1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_page(struct page *page) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (WARN_ON_ONCE(!page_count(page))) 180 return false; 181 182 return is_zone_device_page(page); 183 } 184 185 /* 186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 188 * is likely incomplete, it has been compiled purely through people wanting to 189 * back guest with a certain type of memory and encountering issues. 190 */ 191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 192 { 193 struct page *page; 194 195 if (!pfn_valid(pfn)) 196 return NULL; 197 198 page = pfn_to_page(pfn); 199 if (!PageReserved(page)) 200 return page; 201 202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 203 if (is_zero_pfn(pfn)) 204 return page; 205 206 /* 207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 208 * perspective they are "normal" pages, albeit with slightly different 209 * usage rules. 210 */ 211 if (kvm_is_zone_device_page(page)) 212 return page; 213 214 return NULL; 215 } 216 217 /* 218 * Switches to specified vcpu, until a matching vcpu_put() 219 */ 220 void vcpu_load(struct kvm_vcpu *vcpu) 221 { 222 int cpu = get_cpu(); 223 224 __this_cpu_write(kvm_running_vcpu, vcpu); 225 preempt_notifier_register(&vcpu->preempt_notifier); 226 kvm_arch_vcpu_load(vcpu, cpu); 227 put_cpu(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_load); 230 231 void vcpu_put(struct kvm_vcpu *vcpu) 232 { 233 preempt_disable(); 234 kvm_arch_vcpu_put(vcpu); 235 preempt_notifier_unregister(&vcpu->preempt_notifier); 236 __this_cpu_write(kvm_running_vcpu, NULL); 237 preempt_enable(); 238 } 239 EXPORT_SYMBOL_GPL(vcpu_put); 240 241 /* TODO: merge with kvm_arch_vcpu_should_kick */ 242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 243 { 244 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 245 246 /* 247 * We need to wait for the VCPU to reenable interrupts and get out of 248 * READING_SHADOW_PAGE_TABLES mode. 249 */ 250 if (req & KVM_REQUEST_WAIT) 251 return mode != OUTSIDE_GUEST_MODE; 252 253 /* 254 * Need to kick a running VCPU, but otherwise there is nothing to do. 255 */ 256 return mode == IN_GUEST_MODE; 257 } 258 259 static void ack_kick(void *_completed) 260 { 261 } 262 263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 264 { 265 if (cpumask_empty(cpus)) 266 return false; 267 268 smp_call_function_many(cpus, ack_kick, NULL, wait); 269 return true; 270 } 271 272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 273 struct cpumask *tmp, int current_cpu) 274 { 275 int cpu; 276 277 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 278 __kvm_make_request(req, vcpu); 279 280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 281 return; 282 283 /* 284 * Note, the vCPU could get migrated to a different pCPU at any point 285 * after kvm_request_needs_ipi(), which could result in sending an IPI 286 * to the previous pCPU. But, that's OK because the purpose of the IPI 287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 289 * after this point is also OK, as the requirement is only that KVM wait 290 * for vCPUs that were reading SPTEs _before_ any changes were 291 * finalized. See kvm_vcpu_kick() for more details on handling requests. 292 */ 293 if (kvm_request_needs_ipi(vcpu, req)) { 294 cpu = READ_ONCE(vcpu->cpu); 295 if (cpu != -1 && cpu != current_cpu) 296 __cpumask_set_cpu(cpu, tmp); 297 } 298 } 299 300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 301 unsigned long *vcpu_bitmap) 302 { 303 struct kvm_vcpu *vcpu; 304 struct cpumask *cpus; 305 int i, me; 306 bool called; 307 308 me = get_cpu(); 309 310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 311 cpumask_clear(cpus); 312 313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 314 vcpu = kvm_get_vcpu(kvm, i); 315 if (!vcpu) 316 continue; 317 kvm_make_vcpu_request(vcpu, req, cpus, me); 318 } 319 320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 321 put_cpu(); 322 323 return called; 324 } 325 326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 327 struct kvm_vcpu *except) 328 { 329 struct kvm_vcpu *vcpu; 330 struct cpumask *cpus; 331 unsigned long i; 332 bool called; 333 int me; 334 335 me = get_cpu(); 336 337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 338 cpumask_clear(cpus); 339 340 kvm_for_each_vcpu(i, vcpu, kvm) { 341 if (vcpu == except) 342 continue; 343 kvm_make_vcpu_request(vcpu, req, cpus, me); 344 } 345 346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 347 put_cpu(); 348 349 return called; 350 } 351 352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 353 { 354 return kvm_make_all_cpus_request_except(kvm, req, NULL); 355 } 356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 357 358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 359 void kvm_flush_remote_tlbs(struct kvm *kvm) 360 { 361 ++kvm->stat.generic.remote_tlb_flush_requests; 362 363 /* 364 * We want to publish modifications to the page tables before reading 365 * mode. Pairs with a memory barrier in arch-specific code. 366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 367 * and smp_mb in walk_shadow_page_lockless_begin/end. 368 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 369 * 370 * There is already an smp_mb__after_atomic() before 371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 372 * barrier here. 373 */ 374 if (!kvm_arch_flush_remote_tlb(kvm) 375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 376 ++kvm->stat.generic.remote_tlb_flush; 377 } 378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 379 #endif 380 381 static void kvm_flush_shadow_all(struct kvm *kvm) 382 { 383 kvm_arch_flush_shadow_all(kvm); 384 kvm_arch_guest_memory_reclaimed(kvm); 385 } 386 387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 389 gfp_t gfp_flags) 390 { 391 gfp_flags |= mc->gfp_zero; 392 393 if (mc->kmem_cache) 394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 395 else 396 return (void *)__get_free_page(gfp_flags); 397 } 398 399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 400 { 401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 402 void *obj; 403 404 if (mc->nobjs >= min) 405 return 0; 406 407 if (unlikely(!mc->objects)) { 408 if (WARN_ON_ONCE(!capacity)) 409 return -EIO; 410 411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 412 if (!mc->objects) 413 return -ENOMEM; 414 415 mc->capacity = capacity; 416 } 417 418 /* It is illegal to request a different capacity across topups. */ 419 if (WARN_ON_ONCE(mc->capacity != capacity)) 420 return -EIO; 421 422 while (mc->nobjs < mc->capacity) { 423 obj = mmu_memory_cache_alloc_obj(mc, gfp); 424 if (!obj) 425 return mc->nobjs >= min ? 0 : -ENOMEM; 426 mc->objects[mc->nobjs++] = obj; 427 } 428 return 0; 429 } 430 431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 432 { 433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 434 } 435 436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 437 { 438 return mc->nobjs; 439 } 440 441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 442 { 443 while (mc->nobjs) { 444 if (mc->kmem_cache) 445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 446 else 447 free_page((unsigned long)mc->objects[--mc->nobjs]); 448 } 449 450 kvfree(mc->objects); 451 452 mc->objects = NULL; 453 mc->capacity = 0; 454 } 455 456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 457 { 458 void *p; 459 460 if (WARN_ON(!mc->nobjs)) 461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 462 else 463 p = mc->objects[--mc->nobjs]; 464 BUG_ON(!p); 465 return p; 466 } 467 #endif 468 469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 470 { 471 mutex_init(&vcpu->mutex); 472 vcpu->cpu = -1; 473 vcpu->kvm = kvm; 474 vcpu->vcpu_id = id; 475 vcpu->pid = NULL; 476 #ifndef __KVM_HAVE_ARCH_WQP 477 rcuwait_init(&vcpu->wait); 478 #endif 479 kvm_async_pf_vcpu_init(vcpu); 480 481 kvm_vcpu_set_in_spin_loop(vcpu, false); 482 kvm_vcpu_set_dy_eligible(vcpu, false); 483 vcpu->preempted = false; 484 vcpu->ready = false; 485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 486 vcpu->last_used_slot = NULL; 487 488 /* Fill the stats id string for the vcpu */ 489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 490 task_pid_nr(current), id); 491 } 492 493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 494 { 495 kvm_arch_vcpu_destroy(vcpu); 496 kvm_dirty_ring_free(&vcpu->dirty_ring); 497 498 /* 499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 500 * the vcpu->pid pointer, and at destruction time all file descriptors 501 * are already gone. 502 */ 503 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 504 505 free_page((unsigned long)vcpu->run); 506 kmem_cache_free(kvm_vcpu_cache, vcpu); 507 } 508 509 void kvm_destroy_vcpus(struct kvm *kvm) 510 { 511 unsigned long i; 512 struct kvm_vcpu *vcpu; 513 514 kvm_for_each_vcpu(i, vcpu, kvm) { 515 kvm_vcpu_destroy(vcpu); 516 xa_erase(&kvm->vcpu_array, i); 517 } 518 519 atomic_set(&kvm->online_vcpus, 0); 520 } 521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 522 523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 525 { 526 return container_of(mn, struct kvm, mmu_notifier); 527 } 528 529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 530 struct mm_struct *mm, 531 unsigned long start, unsigned long end) 532 { 533 struct kvm *kvm = mmu_notifier_to_kvm(mn); 534 int idx; 535 536 idx = srcu_read_lock(&kvm->srcu); 537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 538 srcu_read_unlock(&kvm->srcu, idx); 539 } 540 541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 542 543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 544 unsigned long end); 545 546 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 547 548 struct kvm_hva_range { 549 unsigned long start; 550 unsigned long end; 551 pte_t pte; 552 hva_handler_t handler; 553 on_lock_fn_t on_lock; 554 on_unlock_fn_t on_unlock; 555 bool flush_on_ret; 556 bool may_block; 557 }; 558 559 /* 560 * Use a dedicated stub instead of NULL to indicate that there is no callback 561 * function/handler. The compiler technically can't guarantee that a real 562 * function will have a non-zero address, and so it will generate code to 563 * check for !NULL, whereas comparing against a stub will be elided at compile 564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 565 */ 566 static void kvm_null_fn(void) 567 { 568 569 } 570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 571 572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 575 node; \ 576 node = interval_tree_iter_next(node, start, last)) \ 577 578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 579 const struct kvm_hva_range *range) 580 { 581 bool ret = false, locked = false; 582 struct kvm_gfn_range gfn_range; 583 struct kvm_memory_slot *slot; 584 struct kvm_memslots *slots; 585 int i, idx; 586 587 if (WARN_ON_ONCE(range->end <= range->start)) 588 return 0; 589 590 /* A null handler is allowed if and only if on_lock() is provided. */ 591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 592 IS_KVM_NULL_FN(range->handler))) 593 return 0; 594 595 idx = srcu_read_lock(&kvm->srcu); 596 597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 598 struct interval_tree_node *node; 599 600 slots = __kvm_memslots(kvm, i); 601 kvm_for_each_memslot_in_hva_range(node, slots, 602 range->start, range->end - 1) { 603 unsigned long hva_start, hva_end; 604 605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 606 hva_start = max(range->start, slot->userspace_addr); 607 hva_end = min(range->end, slot->userspace_addr + 608 (slot->npages << PAGE_SHIFT)); 609 610 /* 611 * To optimize for the likely case where the address 612 * range is covered by zero or one memslots, don't 613 * bother making these conditional (to avoid writes on 614 * the second or later invocation of the handler). 615 */ 616 gfn_range.pte = range->pte; 617 gfn_range.may_block = range->may_block; 618 619 /* 620 * {gfn(page) | page intersects with [hva_start, hva_end)} = 621 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 622 */ 623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 625 gfn_range.slot = slot; 626 627 if (!locked) { 628 locked = true; 629 KVM_MMU_LOCK(kvm); 630 if (!IS_KVM_NULL_FN(range->on_lock)) 631 range->on_lock(kvm, range->start, range->end); 632 if (IS_KVM_NULL_FN(range->handler)) 633 break; 634 } 635 ret |= range->handler(kvm, &gfn_range); 636 } 637 } 638 639 if (range->flush_on_ret && ret) 640 kvm_flush_remote_tlbs(kvm); 641 642 if (locked) { 643 KVM_MMU_UNLOCK(kvm); 644 if (!IS_KVM_NULL_FN(range->on_unlock)) 645 range->on_unlock(kvm); 646 } 647 648 srcu_read_unlock(&kvm->srcu, idx); 649 650 /* The notifiers are averse to booleans. :-( */ 651 return (int)ret; 652 } 653 654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 655 unsigned long start, 656 unsigned long end, 657 pte_t pte, 658 hva_handler_t handler) 659 { 660 struct kvm *kvm = mmu_notifier_to_kvm(mn); 661 const struct kvm_hva_range range = { 662 .start = start, 663 .end = end, 664 .pte = pte, 665 .handler = handler, 666 .on_lock = (void *)kvm_null_fn, 667 .on_unlock = (void *)kvm_null_fn, 668 .flush_on_ret = true, 669 .may_block = false, 670 }; 671 672 return __kvm_handle_hva_range(kvm, &range); 673 } 674 675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 676 unsigned long start, 677 unsigned long end, 678 hva_handler_t handler) 679 { 680 struct kvm *kvm = mmu_notifier_to_kvm(mn); 681 const struct kvm_hva_range range = { 682 .start = start, 683 .end = end, 684 .pte = __pte(0), 685 .handler = handler, 686 .on_lock = (void *)kvm_null_fn, 687 .on_unlock = (void *)kvm_null_fn, 688 .flush_on_ret = false, 689 .may_block = false, 690 }; 691 692 return __kvm_handle_hva_range(kvm, &range); 693 } 694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 695 struct mm_struct *mm, 696 unsigned long address, 697 pte_t pte) 698 { 699 struct kvm *kvm = mmu_notifier_to_kvm(mn); 700 701 trace_kvm_set_spte_hva(address); 702 703 /* 704 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 705 * If mmu_invalidate_in_progress is zero, then no in-progress 706 * invalidations, including this one, found a relevant memslot at 707 * start(); rechecking memslots here is unnecessary. Note, a false 708 * positive (count elevated by a different invalidation) is sub-optimal 709 * but functionally ok. 710 */ 711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 712 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 713 return; 714 715 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 716 } 717 718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 719 unsigned long end) 720 { 721 /* 722 * The count increase must become visible at unlock time as no 723 * spte can be established without taking the mmu_lock and 724 * count is also read inside the mmu_lock critical section. 725 */ 726 kvm->mmu_invalidate_in_progress++; 727 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 748 const struct mmu_notifier_range *range) 749 { 750 struct kvm *kvm = mmu_notifier_to_kvm(mn); 751 const struct kvm_hva_range hva_range = { 752 .start = range->start, 753 .end = range->end, 754 .pte = __pte(0), 755 .handler = kvm_unmap_gfn_range, 756 .on_lock = kvm_mmu_invalidate_begin, 757 .on_unlock = kvm_arch_guest_memory_reclaimed, 758 .flush_on_ret = true, 759 .may_block = mmu_notifier_range_blockable(range), 760 }; 761 762 trace_kvm_unmap_hva_range(range->start, range->end); 763 764 /* 765 * Prevent memslot modification between range_start() and range_end() 766 * so that conditionally locking provides the same result in both 767 * functions. Without that guarantee, the mmu_invalidate_in_progress 768 * adjustments will be imbalanced. 769 * 770 * Pairs with the decrement in range_end(). 771 */ 772 spin_lock(&kvm->mn_invalidate_lock); 773 kvm->mn_active_invalidate_count++; 774 spin_unlock(&kvm->mn_invalidate_lock); 775 776 /* 777 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 778 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 779 * each cache's lock. There are relatively few caches in existence at 780 * any given time, and the caches themselves can check for hva overlap, 781 * i.e. don't need to rely on memslot overlap checks for performance. 782 * Because this runs without holding mmu_lock, the pfn caches must use 783 * mn_active_invalidate_count (see above) instead of 784 * mmu_invalidate_in_progress. 785 */ 786 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 787 hva_range.may_block); 788 789 __kvm_handle_hva_range(kvm, &hva_range); 790 791 return 0; 792 } 793 794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 795 unsigned long end) 796 { 797 /* 798 * This sequence increase will notify the kvm page fault that 799 * the page that is going to be mapped in the spte could have 800 * been freed. 801 */ 802 kvm->mmu_invalidate_seq++; 803 smp_wmb(); 804 /* 805 * The above sequence increase must be visible before the 806 * below count decrease, which is ensured by the smp_wmb above 807 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 808 */ 809 kvm->mmu_invalidate_in_progress--; 810 } 811 812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 813 const struct mmu_notifier_range *range) 814 { 815 struct kvm *kvm = mmu_notifier_to_kvm(mn); 816 const struct kvm_hva_range hva_range = { 817 .start = range->start, 818 .end = range->end, 819 .pte = __pte(0), 820 .handler = (void *)kvm_null_fn, 821 .on_lock = kvm_mmu_invalidate_end, 822 .on_unlock = (void *)kvm_null_fn, 823 .flush_on_ret = false, 824 .may_block = mmu_notifier_range_blockable(range), 825 }; 826 bool wake; 827 828 __kvm_handle_hva_range(kvm, &hva_range); 829 830 /* Pairs with the increment in range_start(). */ 831 spin_lock(&kvm->mn_invalidate_lock); 832 wake = (--kvm->mn_active_invalidate_count == 0); 833 spin_unlock(&kvm->mn_invalidate_lock); 834 835 /* 836 * There can only be one waiter, since the wait happens under 837 * slots_lock. 838 */ 839 if (wake) 840 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 841 842 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 843 } 844 845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 846 struct mm_struct *mm, 847 unsigned long start, 848 unsigned long end) 849 { 850 trace_kvm_age_hva(start, end); 851 852 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 853 } 854 855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 856 struct mm_struct *mm, 857 unsigned long start, 858 unsigned long end) 859 { 860 trace_kvm_age_hva(start, end); 861 862 /* 863 * Even though we do not flush TLB, this will still adversely 864 * affect performance on pre-Haswell Intel EPT, where there is 865 * no EPT Access Bit to clear so that we have to tear down EPT 866 * tables instead. If we find this unacceptable, we can always 867 * add a parameter to kvm_age_hva so that it effectively doesn't 868 * do anything on clear_young. 869 * 870 * Also note that currently we never issue secondary TLB flushes 871 * from clear_young, leaving this job up to the regular system 872 * cadence. If we find this inaccurate, we might come up with a 873 * more sophisticated heuristic later. 