1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 127 128 __visible bool kvm_rebooting; 129 EXPORT_SYMBOL_GPL(kvm_rebooting); 130 131 static bool largepages_enabled = true; 132 133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 134 { 135 if (pfn_valid(pfn)) 136 return PageReserved(pfn_to_page(pfn)); 137 138 return true; 139 } 140 141 /* 142 * Switches to specified vcpu, until a matching vcpu_put() 143 */ 144 int vcpu_load(struct kvm_vcpu *vcpu) 145 { 146 int cpu; 147 148 if (mutex_lock_killable(&vcpu->mutex)) 149 return -EINTR; 150 cpu = get_cpu(); 151 preempt_notifier_register(&vcpu->preempt_notifier); 152 kvm_arch_vcpu_load(vcpu, cpu); 153 put_cpu(); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(vcpu_load); 157 158 void vcpu_put(struct kvm_vcpu *vcpu) 159 { 160 preempt_disable(); 161 kvm_arch_vcpu_put(vcpu); 162 preempt_notifier_unregister(&vcpu->preempt_notifier); 163 preempt_enable(); 164 mutex_unlock(&vcpu->mutex); 165 } 166 EXPORT_SYMBOL_GPL(vcpu_put); 167 168 static void ack_flush(void *_completed) 169 { 170 } 171 172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 173 { 174 int i, cpu, me; 175 cpumask_var_t cpus; 176 bool called = true; 177 struct kvm_vcpu *vcpu; 178 179 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 180 181 me = get_cpu(); 182 kvm_for_each_vcpu(i, vcpu, kvm) { 183 kvm_make_request(req, vcpu); 184 cpu = vcpu->cpu; 185 186 /* Set ->requests bit before we read ->mode. */ 187 smp_mb__after_atomic(); 188 189 if (cpus != NULL && cpu != -1 && cpu != me && 190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 191 cpumask_set_cpu(cpu, cpus); 192 } 193 if (unlikely(cpus == NULL)) 194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 195 else if (!cpumask_empty(cpus)) 196 smp_call_function_many(cpus, ack_flush, NULL, 1); 197 else 198 called = false; 199 put_cpu(); 200 free_cpumask_var(cpus); 201 return called; 202 } 203 204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 205 void kvm_flush_remote_tlbs(struct kvm *kvm) 206 { 207 /* 208 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 209 * kvm_make_all_cpus_request. 210 */ 211 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 212 213 /* 214 * We want to publish modifications to the page tables before reading 215 * mode. Pairs with a memory barrier in arch-specific code. 216 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 217 * and smp_mb in walk_shadow_page_lockless_begin/end. 218 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 219 * 220 * There is already an smp_mb__after_atomic() before 221 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 222 * barrier here. 223 */ 224 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 225 ++kvm->stat.remote_tlb_flush; 226 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 227 } 228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 229 #endif 230 231 void kvm_reload_remote_mmus(struct kvm *kvm) 232 { 233 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 234 } 235 236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 237 { 238 struct page *page; 239 int r; 240 241 mutex_init(&vcpu->mutex); 242 vcpu->cpu = -1; 243 vcpu->kvm = kvm; 244 vcpu->vcpu_id = id; 245 vcpu->pid = NULL; 246 init_swait_queue_head(&vcpu->wq); 247 kvm_async_pf_vcpu_init(vcpu); 248 249 vcpu->pre_pcpu = -1; 250 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 251 252 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 253 if (!page) { 254 r = -ENOMEM; 255 goto fail; 256 } 257 vcpu->run = page_address(page); 258 259 kvm_vcpu_set_in_spin_loop(vcpu, false); 260 kvm_vcpu_set_dy_eligible(vcpu, false); 261 vcpu->preempted = false; 262 263 r = kvm_arch_vcpu_init(vcpu); 264 if (r < 0) 265 goto fail_free_run; 266 return 0; 267 268 fail_free_run: 269 free_page((unsigned long)vcpu->run); 270 fail: 271 return r; 272 } 273 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 274 275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 276 { 277 put_pid(vcpu->pid); 278 kvm_arch_vcpu_uninit(vcpu); 279 free_page((unsigned long)vcpu->run); 280 } 281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 282 283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 285 { 286 return container_of(mn, struct kvm, mmu_notifier); 287 } 288 289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 290 struct mm_struct *mm, 291 unsigned long address) 292 { 293 struct kvm *kvm = mmu_notifier_to_kvm(mn); 294 int need_tlb_flush, idx; 295 296 /* 297 * When ->invalidate_page runs, the linux pte has been zapped 298 * already but the page is still allocated until 299 * ->invalidate_page returns. So if we increase the sequence 300 * here the kvm page fault will notice if the spte can't be 301 * established because the page is going to be freed. If 302 * instead the kvm page fault establishes the spte before 303 * ->invalidate_page runs, kvm_unmap_hva will release it 304 * before returning. 305 * 306 * The sequence increase only need to be seen at spin_unlock 307 * time, and not at spin_lock time. 308 * 309 * Increasing the sequence after the spin_unlock would be 310 * unsafe because the kvm page fault could then establish the 311 * pte after kvm_unmap_hva returned, without noticing the page 312 * is going to be freed. 313 */ 314 idx = srcu_read_lock(&kvm->srcu); 315 spin_lock(&kvm->mmu_lock); 316 317 kvm->mmu_notifier_seq++; 318 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 319 /* we've to flush the tlb before the pages can be freed */ 320 if (need_tlb_flush) 321 kvm_flush_remote_tlbs(kvm); 322 323 spin_unlock(&kvm->mmu_lock); 324 325 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 326 327 srcu_read_unlock(&kvm->srcu, idx); 328 } 329 330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 331 struct mm_struct *mm, 332 unsigned long address, 333 pte_t pte) 334 { 335 struct kvm *kvm = mmu_notifier_to_kvm(mn); 336 int idx; 337 338 idx = srcu_read_lock(&kvm->srcu); 339 spin_lock(&kvm->mmu_lock); 340 kvm->mmu_notifier_seq++; 341 kvm_set_spte_hva(kvm, address, pte); 342 spin_unlock(&kvm->mmu_lock); 343 srcu_read_unlock(&kvm->srcu, idx); 344 } 345 346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long start, 349 unsigned long end) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 int need_tlb_flush = 0, idx; 353 354 idx = srcu_read_lock(&kvm->srcu); 355 spin_lock(&kvm->mmu_lock); 356 /* 357 * The count increase must become visible at unlock time as no 358 * spte can be established without taking the mmu_lock and 359 * count is also read inside the mmu_lock critical section. 360 */ 361 kvm->mmu_notifier_count++; 362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 363 need_tlb_flush |= kvm->tlbs_dirty; 364 /* we've to flush the tlb before the pages can be freed */ 365 if (need_tlb_flush) 366 kvm_flush_remote_tlbs(kvm); 367 368 spin_unlock(&kvm->mmu_lock); 369 srcu_read_unlock(&kvm->srcu, idx); 370 } 371 372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 373 struct mm_struct *mm, 374 unsigned long start, 375 unsigned long end) 376 { 377 struct kvm *kvm = mmu_notifier_to_kvm(mn); 378 379 spin_lock(&kvm->mmu_lock); 380 /* 381 * This sequence increase will notify the kvm page fault that 382 * the page that is going to be mapped in the spte could have 383 * been freed. 384 */ 385 kvm->mmu_notifier_seq++; 386 smp_wmb(); 387 /* 388 * The above sequence increase must be visible before the 389 * below count decrease, which is ensured by the smp_wmb above 390 * in conjunction with the smp_rmb in mmu_notifier_retry(). 391 */ 392 kvm->mmu_notifier_count--; 393 spin_unlock(&kvm->mmu_lock); 394 395 BUG_ON(kvm->mmu_notifier_count < 0); 396 } 397 398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 399 struct mm_struct *mm, 400 unsigned long start, 401 unsigned long end) 402 { 403 struct kvm *kvm = mmu_notifier_to_kvm(mn); 404 int young, idx; 405 406 idx = srcu_read_lock(&kvm->srcu); 407 spin_lock(&kvm->mmu_lock); 408 409 young = kvm_age_hva(kvm, start, end); 410 if (young) 411 kvm_flush_remote_tlbs(kvm); 412 413 spin_unlock(&kvm->mmu_lock); 414 srcu_read_unlock(&kvm->srcu, idx); 415 416 return young; 417 } 418 419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 420 struct mm_struct *mm, 421 unsigned long start, 422 unsigned long end) 423 { 424 struct kvm *kvm = mmu_notifier_to_kvm(mn); 425 int young, idx; 426 427 idx = srcu_read_lock(&kvm->srcu); 428 spin_lock(&kvm->mmu_lock); 429 /* 430 * Even though we do not flush TLB, this will still adversely 431 * affect performance on pre-Haswell Intel EPT, where there is 432 * no EPT Access Bit to clear so that we have to tear down EPT 433 * tables instead. If we find this unacceptable, we can always 434 * add a parameter to kvm_age_hva so that it effectively doesn't 435 * do anything on clear_young. 436 * 437 * Also note that currently we never issue secondary TLB flushes 438 * from clear_young, leaving this job up to the regular system 439 * cadence. If we find this inaccurate, we might come up with a 440 * more sophisticated heuristic later. 441 */ 442 young = kvm_age_hva(kvm, start, end); 443 spin_unlock(&kvm->mmu_lock); 444 srcu_read_unlock(&kvm->srcu, idx); 445 446 return young; 447 } 448 449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 450 struct mm_struct *mm, 451 unsigned long address) 452 { 453 struct kvm *kvm = mmu_notifier_to_kvm(mn); 454 int young, idx; 455 456 idx = srcu_read_lock(&kvm->srcu); 457 spin_lock(&kvm->mmu_lock); 458 young = kvm_test_age_hva(kvm, address); 459 spin_unlock(&kvm->mmu_lock); 460 srcu_read_unlock(&kvm->srcu, idx); 461 462 return young; 463 } 464 465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 466 struct mm_struct *mm) 467 { 468 struct kvm *kvm = mmu_notifier_to_kvm(mn); 469 int idx; 470 471 idx = srcu_read_lock(&kvm->srcu); 472 kvm_arch_flush_shadow_all(kvm); 473 srcu_read_unlock(&kvm->srcu, idx); 474 } 475 476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 477 .invalidate_page = kvm_mmu_notifier_invalidate_page, 478 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 479 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 480 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 481 .clear_young = kvm_mmu_notifier_clear_young, 482 .test_young = kvm_mmu_notifier_test_young, 483 .change_pte = kvm_mmu_notifier_change_pte, 484 .release = kvm_mmu_notifier_release, 485 }; 486 487 static int kvm_init_mmu_notifier(struct kvm *kvm) 488 { 489 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 490 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 491 } 492 493 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 494 495 static int kvm_init_mmu_notifier(struct kvm *kvm) 496 { 497 return 0; 498 } 499 500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 501 502 static struct kvm_memslots *kvm_alloc_memslots(void) 503 { 504 int i; 505 struct kvm_memslots *slots; 506 507 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 508 if (!slots) 509 return NULL; 510 511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 512 slots->id_to_index[i] = slots->memslots[i].id = i; 513 514 return slots; 515 } 516 517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 518 { 519 if (!memslot->dirty_bitmap) 520 return; 521 522 kvfree(memslot->dirty_bitmap); 523 memslot->dirty_bitmap = NULL; 524 } 525 526 /* 527 * Free any memory in @free but not in @dont. 528 */ 529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 530 struct kvm_memory_slot *dont) 531 { 532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 533 kvm_destroy_dirty_bitmap(free); 534 535 kvm_arch_free_memslot(kvm, free, dont); 536 537 free->npages = 0; 538 } 539 540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 541 { 542 struct kvm_memory_slot *memslot; 543 544 if (!slots) 545 return; 546 547 kvm_for_each_memslot(memslot, slots) 548 kvm_free_memslot(kvm, memslot, NULL); 549 550 kvfree(slots); 551 } 552 553 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 554 { 555 int i; 556 557 if (!kvm->debugfs_dentry) 558 return; 559 560 debugfs_remove_recursive(kvm->debugfs_dentry); 561 562 if (kvm->debugfs_stat_data) { 563 for (i = 0; i < kvm_debugfs_num_entries; i++) 564 kfree(kvm->debugfs_stat_data[i]); 565 kfree(kvm->debugfs_stat_data); 566 } 567 } 568 569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 570 { 571 char dir_name[ITOA_MAX_LEN * 2]; 572 struct kvm_stat_data *stat_data; 573 struct kvm_stats_debugfs_item *p; 574 575 if (!debugfs_initialized()) 576 return 0; 577 578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 579 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 580 kvm_debugfs_dir); 581 if (!kvm->debugfs_dentry) 582 return -ENOMEM; 583 584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 585 sizeof(*kvm->debugfs_stat_data), 586 GFP_KERNEL); 587 if (!kvm->debugfs_stat_data) 588 return -ENOMEM; 589 590 for (p = debugfs_entries; p->name; p++) { 591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 592 if (!stat_data) 593 return -ENOMEM; 594 595 stat_data->kvm = kvm; 596 stat_data->offset = p->offset; 597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 598 if (!debugfs_create_file(p->name, 0644, 599 kvm->debugfs_dentry, 600 stat_data, 601 stat_fops_per_vm[p->kind])) 602 return -ENOMEM; 603 } 604 return 0; 605 } 606 607 static struct kvm *kvm_create_vm(unsigned long type) 608 { 609 int r, i; 610 struct kvm *kvm = kvm_arch_alloc_vm(); 611 612 if (!kvm) 613 return ERR_PTR(-ENOMEM); 614 615 spin_lock_init(&kvm->mmu_lock); 616 mmgrab(current->mm); 617 kvm->mm = current->mm; 618 kvm_eventfd_init(kvm); 619 mutex_init(&kvm->lock); 620 mutex_init(&kvm->irq_lock); 621 mutex_init(&kvm->slots_lock); 622 refcount_set(&kvm->users_count, 1); 623 INIT_LIST_HEAD(&kvm->devices); 624 625 r = kvm_arch_init_vm(kvm, type); 626 if (r) 627 goto out_err_no_disable; 628 629 r = hardware_enable_all(); 630 if (r) 631 goto out_err_no_disable; 632 633 #ifdef CONFIG_HAVE_KVM_IRQFD 634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 635 #endif 636 637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 638 639 r = -ENOMEM; 640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 641 struct kvm_memslots *slots = kvm_alloc_memslots(); 642 if (!slots) 643 goto out_err_no_srcu; 644 /* 645 * Generations must be different for each address space. 