1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 315 { 316 struct kvm_vcpu *vcpu; 317 struct cpumask *cpus; 318 unsigned long i; 319 bool called; 320 int me; 321 322 me = get_cpu(); 323 324 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 325 cpumask_clear(cpus); 326 327 kvm_for_each_vcpu(i, vcpu, kvm) 328 kvm_make_vcpu_request(vcpu, req, cpus, me); 329 330 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 331 put_cpu(); 332 333 return called; 334 } 335 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 336 337 void kvm_flush_remote_tlbs(struct kvm *kvm) 338 { 339 ++kvm->stat.generic.remote_tlb_flush_requests; 340 341 /* 342 * We want to publish modifications to the page tables before reading 343 * mode. Pairs with a memory barrier in arch-specific code. 344 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 345 * and smp_mb in walk_shadow_page_lockless_begin/end. 346 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 347 * 348 * There is already an smp_mb__after_atomic() before 349 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 350 * barrier here. 351 */ 352 if (!kvm_arch_flush_remote_tlbs(kvm) 353 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 354 ++kvm->stat.generic.remote_tlb_flush; 355 } 356 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 357 358 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 359 { 360 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 361 return; 362 363 /* 364 * Fall back to a flushing entire TLBs if the architecture range-based 365 * TLB invalidation is unsupported or can't be performed for whatever 366 * reason. 367 */ 368 kvm_flush_remote_tlbs(kvm); 369 } 370 371 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 372 const struct kvm_memory_slot *memslot) 373 { 374 /* 375 * All current use cases for flushing the TLBs for a specific memslot 376 * are related to dirty logging, and many do the TLB flush out of 377 * mmu_lock. The interaction between the various operations on memslot 378 * must be serialized by slots_locks to ensure the TLB flush from one 379 * operation is observed by any other operation on the same memslot. 380 */ 381 lockdep_assert_held(&kvm->slots_lock); 382 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 383 } 384 385 static void kvm_flush_shadow_all(struct kvm *kvm) 386 { 387 kvm_arch_flush_shadow_all(kvm); 388 kvm_arch_guest_memory_reclaimed(kvm); 389 } 390 391 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 392 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 393 gfp_t gfp_flags) 394 { 395 void *page; 396 397 gfp_flags |= mc->gfp_zero; 398 399 if (mc->kmem_cache) 400 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 401 402 page = (void *)__get_free_page(gfp_flags); 403 if (page && mc->init_value) 404 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 405 return page; 406 } 407 408 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 409 { 410 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 411 void *obj; 412 413 if (mc->nobjs >= min) 414 return 0; 415 416 if (unlikely(!mc->objects)) { 417 if (WARN_ON_ONCE(!capacity)) 418 return -EIO; 419 420 /* 421 * Custom init values can be used only for page allocations, 422 * and obviously conflict with __GFP_ZERO. 423 */ 424 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 425 return -EIO; 426 427 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 428 if (!mc->objects) 429 return -ENOMEM; 430 431 mc->capacity = capacity; 432 } 433 434 /* It is illegal to request a different capacity across topups. */ 435 if (WARN_ON_ONCE(mc->capacity != capacity)) 436 return -EIO; 437 438 while (mc->nobjs < mc->capacity) { 439 obj = mmu_memory_cache_alloc_obj(mc, gfp); 440 if (!obj) 441 return mc->nobjs >= min ? 0 : -ENOMEM; 442 mc->objects[mc->nobjs++] = obj; 443 } 444 return 0; 445 } 446 447 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 448 { 449 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 450 } 451 452 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 453 { 454 return mc->nobjs; 455 } 456 457 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 458 { 459 while (mc->nobjs) { 460 if (mc->kmem_cache) 461 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 462 else 463 free_page((unsigned long)mc->objects[--mc->nobjs]); 464 } 465 466 kvfree(mc->objects); 467 468 mc->objects = NULL; 469 mc->capacity = 0; 470 } 471 472 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 473 { 474 void *p; 475 476 if (WARN_ON(!mc->nobjs)) 477 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 478 else 479 p = mc->objects[--mc->nobjs]; 480 BUG_ON(!p); 481 return p; 482 } 483 #endif 484 485 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 486 { 487 mutex_init(&vcpu->mutex); 488 vcpu->cpu = -1; 489 vcpu->kvm = kvm; 490 vcpu->vcpu_id = id; 491 vcpu->pid = NULL; 492 #ifndef __KVM_HAVE_ARCH_WQP 493 rcuwait_init(&vcpu->wait); 494 #endif 495 kvm_async_pf_vcpu_init(vcpu); 496 497 kvm_vcpu_set_in_spin_loop(vcpu, false); 498 kvm_vcpu_set_dy_eligible(vcpu, false); 499 vcpu->preempted = false; 500 vcpu->ready = false; 501 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 502 vcpu->last_used_slot = NULL; 503 504 /* Fill the stats id string for the vcpu */ 505 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 506 task_pid_nr(current), id); 507 } 508 509 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 510 { 511 kvm_arch_vcpu_destroy(vcpu); 512 kvm_dirty_ring_free(&vcpu->dirty_ring); 513 514 /* 515 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 516 * the vcpu->pid pointer, and at destruction time all file descriptors 517 * are already gone. 518 */ 519 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 520 521 free_page((unsigned long)vcpu->run); 522 kmem_cache_free(kvm_vcpu_cache, vcpu); 523 } 524 525 void kvm_destroy_vcpus(struct kvm *kvm) 526 { 527 unsigned long i; 528 struct kvm_vcpu *vcpu; 529 530 kvm_for_each_vcpu(i, vcpu, kvm) { 531 kvm_vcpu_destroy(vcpu); 532 xa_erase(&kvm->vcpu_array, i); 533 } 534 535 atomic_set(&kvm->online_vcpus, 0); 536 } 537 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 538 539 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 540 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 541 { 542 return container_of(mn, struct kvm, mmu_notifier); 543 } 544 545 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 546 547 typedef void (*on_lock_fn_t)(struct kvm *kvm); 548 549 struct kvm_mmu_notifier_range { 550 /* 551 * 64-bit addresses, as KVM notifiers can operate on host virtual 552 * addresses (unsigned long) and guest physical addresses (64-bit). 553 */ 554 u64 start; 555 u64 end; 556 union kvm_mmu_notifier_arg arg; 557 gfn_handler_t handler; 558 on_lock_fn_t on_lock; 559 bool flush_on_ret; 560 bool may_block; 561 }; 562 563 /* 564 * The inner-most helper returns a tuple containing the return value from the 565 * arch- and action-specific handler, plus a flag indicating whether or not at 566 * least one memslot was found, i.e. if the handler found guest memory. 567 * 568 * Note, most notifiers are averse to booleans, so even though KVM tracks the 569 * return from arch code as a bool, outer helpers will cast it to an int. :-( 570 */ 571 typedef struct kvm_mmu_notifier_return { 572 bool ret; 573 bool found_memslot; 574 } kvm_mn_ret_t; 575 576 /* 577 * Use a dedicated stub instead of NULL to indicate that there is no callback 578 * function/handler. The compiler technically can't guarantee that a real 579 * function will have a non-zero address, and so it will generate code to 580 * check for !NULL, whereas comparing against a stub will be elided at compile 581 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 582 */ 583 static void kvm_null_fn(void) 584 { 585 586 } 587 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 588 589 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 590 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 591 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 592 node; \ 593 node = interval_tree_iter_next(node, start, last)) \ 594 595 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 596 const struct kvm_mmu_notifier_range *range) 597 { 598 struct kvm_mmu_notifier_return r = { 599 .ret = false, 600 .found_memslot = false, 601 }; 602 struct kvm_gfn_range gfn_range; 603 struct kvm_memory_slot *slot; 604 struct kvm_memslots *slots; 605 int i, idx; 606 607 if (WARN_ON_ONCE(range->end <= range->start)) 608 return r; 609 610 /* A null handler is allowed if and only if on_lock() is provided. */ 611 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 612 IS_KVM_NULL_FN(range->handler))) 613 return r; 614 615 idx = srcu_read_lock(&kvm->srcu); 616 617 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 618 struct interval_tree_node *node; 619 620 slots = __kvm_memslots(kvm, i); 621 kvm_for_each_memslot_in_hva_range(node, slots, 622 range->start, range->end - 1) { 623 unsigned long hva_start, hva_end; 624 625 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 626 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 627 hva_end = min_t(unsigned long, range->end, 628 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 629 630 /* 631 * To optimize for the likely case where the address 632 * range is covered by zero or one memslots, don't 633 * bother making these conditional (to avoid writes on 634 * the second or later invocation of the handler). 635 */ 636 gfn_range.arg = range->arg; 637 gfn_range.may_block = range->may_block; 638 639 /* 640 * {gfn(page) | page intersects with [hva_start, hva_end)} = 641 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 642 */ 643 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 644 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 645 gfn_range.slot = slot; 646 647 if (!r.found_memslot) { 648 r.found_memslot = true; 649 KVM_MMU_LOCK(kvm); 650 if (!IS_KVM_NULL_FN(range->on_lock)) 651 range->on_lock(kvm); 652 653 if (IS_KVM_NULL_FN(range->handler)) 654 goto mmu_unlock; 655 } 656 r.ret |= range->handler(kvm, &gfn_range); 657 } 658 } 659 660 if (range->flush_on_ret && r.ret) 661 kvm_flush_remote_tlbs(kvm); 662 663 mmu_unlock: 664 if (r.found_memslot) 665 KVM_MMU_UNLOCK(kvm); 666 667 srcu_read_unlock(&kvm->srcu, idx); 668 669 return r; 670 } 671 672 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 673 unsigned long start, 674 unsigned long end, 675 gfn_handler_t handler) 676 { 677 struct kvm *kvm = mmu_notifier_to_kvm(mn); 678 const struct kvm_mmu_notifier_range range = { 679 .start = start, 680 .end = end, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 void kvm_mmu_invalidate_begin(struct kvm *kvm) 709 { 710 lockdep_assert_held_write(&kvm->mmu_lock); 711 /* 712 * The count increase must become visible at unlock time as no 713 * spte can be established without taking the mmu_lock and 714 * count is also read inside the mmu_lock critical section. 715 */ 716 kvm->mmu_invalidate_in_progress++; 717 718 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 719 kvm->mmu_invalidate_range_start = INVALID_GPA; 720 kvm->mmu_invalidate_range_end = INVALID_GPA; 721 } 722 } 723 724 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 725 { 726 lockdep_assert_held_write(&kvm->mmu_lock); 727 728 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 729 730 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 731 kvm->mmu_invalidate_range_start = start; 732 kvm->mmu_invalidate_range_end = end; 733 } else { 734 /* 735 * Fully tracking multiple concurrent ranges has diminishing 736 * returns. Keep things simple and just find the minimal range 737 * which includes the current and new ranges. As there won't be 738 * enough information to subtract a range after its invalidate 739 * completes, any ranges invalidated concurrently will 740 * accumulate and persist until all outstanding invalidates 741 * complete. 742 */ 743 kvm->mmu_invalidate_range_start = 744 min(kvm->mmu_invalidate_range_start, start); 745 kvm->mmu_invalidate_range_end = 746 max(kvm->mmu_invalidate_range_end, end); 747 } 748 } 749 750 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 751 { 752 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 753 return kvm_unmap_gfn_range(kvm, range); 754 } 755 756 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 757 const struct mmu_notifier_range *range) 758 { 759 struct kvm *kvm = mmu_notifier_to_kvm(mn); 760 const struct kvm_mmu_notifier_range hva_range = { 761 .start = range->start, 762 .end = range->end, 763 .handler = kvm_mmu_unmap_gfn_range, 764 .on_lock = kvm_mmu_invalidate_begin, 765 .flush_on_ret = true, 766 .may_block = mmu_notifier_range_blockable(range), 767 }; 768 769 trace_kvm_unmap_hva_range(range->start, range->end); 770 771 /* 772 * Prevent memslot modification between range_start() and range_end() 773 * so that conditionally locking provides the same result in both 774 * functions. Without that guarantee, the mmu_invalidate_in_progress 775 * adjustments will be imbalanced. 776 * 777 * Pairs with the decrement in range_end(). 778 */ 779 spin_lock(&kvm->mn_invalidate_lock); 780 kvm->mn_active_invalidate_count++; 781 spin_unlock(&kvm->mn_invalidate_lock); 782 783 /* 784 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 785 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 786 * each cache's lock. There are relatively few caches in existence at 787 * any given time, and the caches themselves can check for hva overlap, 788 * i.e. don't need to rely on memslot overlap checks for performance. 789 * Because this runs without holding mmu_lock, the pfn caches must use 790 * mn_active_invalidate_count (see above) instead of 791 * mmu_invalidate_in_progress. 792 */ 793 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 794 795 /* 796 * If one or more memslots were found and thus zapped, notify arch code 797 * that guest memory has been reclaimed. This needs to be done *after* 798 * dropping mmu_lock, as x86's reclaim path is slooooow. 799 */ 800 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 801 kvm_arch_guest_memory_reclaimed(kvm); 802 803 return 0; 804 } 805 806 void kvm_mmu_invalidate_end(struct kvm *kvm) 807 { 808 lockdep_assert_held_write(&kvm->mmu_lock); 809 810 /* 811 * This sequence increase will notify the kvm page fault that 812 * the page that is going to be mapped in the spte could have 813 * been freed. 814 */ 815 kvm->mmu_invalidate_seq++; 816 smp_wmb(); 817 /* 818 * The above sequence increase must be visible before the 819 * below count decrease, which is ensured by the smp_wmb above 820 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 821 */ 822 kvm->mmu_invalidate_in_progress--; 823 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 824 825 /* 826 * Assert that at least one range was added between start() and end(). 