1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static struct file_operations kvm_chardev_ops; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 #define KVM_EVENT_CREATE_VM 0 150 #define KVM_EVENT_DESTROY_VM 1 151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 152 static unsigned long long kvm_createvm_count; 153 static unsigned long long kvm_active_vms; 154 155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 156 157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 158 { 159 } 160 161 bool kvm_is_zone_device_page(struct page *page) 162 { 163 /* 164 * The metadata used by is_zone_device_page() to determine whether or 165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 166 * the device has been pinned, e.g. by get_user_pages(). WARN if the 167 * page_count() is zero to help detect bad usage of this helper. 168 */ 169 if (WARN_ON_ONCE(!page_count(page))) 170 return false; 171 172 return is_zone_device_page(page); 173 } 174 175 /* 176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 178 * is likely incomplete, it has been compiled purely through people wanting to 179 * back guest with a certain type of memory and encountering issues. 180 */ 181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 182 { 183 struct page *page; 184 185 if (!pfn_valid(pfn)) 186 return NULL; 187 188 page = pfn_to_page(pfn); 189 if (!PageReserved(page)) 190 return page; 191 192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 193 if (is_zero_pfn(pfn)) 194 return page; 195 196 /* 197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 198 * perspective they are "normal" pages, albeit with slightly different 199 * usage rules. 200 */ 201 if (kvm_is_zone_device_page(page)) 202 return page; 203 204 return NULL; 205 } 206 207 /* 208 * Switches to specified vcpu, until a matching vcpu_put() 209 */ 210 void vcpu_load(struct kvm_vcpu *vcpu) 211 { 212 int cpu = get_cpu(); 213 214 __this_cpu_write(kvm_running_vcpu, vcpu); 215 preempt_notifier_register(&vcpu->preempt_notifier); 216 kvm_arch_vcpu_load(vcpu, cpu); 217 put_cpu(); 218 } 219 EXPORT_SYMBOL_GPL(vcpu_load); 220 221 void vcpu_put(struct kvm_vcpu *vcpu) 222 { 223 preempt_disable(); 224 kvm_arch_vcpu_put(vcpu); 225 preempt_notifier_unregister(&vcpu->preempt_notifier); 226 __this_cpu_write(kvm_running_vcpu, NULL); 227 preempt_enable(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_put); 230 231 /* TODO: merge with kvm_arch_vcpu_should_kick */ 232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 233 { 234 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 235 236 /* 237 * We need to wait for the VCPU to reenable interrupts and get out of 238 * READING_SHADOW_PAGE_TABLES mode. 239 */ 240 if (req & KVM_REQUEST_WAIT) 241 return mode != OUTSIDE_GUEST_MODE; 242 243 /* 244 * Need to kick a running VCPU, but otherwise there is nothing to do. 245 */ 246 return mode == IN_GUEST_MODE; 247 } 248 249 static void ack_kick(void *_completed) 250 { 251 } 252 253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 254 { 255 if (cpumask_empty(cpus)) 256 return false; 257 258 smp_call_function_many(cpus, ack_kick, NULL, wait); 259 return true; 260 } 261 262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 263 struct cpumask *tmp, int current_cpu) 264 { 265 int cpu; 266 267 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 268 __kvm_make_request(req, vcpu); 269 270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 271 return; 272 273 /* 274 * Note, the vCPU could get migrated to a different pCPU at any point 275 * after kvm_request_needs_ipi(), which could result in sending an IPI 276 * to the previous pCPU. But, that's OK because the purpose of the IPI 277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 279 * after this point is also OK, as the requirement is only that KVM wait 280 * for vCPUs that were reading SPTEs _before_ any changes were 281 * finalized. See kvm_vcpu_kick() for more details on handling requests. 282 */ 283 if (kvm_request_needs_ipi(vcpu, req)) { 284 cpu = READ_ONCE(vcpu->cpu); 285 if (cpu != -1 && cpu != current_cpu) 286 __cpumask_set_cpu(cpu, tmp); 287 } 288 } 289 290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 291 unsigned long *vcpu_bitmap) 292 { 293 struct kvm_vcpu *vcpu; 294 struct cpumask *cpus; 295 int i, me; 296 bool called; 297 298 me = get_cpu(); 299 300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 301 cpumask_clear(cpus); 302 303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 304 vcpu = kvm_get_vcpu(kvm, i); 305 if (!vcpu) 306 continue; 307 kvm_make_vcpu_request(vcpu, req, cpus, me); 308 } 309 310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 311 put_cpu(); 312 313 return called; 314 } 315 316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 317 struct kvm_vcpu *except) 318 { 319 struct kvm_vcpu *vcpu; 320 struct cpumask *cpus; 321 unsigned long i; 322 bool called; 323 int me; 324 325 me = get_cpu(); 326 327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 328 cpumask_clear(cpus); 329 330 kvm_for_each_vcpu(i, vcpu, kvm) { 331 if (vcpu == except) 332 continue; 333 kvm_make_vcpu_request(vcpu, req, cpus, me); 334 } 335 336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 337 put_cpu(); 338 339 return called; 340 } 341 342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 343 { 344 return kvm_make_all_cpus_request_except(kvm, req, NULL); 345 } 346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 347 348 void kvm_flush_remote_tlbs(struct kvm *kvm) 349 { 350 ++kvm->stat.generic.remote_tlb_flush_requests; 351 352 /* 353 * We want to publish modifications to the page tables before reading 354 * mode. Pairs with a memory barrier in arch-specific code. 355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 356 * and smp_mb in walk_shadow_page_lockless_begin/end. 357 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 358 * 359 * There is already an smp_mb__after_atomic() before 360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 361 * barrier here. 362 */ 363 if (!kvm_arch_flush_remote_tlbs(kvm) 364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 365 ++kvm->stat.generic.remote_tlb_flush; 366 } 367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 368 369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 370 { 371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 372 return; 373 374 /* 375 * Fall back to a flushing entire TLBs if the architecture range-based 376 * TLB invalidation is unsupported or can't be performed for whatever 377 * reason. 378 */ 379 kvm_flush_remote_tlbs(kvm); 380 } 381 382 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 383 const struct kvm_memory_slot *memslot) 384 { 385 /* 386 * All current use cases for flushing the TLBs for a specific memslot 387 * are related to dirty logging, and many do the TLB flush out of 388 * mmu_lock. The interaction between the various operations on memslot 389 * must be serialized by slots_locks to ensure the TLB flush from one 390 * operation is observed by any other operation on the same memslot. 391 */ 392 lockdep_assert_held(&kvm->slots_lock); 393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 394 } 395 396 static void kvm_flush_shadow_all(struct kvm *kvm) 397 { 398 kvm_arch_flush_shadow_all(kvm); 399 kvm_arch_guest_memory_reclaimed(kvm); 400 } 401 402 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 403 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 404 gfp_t gfp_flags) 405 { 406 gfp_flags |= mc->gfp_zero; 407 408 if (mc->kmem_cache) 409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 410 else 411 return (void *)__get_free_page(gfp_flags); 412 } 413 414 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 415 { 416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 417 void *obj; 418 419 if (mc->nobjs >= min) 420 return 0; 421 422 if (unlikely(!mc->objects)) { 423 if (WARN_ON_ONCE(!capacity)) 424 return -EIO; 425 426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 427 if (!mc->objects) 428 return -ENOMEM; 429 430 mc->capacity = capacity; 431 } 432 433 /* It is illegal to request a different capacity across topups. */ 434 if (WARN_ON_ONCE(mc->capacity != capacity)) 435 return -EIO; 436 437 while (mc->nobjs < mc->capacity) { 438 obj = mmu_memory_cache_alloc_obj(mc, gfp); 439 if (!obj) 440 return mc->nobjs >= min ? 0 : -ENOMEM; 441 mc->objects[mc->nobjs++] = obj; 442 } 443 return 0; 444 } 445 446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 447 { 448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 449 } 450 451 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 452 { 453 return mc->nobjs; 454 } 455 456 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 457 { 458 while (mc->nobjs) { 459 if (mc->kmem_cache) 460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 461 else 462 free_page((unsigned long)mc->objects[--mc->nobjs]); 463 } 464 465 kvfree(mc->objects); 466 467 mc->objects = NULL; 468 mc->capacity = 0; 469 } 470 471 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 472 { 473 void *p; 474 475 if (WARN_ON(!mc->nobjs)) 476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 477 else 478 p = mc->objects[--mc->nobjs]; 479 BUG_ON(!p); 480 return p; 481 } 482 #endif 483 484 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 485 { 486 mutex_init(&vcpu->mutex); 487 vcpu->cpu = -1; 488 vcpu->kvm = kvm; 489 vcpu->vcpu_id = id; 490 vcpu->pid = NULL; 491 #ifndef __KVM_HAVE_ARCH_WQP 492 rcuwait_init(&vcpu->wait); 493 #endif 494 kvm_async_pf_vcpu_init(vcpu); 495 496 kvm_vcpu_set_in_spin_loop(vcpu, false); 497 kvm_vcpu_set_dy_eligible(vcpu, false); 498 vcpu->preempted = false; 499 vcpu->ready = false; 500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 501 vcpu->last_used_slot = NULL; 502 503 /* Fill the stats id string for the vcpu */ 504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 505 task_pid_nr(current), id); 506 } 507 508 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 509 { 510 kvm_arch_vcpu_destroy(vcpu); 511 kvm_dirty_ring_free(&vcpu->dirty_ring); 512 513 /* 514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 515 * the vcpu->pid pointer, and at destruction time all file descriptors 516 * are already gone. 517 */ 518 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 519 520 free_page((unsigned long)vcpu->run); 521 kmem_cache_free(kvm_vcpu_cache, vcpu); 522 } 523 524 void kvm_destroy_vcpus(struct kvm *kvm) 525 { 526 unsigned long i; 527 struct kvm_vcpu *vcpu; 528 529 kvm_for_each_vcpu(i, vcpu, kvm) { 530 kvm_vcpu_destroy(vcpu); 531 xa_erase(&kvm->vcpu_array, i); 532 } 533 534 atomic_set(&kvm->online_vcpus, 0); 535 } 536 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 537 538 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 539 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 540 { 541 return container_of(mn, struct kvm, mmu_notifier); 542 } 543 544 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 545 546 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 547 unsigned long end); 548 549 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 550 551 struct kvm_hva_range { 552 unsigned long start; 553 unsigned long end; 554 union kvm_mmu_notifier_arg arg; 555 hva_handler_t handler; 556 on_lock_fn_t on_lock; 557 on_unlock_fn_t on_unlock; 558 bool flush_on_ret; 559 bool may_block; 560 }; 561 562 /* 563 * Use a dedicated stub instead of NULL to indicate that there is no callback 564 * function/handler. The compiler technically can't guarantee that a real 565 * function will have a non-zero address, and so it will generate code to 566 * check for !NULL, whereas comparing against a stub will be elided at compile 567 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 568 */ 569 static void kvm_null_fn(void) 570 { 571 572 } 573 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 574 575 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 576 577 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 578 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 579 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 580 node; \ 581 node = interval_tree_iter_next(node, start, last)) \ 582 583 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 584 const struct kvm_hva_range *range) 585 { 586 bool ret = false, locked = false; 587 struct kvm_gfn_range gfn_range; 588 struct kvm_memory_slot *slot; 589 struct kvm_memslots *slots; 590 int i, idx; 591 592 if (WARN_ON_ONCE(range->end <= range->start)) 593 return 0; 594 595 /* A null handler is allowed if and only if on_lock() is provided. */ 596 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 597 IS_KVM_NULL_FN(range->handler))) 598 return 0; 599 600 idx = srcu_read_lock(&kvm->srcu); 601 602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 603 struct interval_tree_node *node; 604 605 slots = __kvm_memslots(kvm, i); 606 kvm_for_each_memslot_in_hva_range(node, slots, 607 range->start, range->end - 1) { 608 unsigned long hva_start, hva_end; 609 610 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 611 hva_start = max(range->start, slot->userspace_addr); 612 hva_end = min(range->end, slot->userspace_addr + 613 (slot->npages << PAGE_SHIFT)); 614 615 /* 616 * To optimize for the likely case where the address 617 * range is covered by zero or one memslots, don't 618 * bother making these conditional (to avoid writes on 619 * the second or later invocation of the handler). 620 */ 621 gfn_range.arg = range->arg; 622 gfn_range.may_block = range->may_block; 623 624 /* 625 * {gfn(page) | page intersects with [hva_start, hva_end)} = 626 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 627 */ 628 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 629 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 630 gfn_range.slot = slot; 631 632 if (!locked) { 633 locked = true; 634 KVM_MMU_LOCK(kvm); 635 if (!IS_KVM_NULL_FN(range->on_lock)) 636 range->on_lock(kvm, range->start, range->end); 637 if (IS_KVM_NULL_FN(range->handler)) 638 break; 639 } 640 ret |= range->handler(kvm, &gfn_range); 641 } 642 } 643 644 if (range->flush_on_ret && ret) 645 kvm_flush_remote_tlbs(kvm); 646 647 if (locked) { 648 KVM_MMU_UNLOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_unlock)) 650 range->on_unlock(kvm); 651 } 652 653 srcu_read_unlock(&kvm->srcu, idx); 654 655 /* The notifiers are averse to booleans. :-( */ 656 return (int)ret; 657 } 658 659 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 660 unsigned long start, 661 unsigned long end, 662 union kvm_mmu_notifier_arg arg, 663 hva_handler_t handler) 664 { 665 struct kvm *kvm = mmu_notifier_to_kvm(mn); 666 const struct kvm_hva_range range = { 667 .start = start, 668 .end = end, 669 .arg = arg, 670 .handler = handler, 671 .on_lock = (void *)kvm_null_fn, 672 .on_unlock = (void *)kvm_null_fn, 673 .flush_on_ret = true, 674 .may_block = false, 675 }; 676 677 return __kvm_handle_hva_range(kvm, &range); 678 } 679 680 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 681 unsigned long start, 682 unsigned long end, 683 hva_handler_t handler) 684 { 685 struct kvm *kvm = mmu_notifier_to_kvm(mn); 686 const struct kvm_hva_range range = { 687 .start = start, 688 .end = end, 689 .handler = handler, 690 .on_lock = (void *)kvm_null_fn, 691 .on_unlock = (void *)kvm_null_fn, 692 .flush_on_ret = false, 693 .may_block = false, 694 }; 695 696 return __kvm_handle_hva_range(kvm, &range); 697 } 698 699 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 700 { 701 /* 702 * Skipping invalid memslots is correct if and only change_pte() is 703 * surrounded by invalidate_range_{start,end}(), which is currently 704 * guaranteed by the primary MMU. If that ever changes, KVM needs to 705 * unmap the memslot instead of skipping the memslot to ensure that KVM 706 * doesn't hold references to the old PFN. 707 */ 708 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 709 710 if (range->slot->flags & KVM_MEMSLOT_INVALID) 711 return false; 712 713 return kvm_set_spte_gfn(kvm, range); 714 } 715 716 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 717 struct mm_struct *mm, 718 unsigned long address, 719 pte_t pte) 720 { 721 struct kvm *kvm = mmu_notifier_to_kvm(mn); 722 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 723 724 trace_kvm_set_spte_hva(address); 725 726 /* 727 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 728 * If mmu_invalidate_in_progress is zero, then no in-progress 729 * invalidations, including this one, found a relevant memslot at 730 * start(); rechecking memslots here is unnecessary. Note, a false 731 * positive (count elevated by a different invalidation) is sub-optimal 732 * but functionally ok. 733 */ 734 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 735 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 736 return; 737 738 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 739 } 740 741 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 742 unsigned long end) 743 { 744 /* 745 * The count increase must become visible at unlock time as no 746 * spte can be established without taking the mmu_lock and 747 * count is also read inside the mmu_lock critical section. 748 */ 749 kvm->mmu_invalidate_in_progress++; 750 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 751 kvm->mmu_invalidate_range_start = start; 752 kvm->mmu_invalidate_range_end = end; 753 } else { 754 /* 755 * Fully tracking multiple concurrent ranges has diminishing 756 * returns. Keep things simple and just find the minimal range 757 * which includes the current and new ranges. As there won't be 758 * enough information to subtract a range after its invalidate 759 * completes, any ranges invalidated concurrently will 760 * accumulate and persist until all outstanding invalidates 761 * complete. 762 */ 763 kvm->mmu_invalidate_range_start = 764 min(kvm->mmu_invalidate_range_start, start); 765 kvm->mmu_invalidate_range_end = 766 max(kvm->mmu_invalidate_range_end, end); 767 } 768 } 769 770 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 771 const struct mmu_notifier_range *range) 772 { 773 struct kvm *kvm = mmu_notifier_to_kvm(mn); 774 const struct kvm_hva_range hva_range = { 775 .start = range->start, 776 .end = range->end, 777 .handler = kvm_unmap_gfn_range, 778 .on_lock = kvm_mmu_invalidate_begin, 779 .on_unlock = kvm_arch_guest_memory_reclaimed, 780 .flush_on_ret = true, 781 .may_block = mmu_notifier_range_blockable(range), 782 }; 783 784 trace_kvm_unmap_hva_range(range->start, range->end); 785 786 /* 787 * Prevent memslot modification between range_start() and range_end() 788 * so that conditionally locking provides the same result in both 789 * functions. Without that guarantee, the mmu_invalidate_in_progress 790 * adjustments will be imbalanced. 791 * 792 * Pairs with the decrement in range_end(). 793 */ 794 spin_lock(&kvm->mn_invalidate_lock); 795 kvm->mn_active_invalidate_count++; 796 spin_unlock(&kvm->mn_invalidate_lock); 797 798 /* 799 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 800 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 801 * each cache's lock. There are relatively few caches in existence at 802 * any given time, and the caches themselves can check for hva overlap, 803 * i.e. don't need to rely on memslot overlap checks for performance. 804 * Because this runs without holding mmu_lock, the pfn caches must use 805 * mn_active_invalidate_count (see above) instead of 806 * mmu_invalidate_in_progress. 807 */ 808 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 809 hva_range.may_block); 810 811 __kvm_handle_hva_range(kvm, &hva_range); 812 813 return 0; 814 } 815 816 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 817 unsigned long end) 818 { 819 /* 820 * This sequence increase will notify the kvm page fault that 821 * the page that is going to be mapped in the spte could have 822 * been freed. 823 */ 824 kvm->mmu_invalidate_seq++; 825 smp_wmb(); 826 /* 827 * The above sequence increase must be visible before the 828 * below count decrease, which is ensured by the smp_wmb above 829 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 830 */ 831 kvm->mmu_invalidate_in_progress--; 832 } 833 834 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 835 const struct mmu_notifier_range *range) 836 { 837 struct kvm *kvm = mmu_notifier_to_kvm(mn); 838 const struct kvm_hva_range hva_range = { 839 .start = range->start, 840 .end = range->end, 841 .handler = (void *)kvm_null_fn, 842 .on_lock = kvm_mmu_invalidate_end, 843 .on_unlock = (void *)kvm_null_fn, 844 .flush_on_ret = false, 845 .may_block = mmu_notifier_range_blockable(range), 846 }; 847 bool wake; 848 849 __kvm_handle_hva_range(kvm, &hva_range); 850 851 /* Pairs with the increment in range_start(). */ 852 spin_lock(&kvm->mn_invalidate_lock); 853 wake = (--kvm->mn_active_invalidate_count == 0); 854 spin_unlock(&kvm->mn_invalidate_lock); 855 856 /* 857 * There can only be one waiter, since the wait happens under 858 * slots_lock. 859 */ 860 if (wake) 861 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 862 863 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 864 } 865 866 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 867 struct mm_struct *mm, 868 unsigned long start, 869 unsigned long end) 870 { 871 trace_kvm_age_hva(start, end); 872 873 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 874 kvm_age_gfn); 875 } 876 877 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 878 struct mm_struct *mm, 879 unsigned long start, 880 unsigned long end) 881 { 882 trace_kvm_age_hva(start, end); 883 884 /* 885 * Even though we do not flush TLB, this will still adversely 886 * affect performance on pre-Haswell Intel EPT, where there is 887 * no EPT Access Bit to clear so that we have to tear down EPT 888 * tables instead. If we find this unacceptable, we can always 889 * add a parameter to kvm_age_hva so that it effectively doesn't 890 * do anything on clear_young. 