646 * Init kvm generation close to the maximum to easily test the 647 * code of handling generation number wrap-around. 648 */ 649 slots->generation = i * 2 - 150; 650 rcu_assign_pointer(kvm->memslots[i], slots); 651 } 652 653 if (init_srcu_struct(&kvm->srcu)) 654 goto out_err_no_srcu; 655 if (init_srcu_struct(&kvm->irq_srcu)) 656 goto out_err_no_irq_srcu; 657 for (i = 0; i < KVM_NR_BUSES; i++) { 658 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 659 GFP_KERNEL); 660 if (!kvm->buses[i]) 661 goto out_err; 662 } 663 664 r = kvm_init_mmu_notifier(kvm); 665 if (r) 666 goto out_err; 667 668 spin_lock(&kvm_lock); 669 list_add(&kvm->vm_list, &vm_list); 670 spin_unlock(&kvm_lock); 671 672 preempt_notifier_inc(); 673 674 return kvm; 675 676 out_err: 677 cleanup_srcu_struct(&kvm->irq_srcu); 678 out_err_no_irq_srcu: 679 cleanup_srcu_struct(&kvm->srcu); 680 out_err_no_srcu: 681 hardware_disable_all(); 682 out_err_no_disable: 683 for (i = 0; i < KVM_NR_BUSES; i++) 684 kfree(kvm->buses[i]); 685 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 686 kvm_free_memslots(kvm, kvm->memslots[i]); 687 kvm_arch_free_vm(kvm); 688 mmdrop(current->mm); 689 return ERR_PTR(r); 690 } 691 692 /* 693 * Avoid using vmalloc for a small buffer. 694 * Should not be used when the size is statically known. 695 */ 696 void *kvm_kvzalloc(unsigned long size) 697 { 698 if (size > PAGE_SIZE) 699 return vzalloc(size); 700 else 701 return kzalloc(size, GFP_KERNEL); 702 } 703 704 static void kvm_destroy_devices(struct kvm *kvm) 705 { 706 struct kvm_device *dev, *tmp; 707 708 /* 709 * We do not need to take the kvm->lock here, because nobody else 710 * has a reference to the struct kvm at this point and therefore 711 * cannot access the devices list anyhow. 712 */ 713 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 714 list_del(&dev->vm_node); 715 dev->ops->destroy(dev); 716 } 717 } 718 719 static void kvm_destroy_vm(struct kvm *kvm) 720 { 721 int i; 722 struct mm_struct *mm = kvm->mm; 723 724 kvm_destroy_vm_debugfs(kvm); 725 kvm_arch_sync_events(kvm); 726 spin_lock(&kvm_lock); 727 list_del(&kvm->vm_list); 728 spin_unlock(&kvm_lock); 729 kvm_free_irq_routing(kvm); 730 for (i = 0; i < KVM_NR_BUSES; i++) { 731 if (kvm->buses[i]) 732 kvm_io_bus_destroy(kvm->buses[i]); 733 kvm->buses[i] = NULL; 734 } 735 kvm_coalesced_mmio_free(kvm); 736 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 737 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 738 #else 739 kvm_arch_flush_shadow_all(kvm); 740 #endif 741 kvm_arch_destroy_vm(kvm); 742 kvm_destroy_devices(kvm); 743 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 744 kvm_free_memslots(kvm, kvm->memslots[i]); 745 cleanup_srcu_struct(&kvm->irq_srcu); 746 cleanup_srcu_struct(&kvm->srcu); 747 kvm_arch_free_vm(kvm); 748 preempt_notifier_dec(); 749 hardware_disable_all(); 750 mmdrop(mm); 751 } 752 753 void kvm_get_kvm(struct kvm *kvm) 754 { 755 refcount_inc(&kvm->users_count); 756 } 757 EXPORT_SYMBOL_GPL(kvm_get_kvm); 758 759 void kvm_put_kvm(struct kvm *kvm) 760 { 761 if (refcount_dec_and_test(&kvm->users_count)) 762 kvm_destroy_vm(kvm); 763 } 764 EXPORT_SYMBOL_GPL(kvm_put_kvm); 765 766 767 static int kvm_vm_release(struct inode *inode, struct file *filp) 768 { 769 struct kvm *kvm = filp->private_data; 770 771 kvm_irqfd_release(kvm); 772 773 kvm_put_kvm(kvm); 774 return 0; 775 } 776 777 /* 778 * Allocation size is twice as large as the actual dirty bitmap size. 779 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 780 */ 781 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 782 { 783 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 784 785 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 786 if (!memslot->dirty_bitmap) 787 return -ENOMEM; 788 789 return 0; 790 } 791 792 /* 793 * Insert memslot and re-sort memslots based on their GFN, 794 * so binary search could be used to lookup GFN. 795 * Sorting algorithm takes advantage of having initially 796 * sorted array and known changed memslot position. 797 */ 798 static void update_memslots(struct kvm_memslots *slots, 799 struct kvm_memory_slot *new) 800 { 801 int id = new->id; 802 int i = slots->id_to_index[id]; 803 struct kvm_memory_slot *mslots = slots->memslots; 804 805 WARN_ON(mslots[i].id != id); 806 if (!new->npages) { 807 WARN_ON(!mslots[i].npages); 808 if (mslots[i].npages) 809 slots->used_slots--; 810 } else { 811 if (!mslots[i].npages) 812 slots->used_slots++; 813 } 814 815 while (i < KVM_MEM_SLOTS_NUM - 1 && 816 new->base_gfn <= mslots[i + 1].base_gfn) { 817 if (!mslots[i + 1].npages) 818 break; 819 mslots[i] = mslots[i + 1]; 820 slots->id_to_index[mslots[i].id] = i; 821 i++; 822 } 823 824 /* 825 * The ">=" is needed when creating a slot with base_gfn == 0, 826 * so that it moves before all those with base_gfn == npages == 0. 827 * 828 * On the other hand, if new->npages is zero, the above loop has 829 * already left i pointing to the beginning of the empty part of 830 * mslots, and the ">=" would move the hole backwards in this 831 * case---which is wrong. So skip the loop when deleting a slot. 832 */ 833 if (new->npages) { 834 while (i > 0 && 835 new->base_gfn >= mslots[i - 1].base_gfn) { 836 mslots[i] = mslots[i - 1]; 837 slots->id_to_index[mslots[i].id] = i; 838 i--; 839 } 840 } else 841 WARN_ON_ONCE(i != slots->used_slots); 842 843 mslots[i] = *new; 844 slots->id_to_index[mslots[i].id] = i; 845 } 846 847 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 848 { 849 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 850 851 #ifdef __KVM_HAVE_READONLY_MEM 852 valid_flags |= KVM_MEM_READONLY; 853 #endif 854 855 if (mem->flags & ~valid_flags) 856 return -EINVAL; 857 858 return 0; 859 } 860 861 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 862 int as_id, struct kvm_memslots *slots) 863 { 864 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 865 866 /* 867 * Set the low bit in the generation, which disables SPTE caching 868 * until the end of synchronize_srcu_expedited. 869 */ 870 WARN_ON(old_memslots->generation & 1); 871 slots->generation = old_memslots->generation + 1; 872 873 rcu_assign_pointer(kvm->memslots[as_id], slots); 874 synchronize_srcu_expedited(&kvm->srcu); 875 876 /* 877 * Increment the new memslot generation a second time. This prevents 878 * vm exits that race with memslot updates from caching a memslot 879 * generation that will (potentially) be valid forever. 880 * 881 * Generations must be unique even across address spaces. We do not need 882 * a global counter for that, instead the generation space is evenly split 883 * across address spaces. For example, with two address spaces, address 884 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 885 * use generations 2, 6, 10, 14, ... 886 */ 887 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 888 889 kvm_arch_memslots_updated(kvm, slots); 890 891 return old_memslots; 892 } 893 894 /* 895 * Allocate some memory and give it an address in the guest physical address 896 * space. 897 * 898 * Discontiguous memory is allowed, mostly for framebuffers. 899 * 900 * Must be called holding kvm->slots_lock for write. 901 */ 902 int __kvm_set_memory_region(struct kvm *kvm, 903 const struct kvm_userspace_memory_region *mem) 904 { 905 int r; 906 gfn_t base_gfn; 907 unsigned long npages; 908 struct kvm_memory_slot *slot; 909 struct kvm_memory_slot old, new; 910 struct kvm_memslots *slots = NULL, *old_memslots; 911 int as_id, id; 912 enum kvm_mr_change change; 913 914 r = check_memory_region_flags(mem); 915 if (r) 916 goto out; 917 918 r = -EINVAL; 919 as_id = mem->slot >> 16; 920 id = (u16)mem->slot; 921 922 /* General sanity checks */ 923 if (mem->memory_size & (PAGE_SIZE - 1)) 924 goto out; 925 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 926 goto out; 927 /* We can read the guest memory with __xxx_user() later on. */ 928 if ((id < KVM_USER_MEM_SLOTS) && 929 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 930 !access_ok(VERIFY_WRITE, 931 (void __user *)(unsigned long)mem->userspace_addr, 932 mem->memory_size))) 933 goto out; 934 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 935 goto out; 936 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 937 goto out; 938 939 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 940 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 941 npages = mem->memory_size >> PAGE_SHIFT; 942 943 if (npages > KVM_MEM_MAX_NR_PAGES) 944 goto out; 945 946 new = old = *slot; 947 948 new.id = id; 949 new.base_gfn = base_gfn; 950 new.npages = npages; 951 new.flags = mem->flags; 952 953 if (npages) { 954 if (!old.npages) 955 change = KVM_MR_CREATE; 956 else { /* Modify an existing slot. */ 957 if ((mem->userspace_addr != old.userspace_addr) || 958 (npages != old.npages) || 959 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 960 goto out; 961 962 if (base_gfn != old.base_gfn) 963 change = KVM_MR_MOVE; 964 else if (new.flags != old.flags) 965 change = KVM_MR_FLAGS_ONLY; 966 else { /* Nothing to change. */ 967 r = 0; 968 goto out; 969 } 970 } 971 } else { 972 if (!old.npages) 973 goto out; 974 975 change = KVM_MR_DELETE; 976 new.base_gfn = 0; 977 new.flags = 0; 978 } 979 980 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 981 /* Check for overlaps */ 982 r = -EEXIST; 983 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 984 if ((slot->id >= KVM_USER_MEM_SLOTS) || 985 (slot->id == id)) 986 continue; 987 if (!((base_gfn + npages <= slot->base_gfn) || 988 (base_gfn >= slot->base_gfn + slot->npages))) 989 goto out; 990 } 991 } 992 993 /* Free page dirty bitmap if unneeded */ 994 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 995 new.dirty_bitmap = NULL; 996 997 r = -ENOMEM; 998 if (change == KVM_MR_CREATE) { 999 new.userspace_addr = mem->userspace_addr; 1000 1001 if (kvm_arch_create_memslot(kvm, &new, npages)) 1002 goto out_free; 1003 } 1004 1005 /* Allocate page dirty bitmap if needed */ 1006 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1007 if (kvm_create_dirty_bitmap(&new) < 0) 1008 goto out_free; 1009 } 1010 1011 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 1012 if (!slots) 1013 goto out_free; 1014 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1015 1016 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1017 slot = id_to_memslot(slots, id); 1018 slot->flags |= KVM_MEMSLOT_INVALID; 1019 1020 old_memslots = install_new_memslots(kvm, as_id, slots); 1021 1022 /* slot was deleted or moved, clear iommu mapping */ 1023 kvm_iommu_unmap_pages(kvm, &old); 1024 /* From this point no new shadow pages pointing to a deleted, 1025 * or moved, memslot will be created. 1026 * 1027 * validation of sp->gfn happens in: 1028 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1029 * - kvm_is_visible_gfn (mmu_check_roots) 1030 */ 1031 kvm_arch_flush_shadow_memslot(kvm, slot); 1032 1033 /* 1034 * We can re-use the old_memslots from above, the only difference 1035 * from the currently installed memslots is the invalid flag. This 1036 * will get overwritten by update_memslots anyway. 1037 */ 1038 slots = old_memslots; 1039 } 1040 1041 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1042 if (r) 1043 goto out_slots; 1044 1045 /* actual memory is freed via old in kvm_free_memslot below */ 1046 if (change == KVM_MR_DELETE) { 1047 new.dirty_bitmap = NULL; 1048 memset(&new.arch, 0, sizeof(new.arch)); 1049 } 1050 1051 update_memslots(slots, &new); 1052 old_memslots = install_new_memslots(kvm, as_id, slots); 1053 1054 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1055 1056 kvm_free_memslot(kvm, &old, &new); 1057 kvfree(old_memslots); 1058 1059 /* 1060 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1061 * un-mapped and re-mapped if their base changes. Since base change 1062 * unmapping is handled above with slot deletion, mapping alone is 1063 * needed here. Anything else the iommu might care about for existing 1064 * slots (size changes, userspace addr changes and read-only flag 1065 * changes) is disallowed above, so any other attribute changes getting 1066 * here can be skipped. 