_hva(ghc->hva)) 3232 return -EFAULT; 3233 3234 if (unlikely(!ghc->memslot)) 3235 return kvm_write_guest(kvm, gpa, data, len); 3236 3237 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3238 if (r) 3239 return -EFAULT; 3240 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3241 3242 return 0; 3243 } 3244 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3245 3246 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3247 void *data, unsigned long len) 3248 { 3249 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3250 } 3251 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3252 3253 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3254 void *data, unsigned int offset, 3255 unsigned long len) 3256 { 3257 struct kvm_memslots *slots = kvm_memslots(kvm); 3258 int r; 3259 gpa_t gpa = ghc->gpa + offset; 3260 3261 if (WARN_ON_ONCE(len + offset > ghc->len)) 3262 return -EINVAL; 3263 3264 if (slots->generation != ghc->generation) { 3265 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3266 return -EFAULT; 3267 } 3268 3269 if (kvm_is_error_hva(ghc->hva)) 3270 return -EFAULT; 3271 3272 if (unlikely(!ghc->memslot)) 3273 return kvm_read_guest(kvm, gpa, data, len); 3274 3275 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3276 if (r) 3277 return -EFAULT; 3278 3279 return 0; 3280 } 3281 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3282 3283 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3284 void *data, unsigned long len) 3285 { 3286 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3287 } 3288 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3289 3290 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3291 { 3292 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3293 gfn_t gfn = gpa >> PAGE_SHIFT; 3294 int seg; 3295 int offset = offset_in_page(gpa); 3296 int ret; 3297 3298 while ((seg = next_segment(len, offset)) != 0) { 3299 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3300 if (ret < 0) 3301 return ret; 3302 offset = 0; 3303 len -= seg; 3304 ++gfn; 3305 } 3306 return 0; 3307 } 3308 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3309 3310 void mark_page_dirty_in_slot(struct kvm *kvm, 3311 const struct kvm_memory_slot *memslot, 3312 gfn_t gfn) 3313 { 3314 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3315 3316 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3317 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3318 return; 3319 3320 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3321 #endif 3322 3323 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3324 unsigned long rel_gfn = gfn - memslot->base_gfn; 3325 u32 slot = (memslot->as_id << 16) | memslot->id; 3326 3327 if (kvm->dirty_ring_size && vcpu) 3328 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3329 else if (memslot->dirty_bitmap) 3330 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3331 } 3332 } 3333 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3334 3335 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3336 { 3337 struct kvm_memory_slot *memslot; 3338 3339 memslot = gfn_to_memslot(kvm, gfn); 3340 mark_page_dirty_in_slot(kvm, memslot, gfn); 3341 } 3342 EXPORT_SYMBOL_GPL(mark_page_dirty); 3343 3344 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3345 { 3346 struct kvm_memory_slot *memslot; 3347 3348 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3349 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3350 } 3351 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3352 3353 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3354 { 3355 if (!vcpu->sigset_active) 3356 return; 3357 3358 /* 3359 * This does a lockless modification of ->real_blocked, which is fine 3360 * because, only current can change ->real_blocked and all readers of 3361 * ->real_blocked don't care as long ->real_blocked is always a subset 3362 * of ->blocked. 3363 */ 3364 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3365 } 3366 3367 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3368 { 3369 if (!vcpu->sigset_active) 3370 return; 3371 3372 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3373 sigemptyset(¤t->real_blocked); 3374 } 3375 3376 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3377 { 3378 unsigned int old, val, grow, grow_start; 3379 3380 old = val = vcpu->halt_poll_ns; 3381 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3382 grow = READ_ONCE(halt_poll_ns_grow); 3383 if (!grow) 3384 goto out; 3385 3386 val *= grow; 3387 if (val < grow_start) 3388 val = grow_start; 3389 3390 vcpu->halt_poll_ns = val; 3391 out: 3392 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3393 } 3394 3395 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3396 { 3397 unsigned int old, val, shrink, grow_start; 3398 3399 old = val = vcpu->halt_poll_ns; 3400 shrink = READ_ONCE(halt_poll_ns_shrink); 3401 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3402 if (shrink == 0) 3403 val = 0; 3404 else 3405 val /= shrink; 3406 3407 if (val < grow_start) 3408 val = 0; 3409 3410 vcpu->halt_poll_ns = val; 3411 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3412 } 3413 3414 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3415 { 3416 int ret = -EINTR; 3417 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3418 3419 if (kvm_arch_vcpu_runnable(vcpu)) 3420 goto out; 3421 if (kvm_cpu_has_pending_timer(vcpu)) 3422 goto out; 3423 if (signal_pending(current)) 3424 goto out; 3425 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3426 goto out; 3427 3428 ret = 0; 3429 out: 3430 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3431 return ret; 3432 } 3433 3434 /* 3435 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3436 * pending. This is mostly used when halting a vCPU, but may also be used 3437 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3438 */ 3439 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3440 { 3441 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3442 bool waited = false; 3443 3444 vcpu->stat.generic.blocking = 1; 3445 3446 preempt_disable(); 3447 kvm_arch_vcpu_blocking(vcpu); 3448 prepare_to_rcuwait(wait); 3449 preempt_enable(); 3450 3451 for (;;) { 3452 set_current_state(TASK_INTERRUPTIBLE); 3453 3454 if (kvm_vcpu_check_block(vcpu) < 0) 3455 break; 3456 3457 waited = true; 3458 schedule(); 3459 } 3460 3461 preempt_disable(); 3462 finish_rcuwait(wait); 3463 kvm_arch_vcpu_unblocking(vcpu); 3464 preempt_enable(); 3465 3466 vcpu->stat.generic.blocking = 0; 3467 3468 return waited; 3469 } 3470 3471 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3472 ktime_t end, bool success) 3473 { 3474 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3475 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3476 3477 ++vcpu->stat.generic.halt_attempted_poll; 3478 3479 if (success) { 3480 ++vcpu->stat.generic.halt_successful_poll; 3481 3482 if (!vcpu_valid_wakeup(vcpu)) 3483 ++vcpu->stat.generic.halt_poll_invalid; 3484 3485 stats->halt_poll_success_ns += poll_ns; 3486 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3487 } else { 3488 stats->halt_poll_fail_ns += poll_ns; 3489 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3490 } 3491 } 3492 3493 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3494 { 3495 struct kvm *kvm = vcpu->kvm; 3496 3497 if (kvm->override_halt_poll_ns) { 3498 /* 3499 * Ensure kvm->max_halt_poll_ns is not read before 3500 * kvm->override_halt_poll_ns. 3501 * 3502 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3503 */ 3504 smp_rmb(); 3505 return READ_ONCE(kvm->max_halt_poll_ns); 3506 } 3507 3508 return READ_ONCE(halt_poll_ns); 3509 } 3510 3511 /* 3512 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3513 * polling is enabled, busy wait for a short time before blocking to avoid the 3514 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3515 * is halted. 3516 */ 3517 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3518 { 3519 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3520 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3521 ktime_t start, cur, poll_end; 3522 bool waited = false; 3523 bool do_halt_poll; 3524 u64 halt_ns; 3525 3526 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3527 vcpu->halt_poll_ns = max_halt_poll_ns; 3528 3529 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3530 3531 start = cur = poll_end = ktime_get(); 3532 if (do_halt_poll) { 3533 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3534 3535 do { 3536 if (kvm_vcpu_check_block(vcpu) < 0) 3537 goto out; 3538 cpu_relax(); 3539 poll_end = cur = ktime_get(); 3540 } while (kvm_vcpu_can_poll(cur, stop)); 3541 } 3542 3543 waited = kvm_vcpu_block(vcpu); 3544 3545 cur = ktime_get(); 3546 if (waited) { 3547 vcpu->stat.generic.halt_wait_ns += 3548 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3549 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3550 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3551 } 3552 out: 3553 /* The total time the vCPU was "halted", including polling time. */ 3554 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3555 3556 /* 3557 * Note, halt-polling is considered successful so long as the vCPU was 3558 * never actually scheduled out, i.e. even if the wake event arrived 3559 * after of the halt-polling loop itself, but before the full wait. 3560 */ 3561 if (do_halt_poll) 3562 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3563 3564 if (halt_poll_allowed) { 3565 /* Recompute the max halt poll time in case it changed. */ 3566 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3567 3568 if (!vcpu_valid_wakeup(vcpu)) { 3569 shrink_halt_poll_ns(vcpu); 3570 } else if (max_halt_poll_ns) { 3571 if (halt_ns <= vcpu->halt_poll_ns) 3572 ; 3573 /* we had a long block, shrink polling */ 3574 else if (vcpu->halt_poll_ns && 3575 halt_ns > max_halt_poll_ns) 3576 shrink_halt_poll_ns(vcpu); 3577 /* we had a short halt and our poll time is too small */ 3578 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3579 halt_ns < max_halt_poll_ns) 3580 grow_halt_poll_ns(vcpu); 3581 } else { 3582 vcpu->halt_poll_ns = 0; 3583 } 3584 } 3585 3586 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3587 } 3588 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3589 3590 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3591 { 3592 if (__kvm_vcpu_wake_up(vcpu)) { 3593 WRITE_ONCE(vcpu->ready, true); 3594 ++vcpu->stat.generic.halt_wakeup; 3595 return true; 3596 } 3597 3598 return false; 3599 } 3600 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3601 3602 #ifndef CONFIG_S390 3603 /* 3604 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3605 */ 3606 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3607 { 3608 int me, cpu; 3609 3610 if (kvm_vcpu_wake_up(vcpu)) 3611 return; 3612 3613 me = get_cpu(); 3614 /* 3615 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3616 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3617 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3618 * within the vCPU thread itself. 