xref: /linux/virt/kvm/kvm_main.c (revision f694f30e81c4ade358eb8c75273bac1a48f0cb8f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine (KVM) Hypervisor
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  */
12 
13 #include <kvm/iodev.h>
14 
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61 
62 #include <trace/events/ipi.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76 
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81 
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86 
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91 
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96 
97 /*
98  * Allow direct access (from KVM or the CPU) without MMU notifier protection
99  * to unpinned pages.
100  */
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
103 
104 /*
105  * Ordering of locks:
106  *
107  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108  */
109 
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
112 
113 static struct kmem_cache *kvm_vcpu_cache;
114 
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117 
118 static struct dentry *kvm_debugfs_dir;
119 
120 static const struct file_operations stat_fops_per_vm;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156 
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160 
161 /*
162  * Switches to specified vcpu, until a matching vcpu_put()
163  */
164 void vcpu_load(struct kvm_vcpu *vcpu)
165 {
166 	int cpu = get_cpu();
167 
168 	__this_cpu_write(kvm_running_vcpu, vcpu);
169 	preempt_notifier_register(&vcpu->preempt_notifier);
170 	kvm_arch_vcpu_load(vcpu, cpu);
171 	put_cpu();
172 }
173 EXPORT_SYMBOL_GPL(vcpu_load);
174 
175 void vcpu_put(struct kvm_vcpu *vcpu)
176 {
177 	preempt_disable();
178 	kvm_arch_vcpu_put(vcpu);
179 	preempt_notifier_unregister(&vcpu->preempt_notifier);
180 	__this_cpu_write(kvm_running_vcpu, NULL);
181 	preempt_enable();
182 }
183 EXPORT_SYMBOL_GPL(vcpu_put);
184 
185 /* TODO: merge with kvm_arch_vcpu_should_kick */
186 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
187 {
188 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
189 
190 	/*
191 	 * We need to wait for the VCPU to reenable interrupts and get out of
192 	 * READING_SHADOW_PAGE_TABLES mode.
193 	 */
194 	if (req & KVM_REQUEST_WAIT)
195 		return mode != OUTSIDE_GUEST_MODE;
196 
197 	/*
198 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
199 	 */
200 	return mode == IN_GUEST_MODE;
201 }
202 
203 static void ack_kick(void *_completed)
204 {
205 }
206 
207 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
208 {
209 	if (cpumask_empty(cpus))
210 		return false;
211 
212 	smp_call_function_many(cpus, ack_kick, NULL, wait);
213 	return true;
214 }
215 
216 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
217 				  struct cpumask *tmp, int current_cpu)
218 {
219 	int cpu;
220 
221 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
222 		__kvm_make_request(req, vcpu);
223 
224 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
225 		return;
226 
227 	/*
228 	 * Note, the vCPU could get migrated to a different pCPU at any point
229 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
230 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
231 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
232 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
233 	 * after this point is also OK, as the requirement is only that KVM wait
234 	 * for vCPUs that were reading SPTEs _before_ any changes were
235 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
236 	 */
237 	if (kvm_request_needs_ipi(vcpu, req)) {
238 		cpu = READ_ONCE(vcpu->cpu);
239 		if (cpu != -1 && cpu != current_cpu)
240 			__cpumask_set_cpu(cpu, tmp);
241 	}
242 }
243 
244 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
245 				 unsigned long *vcpu_bitmap)
246 {
247 	struct kvm_vcpu *vcpu;
248 	struct cpumask *cpus;
249 	int i, me;
250 	bool called;
251 
252 	me = get_cpu();
253 
254 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
255 	cpumask_clear(cpus);
256 
257 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
258 		vcpu = kvm_get_vcpu(kvm, i);
259 		if (!vcpu)
260 			continue;
261 		kvm_make_vcpu_request(vcpu, req, cpus, me);
262 	}
263 
264 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
265 	put_cpu();
266 
267 	return called;
268 }
269 
270 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
271 {
272 	struct kvm_vcpu *vcpu;
273 	struct cpumask *cpus;
274 	unsigned long i;
275 	bool called;
276 	int me;
277 
278 	me = get_cpu();
279 
280 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
281 	cpumask_clear(cpus);
282 
283 	kvm_for_each_vcpu(i, vcpu, kvm)
284 		kvm_make_vcpu_request(vcpu, req, cpus, me);
285 
286 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
292 
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295 	++kvm->stat.generic.remote_tlb_flush_requests;
296 
297 	/*
298 	 * We want to publish modifications to the page tables before reading
299 	 * mode. Pairs with a memory barrier in arch-specific code.
300 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
301 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
302 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
303 	 *
304 	 * There is already an smp_mb__after_atomic() before
305 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
306 	 * barrier here.
307 	 */
308 	if (!kvm_arch_flush_remote_tlbs(kvm)
309 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
310 		++kvm->stat.generic.remote_tlb_flush;
311 }
312 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
313 
314 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
315 {
316 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
317 		return;
318 
319 	/*
320 	 * Fall back to a flushing entire TLBs if the architecture range-based
321 	 * TLB invalidation is unsupported or can't be performed for whatever
322 	 * reason.
323 	 */
324 	kvm_flush_remote_tlbs(kvm);
325 }
326 
327 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
328 				   const struct kvm_memory_slot *memslot)
329 {
330 	/*
331 	 * All current use cases for flushing the TLBs for a specific memslot
332 	 * are related to dirty logging, and many do the TLB flush out of
333 	 * mmu_lock. The interaction between the various operations on memslot
334 	 * must be serialized by slots_locks to ensure the TLB flush from one
335 	 * operation is observed by any other operation on the same memslot.
336 	 */
337 	lockdep_assert_held(&kvm->slots_lock);
338 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
339 }
340 
341 static void kvm_flush_shadow_all(struct kvm *kvm)
342 {
343 	kvm_arch_flush_shadow_all(kvm);
344 	kvm_arch_guest_memory_reclaimed(kvm);
345 }
346 
347 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
348 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
349 					       gfp_t gfp_flags)
350 {
351 	void *page;
352 
353 	gfp_flags |= mc->gfp_zero;
354 
355 	if (mc->kmem_cache)
356 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
357 
358 	page = (void *)__get_free_page(gfp_flags);
359 	if (page && mc->init_value)
360 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
361 	return page;
362 }
363 
364 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
365 {
366 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
367 	void *obj;
368 
369 	if (mc->nobjs >= min)
370 		return 0;
371 
372 	if (unlikely(!mc->objects)) {
373 		if (WARN_ON_ONCE(!capacity))
374 			return -EIO;
375 
376 		/*
377 		 * Custom init values can be used only for page allocations,
378 		 * and obviously conflict with __GFP_ZERO.
379 		 */
380 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
381 			return -EIO;
382 
383 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
384 		if (!mc->objects)
385 			return -ENOMEM;
386 
387 		mc->capacity = capacity;
388 	}
389 
390 	/* It is illegal to request a different capacity across topups. */
391 	if (WARN_ON_ONCE(mc->capacity != capacity))
392 		return -EIO;
393 
394 	while (mc->nobjs < mc->capacity) {
395 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
396 		if (!obj)
397 			return mc->nobjs >= min ? 0 : -ENOMEM;
398 		mc->objects[mc->nobjs++] = obj;
399 	}
400 	return 0;
401 }
402 
403 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
404 {
405 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
406 }
407 
408 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
409 {
410 	return mc->nobjs;
411 }
412 
413 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
414 {
415 	while (mc->nobjs) {
416 		if (mc->kmem_cache)
417 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
418 		else
419 			free_page((unsigned long)mc->objects[--mc->nobjs]);
420 	}
421 
422 	kvfree(mc->objects);
423 
424 	mc->objects = NULL;
425 	mc->capacity = 0;
426 }
427 
428 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429 {
430 	void *p;
431 
432 	if (WARN_ON(!mc->nobjs))
433 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434 	else
435 		p = mc->objects[--mc->nobjs];
436 	BUG_ON(!p);
437 	return p;
438 }
439 #endif
440 
441 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442 {
443 	mutex_init(&vcpu->mutex);
444 	vcpu->cpu = -1;
445 	vcpu->kvm = kvm;
446 	vcpu->vcpu_id = id;
447 	vcpu->pid = NULL;
448 	rwlock_init(&vcpu->pid_lock);
449 #ifndef __KVM_HAVE_ARCH_WQP
450 	rcuwait_init(&vcpu->wait);
451 #endif
452 	kvm_async_pf_vcpu_init(vcpu);
453 
454 	kvm_vcpu_set_in_spin_loop(vcpu, false);
455 	kvm_vcpu_set_dy_eligible(vcpu, false);
456 	vcpu->preempted = false;
457 	vcpu->ready = false;
458 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459 	vcpu->last_used_slot = NULL;
460 
461 	/* Fill the stats id string for the vcpu */
462 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
463 		 task_pid_nr(current), id);
464 }
465 
466 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
467 {
468 	kvm_arch_vcpu_destroy(vcpu);
469 	kvm_dirty_ring_free(&vcpu->dirty_ring);
470 
471 	/*
472 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
473 	 * the vcpu->pid pointer, and at destruction time all file descriptors
474 	 * are already gone.
475 	 */
476 	put_pid(vcpu->pid);
477 
478 	free_page((unsigned long)vcpu->run);
479 	kmem_cache_free(kvm_vcpu_cache, vcpu);
480 }
481 
482 void kvm_destroy_vcpus(struct kvm *kvm)
483 {
484 	unsigned long i;
485 	struct kvm_vcpu *vcpu;
486 
487 	kvm_for_each_vcpu(i, vcpu, kvm) {
488 		kvm_vcpu_destroy(vcpu);
489 		xa_erase(&kvm->vcpu_array, i);
490 
491 		/*
492 		 * Assert that the vCPU isn't visible in any way, to ensure KVM
493 		 * doesn't trigger a use-after-free if destroying vCPUs results
494 		 * in VM-wide request, e.g. to flush remote TLBs when tearing
495 		 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
496 		 */
497 		WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
498 	}
499 
500 	atomic_set(&kvm->online_vcpus, 0);
501 }
502 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
503 
504 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
505 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
506 {
507 	return container_of(mn, struct kvm, mmu_notifier);
508 }
509 
510 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
511 
512 typedef void (*on_lock_fn_t)(struct kvm *kvm);
513 
514 struct kvm_mmu_notifier_range {
515 	/*
516 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
517 	 * addresses (unsigned long) and guest physical addresses (64-bit).
518 	 */
519 	u64 start;
520 	u64 end;
521 	union kvm_mmu_notifier_arg arg;
522 	gfn_handler_t handler;
523 	on_lock_fn_t on_lock;
524 	bool flush_on_ret;
525 	bool may_block;
526 	bool lockless;
527 };
528 
529 /*
530  * The inner-most helper returns a tuple containing the return value from the
531  * arch- and action-specific handler, plus a flag indicating whether or not at
532  * least one memslot was found, i.e. if the handler found guest memory.
533  *
534  * Note, most notifiers are averse to booleans, so even though KVM tracks the
535  * return from arch code as a bool, outer helpers will cast it to an int. :-(
536  */
537 typedef struct kvm_mmu_notifier_return {
538 	bool ret;
539 	bool found_memslot;
540 } kvm_mn_ret_t;
541 
542 /*
543  * Use a dedicated stub instead of NULL to indicate that there is no callback
544  * function/handler.  The compiler technically can't guarantee that a real
545  * function will have a non-zero address, and so it will generate code to
546  * check for !NULL, whereas comparing against a stub will be elided at compile
547  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
548  */
549 static void kvm_null_fn(void)
550 {
551 
552 }
553 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
554 
555 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
556 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
557 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
558 	     node;							     \
559 	     node = interval_tree_iter_next(node, start, last))	     \
560 
561 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
562 							 const struct kvm_mmu_notifier_range *range)
563 {
564 	struct kvm_mmu_notifier_return r = {
565 		.ret = false,
566 		.found_memslot = false,
567 	};
568 	struct kvm_gfn_range gfn_range;
569 	struct kvm_memory_slot *slot;
570 	struct kvm_memslots *slots;
571 	int i, idx;
572 
573 	if (WARN_ON_ONCE(range->end <= range->start))
574 		return r;
575 
576 	/* A null handler is allowed if and only if on_lock() is provided. */
577 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
578 			 IS_KVM_NULL_FN(range->handler)))
579 		return r;
580 
581 	/* on_lock will never be called for lockless walks */
582 	if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
583 		return r;
584 
585 	idx = srcu_read_lock(&kvm->srcu);
586 
587 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
588 		struct interval_tree_node *node;
589 
590 		slots = __kvm_memslots(kvm, i);
591 		kvm_for_each_memslot_in_hva_range(node, slots,
592 						  range->start, range->end - 1) {
593 			unsigned long hva_start, hva_end;
594 
595 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
596 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
597 			hva_end = min_t(unsigned long, range->end,
598 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
599 
600 			/*
601 			 * To optimize for the likely case where the address
602 			 * range is covered by zero or one memslots, don't
603 			 * bother making these conditional (to avoid writes on
604 			 * the second or later invocation of the handler).
605 			 */
606 			gfn_range.arg = range->arg;
607 			gfn_range.may_block = range->may_block;
608 			/*
609 			 * HVA-based notifications aren't relevant to private
610 			 * mappings as they don't have a userspace mapping.
611 			 */
612 			gfn_range.attr_filter = KVM_FILTER_SHARED;
613 
614 			/*
615 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 			 */
618 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 			gfn_range.slot = slot;
621 			gfn_range.lockless = range->lockless;
622 
623 			if (!r.found_memslot) {
624 				r.found_memslot = true;
625 				if (!range->lockless) {
626 					KVM_MMU_LOCK(kvm);
627 					if (!IS_KVM_NULL_FN(range->on_lock))
628 						range->on_lock(kvm);
629 
630 					if (IS_KVM_NULL_FN(range->handler))
631 						goto mmu_unlock;
632 				}
633 			}
634 			r.ret |= range->handler(kvm, &gfn_range);
635 		}
636 	}
637 
638 	if (range->flush_on_ret && r.ret)
639 		kvm_flush_remote_tlbs(kvm);
640 
641 mmu_unlock:
642 	if (r.found_memslot && !range->lockless)
643 		KVM_MMU_UNLOCK(kvm);
644 
645 	srcu_read_unlock(&kvm->srcu, idx);
646 
647 	return r;
648 }
649 
650 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
651 						unsigned long start,
652 						unsigned long end,
653 						gfn_handler_t handler,
654 						bool flush_on_ret)
655 {
656 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
657 	const struct kvm_mmu_notifier_range range = {
658 		.start		= start,
659 		.end		= end,
660 		.handler	= handler,
661 		.on_lock	= (void *)kvm_null_fn,
662 		.flush_on_ret	= flush_on_ret,
663 		.may_block	= false,
664 		.lockless	= IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
665 	};
666 
667 	return kvm_handle_hva_range(kvm, &range).ret;
668 }
669 
670 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
671 						      unsigned long start,
672 						      unsigned long end,
673 						      gfn_handler_t handler)
674 {
675 	return kvm_age_hva_range(mn, start, end, handler, false);
676 }
677 
678 void kvm_mmu_invalidate_begin(struct kvm *kvm)
679 {
680 	lockdep_assert_held_write(&kvm->mmu_lock);
681 	/*
682 	 * The count increase must become visible at unlock time as no
683 	 * spte can be established without taking the mmu_lock and
684 	 * count is also read inside the mmu_lock critical section.
685 	 */
686 	kvm->mmu_invalidate_in_progress++;
687 
688 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
689 		kvm->mmu_invalidate_range_start = INVALID_GPA;
690 		kvm->mmu_invalidate_range_end = INVALID_GPA;
691 	}
692 }
693 
694 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
695 {
696 	lockdep_assert_held_write(&kvm->mmu_lock);
697 
698 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
699 
700 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
701 		kvm->mmu_invalidate_range_start = start;
702 		kvm->mmu_invalidate_range_end = end;
703 	} else {
704 		/*
705 		 * Fully tracking multiple concurrent ranges has diminishing
706 		 * returns. Keep things simple and just find the minimal range
707 		 * which includes the current and new ranges. As there won't be
708 		 * enough information to subtract a range after its invalidate
709 		 * completes, any ranges invalidated concurrently will
710 		 * accumulate and persist until all outstanding invalidates
711 		 * complete.
712 		 */
713 		kvm->mmu_invalidate_range_start =
714 			min(kvm->mmu_invalidate_range_start, start);
715 		kvm->mmu_invalidate_range_end =
716 			max(kvm->mmu_invalidate_range_end, end);
717 	}
718 }
719 
720 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
721 {
722 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
723 	return kvm_unmap_gfn_range(kvm, range);
724 }
725 
726 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
727 					const struct mmu_notifier_range *range)
728 {
729 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
730 	const struct kvm_mmu_notifier_range hva_range = {
731 		.start		= range->start,
732 		.end		= range->end,
733 		.handler	= kvm_mmu_unmap_gfn_range,
734 		.on_lock	= kvm_mmu_invalidate_begin,
735 		.flush_on_ret	= true,
736 		.may_block	= mmu_notifier_range_blockable(range),
737 	};
738 
739 	trace_kvm_unmap_hva_range(range->start, range->end);
740 
741 	/*
742 	 * Prevent memslot modification between range_start() and range_end()
743 	 * so that conditionally locking provides the same result in both
744 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
745 	 * adjustments will be imbalanced.
746 	 *
747 	 * Pairs with the decrement in range_end().
748 	 */
749 	spin_lock(&kvm->mn_invalidate_lock);
750 	kvm->mn_active_invalidate_count++;
751 	spin_unlock(&kvm->mn_invalidate_lock);
752 
753 	/*
754 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
755 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
756 	 * each cache's lock.  There are relatively few caches in existence at
757 	 * any given time, and the caches themselves can check for hva overlap,
758 	 * i.e. don't need to rely on memslot overlap checks for performance.
759 	 * Because this runs without holding mmu_lock, the pfn caches must use
760 	 * mn_active_invalidate_count (see above) instead of
761 	 * mmu_invalidate_in_progress.
762 	 */
763 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
764 
765 	/*
766 	 * If one or more memslots were found and thus zapped, notify arch code
767 	 * that guest memory has been reclaimed.  This needs to be done *after*
768 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
769 	 */
770 	if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
771 		kvm_arch_guest_memory_reclaimed(kvm);
772 
773 	return 0;
774 }
775 
776 void kvm_mmu_invalidate_end(struct kvm *kvm)
777 {
778 	lockdep_assert_held_write(&kvm->mmu_lock);
779 
780 	/*
781 	 * This sequence increase will notify the kvm page fault that
782 	 * the page that is going to be mapped in the spte could have
783 	 * been freed.
784 	 */
785 	kvm->mmu_invalidate_seq++;
786 	smp_wmb();
787 	/*
788 	 * The above sequence increase must be visible before the
789 	 * below count decrease, which is ensured by the smp_wmb above
790 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
791 	 */
792 	kvm->mmu_invalidate_in_progress--;
793 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
794 
795 	/*
796 	 * Assert that at least one range was added between start() and end().
797 	 * Not adding a range isn't fatal, but it is a KVM bug.
798 	 */
799 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
800 }
801 
802 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
803 					const struct mmu_notifier_range *range)
804 {
805 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
806 	const struct kvm_mmu_notifier_range hva_range = {
807 		.start		= range->start,
808 		.end		= range->end,
809 		.handler	= (void *)kvm_null_fn,
810 		.on_lock	= kvm_mmu_invalidate_end,
811 		.flush_on_ret	= false,
812 		.may_block	= mmu_notifier_range_blockable(range),
813 	};
814 	bool wake;
815 
816 	kvm_handle_hva_range(kvm, &hva_range);
817 
818 	/* Pairs with the increment in range_start(). */
819 	spin_lock(&kvm->mn_invalidate_lock);
820 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
821 		--kvm->mn_active_invalidate_count;
822 	wake = !kvm->mn_active_invalidate_count;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * There can only be one waiter, since the wait happens under
827 	 * slots_lock.
828 	 */
829 	if (wake)
830 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
831 }
832 
833 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
834 					      struct mm_struct *mm,
835 					      unsigned long start,
836 					      unsigned long end)
837 {
838 	trace_kvm_age_hva(start, end);
839 
840 	return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
841 				 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
842 }
843 
844 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
845 					struct mm_struct *mm,
846 					unsigned long start,
847 					unsigned long end)
848 {
849 	trace_kvm_age_hva(start, end);
850 
851 	/*
852 	 * Even though we do not flush TLB, this will still adversely
853 	 * affect performance on pre-Haswell Intel EPT, where there is
854 	 * no EPT Access Bit to clear so that we have to tear down EPT
855 	 * tables instead. If we find this unacceptable, we can always
856 	 * add a parameter to kvm_age_hva so that it effectively doesn't
857 	 * do anything on clear_young.
858 	 *
859 	 * Also note that currently we never issue secondary TLB flushes
860 	 * from clear_young, leaving this job up to the regular system
861 	 * cadence. If we find this inaccurate, we might come up with a
862 	 * more sophisticated heuristic later.
863 	 */
864 	return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
865 }
866 
867 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
868 				       struct mm_struct *mm,
869 				       unsigned long address)
870 {
871 	trace_kvm_test_age_hva(address);
872 
873 	return kvm_age_hva_range_no_flush(mn, address, address + 1,
874 					  kvm_test_age_gfn);
875 }
876 
877 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
878 				     struct mm_struct *mm)
879 {
880 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
881 	int idx;
882 
883 	idx = srcu_read_lock(&kvm->srcu);
884 	kvm_flush_shadow_all(kvm);
885 	srcu_read_unlock(&kvm->srcu, idx);
886 }
887 
888 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
889 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
890 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
891 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
892 	.clear_young		= kvm_mmu_notifier_clear_young,
893 	.test_young		= kvm_mmu_notifier_test_young,
894 	.release		= kvm_mmu_notifier_release,
895 };
896 
897 static int kvm_init_mmu_notifier(struct kvm *kvm)
898 {
899 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
900 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
901 }
902 
903 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
904 
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907 	return 0;
908 }
909 
910 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
911 
912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
913 static int kvm_pm_notifier_call(struct notifier_block *bl,
914 				unsigned long state,
915 				void *unused)
916 {
917 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
918 
919 	return kvm_arch_pm_notifier(kvm, state);
920 }
921 
922 static void kvm_init_pm_notifier(struct kvm *kvm)
923 {
924 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
925 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
926 	kvm->pm_notifier.priority = INT_MAX;
927 	register_pm_notifier(&kvm->pm_notifier);
928 }
929 
930 static void kvm_destroy_pm_notifier(struct kvm *kvm)
931 {
932 	unregister_pm_notifier(&kvm->pm_notifier);
933 }
934 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937 }
938 
939 static void kvm_destroy_pm_notifier(struct kvm *kvm)
940 {
941 }
942 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
943 
944 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
945 {
946 	if (!memslot->dirty_bitmap)
947 		return;
948 
949 	vfree(memslot->dirty_bitmap);
950 	memslot->dirty_bitmap = NULL;
951 }
952 
953 /* This does not remove the slot from struct kvm_memslots data structures */
954 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
955 {
956 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
957 		kvm_gmem_unbind(slot);
958 
959 	kvm_destroy_dirty_bitmap(slot);
960 
961 	kvm_arch_free_memslot(kvm, slot);
962 
963 	kfree(slot);
964 }
965 
966 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
967 {
968 	struct hlist_node *idnode;
969 	struct kvm_memory_slot *memslot;
970 	int bkt;
971 
972 	/*
973 	 * The same memslot objects live in both active and inactive sets,
974 	 * arbitrarily free using index '1' so the second invocation of this
975 	 * function isn't operating over a structure with dangling pointers
976 	 * (even though this function isn't actually touching them).