1067 */ 1068 if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) { 1069 r = kvm_iommu_map_pages(kvm, &new); 1070 return r; 1071 } 1072 1073 return 0; 1074 1075 out_slots: 1076 kvfree(slots); 1077 out_free: 1078 kvm_free_memslot(kvm, &new, &old); 1079 out: 1080 return r; 1081 } 1082 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1083 1084 int kvm_set_memory_region(struct kvm *kvm, 1085 const struct kvm_userspace_memory_region *mem) 1086 { 1087 int r; 1088 1089 mutex_lock(&kvm->slots_lock); 1090 r = __kvm_set_memory_region(kvm, mem); 1091 mutex_unlock(&kvm->slots_lock); 1092 return r; 1093 } 1094 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1095 1096 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1097 struct kvm_userspace_memory_region *mem) 1098 { 1099 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1100 return -EINVAL; 1101 1102 return kvm_set_memory_region(kvm, mem); 1103 } 1104 1105 int kvm_get_dirty_log(struct kvm *kvm, 1106 struct kvm_dirty_log *log, int *is_dirty) 1107 { 1108 struct kvm_memslots *slots; 1109 struct kvm_memory_slot *memslot; 1110 int i, as_id, id; 1111 unsigned long n; 1112 unsigned long any = 0; 1113 1114 as_id = log->slot >> 16; 1115 id = (u16)log->slot; 1116 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1117 return -EINVAL; 1118 1119 slots = __kvm_memslots(kvm, as_id); 1120 memslot = id_to_memslot(slots, id); 1121 if (!memslot->dirty_bitmap) 1122 return -ENOENT; 1123 1124 n = kvm_dirty_bitmap_bytes(memslot); 1125 1126 for (i = 0; !any && i < n/sizeof(long); ++i) 1127 any = memslot->dirty_bitmap[i]; 1128 1129 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1130 return -EFAULT; 1131 1132 if (any) 1133 *is_dirty = 1; 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1137 1138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1139 /** 1140 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1141 * are dirty write protect them for next write. 1142 * @kvm: pointer to kvm instance 1143 * @log: slot id and address to which we copy the log 1144 * @is_dirty: flag set if any page is dirty 1145 * 1146 * We need to keep it in mind that VCPU threads can write to the bitmap 1147 * concurrently. So, to avoid losing track of dirty pages we keep the 1148 * following order: 1149 * 1150 * 1. Take a snapshot of the bit and clear it if needed. 1151 * 2. Write protect the corresponding page. 1152 * 3. Copy the snapshot to the userspace. 1153 * 4. Upon return caller flushes TLB's if needed. 1154 * 1155 * Between 2 and 4, the guest may write to the page using the remaining TLB 1156 * entry. This is not a problem because the page is reported dirty using 1157 * the snapshot taken before and step 4 ensures that writes done after 1158 * exiting to userspace will be logged for the next call. 1159 * 1160 */ 1161 int kvm_get_dirty_log_protect(struct kvm *kvm, 1162 struct kvm_dirty_log *log, bool *is_dirty) 1163 { 1164 struct kvm_memslots *slots; 1165 struct kvm_memory_slot *memslot; 1166 int i, as_id, id; 1167 unsigned long n; 1168 unsigned long *dirty_bitmap; 1169 unsigned long *dirty_bitmap_buffer; 1170 1171 as_id = log->slot >> 16; 1172 id = (u16)log->slot; 1173 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1174 return -EINVAL; 1175 1176 slots = __kvm_memslots(kvm, as_id); 1177 memslot = id_to_memslot(slots, id); 1178 1179 dirty_bitmap = memslot->dirty_bitmap; 1180 if (!dirty_bitmap) 1181 return -ENOENT; 1182 1183 n = kvm_dirty_bitmap_bytes(memslot); 1184 1185 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1186 memset(dirty_bitmap_buffer, 0, n); 1187 1188 spin_lock(&kvm->mmu_lock); 1189 *is_dirty = false; 1190 for (i = 0; i < n / sizeof(long); i++) { 1191 unsigned long mask; 1192 gfn_t offset; 1193 1194 if (!dirty_bitmap[i]) 1195 continue; 1196 1197 *is_dirty = true; 1198 1199 mask = xchg(&dirty_bitmap[i], 0); 1200 dirty_bitmap_buffer[i] = mask; 1201 1202 if (mask) { 1203 offset = i * BITS_PER_LONG; 1204 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1205 offset, mask); 1206 } 1207 } 1208 1209 spin_unlock(&kvm->mmu_lock); 1210 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1211 return -EFAULT; 1212 return 0; 1213 } 1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1215 #endif 1216 1217 bool kvm_largepages_enabled(void) 1218 { 1219 return largepages_enabled; 1220 } 1221 1222 void kvm_disable_largepages(void) 1223 { 1224 largepages_enabled = false; 1225 } 1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1227 1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1229 { 1230 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1231 } 1232 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1233 1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1235 { 1236 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1237 } 1238 1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1240 { 1241 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1242 1243 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1244 memslot->flags & KVM_MEMSLOT_INVALID) 1245 return false; 1246 1247 return true; 1248 } 1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1250 1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1252 { 1253 struct vm_area_struct *vma; 1254 unsigned long addr, size; 1255 1256 size = PAGE_SIZE; 1257 1258 addr = gfn_to_hva(kvm, gfn); 1259 if (kvm_is_error_hva(addr)) 1260 return PAGE_SIZE; 1261 1262 down_read(¤t->mm->mmap_sem); 1263 vma = find_vma(current->mm, addr); 1264 if (!vma) 1265 goto out; 1266 1267 size = vma_kernel_pagesize(vma); 1268 1269 out: 1270 up_read(¤t->mm->mmap_sem); 1271 1272 return size; 1273 } 1274 1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1276 { 1277 return slot->flags & KVM_MEM_READONLY; 1278 } 1279 1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1281 gfn_t *nr_pages, bool write) 1282 { 1283 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1284 return KVM_HVA_ERR_BAD; 1285 1286 if (memslot_is_readonly(slot) && write) 1287 return KVM_HVA_ERR_RO_BAD; 1288 1289 if (nr_pages) 1290 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1291 1292 return __gfn_to_hva_memslot(slot, gfn); 1293 } 1294 1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1296 gfn_t *nr_pages) 1297 { 1298 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1299 } 1300 1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1302 gfn_t gfn) 1303 { 1304 return gfn_to_hva_many(slot, gfn, NULL); 1305 } 1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1307 1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1309 { 1310 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1311 } 1312 EXPORT_SYMBOL_GPL(gfn_to_hva); 1313 1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1315 { 1316 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1317 } 1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1319 1320 /* 1321 * If writable is set to false, the hva returned by this function is only 1322 * allowed to be read. 1323 */ 1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1325 gfn_t gfn, bool *writable) 1326 { 1327 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1328 1329 if (!kvm_is_error_hva(hva) && writable) 1330 *writable = !memslot_is_readonly(slot); 1331 1332 return hva; 1333 } 1334 1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1336 { 1337 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1338 1339 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1340 } 1341 1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1343 { 1344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1345 1346 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1347 } 1348 1349 static int get_user_page_nowait(unsigned long start, int write, 1350 struct page **page) 1351 { 1352 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1353 1354 if (write) 1355 flags |= FOLL_WRITE; 1356 1357 return get_user_pages(start, 1, flags, page, NULL); 1358 } 1359 1360 static inline int check_user_page_hwpoison(unsigned long addr) 1361 { 1362 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1363 1364 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1365 return rc == -EHWPOISON; 1366 } 1367 1368 /* 1369 * The atomic path to get the writable pfn which will be stored in @pfn, 1370 * true indicates success, otherwise false is returned. 1371 */ 1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1373 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1374 { 1375 struct page *page[1]; 1376 int npages; 1377 1378 if (!(async || atomic)) 1379 return false; 1380 1381 /* 1382 * Fast pin a writable pfn only if it is a write fault request 1383 * or the caller allows to map a writable pfn for a read fault 1384 * request. 1385 */ 1386 if (!(write_fault || writable)) 1387 return false; 1388 1389 npages = __get_user_pages_fast(addr, 1, 1, page); 1390 if (npages == 1) { 1391 *pfn = page_to_pfn(page[0]); 1392 1393 if (writable) 1394 *writable = true; 1395 return true; 1396 } 1397 1398 return false; 1399 } 1400 1401 /* 1402 * The slow path to get the pfn of the specified host virtual address, 1403 * 1 indicates success, -errno is returned if error is detected. 1404 */ 1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1406 bool *writable, kvm_pfn_t *pfn) 1407 { 1408 struct page *page[1]; 1409 int npages = 0; 1410 1411 might_sleep(); 1412 1413 if (writable) 1414 *writable = write_fault; 1415 1416 if (async) { 1417 down_read(¤t->mm->mmap_sem); 1418 npages = get_user_page_nowait(addr, write_fault, page); 1419 up_read(¤t->mm->mmap_sem); 1420 } else { 1421 unsigned int flags = FOLL_HWPOISON; 1422 1423 if (write_fault) 1424 flags |= FOLL_WRITE; 1425 1426 npages = get_user_pages_unlocked(addr, 1, page, flags); 1427 } 1428 if (npages != 1) 1429 return npages; 1430 1431 /* map read fault as writable if possible */ 1432 if (unlikely(!write_fault) && writable) { 1433 struct page *wpage[1]; 1434 1435 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1436 if (npages == 1) { 1437 *writable = true; 1438 put_page(page[0]); 1439 page[0] = wpage[0]; 1440 } 1441 1442 npages = 1; 1443 } 1444 *pfn = page_to_pfn(page[0]); 1445 return npages; 1446 } 1447 1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1449 { 1450 if (unlikely(!(vma->vm_flags & VM_READ))) 1451 return false; 1452 1453 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1454 return false; 1455 1456 return true; 1457 } 1458 1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1460 unsigned long addr, bool *async, 1461 bool write_fault, kvm_pfn_t *p_pfn) 1462 { 1463 unsigned long pfn; 1464 int r; 1465 1466 r = follow_pfn(vma, addr, &pfn); 1467 if (r) { 1468 /* 1469 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1470 * not call the fault handler, so do it here. 1471 */ 1472 bool unlocked = false; 1473 r = fixup_user_fault(current, current->mm, addr, 1474 (write_fault ? FAULT_FLAG_WRITE : 0), 1475 &unlocked); 1476 if (unlocked) 1477 return -EAGAIN; 1478 if (r) 1479 return r; 1480 1481 r = follow_pfn(vma, addr, &pfn); 1482 if (r) 1483 return r; 1484 1485 } 1486 1487 1488 /* 1489 * Get a reference here because callers of *hva_to_pfn* and 1490 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1491 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1492 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1493 * simply do nothing for reserved pfns. 1494 * 1495 * Whoever called remap_pfn_range is also going to call e.g. 1496 * unmap_mapping_range before the underlying pages are freed, 1497 * causing a call to our MMU notifier. 1498 */ 1499 kvm_get_pfn(pfn); 1500 1501 *p_pfn = pfn; 1502 return 0; 1503 } 1504 1505 /* 1506 * Pin guest page in memory and return its pfn. 1507 * @addr: host virtual address which maps memory to the guest 1508 * @atomic: whether this function can sleep 1509 * @async: whether this function need to wait IO complete if the 1510 * host page is not in the memory 1511 * @write_fault: whether we should get a writable host page 1512 * @writable: whether it allows to map a writable host page for !@write_fault 1513 * 1514 * The function will map a writable host page for these two cases: 1515 * 1): @write_fault = true 1516 * 2): @write_fault = false && @writable, @writable will tell the caller 1517 * whether the mapping is writable. 