xref: /linux/virt/kvm/kvm_main.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static struct file_operations kvm_chardev_ops;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156 
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160 
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163 	/*
164 	 * The metadata used by is_zone_device_page() to determine whether or
165 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
167 	 * page_count() is zero to help detect bad usage of this helper.
168 	 */
169 	if (WARN_ON_ONCE(!page_count(page)))
170 		return false;
171 
172 	return is_zone_device_page(page);
173 }
174 
175 /*
176  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
178  * is likely incomplete, it has been compiled purely through people wanting to
179  * back guest with a certain type of memory and encountering issues.
180  */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183 	struct page *page;
184 
185 	if (!pfn_valid(pfn))
186 		return NULL;
187 
188 	page = pfn_to_page(pfn);
189 	if (!PageReserved(page))
190 		return page;
191 
192 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 	if (is_zero_pfn(pfn))
194 		return page;
195 
196 	/*
197 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 	 * perspective they are "normal" pages, albeit with slightly different
199 	 * usage rules.
200 	 */
201 	if (kvm_is_zone_device_page(page))
202 		return page;
203 
204 	return NULL;
205 }
206 
207 /*
208  * Switches to specified vcpu, until a matching vcpu_put()
209  */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212 	int cpu = get_cpu();
213 
214 	__this_cpu_write(kvm_running_vcpu, vcpu);
215 	preempt_notifier_register(&vcpu->preempt_notifier);
216 	kvm_arch_vcpu_load(vcpu, cpu);
217 	put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220 
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223 	preempt_disable();
224 	kvm_arch_vcpu_put(vcpu);
225 	preempt_notifier_unregister(&vcpu->preempt_notifier);
226 	__this_cpu_write(kvm_running_vcpu, NULL);
227 	preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230 
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235 
236 	/*
237 	 * We need to wait for the VCPU to reenable interrupts and get out of
238 	 * READING_SHADOW_PAGE_TABLES mode.
239 	 */
240 	if (req & KVM_REQUEST_WAIT)
241 		return mode != OUTSIDE_GUEST_MODE;
242 
243 	/*
244 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 	 */
246 	return mode == IN_GUEST_MODE;
247 }
248 
249 static void ack_kick(void *_completed)
250 {
251 }
252 
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255 	if (cpumask_empty(cpus))
256 		return false;
257 
258 	smp_call_function_many(cpus, ack_kick, NULL, wait);
259 	return true;
260 }
261 
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 				  struct cpumask *tmp, int current_cpu)
264 {
265 	int cpu;
266 
267 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 		__kvm_make_request(req, vcpu);
269 
270 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 		return;
272 
273 	/*
274 	 * Note, the vCPU could get migrated to a different pCPU at any point
275 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
277 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 	 * after this point is also OK, as the requirement is only that KVM wait
280 	 * for vCPUs that were reading SPTEs _before_ any changes were
281 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282 	 */
283 	if (kvm_request_needs_ipi(vcpu, req)) {
284 		cpu = READ_ONCE(vcpu->cpu);
285 		if (cpu != -1 && cpu != current_cpu)
286 			__cpumask_set_cpu(cpu, tmp);
287 	}
288 }
289 
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 				 unsigned long *vcpu_bitmap)
292 {
293 	struct kvm_vcpu *vcpu;
294 	struct cpumask *cpus;
295 	int i, me;
296 	bool called;
297 
298 	me = get_cpu();
299 
300 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 	cpumask_clear(cpus);
302 
303 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 		vcpu = kvm_get_vcpu(kvm, i);
305 		if (!vcpu)
306 			continue;
307 		kvm_make_vcpu_request(vcpu, req, cpus, me);
308 	}
309 
310 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311 	put_cpu();
312 
313 	return called;
314 }
315 
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 				      struct kvm_vcpu *except)
318 {
319 	struct kvm_vcpu *vcpu;
320 	struct cpumask *cpus;
321 	unsigned long i;
322 	bool called;
323 	int me;
324 
325 	me = get_cpu();
326 
327 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 	cpumask_clear(cpus);
329 
330 	kvm_for_each_vcpu(i, vcpu, kvm) {
331 		if (vcpu == except)
332 			continue;
333 		kvm_make_vcpu_request(vcpu, req, cpus, me);
334 	}
335 
336 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337 	put_cpu();
338 
339 	return called;
340 }
341 
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347 
348 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
349 void kvm_flush_remote_tlbs(struct kvm *kvm)
350 {
351 	++kvm->stat.generic.remote_tlb_flush_requests;
352 
353 	/*
354 	 * We want to publish modifications to the page tables before reading
355 	 * mode. Pairs with a memory barrier in arch-specific code.
356 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
357 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
358 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
359 	 *
360 	 * There is already an smp_mb__after_atomic() before
361 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
362 	 * barrier here.
363 	 */
364 	if (!kvm_arch_flush_remote_tlb(kvm)
365 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
366 		++kvm->stat.generic.remote_tlb_flush;
367 }
368 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
369 #endif
370 
371 static void kvm_flush_shadow_all(struct kvm *kvm)
372 {
373 	kvm_arch_flush_shadow_all(kvm);
374 	kvm_arch_guest_memory_reclaimed(kvm);
375 }
376 
377 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
378 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
379 					       gfp_t gfp_flags)
380 {
381 	gfp_flags |= mc->gfp_zero;
382 
383 	if (mc->kmem_cache)
384 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
385 	else
386 		return (void *)__get_free_page(gfp_flags);
387 }
388 
389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
390 {
391 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
392 	void *obj;
393 
394 	if (mc->nobjs >= min)
395 		return 0;
396 
397 	if (unlikely(!mc->objects)) {
398 		if (WARN_ON_ONCE(!capacity))
399 			return -EIO;
400 
401 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
402 		if (!mc->objects)
403 			return -ENOMEM;
404 
405 		mc->capacity = capacity;
406 	}
407 
408 	/* It is illegal to request a different capacity across topups. */
409 	if (WARN_ON_ONCE(mc->capacity != capacity))
410 		return -EIO;
411 
412 	while (mc->nobjs < mc->capacity) {
413 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
414 		if (!obj)
415 			return mc->nobjs >= min ? 0 : -ENOMEM;
416 		mc->objects[mc->nobjs++] = obj;
417 	}
418 	return 0;
419 }
420 
421 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
422 {
423 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
424 }
425 
426 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
427 {
428 	return mc->nobjs;
429 }
430 
431 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
432 {
433 	while (mc->nobjs) {
434 		if (mc->kmem_cache)
435 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
436 		else
437 			free_page((unsigned long)mc->objects[--mc->nobjs]);
438 	}
439 
440 	kvfree(mc->objects);
441 
442 	mc->objects = NULL;
443 	mc->capacity = 0;
444 }
445 
446 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
447 {
448 	void *p;
449 
450 	if (WARN_ON(!mc->nobjs))
451 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
452 	else
453 		p = mc->objects[--mc->nobjs];
454 	BUG_ON(!p);
455 	return p;
456 }
457 #endif
458 
459 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
460 {
461 	mutex_init(&vcpu->mutex);
462 	vcpu->cpu = -1;
463 	vcpu->kvm = kvm;
464 	vcpu->vcpu_id = id;
465 	vcpu->pid = NULL;
466 #ifndef __KVM_HAVE_ARCH_WQP
467 	rcuwait_init(&vcpu->wait);
468 #endif
469 	kvm_async_pf_vcpu_init(vcpu);
470 
471 	kvm_vcpu_set_in_spin_loop(vcpu, false);
472 	kvm_vcpu_set_dy_eligible(vcpu, false);
473 	vcpu->preempted = false;
474 	vcpu->ready = false;
475 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
476 	vcpu->last_used_slot = NULL;
477 
478 	/* Fill the stats id string for the vcpu */
479 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
480 		 task_pid_nr(current), id);
481 }
482 
483 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
484 {
485 	kvm_arch_vcpu_destroy(vcpu);
486 	kvm_dirty_ring_free(&vcpu->dirty_ring);
487 
488 	/*
489 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
490 	 * the vcpu->pid pointer, and at destruction time all file descriptors
491 	 * are already gone.
492 	 */
493 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
494 
495 	free_page((unsigned long)vcpu->run);
496 	kmem_cache_free(kvm_vcpu_cache, vcpu);
497 }
498 
499 void kvm_destroy_vcpus(struct kvm *kvm)
500 {
501 	unsigned long i;
502 	struct kvm_vcpu *vcpu;
503 
504 	kvm_for_each_vcpu(i, vcpu, kvm) {
505 		kvm_vcpu_destroy(vcpu);
506 		xa_erase(&kvm->vcpu_array, i);
507 	}
508 
509 	atomic_set(&kvm->online_vcpus, 0);
510 }
511 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
512 
513 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
514 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
515 {
516 	return container_of(mn, struct kvm, mmu_notifier);
517 }
518 
519 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
520 
521 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
522 			     unsigned long end);
523 
524 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
525 
526 struct kvm_hva_range {
527 	unsigned long start;
528 	unsigned long end;
529 	pte_t pte;
530 	hva_handler_t handler;
531 	on_lock_fn_t on_lock;
532 	on_unlock_fn_t on_unlock;
533 	bool flush_on_ret;
534 	bool may_block;
535 };
536 
537 /*
538  * Use a dedicated stub instead of NULL to indicate that there is no callback
539  * function/handler.  The compiler technically can't guarantee that a real
540  * function will have a non-zero address, and so it will generate code to
541  * check for !NULL, whereas comparing against a stub will be elided at compile
542  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
543  */
544 static void kvm_null_fn(void)
545 {
546 
547 }
548 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
549 
550 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
551 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
552 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
553 	     node;							     \
554 	     node = interval_tree_iter_next(node, start, last))	     \
555 
556 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
557 						  const struct kvm_hva_range *range)
558 {
559 	bool ret = false, locked = false;
560 	struct kvm_gfn_range gfn_range;
561 	struct kvm_memory_slot *slot;
562 	struct kvm_memslots *slots;
563 	int i, idx;
564 
565 	if (WARN_ON_ONCE(range->end <= range->start))
566 		return 0;
567 
568 	/* A null handler is allowed if and only if on_lock() is provided. */
569 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
570 			 IS_KVM_NULL_FN(range->handler)))
571 		return 0;
572 
573 	idx = srcu_read_lock(&kvm->srcu);
574 
575 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576 		struct interval_tree_node *node;
577 
578 		slots = __kvm_memslots(kvm, i);
579 		kvm_for_each_memslot_in_hva_range(node, slots,
580 						  range->start, range->end - 1) {
581 			unsigned long hva_start, hva_end;
582 
583 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
584 			hva_start = max(range->start, slot->userspace_addr);
585 			hva_end = min(range->end, slot->userspace_addr +
586 						  (slot->npages << PAGE_SHIFT));
587 
588 			/*
589 			 * To optimize for the likely case where the address
590 			 * range is covered by zero or one memslots, don't
591 			 * bother making these conditional (to avoid writes on
592 			 * the second or later invocation of the handler).
593 			 */
594 			gfn_range.pte = range->pte;
595 			gfn_range.may_block = range->may_block;
596 
597 			/*
598 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
599 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
600 			 */
601 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
602 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
603 			gfn_range.slot = slot;
604 
605 			if (!locked) {
606 				locked = true;
607 				KVM_MMU_LOCK(kvm);
608 				if (!IS_KVM_NULL_FN(range->on_lock))
609 					range->on_lock(kvm, range->start, range->end);
610 				if (IS_KVM_NULL_FN(range->handler))
611 					break;
612 			}
613 			ret |= range->handler(kvm, &gfn_range);
614 		}
615 	}
616 
617 	if (range->flush_on_ret && ret)
618 		kvm_flush_remote_tlbs(kvm);
619 
620 	if (locked) {
621 		KVM_MMU_UNLOCK(kvm);
622 		if (!IS_KVM_NULL_FN(range->on_unlock))
623 			range->on_unlock(kvm);
624 	}
625 
626 	srcu_read_unlock(&kvm->srcu, idx);
627 
628 	/* The notifiers are averse to booleans. :-( */
629 	return (int)ret;
630 }
631 
632 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
633 						unsigned long start,
634 						unsigned long end,
635 						pte_t pte,
636 						hva_handler_t handler)
637 {
638 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
639 	const struct kvm_hva_range range = {
640 		.start		= start,
641 		.end		= end,
642 		.pte		= pte,
643 		.handler	= handler,
644 		.on_lock	= (void *)kvm_null_fn,
645 		.on_unlock	= (void *)kvm_null_fn,
646 		.flush_on_ret	= true,
647 		.may_block	= false,
648 	};
649 
650 	return __kvm_handle_hva_range(kvm, &range);
651 }
652 
653 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
654 							 unsigned long start,
655 							 unsigned long end,
656 							 hva_handler_t handler)
657 {
658 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
659 	const struct kvm_hva_range range = {
660 		.start		= start,
661 		.end		= end,
662 		.pte		= __pte(0),
663 		.handler	= handler,
664 		.on_lock	= (void *)kvm_null_fn,
665 		.on_unlock	= (void *)kvm_null_fn,
666 		.flush_on_ret	= false,
667 		.may_block	= false,
668 	};
669 
670 	return __kvm_handle_hva_range(kvm, &range);
671 }
672 
673 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
674 {
675 	/*
676 	 * Skipping invalid memslots is correct if and only change_pte() is
677 	 * surrounded by invalidate_range_{start,end}(), which is currently
678 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
679 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
680 	 * doesn't hold references to the old PFN.
681 	 */
682 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
683 
684 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
685 		return false;
686 
687 	return kvm_set_spte_gfn(kvm, range);
688 }
689 
690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
691 					struct mm_struct *mm,
692 					unsigned long address,
693 					pte_t pte)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 
697 	trace_kvm_set_spte_hva(address);
698 
699 	/*
700 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
701 	 * If mmu_invalidate_in_progress is zero, then no in-progress
702 	 * invalidations, including this one, found a relevant memslot at
703 	 * start(); rechecking memslots here is unnecessary.  Note, a false
704 	 * positive (count elevated by a different invalidation) is sub-optimal
705 	 * but functionally ok.
706 	 */
707 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
708 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
709 		return;
710 
711 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
712 }
713 
714 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
715 			      unsigned long end)
716 {
717 	/*
718 	 * The count increase must become visible at unlock time as no
719 	 * spte can be established without taking the mmu_lock and
720 	 * count is also read inside the mmu_lock critical section.
721 	 */
722 	kvm->mmu_invalidate_in_progress++;
723 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
724 		kvm->mmu_invalidate_range_start = start;
725 		kvm->mmu_invalidate_range_end = end;
726 	} else {
727 		/*
728 		 * Fully tracking multiple concurrent ranges has diminishing
729 		 * returns. Keep things simple and just find the minimal range
730 		 * which includes the current and new ranges. As there won't be
731 		 * enough information to subtract a range after its invalidate
732 		 * completes, any ranges invalidated concurrently will
733 		 * accumulate and persist until all outstanding invalidates
734 		 * complete.
735 		 */
736 		kvm->mmu_invalidate_range_start =
737 			min(kvm->mmu_invalidate_range_start, start);
738 		kvm->mmu_invalidate_range_end =
739 			max(kvm->mmu_invalidate_range_end, end);
740 	}
741 }
742 
743 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
744 					const struct mmu_notifier_range *range)
745 {
746 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
747 	const struct kvm_hva_range hva_range = {
748 		.start		= range->start,
749 		.end		= range->end,
750 		.pte		= __pte(0),
751 		.handler	= kvm_unmap_gfn_range,
752 		.on_lock	= kvm_mmu_invalidate_begin,
753 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
754 		.flush_on_ret	= true,
755 		.may_block	= mmu_notifier_range_blockable(range),
756 	};
757 
758 	trace_kvm_unmap_hva_range(range->start, range->end);
759 
760 	/*
761 	 * Prevent memslot modification between range_start() and range_end()
762 	 * so that conditionally locking provides the same result in both
763 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
764 	 * adjustments will be imbalanced.
765 	 *
766 	 * Pairs with the decrement in range_end().
767 	 */
768 	spin_lock(&kvm->mn_invalidate_lock);
769 	kvm->mn_active_invalidate_count++;
770 	spin_unlock(&kvm->mn_invalidate_lock);
771 
772 	/*
773 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
774 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
775 	 * each cache's lock.  There are relatively few caches in existence at
776 	 * any given time, and the caches themselves can check for hva overlap,
777 	 * i.e. don't need to rely on memslot overlap checks for performance.
778 	 * Because this runs without holding mmu_lock, the pfn caches must use
779 	 * mn_active_invalidate_count (see above) instead of
780 	 * mmu_invalidate_in_progress.
781 	 */
782 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
783 					  hva_range.may_block);
784 
785 	__kvm_handle_hva_range(kvm, &hva_range);
786 
787 	return 0;
788 }
789 
790 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
791 			    unsigned long end)
792 {
793 	/*
794 	 * This sequence increase will notify the kvm page fault that
795 	 * the page that is going to be mapped in the spte could have
796 	 * been freed.
797 	 */
798 	kvm->mmu_invalidate_seq++;
799 	smp_wmb();
800 	/*
801 	 * The above sequence increase must be visible before the
802 	 * below count decrease, which is ensured by the smp_wmb above
803 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
804 	 */
805 	kvm->mmu_invalidate_in_progress--;
806 }
807 
808 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
809 					const struct mmu_notifier_range *range)
810 {
811 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
812 	const struct kvm_hva_range hva_range = {
813 		.start		= range->start,
814 		.end		= range->end,
815 		.pte		= __pte(0),
816 		.handler	= (void *)kvm_null_fn,
817 		.on_lock	= kvm_mmu_invalidate_end,
818 		.on_unlock	= (void *)kvm_null_fn,
819 		.flush_on_ret	= false,
820 		.may_block	= mmu_notifier_range_blockable(range),
821 	};
822 	bool wake;
823 
824 	__kvm_handle_hva_range(kvm, &hva_range);
825 
826 	/* Pairs with the increment in range_start(). */
827 	spin_lock(&kvm->mn_invalidate_lock);
828 	wake = (--kvm->mn_active_invalidate_count == 0);
829 	spin_unlock(&kvm->mn_invalidate_lock);
830 
831 	/*
832 	 * There can only be one waiter, since the wait happens under
833 	 * slots_lock.
834 	 */
835 	if (wake)
836 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
837 
838 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
839 }
840 
841 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
842 					      struct mm_struct *mm,
843 					      unsigned long start,
844 					      unsigned long end)
845 {
846 	trace_kvm_age_hva(start, end);
847 
848 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
849 }
850 
851 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
852 					struct mm_struct *mm,
853 					unsigned long start,
854 					unsigned long end)
855 {
856 	trace_kvm_age_hva(start, end);
857 
858 	/*
859 	 * Even though we do not flush TLB, this will still adversely
860 	 * affect performance on pre-Haswell Intel EPT, where there is
861 	 * no EPT Access Bit to clear so that we have to tear down EPT
862 	 * tables instead. If we find this unacceptable, we can always
863 	 * add a parameter to kvm_age_hva so that it effectively doesn't
864 	 * do anything on clear_young.
865 	 *
866 	 * Also note that currently we never issue secondary TLB flushes
867 	 * from clear_young, leaving this job up to the regular system
868 	 * cadence. If we find this inaccurate, we might come up with a
869 	 * more sophisticated heuristic later.
870 	 */
871 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
872 }
873 
874 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
875 				       struct mm_struct *mm,
876 				       unsigned long address)
877 {
878 	trace_kvm_test_age_hva(address);
879 
880 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
881 					     kvm_test_age_gfn);
882 }
883 
884 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
885 				     struct mm_struct *mm)
886 {
887 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
888 	int idx;
889 
890 	idx = srcu_read_lock(&kvm->srcu);
891 	kvm_flush_shadow_all(kvm);
892 	srcu_read_unlock(&kvm->srcu, idx);
893 }
894 
895 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
896 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
897 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
898 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
899 	.clear_young		= kvm_mmu_notifier_clear_young,
900 	.test_young		= kvm_mmu_notifier_test_young,
901 	.change_pte		= kvm_mmu_notifier_change_pte,
902 	.release		= kvm_mmu_notifier_release,
903 };
904 
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909 }
910 
911 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912 
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
914 {
915 	return 0;
916 }
917 
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919 
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
922 				unsigned long state,
923 				void *unused)
924 {
925 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926 
927 	return kvm_arch_pm_notifier(kvm, state);
928 }
929 
930 static void kvm_init_pm_notifier(struct kvm *kvm)
931 {
932 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
934 	kvm->pm_notifier.priority = INT_MAX;
935 	register_pm_notifier(&kvm->pm_notifier);
936 }
937 
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
939 {
940 	unregister_pm_notifier(&kvm->pm_notifier);
941 }
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
944 {
945 }
946 
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
948 {
949 }
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951 
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953 {
954 	if (!memslot->dirty_bitmap)
955 		return;
956 
957 	kvfree(memslot->dirty_bitmap);
958 	memslot->dirty_bitmap = NULL;
959 }
960 
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
963 {
964 	kvm_destroy_dirty_bitmap(slot);
965 
966 	kvm_arch_free_memslot(kvm, slot);
967 
968 	kfree(slot);
969 }
970 
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972 {
973 	struct hlist_node *idnode;
974 	struct kvm_memory_slot *memslot;
975 	int bkt;
976 
977 	/*
978 	 * The same memslot objects live in both active and inactive sets,
979 	 * arbitrarily free using index '1' so the second invocation of this
980 	 * function isn't operating over a structure with dangling pointers
981 	 * (even though this function isn't actually touching them).