977 	 */
978 	if (!slots->node_idx)
979 		return;
980 
981 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
982 		kvm_free_memslot(kvm, memslot);
983 }
984 
985 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
986 {
987 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
988 	case KVM_STATS_TYPE_INSTANT:
989 		return 0444;
990 	case KVM_STATS_TYPE_CUMULATIVE:
991 	case KVM_STATS_TYPE_PEAK:
992 	default:
993 		return 0644;
994 	}
995 }
996 
997 
998 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
999 {
1000 	int i;
1001 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1002 				      kvm_vcpu_stats_header.num_desc;
1003 
1004 	if (IS_ERR(kvm->debugfs_dentry))
1005 		return;
1006 
1007 	debugfs_remove_recursive(kvm->debugfs_dentry);
1008 
1009 	if (kvm->debugfs_stat_data) {
1010 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1011 			kfree(kvm->debugfs_stat_data[i]);
1012 		kfree(kvm->debugfs_stat_data);
1013 	}
1014 }
1015 
1016 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1017 {
1018 	static DEFINE_MUTEX(kvm_debugfs_lock);
1019 	struct dentry *dent;
1020 	char dir_name[ITOA_MAX_LEN * 2];
1021 	struct kvm_stat_data *stat_data;
1022 	const struct _kvm_stats_desc *pdesc;
1023 	int i, ret = -ENOMEM;
1024 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025 				      kvm_vcpu_stats_header.num_desc;
1026 
1027 	if (!debugfs_initialized())
1028 		return 0;
1029 
1030 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1031 	mutex_lock(&kvm_debugfs_lock);
1032 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1033 	if (dent) {
1034 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1035 		dput(dent);
1036 		mutex_unlock(&kvm_debugfs_lock);
1037 		return 0;
1038 	}
1039 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1040 	mutex_unlock(&kvm_debugfs_lock);
1041 	if (IS_ERR(dent))
1042 		return 0;
1043 
1044 	kvm->debugfs_dentry = dent;
1045 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1046 					 sizeof(*kvm->debugfs_stat_data),
1047 					 GFP_KERNEL_ACCOUNT);
1048 	if (!kvm->debugfs_stat_data)
1049 		goto out_err;
1050 
1051 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1052 		pdesc = &kvm_vm_stats_desc[i];
1053 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1054 		if (!stat_data)
1055 			goto out_err;
1056 
1057 		stat_data->kvm = kvm;
1058 		stat_data->desc = pdesc;
1059 		stat_data->kind = KVM_STAT_VM;
1060 		kvm->debugfs_stat_data[i] = stat_data;
1061 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1062 				    kvm->debugfs_dentry, stat_data,
1063 				    &stat_fops_per_vm);
1064 	}
1065 
1066 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1067 		pdesc = &kvm_vcpu_stats_desc[i];
1068 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1069 		if (!stat_data)
1070 			goto out_err;
1071 
1072 		stat_data->kvm = kvm;
1073 		stat_data->desc = pdesc;
1074 		stat_data->kind = KVM_STAT_VCPU;
1075 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1076 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1077 				    kvm->debugfs_dentry, stat_data,
1078 				    &stat_fops_per_vm);
1079 	}
1080 
1081 	kvm_arch_create_vm_debugfs(kvm);
1082 	return 0;
1083 out_err:
1084 	kvm_destroy_vm_debugfs(kvm);
1085 	return ret;
1086 }
1087 
1088 /*
1089  * Called just after removing the VM from the vm_list, but before doing any
1090  * other destruction.
1091  */
1092 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1093 {
1094 }
1095 
1096 /*
1097  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1098  * be setup already, so we can create arch-specific debugfs entries under it.
1099  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1100  * a per-arch destroy interface is not needed.
1101  */
1102 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1103 {
1104 }
1105 
1106 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1107 {
1108 	struct kvm *kvm = kvm_arch_alloc_vm();
1109 	struct kvm_memslots *slots;
1110 	int r, i, j;
1111 
1112 	if (!kvm)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	KVM_MMU_LOCK_INIT(kvm);
1116 	mmgrab(current->mm);
1117 	kvm->mm = current->mm;
1118 	kvm_eventfd_init(kvm);
1119 	mutex_init(&kvm->lock);
1120 	mutex_init(&kvm->irq_lock);
1121 	mutex_init(&kvm->slots_lock);
1122 	mutex_init(&kvm->slots_arch_lock);
1123 	spin_lock_init(&kvm->mn_invalidate_lock);
1124 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1125 	xa_init(&kvm->vcpu_array);
1126 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1127 	xa_init(&kvm->mem_attr_array);
1128 #endif
1129 
1130 	INIT_LIST_HEAD(&kvm->gpc_list);
1131 	spin_lock_init(&kvm->gpc_lock);
1132 
1133 	INIT_LIST_HEAD(&kvm->devices);
1134 	kvm->max_vcpus = KVM_MAX_VCPUS;
1135 
1136 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1137 
1138 	/*
1139 	 * Force subsequent debugfs file creations to fail if the VM directory
1140 	 * is not created (by kvm_create_vm_debugfs()).
1141 	 */
1142 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1143 
1144 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1145 		 task_pid_nr(current));
1146 
1147 	r = -ENOMEM;
1148 	if (init_srcu_struct(&kvm->srcu))
1149 		goto out_err_no_srcu;
1150 	if (init_srcu_struct(&kvm->irq_srcu))
1151 		goto out_err_no_irq_srcu;
1152 
1153 	r = kvm_init_irq_routing(kvm);
1154 	if (r)
1155 		goto out_err_no_irq_routing;
1156 
1157 	refcount_set(&kvm->users_count, 1);
1158 
1159 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1160 		for (j = 0; j < 2; j++) {
1161 			slots = &kvm->__memslots[i][j];
1162 
1163 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1164 			slots->hva_tree = RB_ROOT_CACHED;
1165 			slots->gfn_tree = RB_ROOT;
1166 			hash_init(slots->id_hash);
1167 			slots->node_idx = j;
1168 
1169 			/* Generations must be different for each address space. */
1170 			slots->generation = i;
1171 		}
1172 
1173 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1174 	}
1175 
1176 	r = -ENOMEM;
1177 	for (i = 0; i < KVM_NR_BUSES; i++) {
1178 		rcu_assign_pointer(kvm->buses[i],
1179 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1180 		if (!kvm->buses[i])
1181 			goto out_err_no_arch_destroy_vm;
1182 	}
1183 
1184 	r = kvm_arch_init_vm(kvm, type);
1185 	if (r)
1186 		goto out_err_no_arch_destroy_vm;
1187 
1188 	r = kvm_enable_virtualization();
1189 	if (r)
1190 		goto out_err_no_disable;
1191 
1192 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1193 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1194 #endif
1195 
1196 	r = kvm_init_mmu_notifier(kvm);
1197 	if (r)
1198 		goto out_err_no_mmu_notifier;
1199 
1200 	r = kvm_coalesced_mmio_init(kvm);
1201 	if (r < 0)
1202 		goto out_no_coalesced_mmio;
1203 
1204 	r = kvm_create_vm_debugfs(kvm, fdname);
1205 	if (r)
1206 		goto out_err_no_debugfs;
1207 
1208 	mutex_lock(&kvm_lock);
1209 	list_add(&kvm->vm_list, &vm_list);
1210 	mutex_unlock(&kvm_lock);
1211 
1212 	preempt_notifier_inc();
1213 	kvm_init_pm_notifier(kvm);
1214 
1215 	return kvm;
1216 
1217 out_err_no_debugfs:
1218 	kvm_coalesced_mmio_free(kvm);
1219 out_no_coalesced_mmio:
1220 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1221 	if (kvm->mmu_notifier.ops)
1222 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1223 #endif
1224 out_err_no_mmu_notifier:
1225 	kvm_disable_virtualization();
1226 out_err_no_disable:
1227 	kvm_arch_destroy_vm(kvm);
1228 out_err_no_arch_destroy_vm:
1229 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1230 	for (i = 0; i < KVM_NR_BUSES; i++)
1231 		kfree(kvm_get_bus(kvm, i));
1232 	kvm_free_irq_routing(kvm);
1233 out_err_no_irq_routing:
1234 	cleanup_srcu_struct(&kvm->irq_srcu);
1235 out_err_no_irq_srcu:
1236 	cleanup_srcu_struct(&kvm->srcu);
1237 out_err_no_srcu:
1238 	kvm_arch_free_vm(kvm);
1239 	mmdrop(current->mm);
1240 	return ERR_PTR(r);
1241 }
1242 
1243 static void kvm_destroy_devices(struct kvm *kvm)
1244 {
1245 	struct kvm_device *dev, *tmp;
1246 
1247 	/*
1248 	 * We do not need to take the kvm->lock here, because nobody else
1249 	 * has a reference to the struct kvm at this point and therefore
1250 	 * cannot access the devices list anyhow.
1251 	 *
1252 	 * The device list is generally managed as an rculist, but list_del()
1253 	 * is used intentionally here. If a bug in KVM introduced a reader that
1254 	 * was not backed by a reference on the kvm struct, the hope is that
1255 	 * it'd consume the poisoned forward pointer instead of suffering a
1256 	 * use-after-free, even though this cannot be guaranteed.
1257 	 */
1258 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1259 		list_del(&dev->vm_node);
1260 		dev->ops->destroy(dev);
1261 	}
1262 }
1263 
1264 static void kvm_destroy_vm(struct kvm *kvm)
1265 {
1266 	int i;
1267 	struct mm_struct *mm = kvm->mm;
1268 
1269 	kvm_destroy_pm_notifier(kvm);
1270 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1271 	kvm_destroy_vm_debugfs(kvm);
1272 	mutex_lock(&kvm_lock);
1273 	list_del(&kvm->vm_list);
1274 	mutex_unlock(&kvm_lock);
1275 	kvm_arch_pre_destroy_vm(kvm);
1276 
1277 	kvm_free_irq_routing(kvm);
1278 	for (i = 0; i < KVM_NR_BUSES; i++) {
1279 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1280 
1281 		if (bus)
1282 			kvm_io_bus_destroy(bus);
1283 		kvm->buses[i] = NULL;
1284 	}
1285 	kvm_coalesced_mmio_free(kvm);
1286 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1287 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1288 	/*
1289 	 * At this point, pending calls to invalidate_range_start()
1290 	 * have completed but no more MMU notifiers will run, so
1291 	 * mn_active_invalidate_count may remain unbalanced.
1292 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1293 	 * last reference on KVM has been dropped, but freeing
1294 	 * memslots would deadlock without this manual intervention.
1295 	 *
1296 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1297 	 * notifier between a start() and end(), then there shouldn't be any
1298 	 * in-progress invalidations.
1299 	 */
1300 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1301 	if (kvm->mn_active_invalidate_count)
1302 		kvm->mn_active_invalidate_count = 0;
1303 	else
1304 		WARN_ON(kvm->mmu_invalidate_in_progress);
1305 #else
1306 	kvm_flush_shadow_all(kvm);
1307 #endif
1308 	kvm_arch_destroy_vm(kvm);
1309 	kvm_destroy_devices(kvm);
1310 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1311 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1312 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1313 	}
1314 	cleanup_srcu_struct(&kvm->irq_srcu);
1315 	cleanup_srcu_struct(&kvm->srcu);
1316 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1317 	xa_destroy(&kvm->mem_attr_array);
1318 #endif
1319 	kvm_arch_free_vm(kvm);
1320 	preempt_notifier_dec();
1321 	kvm_disable_virtualization();
1322 	mmdrop(mm);
1323 }
1324 
1325 void kvm_get_kvm(struct kvm *kvm)
1326 {
1327 	refcount_inc(&kvm->users_count);
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1330 
1331 /*
1332  * Make sure the vm is not during destruction, which is a safe version of
1333  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1334  */
1335 bool kvm_get_kvm_safe(struct kvm *kvm)
1336 {
1337 	return refcount_inc_not_zero(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1340 
1341 void kvm_put_kvm(struct kvm *kvm)
1342 {
1343 	if (refcount_dec_and_test(&kvm->users_count))
1344 		kvm_destroy_vm(kvm);
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1347 
1348 /*
1349  * Used to put a reference that was taken on behalf of an object associated
1350  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1351  * of the new file descriptor fails and the reference cannot be transferred to
1352  * its final owner.  In such cases, the caller is still actively using @kvm and
1353  * will fail miserably if the refcount unexpectedly hits zero.
1354  */
1355 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1356 {
1357 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1360 
1361 static int kvm_vm_release(struct inode *inode, struct file *filp)
1362 {
1363 	struct kvm *kvm = filp->private_data;
1364 
1365 	kvm_irqfd_release(kvm);
1366 
1367 	kvm_put_kvm(kvm);
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Allocation size is twice as large as the actual dirty bitmap size.
1373  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1374  */
1375 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1376 {
1377 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1378 
1379 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1380 	if (!memslot->dirty_bitmap)
1381 		return -ENOMEM;
1382 
1383 	return 0;
1384 }
1385 
1386 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1387 {
1388 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1389 	int node_idx_inactive = active->node_idx ^ 1;
1390 
1391 	return &kvm->__memslots[as_id][node_idx_inactive];
1392 }
1393 
1394 /*
1395  * Helper to get the address space ID when one of memslot pointers may be NULL.
1396  * This also serves as a sanity that at least one of the pointers is non-NULL,
1397  * and that their address space IDs don't diverge.
1398  */
1399 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1400 				  struct kvm_memory_slot *b)
1401 {
1402 	if (WARN_ON_ONCE(!a && !b))
1403 		return 0;
1404 
1405 	if (!a)
1406 		return b->as_id;
1407 	if (!b)
1408 		return a->as_id;
1409 
1410 	WARN_ON_ONCE(a->as_id != b->as_id);
1411 	return a->as_id;
1412 }
1413 
1414 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1415 				struct kvm_memory_slot *slot)
1416 {
1417 	struct rb_root *gfn_tree = &slots->gfn_tree;
1418 	struct rb_node **node, *parent;
1419 	int idx = slots->node_idx;
1420 
1421 	parent = NULL;
1422 	for (node = &gfn_tree->rb_node; *node; ) {
1423 		struct kvm_memory_slot *tmp;
1424 
1425 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1426 		parent = *node;
1427 		if (slot->base_gfn < tmp->base_gfn)
1428 			node = &(*node)->rb_left;
1429 		else if (slot->base_gfn > tmp->base_gfn)
1430 			node = &(*node)->rb_right;
1431 		else
1432 			BUG();
1433 	}
1434 
1435 	rb_link_node(&slot->gfn_node[idx], parent, node);
1436 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1437 }
1438 
1439 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1440 			       struct kvm_memory_slot *slot)
1441 {
1442 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1443 }
1444 
1445 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1446 				 struct kvm_memory_slot *old,
1447 				 struct kvm_memory_slot *new)
1448 {
1449 	int idx = slots->node_idx;
1450 
1451 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1452 
1453 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1454 			&slots->gfn_tree);
1455 }
1456 
1457 /*
1458  * Replace @old with @new in the inactive memslots.
1459  *
1460  * With NULL @old this simply adds @new.
1461  * With NULL @new this simply removes @old.
1462  *
1463  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1464  * appropriately.
1465  */
1466 static void kvm_replace_memslot(struct kvm *kvm,
1467 				struct kvm_memory_slot *old,
1468 				struct kvm_memory_slot *new)
1469 {
1470 	int as_id = kvm_memslots_get_as_id(old, new);
1471 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1472 	int idx = slots->node_idx;
1473 
1474 	if (old) {
1475 		hash_del(&old->id_node[idx]);
1476 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1477 
1478 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1479 			atomic_long_set(&slots->last_used_slot, (long)new);
1480 
1481 		if (!new) {
1482 			kvm_erase_gfn_node(slots, old);
1483 			return;
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * Initialize @new's hva range.  Do this even when replacing an @old
1489 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1490 	 */
1491 	new->hva_node[idx].start = new->userspace_addr;
1492 	new->hva_node[idx].last = new->userspace_addr +
1493 				  (new->npages << PAGE_SHIFT) - 1;
1494 
1495 	/*
1496 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1497 	 * hva_node needs to be swapped with remove+insert even though hva can't
1498 	 * change when replacing an existing slot.
1499 	 */
1500 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1501 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1502 
1503 	/*
1504 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1505 	 * switch the node in the gfn tree instead of removing the old and
1506 	 * inserting the new as two separate operations. Replacement is a
1507 	 * single O(1) operation versus two O(log(n)) operations for
1508 	 * remove+insert.
1509 	 */
1510 	if (old && old->base_gfn == new->base_gfn) {
1511 		kvm_replace_gfn_node(slots, old, new);
1512 	} else {
1513 		if (old)
1514 			kvm_erase_gfn_node(slots, old);
1515 		kvm_insert_gfn_node(slots, new);
1516 	}
1517 }
1518 
1519 /*
1520  * Flags that do not access any of the extra space of struct
1521  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1522  * only allows these.
1523  */
1524 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1525 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1526 
1527 static int check_memory_region_flags(struct kvm *kvm,
1528 				     const struct kvm_userspace_memory_region2 *mem)
1529 {
1530 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1531 
1532 	if (kvm_arch_has_private_mem(kvm))
1533 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1534 
1535 	/* Dirty logging private memory is not currently supported. */
1536 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1537 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1538 
1539 	/*
1540 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1541 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1542 	 * and KVM doesn't allow emulated MMIO for private memory.
1543 	 */
1544 	if (kvm_arch_has_readonly_mem(kvm) &&
1545 	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1546 		valid_flags |= KVM_MEM_READONLY;
1547 
1548 	if (mem->flags & ~valid_flags)
1549 		return -EINVAL;
1550 
1551 	return 0;
1552 }
1553 
1554 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1555 {
1556 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1557 
1558 	/* Grab the generation from the activate memslots. */
1559 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1560 
1561 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1562 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1563 
1564 	/*
1565 	 * Do not store the new memslots while there are invalidations in
1566 	 * progress, otherwise the locking in invalidate_range_start and
1567 	 * invalidate_range_end will be unbalanced.
1568 	 */
1569 	spin_lock(&kvm->mn_invalidate_lock);
1570 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1571 	while (kvm->mn_active_invalidate_count) {
1572 		set_current_state(TASK_UNINTERRUPTIBLE);
1573 		spin_unlock(&kvm->mn_invalidate_lock);
1574 		schedule();
1575 		spin_lock(&kvm->mn_invalidate_lock);
1576 	}
1577 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1578 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1579 	spin_unlock(&kvm->mn_invalidate_lock);
1580 
1581 	/*
1582 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1583 	 * SRCU below in order to avoid deadlock with another thread
1584 	 * acquiring the slots_arch_lock in an srcu critical section.
1585 	 */
1586 	mutex_unlock(&kvm->slots_arch_lock);
1587 
1588 	synchronize_srcu_expedited(&kvm->srcu);
1589 
1590 	/*
1591 	 * Increment the new memslot generation a second time, dropping the
1592 	 * update in-progress flag and incrementing the generation based on
1593 	 * the number of address spaces.  This provides a unique and easily
1594 	 * identifiable generation number while the memslots are in flux.
1595 	 */
1596 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1597 
1598 	/*
1599 	 * Generations must be unique even across address spaces.  We do not need
1600 	 * a global counter for that, instead the generation space is evenly split
1601 	 * across address spaces.  For example, with two address spaces, address
1602 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1603 	 * use generations 1, 3, 5, ...
1604 	 */
1605 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1606 
1607 	kvm_arch_memslots_updated(kvm, gen);
1608 
1609 	slots->generation = gen;
1610 }
1611 
1612 static int kvm_prepare_memory_region(struct kvm *kvm,
1613 				     const struct kvm_memory_slot *old,
1614 				     struct kvm_memory_slot *new,
1615 				     enum kvm_mr_change change)
1616 {
1617 	int r;
1618 
1619 	/*
1620 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1621 	 * will be freed on "commit".  If logging is enabled in both old and
1622 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1623 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1624 	 * new bitmap.
1625 	 */
1626 	if (change != KVM_MR_DELETE) {
1627 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1628 			new->dirty_bitmap = NULL;
1629 		else if (old && old->dirty_bitmap)
1630 			new->dirty_bitmap = old->dirty_bitmap;
1631 		else if (kvm_use_dirty_bitmap(kvm)) {
1632 			r = kvm_alloc_dirty_bitmap(new);
1633 			if (r)
1634 				return r;
1635 
1636 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1637 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1638 		}
1639 	}
1640 
1641 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1642 
1643 	/* Free the bitmap on failure if it was allocated above. */
1644 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1645 		kvm_destroy_dirty_bitmap(new);
1646 
1647 	return r;
1648 }
1649 
1650 static void kvm_commit_memory_region(struct kvm *kvm,
1651 				     struct kvm_memory_slot *old,
1652 				     const struct kvm_memory_slot *new,
1653 				     enum kvm_mr_change change)
1654 {
1655 	int old_flags = old ? old->flags : 0;
1656 	int new_flags = new ? new->flags : 0;
1657 	/*
1658 	 * Update the total number of memslot pages before calling the arch
1659 	 * hook so that architectures can consume the result directly.
1660 	 */
1661 	if (change == KVM_MR_DELETE)
1662 		kvm->nr_memslot_pages -= old->npages;
1663 	else if (change == KVM_MR_CREATE)
1664 		kvm->nr_memslot_pages += new->npages;
1665 
1666 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1667 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1668 		atomic_set(&kvm->nr_memslots_dirty_logging,
1669 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1670 	}
1671 
1672 	kvm_arch_commit_memory_region(kvm, old, new, change);
1673 
1674 	switch (change) {
1675 	case KVM_MR_CREATE:
1676 		/* Nothing more to do. */
1677 		break;
1678 	case KVM_MR_DELETE:
1679 		/* Free the old memslot and all its metadata. */
1680 		kvm_free_memslot(kvm, old);
1681 		break;
1682 	case KVM_MR_MOVE:
1683 	case KVM_MR_FLAGS_ONLY:
1684 		/*
1685 		 * Free the dirty bitmap as needed; the below check encompasses
1686 		 * both the flags and whether a ring buffer is being used)
1687 		 */
1688 		if (old->dirty_bitmap && !new->dirty_bitmap)
1689 			kvm_destroy_dirty_bitmap(old);
1690 
1691 		/*
1692 		 * The final quirk.  Free the detached, old slot, but only its
1693 		 * memory, not any metadata.  Metadata, including arch specific
1694 		 * data, may be reused by @new.