874 */ 875 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 876 } 877 878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 879 struct mm_struct *mm, 880 unsigned long address) 881 { 882 trace_kvm_test_age_hva(address); 883 884 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 885 kvm_test_age_gfn); 886 } 887 888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 889 struct mm_struct *mm) 890 { 891 struct kvm *kvm = mmu_notifier_to_kvm(mn); 892 int idx; 893 894 idx = srcu_read_lock(&kvm->srcu); 895 kvm_flush_shadow_all(kvm); 896 srcu_read_unlock(&kvm->srcu, idx); 897 } 898 899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 900 .invalidate_range = kvm_mmu_notifier_invalidate_range, 901 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 902 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 903 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 904 .clear_young = kvm_mmu_notifier_clear_young, 905 .test_young = kvm_mmu_notifier_test_young, 906 .change_pte = kvm_mmu_notifier_change_pte, 907 .release = kvm_mmu_notifier_release, 908 }; 909 910 static int kvm_init_mmu_notifier(struct kvm *kvm) 911 { 912 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 913 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 914 } 915 916 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 917 918 static int kvm_init_mmu_notifier(struct kvm *kvm) 919 { 920 return 0; 921 } 922 923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 924 925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 926 static int kvm_pm_notifier_call(struct notifier_block *bl, 927 unsigned long state, 928 void *unused) 929 { 930 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 931 932 return kvm_arch_pm_notifier(kvm, state); 933 } 934 935 static void kvm_init_pm_notifier(struct kvm *kvm) 936 { 937 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 938 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 939 kvm->pm_notifier.priority = INT_MAX; 940 register_pm_notifier(&kvm->pm_notifier); 941 } 942 943 static void kvm_destroy_pm_notifier(struct kvm *kvm) 944 { 945 unregister_pm_notifier(&kvm->pm_notifier); 946 } 947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 } 951 952 static void kvm_destroy_pm_notifier(struct kvm *kvm) 953 { 954 } 955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 956 957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 958 { 959 if (!memslot->dirty_bitmap) 960 return; 961 962 kvfree(memslot->dirty_bitmap); 963 memslot->dirty_bitmap = NULL; 964 } 965 966 /* This does not remove the slot from struct kvm_memslots data structures */ 967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 968 { 969 kvm_destroy_dirty_bitmap(slot); 970 971 kvm_arch_free_memslot(kvm, slot); 972 973 kfree(slot); 974 } 975 976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 977 { 978 struct hlist_node *idnode; 979 struct kvm_memory_slot *memslot; 980 int bkt; 981 982 /* 983 * The same memslot objects live in both active and inactive sets, 984 * arbitrarily free using index '1' so the second invocation of this 985 * function isn't operating over a structure with dangling pointers 986 * (even though this function isn't actually touching them). 987 */ 988 if (!slots->node_idx) 989 return; 990 991 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 992 kvm_free_memslot(kvm, memslot); 993 } 994 995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 996 { 997 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 998 case KVM_STATS_TYPE_INSTANT: 999 return 0444; 1000 case KVM_STATS_TYPE_CUMULATIVE: 1001 case KVM_STATS_TYPE_PEAK: 1002 default: 1003 return 0644; 1004 } 1005 } 1006 1007 1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1009 { 1010 int i; 1011 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1012 kvm_vcpu_stats_header.num_desc; 1013 1014 if (IS_ERR(kvm->debugfs_dentry)) 1015 return; 1016 1017 debugfs_remove_recursive(kvm->debugfs_dentry); 1018 1019 if (kvm->debugfs_stat_data) { 1020 for (i = 0; i < kvm_debugfs_num_entries; i++) 1021 kfree(kvm->debugfs_stat_data[i]); 1022 kfree(kvm->debugfs_stat_data); 1023 } 1024 } 1025 1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1027 { 1028 static DEFINE_MUTEX(kvm_debugfs_lock); 1029 struct dentry *dent; 1030 char dir_name[ITOA_MAX_LEN * 2]; 1031 struct kvm_stat_data *stat_data; 1032 const struct _kvm_stats_desc *pdesc; 1033 int i, ret = -ENOMEM; 1034 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1035 kvm_vcpu_stats_header.num_desc; 1036 1037 if (!debugfs_initialized()) 1038 return 0; 1039 1040 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1041 mutex_lock(&kvm_debugfs_lock); 1042 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1043 if (dent) { 1044 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1045 dput(dent); 1046 mutex_unlock(&kvm_debugfs_lock); 1047 return 0; 1048 } 1049 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1050 mutex_unlock(&kvm_debugfs_lock); 1051 if (IS_ERR(dent)) 1052 return 0; 1053 1054 kvm->debugfs_dentry = dent; 1055 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1056 sizeof(*kvm->debugfs_stat_data), 1057 GFP_KERNEL_ACCOUNT); 1058 if (!kvm->debugfs_stat_data) 1059 goto out_err; 1060 1061 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1062 pdesc = &kvm_vm_stats_desc[i]; 1063 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1064 if (!stat_data) 1065 goto out_err; 1066 1067 stat_data->kvm = kvm; 1068 stat_data->desc = pdesc; 1069 stat_data->kind = KVM_STAT_VM; 1070 kvm->debugfs_stat_data[i] = stat_data; 1071 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1072 kvm->debugfs_dentry, stat_data, 1073 &stat_fops_per_vm); 1074 } 1075 1076 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1077 pdesc = &kvm_vcpu_stats_desc[i]; 1078 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1079 if (!stat_data) 1080 goto out_err; 1081 1082 stat_data->kvm = kvm; 1083 stat_data->desc = pdesc; 1084 stat_data->kind = KVM_STAT_VCPU; 1085 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1086 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1087 kvm->debugfs_dentry, stat_data, 1088 &stat_fops_per_vm); 1089 } 1090 1091 ret = kvm_arch_create_vm_debugfs(kvm); 1092 if (ret) 1093 goto out_err; 1094 1095 return 0; 1096 out_err: 1097 kvm_destroy_vm_debugfs(kvm); 1098 return ret; 1099 } 1100 1101 /* 1102 * Called after the VM is otherwise initialized, but just before adding it to 1103 * the vm_list. 1104 */ 1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1106 { 1107 return 0; 1108 } 1109 1110 /* 1111 * Called just after removing the VM from the vm_list, but before doing any 1112 * other destruction. 1113 */ 1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1115 { 1116 } 1117 1118 /* 1119 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1120 * be setup already, so we can create arch-specific debugfs entries under it. 1121 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1122 * a per-arch destroy interface is not needed. 1123 */ 1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1125 { 1126 return 0; 1127 } 1128 1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1130 { 1131 struct kvm *kvm = kvm_arch_alloc_vm(); 1132 struct kvm_memslots *slots; 1133 int r = -ENOMEM; 1134 int i, j; 1135 1136 if (!kvm) 1137 return ERR_PTR(-ENOMEM); 1138 1139 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1140 __module_get(kvm_chardev_ops.owner); 1141 1142 KVM_MMU_LOCK_INIT(kvm); 1143 mmgrab(current->mm); 1144 kvm->mm = current->mm; 1145 kvm_eventfd_init(kvm); 1146 mutex_init(&kvm->lock); 1147 mutex_init(&kvm->irq_lock); 1148 mutex_init(&kvm->slots_lock); 1149 mutex_init(&kvm->slots_arch_lock); 1150 spin_lock_init(&kvm->mn_invalidate_lock); 1151 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1152 xa_init(&kvm->vcpu_array); 1153 1154 INIT_LIST_HEAD(&kvm->gpc_list); 1155 spin_lock_init(&kvm->gpc_lock); 1156 1157 INIT_LIST_HEAD(&kvm->devices); 1158 kvm->max_vcpus = KVM_MAX_VCPUS; 1159 1160 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1161 1162 /* 1163 * Force subsequent debugfs file creations to fail if the VM directory 1164 * is not created (by kvm_create_vm_debugfs()). 1165 */ 1166 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1167 1168 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1169 task_pid_nr(current)); 1170 1171 if (init_srcu_struct(&kvm->srcu)) 1172 goto out_err_no_srcu; 1173 if (init_srcu_struct(&kvm->irq_srcu)) 1174 goto out_err_no_irq_srcu; 1175 1176 refcount_set(&kvm->users_count, 1); 1177 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1178 for (j = 0; j < 2; j++) { 1179 slots = &kvm->__memslots[i][j]; 1180 1181 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1182 slots->hva_tree = RB_ROOT_CACHED; 1183 slots->gfn_tree = RB_ROOT; 1184 hash_init(slots->id_hash); 1185 slots->node_idx = j; 1186 1187 /* Generations must be different for each address space. */ 1188 slots->generation = i; 1189 } 1190 1191 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1192 } 1193 1194 for (i = 0; i < KVM_NR_BUSES; i++) { 1195 rcu_assign_pointer(kvm->buses[i], 1196 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1197 if (!kvm->buses[i]) 1198 goto out_err_no_arch_destroy_vm; 1199 } 1200 1201 kvm->max_halt_poll_ns = halt_poll_ns; 1202 1203 r = kvm_arch_init_vm(kvm, type); 1204 if (r) 1205 goto out_err_no_arch_destroy_vm; 1206 1207 r = hardware_enable_all(); 1208 if (r) 1209 goto out_err_no_disable; 1210 1211 #ifdef CONFIG_HAVE_KVM_IRQFD 1212 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1213 #endif 1214 1215 r = kvm_init_mmu_notifier(kvm); 1216 if (r) 1217 goto out_err_no_mmu_notifier; 1218 1219 r = kvm_coalesced_mmio_init(kvm); 1220 if (r < 0) 1221 goto out_no_coalesced_mmio; 1222 1223 r = kvm_create_vm_debugfs(kvm, fdname); 1224 if (r) 1225 goto out_err_no_debugfs; 1226 1227 r = kvm_arch_post_init_vm(kvm); 1228 if (r) 1229 goto out_err; 1230 1231 mutex_lock(&kvm_lock); 1232 list_add(&kvm->vm_list, &vm_list); 1233 mutex_unlock(&kvm_lock); 1234 1235 preempt_notifier_inc(); 1236 kvm_init_pm_notifier(kvm); 1237 1238 return kvm; 1239 1240 out_err: 1241 kvm_destroy_vm_debugfs(kvm); 1242 out_err_no_debugfs: 1243 kvm_coalesced_mmio_free(kvm); 1244 out_no_coalesced_mmio: 1245 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1246 if (kvm->mmu_notifier.ops) 1247 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1248 #endif 1249 out_err_no_mmu_notifier: 1250 hardware_disable_all(); 1251 out_err_no_disable: 1252 kvm_arch_destroy_vm(kvm); 1253 out_err_no_arch_destroy_vm: 1254 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1255 for (i = 0; i < KVM_NR_BUSES; i++) 1256 kfree(kvm_get_bus(kvm, i)); 1257 cleanup_srcu_struct(&kvm->irq_srcu); 1258 out_err_no_irq_srcu: 1259 cleanup_srcu_struct(&kvm->srcu); 1260 out_err_no_srcu: 1261 kvm_arch_free_vm(kvm); 1262 mmdrop(current->mm); 1263 module_put(kvm_chardev_ops.owner); 1264 return ERR_PTR(r); 1265 } 1266 1267 static void kvm_destroy_devices(struct kvm *kvm) 1268 { 1269 struct kvm_device *dev, *tmp; 1270 1271 /* 1272 * We do not need to take the kvm->lock here, because nobody else 1273 * has a reference to the struct kvm at this point and therefore 1274 * cannot access the devices list anyhow. 1275 */ 1276 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1277 list_del(&dev->vm_node); 1278 dev->ops->destroy(dev); 1279 } 1280 } 1281 1282 static void kvm_destroy_vm(struct kvm *kvm) 1283 { 1284 int i; 1285 struct mm_struct *mm = kvm->mm; 1286 1287 kvm_destroy_pm_notifier(kvm); 1288 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1289 kvm_destroy_vm_debugfs(kvm); 1290 kvm_arch_sync_events(kvm); 1291 mutex_lock(&kvm_lock); 1292 list_del(&kvm->vm_list); 1293 mutex_unlock(&kvm_lock); 1294 kvm_arch_pre_destroy_vm(kvm); 1295 1296 kvm_free_irq_routing(kvm); 1297 for (i = 0; i < KVM_NR_BUSES; i++) { 1298 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1299 1300 if (bus) 1301 kvm_io_bus_destroy(bus); 1302 kvm->buses[i] = NULL; 1303 } 1304 kvm_coalesced_mmio_free(kvm); 1305 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1306 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1307 /* 1308 * At this point, pending calls to invalidate_range_start() 1309 * have completed but no more MMU notifiers will run, so 1310 * mn_active_invalidate_count may remain unbalanced. 1311 * No threads can be waiting in install_new_memslots as the 1312 * last reference on KVM has been dropped, but freeing 1313 * memslots would deadlock without this manual intervention. 1314 */ 1315 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1316 kvm->mn_active_invalidate_count = 0; 1317 #else 1318 kvm_flush_shadow_all(kvm); 1319 #endif 1320 kvm_arch_destroy_vm(kvm); 1321 kvm_destroy_devices(kvm); 1322 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1323 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1324 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1325 } 1326 cleanup_srcu_struct(&kvm->irq_srcu); 1327 cleanup_srcu_struct(&kvm->srcu); 1328 kvm_arch_free_vm(kvm); 1329 preempt_notifier_dec(); 1330 hardware_disable_all(); 1331 mmdrop(mm); 1332 module_put(kvm_chardev_ops.owner); 1333 } 1334 1335 void kvm_get_kvm(struct kvm *kvm) 1336 { 1337 refcount_inc(&kvm->users_count); 1338 } 1339 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1340 1341 /* 1342 * Make sure the vm is not during destruction, which is a safe version of 1343 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1344 */ 1345 bool kvm_get_kvm_safe(struct kvm *kvm) 1346 { 1347 return refcount_inc_not_zero(&kvm->users_count); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1350 1351 void kvm_put_kvm(struct kvm *kvm) 1352 { 1353 if (refcount_dec_and_test(&kvm->users_count)) 1354 kvm_destroy_vm(kvm); 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1357 1358 /* 1359 * Used to put a reference that was taken on behalf of an object associated 1360 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1361 * of the new file descriptor fails and the reference cannot be transferred to 1362 * its final owner. In such cases, the caller is still actively using @kvm and 1363 * will fail miserably if the refcount unexpectedly hits zero. 1364 */ 1365 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1366 { 1367 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1368 } 1369 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1370 1371 static int kvm_vm_release(struct inode *inode, struct file *filp) 1372 { 1373 struct kvm *kvm = filp->private_data; 1374 1375 kvm_irqfd_release(kvm); 1376 1377 kvm_put_kvm(kvm); 1378 return 0; 1379 } 1380 1381 /* 1382 * Allocation size is twice as large as the actual dirty bitmap size. 1383 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1384 */ 1385 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1386 { 1387 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1388 1389 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1390 if (!memslot->dirty_bitmap) 1391 return -ENOMEM; 1392 1393 return 0; 1394 } 1395 1396 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1397 { 1398 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1399 int node_idx_inactive = active->node_idx ^ 1; 1400 1401 return &kvm->__memslots[as_id][node_idx_inactive]; 1402 } 1403 1404 /* 1405 * Helper to get the address space ID when one of memslot pointers may be NULL. 1406 * This also serves as a sanity that at least one of the pointers is non-NULL, 1407 * and that their address space IDs don't diverge. 1408 */ 1409 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1410 struct kvm_memory_slot *b) 1411 { 1412 if (WARN_ON_ONCE(!a && !b)) 1413 return 0; 1414 1415 if (!a) 1416 return b->as_id; 1417 if (!b) 1418 return a->as_id; 1419 1420 WARN_ON_ONCE(a->as_id != b->as_id); 1421 return a->as_id; 1422 } 1423 1424 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1425 struct kvm_memory_slot *slot) 1426 { 1427 struct rb_root *gfn_tree = &slots->gfn_tree; 1428 struct rb_node **node, *parent; 1429 int idx = slots->node_idx; 1430 1431 parent = NULL; 1432 for (node = &gfn_tree->rb_node; *node; ) { 1433 struct kvm_memory_slot *tmp; 1434 1435 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1436 parent = *node; 1437 if (slot->base_gfn < tmp->base_gfn) 1438 node = &(*node)->rb_left; 1439 else if (slot->base_gfn > tmp->base_gfn) 1440 node = &(*node)->rb_right; 1441 else 1442 BUG(); 1443 } 1444 1445 rb_link_node(&slot->gfn_node[idx], parent, node); 1446 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1447 } 1448 1449 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1450 struct kvm_memory_slot *slot) 1451 { 1452 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1453 } 1454 1455 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1456 struct kvm_memory_slot *old, 1457 struct kvm_memory_slot *new) 1458 { 1459 int idx = slots->node_idx; 1460 1461 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1462 1463 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1464 &slots->gfn_tree); 1465 } 1466 1467 /* 1468 * Replace @old with @new in the inactive memslots. 1469 * 1470 * With NULL @old this simply adds @new. 1471 * With NULL @new this simply removes @old. 1472 * 1473 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1474 * appropriately. 1475 */ 1476 static void kvm_replace_memslot(struct kvm *kvm, 1477 struct kvm_memory_slot *old, 1478 struct kvm_memory_slot *new) 1479 { 1480 int as_id = kvm_memslots_get_as_id(old, new); 1481 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1482 int idx = slots->node_idx; 1483 1484 if (old) { 1485 hash_del(&old->id_node[idx]); 1486 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1487 1488 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1489 atomic_long_set(&slots->last_used_slot, (long)new); 1490 1491 if (!new) { 1492 kvm_erase_gfn_node(slots, old); 1493 return; 1494 } 1495 } 1496 1497 /* 1498 * Initialize @new's hva range. Do this even when replacing an @old 1499 * slot, kvm_copy_memslot() deliberately does not touch node data. 1500 */ 1501 new->hva_node[idx].start = new->userspace_addr; 1502 new->hva_node[idx].last = new->userspace_addr + 1503 (new->npages << PAGE_SHIFT) - 1; 1504 1505 /* 1506 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1507 * hva_node needs to be swapped with remove+insert even though hva can't 1508 * change when replacing an existing slot. 1509 */ 1510 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1511 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1512 1513 /* 1514 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1515 * switch the node in the gfn tree instead of removing the old and 1516 * inserting the new as two separate operations. Replacement is a 1517 * single O(1) operation versus two O(log(n)) operations for 1518 * remove+insert. 1519 */ 1520 if (old && old->base_gfn == new->base_gfn) { 1521 kvm_replace_gfn_node(slots, old, new); 1522 } else { 1523 if (old) 1524 kvm_erase_gfn_node(slots, old); 1525 kvm_insert_gfn_node(slots, new); 1526 } 1527 } 1528 1529 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1530 { 1531 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1532 1533 #ifdef __KVM_HAVE_READONLY_MEM 1534 valid_flags |= KVM_MEM_READONLY; 1535 #endif 1536 1537 if (mem->flags & ~valid_flags) 1538 return -EINVAL; 1539 1540 return 0; 1541 } 1542 1543 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1544 { 1545 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1546 1547 /* Grab the generation from the activate memslots. */ 1548 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1549 1550 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1551 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1552 1553 /* 1554 * Do not store the new memslots while there are invalidations in 1555 * progress, otherwise the locking in invalidate_range_start and 1556 * invalidate_range_end will be unbalanced. 1557 */ 1558 spin_lock(&kvm->mn_invalidate_lock); 1559 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1560 while (kvm->mn_active_invalidate_count) { 1561 set_current_state(TASK_UNINTERRUPTIBLE); 1562 spin_unlock(&kvm->mn_invalidate_lock); 1563 schedule(); 1564 spin_lock(&kvm->mn_invalidate_lock); 1565 } 1566 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1567 rcu_assign_pointer(kvm->memslots[as_id], slots); 1568 spin_unlock(&kvm->mn_invalidate_lock); 1569 1570 /* 1571 * Acquired in kvm_set_memslot. Must be released before synchronize 1572 * SRCU below in order to avoid deadlock with another thread 1573 * acquiring the slots_arch_lock in an srcu critical section. 1574 */ 1575 mutex_unlock(&kvm->slots_arch_lock); 1576 1577 synchronize_srcu_expedited(&kvm->srcu); 1578 1579 /* 1580 * Increment the new memslot generation a second time, dropping the 1581 * update in-progress flag and incrementing the generation based on 1582 * the number of address spaces. This provides a unique and easily 1583 * identifiable generation number while the memslots are in flux. 1584 */ 1585 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1586 1587 /* 1588 * Generations must be unique even across address spaces. We do not need 1589 * a global counter for that, instead the generation space is evenly split 1590 * across address spaces. For example, with two address spaces, address 1591 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1592 * use generations 1, 3, 5, ... 1593 */ 1594 gen += KVM_ADDRESS_SPACE_NUM; 1595 1596 kvm_arch_memslots_updated(kvm, gen); 1597 1598 slots->generation = gen; 1599 } 1600 1601 static int kvm_prepare_memory_region(struct kvm *kvm, 1602 const struct kvm_memory_slot *old, 1603 struct kvm_memory_slot *new, 1604 enum kvm_mr_change change) 1605 { 1606 int r; 1607 1608 /* 1609 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1610 * will be freed on "commit". If logging is enabled in both old and 1611 * new, reuse the existing bitmap. If logging is enabled only in the 1612 * new and KVM isn't using a ring buffer, allocate and initialize a 1613 * new bitmap. 