1518 */ 1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1520 bool write_fault, bool *writable) 1521 { 1522 struct vm_area_struct *vma; 1523 kvm_pfn_t pfn = 0; 1524 int npages, r; 1525 1526 /* we can do it either atomically or asynchronously, not both */ 1527 BUG_ON(atomic && async); 1528 1529 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1530 return pfn; 1531 1532 if (atomic) 1533 return KVM_PFN_ERR_FAULT; 1534 1535 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1536 if (npages == 1) 1537 return pfn; 1538 1539 down_read(¤t->mm->mmap_sem); 1540 if (npages == -EHWPOISON || 1541 (!async && check_user_page_hwpoison(addr))) { 1542 pfn = KVM_PFN_ERR_HWPOISON; 1543 goto exit; 1544 } 1545 1546 retry: 1547 vma = find_vma_intersection(current->mm, addr, addr + 1); 1548 1549 if (vma == NULL) 1550 pfn = KVM_PFN_ERR_FAULT; 1551 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1552 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1553 if (r == -EAGAIN) 1554 goto retry; 1555 if (r < 0) 1556 pfn = KVM_PFN_ERR_FAULT; 1557 } else { 1558 if (async && vma_is_valid(vma, write_fault)) 1559 *async = true; 1560 pfn = KVM_PFN_ERR_FAULT; 1561 } 1562 exit: 1563 up_read(¤t->mm->mmap_sem); 1564 return pfn; 1565 } 1566 1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1568 bool atomic, bool *async, bool write_fault, 1569 bool *writable) 1570 { 1571 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1572 1573 if (addr == KVM_HVA_ERR_RO_BAD) { 1574 if (writable) 1575 *writable = false; 1576 return KVM_PFN_ERR_RO_FAULT; 1577 } 1578 1579 if (kvm_is_error_hva(addr)) { 1580 if (writable) 1581 *writable = false; 1582 return KVM_PFN_NOSLOT; 1583 } 1584 1585 /* Do not map writable pfn in the readonly memslot. */ 1586 if (writable && memslot_is_readonly(slot)) { 1587 *writable = false; 1588 writable = NULL; 1589 } 1590 1591 return hva_to_pfn(addr, atomic, async, write_fault, 1592 writable); 1593 } 1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1595 1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1597 bool *writable) 1598 { 1599 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1600 write_fault, writable); 1601 } 1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1603 1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1605 { 1606 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1607 } 1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1609 1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1611 { 1612 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1613 } 1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1615 1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1617 { 1618 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1619 } 1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1621 1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1623 { 1624 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1625 } 1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1627 1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1629 { 1630 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1631 } 1632 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1633 1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1635 { 1636 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1637 } 1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1639 1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1641 struct page **pages, int nr_pages) 1642 { 1643 unsigned long addr; 1644 gfn_t entry; 1645 1646 addr = gfn_to_hva_many(slot, gfn, &entry); 1647 if (kvm_is_error_hva(addr)) 1648 return -1; 1649 1650 if (entry < nr_pages) 1651 return 0; 1652 1653 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1654 } 1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1656 1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1658 { 1659 if (is_error_noslot_pfn(pfn)) 1660 return KVM_ERR_PTR_BAD_PAGE; 1661 1662 if (kvm_is_reserved_pfn(pfn)) { 1663 WARN_ON(1); 1664 return KVM_ERR_PTR_BAD_PAGE; 1665 } 1666 1667 return pfn_to_page(pfn); 1668 } 1669 1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1671 { 1672 kvm_pfn_t pfn; 1673 1674 pfn = gfn_to_pfn(kvm, gfn); 1675 1676 return kvm_pfn_to_page(pfn); 1677 } 1678 EXPORT_SYMBOL_GPL(gfn_to_page); 1679 1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1681 { 1682 kvm_pfn_t pfn; 1683 1684 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1685 1686 return kvm_pfn_to_page(pfn); 1687 } 1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1689 1690 void kvm_release_page_clean(struct page *page) 1691 { 1692 WARN_ON(is_error_page(page)); 1693 1694 kvm_release_pfn_clean(page_to_pfn(page)); 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1697 1698 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1699 { 1700 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1701 put_page(pfn_to_page(pfn)); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1704 1705 void kvm_release_page_dirty(struct page *page) 1706 { 1707 WARN_ON(is_error_page(page)); 1708 1709 kvm_release_pfn_dirty(page_to_pfn(page)); 1710 } 1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1712 1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1714 { 1715 kvm_set_pfn_dirty(pfn); 1716 kvm_release_pfn_clean(pfn); 1717 } 1718 1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1720 { 1721 if (!kvm_is_reserved_pfn(pfn)) { 1722 struct page *page = pfn_to_page(pfn); 1723 1724 if (!PageReserved(page)) 1725 SetPageDirty(page); 1726 } 1727 } 1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1729 1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1731 { 1732 if (!kvm_is_reserved_pfn(pfn)) 1733 mark_page_accessed(pfn_to_page(pfn)); 1734 } 1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1736 1737 void kvm_get_pfn(kvm_pfn_t pfn) 1738 { 1739 if (!kvm_is_reserved_pfn(pfn)) 1740 get_page(pfn_to_page(pfn)); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1743 1744 static int next_segment(unsigned long len, int offset) 1745 { 1746 if (len > PAGE_SIZE - offset) 1747 return PAGE_SIZE - offset; 1748 else 1749 return len; 1750 } 1751 1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1753 void *data, int offset, int len) 1754 { 1755 int r; 1756 unsigned long addr; 1757 1758 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1759 if (kvm_is_error_hva(addr)) 1760 return -EFAULT; 1761 r = __copy_from_user(data, (void __user *)addr + offset, len); 1762 if (r) 1763 return -EFAULT; 1764 return 0; 1765 } 1766 1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1768 int len) 1769 { 1770 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1771 1772 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1773 } 1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1775 1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1777 int offset, int len) 1778 { 1779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1780 1781 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1782 } 1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1784 1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1786 { 1787 gfn_t gfn = gpa >> PAGE_SHIFT; 1788 int seg; 1789 int offset = offset_in_page(gpa); 1790 int ret; 1791 1792 while ((seg = next_segment(len, offset)) != 0) { 1793 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1794 if (ret < 0) 1795 return ret; 1796 offset = 0; 1797 len -= seg; 1798 data += seg; 1799 ++gfn; 1800 } 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(kvm_read_guest); 1804 1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1806 { 1807 gfn_t gfn = gpa >> PAGE_SHIFT; 1808 int seg; 1809 int offset = offset_in_page(gpa); 1810 int ret; 1811 1812 while ((seg = next_segment(len, offset)) != 0) { 1813 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1814 if (ret < 0) 1815 return ret; 1816 offset = 0; 1817 len -= seg; 1818 data += seg; 1819 ++gfn; 1820 } 1821 return 0; 1822 } 1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1824 1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1826 void *data, int offset, unsigned long len) 1827 { 1828 int r; 1829 unsigned long addr; 1830 1831 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1832 if (kvm_is_error_hva(addr)) 1833 return -EFAULT; 1834 pagefault_disable(); 1835 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1836 pagefault_enable(); 1837 if (r) 1838 return -EFAULT; 1839 return 0; 1840 } 1841 1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1843 unsigned long len) 1844 { 1845 gfn_t gfn = gpa >> PAGE_SHIFT; 1846 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1847 int offset = offset_in_page(gpa); 1848 1849 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1850 } 1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1852 1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1854 void *data, unsigned long len) 1855 { 1856 gfn_t gfn = gpa >> PAGE_SHIFT; 1857 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1858 int offset = offset_in_page(gpa); 1859 1860 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1861 } 1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1863 1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1865 const void *data, int offset, int len) 1866 { 1867 int r; 1868 unsigned long addr; 1869 1870 addr = gfn_to_hva_memslot(memslot, gfn); 1871 if (kvm_is_error_hva(addr)) 1872 return -EFAULT; 1873 r = __copy_to_user((void __user *)addr + offset, data, len); 1874 if (r) 1875 return -EFAULT; 1876 mark_page_dirty_in_slot(memslot, gfn); 1877 return 0; 1878 } 1879 1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1881 const void *data, int offset, int len) 1882 { 1883 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1884 1885 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1886 } 1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1888 1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1890 const void *data, int offset, int len) 1891 { 1892 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1893 1894 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1895 } 1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1897 1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1899 unsigned long len) 1900 { 1901 gfn_t gfn = gpa >> PAGE_SHIFT; 1902 int seg; 1903 int offset = offset_in_page(gpa); 1904 int ret; 1905 1906 while ((seg = next_segment(len, offset)) != 0) { 1907 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1908 if (ret < 0) 1909 return ret; 1910 offset = 0; 1911 len -= seg; 1912 data += seg; 1913 ++gfn; 1914 } 1915 return 0; 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_write_guest); 1918 1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1920 unsigned long len) 1921 { 1922 gfn_t gfn = gpa >> PAGE_SHIFT; 1923 int seg; 1924 int offset = offset_in_page(gpa); 1925 int ret; 1926 1927 while ((seg = next_segment(len, offset)) != 0) { 1928 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1929 if (ret < 0) 1930 return ret; 1931 offset = 0; 1932 len -= seg; 1933 data += seg; 1934 ++gfn; 1935 } 1936 return 0; 1937 } 1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1939 1940 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1941 struct gfn_to_hva_cache *ghc, 1942 gpa_t gpa, unsigned long len) 1943 { 1944 int offset = offset_in_page(gpa); 1945 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1946 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1947 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1948 gfn_t nr_pages_avail; 1949 1950 ghc->gpa = gpa; 1951 ghc->generation = slots->generation; 1952 ghc->len = len; 1953 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1955 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1956 ghc->hva += offset; 1957 } else { 1958 /* 1959 * If the requested region crosses two memslots, we still 1960 * verify that the entire region is valid here. 1961 */ 1962 while (start_gfn <= end_gfn) { 1963 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1964 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1965 &nr_pages_avail); 1966 if (kvm_is_error_hva(ghc->hva)) 1967 return -EFAULT; 1968 start_gfn += nr_pages_avail; 1969 } 1970 /* Use the slow path for cross page reads and writes. */ 1971 ghc->memslot = NULL; 1972 } 1973 return 0; 1974 } 1975 1976 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 1977 gpa_t gpa, unsigned long len) 1978 { 1979 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 1980 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init); 1983 1984 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 1985 void *data, int offset, unsigned long len) 1986 { 1987 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 1988 int r; 1989 gpa_t gpa = ghc->gpa + offset; 1990 1991 BUG_ON(len + offset > ghc->len); 1992 1993 if (slots->generation != ghc->generation) 1994 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1995 1996 if (unlikely(!ghc->memslot)) 1997 return kvm_vcpu_write_guest(vcpu, gpa, data, len); 1998 1999 if (kvm_is_error_hva(ghc->hva)) 2000 return -EFAULT; 2001 2002 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2003 if (r) 2004 return -EFAULT; 2005 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2006 2007 return 0; 2008 } 2009 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached); 2010 2011 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 2012 void *data, unsigned long len) 2013 { 2014 return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len); 2015 } 2016 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached); 2017 2018 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 2019 void *data, unsigned long len) 2020 { 2021 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2022 int r; 2023 2024 BUG_ON(len > ghc->len); 2025 