827 * Not adding a range isn't fatal, but it is a KVM bug. 828 */ 829 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 830 } 831 832 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 833 const struct mmu_notifier_range *range) 834 { 835 struct kvm *kvm = mmu_notifier_to_kvm(mn); 836 const struct kvm_mmu_notifier_range hva_range = { 837 .start = range->start, 838 .end = range->end, 839 .handler = (void *)kvm_null_fn, 840 .on_lock = kvm_mmu_invalidate_end, 841 .flush_on_ret = false, 842 .may_block = mmu_notifier_range_blockable(range), 843 }; 844 bool wake; 845 846 __kvm_handle_hva_range(kvm, &hva_range); 847 848 /* Pairs with the increment in range_start(). */ 849 spin_lock(&kvm->mn_invalidate_lock); 850 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 851 --kvm->mn_active_invalidate_count; 852 wake = !kvm->mn_active_invalidate_count; 853 spin_unlock(&kvm->mn_invalidate_lock); 854 855 /* 856 * There can only be one waiter, since the wait happens under 857 * slots_lock. 858 */ 859 if (wake) 860 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 861 } 862 863 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 864 struct mm_struct *mm, 865 unsigned long start, 866 unsigned long end) 867 { 868 trace_kvm_age_hva(start, end); 869 870 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 871 } 872 873 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 874 struct mm_struct *mm, 875 unsigned long start, 876 unsigned long end) 877 { 878 trace_kvm_age_hva(start, end); 879 880 /* 881 * Even though we do not flush TLB, this will still adversely 882 * affect performance on pre-Haswell Intel EPT, where there is 883 * no EPT Access Bit to clear so that we have to tear down EPT 884 * tables instead. If we find this unacceptable, we can always 885 * add a parameter to kvm_age_hva so that it effectively doesn't 886 * do anything on clear_young. 887 * 888 * Also note that currently we never issue secondary TLB flushes 889 * from clear_young, leaving this job up to the regular system 890 * cadence. If we find this inaccurate, we might come up with a 891 * more sophisticated heuristic later. 892 */ 893 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 894 } 895 896 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 897 struct mm_struct *mm, 898 unsigned long address) 899 { 900 trace_kvm_test_age_hva(address); 901 902 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 903 kvm_test_age_gfn); 904 } 905 906 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 907 struct mm_struct *mm) 908 { 909 struct kvm *kvm = mmu_notifier_to_kvm(mn); 910 int idx; 911 912 idx = srcu_read_lock(&kvm->srcu); 913 kvm_flush_shadow_all(kvm); 914 srcu_read_unlock(&kvm->srcu, idx); 915 } 916 917 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 918 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 919 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 920 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 921 .clear_young = kvm_mmu_notifier_clear_young, 922 .test_young = kvm_mmu_notifier_test_young, 923 .release = kvm_mmu_notifier_release, 924 }; 925 926 static int kvm_init_mmu_notifier(struct kvm *kvm) 927 { 928 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 929 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 930 } 931 932 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 933 934 static int kvm_init_mmu_notifier(struct kvm *kvm) 935 { 936 return 0; 937 } 938 939 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 940 941 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 942 static int kvm_pm_notifier_call(struct notifier_block *bl, 943 unsigned long state, 944 void *unused) 945 { 946 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 947 948 return kvm_arch_pm_notifier(kvm, state); 949 } 950 951 static void kvm_init_pm_notifier(struct kvm *kvm) 952 { 953 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 954 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 955 kvm->pm_notifier.priority = INT_MAX; 956 register_pm_notifier(&kvm->pm_notifier); 957 } 958 959 static void kvm_destroy_pm_notifier(struct kvm *kvm) 960 { 961 unregister_pm_notifier(&kvm->pm_notifier); 962 } 963 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 964 static void kvm_init_pm_notifier(struct kvm *kvm) 965 { 966 } 967 968 static void kvm_destroy_pm_notifier(struct kvm *kvm) 969 { 970 } 971 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 972 973 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 974 { 975 if (!memslot->dirty_bitmap) 976 return; 977 978 vfree(memslot->dirty_bitmap); 979 memslot->dirty_bitmap = NULL; 980 } 981 982 /* This does not remove the slot from struct kvm_memslots data structures */ 983 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 984 { 985 if (slot->flags & KVM_MEM_GUEST_MEMFD) 986 kvm_gmem_unbind(slot); 987 988 kvm_destroy_dirty_bitmap(slot); 989 990 kvm_arch_free_memslot(kvm, slot); 991 992 kfree(slot); 993 } 994 995 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 996 { 997 struct hlist_node *idnode; 998 struct kvm_memory_slot *memslot; 999 int bkt; 1000 1001 /* 1002 * The same memslot objects live in both active and inactive sets, 1003 * arbitrarily free using index '1' so the second invocation of this 1004 * function isn't operating over a structure with dangling pointers 1005 * (even though this function isn't actually touching them). 1006 */ 1007 if (!slots->node_idx) 1008 return; 1009 1010 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1011 kvm_free_memslot(kvm, memslot); 1012 } 1013 1014 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1015 { 1016 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1017 case KVM_STATS_TYPE_INSTANT: 1018 return 0444; 1019 case KVM_STATS_TYPE_CUMULATIVE: 1020 case KVM_STATS_TYPE_PEAK: 1021 default: 1022 return 0644; 1023 } 1024 } 1025 1026 1027 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1028 { 1029 int i; 1030 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1031 kvm_vcpu_stats_header.num_desc; 1032 1033 if (IS_ERR(kvm->debugfs_dentry)) 1034 return; 1035 1036 debugfs_remove_recursive(kvm->debugfs_dentry); 1037 1038 if (kvm->debugfs_stat_data) { 1039 for (i = 0; i < kvm_debugfs_num_entries; i++) 1040 kfree(kvm->debugfs_stat_data[i]); 1041 kfree(kvm->debugfs_stat_data); 1042 } 1043 } 1044 1045 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1046 { 1047 static DEFINE_MUTEX(kvm_debugfs_lock); 1048 struct dentry *dent; 1049 char dir_name[ITOA_MAX_LEN * 2]; 1050 struct kvm_stat_data *stat_data; 1051 const struct _kvm_stats_desc *pdesc; 1052 int i, ret = -ENOMEM; 1053 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1054 kvm_vcpu_stats_header.num_desc; 1055 1056 if (!debugfs_initialized()) 1057 return 0; 1058 1059 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1060 mutex_lock(&kvm_debugfs_lock); 1061 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1062 if (dent) { 1063 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1064 dput(dent); 1065 mutex_unlock(&kvm_debugfs_lock); 1066 return 0; 1067 } 1068 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1069 mutex_unlock(&kvm_debugfs_lock); 1070 if (IS_ERR(dent)) 1071 return 0; 1072 1073 kvm->debugfs_dentry = dent; 1074 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1075 sizeof(*kvm->debugfs_stat_data), 1076 GFP_KERNEL_ACCOUNT); 1077 if (!kvm->debugfs_stat_data) 1078 goto out_err; 1079 1080 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1081 pdesc = &kvm_vm_stats_desc[i]; 1082 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1083 if (!stat_data) 1084 goto out_err; 1085 1086 stat_data->kvm = kvm; 1087 stat_data->desc = pdesc; 1088 stat_data->kind = KVM_STAT_VM; 1089 kvm->debugfs_stat_data[i] = stat_data; 1090 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1091 kvm->debugfs_dentry, stat_data, 1092 &stat_fops_per_vm); 1093 } 1094 1095 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1096 pdesc = &kvm_vcpu_stats_desc[i]; 1097 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1098 if (!stat_data) 1099 goto out_err; 1100 1101 stat_data->kvm = kvm; 1102 stat_data->desc = pdesc; 1103 stat_data->kind = KVM_STAT_VCPU; 1104 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1105 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1106 kvm->debugfs_dentry, stat_data, 1107 &stat_fops_per_vm); 1108 } 1109 1110 kvm_arch_create_vm_debugfs(kvm); 1111 return 0; 1112 out_err: 1113 kvm_destroy_vm_debugfs(kvm); 1114 return ret; 1115 } 1116 1117 /* 1118 * Called after the VM is otherwise initialized, but just before adding it to 1119 * the vm_list. 1120 */ 1121 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1122 { 1123 return 0; 1124 } 1125 1126 /* 1127 * Called just after removing the VM from the vm_list, but before doing any 1128 * other destruction. 1129 */ 1130 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1131 { 1132 } 1133 1134 /* 1135 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1136 * be setup already, so we can create arch-specific debugfs entries under it. 1137 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1138 * a per-arch destroy interface is not needed. 1139 */ 1140 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1141 { 1142 } 1143 1144 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1145 { 1146 struct kvm *kvm = kvm_arch_alloc_vm(); 1147 struct kvm_memslots *slots; 1148 int r = -ENOMEM; 1149 int i, j; 1150 1151 if (!kvm) 1152 return ERR_PTR(-ENOMEM); 1153 1154 KVM_MMU_LOCK_INIT(kvm); 1155 mmgrab(current->mm); 1156 kvm->mm = current->mm; 1157 kvm_eventfd_init(kvm); 1158 mutex_init(&kvm->lock); 1159 mutex_init(&kvm->irq_lock); 1160 mutex_init(&kvm->slots_lock); 1161 mutex_init(&kvm->slots_arch_lock); 1162 spin_lock_init(&kvm->mn_invalidate_lock); 1163 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1164 xa_init(&kvm->vcpu_array); 1165 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1166 xa_init(&kvm->mem_attr_array); 1167 #endif 1168 1169 INIT_LIST_HEAD(&kvm->gpc_list); 1170 spin_lock_init(&kvm->gpc_lock); 1171 1172 INIT_LIST_HEAD(&kvm->devices); 1173 kvm->max_vcpus = KVM_MAX_VCPUS; 1174 1175 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1176 1177 /* 1178 * Force subsequent debugfs file creations to fail if the VM directory 1179 * is not created (by kvm_create_vm_debugfs()). 1180 */ 1181 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1182 1183 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1184 task_pid_nr(current)); 1185 1186 if (init_srcu_struct(&kvm->srcu)) 1187 goto out_err_no_srcu; 1188 if (init_srcu_struct(&kvm->irq_srcu)) 1189 goto out_err_no_irq_srcu; 1190 1191 refcount_set(&kvm->users_count, 1); 1192 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1193 for (j = 0; j < 2; j++) { 1194 slots = &kvm->__memslots[i][j]; 1195 1196 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1197 slots->hva_tree = RB_ROOT_CACHED; 1198 slots->gfn_tree = RB_ROOT; 1199 hash_init(slots->id_hash); 1200 slots->node_idx = j; 1201 1202 /* Generations must be different for each address space. */ 1203 slots->generation = i; 1204 } 1205 1206 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1207 } 1208 1209 for (i = 0; i < KVM_NR_BUSES; i++) { 1210 rcu_assign_pointer(kvm->buses[i], 1211 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1212 if (!kvm->buses[i]) 1213 goto out_err_no_arch_destroy_vm; 1214 } 1215 1216 r = kvm_arch_init_vm(kvm, type); 1217 if (r) 1218 goto out_err_no_arch_destroy_vm; 1219 1220 r = hardware_enable_all(); 1221 if (r) 1222 goto out_err_no_disable; 1223 1224 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1225 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1226 #endif 1227 1228 r = kvm_init_mmu_notifier(kvm); 1229 if (r) 1230 goto out_err_no_mmu_notifier; 1231 1232 r = kvm_coalesced_mmio_init(kvm); 1233 if (r < 0) 1234 goto out_no_coalesced_mmio; 1235 1236 r = kvm_create_vm_debugfs(kvm, fdname); 1237 if (r) 1238 goto out_err_no_debugfs; 1239 1240 r = kvm_arch_post_init_vm(kvm); 1241 if (r) 1242 goto out_err; 1243 1244 mutex_lock(&kvm_lock); 1245 list_add(&kvm->vm_list, &vm_list); 1246 mutex_unlock(&kvm_lock); 1247 1248 preempt_notifier_inc(); 1249 kvm_init_pm_notifier(kvm); 1250 1251 return kvm; 1252 1253 out_err: 1254 kvm_destroy_vm_debugfs(kvm); 1255 out_err_no_debugfs: 1256 kvm_coalesced_mmio_free(kvm); 1257 out_no_coalesced_mmio: 1258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1259 if (kvm->mmu_notifier.ops) 1260 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1261 #endif 1262 out_err_no_mmu_notifier: 1263 hardware_disable_all(); 1264 out_err_no_disable: 1265 kvm_arch_destroy_vm(kvm); 1266 out_err_no_arch_destroy_vm: 1267 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1268 for (i = 0; i < KVM_NR_BUSES; i++) 1269 kfree(kvm_get_bus(kvm, i)); 1270 cleanup_srcu_struct(&kvm->irq_srcu); 1271 out_err_no_irq_srcu: 1272 cleanup_srcu_struct(&kvm->srcu); 1273 out_err_no_srcu: 1274 kvm_arch_free_vm(kvm); 1275 mmdrop(current->mm); 1276 return ERR_PTR(r); 1277 } 1278 1279 static void kvm_destroy_devices(struct kvm *kvm) 1280 { 1281 struct kvm_device *dev, *tmp; 1282 1283 /* 1284 * We do not need to take the kvm->lock here, because nobody else 1285 * has a reference to the struct kvm at this point and therefore 1286 * cannot access the devices list anyhow. 1287 * 1288 * The device list is generally managed as an rculist, but list_del() 1289 * is used intentionally here. If a bug in KVM introduced a reader that 1290 * was not backed by a reference on the kvm struct, the hope is that 1291 * it'd consume the poisoned forward pointer instead of suffering a 1292 * use-after-free, even though this cannot be guaranteed. 1293 */ 1294 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1295 list_del(&dev->vm_node); 1296 dev->ops->destroy(dev); 1297 } 1298 } 1299 1300 static void kvm_destroy_vm(struct kvm *kvm) 1301 { 1302 int i; 1303 struct mm_struct *mm = kvm->mm; 1304 1305 kvm_destroy_pm_notifier(kvm); 1306 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1307 kvm_destroy_vm_debugfs(kvm); 1308 kvm_arch_sync_events(kvm); 1309 mutex_lock(&kvm_lock); 1310 list_del(&kvm->vm_list); 1311 mutex_unlock(&kvm_lock); 1312 kvm_arch_pre_destroy_vm(kvm); 1313 1314 kvm_free_irq_routing(kvm); 1315 for (i = 0; i < KVM_NR_BUSES; i++) { 1316 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1317 1318 if (bus) 1319 kvm_io_bus_destroy(bus); 1320 kvm->buses[i] = NULL; 1321 } 1322 kvm_coalesced_mmio_free(kvm); 1323 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1324 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1325 /* 1326 * At this point, pending calls to invalidate_range_start() 1327 * have completed but no more MMU notifiers will run, so 1328 * mn_active_invalidate_count may remain unbalanced. 1329 * No threads can be waiting in kvm_swap_active_memslots() as the 1330 * last reference on KVM has been dropped, but freeing 1331 * memslots would deadlock without this manual intervention. 1332 * 1333 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1334 * notifier between a start() and end(), then there shouldn't be any 1335 * in-progress invalidations. 