3619 */ 3620 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3621 if (vcpu->mode == IN_GUEST_MODE) 3622 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3623 goto out; 3624 } 3625 3626 /* 3627 * Note, the vCPU could get migrated to a different pCPU at any point 3628 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3629 * IPI to the previous pCPU. But, that's ok because the purpose of the 3630 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3631 * vCPU also requires it to leave IN_GUEST_MODE. 3632 */ 3633 if (kvm_arch_vcpu_should_kick(vcpu)) { 3634 cpu = READ_ONCE(vcpu->cpu); 3635 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3636 smp_send_reschedule(cpu); 3637 } 3638 out: 3639 put_cpu(); 3640 } 3641 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3642 #endif /* !CONFIG_S390 */ 3643 3644 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3645 { 3646 struct pid *pid; 3647 struct task_struct *task = NULL; 3648 int ret = 0; 3649 3650 rcu_read_lock(); 3651 pid = rcu_dereference(target->pid); 3652 if (pid) 3653 task = get_pid_task(pid, PIDTYPE_PID); 3654 rcu_read_unlock(); 3655 if (!task) 3656 return ret; 3657 ret = yield_to(task, 1); 3658 put_task_struct(task); 3659 3660 return ret; 3661 } 3662 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3663 3664 /* 3665 * Helper that checks whether a VCPU is eligible for directed yield. 3666 * Most eligible candidate to yield is decided by following heuristics: 3667 * 3668 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3669 * (preempted lock holder), indicated by @in_spin_loop. 3670 * Set at the beginning and cleared at the end of interception/PLE handler. 3671 * 3672 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3673 * chance last time (mostly it has become eligible now since we have probably 3674 * yielded to lockholder in last iteration. This is done by toggling 3675 * @dy_eligible each time a VCPU checked for eligibility.) 3676 * 3677 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3678 * to preempted lock-holder could result in wrong VCPU selection and CPU 3679 * burning. Giving priority for a potential lock-holder increases lock 3680 * progress. 3681 * 3682 * Since algorithm is based on heuristics, accessing another VCPU data without 3683 * locking does not harm. It may result in trying to yield to same VCPU, fail 3684 * and continue with next VCPU and so on. 3685 */ 3686 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3687 { 3688 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3689 bool eligible; 3690 3691 eligible = !vcpu->spin_loop.in_spin_loop || 3692 vcpu->spin_loop.dy_eligible; 3693 3694 if (vcpu->spin_loop.in_spin_loop) 3695 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3696 3697 return eligible; 3698 #else 3699 return true; 3700 #endif 3701 } 3702 3703 /* 3704 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3705 * a vcpu_load/vcpu_put pair. However, for most architectures 3706 * kvm_arch_vcpu_runnable does not require vcpu_load. 3707 */ 3708 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3709 { 3710 return kvm_arch_vcpu_runnable(vcpu); 3711 } 3712 3713 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3714 { 3715 if (kvm_arch_dy_runnable(vcpu)) 3716 return true; 3717 3718 #ifdef CONFIG_KVM_ASYNC_PF 3719 if (!list_empty_careful(&vcpu->async_pf.done)) 3720 return true; 3721 #endif 3722 3723 return false; 3724 } 3725 3726 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3727 { 3728 return false; 3729 } 3730 3731 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3732 { 3733 struct kvm *kvm = me->kvm; 3734 struct kvm_vcpu *vcpu; 3735 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3736 unsigned long i; 3737 int yielded = 0; 3738 int try = 3; 3739 int pass; 3740 3741 kvm_vcpu_set_in_spin_loop(me, true); 3742 /* 3743 * We boost the priority of a VCPU that is runnable but not 3744 * currently running, because it got preempted by something 3745 * else and called schedule in __vcpu_run. Hopefully that 3746 * VCPU is holding the lock that we need and will release it. 3747 * We approximate round-robin by starting at the last boosted VCPU. 3748 */ 3749 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3750 kvm_for_each_vcpu(i, vcpu, kvm) { 3751 if (!pass && i <= last_boosted_vcpu) { 3752 i = last_boosted_vcpu; 3753 continue; 3754 } else if (pass && i > last_boosted_vcpu) 3755 break; 3756 if (!READ_ONCE(vcpu->ready)) 3757 continue; 3758 if (vcpu == me) 3759 continue; 3760 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3761 continue; 3762 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3763 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3764 !kvm_arch_vcpu_in_kernel(vcpu)) 3765 continue; 3766 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3767 continue; 3768 3769 yielded = kvm_vcpu_yield_to(vcpu); 3770 if (yielded > 0) { 3771 kvm->last_boosted_vcpu = i; 3772 break; 3773 } else if (yielded < 0) { 3774 try--; 3775 if (!try) 3776 break; 3777 } 3778 } 3779 } 3780 kvm_vcpu_set_in_spin_loop(me, false); 3781 3782 /* Ensure vcpu is not eligible during next spinloop */ 3783 kvm_vcpu_set_dy_eligible(me, false); 3784 } 3785 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3786 3787 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3788 { 3789 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3790 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3791 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3792 kvm->dirty_ring_size / PAGE_SIZE); 3793 #else 3794 return false; 3795 #endif 3796 } 3797 3798 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3799 { 3800 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3801 struct page *page; 3802 3803 if (vmf->pgoff == 0) 3804 page = virt_to_page(vcpu->run); 3805 #ifdef CONFIG_X86 3806 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3807 page = virt_to_page(vcpu->arch.pio_data); 3808 #endif 3809 #ifdef CONFIG_KVM_MMIO 3810 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3811 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3812 #endif 3813 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3814 page = kvm_dirty_ring_get_page( 3815 &vcpu->dirty_ring, 3816 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3817 else 3818 return kvm_arch_vcpu_fault(vcpu, vmf); 3819 get_page(page); 3820 vmf->page = page; 3821 return 0; 3822 } 3823 3824 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3825 .fault = kvm_vcpu_fault, 3826 }; 3827 3828 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3829 { 3830 struct kvm_vcpu *vcpu = file->private_data; 3831 unsigned long pages = vma_pages(vma); 3832 3833 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3834 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3835 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3836 return -EINVAL; 3837 3838 vma->vm_ops = &kvm_vcpu_vm_ops; 3839 return 0; 3840 } 3841 3842 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3843 { 3844 struct kvm_vcpu *vcpu = filp->private_data; 3845 3846 kvm_put_kvm(vcpu->kvm); 3847 return 0; 3848 } 3849 3850 static const struct file_operations kvm_vcpu_fops = { 3851 .release = kvm_vcpu_release, 3852 .unlocked_ioctl = kvm_vcpu_ioctl, 3853 .mmap = kvm_vcpu_mmap, 3854 .llseek = noop_llseek, 3855 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3856 }; 3857 3858 /* 3859 * Allocates an inode for the vcpu. 3860 */ 3861 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3862 { 3863 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3864 3865 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3866 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3867 } 3868 3869 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3870 static int vcpu_get_pid(void *data, u64 *val) 3871 { 3872 struct kvm_vcpu *vcpu = data; 3873 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3874 return 0; 3875 } 3876 3877 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3878 3879 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3880 { 3881 struct dentry *debugfs_dentry; 3882 char dir_name[ITOA_MAX_LEN * 2]; 3883 3884 if (!debugfs_initialized()) 3885 return; 3886 3887 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3888 debugfs_dentry = debugfs_create_dir(dir_name, 3889 vcpu->kvm->debugfs_dentry); 3890 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3891 &vcpu_get_pid_fops); 3892 3893 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3894 } 3895 #endif 3896 3897 /* 3898 * Creates some virtual cpus. Good luck creating more than one. 3899 */ 3900 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3901 { 3902 int r; 3903 struct kvm_vcpu *vcpu; 3904 struct page *page; 3905 3906 if (id >= KVM_MAX_VCPU_IDS) 3907 return -EINVAL; 3908 3909 mutex_lock(&kvm->lock); 3910 if (kvm->created_vcpus >= kvm->max_vcpus) { 3911 mutex_unlock(&kvm->lock); 3912 return -EINVAL; 3913 } 3914 3915 r = kvm_arch_vcpu_precreate(kvm, id); 3916 if (r) { 3917 mutex_unlock(&kvm->lock); 