891 * 892 * Also note that currently we never issue secondary TLB flushes 893 * from clear_young, leaving this job up to the regular system 894 * cadence. If we find this inaccurate, we might come up with a 895 * more sophisticated heuristic later. 896 */ 897 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 898 } 899 900 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 901 struct mm_struct *mm, 902 unsigned long address) 903 { 904 trace_kvm_test_age_hva(address); 905 906 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 907 kvm_test_age_gfn); 908 } 909 910 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 911 struct mm_struct *mm) 912 { 913 struct kvm *kvm = mmu_notifier_to_kvm(mn); 914 int idx; 915 916 idx = srcu_read_lock(&kvm->srcu); 917 kvm_flush_shadow_all(kvm); 918 srcu_read_unlock(&kvm->srcu, idx); 919 } 920 921 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 922 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 923 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 924 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 925 .clear_young = kvm_mmu_notifier_clear_young, 926 .test_young = kvm_mmu_notifier_test_young, 927 .change_pte = kvm_mmu_notifier_change_pte, 928 .release = kvm_mmu_notifier_release, 929 }; 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 934 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 935 } 936 937 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 938 939 static int kvm_init_mmu_notifier(struct kvm *kvm) 940 { 941 return 0; 942 } 943 944 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 945 946 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 947 static int kvm_pm_notifier_call(struct notifier_block *bl, 948 unsigned long state, 949 void *unused) 950 { 951 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 952 953 return kvm_arch_pm_notifier(kvm, state); 954 } 955 956 static void kvm_init_pm_notifier(struct kvm *kvm) 957 { 958 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 959 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 960 kvm->pm_notifier.priority = INT_MAX; 961 register_pm_notifier(&kvm->pm_notifier); 962 } 963 964 static void kvm_destroy_pm_notifier(struct kvm *kvm) 965 { 966 unregister_pm_notifier(&kvm->pm_notifier); 967 } 968 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 static void kvm_init_pm_notifier(struct kvm *kvm) 970 { 971 } 972 973 static void kvm_destroy_pm_notifier(struct kvm *kvm) 974 { 975 } 976 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 977 978 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 979 { 980 if (!memslot->dirty_bitmap) 981 return; 982 983 kvfree(memslot->dirty_bitmap); 984 memslot->dirty_bitmap = NULL; 985 } 986 987 /* This does not remove the slot from struct kvm_memslots data structures */ 988 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 989 { 990 kvm_destroy_dirty_bitmap(slot); 991 992 kvm_arch_free_memslot(kvm, slot); 993 994 kfree(slot); 995 } 996 997 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 998 { 999 struct hlist_node *idnode; 1000 struct kvm_memory_slot *memslot; 1001 int bkt; 1002 1003 /* 1004 * The same memslot objects live in both active and inactive sets, 1005 * arbitrarily free using index '1' so the second invocation of this 1006 * function isn't operating over a structure with dangling pointers 1007 * (even though this function isn't actually touching them). 1008 */ 1009 if (!slots->node_idx) 1010 return; 1011 1012 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1013 kvm_free_memslot(kvm, memslot); 1014 } 1015 1016 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1017 { 1018 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1019 case KVM_STATS_TYPE_INSTANT: 1020 return 0444; 1021 case KVM_STATS_TYPE_CUMULATIVE: 1022 case KVM_STATS_TYPE_PEAK: 1023 default: 1024 return 0644; 1025 } 1026 } 1027 1028 1029 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1030 { 1031 int i; 1032 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1033 kvm_vcpu_stats_header.num_desc; 1034 1035 if (IS_ERR(kvm->debugfs_dentry)) 1036 return; 1037 1038 debugfs_remove_recursive(kvm->debugfs_dentry); 1039 1040 if (kvm->debugfs_stat_data) { 1041 for (i = 0; i < kvm_debugfs_num_entries; i++) 1042 kfree(kvm->debugfs_stat_data[i]); 1043 kfree(kvm->debugfs_stat_data); 1044 } 1045 } 1046 1047 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1048 { 1049 static DEFINE_MUTEX(kvm_debugfs_lock); 1050 struct dentry *dent; 1051 char dir_name[ITOA_MAX_LEN * 2]; 1052 struct kvm_stat_data *stat_data; 1053 const struct _kvm_stats_desc *pdesc; 1054 int i, ret = -ENOMEM; 1055 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1056 kvm_vcpu_stats_header.num_desc; 1057 1058 if (!debugfs_initialized()) 1059 return 0; 1060 1061 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1062 mutex_lock(&kvm_debugfs_lock); 1063 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1064 if (dent) { 1065 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1066 dput(dent); 1067 mutex_unlock(&kvm_debugfs_lock); 1068 return 0; 1069 } 1070 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1071 mutex_unlock(&kvm_debugfs_lock); 1072 if (IS_ERR(dent)) 1073 return 0; 1074 1075 kvm->debugfs_dentry = dent; 1076 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1077 sizeof(*kvm->debugfs_stat_data), 1078 GFP_KERNEL_ACCOUNT); 1079 if (!kvm->debugfs_stat_data) 1080 goto out_err; 1081 1082 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1083 pdesc = &kvm_vm_stats_desc[i]; 1084 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1085 if (!stat_data) 1086 goto out_err; 1087 1088 stat_data->kvm = kvm; 1089 stat_data->desc = pdesc; 1090 stat_data->kind = KVM_STAT_VM; 1091 kvm->debugfs_stat_data[i] = stat_data; 1092 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1093 kvm->debugfs_dentry, stat_data, 1094 &stat_fops_per_vm); 1095 } 1096 1097 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1098 pdesc = &kvm_vcpu_stats_desc[i]; 1099 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1100 if (!stat_data) 1101 goto out_err; 1102 1103 stat_data->kvm = kvm; 1104 stat_data->desc = pdesc; 1105 stat_data->kind = KVM_STAT_VCPU; 1106 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1107 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1108 kvm->debugfs_dentry, stat_data, 1109 &stat_fops_per_vm); 1110 } 1111 1112 ret = kvm_arch_create_vm_debugfs(kvm); 1113 if (ret) 1114 goto out_err; 1115 1116 return 0; 1117 out_err: 1118 kvm_destroy_vm_debugfs(kvm); 1119 return ret; 1120 } 1121 1122 /* 1123 * Called after the VM is otherwise initialized, but just before adding it to 1124 * the vm_list. 1125 */ 1126 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1127 { 1128 return 0; 1129 } 1130 1131 /* 1132 * Called just after removing the VM from the vm_list, but before doing any 1133 * other destruction. 1134 */ 1135 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1136 { 1137 } 1138 1139 /* 1140 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1141 * be setup already, so we can create arch-specific debugfs entries under it. 1142 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1143 * a per-arch destroy interface is not needed. 1144 */ 1145 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1146 { 1147 return 0; 1148 } 1149 1150 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1151 { 1152 struct kvm *kvm = kvm_arch_alloc_vm(); 1153 struct kvm_memslots *slots; 1154 int r = -ENOMEM; 1155 int i, j; 1156 1157 if (!kvm) 1158 return ERR_PTR(-ENOMEM); 1159 1160 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1161 __module_get(kvm_chardev_ops.owner); 1162 1163 KVM_MMU_LOCK_INIT(kvm); 1164 mmgrab(current->mm); 1165 kvm->mm = current->mm; 1166 kvm_eventfd_init(kvm); 1167 mutex_init(&kvm->lock); 1168 mutex_init(&kvm->irq_lock); 1169 mutex_init(&kvm->slots_lock); 1170 mutex_init(&kvm->slots_arch_lock); 1171 spin_lock_init(&kvm->mn_invalidate_lock); 1172 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1173 xa_init(&kvm->vcpu_array); 1174 1175 INIT_LIST_HEAD(&kvm->gpc_list); 1176 spin_lock_init(&kvm->gpc_lock); 1177 1178 INIT_LIST_HEAD(&kvm->devices); 1179 kvm->max_vcpus = KVM_MAX_VCPUS; 1180 1181 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1182 1183 /* 1184 * Force subsequent debugfs file creations to fail if the VM directory 1185 * is not created (by kvm_create_vm_debugfs()). 1186 */ 1187 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1188 1189 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1190 task_pid_nr(current)); 1191 1192 if (init_srcu_struct(&kvm->srcu)) 1193 goto out_err_no_srcu; 1194 if (init_srcu_struct(&kvm->irq_srcu)) 1195 goto out_err_no_irq_srcu; 1196 1197 refcount_set(&kvm->users_count, 1); 1198 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1199 for (j = 0; j < 2; j++) { 1200 slots = &kvm->__memslots[i][j]; 1201 1202 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1203 slots->hva_tree = RB_ROOT_CACHED; 1204 slots->gfn_tree = RB_ROOT; 1205 hash_init(slots->id_hash); 1206 slots->node_idx = j; 1207 1208 /* Generations must be different for each address space. */ 1209 slots->generation = i; 1210 } 1211 1212 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1213 } 1214 1215 for (i = 0; i < KVM_NR_BUSES; i++) { 1216 rcu_assign_pointer(kvm->buses[i], 1217 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1218 if (!kvm->buses[i]) 1219 goto out_err_no_arch_destroy_vm; 1220 } 1221 1222 r = kvm_arch_init_vm(kvm, type); 1223 if (r) 1224 goto out_err_no_arch_destroy_vm; 1225 1226 r = hardware_enable_all(); 1227 if (r) 1228 goto out_err_no_disable; 1229 1230 #ifdef CONFIG_HAVE_KVM_IRQFD 1231 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1232 #endif 1233 1234 r = kvm_init_mmu_notifier(kvm); 1235 if (r) 1236 goto out_err_no_mmu_notifier; 1237 1238 r = kvm_coalesced_mmio_init(kvm); 1239 if (r < 0) 1240 goto out_no_coalesced_mmio; 1241 1242 r = kvm_create_vm_debugfs(kvm, fdname); 1243 if (r) 1244 goto out_err_no_debugfs; 1245 1246 r = kvm_arch_post_init_vm(kvm); 1247 if (r) 1248 goto out_err; 1249 1250 mutex_lock(&kvm_lock); 1251 list_add(&kvm->vm_list, &vm_list); 1252 mutex_unlock(&kvm_lock); 1253 1254 preempt_notifier_inc(); 1255 kvm_init_pm_notifier(kvm); 1256 1257 return kvm; 1258 1259 out_err: 1260 kvm_destroy_vm_debugfs(kvm); 1261 out_err_no_debugfs: 1262 kvm_coalesced_mmio_free(kvm); 1263 out_no_coalesced_mmio: 1264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1265 if (kvm->mmu_notifier.ops) 1266 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1267 #endif 1268 out_err_no_mmu_notifier: 1269 hardware_disable_all(); 1270 out_err_no_disable: 1271 kvm_arch_destroy_vm(kvm); 1272 out_err_no_arch_destroy_vm: 1273 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1274 for (i = 0; i < KVM_NR_BUSES; i++) 1275 kfree(kvm_get_bus(kvm, i)); 1276 cleanup_srcu_struct(&kvm->irq_srcu); 1277 out_err_no_irq_srcu: 1278 cleanup_srcu_struct(&kvm->srcu); 1279 out_err_no_srcu: 1280 kvm_arch_free_vm(kvm); 1281 mmdrop(current->mm); 1282 module_put(kvm_chardev_ops.owner); 1283 return ERR_PTR(r); 1284 } 1285 1286 static void kvm_destroy_devices(struct kvm *kvm) 1287 { 1288 struct kvm_device *dev, *tmp; 1289 1290 /* 1291 * We do not need to take the kvm->lock here, because nobody else 1292 * has a reference to the struct kvm at this point and therefore 1293 * cannot access the devices list anyhow. 1294 */ 1295 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1296 list_del(&dev->vm_node); 1297 dev->ops->destroy(dev); 1298 } 1299 } 1300 1301 static void kvm_destroy_vm(struct kvm *kvm) 1302 { 1303 int i; 1304 struct mm_struct *mm = kvm->mm; 1305 1306 kvm_destroy_pm_notifier(kvm); 1307 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1308 kvm_destroy_vm_debugfs(kvm); 1309 kvm_arch_sync_events(kvm); 1310 mutex_lock(&kvm_lock); 1311 list_del(&kvm->vm_list); 1312 mutex_unlock(&kvm_lock); 1313 kvm_arch_pre_destroy_vm(kvm); 1314 1315 kvm_free_irq_routing(kvm); 1316 for (i = 0; i < KVM_NR_BUSES; i++) { 1317 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1318 1319 if (bus) 1320 kvm_io_bus_destroy(bus); 1321 kvm->buses[i] = NULL; 1322 } 1323 kvm_coalesced_mmio_free(kvm); 1324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1325 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1326 /* 1327 * At this point, pending calls to invalidate_range_start() 1328 * have completed but no more MMU notifiers will run, so 1329 * mn_active_invalidate_count may remain unbalanced. 1330 * No threads can be waiting in kvm_swap_active_memslots() as the 1331 * last reference on KVM has been dropped, but freeing 1332 * memslots would deadlock without this manual intervention. 1333 */ 1334 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1335 kvm->mn_active_invalidate_count = 0; 1336 #else 1337 kvm_flush_shadow_all(kvm); 1338 #endif 1339 kvm_arch_destroy_vm(kvm); 1340 kvm_destroy_devices(kvm); 1341 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1342 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1343 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1344 } 1345 cleanup_srcu_struct(&kvm->irq_srcu); 1346 cleanup_srcu_struct(&kvm->srcu); 1347 kvm_arch_free_vm(kvm); 1348 preempt_notifier_dec(); 1349 hardware_disable_all(); 1350 mmdrop(mm); 1351 module_put(kvm_chardev_ops.owner); 1352 } 1353 1354 void kvm_get_kvm(struct kvm *kvm) 1355 { 1356 refcount_inc(&kvm->users_count); 1357 } 1358 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1359 1360 /* 1361 * Make sure the vm is not during destruction, which is a safe version of 1362 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1363 */ 1364 bool kvm_get_kvm_safe(struct kvm *kvm) 1365 { 1366 return refcount_inc_not_zero(&kvm->users_count); 1367 } 1368 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1369 1370 void kvm_put_kvm(struct kvm *kvm) 1371 { 1372 if (refcount_dec_and_test(&kvm->users_count)) 1373 kvm_destroy_vm(kvm); 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1376 1377 /* 1378 * Used to put a reference that was taken on behalf of an object associated 1379 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1380 * of the new file descriptor fails and the reference cannot be transferred to 1381 * its final owner. In such cases, the caller is still actively using @kvm and 1382 * will fail miserably if the refcount unexpectedly hits zero. 1383 */ 1384 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1385 { 1386 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1389 1390 static int kvm_vm_release(struct inode *inode, struct file *filp) 1391 { 1392 struct kvm *kvm = filp->private_data; 1393 1394 kvm_irqfd_release(kvm); 1395 1396 kvm_put_kvm(kvm); 1397 return 0; 1398 } 1399 1400 /* 1401 * Allocation size is twice as large as the actual dirty bitmap size. 1402 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1403 */ 1404 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1405 { 1406 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1407 1408 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1409 if (!memslot->dirty_bitmap) 1410 return -ENOMEM; 1411 1412 return 0; 1413 } 1414 1415 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1416 { 1417 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1418 int node_idx_inactive = active->node_idx ^ 1; 1419 1420 return &kvm->__memslots[as_id][node_idx_inactive]; 1421 } 1422 1423 /* 1424 * Helper to get the address space ID when one of memslot pointers may be NULL. 1425 * This also serves as a sanity that at least one of the pointers is non-NULL, 1426 * and that their address space IDs don't diverge. 1427 */ 1428 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1429 struct kvm_memory_slot *b) 1430 { 1431 if (WARN_ON_ONCE(!a && !b)) 1432 return 0; 1433 1434 if (!a) 1435 return b->as_id; 1436 if (!b) 1437 return a->as_id; 1438 1439 WARN_ON_ONCE(a->as_id != b->as_id); 1440 return a->as_id; 1441 } 1442 1443 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1444 struct kvm_memory_slot *slot) 1445 { 1446 struct rb_root *gfn_tree = &slots->gfn_tree; 1447 struct rb_node **node, *parent; 1448 int idx = slots->node_idx; 1449 1450 parent = NULL; 1451 for (node = &gfn_tree->rb_node; *node; ) { 1452 struct kvm_memory_slot *tmp; 1453 1454 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1455 parent = *node; 1456 if (slot->base_gfn < tmp->base_gfn) 1457 node = &(*node)->rb_left; 1458 else if (slot->base_gfn > tmp->base_gfn) 1459 node = &(*node)->rb_right; 1460 else 1461 BUG(); 1462 } 1463 1464 rb_link_node(&slot->gfn_node[idx], parent, node); 1465 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1466 } 1467 1468 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1469 struct kvm_memory_slot *slot) 1470 { 1471 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1472 } 1473 1474 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1475 struct kvm_memory_slot *old, 1476 struct kvm_memory_slot *new) 1477 { 1478 int idx = slots->node_idx; 1479 1480 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1481 1482 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1483 &slots->gfn_tree); 1484 } 1485 1486 /* 1487 * Replace @old with @new in the inactive memslots. 1488 * 1489 * With NULL @old this simply adds @new. 1490 * With NULL @new this simply removes @old. 1491 * 1492 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1493 * appropriately. 1494 */ 1495 static void kvm_replace_memslot(struct kvm *kvm, 1496 struct kvm_memory_slot *old, 1497 struct kvm_memory_slot *new) 1498 { 1499 int as_id = kvm_memslots_get_as_id(old, new); 1500 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1501 int idx = slots->node_idx; 1502 1503 if (old) { 1504 hash_del(&old->id_node[idx]); 1505 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1506 1507 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1508 atomic_long_set(&slots->last_used_slot, (long)new); 1509 1510 if (!new) { 1511 kvm_erase_gfn_node(slots, old); 1512 return; 1513 } 1514 } 1515 1516 /* 1517 * Initialize @new's hva range. Do this even when replacing an @old 1518 * slot, kvm_copy_memslot() deliberately does not touch node data. 1519 */ 1520 new->hva_node[idx].start = new->userspace_addr; 1521 new->hva_node[idx].last = new->userspace_addr + 1522 (new->npages << PAGE_SHIFT) - 1; 1523 1524 /* 1525 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1526 * hva_node needs to be swapped with remove+insert even though hva can't 1527 * change when replacing an existing slot. 1528 */ 1529 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1530 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1531 1532 /* 1533 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1534 * switch the node in the gfn tree instead of removing the old and 1535 * inserting the new as two separate operations. Replacement is a 1536 * single O(1) operation versus two O(log(n)) operations for 1537 * remove+insert. 1538 */ 1539 if (old && old->base_gfn == new->base_gfn) { 1540 kvm_replace_gfn_node(slots, old, new); 1541 } else { 1542 if (old) 1543 kvm_erase_gfn_node(slots, old); 1544 kvm_insert_gfn_node(slots, new); 1545 } 1546 } 1547 1548 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1549 { 1550 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1551 1552 #ifdef __KVM_HAVE_READONLY_MEM 1553 valid_flags |= KVM_MEM_READONLY; 1554 #endif 1555 1556 if (mem->flags & ~valid_flags) 1557 return -EINVAL; 1558 1559 return 0; 1560 } 1561 1562 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1563 { 1564 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1565 1566 /* Grab the generation from the activate memslots. */ 1567 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1568 1569 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1570 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1571 1572 /* 1573 * Do not store the new memslots while there are invalidations in 1574 * progress, otherwise the locking in invalidate_range_start and 1575 * invalidate_range_end will be unbalanced. 1576 */ 1577 spin_lock(&kvm->mn_invalidate_lock); 1578 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1579 while (kvm->mn_active_invalidate_count) { 1580 set_current_state(TASK_UNINTERRUPTIBLE); 1581 spin_unlock(&kvm->mn_invalidate_lock); 1582 schedule(); 1583 spin_lock(&kvm->mn_invalidate_lock); 1584 } 1585 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1586 rcu_assign_pointer(kvm->memslots[as_id], slots); 1587 spin_unlock(&kvm->mn_invalidate_lock); 1588 1589 /* 1590 * Acquired in kvm_set_memslot. Must be released before synchronize 1591 * SRCU below in order to avoid deadlock with another thread 1592 * acquiring the slots_arch_lock in an srcu critical section. 1593 */ 1594 mutex_unlock(&kvm->slots_arch_lock); 1595 1596 synchronize_srcu_expedited(&kvm->srcu); 1597 1598 /* 1599 * Increment the new memslot generation a second time, dropping the 1600 * update in-progress flag and incrementing the generation based on 1601 * the number of address spaces. This provides a unique and easily 1602 * identifiable generation number while the memslots are in flux. 1603 */ 1604 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1605 1606 /* 1607 * Generations must be unique even across address spaces. We do not need 1608 * a global counter for that, instead the generation space is evenly split 1609 * across address spaces. For example, with two address spaces, address 1610 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1611 * use generations 1, 3, 5, ... 