1336 */ 1337 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1338 if (kvm->mn_active_invalidate_count) 1339 kvm->mn_active_invalidate_count = 0; 1340 else 1341 WARN_ON(kvm->mmu_invalidate_in_progress); 1342 #else 1343 kvm_flush_shadow_all(kvm); 1344 #endif 1345 kvm_arch_destroy_vm(kvm); 1346 kvm_destroy_devices(kvm); 1347 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1348 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1349 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1350 } 1351 cleanup_srcu_struct(&kvm->irq_srcu); 1352 cleanup_srcu_struct(&kvm->srcu); 1353 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1354 xa_destroy(&kvm->mem_attr_array); 1355 #endif 1356 kvm_arch_free_vm(kvm); 1357 preempt_notifier_dec(); 1358 hardware_disable_all(); 1359 mmdrop(mm); 1360 } 1361 1362 void kvm_get_kvm(struct kvm *kvm) 1363 { 1364 refcount_inc(&kvm->users_count); 1365 } 1366 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1367 1368 /* 1369 * Make sure the vm is not during destruction, which is a safe version of 1370 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1371 */ 1372 bool kvm_get_kvm_safe(struct kvm *kvm) 1373 { 1374 return refcount_inc_not_zero(&kvm->users_count); 1375 } 1376 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1377 1378 void kvm_put_kvm(struct kvm *kvm) 1379 { 1380 if (refcount_dec_and_test(&kvm->users_count)) 1381 kvm_destroy_vm(kvm); 1382 } 1383 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1384 1385 /* 1386 * Used to put a reference that was taken on behalf of an object associated 1387 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1388 * of the new file descriptor fails and the reference cannot be transferred to 1389 * its final owner. In such cases, the caller is still actively using @kvm and 1390 * will fail miserably if the refcount unexpectedly hits zero. 1391 */ 1392 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1393 { 1394 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1397 1398 static int kvm_vm_release(struct inode *inode, struct file *filp) 1399 { 1400 struct kvm *kvm = filp->private_data; 1401 1402 kvm_irqfd_release(kvm); 1403 1404 kvm_put_kvm(kvm); 1405 return 0; 1406 } 1407 1408 /* 1409 * Allocation size is twice as large as the actual dirty bitmap size. 1410 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1411 */ 1412 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1413 { 1414 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1415 1416 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1417 if (!memslot->dirty_bitmap) 1418 return -ENOMEM; 1419 1420 return 0; 1421 } 1422 1423 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1424 { 1425 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1426 int node_idx_inactive = active->node_idx ^ 1; 1427 1428 return &kvm->__memslots[as_id][node_idx_inactive]; 1429 } 1430 1431 /* 1432 * Helper to get the address space ID when one of memslot pointers may be NULL. 1433 * This also serves as a sanity that at least one of the pointers is non-NULL, 1434 * and that their address space IDs don't diverge. 1435 */ 1436 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1437 struct kvm_memory_slot *b) 1438 { 1439 if (WARN_ON_ONCE(!a && !b)) 1440 return 0; 1441 1442 if (!a) 1443 return b->as_id; 1444 if (!b) 1445 return a->as_id; 1446 1447 WARN_ON_ONCE(a->as_id != b->as_id); 1448 return a->as_id; 1449 } 1450 1451 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1452 struct kvm_memory_slot *slot) 1453 { 1454 struct rb_root *gfn_tree = &slots->gfn_tree; 1455 struct rb_node **node, *parent; 1456 int idx = slots->node_idx; 1457 1458 parent = NULL; 1459 for (node = &gfn_tree->rb_node; *node; ) { 1460 struct kvm_memory_slot *tmp; 1461 1462 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1463 parent = *node; 1464 if (slot->base_gfn < tmp->base_gfn) 1465 node = &(*node)->rb_left; 1466 else if (slot->base_gfn > tmp->base_gfn) 1467 node = &(*node)->rb_right; 1468 else 1469 BUG(); 1470 } 1471 1472 rb_link_node(&slot->gfn_node[idx], parent, node); 1473 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1474 } 1475 1476 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1477 struct kvm_memory_slot *slot) 1478 { 1479 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1480 } 1481 1482 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1483 struct kvm_memory_slot *old, 1484 struct kvm_memory_slot *new) 1485 { 1486 int idx = slots->node_idx; 1487 1488 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1489 1490 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1491 &slots->gfn_tree); 1492 } 1493 1494 /* 1495 * Replace @old with @new in the inactive memslots. 1496 * 1497 * With NULL @old this simply adds @new. 1498 * With NULL @new this simply removes @old. 1499 * 1500 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1501 * appropriately. 1502 */ 1503 static void kvm_replace_memslot(struct kvm *kvm, 1504 struct kvm_memory_slot *old, 1505 struct kvm_memory_slot *new) 1506 { 1507 int as_id = kvm_memslots_get_as_id(old, new); 1508 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1509 int idx = slots->node_idx; 1510 1511 if (old) { 1512 hash_del(&old->id_node[idx]); 1513 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1514 1515 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1516 atomic_long_set(&slots->last_used_slot, (long)new); 1517 1518 if (!new) { 1519 kvm_erase_gfn_node(slots, old); 1520 return; 1521 } 1522 } 1523 1524 /* 1525 * Initialize @new's hva range. Do this even when replacing an @old 1526 * slot, kvm_copy_memslot() deliberately does not touch node data. 1527 */ 1528 new->hva_node[idx].start = new->userspace_addr; 1529 new->hva_node[idx].last = new->userspace_addr + 1530 (new->npages << PAGE_SHIFT) - 1; 1531 1532 /* 1533 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1534 * hva_node needs to be swapped with remove+insert even though hva can't 1535 * change when replacing an existing slot. 1536 */ 1537 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1538 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1539 1540 /* 1541 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1542 * switch the node in the gfn tree instead of removing the old and 1543 * inserting the new as two separate operations. Replacement is a 1544 * single O(1) operation versus two O(log(n)) operations for 1545 * remove+insert. 1546 */ 1547 if (old && old->base_gfn == new->base_gfn) { 1548 kvm_replace_gfn_node(slots, old, new); 1549 } else { 1550 if (old) 1551 kvm_erase_gfn_node(slots, old); 1552 kvm_insert_gfn_node(slots, new); 1553 } 1554 } 1555 1556 /* 1557 * Flags that do not access any of the extra space of struct 1558 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1559 * only allows these. 1560 */ 1561 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1562 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1563 1564 static int check_memory_region_flags(struct kvm *kvm, 1565 const struct kvm_userspace_memory_region2 *mem) 1566 { 1567 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1568 1569 if (kvm_arch_has_private_mem(kvm)) 1570 valid_flags |= KVM_MEM_GUEST_MEMFD; 1571 1572 /* Dirty logging private memory is not currently supported. */ 1573 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1574 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1575 1576 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1577 /* 1578 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1579 * read-only memslots have emulated MMIO, not page fault, semantics, 1580 * and KVM doesn't allow emulated MMIO for private memory. 1581 */ 1582 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1583 valid_flags |= KVM_MEM_READONLY; 1584 #endif 1585 1586 if (mem->flags & ~valid_flags) 1587 return -EINVAL; 1588 1589 return 0; 1590 } 1591 1592 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1593 { 1594 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1595 1596 /* Grab the generation from the activate memslots. */ 1597 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1598 1599 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1600 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1601 1602 /* 1603 * Do not store the new memslots while there are invalidations in 1604 * progress, otherwise the locking in invalidate_range_start and 1605 * invalidate_range_end will be unbalanced. 1606 */ 1607 spin_lock(&kvm->mn_invalidate_lock); 1608 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1609 while (kvm->mn_active_invalidate_count) { 1610 set_current_state(TASK_UNINTERRUPTIBLE); 1611 spin_unlock(&kvm->mn_invalidate_lock); 1612 schedule(); 1613 spin_lock(&kvm->mn_invalidate_lock); 1614 } 1615 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1616 rcu_assign_pointer(kvm->memslots[as_id], slots); 1617 spin_unlock(&kvm->mn_invalidate_lock); 1618 1619 /* 1620 * Acquired in kvm_set_memslot. Must be released before synchronize 1621 * SRCU below in order to avoid deadlock with another thread 1622 * acquiring the slots_arch_lock in an srcu critical section. 1623 */ 1624 mutex_unlock(&kvm->slots_arch_lock); 1625 1626 synchronize_srcu_expedited(&kvm->srcu); 1627 1628 /* 1629 * Increment the new memslot generation a second time, dropping the 1630 * update in-progress flag and incrementing the generation based on 1631 * the number of address spaces. This provides a unique and easily 1632 * identifiable generation number while the memslots are in flux. 1633 */ 1634 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1635 1636 /* 1637 * Generations must be unique even across address spaces. We do not need 1638 * a global counter for that, instead the generation space is evenly split 1639 * across address spaces. For example, with two address spaces, address 1640 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1641 * use generations 1, 3, 5, ... 1642 */ 1643 gen += kvm_arch_nr_memslot_as_ids(kvm); 1644 1645 kvm_arch_memslots_updated(kvm, gen); 1646 1647 slots->generation = gen; 1648 } 1649 1650 static int kvm_prepare_memory_region(struct kvm *kvm, 1651 const struct kvm_memory_slot *old, 1652 struct kvm_memory_slot *new, 1653 enum kvm_mr_change change) 1654 { 1655 int r; 1656 1657 /* 1658 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1659 * will be freed on "commit". If logging is enabled in both old and 1660 * new, reuse the existing bitmap. If logging is enabled only in the 1661 * new and KVM isn't using a ring buffer, allocate and initialize a 1662 * new bitmap. 1663 */ 1664 if (change != KVM_MR_DELETE) { 1665 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1666 new->dirty_bitmap = NULL; 1667 else if (old && old->dirty_bitmap) 1668 new->dirty_bitmap = old->dirty_bitmap; 1669 else if (kvm_use_dirty_bitmap(kvm)) { 1670 r = kvm_alloc_dirty_bitmap(new); 1671 if (r) 1672 return r; 1673 1674 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1675 bitmap_set(new->dirty_bitmap, 0, new->npages); 1676 } 1677 } 1678 1679 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1680 1681 /* Free the bitmap on failure if it was allocated above. */ 1682 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1683 kvm_destroy_dirty_bitmap(new); 1684 1685 return r; 1686 } 1687 1688 static void kvm_commit_memory_region(struct kvm *kvm, 1689 struct kvm_memory_slot *old, 1690 const struct kvm_memory_slot *new, 1691 enum kvm_mr_change change) 1692 { 1693 int old_flags = old ? old->flags : 0; 1694 int new_flags = new ? new->flags : 0; 1695 /* 1696 * Update the total number of memslot pages before calling the arch 1697 * hook so that architectures can consume the result directly. 1698 */ 1699 if (change == KVM_MR_DELETE) 1700 kvm->nr_memslot_pages -= old->npages; 1701 else if (change == KVM_MR_CREATE) 1702 kvm->nr_memslot_pages += new->npages; 1703 1704 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1705 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1706 atomic_set(&kvm->nr_memslots_dirty_logging, 1707 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1708 } 1709 1710 kvm_arch_commit_memory_region(kvm, old, new, change); 1711 1712 switch (change) { 1713 case KVM_MR_CREATE: 1714 /* Nothing more to do. */ 1715 break; 1716 case KVM_MR_DELETE: 1717 /* Free the old memslot and all its metadata. */ 1718 kvm_free_memslot(kvm, old); 1719 break; 1720 case KVM_MR_MOVE: 1721 case KVM_MR_FLAGS_ONLY: 1722 /* 1723 * Free the dirty bitmap as needed; the below check encompasses 1724 * both the flags and whether a ring buffer is being used) 1725 */ 1726 if (old->dirty_bitmap && !new->dirty_bitmap) 1727 kvm_destroy_dirty_bitmap(old); 1728 1729 /* 1730 * The final quirk. Free the detached, old slot, but only its 1731 * memory, not any metadata. Metadata, including arch specific 1732 * data, may be reused by @new. 1733 */ 1734 kfree(old); 1735 break; 1736 default: 1737 BUG(); 1738 } 1739 } 1740 1741 /* 1742 * Activate @new, which must be installed in the inactive slots by the caller, 1743 * by swapping the active slots and then propagating @new to @old once @old is 1744 * unreachable and can be safely modified. 1745 * 1746 * With NULL @old this simply adds @new to @active (while swapping the sets). 1747 * With NULL @new this simply removes @old from @active and frees it 1748 * (while also swapping the sets). 1749 */ 1750 static void kvm_activate_memslot(struct kvm *kvm, 1751 struct kvm_memory_slot *old, 1752 struct kvm_memory_slot *new) 1753 { 1754 int as_id = kvm_memslots_get_as_id(old, new); 1755 1756 kvm_swap_active_memslots(kvm, as_id); 1757 1758 /* Propagate the new memslot to the now inactive memslots. */ 1759 kvm_replace_memslot(kvm, old, new); 1760 } 1761 1762 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1763 const struct kvm_memory_slot *src) 1764 { 1765 dest->base_gfn = src->base_gfn; 1766 dest->npages = src->npages; 1767 dest->dirty_bitmap = src->dirty_bitmap; 1768 dest->arch = src->arch; 1769 dest->userspace_addr = src->userspace_addr; 1770 dest->flags = src->flags; 1771 dest->id = src->id; 1772 dest->as_id = src->as_id; 1773 } 1774 1775 static void kvm_invalidate_memslot(struct kvm *kvm, 1776 struct kvm_memory_slot *old, 1777 struct kvm_memory_slot *invalid_slot) 1778 { 1779 /* 1780 * Mark the current slot INVALID. As with all memslot modifications, 1781 * this must be done on an unreachable slot to avoid modifying the 1782 * current slot in the active tree. 1783 */ 1784 kvm_copy_memslot(invalid_slot, old); 1785 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1786 kvm_replace_memslot(kvm, old, invalid_slot); 1787 1788 /* 1789 * Activate the slot that is now marked INVALID, but don't propagate 1790 * the slot to the now inactive slots. The slot is either going to be 1791 * deleted or recreated as a new slot. 1792 */ 1793 kvm_swap_active_memslots(kvm, old->as_id); 1794 1795 /* 1796 * From this point no new shadow pages pointing to a deleted, or moved, 1797 * memslot will be created. Validation of sp->gfn happens in: 1798 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1799 * - kvm_is_visible_gfn (mmu_check_root) 1800 */ 1801 kvm_arch_flush_shadow_memslot(kvm, old); 1802 kvm_arch_guest_memory_reclaimed(kvm); 1803 1804 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1805 mutex_lock(&kvm->slots_arch_lock); 1806 1807 /* 1808 * Copy the arch-specific field of the newly-installed slot back to the 1809 * old slot as the arch data could have changed between releasing 1810 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1811 * above. Writers are required to retrieve memslots *after* acquiring 1812 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1813 */ 1814 old->arch = invalid_slot->arch; 1815 } 1816 1817 static void kvm_create_memslot(struct kvm *kvm, 1818 struct kvm_memory_slot *new) 1819 { 1820 /* Add the new memslot to the inactive set and activate. */ 1821 kvm_replace_memslot(kvm, NULL, new); 1822 kvm_activate_memslot(kvm, NULL, new); 1823 } 1824 1825 static void kvm_delete_memslot(struct kvm *kvm, 1826 struct kvm_memory_slot *old, 1827 struct kvm_memory_slot *invalid_slot) 1828 { 1829 /* 1830 * Remove the old memslot (in the inactive memslots) by passing NULL as 1831 * the "new" slot, and for the invalid version in the active slots. 