1614 */ 1615 if (change != KVM_MR_DELETE) { 1616 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1617 new->dirty_bitmap = NULL; 1618 else if (old && old->dirty_bitmap) 1619 new->dirty_bitmap = old->dirty_bitmap; 1620 else if (!kvm->dirty_ring_size) { 1621 r = kvm_alloc_dirty_bitmap(new); 1622 if (r) 1623 return r; 1624 1625 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1626 bitmap_set(new->dirty_bitmap, 0, new->npages); 1627 } 1628 } 1629 1630 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1631 1632 /* Free the bitmap on failure if it was allocated above. */ 1633 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1634 kvm_destroy_dirty_bitmap(new); 1635 1636 return r; 1637 } 1638 1639 static void kvm_commit_memory_region(struct kvm *kvm, 1640 struct kvm_memory_slot *old, 1641 const struct kvm_memory_slot *new, 1642 enum kvm_mr_change change) 1643 { 1644 /* 1645 * Update the total number of memslot pages before calling the arch 1646 * hook so that architectures can consume the result directly. 1647 */ 1648 if (change == KVM_MR_DELETE) 1649 kvm->nr_memslot_pages -= old->npages; 1650 else if (change == KVM_MR_CREATE) 1651 kvm->nr_memslot_pages += new->npages; 1652 1653 kvm_arch_commit_memory_region(kvm, old, new, change); 1654 1655 switch (change) { 1656 case KVM_MR_CREATE: 1657 /* Nothing more to do. */ 1658 break; 1659 case KVM_MR_DELETE: 1660 /* Free the old memslot and all its metadata. */ 1661 kvm_free_memslot(kvm, old); 1662 break; 1663 case KVM_MR_MOVE: 1664 case KVM_MR_FLAGS_ONLY: 1665 /* 1666 * Free the dirty bitmap as needed; the below check encompasses 1667 * both the flags and whether a ring buffer is being used) 1668 */ 1669 if (old->dirty_bitmap && !new->dirty_bitmap) 1670 kvm_destroy_dirty_bitmap(old); 1671 1672 /* 1673 * The final quirk. Free the detached, old slot, but only its 1674 * memory, not any metadata. Metadata, including arch specific 1675 * data, may be reused by @new. 1676 */ 1677 kfree(old); 1678 break; 1679 default: 1680 BUG(); 1681 } 1682 } 1683 1684 /* 1685 * Activate @new, which must be installed in the inactive slots by the caller, 1686 * by swapping the active slots and then propagating @new to @old once @old is 1687 * unreachable and can be safely modified. 1688 * 1689 * With NULL @old this simply adds @new to @active (while swapping the sets). 1690 * With NULL @new this simply removes @old from @active and frees it 1691 * (while also swapping the sets). 1692 */ 1693 static void kvm_activate_memslot(struct kvm *kvm, 1694 struct kvm_memory_slot *old, 1695 struct kvm_memory_slot *new) 1696 { 1697 int as_id = kvm_memslots_get_as_id(old, new); 1698 1699 kvm_swap_active_memslots(kvm, as_id); 1700 1701 /* Propagate the new memslot to the now inactive memslots. */ 1702 kvm_replace_memslot(kvm, old, new); 1703 } 1704 1705 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1706 const struct kvm_memory_slot *src) 1707 { 1708 dest->base_gfn = src->base_gfn; 1709 dest->npages = src->npages; 1710 dest->dirty_bitmap = src->dirty_bitmap; 1711 dest->arch = src->arch; 1712 dest->userspace_addr = src->userspace_addr; 1713 dest->flags = src->flags; 1714 dest->id = src->id; 1715 dest->as_id = src->as_id; 1716 } 1717 1718 static void kvm_invalidate_memslot(struct kvm *kvm, 1719 struct kvm_memory_slot *old, 1720 struct kvm_memory_slot *invalid_slot) 1721 { 1722 /* 1723 * Mark the current slot INVALID. As with all memslot modifications, 1724 * this must be done on an unreachable slot to avoid modifying the 1725 * current slot in the active tree. 1726 */ 1727 kvm_copy_memslot(invalid_slot, old); 1728 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1729 kvm_replace_memslot(kvm, old, invalid_slot); 1730 1731 /* 1732 * Activate the slot that is now marked INVALID, but don't propagate 1733 * the slot to the now inactive slots. The slot is either going to be 1734 * deleted or recreated as a new slot. 1735 */ 1736 kvm_swap_active_memslots(kvm, old->as_id); 1737 1738 /* 1739 * From this point no new shadow pages pointing to a deleted, or moved, 1740 * memslot will be created. Validation of sp->gfn happens in: 1741 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1742 * - kvm_is_visible_gfn (mmu_check_root) 1743 */ 1744 kvm_arch_flush_shadow_memslot(kvm, old); 1745 kvm_arch_guest_memory_reclaimed(kvm); 1746 1747 /* Was released by kvm_swap_active_memslots, reacquire. */ 1748 mutex_lock(&kvm->slots_arch_lock); 1749 1750 /* 1751 * Copy the arch-specific field of the newly-installed slot back to the 1752 * old slot as the arch data could have changed between releasing 1753 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1754 * above. Writers are required to retrieve memslots *after* acquiring 1755 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1756 */ 1757 old->arch = invalid_slot->arch; 1758 } 1759 1760 static void kvm_create_memslot(struct kvm *kvm, 1761 struct kvm_memory_slot *new) 1762 { 1763 /* Add the new memslot to the inactive set and activate. */ 1764 kvm_replace_memslot(kvm, NULL, new); 1765 kvm_activate_memslot(kvm, NULL, new); 1766 } 1767 1768 static void kvm_delete_memslot(struct kvm *kvm, 1769 struct kvm_memory_slot *old, 1770 struct kvm_memory_slot *invalid_slot) 1771 { 1772 /* 1773 * Remove the old memslot (in the inactive memslots) by passing NULL as 1774 * the "new" slot, and for the invalid version in the active slots. 1775 */ 1776 kvm_replace_memslot(kvm, old, NULL); 1777 kvm_activate_memslot(kvm, invalid_slot, NULL); 1778 } 1779 1780 static void kvm_move_memslot(struct kvm *kvm, 1781 struct kvm_memory_slot *old, 1782 struct kvm_memory_slot *new, 1783 struct kvm_memory_slot *invalid_slot) 1784 { 1785 /* 1786 * Replace the old memslot in the inactive slots, and then swap slots 1787 * and replace the current INVALID with the new as well. 1788 */ 1789 kvm_replace_memslot(kvm, old, new); 1790 kvm_activate_memslot(kvm, invalid_slot, new); 1791 } 1792 1793 static void kvm_update_flags_memslot(struct kvm *kvm, 1794 struct kvm_memory_slot *old, 1795 struct kvm_memory_slot *new) 1796 { 1797 /* 1798 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1799 * an intermediate step. Instead, the old memslot is simply replaced 1800 * with a new, updated copy in both memslot sets. 1801 */ 1802 kvm_replace_memslot(kvm, old, new); 1803 kvm_activate_memslot(kvm, old, new); 1804 } 1805 1806 static int kvm_set_memslot(struct kvm *kvm, 1807 struct kvm_memory_slot *old, 1808 struct kvm_memory_slot *new, 1809 enum kvm_mr_change change) 1810 { 1811 struct kvm_memory_slot *invalid_slot; 1812 int r; 1813 1814 /* 1815 * Released in kvm_swap_active_memslots. 1816 * 1817 * Must be held from before the current memslots are copied until 1818 * after the new memslots are installed with rcu_assign_pointer, 1819 * then released before the synchronize srcu in kvm_swap_active_memslots. 1820 * 1821 * When modifying memslots outside of the slots_lock, must be held 1822 * before reading the pointer to the current memslots until after all 1823 * changes to those memslots are complete. 1824 * 1825 * These rules ensure that installing new memslots does not lose 1826 * changes made to the previous memslots. 1827 */ 1828 mutex_lock(&kvm->slots_arch_lock); 1829 1830 /* 1831 * Invalidate the old slot if it's being deleted or moved. This is 1832 * done prior to actually deleting/moving the memslot to allow vCPUs to 1833 * continue running by ensuring there are no mappings or shadow pages 1834 * for the memslot when it is deleted/moved. Without pre-invalidation 1835 * (and without a lock), a window would exist between effecting the 1836 * delete/move and committing the changes in arch code where KVM or a 1837 * guest could access a non-existent memslot. 1838 * 1839 * Modifications are done on a temporary, unreachable slot. The old 1840 * slot needs to be preserved in case a later step fails and the 1841 * invalidation needs to be reverted. 1842 */ 1843 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1844 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1845 if (!invalid_slot) { 1846 mutex_unlock(&kvm->slots_arch_lock); 1847 return -ENOMEM; 1848 } 1849 kvm_invalidate_memslot(kvm, old, invalid_slot); 1850 } 1851 1852 r = kvm_prepare_memory_region(kvm, old, new, change); 1853 if (r) { 1854 /* 1855 * For DELETE/MOVE, revert the above INVALID change. No 1856 * modifications required since the original slot was preserved 1857 * in the inactive slots. Changing the active memslots also 1858 * release slots_arch_lock. 1859 */ 1860 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1861 kvm_activate_memslot(kvm, invalid_slot, old); 1862 kfree(invalid_slot); 1863 } else { 1864 mutex_unlock(&kvm->slots_arch_lock); 1865 } 1866 return r; 1867 } 1868 1869 /* 1870 * For DELETE and MOVE, the working slot is now active as the INVALID 1871 * version of the old slot. MOVE is particularly special as it reuses 1872 * the old slot and returns a copy of the old slot (in working_slot). 1873 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1874 * old slot is detached but otherwise preserved. 1875 */ 1876 if (change == KVM_MR_CREATE) 1877 kvm_create_memslot(kvm, new); 1878 else if (change == KVM_MR_DELETE) 1879 kvm_delete_memslot(kvm, old, invalid_slot); 1880 else if (change == KVM_MR_MOVE) 1881 kvm_move_memslot(kvm, old, new, invalid_slot); 1882 else if (change == KVM_MR_FLAGS_ONLY) 1883 kvm_update_flags_memslot(kvm, old, new); 1884 else 1885 BUG(); 1886 1887 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1888 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1889 kfree(invalid_slot); 1890 1891 /* 1892 * No need to refresh new->arch, changes after dropping slots_arch_lock 1893 * will directly hit the final, active memslot. Architectures are 1894 * responsible for knowing that new->arch may be stale. 1895 */ 1896 kvm_commit_memory_region(kvm, old, new, change); 1897 1898 return 0; 1899 } 1900 1901 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1902 gfn_t start, gfn_t end) 1903 { 1904 struct kvm_memslot_iter iter; 1905 1906 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1907 if (iter.slot->id != id) 1908 return true; 1909 } 1910 1911 return false; 1912 } 1913 1914 /* 1915 * Allocate some memory and give it an address in the guest physical address 1916 * space. 1917 * 1918 * Discontiguous memory is allowed, mostly for framebuffers. 1919 * 1920 * Must be called holding kvm->slots_lock for write. 1921 */ 1922 int __kvm_set_memory_region(struct kvm *kvm, 1923 const struct kvm_userspace_memory_region *mem) 1924 { 1925 struct kvm_memory_slot *old, *new; 1926 struct kvm_memslots *slots; 1927 enum kvm_mr_change change; 1928 unsigned long npages; 1929 gfn_t base_gfn; 1930 int as_id, id; 1931 int r; 1932 1933 r = check_memory_region_flags(mem); 1934 if (r) 1935 return r; 1936 1937 as_id = mem->slot >> 16; 1938 id = (u16)mem->slot; 1939 1940 /* General sanity checks */ 1941 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1942 (mem->memory_size != (unsigned long)mem->memory_size)) 1943 return -EINVAL; 1944 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1945 return -EINVAL; 1946 /* We can read the guest memory with __xxx_user() later on. */ 1947 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1948 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1949 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1950 mem->memory_size)) 1951 return -EINVAL; 1952 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1953 return -EINVAL; 1954 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1955 return -EINVAL; 1956 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1957 return -EINVAL; 1958 1959 slots = __kvm_memslots(kvm, as_id); 1960 1961 /* 1962 * Note, the old memslot (and the pointer itself!) may be invalidated 1963 * and/or destroyed by kvm_set_memslot(). 1964 */ 1965 old = id_to_memslot(slots, id); 1966 1967 if (!mem->memory_size) { 1968 if (!old || !old->npages) 1969 return -EINVAL; 1970 1971 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1972 return -EIO; 1973 1974 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1975 } 1976 1977 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1978 npages = (mem->memory_size >> PAGE_SHIFT); 1979 1980 if (!old || !old->npages) { 1981 change = KVM_MR_CREATE; 1982 1983 /* 1984 * To simplify KVM internals, the total number of pages across 1985 * all memslots must fit in an unsigned long. 1986 */ 1987 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1988 return -EINVAL; 1989 } else { /* Modify an existing slot. */ 1990 if ((mem->userspace_addr != old->userspace_addr) || 1991 (npages != old->npages) || 1992 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1993 return -EINVAL; 1994 1995 if (base_gfn != old->base_gfn) 1996 change = KVM_MR_MOVE; 1997 else if (mem->flags != old->flags) 1998 change = KVM_MR_FLAGS_ONLY; 1999 else /* Nothing to change. */ 2000 return 0; 2001 } 2002 2003 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2004 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2005 return -EEXIST; 2006 2007 /* Allocate a slot that will persist in the memslot. */ 2008 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2009 if (!new) 2010 return -ENOMEM; 2011 2012 new->as_id = as_id; 2013 new->id = id; 2014 new->base_gfn = base_gfn; 2015 new->npages = npages; 2016 new->flags = mem->flags; 2017 new->userspace_addr = mem->userspace_addr; 2018 2019 r = kvm_set_memslot(kvm, old, new, change); 2020 if (r) 2021 kfree(new); 2022 return r; 2023 } 2024 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2025 2026 int kvm_set_memory_region(struct kvm *kvm, 2027 const struct kvm_userspace_memory_region *mem) 2028 { 2029 int r; 2030 2031 mutex_lock(&kvm->slots_lock); 2032 r = __kvm_set_memory_region(kvm, mem); 2033 mutex_unlock(&kvm->slots_lock); 2034 return r; 2035 } 2036 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2037 2038 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2039 struct kvm_userspace_memory_region *mem) 2040 { 2041 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2042 return -EINVAL; 2043 2044 return kvm_set_memory_region(kvm, mem); 2045 } 2046 2047 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2048 /** 2049 * kvm_get_dirty_log - get a snapshot of dirty pages 2050 * @kvm: pointer to kvm instance 2051 * @log: slot id and address to which we copy the log 2052 * @is_dirty: set to '1' if any dirty pages were found 2053 * @memslot: set to the associated memslot, always valid on success 2054 */ 2055 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2056 int *is_dirty, struct kvm_memory_slot **memslot) 2057 { 2058 struct kvm_memslots *slots; 2059 int i, as_id, id; 2060 unsigned long n; 2061 unsigned long any = 0; 2062 2063 /* Dirty ring tracking is exclusive to dirty log tracking */ 2064 if (kvm->dirty_ring_size) 2065 return -ENXIO; 2066 2067 *memslot = NULL; 2068 *is_dirty = 0; 2069 2070 as_id = log->slot >> 16; 2071 id = (u16)log->slot; 2072 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2073 return -EINVAL; 2074 2075 slots = __kvm_memslots(kvm, as_id); 2076 *memslot = id_to_memslot(slots, id); 2077 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2078 return -ENOENT; 2079 2080 kvm_arch_sync_dirty_log(kvm, *memslot); 2081 2082 n = kvm_dirty_bitmap_bytes(*memslot); 2083 2084 for (i = 0; !any && i < n/sizeof(long); ++i) 2085 any = (*memslot)->dirty_bitmap[i]; 2086 2087 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2088 return -EFAULT; 2089 2090 if (any) 2091 *is_dirty = 1; 2092 return 0; 2093 } 2094 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2095 2096 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2097 /** 2098 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2099 * and reenable dirty page tracking for the corresponding pages. 2100 * @kvm: pointer to kvm instance 2101 * @log: slot id and address to which we copy the log 2102 * 2103 * We need to keep it in mind that VCPU threads can write to the bitmap 2104 * concurrently. So, to avoid losing track of dirty pages we keep the 2105 * following order: 2106 * 2107 * 1. Take a snapshot of the bit and clear it if needed. 2108 * 2. Write protect the corresponding page. 2109 * 3. Copy the snapshot to the userspace. 2110 * 4. Upon return caller flushes TLB's if needed. 2111 * 2112 * Between 2 and 4, the guest may write to the page using the remaining TLB 2113 * entry. This is not a problem because the page is reported dirty using 2114 * the snapshot taken before and step 4 ensures that writes done after 2115 * exiting to userspace will be logged for the next call. 2116 * 2117 */ 2118 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2119 { 2120 struct kvm_memslots *slots; 2121 struct kvm_memory_slot *memslot; 2122 int i, as_id, id; 2123 unsigned long n; 2124 unsigned long *dirty_bitmap; 2125 unsigned long *dirty_bitmap_buffer; 2126 bool flush; 2127 2128 /* Dirty ring tracking is exclusive to dirty log tracking */ 2129 if (kvm->dirty_ring_size) 2130 return -ENXIO; 2131 2132 as_id = log->slot >> 16; 2133 id = (u16)log->slot; 2134 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2135 return -EINVAL; 2136 2137 slots = __kvm_memslots(kvm, as_id); 2138 memslot = id_to_memslot(slots, id); 2139 if (!memslot || !memslot->dirty_bitmap) 2140 return -ENOENT; 2141 2142 dirty_bitmap = memslot->dirty_bitmap; 2143 2144 kvm_arch_sync_dirty_log(kvm, memslot); 2145 2146 n = kvm_dirty_bitmap_bytes(memslot); 2147 flush = false; 2148 if (kvm->manual_dirty_log_protect) { 2149 /* 2150 * Unlike kvm_get_dirty_log, we always return false in *flush, 2151 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2152 * is some code duplication between this function and 2153 * kvm_get_dirty_log, but hopefully all architecture 2154 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2155 * can be eliminated. 2156 */ 2157 dirty_bitmap_buffer = dirty_bitmap; 2158 } else { 2159 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2160 memset(dirty_bitmap_buffer, 0, n); 2161 2162 KVM_MMU_LOCK(kvm); 2163 for (i = 0; i < n / sizeof(long); i++) { 2164 unsigned long mask; 2165 gfn_t offset; 2166 2167 if (!dirty_bitmap[i]) 2168 continue; 2169 2170 flush = true; 2171 mask = xchg(&dirty_bitmap[i], 0); 2172 dirty_bitmap_buffer[i] = mask; 2173 2174 offset = i * BITS_PER_LONG; 2175 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2176 offset, mask); 2177 } 2178 KVM_MMU_UNLOCK(kvm); 2179 } 2180 2181 if (flush) 2182 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2183 2184 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2185 return -EFAULT; 2186 return 0; 2187 } 2188 2189 2190 /** 2191 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2192 * @kvm: kvm instance 2193 * @log: slot id and address to which we copy the log 2194 * 2195 * Steps 1-4 below provide general overview of dirty page logging. See 2196 * kvm_get_dirty_log_protect() function description for additional details. 2197 * 2198 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2199 * always flush the TLB (step 4) even if previous step failed and the dirty 2200 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2201 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2202 * writes will be marked dirty for next log read. 2203 * 2204 * 1. Take a snapshot of the bit and clear it if needed. 2205 * 2. Write protect the corresponding page. 2206 * 3. Copy the snapshot to the userspace. 2207 * 4. Flush TLB's if needed. 2208 */ 2209 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2210 struct kvm_dirty_log *log) 2211 { 2212 int r; 2213 2214 mutex_lock(&kvm->slots_lock); 2215 2216 r = kvm_get_dirty_log_protect(kvm, log); 2217 2218 mutex_unlock(&kvm->slots_lock); 2219 return r; 2220 } 2221 2222 /** 2223 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2224 * and reenable dirty page tracking for the corresponding pages. 