3918 return r; 3919 } 3920 3921 kvm->created_vcpus++; 3922 mutex_unlock(&kvm->lock); 3923 3924 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3925 if (!vcpu) { 3926 r = -ENOMEM; 3927 goto vcpu_decrement; 3928 } 3929 3930 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3931 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3932 if (!page) { 3933 r = -ENOMEM; 3934 goto vcpu_free; 3935 } 3936 vcpu->run = page_address(page); 3937 3938 kvm_vcpu_init(vcpu, kvm, id); 3939 3940 r = kvm_arch_vcpu_create(vcpu); 3941 if (r) 3942 goto vcpu_free_run_page; 3943 3944 if (kvm->dirty_ring_size) { 3945 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3946 id, kvm->dirty_ring_size); 3947 if (r) 3948 goto arch_vcpu_destroy; 3949 } 3950 3951 mutex_lock(&kvm->lock); 3952 3953 #ifdef CONFIG_LOCKDEP 3954 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 3955 mutex_lock(&vcpu->mutex); 3956 mutex_unlock(&vcpu->mutex); 3957 #endif 3958 3959 if (kvm_get_vcpu_by_id(kvm, id)) { 3960 r = -EEXIST; 3961 goto unlock_vcpu_destroy; 3962 } 3963 3964 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3965 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 3966 if (r) 3967 goto unlock_vcpu_destroy; 3968 3969 /* Now it's all set up, let userspace reach it */ 3970 kvm_get_kvm(kvm); 3971 r = create_vcpu_fd(vcpu); 3972 if (r < 0) 3973 goto kvm_put_xa_release; 3974 3975 if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 3976 r = -EINVAL; 3977 goto kvm_put_xa_release; 3978 } 3979 3980 /* 3981 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3982 * pointer before kvm->online_vcpu's incremented value. 3983 */ 3984 smp_wmb(); 3985 atomic_inc(&kvm->online_vcpus); 3986 3987 mutex_unlock(&kvm->lock); 3988 kvm_arch_vcpu_postcreate(vcpu); 3989 kvm_create_vcpu_debugfs(vcpu); 3990 return r; 3991 3992 kvm_put_xa_release: 3993 kvm_put_kvm_no_destroy(kvm); 3994 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 3995 unlock_vcpu_destroy: 3996 mutex_unlock(&kvm->lock); 3997 kvm_dirty_ring_free(&vcpu->dirty_ring); 3998 arch_vcpu_destroy: 3999 kvm_arch_vcpu_destroy(vcpu); 4000 vcpu_free_run_page: 4001 free_page((unsigned long)vcpu->run); 4002 vcpu_free: 4003 kmem_cache_free(kvm_vcpu_cache, vcpu); 4004 vcpu_decrement: 4005 mutex_lock(&kvm->lock); 4006 kvm->created_vcpus--; 4007 mutex_unlock(&kvm->lock); 4008 return r; 4009 } 4010 4011 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4012 { 4013 if (sigset) { 4014 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4015 vcpu->sigset_active = 1; 4016 vcpu->sigset = *sigset; 4017 } else 4018 vcpu->sigset_active = 0; 4019 return 0; 4020 } 4021 4022 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4023 size_t size, loff_t *offset) 4024 { 4025 struct kvm_vcpu *vcpu = file->private_data; 4026 4027 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4028 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4029 sizeof(vcpu->stat), user_buffer, size, offset); 4030 } 4031 4032 static const struct file_operations kvm_vcpu_stats_fops = { 4033 .read = kvm_vcpu_stats_read, 4034 .llseek = noop_llseek, 4035 }; 4036 4037 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4038 { 4039 int fd; 4040 struct file *file; 4041 char name[15 + ITOA_MAX_LEN + 1]; 4042 4043 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4044 4045 fd = get_unused_fd_flags(O_CLOEXEC); 4046 if (fd < 0) 4047 return fd; 4048 4049 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4050 if (IS_ERR(file)) { 4051 put_unused_fd(fd); 4052 return PTR_ERR(file); 4053 } 4054 file->f_mode |= FMODE_PREAD; 4055 fd_install(fd, file); 4056 4057 return fd; 4058 } 4059 4060 static long kvm_vcpu_ioctl(struct file *filp, 4061 unsigned int ioctl, unsigned long arg) 4062 { 4063 struct kvm_vcpu *vcpu = filp->private_data; 4064 void __user *argp = (void __user *)arg; 4065 int r; 4066 struct kvm_fpu *fpu = NULL; 4067 struct kvm_sregs *kvm_sregs = NULL; 4068 4069 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4070 return -EIO; 4071 4072 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4073 return -EINVAL; 4074 4075 /* 4076 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4077 * execution; mutex_lock() would break them. 4078 */ 4079 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4080 if (r != -ENOIOCTLCMD) 4081 return r; 4082 4083 if (mutex_lock_killable(&vcpu->mutex)) 4084 return -EINTR; 4085 switch (ioctl) { 4086 case KVM_RUN: { 4087 struct pid *oldpid; 4088 r = -EINVAL; 4089 if (arg) 4090 goto out; 4091 oldpid = rcu_access_pointer(vcpu->pid); 4092 if (unlikely(oldpid != task_pid(current))) { 4093 /* The thread running this VCPU changed. */ 4094 struct pid *newpid; 4095 4096 r = kvm_arch_vcpu_run_pid_change(vcpu); 4097 if (r) 4098 break; 4099 4100 newpid = get_task_pid(current, PIDTYPE_PID); 4101 rcu_assign_pointer(vcpu->pid, newpid); 4102 if (oldpid) 4103 synchronize_rcu(); 4104 put_pid(oldpid); 4105 } 4106 r = kvm_arch_vcpu_ioctl_run(vcpu); 4107 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4108 break; 4109 } 4110 case KVM_GET_REGS: { 4111 struct kvm_regs *kvm_regs; 4112 4113 r = -ENOMEM; 4114 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4115 if (!kvm_regs) 4116 goto out; 4117 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4118 if (r) 4119 goto out_free1; 4120 r = -EFAULT; 4121 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4122 goto out_free1; 4123 r = 0; 4124 out_free1: 4125 kfree(kvm_regs); 4126 break; 4127 } 4128 case KVM_SET_REGS: { 4129 struct kvm_regs *kvm_regs; 4130 4131 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4132 if (IS_ERR(kvm_regs)) { 4133 r = PTR_ERR(kvm_regs); 4134 goto out; 4135 } 4136 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4137 kfree(kvm_regs); 4138 break; 4139 } 4140 case KVM_GET_SREGS: { 4141 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4142 GFP_KERNEL_ACCOUNT); 4143 r = -ENOMEM; 4144 if (!kvm_sregs) 4145 goto out; 4146 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4147 if (r) 4148 goto out; 4149 r = -EFAULT; 4150 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4151 goto out; 4152 r = 0; 4153 break; 4154 } 4155 case KVM_SET_SREGS: { 4156 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4157 if (IS_ERR(kvm_sregs)) { 4158 r = PTR_ERR(kvm_sregs); 4159 kvm_sregs = NULL; 4160 goto out; 4161 } 4162 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4163 break; 4164 } 4165 case KVM_GET_MP_STATE: { 4166 struct kvm_mp_state mp_state; 4167 4168 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4169 if (r) 4170 goto out; 4171 r = -EFAULT; 4172 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4173 goto out; 4174 r = 0; 4175 break; 4176 } 4177 case KVM_SET_MP_STATE: { 4178 struct kvm_mp_state mp_state; 4179 4180 r = -EFAULT; 4181 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4182 goto out; 4183 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4184 break; 4185 } 4186 case KVM_TRANSLATE: { 4187 struct kvm_translation tr; 4188 4189 r = -EFAULT; 4190 if (copy_from_user(&tr, argp, sizeof(tr))) 4191 goto out; 4192 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4193 if (r) 4194 goto out; 4195 r = -EFAULT; 4196 if (copy_to_user(argp, &tr, sizeof(tr))) 4197 goto out; 4198 r = 0; 4199 break; 4200 } 4201 case KVM_SET_GUEST_DEBUG: { 4202 struct kvm_guest_debug dbg; 4203 4204 r = -EFAULT; 4205 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4206 goto out; 4207 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4208 break; 4209 } 4210 case KVM_SET_SIGNAL_MASK: { 4211 struct kvm_signal_mask __user *sigmask_arg = argp; 4212 struct kvm_signal_mask kvm_sigmask; 4213 sigset_t sigset, *p; 4214 4215 p = NULL; 4216 if (argp) { 4217 r = -EFAULT; 4218 if (copy_from_user(&kvm_sigmask, argp, 4219 sizeof(kvm_sigmask))) 4220 goto out; 4221 r = -EINVAL; 4222 if (kvm_sigmask.len != sizeof(sigset)) 4223 goto out; 4224 r = -EFAULT; 4225 if (copy_from_user(&sigset, sigmask_arg->sigset, 4226 sizeof(sigset))) 4227 goto out; 4228 p = &sigset; 4229 } 4230 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4231 break; 4232 } 4233 case KVM_GET_FPU: { 4234 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4235 r = -ENOMEM; 4236 if (!fpu) 4237 goto out; 4238 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4239 if (r) 4240 goto out; 4241 r = -EFAULT; 4242 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4243 goto out; 4244 r = 0; 4245 break; 4246 } 4247 case KVM_SET_FPU: { 4248 fpu = memdup_user(argp, sizeof(*fpu)); 4249 if (IS_ERR(fpu)) { 4250 r = PTR_ERR(fpu); 4251 fpu = NULL; 4252 goto out; 4253 } 4254 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4255 break; 4256 } 4257 case KVM_GET_STATS_FD: { 4258 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4259 break; 4260 } 4261 default: 4262 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4263 } 4264 out: 4265 mutex_unlock(&vcpu->mutex); 4266 kfree(fpu); 4267 kfree(kvm_sregs); 4268 return r; 4269 } 4270 4271 #ifdef CONFIG_KVM_COMPAT 4272 static long kvm_vcpu_compat_ioctl(struct file *filp, 4273 unsigned int ioctl, unsigned long arg) 4274 { 4275 struct kvm_vcpu *vcpu = filp->private_data; 4276 void __user *argp = compat_ptr(arg); 4277 int r; 4278 4279 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4280 return -EIO; 4281 4282 switch (ioctl) { 4283 case KVM_SET_SIGNAL_MASK: { 4284 struct kvm_signal_mask __user *sigmask_arg = argp; 4285 struct kvm_signal_mask kvm_sigmask; 4286 sigset_t sigset; 4287 4288 if (argp) { 4289 r = -EFAULT; 4290 if (copy_from_user(&kvm_sigmask, argp, 4291 sizeof(kvm_sigmask))) 4292 goto out; 4293 r = -EINVAL; 4294 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4295 goto out; 4296 r = -EFAULT; 4297 if (get_compat_sigset(&sigset, 4298 (compat_sigset_t __user *)sigmask_arg->sigset)) 4299 goto out; 4300 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4301 } else 4302 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4303 break; 4304 } 4305 default: 4306 