2026 if (slots->generation != ghc->generation) 2027 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2028 2029 if (unlikely(!ghc->memslot)) 2030 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len); 2031 2032 if (kvm_is_error_hva(ghc->hva)) 2033 return -EFAULT; 2034 2035 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2036 if (r) 2037 return -EFAULT; 2038 2039 return 0; 2040 } 2041 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached); 2042 2043 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2044 { 2045 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2046 2047 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2048 } 2049 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2050 2051 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2052 { 2053 gfn_t gfn = gpa >> PAGE_SHIFT; 2054 int seg; 2055 int offset = offset_in_page(gpa); 2056 int ret; 2057 2058 while ((seg = next_segment(len, offset)) != 0) { 2059 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2060 if (ret < 0) 2061 return ret; 2062 offset = 0; 2063 len -= seg; 2064 ++gfn; 2065 } 2066 return 0; 2067 } 2068 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2069 2070 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2071 gfn_t gfn) 2072 { 2073 if (memslot && memslot->dirty_bitmap) { 2074 unsigned long rel_gfn = gfn - memslot->base_gfn; 2075 2076 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2077 } 2078 } 2079 2080 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2081 { 2082 struct kvm_memory_slot *memslot; 2083 2084 memslot = gfn_to_memslot(kvm, gfn); 2085 mark_page_dirty_in_slot(memslot, gfn); 2086 } 2087 EXPORT_SYMBOL_GPL(mark_page_dirty); 2088 2089 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2090 { 2091 struct kvm_memory_slot *memslot; 2092 2093 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2094 mark_page_dirty_in_slot(memslot, gfn); 2095 } 2096 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2097 2098 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2099 { 2100 unsigned int old, val, grow; 2101 2102 old = val = vcpu->halt_poll_ns; 2103 grow = READ_ONCE(halt_poll_ns_grow); 2104 /* 10us base */ 2105 if (val == 0 && grow) 2106 val = 10000; 2107 else 2108 val *= grow; 2109 2110 if (val > halt_poll_ns) 2111 val = halt_poll_ns; 2112 2113 vcpu->halt_poll_ns = val; 2114 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2115 } 2116 2117 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2118 { 2119 unsigned int old, val, shrink; 2120 2121 old = val = vcpu->halt_poll_ns; 2122 shrink = READ_ONCE(halt_poll_ns_shrink); 2123 if (shrink == 0) 2124 val = 0; 2125 else 2126 val /= shrink; 2127 2128 vcpu->halt_poll_ns = val; 2129 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2130 } 2131 2132 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2133 { 2134 if (kvm_arch_vcpu_runnable(vcpu)) { 2135 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2136 return -EINTR; 2137 } 2138 if (kvm_cpu_has_pending_timer(vcpu)) 2139 return -EINTR; 2140 if (signal_pending(current)) 2141 return -EINTR; 2142 2143 return 0; 2144 } 2145 2146 /* 2147 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2148 */ 2149 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2150 { 2151 ktime_t start, cur; 2152 DECLARE_SWAITQUEUE(wait); 2153 bool waited = false; 2154 u64 block_ns; 2155 2156 start = cur = ktime_get(); 2157 if (vcpu->halt_poll_ns) { 2158 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2159 2160 ++vcpu->stat.halt_attempted_poll; 2161 do { 2162 /* 2163 * This sets KVM_REQ_UNHALT if an interrupt 2164 * arrives. 2165 */ 2166 if (kvm_vcpu_check_block(vcpu) < 0) { 2167 ++vcpu->stat.halt_successful_poll; 2168 if (!vcpu_valid_wakeup(vcpu)) 2169 ++vcpu->stat.halt_poll_invalid; 2170 goto out; 2171 } 2172 cur = ktime_get(); 2173 } while (single_task_running() && ktime_before(cur, stop)); 2174 } 2175 2176 kvm_arch_vcpu_blocking(vcpu); 2177 2178 for (;;) { 2179 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2180 2181 if (kvm_vcpu_check_block(vcpu) < 0) 2182 break; 2183 2184 waited = true; 2185 schedule(); 2186 } 2187 2188 finish_swait(&vcpu->wq, &wait); 2189 cur = ktime_get(); 2190 2191 kvm_arch_vcpu_unblocking(vcpu); 2192 out: 2193 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2194 2195 if (!vcpu_valid_wakeup(vcpu)) 2196 shrink_halt_poll_ns(vcpu); 2197 else if (halt_poll_ns) { 2198 if (block_ns <= vcpu->halt_poll_ns) 2199 ; 2200 /* we had a long block, shrink polling */ 2201 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2202 shrink_halt_poll_ns(vcpu); 2203 /* we had a short halt and our poll time is too small */ 2204 else if (vcpu->halt_poll_ns < halt_poll_ns && 2205 block_ns < halt_poll_ns) 2206 grow_halt_poll_ns(vcpu); 2207 } else 2208 vcpu->halt_poll_ns = 0; 2209 2210 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2211 kvm_arch_vcpu_block_finish(vcpu); 2212 } 2213 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2214 2215 #ifndef CONFIG_S390 2216 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2217 { 2218 struct swait_queue_head *wqp; 2219 2220 wqp = kvm_arch_vcpu_wq(vcpu); 2221 if (swait_active(wqp)) { 2222 swake_up(wqp); 2223 ++vcpu->stat.halt_wakeup; 2224 } 2225 2226 } 2227 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2228 2229 /* 2230 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2231 */ 2232 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2233 { 2234 int me; 2235 int cpu = vcpu->cpu; 2236 2237 kvm_vcpu_wake_up(vcpu); 2238 me = get_cpu(); 2239 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2240 if (kvm_arch_vcpu_should_kick(vcpu)) 2241 smp_send_reschedule(cpu); 2242 put_cpu(); 2243 } 2244 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2245 #endif /* !CONFIG_S390 */ 2246 2247 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2248 { 2249 struct pid *pid; 2250 struct task_struct *task = NULL; 2251 int ret = 0; 2252 2253 rcu_read_lock(); 2254 pid = rcu_dereference(target->pid); 2255 if (pid) 2256 task = get_pid_task(pid, PIDTYPE_PID); 2257 rcu_read_unlock(); 2258 if (!task) 2259 return ret; 2260 ret = yield_to(task, 1); 2261 put_task_struct(task); 2262 2263 return ret; 2264 } 2265 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2266 2267 /* 2268 * Helper that checks whether a VCPU is eligible for directed yield. 2269 * Most eligible candidate to yield is decided by following heuristics: 2270 * 2271 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2272 * (preempted lock holder), indicated by @in_spin_loop. 2273 * Set at the beiginning and cleared at the end of interception/PLE handler. 2274 * 2275 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2276 * chance last time (mostly it has become eligible now since we have probably 2277 * yielded to lockholder in last iteration. This is done by toggling 2278 * @dy_eligible each time a VCPU checked for eligibility.) 2279 * 2280 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2281 * to preempted lock-holder could result in wrong VCPU selection and CPU 2282 * burning. Giving priority for a potential lock-holder increases lock 2283 * progress. 2284 * 2285 * Since algorithm is based on heuristics, accessing another VCPU data without 2286 * locking does not harm. It may result in trying to yield to same VCPU, fail 2287 * and continue with next VCPU and so on. 2288 */ 2289 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2290 { 2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2292 bool eligible; 2293 2294 eligible = !vcpu->spin_loop.in_spin_loop || 2295 vcpu->spin_loop.dy_eligible; 2296 2297 if (vcpu->spin_loop.in_spin_loop) 2298 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2299 2300 return eligible; 2301 #else 2302 return true; 2303 #endif 2304 } 2305 2306 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2307 { 2308 struct kvm *kvm = me->kvm; 2309 struct kvm_vcpu *vcpu; 2310 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2311 int yielded = 0; 2312 int try = 3; 2313 int pass; 2314 int i; 2315 2316 kvm_vcpu_set_in_spin_loop(me, true); 2317 /* 2318 * We boost the priority of a VCPU that is runnable but not 2319 * currently running, because it got preempted by something 2320 * else and called schedule in __vcpu_run. Hopefully that 2321 * VCPU is holding the lock that we need and will release it. 2322 * We approximate round-robin by starting at the last boosted VCPU. 2323 */ 2324 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2325 kvm_for_each_vcpu(i, vcpu, kvm) { 2326 if (!pass && i <= last_boosted_vcpu) { 2327 i = last_boosted_vcpu; 2328 continue; 2329 } else if (pass && i > last_boosted_vcpu) 2330 break; 2331 if (!ACCESS_ONCE(vcpu->preempted)) 2332 continue; 2333 if (vcpu == me) 2334 continue; 2335 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2336 continue; 2337 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2338 continue; 2339 2340 yielded = kvm_vcpu_yield_to(vcpu); 2341 if (yielded > 0) { 2342 kvm->last_boosted_vcpu = i; 2343 break; 2344 } else if (yielded < 0) { 2345 try--; 2346 if (!try) 2347 break; 2348 } 2349 } 2350 } 2351 kvm_vcpu_set_in_spin_loop(me, false); 2352 2353 /* Ensure vcpu is not eligible during next spinloop */ 2354 kvm_vcpu_set_dy_eligible(me, false); 2355 } 2356 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2357 2358 static int kvm_vcpu_fault(struct vm_fault *vmf) 2359 { 2360 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2361 struct page *page; 2362 2363 if (vmf->pgoff == 0) 2364 page = virt_to_page(vcpu->run); 2365 #ifdef CONFIG_X86 2366 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2367 page = virt_to_page(vcpu->arch.pio_data); 2368 #endif 2369 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2370 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2371 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2372 #endif 2373 else 2374 return kvm_arch_vcpu_fault(vcpu, vmf); 2375 get_page(page); 2376 vmf->page = page; 2377 return 0; 2378 } 2379 2380 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2381 .fault = kvm_vcpu_fault, 2382 }; 2383 2384 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2385 { 2386 vma->vm_ops = &kvm_vcpu_vm_ops; 2387 return 0; 2388 } 2389 2390 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2391 { 2392 struct kvm_vcpu *vcpu = filp->private_data; 2393 2394 debugfs_remove_recursive(vcpu->debugfs_dentry); 2395 kvm_put_kvm(vcpu->kvm); 2396 return 0; 2397 } 2398 2399 static struct file_operations kvm_vcpu_fops = { 2400 .release = kvm_vcpu_release, 2401 .unlocked_ioctl = kvm_vcpu_ioctl, 2402 #ifdef CONFIG_KVM_COMPAT 2403 .compat_ioctl = kvm_vcpu_compat_ioctl, 2404 #endif 2405 .mmap = kvm_vcpu_mmap, 2406 .llseek = noop_llseek, 2407 }; 2408 2409 /* 2410 * Allocates an inode for the vcpu. 2411 */ 2412 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2413 { 2414 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2415 } 2416 2417 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2418 { 2419 char dir_name[ITOA_MAX_LEN * 2]; 2420 int ret; 2421 2422 if (!kvm_arch_has_vcpu_debugfs()) 2423 return 0; 2424 2425 if (!debugfs_initialized()) 2426 return 0; 2427 2428 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2429 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2430 vcpu->kvm->debugfs_dentry); 2431 if (!vcpu->debugfs_dentry) 2432 return -ENOMEM; 2433 2434 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2435 if (ret < 0) { 2436 debugfs_remove_recursive(vcpu->debugfs_dentry); 2437 return ret; 2438 } 2439 2440 return 0; 2441 } 2442 2443 /* 2444 * Creates some virtual cpus. Good luck creating more than one. 2445 */ 2446 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2447 { 2448 int r; 2449 struct kvm_vcpu *vcpu; 2450 2451 if (id >= KVM_MAX_VCPU_ID) 2452 return -EINVAL; 2453 2454 mutex_lock(&kvm->lock); 2455 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2456 mutex_unlock(&kvm->lock); 2457 return -EINVAL; 2458 } 2459 2460 kvm->created_vcpus++; 2461 mutex_unlock(&kvm->lock); 2462 2463 vcpu = kvm_arch_vcpu_create(kvm, id); 2464 if (IS_ERR(vcpu)) { 2465 r = PTR_ERR(vcpu); 2466 goto vcpu_decrement; 2467 } 2468 2469 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2470 2471 r = kvm_arch_vcpu_setup(vcpu); 2472 if (r) 2473 goto vcpu_destroy; 2474 2475 r = kvm_create_vcpu_debugfs(vcpu); 2476 if (r) 2477 goto vcpu_destroy; 2478 2479 mutex_lock(&kvm->lock); 2480 if (kvm_get_vcpu_by_id(kvm, id)) { 2481 r = -EEXIST; 2482 goto unlock_vcpu_destroy; 2483 } 2484 2485 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2486 2487 /* Now it's all set up, let userspace reach it */ 2488 kvm_get_kvm(kvm); 2489 r = create_vcpu_fd(vcpu); 2490 if (r < 0) { 2491 kvm_put_kvm(kvm); 2492 goto unlock_vcpu_destroy; 2493 } 2494 2495 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2496 2497 /* 2498 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2499 * before kvm->online_vcpu's incremented value. 