982 	 */
983 	if (!slots->node_idx)
984 		return;
985 
986 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987 		kvm_free_memslot(kvm, memslot);
988 }
989 
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991 {
992 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993 	case KVM_STATS_TYPE_INSTANT:
994 		return 0444;
995 	case KVM_STATS_TYPE_CUMULATIVE:
996 	case KVM_STATS_TYPE_PEAK:
997 	default:
998 		return 0644;
999 	}
1000 }
1001 
1002 
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004 {
1005 	int i;
1006 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007 				      kvm_vcpu_stats_header.num_desc;
1008 
1009 	if (IS_ERR(kvm->debugfs_dentry))
1010 		return;
1011 
1012 	debugfs_remove_recursive(kvm->debugfs_dentry);
1013 
1014 	if (kvm->debugfs_stat_data) {
1015 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1016 			kfree(kvm->debugfs_stat_data[i]);
1017 		kfree(kvm->debugfs_stat_data);
1018 	}
1019 }
1020 
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1022 {
1023 	static DEFINE_MUTEX(kvm_debugfs_lock);
1024 	struct dentry *dent;
1025 	char dir_name[ITOA_MAX_LEN * 2];
1026 	struct kvm_stat_data *stat_data;
1027 	const struct _kvm_stats_desc *pdesc;
1028 	int i, ret = -ENOMEM;
1029 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030 				      kvm_vcpu_stats_header.num_desc;
1031 
1032 	if (!debugfs_initialized())
1033 		return 0;
1034 
1035 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036 	mutex_lock(&kvm_debugfs_lock);
1037 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038 	if (dent) {
1039 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040 		dput(dent);
1041 		mutex_unlock(&kvm_debugfs_lock);
1042 		return 0;
1043 	}
1044 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045 	mutex_unlock(&kvm_debugfs_lock);
1046 	if (IS_ERR(dent))
1047 		return 0;
1048 
1049 	kvm->debugfs_dentry = dent;
1050 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051 					 sizeof(*kvm->debugfs_stat_data),
1052 					 GFP_KERNEL_ACCOUNT);
1053 	if (!kvm->debugfs_stat_data)
1054 		goto out_err;
1055 
1056 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057 		pdesc = &kvm_vm_stats_desc[i];
1058 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1059 		if (!stat_data)
1060 			goto out_err;
1061 
1062 		stat_data->kvm = kvm;
1063 		stat_data->desc = pdesc;
1064 		stat_data->kind = KVM_STAT_VM;
1065 		kvm->debugfs_stat_data[i] = stat_data;
1066 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067 				    kvm->debugfs_dentry, stat_data,
1068 				    &stat_fops_per_vm);
1069 	}
1070 
1071 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072 		pdesc = &kvm_vcpu_stats_desc[i];
1073 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1074 		if (!stat_data)
1075 			goto out_err;
1076 
1077 		stat_data->kvm = kvm;
1078 		stat_data->desc = pdesc;
1079 		stat_data->kind = KVM_STAT_VCPU;
1080 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082 				    kvm->debugfs_dentry, stat_data,
1083 				    &stat_fops_per_vm);
1084 	}
1085 
1086 	ret = kvm_arch_create_vm_debugfs(kvm);
1087 	if (ret)
1088 		goto out_err;
1089 
1090 	return 0;
1091 out_err:
1092 	kvm_destroy_vm_debugfs(kvm);
1093 	return ret;
1094 }
1095 
1096 /*
1097  * Called after the VM is otherwise initialized, but just before adding it to
1098  * the vm_list.
1099  */
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101 {
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Called just after removing the VM from the vm_list, but before doing any
1107  * other destruction.
1108  */
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110 {
1111 }
1112 
1113 /*
1114  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1115  * be setup already, so we can create arch-specific debugfs entries under it.
1116  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117  * a per-arch destroy interface is not needed.
1118  */
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120 {
1121 	return 0;
1122 }
1123 
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1125 {
1126 	struct kvm *kvm = kvm_arch_alloc_vm();
1127 	struct kvm_memslots *slots;
1128 	int r = -ENOMEM;
1129 	int i, j;
1130 
1131 	if (!kvm)
1132 		return ERR_PTR(-ENOMEM);
1133 
1134 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135 	__module_get(kvm_chardev_ops.owner);
1136 
1137 	KVM_MMU_LOCK_INIT(kvm);
1138 	mmgrab(current->mm);
1139 	kvm->mm = current->mm;
1140 	kvm_eventfd_init(kvm);
1141 	mutex_init(&kvm->lock);
1142 	mutex_init(&kvm->irq_lock);
1143 	mutex_init(&kvm->slots_lock);
1144 	mutex_init(&kvm->slots_arch_lock);
1145 	spin_lock_init(&kvm->mn_invalidate_lock);
1146 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147 	xa_init(&kvm->vcpu_array);
1148 
1149 	INIT_LIST_HEAD(&kvm->gpc_list);
1150 	spin_lock_init(&kvm->gpc_lock);
1151 
1152 	INIT_LIST_HEAD(&kvm->devices);
1153 	kvm->max_vcpus = KVM_MAX_VCPUS;
1154 
1155 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156 
1157 	/*
1158 	 * Force subsequent debugfs file creations to fail if the VM directory
1159 	 * is not created (by kvm_create_vm_debugfs()).
1160 	 */
1161 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162 
1163 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164 		 task_pid_nr(current));
1165 
1166 	if (init_srcu_struct(&kvm->srcu))
1167 		goto out_err_no_srcu;
1168 	if (init_srcu_struct(&kvm->irq_srcu))
1169 		goto out_err_no_irq_srcu;
1170 
1171 	refcount_set(&kvm->users_count, 1);
1172 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173 		for (j = 0; j < 2; j++) {
1174 			slots = &kvm->__memslots[i][j];
1175 
1176 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177 			slots->hva_tree = RB_ROOT_CACHED;
1178 			slots->gfn_tree = RB_ROOT;
1179 			hash_init(slots->id_hash);
1180 			slots->node_idx = j;
1181 
1182 			/* Generations must be different for each address space. */
1183 			slots->generation = i;
1184 		}
1185 
1186 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187 	}
1188 
1189 	for (i = 0; i < KVM_NR_BUSES; i++) {
1190 		rcu_assign_pointer(kvm->buses[i],
1191 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192 		if (!kvm->buses[i])
1193 			goto out_err_no_arch_destroy_vm;
1194 	}
1195 
1196 	r = kvm_arch_init_vm(kvm, type);
1197 	if (r)
1198 		goto out_err_no_arch_destroy_vm;
1199 
1200 	r = hardware_enable_all();
1201 	if (r)
1202 		goto out_err_no_disable;
1203 
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1206 #endif
1207 
1208 	r = kvm_init_mmu_notifier(kvm);
1209 	if (r)
1210 		goto out_err_no_mmu_notifier;
1211 
1212 	r = kvm_coalesced_mmio_init(kvm);
1213 	if (r < 0)
1214 		goto out_no_coalesced_mmio;
1215 
1216 	r = kvm_create_vm_debugfs(kvm, fdname);
1217 	if (r)
1218 		goto out_err_no_debugfs;
1219 
1220 	r = kvm_arch_post_init_vm(kvm);
1221 	if (r)
1222 		goto out_err;
1223 
1224 	mutex_lock(&kvm_lock);
1225 	list_add(&kvm->vm_list, &vm_list);
1226 	mutex_unlock(&kvm_lock);
1227 
1228 	preempt_notifier_inc();
1229 	kvm_init_pm_notifier(kvm);
1230 
1231 	return kvm;
1232 
1233 out_err:
1234 	kvm_destroy_vm_debugfs(kvm);
1235 out_err_no_debugfs:
1236 	kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239 	if (kvm->mmu_notifier.ops)
1240 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241 #endif
1242 out_err_no_mmu_notifier:
1243 	hardware_disable_all();
1244 out_err_no_disable:
1245 	kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248 	for (i = 0; i < KVM_NR_BUSES; i++)
1249 		kfree(kvm_get_bus(kvm, i));
1250 	cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252 	cleanup_srcu_struct(&kvm->srcu);
1253 out_err_no_srcu:
1254 	kvm_arch_free_vm(kvm);
1255 	mmdrop(current->mm);
1256 	module_put(kvm_chardev_ops.owner);
1257 	return ERR_PTR(r);
1258 }
1259 
1260 static void kvm_destroy_devices(struct kvm *kvm)
1261 {
1262 	struct kvm_device *dev, *tmp;
1263 
1264 	/*
1265 	 * We do not need to take the kvm->lock here, because nobody else
1266 	 * has a reference to the struct kvm at this point and therefore
1267 	 * cannot access the devices list anyhow.
1268 	 */
1269 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270 		list_del(&dev->vm_node);
1271 		dev->ops->destroy(dev);
1272 	}
1273 }
1274 
1275 static void kvm_destroy_vm(struct kvm *kvm)
1276 {
1277 	int i;
1278 	struct mm_struct *mm = kvm->mm;
1279 
1280 	kvm_destroy_pm_notifier(kvm);
1281 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282 	kvm_destroy_vm_debugfs(kvm);
1283 	kvm_arch_sync_events(kvm);
1284 	mutex_lock(&kvm_lock);
1285 	list_del(&kvm->vm_list);
1286 	mutex_unlock(&kvm_lock);
1287 	kvm_arch_pre_destroy_vm(kvm);
1288 
1289 	kvm_free_irq_routing(kvm);
1290 	for (i = 0; i < KVM_NR_BUSES; i++) {
1291 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1292 
1293 		if (bus)
1294 			kvm_io_bus_destroy(bus);
1295 		kvm->buses[i] = NULL;
1296 	}
1297 	kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1300 	/*
1301 	 * At this point, pending calls to invalidate_range_start()
1302 	 * have completed but no more MMU notifiers will run, so
1303 	 * mn_active_invalidate_count may remain unbalanced.
1304 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1305 	 * last reference on KVM has been dropped, but freeing
1306 	 * memslots would deadlock without this manual intervention.
1307 	 */
1308 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309 	kvm->mn_active_invalidate_count = 0;
1310 #else
1311 	kvm_flush_shadow_all(kvm);
1312 #endif
1313 	kvm_arch_destroy_vm(kvm);
1314 	kvm_destroy_devices(kvm);
1315 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318 	}
1319 	cleanup_srcu_struct(&kvm->irq_srcu);
1320 	cleanup_srcu_struct(&kvm->srcu);
1321 	kvm_arch_free_vm(kvm);
1322 	preempt_notifier_dec();
1323 	hardware_disable_all();
1324 	mmdrop(mm);
1325 	module_put(kvm_chardev_ops.owner);
1326 }
1327 
1328 void kvm_get_kvm(struct kvm *kvm)
1329 {
1330 	refcount_inc(&kvm->users_count);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333 
1334 /*
1335  * Make sure the vm is not during destruction, which is a safe version of
1336  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1337  */
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1339 {
1340 	return refcount_inc_not_zero(&kvm->users_count);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343 
1344 void kvm_put_kvm(struct kvm *kvm)
1345 {
1346 	if (refcount_dec_and_test(&kvm->users_count))
1347 		kvm_destroy_vm(kvm);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350 
1351 /*
1352  * Used to put a reference that was taken on behalf of an object associated
1353  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354  * of the new file descriptor fails and the reference cannot be transferred to
1355  * its final owner.  In such cases, the caller is still actively using @kvm and
1356  * will fail miserably if the refcount unexpectedly hits zero.
1357  */
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359 {
1360 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1363 
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1365 {
1366 	struct kvm *kvm = filp->private_data;
1367 
1368 	kvm_irqfd_release(kvm);
1369 
1370 	kvm_put_kvm(kvm);
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Allocation size is twice as large as the actual dirty bitmap size.
1376  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1377  */
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1379 {
1380 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1381 
1382 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383 	if (!memslot->dirty_bitmap)
1384 		return -ENOMEM;
1385 
1386 	return 0;
1387 }
1388 
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1390 {
1391 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392 	int node_idx_inactive = active->node_idx ^ 1;
1393 
1394 	return &kvm->__memslots[as_id][node_idx_inactive];
1395 }
1396 
1397 /*
1398  * Helper to get the address space ID when one of memslot pointers may be NULL.
1399  * This also serves as a sanity that at least one of the pointers is non-NULL,
1400  * and that their address space IDs don't diverge.
1401  */
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403 				  struct kvm_memory_slot *b)
1404 {
1405 	if (WARN_ON_ONCE(!a && !b))
1406 		return 0;
1407 
1408 	if (!a)
1409 		return b->as_id;
1410 	if (!b)
1411 		return a->as_id;
1412 
1413 	WARN_ON_ONCE(a->as_id != b->as_id);
1414 	return a->as_id;
1415 }
1416 
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418 				struct kvm_memory_slot *slot)
1419 {
1420 	struct rb_root *gfn_tree = &slots->gfn_tree;
1421 	struct rb_node **node, *parent;
1422 	int idx = slots->node_idx;
1423 
1424 	parent = NULL;
1425 	for (node = &gfn_tree->rb_node; *node; ) {
1426 		struct kvm_memory_slot *tmp;
1427 
1428 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429 		parent = *node;
1430 		if (slot->base_gfn < tmp->base_gfn)
1431 			node = &(*node)->rb_left;
1432 		else if (slot->base_gfn > tmp->base_gfn)
1433 			node = &(*node)->rb_right;
1434 		else
1435 			BUG();
1436 	}
1437 
1438 	rb_link_node(&slot->gfn_node[idx], parent, node);
1439 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1440 }
1441 
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443 			       struct kvm_memory_slot *slot)
1444 {
1445 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446 }
1447 
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449 				 struct kvm_memory_slot *old,
1450 				 struct kvm_memory_slot *new)
1451 {
1452 	int idx = slots->node_idx;
1453 
1454 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1455 
1456 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457 			&slots->gfn_tree);
1458 }
1459 
1460 /*
1461  * Replace @old with @new in the inactive memslots.
1462  *
1463  * With NULL @old this simply adds @new.
1464  * With NULL @new this simply removes @old.
1465  *
1466  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467  * appropriately.
1468  */
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470 				struct kvm_memory_slot *old,
1471 				struct kvm_memory_slot *new)
1472 {
1473 	int as_id = kvm_memslots_get_as_id(old, new);
1474 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475 	int idx = slots->node_idx;
1476 
1477 	if (old) {
1478 		hash_del(&old->id_node[idx]);
1479 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1480 
1481 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1482 			atomic_long_set(&slots->last_used_slot, (long)new);
1483 
1484 		if (!new) {
1485 			kvm_erase_gfn_node(slots, old);
1486 			return;
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * Initialize @new's hva range.  Do this even when replacing an @old
1492 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1493 	 */
1494 	new->hva_node[idx].start = new->userspace_addr;
1495 	new->hva_node[idx].last = new->userspace_addr +
1496 				  (new->npages << PAGE_SHIFT) - 1;
1497 
1498 	/*
1499 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1500 	 * hva_node needs to be swapped with remove+insert even though hva can't
1501 	 * change when replacing an existing slot.
1502 	 */
1503 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505 
1506 	/*
1507 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508 	 * switch the node in the gfn tree instead of removing the old and
1509 	 * inserting the new as two separate operations. Replacement is a
1510 	 * single O(1) operation versus two O(log(n)) operations for
1511 	 * remove+insert.
1512 	 */
1513 	if (old && old->base_gfn == new->base_gfn) {
1514 		kvm_replace_gfn_node(slots, old, new);
1515 	} else {
1516 		if (old)
1517 			kvm_erase_gfn_node(slots, old);
1518 		kvm_insert_gfn_node(slots, new);
1519 	}
1520 }
1521 
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1523 {
1524 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525 
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527 	valid_flags |= KVM_MEM_READONLY;
1528 #endif
1529 
1530 	if (mem->flags & ~valid_flags)
1531 		return -EINVAL;
1532 
1533 	return 0;
1534 }
1535 
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1537 {
1538 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539 
1540 	/* Grab the generation from the activate memslots. */
1541 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1542 
1543 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1545 
1546 	/*
1547 	 * Do not store the new memslots while there are invalidations in
1548 	 * progress, otherwise the locking in invalidate_range_start and
1549 	 * invalidate_range_end will be unbalanced.
1550 	 */
1551 	spin_lock(&kvm->mn_invalidate_lock);
1552 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553 	while (kvm->mn_active_invalidate_count) {
1554 		set_current_state(TASK_UNINTERRUPTIBLE);
1555 		spin_unlock(&kvm->mn_invalidate_lock);
1556 		schedule();
1557 		spin_lock(&kvm->mn_invalidate_lock);
1558 	}
1559 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1561 	spin_unlock(&kvm->mn_invalidate_lock);
1562 
1563 	/*
1564 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1565 	 * SRCU below in order to avoid deadlock with another thread
1566 	 * acquiring the slots_arch_lock in an srcu critical section.
1567 	 */
1568 	mutex_unlock(&kvm->slots_arch_lock);
1569 
1570 	synchronize_srcu_expedited(&kvm->srcu);
1571 
1572 	/*
1573 	 * Increment the new memslot generation a second time, dropping the
1574 	 * update in-progress flag and incrementing the generation based on
1575 	 * the number of address spaces.  This provides a unique and easily
1576 	 * identifiable generation number while the memslots are in flux.
1577 	 */
1578 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579 
1580 	/*
1581 	 * Generations must be unique even across address spaces.  We do not need
1582 	 * a global counter for that, instead the generation space is evenly split
1583 	 * across address spaces.  For example, with two address spaces, address
1584 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585 	 * use generations 1, 3, 5, ...
1586 	 */
1587 	gen += KVM_ADDRESS_SPACE_NUM;
1588 
1589 	kvm_arch_memslots_updated(kvm, gen);
1590 
1591 	slots->generation = gen;
1592 }
1593 
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595 				     const struct kvm_memory_slot *old,
1596 				     struct kvm_memory_slot *new,
1597 				     enum kvm_mr_change change)
1598 {
1599 	int r;
1600 
1601 	/*
1602 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603 	 * will be freed on "commit".  If logging is enabled in both old and
1604 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1605 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1606 	 * new bitmap.
1607 	 */
1608 	if (change != KVM_MR_DELETE) {
1609 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610 			new->dirty_bitmap = NULL;
1611 		else if (old && old->dirty_bitmap)
1612 			new->dirty_bitmap = old->dirty_bitmap;
1613 		else if (kvm_use_dirty_bitmap(kvm)) {
1614 			r = kvm_alloc_dirty_bitmap(new);
1615 			if (r)
1616 				return r;
1617 
1618 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1620 		}
1621 	}
1622 
1623 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624 
1625 	/* Free the bitmap on failure if it was allocated above. */
1626 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627 		kvm_destroy_dirty_bitmap(new);
1628 
1629 	return r;
1630 }
1631 
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633 				     struct kvm_memory_slot *old,
1634 				     const struct kvm_memory_slot *new,
1635 				     enum kvm_mr_change change)
1636 {
1637 	int old_flags = old ? old->flags : 0;
1638 	int new_flags = new ? new->flags : 0;
1639 	/*
1640 	 * Update the total number of memslot pages before calling the arch
1641 	 * hook so that architectures can consume the result directly.
1642 	 */
1643 	if (change == KVM_MR_DELETE)
1644 		kvm->nr_memslot_pages -= old->npages;
1645 	else if (change == KVM_MR_CREATE)
1646 		kvm->nr_memslot_pages += new->npages;
1647 
1648 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650 		atomic_set(&kvm->nr_memslots_dirty_logging,
1651 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652 	}
1653 
1654 	kvm_arch_commit_memory_region(kvm, old, new, change);
1655 
1656 	switch (change) {
1657 	case KVM_MR_CREATE:
1658 		/* Nothing more to do. */
1659 		break;
1660 	case KVM_MR_DELETE:
1661 		/* Free the old memslot and all its metadata. */
1662 		kvm_free_memslot(kvm, old);
1663 		break;
1664 	case KVM_MR_MOVE:
1665 	case KVM_MR_FLAGS_ONLY:
1666 		/*
1667 		 * Free the dirty bitmap as needed; the below check encompasses
1668 		 * both the flags and whether a ring buffer is being used)
1669 		 */
1670 		if (old->dirty_bitmap && !new->dirty_bitmap)
1671 			kvm_destroy_dirty_bitmap(old);
1672 
1673 		/*
1674 		 * The final quirk.  Free the detached, old slot, but only its
1675 		 * memory, not any metadata.  Metadata, including arch specific
1676 		 * data, may be reused by @new.
1677 		 */
1678 		kfree(old);
1679 		break;
1680 	default:
1681 		BUG();
1682 	}
1683 }
1684 
1685 /*
1686  * Activate @new, which must be installed in the inactive slots by the caller,
1687  * by swapping the active slots and then propagating @new to @old once @old is
1688  * unreachable and can be safely modified.