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4307 } 4308 4309 out: 4310 return r; 4311 } 4312 #endif 4313 4314 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4315 { 4316 struct kvm_device *dev = filp->private_data; 4317 4318 if (dev->ops->mmap) 4319 return dev->ops->mmap(dev, vma); 4320 4321 return -ENODEV; 4322 } 4323 4324 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4325 int (*accessor)(struct kvm_device *dev, 4326 struct kvm_device_attr *attr), 4327 unsigned long arg) 4328 { 4329 struct kvm_device_attr attr; 4330 4331 if (!accessor) 4332 return -EPERM; 4333 4334 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4335 return -EFAULT; 4336 4337 return accessor(dev, &attr); 4338 } 4339 4340 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4341 unsigned long arg) 4342 { 4343 struct kvm_device *dev = filp->private_data; 4344 4345 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4346 return -EIO; 4347 4348 switch (ioctl) { 4349 case KVM_SET_DEVICE_ATTR: 4350 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4351 case KVM_GET_DEVICE_ATTR: 4352 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4353 case KVM_HAS_DEVICE_ATTR: 4354 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4355 default: 4356 if (dev->ops->ioctl) 4357 return dev->ops->ioctl(dev, ioctl, arg); 4358 4359 return -ENOTTY; 4360 } 4361 } 4362 4363 static int kvm_device_release(struct inode *inode, struct file *filp) 4364 { 4365 struct kvm_device *dev = filp->private_data; 4366 struct kvm *kvm = dev->kvm; 4367 4368 if (dev->ops->release) { 4369 mutex_lock(&kvm->lock); 4370 list_del(&dev->vm_node); 4371 dev->ops->release(dev); 4372 mutex_unlock(&kvm->lock); 4373 } 4374 4375 kvm_put_kvm(kvm); 4376 return 0; 4377 } 4378 4379 static const struct file_operations kvm_device_fops = { 4380 .unlocked_ioctl = kvm_device_ioctl, 4381 .release = kvm_device_release, 4382 KVM_COMPAT(kvm_device_ioctl), 4383 .mmap = kvm_device_mmap, 4384 }; 4385 4386 struct kvm_device *kvm_device_from_filp(struct file *filp) 4387 { 4388 if (filp->f_op != &kvm_device_fops) 4389 return NULL; 4390 4391 return filp->private_data; 4392 } 4393 4394 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4395 #ifdef CONFIG_KVM_MPIC 4396 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4397 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4398 #endif 4399 }; 4400 4401 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4402 { 4403 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4404 return -ENOSPC; 4405 4406 if (kvm_device_ops_table[type] != NULL) 4407 return -EEXIST; 4408 4409 kvm_device_ops_table[type] = ops; 4410 return 0; 4411 } 4412 4413 void kvm_unregister_device_ops(u32 type) 4414 { 4415 if (kvm_device_ops_table[type] != NULL) 4416 kvm_device_ops_table[type] = NULL; 4417 } 4418 4419 static int kvm_ioctl_create_device(struct kvm *kvm, 4420 struct kvm_create_device *cd) 4421 { 4422 const struct kvm_device_ops *ops; 4423 struct kvm_device *dev; 4424 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4425 int type; 4426 int ret; 4427 4428 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4429 return -ENODEV; 4430 4431 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4432 ops = kvm_device_ops_table[type]; 4433 if (ops == NULL) 4434 return -ENODEV; 4435 4436 if (test) 4437 return 0; 4438 4439 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4440 if (!dev) 4441 return -ENOMEM; 4442 4443 dev->ops = ops; 4444 dev->kvm = kvm; 4445 4446 mutex_lock(&kvm->lock); 4447 ret = ops->create(dev, type); 4448 if (ret < 0) { 4449 mutex_unlock(&kvm->lock); 4450 kfree(dev); 4451 return ret; 4452 } 4453 list_add(&dev->vm_node, &kvm->devices); 4454 mutex_unlock(&kvm->lock); 4455 4456 if (ops->init) 4457 ops->init(dev); 4458 4459 kvm_get_kvm(kvm); 4460 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4461 if (ret < 0) { 4462 kvm_put_kvm_no_destroy(kvm); 4463 mutex_lock(&kvm->lock); 4464 list_del(&dev->vm_node); 4465 if (ops->release) 4466 ops->release(dev); 4467 mutex_unlock(&kvm->lock); 4468 if (ops->destroy) 4469 ops->destroy(dev); 4470 return ret; 4471 } 4472 4473 cd->fd = ret; 4474 return 0; 4475 } 4476 4477 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4478 { 4479 switch (arg) { 4480 case KVM_CAP_USER_MEMORY: 4481 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4482 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4483 case KVM_CAP_INTERNAL_ERROR_DATA: 4484 #ifdef CONFIG_HAVE_KVM_MSI 4485 case KVM_CAP_SIGNAL_MSI: 4486 #endif 4487 #ifdef CONFIG_HAVE_KVM_IRQFD 4488 case KVM_CAP_IRQFD: 4489 #endif 4490 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4491 case KVM_CAP_CHECK_EXTENSION_VM: 4492 case KVM_CAP_ENABLE_CAP_VM: 4493 case KVM_CAP_HALT_POLL: 4494 return 1; 4495 #ifdef CONFIG_KVM_MMIO 4496 case KVM_CAP_COALESCED_MMIO: 4497 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4498 case KVM_CAP_COALESCED_PIO: 4499 return 1; 4500 #endif 4501 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4502 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4503 return KVM_DIRTY_LOG_MANUAL_CAPS; 4504 #endif 4505 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4506 case KVM_CAP_IRQ_ROUTING: 4507 return KVM_MAX_IRQ_ROUTES; 4508 #endif 4509 #if KVM_ADDRESS_SPACE_NUM > 1 4510 case KVM_CAP_MULTI_ADDRESS_SPACE: 4511 return KVM_ADDRESS_SPACE_NUM; 4512 #endif 4513 case KVM_CAP_NR_MEMSLOTS: 4514 return KVM_USER_MEM_SLOTS; 4515 case KVM_CAP_DIRTY_LOG_RING: 4516 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4517 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4518 #else 4519 return 0; 4520 #endif 4521 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4522 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4523 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4524 #else 4525 return 0; 4526 #endif 4527 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4528 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4529 #endif 4530 case KVM_CAP_BINARY_STATS_FD: 4531 case KVM_CAP_SYSTEM_EVENT_DATA: 4532 return 1; 4533 default: 4534 break; 4535 } 4536 return kvm_vm_ioctl_check_extension(kvm, arg); 4537 } 4538 4539 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4540 { 4541 int r; 4542 4543 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4544 return -EINVAL; 4545 4546 /* the size should be power of 2 */ 4547 if (!size || (size & (size - 1))) 4548 return -EINVAL; 4549 4550 /* Should be bigger to keep the reserved entries, or a page */ 4551 if (size < kvm_dirty_ring_get_rsvd_entries() * 4552 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4553 return -EINVAL; 4554 4555 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4556 sizeof(struct kvm_dirty_gfn)) 4557 return -E2BIG; 4558 4559 /* We only allow it to set once */ 4560 if (kvm->dirty_ring_size) 4561 return -EINVAL; 4562 4563 mutex_lock(&kvm->lock); 4564 4565 if (kvm->created_vcpus) { 4566 /* We don't allow to change this value after vcpu created */ 4567 r = -EINVAL; 4568 } else { 4569 kvm->dirty_ring_size = size; 4570 r = 0; 4571 } 4572 4573 mutex_unlock(&kvm->lock); 4574 return r; 4575 } 4576 4577 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4578 { 4579 unsigned long i; 4580 struct kvm_vcpu *vcpu; 4581 int cleared = 0; 4582 4583 if (!kvm->dirty_ring_size) 4584 return -EINVAL; 4585 4586 mutex_lock(&kvm->slots_lock); 4587 4588 kvm_for_each_vcpu(i, vcpu, kvm) 4589 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4590 4591 mutex_unlock(&kvm->slots_lock); 4592 4593 if (cleared) 4594 kvm_flush_remote_tlbs(kvm); 4595 4596 return cleared; 4597 } 4598 4599 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4600 struct kvm_enable_cap *cap) 4601 { 4602 return -EINVAL; 4603 } 4604 4605 static bool kvm_are_all_memslots_empty(struct kvm *kvm) 4606 { 4607 int i; 4608 4609 lockdep_assert_held(&kvm->slots_lock); 4610 4611 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 4612 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4613 return false; 4614 } 4615 4616 return true; 4617 } 4618 4619 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4620 struct kvm_enable_cap *cap) 4621 { 4622 switch (cap->cap) { 4623 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4624 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4625 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4626 4627 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4628 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4629 4630 if (cap->flags || (cap->args[0] & ~allowed_options)) 4631 return -EINVAL; 4632 kvm->manual_dirty_log_protect = cap->args[0]; 4633 return 0; 4634 } 4635 #endif 4636 case KVM_CAP_HALT_POLL: { 4637 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4638 return -EINVAL; 4639 4640 kvm->max_halt_poll_ns = cap->args[0]; 4641 4642 /* 4643 * Ensure kvm->override_halt_poll_ns does not become visible 4644 * before kvm->max_halt_poll_ns. 4645 * 4646 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4647 */ 4648 smp_wmb(); 4649 kvm->override_halt_poll_ns = true; 4650 4651 return 0; 4652 } 4653 case KVM_CAP_DIRTY_LOG_RING: 4654 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4655 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4656 return -EINVAL; 4657 4658 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4659 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4660 int r = -EINVAL; 4661 4662 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4663 !kvm->dirty_ring_size || cap->flags) 4664 return r; 4665 4666 mutex_lock(&kvm->slots_lock); 4667 4668 /* 4669 * For simplicity, allow enabling ring+bitmap if and only if 4670 * there are no memslots, e.g. to ensure all memslots allocate 4671 * a bitmap after the capability is enabled. 