1832 */ 1833 kvm_replace_memslot(kvm, old, NULL); 1834 kvm_activate_memslot(kvm, invalid_slot, NULL); 1835 } 1836 1837 static void kvm_move_memslot(struct kvm *kvm, 1838 struct kvm_memory_slot *old, 1839 struct kvm_memory_slot *new, 1840 struct kvm_memory_slot *invalid_slot) 1841 { 1842 /* 1843 * Replace the old memslot in the inactive slots, and then swap slots 1844 * and replace the current INVALID with the new as well. 1845 */ 1846 kvm_replace_memslot(kvm, old, new); 1847 kvm_activate_memslot(kvm, invalid_slot, new); 1848 } 1849 1850 static void kvm_update_flags_memslot(struct kvm *kvm, 1851 struct kvm_memory_slot *old, 1852 struct kvm_memory_slot *new) 1853 { 1854 /* 1855 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1856 * an intermediate step. Instead, the old memslot is simply replaced 1857 * with a new, updated copy in both memslot sets. 1858 */ 1859 kvm_replace_memslot(kvm, old, new); 1860 kvm_activate_memslot(kvm, old, new); 1861 } 1862 1863 static int kvm_set_memslot(struct kvm *kvm, 1864 struct kvm_memory_slot *old, 1865 struct kvm_memory_slot *new, 1866 enum kvm_mr_change change) 1867 { 1868 struct kvm_memory_slot *invalid_slot; 1869 int r; 1870 1871 /* 1872 * Released in kvm_swap_active_memslots(). 1873 * 1874 * Must be held from before the current memslots are copied until after 1875 * the new memslots are installed with rcu_assign_pointer, then 1876 * released before the synchronize srcu in kvm_swap_active_memslots(). 1877 * 1878 * When modifying memslots outside of the slots_lock, must be held 1879 * before reading the pointer to the current memslots until after all 1880 * changes to those memslots are complete. 1881 * 1882 * These rules ensure that installing new memslots does not lose 1883 * changes made to the previous memslots. 1884 */ 1885 mutex_lock(&kvm->slots_arch_lock); 1886 1887 /* 1888 * Invalidate the old slot if it's being deleted or moved. This is 1889 * done prior to actually deleting/moving the memslot to allow vCPUs to 1890 * continue running by ensuring there are no mappings or shadow pages 1891 * for the memslot when it is deleted/moved. Without pre-invalidation 1892 * (and without a lock), a window would exist between effecting the 1893 * delete/move and committing the changes in arch code where KVM or a 1894 * guest could access a non-existent memslot. 1895 * 1896 * Modifications are done on a temporary, unreachable slot. The old 1897 * slot needs to be preserved in case a later step fails and the 1898 * invalidation needs to be reverted. 1899 */ 1900 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1901 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1902 if (!invalid_slot) { 1903 mutex_unlock(&kvm->slots_arch_lock); 1904 return -ENOMEM; 1905 } 1906 kvm_invalidate_memslot(kvm, old, invalid_slot); 1907 } 1908 1909 r = kvm_prepare_memory_region(kvm, old, new, change); 1910 if (r) { 1911 /* 1912 * For DELETE/MOVE, revert the above INVALID change. No 1913 * modifications required since the original slot was preserved 1914 * in the inactive slots. Changing the active memslots also 1915 * release slots_arch_lock. 1916 */ 1917 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1918 kvm_activate_memslot(kvm, invalid_slot, old); 1919 kfree(invalid_slot); 1920 } else { 1921 mutex_unlock(&kvm->slots_arch_lock); 1922 } 1923 return r; 1924 } 1925 1926 /* 1927 * For DELETE and MOVE, the working slot is now active as the INVALID 1928 * version of the old slot. MOVE is particularly special as it reuses 1929 * the old slot and returns a copy of the old slot (in working_slot). 1930 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1931 * old slot is detached but otherwise preserved. 1932 */ 1933 if (change == KVM_MR_CREATE) 1934 kvm_create_memslot(kvm, new); 1935 else if (change == KVM_MR_DELETE) 1936 kvm_delete_memslot(kvm, old, invalid_slot); 1937 else if (change == KVM_MR_MOVE) 1938 kvm_move_memslot(kvm, old, new, invalid_slot); 1939 else if (change == KVM_MR_FLAGS_ONLY) 1940 kvm_update_flags_memslot(kvm, old, new); 1941 else 1942 BUG(); 1943 1944 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1945 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1946 kfree(invalid_slot); 1947 1948 /* 1949 * No need to refresh new->arch, changes after dropping slots_arch_lock 1950 * will directly hit the final, active memslot. Architectures are 1951 * responsible for knowing that new->arch may be stale. 1952 */ 1953 kvm_commit_memory_region(kvm, old, new, change); 1954 1955 return 0; 1956 } 1957 1958 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1959 gfn_t start, gfn_t end) 1960 { 1961 struct kvm_memslot_iter iter; 1962 1963 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1964 if (iter.slot->id != id) 1965 return true; 1966 } 1967 1968 return false; 1969 } 1970 1971 /* 1972 * Allocate some memory and give it an address in the guest physical address 1973 * space. 1974 * 1975 * Discontiguous memory is allowed, mostly for framebuffers. 1976 * 1977 * Must be called holding kvm->slots_lock for write. 1978 */ 1979 int __kvm_set_memory_region(struct kvm *kvm, 1980 const struct kvm_userspace_memory_region2 *mem) 1981 { 1982 struct kvm_memory_slot *old, *new; 1983 struct kvm_memslots *slots; 1984 enum kvm_mr_change change; 1985 unsigned long npages; 1986 gfn_t base_gfn; 1987 int as_id, id; 1988 int r; 1989 1990 r = check_memory_region_flags(kvm, mem); 1991 if (r) 1992 return r; 1993 1994 as_id = mem->slot >> 16; 1995 id = (u16)mem->slot; 1996 1997 /* General sanity checks */ 1998 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1999 (mem->memory_size != (unsigned long)mem->memory_size)) 2000 return -EINVAL; 2001 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2002 return -EINVAL; 2003 /* We can read the guest memory with __xxx_user() later on. */ 2004 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2005 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2006 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2007 mem->memory_size)) 2008 return -EINVAL; 2009 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2010 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2011 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2012 return -EINVAL; 2013 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2014 return -EINVAL; 2015 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2016 return -EINVAL; 2017 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2018 return -EINVAL; 2019 2020 slots = __kvm_memslots(kvm, as_id); 2021 2022 /* 2023 * Note, the old memslot (and the pointer itself!) may be invalidated 2024 * and/or destroyed by kvm_set_memslot(). 2025 */ 2026 old = id_to_memslot(slots, id); 2027 2028 if (!mem->memory_size) { 2029 if (!old || !old->npages) 2030 return -EINVAL; 2031 2032 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2033 return -EIO; 2034 2035 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2036 } 2037 2038 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2039 npages = (mem->memory_size >> PAGE_SHIFT); 2040 2041 if (!old || !old->npages) { 2042 change = KVM_MR_CREATE; 2043 2044 /* 2045 * To simplify KVM internals, the total number of pages across 2046 * all memslots must fit in an unsigned long. 2047 */ 2048 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2049 return -EINVAL; 2050 } else { /* Modify an existing slot. */ 2051 /* Private memslots are immutable, they can only be deleted. */ 2052 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2053 return -EINVAL; 2054 if ((mem->userspace_addr != old->userspace_addr) || 2055 (npages != old->npages) || 2056 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2057 return -EINVAL; 2058 2059 if (base_gfn != old->base_gfn) 2060 change = KVM_MR_MOVE; 2061 else if (mem->flags != old->flags) 2062 change = KVM_MR_FLAGS_ONLY; 2063 else /* Nothing to change. */ 2064 return 0; 2065 } 2066 2067 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2068 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2069 return -EEXIST; 2070 2071 /* Allocate a slot that will persist in the memslot. */ 2072 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2073 if (!new) 2074 return -ENOMEM; 2075 2076 new->as_id = as_id; 2077 new->id = id; 2078 new->base_gfn = base_gfn; 2079 new->npages = npages; 2080 new->flags = mem->flags; 2081 new->userspace_addr = mem->userspace_addr; 2082 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2083 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2084 if (r) 2085 goto out; 2086 } 2087 2088 r = kvm_set_memslot(kvm, old, new, change); 2089 if (r) 2090 goto out_unbind; 2091 2092 return 0; 2093 2094 out_unbind: 2095 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2096 kvm_gmem_unbind(new); 2097 out: 2098 kfree(new); 2099 return r; 2100 } 2101 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2102 2103 int kvm_set_memory_region(struct kvm *kvm, 2104 const struct kvm_userspace_memory_region2 *mem) 2105 { 2106 int r; 2107 2108 mutex_lock(&kvm->slots_lock); 2109 r = __kvm_set_memory_region(kvm, mem); 2110 mutex_unlock(&kvm->slots_lock); 2111 return r; 2112 } 2113 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2114 2115 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2116 struct kvm_userspace_memory_region2 *mem) 2117 { 2118 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2119 return -EINVAL; 2120 2121 return kvm_set_memory_region(kvm, mem); 2122 } 2123 2124 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2125 /** 2126 * kvm_get_dirty_log - get a snapshot of dirty pages 2127 * @kvm: pointer to kvm instance 2128 * @log: slot id and address to which we copy the log 2129 * @is_dirty: set to '1' if any dirty pages were found 2130 * @memslot: set to the associated memslot, always valid on success 2131 */ 2132 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2133 int *is_dirty, struct kvm_memory_slot **memslot) 2134 { 2135 struct kvm_memslots *slots; 2136 int i, as_id, id; 2137 unsigned long n; 2138 unsigned long any = 0; 2139 2140 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2141 if (!kvm_use_dirty_bitmap(kvm)) 2142 return -ENXIO; 2143 2144 *memslot = NULL; 2145 *is_dirty = 0; 2146 2147 as_id = log->slot >> 16; 2148 id = (u16)log->slot; 2149 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2150 return -EINVAL; 2151 2152 slots = __kvm_memslots(kvm, as_id); 2153 *memslot = id_to_memslot(slots, id); 2154 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2155 return -ENOENT; 2156 2157 kvm_arch_sync_dirty_log(kvm, *memslot); 2158 2159 n = kvm_dirty_bitmap_bytes(*memslot); 2160 2161 for (i = 0; !any && i < n/sizeof(long); ++i) 2162 any = (*memslot)->dirty_bitmap[i]; 2163 2164 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2165 return -EFAULT; 2166 2167 if (any) 2168 *is_dirty = 1; 2169 return 0; 2170 } 2171 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2172 2173 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2174 /** 2175 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2176 * and reenable dirty page tracking for the corresponding pages. 2177 * @kvm: pointer to kvm instance 2178 * @log: slot id and address to which we copy the log 2179 * 2180 * We need to keep it in mind that VCPU threads can write to the bitmap 2181 * concurrently. So, to avoid losing track of dirty pages we keep the 2182 * following order: 2183 * 2184 * 1. Take a snapshot of the bit and clear it if needed. 2185 * 2. Write protect the corresponding page. 2186 * 3. Copy the snapshot to the userspace. 2187 * 4. Upon return caller flushes TLB's if needed. 2188 * 2189 * Between 2 and 4, the guest may write to the page using the remaining TLB 2190 * entry. This is not a problem because the page is reported dirty using 2191 * the snapshot taken before and step 4 ensures that writes done after 2192 * exiting to userspace will be logged for the next call. 2193 * 2194 */ 2195 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2196 { 2197 struct kvm_memslots *slots; 2198 struct kvm_memory_slot *memslot; 2199 int i, as_id, id; 2200 unsigned long n; 2201 unsigned long *dirty_bitmap; 2202 unsigned long *dirty_bitmap_buffer; 2203 bool flush; 2204 2205 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2206 if (!kvm_use_dirty_bitmap(kvm)) 2207 return -ENXIO; 2208 2209 as_id = log->slot >> 16; 2210 id = (u16)log->slot; 2211 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2212 return -EINVAL; 2213 2214 slots = __kvm_memslots(kvm, as_id); 2215 memslot = id_to_memslot(slots, id); 2216 if (!memslot || !memslot->dirty_bitmap) 2217 return -ENOENT; 2218 2219 dirty_bitmap = memslot->dirty_bitmap; 2220 2221 kvm_arch_sync_dirty_log(kvm, memslot); 2222 2223 n = kvm_dirty_bitmap_bytes(memslot); 2224 flush = false; 2225 if (kvm->manual_dirty_log_protect) { 2226 /* 2227 * Unlike kvm_get_dirty_log, we always return false in *flush, 2228 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2229 * is some code duplication between this function and 2230 * kvm_get_dirty_log, but hopefully all architecture 2231 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2232 * can be eliminated. 2233 */ 2234 dirty_bitmap_buffer = dirty_bitmap; 2235 } else { 2236 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2237 memset(dirty_bitmap_buffer, 0, n); 2238 2239 KVM_MMU_LOCK(kvm); 2240 for (i = 0; i < n / sizeof(long); i++) { 2241 unsigned long mask; 2242 gfn_t offset; 2243 2244 if (!dirty_bitmap[i]) 2245 continue; 2246 2247 flush = true; 2248 mask = xchg(&dirty_bitmap[i], 0); 2249 dirty_bitmap_buffer[i] = mask; 2250 2251 offset = i * BITS_PER_LONG; 2252 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2253 offset, mask); 2254 } 2255 KVM_MMU_UNLOCK(kvm); 2256 } 2257 2258 if (flush) 2259 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2260 2261 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2262 return -EFAULT; 2263 return 0; 2264 } 2265 2266 2267 /** 2268 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2269 * @kvm: kvm instance 2270 * @log: slot id and address to which we copy the log 2271 * 2272 * Steps 1-4 below provide general overview of dirty page logging. See 2273 * kvm_get_dirty_log_protect() function description for additional details. 2274 * 2275 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2276 * always flush the TLB (step 4) even if previous step failed and the dirty 2277 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2278 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2279 * writes will be marked dirty for next log read. 2280 * 2281 * 1. Take a snapshot of the bit and clear it if needed. 2282 * 2. Write protect the corresponding page. 2283 * 3. Copy the snapshot to the userspace. 2284 * 4. Flush TLB's if needed. 2285 */ 2286 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2287 struct kvm_dirty_log *log) 2288 { 2289 int r; 2290 2291 mutex_lock(&kvm->slots_lock); 2292 2293 r = kvm_get_dirty_log_protect(kvm, log); 2294 2295 mutex_unlock(&kvm->slots_lock); 2296 return r; 2297 } 2298 2299 /** 2300 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2301 * and reenable dirty page tracking for the corresponding pages. 