xref: /linux/virt/kvm/kvm_main.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
590 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 	     node;							     \
592 	     node = interval_tree_iter_next(node, start, last))	     \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 							   const struct kvm_mmu_notifier_range *range)
596 {
597 	struct kvm_mmu_notifier_return r = {
598 		.ret = false,
599 		.found_memslot = false,
600 	};
601 	struct kvm_gfn_range gfn_range;
602 	struct kvm_memory_slot *slot;
603 	struct kvm_memslots *slots;
604 	int i, idx;
605 
606 	if (WARN_ON_ONCE(range->end <= range->start))
607 		return r;
608 
609 	/* A null handler is allowed if and only if on_lock() is provided. */
610 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 			 IS_KVM_NULL_FN(range->handler)))
612 		return r;
613 
614 	idx = srcu_read_lock(&kvm->srcu);
615 
616 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 		struct interval_tree_node *node;
618 
619 		slots = __kvm_memslots(kvm, i);
620 		kvm_for_each_memslot_in_hva_range(node, slots,
621 						  range->start, range->end - 1) {
622 			unsigned long hva_start, hva_end;
623 
624 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 			hva_end = min_t(unsigned long, range->end,
627 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629 			/*
630 			 * To optimize for the likely case where the address
631 			 * range is covered by zero or one memslots, don't
632 			 * bother making these conditional (to avoid writes on
633 			 * the second or later invocation of the handler).
634 			 */
635 			gfn_range.arg = range->arg;
636 			gfn_range.may_block = range->may_block;
637 
638 			/*
639 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 			 */
642 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 			gfn_range.slot = slot;
645 
646 			if (!r.found_memslot) {
647 				r.found_memslot = true;
648 				KVM_MMU_LOCK(kvm);
649 				if (!IS_KVM_NULL_FN(range->on_lock))
650 					range->on_lock(kvm);
651 
652 				if (IS_KVM_NULL_FN(range->handler))
653 					break;
654 			}
655 			r.ret |= range->handler(kvm, &gfn_range);
656 		}
657 	}
658 
659 	if (range->flush_on_ret && r.ret)
660 		kvm_flush_remote_tlbs(kvm);
661 
662 	if (r.found_memslot)
663 		KVM_MMU_UNLOCK(kvm);
664 
665 	srcu_read_unlock(&kvm->srcu, idx);
666 
667 	return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 						unsigned long start,
672 						unsigned long end,
673 						union kvm_mmu_notifier_arg arg,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.arg		= arg,
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= true,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 							 unsigned long start,
692 							 unsigned long end,
693 							 gfn_handler_t handler)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 	const struct kvm_mmu_notifier_range range = {
697 		.start		= start,
698 		.end		= end,
699 		.handler	= handler,
700 		.on_lock	= (void *)kvm_null_fn,
701 		.flush_on_ret	= false,
702 		.may_block	= false,
703 	};
704 
705 	return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710 	/*
711 	 * Skipping invalid memslots is correct if and only change_pte() is
712 	 * surrounded by invalidate_range_{start,end}(), which is currently
713 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 	 * doesn't hold references to the old PFN.
716 	 */
717 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 		return false;
721 
722 	return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 					struct mm_struct *mm,
727 					unsigned long address,
728 					pte_t pte)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733 	trace_kvm_set_spte_hva(address);
734 
735 	/*
736 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 	 * If mmu_invalidate_in_progress is zero, then no in-progress
738 	 * invalidations, including this one, found a relevant memslot at
739 	 * start(); rechecking memslots here is unnecessary.  Note, a false
740 	 * positive (count elevated by a different invalidation) is sub-optimal
741 	 * but functionally ok.
742 	 */
743 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 		return;
746 
747 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752 	lockdep_assert_held_write(&kvm->mmu_lock);
753 	/*
754 	 * The count increase must become visible at unlock time as no
755 	 * spte can be established without taking the mmu_lock and
756 	 * count is also read inside the mmu_lock critical section.
757 	 */
758 	kvm->mmu_invalidate_in_progress++;
759 
760 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 		kvm->mmu_invalidate_range_start = INVALID_GPA;
762 		kvm->mmu_invalidate_range_end = INVALID_GPA;
763 	}
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 		kvm->mmu_invalidate_range_start = start;
774 		kvm->mmu_invalidate_range_end = end;
775 	} else {
776 		/*
777 		 * Fully tracking multiple concurrent ranges has diminishing
778 		 * returns. Keep things simple and just find the minimal range
779 		 * which includes the current and new ranges. As there won't be
780 		 * enough information to subtract a range after its invalidate
781 		 * completes, any ranges invalidated concurrently will
782 		 * accumulate and persist until all outstanding invalidates
783 		 * complete.
784 		 */
785 		kvm->mmu_invalidate_range_start =
786 			min(kvm->mmu_invalidate_range_start, start);
787 		kvm->mmu_invalidate_range_end =
788 			max(kvm->mmu_invalidate_range_end, end);
789 	}
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 	return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 					const struct mmu_notifier_range *range)
800 {
801 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 	const struct kvm_mmu_notifier_range hva_range = {
803 		.start		= range->start,
804 		.end		= range->end,
805 		.handler	= kvm_mmu_unmap_gfn_range,
806 		.on_lock	= kvm_mmu_invalidate_begin,
807 		.flush_on_ret	= true,
808 		.may_block	= mmu_notifier_range_blockable(range),
809 	};
810 
811 	trace_kvm_unmap_hva_range(range->start, range->end);
812 
813 	/*
814 	 * Prevent memslot modification between range_start() and range_end()
815 	 * so that conditionally locking provides the same result in both
816 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
817 	 * adjustments will be imbalanced.
818 	 *
819 	 * Pairs with the decrement in range_end().
820 	 */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	kvm->mn_active_invalidate_count++;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 	 * each cache's lock.  There are relatively few caches in existence at
829 	 * any given time, and the caches themselves can check for hva overlap,
830 	 * i.e. don't need to rely on memslot overlap checks for performance.
831 	 * Because this runs without holding mmu_lock, the pfn caches must use
832 	 * mn_active_invalidate_count (see above) instead of
833 	 * mmu_invalidate_in_progress.
834 	 */
835 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
836 
837 	/*
838 	 * If one or more memslots were found and thus zapped, notify arch code
839 	 * that guest memory has been reclaimed.  This needs to be done *after*
840 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
841 	 */
842 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
843 		kvm_arch_guest_memory_reclaimed(kvm);
844 
845 	return 0;
846 }
847 
848 void kvm_mmu_invalidate_end(struct kvm *kvm)
849 {
850 	lockdep_assert_held_write(&kvm->mmu_lock);
851 
852 	/*
853 	 * This sequence increase will notify the kvm page fault that
854 	 * the page that is going to be mapped in the spte could have
855 	 * been freed.
856 	 */
857 	kvm->mmu_invalidate_seq++;
858 	smp_wmb();
859 	/*
860 	 * The above sequence increase must be visible before the
861 	 * below count decrease, which is ensured by the smp_wmb above
862 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
863 	 */
864 	kvm->mmu_invalidate_in_progress--;
865 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
866 
867 	/*
868 	 * Assert that at least one range was added between start() and end().
869 	 * Not adding a range isn't fatal, but it is a KVM bug.
870 	 */
871 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
872 }
873 
874 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
875 					const struct mmu_notifier_range *range)
876 {
877 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
878 	const struct kvm_mmu_notifier_range hva_range = {
879 		.start		= range->start,
880 		.end		= range->end,
881 		.handler	= (void *)kvm_null_fn,
882 		.on_lock	= kvm_mmu_invalidate_end,
883 		.flush_on_ret	= false,
884 		.may_block	= mmu_notifier_range_blockable(range),
885 	};
886 	bool wake;
887 
888 	__kvm_handle_hva_range(kvm, &hva_range);
889 
890 	/* Pairs with the increment in range_start(). */
891 	spin_lock(&kvm->mn_invalidate_lock);
892 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
893 		--kvm->mn_active_invalidate_count;
894 	wake = !kvm->mn_active_invalidate_count;
895 	spin_unlock(&kvm->mn_invalidate_lock);
896 
897 	/*
898 	 * There can only be one waiter, since the wait happens under
899 	 * slots_lock.
900 	 */
901 	if (wake)
902 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
903 }
904 
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906 					      struct mm_struct *mm,
907 					      unsigned long start,
908 					      unsigned long end)
909 {
910 	trace_kvm_age_hva(start, end);
911 
912 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
913 				    kvm_age_gfn);
914 }
915 
916 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
917 					struct mm_struct *mm,
918 					unsigned long start,
919 					unsigned long end)
920 {
921 	trace_kvm_age_hva(start, end);
922 
923 	/*
924 	 * Even though we do not flush TLB, this will still adversely
925 	 * affect performance on pre-Haswell Intel EPT, where there is
926 	 * no EPT Access Bit to clear so that we have to tear down EPT
927 	 * tables instead. If we find this unacceptable, we can always
928 	 * add a parameter to kvm_age_hva so that it effectively doesn't
929 	 * do anything on clear_young.
930 	 *
931 	 * Also note that currently we never issue secondary TLB flushes
932 	 * from clear_young, leaving this job up to the regular system
933 	 * cadence. If we find this inaccurate, we might come up with a
934 	 * more sophisticated heuristic later.
935 	 */
936 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
937 }
938 
939 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
940 				       struct mm_struct *mm,
941 				       unsigned long address)
942 {
943 	trace_kvm_test_age_hva(address);
944 
945 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
946 					     kvm_test_age_gfn);
947 }
948 
949 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
950 				     struct mm_struct *mm)
951 {
952 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
953 	int idx;
954 
955 	idx = srcu_read_lock(&kvm->srcu);
956 	kvm_flush_shadow_all(kvm);
957 	srcu_read_unlock(&kvm->srcu, idx);
958 }
959 
960 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
961 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
962 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
963 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
964 	.clear_young		= kvm_mmu_notifier_clear_young,
965 	.test_young		= kvm_mmu_notifier_test_young,
966 	.change_pte		= kvm_mmu_notifier_change_pte,
967 	.release		= kvm_mmu_notifier_release,
968 };
969 
970 static int kvm_init_mmu_notifier(struct kvm *kvm)
971 {
972 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974 }
975 
976 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
977 
978 static int kvm_init_mmu_notifier(struct kvm *kvm)
979 {
980 	return 0;
981 }
982 
983 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
984 
985 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
986 static int kvm_pm_notifier_call(struct notifier_block *bl,
987 				unsigned long state,
988 				void *unused)
989 {
990 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
991 
992 	return kvm_arch_pm_notifier(kvm, state);
993 }
994 
995 static void kvm_init_pm_notifier(struct kvm *kvm)
996 {
997 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
998 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
999 	kvm->pm_notifier.priority = INT_MAX;
1000 	register_pm_notifier(&kvm->pm_notifier);
1001 }
1002 
1003 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1004 {
1005 	unregister_pm_notifier(&kvm->pm_notifier);
1006 }
1007 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1008 static void kvm_init_pm_notifier(struct kvm *kvm)
1009 {
1010 }
1011 
1012 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1013 {
1014 }
1015 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1016 
1017 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1018 {
1019 	if (!memslot->dirty_bitmap)
1020 		return;
1021 
1022 	kvfree(memslot->dirty_bitmap);
1023 	memslot->dirty_bitmap = NULL;
1024 }
1025 
1026 /* This does not remove the slot from struct kvm_memslots data structures */
1027 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1028 {
1029 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
1030 		kvm_gmem_unbind(slot);
1031 
1032 	kvm_destroy_dirty_bitmap(slot);
1033 
1034 	kvm_arch_free_memslot(kvm, slot);
1035 
1036 	kfree(slot);
1037 }
1038 
1039 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1040 {
1041 	struct hlist_node *idnode;
1042 	struct kvm_memory_slot *memslot;
1043 	int bkt;
1044 
1045 	/*
1046 	 * The same memslot objects live in both active and inactive sets,
1047 	 * arbitrarily free using index '1' so the second invocation of this
1048 	 * function isn't operating over a structure with dangling pointers
1049 	 * (even though this function isn't actually touching them).
1050 	 */
1051 	if (!slots->node_idx)
1052 		return;
1053 
1054 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1055 		kvm_free_memslot(kvm, memslot);
1056 }
1057 
1058 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1059 {
1060 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1061 	case KVM_STATS_TYPE_INSTANT:
1062 		return 0444;
1063 	case KVM_STATS_TYPE_CUMULATIVE:
1064 	case KVM_STATS_TYPE_PEAK:
1065 	default:
1066 		return 0644;
1067 	}
1068 }
1069 
1070 
1071 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1072 {
1073 	int i;
1074 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1075 				      kvm_vcpu_stats_header.num_desc;
1076 
1077 	if (IS_ERR(kvm->debugfs_dentry))
1078 		return;
1079 
1080 	debugfs_remove_recursive(kvm->debugfs_dentry);
1081 
1082 	if (kvm->debugfs_stat_data) {
1083 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1084 			kfree(kvm->debugfs_stat_data[i]);
1085 		kfree(kvm->debugfs_stat_data);
1086 	}
1087 }
1088 
1089 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1090 {
1091 	static DEFINE_MUTEX(kvm_debugfs_lock);
1092 	struct dentry *dent;
1093 	char dir_name[ITOA_MAX_LEN * 2];
1094 	struct kvm_stat_data *stat_data;
1095 	const struct _kvm_stats_desc *pdesc;
1096 	int i, ret = -ENOMEM;
1097 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1098 				      kvm_vcpu_stats_header.num_desc;
1099 
1100 	if (!debugfs_initialized())
1101 		return 0;
1102 
1103 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1104 	mutex_lock(&kvm_debugfs_lock);
1105 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1106 	if (dent) {
1107 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1108 		dput(dent);
1109 		mutex_unlock(&kvm_debugfs_lock);
1110 		return 0;
1111 	}
1112 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1113 	mutex_unlock(&kvm_debugfs_lock);
1114 	if (IS_ERR(dent))
1115 		return 0;
1116 
1117 	kvm->debugfs_dentry = dent;
1118 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1119 					 sizeof(*kvm->debugfs_stat_data),
1120 					 GFP_KERNEL_ACCOUNT);
1121 	if (!kvm->debugfs_stat_data)
1122 		goto out_err;
1123 
1124 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1125 		pdesc = &kvm_vm_stats_desc[i];
1126 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1127 		if (!stat_data)
1128 			goto out_err;
1129 
1130 		stat_data->kvm = kvm;
1131 		stat_data->desc = pdesc;
1132 		stat_data->kind = KVM_STAT_VM;
1133 		kvm->debugfs_stat_data[i] = stat_data;
1134 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1135 				    kvm->debugfs_dentry, stat_data,
1136 				    &stat_fops_per_vm);
1137 	}
1138 
1139 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1140 		pdesc = &kvm_vcpu_stats_desc[i];
1141 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1142 		if (!stat_data)
1143 			goto out_err;
1144 
1145 		stat_data->kvm = kvm;
1146 		stat_data->desc = pdesc;
1147 		stat_data->kind = KVM_STAT_VCPU;
1148 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1149 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1150 				    kvm->debugfs_dentry, stat_data,
1151 				    &stat_fops_per_vm);
1152 	}
1153 
1154 	kvm_arch_create_vm_debugfs(kvm);
1155 	return 0;
1156 out_err:
1157 	kvm_destroy_vm_debugfs(kvm);
1158 	return ret;
1159 }
1160 
1161 /*
1162  * Called after the VM is otherwise initialized, but just before adding it to
1163  * the vm_list.
1164  */
1165 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1166 {
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Called just after removing the VM from the vm_list, but before doing any
1172  * other destruction.
1173  */
1174 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1175 {
1176 }
1177 
1178 /*
1179  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1180  * be setup already, so we can create arch-specific debugfs entries under it.
1181  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1182  * a per-arch destroy interface is not needed.
1183  */
1184 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1185 {
1186 }
1187 
1188 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1189 {
1190 	struct kvm *kvm = kvm_arch_alloc_vm();
1191 	struct kvm_memslots *slots;
1192 	int r = -ENOMEM;
1193 	int i, j;
1194 
1195 	if (!kvm)
1196 		return ERR_PTR(-ENOMEM);
1197 
1198 	KVM_MMU_LOCK_INIT(kvm);
1199 	mmgrab(current->mm);
1200 	kvm->mm = current->mm;
1201 	kvm_eventfd_init(kvm);
1202 	mutex_init(&kvm->lock);
1203 	mutex_init(&kvm->irq_lock);
1204 	mutex_init(&kvm->slots_lock);
1205 	mutex_init(&kvm->slots_arch_lock);
1206 	spin_lock_init(&kvm->mn_invalidate_lock);
1207 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1208 	xa_init(&kvm->vcpu_array);
1209 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1210 	xa_init(&kvm->mem_attr_array);
1211 #endif
1212 
1213 	INIT_LIST_HEAD(&kvm->gpc_list);
1214 	spin_lock_init(&kvm->gpc_lock);
1215 
1216 	INIT_LIST_HEAD(&kvm->devices);
1217 	kvm->max_vcpus = KVM_MAX_VCPUS;
1218 
1219 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1220 
1221 	/*
1222 	 * Force subsequent debugfs file creations to fail if the VM directory
1223 	 * is not created (by kvm_create_vm_debugfs()).
1224 	 */
1225 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1226 
1227 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1228 		 task_pid_nr(current));
1229 
1230 	if (init_srcu_struct(&kvm->srcu))
1231 		goto out_err_no_srcu;
1232 	if (init_srcu_struct(&kvm->irq_srcu))
1233 		goto out_err_no_irq_srcu;
1234 
1235 	refcount_set(&kvm->users_count, 1);
1236 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1237 		for (j = 0; j < 2; j++) {
1238 			slots = &kvm->__memslots[i][j];
1239 
1240 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1241 			slots->hva_tree = RB_ROOT_CACHED;
1242 			slots->gfn_tree = RB_ROOT;
1243 			hash_init(slots->id_hash);
1244 			slots->node_idx = j;
1245 
1246 			/* Generations must be different for each address space. */
1247 			slots->generation = i;
1248 		}
1249 
1250 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1251 	}
1252 
1253 	for (i = 0; i < KVM_NR_BUSES; i++) {
1254 		rcu_assign_pointer(kvm->buses[i],
1255 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1256 		if (!kvm->buses[i])
1257 			goto out_err_no_arch_destroy_vm;
1258 	}
1259 
1260 	r = kvm_arch_init_vm(kvm, type);
1261 	if (r)
1262 		goto out_err_no_arch_destroy_vm;
1263 
1264 	r = hardware_enable_all();
1265 	if (r)
1266 		goto out_err_no_disable;
1267 
1268 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1269 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1270 #endif
1271 
1272 	r = kvm_init_mmu_notifier(kvm);
1273 	if (r)
1274 		goto out_err_no_mmu_notifier;
1275 
1276 	r = kvm_coalesced_mmio_init(kvm);
1277 	if (r < 0)
1278 		goto out_no_coalesced_mmio;
1279 
1280 	r = kvm_create_vm_debugfs(kvm, fdname);
1281 	if (r)
1282 		goto out_err_no_debugfs;
1283 
1284 	r = kvm_arch_post_init_vm(kvm);
1285 	if (r)
1286 		goto out_err;
1287 
1288 	mutex_lock(&kvm_lock);
1289 	list_add(&kvm->vm_list, &vm_list);
1290 	mutex_unlock(&kvm_lock);
1291 
1292 	preempt_notifier_inc();
1293 	kvm_init_pm_notifier(kvm);
1294 
1295 	return kvm;
1296 
1297 out_err:
1298 	kvm_destroy_vm_debugfs(kvm);
1299 out_err_no_debugfs:
1300 	kvm_coalesced_mmio_free(kvm);
1301 out_no_coalesced_mmio:
1302 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1303 	if (kvm->mmu_notifier.ops)
1304 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1305 #endif
1306 out_err_no_mmu_notifier:
1307 	hardware_disable_all();
1308 out_err_no_disable:
1309 	kvm_arch_destroy_vm(kvm);
1310 out_err_no_arch_destroy_vm:
1311 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1312 	for (i = 0; i < KVM_NR_BUSES; i++)
1313 		kfree(kvm_get_bus(kvm, i));
1314 	cleanup_srcu_struct(&kvm->irq_srcu);
1315 out_err_no_irq_srcu:
1316 	cleanup_srcu_struct(&kvm->srcu);
1317 out_err_no_srcu:
1318 	kvm_arch_free_vm(kvm);
1319 	mmdrop(current->mm);
1320 	return ERR_PTR(r);
1321 }
1322 
1323 static void kvm_destroy_devices(struct kvm *kvm)
1324 {
1325 	struct kvm_device *dev, *tmp;
1326 
1327 	/*
1328 	 * We do not need to take the kvm->lock here, because nobody else
1329 	 * has a reference to the struct kvm at this point and therefore
1330 	 * cannot access the devices list anyhow.