4672 */ 4673 if (kvm_are_all_memslots_empty(kvm)) { 4674 kvm->dirty_ring_with_bitmap = true; 4675 r = 0; 4676 } 4677 4678 mutex_unlock(&kvm->slots_lock); 4679 4680 return r; 4681 } 4682 default: 4683 return kvm_vm_ioctl_enable_cap(kvm, cap); 4684 } 4685 } 4686 4687 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4688 size_t size, loff_t *offset) 4689 { 4690 struct kvm *kvm = file->private_data; 4691 4692 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4693 &kvm_vm_stats_desc[0], &kvm->stat, 4694 sizeof(kvm->stat), user_buffer, size, offset); 4695 } 4696 4697 static const struct file_operations kvm_vm_stats_fops = { 4698 .read = kvm_vm_stats_read, 4699 .llseek = noop_llseek, 4700 }; 4701 4702 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4703 { 4704 int fd; 4705 struct file *file; 4706 4707 fd = get_unused_fd_flags(O_CLOEXEC); 4708 if (fd < 0) 4709 return fd; 4710 4711 file = anon_inode_getfile("kvm-vm-stats", 4712 &kvm_vm_stats_fops, kvm, O_RDONLY); 4713 if (IS_ERR(file)) { 4714 put_unused_fd(fd); 4715 return PTR_ERR(file); 4716 } 4717 file->f_mode |= FMODE_PREAD; 4718 fd_install(fd, file); 4719 4720 return fd; 4721 } 4722 4723 static long kvm_vm_ioctl(struct file *filp, 4724 unsigned int ioctl, unsigned long arg) 4725 { 4726 struct kvm *kvm = filp->private_data; 4727 void __user *argp = (void __user *)arg; 4728 int r; 4729 4730 if (kvm->mm != current->mm || kvm->vm_dead) 4731 return -EIO; 4732 switch (ioctl) { 4733 case KVM_CREATE_VCPU: 4734 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4735 break; 4736 case KVM_ENABLE_CAP: { 4737 struct kvm_enable_cap cap; 4738 4739 r = -EFAULT; 4740 if (copy_from_user(&cap, argp, sizeof(cap))) 4741 goto out; 4742 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4743 break; 4744 } 4745 case KVM_SET_USER_MEMORY_REGION: { 4746 struct kvm_userspace_memory_region kvm_userspace_mem; 4747 4748 r = -EFAULT; 4749 if (copy_from_user(&kvm_userspace_mem, argp, 4750 sizeof(kvm_userspace_mem))) 4751 goto out; 4752 4753 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4754 break; 4755 } 4756 case KVM_GET_DIRTY_LOG: { 4757 struct kvm_dirty_log log; 4758 4759 r = -EFAULT; 4760 if (copy_from_user(&log, argp, sizeof(log))) 4761 goto out; 4762 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4763 break; 4764 } 4765 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4766 case KVM_CLEAR_DIRTY_LOG: { 4767 struct kvm_clear_dirty_log log; 4768 4769 r = -EFAULT; 4770 if (copy_from_user(&log, argp, sizeof(log))) 4771 goto out; 4772 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4773 break; 4774 } 4775 #endif 4776 #ifdef CONFIG_KVM_MMIO 4777 case KVM_REGISTER_COALESCED_MMIO: { 4778 struct kvm_coalesced_mmio_zone zone; 4779 4780 r = -EFAULT; 4781 if (copy_from_user(&zone, argp, sizeof(zone))) 4782 goto out; 4783 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4784 break; 4785 } 4786 case KVM_UNREGISTER_COALESCED_MMIO: { 4787 struct kvm_coalesced_mmio_zone zone; 4788 4789 r = -EFAULT; 4790 if (copy_from_user(&zone, argp, sizeof(zone))) 4791 goto out; 4792 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4793 break; 4794 } 4795 #endif 4796 case KVM_IRQFD: { 4797 struct kvm_irqfd data; 4798 4799 r = -EFAULT; 4800 if (copy_from_user(&data, argp, sizeof(data))) 4801 goto out; 4802 r = kvm_irqfd(kvm, &data); 4803 break; 4804 } 4805 case KVM_IOEVENTFD: { 4806 struct kvm_ioeventfd data; 4807 4808 r = -EFAULT; 4809 if (copy_from_user(&data, argp, sizeof(data))) 4810 goto out; 4811 r = kvm_ioeventfd(kvm, &data); 4812 break; 4813 } 4814 #ifdef CONFIG_HAVE_KVM_MSI 4815 case KVM_SIGNAL_MSI: { 4816 struct kvm_msi msi; 4817 4818 r = -EFAULT; 4819 if (copy_from_user(&msi, argp, sizeof(msi))) 4820 goto out; 4821 r = kvm_send_userspace_msi(kvm, &msi); 4822 break; 4823 } 4824 #endif 4825 #ifdef __KVM_HAVE_IRQ_LINE 4826 case KVM_IRQ_LINE_STATUS: 4827 case KVM_IRQ_LINE: { 4828 struct kvm_irq_level irq_event; 4829 4830 r = -EFAULT; 4831 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4832 goto out; 4833 4834 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4835 ioctl == KVM_IRQ_LINE_STATUS); 4836 if (r) 4837 goto out; 4838 4839 r = -EFAULT; 4840 if (ioctl == KVM_IRQ_LINE_STATUS) { 4841 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4842 goto out; 4843 } 4844 4845 r = 0; 4846 break; 4847 } 4848 #endif 4849 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4850 case KVM_SET_GSI_ROUTING: { 4851 struct kvm_irq_routing routing; 4852 struct kvm_irq_routing __user *urouting; 4853 struct kvm_irq_routing_entry *entries = NULL; 4854 4855 r = -EFAULT; 4856 if (copy_from_user(&routing, argp, sizeof(routing))) 4857 goto out; 4858 r = -EINVAL; 4859 if (!kvm_arch_can_set_irq_routing(kvm)) 4860 goto out; 4861 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4862 goto out; 4863 if (routing.flags) 4864 goto out; 4865 if (routing.nr) { 4866 urouting = argp; 4867 entries = vmemdup_user(urouting->entries, 4868 array_size(sizeof(*entries), 4869 routing.nr)); 4870 if (IS_ERR(entries)) { 4871 r = PTR_ERR(entries); 4872 goto out; 4873 } 4874 } 4875 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4876 routing.flags); 4877 kvfree(entries); 4878 break; 4879 } 4880 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4881 case KVM_CREATE_DEVICE: { 4882 struct kvm_create_device cd; 4883 4884 r = -EFAULT; 4885 if (copy_from_user(&cd, argp, sizeof(cd))) 4886 goto out; 4887 4888 r = kvm_ioctl_create_device(kvm, &cd); 4889 if (r) 4890 goto out; 4891 4892 r = -EFAULT; 4893 if (copy_to_user(argp, &cd, sizeof(cd))) 4894 goto out; 4895 4896 r = 0; 4897 break; 4898 } 4899 case KVM_CHECK_EXTENSION: 4900 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4901 break; 4902 case KVM_RESET_DIRTY_RINGS: 4903 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4904 break; 4905 case KVM_GET_STATS_FD: 4906 r = kvm_vm_ioctl_get_stats_fd(kvm); 4907 break; 4908 default: 4909 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4910 } 4911 out: 4912 return r; 4913 } 4914 4915 #ifdef CONFIG_KVM_COMPAT 4916 struct compat_kvm_dirty_log { 4917 __u32 slot; 4918 __u32 padding1; 4919 union { 4920 compat_uptr_t dirty_bitmap; /* one bit per page */ 4921 __u64 padding2; 4922 }; 4923 }; 4924 4925 struct compat_kvm_clear_dirty_log { 4926 __u32 slot; 4927 __u32 num_pages; 4928 __u64 first_page; 4929 union { 4930 compat_uptr_t dirty_bitmap; /* one bit per page */ 4931 __u64 padding2; 4932 }; 4933 }; 4934 4935 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 4936 unsigned long arg) 4937 { 4938 return -ENOTTY; 4939 } 4940 4941 static long kvm_vm_compat_ioctl(struct file *filp, 4942 unsigned int ioctl, unsigned long arg) 4943 { 4944 struct kvm *kvm = filp->private_data; 4945 int r; 4946 4947 if (kvm->mm != current->mm || kvm->vm_dead) 4948 return -EIO; 4949 4950 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 4951 if (r != -ENOTTY) 4952 return r; 4953 4954 switch (ioctl) { 4955 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4956 case KVM_CLEAR_DIRTY_LOG: { 4957 struct compat_kvm_clear_dirty_log compat_log; 4958 struct kvm_clear_dirty_log log; 4959 4960 if (copy_from_user(&compat_log, (void __user *)arg, 4961 sizeof(compat_log))) 4962 return -EFAULT; 4963 log.slot = compat_log.slot; 4964 log.num_pages = compat_log.num_pages; 4965 log.first_page = compat_log.first_page; 4966 log.padding2 = compat_log.padding2; 4967 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4968 4969 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4970 break; 4971 } 4972 #endif 4973 case KVM_GET_DIRTY_LOG: { 4974 struct compat_kvm_dirty_log compat_log; 4975 struct kvm_dirty_log log; 4976 4977 if (copy_from_user(&compat_log, (void __user *)arg, 4978 sizeof(compat_log))) 4979 return -EFAULT; 4980 log.slot = compat_log.slot; 4981 log.padding1 = compat_log.padding1; 4982 log.padding2 = compat_log.padding2; 4983 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4984 4985 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4986 break; 4987 } 4988 default: 4989 r = kvm_vm_ioctl(filp, ioctl, arg); 4990 } 4991 return r; 4992 } 4993 #endif 4994 4995 static const struct file_operations kvm_vm_fops = { 4996 .release = kvm_vm_release, 4997 .unlocked_ioctl = kvm_vm_ioctl, 4998 .llseek = noop_llseek, 4999 KVM_COMPAT(kvm_vm_compat_ioctl), 5000 }; 5001 5002 bool file_is_kvm(struct file *file) 5003 { 5004 return file && file->f_op == &kvm_vm_fops; 5005 } 5006 EXPORT_SYMBOL_GPL(file_is_kvm); 5007 5008 static int kvm_dev_ioctl_create_vm(unsigned long type) 5009 { 5010 char fdname[ITOA_MAX_LEN + 1]; 5011 int r, fd; 5012 struct kvm *kvm; 5013 struct file *file; 5014 5015 fd = get_unused_fd_flags(O_CLOEXEC); 5016 if (fd < 0) 5017 return fd; 5018 5019 snprintf(fdname, sizeof(fdname), "%d", fd); 5020 5021 kvm = kvm_create_vm(type, fdname); 5022 if (IS_ERR(kvm)) { 5023 r = PTR_ERR(kvm); 5024 goto put_fd; 5025 } 5026 5027 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5028 if (IS_ERR(file)) { 5029 r = PTR_ERR(file); 5030 goto put_kvm; 5031 } 5032 5033 /* 5034 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5035 * already set, with ->release() being kvm_vm_release(). In error 5036 * cases it will be called by the final fput(file) and will take 5037 * care of doing kvm_put_kvm(kvm). 