2302 * @kvm: pointer to kvm instance 2303 * @log: slot id and address from which to fetch the bitmap of dirty pages 2304 */ 2305 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2306 struct kvm_clear_dirty_log *log) 2307 { 2308 struct kvm_memslots *slots; 2309 struct kvm_memory_slot *memslot; 2310 int as_id, id; 2311 gfn_t offset; 2312 unsigned long i, n; 2313 unsigned long *dirty_bitmap; 2314 unsigned long *dirty_bitmap_buffer; 2315 bool flush; 2316 2317 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2318 if (!kvm_use_dirty_bitmap(kvm)) 2319 return -ENXIO; 2320 2321 as_id = log->slot >> 16; 2322 id = (u16)log->slot; 2323 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2324 return -EINVAL; 2325 2326 if (log->first_page & 63) 2327 return -EINVAL; 2328 2329 slots = __kvm_memslots(kvm, as_id); 2330 memslot = id_to_memslot(slots, id); 2331 if (!memslot || !memslot->dirty_bitmap) 2332 return -ENOENT; 2333 2334 dirty_bitmap = memslot->dirty_bitmap; 2335 2336 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2337 2338 if (log->first_page > memslot->npages || 2339 log->num_pages > memslot->npages - log->first_page || 2340 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2341 return -EINVAL; 2342 2343 kvm_arch_sync_dirty_log(kvm, memslot); 2344 2345 flush = false; 2346 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2347 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2348 return -EFAULT; 2349 2350 KVM_MMU_LOCK(kvm); 2351 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2352 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2353 i++, offset += BITS_PER_LONG) { 2354 unsigned long mask = *dirty_bitmap_buffer++; 2355 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2356 if (!mask) 2357 continue; 2358 2359 mask &= atomic_long_fetch_andnot(mask, p); 2360 2361 /* 2362 * mask contains the bits that really have been cleared. This 2363 * never includes any bits beyond the length of the memslot (if 2364 * the length is not aligned to 64 pages), therefore it is not 2365 * a problem if userspace sets them in log->dirty_bitmap. 2366 */ 2367 if (mask) { 2368 flush = true; 2369 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2370 offset, mask); 2371 } 2372 } 2373 KVM_MMU_UNLOCK(kvm); 2374 2375 if (flush) 2376 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2377 2378 return 0; 2379 } 2380 2381 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2382 struct kvm_clear_dirty_log *log) 2383 { 2384 int r; 2385 2386 mutex_lock(&kvm->slots_lock); 2387 2388 r = kvm_clear_dirty_log_protect(kvm, log); 2389 2390 mutex_unlock(&kvm->slots_lock); 2391 return r; 2392 } 2393 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2394 2395 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2396 /* 2397 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2398 * matching @attrs. 2399 */ 2400 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2401 unsigned long attrs) 2402 { 2403 XA_STATE(xas, &kvm->mem_attr_array, start); 2404 unsigned long index; 2405 bool has_attrs; 2406 void *entry; 2407 2408 rcu_read_lock(); 2409 2410 if (!attrs) { 2411 has_attrs = !xas_find(&xas, end - 1); 2412 goto out; 2413 } 2414 2415 has_attrs = true; 2416 for (index = start; index < end; index++) { 2417 do { 2418 entry = xas_next(&xas); 2419 } while (xas_retry(&xas, entry)); 2420 2421 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2422 has_attrs = false; 2423 break; 2424 } 2425 } 2426 2427 out: 2428 rcu_read_unlock(); 2429 return has_attrs; 2430 } 2431 2432 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2433 { 2434 if (!kvm || kvm_arch_has_private_mem(kvm)) 2435 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2436 2437 return 0; 2438 } 2439 2440 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2441 struct kvm_mmu_notifier_range *range) 2442 { 2443 struct kvm_gfn_range gfn_range; 2444 struct kvm_memory_slot *slot; 2445 struct kvm_memslots *slots; 2446 struct kvm_memslot_iter iter; 2447 bool found_memslot = false; 2448 bool ret = false; 2449 int i; 2450 2451 gfn_range.arg = range->arg; 2452 gfn_range.may_block = range->may_block; 2453 2454 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2455 slots = __kvm_memslots(kvm, i); 2456 2457 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2458 slot = iter.slot; 2459 gfn_range.slot = slot; 2460 2461 gfn_range.start = max(range->start, slot->base_gfn); 2462 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2463 if (gfn_range.start >= gfn_range.end) 2464 continue; 2465 2466 if (!found_memslot) { 2467 found_memslot = true; 2468 KVM_MMU_LOCK(kvm); 2469 if (!IS_KVM_NULL_FN(range->on_lock)) 2470 range->on_lock(kvm); 2471 } 2472 2473 ret |= range->handler(kvm, &gfn_range); 2474 } 2475 } 2476 2477 if (range->flush_on_ret && ret) 2478 kvm_flush_remote_tlbs(kvm); 2479 2480 if (found_memslot) 2481 KVM_MMU_UNLOCK(kvm); 2482 } 2483 2484 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2485 struct kvm_gfn_range *range) 2486 { 2487 /* 2488 * Unconditionally add the range to the invalidation set, regardless of 2489 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2490 * if KVM supports RWX attributes in the future and the attributes are 2491 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2492 * adding the range allows KVM to require that MMU invalidations add at 2493 * least one range between begin() and end(), e.g. allows KVM to detect 2494 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2495 * but it's not obvious that allowing new mappings while the attributes 2496 * are in flux is desirable or worth the complexity. 2497 */ 2498 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2499 2500 return kvm_arch_pre_set_memory_attributes(kvm, range); 2501 } 2502 2503 /* Set @attributes for the gfn range [@start, @end). */ 2504 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2505 unsigned long attributes) 2506 { 2507 struct kvm_mmu_notifier_range pre_set_range = { 2508 .start = start, 2509 .end = end, 2510 .handler = kvm_pre_set_memory_attributes, 2511 .on_lock = kvm_mmu_invalidate_begin, 2512 .flush_on_ret = true, 2513 .may_block = true, 2514 }; 2515 struct kvm_mmu_notifier_range post_set_range = { 2516 .start = start, 2517 .end = end, 2518 .arg.attributes = attributes, 2519 .handler = kvm_arch_post_set_memory_attributes, 2520 .on_lock = kvm_mmu_invalidate_end, 2521 .may_block = true, 2522 }; 2523 unsigned long i; 2524 void *entry; 2525 int r = 0; 2526 2527 entry = attributes ? xa_mk_value(attributes) : NULL; 2528 2529 mutex_lock(&kvm->slots_lock); 2530 2531 /* Nothing to do if the entire range as the desired attributes. */ 2532 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2533 goto out_unlock; 2534 2535 /* 2536 * Reserve memory ahead of time to avoid having to deal with failures 2537 * partway through setting the new attributes. 2538 */ 2539 for (i = start; i < end; i++) { 2540 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2541 if (r) 2542 goto out_unlock; 2543 } 2544 2545 kvm_handle_gfn_range(kvm, &pre_set_range); 2546 2547 for (i = start; i < end; i++) { 2548 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2549 GFP_KERNEL_ACCOUNT)); 2550 KVM_BUG_ON(r, kvm); 2551 } 2552 2553 kvm_handle_gfn_range(kvm, &post_set_range); 2554 2555 out_unlock: 2556 mutex_unlock(&kvm->slots_lock); 2557 2558 return r; 2559 } 2560 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2561 struct kvm_memory_attributes *attrs) 2562 { 2563 gfn_t start, end; 2564 2565 /* flags is currently not used. */ 2566 if (attrs->flags) 2567 return -EINVAL; 2568 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2569 return -EINVAL; 2570 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2571 return -EINVAL; 2572 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2573 return -EINVAL; 2574 2575 start = attrs->address >> PAGE_SHIFT; 2576 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2577 2578 /* 2579 * xarray tracks data using "unsigned long", and as a result so does 2580 * KVM. For simplicity, supports generic attributes only on 64-bit 2581 * architectures. 2582 */ 2583 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2584 2585 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2586 } 2587 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2588 2589 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2590 { 2591 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2592 } 2593 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2594 2595 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2596 { 2597 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2598 u64 gen = slots->generation; 2599 struct kvm_memory_slot *slot; 2600 2601 /* 2602 * This also protects against using a memslot from a different address space, 2603 * since different address spaces have different generation numbers. 2604 */ 2605 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2606 vcpu->last_used_slot = NULL; 2607 vcpu->last_used_slot_gen = gen; 2608 } 2609 2610 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2611 if (slot) 2612 return slot; 2613 2614 /* 2615 * Fall back to searching all memslots. We purposely use 2616 * search_memslots() instead of __gfn_to_memslot() to avoid 2617 * thrashing the VM-wide last_used_slot in kvm_memslots. 2618 */ 2619 slot = search_memslots(slots, gfn, false); 2620 if (slot) { 2621 vcpu->last_used_slot = slot; 2622 return slot; 2623 } 2624 2625 return NULL; 2626 } 2627 2628 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2629 { 2630 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2631 2632 return kvm_is_visible_memslot(memslot); 2633 } 2634 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2635 2636 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2637 { 2638 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2639 2640 return kvm_is_visible_memslot(memslot); 2641 } 2642 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2643 2644 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2645 { 2646 struct vm_area_struct *vma; 2647 unsigned long addr, size; 2648 2649 size = PAGE_SIZE; 2650 2651 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2652 if (kvm_is_error_hva(addr)) 2653 return PAGE_SIZE; 2654 2655 mmap_read_lock(current->mm); 2656 vma = find_vma(current->mm, addr); 2657 if (!vma) 2658 goto out; 2659 2660 size = vma_kernel_pagesize(vma); 2661 2662 out: 2663 mmap_read_unlock(current->mm); 2664 2665 return size; 2666 } 2667 2668 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2669 { 2670 return slot->flags & KVM_MEM_READONLY; 2671 } 2672 2673 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2674 gfn_t *nr_pages, bool write) 2675 { 2676 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2677 return KVM_HVA_ERR_BAD; 2678 2679 if (memslot_is_readonly(slot) && write) 2680 return KVM_HVA_ERR_RO_BAD; 2681 2682 if (nr_pages) 2683 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2684 2685 return __gfn_to_hva_memslot(slot, gfn); 2686 } 2687 2688 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2689 gfn_t *nr_pages) 2690 { 2691 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2692 } 2693 2694 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2695 gfn_t gfn) 2696 { 2697 return gfn_to_hva_many(slot, gfn, NULL); 2698 } 2699 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2700 2701 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2702 { 2703 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2704 } 2705 EXPORT_SYMBOL_GPL(gfn_to_hva); 2706 2707 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2708 { 2709 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2710 } 2711 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2712 2713 /* 2714 * Return the hva of a @gfn and the R/W attribute if possible. 2715 * 2716 * @slot: the kvm_memory_slot which contains @gfn 2717 * @gfn: the gfn to be translated 2718 * @writable: used to return the read/write attribute of the @slot if the hva 2719 * is valid and @writable is not NULL 2720 */ 2721 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2722 gfn_t gfn, bool *writable) 2723 { 2724 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2725 2726 if (!kvm_is_error_hva(hva) && writable) 2727 *writable = !memslot_is_readonly(slot); 2728 2729 return hva; 2730 } 2731 2732 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2733 { 2734 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2735 2736 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2737 } 2738 2739 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2740 { 2741 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2742 2743 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2744 } 2745 2746 static inline int check_user_page_hwpoison(unsigned long addr) 2747 { 2748 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2749 2750 rc = get_user_pages(addr, 1, flags, NULL); 2751 return rc == -EHWPOISON; 2752 } 2753 2754 /* 2755 * The fast path to get the writable pfn which will be stored in @pfn, 2756 * true indicates success, otherwise false is returned. It's also the 2757 * only part that runs if we can in atomic context. 2758 */ 2759 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2760 bool *writable, kvm_pfn_t *pfn) 2761 { 2762 struct page *page[1]; 2763 2764 /* 2765 * Fast pin a writable pfn only if it is a write fault request 2766 * or the caller allows to map a writable pfn for a read fault 2767 * request. 2768 */ 2769 if (!(write_fault || writable)) 2770 return false; 2771 2772 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2773 *pfn = page_to_pfn(page[0]); 2774 2775 if (writable) 2776 *writable = true; 2777 return true; 2778 } 2779 2780 return false; 2781 } 2782 2783 /* 2784 * The slow path to get the pfn of the specified host virtual address, 2785 * 1 indicates success, -errno is returned if error is detected. 2786 */ 2787 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2788 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2789 { 2790 /* 2791 * When a VCPU accesses a page that is not mapped into the secondary 2792 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2793 * make progress. We always want to honor NUMA hinting faults in that 2794 * case, because GUP usage corresponds to memory accesses from the VCPU. 2795 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2796 * mapped into the secondary MMU and gets accessed by a VCPU. 2797 * 2798 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2799 * implicitly honor NUMA hinting faults and don't need this flag. 2800 */ 2801 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2802 struct page *page; 2803 int npages; 2804 2805 might_sleep(); 2806 2807 if (writable) 2808 *writable = write_fault; 2809 2810 if (write_fault) 2811 flags |= FOLL_WRITE; 2812 if (async) 2813 flags |= FOLL_NOWAIT; 2814 if (interruptible) 2815 flags |= FOLL_INTERRUPTIBLE; 2816 2817 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2818 if (npages != 1) 2819 return npages; 2820 2821 /* map read fault as writable if possible */ 2822 if (unlikely(!write_fault) && writable) { 2823 struct page *wpage; 2824 2825 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2826 *writable = true; 2827 put_page(page); 2828 page = wpage; 2829 } 2830 } 2831 *pfn = page_to_pfn(page); 2832 return npages; 2833 } 2834 2835 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2836 { 2837 if (unlikely(!