1689  *
1690  * With NULL @old this simply adds @new to @active (while swapping the sets).
1691  * With NULL @new this simply removes @old from @active and frees it
1692  * (while also swapping the sets).
1693  */
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695 				 struct kvm_memory_slot *old,
1696 				 struct kvm_memory_slot *new)
1697 {
1698 	int as_id = kvm_memslots_get_as_id(old, new);
1699 
1700 	kvm_swap_active_memslots(kvm, as_id);
1701 
1702 	/* Propagate the new memslot to the now inactive memslots. */
1703 	kvm_replace_memslot(kvm, old, new);
1704 }
1705 
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707 			     const struct kvm_memory_slot *src)
1708 {
1709 	dest->base_gfn = src->base_gfn;
1710 	dest->npages = src->npages;
1711 	dest->dirty_bitmap = src->dirty_bitmap;
1712 	dest->arch = src->arch;
1713 	dest->userspace_addr = src->userspace_addr;
1714 	dest->flags = src->flags;
1715 	dest->id = src->id;
1716 	dest->as_id = src->as_id;
1717 }
1718 
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720 				   struct kvm_memory_slot *old,
1721 				   struct kvm_memory_slot *invalid_slot)
1722 {
1723 	/*
1724 	 * Mark the current slot INVALID.  As with all memslot modifications,
1725 	 * this must be done on an unreachable slot to avoid modifying the
1726 	 * current slot in the active tree.
1727 	 */
1728 	kvm_copy_memslot(invalid_slot, old);
1729 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730 	kvm_replace_memslot(kvm, old, invalid_slot);
1731 
1732 	/*
1733 	 * Activate the slot that is now marked INVALID, but don't propagate
1734 	 * the slot to the now inactive slots. The slot is either going to be
1735 	 * deleted or recreated as a new slot.
1736 	 */
1737 	kvm_swap_active_memslots(kvm, old->as_id);
1738 
1739 	/*
1740 	 * From this point no new shadow pages pointing to a deleted, or moved,
1741 	 * memslot will be created.  Validation of sp->gfn happens in:
1742 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743 	 *	- kvm_is_visible_gfn (mmu_check_root)
1744 	 */
1745 	kvm_arch_flush_shadow_memslot(kvm, old);
1746 	kvm_arch_guest_memory_reclaimed(kvm);
1747 
1748 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1749 	mutex_lock(&kvm->slots_arch_lock);
1750 
1751 	/*
1752 	 * Copy the arch-specific field of the newly-installed slot back to the
1753 	 * old slot as the arch data could have changed between releasing
1754 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1755 	 * above.  Writers are required to retrieve memslots *after* acquiring
1756 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757 	 */
1758 	old->arch = invalid_slot->arch;
1759 }
1760 
1761 static void kvm_create_memslot(struct kvm *kvm,
1762 			       struct kvm_memory_slot *new)
1763 {
1764 	/* Add the new memslot to the inactive set and activate. */
1765 	kvm_replace_memslot(kvm, NULL, new);
1766 	kvm_activate_memslot(kvm, NULL, new);
1767 }
1768 
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770 			       struct kvm_memory_slot *old,
1771 			       struct kvm_memory_slot *invalid_slot)
1772 {
1773 	/*
1774 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1775 	 * the "new" slot, and for the invalid version in the active slots.
1776 	 */
1777 	kvm_replace_memslot(kvm, old, NULL);
1778 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1779 }
1780 
1781 static void kvm_move_memslot(struct kvm *kvm,
1782 			     struct kvm_memory_slot *old,
1783 			     struct kvm_memory_slot *new,
1784 			     struct kvm_memory_slot *invalid_slot)
1785 {
1786 	/*
1787 	 * Replace the old memslot in the inactive slots, and then swap slots
1788 	 * and replace the current INVALID with the new as well.
1789 	 */
1790 	kvm_replace_memslot(kvm, old, new);
1791 	kvm_activate_memslot(kvm, invalid_slot, new);
1792 }
1793 
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795 				     struct kvm_memory_slot *old,
1796 				     struct kvm_memory_slot *new)
1797 {
1798 	/*
1799 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800 	 * an intermediate step. Instead, the old memslot is simply replaced
1801 	 * with a new, updated copy in both memslot sets.
1802 	 */
1803 	kvm_replace_memslot(kvm, old, new);
1804 	kvm_activate_memslot(kvm, old, new);
1805 }
1806 
1807 static int kvm_set_memslot(struct kvm *kvm,
1808 			   struct kvm_memory_slot *old,
1809 			   struct kvm_memory_slot *new,
1810 			   enum kvm_mr_change change)
1811 {
1812 	struct kvm_memory_slot *invalid_slot;
1813 	int r;
1814 
1815 	/*
1816 	 * Released in kvm_swap_active_memslots().
1817 	 *
1818 	 * Must be held from before the current memslots are copied until after
1819 	 * the new memslots are installed with rcu_assign_pointer, then
1820 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1821 	 *
1822 	 * When modifying memslots outside of the slots_lock, must be held
1823 	 * before reading the pointer to the current memslots until after all
1824 	 * changes to those memslots are complete.
1825 	 *
1826 	 * These rules ensure that installing new memslots does not lose
1827 	 * changes made to the previous memslots.
1828 	 */
1829 	mutex_lock(&kvm->slots_arch_lock);
1830 
1831 	/*
1832 	 * Invalidate the old slot if it's being deleted or moved.  This is
1833 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1834 	 * continue running by ensuring there are no mappings or shadow pages
1835 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1836 	 * (and without a lock), a window would exist between effecting the
1837 	 * delete/move and committing the changes in arch code where KVM or a
1838 	 * guest could access a non-existent memslot.
1839 	 *
1840 	 * Modifications are done on a temporary, unreachable slot.  The old
1841 	 * slot needs to be preserved in case a later step fails and the
1842 	 * invalidation needs to be reverted.
1843 	 */
1844 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846 		if (!invalid_slot) {
1847 			mutex_unlock(&kvm->slots_arch_lock);
1848 			return -ENOMEM;
1849 		}
1850 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1851 	}
1852 
1853 	r = kvm_prepare_memory_region(kvm, old, new, change);
1854 	if (r) {
1855 		/*
1856 		 * For DELETE/MOVE, revert the above INVALID change.  No
1857 		 * modifications required since the original slot was preserved
1858 		 * in the inactive slots.  Changing the active memslots also
1859 		 * release slots_arch_lock.
1860 		 */
1861 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862 			kvm_activate_memslot(kvm, invalid_slot, old);
1863 			kfree(invalid_slot);
1864 		} else {
1865 			mutex_unlock(&kvm->slots_arch_lock);
1866 		}
1867 		return r;
1868 	}
1869 
1870 	/*
1871 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1872 	 * version of the old slot.  MOVE is particularly special as it reuses
1873 	 * the old slot and returns a copy of the old slot (in working_slot).
1874 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1875 	 * old slot is detached but otherwise preserved.
1876 	 */
1877 	if (change == KVM_MR_CREATE)
1878 		kvm_create_memslot(kvm, new);
1879 	else if (change == KVM_MR_DELETE)
1880 		kvm_delete_memslot(kvm, old, invalid_slot);
1881 	else if (change == KVM_MR_MOVE)
1882 		kvm_move_memslot(kvm, old, new, invalid_slot);
1883 	else if (change == KVM_MR_FLAGS_ONLY)
1884 		kvm_update_flags_memslot(kvm, old, new);
1885 	else
1886 		BUG();
1887 
1888 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1889 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890 		kfree(invalid_slot);
1891 
1892 	/*
1893 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1894 	 * will directly hit the final, active memslot.  Architectures are
1895 	 * responsible for knowing that new->arch may be stale.
1896 	 */
1897 	kvm_commit_memory_region(kvm, old, new, change);
1898 
1899 	return 0;
1900 }
1901 
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903 				      gfn_t start, gfn_t end)
1904 {
1905 	struct kvm_memslot_iter iter;
1906 
1907 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908 		if (iter.slot->id != id)
1909 			return true;
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 /*
1916  * Allocate some memory and give it an address in the guest physical address
1917  * space.
1918  *
1919  * Discontiguous memory is allowed, mostly for framebuffers.
1920  *
1921  * Must be called holding kvm->slots_lock for write.
1922  */
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924 			    const struct kvm_userspace_memory_region *mem)
1925 {
1926 	struct kvm_memory_slot *old, *new;
1927 	struct kvm_memslots *slots;
1928 	enum kvm_mr_change change;
1929 	unsigned long npages;
1930 	gfn_t base_gfn;
1931 	int as_id, id;
1932 	int r;
1933 
1934 	r = check_memory_region_flags(mem);
1935 	if (r)
1936 		return r;
1937 
1938 	as_id = mem->slot >> 16;
1939 	id = (u16)mem->slot;
1940 
1941 	/* General sanity checks */
1942 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943 	    (mem->memory_size != (unsigned long)mem->memory_size))
1944 		return -EINVAL;
1945 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1946 		return -EINVAL;
1947 	/* We can read the guest memory with __xxx_user() later on. */
1948 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1951 			mem->memory_size))
1952 		return -EINVAL;
1953 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1954 		return -EINVAL;
1955 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1956 		return -EINVAL;
1957 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958 		return -EINVAL;
1959 
1960 	slots = __kvm_memslots(kvm, as_id);
1961 
1962 	/*
1963 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1964 	 * and/or destroyed by kvm_set_memslot().
1965 	 */
1966 	old = id_to_memslot(slots, id);
1967 
1968 	if (!mem->memory_size) {
1969 		if (!old || !old->npages)
1970 			return -EINVAL;
1971 
1972 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1973 			return -EIO;
1974 
1975 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1976 	}
1977 
1978 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979 	npages = (mem->memory_size >> PAGE_SHIFT);
1980 
1981 	if (!old || !old->npages) {
1982 		change = KVM_MR_CREATE;
1983 
1984 		/*
1985 		 * To simplify KVM internals, the total number of pages across
1986 		 * all memslots must fit in an unsigned long.
1987 		 */
1988 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1989 			return -EINVAL;
1990 	} else { /* Modify an existing slot. */
1991 		if ((mem->userspace_addr != old->userspace_addr) ||
1992 		    (npages != old->npages) ||
1993 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1994 			return -EINVAL;
1995 
1996 		if (base_gfn != old->base_gfn)
1997 			change = KVM_MR_MOVE;
1998 		else if (mem->flags != old->flags)
1999 			change = KVM_MR_FLAGS_ONLY;
2000 		else /* Nothing to change. */
2001 			return 0;
2002 	}
2003 
2004 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2006 		return -EEXIST;
2007 
2008 	/* Allocate a slot that will persist in the memslot. */
2009 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010 	if (!new)
2011 		return -ENOMEM;
2012 
2013 	new->as_id = as_id;
2014 	new->id = id;
2015 	new->base_gfn = base_gfn;
2016 	new->npages = npages;
2017 	new->flags = mem->flags;
2018 	new->userspace_addr = mem->userspace_addr;
2019 
2020 	r = kvm_set_memslot(kvm, old, new, change);
2021 	if (r)
2022 		kfree(new);
2023 	return r;
2024 }
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026 
2027 int kvm_set_memory_region(struct kvm *kvm,
2028 			  const struct kvm_userspace_memory_region *mem)
2029 {
2030 	int r;
2031 
2032 	mutex_lock(&kvm->slots_lock);
2033 	r = __kvm_set_memory_region(kvm, mem);
2034 	mutex_unlock(&kvm->slots_lock);
2035 	return r;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038 
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040 					  struct kvm_userspace_memory_region *mem)
2041 {
2042 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2043 		return -EINVAL;
2044 
2045 	return kvm_set_memory_region(kvm, mem);
2046 }
2047 
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2049 /**
2050  * kvm_get_dirty_log - get a snapshot of dirty pages
2051  * @kvm:	pointer to kvm instance
2052  * @log:	slot id and address to which we copy the log
2053  * @is_dirty:	set to '1' if any dirty pages were found
2054  * @memslot:	set to the associated memslot, always valid on success
2055  */
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057 		      int *is_dirty, struct kvm_memory_slot **memslot)
2058 {
2059 	struct kvm_memslots *slots;
2060 	int i, as_id, id;
2061 	unsigned long n;
2062 	unsigned long any = 0;
2063 
2064 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2065 	if (!kvm_use_dirty_bitmap(kvm))
2066 		return -ENXIO;
2067 
2068 	*memslot = NULL;
2069 	*is_dirty = 0;
2070 
2071 	as_id = log->slot >> 16;
2072 	id = (u16)log->slot;
2073 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2074 		return -EINVAL;
2075 
2076 	slots = __kvm_memslots(kvm, as_id);
2077 	*memslot = id_to_memslot(slots, id);
2078 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2079 		return -ENOENT;
2080 
2081 	kvm_arch_sync_dirty_log(kvm, *memslot);
2082 
2083 	n = kvm_dirty_bitmap_bytes(*memslot);
2084 
2085 	for (i = 0; !any && i < n/sizeof(long); ++i)
2086 		any = (*memslot)->dirty_bitmap[i];
2087 
2088 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2089 		return -EFAULT;
2090 
2091 	if (any)
2092 		*is_dirty = 1;
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2096 
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2098 /**
2099  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100  *	and reenable dirty page tracking for the corresponding pages.
2101  * @kvm:	pointer to kvm instance
2102  * @log:	slot id and address to which we copy the log
2103  *
2104  * We need to keep it in mind that VCPU threads can write to the bitmap
2105  * concurrently. So, to avoid losing track of dirty pages we keep the
2106  * following order:
2107  *
2108  *    1. Take a snapshot of the bit and clear it if needed.
2109  *    2. Write protect the corresponding page.
2110  *    3. Copy the snapshot to the userspace.
2111  *    4. Upon return caller flushes TLB's if needed.
2112  *
2113  * Between 2 and 4, the guest may write to the page using the remaining TLB
2114  * entry.  This is not a problem because the page is reported dirty using
2115  * the snapshot taken before and step 4 ensures that writes done after
2116  * exiting to userspace will be logged for the next call.
2117  *
2118  */
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2120 {
2121 	struct kvm_memslots *slots;
2122 	struct kvm_memory_slot *memslot;
2123 	int i, as_id, id;
2124 	unsigned long n;
2125 	unsigned long *dirty_bitmap;
2126 	unsigned long *dirty_bitmap_buffer;
2127 	bool flush;
2128 
2129 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2130 	if (!kvm_use_dirty_bitmap(kvm))
2131 		return -ENXIO;
2132 
2133 	as_id = log->slot >> 16;
2134 	id = (u16)log->slot;
2135 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2136 		return -EINVAL;
2137 
2138 	slots = __kvm_memslots(kvm, as_id);
2139 	memslot = id_to_memslot(slots, id);
2140 	if (!memslot || !memslot->dirty_bitmap)
2141 		return -ENOENT;
2142 
2143 	dirty_bitmap = memslot->dirty_bitmap;
2144 
2145 	kvm_arch_sync_dirty_log(kvm, memslot);
2146 
2147 	n = kvm_dirty_bitmap_bytes(memslot);
2148 	flush = false;
2149 	if (kvm->manual_dirty_log_protect) {
2150 		/*
2151 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2152 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2153 		 * is some code duplication between this function and
2154 		 * kvm_get_dirty_log, but hopefully all architecture
2155 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156 		 * can be eliminated.
2157 		 */
2158 		dirty_bitmap_buffer = dirty_bitmap;
2159 	} else {
2160 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161 		memset(dirty_bitmap_buffer, 0, n);
2162 
2163 		KVM_MMU_LOCK(kvm);
2164 		for (i = 0; i < n / sizeof(long); i++) {
2165 			unsigned long mask;
2166 			gfn_t offset;
2167 
2168 			if (!dirty_bitmap[i])
2169 				continue;
2170 
2171 			flush = true;
2172 			mask = xchg(&dirty_bitmap[i], 0);
2173 			dirty_bitmap_buffer[i] = mask;
2174 
2175 			offset = i * BITS_PER_LONG;
2176 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177 								offset, mask);
2178 		}
2179 		KVM_MMU_UNLOCK(kvm);
2180 	}
2181 
2182 	if (flush)
2183 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184 
2185 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186 		return -EFAULT;
2187 	return 0;
2188 }
2189 
2190 
2191 /**
2192  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193  * @kvm: kvm instance
2194  * @log: slot id and address to which we copy the log
2195  *
2196  * Steps 1-4 below provide general overview of dirty page logging. See
2197  * kvm_get_dirty_log_protect() function description for additional details.
2198  *
2199  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200  * always flush the TLB (step 4) even if previous step failed  and the dirty
2201  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203  * writes will be marked dirty for next log read.
2204  *
2205  *   1. Take a snapshot of the bit and clear it if needed.
2206  *   2. Write protect the corresponding page.
2207  *   3. Copy the snapshot to the userspace.
2208  *   4. Flush TLB's if needed.
2209  */
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211 				      struct kvm_dirty_log *log)
2212 {
2213 	int r;
2214 
2215 	mutex_lock(&kvm->slots_lock);
2216 
2217 	r = kvm_get_dirty_log_protect(kvm, log);
2218 
2219 	mutex_unlock(&kvm->slots_lock);
2220 	return r;
2221 }
2222 
2223 /**
2224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225  *	and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:	pointer to kvm instance
2227  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2228  */
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230 				       struct kvm_clear_dirty_log *log)
2231 {
2232 	struct kvm_memslots *slots;
2233 	struct kvm_memory_slot *memslot;
2234 	int as_id, id;
2235 	gfn_t offset;
2236 	unsigned long i, n;
2237 	unsigned long *dirty_bitmap;
2238 	unsigned long *dirty_bitmap_buffer;
2239 	bool flush;
2240 
2241 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2242 	if (!kvm_use_dirty_bitmap(kvm))
2243 		return -ENXIO;
2244 
2245 	as_id = log->slot >> 16;
2246 	id = (u16)log->slot;
2247 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248 		return -EINVAL;
2249 
2250 	if (log->first_page & 63)
2251 		return -EINVAL;
2252 
2253 	slots = __kvm_memslots(kvm, as_id);
2254 	memslot = id_to_memslot(slots, id);
2255 	if (!memslot || !memslot->dirty_bitmap)
2256 		return -ENOENT;
2257 
2258 	dirty_bitmap = memslot->dirty_bitmap;
2259 
2260 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2261 
2262 	if (log->first_page > memslot->npages ||
2263 	    log->num_pages > memslot->npages - log->first_page ||
2264 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265 	    return -EINVAL;
2266 
2267 	kvm_arch_sync_dirty_log(kvm, memslot);
2268 
2269 	flush = false;
2270 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272 		return -EFAULT;
2273 
2274 	KVM_MMU_LOCK(kvm);
2275 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277 	     i++, offset += BITS_PER_LONG) {
2278 		unsigned long mask = *dirty_bitmap_buffer++;
2279 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280 		if (!mask)
2281 			continue;
2282 
2283 		mask &= atomic_long_fetch_andnot(mask, p);
2284 
2285 		/*
2286 		 * mask contains the bits that really have been cleared.  This
2287 		 * never includes any bits beyond the length of the memslot (if
2288 		 * the length is not aligned to 64 pages), therefore it is not
2289 		 * a problem if userspace sets them in log->dirty_bitmap.
2290 		*/
2291 		if (mask) {
2292 			flush = true;
2293 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294 								offset, mask);
2295 		}
2296 	}
2297 	KVM_MMU_UNLOCK(kvm);
2298 
2299 	if (flush)
2300 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301 
2302 	return 0;
2303 }
2304 
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306 					struct kvm_clear_dirty_log *log)
2307 {
2308 	int r;
2309 
2310 	mutex_lock(&kvm->slots_lock);
2311 
2312 	r = kvm_clear_dirty_log_protect(kvm, log);
2313 
2314 	mutex_unlock(&kvm->slots_lock);
2315 	return r;
2316 }
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2318 
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320 {
2321 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2324 
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326 {
2327 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328 	u64 gen = slots->generation;
2329 	struct kvm_memory_slot *slot;
2330 
2331 	/*
2332 	 * This also protects against using a memslot from a different address space,
2333 	 * since different address spaces have different generation numbers.