2225 * @kvm: pointer to kvm instance 2226 * @log: slot id and address from which to fetch the bitmap of dirty pages 2227 */ 2228 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2229 struct kvm_clear_dirty_log *log) 2230 { 2231 struct kvm_memslots *slots; 2232 struct kvm_memory_slot *memslot; 2233 int as_id, id; 2234 gfn_t offset; 2235 unsigned long i, n; 2236 unsigned long *dirty_bitmap; 2237 unsigned long *dirty_bitmap_buffer; 2238 bool flush; 2239 2240 /* Dirty ring tracking is exclusive to dirty log tracking */ 2241 if (kvm->dirty_ring_size) 2242 return -ENXIO; 2243 2244 as_id = log->slot >> 16; 2245 id = (u16)log->slot; 2246 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2247 return -EINVAL; 2248 2249 if (log->first_page & 63) 2250 return -EINVAL; 2251 2252 slots = __kvm_memslots(kvm, as_id); 2253 memslot = id_to_memslot(slots, id); 2254 if (!memslot || !memslot->dirty_bitmap) 2255 return -ENOENT; 2256 2257 dirty_bitmap = memslot->dirty_bitmap; 2258 2259 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2260 2261 if (log->first_page > memslot->npages || 2262 log->num_pages > memslot->npages - log->first_page || 2263 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2264 return -EINVAL; 2265 2266 kvm_arch_sync_dirty_log(kvm, memslot); 2267 2268 flush = false; 2269 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2270 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2271 return -EFAULT; 2272 2273 KVM_MMU_LOCK(kvm); 2274 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2275 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2276 i++, offset += BITS_PER_LONG) { 2277 unsigned long mask = *dirty_bitmap_buffer++; 2278 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2279 if (!mask) 2280 continue; 2281 2282 mask &= atomic_long_fetch_andnot(mask, p); 2283 2284 /* 2285 * mask contains the bits that really have been cleared. This 2286 * never includes any bits beyond the length of the memslot (if 2287 * the length is not aligned to 64 pages), therefore it is not 2288 * a problem if userspace sets them in log->dirty_bitmap. 2289 */ 2290 if (mask) { 2291 flush = true; 2292 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2293 offset, mask); 2294 } 2295 } 2296 KVM_MMU_UNLOCK(kvm); 2297 2298 if (flush) 2299 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2300 2301 return 0; 2302 } 2303 2304 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2305 struct kvm_clear_dirty_log *log) 2306 { 2307 int r; 2308 2309 mutex_lock(&kvm->slots_lock); 2310 2311 r = kvm_clear_dirty_log_protect(kvm, log); 2312 2313 mutex_unlock(&kvm->slots_lock); 2314 return r; 2315 } 2316 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2317 2318 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2319 { 2320 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2321 } 2322 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2323 2324 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2325 { 2326 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2327 u64 gen = slots->generation; 2328 struct kvm_memory_slot *slot; 2329 2330 /* 2331 * This also protects against using a memslot from a different address space, 2332 * since different address spaces have different generation numbers. 2333 */ 2334 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2335 vcpu->last_used_slot = NULL; 2336 vcpu->last_used_slot_gen = gen; 2337 } 2338 2339 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2340 if (slot) 2341 return slot; 2342 2343 /* 2344 * Fall back to searching all memslots. We purposely use 2345 * search_memslots() instead of __gfn_to_memslot() to avoid 2346 * thrashing the VM-wide last_used_slot in kvm_memslots. 2347 */ 2348 slot = search_memslots(slots, gfn, false); 2349 if (slot) { 2350 vcpu->last_used_slot = slot; 2351 return slot; 2352 } 2353 2354 return NULL; 2355 } 2356 2357 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2358 { 2359 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2360 2361 return kvm_is_visible_memslot(memslot); 2362 } 2363 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2364 2365 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2366 { 2367 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2368 2369 return kvm_is_visible_memslot(memslot); 2370 } 2371 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2372 2373 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2374 { 2375 struct vm_area_struct *vma; 2376 unsigned long addr, size; 2377 2378 size = PAGE_SIZE; 2379 2380 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2381 if (kvm_is_error_hva(addr)) 2382 return PAGE_SIZE; 2383 2384 mmap_read_lock(current->mm); 2385 vma = find_vma(current->mm, addr); 2386 if (!vma) 2387 goto out; 2388 2389 size = vma_kernel_pagesize(vma); 2390 2391 out: 2392 mmap_read_unlock(current->mm); 2393 2394 return size; 2395 } 2396 2397 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2398 { 2399 return slot->flags & KVM_MEM_READONLY; 2400 } 2401 2402 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2403 gfn_t *nr_pages, bool write) 2404 { 2405 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2406 return KVM_HVA_ERR_BAD; 2407 2408 if (memslot_is_readonly(slot) && write) 2409 return KVM_HVA_ERR_RO_BAD; 2410 2411 if (nr_pages) 2412 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2413 2414 return __gfn_to_hva_memslot(slot, gfn); 2415 } 2416 2417 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2418 gfn_t *nr_pages) 2419 { 2420 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2421 } 2422 2423 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2424 gfn_t gfn) 2425 { 2426 return gfn_to_hva_many(slot, gfn, NULL); 2427 } 2428 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2429 2430 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2431 { 2432 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2433 } 2434 EXPORT_SYMBOL_GPL(gfn_to_hva); 2435 2436 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2437 { 2438 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2439 } 2440 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2441 2442 /* 2443 * Return the hva of a @gfn and the R/W attribute if possible. 2444 * 2445 * @slot: the kvm_memory_slot which contains @gfn 2446 * @gfn: the gfn to be translated 2447 * @writable: used to return the read/write attribute of the @slot if the hva 2448 * is valid and @writable is not NULL 2449 */ 2450 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2451 gfn_t gfn, bool *writable) 2452 { 2453 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2454 2455 if (!kvm_is_error_hva(hva) && writable) 2456 *writable = !memslot_is_readonly(slot); 2457 2458 return hva; 2459 } 2460 2461 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2462 { 2463 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2464 2465 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2466 } 2467 2468 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2469 { 2470 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2471 2472 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2473 } 2474 2475 static inline int check_user_page_hwpoison(unsigned long addr) 2476 { 2477 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2478 2479 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2480 return rc == -EHWPOISON; 2481 } 2482 2483 /* 2484 * The fast path to get the writable pfn which will be stored in @pfn, 2485 * true indicates success, otherwise false is returned. It's also the 2486 * only part that runs if we can in atomic context. 2487 */ 2488 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2489 bool *writable, kvm_pfn_t *pfn) 2490 { 2491 struct page *page[1]; 2492 2493 /* 2494 * Fast pin a writable pfn only if it is a write fault request 2495 * or the caller allows to map a writable pfn for a read fault 2496 * request. 2497 */ 2498 if (!(write_fault || writable)) 2499 return false; 2500 2501 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2502 *pfn = page_to_pfn(page[0]); 2503 2504 if (writable) 2505 *writable = true; 2506 return true; 2507 } 2508 2509 return false; 2510 } 2511 2512 /* 2513 * The slow path to get the pfn of the specified host virtual address, 2514 * 1 indicates success, -errno is returned if error is detected. 2515 */ 2516 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2517 bool *writable, kvm_pfn_t *pfn) 2518 { 2519 unsigned int flags = FOLL_HWPOISON; 2520 struct page *page; 2521 int npages; 2522 2523 might_sleep(); 2524 2525 if (writable) 2526 *writable = write_fault; 2527 2528 if (write_fault) 2529 flags |= FOLL_WRITE; 2530 if (async) 2531 flags |= FOLL_NOWAIT; 2532 2533 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2534 if (npages != 1) 2535 return npages; 2536 2537 /* map read fault as writable if possible */ 2538 if (unlikely(!write_fault) && writable) { 2539 struct page *wpage; 2540 2541 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2542 *writable = true; 2543 put_page(page); 2544 page = wpage; 2545 } 2546 } 2547 *pfn = page_to_pfn(page); 2548 return npages; 2549 } 2550 2551 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2552 { 2553 if (unlikely(!(vma->vm_flags & VM_READ))) 2554 return false; 2555 2556 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2557 return false; 2558 2559 return true; 2560 } 2561 2562 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2563 { 2564 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2565 2566 if (!page) 2567 return 1; 2568 2569 return get_page_unless_zero(page); 2570 } 2571 2572 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2573 unsigned long addr, bool write_fault, 2574 bool *writable, kvm_pfn_t *p_pfn) 2575 { 2576 kvm_pfn_t pfn; 2577 pte_t *ptep; 2578 spinlock_t *ptl; 2579 int r; 2580 2581 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2582 if (r) { 2583 /* 2584 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2585 * not call the fault handler, so do it here. 2586 */ 2587 bool unlocked = false; 2588 r = fixup_user_fault(current->mm, addr, 2589 (write_fault ? FAULT_FLAG_WRITE : 0), 2590 &unlocked); 2591 if (unlocked) 2592 return -EAGAIN; 2593 if (r) 2594 return r; 2595 2596 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2597 if (r) 2598 return r; 2599 } 2600 2601 if (write_fault && !pte_write(*ptep)) { 2602 pfn = KVM_PFN_ERR_RO_FAULT; 2603 goto out; 2604 } 2605 2606 if (writable) 2607 *writable = pte_write(*ptep); 2608 pfn = pte_pfn(*ptep); 2609 2610 /* 2611 * Get a reference here because callers of *hva_to_pfn* and 2612 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2613 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2614 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2615 * simply do nothing for reserved pfns. 2616 * 2617 * Whoever called remap_pfn_range is also going to call e.g. 2618 * unmap_mapping_range before the underlying pages are freed, 2619 * causing a call to our MMU notifier. 2620 * 2621 * Certain IO or PFNMAP mappings can be backed with valid 2622 * struct pages, but be allocated without refcounting e.g., 2623 * tail pages of non-compound higher order allocations, which 2624 * would then underflow the refcount when the caller does the 2625 * required put_page. Don't allow those pages here. 2626 */ 2627 if (!kvm_try_get_pfn(pfn)) 2628 r = -EFAULT; 2629 2630 out: 2631 pte_unmap_unlock(ptep, ptl); 2632 *p_pfn = pfn; 2633 2634 return r; 2635 } 2636 2637 /* 2638 * Pin guest page in memory and return its pfn. 2639 * @addr: host virtual address which maps memory to the guest 2640 * @atomic: whether this function can sleep 2641 * @async: whether this function need to wait IO complete if the 2642 * host page is not in the memory 2643 * @write_fault: whether we should get a writable host page 2644 * @writable: whether it allows to map a writable host page for !@write_fault 2645 * 2646 * The function will map a writable host page for these two cases: 2647 * 1): @write_fault = true 2648 * 2): @write_fault = false && @writable, @writable will tell the caller 2649 * whether the mapping is writable. 2650 */ 2651 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2652 bool write_fault, bool *writable) 2653 { 2654 struct vm_area_struct *vma; 2655 kvm_pfn_t pfn; 2656 int npages, r; 2657 2658 /* we can do it either atomically or asynchronously, not both */ 2659 BUG_ON(atomic && async); 2660 2661 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2662 return pfn; 2663 2664 if (atomic) 2665 return KVM_PFN_ERR_FAULT; 2666 2667 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2668 if (npages == 1) 2669 return pfn; 2670 2671 mmap_read_lock(current->mm); 2672 if (npages == -EHWPOISON || 2673 (!async && check_user_page_hwpoison(addr))) { 2674 pfn = KVM_PFN_ERR_HWPOISON; 2675 goto exit; 2676 } 2677 2678 retry: 2679 vma = vma_lookup(current->mm, addr); 2680 2681 if (vma == NULL) 2682 pfn = KVM_PFN_ERR_FAULT; 2683 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2684 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2685 if (r == -EAGAIN) 2686 goto retry; 2687 if (r < 0) 2688 pfn = KVM_PFN_ERR_FAULT; 2689 } else { 2690 if (async && vma_is_valid(vma, write_fault)) 2691 *async = true; 2692 pfn = KVM_PFN_ERR_FAULT; 2693 } 2694 exit: 2695 mmap_read_unlock(current->mm); 2696 return pfn; 2697 } 2698 2699 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2700 bool atomic, bool *async, bool write_fault, 2701 bool *writable, hva_t *hva) 2702 { 2703 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2704 2705 if (hva) 2706 *hva = addr; 2707 2708 if (addr == KVM_HVA_ERR_RO_BAD) { 2709 if (writable) 2710 *writable = false; 2711 return KVM_PFN_ERR_RO_FAULT; 2712 } 2713 2714 if (kvm_is_error_hva(addr)) { 2715 if (writable) 2716 *writable = false; 2717 return KVM_PFN_NOSLOT; 2718 } 2719 2720 /* Do not map writable pfn in the readonly memslot. */ 2721 if (writable && memslot_is_readonly(slot)) { 2722 *writable = false; 2723 writable = NULL; 2724 } 2725 2726 return hva_to_pfn(addr, atomic, async, write_fault, 2727 writable); 2728 } 2729 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2730 2731 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2732 bool *writable) 2733 { 2734 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2735 write_fault, writable, NULL); 2736 } 2737 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2738 2739 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2740 { 2741 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2742 } 2743 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2744 2745 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2746 { 2747 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2748 } 2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2750 2751 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2752 { 2753 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2754 } 2755 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2756 2757 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2758 { 2759 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2760 } 2761 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2762 2763 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2764 { 2765 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2766 } 2767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2768 2769 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2770 struct page **pages, int nr_pages) 2771 { 2772 unsigned long addr; 2773 gfn_t entry = 0; 2774 2775 addr = gfn_to_hva_many(slot, gfn, &entry); 2776 if (kvm_is_error_hva(addr)) 2777 return -1; 2778 2779 if (entry < nr_pages) 2780 return 0; 2781 2782 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2783 } 2784 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2785 2786 /* 2787 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2788 * backed by 'struct page'. A valid example is if the backing memslot is 2789 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2790 * been elevated by gfn_to_pfn(). 2791 */ 2792 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2793 { 2794 struct page *page; 2795 kvm_pfn_t pfn; 2796 2797 pfn = gfn_to_pfn(kvm, gfn); 2798 2799 if (is_error_noslot_pfn(pfn)) 2800 return KVM_ERR_PTR_BAD_PAGE; 2801 2802 page = kvm_pfn_to_refcounted_page(pfn); 2803 if (!page) 2804 return KVM_ERR_PTR_BAD_PAGE; 2805 2806 return page; 2807 } 2808 EXPORT_SYMBOL_GPL(gfn_to_page); 2809 2810 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2811 { 2812 if (dirty) 2813 kvm_release_pfn_dirty(pfn); 2814 else 2815 kvm_release_pfn_clean(pfn); 2816 } 2817 2818 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2819 { 2820 kvm_pfn_t pfn; 2821 void *hva = NULL; 2822 struct page *page = KVM_UNMAPPED_PAGE; 2823 2824 if (!map) 2825 return -EINVAL; 2826 2827 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2828 if (is_error_noslot_pfn(pfn)) 2829 return -EINVAL; 2830 2831 if (pfn_valid(pfn)) { 2832 page = pfn_to_page(pfn); 2833 hva = kmap(page); 2834 #ifdef CONFIG_HAS_IOMEM 2835 } else { 2836 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2837 #endif 2838 } 2839 2840 if (!hva) 2841 return -EFAULT; 2842 2843 map->page = page; 2844 map->hva = hva; 2845 map->pfn = pfn; 2846 map->gfn = gfn; 2847 2848 return 0; 2849 } 2850 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2851 2852 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2853 { 2854 if (!map) 2855 return; 2856 2857 if (!map->hva) 2858 return; 2859 2860 if (map->page != KVM_UNMAPPED_PAGE) 2861 kunmap(map->page); 2862 #ifdef CONFIG_HAS_IOMEM 2863 else 2864 memunmap(map->hva); 2865 #endif 2866 2867 if (dirty) 2868 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2869 2870 kvm_release_pfn(map->pfn, dirty); 2871 2872 map->hva = NULL; 2873 map->page = NULL; 2874 } 2875 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2876 2877 static bool kvm_is_ad_tracked_page(struct page *page) 2878 { 2879 /* 2880 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2881 * touched (e.g. set dirty) except by its owner". 2882 */ 2883 return !PageReserved(page); 2884 } 2885 2886 static void kvm_set_page_dirty(struct page *page) 2887 { 2888 if (kvm_is_ad_tracked_page(page)) 2889 SetPageDirty(page); 2890 } 2891 2892 static void kvm_set_page_accessed(struct page *page) 2893 { 2894 if (kvm_is_ad_tracked_page(page)) 2895 mark_page_accessed(page); 2896 } 2897 2898 void kvm_release_page_clean(struct page *page) 2899 { 2900 WARN_ON(is_error_page(page)); 2901 2902 kvm_set_page_accessed(page); 2903 put_page(page); 2904 } 2905 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2906 2907 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2908 { 2909 struct page *page; 2910 2911 if (is_error_noslot_pfn(pfn)) 2912 return; 2913 2914 page = kvm_pfn_to_refcounted_page(pfn); 2915 if (!page) 2916 return; 2917 2918 kvm_release_page_clean(page); 2919 } 2920 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2921 2922 void kvm_release_page_dirty(struct page *page) 2923 { 2924 WARN_ON(is_error_page(page)); 2925 2926 kvm_set_page_dirty(page); 2927 kvm_release_page_clean(page); 2928 } 2929 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2930 2931 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2932 { 2933 struct page *page; 2934 2935 if (is_error_noslot_pfn(pfn)) 2936 return; 2937 2938 page = kvm_pfn_to_refcounted_page(pfn); 2939 if (!page) 2940 return; 2941 2942 kvm_release_page_dirty(page); 2943 } 2944 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2945 2946 /* 2947 * Note, checking for an error/noslot pfn is the caller's responsibility when 2948 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2949 * "set" helpers are not to be used when the pfn might point at garbage. 