1612 */ 1613 gen += KVM_ADDRESS_SPACE_NUM; 1614 1615 kvm_arch_memslots_updated(kvm, gen); 1616 1617 slots->generation = gen; 1618 } 1619 1620 static int kvm_prepare_memory_region(struct kvm *kvm, 1621 const struct kvm_memory_slot *old, 1622 struct kvm_memory_slot *new, 1623 enum kvm_mr_change change) 1624 { 1625 int r; 1626 1627 /* 1628 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1629 * will be freed on "commit". If logging is enabled in both old and 1630 * new, reuse the existing bitmap. If logging is enabled only in the 1631 * new and KVM isn't using a ring buffer, allocate and initialize a 1632 * new bitmap. 1633 */ 1634 if (change != KVM_MR_DELETE) { 1635 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1636 new->dirty_bitmap = NULL; 1637 else if (old && old->dirty_bitmap) 1638 new->dirty_bitmap = old->dirty_bitmap; 1639 else if (kvm_use_dirty_bitmap(kvm)) { 1640 r = kvm_alloc_dirty_bitmap(new); 1641 if (r) 1642 return r; 1643 1644 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1645 bitmap_set(new->dirty_bitmap, 0, new->npages); 1646 } 1647 } 1648 1649 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1650 1651 /* Free the bitmap on failure if it was allocated above. */ 1652 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1653 kvm_destroy_dirty_bitmap(new); 1654 1655 return r; 1656 } 1657 1658 static void kvm_commit_memory_region(struct kvm *kvm, 1659 struct kvm_memory_slot *old, 1660 const struct kvm_memory_slot *new, 1661 enum kvm_mr_change change) 1662 { 1663 int old_flags = old ? old->flags : 0; 1664 int new_flags = new ? new->flags : 0; 1665 /* 1666 * Update the total number of memslot pages before calling the arch 1667 * hook so that architectures can consume the result directly. 1668 */ 1669 if (change == KVM_MR_DELETE) 1670 kvm->nr_memslot_pages -= old->npages; 1671 else if (change == KVM_MR_CREATE) 1672 kvm->nr_memslot_pages += new->npages; 1673 1674 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1675 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1676 atomic_set(&kvm->nr_memslots_dirty_logging, 1677 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1678 } 1679 1680 kvm_arch_commit_memory_region(kvm, old, new, change); 1681 1682 switch (change) { 1683 case KVM_MR_CREATE: 1684 /* Nothing more to do. */ 1685 break; 1686 case KVM_MR_DELETE: 1687 /* Free the old memslot and all its metadata. */ 1688 kvm_free_memslot(kvm, old); 1689 break; 1690 case KVM_MR_MOVE: 1691 case KVM_MR_FLAGS_ONLY: 1692 /* 1693 * Free the dirty bitmap as needed; the below check encompasses 1694 * both the flags and whether a ring buffer is being used) 1695 */ 1696 if (old->dirty_bitmap && !new->dirty_bitmap) 1697 kvm_destroy_dirty_bitmap(old); 1698 1699 /* 1700 * The final quirk. Free the detached, old slot, but only its 1701 * memory, not any metadata. Metadata, including arch specific 1702 * data, may be reused by @new. 1703 */ 1704 kfree(old); 1705 break; 1706 default: 1707 BUG(); 1708 } 1709 } 1710 1711 /* 1712 * Activate @new, which must be installed in the inactive slots by the caller, 1713 * by swapping the active slots and then propagating @new to @old once @old is 1714 * unreachable and can be safely modified. 1715 * 1716 * With NULL @old this simply adds @new to @active (while swapping the sets). 1717 * With NULL @new this simply removes @old from @active and frees it 1718 * (while also swapping the sets). 1719 */ 1720 static void kvm_activate_memslot(struct kvm *kvm, 1721 struct kvm_memory_slot *old, 1722 struct kvm_memory_slot *new) 1723 { 1724 int as_id = kvm_memslots_get_as_id(old, new); 1725 1726 kvm_swap_active_memslots(kvm, as_id); 1727 1728 /* Propagate the new memslot to the now inactive memslots. */ 1729 kvm_replace_memslot(kvm, old, new); 1730 } 1731 1732 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1733 const struct kvm_memory_slot *src) 1734 { 1735 dest->base_gfn = src->base_gfn; 1736 dest->npages = src->npages; 1737 dest->dirty_bitmap = src->dirty_bitmap; 1738 dest->arch = src->arch; 1739 dest->userspace_addr = src->userspace_addr; 1740 dest->flags = src->flags; 1741 dest->id = src->id; 1742 dest->as_id = src->as_id; 1743 } 1744 1745 static void kvm_invalidate_memslot(struct kvm *kvm, 1746 struct kvm_memory_slot *old, 1747 struct kvm_memory_slot *invalid_slot) 1748 { 1749 /* 1750 * Mark the current slot INVALID. As with all memslot modifications, 1751 * this must be done on an unreachable slot to avoid modifying the 1752 * current slot in the active tree. 1753 */ 1754 kvm_copy_memslot(invalid_slot, old); 1755 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1756 kvm_replace_memslot(kvm, old, invalid_slot); 1757 1758 /* 1759 * Activate the slot that is now marked INVALID, but don't propagate 1760 * the slot to the now inactive slots. The slot is either going to be 1761 * deleted or recreated as a new slot. 1762 */ 1763 kvm_swap_active_memslots(kvm, old->as_id); 1764 1765 /* 1766 * From this point no new shadow pages pointing to a deleted, or moved, 1767 * memslot will be created. Validation of sp->gfn happens in: 1768 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1769 * - kvm_is_visible_gfn (mmu_check_root) 1770 */ 1771 kvm_arch_flush_shadow_memslot(kvm, old); 1772 kvm_arch_guest_memory_reclaimed(kvm); 1773 1774 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1775 mutex_lock(&kvm->slots_arch_lock); 1776 1777 /* 1778 * Copy the arch-specific field of the newly-installed slot back to the 1779 * old slot as the arch data could have changed between releasing 1780 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1781 * above. Writers are required to retrieve memslots *after* acquiring 1782 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1783 */ 1784 old->arch = invalid_slot->arch; 1785 } 1786 1787 static void kvm_create_memslot(struct kvm *kvm, 1788 struct kvm_memory_slot *new) 1789 { 1790 /* Add the new memslot to the inactive set and activate. */ 1791 kvm_replace_memslot(kvm, NULL, new); 1792 kvm_activate_memslot(kvm, NULL, new); 1793 } 1794 1795 static void kvm_delete_memslot(struct kvm *kvm, 1796 struct kvm_memory_slot *old, 1797 struct kvm_memory_slot *invalid_slot) 1798 { 1799 /* 1800 * Remove the old memslot (in the inactive memslots) by passing NULL as 1801 * the "new" slot, and for the invalid version in the active slots. 1802 */ 1803 kvm_replace_memslot(kvm, old, NULL); 1804 kvm_activate_memslot(kvm, invalid_slot, NULL); 1805 } 1806 1807 static void kvm_move_memslot(struct kvm *kvm, 1808 struct kvm_memory_slot *old, 1809 struct kvm_memory_slot *new, 1810 struct kvm_memory_slot *invalid_slot) 1811 { 1812 /* 1813 * Replace the old memslot in the inactive slots, and then swap slots 1814 * and replace the current INVALID with the new as well. 1815 */ 1816 kvm_replace_memslot(kvm, old, new); 1817 kvm_activate_memslot(kvm, invalid_slot, new); 1818 } 1819 1820 static void kvm_update_flags_memslot(struct kvm *kvm, 1821 struct kvm_memory_slot *old, 1822 struct kvm_memory_slot *new) 1823 { 1824 /* 1825 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1826 * an intermediate step. Instead, the old memslot is simply replaced 1827 * with a new, updated copy in both memslot sets. 1828 */ 1829 kvm_replace_memslot(kvm, old, new); 1830 kvm_activate_memslot(kvm, old, new); 1831 } 1832 1833 static int kvm_set_memslot(struct kvm *kvm, 1834 struct kvm_memory_slot *old, 1835 struct kvm_memory_slot *new, 1836 enum kvm_mr_change change) 1837 { 1838 struct kvm_memory_slot *invalid_slot; 1839 int r; 1840 1841 /* 1842 * Released in kvm_swap_active_memslots(). 1843 * 1844 * Must be held from before the current memslots are copied until after 1845 * the new memslots are installed with rcu_assign_pointer, then 1846 * released before the synchronize srcu in kvm_swap_active_memslots(). 1847 * 1848 * When modifying memslots outside of the slots_lock, must be held 1849 * before reading the pointer to the current memslots until after all 1850 * changes to those memslots are complete. 1851 * 1852 * These rules ensure that installing new memslots does not lose 1853 * changes made to the previous memslots. 1854 */ 1855 mutex_lock(&kvm->slots_arch_lock); 1856 1857 /* 1858 * Invalidate the old slot if it's being deleted or moved. This is 1859 * done prior to actually deleting/moving the memslot to allow vCPUs to 1860 * continue running by ensuring there are no mappings or shadow pages 1861 * for the memslot when it is deleted/moved. Without pre-invalidation 1862 * (and without a lock), a window would exist between effecting the 1863 * delete/move and committing the changes in arch code where KVM or a 1864 * guest could access a non-existent memslot. 1865 * 1866 * Modifications are done on a temporary, unreachable slot. The old 1867 * slot needs to be preserved in case a later step fails and the 1868 * invalidation needs to be reverted. 1869 */ 1870 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1871 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1872 if (!invalid_slot) { 1873 mutex_unlock(&kvm->slots_arch_lock); 1874 return -ENOMEM; 1875 } 1876 kvm_invalidate_memslot(kvm, old, invalid_slot); 1877 } 1878 1879 r = kvm_prepare_memory_region(kvm, old, new, change); 1880 if (r) { 1881 /* 1882 * For DELETE/MOVE, revert the above INVALID change. No 1883 * modifications required since the original slot was preserved 1884 * in the inactive slots. Changing the active memslots also 1885 * release slots_arch_lock. 1886 */ 1887 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1888 kvm_activate_memslot(kvm, invalid_slot, old); 1889 kfree(invalid_slot); 1890 } else { 1891 mutex_unlock(&kvm->slots_arch_lock); 1892 } 1893 return r; 1894 } 1895 1896 /* 1897 * For DELETE and MOVE, the working slot is now active as the INVALID 1898 * version of the old slot. MOVE is particularly special as it reuses 1899 * the old slot and returns a copy of the old slot (in working_slot). 1900 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1901 * old slot is detached but otherwise preserved. 1902 */ 1903 if (change == KVM_MR_CREATE) 1904 kvm_create_memslot(kvm, new); 1905 else if (change == KVM_MR_DELETE) 1906 kvm_delete_memslot(kvm, old, invalid_slot); 1907 else if (change == KVM_MR_MOVE) 1908 kvm_move_memslot(kvm, old, new, invalid_slot); 1909 else if (change == KVM_MR_FLAGS_ONLY) 1910 kvm_update_flags_memslot(kvm, old, new); 1911 else 1912 BUG(); 1913 1914 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1915 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1916 kfree(invalid_slot); 1917 1918 /* 1919 * No need to refresh new->arch, changes after dropping slots_arch_lock 1920 * will directly hit the final, active memslot. Architectures are 1921 * responsible for knowing that new->arch may be stale. 1922 */ 1923 kvm_commit_memory_region(kvm, old, new, change); 1924 1925 return 0; 1926 } 1927 1928 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1929 gfn_t start, gfn_t end) 1930 { 1931 struct kvm_memslot_iter iter; 1932 1933 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1934 if (iter.slot->id != id) 1935 return true; 1936 } 1937 1938 return false; 1939 } 1940 1941 /* 1942 * Allocate some memory and give it an address in the guest physical address 1943 * space. 1944 * 1945 * Discontiguous memory is allowed, mostly for framebuffers. 1946 * 1947 * Must be called holding kvm->slots_lock for write. 1948 */ 1949 int __kvm_set_memory_region(struct kvm *kvm, 1950 const struct kvm_userspace_memory_region *mem) 1951 { 1952 struct kvm_memory_slot *old, *new; 1953 struct kvm_memslots *slots; 1954 enum kvm_mr_change change; 1955 unsigned long npages; 1956 gfn_t base_gfn; 1957 int as_id, id; 1958 int r; 1959 1960 r = check_memory_region_flags(mem); 1961 if (r) 1962 return r; 1963 1964 as_id = mem->slot >> 16; 1965 id = (u16)mem->slot; 1966 1967 /* General sanity checks */ 1968 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1969 (mem->memory_size != (unsigned long)mem->memory_size)) 1970 return -EINVAL; 1971 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1972 return -EINVAL; 1973 /* We can read the guest memory with __xxx_user() later on. */ 1974 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1975 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1976 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1977 mem->memory_size)) 1978 return -EINVAL; 1979 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1980 return -EINVAL; 1981 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1982 return -EINVAL; 1983 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1984 return -EINVAL; 1985 1986 slots = __kvm_memslots(kvm, as_id); 1987 1988 /* 1989 * Note, the old memslot (and the pointer itself!) may be invalidated 1990 * and/or destroyed by kvm_set_memslot(). 1991 */ 1992 old = id_to_memslot(slots, id); 1993 1994 if (!mem->memory_size) { 1995 if (!old || !old->npages) 1996 return -EINVAL; 1997 1998 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1999 return -EIO; 2000 2001 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2002 } 2003 2004 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2005 npages = (mem->memory_size >> PAGE_SHIFT); 2006 2007 if (!old || !old->npages) { 2008 change = KVM_MR_CREATE; 2009 2010 /* 2011 * To simplify KVM internals, the total number of pages across 2012 * all memslots must fit in an unsigned long. 2013 */ 2014 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2015 return -EINVAL; 2016 } else { /* Modify an existing slot. */ 2017 if ((mem->userspace_addr != old->userspace_addr) || 2018 (npages != old->npages) || 2019 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2020 return -EINVAL; 2021 2022 if (base_gfn != old->base_gfn) 2023 change = KVM_MR_MOVE; 2024 else if (mem->flags != old->flags) 2025 change = KVM_MR_FLAGS_ONLY; 2026 else /* Nothing to change. */ 2027 return 0; 2028 } 2029 2030 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2031 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2032 return -EEXIST; 2033 2034 /* Allocate a slot that will persist in the memslot. */ 2035 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2036 if (!new) 2037 return -ENOMEM; 2038 2039 new->as_id = as_id; 2040 new->id = id; 2041 new->base_gfn = base_gfn; 2042 new->npages = npages; 2043 new->flags = mem->flags; 2044 new->userspace_addr = mem->userspace_addr; 2045 2046 r = kvm_set_memslot(kvm, old, new, change); 2047 if (r) 2048 kfree(new); 2049 return r; 2050 } 2051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2052 2053 int kvm_set_memory_region(struct kvm *kvm, 2054 const struct kvm_userspace_memory_region *mem) 2055 { 2056 int r; 2057 2058 mutex_lock(&kvm->slots_lock); 2059 r = __kvm_set_memory_region(kvm, mem); 2060 mutex_unlock(&kvm->slots_lock); 2061 return r; 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2064 2065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2066 struct kvm_userspace_memory_region *mem) 2067 { 2068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2069 return -EINVAL; 2070 2071 return kvm_set_memory_region(kvm, mem); 2072 } 2073 2074 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2075 /** 2076 * kvm_get_dirty_log - get a snapshot of dirty pages 2077 * @kvm: pointer to kvm instance 2078 * @log: slot id and address to which we copy the log 2079 * @is_dirty: set to '1' if any dirty pages were found 2080 * @memslot: set to the associated memslot, always valid on success 2081 */ 2082 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2083 int *is_dirty, struct kvm_memory_slot **memslot) 2084 { 2085 struct kvm_memslots *slots; 2086 int i, as_id, id; 2087 unsigned long n; 2088 unsigned long any = 0; 2089 2090 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2091 if (!kvm_use_dirty_bitmap(kvm)) 2092 return -ENXIO; 2093 2094 *memslot = NULL; 2095 *is_dirty = 0; 2096 2097 as_id = log->slot >> 16; 2098 id = (u16)log->slot; 2099 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2100 return -EINVAL; 2101 2102 slots = __kvm_memslots(kvm, as_id); 2103 *memslot = id_to_memslot(slots, id); 2104 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2105 return -ENOENT; 2106 2107 kvm_arch_sync_dirty_log(kvm, *memslot); 2108 2109 n = kvm_dirty_bitmap_bytes(*memslot); 2110 2111 for (i = 0; !any && i < n/sizeof(long); ++i) 2112 any = (*memslot)->dirty_bitmap[i]; 2113 2114 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2115 return -EFAULT; 2116 2117 if (any) 2118 *is_dirty = 1; 2119 return 0; 2120 } 2121 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2122 2123 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2124 /** 2125 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2126 * and reenable dirty page tracking for the corresponding pages. 2127 * @kvm: pointer to kvm instance 2128 * @log: slot id and address to which we copy the log 2129 * 2130 * We need to keep it in mind that VCPU threads can write to the bitmap 2131 * concurrently. So, to avoid losing track of dirty pages we keep the 2132 * following order: 2133 * 2134 * 1. Take a snapshot of the bit and clear it if needed. 2135 * 2. Write protect the corresponding page. 2136 * 3. Copy the snapshot to the userspace. 2137 * 4. Upon return caller flushes TLB's if needed. 2138 * 2139 * Between 2 and 4, the guest may write to the page using the remaining TLB 2140 * entry. This is not a problem because the page is reported dirty using 2141 * the snapshot taken before and step 4 ensures that writes done after 2142 * exiting to userspace will be logged for the next call. 2143 * 2144 */ 2145 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2146 { 2147 struct kvm_memslots *slots; 2148 struct kvm_memory_slot *memslot; 2149 int i, as_id, id; 2150 unsigned long n; 2151 unsigned long *dirty_bitmap; 2152 unsigned long *dirty_bitmap_buffer; 2153 bool flush; 2154 2155 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2156 if (!kvm_use_dirty_bitmap(kvm)) 2157 return -ENXIO; 2158 2159 as_id = log->slot >> 16; 2160 id = (u16)log->slot; 2161 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2162 return -EINVAL; 2163 2164 slots = __kvm_memslots(kvm, as_id); 2165 memslot = id_to_memslot(slots, id); 2166 if (!memslot || !memslot->dirty_bitmap) 2167 return -ENOENT; 2168 2169 dirty_bitmap = memslot->dirty_bitmap; 2170 2171 kvm_arch_sync_dirty_log(kvm, memslot); 2172 2173 n = kvm_dirty_bitmap_bytes(memslot); 2174 flush = false; 2175 if (kvm->manual_dirty_log_protect) { 2176 /* 2177 * Unlike kvm_get_dirty_log, we always return false in *flush, 2178 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2179 * is some code duplication between this function and 2180 * kvm_get_dirty_log, but hopefully all architecture 2181 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2182 * can be eliminated. 2183 */ 2184 dirty_bitmap_buffer = dirty_bitmap; 2185 } else { 2186 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2187 memset(dirty_bitmap_buffer, 0, n); 2188 2189 KVM_MMU_LOCK(kvm); 2190 for (i = 0; i < n / sizeof(long); i++) { 2191 unsigned long mask; 2192 gfn_t offset; 2193 2194 if (!dirty_bitmap[i]) 2195 continue; 2196 2197 flush = true; 2198 mask = xchg(&dirty_bitmap[i], 0); 2199 dirty_bitmap_buffer[i] = mask; 2200 2201 offset = i * BITS_PER_LONG; 2202 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2203 offset, mask); 2204 } 2205 KVM_MMU_UNLOCK(kvm); 2206 } 2207 2208 if (flush) 2209 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2210 2211 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2212 return -EFAULT; 2213 return 0; 2214 } 2215 2216 2217 /** 2218 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2219 * @kvm: kvm instance 2220 * @log: slot id and address to which we copy the log 2221 * 2222 * Steps 1-4 below provide general overview of dirty page logging. See 2223 * kvm_get_dirty_log_protect() function description for additional details. 2224 * 2225 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2226 * always flush the TLB (step 4) even if previous step failed and the dirty 2227 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2228 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2229 * writes will be marked dirty for next log read. 2230 * 2231 * 1. Take a snapshot of the bit and clear it if needed. 2232 * 2. Write protect the corresponding page. 2233 * 3. Copy the snapshot to the userspace. 2234 * 4. Flush TLB's if needed. 2235 */ 2236 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2237 struct kvm_dirty_log *log) 2238 { 2239 int r; 2240 2241 mutex_lock(&kvm->slots_lock); 2242 2243 r = kvm_get_dirty_log_protect(kvm, log); 2244 2245 mutex_unlock(&kvm->slots_lock); 2246 return r; 2247 } 2248 2249 /** 2250 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2251 * and reenable dirty page tracking for the corresponding pages. 