1331 	 */
1332 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1333 		list_del(&dev->vm_node);
1334 		dev->ops->destroy(dev);
1335 	}
1336 }
1337 
1338 static void kvm_destroy_vm(struct kvm *kvm)
1339 {
1340 	int i;
1341 	struct mm_struct *mm = kvm->mm;
1342 
1343 	kvm_destroy_pm_notifier(kvm);
1344 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1345 	kvm_destroy_vm_debugfs(kvm);
1346 	kvm_arch_sync_events(kvm);
1347 	mutex_lock(&kvm_lock);
1348 	list_del(&kvm->vm_list);
1349 	mutex_unlock(&kvm_lock);
1350 	kvm_arch_pre_destroy_vm(kvm);
1351 
1352 	kvm_free_irq_routing(kvm);
1353 	for (i = 0; i < KVM_NR_BUSES; i++) {
1354 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1355 
1356 		if (bus)
1357 			kvm_io_bus_destroy(bus);
1358 		kvm->buses[i] = NULL;
1359 	}
1360 	kvm_coalesced_mmio_free(kvm);
1361 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1362 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1363 	/*
1364 	 * At this point, pending calls to invalidate_range_start()
1365 	 * have completed but no more MMU notifiers will run, so
1366 	 * mn_active_invalidate_count may remain unbalanced.
1367 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1368 	 * last reference on KVM has been dropped, but freeing
1369 	 * memslots would deadlock without this manual intervention.
1370 	 *
1371 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1372 	 * notifier between a start() and end(), then there shouldn't be any
1373 	 * in-progress invalidations.
1374 	 */
1375 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1376 	if (kvm->mn_active_invalidate_count)
1377 		kvm->mn_active_invalidate_count = 0;
1378 	else
1379 		WARN_ON(kvm->mmu_invalidate_in_progress);
1380 #else
1381 	kvm_flush_shadow_all(kvm);
1382 #endif
1383 	kvm_arch_destroy_vm(kvm);
1384 	kvm_destroy_devices(kvm);
1385 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1386 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1387 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1388 	}
1389 	cleanup_srcu_struct(&kvm->irq_srcu);
1390 	cleanup_srcu_struct(&kvm->srcu);
1391 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1392 	xa_destroy(&kvm->mem_attr_array);
1393 #endif
1394 	kvm_arch_free_vm(kvm);
1395 	preempt_notifier_dec();
1396 	hardware_disable_all();
1397 	mmdrop(mm);
1398 }
1399 
1400 void kvm_get_kvm(struct kvm *kvm)
1401 {
1402 	refcount_inc(&kvm->users_count);
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1405 
1406 /*
1407  * Make sure the vm is not during destruction, which is a safe version of
1408  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1409  */
1410 bool kvm_get_kvm_safe(struct kvm *kvm)
1411 {
1412 	return refcount_inc_not_zero(&kvm->users_count);
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1415 
1416 void kvm_put_kvm(struct kvm *kvm)
1417 {
1418 	if (refcount_dec_and_test(&kvm->users_count))
1419 		kvm_destroy_vm(kvm);
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1422 
1423 /*
1424  * Used to put a reference that was taken on behalf of an object associated
1425  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1426  * of the new file descriptor fails and the reference cannot be transferred to
1427  * its final owner.  In such cases, the caller is still actively using @kvm and
1428  * will fail miserably if the refcount unexpectedly hits zero.
1429  */
1430 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1431 {
1432 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1435 
1436 static int kvm_vm_release(struct inode *inode, struct file *filp)
1437 {
1438 	struct kvm *kvm = filp->private_data;
1439 
1440 	kvm_irqfd_release(kvm);
1441 
1442 	kvm_put_kvm(kvm);
1443 	return 0;
1444 }
1445 
1446 /*
1447  * Allocation size is twice as large as the actual dirty bitmap size.
1448  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1449  */
1450 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1451 {
1452 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1453 
1454 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1455 	if (!memslot->dirty_bitmap)
1456 		return -ENOMEM;
1457 
1458 	return 0;
1459 }
1460 
1461 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1462 {
1463 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1464 	int node_idx_inactive = active->node_idx ^ 1;
1465 
1466 	return &kvm->__memslots[as_id][node_idx_inactive];
1467 }
1468 
1469 /*
1470  * Helper to get the address space ID when one of memslot pointers may be NULL.
1471  * This also serves as a sanity that at least one of the pointers is non-NULL,
1472  * and that their address space IDs don't diverge.
1473  */
1474 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1475 				  struct kvm_memory_slot *b)
1476 {
1477 	if (WARN_ON_ONCE(!a && !b))
1478 		return 0;
1479 
1480 	if (!a)
1481 		return b->as_id;
1482 	if (!b)
1483 		return a->as_id;
1484 
1485 	WARN_ON_ONCE(a->as_id != b->as_id);
1486 	return a->as_id;
1487 }
1488 
1489 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1490 				struct kvm_memory_slot *slot)
1491 {
1492 	struct rb_root *gfn_tree = &slots->gfn_tree;
1493 	struct rb_node **node, *parent;
1494 	int idx = slots->node_idx;
1495 
1496 	parent = NULL;
1497 	for (node = &gfn_tree->rb_node; *node; ) {
1498 		struct kvm_memory_slot *tmp;
1499 
1500 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1501 		parent = *node;
1502 		if (slot->base_gfn < tmp->base_gfn)
1503 			node = &(*node)->rb_left;
1504 		else if (slot->base_gfn > tmp->base_gfn)
1505 			node = &(*node)->rb_right;
1506 		else
1507 			BUG();
1508 	}
1509 
1510 	rb_link_node(&slot->gfn_node[idx], parent, node);
1511 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1512 }
1513 
1514 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1515 			       struct kvm_memory_slot *slot)
1516 {
1517 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1518 }
1519 
1520 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1521 				 struct kvm_memory_slot *old,
1522 				 struct kvm_memory_slot *new)
1523 {
1524 	int idx = slots->node_idx;
1525 
1526 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1527 
1528 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1529 			&slots->gfn_tree);
1530 }
1531 
1532 /*
1533  * Replace @old with @new in the inactive memslots.
1534  *
1535  * With NULL @old this simply adds @new.
1536  * With NULL @new this simply removes @old.
1537  *
1538  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1539  * appropriately.
1540  */
1541 static void kvm_replace_memslot(struct kvm *kvm,
1542 				struct kvm_memory_slot *old,
1543 				struct kvm_memory_slot *new)
1544 {
1545 	int as_id = kvm_memslots_get_as_id(old, new);
1546 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1547 	int idx = slots->node_idx;
1548 
1549 	if (old) {
1550 		hash_del(&old->id_node[idx]);
1551 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1552 
1553 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1554 			atomic_long_set(&slots->last_used_slot, (long)new);
1555 
1556 		if (!new) {
1557 			kvm_erase_gfn_node(slots, old);
1558 			return;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Initialize @new's hva range.  Do this even when replacing an @old
1564 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1565 	 */
1566 	new->hva_node[idx].start = new->userspace_addr;
1567 	new->hva_node[idx].last = new->userspace_addr +
1568 				  (new->npages << PAGE_SHIFT) - 1;
1569 
1570 	/*
1571 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1572 	 * hva_node needs to be swapped with remove+insert even though hva can't
1573 	 * change when replacing an existing slot.
1574 	 */
1575 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1576 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1577 
1578 	/*
1579 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1580 	 * switch the node in the gfn tree instead of removing the old and
1581 	 * inserting the new as two separate operations. Replacement is a
1582 	 * single O(1) operation versus two O(log(n)) operations for
1583 	 * remove+insert.
1584 	 */
1585 	if (old && old->base_gfn == new->base_gfn) {
1586 		kvm_replace_gfn_node(slots, old, new);
1587 	} else {
1588 		if (old)
1589 			kvm_erase_gfn_node(slots, old);
1590 		kvm_insert_gfn_node(slots, new);
1591 	}
1592 }
1593 
1594 /*
1595  * Flags that do not access any of the extra space of struct
1596  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1597  * only allows these.
1598  */
1599 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1600 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1601 
1602 static int check_memory_region_flags(struct kvm *kvm,
1603 				     const struct kvm_userspace_memory_region2 *mem)
1604 {
1605 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1606 
1607 	if (kvm_arch_has_private_mem(kvm))
1608 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1609 
1610 	/* Dirty logging private memory is not currently supported. */
1611 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1612 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1613 
1614 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1615 	/*
1616 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1617 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1618 	 * and KVM doesn't allow emulated MMIO for private memory.
1619 	 */
1620 	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1621 		valid_flags |= KVM_MEM_READONLY;
1622 #endif
1623 
1624 	if (mem->flags & ~valid_flags)
1625 		return -EINVAL;
1626 
1627 	return 0;
1628 }
1629 
1630 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1631 {
1632 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1633 
1634 	/* Grab the generation from the activate memslots. */
1635 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1636 
1637 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1638 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639 
1640 	/*
1641 	 * Do not store the new memslots while there are invalidations in
1642 	 * progress, otherwise the locking in invalidate_range_start and
1643 	 * invalidate_range_end will be unbalanced.
1644 	 */
1645 	spin_lock(&kvm->mn_invalidate_lock);
1646 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647 	while (kvm->mn_active_invalidate_count) {
1648 		set_current_state(TASK_UNINTERRUPTIBLE);
1649 		spin_unlock(&kvm->mn_invalidate_lock);
1650 		schedule();
1651 		spin_lock(&kvm->mn_invalidate_lock);
1652 	}
1653 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1654 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1655 	spin_unlock(&kvm->mn_invalidate_lock);
1656 
1657 	/*
1658 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1659 	 * SRCU below in order to avoid deadlock with another thread
1660 	 * acquiring the slots_arch_lock in an srcu critical section.
1661 	 */
1662 	mutex_unlock(&kvm->slots_arch_lock);
1663 
1664 	synchronize_srcu_expedited(&kvm->srcu);
1665 
1666 	/*
1667 	 * Increment the new memslot generation a second time, dropping the
1668 	 * update in-progress flag and incrementing the generation based on
1669 	 * the number of address spaces.  This provides a unique and easily
1670 	 * identifiable generation number while the memslots are in flux.
1671 	 */
1672 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1673 
1674 	/*
1675 	 * Generations must be unique even across address spaces.  We do not need
1676 	 * a global counter for that, instead the generation space is evenly split
1677 	 * across address spaces.  For example, with two address spaces, address
1678 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1679 	 * use generations 1, 3, 5, ...
1680 	 */
1681 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1682 
1683 	kvm_arch_memslots_updated(kvm, gen);
1684 
1685 	slots->generation = gen;
1686 }
1687 
1688 static int kvm_prepare_memory_region(struct kvm *kvm,
1689 				     const struct kvm_memory_slot *old,
1690 				     struct kvm_memory_slot *new,
1691 				     enum kvm_mr_change change)
1692 {
1693 	int r;
1694 
1695 	/*
1696 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1697 	 * will be freed on "commit".  If logging is enabled in both old and
1698 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1699 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1700 	 * new bitmap.
1701 	 */
1702 	if (change != KVM_MR_DELETE) {
1703 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1704 			new->dirty_bitmap = NULL;
1705 		else if (old && old->dirty_bitmap)
1706 			new->dirty_bitmap = old->dirty_bitmap;
1707 		else if (kvm_use_dirty_bitmap(kvm)) {
1708 			r = kvm_alloc_dirty_bitmap(new);
1709 			if (r)
1710 				return r;
1711 
1712 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1713 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1714 		}
1715 	}
1716 
1717 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1718 
1719 	/* Free the bitmap on failure if it was allocated above. */
1720 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1721 		kvm_destroy_dirty_bitmap(new);
1722 
1723 	return r;
1724 }
1725 
1726 static void kvm_commit_memory_region(struct kvm *kvm,
1727 				     struct kvm_memory_slot *old,
1728 				     const struct kvm_memory_slot *new,
1729 				     enum kvm_mr_change change)
1730 {
1731 	int old_flags = old ? old->flags : 0;
1732 	int new_flags = new ? new->flags : 0;
1733 	/*
1734 	 * Update the total number of memslot pages before calling the arch
1735 	 * hook so that architectures can consume the result directly.
1736 	 */
1737 	if (change == KVM_MR_DELETE)
1738 		kvm->nr_memslot_pages -= old->npages;
1739 	else if (change == KVM_MR_CREATE)
1740 		kvm->nr_memslot_pages += new->npages;
1741 
1742 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1743 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1744 		atomic_set(&kvm->nr_memslots_dirty_logging,
1745 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1746 	}
1747 
1748 	kvm_arch_commit_memory_region(kvm, old, new, change);
1749 
1750 	switch (change) {
1751 	case KVM_MR_CREATE:
1752 		/* Nothing more to do. */
1753 		break;
1754 	case KVM_MR_DELETE:
1755 		/* Free the old memslot and all its metadata. */
1756 		kvm_free_memslot(kvm, old);
1757 		break;
1758 	case KVM_MR_MOVE:
1759 	case KVM_MR_FLAGS_ONLY:
1760 		/*
1761 		 * Free the dirty bitmap as needed; the below check encompasses
1762 		 * both the flags and whether a ring buffer is being used)
1763 		 */
1764 		if (old->dirty_bitmap && !new->dirty_bitmap)
1765 			kvm_destroy_dirty_bitmap(old);
1766 
1767 		/*
1768 		 * The final quirk.  Free the detached, old slot, but only its
1769 		 * memory, not any metadata.  Metadata, including arch specific
1770 		 * data, may be reused by @new.
1771 		 */
1772 		kfree(old);
1773 		break;
1774 	default:
1775 		BUG();
1776 	}
1777 }
1778 
1779 /*
1780  * Activate @new, which must be installed in the inactive slots by the caller,
1781  * by swapping the active slots and then propagating @new to @old once @old is
1782  * unreachable and can be safely modified.
1783  *
1784  * With NULL @old this simply adds @new to @active (while swapping the sets).
1785  * With NULL @new this simply removes @old from @active and frees it
1786  * (while also swapping the sets).
1787  */
1788 static void kvm_activate_memslot(struct kvm *kvm,
1789 				 struct kvm_memory_slot *old,
1790 				 struct kvm_memory_slot *new)
1791 {
1792 	int as_id = kvm_memslots_get_as_id(old, new);
1793 
1794 	kvm_swap_active_memslots(kvm, as_id);
1795 
1796 	/* Propagate the new memslot to the now inactive memslots. */
1797 	kvm_replace_memslot(kvm, old, new);
1798 }
1799 
1800 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1801 			     const struct kvm_memory_slot *src)
1802 {
1803 	dest->base_gfn = src->base_gfn;
1804 	dest->npages = src->npages;
1805 	dest->dirty_bitmap = src->dirty_bitmap;
1806 	dest->arch = src->arch;
1807 	dest->userspace_addr = src->userspace_addr;
1808 	dest->flags = src->flags;
1809 	dest->id = src->id;
1810 	dest->as_id = src->as_id;
1811 }
1812 
1813 static void kvm_invalidate_memslot(struct kvm *kvm,
1814 				   struct kvm_memory_slot *old,
1815 				   struct kvm_memory_slot *invalid_slot)
1816 {
1817 	/*
1818 	 * Mark the current slot INVALID.  As with all memslot modifications,
1819 	 * this must be done on an unreachable slot to avoid modifying the
1820 	 * current slot in the active tree.
1821 	 */
1822 	kvm_copy_memslot(invalid_slot, old);
1823 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1824 	kvm_replace_memslot(kvm, old, invalid_slot);
1825 
1826 	/*
1827 	 * Activate the slot that is now marked INVALID, but don't propagate
1828 	 * the slot to the now inactive slots. The slot is either going to be
1829 	 * deleted or recreated as a new slot.
1830 	 */
1831 	kvm_swap_active_memslots(kvm, old->as_id);
1832 
1833 	/*
1834 	 * From this point no new shadow pages pointing to a deleted, or moved,
1835 	 * memslot will be created.  Validation of sp->gfn happens in:
1836 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1837 	 *	- kvm_is_visible_gfn (mmu_check_root)
1838 	 */
1839 	kvm_arch_flush_shadow_memslot(kvm, old);
1840 	kvm_arch_guest_memory_reclaimed(kvm);
1841 
1842 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1843 	mutex_lock(&kvm->slots_arch_lock);
1844 
1845 	/*
1846 	 * Copy the arch-specific field of the newly-installed slot back to the
1847 	 * old slot as the arch data could have changed between releasing
1848 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1849 	 * above.  Writers are required to retrieve memslots *after* acquiring
1850 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1851 	 */
1852 	old->arch = invalid_slot->arch;
1853 }
1854 
1855 static void kvm_create_memslot(struct kvm *kvm,
1856 			       struct kvm_memory_slot *new)
1857 {
1858 	/* Add the new memslot to the inactive set and activate. */
1859 	kvm_replace_memslot(kvm, NULL, new);
1860 	kvm_activate_memslot(kvm, NULL, new);
1861 }
1862 
1863 static void kvm_delete_memslot(struct kvm *kvm,
1864 			       struct kvm_memory_slot *old,
1865 			       struct kvm_memory_slot *invalid_slot)
1866 {
1867 	/*
1868 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1869 	 * the "new" slot, and for the invalid version in the active slots.
1870 	 */
1871 	kvm_replace_memslot(kvm, old, NULL);
1872 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1873 }
1874 
1875 static void kvm_move_memslot(struct kvm *kvm,
1876 			     struct kvm_memory_slot *old,
1877 			     struct kvm_memory_slot *new,
1878 			     struct kvm_memory_slot *invalid_slot)
1879 {
1880 	/*
1881 	 * Replace the old memslot in the inactive slots, and then swap slots
1882 	 * and replace the current INVALID with the new as well.
1883 	 */
1884 	kvm_replace_memslot(kvm, old, new);
1885 	kvm_activate_memslot(kvm, invalid_slot, new);
1886 }
1887 
1888 static void kvm_update_flags_memslot(struct kvm *kvm,
1889 				     struct kvm_memory_slot *old,
1890 				     struct kvm_memory_slot *new)
1891 {
1892 	/*
1893 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1894 	 * an intermediate step. Instead, the old memslot is simply replaced
1895 	 * with a new, updated copy in both memslot sets.
1896 	 */
1897 	kvm_replace_memslot(kvm, old, new);
1898 	kvm_activate_memslot(kvm, old, new);
1899 }
1900 
1901 static int kvm_set_memslot(struct kvm *kvm,
1902 			   struct kvm_memory_slot *old,
1903 			   struct kvm_memory_slot *new,
1904 			   enum kvm_mr_change change)
1905 {
1906 	struct kvm_memory_slot *invalid_slot;
1907 	int r;
1908 
1909 	/*
1910 	 * Released in kvm_swap_active_memslots().
1911 	 *
1912 	 * Must be held from before the current memslots are copied until after
1913 	 * the new memslots are installed with rcu_assign_pointer, then
1914 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1915 	 *
1916 	 * When modifying memslots outside of the slots_lock, must be held
1917 	 * before reading the pointer to the current memslots until after all
1918 	 * changes to those memslots are complete.
1919 	 *
1920 	 * These rules ensure that installing new memslots does not lose
1921 	 * changes made to the previous memslots.
1922 	 */
1923 	mutex_lock(&kvm->slots_arch_lock);
1924 
1925 	/*
1926 	 * Invalidate the old slot if it's being deleted or moved.  This is
1927 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1928 	 * continue running by ensuring there are no mappings or shadow pages
1929 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1930 	 * (and without a lock), a window would exist between effecting the
1931 	 * delete/move and committing the changes in arch code where KVM or a
1932 	 * guest could access a non-existent memslot.
1933 	 *
1934 	 * Modifications are done on a temporary, unreachable slot.  The old
1935 	 * slot needs to be preserved in case a later step fails and the
1936 	 * invalidation needs to be reverted.
1937 	 */
1938 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1940 		if (!invalid_slot) {
1941 			mutex_unlock(&kvm->slots_arch_lock);
1942 			return -ENOMEM;
1943 		}
1944 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1945 	}
1946 
1947 	r = kvm_prepare_memory_region(kvm, old, new, change);
1948 	if (r) {
1949 		/*
1950 		 * For DELETE/MOVE, revert the above INVALID change.  No
1951 		 * modifications required since the original slot was preserved
1952 		 * in the inactive slots.  Changing the active memslots also
1953 		 * release slots_arch_lock.
1954 		 */
1955 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1956 			kvm_activate_memslot(kvm, invalid_slot, old);
1957 			kfree(invalid_slot);
1958 		} else {
1959 			mutex_unlock(&kvm->slots_arch_lock);
1960 		}
1961 		return r;
1962 	}
1963 
1964 	/*
1965 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1966 	 * version of the old slot.  MOVE is particularly special as it reuses
1967 	 * the old slot and returns a copy of the old slot (in working_slot).
1968 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1969 	 * old slot is detached but otherwise preserved.
1970 	 */
1971 	if (change == KVM_MR_CREATE)
1972 		kvm_create_memslot(kvm, new);
1973 	else if (change == KVM_MR_DELETE)
1974 		kvm_delete_memslot(kvm, old, invalid_slot);
1975 	else if (change == KVM_MR_MOVE)
1976 		kvm_move_memslot(kvm, old, new, invalid_slot);
1977 	else if (change == KVM_MR_FLAGS_ONLY)
1978 		kvm_update_flags_memslot(kvm, old, new);
1979 	else
1980 		BUG();
1981 
1982 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1983 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1984 		kfree(invalid_slot);
1985 
1986 	/*
1987 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1988 	 * will directly hit the final, active memslot.  Architectures are
1989 	 * responsible for knowing that new->arch may be stale.
1990 	 */
1991 	kvm_commit_memory_region(kvm, old, new, change);
1992 
1993 	return 0;
1994 }
1995 
1996 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1997 				      gfn_t start, gfn_t end)
1998 {
1999 	struct kvm_memslot_iter iter;
2000 
2001 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2002 		if (iter.slot->id != id)
2003 			return true;
2004 	}
2005 
2006 	return false;
2007 }
2008 
2009 /*
2010  * Allocate some memory and give it an address in the guest physical address
2011  * space.