5038 */ 5039 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5040 5041 fd_install(fd, file); 5042 return fd; 5043 5044 put_kvm: 5045 kvm_put_kvm(kvm); 5046 put_fd: 5047 put_unused_fd(fd); 5048 return r; 5049 } 5050 5051 static long kvm_dev_ioctl(struct file *filp, 5052 unsigned int ioctl, unsigned long arg) 5053 { 5054 int r = -EINVAL; 5055 5056 switch (ioctl) { 5057 case KVM_GET_API_VERSION: 5058 if (arg) 5059 goto out; 5060 r = KVM_API_VERSION; 5061 break; 5062 case KVM_CREATE_VM: 5063 r = kvm_dev_ioctl_create_vm(arg); 5064 break; 5065 case KVM_CHECK_EXTENSION: 5066 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5067 break; 5068 case KVM_GET_VCPU_MMAP_SIZE: 5069 if (arg) 5070 goto out; 5071 r = PAGE_SIZE; /* struct kvm_run */ 5072 #ifdef CONFIG_X86 5073 r += PAGE_SIZE; /* pio data page */ 5074 #endif 5075 #ifdef CONFIG_KVM_MMIO 5076 r += PAGE_SIZE; /* coalesced mmio ring page */ 5077 #endif 5078 break; 5079 case KVM_TRACE_ENABLE: 5080 case KVM_TRACE_PAUSE: 5081 case KVM_TRACE_DISABLE: 5082 r = -EOPNOTSUPP; 5083 break; 5084 default: 5085 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5086 } 5087 out: 5088 return r; 5089 } 5090 5091 static struct file_operations kvm_chardev_ops = { 5092 .unlocked_ioctl = kvm_dev_ioctl, 5093 .llseek = noop_llseek, 5094 KVM_COMPAT(kvm_dev_ioctl), 5095 }; 5096 5097 static struct miscdevice kvm_dev = { 5098 KVM_MINOR, 5099 "kvm", 5100 &kvm_chardev_ops, 5101 }; 5102 5103 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5104 __visible bool kvm_rebooting; 5105 EXPORT_SYMBOL_GPL(kvm_rebooting); 5106 5107 static DEFINE_PER_CPU(bool, hardware_enabled); 5108 static int kvm_usage_count; 5109 5110 static int __hardware_enable_nolock(void) 5111 { 5112 if (__this_cpu_read(hardware_enabled)) 5113 return 0; 5114 5115 if (kvm_arch_hardware_enable()) { 5116 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5117 raw_smp_processor_id()); 5118 return -EIO; 5119 } 5120 5121 __this_cpu_write(hardware_enabled, true); 5122 return 0; 5123 } 5124 5125 static void hardware_enable_nolock(void *failed) 5126 { 5127 if (__hardware_enable_nolock()) 5128 atomic_inc(failed); 5129 } 5130 5131 static int kvm_online_cpu(unsigned int cpu) 5132 { 5133 int ret = 0; 5134 5135 /* 5136 * Abort the CPU online process if hardware virtualization cannot 5137 * be enabled. Otherwise running VMs would encounter unrecoverable 5138 * errors when scheduled to this CPU. 5139 */ 5140 mutex_lock(&kvm_lock); 5141 if (kvm_usage_count) 5142 ret = __hardware_enable_nolock(); 5143 mutex_unlock(&kvm_lock); 5144 return ret; 5145 } 5146 5147 static void hardware_disable_nolock(void *junk) 5148 { 5149 /* 5150 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5151 * hardware, not just CPUs that successfully enabled hardware! 5152 */ 5153 if (!__this_cpu_read(hardware_enabled)) 5154 return; 5155 5156 kvm_arch_hardware_disable(); 5157 5158 __this_cpu_write(hardware_enabled, false); 5159 } 5160 5161 static int kvm_offline_cpu(unsigned int cpu) 5162 { 5163 mutex_lock(&kvm_lock); 5164 if (kvm_usage_count) 5165 hardware_disable_nolock(NULL); 5166 mutex_unlock(&kvm_lock); 5167 return 0; 5168 } 5169 5170 static void hardware_disable_all_nolock(void) 5171 { 5172 BUG_ON(!kvm_usage_count); 5173 5174 kvm_usage_count--; 5175 if (!kvm_usage_count) 5176 on_each_cpu(hardware_disable_nolock, NULL, 1); 5177 } 5178 5179 static void hardware_disable_all(void) 5180 { 5181 cpus_read_lock(); 5182 mutex_lock(&kvm_lock); 5183 hardware_disable_all_nolock(); 5184 mutex_unlock(&kvm_lock); 5185 cpus_read_unlock(); 5186 } 5187 5188 static int hardware_enable_all(void) 5189 { 5190 atomic_t failed = ATOMIC_INIT(0); 5191 int r; 5192 5193 /* 5194 * Do not enable hardware virtualization if the system is going down. 5195 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5196 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5197 * after kvm_reboot() is called. Note, this relies on system_state 5198 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5199 * hook instead of registering a dedicated reboot notifier (the latter 5200 * runs before system_state is updated). 5201 */ 5202 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5203 system_state == SYSTEM_RESTART) 5204 return -EBUSY; 5205 5206 /* 5207 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5208 * is called, and so on_each_cpu() between them includes the CPU that 5209 * is being onlined. As a result, hardware_enable_nolock() may get 5210 * invoked before kvm_online_cpu(), which also enables hardware if the 5211 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5212 * enable hardware multiple times. 5213 */ 5214 cpus_read_lock(); 5215 mutex_lock(&kvm_lock); 5216 5217 r = 0; 5218 5219 kvm_usage_count++; 5220 if (kvm_usage_count == 1) { 5221 on_each_cpu(hardware_enable_nolock, &failed, 1); 5222 5223 if (atomic_read(&failed)) { 5224 hardware_disable_all_nolock(); 5225 r = -EBUSY; 5226 } 5227 } 5228 5229 mutex_unlock(&kvm_lock); 5230 cpus_read_unlock(); 5231 5232 return r; 5233 } 5234 5235 static void kvm_shutdown(void) 5236 { 5237 /* 5238 * Disable hardware virtualization and set kvm_rebooting to indicate 5239 * that KVM has asynchronously disabled hardware virtualization, i.e. 5240 * that relevant errors and exceptions aren't entirely unexpected. 5241 * Some flavors of hardware virtualization need to be disabled before 5242 * transferring control to firmware (to perform shutdown/reboot), e.g. 5243 * on x86, virtualization can block INIT interrupts, which are used by 5244 * firmware to pull APs back under firmware control. Note, this path 5245 * is used for both shutdown and reboot scenarios, i.e. neither name is 5246 * 100% comprehensive. 5247 */ 5248 pr_info("kvm: exiting hardware virtualization\n"); 5249 kvm_rebooting = true; 5250 on_each_cpu(hardware_disable_nolock, NULL, 1); 5251 } 5252 5253 static int kvm_suspend(void) 5254 { 5255 /* 5256 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5257 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5258 * is stable. Assert that kvm_lock is not held to ensure the system 5259 * isn't suspended while KVM is enabling hardware. Hardware enabling 5260 * can be preempted, but the task cannot be frozen until it has dropped 5261 * all locks (userspace tasks are frozen via a fake signal). 5262 */ 5263 lockdep_assert_not_held(&kvm_lock); 5264 lockdep_assert_irqs_disabled(); 5265 5266 if (kvm_usage_count) 5267 hardware_disable_nolock(NULL); 5268 return 0; 5269 } 5270 5271 static void kvm_resume(void) 5272 { 5273 lockdep_assert_not_held(&kvm_lock); 5274 lockdep_assert_irqs_disabled(); 5275 5276 if (kvm_usage_count) 5277 WARN_ON_ONCE(__hardware_enable_nolock()); 5278 } 5279 5280 static struct syscore_ops kvm_syscore_ops = { 5281 .suspend = kvm_suspend, 5282 .resume = kvm_resume, 5283 .shutdown = kvm_shutdown, 5284 }; 5285 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5286 static int hardware_enable_all(void) 5287 { 5288 return 0; 5289 } 5290 5291 static void hardware_disable_all(void) 5292 { 5293 5294 } 5295 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5296 5297 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5298 { 5299 int i; 5300 5301 for (i = 0; i < bus->dev_count; i++) { 5302 struct kvm_io_device *pos = bus->range[i].dev; 5303 5304 kvm_iodevice_destructor(pos); 5305 } 5306 kfree(bus); 5307 } 5308 5309 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5310 const struct kvm_io_range *r2) 5311 { 5312 gpa_t addr1 = r1->addr; 5313 gpa_t addr2 = r2->addr; 5314 5315 if (addr1 < addr2) 5316 return -1; 5317 5318 /* If r2->len == 0, match the exact address. If r2->len != 0, 5319 * accept any overlapping write. Any order is acceptable for 5320 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5321 * we process all of them. 5322 */ 5323 if (r2->len) { 5324 addr1 += r1->len; 5325 addr2 += r2->len; 5326 } 5327 5328 if (addr1 > addr2) 5329 return 1; 5330 5331 return 0; 5332 } 5333 5334 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5335 { 5336 return kvm_io_bus_cmp(p1, p2); 5337 } 5338 5339 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5340 gpa_t addr, int len) 5341 { 5342 struct kvm_io_range *range, key; 5343 int off; 5344 5345 key = (struct kvm_io_range) { 5346 .addr = addr, 5347 .len = len, 5348 }; 5349 5350 range = bsearch(&key, bus->range, bus->dev_count, 5351 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5352 if (range == NULL) 5353 return -ENOENT; 5354 5355 off = range - bus->range; 5356 5357 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5358 off--; 5359 5360 return off; 5361 } 5362 5363 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5364 struct kvm_io_range *range, const void *val) 5365 { 5366 int idx; 5367 5368 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5369 if (idx < 0) 5370 return -EOPNOTSUPP; 5371 5372 while (idx < bus->dev_count && 5373 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5374 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5375 range->len, val)) 5376 return idx; 5377 idx++; 5378 } 5379 5380 return -EOPNOTSUPP; 5381 } 5382 5383 /* kvm_io_bus_write - called under kvm->slots_lock */ 5384 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5385 int len, const void *val) 5386 { 5387 struct kvm_io_bus *bus; 5388 struct kvm_io_range range; 5389 int r; 5390 5391 range = (struct kvm_io_range) { 5392 .addr = addr, 5393 .len = len, 5394 }; 5395 5396 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5397 if (!bus) 5398 return -ENOMEM; 5399 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5400 return r < 0 ? r : 0; 5401 } 5402 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5403 5404 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5405 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5406 gpa_t addr, int len, const void *val, long cookie) 5407 { 5408 struct kvm_io_bus *bus; 5409 struct kvm_io_range range; 5410 5411 range = (struct kvm_io_range) { 5412 .addr = addr, 5413 .len = len, 5414 }; 5415 5416 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5417 if (!bus) 5418 return -ENOMEM; 5419 5420 /* First try the device referenced by cookie. */ 5421 if ((cookie >= 0) && (cookie < bus->dev_count) && 5422 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5423 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5424 val)) 5425 return cookie; 5426 5427 /* 5428 * cookie contained garbage; fall back to search and return the 5429 * correct cookie value. 