(vma->vm_flags & VM_READ))) 2838 return false; 2839 2840 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2841 return false; 2842 2843 return true; 2844 } 2845 2846 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2847 { 2848 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2849 2850 if (!page) 2851 return 1; 2852 2853 return get_page_unless_zero(page); 2854 } 2855 2856 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2857 unsigned long addr, bool write_fault, 2858 bool *writable, kvm_pfn_t *p_pfn) 2859 { 2860 kvm_pfn_t pfn; 2861 pte_t *ptep; 2862 pte_t pte; 2863 spinlock_t *ptl; 2864 int r; 2865 2866 r = follow_pte(vma, addr, &ptep, &ptl); 2867 if (r) { 2868 /* 2869 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2870 * not call the fault handler, so do it here. 2871 */ 2872 bool unlocked = false; 2873 r = fixup_user_fault(current->mm, addr, 2874 (write_fault ? FAULT_FLAG_WRITE : 0), 2875 &unlocked); 2876 if (unlocked) 2877 return -EAGAIN; 2878 if (r) 2879 return r; 2880 2881 r = follow_pte(vma, addr, &ptep, &ptl); 2882 if (r) 2883 return r; 2884 } 2885 2886 pte = ptep_get(ptep); 2887 2888 if (write_fault && !pte_write(pte)) { 2889 pfn = KVM_PFN_ERR_RO_FAULT; 2890 goto out; 2891 } 2892 2893 if (writable) 2894 *writable = pte_write(pte); 2895 pfn = pte_pfn(pte); 2896 2897 /* 2898 * Get a reference here because callers of *hva_to_pfn* and 2899 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2900 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2901 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2902 * simply do nothing for reserved pfns. 2903 * 2904 * Whoever called remap_pfn_range is also going to call e.g. 2905 * unmap_mapping_range before the underlying pages are freed, 2906 * causing a call to our MMU notifier. 2907 * 2908 * Certain IO or PFNMAP mappings can be backed with valid 2909 * struct pages, but be allocated without refcounting e.g., 2910 * tail pages of non-compound higher order allocations, which 2911 * would then underflow the refcount when the caller does the 2912 * required put_page. Don't allow those pages here. 2913 */ 2914 if (!kvm_try_get_pfn(pfn)) 2915 r = -EFAULT; 2916 2917 out: 2918 pte_unmap_unlock(ptep, ptl); 2919 *p_pfn = pfn; 2920 2921 return r; 2922 } 2923 2924 /* 2925 * Pin guest page in memory and return its pfn. 2926 * @addr: host virtual address which maps memory to the guest 2927 * @atomic: whether this function is forbidden from sleeping 2928 * @interruptible: whether the process can be interrupted by non-fatal signals 2929 * @async: whether this function need to wait IO complete if the 2930 * host page is not in the memory 2931 * @write_fault: whether we should get a writable host page 2932 * @writable: whether it allows to map a writable host page for !@write_fault 2933 * 2934 * The function will map a writable host page for these two cases: 2935 * 1): @write_fault = true 2936 * 2): @write_fault = false && @writable, @writable will tell the caller 2937 * whether the mapping is writable. 2938 */ 2939 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2940 bool *async, bool write_fault, bool *writable) 2941 { 2942 struct vm_area_struct *vma; 2943 kvm_pfn_t pfn; 2944 int npages, r; 2945 2946 /* we can do it either atomically or asynchronously, not both */ 2947 BUG_ON(atomic && async); 2948 2949 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2950 return pfn; 2951 2952 if (atomic) 2953 return KVM_PFN_ERR_FAULT; 2954 2955 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2956 writable, &pfn); 2957 if (npages == 1) 2958 return pfn; 2959 if (npages == -EINTR) 2960 return KVM_PFN_ERR_SIGPENDING; 2961 2962 mmap_read_lock(current->mm); 2963 if (npages == -EHWPOISON || 2964 (!async && check_user_page_hwpoison(addr))) { 2965 pfn = KVM_PFN_ERR_HWPOISON; 2966 goto exit; 2967 } 2968 2969 retry: 2970 vma = vma_lookup(current->mm, addr); 2971 2972 if (vma == NULL) 2973 pfn = KVM_PFN_ERR_FAULT; 2974 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2975 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2976 if (r == -EAGAIN) 2977 goto retry; 2978 if (r < 0) 2979 pfn = KVM_PFN_ERR_FAULT; 2980 } else { 2981 if (async && vma_is_valid(vma, write_fault)) 2982 *async = true; 2983 pfn = KVM_PFN_ERR_FAULT; 2984 } 2985 exit: 2986 mmap_read_unlock(current->mm); 2987 return pfn; 2988 } 2989 2990 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2991 bool atomic, bool interruptible, bool *async, 2992 bool write_fault, bool *writable, hva_t *hva) 2993 { 2994 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2995 2996 if (hva) 2997 *hva = addr; 2998 2999 if (kvm_is_error_hva(addr)) { 3000 if (writable) 3001 *writable = false; 3002 3003 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT : 3004 KVM_PFN_NOSLOT; 3005 } 3006 3007 /* Do not map writable pfn in the readonly memslot. */ 3008 if (writable && memslot_is_readonly(slot)) { 3009 *writable = false; 3010 writable = NULL; 3011 } 3012 3013 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3014 writable); 3015 } 3016 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3017 3018 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3019 bool *writable) 3020 { 3021 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3022 NULL, write_fault, writable, NULL); 3023 } 3024 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3025 3026 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3027 { 3028 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3029 NULL, NULL); 3030 } 3031 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3032 3033 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3034 { 3035 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3036 NULL, NULL); 3037 } 3038 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3039 3040 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3041 { 3042 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3043 } 3044 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3045 3046 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3047 { 3048 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3049 } 3050 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3051 3052 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3053 { 3054 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3055 } 3056 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3057 3058 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3059 struct page **pages, int nr_pages) 3060 { 3061 unsigned long addr; 3062 gfn_t entry = 0; 3063 3064 addr = gfn_to_hva_many(slot, gfn, &entry); 3065 if (kvm_is_error_hva(addr)) 3066 return -1; 3067 3068 if (entry < nr_pages) 3069 return 0; 3070 3071 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3072 } 3073 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3074 3075 /* 3076 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3077 * backed by 'struct page'. A valid example is if the backing memslot is 3078 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3079 * been elevated by gfn_to_pfn(). 3080 */ 3081 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3082 { 3083 struct page *page; 3084 kvm_pfn_t pfn; 3085 3086 pfn = gfn_to_pfn(kvm, gfn); 3087 3088 if (is_error_noslot_pfn(pfn)) 3089 return KVM_ERR_PTR_BAD_PAGE; 3090 3091 page = kvm_pfn_to_refcounted_page(pfn); 3092 if (!page) 3093 return KVM_ERR_PTR_BAD_PAGE; 3094 3095 return page; 3096 } 3097 EXPORT_SYMBOL_GPL(gfn_to_page); 3098 3099 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3100 { 3101 if (dirty) 3102 kvm_release_pfn_dirty(pfn); 3103 else 3104 kvm_release_pfn_clean(pfn); 3105 } 3106 3107 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3108 { 3109 kvm_pfn_t pfn; 3110 void *hva = NULL; 3111 struct page *page = KVM_UNMAPPED_PAGE; 3112 3113 if (!map) 3114 return -EINVAL; 3115 3116 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3117 if (is_error_noslot_pfn(pfn)) 3118 return -EINVAL; 3119 3120 if (pfn_valid(pfn)) { 3121 page = pfn_to_page(pfn); 3122 hva = kmap(page); 3123 #ifdef CONFIG_HAS_IOMEM 3124 } else { 3125 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3126 #endif 3127 } 3128 3129 if (!hva) 3130 return -EFAULT; 3131 3132 map->page = page; 3133 map->hva = hva; 3134 map->pfn = pfn; 3135 map->gfn = gfn; 3136 3137 return 0; 3138 } 3139 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3140 3141 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3142 { 3143 if (!map) 3144 return; 3145 3146 if (!map->hva) 3147 return; 3148 3149 if (map->page != KVM_UNMAPPED_PAGE) 3150 kunmap(map->page); 3151 #ifdef CONFIG_HAS_IOMEM 3152 else 3153 memunmap(map->hva); 3154 #endif 3155 3156 if (dirty) 3157 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3158 3159 kvm_release_pfn(map->pfn, dirty); 3160 3161 map->hva = NULL; 3162 map->page = NULL; 3163 } 3164 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3165 3166 static bool kvm_is_ad_tracked_page(struct page *page) 3167 { 3168 /* 3169 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3170 * touched (e.g. set dirty) except by its owner". 3171 */ 3172 return !PageReserved(page); 3173 } 3174 3175 static void kvm_set_page_dirty(struct page *page) 3176 { 3177 if (kvm_is_ad_tracked_page(page)) 3178 SetPageDirty(page); 3179 } 3180 3181 static void kvm_set_page_accessed(struct page *page) 3182 { 3183 if (kvm_is_ad_tracked_page(page)) 3184 mark_page_accessed(page); 3185 } 3186 3187 void kvm_release_page_clean(struct page *page) 3188 { 3189 WARN_ON(is_error_page(page)); 3190 3191 kvm_set_page_accessed(page); 3192 put_page(page); 3193 } 3194 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3195 3196 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3197 { 3198 struct page *page; 3199 3200 if (is_error_noslot_pfn(pfn)) 3201 return; 3202 3203 page = kvm_pfn_to_refcounted_page(pfn); 3204 if (!page) 3205 return; 3206 3207 kvm_release_page_clean(page); 3208 } 3209 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3210 3211 void kvm_release_page_dirty(struct page *page) 3212 { 3213 WARN_ON(is_error_page(page)); 3214 3215 kvm_set_page_dirty(page); 3216 kvm_release_page_clean(page); 3217 } 3218 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3219 3220 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3221 { 3222 struct page *page; 3223 3224 if (is_error_noslot_pfn(pfn)) 3225 return; 3226 3227 page = kvm_pfn_to_refcounted_page(pfn); 3228 if (!page) 3229 return; 3230 3231 kvm_release_page_dirty(page); 3232 } 3233 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3234 3235 /* 3236 * Note, checking for an error/noslot pfn is the caller's responsibility when 3237 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3238 * "set" helpers are not to be used when the pfn might point at garbage. 3239 */ 3240 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3241 { 3242 if (WARN_ON(is_error_noslot_pfn(pfn))) 3243 return; 3244 3245 if (pfn_valid(pfn)) 3246 kvm_set_page_dirty(pfn_to_page(pfn)); 3247 } 3248 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3249 3250 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3251 { 3252 if (WARN_ON(is_error_noslot_pfn(pfn))) 3253 return; 3254 3255 if (pfn_valid(pfn)) 3256 kvm_set_page_accessed(pfn_to_page(pfn)); 3257 } 3258 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3259 3260 static int next_segment(unsigned long len, int offset) 3261 { 3262 if (len > PAGE_SIZE - offset) 3263 return PAGE_SIZE - offset; 3264 else 3265 return len; 3266 } 3267 3268 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3269 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3270 void *data, int offset, int len) 3271 { 3272 int r; 3273 unsigned long addr; 3274 3275 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3276 if (kvm_is_error_hva(addr)) 3277 return -EFAULT; 3278 r = __copy_from_user(data, (void __user *)addr + offset, len); 3279 if (r) 3280 return -EFAULT; 3281 return 0; 3282 } 3283 3284 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3285 int len) 3286 { 3287 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3288 3289 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3290 } 3291 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3292 3293 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3294 int offset, int len) 3295 { 3296 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3297 3298 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3299 } 3300 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3301 3302 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3303 { 3304 gfn_t gfn = gpa >> PAGE_SHIFT; 3305 int seg; 3306 int offset = offset_in_page(gpa); 3307 int ret; 3308 3309 while ((seg = next_segment(len, offset)) != 0) { 3310 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3311 if (ret < 0) 3312 return ret; 3313 offset = 0; 3314 len -= seg; 3315 data += seg; 3316 ++gfn; 3317 } 3318 return 0; 3319 } 3320 EXPORT_SYMBOL_GPL(kvm_read_guest); 3321 3322 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3323 { 3324 gfn_t gfn = gpa >> PAGE_SHIFT; 3325 int seg; 3326 int offset = offset_in_page(gpa); 3327 int ret; 3328 3329 while ((seg = next_segment(len, offset)) != 0) { 3330 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3331 if (ret < 0) 3332 return ret; 3333 offset = 0; 3334 len -= seg; 3335 data += seg; 3336 ++gfn; 3337 } 3338 return 0; 3339 } 3340 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3341 3342 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3343 void *data, int offset, unsigned long len) 3344 { 3345 int r; 3346 unsigned long addr; 3347 3348 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3349 if (kvm_is_error_hva(addr)) 3350 return -EFAULT; 3351 pagefault_disable(); 3352 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3353 pagefault_enable(); 3354 if (r) 3355 return -EFAULT; 3356 return 0; 3357 } 3358 3359 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3360 void *data, unsigned long len) 3361 { 3362 gfn_t gfn = gpa >> PAGE_SHIFT; 3363 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3364 int offset = offset_in_page(gpa); 3365 3366 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3367 } 3368 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3369 3370 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3371 static int __kvm_write_guest_page(struct kvm *kvm, 3372 struct kvm_memory_slot *memslot, gfn_t gfn, 3373 const void *data, int offset, int len) 3374 { 3375 int r; 3376 unsigned long addr; 3377 3378 addr = gfn_to_hva_memslot(memslot, gfn); 3379 if (kvm_is_error_hva(addr)) 3380 return -EFAULT; 3381 r = __copy_to_user((void __user *)addr + offset, data, len); 3382 if (r) 3383 return -EFAULT; 3384 mark_page_dirty_in_slot(kvm, memslot, gfn); 3385 return 0; 3386 } 3387 3388 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3389 const void *data, int offset, int len) 3390 { 3391 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3392 3393 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3394 } 3395 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3396 3397 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3398 const void *data, int offset, int len) 3399 { 3400 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3401 3402 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3403 } 3404 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3405 3406 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3407 unsigned long len) 3408 { 3409 gfn_t gfn = gpa >> PAGE_SHIFT; 3410 int seg; 3411 int offset = offset_in_page(gpa); 3412 int ret; 3413 3414 while ((seg = next_segment(len, offset)) != 0) { 3415 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3416 if (ret < 0) 3417 return ret; 3418 offset = 0; 3419 len -= seg; 3420 data += seg; 3421 ++gfn; 3422 } 3423 return 0; 3424 } 3425 EXPORT_SYMBOL_GPL(kvm_write_guest); 3426 3427 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3428 unsigned long len) 3429 { 3430 gfn_t gfn = gpa >> PAGE_SHIFT; 3431 int seg; 3432 int offset = offset_in_page(gpa); 3433 int ret; 3434 3435 while ((seg = next_segment(len, offset)) != 0) { 3436 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3437 