2012  *
2013  * Discontiguous memory is allowed, mostly for framebuffers.
2014  *
2015  * Must be called holding kvm->slots_lock for write.
2016  */
2017 int __kvm_set_memory_region(struct kvm *kvm,
2018 			    const struct kvm_userspace_memory_region2 *mem)
2019 {
2020 	struct kvm_memory_slot *old, *new;
2021 	struct kvm_memslots *slots;
2022 	enum kvm_mr_change change;
2023 	unsigned long npages;
2024 	gfn_t base_gfn;
2025 	int as_id, id;
2026 	int r;
2027 
2028 	r = check_memory_region_flags(kvm, mem);
2029 	if (r)
2030 		return r;
2031 
2032 	as_id = mem->slot >> 16;
2033 	id = (u16)mem->slot;
2034 
2035 	/* General sanity checks */
2036 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2037 	    (mem->memory_size != (unsigned long)mem->memory_size))
2038 		return -EINVAL;
2039 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2040 		return -EINVAL;
2041 	/* We can read the guest memory with __xxx_user() later on. */
2042 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2043 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2044 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2045 			mem->memory_size))
2046 		return -EINVAL;
2047 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2048 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2049 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2050 		return -EINVAL;
2051 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2052 		return -EINVAL;
2053 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2054 		return -EINVAL;
2055 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2056 		return -EINVAL;
2057 
2058 	slots = __kvm_memslots(kvm, as_id);
2059 
2060 	/*
2061 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2062 	 * and/or destroyed by kvm_set_memslot().
2063 	 */
2064 	old = id_to_memslot(slots, id);
2065 
2066 	if (!mem->memory_size) {
2067 		if (!old || !old->npages)
2068 			return -EINVAL;
2069 
2070 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2071 			return -EIO;
2072 
2073 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2074 	}
2075 
2076 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2077 	npages = (mem->memory_size >> PAGE_SHIFT);
2078 
2079 	if (!old || !old->npages) {
2080 		change = KVM_MR_CREATE;
2081 
2082 		/*
2083 		 * To simplify KVM internals, the total number of pages across
2084 		 * all memslots must fit in an unsigned long.
2085 		 */
2086 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2087 			return -EINVAL;
2088 	} else { /* Modify an existing slot. */
2089 		/* Private memslots are immutable, they can only be deleted. */
2090 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2091 			return -EINVAL;
2092 		if ((mem->userspace_addr != old->userspace_addr) ||
2093 		    (npages != old->npages) ||
2094 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2095 			return -EINVAL;
2096 
2097 		if (base_gfn != old->base_gfn)
2098 			change = KVM_MR_MOVE;
2099 		else if (mem->flags != old->flags)
2100 			change = KVM_MR_FLAGS_ONLY;
2101 		else /* Nothing to change. */
2102 			return 0;
2103 	}
2104 
2105 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2106 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2107 		return -EEXIST;
2108 
2109 	/* Allocate a slot that will persist in the memslot. */
2110 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2111 	if (!new)
2112 		return -ENOMEM;
2113 
2114 	new->as_id = as_id;
2115 	new->id = id;
2116 	new->base_gfn = base_gfn;
2117 	new->npages = npages;
2118 	new->flags = mem->flags;
2119 	new->userspace_addr = mem->userspace_addr;
2120 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2121 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2122 		if (r)
2123 			goto out;
2124 	}
2125 
2126 	r = kvm_set_memslot(kvm, old, new, change);
2127 	if (r)
2128 		goto out_unbind;
2129 
2130 	return 0;
2131 
2132 out_unbind:
2133 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2134 		kvm_gmem_unbind(new);
2135 out:
2136 	kfree(new);
2137 	return r;
2138 }
2139 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2140 
2141 int kvm_set_memory_region(struct kvm *kvm,
2142 			  const struct kvm_userspace_memory_region2 *mem)
2143 {
2144 	int r;
2145 
2146 	mutex_lock(&kvm->slots_lock);
2147 	r = __kvm_set_memory_region(kvm, mem);
2148 	mutex_unlock(&kvm->slots_lock);
2149 	return r;
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2152 
2153 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2154 					  struct kvm_userspace_memory_region2 *mem)
2155 {
2156 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2157 		return -EINVAL;
2158 
2159 	return kvm_set_memory_region(kvm, mem);
2160 }
2161 
2162 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2163 /**
2164  * kvm_get_dirty_log - get a snapshot of dirty pages
2165  * @kvm:	pointer to kvm instance
2166  * @log:	slot id and address to which we copy the log
2167  * @is_dirty:	set to '1' if any dirty pages were found
2168  * @memslot:	set to the associated memslot, always valid on success
2169  */
2170 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2171 		      int *is_dirty, struct kvm_memory_slot **memslot)
2172 {
2173 	struct kvm_memslots *slots;
2174 	int i, as_id, id;
2175 	unsigned long n;
2176 	unsigned long any = 0;
2177 
2178 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2179 	if (!kvm_use_dirty_bitmap(kvm))
2180 		return -ENXIO;
2181 
2182 	*memslot = NULL;
2183 	*is_dirty = 0;
2184 
2185 	as_id = log->slot >> 16;
2186 	id = (u16)log->slot;
2187 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2188 		return -EINVAL;
2189 
2190 	slots = __kvm_memslots(kvm, as_id);
2191 	*memslot = id_to_memslot(slots, id);
2192 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2193 		return -ENOENT;
2194 
2195 	kvm_arch_sync_dirty_log(kvm, *memslot);
2196 
2197 	n = kvm_dirty_bitmap_bytes(*memslot);
2198 
2199 	for (i = 0; !any && i < n/sizeof(long); ++i)
2200 		any = (*memslot)->dirty_bitmap[i];
2201 
2202 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2203 		return -EFAULT;
2204 
2205 	if (any)
2206 		*is_dirty = 1;
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2210 
2211 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212 /**
2213  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2214  *	and reenable dirty page tracking for the corresponding pages.
2215  * @kvm:	pointer to kvm instance
2216  * @log:	slot id and address to which we copy the log
2217  *
2218  * We need to keep it in mind that VCPU threads can write to the bitmap
2219  * concurrently. So, to avoid losing track of dirty pages we keep the
2220  * following order:
2221  *
2222  *    1. Take a snapshot of the bit and clear it if needed.
2223  *    2. Write protect the corresponding page.
2224  *    3. Copy the snapshot to the userspace.
2225  *    4. Upon return caller flushes TLB's if needed.
2226  *
2227  * Between 2 and 4, the guest may write to the page using the remaining TLB
2228  * entry.  This is not a problem because the page is reported dirty using
2229  * the snapshot taken before and step 4 ensures that writes done after
2230  * exiting to userspace will be logged for the next call.
2231  *
2232  */
2233 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2234 {
2235 	struct kvm_memslots *slots;
2236 	struct kvm_memory_slot *memslot;
2237 	int i, as_id, id;
2238 	unsigned long n;
2239 	unsigned long *dirty_bitmap;
2240 	unsigned long *dirty_bitmap_buffer;
2241 	bool flush;
2242 
2243 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2244 	if (!kvm_use_dirty_bitmap(kvm))
2245 		return -ENXIO;
2246 
2247 	as_id = log->slot >> 16;
2248 	id = (u16)log->slot;
2249 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2250 		return -EINVAL;
2251 
2252 	slots = __kvm_memslots(kvm, as_id);
2253 	memslot = id_to_memslot(slots, id);
2254 	if (!memslot || !memslot->dirty_bitmap)
2255 		return -ENOENT;
2256 
2257 	dirty_bitmap = memslot->dirty_bitmap;
2258 
2259 	kvm_arch_sync_dirty_log(kvm, memslot);
2260 
2261 	n = kvm_dirty_bitmap_bytes(memslot);
2262 	flush = false;
2263 	if (kvm->manual_dirty_log_protect) {
2264 		/*
2265 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2266 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2267 		 * is some code duplication between this function and
2268 		 * kvm_get_dirty_log, but hopefully all architecture
2269 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2270 		 * can be eliminated.
2271 		 */
2272 		dirty_bitmap_buffer = dirty_bitmap;
2273 	} else {
2274 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2275 		memset(dirty_bitmap_buffer, 0, n);
2276 
2277 		KVM_MMU_LOCK(kvm);
2278 		for (i = 0; i < n / sizeof(long); i++) {
2279 			unsigned long mask;
2280 			gfn_t offset;
2281 
2282 			if (!dirty_bitmap[i])
2283 				continue;
2284 
2285 			flush = true;
2286 			mask = xchg(&dirty_bitmap[i], 0);
2287 			dirty_bitmap_buffer[i] = mask;
2288 
2289 			offset = i * BITS_PER_LONG;
2290 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291 								offset, mask);
2292 		}
2293 		KVM_MMU_UNLOCK(kvm);
2294 	}
2295 
2296 	if (flush)
2297 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2298 
2299 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2300 		return -EFAULT;
2301 	return 0;
2302 }
2303 
2304 
2305 /**
2306  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2307  * @kvm: kvm instance
2308  * @log: slot id and address to which we copy the log
2309  *
2310  * Steps 1-4 below provide general overview of dirty page logging. See
2311  * kvm_get_dirty_log_protect() function description for additional details.
2312  *
2313  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2314  * always flush the TLB (step 4) even if previous step failed  and the dirty
2315  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2316  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2317  * writes will be marked dirty for next log read.
2318  *
2319  *   1. Take a snapshot of the bit and clear it if needed.
2320  *   2. Write protect the corresponding page.
2321  *   3. Copy the snapshot to the userspace.
2322  *   4. Flush TLB's if needed.
2323  */
2324 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2325 				      struct kvm_dirty_log *log)
2326 {
2327 	int r;
2328 
2329 	mutex_lock(&kvm->slots_lock);
2330 
2331 	r = kvm_get_dirty_log_protect(kvm, log);
2332 
2333 	mutex_unlock(&kvm->slots_lock);
2334 	return r;
2335 }
2336 
2337 /**
2338  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2339  *	and reenable dirty page tracking for the corresponding pages.
2340  * @kvm:	pointer to kvm instance
2341  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2342  */
2343 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2344 				       struct kvm_clear_dirty_log *log)
2345 {
2346 	struct kvm_memslots *slots;
2347 	struct kvm_memory_slot *memslot;
2348 	int as_id, id;
2349 	gfn_t offset;
2350 	unsigned long i, n;
2351 	unsigned long *dirty_bitmap;
2352 	unsigned long *dirty_bitmap_buffer;
2353 	bool flush;
2354 
2355 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2356 	if (!kvm_use_dirty_bitmap(kvm))
2357 		return -ENXIO;
2358 
2359 	as_id = log->slot >> 16;
2360 	id = (u16)log->slot;
2361 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2362 		return -EINVAL;
2363 
2364 	if (log->first_page & 63)
2365 		return -EINVAL;
2366 
2367 	slots = __kvm_memslots(kvm, as_id);
2368 	memslot = id_to_memslot(slots, id);
2369 	if (!memslot || !memslot->dirty_bitmap)
2370 		return -ENOENT;
2371 
2372 	dirty_bitmap = memslot->dirty_bitmap;
2373 
2374 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2375 
2376 	if (log->first_page > memslot->npages ||
2377 	    log->num_pages > memslot->npages - log->first_page ||
2378 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2379 	    return -EINVAL;
2380 
2381 	kvm_arch_sync_dirty_log(kvm, memslot);
2382 
2383 	flush = false;
2384 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2385 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2386 		return -EFAULT;
2387 
2388 	KVM_MMU_LOCK(kvm);
2389 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2390 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2391 	     i++, offset += BITS_PER_LONG) {
2392 		unsigned long mask = *dirty_bitmap_buffer++;
2393 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2394 		if (!mask)
2395 			continue;
2396 
2397 		mask &= atomic_long_fetch_andnot(mask, p);
2398 
2399 		/*
2400 		 * mask contains the bits that really have been cleared.  This
2401 		 * never includes any bits beyond the length of the memslot (if
2402 		 * the length is not aligned to 64 pages), therefore it is not
2403 		 * a problem if userspace sets them in log->dirty_bitmap.
2404 		*/
2405 		if (mask) {
2406 			flush = true;
2407 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2408 								offset, mask);
2409 		}
2410 	}
2411 	KVM_MMU_UNLOCK(kvm);
2412 
2413 	if (flush)
2414 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2415 
2416 	return 0;
2417 }
2418 
2419 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2420 					struct kvm_clear_dirty_log *log)
2421 {
2422 	int r;
2423 
2424 	mutex_lock(&kvm->slots_lock);
2425 
2426 	r = kvm_clear_dirty_log_protect(kvm, log);
2427 
2428 	mutex_unlock(&kvm->slots_lock);
2429 	return r;
2430 }
2431 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2432 
2433 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2434 /*
2435  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2436  * matching @attrs.
2437  */
2438 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2439 				     unsigned long attrs)
2440 {
2441 	XA_STATE(xas, &kvm->mem_attr_array, start);
2442 	unsigned long index;
2443 	bool has_attrs;
2444 	void *entry;
2445 
2446 	rcu_read_lock();
2447 
2448 	if (!attrs) {
2449 		has_attrs = !xas_find(&xas, end - 1);
2450 		goto out;
2451 	}
2452 
2453 	has_attrs = true;
2454 	for (index = start; index < end; index++) {
2455 		do {
2456 			entry = xas_next(&xas);
2457 		} while (xas_retry(&xas, entry));
2458 
2459 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2460 			has_attrs = false;
2461 			break;
2462 		}
2463 	}
2464 
2465 out:
2466 	rcu_read_unlock();
2467 	return has_attrs;
2468 }
2469 
2470 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2471 {
2472 	if (!kvm || kvm_arch_has_private_mem(kvm))
2473 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2474 
2475 	return 0;
2476 }
2477 
2478 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2479 						 struct kvm_mmu_notifier_range *range)
2480 {
2481 	struct kvm_gfn_range gfn_range;
2482 	struct kvm_memory_slot *slot;
2483 	struct kvm_memslots *slots;
2484 	struct kvm_memslot_iter iter;
2485 	bool found_memslot = false;
2486 	bool ret = false;
2487 	int i;
2488 
2489 	gfn_range.arg = range->arg;
2490 	gfn_range.may_block = range->may_block;
2491 
2492 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2493 		slots = __kvm_memslots(kvm, i);
2494 
2495 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2496 			slot = iter.slot;
2497 			gfn_range.slot = slot;
2498 
2499 			gfn_range.start = max(range->start, slot->base_gfn);
2500 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2501 			if (gfn_range.start >= gfn_range.end)
2502 				continue;
2503 
2504 			if (!found_memslot) {
2505 				found_memslot = true;
2506 				KVM_MMU_LOCK(kvm);
2507 				if (!IS_KVM_NULL_FN(range->on_lock))
2508 					range->on_lock(kvm);
2509 			}
2510 
2511 			ret |= range->handler(kvm, &gfn_range);
2512 		}
2513 	}
2514 
2515 	if (range->flush_on_ret && ret)
2516 		kvm_flush_remote_tlbs(kvm);
2517 
2518 	if (found_memslot)
2519 		KVM_MMU_UNLOCK(kvm);
2520 }
2521 
2522 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2523 					  struct kvm_gfn_range *range)
2524 {
2525 	/*
2526 	 * Unconditionally add the range to the invalidation set, regardless of
2527 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2528 	 * if KVM supports RWX attributes in the future and the attributes are
2529 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2530 	 * adding the range allows KVM to require that MMU invalidations add at
2531 	 * least one range between begin() and end(), e.g. allows KVM to detect
2532 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2533 	 * but it's not obvious that allowing new mappings while the attributes
2534 	 * are in flux is desirable or worth the complexity.
2535 	 */
2536 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2537 
2538 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2539 }
2540 
2541 /* Set @attributes for the gfn range [@start, @end). */
2542 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2543 				     unsigned long attributes)
2544 {
2545 	struct kvm_mmu_notifier_range pre_set_range = {
2546 		.start = start,
2547 		.end = end,
2548 		.handler = kvm_pre_set_memory_attributes,
2549 		.on_lock = kvm_mmu_invalidate_begin,
2550 		.flush_on_ret = true,
2551 		.may_block = true,
2552 	};
2553 	struct kvm_mmu_notifier_range post_set_range = {
2554 		.start = start,
2555 		.end = end,
2556 		.arg.attributes = attributes,
2557 		.handler = kvm_arch_post_set_memory_attributes,
2558 		.on_lock = kvm_mmu_invalidate_end,
2559 		.may_block = true,
2560 	};
2561 	unsigned long i;
2562 	void *entry;
2563 	int r = 0;
2564 
2565 	entry = attributes ? xa_mk_value(attributes) : NULL;
2566 
2567 	mutex_lock(&kvm->slots_lock);
2568 
2569 	/* Nothing to do if the entire range as the desired attributes. */
2570 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2571 		goto out_unlock;
2572 
2573 	/*
2574 	 * Reserve memory ahead of time to avoid having to deal with failures
2575 	 * partway through setting the new attributes.
2576 	 */
2577 	for (i = start; i < end; i++) {
2578 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2579 		if (r)
2580 			goto out_unlock;
2581 	}
2582 
2583 	kvm_handle_gfn_range(kvm, &pre_set_range);
2584 
2585 	for (i = start; i < end; i++) {
2586 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2587 				    GFP_KERNEL_ACCOUNT));
2588 		KVM_BUG_ON(r, kvm);
2589 	}
2590 
2591 	kvm_handle_gfn_range(kvm, &post_set_range);
2592 
2593 out_unlock:
2594 	mutex_unlock(&kvm->slots_lock);
2595 
2596 	return r;
2597 }
2598 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2599 					   struct kvm_memory_attributes *attrs)
2600 {
2601 	gfn_t start, end;
2602 
2603 	/* flags is currently not used. */
2604 	if (attrs->flags)
2605 		return -EINVAL;
2606 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2607 		return -EINVAL;
2608 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2609 		return -EINVAL;
2610 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2611 		return -EINVAL;
2612 
2613 	start = attrs->address >> PAGE_SHIFT;
2614 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2615 
2616 	/*
2617 	 * xarray tracks data using "unsigned long", and as a result so does
2618 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2619 	 * architectures.
2620 	 */
2621 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2622 
2623 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2624 }
2625 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2626 
2627 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2628 {
2629 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2630 }
2631 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2632 
2633 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2634 {
2635 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2636 	u64 gen = slots->generation;
2637 	struct kvm_memory_slot *slot;
2638 
2639 	/*
2640 	 * This also protects against using a memslot from a different address space,
2641 	 * since different address spaces have different generation numbers.
2642 	 */
2643 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2644 		vcpu->last_used_slot = NULL;
2645 		vcpu->last_used_slot_gen = gen;
2646 	}
2647 
2648 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2649 	if (slot)
2650 		return slot;
2651 
2652 	/*
2653 	 * Fall back to searching all memslots. We purposely use
2654 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2655 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2656 	 */
2657 	slot = search_memslots(slots, gfn, false);
2658 	if (slot) {
2659 		vcpu->last_used_slot = slot;
2660 		return slot;
2661 	}
2662 
2663 	return NULL;
2664 }
2665 
2666 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2667 {
2668 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2669 
2670 	return kvm_is_visible_memslot(memslot);
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2673 
2674 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2675 {
2676 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2677 
2678 	return kvm_is_visible_memslot(memslot);
2679 }
2680 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2681 
2682 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684 	struct vm_area_struct *vma;
2685 	unsigned long addr, size;
2686 
2687 	size = PAGE_SIZE;
2688 
2689 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2690 	if (kvm_is_error_hva(addr))
2691 		return PAGE_SIZE;
2692 
2693 	mmap_read_lock(current->mm);
2694 	vma = find_vma(current->mm, addr);
2695 	if (!vma)
2696 		goto out;
2697 
2698 	size = vma_kernel_pagesize(vma);
2699 
2700 out:
2701 	mmap_read_unlock(current->mm);
2702 
2703 	return size;
2704 }
2705 
2706 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2707 {
2708 	return slot->flags & KVM_MEM_READONLY;
2709 }
2710 
2711 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2712 				       gfn_t *nr_pages, bool write)
2713 {
2714 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2715 		return KVM_HVA_ERR_BAD;
2716 
2717 	if (memslot_is_readonly(slot) && write)
2718 		return KVM_HVA_ERR_RO_BAD;
2719 
2720 	if (nr_pages)
2721 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2722 
2723 	return __gfn_to_hva_memslot(slot, gfn);
2724 }
2725 
2726 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2727 				     gfn_t *nr_pages)
2728 {
2729 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2730 }
2731 
2732 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2733 					gfn_t gfn)
2734 {
2735 	return gfn_to_hva_many(slot, gfn, NULL);
2736 }
2737 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2738 
2739 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2740 {
2741 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2742 }
2743 EXPORT_SYMBOL_GPL(gfn_to_hva);
2744 
2745 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2746 {
2747 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2750 
2751 /*
2752  * Return the hva of a @gfn and the R/W attribute if possible.