2334 	 */
2335 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336 		vcpu->last_used_slot = NULL;
2337 		vcpu->last_used_slot_gen = gen;
2338 	}
2339 
2340 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2341 	if (slot)
2342 		return slot;
2343 
2344 	/*
2345 	 * Fall back to searching all memslots. We purposely use
2346 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2347 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2348 	 */
2349 	slot = search_memslots(slots, gfn, false);
2350 	if (slot) {
2351 		vcpu->last_used_slot = slot;
2352 		return slot;
2353 	}
2354 
2355 	return NULL;
2356 }
2357 
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2359 {
2360 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2361 
2362 	return kvm_is_visible_memslot(memslot);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365 
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369 
2370 	return kvm_is_visible_memslot(memslot);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373 
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2375 {
2376 	struct vm_area_struct *vma;
2377 	unsigned long addr, size;
2378 
2379 	size = PAGE_SIZE;
2380 
2381 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382 	if (kvm_is_error_hva(addr))
2383 		return PAGE_SIZE;
2384 
2385 	mmap_read_lock(current->mm);
2386 	vma = find_vma(current->mm, addr);
2387 	if (!vma)
2388 		goto out;
2389 
2390 	size = vma_kernel_pagesize(vma);
2391 
2392 out:
2393 	mmap_read_unlock(current->mm);
2394 
2395 	return size;
2396 }
2397 
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2399 {
2400 	return slot->flags & KVM_MEM_READONLY;
2401 }
2402 
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404 				       gfn_t *nr_pages, bool write)
2405 {
2406 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407 		return KVM_HVA_ERR_BAD;
2408 
2409 	if (memslot_is_readonly(slot) && write)
2410 		return KVM_HVA_ERR_RO_BAD;
2411 
2412 	if (nr_pages)
2413 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2414 
2415 	return __gfn_to_hva_memslot(slot, gfn);
2416 }
2417 
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419 				     gfn_t *nr_pages)
2420 {
2421 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2422 }
2423 
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2425 					gfn_t gfn)
2426 {
2427 	return gfn_to_hva_many(slot, gfn, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430 
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432 {
2433 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2436 
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438 {
2439 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442 
2443 /*
2444  * Return the hva of a @gfn and the R/W attribute if possible.
2445  *
2446  * @slot: the kvm_memory_slot which contains @gfn
2447  * @gfn: the gfn to be translated
2448  * @writable: used to return the read/write attribute of the @slot if the hva
2449  * is valid and @writable is not NULL
2450  */
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452 				      gfn_t gfn, bool *writable)
2453 {
2454 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455 
2456 	if (!kvm_is_error_hva(hva) && writable)
2457 		*writable = !memslot_is_readonly(slot);
2458 
2459 	return hva;
2460 }
2461 
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463 {
2464 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465 
2466 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467 }
2468 
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470 {
2471 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472 
2473 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474 }
2475 
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2477 {
2478 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2479 
2480 	rc = get_user_pages(addr, 1, flags, NULL);
2481 	return rc == -EHWPOISON;
2482 }
2483 
2484 /*
2485  * The fast path to get the writable pfn which will be stored in @pfn,
2486  * true indicates success, otherwise false is returned.  It's also the
2487  * only part that runs if we can in atomic context.
2488  */
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490 			    bool *writable, kvm_pfn_t *pfn)
2491 {
2492 	struct page *page[1];
2493 
2494 	/*
2495 	 * Fast pin a writable pfn only if it is a write fault request
2496 	 * or the caller allows to map a writable pfn for a read fault
2497 	 * request.
2498 	 */
2499 	if (!(write_fault || writable))
2500 		return false;
2501 
2502 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503 		*pfn = page_to_pfn(page[0]);
2504 
2505 		if (writable)
2506 			*writable = true;
2507 		return true;
2508 	}
2509 
2510 	return false;
2511 }
2512 
2513 /*
2514  * The slow path to get the pfn of the specified host virtual address,
2515  * 1 indicates success, -errno is returned if error is detected.
2516  */
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2519 {
2520 	/*
2521 	 * When a VCPU accesses a page that is not mapped into the secondary
2522 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2523 	 * make progress. We always want to honor NUMA hinting faults in that
2524 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2525 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2526 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2527 	 *
2528 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2529 	 * implicitly honor NUMA hinting faults and don't need this flag.
2530 	 */
2531 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2532 	struct page *page;
2533 	int npages;
2534 
2535 	might_sleep();
2536 
2537 	if (writable)
2538 		*writable = write_fault;
2539 
2540 	if (write_fault)
2541 		flags |= FOLL_WRITE;
2542 	if (async)
2543 		flags |= FOLL_NOWAIT;
2544 	if (interruptible)
2545 		flags |= FOLL_INTERRUPTIBLE;
2546 
2547 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2548 	if (npages != 1)
2549 		return npages;
2550 
2551 	/* map read fault as writable if possible */
2552 	if (unlikely(!write_fault) && writable) {
2553 		struct page *wpage;
2554 
2555 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2556 			*writable = true;
2557 			put_page(page);
2558 			page = wpage;
2559 		}
2560 	}
2561 	*pfn = page_to_pfn(page);
2562 	return npages;
2563 }
2564 
2565 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2566 {
2567 	if (unlikely(!(vma->vm_flags & VM_READ)))
2568 		return false;
2569 
2570 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2571 		return false;
2572 
2573 	return true;
2574 }
2575 
2576 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2577 {
2578 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2579 
2580 	if (!page)
2581 		return 1;
2582 
2583 	return get_page_unless_zero(page);
2584 }
2585 
2586 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2587 			       unsigned long addr, bool write_fault,
2588 			       bool *writable, kvm_pfn_t *p_pfn)
2589 {
2590 	kvm_pfn_t pfn;
2591 	pte_t *ptep;
2592 	pte_t pte;
2593 	spinlock_t *ptl;
2594 	int r;
2595 
2596 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597 	if (r) {
2598 		/*
2599 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2600 		 * not call the fault handler, so do it here.
2601 		 */
2602 		bool unlocked = false;
2603 		r = fixup_user_fault(current->mm, addr,
2604 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2605 				     &unlocked);
2606 		if (unlocked)
2607 			return -EAGAIN;
2608 		if (r)
2609 			return r;
2610 
2611 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2612 		if (r)
2613 			return r;
2614 	}
2615 
2616 	pte = ptep_get(ptep);
2617 
2618 	if (write_fault && !pte_write(pte)) {
2619 		pfn = KVM_PFN_ERR_RO_FAULT;
2620 		goto out;
2621 	}
2622 
2623 	if (writable)
2624 		*writable = pte_write(pte);
2625 	pfn = pte_pfn(pte);
2626 
2627 	/*
2628 	 * Get a reference here because callers of *hva_to_pfn* and
2629 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2630 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2631 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2632 	 * simply do nothing for reserved pfns.
2633 	 *
2634 	 * Whoever called remap_pfn_range is also going to call e.g.
2635 	 * unmap_mapping_range before the underlying pages are freed,
2636 	 * causing a call to our MMU notifier.
2637 	 *
2638 	 * Certain IO or PFNMAP mappings can be backed with valid
2639 	 * struct pages, but be allocated without refcounting e.g.,
2640 	 * tail pages of non-compound higher order allocations, which
2641 	 * would then underflow the refcount when the caller does the
2642 	 * required put_page. Don't allow those pages here.
2643 	 */
2644 	if (!kvm_try_get_pfn(pfn))
2645 		r = -EFAULT;
2646 
2647 out:
2648 	pte_unmap_unlock(ptep, ptl);
2649 	*p_pfn = pfn;
2650 
2651 	return r;
2652 }
2653 
2654 /*
2655  * Pin guest page in memory and return its pfn.
2656  * @addr: host virtual address which maps memory to the guest
2657  * @atomic: whether this function can sleep
2658  * @interruptible: whether the process can be interrupted by non-fatal signals
2659  * @async: whether this function need to wait IO complete if the
2660  *         host page is not in the memory
2661  * @write_fault: whether we should get a writable host page
2662  * @writable: whether it allows to map a writable host page for !@write_fault
2663  *
2664  * The function will map a writable host page for these two cases:
2665  * 1): @write_fault = true
2666  * 2): @write_fault = false && @writable, @writable will tell the caller
2667  *     whether the mapping is writable.
2668  */
2669 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2670 		     bool *async, bool write_fault, bool *writable)
2671 {
2672 	struct vm_area_struct *vma;
2673 	kvm_pfn_t pfn;
2674 	int npages, r;
2675 
2676 	/* we can do it either atomically or asynchronously, not both */
2677 	BUG_ON(atomic && async);
2678 
2679 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2680 		return pfn;
2681 
2682 	if (atomic)
2683 		return KVM_PFN_ERR_FAULT;
2684 
2685 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2686 				 writable, &pfn);
2687 	if (npages == 1)
2688 		return pfn;
2689 	if (npages == -EINTR)
2690 		return KVM_PFN_ERR_SIGPENDING;
2691 
2692 	mmap_read_lock(current->mm);
2693 	if (npages == -EHWPOISON ||
2694 	      (!async && check_user_page_hwpoison(addr))) {
2695 		pfn = KVM_PFN_ERR_HWPOISON;
2696 		goto exit;
2697 	}
2698 
2699 retry:
2700 	vma = vma_lookup(current->mm, addr);
2701 
2702 	if (vma == NULL)
2703 		pfn = KVM_PFN_ERR_FAULT;
2704 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2705 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2706 		if (r == -EAGAIN)
2707 			goto retry;
2708 		if (r < 0)
2709 			pfn = KVM_PFN_ERR_FAULT;
2710 	} else {
2711 		if (async && vma_is_valid(vma, write_fault))
2712 			*async = true;
2713 		pfn = KVM_PFN_ERR_FAULT;
2714 	}
2715 exit:
2716 	mmap_read_unlock(current->mm);
2717 	return pfn;
2718 }
2719 
2720 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2721 			       bool atomic, bool interruptible, bool *async,
2722 			       bool write_fault, bool *writable, hva_t *hva)
2723 {
2724 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2725 
2726 	if (hva)
2727 		*hva = addr;
2728 
2729 	if (addr == KVM_HVA_ERR_RO_BAD) {
2730 		if (writable)
2731 			*writable = false;
2732 		return KVM_PFN_ERR_RO_FAULT;
2733 	}
2734 
2735 	if (kvm_is_error_hva(addr)) {
2736 		if (writable)
2737 			*writable = false;
2738 		return KVM_PFN_NOSLOT;
2739 	}
2740 
2741 	/* Do not map writable pfn in the readonly memslot. */
2742 	if (writable && memslot_is_readonly(slot)) {
2743 		*writable = false;
2744 		writable = NULL;
2745 	}
2746 
2747 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2748 			  writable);
2749 }
2750 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2751 
2752 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2753 		      bool *writable)
2754 {
2755 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2756 				    NULL, write_fault, writable, NULL);
2757 }
2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2759 
2760 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2761 {
2762 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2763 				    NULL, NULL);
2764 }
2765 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2766 
2767 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2768 {
2769 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2770 				    NULL, NULL);
2771 }
2772 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2773 
2774 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2775 {
2776 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2777 }
2778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2779 
2780 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2781 {
2782 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2785 
2786 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2787 {
2788 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2789 }
2790 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2791 
2792 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2793 			    struct page **pages, int nr_pages)
2794 {
2795 	unsigned long addr;
2796 	gfn_t entry = 0;
2797 
2798 	addr = gfn_to_hva_many(slot, gfn, &entry);
2799 	if (kvm_is_error_hva(addr))
2800 		return -1;
2801 
2802 	if (entry < nr_pages)
2803 		return 0;
2804 
2805 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2806 }
2807 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2808 
2809 /*
2810  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2811  * backed by 'struct page'.  A valid example is if the backing memslot is
2812  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2813  * been elevated by gfn_to_pfn().
2814  */
2815 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2816 {
2817 	struct page *page;
2818 	kvm_pfn_t pfn;
2819 
2820 	pfn = gfn_to_pfn(kvm, gfn);
2821 
2822 	if (is_error_noslot_pfn(pfn))
2823 		return KVM_ERR_PTR_BAD_PAGE;
2824 
2825 	page = kvm_pfn_to_refcounted_page(pfn);
2826 	if (!page)
2827 		return KVM_ERR_PTR_BAD_PAGE;
2828 
2829 	return page;
2830 }
2831 EXPORT_SYMBOL_GPL(gfn_to_page);
2832 
2833 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2834 {
2835 	if (dirty)
2836 		kvm_release_pfn_dirty(pfn);
2837 	else
2838 		kvm_release_pfn_clean(pfn);
2839 }
2840 
2841 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2842 {
2843 	kvm_pfn_t pfn;
2844 	void *hva = NULL;
2845 	struct page *page = KVM_UNMAPPED_PAGE;
2846 
2847 	if (!map)
2848 		return -EINVAL;
2849 
2850 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2851 	if (is_error_noslot_pfn(pfn))
2852 		return -EINVAL;
2853 
2854 	if (pfn_valid(pfn)) {
2855 		page = pfn_to_page(pfn);
2856 		hva = kmap(page);
2857 #ifdef CONFIG_HAS_IOMEM
2858 	} else {
2859 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2860 #endif
2861 	}
2862 
2863 	if (!hva)
2864 		return -EFAULT;
2865 
2866 	map->page = page;
2867 	map->hva = hva;
2868 	map->pfn = pfn;
2869 	map->gfn = gfn;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2874 
2875 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2876 {
2877 	if (!map)
2878 		return;
2879 
2880 	if (!map->hva)
2881 		return;
2882 
2883 	if (map->page != KVM_UNMAPPED_PAGE)
2884 		kunmap(map->page);
2885 #ifdef CONFIG_HAS_IOMEM
2886 	else
2887 		memunmap(map->hva);
2888 #endif
2889 
2890 	if (dirty)
2891 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2892 
2893 	kvm_release_pfn(map->pfn, dirty);
2894 
2895 	map->hva = NULL;
2896 	map->page = NULL;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2899 
2900 static bool kvm_is_ad_tracked_page(struct page *page)
2901 {
2902 	/*
2903 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2904 	 * touched (e.g. set dirty) except by its owner".
2905 	 */
2906 	return !PageReserved(page);
2907 }
2908 
2909 static void kvm_set_page_dirty(struct page *page)
2910 {
2911 	if (kvm_is_ad_tracked_page(page))
2912 		SetPageDirty(page);
2913 }
2914 
2915 static void kvm_set_page_accessed(struct page *page)
2916 {
2917 	if (kvm_is_ad_tracked_page(page))
2918 		mark_page_accessed(page);
2919 }
2920 
2921 void kvm_release_page_clean(struct page *page)
2922 {
2923 	WARN_ON(is_error_page(page));
2924 
2925 	kvm_set_page_accessed(page);
2926 	put_page(page);
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2929 
2930 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2931 {
2932 	struct page *page;
2933 
2934 	if (is_error_noslot_pfn(pfn))
2935 		return;
2936 
2937 	page = kvm_pfn_to_refcounted_page(pfn);
2938 	if (!page)
2939 		return;
2940 
2941 	kvm_release_page_clean(page);
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2944 
2945 void kvm_release_page_dirty(struct page *page)
2946 {
2947 	WARN_ON(is_error_page(page));
2948 
2949 	kvm_set_page_dirty(page);
2950 	kvm_release_page_clean(page);
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2953 
2954 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2955 {
2956 	struct page *page;
2957 
2958 	if (is_error_noslot_pfn(pfn))
2959 		return;
2960 
2961 	page = kvm_pfn_to_refcounted_page(pfn);
2962 	if (!page)
2963 		return;
2964 
2965 	kvm_release_page_dirty(page);
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2968 
2969 /*
2970  * Note, checking for an error/noslot pfn is the caller's responsibility when
2971  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2972  * "set" helpers are not to be used when the pfn might point at garbage.
2973  */
2974 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2975 {
2976 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2977 		return;
2978 
2979 	if (pfn_valid(pfn))
2980 		kvm_set_page_dirty(pfn_to_page(pfn));
2981 }
2982 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2983 
2984 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2985 {
2986 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2987 		return;
2988 
2989 	if (pfn_valid(pfn))
2990 		kvm_set_page_accessed(pfn_to_page(pfn));
2991 }
2992 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2993 
2994 static int next_segment(unsigned long len, int offset)
2995 {
2996 	if (len > PAGE_SIZE - offset)
2997 		return PAGE_SIZE - offset;
2998 	else
2999 		return len;
3000 }
3001 
3002 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3003 				 void *data, int offset, int len)
3004 {
3005 	int r;
3006 	unsigned long addr;
3007 
3008 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3009 	if (kvm_is_error_hva(addr))
3010 		return -EFAULT;
3011 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3012 	if (r)
3013 		return -EFAULT;
3014 	return 0;
3015 }
3016 
3017 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3018 			int len)
3019 {
3020 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3021 
3022 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3025 
3026 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3027 			     int offset, int len)
3028 {
3029 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3030 
3031 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3034 
3035 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3036 {
3037 	gfn_t gfn = gpa >> PAGE_SHIFT;
3038 	int seg;
3039 	int offset = offset_in_page(gpa);
3040 	int ret;
3041 
3042 	while ((seg = next_segment(len, offset)) != 0) {
3043 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3044 		if (ret < 0)
3045 			return ret;
3046 		offset = 0;
3047 		len -= seg;
3048 		data += seg;
3049 		++gfn;
3050 	}
3051 	return 0;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_read_guest);
3054 
3055 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3056 {
3057 	gfn_t gfn = gpa >> PAGE_SHIFT;
3058 	int seg;
3059 	int offset = offset_in_page(gpa);
3060 	int ret;
3061 
3062 	while ((seg = next_segment(len, offset)) != 0) {
3063 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3064 		if (ret < 0)
3065 			return ret;
3066 		offset = 0;
3067 		len -= seg;
3068 		data += seg;
3069 		++gfn;
3070 	}
3071 	return 0;
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3074 
3075 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3076 			           void *data, int offset, unsigned long len)
3077 {
3078 	int r;
3079 	unsigned long addr;
3080 
3081 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3082 	if (kvm_is_error_hva(addr))
3083 		return -EFAULT;
3084 	pagefault_disable();
3085 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3086 	pagefault_enable();
3087 	if (r)
3088 		return -EFAULT;
3089 	return 0;
3090 }
3091 
3092 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3093 			       void *data, unsigned long len)
3094 {
3095 	gfn_t gfn = gpa >> PAGE_SHIFT;
3096 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3097 	int offset = offset_in_page(gpa);
3098 
3099 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3102 
3103 static int __kvm_write_guest_page(struct kvm *kvm,
3104 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3105 			          const void *data, int offset, int len)
3106 {
3107 	int r;
3108 	unsigned long addr;
3109 
3110 	addr = gfn_to_hva_memslot(memslot, gfn);
3111 	if (kvm_is_error_hva(addr))
3112 		return -EFAULT;
3113 	r = __copy_to_user((void __user *)addr + offset, data, len);
3114 	if (r)
3115 		return -EFAULT;
3116 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3117 	return 0;
3118 }
3119 
3120 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3121 			 const void *data, int offset, int len)
3122 {
3123 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3124 
3125 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3126 }
3127 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3128 
3129 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3130 			      const void *data, int offset, int len)
3131 {
3132 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3133 
3134 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3135 }
3136 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3137 
3138 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3139 		    unsigned long len)
3140 {
3141 	gfn_t gfn = gpa >> PAGE_SHIFT;
3142 	int seg;
3143 	int offset = offset_in_page(gpa);
3144 	int ret;
3145 
3146 	while ((seg = next_segment(len, offset)) != 0) {
3147 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3148 		if (ret < 0)
3149 			return ret;
3150 		offset = 0;
3151 		len -= seg;
3152 		data += seg;
3153 		++gfn;
3154 	}
3155 	return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(kvm_write_guest);
3158 
3159 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3160 		         unsigned long len)
3161 {
3162 	gfn_t gfn = gpa >> PAGE_SHIFT;
3163 	int seg;
3164 	int offset = offset_in_page(gpa);
3165 	int ret;
3166 
3167 	while ((seg = next_segment(len, offset)) != 0) {
3168 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3169 		if (ret < 0)
3170 			return ret;
3171 		offset = 0;
3172 		len -= seg;
3173 		data += seg;
3174 		++gfn;
3175 	}
3176 	return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3179 
3180 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3181 				       struct gfn_to_hva_cache *ghc,
3182 				       gpa_t gpa, unsigned long len)
3183 {
3184 	int offset = offset_in_page(gpa);
3185 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3186 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3187 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3188 	gfn_t nr_pages_avail;
3189 
3190 	/* Update ghc->generation before performing any error checks. */
3191 	ghc->generation = slots->generation;
3192 
3193 	if (start_gfn > end_gfn) {
3194 		ghc->hva = KVM_HVA_ERR_BAD;
3195 		return -EINVAL;
3196 	}
3197 
3198 	/*
3199 	 * If the requested region crosses two memslots, we still
3200 	 * verify that the entire region is valid here.