1695 		 */
1696 		kfree(old);
1697 		break;
1698 	default:
1699 		BUG();
1700 	}
1701 }
1702 
1703 /*
1704  * Activate @new, which must be installed in the inactive slots by the caller,
1705  * by swapping the active slots and then propagating @new to @old once @old is
1706  * unreachable and can be safely modified.
1707  *
1708  * With NULL @old this simply adds @new to @active (while swapping the sets).
1709  * With NULL @new this simply removes @old from @active and frees it
1710  * (while also swapping the sets).
1711  */
1712 static void kvm_activate_memslot(struct kvm *kvm,
1713 				 struct kvm_memory_slot *old,
1714 				 struct kvm_memory_slot *new)
1715 {
1716 	int as_id = kvm_memslots_get_as_id(old, new);
1717 
1718 	kvm_swap_active_memslots(kvm, as_id);
1719 
1720 	/* Propagate the new memslot to the now inactive memslots. */
1721 	kvm_replace_memslot(kvm, old, new);
1722 }
1723 
1724 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1725 			     const struct kvm_memory_slot *src)
1726 {
1727 	dest->base_gfn = src->base_gfn;
1728 	dest->npages = src->npages;
1729 	dest->dirty_bitmap = src->dirty_bitmap;
1730 	dest->arch = src->arch;
1731 	dest->userspace_addr = src->userspace_addr;
1732 	dest->flags = src->flags;
1733 	dest->id = src->id;
1734 	dest->as_id = src->as_id;
1735 }
1736 
1737 static void kvm_invalidate_memslot(struct kvm *kvm,
1738 				   struct kvm_memory_slot *old,
1739 				   struct kvm_memory_slot *invalid_slot)
1740 {
1741 	/*
1742 	 * Mark the current slot INVALID.  As with all memslot modifications,
1743 	 * this must be done on an unreachable slot to avoid modifying the
1744 	 * current slot in the active tree.
1745 	 */
1746 	kvm_copy_memslot(invalid_slot, old);
1747 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1748 	kvm_replace_memslot(kvm, old, invalid_slot);
1749 
1750 	/*
1751 	 * Activate the slot that is now marked INVALID, but don't propagate
1752 	 * the slot to the now inactive slots. The slot is either going to be
1753 	 * deleted or recreated as a new slot.
1754 	 */
1755 	kvm_swap_active_memslots(kvm, old->as_id);
1756 
1757 	/*
1758 	 * From this point no new shadow pages pointing to a deleted, or moved,
1759 	 * memslot will be created.  Validation of sp->gfn happens in:
1760 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1761 	 *	- kvm_is_visible_gfn (mmu_check_root)
1762 	 */
1763 	kvm_arch_flush_shadow_memslot(kvm, old);
1764 	kvm_arch_guest_memory_reclaimed(kvm);
1765 
1766 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1767 	mutex_lock(&kvm->slots_arch_lock);
1768 
1769 	/*
1770 	 * Copy the arch-specific field of the newly-installed slot back to the
1771 	 * old slot as the arch data could have changed between releasing
1772 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1773 	 * above.  Writers are required to retrieve memslots *after* acquiring
1774 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1775 	 */
1776 	old->arch = invalid_slot->arch;
1777 }
1778 
1779 static void kvm_create_memslot(struct kvm *kvm,
1780 			       struct kvm_memory_slot *new)
1781 {
1782 	/* Add the new memslot to the inactive set and activate. */
1783 	kvm_replace_memslot(kvm, NULL, new);
1784 	kvm_activate_memslot(kvm, NULL, new);
1785 }
1786 
1787 static void kvm_delete_memslot(struct kvm *kvm,
1788 			       struct kvm_memory_slot *old,
1789 			       struct kvm_memory_slot *invalid_slot)
1790 {
1791 	/*
1792 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1793 	 * the "new" slot, and for the invalid version in the active slots.
1794 	 */
1795 	kvm_replace_memslot(kvm, old, NULL);
1796 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1797 }
1798 
1799 static void kvm_move_memslot(struct kvm *kvm,
1800 			     struct kvm_memory_slot *old,
1801 			     struct kvm_memory_slot *new,
1802 			     struct kvm_memory_slot *invalid_slot)
1803 {
1804 	/*
1805 	 * Replace the old memslot in the inactive slots, and then swap slots
1806 	 * and replace the current INVALID with the new as well.
1807 	 */
1808 	kvm_replace_memslot(kvm, old, new);
1809 	kvm_activate_memslot(kvm, invalid_slot, new);
1810 }
1811 
1812 static void kvm_update_flags_memslot(struct kvm *kvm,
1813 				     struct kvm_memory_slot *old,
1814 				     struct kvm_memory_slot *new)
1815 {
1816 	/*
1817 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1818 	 * an intermediate step. Instead, the old memslot is simply replaced
1819 	 * with a new, updated copy in both memslot sets.
1820 	 */
1821 	kvm_replace_memslot(kvm, old, new);
1822 	kvm_activate_memslot(kvm, old, new);
1823 }
1824 
1825 static int kvm_set_memslot(struct kvm *kvm,
1826 			   struct kvm_memory_slot *old,
1827 			   struct kvm_memory_slot *new,
1828 			   enum kvm_mr_change change)
1829 {
1830 	struct kvm_memory_slot *invalid_slot;
1831 	int r;
1832 
1833 	/*
1834 	 * Released in kvm_swap_active_memslots().
1835 	 *
1836 	 * Must be held from before the current memslots are copied until after
1837 	 * the new memslots are installed with rcu_assign_pointer, then
1838 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1839 	 *
1840 	 * When modifying memslots outside of the slots_lock, must be held
1841 	 * before reading the pointer to the current memslots until after all
1842 	 * changes to those memslots are complete.
1843 	 *
1844 	 * These rules ensure that installing new memslots does not lose
1845 	 * changes made to the previous memslots.
1846 	 */
1847 	mutex_lock(&kvm->slots_arch_lock);
1848 
1849 	/*
1850 	 * Invalidate the old slot if it's being deleted or moved.  This is
1851 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1852 	 * continue running by ensuring there are no mappings or shadow pages
1853 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1854 	 * (and without a lock), a window would exist between effecting the
1855 	 * delete/move and committing the changes in arch code where KVM or a
1856 	 * guest could access a non-existent memslot.
1857 	 *
1858 	 * Modifications are done on a temporary, unreachable slot.  The old
1859 	 * slot needs to be preserved in case a later step fails and the
1860 	 * invalidation needs to be reverted.
1861 	 */
1862 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1863 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1864 		if (!invalid_slot) {
1865 			mutex_unlock(&kvm->slots_arch_lock);
1866 			return -ENOMEM;
1867 		}
1868 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1869 	}
1870 
1871 	r = kvm_prepare_memory_region(kvm, old, new, change);
1872 	if (r) {
1873 		/*
1874 		 * For DELETE/MOVE, revert the above INVALID change.  No
1875 		 * modifications required since the original slot was preserved
1876 		 * in the inactive slots.  Changing the active memslots also
1877 		 * release slots_arch_lock.
1878 		 */
1879 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1880 			kvm_activate_memslot(kvm, invalid_slot, old);
1881 			kfree(invalid_slot);
1882 		} else {
1883 			mutex_unlock(&kvm->slots_arch_lock);
1884 		}
1885 		return r;
1886 	}
1887 
1888 	/*
1889 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1890 	 * version of the old slot.  MOVE is particularly special as it reuses
1891 	 * the old slot and returns a copy of the old slot (in working_slot).
1892 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1893 	 * old slot is detached but otherwise preserved.
1894 	 */
1895 	if (change == KVM_MR_CREATE)
1896 		kvm_create_memslot(kvm, new);
1897 	else if (change == KVM_MR_DELETE)
1898 		kvm_delete_memslot(kvm, old, invalid_slot);
1899 	else if (change == KVM_MR_MOVE)
1900 		kvm_move_memslot(kvm, old, new, invalid_slot);
1901 	else if (change == KVM_MR_FLAGS_ONLY)
1902 		kvm_update_flags_memslot(kvm, old, new);
1903 	else
1904 		BUG();
1905 
1906 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1907 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1908 		kfree(invalid_slot);
1909 
1910 	/*
1911 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1912 	 * will directly hit the final, active memslot.  Architectures are
1913 	 * responsible for knowing that new->arch may be stale.
1914 	 */
1915 	kvm_commit_memory_region(kvm, old, new, change);
1916 
1917 	return 0;
1918 }
1919 
1920 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1921 				      gfn_t start, gfn_t end)
1922 {
1923 	struct kvm_memslot_iter iter;
1924 
1925 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1926 		if (iter.slot->id != id)
1927 			return true;
1928 	}
1929 
1930 	return false;
1931 }
1932 
1933 static int kvm_set_memory_region(struct kvm *kvm,
1934 				 const struct kvm_userspace_memory_region2 *mem)
1935 {
1936 	struct kvm_memory_slot *old, *new;
1937 	struct kvm_memslots *slots;
1938 	enum kvm_mr_change change;
1939 	unsigned long npages;
1940 	gfn_t base_gfn;
1941 	int as_id, id;
1942 	int r;
1943 
1944 	lockdep_assert_held(&kvm->slots_lock);
1945 
1946 	r = check_memory_region_flags(kvm, mem);
1947 	if (r)
1948 		return r;
1949 
1950 	as_id = mem->slot >> 16;
1951 	id = (u16)mem->slot;
1952 
1953 	/* General sanity checks */
1954 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1955 	    (mem->memory_size != (unsigned long)mem->memory_size))
1956 		return -EINVAL;
1957 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1958 		return -EINVAL;
1959 	/* We can read the guest memory with __xxx_user() later on. */
1960 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1961 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1962 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1963 			mem->memory_size))
1964 		return -EINVAL;
1965 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1966 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1967 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1968 		return -EINVAL;
1969 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1970 		return -EINVAL;
1971 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1972 		return -EINVAL;
1973 
1974 	/*
1975 	 * The size of userspace-defined memory regions is restricted in order
1976 	 * to play nice with dirty bitmap operations, which are indexed with an
1977 	 * "unsigned int".  KVM's internal memory regions don't support dirty
1978 	 * logging, and so are exempt.
1979 	 */
1980 	if (id < KVM_USER_MEM_SLOTS &&
1981 	    (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1982 		return -EINVAL;
1983 
1984 	slots = __kvm_memslots(kvm, as_id);
1985 
1986 	/*
1987 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1988 	 * and/or destroyed by kvm_set_memslot().
1989 	 */
1990 	old = id_to_memslot(slots, id);
1991 
1992 	if (!mem->memory_size) {
1993 		if (!old || !old->npages)
1994 			return -EINVAL;
1995 
1996 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1997 			return -EIO;
1998 
1999 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2000 	}
2001 
2002 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2003 	npages = (mem->memory_size >> PAGE_SHIFT);
2004 
2005 	if (!old || !old->npages) {
2006 		change = KVM_MR_CREATE;
2007 
2008 		/*
2009 		 * To simplify KVM internals, the total number of pages across
2010 		 * all memslots must fit in an unsigned long.
2011 		 */
2012 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2013 			return -EINVAL;
2014 	} else { /* Modify an existing slot. */
2015 		/* Private memslots are immutable, they can only be deleted. */
2016 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2017 			return -EINVAL;
2018 		if ((mem->userspace_addr != old->userspace_addr) ||
2019 		    (npages != old->npages) ||
2020 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2021 			return -EINVAL;
2022 
2023 		if (base_gfn != old->base_gfn)
2024 			change = KVM_MR_MOVE;
2025 		else if (mem->flags != old->flags)
2026 			change = KVM_MR_FLAGS_ONLY;
2027 		else /* Nothing to change. */
2028 			return 0;
2029 	}
2030 
2031 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2032 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2033 		return -EEXIST;
2034 
2035 	/* Allocate a slot that will persist in the memslot. */
2036 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2037 	if (!new)
2038 		return -ENOMEM;
2039 
2040 	new->as_id = as_id;
2041 	new->id = id;
2042 	new->base_gfn = base_gfn;
2043 	new->npages = npages;
2044 	new->flags = mem->flags;
2045 	new->userspace_addr = mem->userspace_addr;
2046 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2047 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2048 		if (r)
2049 			goto out;
2050 	}
2051 
2052 	r = kvm_set_memslot(kvm, old, new, change);
2053 	if (r)
2054 		goto out_unbind;
2055 
2056 	return 0;
2057 
2058 out_unbind:
2059 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2060 		kvm_gmem_unbind(new);
2061 out:
2062 	kfree(new);
2063 	return r;
2064 }
2065 
2066 int kvm_set_internal_memslot(struct kvm *kvm,
2067 			     const struct kvm_userspace_memory_region2 *mem)
2068 {
2069 	if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2070 		return -EINVAL;
2071 
2072 	if (WARN_ON_ONCE(mem->flags))
2073 		return -EINVAL;
2074 
2075 	return kvm_set_memory_region(kvm, mem);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_set_internal_memslot);
2078 
2079 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2080 					  struct kvm_userspace_memory_region2 *mem)
2081 {
2082 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2083 		return -EINVAL;
2084 
2085 	guard(mutex)(&kvm->slots_lock);
2086 	return kvm_set_memory_region(kvm, mem);
2087 }
2088 
2089 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2090 /**
2091  * kvm_get_dirty_log - get a snapshot of dirty pages
2092  * @kvm:	pointer to kvm instance
2093  * @log:	slot id and address to which we copy the log
2094  * @is_dirty:	set to '1' if any dirty pages were found
2095  * @memslot:	set to the associated memslot, always valid on success
2096  */
2097 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2098 		      int *is_dirty, struct kvm_memory_slot **memslot)
2099 {
2100 	struct kvm_memslots *slots;
2101 	int i, as_id, id;
2102 	unsigned long n;
2103 	unsigned long any = 0;
2104 
2105 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2106 	if (!kvm_use_dirty_bitmap(kvm))
2107 		return -ENXIO;
2108 
2109 	*memslot = NULL;
2110 	*is_dirty = 0;
2111 
2112 	as_id = log->slot >> 16;
2113 	id = (u16)log->slot;
2114 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2115 		return -EINVAL;
2116 
2117 	slots = __kvm_memslots(kvm, as_id);
2118 	*memslot = id_to_memslot(slots, id);
2119 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2120 		return -ENOENT;
2121 
2122 	kvm_arch_sync_dirty_log(kvm, *memslot);
2123 
2124 	n = kvm_dirty_bitmap_bytes(*memslot);
2125 
2126 	for (i = 0; !any && i < n/sizeof(long); ++i)
2127 		any = (*memslot)->dirty_bitmap[i];
2128 
2129 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2130 		return -EFAULT;
2131 
2132 	if (any)
2133 		*is_dirty = 1;
2134 	return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2137 
2138 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2139 /**
2140  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2141  *	and reenable dirty page tracking for the corresponding pages.
2142  * @kvm:	pointer to kvm instance
2143  * @log:	slot id and address to which we copy the log
2144  *
2145  * We need to keep it in mind that VCPU threads can write to the bitmap
2146  * concurrently. So, to avoid losing track of dirty pages we keep the
2147  * following order:
2148  *
2149  *    1. Take a snapshot of the bit and clear it if needed.
2150  *    2. Write protect the corresponding page.
2151  *    3. Copy the snapshot to the userspace.
2152  *    4. Upon return caller flushes TLB's if needed.
2153  *
2154  * Between 2 and 4, the guest may write to the page using the remaining TLB
2155  * entry.  This is not a problem because the page is reported dirty using
2156  * the snapshot taken before and step 4 ensures that writes done after
2157  * exiting to userspace will be logged for the next call.
2158  *
2159  */
2160 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2161 {
2162 	struct kvm_memslots *slots;
2163 	struct kvm_memory_slot *memslot;
2164 	int i, as_id, id;
2165 	unsigned long n;
2166 	unsigned long *dirty_bitmap;
2167 	unsigned long *dirty_bitmap_buffer;
2168 	bool flush;
2169 
2170 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2171 	if (!kvm_use_dirty_bitmap(kvm))
2172 		return -ENXIO;
2173 
2174 	as_id = log->slot >> 16;
2175 	id = (u16)log->slot;
2176 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2177 		return -EINVAL;
2178 
2179 	slots = __kvm_memslots(kvm, as_id);
2180 	memslot = id_to_memslot(slots, id);
2181 	if (!memslot || !memslot->dirty_bitmap)
2182 		return -ENOENT;
2183 
2184 	dirty_bitmap = memslot->dirty_bitmap;
2185 
2186 	kvm_arch_sync_dirty_log(kvm, memslot);
2187 
2188 	n = kvm_dirty_bitmap_bytes(memslot);
2189 	flush = false;
2190 	if (kvm->manual_dirty_log_protect) {
2191 		/*
2192 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2193 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2194 		 * is some code duplication between this function and
2195 		 * kvm_get_dirty_log, but hopefully all architecture
2196 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2197 		 * can be eliminated.
2198 		 */
2199 		dirty_bitmap_buffer = dirty_bitmap;
2200 	} else {
2201 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2202 		memset(dirty_bitmap_buffer, 0, n);
2203 
2204 		KVM_MMU_LOCK(kvm);
2205 		for (i = 0; i < n / sizeof(long); i++) {
2206 			unsigned long mask;
2207 			gfn_t offset;
2208 
2209 			if (!dirty_bitmap[i])
2210 				continue;
2211 
2212 			flush = true;
2213 			mask = xchg(&dirty_bitmap[i], 0);
2214 			dirty_bitmap_buffer[i] = mask;
2215 
2216 			offset = i * BITS_PER_LONG;
2217 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2218 								offset, mask);
2219 		}
2220 		KVM_MMU_UNLOCK(kvm);
2221 	}
2222 
2223 	if (flush)
2224 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2225 
2226 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2227 		return -EFAULT;
2228 	return 0;
2229 }
2230 
2231 
2232 /**
2233  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2234  * @kvm: kvm instance
2235  * @log: slot id and address to which we copy the log
2236  *
2237  * Steps 1-4 below provide general overview of dirty page logging. See
2238  * kvm_get_dirty_log_protect() function description for additional details.
2239  *
2240  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2241  * always flush the TLB (step 4) even if previous step failed  and the dirty
2242  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2243  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2244  * writes will be marked dirty for next log read.
2245  *
2246  *   1. Take a snapshot of the bit and clear it if needed.
2247  *   2. Write protect the corresponding page.
2248  *   3. Copy the snapshot to the userspace.
2249  *   4. Flush TLB's if needed.
2250  */
2251 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2252 				      struct kvm_dirty_log *log)
2253 {
2254 	int r;
2255 
2256 	mutex_lock(&kvm->slots_lock);
2257 
2258 	r = kvm_get_dirty_log_protect(kvm, log);
2259 
2260 	mutex_unlock(&kvm->slots_lock);
2261 	return r;
2262 }
2263 
2264 /**
2265  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2266  *	and reenable dirty page tracking for the corresponding pages.
2267  * @kvm:	pointer to kvm instance
2268  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2269  */
2270 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2271 				       struct kvm_clear_dirty_log *log)
2272 {
2273 	struct kvm_memslots *slots;
2274 	struct kvm_memory_slot *memslot;
2275 	int as_id, id;
2276 	gfn_t offset;
2277 	unsigned long i, n;
2278 	unsigned long *dirty_bitmap;
2279 	unsigned long *dirty_bitmap_buffer;
2280 	bool flush;
2281 
2282 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2283 	if (!kvm_use_dirty_bitmap(kvm))
2284 		return -ENXIO;
2285 
2286 	as_id = log->slot >> 16;
2287 	id = (u16)log->slot;
2288 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2289 		return -EINVAL;
2290 
2291 	if (log->first_page & 63)
2292 		return -EINVAL;
2293 
2294 	slots = __kvm_memslots(kvm, as_id);
2295 	memslot = id_to_memslot(slots, id);
2296 	if (!memslot || !memslot->dirty_bitmap)
2297 		return -ENOENT;
2298 
2299 	dirty_bitmap = memslot->dirty_bitmap;
2300 
2301 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2302 
2303 	if (log->first_page > memslot->npages ||
2304 	    log->num_pages > memslot->npages - log->first_page ||
2305 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2306 	    return -EINVAL;
2307 
2308 	kvm_arch_sync_dirty_log(kvm, memslot);
2309 
2310 	flush = false;
2311 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2312 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2313 		return -EFAULT;
2314 
2315 	KVM_MMU_LOCK(kvm);
2316 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2317 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2318 	     i++, offset += BITS_PER_LONG) {
2319 		unsigned long mask = *dirty_bitmap_buffer++;
2320 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2321 		if (!mask)
2322 			continue;
2323 
2324 		mask &= atomic_long_fetch_andnot(mask, p);
2325 
2326 		/*
2327 		 * mask contains the bits that really have been cleared.  This
2328 		 * never includes any bits beyond the length of the memslot (if
2329 		 * the length is not aligned to 64 pages), therefore it is not
2330 		 * a problem if userspace sets them in log->dirty_bitmap.
2331 		*/
2332 		if (mask) {
2333 			flush = true;
2334 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2335 								offset, mask);
2336 		}
2337 	}
2338 	KVM_MMU_UNLOCK(kvm);
2339 
2340 	if (flush)
2341 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2342 
2343 	return 0;
2344 }
2345 
2346 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2347 					struct kvm_clear_dirty_log *log)
2348 {
2349 	int r;
2350 
2351 	mutex_lock(&kvm->slots_lock);
2352 
2353 	r = kvm_clear_dirty_log_protect(kvm, log);
2354 
2355 	mutex_unlock(&kvm->slots_lock);
2356 	return r;
2357 }
2358 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2359 
2360 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2361 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2362 {
2363 	if (!kvm || kvm_arch_has_private_mem(kvm))
2364 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2365 
2366 	return 0;
2367 }
2368 
2369 /*
2370  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2371  * such that the bits in @mask match @attrs.