2252 * @kvm: pointer to kvm instance 2253 * @log: slot id and address from which to fetch the bitmap of dirty pages 2254 */ 2255 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2256 struct kvm_clear_dirty_log *log) 2257 { 2258 struct kvm_memslots *slots; 2259 struct kvm_memory_slot *memslot; 2260 int as_id, id; 2261 gfn_t offset; 2262 unsigned long i, n; 2263 unsigned long *dirty_bitmap; 2264 unsigned long *dirty_bitmap_buffer; 2265 bool flush; 2266 2267 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2268 if (!kvm_use_dirty_bitmap(kvm)) 2269 return -ENXIO; 2270 2271 as_id = log->slot >> 16; 2272 id = (u16)log->slot; 2273 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2274 return -EINVAL; 2275 2276 if (log->first_page & 63) 2277 return -EINVAL; 2278 2279 slots = __kvm_memslots(kvm, as_id); 2280 memslot = id_to_memslot(slots, id); 2281 if (!memslot || !memslot->dirty_bitmap) 2282 return -ENOENT; 2283 2284 dirty_bitmap = memslot->dirty_bitmap; 2285 2286 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2287 2288 if (log->first_page > memslot->npages || 2289 log->num_pages > memslot->npages - log->first_page || 2290 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2291 return -EINVAL; 2292 2293 kvm_arch_sync_dirty_log(kvm, memslot); 2294 2295 flush = false; 2296 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2297 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2298 return -EFAULT; 2299 2300 KVM_MMU_LOCK(kvm); 2301 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2302 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2303 i++, offset += BITS_PER_LONG) { 2304 unsigned long mask = *dirty_bitmap_buffer++; 2305 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2306 if (!mask) 2307 continue; 2308 2309 mask &= atomic_long_fetch_andnot(mask, p); 2310 2311 /* 2312 * mask contains the bits that really have been cleared. This 2313 * never includes any bits beyond the length of the memslot (if 2314 * the length is not aligned to 64 pages), therefore it is not 2315 * a problem if userspace sets them in log->dirty_bitmap. 2316 */ 2317 if (mask) { 2318 flush = true; 2319 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2320 offset, mask); 2321 } 2322 } 2323 KVM_MMU_UNLOCK(kvm); 2324 2325 if (flush) 2326 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2327 2328 return 0; 2329 } 2330 2331 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2332 struct kvm_clear_dirty_log *log) 2333 { 2334 int r; 2335 2336 mutex_lock(&kvm->slots_lock); 2337 2338 r = kvm_clear_dirty_log_protect(kvm, log); 2339 2340 mutex_unlock(&kvm->slots_lock); 2341 return r; 2342 } 2343 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2344 2345 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2346 { 2347 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2348 } 2349 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2350 2351 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2352 { 2353 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2354 u64 gen = slots->generation; 2355 struct kvm_memory_slot *slot; 2356 2357 /* 2358 * This also protects against using a memslot from a different address space, 2359 * since different address spaces have different generation numbers. 2360 */ 2361 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2362 vcpu->last_used_slot = NULL; 2363 vcpu->last_used_slot_gen = gen; 2364 } 2365 2366 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2367 if (slot) 2368 return slot; 2369 2370 /* 2371 * Fall back to searching all memslots. We purposely use 2372 * search_memslots() instead of __gfn_to_memslot() to avoid 2373 * thrashing the VM-wide last_used_slot in kvm_memslots. 2374 */ 2375 slot = search_memslots(slots, gfn, false); 2376 if (slot) { 2377 vcpu->last_used_slot = slot; 2378 return slot; 2379 } 2380 2381 return NULL; 2382 } 2383 2384 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2385 { 2386 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2387 2388 return kvm_is_visible_memslot(memslot); 2389 } 2390 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2391 2392 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2393 { 2394 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2395 2396 return kvm_is_visible_memslot(memslot); 2397 } 2398 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2399 2400 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2401 { 2402 struct vm_area_struct *vma; 2403 unsigned long addr, size; 2404 2405 size = PAGE_SIZE; 2406 2407 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2408 if (kvm_is_error_hva(addr)) 2409 return PAGE_SIZE; 2410 2411 mmap_read_lock(current->mm); 2412 vma = find_vma(current->mm, addr); 2413 if (!vma) 2414 goto out; 2415 2416 size = vma_kernel_pagesize(vma); 2417 2418 out: 2419 mmap_read_unlock(current->mm); 2420 2421 return size; 2422 } 2423 2424 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2425 { 2426 return slot->flags & KVM_MEM_READONLY; 2427 } 2428 2429 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2430 gfn_t *nr_pages, bool write) 2431 { 2432 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2433 return KVM_HVA_ERR_BAD; 2434 2435 if (memslot_is_readonly(slot) && write) 2436 return KVM_HVA_ERR_RO_BAD; 2437 2438 if (nr_pages) 2439 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2440 2441 return __gfn_to_hva_memslot(slot, gfn); 2442 } 2443 2444 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2445 gfn_t *nr_pages) 2446 { 2447 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2448 } 2449 2450 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2451 gfn_t gfn) 2452 { 2453 return gfn_to_hva_many(slot, gfn, NULL); 2454 } 2455 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2456 2457 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2458 { 2459 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2460 } 2461 EXPORT_SYMBOL_GPL(gfn_to_hva); 2462 2463 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2464 { 2465 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2466 } 2467 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2468 2469 /* 2470 * Return the hva of a @gfn and the R/W attribute if possible. 2471 * 2472 * @slot: the kvm_memory_slot which contains @gfn 2473 * @gfn: the gfn to be translated 2474 * @writable: used to return the read/write attribute of the @slot if the hva 2475 * is valid and @writable is not NULL 2476 */ 2477 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2478 gfn_t gfn, bool *writable) 2479 { 2480 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2481 2482 if (!kvm_is_error_hva(hva) && writable) 2483 *writable = !memslot_is_readonly(slot); 2484 2485 return hva; 2486 } 2487 2488 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2489 { 2490 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2491 2492 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2493 } 2494 2495 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2496 { 2497 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2498 2499 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2500 } 2501 2502 static inline int check_user_page_hwpoison(unsigned long addr) 2503 { 2504 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2505 2506 rc = get_user_pages(addr, 1, flags, NULL); 2507 return rc == -EHWPOISON; 2508 } 2509 2510 /* 2511 * The fast path to get the writable pfn which will be stored in @pfn, 2512 * true indicates success, otherwise false is returned. It's also the 2513 * only part that runs if we can in atomic context. 2514 */ 2515 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2516 bool *writable, kvm_pfn_t *pfn) 2517 { 2518 struct page *page[1]; 2519 2520 /* 2521 * Fast pin a writable pfn only if it is a write fault request 2522 * or the caller allows to map a writable pfn for a read fault 2523 * request. 2524 */ 2525 if (!(write_fault || writable)) 2526 return false; 2527 2528 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2529 *pfn = page_to_pfn(page[0]); 2530 2531 if (writable) 2532 *writable = true; 2533 return true; 2534 } 2535 2536 return false; 2537 } 2538 2539 /* 2540 * The slow path to get the pfn of the specified host virtual address, 2541 * 1 indicates success, -errno is returned if error is detected. 2542 */ 2543 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2544 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2545 { 2546 /* 2547 * When a VCPU accesses a page that is not mapped into the secondary 2548 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2549 * make progress. We always want to honor NUMA hinting faults in that 2550 * case, because GUP usage corresponds to memory accesses from the VCPU. 2551 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2552 * mapped into the secondary MMU and gets accessed by a VCPU. 2553 * 2554 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2555 * implicitly honor NUMA hinting faults and don't need this flag. 2556 */ 2557 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2558 struct page *page; 2559 int npages; 2560 2561 might_sleep(); 2562 2563 if (writable) 2564 *writable = write_fault; 2565 2566 if (write_fault) 2567 flags |= FOLL_WRITE; 2568 if (async) 2569 flags |= FOLL_NOWAIT; 2570 if (interruptible) 2571 flags |= FOLL_INTERRUPTIBLE; 2572 2573 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2574 if (npages != 1) 2575 return npages; 2576 2577 /* map read fault as writable if possible */ 2578 if (unlikely(!write_fault) && writable) { 2579 struct page *wpage; 2580 2581 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2582 *writable = true; 2583 put_page(page); 2584 page = wpage; 2585 } 2586 } 2587 *pfn = page_to_pfn(page); 2588 return npages; 2589 } 2590 2591 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2592 { 2593 if (unlikely(!(vma->vm_flags & VM_READ))) 2594 return false; 2595 2596 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2597 return false; 2598 2599 return true; 2600 } 2601 2602 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2603 { 2604 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2605 2606 if (!page) 2607 return 1; 2608 2609 return get_page_unless_zero(page); 2610 } 2611 2612 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2613 unsigned long addr, bool write_fault, 2614 bool *writable, kvm_pfn_t *p_pfn) 2615 { 2616 kvm_pfn_t pfn; 2617 pte_t *ptep; 2618 pte_t pte; 2619 spinlock_t *ptl; 2620 int r; 2621 2622 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2623 if (r) { 2624 /* 2625 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2626 * not call the fault handler, so do it here. 2627 */ 2628 bool unlocked = false; 2629 r = fixup_user_fault(current->mm, addr, 2630 (write_fault ? FAULT_FLAG_WRITE : 0), 2631 &unlocked); 2632 if (unlocked) 2633 return -EAGAIN; 2634 if (r) 2635 return r; 2636 2637 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2638 if (r) 2639 return r; 2640 } 2641 2642 pte = ptep_get(ptep); 2643 2644 if (write_fault && !pte_write(pte)) { 2645 pfn = KVM_PFN_ERR_RO_FAULT; 2646 goto out; 2647 } 2648 2649 if (writable) 2650 *writable = pte_write(pte); 2651 pfn = pte_pfn(pte); 2652 2653 /* 2654 * Get a reference here because callers of *hva_to_pfn* and 2655 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2656 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2657 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2658 * simply do nothing for reserved pfns. 2659 * 2660 * Whoever called remap_pfn_range is also going to call e.g. 2661 * unmap_mapping_range before the underlying pages are freed, 2662 * causing a call to our MMU notifier. 2663 * 2664 * Certain IO or PFNMAP mappings can be backed with valid 2665 * struct pages, but be allocated without refcounting e.g., 2666 * tail pages of non-compound higher order allocations, which 2667 * would then underflow the refcount when the caller does the 2668 * required put_page. Don't allow those pages here. 2669 */ 2670 if (!kvm_try_get_pfn(pfn)) 2671 r = -EFAULT; 2672 2673 out: 2674 pte_unmap_unlock(ptep, ptl); 2675 *p_pfn = pfn; 2676 2677 return r; 2678 } 2679 2680 /* 2681 * Pin guest page in memory and return its pfn. 2682 * @addr: host virtual address which maps memory to the guest 2683 * @atomic: whether this function can sleep 2684 * @interruptible: whether the process can be interrupted by non-fatal signals 2685 * @async: whether this function need to wait IO complete if the 2686 * host page is not in the memory 2687 * @write_fault: whether we should get a writable host page 2688 * @writable: whether it allows to map a writable host page for !@write_fault 2689 * 2690 * The function will map a writable host page for these two cases: 2691 * 1): @write_fault = true 2692 * 2): @write_fault = false && @writable, @writable will tell the caller 2693 * whether the mapping is writable. 2694 */ 2695 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2696 bool *async, bool write_fault, bool *writable) 2697 { 2698 struct vm_area_struct *vma; 2699 kvm_pfn_t pfn; 2700 int npages, r; 2701 2702 /* we can do it either atomically or asynchronously, not both */ 2703 BUG_ON(atomic && async); 2704 2705 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2706 return pfn; 2707 2708 if (atomic) 2709 return KVM_PFN_ERR_FAULT; 2710 2711 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2712 writable, &pfn); 2713 if (npages == 1) 2714 return pfn; 2715 if (npages == -EINTR) 2716 return KVM_PFN_ERR_SIGPENDING; 2717 2718 mmap_read_lock(current->mm); 2719 if (npages == -EHWPOISON || 2720 (!async && check_user_page_hwpoison(addr))) { 2721 pfn = KVM_PFN_ERR_HWPOISON; 2722 goto exit; 2723 } 2724 2725 retry: 2726 vma = vma_lookup(current->mm, addr); 2727 2728 if (vma == NULL) 2729 pfn = KVM_PFN_ERR_FAULT; 2730 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2731 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2732 if (r == -EAGAIN) 2733 goto retry; 2734 if (r < 0) 2735 pfn = KVM_PFN_ERR_FAULT; 2736 } else { 2737 if (async && vma_is_valid(vma, write_fault)) 2738 *async = true; 2739 pfn = KVM_PFN_ERR_FAULT; 2740 } 2741 exit: 2742 mmap_read_unlock(current->mm); 2743 return pfn; 2744 } 2745 2746 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2747 bool atomic, bool interruptible, bool *async, 2748 bool write_fault, bool *writable, hva_t *hva) 2749 { 2750 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2751 2752 if (hva) 2753 *hva = addr; 2754 2755 if (addr == KVM_HVA_ERR_RO_BAD) { 2756 if (writable) 2757 *writable = false; 2758 return KVM_PFN_ERR_RO_FAULT; 2759 } 2760 2761 if (kvm_is_error_hva(addr)) { 2762 if (writable) 2763 *writable = false; 2764 return KVM_PFN_NOSLOT; 2765 } 2766 2767 /* Do not map writable pfn in the readonly memslot. */ 2768 if (writable && memslot_is_readonly(slot)) { 2769 *writable = false; 2770 writable = NULL; 2771 } 2772 2773 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 2774 writable); 2775 } 2776 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2777 2778 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2779 bool *writable) 2780 { 2781 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 2782 NULL, write_fault, writable, NULL); 2783 } 2784 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2785 2786 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2787 { 2788 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 2789 NULL, NULL); 2790 } 2791 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2792 2793 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2794 { 2795 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 2796 NULL, NULL); 2797 } 2798 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2799 2800 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2801 { 2802 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2803 } 2804 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2805 2806 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2807 { 2808 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2809 } 2810 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2811 2812 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2813 { 2814 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2815 } 2816 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2817 2818 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2819 struct page **pages, int nr_pages) 2820 { 2821 unsigned long addr; 2822 gfn_t entry = 0; 2823 2824 addr = gfn_to_hva_many(slot, gfn, &entry); 2825 if (kvm_is_error_hva(addr)) 2826 return -1; 2827 2828 if (entry < nr_pages) 2829 return 0; 2830 2831 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2832 } 2833 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2834 2835 /* 2836 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2837 * backed by 'struct page'. A valid example is if the backing memslot is 2838 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2839 * been elevated by gfn_to_pfn(). 2840 */ 2841 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2842 { 2843 struct page *page; 2844 kvm_pfn_t pfn; 2845 2846 pfn = gfn_to_pfn(kvm, gfn); 2847 2848 if (is_error_noslot_pfn(pfn)) 2849 return KVM_ERR_PTR_BAD_PAGE; 2850 2851 page = kvm_pfn_to_refcounted_page(pfn); 2852 if (!page) 2853 return KVM_ERR_PTR_BAD_PAGE; 2854 2855 return page; 2856 } 2857 EXPORT_SYMBOL_GPL(gfn_to_page); 2858 2859 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2860 { 2861 if (dirty) 2862 kvm_release_pfn_dirty(pfn); 2863 else 2864 kvm_release_pfn_clean(pfn); 2865 } 2866 2867 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2868 { 2869 kvm_pfn_t pfn; 2870 void *hva = NULL; 2871 struct page *page = KVM_UNMAPPED_PAGE; 2872 2873 if (!map) 2874 return -EINVAL; 2875 2876 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2877 if (is_error_noslot_pfn(pfn)) 2878 return -EINVAL; 2879 2880 if (pfn_valid(pfn)) { 2881 page = pfn_to_page(pfn); 2882 hva = kmap(page); 2883 #ifdef CONFIG_HAS_IOMEM 2884 } else { 2885 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2886 #endif 2887 } 2888 2889 if (!hva) 2890 return -EFAULT; 2891 2892 map->page = page; 2893 map->hva = hva; 2894 map->pfn = pfn; 2895 map->gfn = gfn; 2896 2897 return 0; 2898 } 2899 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2900 2901 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2902 { 2903 if (!map) 2904 return; 2905 2906 if (!map->hva) 2907 return; 2908 2909 if (map->page != KVM_UNMAPPED_PAGE) 2910 kunmap(map->page); 2911 #ifdef CONFIG_HAS_IOMEM 2912 else 2913 memunmap(map->hva); 2914 #endif 2915 2916 if (dirty) 2917 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2918 2919 kvm_release_pfn(map->pfn, dirty); 2920 2921 map->hva = NULL; 2922 map->page = NULL; 2923 } 2924 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2925 2926 static bool kvm_is_ad_tracked_page(struct page *page) 2927 { 2928 /* 2929 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2930 * touched (e.g. set dirty) except by its owner". 2931 */ 2932 return !PageReserved(page); 2933 } 2934 2935 static void kvm_set_page_dirty(struct page *page) 2936 { 2937 if (kvm_is_ad_tracked_page(page)) 2938 SetPageDirty(page); 2939 } 2940 2941 static void kvm_set_page_accessed(struct page *page) 2942 { 2943 if (kvm_is_ad_tracked_page(page)) 2944 mark_page_accessed(page); 2945 } 2946 2947 void kvm_release_page_clean(struct page *page) 2948 { 2949 WARN_ON(is_error_page(page)); 2950 2951 kvm_set_page_accessed(page); 2952 put_page(page); 2953 } 2954 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2955 2956 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2957 { 2958 struct page *page; 2959 2960 if (is_error_noslot_pfn(pfn)) 2961 return; 2962 2963 page = kvm_pfn_to_refcounted_page(pfn); 2964 if (!page) 2965 return; 2966 2967 kvm_release_page_clean(page); 2968 } 2969 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2970 2971 void kvm_release_page_dirty(struct page *page) 2972 { 2973 WARN_ON(is_error_page(page)); 2974 2975 kvm_set_page_dirty(page); 2976 kvm_release_page_clean(page); 2977 } 2978 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2979 2980 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2981 { 2982 struct page *page; 2983 2984 if (is_error_noslot_pfn(pfn)) 2985 return; 2986 2987 page = kvm_pfn_to_refcounted_page(pfn); 2988 if (!page) 2989 return; 2990 2991 kvm_release_page_dirty(page); 2992 } 2993 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2994 2995 /* 2996 * Note, checking for an error/noslot pfn is the caller's responsibility when 2997 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2998 * "set" helpers are not to be used when the pfn might point at garbage. 