3201 	 */
3202 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3203 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3204 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3205 					   &nr_pages_avail);
3206 		if (kvm_is_error_hva(ghc->hva))
3207 			return -EFAULT;
3208 	}
3209 
3210 	/* Use the slow path for cross page reads and writes. */
3211 	if (nr_pages_needed == 1)
3212 		ghc->hva += offset;
3213 	else
3214 		ghc->memslot = NULL;
3215 
3216 	ghc->gpa = gpa;
3217 	ghc->len = len;
3218 	return 0;
3219 }
3220 
3221 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3222 			      gpa_t gpa, unsigned long len)
3223 {
3224 	struct kvm_memslots *slots = kvm_memslots(kvm);
3225 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3226 }
3227 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3228 
3229 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3230 				  void *data, unsigned int offset,
3231 				  unsigned long len)
3232 {
3233 	struct kvm_memslots *slots = kvm_memslots(kvm);
3234 	int r;
3235 	gpa_t gpa = ghc->gpa + offset;
3236 
3237 	if (WARN_ON_ONCE(len + offset > ghc->len))
3238 		return -EINVAL;
3239 
3240 	if (slots->generation != ghc->generation) {
3241 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3242 			return -EFAULT;
3243 	}
3244 
3245 	if (kvm_is_error_hva(ghc->hva))
3246 		return -EFAULT;
3247 
3248 	if (unlikely(!ghc->memslot))
3249 		return kvm_write_guest(kvm, gpa, data, len);
3250 
3251 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3252 	if (r)
3253 		return -EFAULT;
3254 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3255 
3256 	return 0;
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3259 
3260 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3261 			   void *data, unsigned long len)
3262 {
3263 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3266 
3267 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3268 				 void *data, unsigned int offset,
3269 				 unsigned long len)
3270 {
3271 	struct kvm_memslots *slots = kvm_memslots(kvm);
3272 	int r;
3273 	gpa_t gpa = ghc->gpa + offset;
3274 
3275 	if (WARN_ON_ONCE(len + offset > ghc->len))
3276 		return -EINVAL;
3277 
3278 	if (slots->generation != ghc->generation) {
3279 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3280 			return -EFAULT;
3281 	}
3282 
3283 	if (kvm_is_error_hva(ghc->hva))
3284 		return -EFAULT;
3285 
3286 	if (unlikely(!ghc->memslot))
3287 		return kvm_read_guest(kvm, gpa, data, len);
3288 
3289 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3290 	if (r)
3291 		return -EFAULT;
3292 
3293 	return 0;
3294 }
3295 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3296 
3297 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3298 			  void *data, unsigned long len)
3299 {
3300 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3303 
3304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3305 {
3306 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3307 	gfn_t gfn = gpa >> PAGE_SHIFT;
3308 	int seg;
3309 	int offset = offset_in_page(gpa);
3310 	int ret;
3311 
3312 	while ((seg = next_segment(len, offset)) != 0) {
3313 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3314 		if (ret < 0)
3315 			return ret;
3316 		offset = 0;
3317 		len -= seg;
3318 		++gfn;
3319 	}
3320 	return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3323 
3324 void mark_page_dirty_in_slot(struct kvm *kvm,
3325 			     const struct kvm_memory_slot *memslot,
3326 		 	     gfn_t gfn)
3327 {
3328 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3329 
3330 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3331 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3332 		return;
3333 
3334 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3335 #endif
3336 
3337 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3338 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3339 		u32 slot = (memslot->as_id << 16) | memslot->id;
3340 
3341 		if (kvm->dirty_ring_size && vcpu)
3342 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3343 		else if (memslot->dirty_bitmap)
3344 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3345 	}
3346 }
3347 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3348 
3349 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3350 {
3351 	struct kvm_memory_slot *memslot;
3352 
3353 	memslot = gfn_to_memslot(kvm, gfn);
3354 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3355 }
3356 EXPORT_SYMBOL_GPL(mark_page_dirty);
3357 
3358 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3359 {
3360 	struct kvm_memory_slot *memslot;
3361 
3362 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3363 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3364 }
3365 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3366 
3367 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3368 {
3369 	if (!vcpu->sigset_active)
3370 		return;
3371 
3372 	/*
3373 	 * This does a lockless modification of ->real_blocked, which is fine
3374 	 * because, only current can change ->real_blocked and all readers of
3375 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3376 	 * of ->blocked.
3377 	 */
3378 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3379 }
3380 
3381 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3382 {
3383 	if (!vcpu->sigset_active)
3384 		return;
3385 
3386 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3387 	sigemptyset(&current->real_blocked);
3388 }
3389 
3390 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3391 {
3392 	unsigned int old, val, grow, grow_start;
3393 
3394 	old = val = vcpu->halt_poll_ns;
3395 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3396 	grow = READ_ONCE(halt_poll_ns_grow);
3397 	if (!grow)
3398 		goto out;
3399 
3400 	val *= grow;
3401 	if (val < grow_start)
3402 		val = grow_start;
3403 
3404 	vcpu->halt_poll_ns = val;
3405 out:
3406 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3407 }
3408 
3409 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3410 {
3411 	unsigned int old, val, shrink, grow_start;
3412 
3413 	old = val = vcpu->halt_poll_ns;
3414 	shrink = READ_ONCE(halt_poll_ns_shrink);
3415 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3416 	if (shrink == 0)
3417 		val = 0;
3418 	else
3419 		val /= shrink;
3420 
3421 	if (val < grow_start)
3422 		val = 0;
3423 
3424 	vcpu->halt_poll_ns = val;
3425 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3426 }
3427 
3428 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3429 {
3430 	int ret = -EINTR;
3431 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3432 
3433 	if (kvm_arch_vcpu_runnable(vcpu))
3434 		goto out;
3435 	if (kvm_cpu_has_pending_timer(vcpu))
3436 		goto out;
3437 	if (signal_pending(current))
3438 		goto out;
3439 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3440 		goto out;
3441 
3442 	ret = 0;
3443 out:
3444 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3445 	return ret;
3446 }
3447 
3448 /*
3449  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3450  * pending.  This is mostly used when halting a vCPU, but may also be used
3451  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3452  */
3453 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3454 {
3455 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3456 	bool waited = false;
3457 
3458 	vcpu->stat.generic.blocking = 1;
3459 
3460 	preempt_disable();
3461 	kvm_arch_vcpu_blocking(vcpu);
3462 	prepare_to_rcuwait(wait);
3463 	preempt_enable();
3464 
3465 	for (;;) {
3466 		set_current_state(TASK_INTERRUPTIBLE);
3467 
3468 		if (kvm_vcpu_check_block(vcpu) < 0)
3469 			break;
3470 
3471 		waited = true;
3472 		schedule();
3473 	}
3474 
3475 	preempt_disable();
3476 	finish_rcuwait(wait);
3477 	kvm_arch_vcpu_unblocking(vcpu);
3478 	preempt_enable();
3479 
3480 	vcpu->stat.generic.blocking = 0;
3481 
3482 	return waited;
3483 }
3484 
3485 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3486 					  ktime_t end, bool success)
3487 {
3488 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3489 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3490 
3491 	++vcpu->stat.generic.halt_attempted_poll;
3492 
3493 	if (success) {
3494 		++vcpu->stat.generic.halt_successful_poll;
3495 
3496 		if (!vcpu_valid_wakeup(vcpu))
3497 			++vcpu->stat.generic.halt_poll_invalid;
3498 
3499 		stats->halt_poll_success_ns += poll_ns;
3500 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3501 	} else {
3502 		stats->halt_poll_fail_ns += poll_ns;
3503 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3504 	}
3505 }
3506 
3507 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3508 {
3509 	struct kvm *kvm = vcpu->kvm;
3510 
3511 	if (kvm->override_halt_poll_ns) {
3512 		/*
3513 		 * Ensure kvm->max_halt_poll_ns is not read before
3514 		 * kvm->override_halt_poll_ns.
3515 		 *
3516 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3517 		 */
3518 		smp_rmb();
3519 		return READ_ONCE(kvm->max_halt_poll_ns);
3520 	}
3521 
3522 	return READ_ONCE(halt_poll_ns);
3523 }
3524 
3525 /*
3526  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3527  * polling is enabled, busy wait for a short time before blocking to avoid the
3528  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3529  * is halted.
3530  */
3531 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3532 {
3533 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3534 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3535 	ktime_t start, cur, poll_end;
3536 	bool waited = false;
3537 	bool do_halt_poll;
3538 	u64 halt_ns;
3539 
3540 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3541 		vcpu->halt_poll_ns = max_halt_poll_ns;
3542 
3543 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3544 
3545 	start = cur = poll_end = ktime_get();
3546 	if (do_halt_poll) {
3547 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3548 
3549 		do {
3550 			if (kvm_vcpu_check_block(vcpu) < 0)
3551 				goto out;
3552 			cpu_relax();
3553 			poll_end = cur = ktime_get();
3554 		} while (kvm_vcpu_can_poll(cur, stop));
3555 	}
3556 
3557 	waited = kvm_vcpu_block(vcpu);
3558 
3559 	cur = ktime_get();
3560 	if (waited) {
3561 		vcpu->stat.generic.halt_wait_ns +=
3562 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3563 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3564 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3565 	}
3566 out:
3567 	/* The total time the vCPU was "halted", including polling time. */
3568 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3569 
3570 	/*
3571 	 * Note, halt-polling is considered successful so long as the vCPU was
3572 	 * never actually scheduled out, i.e. even if the wake event arrived
3573 	 * after of the halt-polling loop itself, but before the full wait.
3574 	 */
3575 	if (do_halt_poll)
3576 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3577 
3578 	if (halt_poll_allowed) {
3579 		/* Recompute the max halt poll time in case it changed. */
3580 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3581 
3582 		if (!vcpu_valid_wakeup(vcpu)) {
3583 			shrink_halt_poll_ns(vcpu);
3584 		} else if (max_halt_poll_ns) {
3585 			if (halt_ns <= vcpu->halt_poll_ns)
3586 				;
3587 			/* we had a long block, shrink polling */
3588 			else if (vcpu->halt_poll_ns &&
3589 				 halt_ns > max_halt_poll_ns)
3590 				shrink_halt_poll_ns(vcpu);
3591 			/* we had a short halt and our poll time is too small */
3592 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3593 				 halt_ns < max_halt_poll_ns)
3594 				grow_halt_poll_ns(vcpu);
3595 		} else {
3596 			vcpu->halt_poll_ns = 0;
3597 		}
3598 	}
3599 
3600 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3601 }
3602 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3603 
3604 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3605 {
3606 	if (__kvm_vcpu_wake_up(vcpu)) {
3607 		WRITE_ONCE(vcpu->ready, true);
3608 		++vcpu->stat.generic.halt_wakeup;
3609 		return true;
3610 	}
3611 
3612 	return false;
3613 }
3614 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3615 
3616 #ifndef CONFIG_S390
3617 /*
3618  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3619  */
3620 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3621 {
3622 	int me, cpu;
3623 
3624 	if (kvm_vcpu_wake_up(vcpu))
3625 		return;
3626 
3627 	me = get_cpu();
3628 	/*
3629 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3630 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3631 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3632 	 * within the vCPU thread itself.
3633 	 */
3634 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3635 		if (vcpu->mode == IN_GUEST_MODE)
3636 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3637 		goto out;
3638 	}
3639 
3640 	/*
3641 	 * Note, the vCPU could get migrated to a different pCPU at any point
3642 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3643 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3644 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3645 	 * vCPU also requires it to leave IN_GUEST_MODE.
3646 	 */
3647 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3648 		cpu = READ_ONCE(vcpu->cpu);
3649 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3650 			smp_send_reschedule(cpu);
3651 	}
3652 out:
3653 	put_cpu();
3654 }
3655 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3656 #endif /* !CONFIG_S390 */
3657 
3658 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3659 {
3660 	struct pid *pid;
3661 	struct task_struct *task = NULL;
3662 	int ret = 0;
3663 
3664 	rcu_read_lock();
3665 	pid = rcu_dereference(target->pid);
3666 	if (pid)
3667 		task = get_pid_task(pid, PIDTYPE_PID);
3668 	rcu_read_unlock();
3669 	if (!task)
3670 		return ret;
3671 	ret = yield_to(task, 1);
3672 	put_task_struct(task);
3673 
3674 	return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3677 
3678 /*
3679  * Helper that checks whether a VCPU is eligible for directed yield.
3680  * Most eligible candidate to yield is decided by following heuristics:
3681  *
3682  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3683  *  (preempted lock holder), indicated by @in_spin_loop.
3684  *  Set at the beginning and cleared at the end of interception/PLE handler.
3685  *
3686  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3687  *  chance last time (mostly it has become eligible now since we have probably
3688  *  yielded to lockholder in last iteration. This is done by toggling
3689  *  @dy_eligible each time a VCPU checked for eligibility.)
3690  *
3691  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3692  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3693  *  burning. Giving priority for a potential lock-holder increases lock
3694  *  progress.
3695  *
3696  *  Since algorithm is based on heuristics, accessing another VCPU data without
3697  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3698  *  and continue with next VCPU and so on.
3699  */
3700 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3701 {
3702 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3703 	bool eligible;
3704 
3705 	eligible = !vcpu->spin_loop.in_spin_loop ||
3706 		    vcpu->spin_loop.dy_eligible;
3707 
3708 	if (vcpu->spin_loop.in_spin_loop)
3709 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3710 
3711 	return eligible;
3712 #else
3713 	return true;
3714 #endif
3715 }
3716 
3717 /*
3718  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3719  * a vcpu_load/vcpu_put pair.  However, for most architectures
3720  * kvm_arch_vcpu_runnable does not require vcpu_load.
3721  */
3722 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3723 {
3724 	return kvm_arch_vcpu_runnable(vcpu);
3725 }
3726 
3727 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3728 {
3729 	if (kvm_arch_dy_runnable(vcpu))
3730 		return true;
3731 
3732 #ifdef CONFIG_KVM_ASYNC_PF
3733 	if (!list_empty_careful(&vcpu->async_pf.done))
3734 		return true;
3735 #endif
3736 
3737 	return false;
3738 }
3739 
3740 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3741 {
3742 	return false;
3743 }
3744 
3745 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3746 {
3747 	struct kvm *kvm = me->kvm;
3748 	struct kvm_vcpu *vcpu;
3749 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3750 	unsigned long i;
3751 	int yielded = 0;
3752 	int try = 3;
3753 	int pass;
3754 
3755 	kvm_vcpu_set_in_spin_loop(me, true);
3756 	/*
3757 	 * We boost the priority of a VCPU that is runnable but not
3758 	 * currently running, because it got preempted by something
3759 	 * else and called schedule in __vcpu_run.  Hopefully that
3760 	 * VCPU is holding the lock that we need and will release it.
3761 	 * We approximate round-robin by starting at the last boosted VCPU.
3762 	 */
3763 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3764 		kvm_for_each_vcpu(i, vcpu, kvm) {
3765 			if (!pass && i <= last_boosted_vcpu) {
3766 				i = last_boosted_vcpu;
3767 				continue;
3768 			} else if (pass && i > last_boosted_vcpu)
3769 				break;
3770 			if (!READ_ONCE(vcpu->ready))
3771 				continue;
3772 			if (vcpu == me)
3773 				continue;
3774 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3775 				continue;
3776 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3777 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3778 			    !kvm_arch_vcpu_in_kernel(vcpu))
3779 				continue;
3780 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3781 				continue;
3782 
3783 			yielded = kvm_vcpu_yield_to(vcpu);
3784 			if (yielded > 0) {
3785 				kvm->last_boosted_vcpu = i;
3786 				break;
3787 			} else if (yielded < 0) {
3788 				try--;
3789 				if (!try)
3790 					break;
3791 			}
3792 		}
3793 	}
3794 	kvm_vcpu_set_in_spin_loop(me, false);
3795 
3796 	/* Ensure vcpu is not eligible during next spinloop */
3797 	kvm_vcpu_set_dy_eligible(me, false);
3798 }
3799 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3800 
3801 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3802 {
3803 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3804 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3805 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3806 	     kvm->dirty_ring_size / PAGE_SIZE);
3807 #else
3808 	return false;
3809 #endif
3810 }
3811 
3812 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3813 {
3814 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3815 	struct page *page;
3816 
3817 	if (vmf->pgoff == 0)
3818 		page = virt_to_page(vcpu->run);
3819 #ifdef CONFIG_X86
3820 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3821 		page = virt_to_page(vcpu->arch.pio_data);
3822 #endif
3823 #ifdef CONFIG_KVM_MMIO
3824 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3825 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3826 #endif
3827 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3828 		page = kvm_dirty_ring_get_page(
3829 		    &vcpu->dirty_ring,
3830 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3831 	else
3832 		return kvm_arch_vcpu_fault(vcpu, vmf);
3833 	get_page(page);
3834 	vmf->page = page;
3835 	return 0;
3836 }
3837 
3838 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3839 	.fault = kvm_vcpu_fault,
3840 };
3841 
3842 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3843 {
3844 	struct kvm_vcpu *vcpu = file->private_data;
3845 	unsigned long pages = vma_pages(vma);
3846 
3847 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3848 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3849 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3850 		return -EINVAL;
3851 
3852 	vma->vm_ops = &kvm_vcpu_vm_ops;
3853 	return 0;
3854 }
3855 
3856 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3857 {
3858 	struct kvm_vcpu *vcpu = filp->private_data;
3859 
3860 	kvm_put_kvm(vcpu->kvm);
3861 	return 0;
3862 }
3863 
3864 static const struct file_operations kvm_vcpu_fops = {
3865 	.release        = kvm_vcpu_release,
3866 	.unlocked_ioctl = kvm_vcpu_ioctl,
3867 	.mmap           = kvm_vcpu_mmap,
3868 	.llseek		= noop_llseek,
3869 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3870 };
3871 
3872 /*
3873  * Allocates an inode for the vcpu.
3874  */
3875 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3876 {
3877 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3878 
3879 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3880 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3881 }
3882 
3883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3884 static int vcpu_get_pid(void *data, u64 *val)
3885 {
3886 	struct kvm_vcpu *vcpu = data;
3887 
3888 	rcu_read_lock();
3889 	*val = pid_nr(rcu_dereference(vcpu->pid));
3890 	rcu_read_unlock();
3891 	return 0;
3892 }
3893 
3894 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3895 
3896 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3897 {
3898 	struct dentry *debugfs_dentry;
3899 	char dir_name[ITOA_MAX_LEN * 2];
3900 
3901 	if (!debugfs_initialized())
3902 		return;
3903 
3904 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3905 	debugfs_dentry = debugfs_create_dir(dir_name,
3906 					    vcpu->kvm->debugfs_dentry);
3907 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3908 			    &vcpu_get_pid_fops);
3909 
3910 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3911 }
3912 #endif
3913 
3914 /*
3915  * Creates some virtual cpus.  Good luck creating more than one.
3916  */
3917 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3918 {
3919 	int r;
3920 	struct kvm_vcpu *vcpu;
3921 	struct page *page;
3922 
3923 	if (id >= KVM_MAX_VCPU_IDS)
3924 		return -EINVAL;
3925 
3926 	mutex_lock(&kvm->lock);
3927 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3928 		mutex_unlock(&kvm->lock);
3929 		return -EINVAL;
3930 	}
3931 
3932 	r = kvm_arch_vcpu_precreate(kvm, id);
3933 	if (r) {
3934 		mutex_unlock(&kvm->lock);
3935 		return r;
3936 	}
3937 
3938 	kvm->created_vcpus++;
3939 	mutex_unlock(&kvm->lock);
3940 
3941 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3942 	if (!vcpu) {
3943 		r = -ENOMEM;
3944 		goto vcpu_decrement;
3945 	}
3946 
3947 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3948 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3949 	if (!page) {
3950 		r = -ENOMEM;
3951 		goto vcpu_free;
3952 	}
3953 	vcpu->run = page_address(page);
3954 
3955 	kvm_vcpu_init(vcpu, kvm, id);
3956 
3957 	r = kvm_arch_vcpu_create(vcpu);
3958 	if (r)
3959 		goto vcpu_free_run_page;
3960 
3961 	if (kvm->dirty_ring_size) {
3962 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3963 					 id, kvm->dirty_ring_size);
3964 		if (r)
3965 			goto arch_vcpu_destroy;
3966 	}
3967 
3968 	mutex_lock(&kvm->lock);
3969 
3970 #ifdef CONFIG_LOCKDEP
3971 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3972 	mutex_lock(&vcpu->mutex);
3973 	mutex_unlock(&vcpu->mutex);
3974 #endif
3975 
3976 	if (kvm_get_vcpu_by_id(kvm, id)) {
3977 		r = -EEXIST;
3978 		goto unlock_vcpu_destroy;
3979 	}
3980 
3981 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3982 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3983 	if (r)
3984 		goto unlock_vcpu_destroy;
3985 
3986 	/* Now it's all set up, let userspace reach it */
3987 	kvm_get_kvm(kvm);
3988 	r = create_vcpu_fd(vcpu);
3989 	if (r < 0)
3990 		goto kvm_put_xa_release;
3991 
3992 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3993 		r = -EINVAL;
3994 		goto kvm_put_xa_release;
3995 	}
3996 
3997 	/*
3998 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3999 	 * pointer before kvm->online_vcpu's incremented value.