2950 */ 2951 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2952 { 2953 if (WARN_ON(is_error_noslot_pfn(pfn))) 2954 return; 2955 2956 if (pfn_valid(pfn)) 2957 kvm_set_page_dirty(pfn_to_page(pfn)); 2958 } 2959 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2960 2961 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2962 { 2963 if (WARN_ON(is_error_noslot_pfn(pfn))) 2964 return; 2965 2966 if (pfn_valid(pfn)) 2967 kvm_set_page_accessed(pfn_to_page(pfn)); 2968 } 2969 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2970 2971 static int next_segment(unsigned long len, int offset) 2972 { 2973 if (len > PAGE_SIZE - offset) 2974 return PAGE_SIZE - offset; 2975 else 2976 return len; 2977 } 2978 2979 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2980 void *data, int offset, int len) 2981 { 2982 int r; 2983 unsigned long addr; 2984 2985 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2986 if (kvm_is_error_hva(addr)) 2987 return -EFAULT; 2988 r = __copy_from_user(data, (void __user *)addr + offset, len); 2989 if (r) 2990 return -EFAULT; 2991 return 0; 2992 } 2993 2994 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2995 int len) 2996 { 2997 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2998 2999 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3000 } 3001 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3002 3003 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3004 int offset, int len) 3005 { 3006 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3007 3008 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3009 } 3010 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3011 3012 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3013 { 3014 gfn_t gfn = gpa >> PAGE_SHIFT; 3015 int seg; 3016 int offset = offset_in_page(gpa); 3017 int ret; 3018 3019 while ((seg = next_segment(len, offset)) != 0) { 3020 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3021 if (ret < 0) 3022 return ret; 3023 offset = 0; 3024 len -= seg; 3025 data += seg; 3026 ++gfn; 3027 } 3028 return 0; 3029 } 3030 EXPORT_SYMBOL_GPL(kvm_read_guest); 3031 3032 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3033 { 3034 gfn_t gfn = gpa >> PAGE_SHIFT; 3035 int seg; 3036 int offset = offset_in_page(gpa); 3037 int ret; 3038 3039 while ((seg = next_segment(len, offset)) != 0) { 3040 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3041 if (ret < 0) 3042 return ret; 3043 offset = 0; 3044 len -= seg; 3045 data += seg; 3046 ++gfn; 3047 } 3048 return 0; 3049 } 3050 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3051 3052 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3053 void *data, int offset, unsigned long len) 3054 { 3055 int r; 3056 unsigned long addr; 3057 3058 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3059 if (kvm_is_error_hva(addr)) 3060 return -EFAULT; 3061 pagefault_disable(); 3062 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3063 pagefault_enable(); 3064 if (r) 3065 return -EFAULT; 3066 return 0; 3067 } 3068 3069 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3070 void *data, unsigned long len) 3071 { 3072 gfn_t gfn = gpa >> PAGE_SHIFT; 3073 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3074 int offset = offset_in_page(gpa); 3075 3076 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3077 } 3078 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3079 3080 static int __kvm_write_guest_page(struct kvm *kvm, 3081 struct kvm_memory_slot *memslot, gfn_t gfn, 3082 const void *data, int offset, int len) 3083 { 3084 int r; 3085 unsigned long addr; 3086 3087 addr = gfn_to_hva_memslot(memslot, gfn); 3088 if (kvm_is_error_hva(addr)) 3089 return -EFAULT; 3090 r = __copy_to_user((void __user *)addr + offset, data, len); 3091 if (r) 3092 return -EFAULT; 3093 mark_page_dirty_in_slot(kvm, memslot, gfn); 3094 return 0; 3095 } 3096 3097 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3098 const void *data, int offset, int len) 3099 { 3100 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3101 3102 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3103 } 3104 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3105 3106 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3107 const void *data, int offset, int len) 3108 { 3109 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3110 3111 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3112 } 3113 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3114 3115 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3116 unsigned long len) 3117 { 3118 gfn_t gfn = gpa >> PAGE_SHIFT; 3119 int seg; 3120 int offset = offset_in_page(gpa); 3121 int ret; 3122 3123 while ((seg = next_segment(len, offset)) != 0) { 3124 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3125 if (ret < 0) 3126 return ret; 3127 offset = 0; 3128 len -= seg; 3129 data += seg; 3130 ++gfn; 3131 } 3132 return 0; 3133 } 3134 EXPORT_SYMBOL_GPL(kvm_write_guest); 3135 3136 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3137 unsigned long len) 3138 { 3139 gfn_t gfn = gpa >> PAGE_SHIFT; 3140 int seg; 3141 int offset = offset_in_page(gpa); 3142 int ret; 3143 3144 while ((seg = next_segment(len, offset)) != 0) { 3145 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3146 if (ret < 0) 3147 return ret; 3148 offset = 0; 3149 len -= seg; 3150 data += seg; 3151 ++gfn; 3152 } 3153 return 0; 3154 } 3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3156 3157 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3158 struct gfn_to_hva_cache *ghc, 3159 gpa_t gpa, unsigned long len) 3160 { 3161 int offset = offset_in_page(gpa); 3162 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3163 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3164 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3165 gfn_t nr_pages_avail; 3166 3167 /* Update ghc->generation before performing any error checks. */ 3168 ghc->generation = slots->generation; 3169 3170 if (start_gfn > end_gfn) { 3171 ghc->hva = KVM_HVA_ERR_BAD; 3172 return -EINVAL; 3173 } 3174 3175 /* 3176 * If the requested region crosses two memslots, we still 3177 * verify that the entire region is valid here. 3178 */ 3179 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3180 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3181 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3182 &nr_pages_avail); 3183 if (kvm_is_error_hva(ghc->hva)) 3184 return -EFAULT; 3185 } 3186 3187 /* Use the slow path for cross page reads and writes. */ 3188 if (nr_pages_needed == 1) 3189 ghc->hva += offset; 3190 else 3191 ghc->memslot = NULL; 3192 3193 ghc->gpa = gpa; 3194 ghc->len = len; 3195 return 0; 3196 } 3197 3198 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3199 gpa_t gpa, unsigned long len) 3200 { 3201 struct kvm_memslots *slots = kvm_memslots(kvm); 3202 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3203 } 3204 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3205 3206 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3207 void *data, unsigned int offset, 3208 unsigned long len) 3209 { 3210 struct kvm_memslots *slots = kvm_memslots(kvm); 3211 int r; 3212 gpa_t gpa = ghc->gpa + offset; 3213 3214 if (WARN_ON_ONCE(len + offset > ghc->len)) 3215 return -EINVAL; 3216 3217 if (slots->generation != ghc->generation) { 3218 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3219 return -EFAULT; 3220 } 3221 3222 if (kvm_is_error_hva(ghc->hva)) 3223 return -EFAULT; 3224 3225 if (unlikely(!ghc->memslot)) 3226 return kvm_write_guest(kvm, gpa, data, len); 3227 3228 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3229 if (r) 3230 return -EFAULT; 3231 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3232 3233 return 0; 3234 } 3235 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3236 3237 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3238 void *data, unsigned long len) 3239 { 3240 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3241 } 3242 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3243 3244 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3245 void *data, unsigned int offset, 3246 unsigned long len) 3247 { 3248 struct kvm_memslots *slots = kvm_memslots(kvm); 3249 int r; 3250 gpa_t gpa = ghc->gpa + offset; 3251 3252 if (WARN_ON_ONCE(len + offset > ghc->len)) 3253 return -EINVAL; 3254 3255 if (slots->generation != ghc->generation) { 3256 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3257 return -EFAULT; 3258 } 3259 3260 if (kvm_is_error_hva(ghc->hva)) 3261 return -EFAULT; 3262 3263 if (unlikely(!ghc->memslot)) 3264 return kvm_read_guest(kvm, gpa, data, len); 3265 3266 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3267 if (r) 3268 return -EFAULT; 3269 3270 return 0; 3271 } 3272 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3273 3274 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3275 void *data, unsigned long len) 3276 { 3277 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3278 } 3279 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3280 3281 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3282 { 3283 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3284 gfn_t gfn = gpa >> PAGE_SHIFT; 3285 int seg; 3286 int offset = offset_in_page(gpa); 3287 int ret; 3288 3289 while ((seg = next_segment(len, offset)) != 0) { 3290 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3291 if (ret < 0) 3292 return ret; 3293 offset = 0; 3294 len -= seg; 3295 ++gfn; 3296 } 3297 return 0; 3298 } 3299 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3300 3301 void mark_page_dirty_in_slot(struct kvm *kvm, 3302 const struct kvm_memory_slot *memslot, 3303 gfn_t gfn) 3304 { 3305 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3306 3307 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3308 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3309 return; 3310 #endif 3311 3312 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3313 unsigned long rel_gfn = gfn - memslot->base_gfn; 3314 u32 slot = (memslot->as_id << 16) | memslot->id; 3315 3316 if (kvm->dirty_ring_size) 3317 kvm_dirty_ring_push(&vcpu->dirty_ring, 3318 slot, rel_gfn); 3319 else 3320 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3321 } 3322 } 3323 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3324 3325 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3326 { 3327 struct kvm_memory_slot *memslot; 3328 3329 memslot = gfn_to_memslot(kvm, gfn); 3330 mark_page_dirty_in_slot(kvm, memslot, gfn); 3331 } 3332 EXPORT_SYMBOL_GPL(mark_page_dirty); 3333 3334 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3335 { 3336 struct kvm_memory_slot *memslot; 3337 3338 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3339 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3340 } 3341 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3342 3343 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3344 { 3345 if (!vcpu->sigset_active) 3346 return; 3347 3348 /* 3349 * This does a lockless modification of ->real_blocked, which is fine 3350 * because, only current can change ->real_blocked and all readers of 3351 * ->real_blocked don't care as long ->real_blocked is always a subset 3352 * of ->blocked. 3353 */ 3354 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3355 } 3356 3357 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3358 { 3359 if (!vcpu->sigset_active) 3360 return; 3361 3362 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3363 sigemptyset(¤t->real_blocked); 3364 } 3365 3366 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3367 { 3368 unsigned int old, val, grow, grow_start; 3369 3370 old = val = vcpu->halt_poll_ns; 3371 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3372 grow = READ_ONCE(halt_poll_ns_grow); 3373 if (!grow) 3374 goto out; 3375 3376 val *= grow; 3377 if (val < grow_start) 3378 val = grow_start; 3379 3380 if (val > vcpu->kvm->max_halt_poll_ns) 3381 val = vcpu->kvm->max_halt_poll_ns; 3382 3383 vcpu->halt_poll_ns = val; 3384 out: 3385 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3386 } 3387 3388 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3389 { 3390 unsigned int old, val, shrink, grow_start; 3391 3392 old = val = vcpu->halt_poll_ns; 3393 shrink = READ_ONCE(halt_poll_ns_shrink); 3394 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3395 if (shrink == 0) 3396 val = 0; 3397 else 3398 val /= shrink; 3399 3400 if (val < grow_start) 3401 val = 0; 3402 3403 vcpu->halt_poll_ns = val; 3404 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3405 } 3406 3407 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3408 { 3409 int ret = -EINTR; 3410 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3411 3412 if (kvm_arch_vcpu_runnable(vcpu)) 3413 goto out; 3414 if (kvm_cpu_has_pending_timer(vcpu)) 3415 goto out; 3416 if (signal_pending(current)) 3417 goto out; 3418 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3419 goto out; 3420 3421 ret = 0; 3422 out: 3423 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3424 return ret; 3425 } 3426 3427 /* 3428 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3429 * pending. This is mostly used when halting a vCPU, but may also be used 3430 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3431 */ 3432 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3433 { 3434 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3435 bool waited = false; 3436 3437 vcpu->stat.generic.blocking = 1; 3438 3439 preempt_disable(); 3440 kvm_arch_vcpu_blocking(vcpu); 3441 prepare_to_rcuwait(wait); 3442 preempt_enable(); 3443 3444 for (;;) { 3445 set_current_state(TASK_INTERRUPTIBLE); 3446 3447 if (kvm_vcpu_check_block(vcpu) < 0) 3448 break; 3449 3450 waited = true; 3451 schedule(); 3452 } 3453 3454 preempt_disable(); 3455 finish_rcuwait(wait); 3456 kvm_arch_vcpu_unblocking(vcpu); 3457 preempt_enable(); 3458 3459 vcpu->stat.generic.blocking = 0; 3460 3461 return waited; 3462 } 3463 3464 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3465 ktime_t end, bool success) 3466 { 3467 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3468 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3469 3470 ++vcpu->stat.generic.halt_attempted_poll; 3471 3472 if (success) { 3473 ++vcpu->stat.generic.halt_successful_poll; 3474 3475 if (!vcpu_valid_wakeup(vcpu)) 3476 ++vcpu->stat.generic.halt_poll_invalid; 3477 3478 stats->halt_poll_success_ns += poll_ns; 3479 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3480 } else { 3481 stats->halt_poll_fail_ns += poll_ns; 3482 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3483 } 3484 } 3485 3486 /* 3487 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3488 * polling is enabled, busy wait for a short time before blocking to avoid the 3489 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3490 * is halted. 3491 */ 3492 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3493 { 3494 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3495 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3496 ktime_t start, cur, poll_end; 3497 bool waited = false; 3498 u64 halt_ns; 3499 3500 start = cur = poll_end = ktime_get(); 3501 if (do_halt_poll) { 3502 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3503 3504 do { 3505 /* 3506 * This sets KVM_REQ_UNHALT if an interrupt 3507 * arrives. 3508 */ 3509 if (kvm_vcpu_check_block(vcpu) < 0) 3510 goto out; 3511 cpu_relax(); 3512 poll_end = cur = ktime_get(); 3513 } while (kvm_vcpu_can_poll(cur, stop)); 3514 } 3515 3516 waited = kvm_vcpu_block(vcpu); 3517 3518 cur = ktime_get(); 3519 if (waited) { 3520 vcpu->stat.generic.halt_wait_ns += 3521 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3522 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3523 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3524 } 3525 out: 3526 /* The total time the vCPU was "halted", including polling time. */ 3527 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3528 3529 /* 3530 * Note, halt-polling is considered successful so long as the vCPU was 3531 * never actually scheduled out, i.e. even if the wake event arrived 3532 * after of the halt-polling loop itself, but before the full wait. 3533 */ 3534 if (do_halt_poll) 3535 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3536 3537 if (halt_poll_allowed) { 3538 if (!vcpu_valid_wakeup(vcpu)) { 3539 shrink_halt_poll_ns(vcpu); 3540 } else if (vcpu->kvm->max_halt_poll_ns) { 3541 if (halt_ns <= vcpu->halt_poll_ns) 3542 ; 3543 /* we had a long block, shrink polling */ 3544 else if (vcpu->halt_poll_ns && 3545 halt_ns > vcpu->kvm->max_halt_poll_ns) 3546 shrink_halt_poll_ns(vcpu); 3547 /* we had a short halt and our poll time is too small */ 3548 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3549 halt_ns < vcpu->kvm->max_halt_poll_ns) 3550 grow_halt_poll_ns(vcpu); 3551 } else { 3552 vcpu->halt_poll_ns = 0; 3553 } 3554 } 3555 3556 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3557 } 3558 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3559 3560 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3561 { 3562 if (__kvm_vcpu_wake_up(vcpu)) { 3563 WRITE_ONCE(vcpu->ready, true); 3564 ++vcpu->stat.generic.halt_wakeup; 3565 return true; 3566 } 3567 3568 return false; 3569 } 3570 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3571 3572 #ifndef CONFIG_S390 3573 /* 3574 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3575 */ 3576 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3577 { 3578 int me, cpu; 3579 3580 if (kvm_vcpu_wake_up(vcpu)) 3581 return; 3582 3583 me = get_cpu(); 3584 /* 3585 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3586 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3587 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3588 * within the vCPU thread itself. 3589 */ 3590 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3591 if (vcpu->mode == IN_GUEST_MODE) 3592 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3593 goto out; 3594 } 3595 3596 /* 3597 * Note, the vCPU could get migrated to a different pCPU at any point 3598 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3599 * IPI to the previous pCPU. But, that's ok because the purpose of the 3600 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3601 * vCPU also requires it to leave IN_GUEST_MODE. 3602 */ 3603 if (kvm_arch_vcpu_should_kick(vcpu)) { 3604 cpu = READ_ONCE(vcpu->cpu); 3605 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3606 smp_send_reschedule(cpu); 3607 } 3608 out: 3609 put_cpu(); 3610 } 3611 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3612 #endif /* !CONFIG_S390 */ 3613 3614 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3615 { 3616 struct pid *pid; 3617 struct task_struct *task = NULL; 3618 int ret = 0; 3619 3620 rcu_read_lock(); 3621 pid = rcu_dereference(target->pid); 3622 if (pid) 3623 task = get_pid_task(pid, PIDTYPE_PID); 3624 rcu_read_unlock(); 3625 if (!task) 3626 return ret; 3627 ret = yield_to(task, 1); 3628 put_task_struct(task); 3629 3630 return ret; 3631 } 3632 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3633 3634 /* 3635 * Helper that checks whether a VCPU is eligible for directed yield. 3636 * Most eligible candidate to yield is decided by following heuristics: 3637 * 3638 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3639 * (preempted lock holder), indicated by @in_spin_loop. 3640 * Set at the beginning and cleared at the end of interception/PLE handler. 3641 * 3642 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3643 * chance last time (mostly it has become eligible now since we have probably 3644 * yielded to lockholder in last iteration. This is done by toggling 3645 * @dy_eligible each time a VCPU checked for eligibility.) 3646 * 3647 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3648 * to preempted lock-holder could result in wrong VCPU selection and CPU 3649 * burning. Giving priority for a potential lock-holder increases lock 3650 * progress. 