if (ret < 0) 3438 return ret; 3439 offset = 0; 3440 len -= seg; 3441 data += seg; 3442 ++gfn; 3443 } 3444 return 0; 3445 } 3446 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3447 3448 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3449 struct gfn_to_hva_cache *ghc, 3450 gpa_t gpa, unsigned long len) 3451 { 3452 int offset = offset_in_page(gpa); 3453 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3454 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3455 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3456 gfn_t nr_pages_avail; 3457 3458 /* Update ghc->generation before performing any error checks. */ 3459 ghc->generation = slots->generation; 3460 3461 if (start_gfn > end_gfn) { 3462 ghc->hva = KVM_HVA_ERR_BAD; 3463 return -EINVAL; 3464 } 3465 3466 /* 3467 * If the requested region crosses two memslots, we still 3468 * verify that the entire region is valid here. 3469 */ 3470 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3471 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3472 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3473 &nr_pages_avail); 3474 if (kvm_is_error_hva(ghc->hva)) 3475 return -EFAULT; 3476 } 3477 3478 /* Use the slow path for cross page reads and writes. */ 3479 if (nr_pages_needed == 1) 3480 ghc->hva += offset; 3481 else 3482 ghc->memslot = NULL; 3483 3484 ghc->gpa = gpa; 3485 ghc->len = len; 3486 return 0; 3487 } 3488 3489 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3490 gpa_t gpa, unsigned long len) 3491 { 3492 struct kvm_memslots *slots = kvm_memslots(kvm); 3493 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3494 } 3495 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3496 3497 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3498 void *data, unsigned int offset, 3499 unsigned long len) 3500 { 3501 struct kvm_memslots *slots = kvm_memslots(kvm); 3502 int r; 3503 gpa_t gpa = ghc->gpa + offset; 3504 3505 if (WARN_ON_ONCE(len + offset > ghc->len)) 3506 return -EINVAL; 3507 3508 if (slots->generation != ghc->generation) { 3509 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3510 return -EFAULT; 3511 } 3512 3513 if (kvm_is_error_hva(ghc->hva)) 3514 return -EFAULT; 3515 3516 if (unlikely(!ghc->memslot)) 3517 return kvm_write_guest(kvm, gpa, data, len); 3518 3519 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3520 if (r) 3521 return -EFAULT; 3522 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3523 3524 return 0; 3525 } 3526 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3527 3528 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3529 void *data, unsigned long len) 3530 { 3531 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3532 } 3533 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3534 3535 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3536 void *data, unsigned int offset, 3537 unsigned long len) 3538 { 3539 struct kvm_memslots *slots = kvm_memslots(kvm); 3540 int r; 3541 gpa_t gpa = ghc->gpa + offset; 3542 3543 if (WARN_ON_ONCE(len + offset > ghc->len)) 3544 return -EINVAL; 3545 3546 if (slots->generation != ghc->generation) { 3547 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3548 return -EFAULT; 3549 } 3550 3551 if (kvm_is_error_hva(ghc->hva)) 3552 return -EFAULT; 3553 3554 if (unlikely(!ghc->memslot)) 3555 return kvm_read_guest(kvm, gpa, data, len); 3556 3557 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3558 if (r) 3559 return -EFAULT; 3560 3561 return 0; 3562 } 3563 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3564 3565 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3566 void *data, unsigned long len) 3567 { 3568 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3569 } 3570 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3571 3572 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3573 { 3574 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3575 gfn_t gfn = gpa >> PAGE_SHIFT; 3576 int seg; 3577 int offset = offset_in_page(gpa); 3578 int ret; 3579 3580 while ((seg = next_segment(len, offset)) != 0) { 3581 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3582 if (ret < 0) 3583 return ret; 3584 offset = 0; 3585 len -= seg; 3586 ++gfn; 3587 } 3588 return 0; 3589 } 3590 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3591 3592 void mark_page_dirty_in_slot(struct kvm *kvm, 3593 const struct kvm_memory_slot *memslot, 3594 gfn_t gfn) 3595 { 3596 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3597 3598 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3599 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3600 return; 3601 3602 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3603 #endif 3604 3605 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3606 unsigned long rel_gfn = gfn - memslot->base_gfn; 3607 u32 slot = (memslot->as_id << 16) | memslot->id; 3608 3609 if (kvm->dirty_ring_size && vcpu) 3610 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3611 else if (memslot->dirty_bitmap) 3612 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3613 } 3614 } 3615 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3616 3617 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3618 { 3619 struct kvm_memory_slot *memslot; 3620 3621 memslot = gfn_to_memslot(kvm, gfn); 3622 mark_page_dirty_in_slot(kvm, memslot, gfn); 3623 } 3624 EXPORT_SYMBOL_GPL(mark_page_dirty); 3625 3626 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3627 { 3628 struct kvm_memory_slot *memslot; 3629 3630 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3631 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3632 } 3633 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3634 3635 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3636 { 3637 if (!vcpu->sigset_active) 3638 return; 3639 3640 /* 3641 * This does a lockless modification of ->real_blocked, which is fine 3642 * because, only current can change ->real_blocked and all readers of 3643 * ->real_blocked don't care as long ->real_blocked is always a subset 3644 * of ->blocked. 3645 */ 3646 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3647 } 3648 3649 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3650 { 3651 if (!vcpu->sigset_active) 3652 return; 3653 3654 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3655 sigemptyset(¤t->real_blocked); 3656 } 3657 3658 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3659 { 3660 unsigned int old, val, grow, grow_start; 3661 3662 old = val = vcpu->halt_poll_ns; 3663 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3664 grow = READ_ONCE(halt_poll_ns_grow); 3665 if (!grow) 3666 goto out; 3667 3668 val *= grow; 3669 if (val < grow_start) 3670 val = grow_start; 3671 3672 vcpu->halt_poll_ns = val; 3673 out: 3674 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3675 } 3676 3677 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3678 { 3679 unsigned int old, val, shrink, grow_start; 3680 3681 old = val = vcpu->halt_poll_ns; 3682 shrink = READ_ONCE(halt_poll_ns_shrink); 3683 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3684 if (shrink == 0) 3685 val = 0; 3686 else 3687 val /= shrink; 3688 3689 if (val < grow_start) 3690 val = 0; 3691 3692 vcpu->halt_poll_ns = val; 3693 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3694 } 3695 3696 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3697 { 3698 int ret = -EINTR; 3699 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3700 3701 if (kvm_arch_vcpu_runnable(vcpu)) 3702 goto out; 3703 if (kvm_cpu_has_pending_timer(vcpu)) 3704 goto out; 3705 if (signal_pending(current)) 3706 goto out; 3707 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3708 goto out; 3709 3710 ret = 0; 3711 out: 3712 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3713 return ret; 3714 } 3715 3716 /* 3717 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3718 * pending. This is mostly used when halting a vCPU, but may also be used 3719 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3720 */ 3721 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3722 { 3723 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3724 bool waited = false; 3725 3726 vcpu->stat.generic.blocking = 1; 3727 3728 preempt_disable(); 3729 kvm_arch_vcpu_blocking(vcpu); 3730 prepare_to_rcuwait(wait); 3731 preempt_enable(); 3732 3733 for (;;) { 3734 set_current_state(TASK_INTERRUPTIBLE); 3735 3736 if (kvm_vcpu_check_block(vcpu) < 0) 3737 break; 3738 3739 waited = true; 3740 schedule(); 3741 } 3742 3743 preempt_disable(); 3744 finish_rcuwait(wait); 3745 kvm_arch_vcpu_unblocking(vcpu); 3746 preempt_enable(); 3747 3748 vcpu->stat.generic.blocking = 0; 3749 3750 return waited; 3751 } 3752 3753 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3754 ktime_t end, bool success) 3755 { 3756 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3757 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3758 3759 ++vcpu->stat.generic.halt_attempted_poll; 3760 3761 if (success) { 3762 ++vcpu->stat.generic.halt_successful_poll; 3763 3764 if (!vcpu_valid_wakeup(vcpu)) 3765 ++vcpu->stat.generic.halt_poll_invalid; 3766 3767 stats->halt_poll_success_ns += poll_ns; 3768 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3769 } else { 3770 stats->halt_poll_fail_ns += poll_ns; 3771 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3772 } 3773 } 3774 3775 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3776 { 3777 struct kvm *kvm = vcpu->kvm; 3778 3779 if (kvm->override_halt_poll_ns) { 3780 /* 3781 * Ensure kvm->max_halt_poll_ns is not read before 3782 * kvm->override_halt_poll_ns. 3783 * 3784 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3785 */ 3786 smp_rmb(); 3787 return READ_ONCE(kvm->max_halt_poll_ns); 3788 } 3789 3790 return READ_ONCE(halt_poll_ns); 3791 } 3792 3793 /* 3794 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3795 * polling is enabled, busy wait for a short time before blocking to avoid the 3796 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3797 * is halted. 3798 */ 3799 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3800 { 3801 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3802 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3803 ktime_t start, cur, poll_end; 3804 bool waited = false; 3805 bool do_halt_poll; 3806 u64 halt_ns; 3807 3808 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3809 vcpu->halt_poll_ns = max_halt_poll_ns; 3810 3811 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3812 3813 start = cur = poll_end = ktime_get(); 3814 if (do_halt_poll) { 3815 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3816 3817 do { 3818 if (kvm_vcpu_check_block(vcpu) < 0) 3819 goto out; 3820 cpu_relax(); 3821 poll_end = cur = ktime_get(); 3822 } while (kvm_vcpu_can_poll(cur, stop)); 3823 } 3824 3825 waited = kvm_vcpu_block(vcpu); 3826 3827 cur = ktime_get(); 3828 if (waited) { 3829 vcpu->stat.generic.halt_wait_ns += 3830 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3831 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3832 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3833 } 3834 out: 3835 /* The total time the vCPU was "halted", including polling time. */ 3836 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3837 3838 /* 3839 * Note, halt-polling is considered successful so long as the vCPU was 3840 * never actually scheduled out, i.e. even if the wake event arrived 3841 * after of the halt-polling loop itself, but before the full wait. 3842 */ 3843 if (do_halt_poll) 3844 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3845 3846 if (halt_poll_allowed) { 3847 /* Recompute the max halt poll time in case it changed. */ 3848 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3849 3850 if (!vcpu_valid_wakeup(vcpu)) { 3851 shrink_halt_poll_ns(vcpu); 3852 } else if (max_halt_poll_ns) { 3853 if (halt_ns <= vcpu->halt_poll_ns) 3854 ; 3855 /* we had a long block, shrink polling */ 3856 else if (vcpu->halt_poll_ns && 3857 halt_ns > max_halt_poll_ns) 3858 shrink_halt_poll_ns(vcpu); 3859 /* we had a short halt and our poll time is too small */ 3860 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3861 halt_ns < max_halt_poll_ns) 3862 grow_halt_poll_ns(vcpu); 3863 } else { 3864 vcpu->halt_poll_ns = 0; 3865 } 3866 } 3867 3868 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3869 } 3870 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3871 3872 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3873 { 3874 if (__kvm_vcpu_wake_up(vcpu)) { 3875 WRITE_ONCE(vcpu->ready, true); 3876 ++vcpu->stat.generic.halt_wakeup; 3877 return true; 3878 } 3879 3880 return false; 3881 } 3882 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3883 3884 #ifndef CONFIG_S390 3885 /* 3886 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3887 */ 3888 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3889 { 3890 int me, cpu; 3891 3892 if (kvm_vcpu_wake_up(vcpu)) 3893 return; 3894 3895 me = get_cpu(); 3896 /* 3897 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3898 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3899 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3900 * within the vCPU thread itself. 3901 */ 3902 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3903 if (vcpu->mode == IN_GUEST_MODE) 3904 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3905 goto out; 3906 } 3907 3908 /* 3909 * Note, the vCPU could get migrated to a different pCPU at any point 3910 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3911 * IPI to the previous pCPU. But, that's ok because the purpose of the 3912 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3913 * vCPU also requires it to leave IN_GUEST_MODE. 3914 */ 3915 if (kvm_arch_vcpu_should_kick(vcpu)) { 3916 cpu = READ_ONCE(vcpu->cpu); 3917 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3918 smp_send_reschedule(cpu); 3919 } 3920 out: 3921 put_cpu(); 3922 } 3923 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3924 #endif /* !CONFIG_S390 */ 3925 3926 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3927 { 3928 struct pid *pid; 3929 struct task_struct *task = NULL; 3930 int ret = 0; 3931 3932 rcu_read_lock(); 3933 pid = rcu_dereference(target->pid); 3934 if (pid) 3935 task = get_pid_task(pid, PIDTYPE_PID); 3936 rcu_read_unlock(); 3937 if (!task) 3938 return ret; 3939 ret = yield_to(task, 1); 3940 put_task_struct(task); 3941 3942 return ret; 3943 } 3944 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3945 3946 /* 3947 * Helper that checks whether a VCPU is eligible for directed yield. 3948 * Most eligible candidate to yield is decided by following heuristics: 3949 * 3950 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3951 * (preempted lock holder), indicated by @in_spin_loop. 3952 * Set at the beginning and cleared at the end of interception/PLE handler. 3953 * 3954 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3955 * chance last time (mostly it has become eligible now since we have probably 3956 * yielded to lockholder in last iteration. This is done by toggling 3957 * @dy_eligible each time a VCPU checked for eligibility.) 3958 * 3959 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3960 * to preempted lock-holder could result in wrong VCPU selection and CPU 3961 * burning. Giving priority for a potential lock-holder increases lock 3962 * progress. 