4000 	 */
4001 	smp_wmb();
4002 	atomic_inc(&kvm->online_vcpus);
4003 
4004 	mutex_unlock(&kvm->lock);
4005 	kvm_arch_vcpu_postcreate(vcpu);
4006 	kvm_create_vcpu_debugfs(vcpu);
4007 	return r;
4008 
4009 kvm_put_xa_release:
4010 	kvm_put_kvm_no_destroy(kvm);
4011 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4012 unlock_vcpu_destroy:
4013 	mutex_unlock(&kvm->lock);
4014 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4015 arch_vcpu_destroy:
4016 	kvm_arch_vcpu_destroy(vcpu);
4017 vcpu_free_run_page:
4018 	free_page((unsigned long)vcpu->run);
4019 vcpu_free:
4020 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4021 vcpu_decrement:
4022 	mutex_lock(&kvm->lock);
4023 	kvm->created_vcpus--;
4024 	mutex_unlock(&kvm->lock);
4025 	return r;
4026 }
4027 
4028 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4029 {
4030 	if (sigset) {
4031 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4032 		vcpu->sigset_active = 1;
4033 		vcpu->sigset = *sigset;
4034 	} else
4035 		vcpu->sigset_active = 0;
4036 	return 0;
4037 }
4038 
4039 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4040 			      size_t size, loff_t *offset)
4041 {
4042 	struct kvm_vcpu *vcpu = file->private_data;
4043 
4044 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4045 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4046 			sizeof(vcpu->stat), user_buffer, size, offset);
4047 }
4048 
4049 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4050 {
4051 	struct kvm_vcpu *vcpu = file->private_data;
4052 
4053 	kvm_put_kvm(vcpu->kvm);
4054 	return 0;
4055 }
4056 
4057 static const struct file_operations kvm_vcpu_stats_fops = {
4058 	.read = kvm_vcpu_stats_read,
4059 	.release = kvm_vcpu_stats_release,
4060 	.llseek = noop_llseek,
4061 };
4062 
4063 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4064 {
4065 	int fd;
4066 	struct file *file;
4067 	char name[15 + ITOA_MAX_LEN + 1];
4068 
4069 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4070 
4071 	fd = get_unused_fd_flags(O_CLOEXEC);
4072 	if (fd < 0)
4073 		return fd;
4074 
4075 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4076 	if (IS_ERR(file)) {
4077 		put_unused_fd(fd);
4078 		return PTR_ERR(file);
4079 	}
4080 
4081 	kvm_get_kvm(vcpu->kvm);
4082 
4083 	file->f_mode |= FMODE_PREAD;
4084 	fd_install(fd, file);
4085 
4086 	return fd;
4087 }
4088 
4089 static long kvm_vcpu_ioctl(struct file *filp,
4090 			   unsigned int ioctl, unsigned long arg)
4091 {
4092 	struct kvm_vcpu *vcpu = filp->private_data;
4093 	void __user *argp = (void __user *)arg;
4094 	int r;
4095 	struct kvm_fpu *fpu = NULL;
4096 	struct kvm_sregs *kvm_sregs = NULL;
4097 
4098 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4099 		return -EIO;
4100 
4101 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4102 		return -EINVAL;
4103 
4104 	/*
4105 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4106 	 * execution; mutex_lock() would break them.
4107 	 */
4108 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4109 	if (r != -ENOIOCTLCMD)
4110 		return r;
4111 
4112 	if (mutex_lock_killable(&vcpu->mutex))
4113 		return -EINTR;
4114 	switch (ioctl) {
4115 	case KVM_RUN: {
4116 		struct pid *oldpid;
4117 		r = -EINVAL;
4118 		if (arg)
4119 			goto out;
4120 		oldpid = rcu_access_pointer(vcpu->pid);
4121 		if (unlikely(oldpid != task_pid(current))) {
4122 			/* The thread running this VCPU changed. */
4123 			struct pid *newpid;
4124 
4125 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4126 			if (r)
4127 				break;
4128 
4129 			newpid = get_task_pid(current, PIDTYPE_PID);
4130 			rcu_assign_pointer(vcpu->pid, newpid);
4131 			if (oldpid)
4132 				synchronize_rcu();
4133 			put_pid(oldpid);
4134 		}
4135 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4136 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4137 		break;
4138 	}
4139 	case KVM_GET_REGS: {
4140 		struct kvm_regs *kvm_regs;
4141 
4142 		r = -ENOMEM;
4143 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4144 		if (!kvm_regs)
4145 			goto out;
4146 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4147 		if (r)
4148 			goto out_free1;
4149 		r = -EFAULT;
4150 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4151 			goto out_free1;
4152 		r = 0;
4153 out_free1:
4154 		kfree(kvm_regs);
4155 		break;
4156 	}
4157 	case KVM_SET_REGS: {
4158 		struct kvm_regs *kvm_regs;
4159 
4160 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4161 		if (IS_ERR(kvm_regs)) {
4162 			r = PTR_ERR(kvm_regs);
4163 			goto out;
4164 		}
4165 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4166 		kfree(kvm_regs);
4167 		break;
4168 	}
4169 	case KVM_GET_SREGS: {
4170 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4171 				    GFP_KERNEL_ACCOUNT);
4172 		r = -ENOMEM;
4173 		if (!kvm_sregs)
4174 			goto out;
4175 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4176 		if (r)
4177 			goto out;
4178 		r = -EFAULT;
4179 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4180 			goto out;
4181 		r = 0;
4182 		break;
4183 	}
4184 	case KVM_SET_SREGS: {
4185 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4186 		if (IS_ERR(kvm_sregs)) {
4187 			r = PTR_ERR(kvm_sregs);
4188 			kvm_sregs = NULL;
4189 			goto out;
4190 		}
4191 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4192 		break;
4193 	}
4194 	case KVM_GET_MP_STATE: {
4195 		struct kvm_mp_state mp_state;
4196 
4197 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4198 		if (r)
4199 			goto out;
4200 		r = -EFAULT;
4201 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4202 			goto out;
4203 		r = 0;
4204 		break;
4205 	}
4206 	case KVM_SET_MP_STATE: {
4207 		struct kvm_mp_state mp_state;
4208 
4209 		r = -EFAULT;
4210 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4211 			goto out;
4212 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4213 		break;
4214 	}
4215 	case KVM_TRANSLATE: {
4216 		struct kvm_translation tr;
4217 
4218 		r = -EFAULT;
4219 		if (copy_from_user(&tr, argp, sizeof(tr)))
4220 			goto out;
4221 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4222 		if (r)
4223 			goto out;
4224 		r = -EFAULT;
4225 		if (copy_to_user(argp, &tr, sizeof(tr)))
4226 			goto out;
4227 		r = 0;
4228 		break;
4229 	}
4230 	case KVM_SET_GUEST_DEBUG: {
4231 		struct kvm_guest_debug dbg;
4232 
4233 		r = -EFAULT;
4234 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4235 			goto out;
4236 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4237 		break;
4238 	}
4239 	case KVM_SET_SIGNAL_MASK: {
4240 		struct kvm_signal_mask __user *sigmask_arg = argp;
4241 		struct kvm_signal_mask kvm_sigmask;
4242 		sigset_t sigset, *p;
4243 
4244 		p = NULL;
4245 		if (argp) {
4246 			r = -EFAULT;
4247 			if (copy_from_user(&kvm_sigmask, argp,
4248 					   sizeof(kvm_sigmask)))
4249 				goto out;
4250 			r = -EINVAL;
4251 			if (kvm_sigmask.len != sizeof(sigset))
4252 				goto out;
4253 			r = -EFAULT;
4254 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4255 					   sizeof(sigset)))
4256 				goto out;
4257 			p = &sigset;
4258 		}
4259 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4260 		break;
4261 	}
4262 	case KVM_GET_FPU: {
4263 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4264 		r = -ENOMEM;
4265 		if (!fpu)
4266 			goto out;
4267 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4268 		if (r)
4269 			goto out;
4270 		r = -EFAULT;
4271 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4272 			goto out;
4273 		r = 0;
4274 		break;
4275 	}
4276 	case KVM_SET_FPU: {
4277 		fpu = memdup_user(argp, sizeof(*fpu));
4278 		if (IS_ERR(fpu)) {
4279 			r = PTR_ERR(fpu);
4280 			fpu = NULL;
4281 			goto out;
4282 		}
4283 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4284 		break;
4285 	}
4286 	case KVM_GET_STATS_FD: {
4287 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4288 		break;
4289 	}
4290 	default:
4291 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4292 	}
4293 out:
4294 	mutex_unlock(&vcpu->mutex);
4295 	kfree(fpu);
4296 	kfree(kvm_sregs);
4297 	return r;
4298 }
4299 
4300 #ifdef CONFIG_KVM_COMPAT
4301 static long kvm_vcpu_compat_ioctl(struct file *filp,
4302 				  unsigned int ioctl, unsigned long arg)
4303 {
4304 	struct kvm_vcpu *vcpu = filp->private_data;
4305 	void __user *argp = compat_ptr(arg);
4306 	int r;
4307 
4308 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4309 		return -EIO;
4310 
4311 	switch (ioctl) {
4312 	case KVM_SET_SIGNAL_MASK: {
4313 		struct kvm_signal_mask __user *sigmask_arg = argp;
4314 		struct kvm_signal_mask kvm_sigmask;
4315 		sigset_t sigset;
4316 
4317 		if (argp) {
4318 			r = -EFAULT;
4319 			if (copy_from_user(&kvm_sigmask, argp,
4320 					   sizeof(kvm_sigmask)))
4321 				goto out;
4322 			r = -EINVAL;
4323 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4324 				goto out;
4325 			r = -EFAULT;
4326 			if (get_compat_sigset(&sigset,
4327 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4328 				goto out;
4329 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4330 		} else
4331 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4332 		break;
4333 	}
4334 	default:
4335 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4336 	}
4337 
4338 out:
4339 	return r;
4340 }
4341 #endif
4342 
4343 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4344 {
4345 	struct kvm_device *dev = filp->private_data;
4346 
4347 	if (dev->ops->mmap)
4348 		return dev->ops->mmap(dev, vma);
4349 
4350 	return -ENODEV;
4351 }
4352 
4353 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4354 				 int (*accessor)(struct kvm_device *dev,
4355 						 struct kvm_device_attr *attr),
4356 				 unsigned long arg)
4357 {
4358 	struct kvm_device_attr attr;
4359 
4360 	if (!accessor)
4361 		return -EPERM;
4362 
4363 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4364 		return -EFAULT;
4365 
4366 	return accessor(dev, &attr);
4367 }
4368 
4369 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4370 			     unsigned long arg)
4371 {
4372 	struct kvm_device *dev = filp->private_data;
4373 
4374 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4375 		return -EIO;
4376 
4377 	switch (ioctl) {
4378 	case KVM_SET_DEVICE_ATTR:
4379 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4380 	case KVM_GET_DEVICE_ATTR:
4381 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4382 	case KVM_HAS_DEVICE_ATTR:
4383 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4384 	default:
4385 		if (dev->ops->ioctl)
4386 			return dev->ops->ioctl(dev, ioctl, arg);
4387 
4388 		return -ENOTTY;
4389 	}
4390 }
4391 
4392 static int kvm_device_release(struct inode *inode, struct file *filp)
4393 {
4394 	struct kvm_device *dev = filp->private_data;
4395 	struct kvm *kvm = dev->kvm;
4396 
4397 	if (dev->ops->release) {
4398 		mutex_lock(&kvm->lock);
4399 		list_del(&dev->vm_node);
4400 		dev->ops->release(dev);
4401 		mutex_unlock(&kvm->lock);
4402 	}
4403 
4404 	kvm_put_kvm(kvm);
4405 	return 0;
4406 }
4407 
4408 static const struct file_operations kvm_device_fops = {
4409 	.unlocked_ioctl = kvm_device_ioctl,
4410 	.release = kvm_device_release,
4411 	KVM_COMPAT(kvm_device_ioctl),
4412 	.mmap = kvm_device_mmap,
4413 };
4414 
4415 struct kvm_device *kvm_device_from_filp(struct file *filp)
4416 {
4417 	if (filp->f_op != &kvm_device_fops)
4418 		return NULL;
4419 
4420 	return filp->private_data;
4421 }
4422 
4423 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4424 #ifdef CONFIG_KVM_MPIC
4425 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4426 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4427 #endif
4428 };
4429 
4430 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4431 {
4432 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4433 		return -ENOSPC;
4434 
4435 	if (kvm_device_ops_table[type] != NULL)
4436 		return -EEXIST;
4437 
4438 	kvm_device_ops_table[type] = ops;
4439 	return 0;
4440 }
4441 
4442 void kvm_unregister_device_ops(u32 type)
4443 {
4444 	if (kvm_device_ops_table[type] != NULL)
4445 		kvm_device_ops_table[type] = NULL;
4446 }
4447 
4448 static int kvm_ioctl_create_device(struct kvm *kvm,
4449 				   struct kvm_create_device *cd)
4450 {
4451 	const struct kvm_device_ops *ops;
4452 	struct kvm_device *dev;
4453 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4454 	int type;
4455 	int ret;
4456 
4457 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4458 		return -ENODEV;
4459 
4460 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4461 	ops = kvm_device_ops_table[type];
4462 	if (ops == NULL)
4463 		return -ENODEV;
4464 
4465 	if (test)
4466 		return 0;
4467 
4468 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4469 	if (!dev)
4470 		return -ENOMEM;
4471 
4472 	dev->ops = ops;
4473 	dev->kvm = kvm;
4474 
4475 	mutex_lock(&kvm->lock);
4476 	ret = ops->create(dev, type);
4477 	if (ret < 0) {
4478 		mutex_unlock(&kvm->lock);
4479 		kfree(dev);
4480 		return ret;
4481 	}
4482 	list_add(&dev->vm_node, &kvm->devices);
4483 	mutex_unlock(&kvm->lock);
4484 
4485 	if (ops->init)
4486 		ops->init(dev);
4487 
4488 	kvm_get_kvm(kvm);
4489 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4490 	if (ret < 0) {
4491 		kvm_put_kvm_no_destroy(kvm);
4492 		mutex_lock(&kvm->lock);
4493 		list_del(&dev->vm_node);
4494 		if (ops->release)
4495 			ops->release(dev);
4496 		mutex_unlock(&kvm->lock);
4497 		if (ops->destroy)
4498 			ops->destroy(dev);
4499 		return ret;
4500 	}
4501 
4502 	cd->fd = ret;
4503 	return 0;
4504 }
4505 
4506 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4507 {
4508 	switch (arg) {
4509 	case KVM_CAP_USER_MEMORY:
4510 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4511 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4512 	case KVM_CAP_INTERNAL_ERROR_DATA:
4513 #ifdef CONFIG_HAVE_KVM_MSI
4514 	case KVM_CAP_SIGNAL_MSI:
4515 #endif
4516 #ifdef CONFIG_HAVE_KVM_IRQFD
4517 	case KVM_CAP_IRQFD:
4518 #endif
4519 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4520 	case KVM_CAP_CHECK_EXTENSION_VM:
4521 	case KVM_CAP_ENABLE_CAP_VM:
4522 	case KVM_CAP_HALT_POLL:
4523 		return 1;
4524 #ifdef CONFIG_KVM_MMIO
4525 	case KVM_CAP_COALESCED_MMIO:
4526 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4527 	case KVM_CAP_COALESCED_PIO:
4528 		return 1;
4529 #endif
4530 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4531 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4532 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4533 #endif
4534 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4535 	case KVM_CAP_IRQ_ROUTING:
4536 		return KVM_MAX_IRQ_ROUTES;
4537 #endif
4538 #if KVM_ADDRESS_SPACE_NUM > 1
4539 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4540 		return KVM_ADDRESS_SPACE_NUM;
4541 #endif
4542 	case KVM_CAP_NR_MEMSLOTS:
4543 		return KVM_USER_MEM_SLOTS;
4544 	case KVM_CAP_DIRTY_LOG_RING:
4545 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4546 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4547 #else
4548 		return 0;
4549 #endif
4550 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4551 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4552 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4553 #else
4554 		return 0;
4555 #endif
4556 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4557 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4558 #endif
4559 	case KVM_CAP_BINARY_STATS_FD:
4560 	case KVM_CAP_SYSTEM_EVENT_DATA:
4561 		return 1;
4562 	default:
4563 		break;
4564 	}
4565 	return kvm_vm_ioctl_check_extension(kvm, arg);
4566 }
4567 
4568 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4569 {
4570 	int r;
4571 
4572 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4573 		return -EINVAL;
4574 
4575 	/* the size should be power of 2 */
4576 	if (!size || (size & (size - 1)))
4577 		return -EINVAL;
4578 
4579 	/* Should be bigger to keep the reserved entries, or a page */
4580 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4581 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4582 		return -EINVAL;
4583 
4584 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4585 	    sizeof(struct kvm_dirty_gfn))
4586 		return -E2BIG;
4587 
4588 	/* We only allow it to set once */
4589 	if (kvm->dirty_ring_size)
4590 		return -EINVAL;
4591 
4592 	mutex_lock(&kvm->lock);
4593 
4594 	if (kvm->created_vcpus) {
4595 		/* We don't allow to change this value after vcpu created */
4596 		r = -EINVAL;
4597 	} else {
4598 		kvm->dirty_ring_size = size;
4599 		r = 0;
4600 	}
4601 
4602 	mutex_unlock(&kvm->lock);
4603 	return r;
4604 }
4605 
4606 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4607 {
4608 	unsigned long i;
4609 	struct kvm_vcpu *vcpu;
4610 	int cleared = 0;
4611 
4612 	if (!kvm->dirty_ring_size)
4613 		return -EINVAL;
4614 
4615 	mutex_lock(&kvm->slots_lock);
4616 
4617 	kvm_for_each_vcpu(i, vcpu, kvm)
4618 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4619 
4620 	mutex_unlock(&kvm->slots_lock);
4621 
4622 	if (cleared)
4623 		kvm_flush_remote_tlbs(kvm);
4624 
4625 	return cleared;
4626 }
4627 
4628 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4629 						  struct kvm_enable_cap *cap)
4630 {
4631 	return -EINVAL;
4632 }
4633 
4634 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4635 {
4636 	int i;
4637 
4638 	lockdep_assert_held(&kvm->slots_lock);
4639 
4640 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4641 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4642 			return false;
4643 	}
4644 
4645 	return true;
4646 }
4647 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4648 
4649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4650 					   struct kvm_enable_cap *cap)
4651 {
4652 	switch (cap->cap) {
4653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4654 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4655 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4656 
4657 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4658 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4659 
4660 		if (cap->flags || (cap->args[0] & ~allowed_options))
4661 			return -EINVAL;
4662 		kvm->manual_dirty_log_protect = cap->args[0];
4663 		return 0;
4664 	}
4665 #endif
4666 	case KVM_CAP_HALT_POLL: {
4667 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4668 			return -EINVAL;
4669 
4670 		kvm->max_halt_poll_ns = cap->args[0];
4671 
4672 		/*
4673 		 * Ensure kvm->override_halt_poll_ns does not become visible
4674 		 * before kvm->max_halt_poll_ns.
4675 		 *
4676 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4677 		 */
4678 		smp_wmb();
4679 		kvm->override_halt_poll_ns = true;
4680 
4681 		return 0;
4682 	}
4683 	case KVM_CAP_DIRTY_LOG_RING:
4684 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4685 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4686 			return -EINVAL;
4687 
4688 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4689 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4690 		int r = -EINVAL;
4691 
4692 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4693 		    !kvm->dirty_ring_size || cap->flags)
4694 			return r;
4695 
4696 		mutex_lock(&kvm->slots_lock);
4697 
4698 		/*
4699 		 * For simplicity, allow enabling ring+bitmap if and only if
4700 		 * there are no memslots, e.g. to ensure all memslots allocate
4701 		 * a bitmap after the capability is enabled.