2753  *
2754  * @slot: the kvm_memory_slot which contains @gfn
2755  * @gfn: the gfn to be translated
2756  * @writable: used to return the read/write attribute of the @slot if the hva
2757  * is valid and @writable is not NULL
2758  */
2759 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2760 				      gfn_t gfn, bool *writable)
2761 {
2762 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2763 
2764 	if (!kvm_is_error_hva(hva) && writable)
2765 		*writable = !memslot_is_readonly(slot);
2766 
2767 	return hva;
2768 }
2769 
2770 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2771 {
2772 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2773 
2774 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2775 }
2776 
2777 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2778 {
2779 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2780 
2781 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2782 }
2783 
2784 static inline int check_user_page_hwpoison(unsigned long addr)
2785 {
2786 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2787 
2788 	rc = get_user_pages(addr, 1, flags, NULL);
2789 	return rc == -EHWPOISON;
2790 }
2791 
2792 /*
2793  * The fast path to get the writable pfn which will be stored in @pfn,
2794  * true indicates success, otherwise false is returned.  It's also the
2795  * only part that runs if we can in atomic context.
2796  */
2797 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2798 			    bool *writable, kvm_pfn_t *pfn)
2799 {
2800 	struct page *page[1];
2801 
2802 	/*
2803 	 * Fast pin a writable pfn only if it is a write fault request
2804 	 * or the caller allows to map a writable pfn for a read fault
2805 	 * request.
2806 	 */
2807 	if (!(write_fault || writable))
2808 		return false;
2809 
2810 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2811 		*pfn = page_to_pfn(page[0]);
2812 
2813 		if (writable)
2814 			*writable = true;
2815 		return true;
2816 	}
2817 
2818 	return false;
2819 }
2820 
2821 /*
2822  * The slow path to get the pfn of the specified host virtual address,
2823  * 1 indicates success, -errno is returned if error is detected.
2824  */
2825 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2826 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2827 {
2828 	/*
2829 	 * When a VCPU accesses a page that is not mapped into the secondary
2830 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2831 	 * make progress. We always want to honor NUMA hinting faults in that
2832 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2833 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2834 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2835 	 *
2836 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2837 	 * implicitly honor NUMA hinting faults and don't need this flag.
2838 	 */
2839 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2840 	struct page *page;
2841 	int npages;
2842 
2843 	might_sleep();
2844 
2845 	if (writable)
2846 		*writable = write_fault;
2847 
2848 	if (write_fault)
2849 		flags |= FOLL_WRITE;
2850 	if (async)
2851 		flags |= FOLL_NOWAIT;
2852 	if (interruptible)
2853 		flags |= FOLL_INTERRUPTIBLE;
2854 
2855 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2856 	if (npages != 1)
2857 		return npages;
2858 
2859 	/* map read fault as writable if possible */
2860 	if (unlikely(!write_fault) && writable) {
2861 		struct page *wpage;
2862 
2863 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2864 			*writable = true;
2865 			put_page(page);
2866 			page = wpage;
2867 		}
2868 	}
2869 	*pfn = page_to_pfn(page);
2870 	return npages;
2871 }
2872 
2873 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2874 {
2875 	if (unlikely(!(vma->vm_flags & VM_READ)))
2876 		return false;
2877 
2878 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2879 		return false;
2880 
2881 	return true;
2882 }
2883 
2884 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2885 {
2886 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2887 
2888 	if (!page)
2889 		return 1;
2890 
2891 	return get_page_unless_zero(page);
2892 }
2893 
2894 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2895 			       unsigned long addr, bool write_fault,
2896 			       bool *writable, kvm_pfn_t *p_pfn)
2897 {
2898 	kvm_pfn_t pfn;
2899 	pte_t *ptep;
2900 	pte_t pte;
2901 	spinlock_t *ptl;
2902 	int r;
2903 
2904 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2905 	if (r) {
2906 		/*
2907 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2908 		 * not call the fault handler, so do it here.
2909 		 */
2910 		bool unlocked = false;
2911 		r = fixup_user_fault(current->mm, addr,
2912 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2913 				     &unlocked);
2914 		if (unlocked)
2915 			return -EAGAIN;
2916 		if (r)
2917 			return r;
2918 
2919 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2920 		if (r)
2921 			return r;
2922 	}
2923 
2924 	pte = ptep_get(ptep);
2925 
2926 	if (write_fault && !pte_write(pte)) {
2927 		pfn = KVM_PFN_ERR_RO_FAULT;
2928 		goto out;
2929 	}
2930 
2931 	if (writable)
2932 		*writable = pte_write(pte);
2933 	pfn = pte_pfn(pte);
2934 
2935 	/*
2936 	 * Get a reference here because callers of *hva_to_pfn* and
2937 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2938 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2939 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2940 	 * simply do nothing for reserved pfns.
2941 	 *
2942 	 * Whoever called remap_pfn_range is also going to call e.g.
2943 	 * unmap_mapping_range before the underlying pages are freed,
2944 	 * causing a call to our MMU notifier.
2945 	 *
2946 	 * Certain IO or PFNMAP mappings can be backed with valid
2947 	 * struct pages, but be allocated without refcounting e.g.,
2948 	 * tail pages of non-compound higher order allocations, which
2949 	 * would then underflow the refcount when the caller does the
2950 	 * required put_page. Don't allow those pages here.
2951 	 */
2952 	if (!kvm_try_get_pfn(pfn))
2953 		r = -EFAULT;
2954 
2955 out:
2956 	pte_unmap_unlock(ptep, ptl);
2957 	*p_pfn = pfn;
2958 
2959 	return r;
2960 }
2961 
2962 /*
2963  * Pin guest page in memory and return its pfn.
2964  * @addr: host virtual address which maps memory to the guest
2965  * @atomic: whether this function can sleep
2966  * @interruptible: whether the process can be interrupted by non-fatal signals
2967  * @async: whether this function need to wait IO complete if the
2968  *         host page is not in the memory
2969  * @write_fault: whether we should get a writable host page
2970  * @writable: whether it allows to map a writable host page for !@write_fault
2971  *
2972  * The function will map a writable host page for these two cases:
2973  * 1): @write_fault = true
2974  * 2): @write_fault = false && @writable, @writable will tell the caller
2975  *     whether the mapping is writable.
2976  */
2977 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2978 		     bool *async, bool write_fault, bool *writable)
2979 {
2980 	struct vm_area_struct *vma;
2981 	kvm_pfn_t pfn;
2982 	int npages, r;
2983 
2984 	/* we can do it either atomically or asynchronously, not both */
2985 	BUG_ON(atomic && async);
2986 
2987 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2988 		return pfn;
2989 
2990 	if (atomic)
2991 		return KVM_PFN_ERR_FAULT;
2992 
2993 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2994 				 writable, &pfn);
2995 	if (npages == 1)
2996 		return pfn;
2997 	if (npages == -EINTR)
2998 		return KVM_PFN_ERR_SIGPENDING;
2999 
3000 	mmap_read_lock(current->mm);
3001 	if (npages == -EHWPOISON ||
3002 	      (!async && check_user_page_hwpoison(addr))) {
3003 		pfn = KVM_PFN_ERR_HWPOISON;
3004 		goto exit;
3005 	}
3006 
3007 retry:
3008 	vma = vma_lookup(current->mm, addr);
3009 
3010 	if (vma == NULL)
3011 		pfn = KVM_PFN_ERR_FAULT;
3012 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3013 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3014 		if (r == -EAGAIN)
3015 			goto retry;
3016 		if (r < 0)
3017 			pfn = KVM_PFN_ERR_FAULT;
3018 	} else {
3019 		if (async && vma_is_valid(vma, write_fault))
3020 			*async = true;
3021 		pfn = KVM_PFN_ERR_FAULT;
3022 	}
3023 exit:
3024 	mmap_read_unlock(current->mm);
3025 	return pfn;
3026 }
3027 
3028 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3029 			       bool atomic, bool interruptible, bool *async,
3030 			       bool write_fault, bool *writable, hva_t *hva)
3031 {
3032 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3033 
3034 	if (hva)
3035 		*hva = addr;
3036 
3037 	if (addr == KVM_HVA_ERR_RO_BAD) {
3038 		if (writable)
3039 			*writable = false;
3040 		return KVM_PFN_ERR_RO_FAULT;
3041 	}
3042 
3043 	if (kvm_is_error_hva(addr)) {
3044 		if (writable)
3045 			*writable = false;
3046 		return KVM_PFN_NOSLOT;
3047 	}
3048 
3049 	/* Do not map writable pfn in the readonly memslot. */
3050 	if (writable && memslot_is_readonly(slot)) {
3051 		*writable = false;
3052 		writable = NULL;
3053 	}
3054 
3055 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3056 			  writable);
3057 }
3058 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3059 
3060 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3061 		      bool *writable)
3062 {
3063 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3064 				    NULL, write_fault, writable, NULL);
3065 }
3066 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3067 
3068 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3069 {
3070 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3071 				    NULL, NULL);
3072 }
3073 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3074 
3075 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3076 {
3077 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3078 				    NULL, NULL);
3079 }
3080 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3081 
3082 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3083 {
3084 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3085 }
3086 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3087 
3088 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3089 {
3090 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3091 }
3092 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3093 
3094 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3095 {
3096 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3097 }
3098 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3099 
3100 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3101 			    struct page **pages, int nr_pages)
3102 {
3103 	unsigned long addr;
3104 	gfn_t entry = 0;
3105 
3106 	addr = gfn_to_hva_many(slot, gfn, &entry);
3107 	if (kvm_is_error_hva(addr))
3108 		return -1;
3109 
3110 	if (entry < nr_pages)
3111 		return 0;
3112 
3113 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3114 }
3115 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3116 
3117 /*
3118  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3119  * backed by 'struct page'.  A valid example is if the backing memslot is
3120  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3121  * been elevated by gfn_to_pfn().
3122  */
3123 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3124 {
3125 	struct page *page;
3126 	kvm_pfn_t pfn;
3127 
3128 	pfn = gfn_to_pfn(kvm, gfn);
3129 
3130 	if (is_error_noslot_pfn(pfn))
3131 		return KVM_ERR_PTR_BAD_PAGE;
3132 
3133 	page = kvm_pfn_to_refcounted_page(pfn);
3134 	if (!page)
3135 		return KVM_ERR_PTR_BAD_PAGE;
3136 
3137 	return page;
3138 }
3139 EXPORT_SYMBOL_GPL(gfn_to_page);
3140 
3141 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3142 {
3143 	if (dirty)
3144 		kvm_release_pfn_dirty(pfn);
3145 	else
3146 		kvm_release_pfn_clean(pfn);
3147 }
3148 
3149 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3150 {
3151 	kvm_pfn_t pfn;
3152 	void *hva = NULL;
3153 	struct page *page = KVM_UNMAPPED_PAGE;
3154 
3155 	if (!map)
3156 		return -EINVAL;
3157 
3158 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3159 	if (is_error_noslot_pfn(pfn))
3160 		return -EINVAL;
3161 
3162 	if (pfn_valid(pfn)) {
3163 		page = pfn_to_page(pfn);
3164 		hva = kmap(page);
3165 #ifdef CONFIG_HAS_IOMEM
3166 	} else {
3167 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3168 #endif
3169 	}
3170 
3171 	if (!hva)
3172 		return -EFAULT;
3173 
3174 	map->page = page;
3175 	map->hva = hva;
3176 	map->pfn = pfn;
3177 	map->gfn = gfn;
3178 
3179 	return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3182 
3183 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3184 {
3185 	if (!map)
3186 		return;
3187 
3188 	if (!map->hva)
3189 		return;
3190 
3191 	if (map->page != KVM_UNMAPPED_PAGE)
3192 		kunmap(map->page);
3193 #ifdef CONFIG_HAS_IOMEM
3194 	else
3195 		memunmap(map->hva);
3196 #endif
3197 
3198 	if (dirty)
3199 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3200 
3201 	kvm_release_pfn(map->pfn, dirty);
3202 
3203 	map->hva = NULL;
3204 	map->page = NULL;
3205 }
3206 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3207 
3208 static bool kvm_is_ad_tracked_page(struct page *page)
3209 {
3210 	/*
3211 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3212 	 * touched (e.g. set dirty) except by its owner".
3213 	 */
3214 	return !PageReserved(page);
3215 }
3216 
3217 static void kvm_set_page_dirty(struct page *page)
3218 {
3219 	if (kvm_is_ad_tracked_page(page))
3220 		SetPageDirty(page);
3221 }
3222 
3223 static void kvm_set_page_accessed(struct page *page)
3224 {
3225 	if (kvm_is_ad_tracked_page(page))
3226 		mark_page_accessed(page);
3227 }
3228 
3229 void kvm_release_page_clean(struct page *page)
3230 {
3231 	WARN_ON(is_error_page(page));
3232 
3233 	kvm_set_page_accessed(page);
3234 	put_page(page);
3235 }
3236 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3237 
3238 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3239 {
3240 	struct page *page;
3241 
3242 	if (is_error_noslot_pfn(pfn))
3243 		return;
3244 
3245 	page = kvm_pfn_to_refcounted_page(pfn);
3246 	if (!page)
3247 		return;
3248 
3249 	kvm_release_page_clean(page);
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3252 
3253 void kvm_release_page_dirty(struct page *page)
3254 {
3255 	WARN_ON(is_error_page(page));
3256 
3257 	kvm_set_page_dirty(page);
3258 	kvm_release_page_clean(page);
3259 }
3260 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3261 
3262 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3263 {
3264 	struct page *page;
3265 
3266 	if (is_error_noslot_pfn(pfn))
3267 		return;
3268 
3269 	page = kvm_pfn_to_refcounted_page(pfn);
3270 	if (!page)
3271 		return;
3272 
3273 	kvm_release_page_dirty(page);
3274 }
3275 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3276 
3277 /*
3278  * Note, checking for an error/noslot pfn is the caller's responsibility when
3279  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3280  * "set" helpers are not to be used when the pfn might point at garbage.
3281  */
3282 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3283 {
3284 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3285 		return;
3286 
3287 	if (pfn_valid(pfn))
3288 		kvm_set_page_dirty(pfn_to_page(pfn));
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3291 
3292 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3293 {
3294 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3295 		return;
3296 
3297 	if (pfn_valid(pfn))
3298 		kvm_set_page_accessed(pfn_to_page(pfn));
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3301 
3302 static int next_segment(unsigned long len, int offset)
3303 {
3304 	if (len > PAGE_SIZE - offset)
3305 		return PAGE_SIZE - offset;
3306 	else
3307 		return len;
3308 }
3309 
3310 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3311 				 void *data, int offset, int len)
3312 {
3313 	int r;
3314 	unsigned long addr;
3315 
3316 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3317 	if (kvm_is_error_hva(addr))
3318 		return -EFAULT;
3319 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3320 	if (r)
3321 		return -EFAULT;
3322 	return 0;
3323 }
3324 
3325 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3326 			int len)
3327 {
3328 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3329 
3330 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3331 }
3332 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3333 
3334 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3335 			     int offset, int len)
3336 {
3337 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3338 
3339 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3342 
3343 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3344 {
3345 	gfn_t gfn = gpa >> PAGE_SHIFT;
3346 	int seg;
3347 	int offset = offset_in_page(gpa);
3348 	int ret;
3349 
3350 	while ((seg = next_segment(len, offset)) != 0) {
3351 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3352 		if (ret < 0)
3353 			return ret;
3354 		offset = 0;
3355 		len -= seg;
3356 		data += seg;
3357 		++gfn;
3358 	}
3359 	return 0;
3360 }
3361 EXPORT_SYMBOL_GPL(kvm_read_guest);
3362 
3363 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3364 {
3365 	gfn_t gfn = gpa >> PAGE_SHIFT;
3366 	int seg;
3367 	int offset = offset_in_page(gpa);
3368 	int ret;
3369 
3370 	while ((seg = next_segment(len, offset)) != 0) {
3371 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3372 		if (ret < 0)
3373 			return ret;
3374 		offset = 0;
3375 		len -= seg;
3376 		data += seg;
3377 		++gfn;
3378 	}
3379 	return 0;
3380 }
3381 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3382 
3383 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3384 			           void *data, int offset, unsigned long len)
3385 {
3386 	int r;
3387 	unsigned long addr;
3388 
3389 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3390 	if (kvm_is_error_hva(addr))
3391 		return -EFAULT;
3392 	pagefault_disable();
3393 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3394 	pagefault_enable();
3395 	if (r)
3396 		return -EFAULT;
3397 	return 0;
3398 }
3399 
3400 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3401 			       void *data, unsigned long len)
3402 {
3403 	gfn_t gfn = gpa >> PAGE_SHIFT;
3404 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3405 	int offset = offset_in_page(gpa);
3406 
3407 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3410 
3411 static int __kvm_write_guest_page(struct kvm *kvm,
3412 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3413 			          const void *data, int offset, int len)
3414 {
3415 	int r;
3416 	unsigned long addr;
3417 
3418 	addr = gfn_to_hva_memslot(memslot, gfn);
3419 	if (kvm_is_error_hva(addr))
3420 		return -EFAULT;
3421 	r = __copy_to_user((void __user *)addr + offset, data, len);
3422 	if (r)
3423 		return -EFAULT;
3424 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3425 	return 0;
3426 }
3427 
3428 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3429 			 const void *data, int offset, int len)
3430 {
3431 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3432 
3433 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3434 }
3435 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3436 
3437 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3438 			      const void *data, int offset, int len)
3439 {
3440 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3441 
3442 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3443 }
3444 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3445 
3446 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3447 		    unsigned long len)
3448 {
3449 	gfn_t gfn = gpa >> PAGE_SHIFT;
3450 	int seg;
3451 	int offset = offset_in_page(gpa);
3452 	int ret;
3453 
3454 	while ((seg = next_segment(len, offset)) != 0) {
3455 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3456 		if (ret < 0)
3457 			return ret;
3458 		offset = 0;
3459 		len -= seg;
3460 		data += seg;
3461 		++gfn;
3462 	}
3463 	return 0;
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_write_guest);
3466 
3467 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3468 		         unsigned long len)
3469 {
3470 	gfn_t gfn = gpa >> PAGE_SHIFT;
3471 	int seg;
3472 	int offset = offset_in_page(gpa);
3473 	int ret;
3474 
3475 	while ((seg = next_segment(len, offset)) != 0) {
3476 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3477 		if (ret < 0)
3478 			return ret;
3479 		offset = 0;
3480 		len -= seg;
3481 		data += seg;
3482 		++gfn;
3483 	}
3484 	return 0;
3485 }
3486 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3487 
3488 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3489 				       struct gfn_to_hva_cache *ghc,
3490 				       gpa_t gpa, unsigned long len)
3491 {
3492 	int offset = offset_in_page(gpa);
3493 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3494 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3495 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3496 	gfn_t nr_pages_avail;
3497 
3498 	/* Update ghc->generation before performing any error checks. */
3499 	ghc->generation = slots->generation;
3500 
3501 	if (start_gfn > end_gfn) {
3502 		ghc->hva = KVM_HVA_ERR_BAD;
3503 		return -EINVAL;
3504 	}
3505 
3506 	/*
3507 	 * If the requested region crosses two memslots, we still
3508 	 * verify that the entire region is valid here.
3509 	 */
3510 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3511 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3512 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3513 					   &nr_pages_avail);
3514 		if (kvm_is_error_hva(ghc->hva))
3515 			return -EFAULT;
3516 	}
3517 
3518 	/* Use the slow path for cross page reads and writes. */
3519 	if (nr_pages_needed == 1)
3520 		ghc->hva += offset;
3521 	else
3522 		ghc->memslot = NULL;
3523 
3524 	ghc->gpa = gpa;
3525 	ghc->len = len;
3526 	return 0;
3527 }
3528 
3529 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3530 			      gpa_t gpa, unsigned long len)
3531 {
3532 	struct kvm_memslots *slots = kvm_memslots(kvm);
3533 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3534 }
3535 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3536 
3537 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3538 				  void *data, unsigned int offset,
3539 				  unsigned long len)
3540 {
3541 	struct kvm_memslots *slots = kvm_memslots(kvm);
3542 	int r;
3543 	gpa_t gpa = ghc->gpa + offset;
3544 
3545 	if (WARN_ON_ONCE(len + offset > ghc->len))
3546 		return -EINVAL;
3547 
3548 	if (slots->generation != ghc->generation) {
3549 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3550 			return -EFAULT;
3551 	}
3552 
3553 	if (kvm_is_error_hva(ghc->hva))
3554 		return -EFAULT;
3555 
3556 	if (unlikely(!ghc->memslot))
3557 		return kvm_write_guest(kvm, gpa, data, len);
3558 
3559 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3560 	if (r)
3561 		return -EFAULT;
3562 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3563 
3564 	return 0;
3565 }
3566 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3567 
3568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569 			   void *data, unsigned long len)
3570 {
3571 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3572 }
3573 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3574 
3575 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3576 				 void *data, unsigned int offset,
3577 				 unsigned long len)
3578 {
3579 	struct kvm_memslots *slots = kvm_memslots(kvm);
3580 	int r;
3581 	gpa_t gpa = ghc->gpa + offset;
3582 
3583 	if (WARN_ON_ONCE(len + offset > ghc->len))
3584 		return -EINVAL;
3585 
3586 	if (slots->generation != ghc->generation) {
3587 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3588 			return -EFAULT;
3589 	}
3590 
3591 	if (kvm_is_error_hva(ghc->hva))
3592 		return -EFAULT;
3593 
3594 	if (unlikely(!ghc->memslot))
3595 		return kvm_read_guest(kvm, gpa, data, len);
3596 
3597 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3598 	if (r)
3599 		return -EFAULT;
3600 
3601 	return 0;
3602 }
3603 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3604 
3605 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3606 			  void *data, unsigned long len)
3607 {
3608 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3609 }
3610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3611 
3612 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3613 {
3614 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3615 	gfn_t gfn = gpa >> PAGE_SHIFT;
3616 	int seg;
3617 	int offset = offset_in_page(gpa);
3618 	int ret;
3619 
3620 	while ((seg = next_segment(len, offset)) != 0) {
3621 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3622 		if (ret < 0)
3623 			return ret;
3624 		offset = 0;
3625 		len -= seg;
3626 		++gfn;
3627 	}
3628 	return 0;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3631 
3632 void mark_page_dirty_in_slot(struct kvm *kvm,
3633 			     const struct kvm_memory_slot *memslot,
3634 		 	     gfn_t gfn)
3635 {
3636 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3637 
3638 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3639 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3640 		return;
3641 
3642 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3643 #endif
3644 
3645 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3646 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3647 		u32 slot = (memslot->as_id << 16) | memslot->id;
3648 
3649 		if (kvm->dirty_ring_size && vcpu)
3650 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3651 		else if (memslot->dirty_bitmap)
3652 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3653 	}
3654 }
3655 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3656 
3657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3658 {
3659 	struct kvm_memory_slot *memslot;
3660 
3661 	memslot = gfn_to_memslot(kvm, gfn);
3662 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3663 }
3664 EXPORT_SYMBOL_GPL(mark_page_dirty);
3665 
3666 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3667 {
3668 	struct kvm_memory_slot *memslot;
3669 
3670 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3671 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3674 
3675 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3676 {
3677 	if (!vcpu->sigset_active)
3678 		return;
3679 
3680 	/*
3681 	 * This does a lockless modification of ->real_blocked, which is fine
3682 	 * because, only current can change ->real_blocked and all readers of
3683 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3684 	 * of ->blocked.