2999 */ 3000 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3001 { 3002 if (WARN_ON(is_error_noslot_pfn(pfn))) 3003 return; 3004 3005 if (pfn_valid(pfn)) 3006 kvm_set_page_dirty(pfn_to_page(pfn)); 3007 } 3008 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3009 3010 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3011 { 3012 if (WARN_ON(is_error_noslot_pfn(pfn))) 3013 return; 3014 3015 if (pfn_valid(pfn)) 3016 kvm_set_page_accessed(pfn_to_page(pfn)); 3017 } 3018 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3019 3020 static int next_segment(unsigned long len, int offset) 3021 { 3022 if (len > PAGE_SIZE - offset) 3023 return PAGE_SIZE - offset; 3024 else 3025 return len; 3026 } 3027 3028 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3029 void *data, int offset, int len) 3030 { 3031 int r; 3032 unsigned long addr; 3033 3034 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3035 if (kvm_is_error_hva(addr)) 3036 return -EFAULT; 3037 r = __copy_from_user(data, (void __user *)addr + offset, len); 3038 if (r) 3039 return -EFAULT; 3040 return 0; 3041 } 3042 3043 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3044 int len) 3045 { 3046 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3047 3048 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3049 } 3050 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3051 3052 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3053 int offset, int len) 3054 { 3055 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3056 3057 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3058 } 3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3060 3061 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3062 { 3063 gfn_t gfn = gpa >> PAGE_SHIFT; 3064 int seg; 3065 int offset = offset_in_page(gpa); 3066 int ret; 3067 3068 while ((seg = next_segment(len, offset)) != 0) { 3069 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3070 if (ret < 0) 3071 return ret; 3072 offset = 0; 3073 len -= seg; 3074 data += seg; 3075 ++gfn; 3076 } 3077 return 0; 3078 } 3079 EXPORT_SYMBOL_GPL(kvm_read_guest); 3080 3081 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3082 { 3083 gfn_t gfn = gpa >> PAGE_SHIFT; 3084 int seg; 3085 int offset = offset_in_page(gpa); 3086 int ret; 3087 3088 while ((seg = next_segment(len, offset)) != 0) { 3089 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3090 if (ret < 0) 3091 return ret; 3092 offset = 0; 3093 len -= seg; 3094 data += seg; 3095 ++gfn; 3096 } 3097 return 0; 3098 } 3099 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3100 3101 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3102 void *data, int offset, unsigned long len) 3103 { 3104 int r; 3105 unsigned long addr; 3106 3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3108 if (kvm_is_error_hva(addr)) 3109 return -EFAULT; 3110 pagefault_disable(); 3111 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3112 pagefault_enable(); 3113 if (r) 3114 return -EFAULT; 3115 return 0; 3116 } 3117 3118 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3119 void *data, unsigned long len) 3120 { 3121 gfn_t gfn = gpa >> PAGE_SHIFT; 3122 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3123 int offset = offset_in_page(gpa); 3124 3125 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3126 } 3127 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3128 3129 static int __kvm_write_guest_page(struct kvm *kvm, 3130 struct kvm_memory_slot *memslot, gfn_t gfn, 3131 const void *data, int offset, int len) 3132 { 3133 int r; 3134 unsigned long addr; 3135 3136 addr = gfn_to_hva_memslot(memslot, gfn); 3137 if (kvm_is_error_hva(addr)) 3138 return -EFAULT; 3139 r = __copy_to_user((void __user *)addr + offset, data, len); 3140 if (r) 3141 return -EFAULT; 3142 mark_page_dirty_in_slot(kvm, memslot, gfn); 3143 return 0; 3144 } 3145 3146 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3147 const void *data, int offset, int len) 3148 { 3149 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3150 3151 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3152 } 3153 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3154 3155 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3156 const void *data, int offset, int len) 3157 { 3158 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3159 3160 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3161 } 3162 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3163 3164 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3165 unsigned long len) 3166 { 3167 gfn_t gfn = gpa >> PAGE_SHIFT; 3168 int seg; 3169 int offset = offset_in_page(gpa); 3170 int ret; 3171 3172 while ((seg = next_segment(len, offset)) != 0) { 3173 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3174 if (ret < 0) 3175 return ret; 3176 offset = 0; 3177 len -= seg; 3178 data += seg; 3179 ++gfn; 3180 } 3181 return 0; 3182 } 3183 EXPORT_SYMBOL_GPL(kvm_write_guest); 3184 3185 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3186 unsigned long len) 3187 { 3188 gfn_t gfn = gpa >> PAGE_SHIFT; 3189 int seg; 3190 int offset = offset_in_page(gpa); 3191 int ret; 3192 3193 while ((seg = next_segment(len, offset)) != 0) { 3194 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3195 if (ret < 0) 3196 return ret; 3197 offset = 0; 3198 len -= seg; 3199 data += seg; 3200 ++gfn; 3201 } 3202 return 0; 3203 } 3204 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3205 3206 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3207 struct gfn_to_hva_cache *ghc, 3208 gpa_t gpa, unsigned long len) 3209 { 3210 int offset = offset_in_page(gpa); 3211 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3212 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3213 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3214 gfn_t nr_pages_avail; 3215 3216 /* Update ghc->generation before performing any error checks. */ 3217 ghc->generation = slots->generation; 3218 3219 if (start_gfn > end_gfn) { 3220 ghc->hva = KVM_HVA_ERR_BAD; 3221 return -EINVAL; 3222 } 3223 3224 /* 3225 * If the requested region crosses two memslots, we still 3226 * verify that the entire region is valid here. 3227 */ 3228 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3229 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3230 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3231 &nr_pages_avail); 3232 if (kvm_is_error_hva(ghc->hva)) 3233 return -EFAULT; 3234 } 3235 3236 /* Use the slow path for cross page reads and writes. */ 3237 if (nr_pages_needed == 1) 3238 ghc->hva += offset; 3239 else 3240 ghc->memslot = NULL; 3241 3242 ghc->gpa = gpa; 3243 ghc->len = len; 3244 return 0; 3245 } 3246 3247 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3248 gpa_t gpa, unsigned long len) 3249 { 3250 struct kvm_memslots *slots = kvm_memslots(kvm); 3251 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3252 } 3253 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3254 3255 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3256 void *data, unsigned int offset, 3257 unsigned long len) 3258 { 3259 struct kvm_memslots *slots = kvm_memslots(kvm); 3260 int r; 3261 gpa_t gpa = ghc->gpa + offset; 3262 3263 if (WARN_ON_ONCE(len + offset > ghc->len)) 3264 return -EINVAL; 3265 3266 if (slots->generation != ghc->generation) { 3267 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3268 return -EFAULT; 3269 } 3270 3271 if (kvm_is_error_hva(ghc->hva)) 3272 return -EFAULT; 3273 3274 if (unlikely(!ghc->memslot)) 3275 return kvm_write_guest(kvm, gpa, data, len); 3276 3277 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3278 if (r) 3279 return -EFAULT; 3280 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3281 3282 return 0; 3283 } 3284 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3285 3286 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3287 void *data, unsigned long len) 3288 { 3289 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3290 } 3291 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3292 3293 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3294 void *data, unsigned int offset, 3295 unsigned long len) 3296 { 3297 struct kvm_memslots *slots = kvm_memslots(kvm); 3298 int r; 3299 gpa_t gpa = ghc->gpa + offset; 3300 3301 if (WARN_ON_ONCE(len + offset > ghc->len)) 3302 return -EINVAL; 3303 3304 if (slots->generation != ghc->generation) { 3305 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3306 return -EFAULT; 3307 } 3308 3309 if (kvm_is_error_hva(ghc->hva)) 3310 return -EFAULT; 3311 3312 if (unlikely(!ghc->memslot)) 3313 return kvm_read_guest(kvm, gpa, data, len); 3314 3315 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3316 if (r) 3317 return -EFAULT; 3318 3319 return 0; 3320 } 3321 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3322 3323 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3324 void *data, unsigned long len) 3325 { 3326 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3327 } 3328 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3329 3330 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3331 { 3332 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3333 gfn_t gfn = gpa >> PAGE_SHIFT; 3334 int seg; 3335 int offset = offset_in_page(gpa); 3336 int ret; 3337 3338 while ((seg = next_segment(len, offset)) != 0) { 3339 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3340 if (ret < 0) 3341 return ret; 3342 offset = 0; 3343 len -= seg; 3344 ++gfn; 3345 } 3346 return 0; 3347 } 3348 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3349 3350 void mark_page_dirty_in_slot(struct kvm *kvm, 3351 const struct kvm_memory_slot *memslot, 3352 gfn_t gfn) 3353 { 3354 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3355 3356 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3357 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3358 return; 3359 3360 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3361 #endif 3362 3363 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3364 unsigned long rel_gfn = gfn - memslot->base_gfn; 3365 u32 slot = (memslot->as_id << 16) | memslot->id; 3366 3367 if (kvm->dirty_ring_size && vcpu) 3368 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3369 else if (memslot->dirty_bitmap) 3370 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3371 } 3372 } 3373 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3374 3375 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3376 { 3377 struct kvm_memory_slot *memslot; 3378 3379 memslot = gfn_to_memslot(kvm, gfn); 3380 mark_page_dirty_in_slot(kvm, memslot, gfn); 3381 } 3382 EXPORT_SYMBOL_GPL(mark_page_dirty); 3383 3384 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3385 { 3386 struct kvm_memory_slot *memslot; 3387 3388 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3389 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3390 } 3391 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3392 3393 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3394 { 3395 if (!vcpu->sigset_active) 3396 return; 3397 3398 /* 3399 * This does a lockless modification of ->real_blocked, which is fine 3400 * because, only current can change ->real_blocked and all readers of 3401 * ->real_blocked don't care as long ->real_blocked is always a subset 3402 * of ->blocked. 3403 */ 3404 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3405 } 3406 3407 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3408 { 3409 if (!vcpu->sigset_active) 3410 return; 3411 3412 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3413 sigemptyset(¤t->real_blocked); 3414 } 3415 3416 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3417 { 3418 unsigned int old, val, grow, grow_start; 3419 3420 old = val = vcpu->halt_poll_ns; 3421 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3422 grow = READ_ONCE(halt_poll_ns_grow); 3423 if (!grow) 3424 goto out; 3425 3426 val *= grow; 3427 if (val < grow_start) 3428 val = grow_start; 3429 3430 vcpu->halt_poll_ns = val; 3431 out: 3432 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3433 } 3434 3435 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3436 { 3437 unsigned int old, val, shrink, grow_start; 3438 3439 old = val = vcpu->halt_poll_ns; 3440 shrink = READ_ONCE(halt_poll_ns_shrink); 3441 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3442 if (shrink == 0) 3443 val = 0; 3444 else 3445 val /= shrink; 3446 3447 if (val < grow_start) 3448 val = 0; 3449 3450 vcpu->halt_poll_ns = val; 3451 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3452 } 3453 3454 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3455 { 3456 int ret = -EINTR; 3457 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3458 3459 if (kvm_arch_vcpu_runnable(vcpu)) 3460 goto out; 3461 if (kvm_cpu_has_pending_timer(vcpu)) 3462 goto out; 3463 if (signal_pending(current)) 3464 goto out; 3465 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3466 goto out; 3467 3468 ret = 0; 3469 out: 3470 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3471 return ret; 3472 } 3473 3474 /* 3475 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3476 * pending. This is mostly used when halting a vCPU, but may also be used 3477 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3478 */ 3479 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3480 { 3481 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3482 bool waited = false; 3483 3484 vcpu->stat.generic.blocking = 1; 3485 3486 preempt_disable(); 3487 kvm_arch_vcpu_blocking(vcpu); 3488 prepare_to_rcuwait(wait); 3489 preempt_enable(); 3490 3491 for (;;) { 3492 set_current_state(TASK_INTERRUPTIBLE); 3493 3494 if (kvm_vcpu_check_block(vcpu) < 0) 3495 break; 3496 3497 waited = true; 3498 schedule(); 3499 } 3500 3501 preempt_disable(); 3502 finish_rcuwait(wait); 3503 kvm_arch_vcpu_unblocking(vcpu); 3504 preempt_enable(); 3505 3506 vcpu->stat.generic.blocking = 0; 3507 3508 return waited; 3509 } 3510 3511 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3512 ktime_t end, bool success) 3513 { 3514 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3515 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3516 3517 ++vcpu->stat.generic.halt_attempted_poll; 3518 3519 if (success) { 3520 ++vcpu->stat.generic.halt_successful_poll; 3521 3522 if (!vcpu_valid_wakeup(vcpu)) 3523 ++vcpu->stat.generic.halt_poll_invalid; 3524 3525 stats->halt_poll_success_ns += poll_ns; 3526 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3527 } else { 3528 stats->halt_poll_fail_ns += poll_ns; 3529 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3530 } 3531 } 3532 3533 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3534 { 3535 struct kvm *kvm = vcpu->kvm; 3536 3537 if (kvm->override_halt_poll_ns) { 3538 /* 3539 * Ensure kvm->max_halt_poll_ns is not read before 3540 * kvm->override_halt_poll_ns. 3541 * 3542 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3543 */ 3544 smp_rmb(); 3545 return READ_ONCE(kvm->max_halt_poll_ns); 3546 } 3547 3548 return READ_ONCE(halt_poll_ns); 3549 } 3550 3551 /* 3552 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3553 * polling is enabled, busy wait for a short time before blocking to avoid the 3554 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3555 * is halted. 3556 */ 3557 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3558 { 3559 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3560 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3561 ktime_t start, cur, poll_end; 3562 bool waited = false; 3563 bool do_halt_poll; 3564 u64 halt_ns; 3565 3566 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3567 vcpu->halt_poll_ns = max_halt_poll_ns; 3568 3569 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3570 3571 start = cur = poll_end = ktime_get(); 3572 if (do_halt_poll) { 3573 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3574 3575 do { 3576 if (kvm_vcpu_check_block(vcpu) < 0) 3577 goto out; 3578 cpu_relax(); 3579 poll_end = cur = ktime_get(); 3580 } while (kvm_vcpu_can_poll(cur, stop)); 3581 } 3582 3583 waited = kvm_vcpu_block(vcpu); 3584 3585 cur = ktime_get(); 3586 if (waited) { 3587 vcpu->stat.generic.halt_wait_ns += 3588 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3589 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3590 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3591 } 3592 out: 3593 /* The total time the vCPU was "halted", including polling time. */ 3594 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3595 3596 /* 3597 * Note, halt-polling is considered successful so long as the vCPU was 3598 * never actually scheduled out, i.e. even if the wake event arrived 3599 * after of the halt-polling loop itself, but before the full wait. 3600 */ 3601 if (do_halt_poll) 3602 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3603 3604 if (halt_poll_allowed) { 3605 /* Recompute the max halt poll time in case it changed. */ 3606 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3607 3608 if (!vcpu_valid_wakeup(vcpu)) { 3609 shrink_halt_poll_ns(vcpu); 3610 } else if (max_halt_poll_ns) { 3611 if (halt_ns <= vcpu->halt_poll_ns) 3612 ; 3613 /* we had a long block, shrink polling */ 3614 else if (vcpu->halt_poll_ns && 3615 halt_ns > max_halt_poll_ns) 3616 shrink_halt_poll_ns(vcpu); 3617 /* we had a short halt and our poll time is too small */ 3618 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3619 halt_ns < max_halt_poll_ns) 3620 grow_halt_poll_ns(vcpu); 3621 } else { 3622 vcpu->halt_poll_ns = 0; 3623 } 3624 } 3625 3626 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3627 } 3628 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3629 3630 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3631 { 3632 if (__kvm_vcpu_wake_up(vcpu)) { 3633 WRITE_ONCE(vcpu->ready, true); 3634 ++vcpu->stat.generic.halt_wakeup; 3635 return true; 3636 } 3637 3638 return false; 3639 } 3640 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3641 3642 #ifndef CONFIG_S390 3643 /* 3644 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3645 */ 3646 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3647 { 3648 int me, cpu; 3649 3650 if (kvm_vcpu_wake_up(vcpu)) 3651 return; 3652 3653 me = get_cpu(); 3654 /* 3655 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3656 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3657 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3658 * within the vCPU thread itself. 3659 */ 3660 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3661 if (vcpu->mode == IN_GUEST_MODE) 3662 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3663 goto out; 3664 } 3665 3666 /* 3667 * Note, the vCPU could get migrated to a different pCPU at any point 3668 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3669 * IPI to the previous pCPU. But, that's ok because the purpose of the 3670 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3671 * vCPU also requires it to leave IN_GUEST_MODE. 3672 */ 3673 if (kvm_arch_vcpu_should_kick(vcpu)) { 3674 cpu = READ_ONCE(vcpu->cpu); 3675 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3676 smp_send_reschedule(cpu); 3677 } 3678 out: 3679 put_cpu(); 3680 } 3681 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3682 #endif /* !CONFIG_S390 */ 3683 3684 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3685 { 3686 struct pid *pid; 3687 struct task_struct *task = NULL; 3688 int ret = 0; 3689 3690 rcu_read_lock(); 3691 pid = rcu_dereference(target->pid); 3692 if (pid) 3693 task = get_pid_task(pid, PIDTYPE_PID); 3694 rcu_read_unlock(); 3695 if (!task) 3696 return ret; 3697 ret = yield_to(task, 1); 3698 put_task_struct(task); 3699 3700 return ret; 3701 } 3702 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3703 3704 /* 3705 * Helper that checks whether a VCPU is eligible for directed yield. 3706 * Most eligible candidate to yield is decided by following heuristics: 3707 * 3708 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3709 * (preempted lock holder), indicated by @in_spin_loop. 3710 * Set at the beginning and cleared at the end of interception/PLE handler. 3711 * 3712 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3713 * chance last time (mostly it has become eligible now since we have probably 3714 * yielded to lockholder in last iteration. This is done by toggling 3715 * @dy_eligible each time a VCPU checked for eligibility.) 3716 * 3717 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3718 * to preempted lock-holder could result in wrong VCPU selection and CPU 3719 * burning. Giving priority for a potential lock-holder increases lock 3720 * progress. 