4702 		 */
4703 		if (kvm_are_all_memslots_empty(kvm)) {
4704 			kvm->dirty_ring_with_bitmap = true;
4705 			r = 0;
4706 		}
4707 
4708 		mutex_unlock(&kvm->slots_lock);
4709 
4710 		return r;
4711 	}
4712 	default:
4713 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4714 	}
4715 }
4716 
4717 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4718 			      size_t size, loff_t *offset)
4719 {
4720 	struct kvm *kvm = file->private_data;
4721 
4722 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4723 				&kvm_vm_stats_desc[0], &kvm->stat,
4724 				sizeof(kvm->stat), user_buffer, size, offset);
4725 }
4726 
4727 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4728 {
4729 	struct kvm *kvm = file->private_data;
4730 
4731 	kvm_put_kvm(kvm);
4732 	return 0;
4733 }
4734 
4735 static const struct file_operations kvm_vm_stats_fops = {
4736 	.read = kvm_vm_stats_read,
4737 	.release = kvm_vm_stats_release,
4738 	.llseek = noop_llseek,
4739 };
4740 
4741 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4742 {
4743 	int fd;
4744 	struct file *file;
4745 
4746 	fd = get_unused_fd_flags(O_CLOEXEC);
4747 	if (fd < 0)
4748 		return fd;
4749 
4750 	file = anon_inode_getfile("kvm-vm-stats",
4751 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4752 	if (IS_ERR(file)) {
4753 		put_unused_fd(fd);
4754 		return PTR_ERR(file);
4755 	}
4756 
4757 	kvm_get_kvm(kvm);
4758 
4759 	file->f_mode |= FMODE_PREAD;
4760 	fd_install(fd, file);
4761 
4762 	return fd;
4763 }
4764 
4765 static long kvm_vm_ioctl(struct file *filp,
4766 			   unsigned int ioctl, unsigned long arg)
4767 {
4768 	struct kvm *kvm = filp->private_data;
4769 	void __user *argp = (void __user *)arg;
4770 	int r;
4771 
4772 	if (kvm->mm != current->mm || kvm->vm_dead)
4773 		return -EIO;
4774 	switch (ioctl) {
4775 	case KVM_CREATE_VCPU:
4776 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4777 		break;
4778 	case KVM_ENABLE_CAP: {
4779 		struct kvm_enable_cap cap;
4780 
4781 		r = -EFAULT;
4782 		if (copy_from_user(&cap, argp, sizeof(cap)))
4783 			goto out;
4784 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4785 		break;
4786 	}
4787 	case KVM_SET_USER_MEMORY_REGION: {
4788 		struct kvm_userspace_memory_region kvm_userspace_mem;
4789 
4790 		r = -EFAULT;
4791 		if (copy_from_user(&kvm_userspace_mem, argp,
4792 						sizeof(kvm_userspace_mem)))
4793 			goto out;
4794 
4795 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4796 		break;
4797 	}
4798 	case KVM_GET_DIRTY_LOG: {
4799 		struct kvm_dirty_log log;
4800 
4801 		r = -EFAULT;
4802 		if (copy_from_user(&log, argp, sizeof(log)))
4803 			goto out;
4804 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4805 		break;
4806 	}
4807 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4808 	case KVM_CLEAR_DIRTY_LOG: {
4809 		struct kvm_clear_dirty_log log;
4810 
4811 		r = -EFAULT;
4812 		if (copy_from_user(&log, argp, sizeof(log)))
4813 			goto out;
4814 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4815 		break;
4816 	}
4817 #endif
4818 #ifdef CONFIG_KVM_MMIO
4819 	case KVM_REGISTER_COALESCED_MMIO: {
4820 		struct kvm_coalesced_mmio_zone zone;
4821 
4822 		r = -EFAULT;
4823 		if (copy_from_user(&zone, argp, sizeof(zone)))
4824 			goto out;
4825 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4826 		break;
4827 	}
4828 	case KVM_UNREGISTER_COALESCED_MMIO: {
4829 		struct kvm_coalesced_mmio_zone zone;
4830 
4831 		r = -EFAULT;
4832 		if (copy_from_user(&zone, argp, sizeof(zone)))
4833 			goto out;
4834 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4835 		break;
4836 	}
4837 #endif
4838 	case KVM_IRQFD: {
4839 		struct kvm_irqfd data;
4840 
4841 		r = -EFAULT;
4842 		if (copy_from_user(&data, argp, sizeof(data)))
4843 			goto out;
4844 		r = kvm_irqfd(kvm, &data);
4845 		break;
4846 	}
4847 	case KVM_IOEVENTFD: {
4848 		struct kvm_ioeventfd data;
4849 
4850 		r = -EFAULT;
4851 		if (copy_from_user(&data, argp, sizeof(data)))
4852 			goto out;
4853 		r = kvm_ioeventfd(kvm, &data);
4854 		break;
4855 	}
4856 #ifdef CONFIG_HAVE_KVM_MSI
4857 	case KVM_SIGNAL_MSI: {
4858 		struct kvm_msi msi;
4859 
4860 		r = -EFAULT;
4861 		if (copy_from_user(&msi, argp, sizeof(msi)))
4862 			goto out;
4863 		r = kvm_send_userspace_msi(kvm, &msi);
4864 		break;
4865 	}
4866 #endif
4867 #ifdef __KVM_HAVE_IRQ_LINE
4868 	case KVM_IRQ_LINE_STATUS:
4869 	case KVM_IRQ_LINE: {
4870 		struct kvm_irq_level irq_event;
4871 
4872 		r = -EFAULT;
4873 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4874 			goto out;
4875 
4876 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4877 					ioctl == KVM_IRQ_LINE_STATUS);
4878 		if (r)
4879 			goto out;
4880 
4881 		r = -EFAULT;
4882 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4883 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4884 				goto out;
4885 		}
4886 
4887 		r = 0;
4888 		break;
4889 	}
4890 #endif
4891 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4892 	case KVM_SET_GSI_ROUTING: {
4893 		struct kvm_irq_routing routing;
4894 		struct kvm_irq_routing __user *urouting;
4895 		struct kvm_irq_routing_entry *entries = NULL;
4896 
4897 		r = -EFAULT;
4898 		if (copy_from_user(&routing, argp, sizeof(routing)))
4899 			goto out;
4900 		r = -EINVAL;
4901 		if (!kvm_arch_can_set_irq_routing(kvm))
4902 			goto out;
4903 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4904 			goto out;
4905 		if (routing.flags)
4906 			goto out;
4907 		if (routing.nr) {
4908 			urouting = argp;
4909 			entries = vmemdup_user(urouting->entries,
4910 					       array_size(sizeof(*entries),
4911 							  routing.nr));
4912 			if (IS_ERR(entries)) {
4913 				r = PTR_ERR(entries);
4914 				goto out;
4915 			}
4916 		}
4917 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4918 					routing.flags);
4919 		kvfree(entries);
4920 		break;
4921 	}
4922 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4923 	case KVM_CREATE_DEVICE: {
4924 		struct kvm_create_device cd;
4925 
4926 		r = -EFAULT;
4927 		if (copy_from_user(&cd, argp, sizeof(cd)))
4928 			goto out;
4929 
4930 		r = kvm_ioctl_create_device(kvm, &cd);
4931 		if (r)
4932 			goto out;
4933 
4934 		r = -EFAULT;
4935 		if (copy_to_user(argp, &cd, sizeof(cd)))
4936 			goto out;
4937 
4938 		r = 0;
4939 		break;
4940 	}
4941 	case KVM_CHECK_EXTENSION:
4942 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4943 		break;
4944 	case KVM_RESET_DIRTY_RINGS:
4945 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4946 		break;
4947 	case KVM_GET_STATS_FD:
4948 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4949 		break;
4950 	default:
4951 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4952 	}
4953 out:
4954 	return r;
4955 }
4956 
4957 #ifdef CONFIG_KVM_COMPAT
4958 struct compat_kvm_dirty_log {
4959 	__u32 slot;
4960 	__u32 padding1;
4961 	union {
4962 		compat_uptr_t dirty_bitmap; /* one bit per page */
4963 		__u64 padding2;
4964 	};
4965 };
4966 
4967 struct compat_kvm_clear_dirty_log {
4968 	__u32 slot;
4969 	__u32 num_pages;
4970 	__u64 first_page;
4971 	union {
4972 		compat_uptr_t dirty_bitmap; /* one bit per page */
4973 		__u64 padding2;
4974 	};
4975 };
4976 
4977 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4978 				     unsigned long arg)
4979 {
4980 	return -ENOTTY;
4981 }
4982 
4983 static long kvm_vm_compat_ioctl(struct file *filp,
4984 			   unsigned int ioctl, unsigned long arg)
4985 {
4986 	struct kvm *kvm = filp->private_data;
4987 	int r;
4988 
4989 	if (kvm->mm != current->mm || kvm->vm_dead)
4990 		return -EIO;
4991 
4992 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4993 	if (r != -ENOTTY)
4994 		return r;
4995 
4996 	switch (ioctl) {
4997 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4998 	case KVM_CLEAR_DIRTY_LOG: {
4999 		struct compat_kvm_clear_dirty_log compat_log;
5000 		struct kvm_clear_dirty_log log;
5001 
5002 		if (copy_from_user(&compat_log, (void __user *)arg,
5003 				   sizeof(compat_log)))
5004 			return -EFAULT;
5005 		log.slot	 = compat_log.slot;
5006 		log.num_pages	 = compat_log.num_pages;
5007 		log.first_page	 = compat_log.first_page;
5008 		log.padding2	 = compat_log.padding2;
5009 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5010 
5011 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5012 		break;
5013 	}
5014 #endif
5015 	case KVM_GET_DIRTY_LOG: {
5016 		struct compat_kvm_dirty_log compat_log;
5017 		struct kvm_dirty_log log;
5018 
5019 		if (copy_from_user(&compat_log, (void __user *)arg,
5020 				   sizeof(compat_log)))
5021 			return -EFAULT;
5022 		log.slot	 = compat_log.slot;
5023 		log.padding1	 = compat_log.padding1;
5024 		log.padding2	 = compat_log.padding2;
5025 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5026 
5027 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5028 		break;
5029 	}
5030 	default:
5031 		r = kvm_vm_ioctl(filp, ioctl, arg);
5032 	}
5033 	return r;
5034 }
5035 #endif
5036 
5037 static const struct file_operations kvm_vm_fops = {
5038 	.release        = kvm_vm_release,
5039 	.unlocked_ioctl = kvm_vm_ioctl,
5040 	.llseek		= noop_llseek,
5041 	KVM_COMPAT(kvm_vm_compat_ioctl),
5042 };
5043 
5044 bool file_is_kvm(struct file *file)
5045 {
5046 	return file && file->f_op == &kvm_vm_fops;
5047 }
5048 EXPORT_SYMBOL_GPL(file_is_kvm);
5049 
5050 static int kvm_dev_ioctl_create_vm(unsigned long type)
5051 {
5052 	char fdname[ITOA_MAX_LEN + 1];
5053 	int r, fd;
5054 	struct kvm *kvm;
5055 	struct file *file;
5056 
5057 	fd = get_unused_fd_flags(O_CLOEXEC);
5058 	if (fd < 0)
5059 		return fd;
5060 
5061 	snprintf(fdname, sizeof(fdname), "%d", fd);
5062 
5063 	kvm = kvm_create_vm(type, fdname);
5064 	if (IS_ERR(kvm)) {
5065 		r = PTR_ERR(kvm);
5066 		goto put_fd;
5067 	}
5068 
5069 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5070 	if (IS_ERR(file)) {
5071 		r = PTR_ERR(file);
5072 		goto put_kvm;
5073 	}
5074 
5075 	/*
5076 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5077 	 * already set, with ->release() being kvm_vm_release().  In error
5078 	 * cases it will be called by the final fput(file) and will take
5079 	 * care of doing kvm_put_kvm(kvm).
5080 	 */
5081 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5082 
5083 	fd_install(fd, file);
5084 	return fd;
5085 
5086 put_kvm:
5087 	kvm_put_kvm(kvm);
5088 put_fd:
5089 	put_unused_fd(fd);
5090 	return r;
5091 }
5092 
5093 static long kvm_dev_ioctl(struct file *filp,
5094 			  unsigned int ioctl, unsigned long arg)
5095 {
5096 	int r = -EINVAL;
5097 
5098 	switch (ioctl) {
5099 	case KVM_GET_API_VERSION:
5100 		if (arg)
5101 			goto out;
5102 		r = KVM_API_VERSION;
5103 		break;
5104 	case KVM_CREATE_VM:
5105 		r = kvm_dev_ioctl_create_vm(arg);
5106 		break;
5107 	case KVM_CHECK_EXTENSION:
5108 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5109 		break;
5110 	case KVM_GET_VCPU_MMAP_SIZE:
5111 		if (arg)
5112 			goto out;
5113 		r = PAGE_SIZE;     /* struct kvm_run */
5114 #ifdef CONFIG_X86
5115 		r += PAGE_SIZE;    /* pio data page */
5116 #endif
5117 #ifdef CONFIG_KVM_MMIO
5118 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5119 #endif
5120 		break;
5121 	case KVM_TRACE_ENABLE:
5122 	case KVM_TRACE_PAUSE:
5123 	case KVM_TRACE_DISABLE:
5124 		r = -EOPNOTSUPP;
5125 		break;
5126 	default:
5127 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5128 	}
5129 out:
5130 	return r;
5131 }
5132 
5133 static struct file_operations kvm_chardev_ops = {
5134 	.unlocked_ioctl = kvm_dev_ioctl,
5135 	.llseek		= noop_llseek,
5136 	KVM_COMPAT(kvm_dev_ioctl),
5137 };
5138 
5139 static struct miscdevice kvm_dev = {
5140 	KVM_MINOR,
5141 	"kvm",
5142 	&kvm_chardev_ops,
5143 };
5144 
5145 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5146 __visible bool kvm_rebooting;
5147 EXPORT_SYMBOL_GPL(kvm_rebooting);
5148 
5149 static DEFINE_PER_CPU(bool, hardware_enabled);
5150 static int kvm_usage_count;
5151 
5152 static int __hardware_enable_nolock(void)
5153 {
5154 	if (__this_cpu_read(hardware_enabled))
5155 		return 0;
5156 
5157 	if (kvm_arch_hardware_enable()) {
5158 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5159 			raw_smp_processor_id());
5160 		return -EIO;
5161 	}
5162 
5163 	__this_cpu_write(hardware_enabled, true);
5164 	return 0;
5165 }
5166 
5167 static void hardware_enable_nolock(void *failed)
5168 {
5169 	if (__hardware_enable_nolock())
5170 		atomic_inc(failed);
5171 }
5172 
5173 static int kvm_online_cpu(unsigned int cpu)
5174 {
5175 	int ret = 0;
5176 
5177 	/*
5178 	 * Abort the CPU online process if hardware virtualization cannot
5179 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5180 	 * errors when scheduled to this CPU.
5181 	 */
5182 	mutex_lock(&kvm_lock);
5183 	if (kvm_usage_count)
5184 		ret = __hardware_enable_nolock();
5185 	mutex_unlock(&kvm_lock);
5186 	return ret;
5187 }
5188 
5189 static void hardware_disable_nolock(void *junk)
5190 {
5191 	/*
5192 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5193 	 * hardware, not just CPUs that successfully enabled hardware!
5194 	 */
5195 	if (!__this_cpu_read(hardware_enabled))
5196 		return;
5197 
5198 	kvm_arch_hardware_disable();
5199 
5200 	__this_cpu_write(hardware_enabled, false);
5201 }
5202 
5203 static int kvm_offline_cpu(unsigned int cpu)
5204 {
5205 	mutex_lock(&kvm_lock);
5206 	if (kvm_usage_count)
5207 		hardware_disable_nolock(NULL);
5208 	mutex_unlock(&kvm_lock);
5209 	return 0;
5210 }
5211 
5212 static void hardware_disable_all_nolock(void)
5213 {
5214 	BUG_ON(!kvm_usage_count);
5215 
5216 	kvm_usage_count--;
5217 	if (!kvm_usage_count)
5218 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5219 }
5220 
5221 static void hardware_disable_all(void)
5222 {
5223 	cpus_read_lock();
5224 	mutex_lock(&kvm_lock);
5225 	hardware_disable_all_nolock();
5226 	mutex_unlock(&kvm_lock);
5227 	cpus_read_unlock();
5228 }
5229 
5230 static int hardware_enable_all(void)
5231 {
5232 	atomic_t failed = ATOMIC_INIT(0);
5233 	int r;
5234 
5235 	/*
5236 	 * Do not enable hardware virtualization if the system is going down.
5237 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5238 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5239 	 * after kvm_reboot() is called.  Note, this relies on system_state
5240 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5241 	 * hook instead of registering a dedicated reboot notifier (the latter
5242 	 * runs before system_state is updated).
5243 	 */
5244 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5245 	    system_state == SYSTEM_RESTART)
5246 		return -EBUSY;
5247 
5248 	/*
5249 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5250 	 * is called, and so on_each_cpu() between them includes the CPU that
5251 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5252 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5253 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5254 	 * enable hardware multiple times.
5255 	 */
5256 	cpus_read_lock();
5257 	mutex_lock(&kvm_lock);
5258 
5259 	r = 0;
5260 
5261 	kvm_usage_count++;
5262 	if (kvm_usage_count == 1) {
5263 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5264 
5265 		if (atomic_read(&failed)) {
5266 			hardware_disable_all_nolock();
5267 			r = -EBUSY;
5268 		}
5269 	}
5270 
5271 	mutex_unlock(&kvm_lock);
5272 	cpus_read_unlock();
5273 
5274 	return r;
5275 }
5276 
5277 static void kvm_shutdown(void)
5278 {
5279 	/*
5280 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5281 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5282 	 * that relevant errors and exceptions aren't entirely unexpected.
5283 	 * Some flavors of hardware virtualization need to be disabled before
5284 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5285 	 * on x86, virtualization can block INIT interrupts, which are used by
5286 	 * firmware to pull APs back under firmware control.  Note, this path
5287 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5288 	 * 100% comprehensive.
5289 	 */
5290 	pr_info("kvm: exiting hardware virtualization\n");
5291 	kvm_rebooting = true;
5292 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5293 }
5294 
5295 static int kvm_suspend(void)
5296 {
5297 	/*
5298 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5299 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5300 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5301 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5302 	 * can be preempted, but the task cannot be frozen until it has dropped
5303 	 * all locks (userspace tasks are frozen via a fake signal).
5304 	 */
5305 	lockdep_assert_not_held(&kvm_lock);
5306 	lockdep_assert_irqs_disabled();
5307 
5308 	if (kvm_usage_count)
5309 		hardware_disable_nolock(NULL);
5310 	return 0;
5311 }
5312 
5313 static void kvm_resume(void)
5314 {
5315 	lockdep_assert_not_held(&kvm_lock);
5316 	lockdep_assert_irqs_disabled();
5317 
5318 	if (kvm_usage_count)
5319 		WARN_ON_ONCE(__hardware_enable_nolock());
5320 }
5321 
5322 static struct syscore_ops kvm_syscore_ops = {
5323 	.suspend = kvm_suspend,
5324 	.resume = kvm_resume,
5325 	.shutdown = kvm_shutdown,
5326 };
5327 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5328 static int hardware_enable_all(void)
5329 {
5330 	return 0;
5331 }
5332 
5333 static void hardware_disable_all(void)
5334 {
5335 
5336 }
5337 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5338 
5339 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5340 {
5341 	if (dev->ops->destructor)
5342 		dev->ops->destructor(dev);
5343 }
5344 
5345 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5346 {
5347 	int i;
5348 
5349 	for (i = 0; i < bus->dev_count; i++) {
5350 		struct kvm_io_device *pos = bus->range[i].dev;
5351 
5352 		kvm_iodevice_destructor(pos);
5353 	}
5354 	kfree(bus);
5355 }
5356 
5357 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5358 				 const struct kvm_io_range *r2)
5359 {
5360 	gpa_t addr1 = r1->addr;
5361 	gpa_t addr2 = r2->addr;
5362 
5363 	if (addr1 < addr2)
5364 		return -1;
5365 
5366 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5367 	 * accept any overlapping write.  Any order is acceptable for
5368 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5369 	 * we process all of them.
5370 	 */
5371 	if (r2->len) {
5372 		addr1 += r1->len;
5373 		addr2 += r2->len;
5374 	}
5375 
5376 	if (addr1 > addr2)
5377 		return 1;
5378 
5379 	return 0;
5380 }
5381 
5382 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5383 {
5384 	return kvm_io_bus_cmp(p1, p2);
5385 }
5386 
5387 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5388 			     gpa_t addr, int len)
5389 {
5390 	struct kvm_io_range *range, key;
5391 	int off;
5392 
5393 	key = (struct kvm_io_range) {
5394 		.addr = addr,
5395 		.len = len,
5396 	};
5397 
5398 	range = bsearch(&key, bus->range, bus->dev_count,
5399 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5400 	if (range == NULL)
5401 		return -ENOENT;
5402 
5403 	off = range - bus->range;
5404 
5405 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5406 		off--;
5407 
5408 	return off;
5409 }
5410 
5411 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5412 			      struct kvm_io_range *range, const void *val)
5413 {
5414 	int idx;
5415 
5416 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5417 	if (idx < 0)
5418 		return -EOPNOTSUPP;
5419 
5420 	while (idx < bus->dev_count &&
5421 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5422 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5423 					range->len, val))
5424 			return idx;
5425 		idx++;
5426 	}
5427 
5428 	return -EOPNOTSUPP;
5429 }
5430 
5431 /* kvm_io_bus_write - called under kvm->slots_lock */
5432 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5433 		     int len, const void *val)
5434 {
5435 	struct kvm_io_bus *bus;
5436 	struct kvm_io_range range;
5437 	int r;
5438 
5439 	range = (struct kvm_io_range) {
5440 		.addr = addr,
5441 		.len = len,
5442 	};
5443 
5444 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5445 	if (!bus)
5446 		return -ENOMEM;
5447 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5448 	return r < 0 ? r : 0;
5449 }
5450 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5451 
5452 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5453 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5454 			    gpa_t addr, int len, const void *val, long cookie)
5455 {
5456 	struct kvm_io_bus *bus;
5457 	struct kvm_io_range range;
5458 
5459 	range = (struct kvm_io_range) {
5460 		.addr = addr,
5461 		.len = len,
5462 	};
5463 
5464 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5465 	if (!bus)
5466 		return -ENOMEM;
5467 
5468 	/* First try the device referenced by cookie. */
5469 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5470 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5471 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5472 					val))
5473 			return cookie;
5474 
5475 	/*
5476 	 * cookie contained garbage; fall back to search and return the
5477 	 * correct cookie value.