3651 * 3652 * Since algorithm is based on heuristics, accessing another VCPU data without 3653 * locking does not harm. It may result in trying to yield to same VCPU, fail 3654 * and continue with next VCPU and so on. 3655 */ 3656 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3657 { 3658 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3659 bool eligible; 3660 3661 eligible = !vcpu->spin_loop.in_spin_loop || 3662 vcpu->spin_loop.dy_eligible; 3663 3664 if (vcpu->spin_loop.in_spin_loop) 3665 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3666 3667 return eligible; 3668 #else 3669 return true; 3670 #endif 3671 } 3672 3673 /* 3674 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3675 * a vcpu_load/vcpu_put pair. However, for most architectures 3676 * kvm_arch_vcpu_runnable does not require vcpu_load. 3677 */ 3678 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3679 { 3680 return kvm_arch_vcpu_runnable(vcpu); 3681 } 3682 3683 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3684 { 3685 if (kvm_arch_dy_runnable(vcpu)) 3686 return true; 3687 3688 #ifdef CONFIG_KVM_ASYNC_PF 3689 if (!list_empty_careful(&vcpu->async_pf.done)) 3690 return true; 3691 #endif 3692 3693 return false; 3694 } 3695 3696 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3697 { 3698 return false; 3699 } 3700 3701 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3702 { 3703 struct kvm *kvm = me->kvm; 3704 struct kvm_vcpu *vcpu; 3705 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3706 unsigned long i; 3707 int yielded = 0; 3708 int try = 3; 3709 int pass; 3710 3711 kvm_vcpu_set_in_spin_loop(me, true); 3712 /* 3713 * We boost the priority of a VCPU that is runnable but not 3714 * currently running, because it got preempted by something 3715 * else and called schedule in __vcpu_run. Hopefully that 3716 * VCPU is holding the lock that we need and will release it. 3717 * We approximate round-robin by starting at the last boosted VCPU. 3718 */ 3719 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3720 kvm_for_each_vcpu(i, vcpu, kvm) { 3721 if (!pass && i <= last_boosted_vcpu) { 3722 i = last_boosted_vcpu; 3723 continue; 3724 } else if (pass && i > last_boosted_vcpu) 3725 break; 3726 if (!READ_ONCE(vcpu->ready)) 3727 continue; 3728 if (vcpu == me) 3729 continue; 3730 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3731 continue; 3732 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3733 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3734 !kvm_arch_vcpu_in_kernel(vcpu)) 3735 continue; 3736 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3737 continue; 3738 3739 yielded = kvm_vcpu_yield_to(vcpu); 3740 if (yielded > 0) { 3741 kvm->last_boosted_vcpu = i; 3742 break; 3743 } else if (yielded < 0) { 3744 try--; 3745 if (!try) 3746 break; 3747 } 3748 } 3749 } 3750 kvm_vcpu_set_in_spin_loop(me, false); 3751 3752 /* Ensure vcpu is not eligible during next spinloop */ 3753 kvm_vcpu_set_dy_eligible(me, false); 3754 } 3755 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3756 3757 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3758 { 3759 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3760 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3761 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3762 kvm->dirty_ring_size / PAGE_SIZE); 3763 #else 3764 return false; 3765 #endif 3766 } 3767 3768 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3769 { 3770 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3771 struct page *page; 3772 3773 if (vmf->pgoff == 0) 3774 page = virt_to_page(vcpu->run); 3775 #ifdef CONFIG_X86 3776 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3777 page = virt_to_page(vcpu->arch.pio_data); 3778 #endif 3779 #ifdef CONFIG_KVM_MMIO 3780 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3781 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3782 #endif 3783 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3784 page = kvm_dirty_ring_get_page( 3785 &vcpu->dirty_ring, 3786 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3787 else 3788 return kvm_arch_vcpu_fault(vcpu, vmf); 3789 get_page(page); 3790 vmf->page = page; 3791 return 0; 3792 } 3793 3794 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3795 .fault = kvm_vcpu_fault, 3796 }; 3797 3798 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3799 { 3800 struct kvm_vcpu *vcpu = file->private_data; 3801 unsigned long pages = vma_pages(vma); 3802 3803 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3804 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3805 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3806 return -EINVAL; 3807 3808 vma->vm_ops = &kvm_vcpu_vm_ops; 3809 return 0; 3810 } 3811 3812 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3813 { 3814 struct kvm_vcpu *vcpu = filp->private_data; 3815 3816 kvm_put_kvm(vcpu->kvm); 3817 return 0; 3818 } 3819 3820 static const struct file_operations kvm_vcpu_fops = { 3821 .release = kvm_vcpu_release, 3822 .unlocked_ioctl = kvm_vcpu_ioctl, 3823 .mmap = kvm_vcpu_mmap, 3824 .llseek = noop_llseek, 3825 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3826 }; 3827 3828 /* 3829 * Allocates an inode for the vcpu. 3830 */ 3831 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3832 { 3833 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3834 3835 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3836 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3837 } 3838 3839 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3840 static int vcpu_get_pid(void *data, u64 *val) 3841 { 3842 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data; 3843 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3844 return 0; 3845 } 3846 3847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3848 3849 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3850 { 3851 struct dentry *debugfs_dentry; 3852 char dir_name[ITOA_MAX_LEN * 2]; 3853 3854 if (!debugfs_initialized()) 3855 return; 3856 3857 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3858 debugfs_dentry = debugfs_create_dir(dir_name, 3859 vcpu->kvm->debugfs_dentry); 3860 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3861 &vcpu_get_pid_fops); 3862 3863 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3864 } 3865 #endif 3866 3867 /* 3868 * Creates some virtual cpus. Good luck creating more than one. 3869 */ 3870 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3871 { 3872 int r; 3873 struct kvm_vcpu *vcpu; 3874 struct page *page; 3875 3876 if (id >= KVM_MAX_VCPU_IDS) 3877 return -EINVAL; 3878 3879 mutex_lock(&kvm->lock); 3880 if (kvm->created_vcpus >= kvm->max_vcpus) { 3881 mutex_unlock(&kvm->lock); 3882 return -EINVAL; 3883 } 3884 3885 r = kvm_arch_vcpu_precreate(kvm, id); 3886 if (r) { 3887 mutex_unlock(&kvm->lock); 3888 return r; 3889 } 3890 3891 kvm->created_vcpus++; 3892 mutex_unlock(&kvm->lock); 3893 3894 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3895 if (!vcpu) { 3896 r = -ENOMEM; 3897 goto vcpu_decrement; 3898 } 3899 3900 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3901 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3902 if (!page) { 3903 r = -ENOMEM; 3904 goto vcpu_free; 3905 } 3906 vcpu->run = page_address(page); 3907 3908 kvm_vcpu_init(vcpu, kvm, id); 3909 3910 r = kvm_arch_vcpu_create(vcpu); 3911 if (r) 3912 goto vcpu_free_run_page; 3913 3914 if (kvm->dirty_ring_size) { 3915 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3916 id, kvm->dirty_ring_size); 3917 if (r) 3918 goto arch_vcpu_destroy; 3919 } 3920 3921 mutex_lock(&kvm->lock); 3922 if (kvm_get_vcpu_by_id(kvm, id)) { 3923 r = -EEXIST; 3924 goto unlock_vcpu_destroy; 3925 } 3926 3927 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3928 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3929 BUG_ON(r == -EBUSY); 3930 if (r) 3931 goto unlock_vcpu_destroy; 3932 3933 /* Now it's all set up, let userspace reach it */ 3934 kvm_get_kvm(kvm); 3935 r = create_vcpu_fd(vcpu); 3936 if (r < 0) { 3937 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3938 kvm_put_kvm_no_destroy(kvm); 3939 goto unlock_vcpu_destroy; 3940 } 3941 3942 /* 3943 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3944 * pointer before kvm->online_vcpu's incremented value. 3945 */ 3946 smp_wmb(); 3947 atomic_inc(&kvm->online_vcpus); 3948 3949 mutex_unlock(&kvm->lock); 3950 kvm_arch_vcpu_postcreate(vcpu); 3951 kvm_create_vcpu_debugfs(vcpu); 3952 return r; 3953 3954 unlock_vcpu_destroy: 3955 mutex_unlock(&kvm->lock); 3956 kvm_dirty_ring_free(&vcpu->dirty_ring); 3957 arch_vcpu_destroy: 3958 kvm_arch_vcpu_destroy(vcpu); 3959 vcpu_free_run_page: 3960 free_page((unsigned long)vcpu->run); 3961 vcpu_free: 3962 kmem_cache_free(kvm_vcpu_cache, vcpu); 3963 vcpu_decrement: 3964 mutex_lock(&kvm->lock); 3965 kvm->created_vcpus--; 3966 mutex_unlock(&kvm->lock); 3967 return r; 3968 } 3969 3970 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3971 { 3972 if (sigset) { 3973 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3974 vcpu->sigset_active = 1; 3975 vcpu->sigset = *sigset; 3976 } else 3977 vcpu->sigset_active = 0; 3978 return 0; 3979 } 3980 3981 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3982 size_t size, loff_t *offset) 3983 { 3984 struct kvm_vcpu *vcpu = file->private_data; 3985 3986 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3987 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3988 sizeof(vcpu->stat), user_buffer, size, offset); 3989 } 3990 3991 static const struct file_operations kvm_vcpu_stats_fops = { 3992 .read = kvm_vcpu_stats_read, 3993 .llseek = noop_llseek, 3994 }; 3995 3996 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3997 { 3998 int fd; 3999 struct file *file; 4000 char name[15 + ITOA_MAX_LEN + 1]; 4001 4002 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4003 4004 fd = get_unused_fd_flags(O_CLOEXEC); 4005 if (fd < 0) 4006 return fd; 4007 4008 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4009 if (IS_ERR(file)) { 4010 put_unused_fd(fd); 4011 return PTR_ERR(file); 4012 } 4013 file->f_mode |= FMODE_PREAD; 4014 fd_install(fd, file); 4015 4016 return fd; 4017 } 4018 4019 static long kvm_vcpu_ioctl(struct file *filp, 4020 unsigned int ioctl, unsigned long arg) 4021 { 4022 struct kvm_vcpu *vcpu = filp->private_data; 4023 void __user *argp = (void __user *)arg; 4024 int r; 4025 struct kvm_fpu *fpu = NULL; 4026 struct kvm_sregs *kvm_sregs = NULL; 4027 4028 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4029 return -EIO; 4030 4031 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4032 return -EINVAL; 4033 4034 /* 4035 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4036 * execution; mutex_lock() would break them. 4037 */ 4038 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4039 if (r != -ENOIOCTLCMD) 4040 return r; 4041 4042 if (mutex_lock_killable(&vcpu->mutex)) 4043 return -EINTR; 4044 switch (ioctl) { 4045 case KVM_RUN: { 4046 struct pid *oldpid; 4047 r = -EINVAL; 4048 if (arg) 4049 goto out; 4050 oldpid = rcu_access_pointer(vcpu->pid); 4051 if (unlikely(oldpid != task_pid(current))) { 4052 /* The thread running this VCPU changed. */ 4053 struct pid *newpid; 4054 4055 r = kvm_arch_vcpu_run_pid_change(vcpu); 4056 if (r) 4057 break; 4058 4059 newpid = get_task_pid(current, PIDTYPE_PID); 4060 rcu_assign_pointer(vcpu->pid, newpid); 4061 if (oldpid) 4062 synchronize_rcu(); 4063 put_pid(oldpid); 4064 } 4065 r = kvm_arch_vcpu_ioctl_run(vcpu); 4066 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4067 break; 4068 } 4069 case KVM_GET_REGS: { 4070 struct kvm_regs *kvm_regs; 4071 4072 r = -ENOMEM; 4073 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4074 if (!kvm_regs) 4075 goto out; 4076 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4077 if (r) 4078 goto out_free1; 4079 r = -EFAULT; 4080 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4081 goto out_free1; 4082 r = 0; 4083 out_free1: 4084 kfree(kvm_regs); 4085 break; 4086 } 4087 case KVM_SET_REGS: { 4088 struct kvm_regs *kvm_regs; 4089 4090 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4091 if (IS_ERR(kvm_regs)) { 4092 r = PTR_ERR(kvm_regs); 4093 goto out; 4094 } 4095 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4096 kfree(kvm_regs); 4097 break; 4098 } 4099 case KVM_GET_SREGS: { 4100 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4101 GFP_KERNEL_ACCOUNT); 4102 r = -ENOMEM; 4103 if (!kvm_sregs) 4104 goto out; 4105 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4106 if (r) 4107 goto out; 4108 r = -EFAULT; 4109 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4110 goto out; 4111 r = 0; 4112 break; 4113 } 4114 case KVM_SET_SREGS: { 4115 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4116 if (IS_ERR(kvm_sregs)) { 4117 r = PTR_ERR(kvm_sregs); 4118 kvm_sregs = NULL; 4119 goto out; 4120 } 4121 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4122 break; 4123 } 4124 case KVM_GET_MP_STATE: { 4125 struct kvm_mp_state mp_state; 4126 4127 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4128 if (r) 4129 goto out; 4130 r = -EFAULT; 4131 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4132 goto out; 4133 r = 0; 4134 break; 4135 } 4136 case KVM_SET_MP_STATE: { 4137 struct kvm_mp_state mp_state; 4138 4139 r = -EFAULT; 4140 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4141 goto out; 4142 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4143 break; 4144 } 4145 case KVM_TRANSLATE: { 4146 struct kvm_translation tr; 4147 4148 r = -EFAULT; 4149 if (copy_from_user(&tr, argp, sizeof(tr))) 4150 goto out; 4151 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4152 if (r) 4153 goto out; 4154 r = -EFAULT; 4155 if (copy_to_user(argp, &tr, sizeof(tr))) 4156 goto out; 4157 r = 0; 4158 break; 4159 } 4160 case KVM_SET_GUEST_DEBUG: { 4161 struct kvm_guest_debug dbg; 4162 4163 r = -EFAULT; 4164 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4165 goto out; 4166 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4167 break; 4168 } 4169 case KVM_SET_SIGNAL_MASK: { 4170 struct kvm_signal_mask __user *sigmask_arg = argp; 4171 struct kvm_signal_mask kvm_sigmask; 4172 sigset_t sigset, *p; 4173 4174 p = NULL; 4175 if (argp) { 4176 r = -EFAULT; 4177 if (copy_from_user(&kvm_sigmask, argp, 4178 sizeof(kvm_sigmask))) 4179 goto out; 4180 r = -EINVAL; 4181 if (kvm_sigmask.len != sizeof(sigset)) 4182 goto out; 4183 r = -EFAULT; 4184 if (copy_from_user(&sigset, sigmask_arg->sigset, 4185 sizeof(sigset))) 4186 goto out; 4187 p = &sigset; 4188 } 4189 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4190 break; 4191 } 4192 case KVM_GET_FPU: { 4193 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4194 r = -ENOMEM; 4195 if (!fpu) 4196 goto out; 4197 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4198 if (r) 4199 goto out; 4200 r = -EFAULT; 4201 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4202 goto out; 4203 r = 0; 4204 break; 4205 } 4206 case KVM_SET_FPU: { 4207 fpu = memdup_user(argp, sizeof(*fpu)); 4208 if (IS_ERR(fpu)) { 4209 r = PTR_ERR(fpu); 4210 fpu = NULL; 4211 goto out; 4212 } 4213 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4214 break; 4215 } 4216 case KVM_GET_STATS_FD: { 4217 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4218 break; 4219 } 4220 default: 4221 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4222 } 4223 out: 4224 mutex_unlock(&vcpu->mutex); 4225 kfree(fpu); 4226 kfree(kvm_sregs); 4227 return r; 4228 } 4229 4230 #ifdef CONFIG_KVM_COMPAT 4231 static long kvm_vcpu_compat_ioctl(struct file *filp, 4232 unsigned int ioctl, unsigned long arg) 4233 { 4234 struct kvm_vcpu *vcpu = filp->private_data; 4235 void __user *argp = compat_ptr(arg); 4236 int r; 4237 4238 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4239 return -EIO; 4240 4241 switch (ioctl) { 4242 case KVM_SET_SIGNAL_MASK: { 4243 struct kvm_signal_mask __user *sigmask_arg = argp; 4244 struct kvm_signal_mask kvm_sigmask; 4245 sigset_t sigset; 4246 4247 if (argp) { 4248 r = -EFAULT; 4249 if (copy_from_user(&kvm_sigmask, argp, 4250 sizeof(kvm_sigmask))) 4251 goto out; 4252 r = -EINVAL; 4253 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4254 goto out; 4255 r = -EFAULT; 4256 if (get_compat_sigset(&sigset, 4257 (compat_sigset_t __user *)sigmask_arg->sigset)) 4258 goto out; 4259 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4260 } else 4261 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4262 break; 4263 } 4264 default: 4265 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4266 } 4267 4268 out: 4269 return r; 4270 } 4271 #endif 4272 4273 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4274 { 4275 struct kvm_device *dev = filp->private_data; 4276 4277 if (dev->ops->mmap) 4278 return dev->ops->mmap(dev, vma); 4279 4280 return -ENODEV; 4281 } 4282 4283 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4284 int (*accessor)(struct kvm_device *dev, 4285 struct kvm_device_attr *attr), 4286 unsigned long arg) 4287 { 4288 struct kvm_device_attr attr; 4289 4290 if (!accessor) 4291 return -EPERM; 4292 4293 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4294 return -EFAULT; 4295 4296 return accessor(dev, &attr); 4297 } 4298 4299 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4300 unsigned long arg) 4301 { 4302 struct kvm_device *dev = filp->private_data; 4303 4304 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4305 return -EIO; 4306 4307 switch (ioctl) { 4308 case KVM_SET_DEVICE_ATTR: 4309 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4310 case KVM_GET_DEVICE_ATTR: 4311 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4312 case KVM_HAS_DEVICE_ATTR: 4313 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4314 default: 4315 if (dev->ops->ioctl) 4316 return dev->ops->ioctl(dev, ioctl, arg); 4317 4318 return -ENOTTY; 4319 } 4320 } 4321 4322 static int kvm_device_release(struct inode *inode, struct file *filp) 4323 { 4324 struct kvm_device *dev = filp->private_data; 4325 struct kvm *kvm = dev->kvm; 4326 4327 if (dev->ops->release) { 4328 mutex_lock(&kvm->lock); 4329 list_del(&dev->vm_node); 4330 dev->ops->release(dev); 4331 mutex_unlock(&kvm->lock); 4332 } 4333 4334 kvm_put_kvm(kvm); 4335 return 0; 4336 } 4337 4338 static const struct file_operations kvm_device_fops = { 4339 .unlocked_ioctl = kvm_device_ioctl, 4340 .release = kvm_device_release, 4341 KVM_COMPAT(kvm_device_ioctl), 4342 .mmap = kvm_device_mmap, 4343 }; 4344 4345 struct kvm_device *kvm_device_from_filp(struct file *filp) 4346 { 4347 if (filp->f_op != &kvm_device_fops) 4348 return NULL; 4349 4350 return filp->private_data; 4351 } 4352 4353 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4354 #ifdef CONFIG_KVM_MPIC 4355 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4356 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4357 #endif 4358 }; 4359 4360 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4361 { 4362 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4363 return -ENOSPC; 4364 4365 if (kvm_device_ops_table[type] != NULL) 4366 return -EEXIST; 4367 4368 kvm_device_ops_table[type] = ops; 4369 return 0; 4370 } 4371 4372 void kvm_unregister_device_ops(u32 type) 4373 { 4374 if (kvm_device_ops_table[type] != NULL) 4375 kvm_device_ops_table[type] = NULL; 4376 } 4377 4378 static int kvm_ioctl_create_device(struct kvm *kvm, 4379 struct kvm_create_device *cd) 4380 { 4381 const struct kvm_device_ops *ops; 4382 struct kvm_device *dev; 4383 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4384 int type; 4385 int ret; 4386 4387 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4388 return -ENODEV; 4389 4390 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4391 ops = kvm_device_ops_table[type]; 4392 if (ops == NULL) 4393 return -ENODEV; 4394 4395 if (test) 4396 return 0; 4397 4398 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4399 if (!dev) 4400 return -ENOMEM; 4401 4402 dev->ops = ops; 4403 dev->kvm = kvm; 4404 4405 mutex_lock(&kvm->lock); 4406 ret = ops->create(dev, type); 4407 if (ret < 0) { 4408 mutex_unlock(&kvm->lock); 4409 kfree(dev); 4410 return ret; 4411 } 4412 list_add(&dev->vm_node, &kvm->devices); 4413 mutex_unlock(&kvm->lock); 4414 4415 if (ops->init) 4416 ops->init(dev); 4417 4418 kvm_get_kvm(kvm); 4419 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4420 if (ret < 0) { 4421 kvm_put_kvm_no_destroy(kvm); 4422 mutex_lock(&kvm->lock); 4423 list_del(&dev->vm_node); 4424 if (ops->release) 4425 ops->release(dev); 4426 mutex_unlock(&kvm->lock); 4427 if (ops->destroy) 4428 ops->destroy(dev); 4429 return ret; 4430 } 4431 4432 cd->fd = ret; 4433 return 0; 4434 } 4435 4436 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4437 { 4438 switch (arg) { 4439 case KVM_CAP_USER_MEMORY: 4440 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4441 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4442 case KVM_CAP_INTERNAL_ERROR_DATA: 4443 #ifdef CONFIG_HAVE_KVM_MSI 4444 case KVM_CAP_SIGNAL_MSI: 4445 #endif 4446 #ifdef CONFIG_HAVE_KVM_IRQFD 4447 case KVM_CAP_IRQFD: 4448 case KVM_CAP_IRQFD_RESAMPLE: 4449 #endif 4450 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4451 case KVM_CAP_CHECK_EXTENSION_VM: 4452 case KVM_CAP_ENABLE_CAP_VM: 4453 case KVM_CAP_HALT_POLL: 4454 return 1; 4455 #ifdef CONFIG_KVM_MMIO 4456 case KVM_CAP_COALESCED_MMIO: 4457 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4458 case KVM_CAP_COALESCED_PIO: 4459 return 1; 4460 #endif 4461 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4462 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4463 return KVM_DIRTY_LOG_MANUAL_CAPS; 4464 #endif 4465 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4466 case KVM_CAP_IRQ_ROUTING: 4467 return KVM_MAX_IRQ_ROUTES; 4468 #endif 4469 #if KVM_ADDRESS_SPACE_NUM > 1 4470 case KVM_CAP_MULTI_ADDRESS_SPACE: 4471 return KVM_ADDRESS_SPACE_NUM; 4472 #endif 4473 case KVM_CAP_NR_MEMSLOTS: 4474 return KVM_USER_MEM_SLOTS; 4475 case KVM_CAP_DIRTY_LOG_RING: 4476 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4477 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4478 #else 4479 return 0; 4480 #endif 4481 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4482 