2372  */
2373 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2374 				     unsigned long mask, unsigned long attrs)
2375 {
2376 	XA_STATE(xas, &kvm->mem_attr_array, start);
2377 	unsigned long index;
2378 	void *entry;
2379 
2380 	mask &= kvm_supported_mem_attributes(kvm);
2381 	if (attrs & ~mask)
2382 		return false;
2383 
2384 	if (end == start + 1)
2385 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2386 
2387 	guard(rcu)();
2388 	if (!attrs)
2389 		return !xas_find(&xas, end - 1);
2390 
2391 	for (index = start; index < end; index++) {
2392 		do {
2393 			entry = xas_next(&xas);
2394 		} while (xas_retry(&xas, entry));
2395 
2396 		if (xas.xa_index != index ||
2397 		    (xa_to_value(entry) & mask) != attrs)
2398 			return false;
2399 	}
2400 
2401 	return true;
2402 }
2403 
2404 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2405 						 struct kvm_mmu_notifier_range *range)
2406 {
2407 	struct kvm_gfn_range gfn_range;
2408 	struct kvm_memory_slot *slot;
2409 	struct kvm_memslots *slots;
2410 	struct kvm_memslot_iter iter;
2411 	bool found_memslot = false;
2412 	bool ret = false;
2413 	int i;
2414 
2415 	gfn_range.arg = range->arg;
2416 	gfn_range.may_block = range->may_block;
2417 
2418 	/*
2419 	 * If/when KVM supports more attributes beyond private .vs shared, this
2420 	 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2421 	 * range already has the desired private vs. shared state (it's unclear
2422 	 * if that is a net win).  For now, KVM reaches this point if and only
2423 	 * if the private flag is being toggled, i.e. all mappings are in play.
2424 	 */
2425 
2426 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2427 		slots = __kvm_memslots(kvm, i);
2428 
2429 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2430 			slot = iter.slot;
2431 			gfn_range.slot = slot;
2432 
2433 			gfn_range.start = max(range->start, slot->base_gfn);
2434 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2435 			if (gfn_range.start >= gfn_range.end)
2436 				continue;
2437 
2438 			if (!found_memslot) {
2439 				found_memslot = true;
2440 				KVM_MMU_LOCK(kvm);
2441 				if (!IS_KVM_NULL_FN(range->on_lock))
2442 					range->on_lock(kvm);
2443 			}
2444 
2445 			ret |= range->handler(kvm, &gfn_range);
2446 		}
2447 	}
2448 
2449 	if (range->flush_on_ret && ret)
2450 		kvm_flush_remote_tlbs(kvm);
2451 
2452 	if (found_memslot)
2453 		KVM_MMU_UNLOCK(kvm);
2454 }
2455 
2456 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2457 					  struct kvm_gfn_range *range)
2458 {
2459 	/*
2460 	 * Unconditionally add the range to the invalidation set, regardless of
2461 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2462 	 * if KVM supports RWX attributes in the future and the attributes are
2463 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2464 	 * adding the range allows KVM to require that MMU invalidations add at
2465 	 * least one range between begin() and end(), e.g. allows KVM to detect
2466 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2467 	 * but it's not obvious that allowing new mappings while the attributes
2468 	 * are in flux is desirable or worth the complexity.
2469 	 */
2470 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2471 
2472 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2473 }
2474 
2475 /* Set @attributes for the gfn range [@start, @end). */
2476 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2477 				     unsigned long attributes)
2478 {
2479 	struct kvm_mmu_notifier_range pre_set_range = {
2480 		.start = start,
2481 		.end = end,
2482 		.arg.attributes = attributes,
2483 		.handler = kvm_pre_set_memory_attributes,
2484 		.on_lock = kvm_mmu_invalidate_begin,
2485 		.flush_on_ret = true,
2486 		.may_block = true,
2487 	};
2488 	struct kvm_mmu_notifier_range post_set_range = {
2489 		.start = start,
2490 		.end = end,
2491 		.arg.attributes = attributes,
2492 		.handler = kvm_arch_post_set_memory_attributes,
2493 		.on_lock = kvm_mmu_invalidate_end,
2494 		.may_block = true,
2495 	};
2496 	unsigned long i;
2497 	void *entry;
2498 	int r = 0;
2499 
2500 	entry = attributes ? xa_mk_value(attributes) : NULL;
2501 
2502 	mutex_lock(&kvm->slots_lock);
2503 
2504 	/* Nothing to do if the entire range as the desired attributes. */
2505 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2506 		goto out_unlock;
2507 
2508 	/*
2509 	 * Reserve memory ahead of time to avoid having to deal with failures
2510 	 * partway through setting the new attributes.
2511 	 */
2512 	for (i = start; i < end; i++) {
2513 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2514 		if (r)
2515 			goto out_unlock;
2516 	}
2517 
2518 	kvm_handle_gfn_range(kvm, &pre_set_range);
2519 
2520 	for (i = start; i < end; i++) {
2521 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2522 				    GFP_KERNEL_ACCOUNT));
2523 		KVM_BUG_ON(r, kvm);
2524 	}
2525 
2526 	kvm_handle_gfn_range(kvm, &post_set_range);
2527 
2528 out_unlock:
2529 	mutex_unlock(&kvm->slots_lock);
2530 
2531 	return r;
2532 }
2533 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2534 					   struct kvm_memory_attributes *attrs)
2535 {
2536 	gfn_t start, end;
2537 
2538 	/* flags is currently not used. */
2539 	if (attrs->flags)
2540 		return -EINVAL;
2541 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2542 		return -EINVAL;
2543 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2544 		return -EINVAL;
2545 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2546 		return -EINVAL;
2547 
2548 	start = attrs->address >> PAGE_SHIFT;
2549 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2550 
2551 	/*
2552 	 * xarray tracks data using "unsigned long", and as a result so does
2553 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2554 	 * architectures.
2555 	 */
2556 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2557 
2558 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2559 }
2560 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2561 
2562 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2563 {
2564 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2565 }
2566 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2567 
2568 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2569 {
2570 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2571 	u64 gen = slots->generation;
2572 	struct kvm_memory_slot *slot;
2573 
2574 	/*
2575 	 * This also protects against using a memslot from a different address space,
2576 	 * since different address spaces have different generation numbers.
2577 	 */
2578 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2579 		vcpu->last_used_slot = NULL;
2580 		vcpu->last_used_slot_gen = gen;
2581 	}
2582 
2583 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2584 	if (slot)
2585 		return slot;
2586 
2587 	/*
2588 	 * Fall back to searching all memslots. We purposely use
2589 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2590 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2591 	 */
2592 	slot = search_memslots(slots, gfn, false);
2593 	if (slot) {
2594 		vcpu->last_used_slot = slot;
2595 		return slot;
2596 	}
2597 
2598 	return NULL;
2599 }
2600 
2601 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2602 {
2603 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2604 
2605 	return kvm_is_visible_memslot(memslot);
2606 }
2607 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2608 
2609 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2610 {
2611 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2612 
2613 	return kvm_is_visible_memslot(memslot);
2614 }
2615 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2616 
2617 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2618 {
2619 	struct vm_area_struct *vma;
2620 	unsigned long addr, size;
2621 
2622 	size = PAGE_SIZE;
2623 
2624 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2625 	if (kvm_is_error_hva(addr))
2626 		return PAGE_SIZE;
2627 
2628 	mmap_read_lock(current->mm);
2629 	vma = find_vma(current->mm, addr);
2630 	if (!vma)
2631 		goto out;
2632 
2633 	size = vma_kernel_pagesize(vma);
2634 
2635 out:
2636 	mmap_read_unlock(current->mm);
2637 
2638 	return size;
2639 }
2640 
2641 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2642 {
2643 	return slot->flags & KVM_MEM_READONLY;
2644 }
2645 
2646 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2647 				       gfn_t *nr_pages, bool write)
2648 {
2649 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2650 		return KVM_HVA_ERR_BAD;
2651 
2652 	if (memslot_is_readonly(slot) && write)
2653 		return KVM_HVA_ERR_RO_BAD;
2654 
2655 	if (nr_pages)
2656 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2657 
2658 	return __gfn_to_hva_memslot(slot, gfn);
2659 }
2660 
2661 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2662 				     gfn_t *nr_pages)
2663 {
2664 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2665 }
2666 
2667 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2668 					gfn_t gfn)
2669 {
2670 	return gfn_to_hva_many(slot, gfn, NULL);
2671 }
2672 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2673 
2674 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2675 {
2676 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2677 }
2678 EXPORT_SYMBOL_GPL(gfn_to_hva);
2679 
2680 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2681 {
2682 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2683 }
2684 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2685 
2686 /*
2687  * Return the hva of a @gfn and the R/W attribute if possible.
2688  *
2689  * @slot: the kvm_memory_slot which contains @gfn
2690  * @gfn: the gfn to be translated
2691  * @writable: used to return the read/write attribute of the @slot if the hva
2692  * is valid and @writable is not NULL
2693  */
2694 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2695 				      gfn_t gfn, bool *writable)
2696 {
2697 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2698 
2699 	if (!kvm_is_error_hva(hva) && writable)
2700 		*writable = !memslot_is_readonly(slot);
2701 
2702 	return hva;
2703 }
2704 
2705 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2706 {
2707 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2708 
2709 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2710 }
2711 
2712 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2713 {
2714 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2715 
2716 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2717 }
2718 
2719 static bool kvm_is_ad_tracked_page(struct page *page)
2720 {
2721 	/*
2722 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2723 	 * touched (e.g. set dirty) except by its owner".
2724 	 */
2725 	return !PageReserved(page);
2726 }
2727 
2728 static void kvm_set_page_dirty(struct page *page)
2729 {
2730 	if (kvm_is_ad_tracked_page(page))
2731 		SetPageDirty(page);
2732 }
2733 
2734 static void kvm_set_page_accessed(struct page *page)
2735 {
2736 	if (kvm_is_ad_tracked_page(page))
2737 		mark_page_accessed(page);
2738 }
2739 
2740 void kvm_release_page_clean(struct page *page)
2741 {
2742 	if (!page)
2743 		return;
2744 
2745 	kvm_set_page_accessed(page);
2746 	put_page(page);
2747 }
2748 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2749 
2750 void kvm_release_page_dirty(struct page *page)
2751 {
2752 	if (!page)
2753 		return;
2754 
2755 	kvm_set_page_dirty(page);
2756 	kvm_release_page_clean(page);
2757 }
2758 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2759 
2760 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2761 				 struct follow_pfnmap_args *map, bool writable)
2762 {
2763 	kvm_pfn_t pfn;
2764 
2765 	WARN_ON_ONCE(!!page == !!map);
2766 
2767 	if (kfp->map_writable)
2768 		*kfp->map_writable = writable;
2769 
2770 	if (map)
2771 		pfn = map->pfn;
2772 	else
2773 		pfn = page_to_pfn(page);
2774 
2775 	*kfp->refcounted_page = page;
2776 
2777 	return pfn;
2778 }
2779 
2780 /*
2781  * The fast path to get the writable pfn which will be stored in @pfn,
2782  * true indicates success, otherwise false is returned.
2783  */
2784 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2785 {
2786 	struct page *page;
2787 	bool r;
2788 
2789 	/*
2790 	 * Try the fast-only path when the caller wants to pin/get the page for
2791 	 * writing.  If the caller only wants to read the page, KVM must go
2792 	 * down the full, slow path in order to avoid racing an operation that
2793 	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2794 	 * at the old, read-only page while mm/ points at a new, writable page.
2795 	 */
2796 	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2797 		return false;
2798 
2799 	if (kfp->pin)
2800 		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2801 	else
2802 		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2803 
2804 	if (r) {
2805 		*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2806 		return true;
2807 	}
2808 
2809 	return false;
2810 }
2811 
2812 /*
2813  * The slow path to get the pfn of the specified host virtual address,
2814  * 1 indicates success, -errno is returned if error is detected.
2815  */
2816 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2817 {
2818 	/*
2819 	 * When a VCPU accesses a page that is not mapped into the secondary
2820 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2821 	 * make progress. We always want to honor NUMA hinting faults in that
2822 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2823 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2824 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2825 	 *
2826 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2827 	 * implicitly honor NUMA hinting faults and don't need this flag.
2828 	 */
2829 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2830 	struct page *page, *wpage;
2831 	int npages;
2832 
2833 	if (kfp->pin)
2834 		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2835 	else
2836 		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2837 	if (npages != 1)
2838 		return npages;
2839 
2840 	/*
2841 	 * Pinning is mutually exclusive with opportunistically mapping a read
2842 	 * fault as writable, as KVM should never pin pages when mapping memory
2843 	 * into the guest (pinning is only for direct accesses from KVM).
2844 	 */
2845 	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2846 		goto out;
2847 
2848 	/* map read fault as writable if possible */
2849 	if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2850 	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2851 		put_page(page);
2852 		page = wpage;
2853 		flags |= FOLL_WRITE;
2854 	}
2855 
2856 out:
2857 	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2858 	return npages;
2859 }
2860 
2861 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2862 {
2863 	if (unlikely(!(vma->vm_flags & VM_READ)))
2864 		return false;
2865 
2866 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2867 		return false;
2868 
2869 	return true;
2870 }
2871 
2872 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2873 			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2874 {
2875 	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2876 	bool write_fault = kfp->flags & FOLL_WRITE;
2877 	int r;
2878 
2879 	/*
2880 	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if
2881 	 * the caller wants to pin the page, i.e. access the page outside of
2882 	 * MMU notifier protection, and unsafe umappings are disallowed.
2883 	 */
2884 	if (kfp->pin && !allow_unsafe_mappings)
2885 		return -EINVAL;
2886 
2887 	r = follow_pfnmap_start(&args);
2888 	if (r) {
2889 		/*
2890 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2891 		 * not call the fault handler, so do it here.
2892 		 */
2893 		bool unlocked = false;
2894 		r = fixup_user_fault(current->mm, kfp->hva,
2895 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2896 				     &unlocked);
2897 		if (unlocked)
2898 			return -EAGAIN;
2899 		if (r)
2900 			return r;
2901 
2902 		r = follow_pfnmap_start(&args);
2903 		if (r)
2904 			return r;
2905 	}
2906 
2907 	if (write_fault && !args.writable) {
2908 		*p_pfn = KVM_PFN_ERR_RO_FAULT;
2909 		goto out;
2910 	}
2911 
2912 	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2913 out:
2914 	follow_pfnmap_end(&args);
2915 	return r;
2916 }
2917 
2918 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2919 {
2920 	struct vm_area_struct *vma;
2921 	kvm_pfn_t pfn;
2922 	int npages, r;
2923 
2924 	might_sleep();
2925 
2926 	if (WARN_ON_ONCE(!kfp->refcounted_page))
2927 		return KVM_PFN_ERR_FAULT;
2928 
2929 	if (hva_to_pfn_fast(kfp, &pfn))
2930 		return pfn;
2931 
2932 	npages = hva_to_pfn_slow(kfp, &pfn);
2933 	if (npages == 1)
2934 		return pfn;
2935 	if (npages == -EINTR || npages == -EAGAIN)
2936 		return KVM_PFN_ERR_SIGPENDING;
2937 	if (npages == -EHWPOISON)
2938 		return KVM_PFN_ERR_HWPOISON;
2939 
2940 	mmap_read_lock(current->mm);
2941 retry:
2942 	vma = vma_lookup(current->mm, kfp->hva);
2943 
2944 	if (vma == NULL)
2945 		pfn = KVM_PFN_ERR_FAULT;
2946 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2947 		r = hva_to_pfn_remapped(vma, kfp, &pfn);
2948 		if (r == -EAGAIN)
2949 			goto retry;
2950 		if (r < 0)
2951 			pfn = KVM_PFN_ERR_FAULT;
2952 	} else {
2953 		if ((kfp->flags & FOLL_NOWAIT) &&
2954 		    vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2955 			pfn = KVM_PFN_ERR_NEEDS_IO;
2956 		else
2957 			pfn = KVM_PFN_ERR_FAULT;
2958 	}
2959 	mmap_read_unlock(current->mm);
2960 	return pfn;
2961 }
2962 
2963 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2964 {
2965 	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2966 				     kfp->flags & FOLL_WRITE);
2967 
2968 	if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2969 		return KVM_PFN_ERR_RO_FAULT;
2970 
2971 	if (kvm_is_error_hva(kfp->hva))
2972 		return KVM_PFN_NOSLOT;
2973 
2974 	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2975 		*kfp->map_writable = false;
2976 		kfp->map_writable = NULL;
2977 	}
2978 
2979 	return hva_to_pfn(kfp);
2980 }
2981 
2982 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2983 			    unsigned int foll, bool *writable,
2984 			    struct page **refcounted_page)
2985 {
2986 	struct kvm_follow_pfn kfp = {
2987 		.slot = slot,
2988 		.gfn = gfn,
2989 		.flags = foll,
2990 		.map_writable = writable,
2991 		.refcounted_page = refcounted_page,
2992 	};
2993 
2994 	if (WARN_ON_ONCE(!writable || !refcounted_page))
2995 		return KVM_PFN_ERR_FAULT;
2996 
2997 	*writable = false;
2998 	*refcounted_page = NULL;
2999 
3000 	return kvm_follow_pfn(&kfp);
3001 }
3002 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
3003 
3004 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3005 		       struct page **pages, int nr_pages)
3006 {
3007 	unsigned long addr;
3008 	gfn_t entry = 0;
3009 
3010 	addr = gfn_to_hva_many(slot, gfn, &entry);
3011 	if (kvm_is_error_hva(addr))
3012 		return -1;
3013 
3014 	if (entry < nr_pages)
3015 		return 0;
3016 
3017 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3018 }
3019 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3020 
3021 /*
3022  * Don't use this API unless you are absolutely, positively certain that KVM
3023  * needs to get a struct page, e.g. to pin the page for firmware DMA.
3024  *
3025  * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3026  *	  its refcount.
3027  */
3028 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3029 {
3030 	struct page *refcounted_page = NULL;
3031 	struct kvm_follow_pfn kfp = {
3032 		.slot = gfn_to_memslot(kvm, gfn),
3033 		.gfn = gfn,
3034 		.flags = write ? FOLL_WRITE : 0,
3035 		.refcounted_page = &refcounted_page,
3036 	};
3037 
3038 	(void)kvm_follow_pfn(&kfp);
3039 	return refcounted_page;
3040 }
3041 EXPORT_SYMBOL_GPL(__gfn_to_page);
3042 
3043 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3044 		   bool writable)
3045 {
3046 	struct kvm_follow_pfn kfp = {
3047 		.slot = gfn_to_memslot(vcpu->kvm, gfn),
3048 		.gfn = gfn,
3049 		.flags = writable ? FOLL_WRITE : 0,
3050 		.refcounted_page = &map->pinned_page,
3051 		.pin = true,
3052 	};
3053 
3054 	map->pinned_page = NULL;
3055 	map->page = NULL;
3056 	map->hva = NULL;
3057 	map->gfn = gfn;
3058 	map->writable = writable;
3059 
3060 	map->pfn = kvm_follow_pfn(&kfp);
3061 	if (is_error_noslot_pfn(map->pfn))
3062 		return -EINVAL;
3063 
3064 	if (pfn_valid(map->pfn)) {
3065 		map->page = pfn_to_page(map->pfn);
3066 		map->hva = kmap(map->page);
3067 #ifdef CONFIG_HAS_IOMEM
3068 	} else {
3069 		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3070 #endif
3071 	}
3072 
3073 	return map->hva ? 0 : -EFAULT;
3074 }
3075 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3076 
3077 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3078 {
3079 	if (!map->hva)
3080 		return;
3081 
3082 	if (map->page)
3083 		kunmap(map->page);
3084 #ifdef CONFIG_HAS_IOMEM
3085 	else
3086 		memunmap(map->hva);
3087 #endif
3088 
3089 	if (map->writable)
3090 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3091 
3092 	if (map->pinned_page) {
3093 		if (map->writable)
3094 			kvm_set_page_dirty(map->pinned_page);
3095 		kvm_set_page_accessed(map->pinned_page);
3096 		unpin_user_page(map->pinned_page);
3097 	}
3098 
3099 	map->hva = NULL;
3100 	map->page = NULL;
3101 	map->pinned_page = NULL;
3102 }
3103 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3104 
3105 static int next_segment(unsigned long len, int offset)
3106 {
3107 	if (len > PAGE_SIZE - offset)
3108 		return PAGE_SIZE - offset;
3109 	else
3110 		return len;
3111 }
3112 
3113 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3114 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3115 				 void *data, int offset, int len)
3116 {
3117 	int r;
3118 	unsigned long addr;
3119 
3120 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3121 		return -EFAULT;
3122 
3123 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3124 	if (kvm_is_error_hva(addr))
3125 		return -EFAULT;
3126 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3127 	if (r)
3128 		return -EFAULT;
3129 	return 0;
3130 }
3131 
3132 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3133 			int len)
3134 {
3135 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3136 
3137 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3138 }
3139 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3140 
3141 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3142 			     int offset, int len)
3143 {
3144 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3145 
3146 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3147 }
3148 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3149 
3150 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3151 {
3152 	gfn_t gfn = gpa >> PAGE_SHIFT;
3153 	int seg;
3154 	int offset = offset_in_page(gpa);
3155 	int ret;
3156 
3157 	while ((seg = next_segment(len, offset)) != 0) {
3158 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3159 		if (ret < 0)
3160 			return ret;
3161 		offset = 0;
3162 		len -= seg;
3163 		data += seg;
3164 		++gfn;
3165 	}
3166 	return 0;
3167 }
3168 EXPORT_SYMBOL_GPL(kvm_read_guest);
3169 
3170 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3171 {
3172 	gfn_t gfn = gpa >> PAGE_SHIFT;
3173 	int seg;
3174 	int offset = offset_in_page(gpa);
3175 	int ret;
3176 
3177 	while ((seg = next_segment(len, offset)) != 0) {
3178 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3179 		if (ret < 0)
3180 			return ret;
3181 		offset = 0;
3182 		len -= seg;
3183 		data += seg;
3184 		++gfn;
3185 	}
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3189 
3190 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3191 			           void *data, int offset, unsigned long len)
3192 {
3193 	int r;
3194 	unsigned long addr;
3195 
3196 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3197 		return -EFAULT;
3198 
3199 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3200 	if (kvm_is_error_hva(addr))
3201 		return -EFAULT;
3202 	pagefault_disable();
3203 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3204 	pagefault_enable();
3205 	if (r)
3206 		return -EFAULT;
3207 	return 0;
3208 }
3209 
3210 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3211 			       void *data, unsigned long len)
3212 {
3213 	gfn_t gfn = gpa >> PAGE_SHIFT;
3214 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3215 	int offset = offset_in_page(gpa);
3216 
3217 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3218 }
3219 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3220 
3221 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3222 static int __kvm_write_guest_page(struct kvm *kvm,
3223 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3224 			          const void *data, int offset, int len)
3225 {
3226 	int r;
3227 	unsigned long addr;
3228 
3229 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3230 		return -EFAULT;
3231 
3232 	addr = gfn_to_hva_memslot(memslot, gfn);
3233 	if (kvm_is_error_hva(addr))
3234 		return -EFAULT;
3235 	r = __copy_to_user((void __user *)addr + offset, data, len);
3236 	if (r)
3237 		return -EFAULT;
3238 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3239 	return 0;
3240 }
3241 
3242 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3243 			 const void *data, int offset, int len)
3244 {
3245 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3246 
3247 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3248 }
3249 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3250 
3251 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3252 			      const void *data, int offset, int len)
3253 {
3254 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3255 
3256 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3259 
3260 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3261 		    unsigned long len)
3262 {
3263 	gfn_t gfn = gpa >> PAGE_SHIFT;
3264 	int seg;
3265 	int offset = offset_in_page(gpa);
3266 	int ret;
3267 
3268 	while ((seg = next_segment(len, offset)) != 0) {
3269 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3270 		if (ret < 0)
3271 			return ret;
3272 		offset = 0;
3273 		len -= seg;
3274 		data += seg;
3275 		++gfn;
3276 	}
3277 	return 0;
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_write_guest);
3280 
3281 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3282 		         unsigned long len)
3283 {
3284 	gfn_t gfn = gpa >> PAGE_SHIFT;
3285 	int seg;
3286 	int offset = offset_in_page(gpa);
3287 	int ret;
3288 
3289 	while ((seg = next_segment(len, offset)) != 0) {
3290 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3291 		if (ret < 0)
3292 			return ret;
3293 		offset = 0;
3294 		len -= seg;
3295 		data += seg;
3296 		++gfn;
3297 	}
3298 	return 0;
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3301 
3302 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3303 				       struct gfn_to_hva_cache *ghc,
3304 				       gpa_t gpa, unsigned long len)
3305 {
3306 	int offset = offset_in_page(gpa);
3307 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3308 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3309 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3310 	gfn_t nr_pages_avail;
3311 
3312 	/* Update ghc->generation before performing any error checks. */
3313 	ghc->generation = slots->generation;
3314 
3315 	if (start_gfn > end_gfn) {
3316 		ghc->hva = KVM_HVA_ERR_BAD;
3317 		return -EINVAL;
3318 	}
3319 
3320 	/*
3321 	 * If the requested region crosses two memslots, we still
3322 	 * verify that the entire region is valid here.