3685 	 */
3686 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3687 }
3688 
3689 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3690 {
3691 	if (!vcpu->sigset_active)
3692 		return;
3693 
3694 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3695 	sigemptyset(&current->real_blocked);
3696 }
3697 
3698 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3699 {
3700 	unsigned int old, val, grow, grow_start;
3701 
3702 	old = val = vcpu->halt_poll_ns;
3703 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3704 	grow = READ_ONCE(halt_poll_ns_grow);
3705 	if (!grow)
3706 		goto out;
3707 
3708 	val *= grow;
3709 	if (val < grow_start)
3710 		val = grow_start;
3711 
3712 	vcpu->halt_poll_ns = val;
3713 out:
3714 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3715 }
3716 
3717 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3718 {
3719 	unsigned int old, val, shrink, grow_start;
3720 
3721 	old = val = vcpu->halt_poll_ns;
3722 	shrink = READ_ONCE(halt_poll_ns_shrink);
3723 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3724 	if (shrink == 0)
3725 		val = 0;
3726 	else
3727 		val /= shrink;
3728 
3729 	if (val < grow_start)
3730 		val = 0;
3731 
3732 	vcpu->halt_poll_ns = val;
3733 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3734 }
3735 
3736 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3737 {
3738 	int ret = -EINTR;
3739 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3740 
3741 	if (kvm_arch_vcpu_runnable(vcpu))
3742 		goto out;
3743 	if (kvm_cpu_has_pending_timer(vcpu))
3744 		goto out;
3745 	if (signal_pending(current))
3746 		goto out;
3747 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3748 		goto out;
3749 
3750 	ret = 0;
3751 out:
3752 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3753 	return ret;
3754 }
3755 
3756 /*
3757  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3758  * pending.  This is mostly used when halting a vCPU, but may also be used
3759  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3760  */
3761 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3762 {
3763 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3764 	bool waited = false;
3765 
3766 	vcpu->stat.generic.blocking = 1;
3767 
3768 	preempt_disable();
3769 	kvm_arch_vcpu_blocking(vcpu);
3770 	prepare_to_rcuwait(wait);
3771 	preempt_enable();
3772 
3773 	for (;;) {
3774 		set_current_state(TASK_INTERRUPTIBLE);
3775 
3776 		if (kvm_vcpu_check_block(vcpu) < 0)
3777 			break;
3778 
3779 		waited = true;
3780 		schedule();
3781 	}
3782 
3783 	preempt_disable();
3784 	finish_rcuwait(wait);
3785 	kvm_arch_vcpu_unblocking(vcpu);
3786 	preempt_enable();
3787 
3788 	vcpu->stat.generic.blocking = 0;
3789 
3790 	return waited;
3791 }
3792 
3793 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3794 					  ktime_t end, bool success)
3795 {
3796 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3797 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3798 
3799 	++vcpu->stat.generic.halt_attempted_poll;
3800 
3801 	if (success) {
3802 		++vcpu->stat.generic.halt_successful_poll;
3803 
3804 		if (!vcpu_valid_wakeup(vcpu))
3805 			++vcpu->stat.generic.halt_poll_invalid;
3806 
3807 		stats->halt_poll_success_ns += poll_ns;
3808 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3809 	} else {
3810 		stats->halt_poll_fail_ns += poll_ns;
3811 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3812 	}
3813 }
3814 
3815 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3816 {
3817 	struct kvm *kvm = vcpu->kvm;
3818 
3819 	if (kvm->override_halt_poll_ns) {
3820 		/*
3821 		 * Ensure kvm->max_halt_poll_ns is not read before
3822 		 * kvm->override_halt_poll_ns.
3823 		 *
3824 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3825 		 */
3826 		smp_rmb();
3827 		return READ_ONCE(kvm->max_halt_poll_ns);
3828 	}
3829 
3830 	return READ_ONCE(halt_poll_ns);
3831 }
3832 
3833 /*
3834  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3835  * polling is enabled, busy wait for a short time before blocking to avoid the
3836  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3837  * is halted.
3838  */
3839 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3840 {
3841 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3842 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3843 	ktime_t start, cur, poll_end;
3844 	bool waited = false;
3845 	bool do_halt_poll;
3846 	u64 halt_ns;
3847 
3848 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3849 		vcpu->halt_poll_ns = max_halt_poll_ns;
3850 
3851 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3852 
3853 	start = cur = poll_end = ktime_get();
3854 	if (do_halt_poll) {
3855 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3856 
3857 		do {
3858 			if (kvm_vcpu_check_block(vcpu) < 0)
3859 				goto out;
3860 			cpu_relax();
3861 			poll_end = cur = ktime_get();
3862 		} while (kvm_vcpu_can_poll(cur, stop));
3863 	}
3864 
3865 	waited = kvm_vcpu_block(vcpu);
3866 
3867 	cur = ktime_get();
3868 	if (waited) {
3869 		vcpu->stat.generic.halt_wait_ns +=
3870 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3871 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3872 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3873 	}
3874 out:
3875 	/* The total time the vCPU was "halted", including polling time. */
3876 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3877 
3878 	/*
3879 	 * Note, halt-polling is considered successful so long as the vCPU was
3880 	 * never actually scheduled out, i.e. even if the wake event arrived
3881 	 * after of the halt-polling loop itself, but before the full wait.
3882 	 */
3883 	if (do_halt_poll)
3884 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3885 
3886 	if (halt_poll_allowed) {
3887 		/* Recompute the max halt poll time in case it changed. */
3888 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3889 
3890 		if (!vcpu_valid_wakeup(vcpu)) {
3891 			shrink_halt_poll_ns(vcpu);
3892 		} else if (max_halt_poll_ns) {
3893 			if (halt_ns <= vcpu->halt_poll_ns)
3894 				;
3895 			/* we had a long block, shrink polling */
3896 			else if (vcpu->halt_poll_ns &&
3897 				 halt_ns > max_halt_poll_ns)
3898 				shrink_halt_poll_ns(vcpu);
3899 			/* we had a short halt and our poll time is too small */
3900 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3901 				 halt_ns < max_halt_poll_ns)
3902 				grow_halt_poll_ns(vcpu);
3903 		} else {
3904 			vcpu->halt_poll_ns = 0;
3905 		}
3906 	}
3907 
3908 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3911 
3912 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3913 {
3914 	if (__kvm_vcpu_wake_up(vcpu)) {
3915 		WRITE_ONCE(vcpu->ready, true);
3916 		++vcpu->stat.generic.halt_wakeup;
3917 		return true;
3918 	}
3919 
3920 	return false;
3921 }
3922 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3923 
3924 #ifndef CONFIG_S390
3925 /*
3926  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3927  */
3928 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3929 {
3930 	int me, cpu;
3931 
3932 	if (kvm_vcpu_wake_up(vcpu))
3933 		return;
3934 
3935 	me = get_cpu();
3936 	/*
3937 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3938 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3939 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3940 	 * within the vCPU thread itself.
3941 	 */
3942 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3943 		if (vcpu->mode == IN_GUEST_MODE)
3944 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3945 		goto out;
3946 	}
3947 
3948 	/*
3949 	 * Note, the vCPU could get migrated to a different pCPU at any point
3950 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3951 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3952 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3953 	 * vCPU also requires it to leave IN_GUEST_MODE.
3954 	 */
3955 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3956 		cpu = READ_ONCE(vcpu->cpu);
3957 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3958 			smp_send_reschedule(cpu);
3959 	}
3960 out:
3961 	put_cpu();
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3964 #endif /* !CONFIG_S390 */
3965 
3966 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3967 {
3968 	struct pid *pid;
3969 	struct task_struct *task = NULL;
3970 	int ret = 0;
3971 
3972 	rcu_read_lock();
3973 	pid = rcu_dereference(target->pid);
3974 	if (pid)
3975 		task = get_pid_task(pid, PIDTYPE_PID);
3976 	rcu_read_unlock();
3977 	if (!task)
3978 		return ret;
3979 	ret = yield_to(task, 1);
3980 	put_task_struct(task);
3981 
3982 	return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3985 
3986 /*
3987  * Helper that checks whether a VCPU is eligible for directed yield.
3988  * Most eligible candidate to yield is decided by following heuristics:
3989  *
3990  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3991  *  (preempted lock holder), indicated by @in_spin_loop.
3992  *  Set at the beginning and cleared at the end of interception/PLE handler.
3993  *
3994  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3995  *  chance last time (mostly it has become eligible now since we have probably
3996  *  yielded to lockholder in last iteration. This is done by toggling
3997  *  @dy_eligible each time a VCPU checked for eligibility.)
3998  *
3999  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4000  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4001  *  burning. Giving priority for a potential lock-holder increases lock
4002  *  progress.
4003  *
4004  *  Since algorithm is based on heuristics, accessing another VCPU data without
4005  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4006  *  and continue with next VCPU and so on.
4007  */
4008 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4009 {
4010 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4011 	bool eligible;
4012 
4013 	eligible = !vcpu->spin_loop.in_spin_loop ||
4014 		    vcpu->spin_loop.dy_eligible;
4015 
4016 	if (vcpu->spin_loop.in_spin_loop)
4017 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4018 
4019 	return eligible;
4020 #else
4021 	return true;
4022 #endif
4023 }
4024 
4025 /*
4026  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4027  * a vcpu_load/vcpu_put pair.  However, for most architectures
4028  * kvm_arch_vcpu_runnable does not require vcpu_load.
4029  */
4030 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4031 {
4032 	return kvm_arch_vcpu_runnable(vcpu);
4033 }
4034 
4035 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4036 {
4037 	if (kvm_arch_dy_runnable(vcpu))
4038 		return true;
4039 
4040 #ifdef CONFIG_KVM_ASYNC_PF
4041 	if (!list_empty_careful(&vcpu->async_pf.done))
4042 		return true;
4043 #endif
4044 
4045 	return false;
4046 }
4047 
4048 /*
4049  * By default, simply query the target vCPU's current mode when checking if a
4050  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4051  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4052  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4053  * directly for cross-vCPU checks is functionally correct and accurate.
4054  */
4055 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4056 {
4057 	return kvm_arch_vcpu_in_kernel(vcpu);
4058 }
4059 
4060 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4061 {
4062 	return false;
4063 }
4064 
4065 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4066 {
4067 	struct kvm *kvm = me->kvm;
4068 	struct kvm_vcpu *vcpu;
4069 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4070 	unsigned long i;
4071 	int yielded = 0;
4072 	int try = 3;
4073 	int pass;
4074 
4075 	kvm_vcpu_set_in_spin_loop(me, true);
4076 	/*
4077 	 * We boost the priority of a VCPU that is runnable but not
4078 	 * currently running, because it got preempted by something
4079 	 * else and called schedule in __vcpu_run.  Hopefully that
4080 	 * VCPU is holding the lock that we need and will release it.
4081 	 * We approximate round-robin by starting at the last boosted VCPU.
4082 	 */
4083 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4084 		kvm_for_each_vcpu(i, vcpu, kvm) {
4085 			if (!pass && i <= last_boosted_vcpu) {
4086 				i = last_boosted_vcpu;
4087 				continue;
4088 			} else if (pass && i > last_boosted_vcpu)
4089 				break;
4090 			if (!READ_ONCE(vcpu->ready))
4091 				continue;
4092 			if (vcpu == me)
4093 				continue;
4094 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4095 				continue;
4096 
4097 			/*
4098 			 * Treat the target vCPU as being in-kernel if it has a
4099 			 * pending interrupt, as the vCPU trying to yield may
4100 			 * be spinning waiting on IPI delivery, i.e. the target
4101 			 * vCPU is in-kernel for the purposes of directed yield.
4102 			 */
4103 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4104 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4105 			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4106 				continue;
4107 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4108 				continue;
4109 
4110 			yielded = kvm_vcpu_yield_to(vcpu);
4111 			if (yielded > 0) {
4112 				kvm->last_boosted_vcpu = i;
4113 				break;
4114 			} else if (yielded < 0) {
4115 				try--;
4116 				if (!try)
4117 					break;
4118 			}
4119 		}
4120 	}
4121 	kvm_vcpu_set_in_spin_loop(me, false);
4122 
4123 	/* Ensure vcpu is not eligible during next spinloop */
4124 	kvm_vcpu_set_dy_eligible(me, false);
4125 }
4126 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4127 
4128 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4129 {
4130 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4131 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4132 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4133 	     kvm->dirty_ring_size / PAGE_SIZE);
4134 #else
4135 	return false;
4136 #endif
4137 }
4138 
4139 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4140 {
4141 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4142 	struct page *page;
4143 
4144 	if (vmf->pgoff == 0)
4145 		page = virt_to_page(vcpu->run);
4146 #ifdef CONFIG_X86
4147 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4148 		page = virt_to_page(vcpu->arch.pio_data);
4149 #endif
4150 #ifdef CONFIG_KVM_MMIO
4151 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4152 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4153 #endif
4154 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4155 		page = kvm_dirty_ring_get_page(
4156 		    &vcpu->dirty_ring,
4157 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4158 	else
4159 		return kvm_arch_vcpu_fault(vcpu, vmf);
4160 	get_page(page);
4161 	vmf->page = page;
4162 	return 0;
4163 }
4164 
4165 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4166 	.fault = kvm_vcpu_fault,
4167 };
4168 
4169 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4170 {
4171 	struct kvm_vcpu *vcpu = file->private_data;
4172 	unsigned long pages = vma_pages(vma);
4173 
4174 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4175 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4176 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4177 		return -EINVAL;
4178 
4179 	vma->vm_ops = &kvm_vcpu_vm_ops;
4180 	return 0;
4181 }
4182 
4183 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4184 {
4185 	struct kvm_vcpu *vcpu = filp->private_data;
4186 
4187 	kvm_put_kvm(vcpu->kvm);
4188 	return 0;
4189 }
4190 
4191 static struct file_operations kvm_vcpu_fops = {
4192 	.release        = kvm_vcpu_release,
4193 	.unlocked_ioctl = kvm_vcpu_ioctl,
4194 	.mmap           = kvm_vcpu_mmap,
4195 	.llseek		= noop_llseek,
4196 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4197 };
4198 
4199 /*
4200  * Allocates an inode for the vcpu.
4201  */
4202 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4203 {
4204 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4205 
4206 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4207 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4208 }
4209 
4210 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4211 static int vcpu_get_pid(void *data, u64 *val)
4212 {
4213 	struct kvm_vcpu *vcpu = data;
4214 
4215 	rcu_read_lock();
4216 	*val = pid_nr(rcu_dereference(vcpu->pid));
4217 	rcu_read_unlock();
4218 	return 0;
4219 }
4220 
4221 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4222 
4223 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4224 {
4225 	struct dentry *debugfs_dentry;
4226 	char dir_name[ITOA_MAX_LEN * 2];
4227 
4228 	if (!debugfs_initialized())
4229 		return;
4230 
4231 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4232 	debugfs_dentry = debugfs_create_dir(dir_name,
4233 					    vcpu->kvm->debugfs_dentry);
4234 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4235 			    &vcpu_get_pid_fops);
4236 
4237 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4238 }
4239 #endif
4240 
4241 /*
4242  * Creates some virtual cpus.  Good luck creating more than one.
4243  */
4244 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4245 {
4246 	int r;
4247 	struct kvm_vcpu *vcpu;
4248 	struct page *page;
4249 
4250 	if (id >= KVM_MAX_VCPU_IDS)
4251 		return -EINVAL;
4252 
4253 	mutex_lock(&kvm->lock);
4254 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4255 		mutex_unlock(&kvm->lock);
4256 		return -EINVAL;
4257 	}
4258 
4259 	r = kvm_arch_vcpu_precreate(kvm, id);
4260 	if (r) {
4261 		mutex_unlock(&kvm->lock);
4262 		return r;
4263 	}
4264 
4265 	kvm->created_vcpus++;
4266 	mutex_unlock(&kvm->lock);
4267 
4268 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4269 	if (!vcpu) {
4270 		r = -ENOMEM;
4271 		goto vcpu_decrement;
4272 	}
4273 
4274 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4275 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4276 	if (!page) {
4277 		r = -ENOMEM;
4278 		goto vcpu_free;
4279 	}
4280 	vcpu->run = page_address(page);
4281 
4282 	kvm_vcpu_init(vcpu, kvm, id);
4283 
4284 	r = kvm_arch_vcpu_create(vcpu);
4285 	if (r)
4286 		goto vcpu_free_run_page;
4287 
4288 	if (kvm->dirty_ring_size) {
4289 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4290 					 id, kvm->dirty_ring_size);
4291 		if (r)
4292 			goto arch_vcpu_destroy;
4293 	}
4294 
4295 	mutex_lock(&kvm->lock);
4296 
4297 #ifdef CONFIG_LOCKDEP
4298 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4299 	mutex_lock(&vcpu->mutex);
4300 	mutex_unlock(&vcpu->mutex);
4301 #endif
4302 
4303 	if (kvm_get_vcpu_by_id(kvm, id)) {
4304 		r = -EEXIST;
4305 		goto unlock_vcpu_destroy;
4306 	}
4307 
4308 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4309 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4310 	if (r)
4311 		goto unlock_vcpu_destroy;
4312 
4313 	/* Now it's all set up, let userspace reach it */
4314 	kvm_get_kvm(kvm);
4315 	r = create_vcpu_fd(vcpu);
4316 	if (r < 0)
4317 		goto kvm_put_xa_release;
4318 
4319 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4320 		r = -EINVAL;
4321 		goto kvm_put_xa_release;
4322 	}
4323 
4324 	/*
4325 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4326 	 * pointer before kvm->online_vcpu's incremented value.
4327 	 */
4328 	smp_wmb();
4329 	atomic_inc(&kvm->online_vcpus);
4330 
4331 	mutex_unlock(&kvm->lock);
4332 	kvm_arch_vcpu_postcreate(vcpu);
4333 	kvm_create_vcpu_debugfs(vcpu);
4334 	return r;
4335 
4336 kvm_put_xa_release:
4337 	kvm_put_kvm_no_destroy(kvm);
4338 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4339 unlock_vcpu_destroy:
4340 	mutex_unlock(&kvm->lock);
4341 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4342 arch_vcpu_destroy:
4343 	kvm_arch_vcpu_destroy(vcpu);
4344 vcpu_free_run_page:
4345 	free_page((unsigned long)vcpu->run);
4346 vcpu_free:
4347 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4348 vcpu_decrement:
4349 	mutex_lock(&kvm->lock);
4350 	kvm->created_vcpus--;
4351 	mutex_unlock(&kvm->lock);
4352 	return r;
4353 }
4354 
4355 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4356 {
4357 	if (sigset) {
4358 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4359 		vcpu->sigset_active = 1;
4360 		vcpu->sigset = *sigset;
4361 	} else
4362 		vcpu->sigset_active = 0;
4363 	return 0;
4364 }
4365 
4366 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4367 			      size_t size, loff_t *offset)
4368 {
4369 	struct kvm_vcpu *vcpu = file->private_data;
4370 
4371 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4372 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4373 			sizeof(vcpu->stat), user_buffer, size, offset);
4374 }
4375 
4376 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4377 {
4378 	struct kvm_vcpu *vcpu = file->private_data;
4379 
4380 	kvm_put_kvm(vcpu->kvm);
4381 	return 0;
4382 }
4383 
4384 static const struct file_operations kvm_vcpu_stats_fops = {
4385 	.owner = THIS_MODULE,
4386 	.read = kvm_vcpu_stats_read,
4387 	.release = kvm_vcpu_stats_release,
4388 	.llseek = noop_llseek,
4389 };
4390 
4391 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4392 {
4393 	int fd;
4394 	struct file *file;
4395 	char name[15 + ITOA_MAX_LEN + 1];
4396 
4397 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4398 
4399 	fd = get_unused_fd_flags(O_CLOEXEC);
4400 	if (fd < 0)
4401 		return fd;
4402 
4403 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4404 	if (IS_ERR(file)) {
4405 		put_unused_fd(fd);
4406 		return PTR_ERR(file);
4407 	}
4408 
4409 	kvm_get_kvm(vcpu->kvm);
4410 
4411 	file->f_mode |= FMODE_PREAD;
4412 	fd_install(fd, file);
4413 
4414 	return fd;
4415 }
4416 
4417 static long kvm_vcpu_ioctl(struct file *filp,
4418 			   unsigned int ioctl, unsigned long arg)
4419 {
4420 	struct kvm_vcpu *vcpu = filp->private_data;
4421 	void __user *argp = (void __user *)arg;
4422 	int r;
4423 	struct kvm_fpu *fpu = NULL;
4424 	struct kvm_sregs *kvm_sregs = NULL;
4425 
4426 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4427 		return -EIO;
4428 
4429 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4430 		return -EINVAL;
4431 
4432 	/*
4433 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4434 	 * execution; mutex_lock() would break them.