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4483 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4484 #else 4485 return 0; 4486 #endif 4487 case KVM_CAP_BINARY_STATS_FD: 4488 case KVM_CAP_SYSTEM_EVENT_DATA: 4489 return 1; 4490 default: 4491 break; 4492 } 4493 return kvm_vm_ioctl_check_extension(kvm, arg); 4494 } 4495 4496 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4497 { 4498 int r; 4499 4500 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4501 return -EINVAL; 4502 4503 /* the size should be power of 2 */ 4504 if (!size || (size & (size - 1))) 4505 return -EINVAL; 4506 4507 /* Should be bigger to keep the reserved entries, or a page */ 4508 if (size < kvm_dirty_ring_get_rsvd_entries() * 4509 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4510 return -EINVAL; 4511 4512 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4513 sizeof(struct kvm_dirty_gfn)) 4514 return -E2BIG; 4515 4516 /* We only allow it to set once */ 4517 if (kvm->dirty_ring_size) 4518 return -EINVAL; 4519 4520 mutex_lock(&kvm->lock); 4521 4522 if (kvm->created_vcpus) { 4523 /* We don't allow to change this value after vcpu created */ 4524 r = -EINVAL; 4525 } else { 4526 kvm->dirty_ring_size = size; 4527 r = 0; 4528 } 4529 4530 mutex_unlock(&kvm->lock); 4531 return r; 4532 } 4533 4534 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4535 { 4536 unsigned long i; 4537 struct kvm_vcpu *vcpu; 4538 int cleared = 0; 4539 4540 if (!kvm->dirty_ring_size) 4541 return -EINVAL; 4542 4543 mutex_lock(&kvm->slots_lock); 4544 4545 kvm_for_each_vcpu(i, vcpu, kvm) 4546 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4547 4548 mutex_unlock(&kvm->slots_lock); 4549 4550 if (cleared) 4551 kvm_flush_remote_tlbs(kvm); 4552 4553 return cleared; 4554 } 4555 4556 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4557 struct kvm_enable_cap *cap) 4558 { 4559 return -EINVAL; 4560 } 4561 4562 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4563 struct kvm_enable_cap *cap) 4564 { 4565 switch (cap->cap) { 4566 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4567 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4568 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4569 4570 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4571 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4572 4573 if (cap->flags || (cap->args[0] & ~allowed_options)) 4574 return -EINVAL; 4575 kvm->manual_dirty_log_protect = cap->args[0]; 4576 return 0; 4577 } 4578 #endif 4579 case KVM_CAP_HALT_POLL: { 4580 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4581 return -EINVAL; 4582 4583 kvm->max_halt_poll_ns = cap->args[0]; 4584 return 0; 4585 } 4586 case KVM_CAP_DIRTY_LOG_RING: 4587 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4588 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4589 default: 4590 return kvm_vm_ioctl_enable_cap(kvm, cap); 4591 } 4592 } 4593 4594 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4595 size_t size, loff_t *offset) 4596 { 4597 struct kvm *kvm = file->private_data; 4598 4599 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4600 &kvm_vm_stats_desc[0], &kvm->stat, 4601 sizeof(kvm->stat), user_buffer, size, offset); 4602 } 4603 4604 static const struct file_operations kvm_vm_stats_fops = { 4605 .read = kvm_vm_stats_read, 4606 .llseek = noop_llseek, 4607 }; 4608 4609 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4610 { 4611 int fd; 4612 struct file *file; 4613 4614 fd = get_unused_fd_flags(O_CLOEXEC); 4615 if (fd < 0) 4616 return fd; 4617 4618 file = anon_inode_getfile("kvm-vm-stats", 4619 &kvm_vm_stats_fops, kvm, O_RDONLY); 4620 if (IS_ERR(file)) { 4621 put_unused_fd(fd); 4622 return PTR_ERR(file); 4623 } 4624 file->f_mode |= FMODE_PREAD; 4625 fd_install(fd, file); 4626 4627 return fd; 4628 } 4629 4630 static long kvm_vm_ioctl(struct file *filp, 4631 unsigned int ioctl, unsigned long arg) 4632 { 4633 struct kvm *kvm = filp->private_data; 4634 void __user *argp = (void __user *)arg; 4635 int r; 4636 4637 if (kvm->mm != current->mm || kvm->vm_dead) 4638 return -EIO; 4639 switch (ioctl) { 4640 case KVM_CREATE_VCPU: 4641 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4642 break; 4643 case KVM_ENABLE_CAP: { 4644 struct kvm_enable_cap cap; 4645 4646 r = -EFAULT; 4647 if (copy_from_user(&cap, argp, sizeof(cap))) 4648 goto out; 4649 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4650 break; 4651 } 4652 case KVM_SET_USER_MEMORY_REGION: { 4653 struct kvm_userspace_memory_region kvm_userspace_mem; 4654 4655 r = -EFAULT; 4656 if (copy_from_user(&kvm_userspace_mem, argp, 4657 sizeof(kvm_userspace_mem))) 4658 goto out; 4659 4660 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4661 break; 4662 } 4663 case KVM_GET_DIRTY_LOG: { 4664 struct kvm_dirty_log log; 4665 4666 r = -EFAULT; 4667 if (copy_from_user(&log, argp, sizeof(log))) 4668 goto out; 4669 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4670 break; 4671 } 4672 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4673 case KVM_CLEAR_DIRTY_LOG: { 4674 struct kvm_clear_dirty_log log; 4675 4676 r = -EFAULT; 4677 if (copy_from_user(&log, argp, sizeof(log))) 4678 goto out; 4679 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4680 break; 4681 } 4682 #endif 4683 #ifdef CONFIG_KVM_MMIO 4684 case KVM_REGISTER_COALESCED_MMIO: { 4685 struct kvm_coalesced_mmio_zone zone; 4686 4687 r = -EFAULT; 4688 if (copy_from_user(&zone, argp, sizeof(zone))) 4689 goto out; 4690 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4691 break; 4692 } 4693 case KVM_UNREGISTER_COALESCED_MMIO: { 4694 struct kvm_coalesced_mmio_zone zone; 4695 4696 r = -EFAULT; 4697 if (copy_from_user(&zone, argp, sizeof(zone))) 4698 goto out; 4699 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4700 break; 4701 } 4702 #endif 4703 case KVM_IRQFD: { 4704 struct kvm_irqfd data; 4705 4706 r = -EFAULT; 4707 if (copy_from_user(&data, argp, sizeof(data))) 4708 goto out; 4709 r = kvm_irqfd(kvm, &data); 4710 break; 4711 } 4712 case KVM_IOEVENTFD: { 4713 struct kvm_ioeventfd data; 4714 4715 r = -EFAULT; 4716 if (copy_from_user(&data, argp, sizeof(data))) 4717 goto out; 4718 r = kvm_ioeventfd(kvm, &data); 4719 break; 4720 } 4721 #ifdef CONFIG_HAVE_KVM_MSI 4722 case KVM_SIGNAL_MSI: { 4723 struct kvm_msi msi; 4724 4725 r = -EFAULT; 4726 if (copy_from_user(&msi, argp, sizeof(msi))) 4727 goto out; 4728 r = kvm_send_userspace_msi(kvm, &msi); 4729 break; 4730 } 4731 #endif 4732 #ifdef __KVM_HAVE_IRQ_LINE 4733 case KVM_IRQ_LINE_STATUS: 4734 case KVM_IRQ_LINE: { 4735 struct kvm_irq_level irq_event; 4736 4737 r = -EFAULT; 4738 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4739 goto out; 4740 4741 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4742 ioctl == KVM_IRQ_LINE_STATUS); 4743 if (r) 4744 goto out; 4745 4746 r = -EFAULT; 4747 if (ioctl == KVM_IRQ_LINE_STATUS) { 4748 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4749 goto out; 4750 } 4751 4752 r = 0; 4753 break; 4754 } 4755 #endif 4756 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4757 case KVM_SET_GSI_ROUTING: { 4758 struct kvm_irq_routing routing; 4759 struct kvm_irq_routing __user *urouting; 4760 struct kvm_irq_routing_entry *entries = NULL; 4761 4762 r = -EFAULT; 4763 if (copy_from_user(&routing, argp, sizeof(routing))) 4764 goto out; 4765 r = -EINVAL; 4766 if (!kvm_arch_can_set_irq_routing(kvm)) 4767 goto out; 4768 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4769 goto out; 4770 if (routing.flags) 4771 goto out; 4772 if (routing.nr) { 4773 urouting = argp; 4774 entries = vmemdup_user(urouting->entries, 4775 array_size(sizeof(*entries), 4776 routing.nr)); 4777 if (IS_ERR(entries)) { 4778 r = PTR_ERR(entries); 4779 goto out; 4780 } 4781 } 4782 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4783 routing.flags); 4784 kvfree(entries); 4785 break; 4786 } 4787 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4788 case KVM_CREATE_DEVICE: { 4789 struct kvm_create_device cd; 4790 4791 r = -EFAULT; 4792 if (copy_from_user(&cd, argp, sizeof(cd))) 4793 goto out; 4794 4795 r = kvm_ioctl_create_device(kvm, &cd); 4796 if (r) 4797 goto out; 4798 4799 r = -EFAULT; 4800 if (copy_to_user(argp, &cd, sizeof(cd))) 4801 goto out; 4802 4803 r = 0; 4804 break; 4805 } 4806 case KVM_CHECK_EXTENSION: 4807 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4808 break; 4809 case KVM_RESET_DIRTY_RINGS: 4810 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4811 break; 4812 case KVM_GET_STATS_FD: 4813 r = kvm_vm_ioctl_get_stats_fd(kvm); 4814 break; 4815 default: 4816 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4817 } 4818 out: 4819 return r; 4820 } 4821 4822 #ifdef CONFIG_KVM_COMPAT 4823 struct compat_kvm_dirty_log { 4824 __u32 slot; 4825 __u32 padding1; 4826 union { 4827 compat_uptr_t dirty_bitmap; /* one bit per page */ 4828 __u64 padding2; 4829 }; 4830 }; 4831 4832 struct compat_kvm_clear_dirty_log { 4833 __u32 slot; 4834 __u32 num_pages; 4835 __u64 first_page; 4836 union { 4837 compat_uptr_t dirty_bitmap; /* one bit per page */ 4838 __u64 padding2; 4839 }; 4840 }; 4841 4842 static long kvm_vm_compat_ioctl(struct file *filp, 4843 unsigned int ioctl, unsigned long arg) 4844 { 4845 struct kvm *kvm = filp->private_data; 4846 int r; 4847 4848 if (kvm->mm != current->mm || kvm->vm_dead) 4849 return -EIO; 4850 switch (ioctl) { 4851 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4852 case KVM_CLEAR_DIRTY_LOG: { 4853 struct compat_kvm_clear_dirty_log compat_log; 4854 struct kvm_clear_dirty_log log; 4855 4856 if (copy_from_user(&compat_log, (void __user *)arg, 4857 sizeof(compat_log))) 4858 return -EFAULT; 4859 log.slot = compat_log.slot; 4860 log.num_pages = compat_log.num_pages; 4861 log.first_page = compat_log.first_page; 4862 log.padding2 = compat_log.padding2; 4863 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4864 4865 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4866 break; 4867 } 4868 #endif 4869 case KVM_GET_DIRTY_LOG: { 4870 struct compat_kvm_dirty_log compat_log; 4871 struct kvm_dirty_log log; 4872 4873 if (copy_from_user(&compat_log, (void __user *)arg, 4874 sizeof(compat_log))) 4875 return -EFAULT; 4876 log.slot = compat_log.slot; 4877 log.padding1 = compat_log.padding1; 4878 log.padding2 = compat_log.padding2; 4879 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4880 4881 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4882 break; 4883 } 4884 default: 4885 r = kvm_vm_ioctl(filp, ioctl, arg); 4886 } 4887 return r; 4888 } 4889 #endif 4890 4891 static const struct file_operations kvm_vm_fops = { 4892 .release = kvm_vm_release, 4893 .unlocked_ioctl = kvm_vm_ioctl, 4894 .llseek = noop_llseek, 4895 KVM_COMPAT(kvm_vm_compat_ioctl), 4896 }; 4897 4898 bool file_is_kvm(struct file *file) 4899 { 4900 return file && file->f_op == &kvm_vm_fops; 4901 } 4902 EXPORT_SYMBOL_GPL(file_is_kvm); 4903 4904 static int kvm_dev_ioctl_create_vm(unsigned long type) 4905 { 4906 char fdname[ITOA_MAX_LEN + 1]; 4907 int r, fd; 4908 struct kvm *kvm; 4909 struct file *file; 4910 4911 fd = get_unused_fd_flags(O_CLOEXEC); 4912 if (fd < 0) 4913 return fd; 4914 4915 snprintf(fdname, sizeof(fdname), "%d", fd); 4916 4917 kvm = kvm_create_vm(type, fdname); 4918 if (IS_ERR(kvm)) { 4919 r = PTR_ERR(kvm); 4920 goto put_fd; 4921 } 4922 4923 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4924 if (IS_ERR(file)) { 4925 r = PTR_ERR(file); 4926 goto put_kvm; 4927 } 4928 4929 /* 4930 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4931 * already set, with ->release() being kvm_vm_release(). In error 4932 * cases it will be called by the final fput(file) and will take 4933 * care of doing kvm_put_kvm(kvm). 4934 */ 4935 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4936 4937 fd_install(fd, file); 4938 return fd; 4939 4940 put_kvm: 4941 kvm_put_kvm(kvm); 4942 put_fd: 4943 put_unused_fd(fd); 4944 return r; 4945 } 4946 4947 static long kvm_dev_ioctl(struct file *filp, 4948 unsigned int ioctl, unsigned long arg) 4949 { 4950 long r = -EINVAL; 4951 4952 switch (ioctl) { 4953 case KVM_GET_API_VERSION: 4954 if (arg) 4955 goto out; 4956 r = KVM_API_VERSION; 4957 break; 4958 case KVM_CREATE_VM: 4959 r = kvm_dev_ioctl_create_vm(arg); 4960 break; 4961 case KVM_CHECK_EXTENSION: 4962 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4963 break; 4964 case KVM_GET_VCPU_MMAP_SIZE: 4965 if (arg) 4966 goto out; 4967 r = PAGE_SIZE; /* struct kvm_run */ 4968 #ifdef CONFIG_X86 4969 r += PAGE_SIZE; /* pio data page */ 4970 #endif 4971 #ifdef CONFIG_KVM_MMIO 4972 r += PAGE_SIZE; /* coalesced mmio ring page */ 4973 #endif 4974 break; 4975 case KVM_TRACE_ENABLE: 4976 case KVM_TRACE_PAUSE: 4977 case KVM_TRACE_DISABLE: 4978 r = -EOPNOTSUPP; 4979 break; 4980 default: 4981 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4982 } 4983 out: 4984 return r; 4985 } 4986 4987 static struct file_operations kvm_chardev_ops = { 4988 .unlocked_ioctl = kvm_dev_ioctl, 4989 .llseek = noop_llseek, 4990 KVM_COMPAT(kvm_dev_ioctl), 4991 }; 4992 4993 static struct miscdevice kvm_dev = { 4994 KVM_MINOR, 4995 "kvm", 4996 &kvm_chardev_ops, 4997 }; 4998 4999 static void hardware_enable_nolock(void *junk) 5000 { 5001 int cpu = raw_smp_processor_id(); 5002 int r; 5003 5004 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5005 return; 5006 5007 cpumask_set_cpu(cpu, cpus_hardware_enabled); 5008 5009 r = kvm_arch_hardware_enable(); 5010 5011 if (r) { 5012 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5013 atomic_inc(&hardware_enable_failed); 5014 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 5015 } 5016 } 5017 5018 static int kvm_starting_cpu(unsigned int cpu) 5019 { 5020 raw_spin_lock(&kvm_count_lock); 5021 if (kvm_usage_count) 5022 hardware_enable_nolock(NULL); 5023 raw_spin_unlock(&kvm_count_lock); 5024 return 0; 5025 } 5026 5027 static void hardware_disable_nolock(void *junk) 5028 { 5029 int cpu = raw_smp_processor_id(); 5030 5031 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5032 return; 5033 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5034 kvm_arch_hardware_disable(); 5035 } 5036 5037 static int kvm_dying_cpu(unsigned int cpu) 5038 { 5039 raw_spin_lock(&kvm_count_lock); 5040 if (kvm_usage_count) 5041 hardware_disable_nolock(NULL); 5042 raw_spin_unlock(&kvm_count_lock); 5043 return 0; 5044 } 5045 5046 static void hardware_disable_all_nolock(void) 5047 { 5048 BUG_ON(!kvm_usage_count); 5049 5050 kvm_usage_count--; 5051 if (!kvm_usage_count) 5052 on_each_cpu(hardware_disable_nolock, NULL, 1); 5053 } 5054 5055 static void hardware_disable_all(void) 5056 { 5057 raw_spin_lock(&kvm_count_lock); 5058 hardware_disable_all_nolock(); 5059 raw_spin_unlock(&kvm_count_lock); 5060 } 5061 5062 static int hardware_enable_all(void) 5063 { 5064 int r = 0; 5065 5066 raw_spin_lock(&kvm_count_lock); 5067 5068 kvm_usage_count++; 5069 if (kvm_usage_count == 1) { 5070 atomic_set(&hardware_enable_failed, 0); 5071 on_each_cpu(hardware_enable_nolock, NULL, 1); 5072 5073 if (atomic_read(&hardware_enable_failed)) { 5074 hardware_disable_all_nolock(); 5075 r = -EBUSY; 5076 } 5077 } 5078 5079 raw_spin_unlock(&kvm_count_lock); 5080 5081 return r; 5082 } 5083 5084 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 5085 void *v) 5086 { 5087 /* 5088 * Some (well, at least mine) BIOSes hang on reboot if 5089 * in vmx root mode. 5090 * 5091 * And Intel TXT required VMX off for all cpu when system shutdown. 5092 */ 5093 pr_info("kvm: exiting hardware virtualization\n"); 5094 kvm_rebooting = true; 5095 on_each_cpu(hardware_disable_nolock, NULL, 1); 5096 return NOTIFY_OK; 5097 } 5098 5099 static struct notifier_block kvm_reboot_notifier = { 5100 .notifier_call = kvm_reboot, 5101 .priority = 0, 5102 }; 5103 5104 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5105 { 5106 int i; 5107 5108 for (i = 0; i < bus->dev_count; i++) { 5109 struct kvm_io_device *pos = bus->range[i].dev; 5110 5111 kvm_iodevice_destructor(pos); 5112 } 5113 kfree(bus); 5114 } 5115 5116 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5117 const struct kvm_io_range *r2) 5118 { 5119 gpa_t addr1 = r1->addr; 5120 gpa_t addr2 = r2->addr; 5121 5122 if (addr1 < addr2) 5123 return -1; 5124 5125 /* If r2->len == 0, match the exact address. If r2->len != 0, 5126 * accept any overlapping write. Any order is acceptable for 5127 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5128 * we process all of them. 5129 */ 5130 if (r2->len) { 5131 addr1 += r1->len; 5132 addr2 += r2->len; 5133 } 5134 5135 if (addr1 > addr2) 5136 return 1; 5137 5138 return 0; 5139 } 5140 5141 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5142 { 5143 return kvm_io_bus_cmp(p1, p2); 5144 } 5145 5146 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5147 gpa_t addr, int len) 5148 { 5149 struct kvm_io_range *range, key; 5150 int off; 5151 5152 key = (struct kvm_io_range) { 5153 .addr = addr, 5154 .len = len, 5155 }; 5156 5157 range = bsearch(&key, bus->range, bus->dev_count, 5158 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5159 if (range == NULL) 5160 return -ENOENT; 5161 5162 off = range - bus->range; 5163 5164 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5165 off--; 5166 5167 return off; 5168 } 5169 5170 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5171 struct kvm_io_range *range, const void *val) 5172 { 5173 int idx; 5174 5175 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5176 if (idx < 0) 5177 return -EOPNOTSUPP; 5178 5179 while (idx < bus->dev_count && 5180 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5181 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5182 range->len, val)) 5183 return idx; 5184 idx++; 5185 } 5186 5187 return -EOPNOTSUPP; 5188 } 5189 5190 /* kvm_io_bus_write - called under kvm->slots_lock */ 5191 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5192 int len, const void *val) 5193 { 5194 struct kvm_io_bus *bus; 5195 struct kvm_io_range range; 5196 int r; 5197 5198 range = (struct kvm_io_range) { 5199 .addr = addr, 5200 .len = len, 5201 }; 5202 5203 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5204 if (!bus) 5205 return -ENOMEM; 5206 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5207 return r < 0 ? r : 0; 5208 } 5209 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5210 5211 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5212 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5213 gpa_t addr, int len, const void *val, long cookie) 5214 { 5215 struct kvm_io_bus *bus; 5216 struct kvm_io_range range; 5217 5218 range = (struct kvm_io_range) { 5219 .addr = addr, 5220 .len = len, 5221 }; 5222 5223 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5224 if (!bus) 5225 return -ENOMEM; 5226 5227 /* First try the device referenced by cookie. */ 5228 if ((cookie >= 0) && (cookie < bus->dev_count) && 5229 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5230 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5231 val)) 5232 return cookie; 5233 5234 /* 5235 * cookie contained garbage; fall back to search and return the 5236 * correct cookie value. 