3323 	 */
3324 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3325 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3326 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3327 					   &nr_pages_avail);
3328 		if (kvm_is_error_hva(ghc->hva))
3329 			return -EFAULT;
3330 	}
3331 
3332 	/* Use the slow path for cross page reads and writes. */
3333 	if (nr_pages_needed == 1)
3334 		ghc->hva += offset;
3335 	else
3336 		ghc->memslot = NULL;
3337 
3338 	ghc->gpa = gpa;
3339 	ghc->len = len;
3340 	return 0;
3341 }
3342 
3343 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3344 			      gpa_t gpa, unsigned long len)
3345 {
3346 	struct kvm_memslots *slots = kvm_memslots(kvm);
3347 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3348 }
3349 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3350 
3351 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3352 				  void *data, unsigned int offset,
3353 				  unsigned long len)
3354 {
3355 	struct kvm_memslots *slots = kvm_memslots(kvm);
3356 	int r;
3357 	gpa_t gpa = ghc->gpa + offset;
3358 
3359 	if (WARN_ON_ONCE(len + offset > ghc->len))
3360 		return -EINVAL;
3361 
3362 	if (slots->generation != ghc->generation) {
3363 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3364 			return -EFAULT;
3365 	}
3366 
3367 	if (kvm_is_error_hva(ghc->hva))
3368 		return -EFAULT;
3369 
3370 	if (unlikely(!ghc->memslot))
3371 		return kvm_write_guest(kvm, gpa, data, len);
3372 
3373 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3374 	if (r)
3375 		return -EFAULT;
3376 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3377 
3378 	return 0;
3379 }
3380 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3381 
3382 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3383 			   void *data, unsigned long len)
3384 {
3385 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3386 }
3387 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3388 
3389 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3390 				 void *data, unsigned int offset,
3391 				 unsigned long len)
3392 {
3393 	struct kvm_memslots *slots = kvm_memslots(kvm);
3394 	int r;
3395 	gpa_t gpa = ghc->gpa + offset;
3396 
3397 	if (WARN_ON_ONCE(len + offset > ghc->len))
3398 		return -EINVAL;
3399 
3400 	if (slots->generation != ghc->generation) {
3401 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3402 			return -EFAULT;
3403 	}
3404 
3405 	if (kvm_is_error_hva(ghc->hva))
3406 		return -EFAULT;
3407 
3408 	if (unlikely(!ghc->memslot))
3409 		return kvm_read_guest(kvm, gpa, data, len);
3410 
3411 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3412 	if (r)
3413 		return -EFAULT;
3414 
3415 	return 0;
3416 }
3417 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3418 
3419 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3420 			  void *data, unsigned long len)
3421 {
3422 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3423 }
3424 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3425 
3426 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3427 {
3428 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3429 	gfn_t gfn = gpa >> PAGE_SHIFT;
3430 	int seg;
3431 	int offset = offset_in_page(gpa);
3432 	int ret;
3433 
3434 	while ((seg = next_segment(len, offset)) != 0) {
3435 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3436 		if (ret < 0)
3437 			return ret;
3438 		offset = 0;
3439 		len -= seg;
3440 		++gfn;
3441 	}
3442 	return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3445 
3446 void mark_page_dirty_in_slot(struct kvm *kvm,
3447 			     const struct kvm_memory_slot *memslot,
3448 		 	     gfn_t gfn)
3449 {
3450 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3451 
3452 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3453 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3454 		return;
3455 
3456 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3457 #endif
3458 
3459 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3460 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3461 		u32 slot = (memslot->as_id << 16) | memslot->id;
3462 
3463 		if (kvm->dirty_ring_size && vcpu)
3464 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3465 		else if (memslot->dirty_bitmap)
3466 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3467 	}
3468 }
3469 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3470 
3471 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3472 {
3473 	struct kvm_memory_slot *memslot;
3474 
3475 	memslot = gfn_to_memslot(kvm, gfn);
3476 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3477 }
3478 EXPORT_SYMBOL_GPL(mark_page_dirty);
3479 
3480 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3481 {
3482 	struct kvm_memory_slot *memslot;
3483 
3484 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3485 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3486 }
3487 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3488 
3489 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3490 {
3491 	if (!vcpu->sigset_active)
3492 		return;
3493 
3494 	/*
3495 	 * This does a lockless modification of ->real_blocked, which is fine
3496 	 * because, only current can change ->real_blocked and all readers of
3497 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3498 	 * of ->blocked.
3499 	 */
3500 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3501 }
3502 
3503 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3504 {
3505 	if (!vcpu->sigset_active)
3506 		return;
3507 
3508 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3509 	sigemptyset(&current->real_blocked);
3510 }
3511 
3512 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3513 {
3514 	unsigned int old, val, grow, grow_start;
3515 
3516 	old = val = vcpu->halt_poll_ns;
3517 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3518 	grow = READ_ONCE(halt_poll_ns_grow);
3519 	if (!grow)
3520 		goto out;
3521 
3522 	val *= grow;
3523 	if (val < grow_start)
3524 		val = grow_start;
3525 
3526 	vcpu->halt_poll_ns = val;
3527 out:
3528 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3529 }
3530 
3531 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3532 {
3533 	unsigned int old, val, shrink, grow_start;
3534 
3535 	old = val = vcpu->halt_poll_ns;
3536 	shrink = READ_ONCE(halt_poll_ns_shrink);
3537 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3538 	if (shrink == 0)
3539 		val = 0;
3540 	else
3541 		val /= shrink;
3542 
3543 	if (val < grow_start)
3544 		val = 0;
3545 
3546 	vcpu->halt_poll_ns = val;
3547 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3548 }
3549 
3550 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3551 {
3552 	int ret = -EINTR;
3553 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3554 
3555 	if (kvm_arch_vcpu_runnable(vcpu))
3556 		goto out;
3557 	if (kvm_cpu_has_pending_timer(vcpu))
3558 		goto out;
3559 	if (signal_pending(current))
3560 		goto out;
3561 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3562 		goto out;
3563 
3564 	ret = 0;
3565 out:
3566 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3567 	return ret;
3568 }
3569 
3570 /*
3571  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3572  * pending.  This is mostly used when halting a vCPU, but may also be used
3573  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3574  */
3575 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3576 {
3577 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3578 	bool waited = false;
3579 
3580 	vcpu->stat.generic.blocking = 1;
3581 
3582 	preempt_disable();
3583 	kvm_arch_vcpu_blocking(vcpu);
3584 	prepare_to_rcuwait(wait);
3585 	preempt_enable();
3586 
3587 	for (;;) {
3588 		set_current_state(TASK_INTERRUPTIBLE);
3589 
3590 		if (kvm_vcpu_check_block(vcpu) < 0)
3591 			break;
3592 
3593 		waited = true;
3594 		schedule();
3595 	}
3596 
3597 	preempt_disable();
3598 	finish_rcuwait(wait);
3599 	kvm_arch_vcpu_unblocking(vcpu);
3600 	preempt_enable();
3601 
3602 	vcpu->stat.generic.blocking = 0;
3603 
3604 	return waited;
3605 }
3606 
3607 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3608 					  ktime_t end, bool success)
3609 {
3610 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3611 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3612 
3613 	++vcpu->stat.generic.halt_attempted_poll;
3614 
3615 	if (success) {
3616 		++vcpu->stat.generic.halt_successful_poll;
3617 
3618 		if (!vcpu_valid_wakeup(vcpu))
3619 			++vcpu->stat.generic.halt_poll_invalid;
3620 
3621 		stats->halt_poll_success_ns += poll_ns;
3622 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3623 	} else {
3624 		stats->halt_poll_fail_ns += poll_ns;
3625 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3626 	}
3627 }
3628 
3629 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3630 {
3631 	struct kvm *kvm = vcpu->kvm;
3632 
3633 	if (kvm->override_halt_poll_ns) {
3634 		/*
3635 		 * Ensure kvm->max_halt_poll_ns is not read before
3636 		 * kvm->override_halt_poll_ns.
3637 		 *
3638 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3639 		 */
3640 		smp_rmb();
3641 		return READ_ONCE(kvm->max_halt_poll_ns);
3642 	}
3643 
3644 	return READ_ONCE(halt_poll_ns);
3645 }
3646 
3647 /*
3648  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3649  * polling is enabled, busy wait for a short time before blocking to avoid the
3650  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3651  * is halted.
3652  */
3653 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3654 {
3655 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3656 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3657 	ktime_t start, cur, poll_end;
3658 	bool waited = false;
3659 	bool do_halt_poll;
3660 	u64 halt_ns;
3661 
3662 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3663 		vcpu->halt_poll_ns = max_halt_poll_ns;
3664 
3665 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3666 
3667 	start = cur = poll_end = ktime_get();
3668 	if (do_halt_poll) {
3669 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3670 
3671 		do {
3672 			if (kvm_vcpu_check_block(vcpu) < 0)
3673 				goto out;
3674 			cpu_relax();
3675 			poll_end = cur = ktime_get();
3676 		} while (kvm_vcpu_can_poll(cur, stop));
3677 	}
3678 
3679 	waited = kvm_vcpu_block(vcpu);
3680 
3681 	cur = ktime_get();
3682 	if (waited) {
3683 		vcpu->stat.generic.halt_wait_ns +=
3684 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3685 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3686 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3687 	}
3688 out:
3689 	/* The total time the vCPU was "halted", including polling time. */
3690 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3691 
3692 	/*
3693 	 * Note, halt-polling is considered successful so long as the vCPU was
3694 	 * never actually scheduled out, i.e. even if the wake event arrived
3695 	 * after of the halt-polling loop itself, but before the full wait.
3696 	 */
3697 	if (do_halt_poll)
3698 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3699 
3700 	if (halt_poll_allowed) {
3701 		/* Recompute the max halt poll time in case it changed. */
3702 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3703 
3704 		if (!vcpu_valid_wakeup(vcpu)) {
3705 			shrink_halt_poll_ns(vcpu);
3706 		} else if (max_halt_poll_ns) {
3707 			if (halt_ns <= vcpu->halt_poll_ns)
3708 				;
3709 			/* we had a long block, shrink polling */
3710 			else if (vcpu->halt_poll_ns &&
3711 				 halt_ns > max_halt_poll_ns)
3712 				shrink_halt_poll_ns(vcpu);
3713 			/* we had a short halt and our poll time is too small */
3714 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3715 				 halt_ns < max_halt_poll_ns)
3716 				grow_halt_poll_ns(vcpu);
3717 		} else {
3718 			vcpu->halt_poll_ns = 0;
3719 		}
3720 	}
3721 
3722 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3723 }
3724 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3725 
3726 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3727 {
3728 	if (__kvm_vcpu_wake_up(vcpu)) {
3729 		WRITE_ONCE(vcpu->ready, true);
3730 		++vcpu->stat.generic.halt_wakeup;
3731 		return true;
3732 	}
3733 
3734 	return false;
3735 }
3736 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3737 
3738 #ifndef CONFIG_S390
3739 /*
3740  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3741  */
3742 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3743 {
3744 	int me, cpu;
3745 
3746 	if (kvm_vcpu_wake_up(vcpu))
3747 		return;
3748 
3749 	me = get_cpu();
3750 	/*
3751 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3752 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3753 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3754 	 * within the vCPU thread itself.
3755 	 */
3756 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3757 		if (vcpu->mode == IN_GUEST_MODE)
3758 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3759 		goto out;
3760 	}
3761 
3762 	/*
3763 	 * Note, the vCPU could get migrated to a different pCPU at any point
3764 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3765 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3766 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3767 	 * vCPU also requires it to leave IN_GUEST_MODE.
3768 	 */
3769 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3770 		cpu = READ_ONCE(vcpu->cpu);
3771 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3772 			smp_send_reschedule(cpu);
3773 	}
3774 out:
3775 	put_cpu();
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3778 #endif /* !CONFIG_S390 */
3779 
3780 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3781 {
3782 	struct task_struct *task = NULL;
3783 	int ret;
3784 
3785 	if (!read_trylock(&target->pid_lock))
3786 		return 0;
3787 
3788 	if (target->pid)
3789 		task = get_pid_task(target->pid, PIDTYPE_PID);
3790 
3791 	read_unlock(&target->pid_lock);
3792 
3793 	if (!task)
3794 		return 0;
3795 	ret = yield_to(task, 1);
3796 	put_task_struct(task);
3797 
3798 	return ret;
3799 }
3800 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3801 
3802 /*
3803  * Helper that checks whether a VCPU is eligible for directed yield.
3804  * Most eligible candidate to yield is decided by following heuristics:
3805  *
3806  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3807  *  (preempted lock holder), indicated by @in_spin_loop.
3808  *  Set at the beginning and cleared at the end of interception/PLE handler.
3809  *
3810  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3811  *  chance last time (mostly it has become eligible now since we have probably
3812  *  yielded to lockholder in last iteration. This is done by toggling
3813  *  @dy_eligible each time a VCPU checked for eligibility.)
3814  *
3815  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3816  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3817  *  burning. Giving priority for a potential lock-holder increases lock
3818  *  progress.
3819  *
3820  *  Since algorithm is based on heuristics, accessing another VCPU data without
3821  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3822  *  and continue with next VCPU and so on.
3823  */
3824 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3825 {
3826 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3827 	bool eligible;
3828 
3829 	eligible = !vcpu->spin_loop.in_spin_loop ||
3830 		    vcpu->spin_loop.dy_eligible;
3831 
3832 	if (vcpu->spin_loop.in_spin_loop)
3833 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3834 
3835 	return eligible;
3836 #else
3837 	return true;
3838 #endif
3839 }
3840 
3841 /*
3842  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3843  * a vcpu_load/vcpu_put pair.  However, for most architectures
3844  * kvm_arch_vcpu_runnable does not require vcpu_load.
3845  */
3846 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3847 {
3848 	return kvm_arch_vcpu_runnable(vcpu);
3849 }
3850 
3851 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3852 {
3853 	if (kvm_arch_dy_runnable(vcpu))
3854 		return true;
3855 
3856 #ifdef CONFIG_KVM_ASYNC_PF
3857 	if (!list_empty_careful(&vcpu->async_pf.done))
3858 		return true;
3859 #endif
3860 
3861 	return false;
3862 }
3863 
3864 /*
3865  * By default, simply query the target vCPU's current mode when checking if a
3866  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
3867  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3868  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3869  * directly for cross-vCPU checks is functionally correct and accurate.
3870  */
3871 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3872 {
3873 	return kvm_arch_vcpu_in_kernel(vcpu);
3874 }
3875 
3876 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3877 {
3878 	return false;
3879 }
3880 
3881 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3882 {
3883 	int nr_vcpus, start, i, idx, yielded;
3884 	struct kvm *kvm = me->kvm;
3885 	struct kvm_vcpu *vcpu;
3886 	int try = 3;
3887 
3888 	nr_vcpus = atomic_read(&kvm->online_vcpus);
3889 	if (nr_vcpus < 2)
3890 		return;
3891 
3892 	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3893 	smp_rmb();
3894 
3895 	kvm_vcpu_set_in_spin_loop(me, true);
3896 
3897 	/*
3898 	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3899 	 * waiting for a resource to become available.  Attempt to yield to a
3900 	 * vCPU that is runnable, but not currently running, e.g. because the
3901 	 * vCPU was preempted by a higher priority task.  With luck, the vCPU
3902 	 * that was preempted is holding a lock or some other resource that the
3903 	 * current vCPU is waiting to acquire, and yielding to the other vCPU
3904 	 * will allow it to make forward progress and release the lock (or kick
3905 	 * the spinning vCPU, etc).
3906 	 *
3907 	 * Since KVM has no insight into what exactly the guest is doing,
3908 	 * approximate a round-robin selection by iterating over all vCPUs,
3909 	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu,
3910 	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3911 	 *
3912 	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3913 	 * they may all try to yield to the same vCPU(s).  But as above, this
3914 	 * is all best effort due to KVM's lack of visibility into the guest.
3915 	 */
3916 	start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3917 	for (i = 0; i < nr_vcpus; i++) {
3918 		idx = (start + i) % nr_vcpus;
3919 		if (idx == me->vcpu_idx)
3920 			continue;
3921 
3922 		vcpu = xa_load(&kvm->vcpu_array, idx);
3923 		if (!READ_ONCE(vcpu->ready))
3924 			continue;
3925 		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3926 			continue;
3927 
3928 		/*
3929 		 * Treat the target vCPU as being in-kernel if it has a pending
3930 		 * interrupt, as the vCPU trying to yield may be spinning
3931 		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3932 		 * for the purposes of directed yield.
3933 		 */
3934 		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3935 		    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3936 		    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3937 			continue;
3938 
3939 		if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3940 			continue;
3941 
3942 		yielded = kvm_vcpu_yield_to(vcpu);
3943 		if (yielded > 0) {
3944 			WRITE_ONCE(kvm->last_boosted_vcpu, i);
3945 			break;
3946 		} else if (yielded < 0 && !--try) {
3947 			break;
3948 		}
3949 	}
3950 	kvm_vcpu_set_in_spin_loop(me, false);
3951 
3952 	/* Ensure vcpu is not eligible during next spinloop */
3953 	kvm_vcpu_set_dy_eligible(me, false);
3954 }
3955 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3956 
3957 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3958 {
3959 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3960 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3961 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3962 	     kvm->dirty_ring_size / PAGE_SIZE);
3963 #else
3964 	return false;
3965 #endif
3966 }
3967 
3968 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3969 {
3970 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3971 	struct page *page;
3972 
3973 	if (vmf->pgoff == 0)
3974 		page = virt_to_page(vcpu->run);
3975 #ifdef CONFIG_X86
3976 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3977 		page = virt_to_page(vcpu->arch.pio_data);
3978 #endif
3979 #ifdef CONFIG_KVM_MMIO
3980 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3981 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3982 #endif
3983 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3984 		page = kvm_dirty_ring_get_page(
3985 		    &vcpu->dirty_ring,
3986 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3987 	else
3988 		return kvm_arch_vcpu_fault(vcpu, vmf);
3989 	get_page(page);
3990 	vmf->page = page;
3991 	return 0;
3992 }
3993 
3994 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3995 	.fault = kvm_vcpu_fault,
3996 };
3997 
3998 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3999 {
4000 	struct kvm_vcpu *vcpu = file->private_data;
4001 	unsigned long pages = vma_pages(vma);
4002 
4003 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4004 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4005 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4006 		return -EINVAL;
4007 
4008 	vma->vm_ops = &kvm_vcpu_vm_ops;
4009 	return 0;
4010 }
4011 
4012 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4013 {
4014 	struct kvm_vcpu *vcpu = filp->private_data;
4015 
4016 	kvm_put_kvm(vcpu->kvm);
4017 	return 0;
4018 }
4019 
4020 static struct file_operations kvm_vcpu_fops = {
4021 	.release        = kvm_vcpu_release,
4022 	.unlocked_ioctl = kvm_vcpu_ioctl,
4023 	.mmap           = kvm_vcpu_mmap,
4024 	.llseek		= noop_llseek,
4025 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4026 };
4027 
4028 /*
4029  * Allocates an inode for the vcpu.
4030  */
4031 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4032 {
4033 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4034 
4035 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4036 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4037 }
4038 
4039 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4040 static int vcpu_get_pid(void *data, u64 *val)
4041 {
4042 	struct kvm_vcpu *vcpu = data;
4043 
4044 	read_lock(&vcpu->pid_lock);
4045 	*val = pid_nr(vcpu->pid);
4046 	read_unlock(&vcpu->pid_lock);
4047 	return 0;
4048 }
4049 
4050 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4051 
4052 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4053 {
4054 	struct dentry *debugfs_dentry;
4055 	char dir_name[ITOA_MAX_LEN * 2];
4056 
4057 	if (!debugfs_initialized())
4058 		return;
4059 
4060 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4061 	debugfs_dentry = debugfs_create_dir(dir_name,
4062 					    vcpu->kvm->debugfs_dentry);
4063 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4064 			    &vcpu_get_pid_fops);
4065 
4066 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4067 }
4068 #endif
4069 
4070 /*
4071  * Creates some virtual cpus.  Good luck creating more than one.
4072  */
4073 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4074 {
4075 	int r;
4076 	struct kvm_vcpu *vcpu;
4077 	struct page *page;
4078 
4079 	/*
4080 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4081 	 * too-large values instead of silently truncating.
4082 	 *
4083 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4084 	 * changing the storage type (at the very least, IDs should be tracked
4085 	 * as unsigned ints).