3721 * 3722 * Since algorithm is based on heuristics, accessing another VCPU data without 3723 * locking does not harm. It may result in trying to yield to same VCPU, fail 3724 * and continue with next VCPU and so on. 3725 */ 3726 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3727 { 3728 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3729 bool eligible; 3730 3731 eligible = !vcpu->spin_loop.in_spin_loop || 3732 vcpu->spin_loop.dy_eligible; 3733 3734 if (vcpu->spin_loop.in_spin_loop) 3735 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3736 3737 return eligible; 3738 #else 3739 return true; 3740 #endif 3741 } 3742 3743 /* 3744 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3745 * a vcpu_load/vcpu_put pair. However, for most architectures 3746 * kvm_arch_vcpu_runnable does not require vcpu_load. 3747 */ 3748 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3749 { 3750 return kvm_arch_vcpu_runnable(vcpu); 3751 } 3752 3753 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3754 { 3755 if (kvm_arch_dy_runnable(vcpu)) 3756 return true; 3757 3758 #ifdef CONFIG_KVM_ASYNC_PF 3759 if (!list_empty_careful(&vcpu->async_pf.done)) 3760 return true; 3761 #endif 3762 3763 return false; 3764 } 3765 3766 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3767 { 3768 return false; 3769 } 3770 3771 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3772 { 3773 struct kvm *kvm = me->kvm; 3774 struct kvm_vcpu *vcpu; 3775 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3776 unsigned long i; 3777 int yielded = 0; 3778 int try = 3; 3779 int pass; 3780 3781 kvm_vcpu_set_in_spin_loop(me, true); 3782 /* 3783 * We boost the priority of a VCPU that is runnable but not 3784 * currently running, because it got preempted by something 3785 * else and called schedule in __vcpu_run. Hopefully that 3786 * VCPU is holding the lock that we need and will release it. 3787 * We approximate round-robin by starting at the last boosted VCPU. 3788 */ 3789 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3790 kvm_for_each_vcpu(i, vcpu, kvm) { 3791 if (!pass && i <= last_boosted_vcpu) { 3792 i = last_boosted_vcpu; 3793 continue; 3794 } else if (pass && i > last_boosted_vcpu) 3795 break; 3796 if (!READ_ONCE(vcpu->ready)) 3797 continue; 3798 if (vcpu == me) 3799 continue; 3800 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3801 continue; 3802 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3803 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3804 !kvm_arch_vcpu_in_kernel(vcpu)) 3805 continue; 3806 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3807 continue; 3808 3809 yielded = kvm_vcpu_yield_to(vcpu); 3810 if (yielded > 0) { 3811 kvm->last_boosted_vcpu = i; 3812 break; 3813 } else if (yielded < 0) { 3814 try--; 3815 if (!try) 3816 break; 3817 } 3818 } 3819 } 3820 kvm_vcpu_set_in_spin_loop(me, false); 3821 3822 /* Ensure vcpu is not eligible during next spinloop */ 3823 kvm_vcpu_set_dy_eligible(me, false); 3824 } 3825 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3826 3827 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3828 { 3829 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3830 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3831 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3832 kvm->dirty_ring_size / PAGE_SIZE); 3833 #else 3834 return false; 3835 #endif 3836 } 3837 3838 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3839 { 3840 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3841 struct page *page; 3842 3843 if (vmf->pgoff == 0) 3844 page = virt_to_page(vcpu->run); 3845 #ifdef CONFIG_X86 3846 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3847 page = virt_to_page(vcpu->arch.pio_data); 3848 #endif 3849 #ifdef CONFIG_KVM_MMIO 3850 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3851 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3852 #endif 3853 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3854 page = kvm_dirty_ring_get_page( 3855 &vcpu->dirty_ring, 3856 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3857 else 3858 return kvm_arch_vcpu_fault(vcpu, vmf); 3859 get_page(page); 3860 vmf->page = page; 3861 return 0; 3862 } 3863 3864 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3865 .fault = kvm_vcpu_fault, 3866 }; 3867 3868 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3869 { 3870 struct kvm_vcpu *vcpu = file->private_data; 3871 unsigned long pages = vma_pages(vma); 3872 3873 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3874 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3875 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3876 return -EINVAL; 3877 3878 vma->vm_ops = &kvm_vcpu_vm_ops; 3879 return 0; 3880 } 3881 3882 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3883 { 3884 struct kvm_vcpu *vcpu = filp->private_data; 3885 3886 kvm_put_kvm(vcpu->kvm); 3887 return 0; 3888 } 3889 3890 static const struct file_operations kvm_vcpu_fops = { 3891 .release = kvm_vcpu_release, 3892 .unlocked_ioctl = kvm_vcpu_ioctl, 3893 .mmap = kvm_vcpu_mmap, 3894 .llseek = noop_llseek, 3895 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3896 }; 3897 3898 /* 3899 * Allocates an inode for the vcpu. 3900 */ 3901 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3902 { 3903 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3904 3905 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3906 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3907 } 3908 3909 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3910 static int vcpu_get_pid(void *data, u64 *val) 3911 { 3912 struct kvm_vcpu *vcpu = data; 3913 3914 rcu_read_lock(); 3915 *val = pid_nr(rcu_dereference(vcpu->pid)); 3916 rcu_read_unlock(); 3917 return 0; 3918 } 3919 3920 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3921 3922 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3923 { 3924 struct dentry *debugfs_dentry; 3925 char dir_name[ITOA_MAX_LEN * 2]; 3926 3927 if (!debugfs_initialized()) 3928 return; 3929 3930 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3931 debugfs_dentry = debugfs_create_dir(dir_name, 3932 vcpu->kvm->debugfs_dentry); 3933 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3934 &vcpu_get_pid_fops); 3935 3936 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3937 } 3938 #endif 3939 3940 /* 3941 * Creates some virtual cpus. Good luck creating more than one. 3942 */ 3943 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3944 { 3945 int r; 3946 struct kvm_vcpu *vcpu; 3947 struct page *page; 3948 3949 if (id >= KVM_MAX_VCPU_IDS) 3950 return -EINVAL; 3951 3952 mutex_lock(&kvm->lock); 3953 if (kvm->created_vcpus >= kvm->max_vcpus) { 3954 mutex_unlock(&kvm->lock); 3955 return -EINVAL; 3956 } 3957 3958 r = kvm_arch_vcpu_precreate(kvm, id); 3959 if (r) { 3960 mutex_unlock(&kvm->lock); 3961 return r; 3962 } 3963 3964 kvm->created_vcpus++; 3965 mutex_unlock(&kvm->lock); 3966 3967 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3968 if (!vcpu) { 3969 r = -ENOMEM; 3970 goto vcpu_decrement; 3971 } 3972 3973 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3974 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3975 if (!page) { 3976 r = -ENOMEM; 3977 goto vcpu_free; 3978 } 3979 vcpu->run = page_address(page); 3980 3981 kvm_vcpu_init(vcpu, kvm, id); 3982 3983 r = kvm_arch_vcpu_create(vcpu); 3984 if (r) 3985 goto vcpu_free_run_page; 3986 3987 if (kvm->dirty_ring_size) { 3988 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3989 id, kvm->dirty_ring_size); 3990 if (r) 3991 goto arch_vcpu_destroy; 3992 } 3993 3994 mutex_lock(&kvm->lock); 3995 3996 #ifdef CONFIG_LOCKDEP 3997 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 3998 mutex_lock(&vcpu->mutex); 3999 mutex_unlock(&vcpu->mutex); 4000 #endif 4001 4002 if (kvm_get_vcpu_by_id(kvm, id)) { 4003 r = -EEXIST; 4004 goto unlock_vcpu_destroy; 4005 } 4006 4007 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4008 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4009 if (r) 4010 goto unlock_vcpu_destroy; 4011 4012 /* Now it's all set up, let userspace reach it */ 4013 kvm_get_kvm(kvm); 4014 r = create_vcpu_fd(vcpu); 4015 if (r < 0) 4016 goto kvm_put_xa_release; 4017 4018 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4019 r = -EINVAL; 4020 goto kvm_put_xa_release; 4021 } 4022 4023 /* 4024 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4025 * pointer before kvm->online_vcpu's incremented value. 4026 */ 4027 smp_wmb(); 4028 atomic_inc(&kvm->online_vcpus); 4029 4030 mutex_unlock(&kvm->lock); 4031 kvm_arch_vcpu_postcreate(vcpu); 4032 kvm_create_vcpu_debugfs(vcpu); 4033 return r; 4034 4035 kvm_put_xa_release: 4036 kvm_put_kvm_no_destroy(kvm); 4037 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4038 unlock_vcpu_destroy: 4039 mutex_unlock(&kvm->lock); 4040 kvm_dirty_ring_free(&vcpu->dirty_ring); 4041 arch_vcpu_destroy: 4042 kvm_arch_vcpu_destroy(vcpu); 4043 vcpu_free_run_page: 4044 free_page((unsigned long)vcpu->run); 4045 vcpu_free: 4046 kmem_cache_free(kvm_vcpu_cache, vcpu); 4047 vcpu_decrement: 4048 mutex_lock(&kvm->lock); 4049 kvm->created_vcpus--; 4050 mutex_unlock(&kvm->lock); 4051 return r; 4052 } 4053 4054 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4055 { 4056 if (sigset) { 4057 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4058 vcpu->sigset_active = 1; 4059 vcpu->sigset = *sigset; 4060 } else 4061 vcpu->sigset_active = 0; 4062 return 0; 4063 } 4064 4065 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4066 size_t size, loff_t *offset) 4067 { 4068 struct kvm_vcpu *vcpu = file->private_data; 4069 4070 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4071 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4072 sizeof(vcpu->stat), user_buffer, size, offset); 4073 } 4074 4075 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4076 { 4077 struct kvm_vcpu *vcpu = file->private_data; 4078 4079 kvm_put_kvm(vcpu->kvm); 4080 return 0; 4081 } 4082 4083 static const struct file_operations kvm_vcpu_stats_fops = { 4084 .read = kvm_vcpu_stats_read, 4085 .release = kvm_vcpu_stats_release, 4086 .llseek = noop_llseek, 4087 }; 4088 4089 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4090 { 4091 int fd; 4092 struct file *file; 4093 char name[15 + ITOA_MAX_LEN + 1]; 4094 4095 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4096 4097 fd = get_unused_fd_flags(O_CLOEXEC); 4098 if (fd < 0) 4099 return fd; 4100 4101 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4102 if (IS_ERR(file)) { 4103 put_unused_fd(fd); 4104 return PTR_ERR(file); 4105 } 4106 4107 kvm_get_kvm(vcpu->kvm); 4108 4109 file->f_mode |= FMODE_PREAD; 4110 fd_install(fd, file); 4111 4112 return fd; 4113 } 4114 4115 static long kvm_vcpu_ioctl(struct file *filp, 4116 unsigned int ioctl, unsigned long arg) 4117 { 4118 struct kvm_vcpu *vcpu = filp->private_data; 4119 void __user *argp = (void __user *)arg; 4120 int r; 4121 struct kvm_fpu *fpu = NULL; 4122 struct kvm_sregs *kvm_sregs = NULL; 4123 4124 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4125 return -EIO; 4126 4127 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4128 return -EINVAL; 4129 4130 /* 4131 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4132 * execution; mutex_lock() would break them. 4133 */ 4134 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4135 if (r != -ENOIOCTLCMD) 4136 return r; 4137 4138 if (mutex_lock_killable(&vcpu->mutex)) 4139 return -EINTR; 4140 switch (ioctl) { 4141 case KVM_RUN: { 4142 struct pid *oldpid; 4143 r = -EINVAL; 4144 if (arg) 4145 goto out; 4146 oldpid = rcu_access_pointer(vcpu->pid); 4147 if (unlikely(oldpid != task_pid(current))) { 4148 /* The thread running this VCPU changed. */ 4149 struct pid *newpid; 4150 4151 r = kvm_arch_vcpu_run_pid_change(vcpu); 4152 if (r) 4153 break; 4154 4155 newpid = get_task_pid(current, PIDTYPE_PID); 4156 rcu_assign_pointer(vcpu->pid, newpid); 4157 if (oldpid) 4158 synchronize_rcu(); 4159 put_pid(oldpid); 4160 } 4161 r = kvm_arch_vcpu_ioctl_run(vcpu); 4162 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4163 break; 4164 } 4165 case KVM_GET_REGS: { 4166 struct kvm_regs *kvm_regs; 4167 4168 r = -ENOMEM; 4169 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4170 if (!kvm_regs) 4171 goto out; 4172 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4173 if (r) 4174 goto out_free1; 4175 r = -EFAULT; 4176 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4177 goto out_free1; 4178 r = 0; 4179 out_free1: 4180 kfree(kvm_regs); 4181 break; 4182 } 4183 case KVM_SET_REGS: { 4184 struct kvm_regs *kvm_regs; 4185 4186 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4187 if (IS_ERR(kvm_regs)) { 4188 r = PTR_ERR(kvm_regs); 4189 goto out; 4190 } 4191 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4192 kfree(kvm_regs); 4193 break; 4194 } 4195 case KVM_GET_SREGS: { 4196 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4197 GFP_KERNEL_ACCOUNT); 4198 r = -ENOMEM; 4199 if (!kvm_sregs) 4200 goto out; 4201 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4202 if (r) 4203 goto out; 4204 r = -EFAULT; 4205 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4206 goto out; 4207 r = 0; 4208 break; 4209 } 4210 case KVM_SET_SREGS: { 4211 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4212 if (IS_ERR(kvm_sregs)) { 4213 r = PTR_ERR(kvm_sregs); 4214 kvm_sregs = NULL; 4215 goto out; 4216 } 4217 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4218 break; 4219 } 4220 case KVM_GET_MP_STATE: { 4221 struct kvm_mp_state mp_state; 4222 4223 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4224 if (r) 4225 goto out; 4226 r = -EFAULT; 4227 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4228 goto out; 4229 r = 0; 4230 break; 4231 } 4232 case KVM_SET_MP_STATE: { 4233 struct kvm_mp_state mp_state; 4234 4235 r = -EFAULT; 4236 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4237 goto out; 4238 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4239 break; 4240 } 4241 case KVM_TRANSLATE: { 4242 struct kvm_translation tr; 4243 4244 r = -EFAULT; 4245 if (copy_from_user(&tr, argp, sizeof(tr))) 4246 goto out; 4247 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4248 if (r) 4249 goto out; 4250 r = -EFAULT; 4251 if (copy_to_user(argp, &tr, sizeof(tr))) 4252 goto out; 4253 r = 0; 4254 break; 4255 } 4256 case KVM_SET_GUEST_DEBUG: { 4257 struct kvm_guest_debug dbg; 4258 4259 r = -EFAULT; 4260 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4261 goto out; 4262 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4263 break; 4264 } 4265 case KVM_SET_SIGNAL_MASK: { 4266 struct kvm_signal_mask __user *sigmask_arg = argp; 4267 struct kvm_signal_mask kvm_sigmask; 4268 sigset_t sigset, *p; 4269 4270 p = NULL; 4271 if (argp) { 4272 r = -EFAULT; 4273 if (copy_from_user(&kvm_sigmask, argp, 4274 sizeof(kvm_sigmask))) 4275 goto out; 4276 r = -EINVAL; 4277 if (kvm_sigmask.len != sizeof(sigset)) 4278 goto out; 4279 r = -EFAULT; 4280 if (copy_from_user(&sigset, sigmask_arg->sigset, 4281 sizeof(sigset))) 4282 goto out; 4283 p = &sigset; 4284 } 4285 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4286 break; 4287 } 4288 case KVM_GET_FPU: { 4289 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4290 r = -ENOMEM; 4291 if (!fpu) 4292 goto out; 4293 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4294 if (r) 4295 goto out; 4296 r = -EFAULT; 4297 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4298 goto out; 4299 r = 0; 4300 break; 4301 } 4302 case KVM_SET_FPU: { 4303 fpu = memdup_user(argp, sizeof(*fpu)); 4304 if (IS_ERR(fpu)) { 4305 r = PTR_ERR(fpu); 4306 fpu = NULL; 4307 goto out; 4308 } 4309 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4310 break; 4311 } 4312 case KVM_GET_STATS_FD: { 4313 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4314 break; 4315 } 4316 default: 4317 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4318 } 4319 out: 4320 mutex_unlock(&vcpu->mutex); 4321 kfree(fpu); 4322 kfree(kvm_sregs); 4323 return r; 4324 } 4325 4326 #ifdef CONFIG_KVM_COMPAT 4327 static long kvm_vcpu_compat_ioctl(struct file *filp, 4328 unsigned int ioctl, unsigned long arg) 4329 { 4330 struct kvm_vcpu *vcpu = filp->private_data; 4331 void __user *argp = compat_ptr(arg); 4332 int r; 4333 4334 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4335 return -EIO; 4336 4337 switch (ioctl) { 4338 case KVM_SET_SIGNAL_MASK: { 4339 struct kvm_signal_mask __user *sigmask_arg = argp; 4340 struct kvm_signal_mask kvm_sigmask; 4341 sigset_t sigset; 4342 4343 if (argp) { 4344 r = -EFAULT; 4345 if (copy_from_user(&kvm_sigmask, argp, 4346 sizeof(kvm_sigmask))) 4347 goto out; 4348 r = -EINVAL; 4349 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4350 goto out; 4351 r = -EFAULT; 4352 if (get_compat_sigset(&sigset, 4353 (compat_sigset_t __user *)sigmask_arg->sigset)) 4354 goto out; 4355 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4356 } else 4357 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4358 break; 4359 } 4360 default: 4361 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4362 } 4363 4364 out: 4365 return r; 4366 } 4367 #endif 4368 4369 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4370 { 4371 struct kvm_device *dev = filp->private_data; 4372 4373 if (dev->ops->mmap) 4374 return dev->ops->mmap(dev, vma); 4375 4376 return -ENODEV; 4377 } 4378 4379 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4380 int (*accessor)(struct kvm_device *dev, 4381 struct kvm_device_attr *attr), 4382 unsigned long arg) 4383 { 4384 struct kvm_device_attr attr; 4385 4386 if (!accessor) 4387 return -EPERM; 4388 4389 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4390 return -EFAULT; 4391 4392 return accessor(dev, &attr); 4393 } 4394 4395 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4396 unsigned long arg) 4397 { 4398 struct kvm_device *dev = filp->private_data; 4399 4400 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4401 return -EIO; 4402 4403 switch (ioctl) { 4404 case KVM_SET_DEVICE_ATTR: 4405 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4406 case KVM_GET_DEVICE_ATTR: 4407 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4408 case KVM_HAS_DEVICE_ATTR: 4409 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4410 default: 4411 if (dev->ops->ioctl) 4412 return dev->ops->ioctl(dev, ioctl, arg); 4413 4414 return -ENOTTY; 4415 } 4416 } 4417 4418 static int kvm_device_release(struct inode *inode, struct file *filp) 4419 { 4420 struct kvm_device *dev = filp->private_data; 4421 struct kvm *kvm = dev->kvm; 4422 4423 if (dev->ops->release) { 4424 mutex_lock(&kvm->lock); 4425 list_del(&dev->vm_node); 4426 dev->ops->release(dev); 4427 mutex_unlock(&kvm->lock); 4428 } 4429 4430 kvm_put_kvm(kvm); 4431 return 0; 4432 } 4433 4434 static const struct file_operations kvm_device_fops = { 4435 .unlocked_ioctl = kvm_device_ioctl, 4436 .release = kvm_device_release, 4437 KVM_COMPAT(kvm_device_ioctl), 4438 .mmap = kvm_device_mmap, 4439 }; 4440 4441 struct kvm_device *kvm_device_from_filp(struct file *filp) 4442 { 4443 if (filp->f_op != &kvm_device_fops) 4444 return NULL; 4445 4446 return filp->private_data; 4447 } 4448 4449 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4450 #ifdef CONFIG_KVM_MPIC 4451 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4452 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4453 #endif 4454 }; 4455 4456 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4457 { 4458 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4459 return -ENOSPC; 4460 4461 if (kvm_device_ops_table[type] != NULL) 4462 return -EEXIST; 4463 4464 kvm_device_ops_table[type] = ops; 4465 return 0; 4466 } 4467 4468 void kvm_unregister_device_ops(u32 type) 4469 { 4470 if (kvm_device_ops_table[type] != NULL) 4471 kvm_device_ops_table[type] = NULL; 4472 } 4473 4474 static int kvm_ioctl_create_device(struct kvm *kvm, 4475 struct kvm_create_device *cd) 4476 { 4477 const struct kvm_device_ops *ops; 4478 struct kvm_device *dev; 4479 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4480 int type; 4481 int ret; 4482 4483 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4484 return -ENODEV; 4485 4486 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4487 ops = kvm_device_ops_table[type]; 4488 if (ops == NULL) 4489 return -ENODEV; 4490 4491 if (test) 4492 return 0; 4493 4494 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4495 if (!dev) 4496 return -ENOMEM; 4497 4498 dev->ops = ops; 4499 dev->kvm = kvm; 4500 4501 mutex_lock(&kvm->lock); 4502 ret = ops->create(dev, type); 4503 if (ret < 0) { 4504 mutex_unlock(&kvm->lock); 4505 kfree(dev); 4506 return ret; 4507 } 4508 list_add(&dev->vm_node, &kvm->devices); 4509 mutex_unlock(&kvm->lock); 4510 4511 if (ops->init) 4512 ops->init(dev); 4513 4514 kvm_get_kvm(kvm); 4515 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4516 if (ret < 0) { 4517 kvm_put_kvm_no_destroy(kvm); 4518 mutex_lock(&kvm->lock); 4519 list_del(&dev->vm_node); 4520 if (ops->release) 4521 ops->release(dev); 4522 mutex_unlock(&kvm->lock); 4523 if (ops->destroy) 4524 ops->destroy(dev); 4525 return ret; 4526 } 4527 4528 cd->fd = ret; 4529 return 0; 4530 } 4531 4532 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4533 { 4534 switch (arg) { 4535 case KVM_CAP_USER_MEMORY: 4536 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4537 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4538 case KVM_CAP_INTERNAL_ERROR_DATA: 4539 #ifdef CONFIG_HAVE_KVM_MSI 4540 case KVM_CAP_SIGNAL_MSI: 4541 #endif 4542 #ifdef CONFIG_HAVE_KVM_IRQFD 4543 case KVM_CAP_IRQFD: 4544 #endif 4545 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4546 case KVM_CAP_CHECK_EXTENSION_VM: 4547 case KVM_CAP_ENABLE_CAP_VM: 4548 case KVM_CAP_HALT_POLL: 4549 return 1; 4550 #ifdef CONFIG_KVM_MMIO 4551 case KVM_CAP_COALESCED_MMIO: 4552 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4553 case KVM_CAP_COALESCED_PIO: 4554 return 1; 4555 #endif 4556 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4557 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4558 return KVM_DIRTY_LOG_MANUAL_CAPS; 4559 #endif 4560 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4561 case KVM_CAP_IRQ_ROUTING: 4562 return KVM_MAX_IRQ_ROUTES; 4563 #endif 4564 #if KVM_ADDRESS_SPACE_NUM > 1 4565 case KVM_CAP_MULTI_ADDRESS_SPACE: 4566 return KVM_ADDRESS_SPACE_NUM; 4567 #endif 4568 case KVM_CAP_NR_MEMSLOTS: 4569 return KVM_USER_MEM_SLOTS; 4570 case KVM_CAP_DIRTY_LOG_RING: 4571 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4572 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4573 #else 4574 return 0; 4575 #endif 4576 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4577 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4578 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4579 #else 4580 return 0; 4581 #endif 4582 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4583 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4584 #endif 4585 case KVM_CAP_BINARY_STATS_FD: 4586 case KVM_CAP_SYSTEM_EVENT_DATA: 4587 return 1; 4588 default: 4589 break; 4590 } 4591 return kvm_vm_ioctl_check_extension(kvm, arg); 4592 } 4593 4594 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4595 { 4596 int r; 4597 4598 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4599 return -EINVAL; 4600 4601 /* the size should be power of 2 */ 4602 if (!size || (size & (size - 1))) 4603 return -EINVAL; 4604 4605 /* Should be bigger to keep the reserved entries, or a page */ 4606 if (size < kvm_dirty_ring_get_rsvd_entries() * 4607 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4608 return -EINVAL; 4609 4610 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4611 sizeof(struct kvm_dirty_gfn)) 4612 return -E2BIG; 4613 4614 /* We only allow it to set once */ 4615 if (kvm->dirty_ring_size) 4616 return -EINVAL; 4617 4618 mutex_lock(&kvm->lock); 4619 4620 if (kvm->created_vcpus) { 4621 /* We don't allow to change this value after vcpu created */ 4622 r = -EINVAL; 4623 } else { 4624 kvm->dirty_ring_size = size; 4625 r = 0; 4626 } 4627 4628 mutex_unlock(&kvm->lock); 4629 return r; 4630 } 4631 4632 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4633 { 4634 unsigned long i; 4635 struct kvm_vcpu *vcpu; 4636 int cleared = 0; 4637 4638 if (!kvm->dirty_ring_size) 4639 return -EINVAL; 4640 4641 mutex_lock(&kvm->slots_lock); 4642 4643 kvm_for_each_vcpu(i, vcpu, kvm) 4644 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4645 4646 mutex_unlock(&kvm->slots_lock); 4647 4648 if (cleared) 4649 kvm_flush_remote_tlbs(kvm); 4650 4651 return cleared; 4652 } 4653 4654 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4655 struct kvm_enable_cap *cap) 4656 { 4657 return -EINVAL; 4658 } 4659 4660 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4661 { 4662 int i; 4663 4664 lockdep_assert_held(&kvm->slots_lock); 4665 4666 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 4667 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4668 return false; 4669 } 4670 4671 return true; 4672 } 4673 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4674 4675 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4676 struct kvm_enable_cap *cap) 4677 { 4678 switch (cap->cap) { 4679 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4680 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4681 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4682 4683 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4684 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4685 4686 if (cap->flags || (cap->args[0] & ~allowed_options)) 4687 return -EINVAL; 4688 kvm->manual_dirty_log_protect = cap->args[0]; 4689 return 0; 4690 } 4691 #endif 4692 case KVM_CAP_HALT_POLL: { 4693 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4694 return -EINVAL; 4695 4696 kvm->max_halt_poll_ns = cap->args[0]; 4697 4698 /* 4699 * Ensure kvm->override_halt_poll_ns does not become visible 4700 * before kvm->max_halt_poll_ns. 4701 * 4702 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4703 */ 4704 smp_wmb(); 4705 kvm->override_halt_poll_ns = true; 4706 4707 return 0; 4708 } 4709 case KVM_CAP_DIRTY_LOG_RING: 4710 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4711 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4712 return -EINVAL; 4713 4714 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4715 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4716 int r = -EINVAL; 4717 4718 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4719 !kvm->dirty_ring_size || cap->flags) 4720 return r; 4721 4722 mutex_lock(&kvm->slots_lock); 4723 4724 /* 4725 * For simplicity, allow enabling ring+bitmap if and only if 4726 * there are no memslots, e.g. to ensure all memslots allocate 4727 * a bitmap after the capability is enabled. 