4435 	 */
4436 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4437 	if (r != -ENOIOCTLCMD)
4438 		return r;
4439 
4440 	if (mutex_lock_killable(&vcpu->mutex))
4441 		return -EINTR;
4442 	switch (ioctl) {
4443 	case KVM_RUN: {
4444 		struct pid *oldpid;
4445 		r = -EINVAL;
4446 		if (arg)
4447 			goto out;
4448 		oldpid = rcu_access_pointer(vcpu->pid);
4449 		if (unlikely(oldpid != task_pid(current))) {
4450 			/* The thread running this VCPU changed. */
4451 			struct pid *newpid;
4452 
4453 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4454 			if (r)
4455 				break;
4456 
4457 			newpid = get_task_pid(current, PIDTYPE_PID);
4458 			rcu_assign_pointer(vcpu->pid, newpid);
4459 			if (oldpid)
4460 				synchronize_rcu();
4461 			put_pid(oldpid);
4462 		}
4463 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4464 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4465 		break;
4466 	}
4467 	case KVM_GET_REGS: {
4468 		struct kvm_regs *kvm_regs;
4469 
4470 		r = -ENOMEM;
4471 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4472 		if (!kvm_regs)
4473 			goto out;
4474 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4475 		if (r)
4476 			goto out_free1;
4477 		r = -EFAULT;
4478 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4479 			goto out_free1;
4480 		r = 0;
4481 out_free1:
4482 		kfree(kvm_regs);
4483 		break;
4484 	}
4485 	case KVM_SET_REGS: {
4486 		struct kvm_regs *kvm_regs;
4487 
4488 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4489 		if (IS_ERR(kvm_regs)) {
4490 			r = PTR_ERR(kvm_regs);
4491 			goto out;
4492 		}
4493 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4494 		kfree(kvm_regs);
4495 		break;
4496 	}
4497 	case KVM_GET_SREGS: {
4498 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4499 				    GFP_KERNEL_ACCOUNT);
4500 		r = -ENOMEM;
4501 		if (!kvm_sregs)
4502 			goto out;
4503 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4504 		if (r)
4505 			goto out;
4506 		r = -EFAULT;
4507 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4508 			goto out;
4509 		r = 0;
4510 		break;
4511 	}
4512 	case KVM_SET_SREGS: {
4513 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4514 		if (IS_ERR(kvm_sregs)) {
4515 			r = PTR_ERR(kvm_sregs);
4516 			kvm_sregs = NULL;
4517 			goto out;
4518 		}
4519 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4520 		break;
4521 	}
4522 	case KVM_GET_MP_STATE: {
4523 		struct kvm_mp_state mp_state;
4524 
4525 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4526 		if (r)
4527 			goto out;
4528 		r = -EFAULT;
4529 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4530 			goto out;
4531 		r = 0;
4532 		break;
4533 	}
4534 	case KVM_SET_MP_STATE: {
4535 		struct kvm_mp_state mp_state;
4536 
4537 		r = -EFAULT;
4538 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4539 			goto out;
4540 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4541 		break;
4542 	}
4543 	case KVM_TRANSLATE: {
4544 		struct kvm_translation tr;
4545 
4546 		r = -EFAULT;
4547 		if (copy_from_user(&tr, argp, sizeof(tr)))
4548 			goto out;
4549 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4550 		if (r)
4551 			goto out;
4552 		r = -EFAULT;
4553 		if (copy_to_user(argp, &tr, sizeof(tr)))
4554 			goto out;
4555 		r = 0;
4556 		break;
4557 	}
4558 	case KVM_SET_GUEST_DEBUG: {
4559 		struct kvm_guest_debug dbg;
4560 
4561 		r = -EFAULT;
4562 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4563 			goto out;
4564 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4565 		break;
4566 	}
4567 	case KVM_SET_SIGNAL_MASK: {
4568 		struct kvm_signal_mask __user *sigmask_arg = argp;
4569 		struct kvm_signal_mask kvm_sigmask;
4570 		sigset_t sigset, *p;
4571 
4572 		p = NULL;
4573 		if (argp) {
4574 			r = -EFAULT;
4575 			if (copy_from_user(&kvm_sigmask, argp,
4576 					   sizeof(kvm_sigmask)))
4577 				goto out;
4578 			r = -EINVAL;
4579 			if (kvm_sigmask.len != sizeof(sigset))
4580 				goto out;
4581 			r = -EFAULT;
4582 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4583 					   sizeof(sigset)))
4584 				goto out;
4585 			p = &sigset;
4586 		}
4587 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4588 		break;
4589 	}
4590 	case KVM_GET_FPU: {
4591 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4592 		r = -ENOMEM;
4593 		if (!fpu)
4594 			goto out;
4595 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4596 		if (r)
4597 			goto out;
4598 		r = -EFAULT;
4599 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4600 			goto out;
4601 		r = 0;
4602 		break;
4603 	}
4604 	case KVM_SET_FPU: {
4605 		fpu = memdup_user(argp, sizeof(*fpu));
4606 		if (IS_ERR(fpu)) {
4607 			r = PTR_ERR(fpu);
4608 			fpu = NULL;
4609 			goto out;
4610 		}
4611 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4612 		break;
4613 	}
4614 	case KVM_GET_STATS_FD: {
4615 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4616 		break;
4617 	}
4618 	default:
4619 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4620 	}
4621 out:
4622 	mutex_unlock(&vcpu->mutex);
4623 	kfree(fpu);
4624 	kfree(kvm_sregs);
4625 	return r;
4626 }
4627 
4628 #ifdef CONFIG_KVM_COMPAT
4629 static long kvm_vcpu_compat_ioctl(struct file *filp,
4630 				  unsigned int ioctl, unsigned long arg)
4631 {
4632 	struct kvm_vcpu *vcpu = filp->private_data;
4633 	void __user *argp = compat_ptr(arg);
4634 	int r;
4635 
4636 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4637 		return -EIO;
4638 
4639 	switch (ioctl) {
4640 	case KVM_SET_SIGNAL_MASK: {
4641 		struct kvm_signal_mask __user *sigmask_arg = argp;
4642 		struct kvm_signal_mask kvm_sigmask;
4643 		sigset_t sigset;
4644 
4645 		if (argp) {
4646 			r = -EFAULT;
4647 			if (copy_from_user(&kvm_sigmask, argp,
4648 					   sizeof(kvm_sigmask)))
4649 				goto out;
4650 			r = -EINVAL;
4651 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4652 				goto out;
4653 			r = -EFAULT;
4654 			if (get_compat_sigset(&sigset,
4655 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4656 				goto out;
4657 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4658 		} else
4659 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4660 		break;
4661 	}
4662 	default:
4663 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4664 	}
4665 
4666 out:
4667 	return r;
4668 }
4669 #endif
4670 
4671 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4672 {
4673 	struct kvm_device *dev = filp->private_data;
4674 
4675 	if (dev->ops->mmap)
4676 		return dev->ops->mmap(dev, vma);
4677 
4678 	return -ENODEV;
4679 }
4680 
4681 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4682 				 int (*accessor)(struct kvm_device *dev,
4683 						 struct kvm_device_attr *attr),
4684 				 unsigned long arg)
4685 {
4686 	struct kvm_device_attr attr;
4687 
4688 	if (!accessor)
4689 		return -EPERM;
4690 
4691 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4692 		return -EFAULT;
4693 
4694 	return accessor(dev, &attr);
4695 }
4696 
4697 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4698 			     unsigned long arg)
4699 {
4700 	struct kvm_device *dev = filp->private_data;
4701 
4702 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4703 		return -EIO;
4704 
4705 	switch (ioctl) {
4706 	case KVM_SET_DEVICE_ATTR:
4707 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4708 	case KVM_GET_DEVICE_ATTR:
4709 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4710 	case KVM_HAS_DEVICE_ATTR:
4711 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4712 	default:
4713 		if (dev->ops->ioctl)
4714 			return dev->ops->ioctl(dev, ioctl, arg);
4715 
4716 		return -ENOTTY;
4717 	}
4718 }
4719 
4720 static int kvm_device_release(struct inode *inode, struct file *filp)
4721 {
4722 	struct kvm_device *dev = filp->private_data;
4723 	struct kvm *kvm = dev->kvm;
4724 
4725 	if (dev->ops->release) {
4726 		mutex_lock(&kvm->lock);
4727 		list_del(&dev->vm_node);
4728 		dev->ops->release(dev);
4729 		mutex_unlock(&kvm->lock);
4730 	}
4731 
4732 	kvm_put_kvm(kvm);
4733 	return 0;
4734 }
4735 
4736 static struct file_operations kvm_device_fops = {
4737 	.unlocked_ioctl = kvm_device_ioctl,
4738 	.release = kvm_device_release,
4739 	KVM_COMPAT(kvm_device_ioctl),
4740 	.mmap = kvm_device_mmap,
4741 };
4742 
4743 struct kvm_device *kvm_device_from_filp(struct file *filp)
4744 {
4745 	if (filp->f_op != &kvm_device_fops)
4746 		return NULL;
4747 
4748 	return filp->private_data;
4749 }
4750 
4751 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4752 #ifdef CONFIG_KVM_MPIC
4753 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4754 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4755 #endif
4756 };
4757 
4758 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4759 {
4760 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4761 		return -ENOSPC;
4762 
4763 	if (kvm_device_ops_table[type] != NULL)
4764 		return -EEXIST;
4765 
4766 	kvm_device_ops_table[type] = ops;
4767 	return 0;
4768 }
4769 
4770 void kvm_unregister_device_ops(u32 type)
4771 {
4772 	if (kvm_device_ops_table[type] != NULL)
4773 		kvm_device_ops_table[type] = NULL;
4774 }
4775 
4776 static int kvm_ioctl_create_device(struct kvm *kvm,
4777 				   struct kvm_create_device *cd)
4778 {
4779 	const struct kvm_device_ops *ops;
4780 	struct kvm_device *dev;
4781 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4782 	int type;
4783 	int ret;
4784 
4785 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4786 		return -ENODEV;
4787 
4788 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4789 	ops = kvm_device_ops_table[type];
4790 	if (ops == NULL)
4791 		return -ENODEV;
4792 
4793 	if (test)
4794 		return 0;
4795 
4796 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4797 	if (!dev)
4798 		return -ENOMEM;
4799 
4800 	dev->ops = ops;
4801 	dev->kvm = kvm;
4802 
4803 	mutex_lock(&kvm->lock);
4804 	ret = ops->create(dev, type);
4805 	if (ret < 0) {
4806 		mutex_unlock(&kvm->lock);
4807 		kfree(dev);
4808 		return ret;
4809 	}
4810 	list_add(&dev->vm_node, &kvm->devices);
4811 	mutex_unlock(&kvm->lock);
4812 
4813 	if (ops->init)
4814 		ops->init(dev);
4815 
4816 	kvm_get_kvm(kvm);
4817 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4818 	if (ret < 0) {
4819 		kvm_put_kvm_no_destroy(kvm);
4820 		mutex_lock(&kvm->lock);
4821 		list_del(&dev->vm_node);
4822 		if (ops->release)
4823 			ops->release(dev);
4824 		mutex_unlock(&kvm->lock);
4825 		if (ops->destroy)
4826 			ops->destroy(dev);
4827 		return ret;
4828 	}
4829 
4830 	cd->fd = ret;
4831 	return 0;
4832 }
4833 
4834 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4835 {
4836 	switch (arg) {
4837 	case KVM_CAP_USER_MEMORY:
4838 	case KVM_CAP_USER_MEMORY2:
4839 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4840 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4841 	case KVM_CAP_INTERNAL_ERROR_DATA:
4842 #ifdef CONFIG_HAVE_KVM_MSI
4843 	case KVM_CAP_SIGNAL_MSI:
4844 #endif
4845 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4846 	case KVM_CAP_IRQFD:
4847 #endif
4848 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4849 	case KVM_CAP_CHECK_EXTENSION_VM:
4850 	case KVM_CAP_ENABLE_CAP_VM:
4851 	case KVM_CAP_HALT_POLL:
4852 		return 1;
4853 #ifdef CONFIG_KVM_MMIO
4854 	case KVM_CAP_COALESCED_MMIO:
4855 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4856 	case KVM_CAP_COALESCED_PIO:
4857 		return 1;
4858 #endif
4859 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4860 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4861 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4862 #endif
4863 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4864 	case KVM_CAP_IRQ_ROUTING:
4865 		return KVM_MAX_IRQ_ROUTES;
4866 #endif
4867 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4868 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4869 		if (kvm)
4870 			return kvm_arch_nr_memslot_as_ids(kvm);
4871 		return KVM_MAX_NR_ADDRESS_SPACES;
4872 #endif
4873 	case KVM_CAP_NR_MEMSLOTS:
4874 		return KVM_USER_MEM_SLOTS;
4875 	case KVM_CAP_DIRTY_LOG_RING:
4876 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4877 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4878 #else
4879 		return 0;
4880 #endif
4881 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4882 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4883 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4884 #else
4885 		return 0;
4886 #endif
4887 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4888 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4889 #endif
4890 	case KVM_CAP_BINARY_STATS_FD:
4891 	case KVM_CAP_SYSTEM_EVENT_DATA:
4892 	case KVM_CAP_DEVICE_CTRL:
4893 		return 1;
4894 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4895 	case KVM_CAP_MEMORY_ATTRIBUTES:
4896 		return kvm_supported_mem_attributes(kvm);
4897 #endif
4898 #ifdef CONFIG_KVM_PRIVATE_MEM
4899 	case KVM_CAP_GUEST_MEMFD:
4900 		return !kvm || kvm_arch_has_private_mem(kvm);
4901 #endif
4902 	default:
4903 		break;
4904 	}
4905 	return kvm_vm_ioctl_check_extension(kvm, arg);
4906 }
4907 
4908 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4909 {
4910 	int r;
4911 
4912 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4913 		return -EINVAL;
4914 
4915 	/* the size should be power of 2 */
4916 	if (!size || (size & (size - 1)))
4917 		return -EINVAL;
4918 
4919 	/* Should be bigger to keep the reserved entries, or a page */
4920 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4921 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4922 		return -EINVAL;
4923 
4924 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4925 	    sizeof(struct kvm_dirty_gfn))
4926 		return -E2BIG;
4927 
4928 	/* We only allow it to set once */
4929 	if (kvm->dirty_ring_size)
4930 		return -EINVAL;
4931 
4932 	mutex_lock(&kvm->lock);
4933 
4934 	if (kvm->created_vcpus) {
4935 		/* We don't allow to change this value after vcpu created */
4936 		r = -EINVAL;
4937 	} else {
4938 		kvm->dirty_ring_size = size;
4939 		r = 0;
4940 	}
4941 
4942 	mutex_unlock(&kvm->lock);
4943 	return r;
4944 }
4945 
4946 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4947 {
4948 	unsigned long i;
4949 	struct kvm_vcpu *vcpu;
4950 	int cleared = 0;
4951 
4952 	if (!kvm->dirty_ring_size)
4953 		return -EINVAL;
4954 
4955 	mutex_lock(&kvm->slots_lock);
4956 
4957 	kvm_for_each_vcpu(i, vcpu, kvm)
4958 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4959 
4960 	mutex_unlock(&kvm->slots_lock);
4961 
4962 	if (cleared)
4963 		kvm_flush_remote_tlbs(kvm);
4964 
4965 	return cleared;
4966 }
4967 
4968 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4969 						  struct kvm_enable_cap *cap)
4970 {
4971 	return -EINVAL;
4972 }
4973 
4974 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4975 {
4976 	int i;
4977 
4978 	lockdep_assert_held(&kvm->slots_lock);
4979 
4980 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4981 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4982 			return false;
4983 	}
4984 
4985 	return true;
4986 }
4987 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4988 
4989 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4990 					   struct kvm_enable_cap *cap)
4991 {
4992 	switch (cap->cap) {
4993 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4994 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4995 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4996 
4997 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4998 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4999 
5000 		if (cap->flags || (cap->args[0] & ~allowed_options))
5001 			return -EINVAL;
5002 		kvm->manual_dirty_log_protect = cap->args[0];
5003 		return 0;
5004 	}
5005 #endif
5006 	case KVM_CAP_HALT_POLL: {
5007 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5008 			return -EINVAL;
5009 
5010 		kvm->max_halt_poll_ns = cap->args[0];
5011 
5012 		/*
5013 		 * Ensure kvm->override_halt_poll_ns does not become visible
5014 		 * before kvm->max_halt_poll_ns.
5015 		 *
5016 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5017 		 */
5018 		smp_wmb();
5019 		kvm->override_halt_poll_ns = true;
5020 
5021 		return 0;
5022 	}
5023 	case KVM_CAP_DIRTY_LOG_RING:
5024 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5025 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5026 			return -EINVAL;
5027 
5028 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5029 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5030 		int r = -EINVAL;
5031 
5032 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5033 		    !kvm->dirty_ring_size || cap->flags)
5034 			return r;
5035 
5036 		mutex_lock(&kvm->slots_lock);
5037 
5038 		/*
5039 		 * For simplicity, allow enabling ring+bitmap if and only if
5040 		 * there are no memslots, e.g. to ensure all memslots allocate
5041 		 * a bitmap after the capability is enabled.
5042 		 */
5043 		if (kvm_are_all_memslots_empty(kvm)) {
5044 			kvm->dirty_ring_with_bitmap = true;
5045 			r = 0;
5046 		}
5047 
5048 		mutex_unlock(&kvm->slots_lock);
5049 
5050 		return r;
5051 	}
5052 	default:
5053 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5054 	}
5055 }
5056 
5057 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5058 			      size_t size, loff_t *offset)
5059 {
5060 	struct kvm *kvm = file->private_data;
5061 
5062 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5063 				&kvm_vm_stats_desc[0], &kvm->stat,
5064 				sizeof(kvm->stat), user_buffer, size, offset);
5065 }
5066 
5067 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5068 {
5069 	struct kvm *kvm = file->private_data;
5070 
5071 	kvm_put_kvm(kvm);
5072 	return 0;
5073 }
5074 
5075 static const struct file_operations kvm_vm_stats_fops = {
5076 	.owner = THIS_MODULE,
5077 	.read = kvm_vm_stats_read,
5078 	.release = kvm_vm_stats_release,
5079 	.llseek = noop_llseek,
5080 };
5081 
5082 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5083 {
5084 	int fd;
5085 	struct file *file;
5086 
5087 	fd = get_unused_fd_flags(O_CLOEXEC);
5088 	if (fd < 0)
5089 		return fd;
5090 
5091 	file = anon_inode_getfile("kvm-vm-stats",
5092 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5093 	if (IS_ERR(file)) {
5094 		put_unused_fd(fd);
5095 		return PTR_ERR(file);
5096 	}
5097 
5098 	kvm_get_kvm(kvm);
5099 
5100 	file->f_mode |= FMODE_PREAD;
5101 	fd_install(fd, file);
5102 
5103 	return fd;
5104 }
5105 
5106 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5107 do {										\
5108 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5109 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5110 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5111 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5112 } while (0)
5113 
5114 static long kvm_vm_ioctl(struct file *filp,
5115 			   unsigned int ioctl, unsigned long arg)
5116 {
5117 	struct kvm *kvm = filp->private_data;
5118 	void __user *argp = (void __user *)arg;
5119 	int r;
5120 
5121 	if (kvm->mm != current->mm || kvm->vm_dead)
5122 		return -EIO;
5123 	switch (ioctl) {
5124 	case KVM_CREATE_VCPU:
5125 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5126 		break;
5127 	case KVM_ENABLE_CAP: {
5128 		struct kvm_enable_cap cap;
5129 
5130 		r = -EFAULT;
5131 		if (copy_from_user(&cap, argp, sizeof(cap)))
5132 			goto out;
5133 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5134 		break;
5135 	}
5136 	case KVM_SET_USER_MEMORY_REGION2:
5137 	case KVM_SET_USER_MEMORY_REGION: {
5138 		struct kvm_userspace_memory_region2 mem;
5139 		unsigned long size;
5140 
5141 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5142 			/*
5143 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5144 			 * accessed, but avoid leaking kernel memory in case of a bug.