4086 	 */
4087 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4088 	if (id >= KVM_MAX_VCPU_IDS)
4089 		return -EINVAL;
4090 
4091 	mutex_lock(&kvm->lock);
4092 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4093 		mutex_unlock(&kvm->lock);
4094 		return -EINVAL;
4095 	}
4096 
4097 	r = kvm_arch_vcpu_precreate(kvm, id);
4098 	if (r) {
4099 		mutex_unlock(&kvm->lock);
4100 		return r;
4101 	}
4102 
4103 	kvm->created_vcpus++;
4104 	mutex_unlock(&kvm->lock);
4105 
4106 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4107 	if (!vcpu) {
4108 		r = -ENOMEM;
4109 		goto vcpu_decrement;
4110 	}
4111 
4112 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4113 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4114 	if (!page) {
4115 		r = -ENOMEM;
4116 		goto vcpu_free;
4117 	}
4118 	vcpu->run = page_address(page);
4119 
4120 	kvm_vcpu_init(vcpu, kvm, id);
4121 
4122 	r = kvm_arch_vcpu_create(vcpu);
4123 	if (r)
4124 		goto vcpu_free_run_page;
4125 
4126 	if (kvm->dirty_ring_size) {
4127 		r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4128 					 id, kvm->dirty_ring_size);
4129 		if (r)
4130 			goto arch_vcpu_destroy;
4131 	}
4132 
4133 	mutex_lock(&kvm->lock);
4134 
4135 	if (kvm_get_vcpu_by_id(kvm, id)) {
4136 		r = -EEXIST;
4137 		goto unlock_vcpu_destroy;
4138 	}
4139 
4140 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4141 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4142 	WARN_ON_ONCE(r == -EBUSY);
4143 	if (r)
4144 		goto unlock_vcpu_destroy;
4145 
4146 	/*
4147 	 * Now it's all set up, let userspace reach it.  Grab the vCPU's mutex
4148 	 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4149 	 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4150 	 * into a NULL-pointer dereference because KVM thinks the _current_
4151 	 * vCPU doesn't exist.  As a bonus, taking vcpu->mutex ensures lockdep
4152 	 * knows it's taken *inside* kvm->lock.
4153 	 */
4154 	mutex_lock(&vcpu->mutex);
4155 	kvm_get_kvm(kvm);
4156 	r = create_vcpu_fd(vcpu);
4157 	if (r < 0)
4158 		goto kvm_put_xa_erase;
4159 
4160 	/*
4161 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4162 	 * pointer before kvm->online_vcpu's incremented value.
4163 	 */
4164 	smp_wmb();
4165 	atomic_inc(&kvm->online_vcpus);
4166 	mutex_unlock(&vcpu->mutex);
4167 
4168 	mutex_unlock(&kvm->lock);
4169 	kvm_arch_vcpu_postcreate(vcpu);
4170 	kvm_create_vcpu_debugfs(vcpu);
4171 	return r;
4172 
4173 kvm_put_xa_erase:
4174 	mutex_unlock(&vcpu->mutex);
4175 	kvm_put_kvm_no_destroy(kvm);
4176 	xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4177 unlock_vcpu_destroy:
4178 	mutex_unlock(&kvm->lock);
4179 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4180 arch_vcpu_destroy:
4181 	kvm_arch_vcpu_destroy(vcpu);
4182 vcpu_free_run_page:
4183 	free_page((unsigned long)vcpu->run);
4184 vcpu_free:
4185 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4186 vcpu_decrement:
4187 	mutex_lock(&kvm->lock);
4188 	kvm->created_vcpus--;
4189 	mutex_unlock(&kvm->lock);
4190 	return r;
4191 }
4192 
4193 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4194 {
4195 	if (sigset) {
4196 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4197 		vcpu->sigset_active = 1;
4198 		vcpu->sigset = *sigset;
4199 	} else
4200 		vcpu->sigset_active = 0;
4201 	return 0;
4202 }
4203 
4204 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4205 			      size_t size, loff_t *offset)
4206 {
4207 	struct kvm_vcpu *vcpu = file->private_data;
4208 
4209 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4210 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4211 			sizeof(vcpu->stat), user_buffer, size, offset);
4212 }
4213 
4214 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4215 {
4216 	struct kvm_vcpu *vcpu = file->private_data;
4217 
4218 	kvm_put_kvm(vcpu->kvm);
4219 	return 0;
4220 }
4221 
4222 static const struct file_operations kvm_vcpu_stats_fops = {
4223 	.owner = THIS_MODULE,
4224 	.read = kvm_vcpu_stats_read,
4225 	.release = kvm_vcpu_stats_release,
4226 	.llseek = noop_llseek,
4227 };
4228 
4229 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4230 {
4231 	int fd;
4232 	struct file *file;
4233 	char name[15 + ITOA_MAX_LEN + 1];
4234 
4235 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4236 
4237 	fd = get_unused_fd_flags(O_CLOEXEC);
4238 	if (fd < 0)
4239 		return fd;
4240 
4241 	file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4242 					O_RDONLY, FMODE_PREAD);
4243 	if (IS_ERR(file)) {
4244 		put_unused_fd(fd);
4245 		return PTR_ERR(file);
4246 	}
4247 
4248 	kvm_get_kvm(vcpu->kvm);
4249 	fd_install(fd, file);
4250 
4251 	return fd;
4252 }
4253 
4254 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4255 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4256 				     struct kvm_pre_fault_memory *range)
4257 {
4258 	int idx;
4259 	long r;
4260 	u64 full_size;
4261 
4262 	if (range->flags)
4263 		return -EINVAL;
4264 
4265 	if (!PAGE_ALIGNED(range->gpa) ||
4266 	    !PAGE_ALIGNED(range->size) ||
4267 	    range->gpa + range->size <= range->gpa)
4268 		return -EINVAL;
4269 
4270 	vcpu_load(vcpu);
4271 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4272 
4273 	full_size = range->size;
4274 	do {
4275 		if (signal_pending(current)) {
4276 			r = -EINTR;
4277 			break;
4278 		}
4279 
4280 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4281 		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4282 			break;
4283 
4284 		if (r < 0)
4285 			break;
4286 
4287 		range->size -= r;
4288 		range->gpa += r;
4289 		cond_resched();
4290 	} while (range->size);
4291 
4292 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4293 	vcpu_put(vcpu);
4294 
4295 	/* Return success if at least one page was mapped successfully.  */
4296 	return full_size == range->size ? r : 0;
4297 }
4298 #endif
4299 
4300 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4301 {
4302 	struct kvm *kvm = vcpu->kvm;
4303 
4304 	/*
4305 	 * In practice, this happy path will always be taken, as a well-behaved
4306 	 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4307 	 */
4308 	if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4309 		return 0;
4310 
4311 	/*
4312 	 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4313 	 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4314 	 * is fully online).
4315 	 */
4316 	if (mutex_lock_killable(&vcpu->mutex))
4317 		return -EINTR;
4318 
4319 	mutex_unlock(&vcpu->mutex);
4320 
4321 	if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4322 		return -EIO;
4323 
4324 	return 0;
4325 }
4326 
4327 static long kvm_vcpu_ioctl(struct file *filp,
4328 			   unsigned int ioctl, unsigned long arg)
4329 {
4330 	struct kvm_vcpu *vcpu = filp->private_data;
4331 	void __user *argp = (void __user *)arg;
4332 	int r;
4333 	struct kvm_fpu *fpu = NULL;
4334 	struct kvm_sregs *kvm_sregs = NULL;
4335 
4336 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4337 		return -EIO;
4338 
4339 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4340 		return -EINVAL;
4341 
4342 	/*
4343 	 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4344 	 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4345 	 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4346 	 */
4347 	r = kvm_wait_for_vcpu_online(vcpu);
4348 	if (r)
4349 		return r;
4350 
4351 	/*
4352 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4353 	 * execution; mutex_lock() would break them.
4354 	 */
4355 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4356 	if (r != -ENOIOCTLCMD)
4357 		return r;
4358 
4359 	if (mutex_lock_killable(&vcpu->mutex))
4360 		return -EINTR;
4361 	switch (ioctl) {
4362 	case KVM_RUN: {
4363 		struct pid *oldpid;
4364 		r = -EINVAL;
4365 		if (arg)
4366 			goto out;
4367 
4368 		/*
4369 		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4370 		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4371 		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4372 		 * directly to this vCPU
4373 		 */
4374 		oldpid = vcpu->pid;
4375 		if (unlikely(oldpid != task_pid(current))) {
4376 			/* The thread running this VCPU changed. */
4377 			struct pid *newpid;
4378 
4379 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4380 			if (r)
4381 				break;
4382 
4383 			newpid = get_task_pid(current, PIDTYPE_PID);
4384 			write_lock(&vcpu->pid_lock);
4385 			vcpu->pid = newpid;
4386 			write_unlock(&vcpu->pid_lock);
4387 
4388 			put_pid(oldpid);
4389 		}
4390 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4391 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4392 		vcpu->wants_to_run = false;
4393 
4394 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4395 		break;
4396 	}
4397 	case KVM_GET_REGS: {
4398 		struct kvm_regs *kvm_regs;
4399 
4400 		r = -ENOMEM;
4401 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4402 		if (!kvm_regs)
4403 			goto out;
4404 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4405 		if (r)
4406 			goto out_free1;
4407 		r = -EFAULT;
4408 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4409 			goto out_free1;
4410 		r = 0;
4411 out_free1:
4412 		kfree(kvm_regs);
4413 		break;
4414 	}
4415 	case KVM_SET_REGS: {
4416 		struct kvm_regs *kvm_regs;
4417 
4418 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4419 		if (IS_ERR(kvm_regs)) {
4420 			r = PTR_ERR(kvm_regs);
4421 			goto out;
4422 		}
4423 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4424 		kfree(kvm_regs);
4425 		break;
4426 	}
4427 	case KVM_GET_SREGS: {
4428 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4429 		r = -ENOMEM;
4430 		if (!kvm_sregs)
4431 			goto out;
4432 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4433 		if (r)
4434 			goto out;
4435 		r = -EFAULT;
4436 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4437 			goto out;
4438 		r = 0;
4439 		break;
4440 	}
4441 	case KVM_SET_SREGS: {
4442 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4443 		if (IS_ERR(kvm_sregs)) {
4444 			r = PTR_ERR(kvm_sregs);
4445 			kvm_sregs = NULL;
4446 			goto out;
4447 		}
4448 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4449 		break;
4450 	}
4451 	case KVM_GET_MP_STATE: {
4452 		struct kvm_mp_state mp_state;
4453 
4454 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4455 		if (r)
4456 			goto out;
4457 		r = -EFAULT;
4458 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4459 			goto out;
4460 		r = 0;
4461 		break;
4462 	}
4463 	case KVM_SET_MP_STATE: {
4464 		struct kvm_mp_state mp_state;
4465 
4466 		r = -EFAULT;
4467 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4468 			goto out;
4469 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4470 		break;
4471 	}
4472 	case KVM_TRANSLATE: {
4473 		struct kvm_translation tr;
4474 
4475 		r = -EFAULT;
4476 		if (copy_from_user(&tr, argp, sizeof(tr)))
4477 			goto out;
4478 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4479 		if (r)
4480 			goto out;
4481 		r = -EFAULT;
4482 		if (copy_to_user(argp, &tr, sizeof(tr)))
4483 			goto out;
4484 		r = 0;
4485 		break;
4486 	}
4487 	case KVM_SET_GUEST_DEBUG: {
4488 		struct kvm_guest_debug dbg;
4489 
4490 		r = -EFAULT;
4491 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4492 			goto out;
4493 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4494 		break;
4495 	}
4496 	case KVM_SET_SIGNAL_MASK: {
4497 		struct kvm_signal_mask __user *sigmask_arg = argp;
4498 		struct kvm_signal_mask kvm_sigmask;
4499 		sigset_t sigset, *p;
4500 
4501 		p = NULL;
4502 		if (argp) {
4503 			r = -EFAULT;
4504 			if (copy_from_user(&kvm_sigmask, argp,
4505 					   sizeof(kvm_sigmask)))
4506 				goto out;
4507 			r = -EINVAL;
4508 			if (kvm_sigmask.len != sizeof(sigset))
4509 				goto out;
4510 			r = -EFAULT;
4511 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4512 					   sizeof(sigset)))
4513 				goto out;
4514 			p = &sigset;
4515 		}
4516 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4517 		break;
4518 	}
4519 	case KVM_GET_FPU: {
4520 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4521 		r = -ENOMEM;
4522 		if (!fpu)
4523 			goto out;
4524 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4525 		if (r)
4526 			goto out;
4527 		r = -EFAULT;
4528 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4529 			goto out;
4530 		r = 0;
4531 		break;
4532 	}
4533 	case KVM_SET_FPU: {
4534 		fpu = memdup_user(argp, sizeof(*fpu));
4535 		if (IS_ERR(fpu)) {
4536 			r = PTR_ERR(fpu);
4537 			fpu = NULL;
4538 			goto out;
4539 		}
4540 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4541 		break;
4542 	}
4543 	case KVM_GET_STATS_FD: {
4544 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4545 		break;
4546 	}
4547 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4548 	case KVM_PRE_FAULT_MEMORY: {
4549 		struct kvm_pre_fault_memory range;
4550 
4551 		r = -EFAULT;
4552 		if (copy_from_user(&range, argp, sizeof(range)))
4553 			break;
4554 		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4555 		/* Pass back leftover range. */
4556 		if (copy_to_user(argp, &range, sizeof(range)))
4557 			r = -EFAULT;
4558 		break;
4559 	}
4560 #endif
4561 	default:
4562 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4563 	}
4564 out:
4565 	mutex_unlock(&vcpu->mutex);
4566 	kfree(fpu);
4567 	kfree(kvm_sregs);
4568 	return r;
4569 }
4570 
4571 #ifdef CONFIG_KVM_COMPAT
4572 static long kvm_vcpu_compat_ioctl(struct file *filp,
4573 				  unsigned int ioctl, unsigned long arg)
4574 {
4575 	struct kvm_vcpu *vcpu = filp->private_data;
4576 	void __user *argp = compat_ptr(arg);
4577 	int r;
4578 
4579 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4580 		return -EIO;
4581 
4582 	switch (ioctl) {
4583 	case KVM_SET_SIGNAL_MASK: {
4584 		struct kvm_signal_mask __user *sigmask_arg = argp;
4585 		struct kvm_signal_mask kvm_sigmask;
4586 		sigset_t sigset;
4587 
4588 		if (argp) {
4589 			r = -EFAULT;
4590 			if (copy_from_user(&kvm_sigmask, argp,
4591 					   sizeof(kvm_sigmask)))
4592 				goto out;
4593 			r = -EINVAL;
4594 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4595 				goto out;
4596 			r = -EFAULT;
4597 			if (get_compat_sigset(&sigset,
4598 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4599 				goto out;
4600 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4601 		} else
4602 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4603 		break;
4604 	}
4605 	default:
4606 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4607 	}
4608 
4609 out:
4610 	return r;
4611 }
4612 #endif
4613 
4614 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4615 {
4616 	struct kvm_device *dev = filp->private_data;
4617 
4618 	if (dev->ops->mmap)
4619 		return dev->ops->mmap(dev, vma);
4620 
4621 	return -ENODEV;
4622 }
4623 
4624 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4625 				 int (*accessor)(struct kvm_device *dev,
4626 						 struct kvm_device_attr *attr),
4627 				 unsigned long arg)
4628 {
4629 	struct kvm_device_attr attr;
4630 
4631 	if (!accessor)
4632 		return -EPERM;
4633 
4634 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4635 		return -EFAULT;
4636 
4637 	return accessor(dev, &attr);
4638 }
4639 
4640 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4641 			     unsigned long arg)
4642 {
4643 	struct kvm_device *dev = filp->private_data;
4644 
4645 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4646 		return -EIO;
4647 
4648 	switch (ioctl) {
4649 	case KVM_SET_DEVICE_ATTR:
4650 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4651 	case KVM_GET_DEVICE_ATTR:
4652 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4653 	case KVM_HAS_DEVICE_ATTR:
4654 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4655 	default:
4656 		if (dev->ops->ioctl)
4657 			return dev->ops->ioctl(dev, ioctl, arg);
4658 
4659 		return -ENOTTY;
4660 	}
4661 }
4662 
4663 static int kvm_device_release(struct inode *inode, struct file *filp)
4664 {
4665 	struct kvm_device *dev = filp->private_data;
4666 	struct kvm *kvm = dev->kvm;
4667 
4668 	if (dev->ops->release) {
4669 		mutex_lock(&kvm->lock);
4670 		list_del_rcu(&dev->vm_node);
4671 		synchronize_rcu();
4672 		dev->ops->release(dev);
4673 		mutex_unlock(&kvm->lock);
4674 	}
4675 
4676 	kvm_put_kvm(kvm);
4677 	return 0;
4678 }
4679 
4680 static struct file_operations kvm_device_fops = {
4681 	.unlocked_ioctl = kvm_device_ioctl,
4682 	.release = kvm_device_release,
4683 	KVM_COMPAT(kvm_device_ioctl),
4684 	.mmap = kvm_device_mmap,
4685 };
4686 
4687 struct kvm_device *kvm_device_from_filp(struct file *filp)
4688 {
4689 	if (filp->f_op != &kvm_device_fops)
4690 		return NULL;
4691 
4692 	return filp->private_data;
4693 }
4694 
4695 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4696 #ifdef CONFIG_KVM_MPIC
4697 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4698 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4699 #endif
4700 };
4701 
4702 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4703 {
4704 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4705 		return -ENOSPC;
4706 
4707 	if (kvm_device_ops_table[type] != NULL)
4708 		return -EEXIST;
4709 
4710 	kvm_device_ops_table[type] = ops;
4711 	return 0;
4712 }
4713 
4714 void kvm_unregister_device_ops(u32 type)
4715 {
4716 	if (kvm_device_ops_table[type] != NULL)
4717 		kvm_device_ops_table[type] = NULL;
4718 }
4719 
4720 static int kvm_ioctl_create_device(struct kvm *kvm,
4721 				   struct kvm_create_device *cd)
4722 {
4723 	const struct kvm_device_ops *ops;
4724 	struct kvm_device *dev;
4725 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4726 	int type;
4727 	int ret;
4728 
4729 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4730 		return -ENODEV;
4731 
4732 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4733 	ops = kvm_device_ops_table[type];
4734 	if (ops == NULL)
4735 		return -ENODEV;
4736 
4737 	if (test)
4738 		return 0;
4739 
4740 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4741 	if (!dev)
4742 		return -ENOMEM;
4743 
4744 	dev->ops = ops;
4745 	dev->kvm = kvm;
4746 
4747 	mutex_lock(&kvm->lock);
4748 	ret = ops->create(dev, type);
4749 	if (ret < 0) {
4750 		mutex_unlock(&kvm->lock);
4751 		kfree(dev);
4752 		return ret;
4753 	}
4754 	list_add_rcu(&dev->vm_node, &kvm->devices);
4755 	mutex_unlock(&kvm->lock);
4756 
4757 	if (ops->init)
4758 		ops->init(dev);
4759 
4760 	kvm_get_kvm(kvm);
4761 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4762 	if (ret < 0) {
4763 		kvm_put_kvm_no_destroy(kvm);
4764 		mutex_lock(&kvm->lock);
4765 		list_del_rcu(&dev->vm_node);
4766 		synchronize_rcu();
4767 		if (ops->release)
4768 			ops->release(dev);
4769 		mutex_unlock(&kvm->lock);
4770 		if (ops->destroy)
4771 			ops->destroy(dev);
4772 		return ret;
4773 	}
4774 
4775 	cd->fd = ret;
4776 	return 0;
4777 }
4778 
4779 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4780 {
4781 	switch (arg) {
4782 	case KVM_CAP_USER_MEMORY:
4783 	case KVM_CAP_USER_MEMORY2:
4784 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4785 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4786 	case KVM_CAP_INTERNAL_ERROR_DATA:
4787 #ifdef CONFIG_HAVE_KVM_MSI
4788 	case KVM_CAP_SIGNAL_MSI:
4789 #endif
4790 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4791 	case KVM_CAP_IRQFD:
4792 #endif
4793 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4794 	case KVM_CAP_CHECK_EXTENSION_VM:
4795 	case KVM_CAP_ENABLE_CAP_VM:
4796 	case KVM_CAP_HALT_POLL:
4797 		return 1;
4798 #ifdef CONFIG_KVM_MMIO
4799 	case KVM_CAP_COALESCED_MMIO:
4800 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4801 	case KVM_CAP_COALESCED_PIO:
4802 		return 1;
4803 #endif
4804 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4805 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4806 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4807 #endif
4808 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4809 	case KVM_CAP_IRQ_ROUTING:
4810 		return KVM_MAX_IRQ_ROUTES;
4811 #endif
4812 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4813 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4814 		if (kvm)
4815 			return kvm_arch_nr_memslot_as_ids(kvm);
4816 		return KVM_MAX_NR_ADDRESS_SPACES;
4817 #endif
4818 	case KVM_CAP_NR_MEMSLOTS:
4819 		return KVM_USER_MEM_SLOTS;
4820 	case KVM_CAP_DIRTY_LOG_RING:
4821 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4822 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4823 #else
4824 		return 0;
4825 #endif
4826 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4827 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4828 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4829 #else
4830 		return 0;
4831 #endif
4832 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4833 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4834 #endif
4835 	case KVM_CAP_BINARY_STATS_FD:
4836 	case KVM_CAP_SYSTEM_EVENT_DATA:
4837 	case KVM_CAP_DEVICE_CTRL:
4838 		return 1;
4839 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4840 	case KVM_CAP_MEMORY_ATTRIBUTES:
4841 		return kvm_supported_mem_attributes(kvm);
4842 #endif
4843 #ifdef CONFIG_KVM_PRIVATE_MEM
4844 	case KVM_CAP_GUEST_MEMFD:
4845 		return !kvm || kvm_arch_has_private_mem(kvm);
4846 #endif
4847 	default:
4848 		break;
4849 	}
4850 	return kvm_vm_ioctl_check_extension(kvm, arg);
4851 }
4852 
4853 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4854 {
4855 	int r;
4856 
4857 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4858 		return -EINVAL;
4859 
4860 	/* the size should be power of 2 */
4861 	if (!size || (size & (size - 1)))
4862 		return -EINVAL;
4863 
4864 	/* Should be bigger to keep the reserved entries, or a page */
4865 	if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4866 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4867 		return -EINVAL;
4868 
4869 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4870 	    sizeof(struct kvm_dirty_gfn))
4871 		return -E2BIG;
4872 
4873 	/* We only allow it to set once */
4874 	if (kvm->dirty_ring_size)
4875 		return -EINVAL;
4876 
4877 	mutex_lock(&kvm->lock);
4878 
4879 	if (kvm->created_vcpus) {
4880 		/* We don't allow to change this value after vcpu created */
4881 		r = -EINVAL;
4882 	} else {
4883 		kvm->dirty_ring_size = size;
4884 		r = 0;
4885 	}
4886 
4887 	mutex_unlock(&kvm->lock);
4888 	return r;
4889 }
4890 
4891 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4892 {
4893 	unsigned long i;
4894 	struct kvm_vcpu *vcpu;
4895 	int cleared = 0;
4896 
4897 	if (!kvm->dirty_ring_size)
4898 		return -EINVAL;
4899 
4900 	mutex_lock(&kvm->slots_lock);
4901 
4902 	kvm_for_each_vcpu(i, vcpu, kvm)
4903 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4904 
4905 	mutex_unlock(&kvm->slots_lock);
4906 
4907 	if (cleared)
4908 		kvm_flush_remote_tlbs(kvm);
4909 
4910 	return cleared;
4911 }
4912 
4913 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4914 						  struct kvm_enable_cap *cap)
4915 {
4916 	return -EINVAL;
4917 }
4918 
4919 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4920 {
4921 	int i;
4922 
4923 	lockdep_assert_held(&kvm->slots_lock);
4924 
4925 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4926 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4927 			return false;
4928 	}
4929 
4930 	return true;
4931 }
4932 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4933 
4934 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4935 					   struct kvm_enable_cap *cap)
4936 {
4937 	switch (cap->cap) {
4938 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4939 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4940 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4941 
4942 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4943 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4944 
4945 		if (cap->flags || (cap->args[0] & ~allowed_options))
4946 			return -EINVAL;
4947 		kvm->manual_dirty_log_protect = cap->args[0];
4948 		return 0;
4949 	}
4950 #endif
4951 	case KVM_CAP_HALT_POLL: {
4952 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4953 			return -EINVAL;
4954 
4955 		kvm->max_halt_poll_ns = cap->args[0];
4956 
4957 		/*
4958 		 * Ensure kvm->override_halt_poll_ns does not become visible
4959 		 * before kvm->max_halt_poll_ns.