4728 */ 4729 if (kvm_are_all_memslots_empty(kvm)) { 4730 kvm->dirty_ring_with_bitmap = true; 4731 r = 0; 4732 } 4733 4734 mutex_unlock(&kvm->slots_lock); 4735 4736 return r; 4737 } 4738 default: 4739 return kvm_vm_ioctl_enable_cap(kvm, cap); 4740 } 4741 } 4742 4743 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4744 size_t size, loff_t *offset) 4745 { 4746 struct kvm *kvm = file->private_data; 4747 4748 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4749 &kvm_vm_stats_desc[0], &kvm->stat, 4750 sizeof(kvm->stat), user_buffer, size, offset); 4751 } 4752 4753 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 4754 { 4755 struct kvm *kvm = file->private_data; 4756 4757 kvm_put_kvm(kvm); 4758 return 0; 4759 } 4760 4761 static const struct file_operations kvm_vm_stats_fops = { 4762 .read = kvm_vm_stats_read, 4763 .release = kvm_vm_stats_release, 4764 .llseek = noop_llseek, 4765 }; 4766 4767 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4768 { 4769 int fd; 4770 struct file *file; 4771 4772 fd = get_unused_fd_flags(O_CLOEXEC); 4773 if (fd < 0) 4774 return fd; 4775 4776 file = anon_inode_getfile("kvm-vm-stats", 4777 &kvm_vm_stats_fops, kvm, O_RDONLY); 4778 if (IS_ERR(file)) { 4779 put_unused_fd(fd); 4780 return PTR_ERR(file); 4781 } 4782 4783 kvm_get_kvm(kvm); 4784 4785 file->f_mode |= FMODE_PREAD; 4786 fd_install(fd, file); 4787 4788 return fd; 4789 } 4790 4791 static long kvm_vm_ioctl(struct file *filp, 4792 unsigned int ioctl, unsigned long arg) 4793 { 4794 struct kvm *kvm = filp->private_data; 4795 void __user *argp = (void __user *)arg; 4796 int r; 4797 4798 if (kvm->mm != current->mm || kvm->vm_dead) 4799 return -EIO; 4800 switch (ioctl) { 4801 case KVM_CREATE_VCPU: 4802 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4803 break; 4804 case KVM_ENABLE_CAP: { 4805 struct kvm_enable_cap cap; 4806 4807 r = -EFAULT; 4808 if (copy_from_user(&cap, argp, sizeof(cap))) 4809 goto out; 4810 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4811 break; 4812 } 4813 case KVM_SET_USER_MEMORY_REGION: { 4814 struct kvm_userspace_memory_region kvm_userspace_mem; 4815 4816 r = -EFAULT; 4817 if (copy_from_user(&kvm_userspace_mem, argp, 4818 sizeof(kvm_userspace_mem))) 4819 goto out; 4820 4821 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4822 break; 4823 } 4824 case KVM_GET_DIRTY_LOG: { 4825 struct kvm_dirty_log log; 4826 4827 r = -EFAULT; 4828 if (copy_from_user(&log, argp, sizeof(log))) 4829 goto out; 4830 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4831 break; 4832 } 4833 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4834 case KVM_CLEAR_DIRTY_LOG: { 4835 struct kvm_clear_dirty_log log; 4836 4837 r = -EFAULT; 4838 if (copy_from_user(&log, argp, sizeof(log))) 4839 goto out; 4840 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4841 break; 4842 } 4843 #endif 4844 #ifdef CONFIG_KVM_MMIO 4845 case KVM_REGISTER_COALESCED_MMIO: { 4846 struct kvm_coalesced_mmio_zone zone; 4847 4848 r = -EFAULT; 4849 if (copy_from_user(&zone, argp, sizeof(zone))) 4850 goto out; 4851 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4852 break; 4853 } 4854 case KVM_UNREGISTER_COALESCED_MMIO: { 4855 struct kvm_coalesced_mmio_zone zone; 4856 4857 r = -EFAULT; 4858 if (copy_from_user(&zone, argp, sizeof(zone))) 4859 goto out; 4860 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4861 break; 4862 } 4863 #endif 4864 case KVM_IRQFD: { 4865 struct kvm_irqfd data; 4866 4867 r = -EFAULT; 4868 if (copy_from_user(&data, argp, sizeof(data))) 4869 goto out; 4870 r = kvm_irqfd(kvm, &data); 4871 break; 4872 } 4873 case KVM_IOEVENTFD: { 4874 struct kvm_ioeventfd data; 4875 4876 r = -EFAULT; 4877 if (copy_from_user(&data, argp, sizeof(data))) 4878 goto out; 4879 r = kvm_ioeventfd(kvm, &data); 4880 break; 4881 } 4882 #ifdef CONFIG_HAVE_KVM_MSI 4883 case KVM_SIGNAL_MSI: { 4884 struct kvm_msi msi; 4885 4886 r = -EFAULT; 4887 if (copy_from_user(&msi, argp, sizeof(msi))) 4888 goto out; 4889 r = kvm_send_userspace_msi(kvm, &msi); 4890 break; 4891 } 4892 #endif 4893 #ifdef __KVM_HAVE_IRQ_LINE 4894 case KVM_IRQ_LINE_STATUS: 4895 case KVM_IRQ_LINE: { 4896 struct kvm_irq_level irq_event; 4897 4898 r = -EFAULT; 4899 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4900 goto out; 4901 4902 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4903 ioctl == KVM_IRQ_LINE_STATUS); 4904 if (r) 4905 goto out; 4906 4907 r = -EFAULT; 4908 if (ioctl == KVM_IRQ_LINE_STATUS) { 4909 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4910 goto out; 4911 } 4912 4913 r = 0; 4914 break; 4915 } 4916 #endif 4917 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4918 case KVM_SET_GSI_ROUTING: { 4919 struct kvm_irq_routing routing; 4920 struct kvm_irq_routing __user *urouting; 4921 struct kvm_irq_routing_entry *entries = NULL; 4922 4923 r = -EFAULT; 4924 if (copy_from_user(&routing, argp, sizeof(routing))) 4925 goto out; 4926 r = -EINVAL; 4927 if (!kvm_arch_can_set_irq_routing(kvm)) 4928 goto out; 4929 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4930 goto out; 4931 if (routing.flags) 4932 goto out; 4933 if (routing.nr) { 4934 urouting = argp; 4935 entries = vmemdup_user(urouting->entries, 4936 array_size(sizeof(*entries), 4937 routing.nr)); 4938 if (IS_ERR(entries)) { 4939 r = PTR_ERR(entries); 4940 goto out; 4941 } 4942 } 4943 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4944 routing.flags); 4945 kvfree(entries); 4946 break; 4947 } 4948 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4949 case KVM_CREATE_DEVICE: { 4950 struct kvm_create_device cd; 4951 4952 r = -EFAULT; 4953 if (copy_from_user(&cd, argp, sizeof(cd))) 4954 goto out; 4955 4956 r = kvm_ioctl_create_device(kvm, &cd); 4957 if (r) 4958 goto out; 4959 4960 r = -EFAULT; 4961 if (copy_to_user(argp, &cd, sizeof(cd))) 4962 goto out; 4963 4964 r = 0; 4965 break; 4966 } 4967 case KVM_CHECK_EXTENSION: 4968 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4969 break; 4970 case KVM_RESET_DIRTY_RINGS: 4971 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4972 break; 4973 case KVM_GET_STATS_FD: 4974 r = kvm_vm_ioctl_get_stats_fd(kvm); 4975 break; 4976 default: 4977 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4978 } 4979 out: 4980 return r; 4981 } 4982 4983 #ifdef CONFIG_KVM_COMPAT 4984 struct compat_kvm_dirty_log { 4985 __u32 slot; 4986 __u32 padding1; 4987 union { 4988 compat_uptr_t dirty_bitmap; /* one bit per page */ 4989 __u64 padding2; 4990 }; 4991 }; 4992 4993 struct compat_kvm_clear_dirty_log { 4994 __u32 slot; 4995 __u32 num_pages; 4996 __u64 first_page; 4997 union { 4998 compat_uptr_t dirty_bitmap; /* one bit per page */ 4999 __u64 padding2; 5000 }; 5001 }; 5002 5003 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5004 unsigned long arg) 5005 { 5006 return -ENOTTY; 5007 } 5008 5009 static long kvm_vm_compat_ioctl(struct file *filp, 5010 unsigned int ioctl, unsigned long arg) 5011 { 5012 struct kvm *kvm = filp->private_data; 5013 int r; 5014 5015 if (kvm->mm != current->mm || kvm->vm_dead) 5016 return -EIO; 5017 5018 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5019 if (r != -ENOTTY) 5020 return r; 5021 5022 switch (ioctl) { 5023 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5024 case KVM_CLEAR_DIRTY_LOG: { 5025 struct compat_kvm_clear_dirty_log compat_log; 5026 struct kvm_clear_dirty_log log; 5027 5028 if (copy_from_user(&compat_log, (void __user *)arg, 5029 sizeof(compat_log))) 5030 return -EFAULT; 5031 log.slot = compat_log.slot; 5032 log.num_pages = compat_log.num_pages; 5033 log.first_page = compat_log.first_page; 5034 log.padding2 = compat_log.padding2; 5035 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5036 5037 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5038 break; 5039 } 5040 #endif 5041 case KVM_GET_DIRTY_LOG: { 5042 struct compat_kvm_dirty_log compat_log; 5043 struct kvm_dirty_log log; 5044 5045 if (copy_from_user(&compat_log, (void __user *)arg, 5046 sizeof(compat_log))) 5047 return -EFAULT; 5048 log.slot = compat_log.slot; 5049 log.padding1 = compat_log.padding1; 5050 log.padding2 = compat_log.padding2; 5051 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5052 5053 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5054 break; 5055 } 5056 default: 5057 r = kvm_vm_ioctl(filp, ioctl, arg); 5058 } 5059 return r; 5060 } 5061 #endif 5062 5063 static const struct file_operations kvm_vm_fops = { 5064 .release = kvm_vm_release, 5065 .unlocked_ioctl = kvm_vm_ioctl, 5066 .llseek = noop_llseek, 5067 KVM_COMPAT(kvm_vm_compat_ioctl), 5068 }; 5069 5070 bool file_is_kvm(struct file *file) 5071 { 5072 return file && file->f_op == &kvm_vm_fops; 5073 } 5074 EXPORT_SYMBOL_GPL(file_is_kvm); 5075 5076 static int kvm_dev_ioctl_create_vm(unsigned long type) 5077 { 5078 char fdname[ITOA_MAX_LEN + 1]; 5079 int r, fd; 5080 struct kvm *kvm; 5081 struct file *file; 5082 5083 fd = get_unused_fd_flags(O_CLOEXEC); 5084 if (fd < 0) 5085 return fd; 5086 5087 snprintf(fdname, sizeof(fdname), "%d", fd); 5088 5089 kvm = kvm_create_vm(type, fdname); 5090 if (IS_ERR(kvm)) { 5091 r = PTR_ERR(kvm); 5092 goto put_fd; 5093 } 5094 5095 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5096 if (IS_ERR(file)) { 5097 r = PTR_ERR(file); 5098 goto put_kvm; 5099 } 5100 5101 /* 5102 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5103 * already set, with ->release() being kvm_vm_release(). In error 5104 * cases it will be called by the final fput(file) and will take 5105 * care of doing kvm_put_kvm(kvm). 5106 */ 5107 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5108 5109 fd_install(fd, file); 5110 return fd; 5111 5112 put_kvm: 5113 kvm_put_kvm(kvm); 5114 put_fd: 5115 put_unused_fd(fd); 5116 return r; 5117 } 5118 5119 static long kvm_dev_ioctl(struct file *filp, 5120 unsigned int ioctl, unsigned long arg) 5121 { 5122 int r = -EINVAL; 5123 5124 switch (ioctl) { 5125 case KVM_GET_API_VERSION: 5126 if (arg) 5127 goto out; 5128 r = KVM_API_VERSION; 5129 break; 5130 case KVM_CREATE_VM: 5131 r = kvm_dev_ioctl_create_vm(arg); 5132 break; 5133 case KVM_CHECK_EXTENSION: 5134 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5135 break; 5136 case KVM_GET_VCPU_MMAP_SIZE: 5137 if (arg) 5138 goto out; 5139 r = PAGE_SIZE; /* struct kvm_run */ 5140 #ifdef CONFIG_X86 5141 r += PAGE_SIZE; /* pio data page */ 5142 #endif 5143 #ifdef CONFIG_KVM_MMIO 5144 r += PAGE_SIZE; /* coalesced mmio ring page */ 5145 #endif 5146 break; 5147 case KVM_TRACE_ENABLE: 5148 case KVM_TRACE_PAUSE: 5149 case KVM_TRACE_DISABLE: 5150 r = -EOPNOTSUPP; 5151 break; 5152 default: 5153 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5154 } 5155 out: 5156 return r; 5157 } 5158 5159 static struct file_operations kvm_chardev_ops = { 5160 .unlocked_ioctl = kvm_dev_ioctl, 5161 .llseek = noop_llseek, 5162 KVM_COMPAT(kvm_dev_ioctl), 5163 }; 5164 5165 static struct miscdevice kvm_dev = { 5166 KVM_MINOR, 5167 "kvm", 5168 &kvm_chardev_ops, 5169 }; 5170 5171 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5172 __visible bool kvm_rebooting; 5173 EXPORT_SYMBOL_GPL(kvm_rebooting); 5174 5175 static DEFINE_PER_CPU(bool, hardware_enabled); 5176 static int kvm_usage_count; 5177 5178 static int __hardware_enable_nolock(void) 5179 { 5180 if (__this_cpu_read(hardware_enabled)) 5181 return 0; 5182 5183 if (kvm_arch_hardware_enable()) { 5184 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5185 raw_smp_processor_id()); 5186 return -EIO; 5187 } 5188 5189 __this_cpu_write(hardware_enabled, true); 5190 return 0; 5191 } 5192 5193 static void hardware_enable_nolock(void *failed) 5194 { 5195 if (__hardware_enable_nolock()) 5196 atomic_inc(failed); 5197 } 5198 5199 static int kvm_online_cpu(unsigned int cpu) 5200 { 5201 int ret = 0; 5202 5203 /* 5204 * Abort the CPU online process if hardware virtualization cannot 5205 * be enabled. Otherwise running VMs would encounter unrecoverable 5206 * errors when scheduled to this CPU. 5207 */ 5208 mutex_lock(&kvm_lock); 5209 if (kvm_usage_count) 5210 ret = __hardware_enable_nolock(); 5211 mutex_unlock(&kvm_lock); 5212 return ret; 5213 } 5214 5215 static void hardware_disable_nolock(void *junk) 5216 { 5217 /* 5218 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5219 * hardware, not just CPUs that successfully enabled hardware! 5220 */ 5221 if (!__this_cpu_read(hardware_enabled)) 5222 return; 5223 5224 kvm_arch_hardware_disable(); 5225 5226 __this_cpu_write(hardware_enabled, false); 5227 } 5228 5229 static int kvm_offline_cpu(unsigned int cpu) 5230 { 5231 mutex_lock(&kvm_lock); 5232 if (kvm_usage_count) 5233 hardware_disable_nolock(NULL); 5234 mutex_unlock(&kvm_lock); 5235 return 0; 5236 } 5237 5238 static void hardware_disable_all_nolock(void) 5239 { 5240 BUG_ON(!kvm_usage_count); 5241 5242 kvm_usage_count--; 5243 if (!kvm_usage_count) 5244 on_each_cpu(hardware_disable_nolock, NULL, 1); 5245 } 5246 5247 static void hardware_disable_all(void) 5248 { 5249 cpus_read_lock(); 5250 mutex_lock(&kvm_lock); 5251 hardware_disable_all_nolock(); 5252 mutex_unlock(&kvm_lock); 5253 cpus_read_unlock(); 5254 } 5255 5256 static int hardware_enable_all(void) 5257 { 5258 atomic_t failed = ATOMIC_INIT(0); 5259 int r; 5260 5261 /* 5262 * Do not enable hardware virtualization if the system is going down. 5263 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5264 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5265 * after kvm_reboot() is called. Note, this relies on system_state 5266 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5267 * hook instead of registering a dedicated reboot notifier (the latter 5268 * runs before system_state is updated). 5269 */ 5270 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5271 system_state == SYSTEM_RESTART) 5272 return -EBUSY; 5273 5274 /* 5275 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5276 * is called, and so on_each_cpu() between them includes the CPU that 5277 * is being onlined. As a result, hardware_enable_nolock() may get 5278 * invoked before kvm_online_cpu(), which also enables hardware if the 5279 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5280 * enable hardware multiple times. 5281 */ 5282 cpus_read_lock(); 5283 mutex_lock(&kvm_lock); 5284 5285 r = 0; 5286 5287 kvm_usage_count++; 5288 if (kvm_usage_count == 1) { 5289 on_each_cpu(hardware_enable_nolock, &failed, 1); 5290 5291 if (atomic_read(&failed)) { 5292 hardware_disable_all_nolock(); 5293 r = -EBUSY; 5294 } 5295 } 5296 5297 mutex_unlock(&kvm_lock); 5298 cpus_read_unlock(); 5299 5300 return r; 5301 } 5302 5303 static void kvm_shutdown(void) 5304 { 5305 /* 5306 * Disable hardware virtualization and set kvm_rebooting to indicate 5307 * that KVM has asynchronously disabled hardware virtualization, i.e. 5308 * that relevant errors and exceptions aren't entirely unexpected. 5309 * Some flavors of hardware virtualization need to be disabled before 5310 * transferring control to firmware (to perform shutdown/reboot), e.g. 5311 * on x86, virtualization can block INIT interrupts, which are used by 5312 * firmware to pull APs back under firmware control. Note, this path 5313 * is used for both shutdown and reboot scenarios, i.e. neither name is 5314 * 100% comprehensive. 5315 */ 5316 pr_info("kvm: exiting hardware virtualization\n"); 5317 kvm_rebooting = true; 5318 on_each_cpu(hardware_disable_nolock, NULL, 1); 5319 } 5320 5321 static int kvm_suspend(void) 5322 { 5323 /* 5324 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5325 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5326 * is stable. Assert that kvm_lock is not held to ensure the system 5327 * isn't suspended while KVM is enabling hardware. Hardware enabling 5328 * can be preempted, but the task cannot be frozen until it has dropped 5329 * all locks (userspace tasks are frozen via a fake signal). 5330 */ 5331 lockdep_assert_not_held(&kvm_lock); 5332 lockdep_assert_irqs_disabled(); 5333 5334 if (kvm_usage_count) 5335 hardware_disable_nolock(NULL); 5336 return 0; 5337 } 5338 5339 static void kvm_resume(void) 5340 { 5341 lockdep_assert_not_held(&kvm_lock); 5342 lockdep_assert_irqs_disabled(); 5343 5344 if (kvm_usage_count) 5345 WARN_ON_ONCE(__hardware_enable_nolock()); 5346 } 5347 5348 static struct syscore_ops kvm_syscore_ops = { 5349 .suspend = kvm_suspend, 5350 .resume = kvm_resume, 5351 .shutdown = kvm_shutdown, 5352 }; 5353 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5354 static int hardware_enable_all(void) 5355 { 5356 return 0; 5357 } 5358 5359 static void hardware_disable_all(void) 5360 { 5361 5362 } 5363 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5364 5365 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5366 { 5367 if (dev->ops->destructor) 5368 dev->ops->destructor(dev); 5369 } 5370 5371 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5372 { 5373 int i; 5374 5375 for (i = 0; i < bus->dev_count; i++) { 5376 struct kvm_io_device *pos = bus->range[i].dev; 5377 5378 kvm_iodevice_destructor(pos); 5379 } 5380 kfree(bus); 5381 } 5382 5383 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5384 const struct kvm_io_range *r2) 5385 { 5386 gpa_t addr1 = r1->addr; 5387 gpa_t addr2 = r2->addr; 5388 5389 if (addr1 < addr2) 5390 return -1; 5391 5392 /* If r2->len == 0, match the exact address. If r2->len != 0, 5393 * accept any overlapping write. Any order is acceptable for 5394 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5395 * we process all of them. 5396 */ 5397 if (r2->len) { 5398 addr1 += r1->len; 5399 addr2 += r2->len; 5400 } 5401 5402 if (addr1 > addr2) 5403 return 1; 5404 5405 return 0; 5406 } 5407 5408 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5409 { 5410 return kvm_io_bus_cmp(p1, p2); 5411 } 5412 5413 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5414 gpa_t addr, int len) 5415 { 5416 struct kvm_io_range *range, key; 5417 int off; 5418 5419 key = (struct kvm_io_range) { 5420 .addr = addr, 5421 .len = len, 5422 }; 5423 5424 range = bsearch(&key, bus->range, bus->dev_count, 5425 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5426 if (range == NULL) 5427 return -ENOENT; 5428 5429 off = range - bus->range; 5430 5431 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5432 off--; 5433 5434 return off; 5435 } 5436 5437 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5438 struct kvm_io_range *range, const void *val) 5439 { 5440 int idx; 5441 5442 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5443 if (idx < 0) 5444 return -EOPNOTSUPP; 5445 5446 while (idx < bus->dev_count && 5447 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5448 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5449 range->len, val)) 5450 return idx; 5451 idx++; 5452 } 5453 5454 return -EOPNOTSUPP; 5455 } 5456 5457 /* kvm_io_bus_write - called under kvm->slots_lock */ 5458 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5459 int len, const void *val) 5460 { 5461 struct kvm_io_bus *bus; 5462 struct kvm_io_range range; 5463 int r; 5464 5465 range = (struct kvm_io_range) { 5466 .addr = addr, 5467 .len = len, 5468 }; 5469 5470 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5471 if (!bus) 5472 return -ENOMEM; 5473 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5474 return r < 0 ? r : 0; 5475 } 5476 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5477 5478 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5479 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5480 gpa_t addr, int len, const void *val, long cookie) 5481 { 5482 struct kvm_io_bus *bus; 5483 struct kvm_io_range range; 5484 5485 range = (struct kvm_io_range) { 5486 .addr = addr, 5487 .len = len, 5488 }; 5489 5490 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5491 if (!bus) 5492 return -ENOMEM; 5493 5494 /* First try the device referenced by cookie. */ 5495 if ((cookie >= 0) && (cookie < bus->dev_count) && 5496 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5497 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5498 val)) 5499 return cookie; 5500 5501 /* 5502 * cookie contained garbage; fall back to search and return the 5503 * correct cookie value. 