5237 */ 5238 return __kvm_io_bus_write(vcpu, bus, &range, val); 5239 } 5240 5241 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5242 struct kvm_io_range *range, void *val) 5243 { 5244 int idx; 5245 5246 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5247 if (idx < 0) 5248 return -EOPNOTSUPP; 5249 5250 while (idx < bus->dev_count && 5251 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5252 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5253 range->len, val)) 5254 return idx; 5255 idx++; 5256 } 5257 5258 return -EOPNOTSUPP; 5259 } 5260 5261 /* kvm_io_bus_read - called under kvm->slots_lock */ 5262 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5263 int len, void *val) 5264 { 5265 struct kvm_io_bus *bus; 5266 struct kvm_io_range range; 5267 int r; 5268 5269 range = (struct kvm_io_range) { 5270 .addr = addr, 5271 .len = len, 5272 }; 5273 5274 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5275 if (!bus) 5276 return -ENOMEM; 5277 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5278 return r < 0 ? r : 0; 5279 } 5280 5281 /* Caller must hold slots_lock. */ 5282 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5283 int len, struct kvm_io_device *dev) 5284 { 5285 int i; 5286 struct kvm_io_bus *new_bus, *bus; 5287 struct kvm_io_range range; 5288 5289 bus = kvm_get_bus(kvm, bus_idx); 5290 if (!bus) 5291 return -ENOMEM; 5292 5293 /* exclude ioeventfd which is limited by maximum fd */ 5294 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5295 return -ENOSPC; 5296 5297 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5298 GFP_KERNEL_ACCOUNT); 5299 if (!new_bus) 5300 return -ENOMEM; 5301 5302 range = (struct kvm_io_range) { 5303 .addr = addr, 5304 .len = len, 5305 .dev = dev, 5306 }; 5307 5308 for (i = 0; i < bus->dev_count; i++) 5309 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5310 break; 5311 5312 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5313 new_bus->dev_count++; 5314 new_bus->range[i] = range; 5315 memcpy(new_bus->range + i + 1, bus->range + i, 5316 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5317 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5318 synchronize_srcu_expedited(&kvm->srcu); 5319 kfree(bus); 5320 5321 return 0; 5322 } 5323 5324 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5325 struct kvm_io_device *dev) 5326 { 5327 int i, j; 5328 struct kvm_io_bus *new_bus, *bus; 5329 5330 lockdep_assert_held(&kvm->slots_lock); 5331 5332 bus = kvm_get_bus(kvm, bus_idx); 5333 if (!bus) 5334 return 0; 5335 5336 for (i = 0; i < bus->dev_count; i++) { 5337 if (bus->range[i].dev == dev) { 5338 break; 5339 } 5340 } 5341 5342 if (i == bus->dev_count) 5343 return 0; 5344 5345 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5346 GFP_KERNEL_ACCOUNT); 5347 if (new_bus) { 5348 memcpy(new_bus, bus, struct_size(bus, range, i)); 5349 new_bus->dev_count--; 5350 memcpy(new_bus->range + i, bus->range + i + 1, 5351 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5352 } 5353 5354 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5355 synchronize_srcu_expedited(&kvm->srcu); 5356 5357 /* Destroy the old bus _after_ installing the (null) bus. */ 5358 if (!new_bus) { 5359 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5360 for (j = 0; j < bus->dev_count; j++) { 5361 if (j == i) 5362 continue; 5363 kvm_iodevice_destructor(bus->range[j].dev); 5364 } 5365 } 5366 5367 kfree(bus); 5368 return new_bus ? 0 : -ENOMEM; 5369 } 5370 5371 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5372 gpa_t addr) 5373 { 5374 struct kvm_io_bus *bus; 5375 int dev_idx, srcu_idx; 5376 struct kvm_io_device *iodev = NULL; 5377 5378 srcu_idx = srcu_read_lock(&kvm->srcu); 5379 5380 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5381 if (!bus) 5382 goto out_unlock; 5383 5384 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5385 if (dev_idx < 0) 5386 goto out_unlock; 5387 5388 iodev = bus->range[dev_idx].dev; 5389 5390 out_unlock: 5391 srcu_read_unlock(&kvm->srcu, srcu_idx); 5392 5393 return iodev; 5394 } 5395 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5396 5397 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5398 int (*get)(void *, u64 *), int (*set)(void *, u64), 5399 const char *fmt) 5400 { 5401 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5402 inode->i_private; 5403 5404 /* 5405 * The debugfs files are a reference to the kvm struct which 5406 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5407 * avoids the race between open and the removal of the debugfs directory. 5408 */ 5409 if (!kvm_get_kvm_safe(stat_data->kvm)) 5410 return -ENOENT; 5411 5412 if (simple_attr_open(inode, file, get, 5413 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5414 ? set : NULL, 5415 fmt)) { 5416 kvm_put_kvm(stat_data->kvm); 5417 return -ENOMEM; 5418 } 5419 5420 return 0; 5421 } 5422 5423 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5424 { 5425 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5426 inode->i_private; 5427 5428 simple_attr_release(inode, file); 5429 kvm_put_kvm(stat_data->kvm); 5430 5431 return 0; 5432 } 5433 5434 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5435 { 5436 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5437 5438 return 0; 5439 } 5440 5441 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5442 { 5443 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5444 5445 return 0; 5446 } 5447 5448 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5449 { 5450 unsigned long i; 5451 struct kvm_vcpu *vcpu; 5452 5453 *val = 0; 5454 5455 kvm_for_each_vcpu(i, vcpu, kvm) 5456 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5457 5458 return 0; 5459 } 5460 5461 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5462 { 5463 unsigned long i; 5464 struct kvm_vcpu *vcpu; 5465 5466 kvm_for_each_vcpu(i, vcpu, kvm) 5467 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5468 5469 return 0; 5470 } 5471 5472 static int kvm_stat_data_get(void *data, u64 *val) 5473 { 5474 int r = -EFAULT; 5475 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5476 5477 switch (stat_data->kind) { 5478 case KVM_STAT_VM: 5479 r = kvm_get_stat_per_vm(stat_data->kvm, 5480 stat_data->desc->desc.offset, val); 5481 break; 5482 case KVM_STAT_VCPU: 5483 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5484 stat_data->desc->desc.offset, val); 5485 break; 5486 } 5487 5488 return r; 5489 } 5490 5491 static int kvm_stat_data_clear(void *data, u64 val) 5492 { 5493 int r = -EFAULT; 5494 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5495 5496 if (val) 5497 return -EINVAL; 5498 5499 switch (stat_data->kind) { 5500 case KVM_STAT_VM: 5501 r = kvm_clear_stat_per_vm(stat_data->kvm, 5502 stat_data->desc->desc.offset); 5503 break; 5504 case KVM_STAT_VCPU: 5505 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5506 stat_data->desc->desc.offset); 5507 break; 5508 } 5509 5510 return r; 5511 } 5512 5513 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5514 { 5515 __simple_attr_check_format("%llu\n", 0ull); 5516 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5517 kvm_stat_data_clear, "%llu\n"); 5518 } 5519 5520 static const struct file_operations stat_fops_per_vm = { 5521 .owner = THIS_MODULE, 5522 .open = kvm_stat_data_open, 5523 .release = kvm_debugfs_release, 5524 .read = simple_attr_read, 5525 .write = simple_attr_write, 5526 .llseek = no_llseek, 5527 }; 5528 5529 static int vm_stat_get(void *_offset, u64 *val) 5530 { 5531 unsigned offset = (long)_offset; 5532 struct kvm *kvm; 5533 u64 tmp_val; 5534 5535 *val = 0; 5536 mutex_lock(&kvm_lock); 5537 list_for_each_entry(kvm, &vm_list, vm_list) { 5538 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5539 *val += tmp_val; 5540 } 5541 mutex_unlock(&kvm_lock); 5542 return 0; 5543 } 5544 5545 static int vm_stat_clear(void *_offset, u64 val) 5546 { 5547 unsigned offset = (long)_offset; 5548 struct kvm *kvm; 5549 5550 if (val) 5551 return -EINVAL; 5552 5553 mutex_lock(&kvm_lock); 5554 list_for_each_entry(kvm, &vm_list, vm_list) { 5555 kvm_clear_stat_per_vm(kvm, offset); 5556 } 5557 mutex_unlock(&kvm_lock); 5558 5559 return 0; 5560 } 5561 5562 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5563 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5564 5565 static int vcpu_stat_get(void *_offset, u64 *val) 5566 { 5567 unsigned offset = (long)_offset; 5568 struct kvm *kvm; 5569 u64 tmp_val; 5570 5571 *val = 0; 5572 mutex_lock(&kvm_lock); 5573 list_for_each_entry(kvm, &vm_list, vm_list) { 5574 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5575 *val += tmp_val; 5576 } 5577 mutex_unlock(&kvm_lock); 5578 return 0; 5579 } 5580 5581 static int vcpu_stat_clear(void *_offset, u64 val) 5582 { 5583 unsigned offset = (long)_offset; 5584 struct kvm *kvm; 5585 5586 if (val) 5587 return -EINVAL; 5588 5589 mutex_lock(&kvm_lock); 5590 list_for_each_entry(kvm, &vm_list, vm_list) { 5591 kvm_clear_stat_per_vcpu(kvm, offset); 5592 } 5593 mutex_unlock(&kvm_lock); 5594 5595 return 0; 5596 } 5597 5598 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5599 "%llu\n"); 5600 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5601 5602 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5603 { 5604 struct kobj_uevent_env *env; 5605 unsigned long long created, active; 5606 5607 if (!kvm_dev.this_device || !kvm) 5608 return; 5609 5610 mutex_lock(&kvm_lock); 5611 if (type == KVM_EVENT_CREATE_VM) { 5612 kvm_createvm_count++; 5613 kvm_active_vms++; 5614 } else if (type == KVM_EVENT_DESTROY_VM) { 5615 kvm_active_vms--; 5616 } 5617 created = kvm_createvm_count; 5618 active = kvm_active_vms; 5619 mutex_unlock(&kvm_lock); 5620 5621 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5622 if (!env) 5623 return; 5624 5625 add_uevent_var(env, "CREATED=%llu", created); 5626 add_uevent_var(env, "COUNT=%llu", active); 5627 5628 if (type == KVM_EVENT_CREATE_VM) { 5629 add_uevent_var(env, "EVENT=create"); 5630 kvm->userspace_pid = task_pid_nr(current); 5631 } else if (type == KVM_EVENT_DESTROY_VM) { 5632 add_uevent_var(env, "EVENT=destroy"); 5633 } 5634 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5635 5636 if (!IS_ERR(kvm->debugfs_dentry)) { 5637 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5638 5639 if (p) { 5640 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5641 if (!IS_ERR(tmp)) 5642 add_uevent_var(env, "STATS_PATH=%s", tmp); 5643 kfree(p); 5644 } 5645 } 5646 /* no need for checks, since we are adding at most only 5 keys */ 5647 env->envp[env->envp_idx++] = NULL; 5648 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5649 kfree(env); 5650 } 5651 5652 static void kvm_init_debug(void) 5653 { 5654 const struct file_operations *fops; 5655 const struct _kvm_stats_desc *pdesc; 5656 int i; 5657 5658 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5659 5660 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5661 pdesc = &kvm_vm_stats_desc[i]; 5662 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5663 fops = &vm_stat_fops; 5664 else 5665 fops = &vm_stat_readonly_fops; 5666 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5667 kvm_debugfs_dir, 5668 (void *)(long)pdesc->desc.offset, fops); 5669 } 5670 5671 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5672 pdesc = &kvm_vcpu_stats_desc[i]; 5673 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5674 fops = &vcpu_stat_fops; 5675 else 5676 fops = &vcpu_stat_readonly_fops; 5677 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5678 kvm_debugfs_dir, 5679 (void *)(long)pdesc->desc.offset, fops); 5680 } 5681 } 5682 5683 static int kvm_suspend(void) 5684 { 5685 if (kvm_usage_count) 5686 hardware_disable_nolock(NULL); 5687 return 0; 5688 } 5689 5690 static void kvm_resume(void) 5691 { 5692 if (kvm_usage_count) { 5693 lockdep_assert_not_held(&kvm_count_lock); 5694 hardware_enable_nolock(NULL); 5695 } 5696 } 5697 5698 static struct syscore_ops kvm_syscore_ops = { 5699 .suspend = kvm_suspend, 5700 .resume = kvm_resume, 5701 }; 5702 5703 static inline 5704 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5705 { 5706 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5707 } 5708 5709 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5710 { 5711 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5712 5713 WRITE_ONCE(vcpu->preempted, false); 5714 WRITE_ONCE(vcpu->ready, false); 5715 5716 __this_cpu_write(kvm_running_vcpu, vcpu); 5717 kvm_arch_sched_in(vcpu, cpu); 5718 kvm_arch_vcpu_load(vcpu, cpu); 5719 } 5720 5721 static void kvm_sched_out(struct preempt_notifier *pn, 5722 struct task_struct *next) 5723 { 5724 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5725 5726 if (current->on_rq) { 5727 WRITE_ONCE(vcpu->preempted, true); 5728 WRITE_ONCE(vcpu->ready, true); 5729 } 5730 kvm_arch_vcpu_put(vcpu); 5731 __this_cpu_write(kvm_running_vcpu, NULL); 5732 } 5733 5734 /** 5735 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5736 * 5737 * We can disable preemption locally around accessing the per-CPU variable, 5738 * and use the resolved vcpu pointer after enabling preemption again, 5739 * because even if the current thread is migrated to another CPU, reading 5740 * the per-CPU value later will give us the same value as we update the 5741 * per-CPU variable in the preempt notifier handlers. 5742 */ 5743 struct kvm_vcpu *kvm_get_running_vcpu(void) 5744 { 5745 struct kvm_vcpu *vcpu; 5746 5747 preempt_disable(); 5748 vcpu = __this_cpu_read(kvm_running_vcpu); 5749 preempt_enable(); 5750 5751 return vcpu; 5752 } 5753 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5754 5755 /** 5756 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5757 */ 5758 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5759 { 5760 return &kvm_running_vcpu; 5761 } 5762 5763 #ifdef CONFIG_GUEST_PERF_EVENTS 5764 static unsigned int kvm_guest_state(void) 5765 { 5766 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5767 unsigned int state; 5768 5769 if (!kvm_arch_pmi_in_guest(vcpu)) 5770 return 0; 5771 5772 state = PERF_GUEST_ACTIVE; 5773 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5774 state |= PERF_GUEST_USER; 5775 5776 return state; 5777 } 5778 5779 static unsigned long kvm_guest_get_ip(void) 5780 { 5781 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5782 5783 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5784 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5785 return 0; 5786 5787 return kvm_arch_vcpu_get_ip(vcpu); 5788 } 5789 5790 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5791 .state = kvm_guest_state, 5792 .get_ip = kvm_guest_get_ip, 5793 .handle_intel_pt_intr = NULL, 5794 }; 5795 5796 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5797 { 5798 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5799 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5800 } 5801 void kvm_unregister_perf_callbacks(void) 5802 { 5803 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5804 } 5805 #endif 5806 5807 struct kvm_cpu_compat_check { 5808 void *opaque; 5809 int *ret; 5810 }; 5811 5812 static void check_processor_compat(void *data) 5813 { 5814 struct kvm_cpu_compat_check *c = data; 5815 5816 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5817 } 5818 5819 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5820 struct module *module) 5821 { 5822 struct kvm_cpu_compat_check c; 5823 int r; 5824 int cpu; 5825 5826 r = kvm_arch_init(opaque); 5827 if (r) 5828 goto out_fail; 5829 5830 /* 5831 * kvm_arch_init makes sure there's at most one caller 5832 * for architectures that support multiple implementations, 5833 * like intel and amd on x86. 5834 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5835 * conflicts in case kvm is already setup for another implementation. 5836 */ 5837 r = kvm_irqfd_init(); 5838 if (r) 5839 goto out_irqfd; 5840 5841 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5842 r = -ENOMEM; 5843 goto out_free_0; 5844 } 5845 5846 r = kvm_arch_hardware_setup(opaque); 5847 if (r < 0) 5848 goto out_free_1; 5849 5850 c.ret = &r; 5851 c.opaque = opaque; 5852 for_each_online_cpu(cpu) { 5853 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5854 if (r < 0) 5855 goto out_free_2; 5856 } 5857 5858 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5859 kvm_starting_cpu, kvm_dying_cpu); 5860 if (r) 5861 goto out_free_2; 5862 register_reboot_notifier(&kvm_reboot_notifier); 5863 5864 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5865 if (!vcpu_align) 5866 vcpu_align = __alignof__(struct kvm_vcpu); 5867 kvm_vcpu_cache = 5868 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5869 SLAB_ACCOUNT, 5870 offsetof(struct kvm_vcpu, arch), 5871 offsetofend(struct kvm_vcpu, stats_id) 5872 - offsetof(struct kvm_vcpu, arch), 5873 NULL); 5874 if (!kvm_vcpu_cache) { 5875 r = -ENOMEM; 5876 goto out_free_3; 5877 } 5878 5879 for_each_possible_cpu(cpu) { 5880 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5881 GFP_KERNEL, cpu_to_node(cpu))) { 5882 r = -ENOMEM; 5883 goto out_free_4; 5884 } 5885 } 5886 5887 r = kvm_async_pf_init(); 5888 if (r) 5889 goto out_free_4; 5890 5891 kvm_chardev_ops.owner = module; 5892 5893 r = misc_register(&kvm_dev); 5894 if (r) { 5895 pr_err("kvm: misc device register failed\n"); 5896 goto out_unreg; 5897 } 5898 5899 register_syscore_ops(&kvm_syscore_ops); 5900 5901 kvm_preempt_ops.sched_in = kvm_sched_in; 5902 kvm_preempt_ops.sched_out = kvm_sched_out; 5903 5904 kvm_init_debug(); 5905 5906 r = kvm_vfio_ops_init(); 5907 WARN_ON(r); 5908 5909 return 0; 5910 5911 out_unreg: 5912 kvm_async_pf_deinit(); 5913 out_free_4: 5914 for_each_possible_cpu(cpu) 5915 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5916 kmem_cache_destroy(kvm_vcpu_cache); 5917 out_free_3: 5918 unregister_reboot_notifier(&kvm_reboot_notifier); 5919 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5920 out_free_2: 5921 kvm_arch_hardware_unsetup(); 5922 out_free_1: 5923 free_cpumask_var(cpus_hardware_enabled); 5924 out_free_0: 5925 kvm_irqfd_exit(); 5926 out_irqfd: 5927 kvm_arch_exit(); 5928 out_fail: 5929 return r; 5930 } 5931 EXPORT_SYMBOL_GPL(kvm_init); 5932 5933 void kvm_exit(void) 5934 { 5935 int cpu; 5936 5937 debugfs_remove_recursive(kvm_debugfs_dir); 5938 misc_deregister(&kvm_dev); 5939 for_each_possible_cpu(cpu) 5940 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5941 kmem_cache_destroy(kvm_vcpu_cache); 5942 kvm_async_pf_deinit(); 5943 unregister_syscore_ops(&kvm_syscore_ops); 5944 unregister_reboot_notifier(&kvm_reboot_notifier); 5945 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5946 on_each_cpu(hardware_disable_nolock, NULL, 1); 5947 kvm_arch_hardware_unsetup(); 5948 kvm_arch_exit(); 5949 kvm_irqfd_exit(); 5950 free_cpumask_var(cpus_hardware_enabled); 5951 kvm_vfio_ops_exit(); 5952 } 5953 EXPORT_SYMBOL_GPL(kvm_exit); 5954 5955 struct kvm_vm_worker_thread_context { 5956 struct kvm *kvm; 5957 struct task_struct *parent; 5958 struct completion init_done; 5959 kvm_vm_thread_fn_t thread_fn; 5960 uintptr_t data; 5961 int err; 5962 }; 5963 5964 static int kvm_vm_worker_thread(void *context) 5965 { 5966 /* 5967 * The init_context is allocated on the stack of the parent thread, so 5968 * we have to locally copy anything that is needed beyond initialization 5969 */ 5970 struct kvm_vm_worker_thread_context *init_context = context; 5971 struct task_struct *parent; 5972 struct kvm *kvm = init_context->kvm; 5973 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5974 uintptr_t data = init_context->data; 5975 int err; 5976 5977 err = kthread_park(current); 5978 /* kthread_park(current) is never supposed to return an error */ 5979 WARN_ON(err != 0); 5980 if (err) 5981 goto init_complete; 5982 5983 err = cgroup_attach_task_all(init_context->parent, current); 5984 if (err) { 5985 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5986 __func__, err); 5987 goto init_complete; 5988 } 5989 5990 set_user_nice(current, task_nice(init_context->parent)); 5991 5992 init_complete: 5993 init_context->err = err; 5994 complete(&init_context->init_done); 5995 init_context = NULL; 5996 5997 if (err) 5998 goto out; 5999 6000 /* Wait to be woken up by the spawner before proceeding. */ 6001 kthread_parkme(); 6002 6003 if (!kthread_should_stop()) 6004 err = thread_fn(kvm, data); 6005 6006 out: 6007 /* 6008 * Move kthread back to its original cgroup to prevent it lingering in 6009 * the cgroup of the VM process, after the latter finishes its 6010 * execution. 6011 * 6012 * kthread_stop() waits on the 'exited' completion condition which is 6013 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6014 * kthread is removed from the cgroup in the cgroup_exit() which is 6015 * called after the exit_mm(). This causes the kthread_stop() to return 6016 * before the kthread actually quits the cgroup. 6017 */ 6018 rcu_read_lock(); 6019 parent = rcu_dereference(current->real_parent); 6020 get_task_struct(parent); 6021 rcu_read_unlock(); 6022 cgroup_attach_task_all(parent, current); 6023 put_task_struct(parent); 6024 6025 return err; 6026 } 6027 6028 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6029 uintptr_t data, const char *name, 6030 struct task_struct **thread_ptr) 6031 { 6032 struct kvm_vm_worker_thread_context init_context = {}; 6033 struct task_struct *thread; 6034 6035 *thread_ptr = NULL; 6036 init_context.kvm = kvm; 6037 init_context.parent = current; 6038 init_context.thread_fn = thread_fn; 6039 init_context.data = data; 6040 init_completion(&init_context.init_done); 6041 6042 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6043 "%s-%d", name, task_pid_nr(current)); 6044 if (IS_ERR(thread)) 6045 return PTR_ERR(thread); 6046 6047 /* kthread_run is never supposed to return NULL */ 6048 WARN_ON(thread == NULL); 6049 6050 wait_for_completion(&init_context.init_done); 6051 6052 if (!init_context.err) 6053 *thread_ptr = thread; 6054 6055 return init_context.err; 6056 } 6057