4960 		 *
4961 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4962 		 */
4963 		smp_wmb();
4964 		kvm->override_halt_poll_ns = true;
4965 
4966 		return 0;
4967 	}
4968 	case KVM_CAP_DIRTY_LOG_RING:
4969 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4970 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4971 			return -EINVAL;
4972 
4973 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4974 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4975 		int r = -EINVAL;
4976 
4977 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4978 		    !kvm->dirty_ring_size || cap->flags)
4979 			return r;
4980 
4981 		mutex_lock(&kvm->slots_lock);
4982 
4983 		/*
4984 		 * For simplicity, allow enabling ring+bitmap if and only if
4985 		 * there are no memslots, e.g. to ensure all memslots allocate
4986 		 * a bitmap after the capability is enabled.
4987 		 */
4988 		if (kvm_are_all_memslots_empty(kvm)) {
4989 			kvm->dirty_ring_with_bitmap = true;
4990 			r = 0;
4991 		}
4992 
4993 		mutex_unlock(&kvm->slots_lock);
4994 
4995 		return r;
4996 	}
4997 	default:
4998 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4999 	}
5000 }
5001 
5002 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5003 			      size_t size, loff_t *offset)
5004 {
5005 	struct kvm *kvm = file->private_data;
5006 
5007 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5008 				&kvm_vm_stats_desc[0], &kvm->stat,
5009 				sizeof(kvm->stat), user_buffer, size, offset);
5010 }
5011 
5012 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5013 {
5014 	struct kvm *kvm = file->private_data;
5015 
5016 	kvm_put_kvm(kvm);
5017 	return 0;
5018 }
5019 
5020 static const struct file_operations kvm_vm_stats_fops = {
5021 	.owner = THIS_MODULE,
5022 	.read = kvm_vm_stats_read,
5023 	.release = kvm_vm_stats_release,
5024 	.llseek = noop_llseek,
5025 };
5026 
5027 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5028 {
5029 	int fd;
5030 	struct file *file;
5031 
5032 	fd = get_unused_fd_flags(O_CLOEXEC);
5033 	if (fd < 0)
5034 		return fd;
5035 
5036 	file = anon_inode_getfile_fmode("kvm-vm-stats",
5037 			&kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5038 	if (IS_ERR(file)) {
5039 		put_unused_fd(fd);
5040 		return PTR_ERR(file);
5041 	}
5042 
5043 	kvm_get_kvm(kvm);
5044 	fd_install(fd, file);
5045 
5046 	return fd;
5047 }
5048 
5049 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5050 do {										\
5051 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5052 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5053 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5054 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5055 } while (0)
5056 
5057 static long kvm_vm_ioctl(struct file *filp,
5058 			   unsigned int ioctl, unsigned long arg)
5059 {
5060 	struct kvm *kvm = filp->private_data;
5061 	void __user *argp = (void __user *)arg;
5062 	int r;
5063 
5064 	if (kvm->mm != current->mm || kvm->vm_dead)
5065 		return -EIO;
5066 	switch (ioctl) {
5067 	case KVM_CREATE_VCPU:
5068 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5069 		break;
5070 	case KVM_ENABLE_CAP: {
5071 		struct kvm_enable_cap cap;
5072 
5073 		r = -EFAULT;
5074 		if (copy_from_user(&cap, argp, sizeof(cap)))
5075 			goto out;
5076 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5077 		break;
5078 	}
5079 	case KVM_SET_USER_MEMORY_REGION2:
5080 	case KVM_SET_USER_MEMORY_REGION: {
5081 		struct kvm_userspace_memory_region2 mem;
5082 		unsigned long size;
5083 
5084 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5085 			/*
5086 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5087 			 * accessed, but avoid leaking kernel memory in case of a bug.
5088 			 */
5089 			memset(&mem, 0, sizeof(mem));
5090 			size = sizeof(struct kvm_userspace_memory_region);
5091 		} else {
5092 			size = sizeof(struct kvm_userspace_memory_region2);
5093 		}
5094 
5095 		/* Ensure the common parts of the two structs are identical. */
5096 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5097 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5098 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5099 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5100 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5101 
5102 		r = -EFAULT;
5103 		if (copy_from_user(&mem, argp, size))
5104 			goto out;
5105 
5106 		r = -EINVAL;
5107 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5108 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5109 			goto out;
5110 
5111 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5112 		break;
5113 	}
5114 	case KVM_GET_DIRTY_LOG: {
5115 		struct kvm_dirty_log log;
5116 
5117 		r = -EFAULT;
5118 		if (copy_from_user(&log, argp, sizeof(log)))
5119 			goto out;
5120 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5121 		break;
5122 	}
5123 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5124 	case KVM_CLEAR_DIRTY_LOG: {
5125 		struct kvm_clear_dirty_log log;
5126 
5127 		r = -EFAULT;
5128 		if (copy_from_user(&log, argp, sizeof(log)))
5129 			goto out;
5130 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5131 		break;
5132 	}
5133 #endif
5134 #ifdef CONFIG_KVM_MMIO
5135 	case KVM_REGISTER_COALESCED_MMIO: {
5136 		struct kvm_coalesced_mmio_zone zone;
5137 
5138 		r = -EFAULT;
5139 		if (copy_from_user(&zone, argp, sizeof(zone)))
5140 			goto out;
5141 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5142 		break;
5143 	}
5144 	case KVM_UNREGISTER_COALESCED_MMIO: {
5145 		struct kvm_coalesced_mmio_zone zone;
5146 
5147 		r = -EFAULT;
5148 		if (copy_from_user(&zone, argp, sizeof(zone)))
5149 			goto out;
5150 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5151 		break;
5152 	}
5153 #endif
5154 	case KVM_IRQFD: {
5155 		struct kvm_irqfd data;
5156 
5157 		r = -EFAULT;
5158 		if (copy_from_user(&data, argp, sizeof(data)))
5159 			goto out;
5160 		r = kvm_irqfd(kvm, &data);
5161 		break;
5162 	}
5163 	case KVM_IOEVENTFD: {
5164 		struct kvm_ioeventfd data;
5165 
5166 		r = -EFAULT;
5167 		if (copy_from_user(&data, argp, sizeof(data)))
5168 			goto out;
5169 		r = kvm_ioeventfd(kvm, &data);
5170 		break;
5171 	}
5172 #ifdef CONFIG_HAVE_KVM_MSI
5173 	case KVM_SIGNAL_MSI: {
5174 		struct kvm_msi msi;
5175 
5176 		r = -EFAULT;
5177 		if (copy_from_user(&msi, argp, sizeof(msi)))
5178 			goto out;
5179 		r = kvm_send_userspace_msi(kvm, &msi);
5180 		break;
5181 	}
5182 #endif
5183 #ifdef __KVM_HAVE_IRQ_LINE
5184 	case KVM_IRQ_LINE_STATUS:
5185 	case KVM_IRQ_LINE: {
5186 		struct kvm_irq_level irq_event;
5187 
5188 		r = -EFAULT;
5189 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5190 			goto out;
5191 
5192 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5193 					ioctl == KVM_IRQ_LINE_STATUS);
5194 		if (r)
5195 			goto out;
5196 
5197 		r = -EFAULT;
5198 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5199 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5200 				goto out;
5201 		}
5202 
5203 		r = 0;
5204 		break;
5205 	}
5206 #endif
5207 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5208 	case KVM_SET_GSI_ROUTING: {
5209 		struct kvm_irq_routing routing;
5210 		struct kvm_irq_routing __user *urouting;
5211 		struct kvm_irq_routing_entry *entries = NULL;
5212 
5213 		r = -EFAULT;
5214 		if (copy_from_user(&routing, argp, sizeof(routing)))
5215 			goto out;
5216 		r = -EINVAL;
5217 		if (!kvm_arch_can_set_irq_routing(kvm))
5218 			goto out;
5219 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5220 			goto out;
5221 		if (routing.flags)
5222 			goto out;
5223 		if (routing.nr) {
5224 			urouting = argp;
5225 			entries = vmemdup_array_user(urouting->entries,
5226 						     routing.nr, sizeof(*entries));
5227 			if (IS_ERR(entries)) {
5228 				r = PTR_ERR(entries);
5229 				goto out;
5230 			}
5231 		}
5232 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5233 					routing.flags);
5234 		kvfree(entries);
5235 		break;
5236 	}
5237 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5238 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5239 	case KVM_SET_MEMORY_ATTRIBUTES: {
5240 		struct kvm_memory_attributes attrs;
5241 
5242 		r = -EFAULT;
5243 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5244 			goto out;
5245 
5246 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5247 		break;
5248 	}
5249 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5250 	case KVM_CREATE_DEVICE: {
5251 		struct kvm_create_device cd;
5252 
5253 		r = -EFAULT;
5254 		if (copy_from_user(&cd, argp, sizeof(cd)))
5255 			goto out;
5256 
5257 		r = kvm_ioctl_create_device(kvm, &cd);
5258 		if (r)
5259 			goto out;
5260 
5261 		r = -EFAULT;
5262 		if (copy_to_user(argp, &cd, sizeof(cd)))
5263 			goto out;
5264 
5265 		r = 0;
5266 		break;
5267 	}
5268 	case KVM_CHECK_EXTENSION:
5269 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5270 		break;
5271 	case KVM_RESET_DIRTY_RINGS:
5272 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5273 		break;
5274 	case KVM_GET_STATS_FD:
5275 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5276 		break;
5277 #ifdef CONFIG_KVM_PRIVATE_MEM
5278 	case KVM_CREATE_GUEST_MEMFD: {
5279 		struct kvm_create_guest_memfd guest_memfd;
5280 
5281 		r = -EFAULT;
5282 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5283 			goto out;
5284 
5285 		r = kvm_gmem_create(kvm, &guest_memfd);
5286 		break;
5287 	}
5288 #endif
5289 	default:
5290 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5291 	}
5292 out:
5293 	return r;
5294 }
5295 
5296 #ifdef CONFIG_KVM_COMPAT
5297 struct compat_kvm_dirty_log {
5298 	__u32 slot;
5299 	__u32 padding1;
5300 	union {
5301 		compat_uptr_t dirty_bitmap; /* one bit per page */
5302 		__u64 padding2;
5303 	};
5304 };
5305 
5306 struct compat_kvm_clear_dirty_log {
5307 	__u32 slot;
5308 	__u32 num_pages;
5309 	__u64 first_page;
5310 	union {
5311 		compat_uptr_t dirty_bitmap; /* one bit per page */
5312 		__u64 padding2;
5313 	};
5314 };
5315 
5316 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5317 				     unsigned long arg)
5318 {
5319 	return -ENOTTY;
5320 }
5321 
5322 static long kvm_vm_compat_ioctl(struct file *filp,
5323 			   unsigned int ioctl, unsigned long arg)
5324 {
5325 	struct kvm *kvm = filp->private_data;
5326 	int r;
5327 
5328 	if (kvm->mm != current->mm || kvm->vm_dead)
5329 		return -EIO;
5330 
5331 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5332 	if (r != -ENOTTY)
5333 		return r;
5334 
5335 	switch (ioctl) {
5336 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5337 	case KVM_CLEAR_DIRTY_LOG: {
5338 		struct compat_kvm_clear_dirty_log compat_log;
5339 		struct kvm_clear_dirty_log log;
5340 
5341 		if (copy_from_user(&compat_log, (void __user *)arg,
5342 				   sizeof(compat_log)))
5343 			return -EFAULT;
5344 		log.slot	 = compat_log.slot;
5345 		log.num_pages	 = compat_log.num_pages;
5346 		log.first_page	 = compat_log.first_page;
5347 		log.padding2	 = compat_log.padding2;
5348 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5349 
5350 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5351 		break;
5352 	}
5353 #endif
5354 	case KVM_GET_DIRTY_LOG: {
5355 		struct compat_kvm_dirty_log compat_log;
5356 		struct kvm_dirty_log log;
5357 
5358 		if (copy_from_user(&compat_log, (void __user *)arg,
5359 				   sizeof(compat_log)))
5360 			return -EFAULT;
5361 		log.slot	 = compat_log.slot;
5362 		log.padding1	 = compat_log.padding1;
5363 		log.padding2	 = compat_log.padding2;
5364 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5365 
5366 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5367 		break;
5368 	}
5369 	default:
5370 		r = kvm_vm_ioctl(filp, ioctl, arg);
5371 	}
5372 	return r;
5373 }
5374 #endif
5375 
5376 static struct file_operations kvm_vm_fops = {
5377 	.release        = kvm_vm_release,
5378 	.unlocked_ioctl = kvm_vm_ioctl,
5379 	.llseek		= noop_llseek,
5380 	KVM_COMPAT(kvm_vm_compat_ioctl),
5381 };
5382 
5383 bool file_is_kvm(struct file *file)
5384 {
5385 	return file && file->f_op == &kvm_vm_fops;
5386 }
5387 EXPORT_SYMBOL_GPL(file_is_kvm);
5388 
5389 static int kvm_dev_ioctl_create_vm(unsigned long type)
5390 {
5391 	char fdname[ITOA_MAX_LEN + 1];
5392 	int r, fd;
5393 	struct kvm *kvm;
5394 	struct file *file;
5395 
5396 	fd = get_unused_fd_flags(O_CLOEXEC);
5397 	if (fd < 0)
5398 		return fd;
5399 
5400 	snprintf(fdname, sizeof(fdname), "%d", fd);
5401 
5402 	kvm = kvm_create_vm(type, fdname);
5403 	if (IS_ERR(kvm)) {
5404 		r = PTR_ERR(kvm);
5405 		goto put_fd;
5406 	}
5407 
5408 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5409 	if (IS_ERR(file)) {
5410 		r = PTR_ERR(file);
5411 		goto put_kvm;
5412 	}
5413 
5414 	/*
5415 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5416 	 * already set, with ->release() being kvm_vm_release().  In error
5417 	 * cases it will be called by the final fput(file) and will take
5418 	 * care of doing kvm_put_kvm(kvm).
5419 	 */
5420 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5421 
5422 	fd_install(fd, file);
5423 	return fd;
5424 
5425 put_kvm:
5426 	kvm_put_kvm(kvm);
5427 put_fd:
5428 	put_unused_fd(fd);
5429 	return r;
5430 }
5431 
5432 static long kvm_dev_ioctl(struct file *filp,
5433 			  unsigned int ioctl, unsigned long arg)
5434 {
5435 	int r = -EINVAL;
5436 
5437 	switch (ioctl) {
5438 	case KVM_GET_API_VERSION:
5439 		if (arg)
5440 			goto out;
5441 		r = KVM_API_VERSION;
5442 		break;
5443 	case KVM_CREATE_VM:
5444 		r = kvm_dev_ioctl_create_vm(arg);
5445 		break;
5446 	case KVM_CHECK_EXTENSION:
5447 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5448 		break;
5449 	case KVM_GET_VCPU_MMAP_SIZE:
5450 		if (arg)
5451 			goto out;
5452 		r = PAGE_SIZE;     /* struct kvm_run */
5453 #ifdef CONFIG_X86
5454 		r += PAGE_SIZE;    /* pio data page */
5455 #endif
5456 #ifdef CONFIG_KVM_MMIO
5457 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5458 #endif
5459 		break;
5460 	default:
5461 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5462 	}
5463 out:
5464 	return r;
5465 }
5466 
5467 static struct file_operations kvm_chardev_ops = {
5468 	.unlocked_ioctl = kvm_dev_ioctl,
5469 	.llseek		= noop_llseek,
5470 	KVM_COMPAT(kvm_dev_ioctl),
5471 };
5472 
5473 static struct miscdevice kvm_dev = {
5474 	KVM_MINOR,
5475 	"kvm",
5476 	&kvm_chardev_ops,
5477 };
5478 
5479 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5480 bool enable_virt_at_load = true;
5481 module_param(enable_virt_at_load, bool, 0444);
5482 EXPORT_SYMBOL_GPL(enable_virt_at_load);
5483 
5484 __visible bool kvm_rebooting;
5485 EXPORT_SYMBOL_GPL(kvm_rebooting);
5486 
5487 static DEFINE_PER_CPU(bool, virtualization_enabled);
5488 static DEFINE_MUTEX(kvm_usage_lock);
5489 static int kvm_usage_count;
5490 
5491 __weak void kvm_arch_enable_virtualization(void)
5492 {
5493 
5494 }
5495 
5496 __weak void kvm_arch_disable_virtualization(void)
5497 {
5498 
5499 }
5500 
5501 static int kvm_enable_virtualization_cpu(void)
5502 {
5503 	if (__this_cpu_read(virtualization_enabled))
5504 		return 0;
5505 
5506 	if (kvm_arch_enable_virtualization_cpu()) {
5507 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5508 			raw_smp_processor_id());
5509 		return -EIO;
5510 	}
5511 
5512 	__this_cpu_write(virtualization_enabled, true);
5513 	return 0;
5514 }
5515 
5516 static int kvm_online_cpu(unsigned int cpu)
5517 {
5518 	/*
5519 	 * Abort the CPU online process if hardware virtualization cannot
5520 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5521 	 * errors when scheduled to this CPU.
5522 	 */
5523 	return kvm_enable_virtualization_cpu();
5524 }
5525 
5526 static void kvm_disable_virtualization_cpu(void *ign)
5527 {
5528 	if (!__this_cpu_read(virtualization_enabled))
5529 		return;
5530 
5531 	kvm_arch_disable_virtualization_cpu();
5532 
5533 	__this_cpu_write(virtualization_enabled, false);
5534 }
5535 
5536 static int kvm_offline_cpu(unsigned int cpu)
5537 {
5538 	kvm_disable_virtualization_cpu(NULL);
5539 	return 0;
5540 }
5541 
5542 static void kvm_shutdown(void)
5543 {
5544 	/*
5545 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5546 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5547 	 * that relevant errors and exceptions aren't entirely unexpected.
5548 	 * Some flavors of hardware virtualization need to be disabled before
5549 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5550 	 * on x86, virtualization can block INIT interrupts, which are used by
5551 	 * firmware to pull APs back under firmware control.  Note, this path
5552 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5553 	 * 100% comprehensive.
5554 	 */
5555 	pr_info("kvm: exiting hardware virtualization\n");
5556 	kvm_rebooting = true;
5557 	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5558 }
5559 
5560 static int kvm_suspend(void)
5561 {
5562 	/*
5563 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5564 	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5565 	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5566 	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5567 	 * enabling can be preempted, but the task cannot be frozen until it has
5568 	 * dropped all locks (userspace tasks are frozen via a fake signal).
5569 	 */
5570 	lockdep_assert_not_held(&kvm_usage_lock);
5571 	lockdep_assert_irqs_disabled();
5572 
5573 	kvm_disable_virtualization_cpu(NULL);
5574 	return 0;
5575 }
5576 
5577 static void kvm_resume(void)
5578 {
5579 	lockdep_assert_not_held(&kvm_usage_lock);
5580 	lockdep_assert_irqs_disabled();
5581 
5582 	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5583 }
5584 
5585 static struct syscore_ops kvm_syscore_ops = {
5586 	.suspend = kvm_suspend,
5587 	.resume = kvm_resume,
5588 	.shutdown = kvm_shutdown,
5589 };
5590 
5591 int kvm_enable_virtualization(void)
5592 {
5593 	int r;
5594 
5595 	guard(mutex)(&kvm_usage_lock);
5596 
5597 	if (kvm_usage_count++)
5598 		return 0;
5599 
5600 	kvm_arch_enable_virtualization();
5601 
5602 	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5603 			      kvm_online_cpu, kvm_offline_cpu);
5604 	if (r)
5605 		goto err_cpuhp;
5606 
5607 	register_syscore_ops(&kvm_syscore_ops);
5608 
5609 	/*
5610 	 * Undo virtualization enabling and bail if the system is going down.
5611 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5612 	 * possible for an in-flight operation to enable virtualization after
5613 	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5614 	 * invoked.  Note, this relies on system_state being set _before_
5615 	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5616 	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5617 	 * a syscore ops hook instead of registering a dedicated reboot
5618 	 * notifier (the latter runs before system_state is updated).