2500 */ 2501 smp_wmb(); 2502 atomic_inc(&kvm->online_vcpus); 2503 2504 mutex_unlock(&kvm->lock); 2505 kvm_arch_vcpu_postcreate(vcpu); 2506 return r; 2507 2508 unlock_vcpu_destroy: 2509 mutex_unlock(&kvm->lock); 2510 debugfs_remove_recursive(vcpu->debugfs_dentry); 2511 vcpu_destroy: 2512 kvm_arch_vcpu_destroy(vcpu); 2513 vcpu_decrement: 2514 mutex_lock(&kvm->lock); 2515 kvm->created_vcpus--; 2516 mutex_unlock(&kvm->lock); 2517 return r; 2518 } 2519 2520 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2521 { 2522 if (sigset) { 2523 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2524 vcpu->sigset_active = 1; 2525 vcpu->sigset = *sigset; 2526 } else 2527 vcpu->sigset_active = 0; 2528 return 0; 2529 } 2530 2531 static long kvm_vcpu_ioctl(struct file *filp, 2532 unsigned int ioctl, unsigned long arg) 2533 { 2534 struct kvm_vcpu *vcpu = filp->private_data; 2535 void __user *argp = (void __user *)arg; 2536 int r; 2537 struct kvm_fpu *fpu = NULL; 2538 struct kvm_sregs *kvm_sregs = NULL; 2539 2540 if (vcpu->kvm->mm != current->mm) 2541 return -EIO; 2542 2543 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2544 return -EINVAL; 2545 2546 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2547 /* 2548 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2549 * so vcpu_load() would break it. 2550 */ 2551 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2552 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2553 #endif 2554 2555 2556 r = vcpu_load(vcpu); 2557 if (r) 2558 return r; 2559 switch (ioctl) { 2560 case KVM_RUN: 2561 r = -EINVAL; 2562 if (arg) 2563 goto out; 2564 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2565 /* The thread running this VCPU changed. */ 2566 struct pid *oldpid = vcpu->pid; 2567 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2568 2569 rcu_assign_pointer(vcpu->pid, newpid); 2570 if (oldpid) 2571 synchronize_rcu(); 2572 put_pid(oldpid); 2573 } 2574 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2575 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2576 break; 2577 case KVM_GET_REGS: { 2578 struct kvm_regs *kvm_regs; 2579 2580 r = -ENOMEM; 2581 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2582 if (!kvm_regs) 2583 goto out; 2584 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2585 if (r) 2586 goto out_free1; 2587 r = -EFAULT; 2588 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2589 goto out_free1; 2590 r = 0; 2591 out_free1: 2592 kfree(kvm_regs); 2593 break; 2594 } 2595 case KVM_SET_REGS: { 2596 struct kvm_regs *kvm_regs; 2597 2598 r = -ENOMEM; 2599 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2600 if (IS_ERR(kvm_regs)) { 2601 r = PTR_ERR(kvm_regs); 2602 goto out; 2603 } 2604 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2605 kfree(kvm_regs); 2606 break; 2607 } 2608 case KVM_GET_SREGS: { 2609 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2610 r = -ENOMEM; 2611 if (!kvm_sregs) 2612 goto out; 2613 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2614 if (r) 2615 goto out; 2616 r = -EFAULT; 2617 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2618 goto out; 2619 r = 0; 2620 break; 2621 } 2622 case KVM_SET_SREGS: { 2623 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2624 if (IS_ERR(kvm_sregs)) { 2625 r = PTR_ERR(kvm_sregs); 2626 kvm_sregs = NULL; 2627 goto out; 2628 } 2629 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2630 break; 2631 } 2632 case KVM_GET_MP_STATE: { 2633 struct kvm_mp_state mp_state; 2634 2635 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2636 if (r) 2637 goto out; 2638 r = -EFAULT; 2639 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2640 goto out; 2641 r = 0; 2642 break; 2643 } 2644 case KVM_SET_MP_STATE: { 2645 struct kvm_mp_state mp_state; 2646 2647 r = -EFAULT; 2648 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2649 goto out; 2650 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2651 break; 2652 } 2653 case KVM_TRANSLATE: { 2654 struct kvm_translation tr; 2655 2656 r = -EFAULT; 2657 if (copy_from_user(&tr, argp, sizeof(tr))) 2658 goto out; 2659 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2660 if (r) 2661 goto out; 2662 r = -EFAULT; 2663 if (copy_to_user(argp, &tr, sizeof(tr))) 2664 goto out; 2665 r = 0; 2666 break; 2667 } 2668 case KVM_SET_GUEST_DEBUG: { 2669 struct kvm_guest_debug dbg; 2670 2671 r = -EFAULT; 2672 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2673 goto out; 2674 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2675 break; 2676 } 2677 case KVM_SET_SIGNAL_MASK: { 2678 struct kvm_signal_mask __user *sigmask_arg = argp; 2679 struct kvm_signal_mask kvm_sigmask; 2680 sigset_t sigset, *p; 2681 2682 p = NULL; 2683 if (argp) { 2684 r = -EFAULT; 2685 if (copy_from_user(&kvm_sigmask, argp, 2686 sizeof(kvm_sigmask))) 2687 goto out; 2688 r = -EINVAL; 2689 if (kvm_sigmask.len != sizeof(sigset)) 2690 goto out; 2691 r = -EFAULT; 2692 if (copy_from_user(&sigset, sigmask_arg->sigset, 2693 sizeof(sigset))) 2694 goto out; 2695 p = &sigset; 2696 } 2697 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2698 break; 2699 } 2700 case KVM_GET_FPU: { 2701 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2702 r = -ENOMEM; 2703 if (!fpu) 2704 goto out; 2705 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2706 if (r) 2707 goto out; 2708 r = -EFAULT; 2709 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2710 goto out; 2711 r = 0; 2712 break; 2713 } 2714 case KVM_SET_FPU: { 2715 fpu = memdup_user(argp, sizeof(*fpu)); 2716 if (IS_ERR(fpu)) { 2717 r = PTR_ERR(fpu); 2718 fpu = NULL; 2719 goto out; 2720 } 2721 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2722 break; 2723 } 2724 default: 2725 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2726 } 2727 out: 2728 vcpu_put(vcpu); 2729 kfree(fpu); 2730 kfree(kvm_sregs); 2731 return r; 2732 } 2733 2734 #ifdef CONFIG_KVM_COMPAT 2735 static long kvm_vcpu_compat_ioctl(struct file *filp, 2736 unsigned int ioctl, unsigned long arg) 2737 { 2738 struct kvm_vcpu *vcpu = filp->private_data; 2739 void __user *argp = compat_ptr(arg); 2740 int r; 2741 2742 if (vcpu->kvm->mm != current->mm) 2743 return -EIO; 2744 2745 switch (ioctl) { 2746 case KVM_SET_SIGNAL_MASK: { 2747 struct kvm_signal_mask __user *sigmask_arg = argp; 2748 struct kvm_signal_mask kvm_sigmask; 2749 compat_sigset_t csigset; 2750 sigset_t sigset; 2751 2752 if (argp) { 2753 r = -EFAULT; 2754 if (copy_from_user(&kvm_sigmask, argp, 2755 sizeof(kvm_sigmask))) 2756 goto out; 2757 r = -EINVAL; 2758 if (kvm_sigmask.len != sizeof(csigset)) 2759 goto out; 2760 r = -EFAULT; 2761 if (copy_from_user(&csigset, sigmask_arg->sigset, 2762 sizeof(csigset))) 2763 goto out; 2764 sigset_from_compat(&sigset, &csigset); 2765 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2766 } else 2767 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2768 break; 2769 } 2770 default: 2771 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2772 } 2773 2774 out: 2775 return r; 2776 } 2777 #endif 2778 2779 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2780 int (*accessor)(struct kvm_device *dev, 2781 struct kvm_device_attr *attr), 2782 unsigned long arg) 2783 { 2784 struct kvm_device_attr attr; 2785 2786 if (!accessor) 2787 return -EPERM; 2788 2789 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2790 return -EFAULT; 2791 2792 return accessor(dev, &attr); 2793 } 2794 2795 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2796 unsigned long arg) 2797 { 2798 struct kvm_device *dev = filp->private_data; 2799 2800 switch (ioctl) { 2801 case KVM_SET_DEVICE_ATTR: 2802 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2803 case KVM_GET_DEVICE_ATTR: 2804 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2805 case KVM_HAS_DEVICE_ATTR: 2806 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2807 default: 2808 if (dev->ops->ioctl) 2809 return dev->ops->ioctl(dev, ioctl, arg); 2810 2811 return -ENOTTY; 2812 } 2813 } 2814 2815 static int kvm_device_release(struct inode *inode, struct file *filp) 2816 { 2817 struct kvm_device *dev = filp->private_data; 2818 struct kvm *kvm = dev->kvm; 2819 2820 kvm_put_kvm(kvm); 2821 return 0; 2822 } 2823 2824 static const struct file_operations kvm_device_fops = { 2825 .unlocked_ioctl = kvm_device_ioctl, 2826 #ifdef CONFIG_KVM_COMPAT 2827 .compat_ioctl = kvm_device_ioctl, 2828 #endif 2829 .release = kvm_device_release, 2830 }; 2831 2832 struct kvm_device *kvm_device_from_filp(struct file *filp) 2833 { 2834 if (filp->f_op != &kvm_device_fops) 2835 return NULL; 2836 2837 return filp->private_data; 2838 } 2839 2840 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2841 #ifdef CONFIG_KVM_MPIC 2842 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2843 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2844 #endif 2845 2846 #ifdef CONFIG_KVM_XICS 2847 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2848 #endif 2849 }; 2850 2851 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2852 { 2853 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2854 return -ENOSPC; 2855 2856 if (kvm_device_ops_table[type] != NULL) 2857 return -EEXIST; 2858 2859 kvm_device_ops_table[type] = ops; 2860 return 0; 2861 } 2862 2863 void kvm_unregister_device_ops(u32 type) 2864 { 2865 if (kvm_device_ops_table[type] != NULL) 2866 kvm_device_ops_table[type] = NULL; 2867 } 2868 2869 static int kvm_ioctl_create_device(struct kvm *kvm, 2870 struct kvm_create_device *cd) 2871 { 2872 struct kvm_device_ops *ops = NULL; 2873 struct kvm_device *dev; 2874 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2875 int ret; 2876 2877 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2878 return -ENODEV; 2879 2880 ops = kvm_device_ops_table[cd->type]; 2881 if (ops == NULL) 2882 return -ENODEV; 2883 2884 if (test) 2885 return 0; 2886 2887 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2888 if (!dev) 2889 return -ENOMEM; 2890 2891 dev->ops = ops; 2892 dev->kvm = kvm; 2893 2894 mutex_lock(&kvm->lock); 2895 ret = ops->create(dev, cd->type); 2896 if (ret < 0) { 2897 mutex_unlock(&kvm->lock); 2898 kfree(dev); 2899 return ret; 2900 } 2901 list_add(&dev->vm_node, &kvm->devices); 2902 mutex_unlock(&kvm->lock); 2903 2904 if (ops->init) 2905 ops->init(dev); 2906 2907 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2908 if (ret < 0) { 2909 mutex_lock(&kvm->lock); 2910 list_del(&dev->vm_node); 2911 mutex_unlock(&kvm->lock); 2912 ops->destroy(dev); 2913 return ret; 2914 } 2915 2916 kvm_get_kvm(kvm); 2917 cd->fd = ret; 2918 return 0; 2919 } 2920 2921 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2922 { 2923 switch (arg) { 2924 case KVM_CAP_USER_MEMORY: 2925 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2926 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2927 case KVM_CAP_INTERNAL_ERROR_DATA: 2928 #ifdef CONFIG_HAVE_KVM_MSI 2929 case KVM_CAP_SIGNAL_MSI: 2930 #endif 2931 #ifdef CONFIG_HAVE_KVM_IRQFD 2932 case KVM_CAP_IRQFD: 2933 case KVM_CAP_IRQFD_RESAMPLE: 2934 #endif 2935 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2936 case KVM_CAP_CHECK_EXTENSION_VM: 2937 return 1; 2938 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2939 case KVM_CAP_IRQ_ROUTING: 2940 return KVM_MAX_IRQ_ROUTES; 2941 #endif 2942 #if KVM_ADDRESS_SPACE_NUM > 1 2943 case KVM_CAP_MULTI_ADDRESS_SPACE: 2944 return KVM_ADDRESS_SPACE_NUM; 2945 #endif 2946 case KVM_CAP_MAX_VCPU_ID: 2947 return KVM_MAX_VCPU_ID; 2948 default: 2949 break; 2950 } 2951 return kvm_vm_ioctl_check_extension(kvm, arg); 2952 } 2953 2954 static long kvm_vm_ioctl(struct file *filp, 2955 unsigned int ioctl, unsigned long arg) 2956 { 2957 struct kvm *kvm = filp->private_data; 2958 void __user *argp = (void __user *)arg; 2959 int r; 2960 2961 if (kvm->mm != current->mm) 2962 return -EIO; 2963 switch (ioctl) { 2964 case KVM_CREATE_VCPU: 2965 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2966 break; 2967 case KVM_SET_USER_MEMORY_REGION: { 2968 struct kvm_userspace_memory_region kvm_userspace_mem; 2969 2970 r = -EFAULT; 2971 if (copy_from_user(&kvm_userspace_mem, argp, 2972 sizeof(kvm_userspace_mem))) 2973 goto out; 2974 2975 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2976 break; 2977 } 2978 case KVM_GET_DIRTY_LOG: { 2979 struct kvm_dirty_log log; 2980 2981 r = -EFAULT; 2982 if (copy_from_user(&log, argp, sizeof(log))) 2983 goto out; 2984 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2985 break; 2986 } 2987 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2988 case KVM_REGISTER_COALESCED_MMIO: { 2989 struct kvm_coalesced_mmio_zone zone; 2990 2991 r = -EFAULT; 2992 if (copy_from_user(&zone, argp, sizeof(zone))) 2993 goto out; 2994 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2995 break; 2996 } 2997 case KVM_UNREGISTER_COALESCED_MMIO: { 2998 struct kvm_coalesced_mmio_zone zone; 2999 3000 r = -EFAULT; 3001 if (copy_from_user(&zone, argp, sizeof(zone))) 3002 goto out; 3003 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3004 break; 3005 } 3006 #endif 3007 case KVM_IRQFD: { 3008 struct kvm_irqfd data; 3009 3010 r = -EFAULT; 3011 if (copy_from_user(&data, argp, sizeof(data))) 3012 goto out; 3013 r = kvm_irqfd(kvm, &data); 3014 break; 3015 } 3016 case KVM_IOEVENTFD: { 3017 struct kvm_ioeventfd data; 3018 3019 r = -EFAULT; 3020 if (copy_from_user(&data, argp, sizeof(data))) 3021 goto out; 3022 r = kvm_ioeventfd(kvm, &data); 3023 break; 3024 } 3025 #ifdef CONFIG_HAVE_KVM_MSI 3026 case KVM_SIGNAL_MSI: { 3027 struct kvm_msi msi; 3028 3029 r = -EFAULT; 3030 if (copy_from_user(&msi, argp, sizeof(msi))) 3031 goto out; 3032 r = kvm_send_userspace_msi(kvm, &msi); 3033 break; 3034 } 3035 #endif 3036 #ifdef __KVM_HAVE_IRQ_LINE 3037 case KVM_IRQ_LINE_STATUS: 3038 case KVM_IRQ_LINE: { 3039 struct kvm_irq_level irq_event; 3040 3041 r = -EFAULT; 3042 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3043 goto out; 3044 3045 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3046 ioctl == KVM_IRQ_LINE_STATUS); 3047 if (r) 3048 goto out; 3049 3050 r = -EFAULT; 3051 if (ioctl == KVM_IRQ_LINE_STATUS) { 3052 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3053 goto out; 3054 } 3055 3056 r = 0; 3057 break; 3058 } 3059 #endif 3060 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3061 case KVM_SET_GSI_ROUTING: { 3062 struct kvm_irq_routing routing; 3063 struct kvm_irq_routing __user *urouting; 3064 struct kvm_irq_routing_entry *entries = NULL; 3065 3066 r = -EFAULT; 3067 if (copy_from_user(&routing, argp, sizeof(routing))) 3068 goto out; 3069 r = -EINVAL; 3070 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3071 goto out; 3072 if (routing.flags) 3073 goto out; 3074 if (routing.nr) { 3075 r = -ENOMEM; 3076 entries = vmalloc(routing.nr * sizeof(*entries)); 3077 if (!entries) 3078 goto out; 3079 r = -EFAULT; 3080 urouting = argp; 3081 if (copy_from_user(entries, urouting->entries, 3082 routing.nr * sizeof(*entries))) 3083 goto out_free_irq_routing; 3084 } 3085 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3086 routing.flags); 3087 out_free_irq_routing: 3088 vfree(entries); 3089 break; 3090 } 3091 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3092 case KVM_CREATE_DEVICE: { 3093 struct kvm_create_device cd; 3094 3095 r = -EFAULT; 3096 if (copy_from_user(&cd, argp, sizeof(cd))) 3097 goto out; 3098 3099 r = kvm_ioctl_create_device(kvm, &cd); 3100 if (r) 3101 goto out; 3102 3103 r = -EFAULT; 3104 if (copy_to_user(argp, &cd, sizeof(cd))) 3105 goto out; 3106 3107 r = 0; 3108 break; 3109 } 3110 case KVM_CHECK_EXTENSION: 3111 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3112 break; 3113 default: 3114 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3115 } 3116 out: 3117 return r; 3118 } 3119 3120 #ifdef CONFIG_KVM_COMPAT 3121 struct compat_kvm_dirty_log { 3122 __u32 slot; 3123 __u32 padding1; 3124 union { 3125 compat_uptr_t dirty_bitmap; /* one bit per page */ 3126 __u64 padding2; 3127 }; 3128 }; 3129 3130 static long kvm_vm_compat_ioctl(struct file *filp, 3131 unsigned int ioctl, unsigned long arg) 3132 { 3133 struct kvm *kvm = filp->private_data; 3134 int r; 3135 3136 if (kvm->mm != current->mm) 3137 return -EIO; 3138 switch (ioctl) { 3139 case KVM_GET_DIRTY_LOG: { 3140 struct compat_kvm_dirty_log compat_log; 3141 struct kvm_dirty_log log; 3142 3143 if (copy_from_user(&compat_log, (void __user *)arg, 3144 sizeof(compat_log))) 3145 return -EFAULT; 3146 log.slot = compat_log.slot; 3147 log.padding1 = compat_log.padding1; 3148 log.padding2 = compat_log.padding2; 3149 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3150 3151 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3152 break; 3153 } 3154 default: 3155 r = kvm_vm_ioctl(filp, ioctl, arg); 3156 } 3157 return r; 3158 } 3159 #endif 3160 3161 static struct file_operations kvm_vm_fops = { 3162 .release = kvm_vm_release, 3163 .unlocked_ioctl = kvm_vm_ioctl, 3164 #ifdef CONFIG_KVM_COMPAT 3165 .compat_ioctl = kvm_vm_compat_ioctl, 3166 #endif 3167 .llseek = noop_llseek, 3168 }; 3169 3170 static int kvm_dev_ioctl_create_vm(unsigned long type) 3171 { 3172 int r; 3173 struct kvm *kvm; 3174 struct file *file; 3175 3176 kvm = kvm_create_vm(type); 3177 if (IS_ERR(kvm)) 3178 return PTR_ERR(kvm); 3179 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3180 r = kvm_coalesced_mmio_init(kvm); 3181 if (r < 0) { 3182 kvm_put_kvm(kvm); 3183 return r; 3184 } 3185 #endif 3186 r = get_unused_fd_flags(O_CLOEXEC); 3187 if (r < 0) { 3188 kvm_put_kvm(kvm); 3189 return r; 3190 } 3191 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3192 if (IS_ERR(file)) { 3193 put_unused_fd(r); 3194 kvm_put_kvm(kvm); 3195 return PTR_ERR(file); 3196 } 3197 3198 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3199 put_unused_fd(r); 3200 fput(file); 3201 return -ENOMEM; 3202 } 3203 3204 fd_install(r, file); 3205 return r; 3206 } 3207 3208 static long kvm_dev_ioctl(struct file *filp, 3209 unsigned int ioctl, unsigned long arg) 3210 { 3211 long r = -EINVAL; 3212 3213 switch (ioctl) { 3214 case KVM_GET_API_VERSION: 3215 if (arg) 3216 goto out; 3217 r = KVM_API_VERSION; 3218 break; 3219 case KVM_CREATE_VM: 3220 r = kvm_dev_ioctl_create_vm(arg); 3221 break; 3222 case KVM_CHECK_EXTENSION: 3223 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3224 break; 3225 case KVM_GET_VCPU_MMAP_SIZE: 3226 if (arg) 3227 goto out; 3228 r = PAGE_SIZE; /* struct kvm_run */ 3229 #ifdef CONFIG_X86 3230 r += PAGE_SIZE; /* pio data page */ 3231 #endif 3232 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3233 r += PAGE_SIZE; /* coalesced mmio ring page */ 3234 #endif 3235 break; 3236 case KVM_TRACE_ENABLE: 3237 case KVM_TRACE_PAUSE: 3238 case KVM_TRACE_DISABLE: 3239 r = -EOPNOTSUPP; 3240 break; 3241 default: 3242 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3243 } 3244 out: 3245 return r; 3246 } 3247 3248 static struct file_operations kvm_chardev_ops = { 3249 .unlocked_ioctl = kvm_dev_ioctl, 3250 .compat_ioctl = kvm_dev_ioctl, 3251 .llseek = noop_llseek, 3252 }; 3253 3254 static struct miscdevice kvm_dev = { 3255 KVM_MINOR, 3256 "kvm", 3257 &kvm_chardev_ops, 3258 }; 3259 3260 static void hardware_enable_nolock(void *junk) 3261 { 3262 int cpu = raw_smp_processor_id(); 3263 int r; 3264 3265 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3266 return; 3267 3268 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3269 3270 r = kvm_arch_hardware_enable(); 3271 3272 if (r) { 3273 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3274 atomic_inc(&hardware_enable_failed); 3275 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3276 } 3277 } 3278 3279 static int kvm_starting_cpu(unsigned int cpu) 3280 { 3281 raw_spin_lock(&kvm_count_lock); 3282 if (kvm_usage_count) 3283 hardware_enable_nolock(NULL); 3284 raw_spin_unlock(&kvm_count_lock); 3285 return 0; 3286 } 3287 3288 static void hardware_disable_nolock(void *junk) 3289 { 3290 int cpu = raw_smp_processor_id(); 3291 3292 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3293 return; 3294 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3295 kvm_arch_hardware_disable(); 3296 } 3297 3298 static int kvm_dying_cpu(unsigned int cpu) 3299 { 3300 raw_spin_lock(&kvm_count_lock); 3301 if (kvm_usage_count) 3302 hardware_disable_nolock(NULL); 3303 raw_spin_unlock(&kvm_count_lock); 3304 return 0; 3305 } 3306 3307 static void hardware_disable_all_nolock(void) 3308 { 3309 BUG_ON(!kvm_usage_count); 3310 3311 kvm_usage_count--; 3312 if (!kvm_usage_count) 3313 on_each_cpu(hardware_disable_nolock, NULL, 1); 3314 } 3315 3316 static void hardware_disable_all(void) 3317 { 3318 raw_spin_lock(&kvm_count_lock); 3319 hardware_disable_all_nolock(); 3320 raw_spin_unlock(&kvm_count_lock); 3321 } 3322 3323 static int hardware_enable_all(void) 3324 { 3325 int r = 0; 3326 3327 raw_spin_lock(&kvm_count_lock); 3328 3329 kvm_usage_count++; 3330 if (kvm_usage_count == 1) { 3331 atomic_set(&hardware_enable_failed, 0); 3332 on_each_cpu(hardware_enable_nolock, NULL, 1); 3333 3334 if (atomic_read(&hardware_enable_failed)) { 3335 hardware_disable_all_nolock(); 3336 r = -EBUSY; 3337 } 3338 } 3339 3340 raw_spin_unlock(&kvm_count_lock); 3341 3342 return r; 3343 } 3344 3345 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3346 void *v) 3347 { 3348 /* 3349 * Some (well, at least mine) BIOSes hang on reboot if 3350 * in vmx root mode. 3351 * 3352 * And Intel TXT required VMX off for all cpu when system shutdown. 3353 */ 3354 pr_info("kvm: exiting hardware virtualization\n"); 3355 kvm_rebooting = true; 3356 on_each_cpu(hardware_disable_nolock, NULL, 1); 3357 return NOTIFY_OK; 3358 } 3359 3360 static struct notifier_block kvm_reboot_notifier = { 3361 .notifier_call = kvm_reboot, 3362 .priority = 0, 3363 }; 3364 3365 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3366 { 3367 int i; 3368 3369 for (i = 0; i < bus->dev_count; i++) { 3370 struct kvm_io_device *pos = bus->range[i].dev; 3371 3372 kvm_iodevice_destructor(pos); 3373 } 3374 kfree(bus); 3375 } 3376 3377 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3378 const struct kvm_io_range *r2) 3379 { 3380 gpa_t addr1 = r1->addr; 3381 gpa_t addr2 = r2->addr; 3382 3383 if (addr1 < addr2) 3384 return -1; 3385 3386 /* If r2->len == 0, match the exact address. If r2->len != 0, 3387 * accept any overlapping write. Any order is acceptable for 3388 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3389 * we process all of them. 3390 */ 3391 if (r2->len) { 3392 addr1 += r1->len; 3393 addr2 += r2->len; 3394 } 3395 3396 if (addr1 > addr2) 3397 return 1; 3398 3399 return 0; 3400 } 3401 3402 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3403 { 3404 return kvm_io_bus_cmp(p1, p2); 3405 } 3406 3407 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3408 gpa_t addr, int len) 3409 { 3410 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3411 .addr = addr, 3412 .len = len, 3413 .dev = dev, 3414 }; 3415 3416 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3417 kvm_io_bus_sort_cmp, NULL); 3418 3419 return 0; 3420 } 3421 3422 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3423 gpa_t addr, int len) 3424 { 3425 struct kvm_io_range *range, key; 3426 int off; 3427 3428 key = (struct kvm_io_range) { 3429 .addr = addr, 3430 .len = len, 3431 }; 3432 3433 range = bsearch(&key, bus->range, bus->dev_count, 3434 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3435 if (range == NULL) 3436 return -ENOENT; 3437 3438 off = range - bus->range; 3439 3440 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3441 off--; 3442 3443 return off; 3444 } 3445 3446 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3447 struct kvm_io_range *range, const void *val) 3448 { 3449 int idx; 3450 3451 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3452 if (idx < 0) 3453 return -EOPNOTSUPP; 3454 3455 while (idx < bus->dev_count && 3456 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3457 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3458 range->len, val)) 3459 return idx; 3460 idx++; 3461 } 3462 3463 return -EOPNOTSUPP; 3464 } 3465 3466 /* kvm_io_bus_write - called under kvm->slots_lock */ 3467 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3468 int len, const void *val) 3469 { 3470 struct kvm_io_bus *bus; 3471 struct kvm_io_range range; 3472 int r; 3473 3474 range = (struct kvm_io_range) { 3475 .addr = addr, 3476 .len = len, 3477 }; 3478 3479 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3480 if (!bus) 3481 return -ENOMEM; 3482 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3483 return r < 0 ? r : 0; 3484 } 3485 3486 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3487 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3488 gpa_t addr, int len, const void *val, long cookie) 3489 { 3490 struct kvm_io_bus *bus; 3491 struct kvm_io_range range; 3492 3493 range = (struct kvm_io_range) { 3494 .addr = addr, 3495 .len = len, 3496 }; 3497 3498 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3499 if (!bus) 3500 return -ENOMEM; 3501 3502 /* First try the device referenced by cookie. */ 3503 if ((cookie >= 0) && (cookie < bus->dev_count) && 3504 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3505 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3506 val)) 3507 return cookie; 3508 3509 /* 3510 * cookie contained garbage; fall back to search and return the 3511 * correct cookie value. 