5145 			 */
5146 			memset(&mem, 0, sizeof(mem));
5147 			size = sizeof(struct kvm_userspace_memory_region);
5148 		} else {
5149 			size = sizeof(struct kvm_userspace_memory_region2);
5150 		}
5151 
5152 		/* Ensure the common parts of the two structs are identical. */
5153 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5154 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5155 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5156 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5157 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5158 
5159 		r = -EFAULT;
5160 		if (copy_from_user(&mem, argp, size))
5161 			goto out;
5162 
5163 		r = -EINVAL;
5164 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5165 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5166 			goto out;
5167 
5168 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5169 		break;
5170 	}
5171 	case KVM_GET_DIRTY_LOG: {
5172 		struct kvm_dirty_log log;
5173 
5174 		r = -EFAULT;
5175 		if (copy_from_user(&log, argp, sizeof(log)))
5176 			goto out;
5177 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5178 		break;
5179 	}
5180 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5181 	case KVM_CLEAR_DIRTY_LOG: {
5182 		struct kvm_clear_dirty_log log;
5183 
5184 		r = -EFAULT;
5185 		if (copy_from_user(&log, argp, sizeof(log)))
5186 			goto out;
5187 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5188 		break;
5189 	}
5190 #endif
5191 #ifdef CONFIG_KVM_MMIO
5192 	case KVM_REGISTER_COALESCED_MMIO: {
5193 		struct kvm_coalesced_mmio_zone zone;
5194 
5195 		r = -EFAULT;
5196 		if (copy_from_user(&zone, argp, sizeof(zone)))
5197 			goto out;
5198 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5199 		break;
5200 	}
5201 	case KVM_UNREGISTER_COALESCED_MMIO: {
5202 		struct kvm_coalesced_mmio_zone zone;
5203 
5204 		r = -EFAULT;
5205 		if (copy_from_user(&zone, argp, sizeof(zone)))
5206 			goto out;
5207 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5208 		break;
5209 	}
5210 #endif
5211 	case KVM_IRQFD: {
5212 		struct kvm_irqfd data;
5213 
5214 		r = -EFAULT;
5215 		if (copy_from_user(&data, argp, sizeof(data)))
5216 			goto out;
5217 		r = kvm_irqfd(kvm, &data);
5218 		break;
5219 	}
5220 	case KVM_IOEVENTFD: {
5221 		struct kvm_ioeventfd data;
5222 
5223 		r = -EFAULT;
5224 		if (copy_from_user(&data, argp, sizeof(data)))
5225 			goto out;
5226 		r = kvm_ioeventfd(kvm, &data);
5227 		break;
5228 	}
5229 #ifdef CONFIG_HAVE_KVM_MSI
5230 	case KVM_SIGNAL_MSI: {
5231 		struct kvm_msi msi;
5232 
5233 		r = -EFAULT;
5234 		if (copy_from_user(&msi, argp, sizeof(msi)))
5235 			goto out;
5236 		r = kvm_send_userspace_msi(kvm, &msi);
5237 		break;
5238 	}
5239 #endif
5240 #ifdef __KVM_HAVE_IRQ_LINE
5241 	case KVM_IRQ_LINE_STATUS:
5242 	case KVM_IRQ_LINE: {
5243 		struct kvm_irq_level irq_event;
5244 
5245 		r = -EFAULT;
5246 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5247 			goto out;
5248 
5249 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5250 					ioctl == KVM_IRQ_LINE_STATUS);
5251 		if (r)
5252 			goto out;
5253 
5254 		r = -EFAULT;
5255 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5256 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5257 				goto out;
5258 		}
5259 
5260 		r = 0;
5261 		break;
5262 	}
5263 #endif
5264 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5265 	case KVM_SET_GSI_ROUTING: {
5266 		struct kvm_irq_routing routing;
5267 		struct kvm_irq_routing __user *urouting;
5268 		struct kvm_irq_routing_entry *entries = NULL;
5269 
5270 		r = -EFAULT;
5271 		if (copy_from_user(&routing, argp, sizeof(routing)))
5272 			goto out;
5273 		r = -EINVAL;
5274 		if (!kvm_arch_can_set_irq_routing(kvm))
5275 			goto out;
5276 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5277 			goto out;
5278 		if (routing.flags)
5279 			goto out;
5280 		if (routing.nr) {
5281 			urouting = argp;
5282 			entries = vmemdup_array_user(urouting->entries,
5283 						     routing.nr, sizeof(*entries));
5284 			if (IS_ERR(entries)) {
5285 				r = PTR_ERR(entries);
5286 				goto out;
5287 			}
5288 		}
5289 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5290 					routing.flags);
5291 		kvfree(entries);
5292 		break;
5293 	}
5294 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5295 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5296 	case KVM_SET_MEMORY_ATTRIBUTES: {
5297 		struct kvm_memory_attributes attrs;
5298 
5299 		r = -EFAULT;
5300 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5301 			goto out;
5302 
5303 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5304 		break;
5305 	}
5306 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5307 	case KVM_CREATE_DEVICE: {
5308 		struct kvm_create_device cd;
5309 
5310 		r = -EFAULT;
5311 		if (copy_from_user(&cd, argp, sizeof(cd)))
5312 			goto out;
5313 
5314 		r = kvm_ioctl_create_device(kvm, &cd);
5315 		if (r)
5316 			goto out;
5317 
5318 		r = -EFAULT;
5319 		if (copy_to_user(argp, &cd, sizeof(cd)))
5320 			goto out;
5321 
5322 		r = 0;
5323 		break;
5324 	}
5325 	case KVM_CHECK_EXTENSION:
5326 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5327 		break;
5328 	case KVM_RESET_DIRTY_RINGS:
5329 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5330 		break;
5331 	case KVM_GET_STATS_FD:
5332 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5333 		break;
5334 #ifdef CONFIG_KVM_PRIVATE_MEM
5335 	case KVM_CREATE_GUEST_MEMFD: {
5336 		struct kvm_create_guest_memfd guest_memfd;
5337 
5338 		r = -EFAULT;
5339 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5340 			goto out;
5341 
5342 		r = kvm_gmem_create(kvm, &guest_memfd);
5343 		break;
5344 	}
5345 #endif
5346 	default:
5347 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5348 	}
5349 out:
5350 	return r;
5351 }
5352 
5353 #ifdef CONFIG_KVM_COMPAT
5354 struct compat_kvm_dirty_log {
5355 	__u32 slot;
5356 	__u32 padding1;
5357 	union {
5358 		compat_uptr_t dirty_bitmap; /* one bit per page */
5359 		__u64 padding2;
5360 	};
5361 };
5362 
5363 struct compat_kvm_clear_dirty_log {
5364 	__u32 slot;
5365 	__u32 num_pages;
5366 	__u64 first_page;
5367 	union {
5368 		compat_uptr_t dirty_bitmap; /* one bit per page */
5369 		__u64 padding2;
5370 	};
5371 };
5372 
5373 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5374 				     unsigned long arg)
5375 {
5376 	return -ENOTTY;
5377 }
5378 
5379 static long kvm_vm_compat_ioctl(struct file *filp,
5380 			   unsigned int ioctl, unsigned long arg)
5381 {
5382 	struct kvm *kvm = filp->private_data;
5383 	int r;
5384 
5385 	if (kvm->mm != current->mm || kvm->vm_dead)
5386 		return -EIO;
5387 
5388 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5389 	if (r != -ENOTTY)
5390 		return r;
5391 
5392 	switch (ioctl) {
5393 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5394 	case KVM_CLEAR_DIRTY_LOG: {
5395 		struct compat_kvm_clear_dirty_log compat_log;
5396 		struct kvm_clear_dirty_log log;
5397 
5398 		if (copy_from_user(&compat_log, (void __user *)arg,
5399 				   sizeof(compat_log)))
5400 			return -EFAULT;
5401 		log.slot	 = compat_log.slot;
5402 		log.num_pages	 = compat_log.num_pages;
5403 		log.first_page	 = compat_log.first_page;
5404 		log.padding2	 = compat_log.padding2;
5405 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406 
5407 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5408 		break;
5409 	}
5410 #endif
5411 	case KVM_GET_DIRTY_LOG: {
5412 		struct compat_kvm_dirty_log compat_log;
5413 		struct kvm_dirty_log log;
5414 
5415 		if (copy_from_user(&compat_log, (void __user *)arg,
5416 				   sizeof(compat_log)))
5417 			return -EFAULT;
5418 		log.slot	 = compat_log.slot;
5419 		log.padding1	 = compat_log.padding1;
5420 		log.padding2	 = compat_log.padding2;
5421 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5422 
5423 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5424 		break;
5425 	}
5426 	default:
5427 		r = kvm_vm_ioctl(filp, ioctl, arg);
5428 	}
5429 	return r;
5430 }
5431 #endif
5432 
5433 static struct file_operations kvm_vm_fops = {
5434 	.release        = kvm_vm_release,
5435 	.unlocked_ioctl = kvm_vm_ioctl,
5436 	.llseek		= noop_llseek,
5437 	KVM_COMPAT(kvm_vm_compat_ioctl),
5438 };
5439 
5440 bool file_is_kvm(struct file *file)
5441 {
5442 	return file && file->f_op == &kvm_vm_fops;
5443 }
5444 EXPORT_SYMBOL_GPL(file_is_kvm);
5445 
5446 static int kvm_dev_ioctl_create_vm(unsigned long type)
5447 {
5448 	char fdname[ITOA_MAX_LEN + 1];
5449 	int r, fd;
5450 	struct kvm *kvm;
5451 	struct file *file;
5452 
5453 	fd = get_unused_fd_flags(O_CLOEXEC);
5454 	if (fd < 0)
5455 		return fd;
5456 
5457 	snprintf(fdname, sizeof(fdname), "%d", fd);
5458 
5459 	kvm = kvm_create_vm(type, fdname);
5460 	if (IS_ERR(kvm)) {
5461 		r = PTR_ERR(kvm);
5462 		goto put_fd;
5463 	}
5464 
5465 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5466 	if (IS_ERR(file)) {
5467 		r = PTR_ERR(file);
5468 		goto put_kvm;
5469 	}
5470 
5471 	/*
5472 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5473 	 * already set, with ->release() being kvm_vm_release().  In error
5474 	 * cases it will be called by the final fput(file) and will take
5475 	 * care of doing kvm_put_kvm(kvm).
5476 	 */
5477 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5478 
5479 	fd_install(fd, file);
5480 	return fd;
5481 
5482 put_kvm:
5483 	kvm_put_kvm(kvm);
5484 put_fd:
5485 	put_unused_fd(fd);
5486 	return r;
5487 }
5488 
5489 static long kvm_dev_ioctl(struct file *filp,
5490 			  unsigned int ioctl, unsigned long arg)
5491 {
5492 	int r = -EINVAL;
5493 
5494 	switch (ioctl) {
5495 	case KVM_GET_API_VERSION:
5496 		if (arg)
5497 			goto out;
5498 		r = KVM_API_VERSION;
5499 		break;
5500 	case KVM_CREATE_VM:
5501 		r = kvm_dev_ioctl_create_vm(arg);
5502 		break;
5503 	case KVM_CHECK_EXTENSION:
5504 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5505 		break;
5506 	case KVM_GET_VCPU_MMAP_SIZE:
5507 		if (arg)
5508 			goto out;
5509 		r = PAGE_SIZE;     /* struct kvm_run */
5510 #ifdef CONFIG_X86
5511 		r += PAGE_SIZE;    /* pio data page */
5512 #endif
5513 #ifdef CONFIG_KVM_MMIO
5514 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5515 #endif
5516 		break;
5517 	default:
5518 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5519 	}
5520 out:
5521 	return r;
5522 }
5523 
5524 static struct file_operations kvm_chardev_ops = {
5525 	.unlocked_ioctl = kvm_dev_ioctl,
5526 	.llseek		= noop_llseek,
5527 	KVM_COMPAT(kvm_dev_ioctl),
5528 };
5529 
5530 static struct miscdevice kvm_dev = {
5531 	KVM_MINOR,
5532 	"kvm",
5533 	&kvm_chardev_ops,
5534 };
5535 
5536 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5537 __visible bool kvm_rebooting;
5538 EXPORT_SYMBOL_GPL(kvm_rebooting);
5539 
5540 static DEFINE_PER_CPU(bool, hardware_enabled);
5541 static int kvm_usage_count;
5542 
5543 static int __hardware_enable_nolock(void)
5544 {
5545 	if (__this_cpu_read(hardware_enabled))
5546 		return 0;
5547 
5548 	if (kvm_arch_hardware_enable()) {
5549 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5550 			raw_smp_processor_id());
5551 		return -EIO;
5552 	}
5553 
5554 	__this_cpu_write(hardware_enabled, true);
5555 	return 0;
5556 }
5557 
5558 static void hardware_enable_nolock(void *failed)
5559 {
5560 	if (__hardware_enable_nolock())
5561 		atomic_inc(failed);
5562 }
5563 
5564 static int kvm_online_cpu(unsigned int cpu)
5565 {
5566 	int ret = 0;
5567 
5568 	/*
5569 	 * Abort the CPU online process if hardware virtualization cannot
5570 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5571 	 * errors when scheduled to this CPU.
5572 	 */
5573 	mutex_lock(&kvm_lock);
5574 	if (kvm_usage_count)
5575 		ret = __hardware_enable_nolock();
5576 	mutex_unlock(&kvm_lock);
5577 	return ret;
5578 }
5579 
5580 static void hardware_disable_nolock(void *junk)
5581 {
5582 	/*
5583 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5584 	 * hardware, not just CPUs that successfully enabled hardware!
5585 	 */
5586 	if (!__this_cpu_read(hardware_enabled))
5587 		return;
5588 
5589 	kvm_arch_hardware_disable();
5590 
5591 	__this_cpu_write(hardware_enabled, false);
5592 }
5593 
5594 static int kvm_offline_cpu(unsigned int cpu)
5595 {
5596 	mutex_lock(&kvm_lock);
5597 	if (kvm_usage_count)
5598 		hardware_disable_nolock(NULL);
5599 	mutex_unlock(&kvm_lock);
5600 	return 0;
5601 }
5602 
5603 static void hardware_disable_all_nolock(void)
5604 {
5605 	BUG_ON(!kvm_usage_count);
5606 
5607 	kvm_usage_count--;
5608 	if (!kvm_usage_count)
5609 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5610 }
5611 
5612 static void hardware_disable_all(void)
5613 {
5614 	cpus_read_lock();
5615 	mutex_lock(&kvm_lock);
5616 	hardware_disable_all_nolock();
5617 	mutex_unlock(&kvm_lock);
5618 	cpus_read_unlock();
5619 }
5620 
5621 static int hardware_enable_all(void)
5622 {
5623 	atomic_t failed = ATOMIC_INIT(0);
5624 	int r;
5625 
5626 	/*
5627 	 * Do not enable hardware virtualization if the system is going down.
5628 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5629 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5630 	 * after kvm_reboot() is called.  Note, this relies on system_state
5631 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5632 	 * hook instead of registering a dedicated reboot notifier (the latter
5633 	 * runs before system_state is updated).
5634 	 */
5635 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5636 	    system_state == SYSTEM_RESTART)
5637 		return -EBUSY;
5638 
5639 	/*
5640 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5641 	 * is called, and so on_each_cpu() between them includes the CPU that
5642 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5643 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5644 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5645 	 * enable hardware multiple times.
5646 	 */
5647 	cpus_read_lock();
5648 	mutex_lock(&kvm_lock);
5649 
5650 	r = 0;
5651 
5652 	kvm_usage_count++;
5653 	if (kvm_usage_count == 1) {
5654 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5655 
5656 		if (atomic_read(&failed)) {
5657 			hardware_disable_all_nolock();
5658 			r = -EBUSY;
5659 		}
5660 	}
5661 
5662 	mutex_unlock(&kvm_lock);
5663 	cpus_read_unlock();
5664 
5665 	return r;
5666 }
5667 
5668 static void kvm_shutdown(void)
5669 {
5670 	/*
5671 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5672 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5673 	 * that relevant errors and exceptions aren't entirely unexpected.
5674 	 * Some flavors of hardware virtualization need to be disabled before
5675 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5676 	 * on x86, virtualization can block INIT interrupts, which are used by
5677 	 * firmware to pull APs back under firmware control.  Note, this path
5678 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5679 	 * 100% comprehensive.
5680 	 */
5681 	pr_info("kvm: exiting hardware virtualization\n");
5682 	kvm_rebooting = true;
5683 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5684 }
5685 
5686 static int kvm_suspend(void)
5687 {
5688 	/*
5689 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5690 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5691 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5692 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5693 	 * can be preempted, but the task cannot be frozen until it has dropped
5694 	 * all locks (userspace tasks are frozen via a fake signal).
5695 	 */
5696 	lockdep_assert_not_held(&kvm_lock);
5697 	lockdep_assert_irqs_disabled();
5698 
5699 	if (kvm_usage_count)
5700 		hardware_disable_nolock(NULL);
5701 	return 0;
5702 }
5703 
5704 static void kvm_resume(void)
5705 {
5706 	lockdep_assert_not_held(&kvm_lock);
5707 	lockdep_assert_irqs_disabled();
5708 
5709 	if (kvm_usage_count)
5710 		WARN_ON_ONCE(__hardware_enable_nolock());
5711 }
5712 
5713 static struct syscore_ops kvm_syscore_ops = {
5714 	.suspend = kvm_suspend,
5715 	.resume = kvm_resume,
5716 	.shutdown = kvm_shutdown,
5717 };
5718 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5719 static int hardware_enable_all(void)
5720 {
5721 	return 0;
5722 }
5723 
5724 static void hardware_disable_all(void)
5725 {
5726 
5727 }
5728 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5729 
5730 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5731 {
5732 	if (dev->ops->destructor)
5733 		dev->ops->destructor(dev);
5734 }
5735 
5736 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5737 {
5738 	int i;
5739 
5740 	for (i = 0; i < bus->dev_count; i++) {
5741 		struct kvm_io_device *pos = bus->range[i].dev;
5742 
5743 		kvm_iodevice_destructor(pos);
5744 	}
5745 	kfree(bus);
5746 }
5747 
5748 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5749 				 const struct kvm_io_range *r2)
5750 {
5751 	gpa_t addr1 = r1->addr;
5752 	gpa_t addr2 = r2->addr;
5753 
5754 	if (addr1 < addr2)
5755 		return -1;
5756 
5757 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5758 	 * accept any overlapping write.  Any order is acceptable for
5759 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5760 	 * we process all of them.
5761 	 */
5762 	if (r2->len) {
5763 		addr1 += r1->len;
5764 		addr2 += r2->len;
5765 	}
5766 
5767 	if (addr1 > addr2)
5768 		return 1;
5769 
5770 	return 0;
5771 }
5772 
5773 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5774 {
5775 	return kvm_io_bus_cmp(p1, p2);
5776 }
5777 
5778 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5779 			     gpa_t addr, int len)
5780 {
5781 	struct kvm_io_range *range, key;
5782 	int off;
5783 
5784 	key = (struct kvm_io_range) {
5785 		.addr = addr,
5786 		.len = len,
5787 	};
5788 
5789 	range = bsearch(&key, bus->range, bus->dev_count,
5790 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5791 	if (range == NULL)
5792 		return -ENOENT;
5793 
5794 	off = range - bus->range;
5795 
5796 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5797 		off--;
5798 
5799 	return off;
5800 }
5801 
5802 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5803 			      struct kvm_io_range *range, const void *val)
5804 {
5805 	int idx;
5806 
5807 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5808 	if (idx < 0)
5809 		return -EOPNOTSUPP;
5810 
5811 	while (idx < bus->dev_count &&
5812 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5813 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5814 					range->len, val))
5815 			return idx;
5816 		idx++;
5817 	}
5818 
5819 	return -EOPNOTSUPP;
5820 }
5821 
5822 /* kvm_io_bus_write - called under kvm->slots_lock */
5823 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5824 		     int len, const void *val)
5825 {
5826 	struct kvm_io_bus *bus;
5827 	struct kvm_io_range range;
5828 	int r;
5829 
5830 	range = (struct kvm_io_range) {
5831 		.addr = addr,
5832 		.len = len,
5833 	};
5834 
5835 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5836 	if (!bus)
5837 		return -ENOMEM;
5838 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5839 	return r < 0 ? r : 0;
5840 }
5841 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5842 
5843 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5844 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5845 			    gpa_t addr, int len, const void *val, long cookie)
5846 {
5847 	struct kvm_io_bus *bus;
5848 	struct kvm_io_range range;
5849 
5850 	range = (struct kvm_io_range) {
5851 		.addr = addr,
5852 		.len = len,
5853 	};
5854 
5855 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5856 	if (!bus)
5857 		return -ENOMEM;
5858 
5859 	/* First try the device referenced by cookie. */
5860 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5861 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5862 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5863 					val))
5864 			return cookie;
5865 
5866 	/*
5867 	 * cookie contained garbage; fall back to search and return the
5868 	 * correct cookie value.