5430 */ 5431 return __kvm_io_bus_write(vcpu, bus, &range, val); 5432 } 5433 5434 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5435 struct kvm_io_range *range, void *val) 5436 { 5437 int idx; 5438 5439 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5440 if (idx < 0) 5441 return -EOPNOTSUPP; 5442 5443 while (idx < bus->dev_count && 5444 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5445 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5446 range->len, val)) 5447 return idx; 5448 idx++; 5449 } 5450 5451 return -EOPNOTSUPP; 5452 } 5453 5454 /* kvm_io_bus_read - called under kvm->slots_lock */ 5455 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5456 int len, void *val) 5457 { 5458 struct kvm_io_bus *bus; 5459 struct kvm_io_range range; 5460 int r; 5461 5462 range = (struct kvm_io_range) { 5463 .addr = addr, 5464 .len = len, 5465 }; 5466 5467 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5468 if (!bus) 5469 return -ENOMEM; 5470 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5471 return r < 0 ? r : 0; 5472 } 5473 5474 /* Caller must hold slots_lock. */ 5475 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5476 int len, struct kvm_io_device *dev) 5477 { 5478 int i; 5479 struct kvm_io_bus *new_bus, *bus; 5480 struct kvm_io_range range; 5481 5482 bus = kvm_get_bus(kvm, bus_idx); 5483 if (!bus) 5484 return -ENOMEM; 5485 5486 /* exclude ioeventfd which is limited by maximum fd */ 5487 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5488 return -ENOSPC; 5489 5490 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5491 GFP_KERNEL_ACCOUNT); 5492 if (!new_bus) 5493 return -ENOMEM; 5494 5495 range = (struct kvm_io_range) { 5496 .addr = addr, 5497 .len = len, 5498 .dev = dev, 5499 }; 5500 5501 for (i = 0; i < bus->dev_count; i++) 5502 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5503 break; 5504 5505 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5506 new_bus->dev_count++; 5507 new_bus->range[i] = range; 5508 memcpy(new_bus->range + i + 1, bus->range + i, 5509 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5510 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5511 synchronize_srcu_expedited(&kvm->srcu); 5512 kfree(bus); 5513 5514 return 0; 5515 } 5516 5517 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5518 struct kvm_io_device *dev) 5519 { 5520 int i, j; 5521 struct kvm_io_bus *new_bus, *bus; 5522 5523 lockdep_assert_held(&kvm->slots_lock); 5524 5525 bus = kvm_get_bus(kvm, bus_idx); 5526 if (!bus) 5527 return 0; 5528 5529 for (i = 0; i < bus->dev_count; i++) { 5530 if (bus->range[i].dev == dev) { 5531 break; 5532 } 5533 } 5534 5535 if (i == bus->dev_count) 5536 return 0; 5537 5538 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5539 GFP_KERNEL_ACCOUNT); 5540 if (new_bus) { 5541 memcpy(new_bus, bus, struct_size(bus, range, i)); 5542 new_bus->dev_count--; 5543 memcpy(new_bus->range + i, bus->range + i + 1, 5544 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5545 } 5546 5547 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5548 synchronize_srcu_expedited(&kvm->srcu); 5549 5550 /* Destroy the old bus _after_ installing the (null) bus. */ 5551 if (!new_bus) { 5552 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5553 for (j = 0; j < bus->dev_count; j++) { 5554 if (j == i) 5555 continue; 5556 kvm_iodevice_destructor(bus->range[j].dev); 5557 } 5558 } 5559 5560 kfree(bus); 5561 return new_bus ? 0 : -ENOMEM; 5562 } 5563 5564 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5565 gpa_t addr) 5566 { 5567 struct kvm_io_bus *bus; 5568 int dev_idx, srcu_idx; 5569 struct kvm_io_device *iodev = NULL; 5570 5571 srcu_idx = srcu_read_lock(&kvm->srcu); 5572 5573 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5574 if (!bus) 5575 goto out_unlock; 5576 5577 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5578 if (dev_idx < 0) 5579 goto out_unlock; 5580 5581 iodev = bus->range[dev_idx].dev; 5582 5583 out_unlock: 5584 srcu_read_unlock(&kvm->srcu, srcu_idx); 5585 5586 return iodev; 5587 } 5588 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5589 5590 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5591 int (*get)(void *, u64 *), int (*set)(void *, u64), 5592 const char *fmt) 5593 { 5594 int ret; 5595 struct kvm_stat_data *stat_data = inode->i_private; 5596 5597 /* 5598 * The debugfs files are a reference to the kvm struct which 5599 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5600 * avoids the race between open and the removal of the debugfs directory. 5601 */ 5602 if (!kvm_get_kvm_safe(stat_data->kvm)) 5603 return -ENOENT; 5604 5605 ret = simple_attr_open(inode, file, get, 5606 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5607 ? set : NULL, fmt); 5608 if (ret) 5609 kvm_put_kvm(stat_data->kvm); 5610 5611 return ret; 5612 } 5613 5614 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5615 { 5616 struct kvm_stat_data *stat_data = inode->i_private; 5617 5618 simple_attr_release(inode, file); 5619 kvm_put_kvm(stat_data->kvm); 5620 5621 return 0; 5622 } 5623 5624 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5625 { 5626 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5627 5628 return 0; 5629 } 5630 5631 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5632 { 5633 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5634 5635 return 0; 5636 } 5637 5638 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5639 { 5640 unsigned long i; 5641 struct kvm_vcpu *vcpu; 5642 5643 *val = 0; 5644 5645 kvm_for_each_vcpu(i, vcpu, kvm) 5646 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5647 5648 return 0; 5649 } 5650 5651 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5652 { 5653 unsigned long i; 5654 struct kvm_vcpu *vcpu; 5655 5656 kvm_for_each_vcpu(i, vcpu, kvm) 5657 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5658 5659 return 0; 5660 } 5661 5662 static int kvm_stat_data_get(void *data, u64 *val) 5663 { 5664 int r = -EFAULT; 5665 struct kvm_stat_data *stat_data = data; 5666 5667 switch (stat_data->kind) { 5668 case KVM_STAT_VM: 5669 r = kvm_get_stat_per_vm(stat_data->kvm, 5670 stat_data->desc->desc.offset, val); 5671 break; 5672 case KVM_STAT_VCPU: 5673 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5674 stat_data->desc->desc.offset, val); 5675 break; 5676 } 5677 5678 return r; 5679 } 5680 5681 static int kvm_stat_data_clear(void *data, u64 val) 5682 { 5683 int r = -EFAULT; 5684 struct kvm_stat_data *stat_data = data; 5685 5686 if (val) 5687 return -EINVAL; 5688 5689 switch (stat_data->kind) { 5690 case KVM_STAT_VM: 5691 r = kvm_clear_stat_per_vm(stat_data->kvm, 5692 stat_data->desc->desc.offset); 5693 break; 5694 case KVM_STAT_VCPU: 5695 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5696 stat_data->desc->desc.offset); 5697 break; 5698 } 5699 5700 return r; 5701 } 5702 5703 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5704 { 5705 __simple_attr_check_format("%llu\n", 0ull); 5706 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5707 kvm_stat_data_clear, "%llu\n"); 5708 } 5709 5710 static const struct file_operations stat_fops_per_vm = { 5711 .owner = THIS_MODULE, 5712 .open = kvm_stat_data_open, 5713 .release = kvm_debugfs_release, 5714 .read = simple_attr_read, 5715 .write = simple_attr_write, 5716 .llseek = no_llseek, 5717 }; 5718 5719 static int vm_stat_get(void *_offset, u64 *val) 5720 { 5721 unsigned offset = (long)_offset; 5722 struct kvm *kvm; 5723 u64 tmp_val; 5724 5725 *val = 0; 5726 mutex_lock(&kvm_lock); 5727 list_for_each_entry(kvm, &vm_list, vm_list) { 5728 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5729 *val += tmp_val; 5730 } 5731 mutex_unlock(&kvm_lock); 5732 return 0; 5733 } 5734 5735 static int vm_stat_clear(void *_offset, u64 val) 5736 { 5737 unsigned offset = (long)_offset; 5738 struct kvm *kvm; 5739 5740 if (val) 5741 return -EINVAL; 5742 5743 mutex_lock(&kvm_lock); 5744 list_for_each_entry(kvm, &vm_list, vm_list) { 5745 kvm_clear_stat_per_vm(kvm, offset); 5746 } 5747 mutex_unlock(&kvm_lock); 5748 5749 return 0; 5750 } 5751 5752 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5753 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5754 5755 static int vcpu_stat_get(void *_offset, u64 *val) 5756 { 5757 unsigned offset = (long)_offset; 5758 struct kvm *kvm; 5759 u64 tmp_val; 5760 5761 *val = 0; 5762 mutex_lock(&kvm_lock); 5763 list_for_each_entry(kvm, &vm_list, vm_list) { 5764 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5765 *val += tmp_val; 5766 } 5767 mutex_unlock(&kvm_lock); 5768 return 0; 5769 } 5770 5771 static int vcpu_stat_clear(void *_offset, u64 val) 5772 { 5773 unsigned offset = (long)_offset; 5774 struct kvm *kvm; 5775 5776 if (val) 5777 return -EINVAL; 5778 5779 mutex_lock(&kvm_lock); 5780 list_for_each_entry(kvm, &vm_list, vm_list) { 5781 kvm_clear_stat_per_vcpu(kvm, offset); 5782 } 5783 mutex_unlock(&kvm_lock); 5784 5785 return 0; 5786 } 5787 5788 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5789 "%llu\n"); 5790 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5791 5792 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5793 { 5794 struct kobj_uevent_env *env; 5795 unsigned long long created, active; 5796 5797 if (!kvm_dev.this_device || !kvm) 5798 return; 5799 5800 mutex_lock(&kvm_lock); 5801 if (type == KVM_EVENT_CREATE_VM) { 5802 kvm_createvm_count++; 5803 kvm_active_vms++; 5804 } else if (type == KVM_EVENT_DESTROY_VM) { 5805 kvm_active_vms--; 5806 } 5807 created = kvm_createvm_count; 5808 active = kvm_active_vms; 5809 mutex_unlock(&kvm_lock); 5810 5811 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5812 if (!env) 5813 return; 5814 5815 add_uevent_var(env, "CREATED=%llu", created); 5816 add_uevent_var(env, "COUNT=%llu", active); 5817 5818 if (type == KVM_EVENT_CREATE_VM) { 5819 add_uevent_var(env, "EVENT=create"); 5820 kvm->userspace_pid = task_pid_nr(current); 5821 } else if (type == KVM_EVENT_DESTROY_VM) { 5822 add_uevent_var(env, "EVENT=destroy"); 5823 } 5824 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5825 5826 if (!IS_ERR(kvm->debugfs_dentry)) { 5827 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5828 5829 if (p) { 5830 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5831 if (!IS_ERR(tmp)) 5832 add_uevent_var(env, "STATS_PATH=%s", tmp); 5833 kfree(p); 5834 } 5835 } 5836 /* no need for checks, since we are adding at most only 5 keys */ 5837 env->envp[env->envp_idx++] = NULL; 5838 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5839 kfree(env); 5840 } 5841 5842 