3512 */ 3513 return __kvm_io_bus_write(vcpu, bus, &range, val); 3514 } 3515 3516 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3517 struct kvm_io_range *range, void *val) 3518 { 3519 int idx; 3520 3521 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3522 if (idx < 0) 3523 return -EOPNOTSUPP; 3524 3525 while (idx < bus->dev_count && 3526 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3527 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3528 range->len, val)) 3529 return idx; 3530 idx++; 3531 } 3532 3533 return -EOPNOTSUPP; 3534 } 3535 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3536 3537 /* kvm_io_bus_read - called under kvm->slots_lock */ 3538 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3539 int len, void *val) 3540 { 3541 struct kvm_io_bus *bus; 3542 struct kvm_io_range range; 3543 int r; 3544 3545 range = (struct kvm_io_range) { 3546 .addr = addr, 3547 .len = len, 3548 }; 3549 3550 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3551 if (!bus) 3552 return -ENOMEM; 3553 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3554 return r < 0 ? r : 0; 3555 } 3556 3557 3558 /* Caller must hold slots_lock. */ 3559 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3560 int len, struct kvm_io_device *dev) 3561 { 3562 struct kvm_io_bus *new_bus, *bus; 3563 3564 bus = kvm->buses[bus_idx]; 3565 if (!bus) 3566 return -ENOMEM; 3567 3568 /* exclude ioeventfd which is limited by maximum fd */ 3569 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3570 return -ENOSPC; 3571 3572 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3573 sizeof(struct kvm_io_range)), GFP_KERNEL); 3574 if (!new_bus) 3575 return -ENOMEM; 3576 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3577 sizeof(struct kvm_io_range))); 3578 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3579 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3580 synchronize_srcu_expedited(&kvm->srcu); 3581 kfree(bus); 3582 3583 return 0; 3584 } 3585 3586 /* Caller must hold slots_lock. */ 3587 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3588 struct kvm_io_device *dev) 3589 { 3590 int i; 3591 struct kvm_io_bus *new_bus, *bus; 3592 3593 bus = kvm->buses[bus_idx]; 3594 if (!bus) 3595 return; 3596 3597 for (i = 0; i < bus->dev_count; i++) 3598 if (bus->range[i].dev == dev) { 3599 break; 3600 } 3601 3602 if (i == bus->dev_count) 3603 return; 3604 3605 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3606 sizeof(struct kvm_io_range)), GFP_KERNEL); 3607 if (!new_bus) { 3608 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3609 goto broken; 3610 } 3611 3612 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3613 new_bus->dev_count--; 3614 memcpy(new_bus->range + i, bus->range + i + 1, 3615 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3616 3617 broken: 3618 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3619 synchronize_srcu_expedited(&kvm->srcu); 3620 kfree(bus); 3621 return; 3622 } 3623 3624 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3625 gpa_t addr) 3626 { 3627 struct kvm_io_bus *bus; 3628 int dev_idx, srcu_idx; 3629 struct kvm_io_device *iodev = NULL; 3630 3631 srcu_idx = srcu_read_lock(&kvm->srcu); 3632 3633 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3634 if (!bus) 3635 goto out_unlock; 3636 3637 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3638 if (dev_idx < 0) 3639 goto out_unlock; 3640 3641 iodev = bus->range[dev_idx].dev; 3642 3643 out_unlock: 3644 srcu_read_unlock(&kvm->srcu, srcu_idx); 3645 3646 return iodev; 3647 } 3648 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3649 3650 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3651 int (*get)(void *, u64 *), int (*set)(void *, u64), 3652 const char *fmt) 3653 { 3654 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3655 inode->i_private; 3656 3657 /* The debugfs files are a reference to the kvm struct which 3658 * is still valid when kvm_destroy_vm is called. 3659 * To avoid the race between open and the removal of the debugfs 3660 * directory we test against the users count. 3661 */ 3662 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3663 return -ENOENT; 3664 3665 if (simple_attr_open(inode, file, get, set, fmt)) { 3666 kvm_put_kvm(stat_data->kvm); 3667 return -ENOMEM; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3674 { 3675 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3676 inode->i_private; 3677 3678 simple_attr_release(inode, file); 3679 kvm_put_kvm(stat_data->kvm); 3680 3681 return 0; 3682 } 3683 3684 static int vm_stat_get_per_vm(void *data, u64 *val) 3685 { 3686 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3687 3688 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3689 3690 return 0; 3691 } 3692 3693 static int vm_stat_clear_per_vm(void *data, u64 val) 3694 { 3695 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3696 3697 if (val) 3698 return -EINVAL; 3699 3700 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3701 3702 return 0; 3703 } 3704 3705 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3706 { 3707 __simple_attr_check_format("%llu\n", 0ull); 3708 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3709 vm_stat_clear_per_vm, "%llu\n"); 3710 } 3711 3712 static const struct file_operations vm_stat_get_per_vm_fops = { 3713 .owner = THIS_MODULE, 3714 .open = vm_stat_get_per_vm_open, 3715 .release = kvm_debugfs_release, 3716 .read = simple_attr_read, 3717 .write = simple_attr_write, 3718 .llseek = generic_file_llseek, 3719 }; 3720 3721 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3722 { 3723 int i; 3724 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3725 struct kvm_vcpu *vcpu; 3726 3727 *val = 0; 3728 3729 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3730 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3731 3732 return 0; 3733 } 3734 3735 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3736 { 3737 int i; 3738 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3739 struct kvm_vcpu *vcpu; 3740 3741 if (val) 3742 return -EINVAL; 3743 3744 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3745 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3746 3747 return 0; 3748 } 3749 3750 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3751 { 3752 __simple_attr_check_format("%llu\n", 0ull); 3753 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3754 vcpu_stat_clear_per_vm, "%llu\n"); 3755 } 3756 3757 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3758 .owner = THIS_MODULE, 3759 .open = vcpu_stat_get_per_vm_open, 3760 .release = kvm_debugfs_release, 3761 .read = simple_attr_read, 3762 .write = simple_attr_write, 3763 .llseek = generic_file_llseek, 3764 }; 3765 3766 static const struct file_operations *stat_fops_per_vm[] = { 3767 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3768 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3769 }; 3770 3771 static int vm_stat_get(void *_offset, u64 *val) 3772 { 3773 unsigned offset = (long)_offset; 3774 struct kvm *kvm; 3775 struct kvm_stat_data stat_tmp = {.offset = offset}; 3776 u64 tmp_val; 3777 3778 *val = 0; 3779 spin_lock(&kvm_lock); 3780 list_for_each_entry(kvm, &vm_list, vm_list) { 3781 stat_tmp.kvm = kvm; 3782 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3783 *val += tmp_val; 3784 } 3785 spin_unlock(&kvm_lock); 3786 return 0; 3787 } 3788 3789 static int vm_stat_clear(void *_offset, u64 val) 3790 { 3791 unsigned offset = (long)_offset; 3792 struct kvm *kvm; 3793 struct kvm_stat_data stat_tmp = {.offset = offset}; 3794 3795 if (val) 3796 return -EINVAL; 3797 3798 spin_lock(&kvm_lock); 3799 list_for_each_entry(kvm, &vm_list, vm_list) { 3800 stat_tmp.kvm = kvm; 3801 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3802 } 3803 spin_unlock(&kvm_lock); 3804 3805 return 0; 3806 } 3807 3808 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3809 3810 static int vcpu_stat_get(void *_offset, u64 *val) 3811 { 3812 unsigned offset = (long)_offset; 3813 struct kvm *kvm; 3814 struct kvm_stat_data stat_tmp = {.offset = offset}; 3815 u64 tmp_val; 3816 3817 *val = 0; 3818 spin_lock(&kvm_lock); 3819 list_for_each_entry(kvm, &vm_list, vm_list) { 3820 stat_tmp.kvm = kvm; 3821 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3822 *val += tmp_val; 3823 } 3824 spin_unlock(&kvm_lock); 3825 return 0; 3826 } 3827 3828 static int vcpu_stat_clear(void *_offset, u64 val) 3829 { 3830 unsigned offset = (long)_offset; 3831 struct kvm *kvm; 3832 struct kvm_stat_data stat_tmp = {.offset = offset}; 3833 3834 if (val) 3835 return -EINVAL; 3836 3837 spin_lock(&kvm_lock); 3838 list_for_each_entry(kvm, &vm_list, vm_list) { 3839 stat_tmp.kvm = kvm; 3840 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3841 } 3842 spin_unlock(&kvm_lock); 3843 3844 return 0; 3845 } 3846 3847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3848 "%llu\n"); 3849 3850 static const struct file_operations *stat_fops[] = { 3851 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3852 [KVM_STAT_VM] = &vm_stat_fops, 3853 }; 3854 3855 static int kvm_init_debug(void) 3856 { 3857 int r = -EEXIST; 3858 struct kvm_stats_debugfs_item *p; 3859 3860 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3861 if (kvm_debugfs_dir == NULL) 3862 goto out; 3863 3864 kvm_debugfs_num_entries = 0; 3865 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3866 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3867 (void *)(long)p->offset, 3868 stat_fops[p->kind])) 3869 goto out_dir; 3870 } 3871 3872 return 0; 3873 3874 out_dir: 3875 debugfs_remove_recursive(kvm_debugfs_dir); 3876 out: 3877 return r; 3878 } 3879 3880 static int kvm_suspend(void) 3881 { 3882 if (kvm_usage_count) 3883 hardware_disable_nolock(NULL); 3884 return 0; 3885 } 3886 3887 static void kvm_resume(void) 3888 { 3889 if (kvm_usage_count) { 3890 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3891 hardware_enable_nolock(NULL); 3892 } 3893 } 3894 3895 static struct syscore_ops kvm_syscore_ops = { 3896 .suspend = kvm_suspend, 3897 .resume = kvm_resume, 3898 }; 3899 3900 static inline 3901 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3902 { 3903 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3904 } 3905 3906 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3907 { 3908 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3909 3910 if (vcpu->preempted) 3911 vcpu->preempted = false; 3912 3913 kvm_arch_sched_in(vcpu, cpu); 3914 3915 kvm_arch_vcpu_load(vcpu, cpu); 3916 } 3917 3918 static void kvm_sched_out(struct preempt_notifier *pn, 3919 struct task_struct *next) 3920 { 3921 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3922 3923 if (current->state == TASK_RUNNING) 3924 vcpu->preempted = true; 3925 kvm_arch_vcpu_put(vcpu); 3926 } 3927 3928 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3929 struct module *module) 3930 { 3931 int r; 3932 int cpu; 3933 3934 r = kvm_arch_init(opaque); 3935 if (r) 3936 goto out_fail; 3937 3938 /* 3939 * kvm_arch_init makes sure there's at most one caller 3940 * for architectures that support multiple implementations, 3941 * like intel and amd on x86. 3942 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3943 * conflicts in case kvm is already setup for another implementation. 3944 */ 3945 r = kvm_irqfd_init(); 3946 if (r) 3947 goto out_irqfd; 3948 3949 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3950 r = -ENOMEM; 3951 goto out_free_0; 3952 } 3953 3954 r = kvm_arch_hardware_setup(); 3955 if (r < 0) 3956 goto out_free_0a; 3957 3958 for_each_online_cpu(cpu) { 3959 smp_call_function_single(cpu, 3960 kvm_arch_check_processor_compat, 3961 &r, 1); 3962 if (r < 0) 3963 goto out_free_1; 3964 } 3965 3966 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 3967 kvm_starting_cpu, kvm_dying_cpu); 3968 if (r) 3969 goto out_free_2; 3970 register_reboot_notifier(&kvm_reboot_notifier); 3971 3972 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3973 if (!vcpu_align) 3974 vcpu_align = __alignof__(struct kvm_vcpu); 3975 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3976 0, NULL); 3977 if (!kvm_vcpu_cache) { 3978 r = -ENOMEM; 3979 goto out_free_3; 3980 } 3981 3982 r = kvm_async_pf_init(); 3983 if (r) 3984 goto out_free; 3985 3986 kvm_chardev_ops.owner = module; 3987 kvm_vm_fops.owner = module; 3988 kvm_vcpu_fops.owner = module; 3989 3990 r = misc_register(&kvm_dev); 3991 if (r) { 3992 pr_err("kvm: misc device register failed\n"); 3993 goto out_unreg; 3994 } 3995 3996 register_syscore_ops(&kvm_syscore_ops); 3997 3998 kvm_preempt_ops.sched_in = kvm_sched_in; 3999 kvm_preempt_ops.sched_out = kvm_sched_out; 4000 4001 r = kvm_init_debug(); 4002 if (r) { 4003 pr_err("kvm: create debugfs files failed\n"); 4004 goto out_undebugfs; 4005 } 4006 4007 r = kvm_vfio_ops_init(); 4008 WARN_ON(r); 4009 4010 return 0; 4011 4012 out_undebugfs: 4013 unregister_syscore_ops(&kvm_syscore_ops); 4014 misc_deregister(&kvm_dev); 4015 out_unreg: 4016 kvm_async_pf_deinit(); 4017 out_free: 4018 kmem_cache_destroy(kvm_vcpu_cache); 4019 out_free_3: 4020 unregister_reboot_notifier(&kvm_reboot_notifier); 4021 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4022 out_free_2: 4023 out_free_1: 4024 kvm_arch_hardware_unsetup(); 4025 out_free_0a: 4026 free_cpumask_var(cpus_hardware_enabled); 4027 out_free_0: 4028 kvm_irqfd_exit(); 4029 out_irqfd: 4030 kvm_arch_exit(); 4031 out_fail: 4032 return r; 4033 } 4034 EXPORT_SYMBOL_GPL(kvm_init); 4035 4036 void kvm_exit(void) 4037 { 4038 debugfs_remove_recursive(kvm_debugfs_dir); 4039 misc_deregister(&kvm_dev); 4040 kmem_cache_destroy(kvm_vcpu_cache); 4041 kvm_async_pf_deinit(); 4042 unregister_syscore_ops(&kvm_syscore_ops); 4043 unregister_reboot_notifier(&kvm_reboot_notifier); 4044 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4045 on_each_cpu(hardware_disable_nolock, NULL, 1); 4046 kvm_arch_hardware_unsetup(); 4047 kvm_arch_exit(); 4048 kvm_irqfd_exit(); 4049 free_cpumask_var(cpus_hardware_enabled); 4050 kvm_vfio_ops_exit(); 4051 } 4052 EXPORT_SYMBOL_GPL(kvm_exit); 4053