5619 	 */
5620 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5621 	    system_state == SYSTEM_RESTART) {
5622 		r = -EBUSY;
5623 		goto err_rebooting;
5624 	}
5625 
5626 	return 0;
5627 
5628 err_rebooting:
5629 	unregister_syscore_ops(&kvm_syscore_ops);
5630 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5631 err_cpuhp:
5632 	kvm_arch_disable_virtualization();
5633 	--kvm_usage_count;
5634 	return r;
5635 }
5636 EXPORT_SYMBOL_GPL(kvm_enable_virtualization);
5637 
5638 void kvm_disable_virtualization(void)
5639 {
5640 	guard(mutex)(&kvm_usage_lock);
5641 
5642 	if (--kvm_usage_count)
5643 		return;
5644 
5645 	unregister_syscore_ops(&kvm_syscore_ops);
5646 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5647 	kvm_arch_disable_virtualization();
5648 }
5649 EXPORT_SYMBOL_GPL(kvm_disable_virtualization);
5650 
5651 static int kvm_init_virtualization(void)
5652 {
5653 	if (enable_virt_at_load)
5654 		return kvm_enable_virtualization();
5655 
5656 	return 0;
5657 }
5658 
5659 static void kvm_uninit_virtualization(void)
5660 {
5661 	if (enable_virt_at_load)
5662 		kvm_disable_virtualization();
5663 }
5664 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5665 static int kvm_init_virtualization(void)
5666 {
5667 	return 0;
5668 }
5669 
5670 static void kvm_uninit_virtualization(void)
5671 {
5672 
5673 }
5674 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5675 
5676 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5677 {
5678 	if (dev->ops->destructor)
5679 		dev->ops->destructor(dev);
5680 }
5681 
5682 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5683 {
5684 	int i;
5685 
5686 	for (i = 0; i < bus->dev_count; i++) {
5687 		struct kvm_io_device *pos = bus->range[i].dev;
5688 
5689 		kvm_iodevice_destructor(pos);
5690 	}
5691 	kfree(bus);
5692 }
5693 
5694 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5695 				 const struct kvm_io_range *r2)
5696 {
5697 	gpa_t addr1 = r1->addr;
5698 	gpa_t addr2 = r2->addr;
5699 
5700 	if (addr1 < addr2)
5701 		return -1;
5702 
5703 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5704 	 * accept any overlapping write.  Any order is acceptable for
5705 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5706 	 * we process all of them.
5707 	 */
5708 	if (r2->len) {
5709 		addr1 += r1->len;
5710 		addr2 += r2->len;
5711 	}
5712 
5713 	if (addr1 > addr2)
5714 		return 1;
5715 
5716 	return 0;
5717 }
5718 
5719 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5720 {
5721 	return kvm_io_bus_cmp(p1, p2);
5722 }
5723 
5724 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5725 			     gpa_t addr, int len)
5726 {
5727 	struct kvm_io_range *range, key;
5728 	int off;
5729 
5730 	key = (struct kvm_io_range) {
5731 		.addr = addr,
5732 		.len = len,
5733 	};
5734 
5735 	range = bsearch(&key, bus->range, bus->dev_count,
5736 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5737 	if (range == NULL)
5738 		return -ENOENT;
5739 
5740 	off = range - bus->range;
5741 
5742 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5743 		off--;
5744 
5745 	return off;
5746 }
5747 
5748 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5749 			      struct kvm_io_range *range, const void *val)
5750 {
5751 	int idx;
5752 
5753 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5754 	if (idx < 0)
5755 		return -EOPNOTSUPP;
5756 
5757 	while (idx < bus->dev_count &&
5758 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5759 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5760 					range->len, val))
5761 			return idx;
5762 		idx++;
5763 	}
5764 
5765 	return -EOPNOTSUPP;
5766 }
5767 
5768 /* kvm_io_bus_write - called under kvm->slots_lock */
5769 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5770 		     int len, const void *val)
5771 {
5772 	struct kvm_io_bus *bus;
5773 	struct kvm_io_range range;
5774 	int r;
5775 
5776 	range = (struct kvm_io_range) {
5777 		.addr = addr,
5778 		.len = len,
5779 	};
5780 
5781 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5782 	if (!bus)
5783 		return -ENOMEM;
5784 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5785 	return r < 0 ? r : 0;
5786 }
5787 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5788 
5789 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5790 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5791 			    gpa_t addr, int len, const void *val, long cookie)
5792 {
5793 	struct kvm_io_bus *bus;
5794 	struct kvm_io_range range;
5795 
5796 	range = (struct kvm_io_range) {
5797 		.addr = addr,
5798 		.len = len,
5799 	};
5800 
5801 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5802 	if (!bus)
5803 		return -ENOMEM;
5804 
5805 	/* First try the device referenced by cookie. */
5806 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5807 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5808 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5809 					val))
5810 			return cookie;
5811 
5812 	/*
5813 	 * cookie contained garbage; fall back to search and return the
5814 	 * correct cookie value.
5815 	 */
5816 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5817 }
5818 
5819 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5820 			     struct kvm_io_range *range, void *val)
5821 {
5822 	int idx;
5823 
5824 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5825 	if (idx < 0)
5826 		return -EOPNOTSUPP;
5827 
5828 	while (idx < bus->dev_count &&
5829 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5830 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5831 				       range->len, val))
5832 			return idx;
5833 		idx++;
5834 	}
5835 
5836 	return -EOPNOTSUPP;
5837 }
5838 
5839 /* kvm_io_bus_read - called under kvm->slots_lock */
5840 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5841 		    int len, void *val)
5842 {
5843 	struct kvm_io_bus *bus;
5844 	struct kvm_io_range range;
5845 	int r;
5846 
5847 	range = (struct kvm_io_range) {
5848 		.addr = addr,
5849 		.len = len,
5850 	};
5851 
5852 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5853 	if (!bus)
5854 		return -ENOMEM;
5855 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5856 	return r < 0 ? r : 0;
5857 }
5858 EXPORT_SYMBOL_GPL(kvm_io_bus_read);
5859 
5860 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5861 			    int len, struct kvm_io_device *dev)
5862 {
5863 	int i;
5864 	struct kvm_io_bus *new_bus, *bus;
5865 	struct kvm_io_range range;
5866 
5867 	lockdep_assert_held(&kvm->slots_lock);
5868 
5869 	bus = kvm_get_bus(kvm, bus_idx);
5870 	if (!bus)
5871 		return -ENOMEM;
5872 
5873 	/* exclude ioeventfd which is limited by maximum fd */
5874 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5875 		return -ENOSPC;
5876 
5877 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5878 			  GFP_KERNEL_ACCOUNT);
5879 	if (!new_bus)
5880 		return -ENOMEM;
5881 
5882 	range = (struct kvm_io_range) {
5883 		.addr = addr,
5884 		.len = len,
5885 		.dev = dev,
5886 	};
5887 
5888 	for (i = 0; i < bus->dev_count; i++)
5889 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5890 			break;
5891 
5892 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5893 	new_bus->dev_count++;
5894 	new_bus->range[i] = range;
5895 	memcpy(new_bus->range + i + 1, bus->range + i,
5896 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5897 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5898 	synchronize_srcu_expedited(&kvm->srcu);
5899 	kfree(bus);
5900 
5901 	return 0;
5902 }
5903 
5904 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5905 			      struct kvm_io_device *dev)
5906 {
5907 	int i;
5908 	struct kvm_io_bus *new_bus, *bus;
5909 
5910 	lockdep_assert_held(&kvm->slots_lock);
5911 
5912 	bus = kvm_get_bus(kvm, bus_idx);
5913 	if (!bus)
5914 		return 0;
5915 
5916 	for (i = 0; i < bus->dev_count; i++) {
5917 		if (bus->range[i].dev == dev) {
5918 			break;
5919 		}
5920 	}
5921 
5922 	if (i == bus->dev_count)
5923 		return 0;
5924 
5925 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5926 			  GFP_KERNEL_ACCOUNT);
5927 	if (new_bus) {
5928 		memcpy(new_bus, bus, struct_size(bus, range, i));
5929 		new_bus->dev_count--;
5930 		memcpy(new_bus->range + i, bus->range + i + 1,
5931 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5932 	}
5933 
5934 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5935 	synchronize_srcu_expedited(&kvm->srcu);
5936 
5937 	/*
5938 	 * If NULL bus is installed, destroy the old bus, including all the
5939 	 * attached devices. Otherwise, destroy the caller's device only.
5940 	 */
5941 	if (!new_bus) {
5942 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5943 		kvm_io_bus_destroy(bus);
5944 		return -ENOMEM;
5945 	}
5946 
5947 	kvm_iodevice_destructor(dev);
5948 	kfree(bus);
5949 	return 0;
5950 }
5951 
5952 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5953 					 gpa_t addr)
5954 {
5955 	struct kvm_io_bus *bus;
5956 	int dev_idx, srcu_idx;
5957 	struct kvm_io_device *iodev = NULL;
5958 
5959 	srcu_idx = srcu_read_lock(&kvm->srcu);
5960 
5961 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5962 	if (!bus)
5963 		goto out_unlock;
5964 
5965 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5966 	if (dev_idx < 0)
5967 		goto out_unlock;
5968 
5969 	iodev = bus->range[dev_idx].dev;
5970 
5971 out_unlock:
5972 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5973 
5974 	return iodev;
5975 }
5976 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5977 
5978 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5979 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5980 			   const char *fmt)
5981 {
5982 	int ret;
5983 	struct kvm_stat_data *stat_data = inode->i_private;
5984 
5985 	/*
5986 	 * The debugfs files are a reference to the kvm struct which
5987         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5988         * avoids the race between open and the removal of the debugfs directory.
5989 	 */
5990 	if (!kvm_get_kvm_safe(stat_data->kvm))
5991 		return -ENOENT;
5992 
5993 	ret = simple_attr_open(inode, file, get,
5994 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5995 			       ? set : NULL, fmt);
5996 	if (ret)
5997 		kvm_put_kvm(stat_data->kvm);
5998 
5999 	return ret;
6000 }
6001 
6002 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6003 {
6004 	struct kvm_stat_data *stat_data = inode->i_private;
6005 
6006 	simple_attr_release(inode, file);
6007 	kvm_put_kvm(stat_data->kvm);
6008 
6009 	return 0;
6010 }
6011 
6012 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6013 {
6014 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6015 
6016 	return 0;
6017 }
6018 
6019 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6020 {
6021 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6022 
6023 	return 0;
6024 }
6025 
6026 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6027 {
6028 	unsigned long i;
6029 	struct kvm_vcpu *vcpu;
6030 
6031 	*val = 0;
6032 
6033 	kvm_for_each_vcpu(i, vcpu, kvm)
6034 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6035 
6036 	return 0;
6037 }
6038 
6039 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6040 {
6041 	unsigned long i;
6042 	struct kvm_vcpu *vcpu;
6043 
6044 	kvm_for_each_vcpu(i, vcpu, kvm)
6045 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6046 
6047 	return 0;
6048 }
6049 
6050 static int kvm_stat_data_get(void *data, u64 *val)
6051 {
6052 	int r = -EFAULT;
6053 	struct kvm_stat_data *stat_data = data;
6054 
6055 	switch (stat_data->kind) {
6056 	case KVM_STAT_VM:
6057 		r = kvm_get_stat_per_vm(stat_data->kvm,
6058 					stat_data->desc->desc.offset, val);
6059 		break;
6060 	case KVM_STAT_VCPU:
6061 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6062 					  stat_data->desc->desc.offset, val);
6063 		break;
6064 	}
6065 
6066 	return r;
6067 }
6068 
6069 static int kvm_stat_data_clear(void *data, u64 val)
6070 {
6071 	int r = -EFAULT;
6072 	struct kvm_stat_data *stat_data = data;
6073 
6074 	if (val)
6075 		return -EINVAL;
6076 
6077 	switch (stat_data->kind) {
6078 	case KVM_STAT_VM:
6079 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6080 					  stat_data->desc->desc.offset);
6081 		break;
6082 	case KVM_STAT_VCPU:
6083 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6084 					    stat_data->desc->desc.offset);
6085 		break;
6086 	}
6087 
6088 	return r;
6089 }
6090 
6091 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6092 {
6093 	__simple_attr_check_format("%llu\n", 0ull);
6094 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6095 				kvm_stat_data_clear, "%llu\n");
6096 }
6097 
6098 static const struct file_operations stat_fops_per_vm = {
6099 	.owner = THIS_MODULE,
6100 	.open = kvm_stat_data_open,
6101 	.release = kvm_debugfs_release,
6102 	.read = simple_attr_read,
6103 	.write = simple_attr_write,
6104 };
6105 
6106 static int vm_stat_get(void *_offset, u64 *val)
6107 {
6108 	unsigned offset = (long)_offset;
6109 	struct kvm *kvm;
6110 	u64 tmp_val;
6111 
6112 	*val = 0;
6113 	mutex_lock(&kvm_lock);
6114 	list_for_each_entry(kvm, &vm_list, vm_list) {
6115 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6116 		*val += tmp_val;
6117 	}
6118 	mutex_unlock(&kvm_lock);
6119 	return 0;
6120 }
6121 
6122 static int vm_stat_clear(void *_offset, u64 val)
6123 {
6124 	unsigned offset = (long)_offset;
6125 	struct kvm *kvm;
6126 
6127 	if (val)
6128 		return -EINVAL;
6129 
6130 	mutex_lock(&kvm_lock);
6131 	list_for_each_entry(kvm, &vm_list, vm_list) {
6132 		kvm_clear_stat_per_vm(kvm, offset);
6133 	}
6134 	mutex_unlock(&kvm_lock);
6135 
6136 	return 0;
6137 }
6138 
6139 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6140 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6141 
6142 static int vcpu_stat_get(void *_offset, u64 *val)
6143 {
6144 	unsigned offset = (long)_offset;
6145 	struct kvm *kvm;
6146 	u64 tmp_val;
6147 
6148 	*val = 0;
6149 	mutex_lock(&kvm_lock);
6150 	list_for_each_entry(kvm, &vm_list, vm_list) {
6151 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6152 		*val += tmp_val;
6153 	}
6154 	mutex_unlock(&kvm_lock);
6155 	return 0;
6156 }
6157 
6158 static int vcpu_stat_clear(void *_offset, u64 val)
6159 {
6160 	unsigned offset = (long)_offset;
6161 	struct kvm *kvm;
6162 
6163 	if (val)
6164 		return -EINVAL;
6165 
6166 	mutex_lock(&kvm_lock);
6167 	list_for_each_entry(kvm, &vm_list, vm_list) {
6168 		kvm_clear_stat_per_vcpu(kvm, offset);
6169 	}
6170 	mutex_unlock(&kvm_lock);
6171 
6172 	return 0;
6173 }
6174 
6175 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6176 			"%llu\n");
6177 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6178 
6179 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6180 {
6181 	struct kobj_uevent_env *env;
6182 	unsigned long long created, active;
6183 
6184 	if (!kvm_dev.this_device || !kvm)
6185 		return;
6186 
6187 	mutex_lock(&kvm_lock);
6188 	if (type == KVM_EVENT_CREATE_VM) {
6189 		kvm_createvm_count++;
6190 		kvm_active_vms++;
6191 	} else if (type == KVM_EVENT_DESTROY_VM) {
6192 		kvm_active_vms--;
6193 	}
6194 	created = kvm_createvm_count;
6195 	active = kvm_active_vms;
6196 	mutex_unlock(&kvm_lock);
6197 
6198 	env = kzalloc(sizeof(*env), GFP_KERNEL);
6199 	if (!env)
6200 		return;
6201 
6202 	add_uevent_var(env, "CREATED=%llu", created);
6203 	add_uevent_var(env, "COUNT=%llu", active);
6204 
6205 	if (type == KVM_EVENT_CREATE_VM) {
6206 		add_uevent_var(env, "EVENT=create");
6207 		kvm->userspace_pid = task_pid_nr(current);
6208 	} else if (type == KVM_EVENT_DESTROY_VM) {
6209 		add_uevent_var(env, "EVENT=destroy");
6210 	}
6211 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6212 
6213 	if (!IS_ERR(kvm->debugfs_dentry)) {
6214 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6215 
6216 		if (p) {
6217 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6218 			if (!IS_ERR(tmp))
6219 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6220 			kfree(p);
6221 		}
6222 	}
6223 	/* no need for checks, since we are adding at most only 5 keys */
6224 	env->envp[env->envp_idx++] = NULL;
6225 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6226 	kfree(env);
6227 }
6228 
6229 static void kvm_init_debug(void)
6230 {
6231 	const struct file_operations *fops;
6232 	const struct _kvm_stats_desc *pdesc;
6233 	int i;
6234 
6235 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6236 
6237 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6238 		pdesc = &kvm_vm_stats_desc[i];
6239 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6240 			fops = &vm_stat_fops;
6241 		else
6242 			fops = &vm_stat_readonly_fops;
6243 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6244 				kvm_debugfs_dir,
6245 				(void *)(long)pdesc->desc.offset, fops);
6246 	}
6247 
6248 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6249 		pdesc = &kvm_vcpu_stats_desc[i];
6250 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6251 			fops = &vcpu_stat_fops;
6252 		else
6253 			fops = &vcpu_stat_readonly_fops;
6254 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6255 				kvm_debugfs_dir,
6256 				(void *)(long)pdesc->desc.offset, fops);
6257 	}
6258 }
6259 
6260 static inline
6261 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6262 {
6263 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6264 }
6265 
6266 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6267 {
6268 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6269 
6270 	WRITE_ONCE(vcpu->preempted, false);
6271 	WRITE_ONCE(vcpu->ready, false);
6272 
6273 	__this_cpu_write(kvm_running_vcpu, vcpu);
6274 	kvm_arch_vcpu_load(vcpu, cpu);
6275 
6276 	WRITE_ONCE(vcpu->scheduled_out, false);
6277 }
6278 
6279 static void kvm_sched_out(struct preempt_notifier *pn,
6280 			  struct task_struct *next)
6281 {
6282 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6283 
6284 	WRITE_ONCE(vcpu->scheduled_out, true);
6285 
6286 	if (task_is_runnable(current) && vcpu->wants_to_run) {
6287 		WRITE_ONCE(vcpu->preempted, true);
6288 		WRITE_ONCE(vcpu->ready, true);
6289 	}
6290 	kvm_arch_vcpu_put(vcpu);
6291 	__this_cpu_write(kvm_running_vcpu, NULL);
6292 }
6293 
6294 /**
6295  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6296  *
6297  * We can disable preemption locally around accessing the per-CPU variable,
6298  * and use the resolved vcpu pointer after enabling preemption again,
6299  * because even if the current thread is migrated to another CPU, reading
6300  * the per-CPU value later will give us the same value as we update the
6301  * per-CPU variable in the preempt notifier handlers.
6302  */
6303 struct kvm_vcpu *kvm_get_running_vcpu(void)
6304 {
6305 	struct kvm_vcpu *vcpu;
6306 
6307 	preempt_disable();
6308 	vcpu = __this_cpu_read(kvm_running_vcpu);
6309 	preempt_enable();
6310 
6311 	return vcpu;
6312 }
6313 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6314 
6315 /**
6316  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6317  */
6318 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6319 {
6320         return &kvm_running_vcpu;
6321 }
6322 
6323 #ifdef CONFIG_GUEST_PERF_EVENTS
6324 static unsigned int kvm_guest_state(void)
6325 {
6326 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6327 	unsigned int state;
6328 
6329 	if (!kvm_arch_pmi_in_guest(vcpu))
6330 		return 0;
6331 
6332 	state = PERF_GUEST_ACTIVE;
6333 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6334 		state |= PERF_GUEST_USER;
6335 
6336 	return state;
6337 }
6338 
6339 static unsigned long kvm_guest_get_ip(void)
6340 {
6341 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6342 
6343 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6344 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6345 		return 0;
6346 
6347 	return kvm_arch_vcpu_get_ip(vcpu);
6348 }
6349 
6350 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6351 	.state			= kvm_guest_state,
6352 	.get_ip			= kvm_guest_get_ip,
6353 	.handle_intel_pt_intr	= NULL,
6354 };
6355 
6356 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6357 {
6358 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6359 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6360 }
6361 void kvm_unregister_perf_callbacks(void)
6362 {
6363 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6364 }
6365 #endif
6366 
6367 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6368 {
6369 	int r;
6370 	int cpu;
6371 
6372 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6373 	if (!vcpu_align)
6374 		vcpu_align = __alignof__(struct kvm_vcpu);
6375 	kvm_vcpu_cache =
6376 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6377 					   SLAB_ACCOUNT,
6378 					   offsetof(struct kvm_vcpu, arch),
6379 					   offsetofend(struct kvm_vcpu, stats_id)
6380 					   - offsetof(struct kvm_vcpu, arch),
6381 					   NULL);
6382 	if (!kvm_vcpu_cache)
6383 		return -ENOMEM;
6384 
6385 	for_each_possible_cpu(cpu) {
6386 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6387 					    GFP_KERNEL, cpu_to_node(cpu))) {
6388 			r = -ENOMEM;
6389 			goto err_cpu_kick_mask;
6390 		}
6391 	}
6392 
6393 	r = kvm_irqfd_init();
6394 	if (r)
6395 		goto err_irqfd;
6396 
6397 	r = kvm_async_pf_init();
6398 	if (r)
6399 		goto err_async_pf;
6400 
6401 	kvm_chardev_ops.owner = module;
6402 	kvm_vm_fops.owner = module;
6403 	kvm_vcpu_fops.owner = module;
6404 	kvm_device_fops.owner = module;
6405 
6406 	kvm_preempt_ops.sched_in = kvm_sched_in;
6407 	kvm_preempt_ops.sched_out = kvm_sched_out;
6408 
6409 	kvm_init_debug();
6410 
6411 	r = kvm_vfio_ops_init();
6412 	if (WARN_ON_ONCE(r))
6413 		goto err_vfio;
6414 
6415 	kvm_gmem_init(module);
6416 
6417 	r = kvm_init_virtualization();
6418 	if (r)
6419 		goto err_virt;
6420 
6421 	/*
6422 	 * Registration _must_ be the very last thing done, as this exposes
6423 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6424 	 */
6425 	r = misc_register(&kvm_dev);
6426 	if (r) {
6427 		pr_err("kvm: misc device register failed\n");
6428 		goto err_register;
6429 	}
6430 
6431 	return 0;
6432 
6433 err_register:
6434 	kvm_uninit_virtualization();
6435 err_virt:
6436 	kvm_vfio_ops_exit();
6437 err_vfio:
6438 	kvm_async_pf_deinit();
6439 err_async_pf:
6440 	kvm_irqfd_exit();
6441 err_irqfd:
6442 err_cpu_kick_mask:
6443 	for_each_possible_cpu(cpu)
6444 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6445 	kmem_cache_destroy(kvm_vcpu_cache);
6446 	return r;
6447 }
6448 EXPORT_SYMBOL_GPL(kvm_init);
6449 
6450 void kvm_exit(void)
6451 {
6452 	int cpu;
6453 
6454 	/*
6455 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6456 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6457 	 * to KVM while the module is being stopped.
6458 	 */
6459 	misc_deregister(&kvm_dev);
6460 
6461 	kvm_uninit_virtualization();
6462 
6463 	debugfs_remove_recursive(kvm_debugfs_dir);
6464 	for_each_possible_cpu(cpu)
6465 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6466 	kmem_cache_destroy(kvm_vcpu_cache);
6467 	kvm_vfio_ops_exit();
6468 	kvm_async_pf_deinit();
6469 	kvm_irqfd_exit();
6470 }
6471 EXPORT_SYMBOL_GPL(kvm_exit);
6472