5504 */ 5505 return __kvm_io_bus_write(vcpu, bus, &range, val); 5506 } 5507 5508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5509 struct kvm_io_range *range, void *val) 5510 { 5511 int idx; 5512 5513 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5514 if (idx < 0) 5515 return -EOPNOTSUPP; 5516 5517 while (idx < bus->dev_count && 5518 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5519 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5520 range->len, val)) 5521 return idx; 5522 idx++; 5523 } 5524 5525 return -EOPNOTSUPP; 5526 } 5527 5528 /* kvm_io_bus_read - called under kvm->slots_lock */ 5529 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5530 int len, void *val) 5531 { 5532 struct kvm_io_bus *bus; 5533 struct kvm_io_range range; 5534 int r; 5535 5536 range = (struct kvm_io_range) { 5537 .addr = addr, 5538 .len = len, 5539 }; 5540 5541 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5542 if (!bus) 5543 return -ENOMEM; 5544 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5545 return r < 0 ? r : 0; 5546 } 5547 5548 /* Caller must hold slots_lock. */ 5549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5550 int len, struct kvm_io_device *dev) 5551 { 5552 int i; 5553 struct kvm_io_bus *new_bus, *bus; 5554 struct kvm_io_range range; 5555 5556 bus = kvm_get_bus(kvm, bus_idx); 5557 if (!bus) 5558 return -ENOMEM; 5559 5560 /* exclude ioeventfd which is limited by maximum fd */ 5561 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5562 return -ENOSPC; 5563 5564 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5565 GFP_KERNEL_ACCOUNT); 5566 if (!new_bus) 5567 return -ENOMEM; 5568 5569 range = (struct kvm_io_range) { 5570 .addr = addr, 5571 .len = len, 5572 .dev = dev, 5573 }; 5574 5575 for (i = 0; i < bus->dev_count; i++) 5576 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5577 break; 5578 5579 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5580 new_bus->dev_count++; 5581 new_bus->range[i] = range; 5582 memcpy(new_bus->range + i + 1, bus->range + i, 5583 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5584 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5585 synchronize_srcu_expedited(&kvm->srcu); 5586 kfree(bus); 5587 5588 return 0; 5589 } 5590 5591 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5592 struct kvm_io_device *dev) 5593 { 5594 int i; 5595 struct kvm_io_bus *new_bus, *bus; 5596 5597 lockdep_assert_held(&kvm->slots_lock); 5598 5599 bus = kvm_get_bus(kvm, bus_idx); 5600 if (!bus) 5601 return 0; 5602 5603 for (i = 0; i < bus->dev_count; i++) { 5604 if (bus->range[i].dev == dev) { 5605 break; 5606 } 5607 } 5608 5609 if (i == bus->dev_count) 5610 return 0; 5611 5612 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5613 GFP_KERNEL_ACCOUNT); 5614 if (new_bus) { 5615 memcpy(new_bus, bus, struct_size(bus, range, i)); 5616 new_bus->dev_count--; 5617 memcpy(new_bus->range + i, bus->range + i + 1, 5618 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5619 } 5620 5621 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5622 synchronize_srcu_expedited(&kvm->srcu); 5623 5624 /* 5625 * If NULL bus is installed, destroy the old bus, including all the 5626 * attached devices. Otherwise, destroy the caller's device only. 5627 */ 5628 if (!new_bus) { 5629 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5630 kvm_io_bus_destroy(bus); 5631 return -ENOMEM; 5632 } 5633 5634 kvm_iodevice_destructor(dev); 5635 kfree(bus); 5636 return 0; 5637 } 5638 5639 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5640 gpa_t addr) 5641 { 5642 struct kvm_io_bus *bus; 5643 int dev_idx, srcu_idx; 5644 struct kvm_io_device *iodev = NULL; 5645 5646 srcu_idx = srcu_read_lock(&kvm->srcu); 5647 5648 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5649 if (!bus) 5650 goto out_unlock; 5651 5652 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5653 if (dev_idx < 0) 5654 goto out_unlock; 5655 5656 iodev = bus->range[dev_idx].dev; 5657 5658 out_unlock: 5659 srcu_read_unlock(&kvm->srcu, srcu_idx); 5660 5661 return iodev; 5662 } 5663 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5664 5665 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5666 int (*get)(void *, u64 *), int (*set)(void *, u64), 5667 const char *fmt) 5668 { 5669 int ret; 5670 struct kvm_stat_data *stat_data = inode->i_private; 5671 5672 /* 5673 * The debugfs files are a reference to the kvm struct which 5674 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5675 * avoids the race between open and the removal of the debugfs directory. 5676 */ 5677 if (!kvm_get_kvm_safe(stat_data->kvm)) 5678 return -ENOENT; 5679 5680 ret = simple_attr_open(inode, file, get, 5681 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5682 ? set : NULL, fmt); 5683 if (ret) 5684 kvm_put_kvm(stat_data->kvm); 5685 5686 return ret; 5687 } 5688 5689 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5690 { 5691 struct kvm_stat_data *stat_data = inode->i_private; 5692 5693 simple_attr_release(inode, file); 5694 kvm_put_kvm(stat_data->kvm); 5695 5696 return 0; 5697 } 5698 5699 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5700 { 5701 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5702 5703 return 0; 5704 } 5705 5706 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5707 { 5708 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5709 5710 return 0; 5711 } 5712 5713 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5714 { 5715 unsigned long i; 5716 struct kvm_vcpu *vcpu; 5717 5718 *val = 0; 5719 5720 kvm_for_each_vcpu(i, vcpu, kvm) 5721 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5722 5723 return 0; 5724 } 5725 5726 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5727 { 5728 unsigned long i; 5729 struct kvm_vcpu *vcpu; 5730 5731 kvm_for_each_vcpu(i, vcpu, kvm) 5732 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5733 5734 return 0; 5735 } 5736 5737 static int kvm_stat_data_get(void *data, u64 *val) 5738 { 5739 int r = -EFAULT; 5740 struct kvm_stat_data *stat_data = data; 5741 5742 switch (stat_data->kind) { 5743 case KVM_STAT_VM: 5744 r = kvm_get_stat_per_vm(stat_data->kvm, 5745 stat_data->desc->desc.offset, val); 5746 break; 5747 case KVM_STAT_VCPU: 5748 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5749 stat_data->desc->desc.offset, val); 5750 break; 5751 } 5752 5753 return r; 5754 } 5755 5756 static int kvm_stat_data_clear(void *data, u64 val) 5757 { 5758 int r = -EFAULT; 5759 struct kvm_stat_data *stat_data = data; 5760 5761 if (val) 5762 return -EINVAL; 5763 5764 switch (stat_data->kind) { 5765 case KVM_STAT_VM: 5766 r = kvm_clear_stat_per_vm(stat_data->kvm, 5767 stat_data->desc->desc.offset); 5768 break; 5769 case KVM_STAT_VCPU: 5770 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5771 stat_data->desc->desc.offset); 5772 break; 5773 } 5774 5775 return r; 5776 } 5777 5778 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5779 { 5780 __simple_attr_check_format("%llu\n", 0ull); 5781 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5782 kvm_stat_data_clear, "%llu\n"); 5783 } 5784 5785 static const struct file_operations stat_fops_per_vm = { 5786 .owner = THIS_MODULE, 5787 .open = kvm_stat_data_open, 5788 .release = kvm_debugfs_release, 5789 .read = simple_attr_read, 5790 .write = simple_attr_write, 5791 .llseek = no_llseek, 5792 }; 5793 5794 static int vm_stat_get(void *_offset, u64 *val) 5795 { 5796 unsigned offset = (long)_offset; 5797 struct kvm *kvm; 5798 u64 tmp_val; 5799 5800 *val = 0; 5801 mutex_lock(&kvm_lock); 5802 list_for_each_entry(kvm, &vm_list, vm_list) { 5803 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5804 *val += tmp_val; 5805 } 5806 mutex_unlock(&kvm_lock); 5807 return 0; 5808 } 5809 5810 static int vm_stat_clear(void *_offset, u64 val) 5811 { 5812 unsigned offset = (long)_offset; 5813 struct kvm *kvm; 5814 5815 if (val) 5816 return -EINVAL; 5817 5818 mutex_lock(&kvm_lock); 5819 list_for_each_entry(kvm, &vm_list, vm_list) { 5820 kvm_clear_stat_per_vm(kvm, offset); 5821 } 5822 mutex_unlock(&kvm_lock); 5823 5824 return 0; 5825 } 5826 5827 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5828 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5829 5830 static int vcpu_stat_get(void *_offset, u64 *val) 5831 { 5832 unsigned offset = (long)_offset; 5833 struct kvm *kvm; 5834 u64 tmp_val; 5835 5836 *val = 0; 5837 mutex_lock(&kvm_lock); 5838 list_for_each_entry(kvm, &vm_list, vm_list) { 5839 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5840 *val += tmp_val; 5841 } 5842 mutex_unlock(&kvm_lock); 5843 return 0; 5844 } 5845 5846 static int vcpu_stat_clear(void *_offset, u64 val) 5847 { 5848 unsigned offset = (long)_offset; 5849 struct kvm *kvm; 5850 5851 if (val) 5852 return -EINVAL; 5853 5854 mutex_lock(&kvm_lock); 5855 list_for_each_entry(kvm, &vm_list, vm_list) { 5856 kvm_clear_stat_per_vcpu(kvm, offset); 5857 } 5858 mutex_unlock(&kvm_lock); 5859 5860 return 0; 5861 } 5862 5863 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5864 "%llu\n"); 5865 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5866 5867 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5868 { 5869 struct kobj_uevent_env *env; 5870 unsigned long long created, active; 5871 5872 if (!kvm_dev.this_device || !kvm) 5873 return; 5874 5875 mutex_lock(&kvm_lock); 5876 if (type == KVM_EVENT_CREATE_VM) { 5877 kvm_createvm_count++; 5878 kvm_active_vms++; 5879 } else if (type == KVM_EVENT_DESTROY_VM) { 5880 kvm_active_vms--; 5881 } 5882 created = kvm_createvm_count; 5883 active = kvm_active_vms; 5884 mutex_unlock(&kvm_lock); 5885 5886 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5887 if (!env) 5888 return; 5889 5890 add_uevent_var(env, "CREATED=%llu", created); 5891 add_uevent_var(env, "COUNT=%llu", active); 5892 5893 if (type == KVM_EVENT_CREATE_VM) { 5894 add_uevent_var(env, "EVENT=create"); 5895 kvm->userspace_pid = task_pid_nr(current); 5896 } else if (type == KVM_EVENT_DESTROY_VM) { 5897 add_uevent_var(env, "EVENT=destroy"); 5898 } 5899 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5900 5901 if (!IS_ERR(kvm->debugfs_dentry)) { 5902 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5903 5904 if (p) { 5905 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5906 if (!IS_ERR(tmp)) 5907 add_uevent_var(env, "STATS_PATH=%s", tmp); 5908 kfree(p); 5909 } 5910 } 5911 /* no need for checks, since we are adding at most only 5 keys */ 5912 env->envp[env->envp_idx++] = NULL; 5913 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5914 kfree(env); 5915 } 5916 5917 static void kvm_init_debug(void) 5918 { 5919 const struct file_operations *fops; 5920 const struct _kvm_stats_desc *pdesc; 5921 int i; 5922 5923 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5924 5925 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5926 pdesc = &kvm_vm_stats_desc[i]; 5927 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5928 fops = &vm_stat_fops; 5929 else 5930 fops = &vm_stat_readonly_fops; 5931 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5932 kvm_debugfs_dir, 5933 (void *)(long)pdesc->desc.offset, fops); 5934 } 5935 5936 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5937 pdesc = &kvm_vcpu_stats_desc[i]; 5938 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5939 fops = &vcpu_stat_fops; 5940 else 5941 fops = &vcpu_stat_readonly_fops; 5942 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5943 kvm_debugfs_dir, 5944 (void *)(long)pdesc->desc.offset, fops); 5945 } 5946 } 5947 5948 static inline 5949 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5950 { 5951 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5952 } 5953 5954 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5955 { 5956 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5957 5958 WRITE_ONCE(vcpu->preempted, false); 5959 WRITE_ONCE(vcpu->ready, false); 5960 5961 __this_cpu_write(kvm_running_vcpu, vcpu); 5962 kvm_arch_sched_in(vcpu, cpu); 5963 kvm_arch_vcpu_load(vcpu, cpu); 5964 } 5965 5966 static void kvm_sched_out(struct preempt_notifier *pn, 5967 struct task_struct *next) 5968 { 5969 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5970 5971 if (current->on_rq) { 5972 WRITE_ONCE(vcpu->preempted, true); 5973 WRITE_ONCE(vcpu->ready, true); 5974 } 5975 kvm_arch_vcpu_put(vcpu); 5976 __this_cpu_write(kvm_running_vcpu, NULL); 5977 } 5978 5979 /** 5980 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5981 * 5982 * We can disable preemption locally around accessing the per-CPU variable, 5983 * and use the resolved vcpu pointer after enabling preemption again, 5984 * because even if the current thread is migrated to another CPU, reading 5985 * the per-CPU value later will give us the same value as we update the 5986 * per-CPU variable in the preempt notifier handlers. 5987 */ 5988 struct kvm_vcpu *kvm_get_running_vcpu(void) 5989 { 5990 struct kvm_vcpu *vcpu; 5991 5992 preempt_disable(); 5993 vcpu = __this_cpu_read(kvm_running_vcpu); 5994 preempt_enable(); 5995 5996 return vcpu; 5997 } 5998 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5999 6000 /** 6001 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6002 */ 6003 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6004 { 6005 return &kvm_running_vcpu; 6006 } 6007 6008 #ifdef CONFIG_GUEST_PERF_EVENTS 6009 static unsigned int kvm_guest_state(void) 6010 { 6011 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6012 unsigned int state; 6013 6014 if (!kvm_arch_pmi_in_guest(vcpu)) 6015 return 0; 6016 6017 state = PERF_GUEST_ACTIVE; 6018 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6019 state |= PERF_GUEST_USER; 6020 6021 return state; 6022 } 6023 6024 static unsigned long kvm_guest_get_ip(void) 6025 { 6026 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6027 6028 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6029 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6030 return 0; 6031 6032 return kvm_arch_vcpu_get_ip(vcpu); 6033 } 6034 6035 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6036 .state = kvm_guest_state, 6037 .get_ip = kvm_guest_get_ip, 6038 .handle_intel_pt_intr = NULL, 6039 }; 6040 6041 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6042 { 6043 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6044 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6045 } 6046 void kvm_unregister_perf_callbacks(void) 6047 { 6048 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6049 } 6050 #endif 6051 6052 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6053 { 6054 int r; 6055 int cpu; 6056 6057 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6058 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6059 kvm_online_cpu, kvm_offline_cpu); 6060 if (r) 6061 return r; 6062 6063 register_syscore_ops(&kvm_syscore_ops); 6064 #endif 6065 6066 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6067 if (!vcpu_align) 6068 vcpu_align = __alignof__(struct kvm_vcpu); 6069 kvm_vcpu_cache = 6070 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6071 SLAB_ACCOUNT, 6072 offsetof(struct kvm_vcpu, arch), 6073 offsetofend(struct kvm_vcpu, stats_id) 6074 - offsetof(struct kvm_vcpu, arch), 6075 NULL); 6076 if (!kvm_vcpu_cache) { 6077 r = -ENOMEM; 6078 goto err_vcpu_cache; 6079 } 6080 6081 for_each_possible_cpu(cpu) { 6082 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6083 GFP_KERNEL, cpu_to_node(cpu))) { 6084 r = -ENOMEM; 6085 goto err_cpu_kick_mask; 6086 } 6087 } 6088 6089 r = kvm_irqfd_init(); 6090 if (r) 6091 goto err_irqfd; 6092 6093 r = kvm_async_pf_init(); 6094 if (r) 6095 goto err_async_pf; 6096 6097 kvm_chardev_ops.owner = module; 6098 6099 kvm_preempt_ops.sched_in = kvm_sched_in; 6100 kvm_preempt_ops.sched_out = kvm_sched_out; 6101 6102 kvm_init_debug(); 6103 6104 r = kvm_vfio_ops_init(); 6105 if (WARN_ON_ONCE(r)) 6106 goto err_vfio; 6107 6108 /* 6109 * Registration _must_ be the very last thing done, as this exposes 6110 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6111 */ 6112 r = misc_register(&kvm_dev); 6113 if (r) { 6114 pr_err("kvm: misc device register failed\n"); 6115 goto err_register; 6116 } 6117 6118 return 0; 6119 6120 err_register: 6121 kvm_vfio_ops_exit(); 6122 err_vfio: 6123 kvm_async_pf_deinit(); 6124 err_async_pf: 6125 kvm_irqfd_exit(); 6126 err_irqfd: 6127 err_cpu_kick_mask: 6128 for_each_possible_cpu(cpu) 6129 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6130 kmem_cache_destroy(kvm_vcpu_cache); 6131 err_vcpu_cache: 6132 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6133 unregister_syscore_ops(&kvm_syscore_ops); 6134 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6135 #endif 6136 return r; 6137 } 6138 EXPORT_SYMBOL_GPL(kvm_init); 6139 6140 void kvm_exit(void) 6141 { 6142 int cpu; 6143 6144 /* 6145 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6146 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6147 * to KVM while the module is being stopped. 6148 */ 6149 misc_deregister(&kvm_dev); 6150 6151 debugfs_remove_recursive(kvm_debugfs_dir); 6152 for_each_possible_cpu(cpu) 6153 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6154 kmem_cache_destroy(kvm_vcpu_cache); 6155 kvm_vfio_ops_exit(); 6156 kvm_async_pf_deinit(); 6157 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6158 unregister_syscore_ops(&kvm_syscore_ops); 6159 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6160 #endif 6161 kvm_irqfd_exit(); 6162 } 6163 EXPORT_SYMBOL_GPL(kvm_exit); 6164 6165 struct kvm_vm_worker_thread_context { 6166 struct kvm *kvm; 6167 struct task_struct *parent; 6168 struct completion init_done; 6169 kvm_vm_thread_fn_t thread_fn; 6170 uintptr_t data; 6171 int err; 6172 }; 6173 6174 static int kvm_vm_worker_thread(void *context) 6175 { 6176 /* 6177 * The init_context is allocated on the stack of the parent thread, so 6178 * we have to locally copy anything that is needed beyond initialization 6179 */ 6180 struct kvm_vm_worker_thread_context *init_context = context; 6181 struct task_struct *parent; 6182 struct kvm *kvm = init_context->kvm; 6183 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6184 uintptr_t data = init_context->data; 6185 int err; 6186 6187 err = kthread_park(current); 6188 /* kthread_park(current) is never supposed to return an error */ 6189 WARN_ON(err != 0); 6190 if (err) 6191 goto init_complete; 6192 6193 err = cgroup_attach_task_all(init_context->parent, current); 6194 if (err) { 6195 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6196 __func__, err); 6197 goto init_complete; 6198 } 6199 6200 set_user_nice(current, task_nice(init_context->parent)); 6201 6202 init_complete: 6203 init_context->err = err; 6204 complete(&init_context->init_done); 6205 init_context = NULL; 6206 6207 if (err) 6208 goto out; 6209 6210 /* Wait to be woken up by the spawner before proceeding. */ 6211 kthread_parkme(); 6212 6213 if (!kthread_should_stop()) 6214 err = thread_fn(kvm, data); 6215 6216 out: 6217 /* 6218 * Move kthread back to its original cgroup to prevent it lingering in 6219 * the cgroup of the VM process, after the latter finishes its 6220 * execution. 6221 * 6222 * kthread_stop() waits on the 'exited' completion condition which is 6223 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6224 * kthread is removed from the cgroup in the cgroup_exit() which is 6225 * called after the exit_mm(). This causes the kthread_stop() to return 6226 * before the kthread actually quits the cgroup. 6227 */ 6228 rcu_read_lock(); 6229 parent = rcu_dereference(current->real_parent); 6230 get_task_struct(parent); 6231 rcu_read_unlock(); 6232 cgroup_attach_task_all(parent, current); 6233 put_task_struct(parent); 6234 6235 return err; 6236 } 6237 6238 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6239 uintptr_t data, const char *name, 6240 struct task_struct **thread_ptr) 6241 { 6242 struct kvm_vm_worker_thread_context init_context = {}; 6243 struct task_struct *thread; 6244 6245 *thread_ptr = NULL; 6246 init_context.kvm = kvm; 6247 init_context.parent = current; 6248 init_context.thread_fn = thread_fn; 6249 init_context.data = data; 6250 init_completion(&init_context.init_done); 6251 6252 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6253 "%s-%d", name, task_pid_nr(current)); 6254 if (IS_ERR(thread)) 6255 return PTR_ERR(thread); 6256 6257 /* kthread_run is never supposed to return NULL */ 6258 WARN_ON(thread == NULL); 6259 6260 wait_for_completion(&init_context.init_done); 6261 6262 if (!init_context.err) 6263 *thread_ptr = thread; 6264 6265 return init_context.err; 6266 } 6267