static void kvm_init_debug(void) 5843 { 5844 const struct file_operations *fops; 5845 const struct _kvm_stats_desc *pdesc; 5846 int i; 5847 5848 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5849 5850 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5851 pdesc = &kvm_vm_stats_desc[i]; 5852 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5853 fops = &vm_stat_fops; 5854 else 5855 fops = &vm_stat_readonly_fops; 5856 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5857 kvm_debugfs_dir, 5858 (void *)(long)pdesc->desc.offset, fops); 5859 } 5860 5861 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5862 pdesc = &kvm_vcpu_stats_desc[i]; 5863 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5864 fops = &vcpu_stat_fops; 5865 else 5866 fops = &vcpu_stat_readonly_fops; 5867 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5868 kvm_debugfs_dir, 5869 (void *)(long)pdesc->desc.offset, fops); 5870 } 5871 } 5872 5873 static inline 5874 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5875 { 5876 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5877 } 5878 5879 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5880 { 5881 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5882 5883 WRITE_ONCE(vcpu->preempted, false); 5884 WRITE_ONCE(vcpu->ready, false); 5885 5886 __this_cpu_write(kvm_running_vcpu, vcpu); 5887 kvm_arch_sched_in(vcpu, cpu); 5888 kvm_arch_vcpu_load(vcpu, cpu); 5889 } 5890 5891 static void kvm_sched_out(struct preempt_notifier *pn, 5892 struct task_struct *next) 5893 { 5894 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5895 5896 if (current->on_rq) { 5897 WRITE_ONCE(vcpu->preempted, true); 5898 WRITE_ONCE(vcpu->ready, true); 5899 } 5900 kvm_arch_vcpu_put(vcpu); 5901 __this_cpu_write(kvm_running_vcpu, NULL); 5902 } 5903 5904 /** 5905 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5906 * 5907 * We can disable preemption locally around accessing the per-CPU variable, 5908 * and use the resolved vcpu pointer after enabling preemption again, 5909 * because even if the current thread is migrated to another CPU, reading 5910 * the per-CPU value later will give us the same value as we update the 5911 * per-CPU variable in the preempt notifier handlers. 5912 */ 5913 struct kvm_vcpu *kvm_get_running_vcpu(void) 5914 { 5915 struct kvm_vcpu *vcpu; 5916 5917 preempt_disable(); 5918 vcpu = __this_cpu_read(kvm_running_vcpu); 5919 preempt_enable(); 5920 5921 return vcpu; 5922 } 5923 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5924 5925 /** 5926 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5927 */ 5928 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5929 { 5930 return &kvm_running_vcpu; 5931 } 5932 5933 #ifdef CONFIG_GUEST_PERF_EVENTS 5934 static unsigned int kvm_guest_state(void) 5935 { 5936 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5937 unsigned int state; 5938 5939 if (!kvm_arch_pmi_in_guest(vcpu)) 5940 return 0; 5941 5942 state = PERF_GUEST_ACTIVE; 5943 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5944 state |= PERF_GUEST_USER; 5945 5946 return state; 5947 } 5948 5949 static unsigned long kvm_guest_get_ip(void) 5950 { 5951 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5952 5953 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5954 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5955 return 0; 5956 5957 return kvm_arch_vcpu_get_ip(vcpu); 5958 } 5959 5960 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5961 .state = kvm_guest_state, 5962 .get_ip = kvm_guest_get_ip, 5963 .handle_intel_pt_intr = NULL, 5964 }; 5965 5966 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5967 { 5968 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5969 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5970 } 5971 void kvm_unregister_perf_callbacks(void) 5972 { 5973 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5974 } 5975 #endif 5976 5977 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 5978 { 5979 int r; 5980 int cpu; 5981 5982 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5983 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5984 kvm_online_cpu, kvm_offline_cpu); 5985 if (r) 5986 return r; 5987 5988 register_syscore_ops(&kvm_syscore_ops); 5989 #endif 5990 5991 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5992 if (!vcpu_align) 5993 vcpu_align = __alignof__(struct kvm_vcpu); 5994 kvm_vcpu_cache = 5995 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5996 SLAB_ACCOUNT, 5997 offsetof(struct kvm_vcpu, arch), 5998 offsetofend(struct kvm_vcpu, stats_id) 5999 - offsetof(struct kvm_vcpu, arch), 6000 NULL); 6001 if (!kvm_vcpu_cache) { 6002 r = -ENOMEM; 6003 goto err_vcpu_cache; 6004 } 6005 6006 for_each_possible_cpu(cpu) { 6007 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6008 GFP_KERNEL, cpu_to_node(cpu))) { 6009 r = -ENOMEM; 6010 goto err_cpu_kick_mask; 6011 } 6012 } 6013 6014 r = kvm_irqfd_init(); 6015 if (r) 6016 goto err_irqfd; 6017 6018 r = kvm_async_pf_init(); 6019 if (r) 6020 goto err_async_pf; 6021 6022 kvm_chardev_ops.owner = module; 6023 6024 kvm_preempt_ops.sched_in = kvm_sched_in; 6025 kvm_preempt_ops.sched_out = kvm_sched_out; 6026 6027 kvm_init_debug(); 6028 6029 r = kvm_vfio_ops_init(); 6030 if (WARN_ON_ONCE(r)) 6031 goto err_vfio; 6032 6033 /* 6034 * Registration _must_ be the very last thing done, as this exposes 6035 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6036 */ 6037 r = misc_register(&kvm_dev); 6038 if (r) { 6039 pr_err("kvm: misc device register failed\n"); 6040 goto err_register; 6041 } 6042 6043 return 0; 6044 6045 err_register: 6046 kvm_vfio_ops_exit(); 6047 err_vfio: 6048 kvm_async_pf_deinit(); 6049 err_async_pf: 6050 kvm_irqfd_exit(); 6051 err_irqfd: 6052 err_cpu_kick_mask: 6053 for_each_possible_cpu(cpu) 6054 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6055 kmem_cache_destroy(kvm_vcpu_cache); 6056 err_vcpu_cache: 6057 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6058 unregister_syscore_ops(&kvm_syscore_ops); 6059 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6060 #endif 6061 return r; 6062 } 6063 EXPORT_SYMBOL_GPL(kvm_init); 6064 6065 void kvm_exit(void) 6066 { 6067 int cpu; 6068 6069 /* 6070 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6071 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6072 * to KVM while the module is being stopped. 6073 */ 6074 misc_deregister(&kvm_dev); 6075 6076 debugfs_remove_recursive(kvm_debugfs_dir); 6077 for_each_possible_cpu(cpu) 6078 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6079 kmem_cache_destroy(kvm_vcpu_cache); 6080 kvm_vfio_ops_exit(); 6081 kvm_async_pf_deinit(); 6082 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6083 unregister_syscore_ops(&kvm_syscore_ops); 6084 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6085 #endif 6086 kvm_irqfd_exit(); 6087 } 6088 EXPORT_SYMBOL_GPL(kvm_exit); 6089 6090 struct kvm_vm_worker_thread_context { 6091 struct kvm *kvm; 6092 struct task_struct *parent; 6093 struct completion init_done; 6094 kvm_vm_thread_fn_t thread_fn; 6095 uintptr_t data; 6096 int err; 6097 }; 6098 6099 static int kvm_vm_worker_thread(void *context) 6100 { 6101 /* 6102 * The init_context is allocated on the stack of the parent thread, so 6103 * we have to locally copy anything that is needed beyond initialization 6104 */ 6105 struct kvm_vm_worker_thread_context *init_context = context; 6106 struct task_struct *parent; 6107 struct kvm *kvm = init_context->kvm; 6108 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6109 uintptr_t data = init_context->data; 6110 int err; 6111 6112 err = kthread_park(current); 6113 /* kthread_park(current) is never supposed to return an error */ 6114 WARN_ON(err != 0); 6115 if (err) 6116 goto init_complete; 6117 6118 err = cgroup_attach_task_all(init_context->parent, current); 6119 if (err) { 6120 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6121 __func__, err); 6122 goto init_complete; 6123 } 6124 6125 set_user_nice(current, task_nice(init_context->parent)); 6126 6127 init_complete: 6128 init_context->err = err; 6129 complete(&init_context->init_done); 6130 init_context = NULL; 6131 6132 if (err) 6133 goto out; 6134 6135 /* Wait to be woken up by the spawner before proceeding. */ 6136 kthread_parkme(); 6137 6138 if (!kthread_should_stop()) 6139 err = thread_fn(kvm, data); 6140 6141 out: 6142 /* 6143 * Move kthread back to its original cgroup to prevent it lingering in 6144 * the cgroup of the VM process, after the latter finishes its 6145 * execution. 6146 * 6147 * kthread_stop() waits on the 'exited' completion condition which is 6148 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6149 * kthread is removed from the cgroup in the cgroup_exit() which is 6150 * called after the exit_mm(). This causes the kthread_stop() to return 6151 * before the kthread actually quits the cgroup. 6152 */ 6153 rcu_read_lock(); 6154 parent = rcu_dereference(current->real_parent); 6155 get_task_struct(parent); 6156 rcu_read_unlock(); 6157 cgroup_attach_task_all(parent, current); 6158 put_task_struct(parent); 6159 6160 return err; 6161 } 6162 6163 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6164 uintptr_t data, const char *name, 6165 struct task_struct **thread_ptr) 6166 { 6167 struct kvm_vm_worker_thread_context init_context = {}; 6168 struct task_struct *thread; 6169 6170 *thread_ptr = NULL; 6171 init_context.kvm = kvm; 6172 init_context.parent = current; 6173 init_context.thread_fn = thread_fn; 6174 init_context.data = data; 6175 init_completion(&init_context.init_done); 6176 6177 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6178 "%s-%d", name, task_pid_nr(current)); 6179 if (IS_ERR(thread)) 6180 return PTR_ERR(thread); 6181 6182 /* kthread_run is never supposed to return NULL */ 6183 WARN_ON(thread == NULL); 6184 6185 wait_for_completion(&init_context.init_done); 6186 6187 if (!init_context.err) 6188 *thread_ptr = thread; 6189 6190 return init_context.err; 6191 } 6192