5869 	 */
5870 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5871 }
5872 
5873 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5874 			     struct kvm_io_range *range, void *val)
5875 {
5876 	int idx;
5877 
5878 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5879 	if (idx < 0)
5880 		return -EOPNOTSUPP;
5881 
5882 	while (idx < bus->dev_count &&
5883 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5884 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5885 				       range->len, val))
5886 			return idx;
5887 		idx++;
5888 	}
5889 
5890 	return -EOPNOTSUPP;
5891 }
5892 
5893 /* kvm_io_bus_read - called under kvm->slots_lock */
5894 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5895 		    int len, void *val)
5896 {
5897 	struct kvm_io_bus *bus;
5898 	struct kvm_io_range range;
5899 	int r;
5900 
5901 	range = (struct kvm_io_range) {
5902 		.addr = addr,
5903 		.len = len,
5904 	};
5905 
5906 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5907 	if (!bus)
5908 		return -ENOMEM;
5909 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5910 	return r < 0 ? r : 0;
5911 }
5912 
5913 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5914 			    int len, struct kvm_io_device *dev)
5915 {
5916 	int i;
5917 	struct kvm_io_bus *new_bus, *bus;
5918 	struct kvm_io_range range;
5919 
5920 	lockdep_assert_held(&kvm->slots_lock);
5921 
5922 	bus = kvm_get_bus(kvm, bus_idx);
5923 	if (!bus)
5924 		return -ENOMEM;
5925 
5926 	/* exclude ioeventfd which is limited by maximum fd */
5927 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5928 		return -ENOSPC;
5929 
5930 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5931 			  GFP_KERNEL_ACCOUNT);
5932 	if (!new_bus)
5933 		return -ENOMEM;
5934 
5935 	range = (struct kvm_io_range) {
5936 		.addr = addr,
5937 		.len = len,
5938 		.dev = dev,
5939 	};
5940 
5941 	for (i = 0; i < bus->dev_count; i++)
5942 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5943 			break;
5944 
5945 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5946 	new_bus->dev_count++;
5947 	new_bus->range[i] = range;
5948 	memcpy(new_bus->range + i + 1, bus->range + i,
5949 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5950 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5951 	synchronize_srcu_expedited(&kvm->srcu);
5952 	kfree(bus);
5953 
5954 	return 0;
5955 }
5956 
5957 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5958 			      struct kvm_io_device *dev)
5959 {
5960 	int i;
5961 	struct kvm_io_bus *new_bus, *bus;
5962 
5963 	lockdep_assert_held(&kvm->slots_lock);
5964 
5965 	bus = kvm_get_bus(kvm, bus_idx);
5966 	if (!bus)
5967 		return 0;
5968 
5969 	for (i = 0; i < bus->dev_count; i++) {
5970 		if (bus->range[i].dev == dev) {
5971 			break;
5972 		}
5973 	}
5974 
5975 	if (i == bus->dev_count)
5976 		return 0;
5977 
5978 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5979 			  GFP_KERNEL_ACCOUNT);
5980 	if (new_bus) {
5981 		memcpy(new_bus, bus, struct_size(bus, range, i));
5982 		new_bus->dev_count--;
5983 		memcpy(new_bus->range + i, bus->range + i + 1,
5984 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5985 	}
5986 
5987 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5988 	synchronize_srcu_expedited(&kvm->srcu);
5989 
5990 	/*
5991 	 * If NULL bus is installed, destroy the old bus, including all the
5992 	 * attached devices. Otherwise, destroy the caller's device only.
5993 	 */
5994 	if (!new_bus) {
5995 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5996 		kvm_io_bus_destroy(bus);
5997 		return -ENOMEM;
5998 	}
5999 
6000 	kvm_iodevice_destructor(dev);
6001 	kfree(bus);
6002 	return 0;
6003 }
6004 
6005 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6006 					 gpa_t addr)
6007 {
6008 	struct kvm_io_bus *bus;
6009 	int dev_idx, srcu_idx;
6010 	struct kvm_io_device *iodev = NULL;
6011 
6012 	srcu_idx = srcu_read_lock(&kvm->srcu);
6013 
6014 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6015 	if (!bus)
6016 		goto out_unlock;
6017 
6018 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6019 	if (dev_idx < 0)
6020 		goto out_unlock;
6021 
6022 	iodev = bus->range[dev_idx].dev;
6023 
6024 out_unlock:
6025 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6026 
6027 	return iodev;
6028 }
6029 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6030 
6031 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6032 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6033 			   const char *fmt)
6034 {
6035 	int ret;
6036 	struct kvm_stat_data *stat_data = inode->i_private;
6037 
6038 	/*
6039 	 * The debugfs files are a reference to the kvm struct which
6040         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6041         * avoids the race between open and the removal of the debugfs directory.
6042 	 */
6043 	if (!kvm_get_kvm_safe(stat_data->kvm))
6044 		return -ENOENT;
6045 
6046 	ret = simple_attr_open(inode, file, get,
6047 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6048 			       ? set : NULL, fmt);
6049 	if (ret)
6050 		kvm_put_kvm(stat_data->kvm);
6051 
6052 	return ret;
6053 }
6054 
6055 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6056 {
6057 	struct kvm_stat_data *stat_data = inode->i_private;
6058 
6059 	simple_attr_release(inode, file);
6060 	kvm_put_kvm(stat_data->kvm);
6061 
6062 	return 0;
6063 }
6064 
6065 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6066 {
6067 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6068 
6069 	return 0;
6070 }
6071 
6072 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6073 {
6074 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6075 
6076 	return 0;
6077 }
6078 
6079 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6080 {
6081 	unsigned long i;
6082 	struct kvm_vcpu *vcpu;
6083 
6084 	*val = 0;
6085 
6086 	kvm_for_each_vcpu(i, vcpu, kvm)
6087 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6088 
6089 	return 0;
6090 }
6091 
6092 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6093 {
6094 	unsigned long i;
6095 	struct kvm_vcpu *vcpu;
6096 
6097 	kvm_for_each_vcpu(i, vcpu, kvm)
6098 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6099 
6100 	return 0;
6101 }
6102 
6103 static int kvm_stat_data_get(void *data, u64 *val)
6104 {
6105 	int r = -EFAULT;
6106 	struct kvm_stat_data *stat_data = data;
6107 
6108 	switch (stat_data->kind) {
6109 	case KVM_STAT_VM:
6110 		r = kvm_get_stat_per_vm(stat_data->kvm,
6111 					stat_data->desc->desc.offset, val);
6112 		break;
6113 	case KVM_STAT_VCPU:
6114 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6115 					  stat_data->desc->desc.offset, val);
6116 		break;
6117 	}
6118 
6119 	return r;
6120 }
6121 
6122 static int kvm_stat_data_clear(void *data, u64 val)
6123 {
6124 	int r = -EFAULT;
6125 	struct kvm_stat_data *stat_data = data;
6126 
6127 	if (val)
6128 		return -EINVAL;
6129 
6130 	switch (stat_data->kind) {
6131 	case KVM_STAT_VM:
6132 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6133 					  stat_data->desc->desc.offset);
6134 		break;
6135 	case KVM_STAT_VCPU:
6136 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6137 					    stat_data->desc->desc.offset);
6138 		break;
6139 	}
6140 
6141 	return r;
6142 }
6143 
6144 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6145 {
6146 	__simple_attr_check_format("%llu\n", 0ull);
6147 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6148 				kvm_stat_data_clear, "%llu\n");
6149 }
6150 
6151 static const struct file_operations stat_fops_per_vm = {
6152 	.owner = THIS_MODULE,
6153 	.open = kvm_stat_data_open,
6154 	.release = kvm_debugfs_release,
6155 	.read = simple_attr_read,
6156 	.write = simple_attr_write,
6157 	.llseek = no_llseek,
6158 };
6159 
6160 static int vm_stat_get(void *_offset, u64 *val)
6161 {
6162 	unsigned offset = (long)_offset;
6163 	struct kvm *kvm;
6164 	u64 tmp_val;
6165 
6166 	*val = 0;
6167 	mutex_lock(&kvm_lock);
6168 	list_for_each_entry(kvm, &vm_list, vm_list) {
6169 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6170 		*val += tmp_val;
6171 	}
6172 	mutex_unlock(&kvm_lock);
6173 	return 0;
6174 }
6175 
6176 static int vm_stat_clear(void *_offset, u64 val)
6177 {
6178 	unsigned offset = (long)_offset;
6179 	struct kvm *kvm;
6180 
6181 	if (val)
6182 		return -EINVAL;
6183 
6184 	mutex_lock(&kvm_lock);
6185 	list_for_each_entry(kvm, &vm_list, vm_list) {
6186 		kvm_clear_stat_per_vm(kvm, offset);
6187 	}
6188 	mutex_unlock(&kvm_lock);
6189 
6190 	return 0;
6191 }
6192 
6193 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6195 
6196 static int vcpu_stat_get(void *_offset, u64 *val)
6197 {
6198 	unsigned offset = (long)_offset;
6199 	struct kvm *kvm;
6200 	u64 tmp_val;
6201 
6202 	*val = 0;
6203 	mutex_lock(&kvm_lock);
6204 	list_for_each_entry(kvm, &vm_list, vm_list) {
6205 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6206 		*val += tmp_val;
6207 	}
6208 	mutex_unlock(&kvm_lock);
6209 	return 0;
6210 }
6211 
6212 static int vcpu_stat_clear(void *_offset, u64 val)
6213 {
6214 	unsigned offset = (long)_offset;
6215 	struct kvm *kvm;
6216 
6217 	if (val)
6218 		return -EINVAL;
6219 
6220 	mutex_lock(&kvm_lock);
6221 	list_for_each_entry(kvm, &vm_list, vm_list) {
6222 		kvm_clear_stat_per_vcpu(kvm, offset);
6223 	}
6224 	mutex_unlock(&kvm_lock);
6225 
6226 	return 0;
6227 }
6228 
6229 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6230 			"%llu\n");
6231 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6232 
6233 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6234 {
6235 	struct kobj_uevent_env *env;
6236 	unsigned long long created, active;
6237 
6238 	if (!kvm_dev.this_device || !kvm)
6239 		return;
6240 
6241 	mutex_lock(&kvm_lock);
6242 	if (type == KVM_EVENT_CREATE_VM) {
6243 		kvm_createvm_count++;
6244 		kvm_active_vms++;
6245 	} else if (type == KVM_EVENT_DESTROY_VM) {
6246 		kvm_active_vms--;
6247 	}
6248 	created = kvm_createvm_count;
6249 	active = kvm_active_vms;
6250 	mutex_unlock(&kvm_lock);
6251 
6252 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6253 	if (!env)
6254 		return;
6255 
6256 	add_uevent_var(env, "CREATED=%llu", created);
6257 	add_uevent_var(env, "COUNT=%llu", active);
6258 
6259 	if (type == KVM_EVENT_CREATE_VM) {
6260 		add_uevent_var(env, "EVENT=create");
6261 		kvm->userspace_pid = task_pid_nr(current);
6262 	} else if (type == KVM_EVENT_DESTROY_VM) {
6263 		add_uevent_var(env, "EVENT=destroy");
6264 	}
6265 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6266 
6267 	if (!IS_ERR(kvm->debugfs_dentry)) {
6268 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6269 
6270 		if (p) {
6271 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6272 			if (!IS_ERR(tmp))
6273 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6274 			kfree(p);
6275 		}
6276 	}
6277 	/* no need for checks, since we are adding at most only 5 keys */
6278 	env->envp[env->envp_idx++] = NULL;
6279 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6280 	kfree(env);
6281 }
6282 
6283 static void kvm_init_debug(void)
6284 {
6285 	const struct file_operations *fops;
6286 	const struct _kvm_stats_desc *pdesc;
6287 	int i;
6288 
6289 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6290 
6291 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6292 		pdesc = &kvm_vm_stats_desc[i];
6293 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6294 			fops = &vm_stat_fops;
6295 		else
6296 			fops = &vm_stat_readonly_fops;
6297 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6298 				kvm_debugfs_dir,
6299 				(void *)(long)pdesc->desc.offset, fops);
6300 	}
6301 
6302 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6303 		pdesc = &kvm_vcpu_stats_desc[i];
6304 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6305 			fops = &vcpu_stat_fops;
6306 		else
6307 			fops = &vcpu_stat_readonly_fops;
6308 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6309 				kvm_debugfs_dir,
6310 				(void *)(long)pdesc->desc.offset, fops);
6311 	}
6312 }
6313 
6314 static inline
6315 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6316 {
6317 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6318 }
6319 
6320 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6321 {
6322 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6323 
6324 	WRITE_ONCE(vcpu->preempted, false);
6325 	WRITE_ONCE(vcpu->ready, false);
6326 
6327 	__this_cpu_write(kvm_running_vcpu, vcpu);
6328 	kvm_arch_sched_in(vcpu, cpu);
6329 	kvm_arch_vcpu_load(vcpu, cpu);
6330 }
6331 
6332 static void kvm_sched_out(struct preempt_notifier *pn,
6333 			  struct task_struct *next)
6334 {
6335 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6336 
6337 	if (current->on_rq) {
6338 		WRITE_ONCE(vcpu->preempted, true);
6339 		WRITE_ONCE(vcpu->ready, true);
6340 	}
6341 	kvm_arch_vcpu_put(vcpu);
6342 	__this_cpu_write(kvm_running_vcpu, NULL);
6343 }
6344 
6345 /**
6346  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6347  *
6348  * We can disable preemption locally around accessing the per-CPU variable,
6349  * and use the resolved vcpu pointer after enabling preemption again,
6350  * because even if the current thread is migrated to another CPU, reading
6351  * the per-CPU value later will give us the same value as we update the
6352  * per-CPU variable in the preempt notifier handlers.
6353  */
6354 struct kvm_vcpu *kvm_get_running_vcpu(void)
6355 {
6356 	struct kvm_vcpu *vcpu;
6357 
6358 	preempt_disable();
6359 	vcpu = __this_cpu_read(kvm_running_vcpu);
6360 	preempt_enable();
6361 
6362 	return vcpu;
6363 }
6364 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6365 
6366 /**
6367  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6368  */
6369 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6370 {
6371         return &kvm_running_vcpu;
6372 }
6373 
6374 #ifdef CONFIG_GUEST_PERF_EVENTS
6375 static unsigned int kvm_guest_state(void)
6376 {
6377 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6378 	unsigned int state;
6379 
6380 	if (!kvm_arch_pmi_in_guest(vcpu))
6381 		return 0;
6382 
6383 	state = PERF_GUEST_ACTIVE;
6384 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6385 		state |= PERF_GUEST_USER;
6386 
6387 	return state;
6388 }
6389 
6390 static unsigned long kvm_guest_get_ip(void)
6391 {
6392 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6393 
6394 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6395 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6396 		return 0;
6397 
6398 	return kvm_arch_vcpu_get_ip(vcpu);
6399 }
6400 
6401 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6402 	.state			= kvm_guest_state,
6403 	.get_ip			= kvm_guest_get_ip,
6404 	.handle_intel_pt_intr	= NULL,
6405 };
6406 
6407 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6408 {
6409 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6410 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6411 }
6412 void kvm_unregister_perf_callbacks(void)
6413 {
6414 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6415 }
6416 #endif
6417 
6418 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6419 {
6420 	int r;
6421 	int cpu;
6422 
6423 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6424 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6425 				      kvm_online_cpu, kvm_offline_cpu);
6426 	if (r)
6427 		return r;
6428 
6429 	register_syscore_ops(&kvm_syscore_ops);
6430 #endif
6431 
6432 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6433 	if (!vcpu_align)
6434 		vcpu_align = __alignof__(struct kvm_vcpu);
6435 	kvm_vcpu_cache =
6436 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6437 					   SLAB_ACCOUNT,
6438 					   offsetof(struct kvm_vcpu, arch),
6439 					   offsetofend(struct kvm_vcpu, stats_id)
6440 					   - offsetof(struct kvm_vcpu, arch),
6441 					   NULL);
6442 	if (!kvm_vcpu_cache) {
6443 		r = -ENOMEM;
6444 		goto err_vcpu_cache;
6445 	}
6446 
6447 	for_each_possible_cpu(cpu) {
6448 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6449 					    GFP_KERNEL, cpu_to_node(cpu))) {
6450 			r = -ENOMEM;
6451 			goto err_cpu_kick_mask;
6452 		}
6453 	}
6454 
6455 	r = kvm_irqfd_init();
6456 	if (r)
6457 		goto err_irqfd;
6458 
6459 	r = kvm_async_pf_init();
6460 	if (r)
6461 		goto err_async_pf;
6462 
6463 	kvm_chardev_ops.owner = module;
6464 	kvm_vm_fops.owner = module;
6465 	kvm_vcpu_fops.owner = module;
6466 	kvm_device_fops.owner = module;
6467 
6468 	kvm_preempt_ops.sched_in = kvm_sched_in;
6469 	kvm_preempt_ops.sched_out = kvm_sched_out;
6470 
6471 	kvm_init_debug();
6472 
6473 	r = kvm_vfio_ops_init();
6474 	if (WARN_ON_ONCE(r))
6475 		goto err_vfio;
6476 
6477 	kvm_gmem_init(module);
6478 
6479 	/*
6480 	 * Registration _must_ be the very last thing done, as this exposes
6481 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6482 	 */
6483 	r = misc_register(&kvm_dev);
6484 	if (r) {
6485 		pr_err("kvm: misc device register failed\n");
6486 		goto err_register;
6487 	}
6488 
6489 	return 0;
6490 
6491 err_register:
6492 	kvm_vfio_ops_exit();
6493 err_vfio:
6494 	kvm_async_pf_deinit();
6495 err_async_pf:
6496 	kvm_irqfd_exit();
6497 err_irqfd:
6498 err_cpu_kick_mask:
6499 	for_each_possible_cpu(cpu)
6500 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6501 	kmem_cache_destroy(kvm_vcpu_cache);
6502 err_vcpu_cache:
6503 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6504 	unregister_syscore_ops(&kvm_syscore_ops);
6505 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6506 #endif
6507 	return r;
6508 }
6509 EXPORT_SYMBOL_GPL(kvm_init);
6510 
6511 void kvm_exit(void)
6512 {
6513 	int cpu;
6514 
6515 	/*
6516 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6517 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6518 	 * to KVM while the module is being stopped.
6519 	 */
6520 	misc_deregister(&kvm_dev);
6521 
6522 	debugfs_remove_recursive(kvm_debugfs_dir);
6523 	for_each_possible_cpu(cpu)
6524 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6525 	kmem_cache_destroy(kvm_vcpu_cache);
6526 	kvm_vfio_ops_exit();
6527 	kvm_async_pf_deinit();
6528 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6529 	unregister_syscore_ops(&kvm_syscore_ops);
6530 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6531 #endif
6532 	kvm_irqfd_exit();
6533 }
6534 EXPORT_SYMBOL_GPL(kvm_exit);
6535 
6536 struct kvm_vm_worker_thread_context {
6537 	struct kvm *kvm;
6538 	struct task_struct *parent;
6539 	struct completion init_done;
6540 	kvm_vm_thread_fn_t thread_fn;
6541 	uintptr_t data;
6542 	int err;
6543 };
6544 
6545 static int kvm_vm_worker_thread(void *context)
6546 {
6547 	/*
6548 	 * The init_context is allocated on the stack of the parent thread, so
6549 	 * we have to locally copy anything that is needed beyond initialization
6550 	 */
6551 	struct kvm_vm_worker_thread_context *init_context = context;
6552 	struct task_struct *parent;
6553 	struct kvm *kvm = init_context->kvm;
6554 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6555 	uintptr_t data = init_context->data;
6556 	int err;
6557 
6558 	err = kthread_park(current);
6559 	/* kthread_park(current) is never supposed to return an error */
6560 	WARN_ON(err != 0);
6561 	if (err)
6562 		goto init_complete;
6563 
6564 	err = cgroup_attach_task_all(init_context->parent, current);
6565 	if (err) {
6566 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6567 			__func__, err);
6568 		goto init_complete;
6569 	}
6570 
6571 	set_user_nice(current, task_nice(init_context->parent));
6572 
6573 init_complete:
6574 	init_context->err = err;
6575 	complete(&init_context->init_done);
6576 	init_context = NULL;
6577 
6578 	if (err)
6579 		goto out;
6580 
6581 	/* Wait to be woken up by the spawner before proceeding. */
6582 	kthread_parkme();
6583 
6584 	if (!kthread_should_stop())
6585 		err = thread_fn(kvm, data);
6586 
6587 out:
6588 	/*
6589 	 * Move kthread back to its original cgroup to prevent it lingering in
6590 	 * the cgroup of the VM process, after the latter finishes its
6591 	 * execution.
6592 	 *
6593 	 * kthread_stop() waits on the 'exited' completion condition which is
6594 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6595 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6596 	 * called after the exit_mm(). This causes the kthread_stop() to return
6597 	 * before the kthread actually quits the cgroup.
6598 	 */
6599 	rcu_read_lock();
6600 	parent = rcu_dereference(current->real_parent);
6601 	get_task_struct(parent);
6602 	rcu_read_unlock();
6603 	cgroup_attach_task_all(parent, current);
6604 	put_task_struct(parent);
6605 
6606 	return err;
6607 }
6608 
6609 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6610 				uintptr_t data, const char *name,
6611 				struct task_struct **thread_ptr)
6612 {
6613 	struct kvm_vm_worker_thread_context init_context = {};
6614 	struct task_struct *thread;
6615 
6616 	*thread_ptr = NULL;
6617 	init_context.kvm = kvm;
6618 	init_context.parent = current;
6619 	init_context.thread_fn = thread_fn;
6620 	init_context.data = data;
6621 	init_completion(&init_context.init_done);
6622 
6623 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6624 			     "%s-%d", name, task_pid_nr(current));
6625 	if (IS_ERR(thread))
6626 		return PTR_ERR(thread);
6627 
6628 	/* kthread_run is never supposed to return NULL */
6629 	WARN_ON(thread == NULL);
6630 
6631 	wait_for_completion(&init_context.init_done);
6632 
6633 	if (!init_context.err)
6634 		*thread_ptr = thread;
6635 
6636 	return init_context.err;
6637 }
6638