5478 	 */
5479 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5480 }
5481 
5482 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5483 			     struct kvm_io_range *range, void *val)
5484 {
5485 	int idx;
5486 
5487 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5488 	if (idx < 0)
5489 		return -EOPNOTSUPP;
5490 
5491 	while (idx < bus->dev_count &&
5492 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5493 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5494 				       range->len, val))
5495 			return idx;
5496 		idx++;
5497 	}
5498 
5499 	return -EOPNOTSUPP;
5500 }
5501 
5502 /* kvm_io_bus_read - called under kvm->slots_lock */
5503 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5504 		    int len, void *val)
5505 {
5506 	struct kvm_io_bus *bus;
5507 	struct kvm_io_range range;
5508 	int r;
5509 
5510 	range = (struct kvm_io_range) {
5511 		.addr = addr,
5512 		.len = len,
5513 	};
5514 
5515 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5516 	if (!bus)
5517 		return -ENOMEM;
5518 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5519 	return r < 0 ? r : 0;
5520 }
5521 
5522 /* Caller must hold slots_lock. */
5523 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5524 			    int len, struct kvm_io_device *dev)
5525 {
5526 	int i;
5527 	struct kvm_io_bus *new_bus, *bus;
5528 	struct kvm_io_range range;
5529 
5530 	bus = kvm_get_bus(kvm, bus_idx);
5531 	if (!bus)
5532 		return -ENOMEM;
5533 
5534 	/* exclude ioeventfd which is limited by maximum fd */
5535 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5536 		return -ENOSPC;
5537 
5538 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5539 			  GFP_KERNEL_ACCOUNT);
5540 	if (!new_bus)
5541 		return -ENOMEM;
5542 
5543 	range = (struct kvm_io_range) {
5544 		.addr = addr,
5545 		.len = len,
5546 		.dev = dev,
5547 	};
5548 
5549 	for (i = 0; i < bus->dev_count; i++)
5550 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5551 			break;
5552 
5553 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5554 	new_bus->dev_count++;
5555 	new_bus->range[i] = range;
5556 	memcpy(new_bus->range + i + 1, bus->range + i,
5557 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5558 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5559 	synchronize_srcu_expedited(&kvm->srcu);
5560 	kfree(bus);
5561 
5562 	return 0;
5563 }
5564 
5565 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5566 			      struct kvm_io_device *dev)
5567 {
5568 	int i;
5569 	struct kvm_io_bus *new_bus, *bus;
5570 
5571 	lockdep_assert_held(&kvm->slots_lock);
5572 
5573 	bus = kvm_get_bus(kvm, bus_idx);
5574 	if (!bus)
5575 		return 0;
5576 
5577 	for (i = 0; i < bus->dev_count; i++) {
5578 		if (bus->range[i].dev == dev) {
5579 			break;
5580 		}
5581 	}
5582 
5583 	if (i == bus->dev_count)
5584 		return 0;
5585 
5586 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5587 			  GFP_KERNEL_ACCOUNT);
5588 	if (new_bus) {
5589 		memcpy(new_bus, bus, struct_size(bus, range, i));
5590 		new_bus->dev_count--;
5591 		memcpy(new_bus->range + i, bus->range + i + 1,
5592 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5593 	}
5594 
5595 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5596 	synchronize_srcu_expedited(&kvm->srcu);
5597 
5598 	/*
5599 	 * If NULL bus is installed, destroy the old bus, including all the
5600 	 * attached devices. Otherwise, destroy the caller's device only.
5601 	 */
5602 	if (!new_bus) {
5603 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5604 		kvm_io_bus_destroy(bus);
5605 		return -ENOMEM;
5606 	}
5607 
5608 	kvm_iodevice_destructor(dev);
5609 	kfree(bus);
5610 	return 0;
5611 }
5612 
5613 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5614 					 gpa_t addr)
5615 {
5616 	struct kvm_io_bus *bus;
5617 	int dev_idx, srcu_idx;
5618 	struct kvm_io_device *iodev = NULL;
5619 
5620 	srcu_idx = srcu_read_lock(&kvm->srcu);
5621 
5622 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5623 	if (!bus)
5624 		goto out_unlock;
5625 
5626 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5627 	if (dev_idx < 0)
5628 		goto out_unlock;
5629 
5630 	iodev = bus->range[dev_idx].dev;
5631 
5632 out_unlock:
5633 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5634 
5635 	return iodev;
5636 }
5637 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5638 
5639 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5640 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5641 			   const char *fmt)
5642 {
5643 	int ret;
5644 	struct kvm_stat_data *stat_data = inode->i_private;
5645 
5646 	/*
5647 	 * The debugfs files are a reference to the kvm struct which
5648         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5649         * avoids the race between open and the removal of the debugfs directory.
5650 	 */
5651 	if (!kvm_get_kvm_safe(stat_data->kvm))
5652 		return -ENOENT;
5653 
5654 	ret = simple_attr_open(inode, file, get,
5655 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5656 			       ? set : NULL, fmt);
5657 	if (ret)
5658 		kvm_put_kvm(stat_data->kvm);
5659 
5660 	return ret;
5661 }
5662 
5663 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5664 {
5665 	struct kvm_stat_data *stat_data = inode->i_private;
5666 
5667 	simple_attr_release(inode, file);
5668 	kvm_put_kvm(stat_data->kvm);
5669 
5670 	return 0;
5671 }
5672 
5673 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5674 {
5675 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5676 
5677 	return 0;
5678 }
5679 
5680 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5681 {
5682 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5683 
5684 	return 0;
5685 }
5686 
5687 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5688 {
5689 	unsigned long i;
5690 	struct kvm_vcpu *vcpu;
5691 
5692 	*val = 0;
5693 
5694 	kvm_for_each_vcpu(i, vcpu, kvm)
5695 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5696 
5697 	return 0;
5698 }
5699 
5700 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5701 {
5702 	unsigned long i;
5703 	struct kvm_vcpu *vcpu;
5704 
5705 	kvm_for_each_vcpu(i, vcpu, kvm)
5706 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5707 
5708 	return 0;
5709 }
5710 
5711 static int kvm_stat_data_get(void *data, u64 *val)
5712 {
5713 	int r = -EFAULT;
5714 	struct kvm_stat_data *stat_data = data;
5715 
5716 	switch (stat_data->kind) {
5717 	case KVM_STAT_VM:
5718 		r = kvm_get_stat_per_vm(stat_data->kvm,
5719 					stat_data->desc->desc.offset, val);
5720 		break;
5721 	case KVM_STAT_VCPU:
5722 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5723 					  stat_data->desc->desc.offset, val);
5724 		break;
5725 	}
5726 
5727 	return r;
5728 }
5729 
5730 static int kvm_stat_data_clear(void *data, u64 val)
5731 {
5732 	int r = -EFAULT;
5733 	struct kvm_stat_data *stat_data = data;
5734 
5735 	if (val)
5736 		return -EINVAL;
5737 
5738 	switch (stat_data->kind) {
5739 	case KVM_STAT_VM:
5740 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5741 					  stat_data->desc->desc.offset);
5742 		break;
5743 	case KVM_STAT_VCPU:
5744 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5745 					    stat_data->desc->desc.offset);
5746 		break;
5747 	}
5748 
5749 	return r;
5750 }
5751 
5752 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5753 {
5754 	__simple_attr_check_format("%llu\n", 0ull);
5755 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5756 				kvm_stat_data_clear, "%llu\n");
5757 }
5758 
5759 static const struct file_operations stat_fops_per_vm = {
5760 	.owner = THIS_MODULE,
5761 	.open = kvm_stat_data_open,
5762 	.release = kvm_debugfs_release,
5763 	.read = simple_attr_read,
5764 	.write = simple_attr_write,
5765 	.llseek = no_llseek,
5766 };
5767 
5768 static int vm_stat_get(void *_offset, u64 *val)
5769 {
5770 	unsigned offset = (long)_offset;
5771 	struct kvm *kvm;
5772 	u64 tmp_val;
5773 
5774 	*val = 0;
5775 	mutex_lock(&kvm_lock);
5776 	list_for_each_entry(kvm, &vm_list, vm_list) {
5777 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5778 		*val += tmp_val;
5779 	}
5780 	mutex_unlock(&kvm_lock);
5781 	return 0;
5782 }
5783 
5784 static int vm_stat_clear(void *_offset, u64 val)
5785 {
5786 	unsigned offset = (long)_offset;
5787 	struct kvm *kvm;
5788 
5789 	if (val)
5790 		return -EINVAL;
5791 
5792 	mutex_lock(&kvm_lock);
5793 	list_for_each_entry(kvm, &vm_list, vm_list) {
5794 		kvm_clear_stat_per_vm(kvm, offset);
5795 	}
5796 	mutex_unlock(&kvm_lock);
5797 
5798 	return 0;
5799 }
5800 
5801 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5803 
5804 static int vcpu_stat_get(void *_offset, u64 *val)
5805 {
5806 	unsigned offset = (long)_offset;
5807 	struct kvm *kvm;
5808 	u64 tmp_val;
5809 
5810 	*val = 0;
5811 	mutex_lock(&kvm_lock);
5812 	list_for_each_entry(kvm, &vm_list, vm_list) {
5813 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5814 		*val += tmp_val;
5815 	}
5816 	mutex_unlock(&kvm_lock);
5817 	return 0;
5818 }
5819 
5820 static int vcpu_stat_clear(void *_offset, u64 val)
5821 {
5822 	unsigned offset = (long)_offset;
5823 	struct kvm *kvm;
5824 
5825 	if (val)
5826 		return -EINVAL;
5827 
5828 	mutex_lock(&kvm_lock);
5829 	list_for_each_entry(kvm, &vm_list, vm_list) {
5830 		kvm_clear_stat_per_vcpu(kvm, offset);
5831 	}
5832 	mutex_unlock(&kvm_lock);
5833 
5834 	return 0;
5835 }
5836 
5837 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5838 			"%llu\n");
5839 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5840 
5841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5842 {
5843 	struct kobj_uevent_env *env;
5844 	unsigned long long created, active;
5845 
5846 	if (!kvm_dev.this_device || !kvm)
5847 		return;
5848 
5849 	mutex_lock(&kvm_lock);
5850 	if (type == KVM_EVENT_CREATE_VM) {
5851 		kvm_createvm_count++;
5852 		kvm_active_vms++;
5853 	} else if (type == KVM_EVENT_DESTROY_VM) {
5854 		kvm_active_vms--;
5855 	}
5856 	created = kvm_createvm_count;
5857 	active = kvm_active_vms;
5858 	mutex_unlock(&kvm_lock);
5859 
5860 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5861 	if (!env)
5862 		return;
5863 
5864 	add_uevent_var(env, "CREATED=%llu", created);
5865 	add_uevent_var(env, "COUNT=%llu", active);
5866 
5867 	if (type == KVM_EVENT_CREATE_VM) {
5868 		add_uevent_var(env, "EVENT=create");
5869 		kvm->userspace_pid = task_pid_nr(current);
5870 	} else if (type == KVM_EVENT_DESTROY_VM) {
5871 		add_uevent_var(env, "EVENT=destroy");
5872 	}
5873 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5874 
5875 	if (!IS_ERR(kvm->debugfs_dentry)) {
5876 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5877 
5878 		if (p) {
5879 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5880 			if (!IS_ERR(tmp))
5881 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5882 			kfree(p);
5883 		}
5884 	}
5885 	/* no need for checks, since we are adding at most only 5 keys */
5886 	env->envp[env->envp_idx++] = NULL;
5887 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5888 	kfree(env);
5889 }
5890 
5891 static void kvm_init_debug(void)
5892 {
5893 	const struct file_operations *fops;
5894 	const struct _kvm_stats_desc *pdesc;
5895 	int i;
5896 
5897 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5898 
5899 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5900 		pdesc = &kvm_vm_stats_desc[i];
5901 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5902 			fops = &vm_stat_fops;
5903 		else
5904 			fops = &vm_stat_readonly_fops;
5905 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5906 				kvm_debugfs_dir,
5907 				(void *)(long)pdesc->desc.offset, fops);
5908 	}
5909 
5910 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5911 		pdesc = &kvm_vcpu_stats_desc[i];
5912 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5913 			fops = &vcpu_stat_fops;
5914 		else
5915 			fops = &vcpu_stat_readonly_fops;
5916 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5917 				kvm_debugfs_dir,
5918 				(void *)(long)pdesc->desc.offset, fops);
5919 	}
5920 }
5921 
5922 static inline
5923 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5924 {
5925 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5926 }
5927 
5928 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5929 {
5930 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5931 
5932 	WRITE_ONCE(vcpu->preempted, false);
5933 	WRITE_ONCE(vcpu->ready, false);
5934 
5935 	__this_cpu_write(kvm_running_vcpu, vcpu);
5936 	kvm_arch_sched_in(vcpu, cpu);
5937 	kvm_arch_vcpu_load(vcpu, cpu);
5938 }
5939 
5940 static void kvm_sched_out(struct preempt_notifier *pn,
5941 			  struct task_struct *next)
5942 {
5943 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5944 
5945 	if (current->on_rq) {
5946 		WRITE_ONCE(vcpu->preempted, true);
5947 		WRITE_ONCE(vcpu->ready, true);
5948 	}
5949 	kvm_arch_vcpu_put(vcpu);
5950 	__this_cpu_write(kvm_running_vcpu, NULL);
5951 }
5952 
5953 /**
5954  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5955  *
5956  * We can disable preemption locally around accessing the per-CPU variable,
5957  * and use the resolved vcpu pointer after enabling preemption again,
5958  * because even if the current thread is migrated to another CPU, reading
5959  * the per-CPU value later will give us the same value as we update the
5960  * per-CPU variable in the preempt notifier handlers.
5961  */
5962 struct kvm_vcpu *kvm_get_running_vcpu(void)
5963 {
5964 	struct kvm_vcpu *vcpu;
5965 
5966 	preempt_disable();
5967 	vcpu = __this_cpu_read(kvm_running_vcpu);
5968 	preempt_enable();
5969 
5970 	return vcpu;
5971 }
5972 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5973 
5974 /**
5975  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5976  */
5977 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5978 {
5979         return &kvm_running_vcpu;
5980 }
5981 
5982 #ifdef CONFIG_GUEST_PERF_EVENTS
5983 static unsigned int kvm_guest_state(void)
5984 {
5985 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5986 	unsigned int state;
5987 
5988 	if (!kvm_arch_pmi_in_guest(vcpu))
5989 		return 0;
5990 
5991 	state = PERF_GUEST_ACTIVE;
5992 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5993 		state |= PERF_GUEST_USER;
5994 
5995 	return state;
5996 }
5997 
5998 static unsigned long kvm_guest_get_ip(void)
5999 {
6000 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6001 
6002 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6003 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6004 		return 0;
6005 
6006 	return kvm_arch_vcpu_get_ip(vcpu);
6007 }
6008 
6009 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6010 	.state			= kvm_guest_state,
6011 	.get_ip			= kvm_guest_get_ip,
6012 	.handle_intel_pt_intr	= NULL,
6013 };
6014 
6015 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6016 {
6017 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6018 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6019 }
6020 void kvm_unregister_perf_callbacks(void)
6021 {
6022 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6023 }
6024 #endif
6025 
6026 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6027 {
6028 	int r;
6029 	int cpu;
6030 
6031 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6032 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6033 				      kvm_online_cpu, kvm_offline_cpu);
6034 	if (r)
6035 		return r;
6036 
6037 	register_syscore_ops(&kvm_syscore_ops);
6038 #endif
6039 
6040 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6041 	if (!vcpu_align)
6042 		vcpu_align = __alignof__(struct kvm_vcpu);
6043 	kvm_vcpu_cache =
6044 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6045 					   SLAB_ACCOUNT,
6046 					   offsetof(struct kvm_vcpu, arch),
6047 					   offsetofend(struct kvm_vcpu, stats_id)
6048 					   - offsetof(struct kvm_vcpu, arch),
6049 					   NULL);
6050 	if (!kvm_vcpu_cache) {
6051 		r = -ENOMEM;
6052 		goto err_vcpu_cache;
6053 	}
6054 
6055 	for_each_possible_cpu(cpu) {
6056 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6057 					    GFP_KERNEL, cpu_to_node(cpu))) {
6058 			r = -ENOMEM;
6059 			goto err_cpu_kick_mask;
6060 		}
6061 	}
6062 
6063 	r = kvm_irqfd_init();
6064 	if (r)
6065 		goto err_irqfd;
6066 
6067 	r = kvm_async_pf_init();
6068 	if (r)
6069 		goto err_async_pf;
6070 
6071 	kvm_chardev_ops.owner = module;
6072 
6073 	kvm_preempt_ops.sched_in = kvm_sched_in;
6074 	kvm_preempt_ops.sched_out = kvm_sched_out;
6075 
6076 	kvm_init_debug();
6077 
6078 	r = kvm_vfio_ops_init();
6079 	if (WARN_ON_ONCE(r))
6080 		goto err_vfio;
6081 
6082 	/*
6083 	 * Registration _must_ be the very last thing done, as this exposes
6084 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6085 	 */
6086 	r = misc_register(&kvm_dev);
6087 	if (r) {
6088 		pr_err("kvm: misc device register failed\n");
6089 		goto err_register;
6090 	}
6091 
6092 	return 0;
6093 
6094 err_register:
6095 	kvm_vfio_ops_exit();
6096 err_vfio:
6097 	kvm_async_pf_deinit();
6098 err_async_pf:
6099 	kvm_irqfd_exit();
6100 err_irqfd:
6101 err_cpu_kick_mask:
6102 	for_each_possible_cpu(cpu)
6103 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6104 	kmem_cache_destroy(kvm_vcpu_cache);
6105 err_vcpu_cache:
6106 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6107 	unregister_syscore_ops(&kvm_syscore_ops);
6108 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6109 #endif
6110 	return r;
6111 }
6112 EXPORT_SYMBOL_GPL(kvm_init);
6113 
6114 void kvm_exit(void)
6115 {
6116 	int cpu;
6117 
6118 	/*
6119 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6120 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6121 	 * to KVM while the module is being stopped.
6122 	 */
6123 	misc_deregister(&kvm_dev);
6124 
6125 	debugfs_remove_recursive(kvm_debugfs_dir);
6126 	for_each_possible_cpu(cpu)
6127 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6128 	kmem_cache_destroy(kvm_vcpu_cache);
6129 	kvm_vfio_ops_exit();
6130 	kvm_async_pf_deinit();
6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6132 	unregister_syscore_ops(&kvm_syscore_ops);
6133 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6134 #endif
6135 	kvm_irqfd_exit();
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_exit);
6138 
6139 struct kvm_vm_worker_thread_context {
6140 	struct kvm *kvm;
6141 	struct task_struct *parent;
6142 	struct completion init_done;
6143 	kvm_vm_thread_fn_t thread_fn;
6144 	uintptr_t data;
6145 	int err;
6146 };
6147 
6148 static int kvm_vm_worker_thread(void *context)
6149 {
6150 	/*
6151 	 * The init_context is allocated on the stack of the parent thread, so
6152 	 * we have to locally copy anything that is needed beyond initialization
6153 	 */
6154 	struct kvm_vm_worker_thread_context *init_context = context;
6155 	struct task_struct *parent;
6156 	struct kvm *kvm = init_context->kvm;
6157 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6158 	uintptr_t data = init_context->data;
6159 	int err;
6160 
6161 	err = kthread_park(current);
6162 	/* kthread_park(current) is never supposed to return an error */
6163 	WARN_ON(err != 0);
6164 	if (err)
6165 		goto init_complete;
6166 
6167 	err = cgroup_attach_task_all(init_context->parent, current);
6168 	if (err) {
6169 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6170 			__func__, err);
6171 		goto init_complete;
6172 	}
6173 
6174 	set_user_nice(current, task_nice(init_context->parent));
6175 
6176 init_complete:
6177 	init_context->err = err;
6178 	complete(&init_context->init_done);
6179 	init_context = NULL;
6180 
6181 	if (err)
6182 		goto out;
6183 
6184 	/* Wait to be woken up by the spawner before proceeding. */
6185 	kthread_parkme();
6186 
6187 	if (!kthread_should_stop())
6188 		err = thread_fn(kvm, data);
6189 
6190 out:
6191 	/*
6192 	 * Move kthread back to its original cgroup to prevent it lingering in
6193 	 * the cgroup of the VM process, after the latter finishes its
6194 	 * execution.
6195 	 *
6196 	 * kthread_stop() waits on the 'exited' completion condition which is
6197 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6198 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6199 	 * called after the exit_mm(). This causes the kthread_stop() to return
6200 	 * before the kthread actually quits the cgroup.
6201 	 */
6202 	rcu_read_lock();
6203 	parent = rcu_dereference(current->real_parent);
6204 	get_task_struct(parent);
6205 	rcu_read_unlock();
6206 	cgroup_attach_task_all(parent, current);
6207 	put_task_struct(parent);
6208 
6209 	return err;
6210 }
6211 
6212 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6213 				uintptr_t data, const char *name,
6214 				struct task_struct **thread_ptr)
6215 {
6216 	struct kvm_vm_worker_thread_context init_context = {};
6217 	struct task_struct *thread;
6218 
6219 	*thread_ptr = NULL;
6220 	init_context.kvm = kvm;
6221 	init_context.parent = current;
6222 	init_context.thread_fn = thread_fn;
6223 	init_context.data = data;
6224 	init_completion(&init_context.init_done);
6225 
6226 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6227 			     "%s-%d", name, task_pid_nr(current));
6228 	if (IS_ERR(thread))
6229 		return PTR_ERR(thread);
6230 
6231 	/* kthread_run is never supposed to return NULL */
6232 	WARN_ON(thread == NULL);
6233 
6234 	wait_for_completion(&init_context.init_done);
6235 
6236 	if (!init_context.err)
6237 		*thread_ptr = thread;
6238 
6239 	return init_context.err;
6240 }
6241