3963 * 3964 * Since algorithm is based on heuristics, accessing another VCPU data without 3965 * locking does not harm. It may result in trying to yield to same VCPU, fail 3966 * and continue with next VCPU and so on. 3967 */ 3968 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3969 { 3970 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3971 bool eligible; 3972 3973 eligible = !vcpu->spin_loop.in_spin_loop || 3974 vcpu->spin_loop.dy_eligible; 3975 3976 if (vcpu->spin_loop.in_spin_loop) 3977 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3978 3979 return eligible; 3980 #else 3981 return true; 3982 #endif 3983 } 3984 3985 /* 3986 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3987 * a vcpu_load/vcpu_put pair. However, for most architectures 3988 * kvm_arch_vcpu_runnable does not require vcpu_load. 3989 */ 3990 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3991 { 3992 return kvm_arch_vcpu_runnable(vcpu); 3993 } 3994 3995 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3996 { 3997 if (kvm_arch_dy_runnable(vcpu)) 3998 return true; 3999 4000 #ifdef CONFIG_KVM_ASYNC_PF 4001 if (!list_empty_careful(&vcpu->async_pf.done)) 4002 return true; 4003 #endif 4004 4005 return false; 4006 } 4007 4008 /* 4009 * By default, simply query the target vCPU's current mode when checking if a 4010 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4011 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4012 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4013 * directly for cross-vCPU checks is functionally correct and accurate. 4014 */ 4015 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4016 { 4017 return kvm_arch_vcpu_in_kernel(vcpu); 4018 } 4019 4020 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4021 { 4022 return false; 4023 } 4024 4025 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4026 { 4027 struct kvm *kvm = me->kvm; 4028 struct kvm_vcpu *vcpu; 4029 int last_boosted_vcpu; 4030 unsigned long i; 4031 int yielded = 0; 4032 int try = 3; 4033 int pass; 4034 4035 last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu); 4036 kvm_vcpu_set_in_spin_loop(me, true); 4037 /* 4038 * We boost the priority of a VCPU that is runnable but not 4039 * currently running, because it got preempted by something 4040 * else and called schedule in __vcpu_run. Hopefully that 4041 * VCPU is holding the lock that we need and will release it. 4042 * We approximate round-robin by starting at the last boosted VCPU. 4043 */ 4044 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4045 kvm_for_each_vcpu(i, vcpu, kvm) { 4046 if (!pass && i <= last_boosted_vcpu) { 4047 i = last_boosted_vcpu; 4048 continue; 4049 } else if (pass && i > last_boosted_vcpu) 4050 break; 4051 if (!READ_ONCE(vcpu->ready)) 4052 continue; 4053 if (vcpu == me) 4054 continue; 4055 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4056 continue; 4057 4058 /* 4059 * Treat the target vCPU as being in-kernel if it has a 4060 * pending interrupt, as the vCPU trying to yield may 4061 * be spinning waiting on IPI delivery, i.e. the target 4062 * vCPU is in-kernel for the purposes of directed yield. 4063 */ 4064 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4065 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4066 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4067 continue; 4068 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4069 continue; 4070 4071 yielded = kvm_vcpu_yield_to(vcpu); 4072 if (yielded > 0) { 4073 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4074 break; 4075 } else if (yielded < 0) { 4076 try--; 4077 if (!try) 4078 break; 4079 } 4080 } 4081 } 4082 kvm_vcpu_set_in_spin_loop(me, false); 4083 4084 /* Ensure vcpu is not eligible during next spinloop */ 4085 kvm_vcpu_set_dy_eligible(me, false); 4086 } 4087 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4088 4089 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4090 { 4091 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4092 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4093 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4094 kvm->dirty_ring_size / PAGE_SIZE); 4095 #else 4096 return false; 4097 #endif 4098 } 4099 4100 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4101 { 4102 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4103 struct page *page; 4104 4105 if (vmf->pgoff == 0) 4106 page = virt_to_page(vcpu->run); 4107 #ifdef CONFIG_X86 4108 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4109 page = virt_to_page(vcpu->arch.pio_data); 4110 #endif 4111 #ifdef CONFIG_KVM_MMIO 4112 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4113 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4114 #endif 4115 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4116 page = kvm_dirty_ring_get_page( 4117 &vcpu->dirty_ring, 4118 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4119 else 4120 return kvm_arch_vcpu_fault(vcpu, vmf); 4121 get_page(page); 4122 vmf->page = page; 4123 return 0; 4124 } 4125 4126 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4127 .fault = kvm_vcpu_fault, 4128 }; 4129 4130 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4131 { 4132 struct kvm_vcpu *vcpu = file->private_data; 4133 unsigned long pages = vma_pages(vma); 4134 4135 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4136 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4137 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4138 return -EINVAL; 4139 4140 vma->vm_ops = &kvm_vcpu_vm_ops; 4141 return 0; 4142 } 4143 4144 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4145 { 4146 struct kvm_vcpu *vcpu = filp->private_data; 4147 4148 kvm_put_kvm(vcpu->kvm); 4149 return 0; 4150 } 4151 4152 static struct file_operations kvm_vcpu_fops = { 4153 .release = kvm_vcpu_release, 4154 .unlocked_ioctl = kvm_vcpu_ioctl, 4155 .mmap = kvm_vcpu_mmap, 4156 .llseek = noop_llseek, 4157 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4158 }; 4159 4160 /* 4161 * Allocates an inode for the vcpu. 4162 */ 4163 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4164 { 4165 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4166 4167 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4168 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4169 } 4170 4171 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4172 static int vcpu_get_pid(void *data, u64 *val) 4173 { 4174 struct kvm_vcpu *vcpu = data; 4175 4176 rcu_read_lock(); 4177 *val = pid_nr(rcu_dereference(vcpu->pid)); 4178 rcu_read_unlock(); 4179 return 0; 4180 } 4181 4182 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4183 4184 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4185 { 4186 struct dentry *debugfs_dentry; 4187 char dir_name[ITOA_MAX_LEN * 2]; 4188 4189 if (!debugfs_initialized()) 4190 return; 4191 4192 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4193 debugfs_dentry = debugfs_create_dir(dir_name, 4194 vcpu->kvm->debugfs_dentry); 4195 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4196 &vcpu_get_pid_fops); 4197 4198 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4199 } 4200 #endif 4201 4202 /* 4203 * Creates some virtual cpus. Good luck creating more than one. 4204 */ 4205 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4206 { 4207 int r; 4208 struct kvm_vcpu *vcpu; 4209 struct page *page; 4210 4211 if (id >= KVM_MAX_VCPU_IDS) 4212 return -EINVAL; 4213 4214 mutex_lock(&kvm->lock); 4215 if (kvm->created_vcpus >= kvm->max_vcpus) { 4216 mutex_unlock(&kvm->lock); 4217 return -EINVAL; 4218 } 4219 4220 r = kvm_arch_vcpu_precreate(kvm, id); 4221 if (r) { 4222 mutex_unlock(&kvm->lock); 4223 return r; 4224 } 4225 4226 kvm->created_vcpus++; 4227 mutex_unlock(&kvm->lock); 4228 4229 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4230 if (!vcpu) { 4231 r = -ENOMEM; 4232 goto vcpu_decrement; 4233 } 4234 4235 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4236 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4237 if (!page) { 4238 r = -ENOMEM; 4239 goto vcpu_free; 4240 } 4241 vcpu->run = page_address(page); 4242 4243 kvm_vcpu_init(vcpu, kvm, id); 4244 4245 r = kvm_arch_vcpu_create(vcpu); 4246 if (r) 4247 goto vcpu_free_run_page; 4248 4249 if (kvm->dirty_ring_size) { 4250 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4251 id, kvm->dirty_ring_size); 4252 if (r) 4253 goto arch_vcpu_destroy; 4254 } 4255 4256 mutex_lock(&kvm->lock); 4257 4258 #ifdef CONFIG_LOCKDEP 4259 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4260 mutex_lock(&vcpu->mutex); 4261 mutex_unlock(&vcpu->mutex); 4262 #endif 4263 4264 if (kvm_get_vcpu_by_id(kvm, id)) { 4265 r = -EEXIST; 4266 goto unlock_vcpu_destroy; 4267 } 4268 4269 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4270 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4271 if (r) 4272 goto unlock_vcpu_destroy; 4273 4274 /* Now it's all set up, let userspace reach it */ 4275 kvm_get_kvm(kvm); 4276 r = create_vcpu_fd(vcpu); 4277 if (r < 0) 4278 goto kvm_put_xa_release; 4279 4280 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4281 r = -EINVAL; 4282 goto kvm_put_xa_release; 4283 } 4284 4285 /* 4286 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4287 * pointer before kvm->online_vcpu's incremented value. 4288 */ 4289 smp_wmb(); 4290 atomic_inc(&kvm->online_vcpus); 4291 4292 mutex_unlock(&kvm->lock); 4293 kvm_arch_vcpu_postcreate(vcpu); 4294 kvm_create_vcpu_debugfs(vcpu); 4295 return r; 4296 4297 kvm_put_xa_release: 4298 kvm_put_kvm_no_destroy(kvm); 4299 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4300 unlock_vcpu_destroy: 4301 mutex_unlock(&kvm->lock); 4302 kvm_dirty_ring_free(&vcpu->dirty_ring); 4303 arch_vcpu_destroy: 4304 kvm_arch_vcpu_destroy(vcpu); 4305 vcpu_free_run_page: 4306 free_page((unsigned long)vcpu->run); 4307 vcpu_free: 4308 kmem_cache_free(kvm_vcpu_cache, vcpu); 4309 vcpu_decrement: 4310 mutex_lock(&kvm->lock); 4311 kvm->created_vcpus--; 4312 mutex_unlock(&kvm->lock); 4313 return r; 4314 } 4315 4316 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4317 { 4318 if (sigset) { 4319 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4320 vcpu->sigset_active = 1; 4321 vcpu->sigset = *sigset; 4322 } else 4323 vcpu->sigset_active = 0; 4324 return 0; 4325 } 4326 4327 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4328 size_t size, loff_t *offset) 4329 { 4330 struct kvm_vcpu *vcpu = file->private_data; 4331 4332 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4333 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4334 sizeof(vcpu->stat), user_buffer, size, offset); 4335 } 4336 4337 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4338 { 4339 struct kvm_vcpu *vcpu = file->private_data; 4340 4341 kvm_put_kvm(vcpu->kvm); 4342 return 0; 4343 } 4344 4345 static const struct file_operations kvm_vcpu_stats_fops = { 4346 .owner = THIS_MODULE, 4347 .read = kvm_vcpu_stats_read, 4348 .release = kvm_vcpu_stats_release, 4349 .llseek = noop_llseek, 4350 }; 4351 4352 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4353 { 4354 int fd; 4355 struct file *file; 4356 char name[15 + ITOA_MAX_LEN + 1]; 4357 4358 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4359 4360 fd = get_unused_fd_flags(O_CLOEXEC); 4361 if (fd < 0) 4362 return fd; 4363 4364 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4365 if (IS_ERR(file)) { 4366 put_unused_fd(fd); 4367 return PTR_ERR(file); 4368 } 4369 4370 kvm_get_kvm(vcpu->kvm); 4371 4372 file->f_mode |= FMODE_PREAD; 4373 fd_install(fd, file); 4374 4375 return fd; 4376 } 4377 4378 static long kvm_vcpu_ioctl(struct file *filp, 4379 unsigned int ioctl, unsigned long arg) 4380 { 4381 struct kvm_vcpu *vcpu = filp->private_data; 4382 void __user *argp = (void __user *)arg; 4383 int r; 4384 struct kvm_fpu *fpu = NULL; 4385 struct kvm_sregs *kvm_sregs = NULL; 4386 4387 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4388 return -EIO; 4389 4390 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4391 return -EINVAL; 4392 4393 /* 4394 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4395 * execution; mutex_lock() would break them. 4396 */ 4397 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4398 if (r != -ENOIOCTLCMD) 4399 return r; 4400 4401 if (mutex_lock_killable(&vcpu->mutex)) 4402 return -EINTR; 4403 switch (ioctl) { 4404 case KVM_RUN: { 4405 struct pid *oldpid; 4406 r = -EINVAL; 4407 if (arg) 4408 goto out; 4409 oldpid = rcu_access_pointer(vcpu->pid); 4410 if (unlikely(oldpid != task_pid(current))) { 4411 /* The thread running this VCPU changed. */ 4412 struct pid *newpid; 4413 4414 r = kvm_arch_vcpu_run_pid_change(vcpu); 4415 if (r) 4416 break; 4417 4418 newpid = get_task_pid(current, PIDTYPE_PID); 4419 rcu_assign_pointer(vcpu->pid, newpid); 4420 if (oldpid) 4421 synchronize_rcu(); 4422 put_pid(oldpid); 4423 } 4424 r = kvm_arch_vcpu_ioctl_run(vcpu); 4425 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4426 break; 4427 } 4428 case KVM_GET_REGS: { 4429 struct kvm_regs *kvm_regs; 4430 4431 r = -ENOMEM; 4432 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4433 if (!kvm_regs) 4434 goto out; 4435 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4436 if (r) 4437 goto out_free1; 4438 r = -EFAULT; 4439 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4440 goto out_free1; 4441 r = 0; 4442 out_free1: 4443 kfree(kvm_regs); 4444 break; 4445 } 4446 case KVM_SET_REGS: { 4447 struct kvm_regs *kvm_regs; 4448 4449 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4450 if (IS_ERR(kvm_regs)) { 4451 r = PTR_ERR(kvm_regs); 4452 goto out; 4453 } 4454 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4455 kfree(kvm_regs); 4456 break; 4457 } 4458 case KVM_GET_SREGS: { 4459 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4460 r = -ENOMEM; 4461 if (!kvm_sregs) 4462 goto out; 4463 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4464 if (r) 4465 goto out; 4466 r = -EFAULT; 4467 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4468 goto out; 4469 r = 0; 4470 break; 4471 } 4472 case KVM_SET_SREGS: { 4473 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4474 if (IS_ERR(kvm_sregs)) { 4475 r = PTR_ERR(kvm_sregs); 4476 kvm_sregs = NULL; 4477 goto out; 4478 } 4479 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4480 break; 4481 } 4482 case KVM_GET_MP_STATE: { 4483 struct kvm_mp_state mp_state; 4484 4485 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4486 if (r) 4487 goto out; 4488 r = -EFAULT; 4489 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4490 goto out; 4491 r = 0; 4492 break; 4493 } 4494 case KVM_SET_MP_STATE: { 4495 struct kvm_mp_state mp_state; 4496 4497 r = -EFAULT; 4498 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4499 goto out; 4500 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4501 break; 4502 } 4503 case KVM_TRANSLATE: { 4504 struct kvm_translation tr; 4505 4506 r = -EFAULT; 4507 if (copy_from_user(&tr, argp, sizeof(tr))) 4508 goto out; 4509 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4510 if (r) 4511 goto out; 4512 r = -EFAULT; 4513 if (copy_to_user(argp, &tr, sizeof(tr))) 4514 goto out; 4515 r = 0; 4516 break; 4517 } 4518 case KVM_SET_GUEST_DEBUG: { 4519 struct kvm_guest_debug dbg; 4520 4521 r = -EFAULT; 4522 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4523 goto out; 4524 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4525 break; 4526 } 4527 case KVM_SET_SIGNAL_MASK: { 4528 struct kvm_signal_mask __user *sigmask_arg = argp; 4529 struct kvm_signal_mask kvm_sigmask; 4530 sigset_t sigset, *p; 4531 4532 p = NULL; 4533 if (argp) { 4534 r = -EFAULT; 4535 if (copy_from_user(&kvm_sigmask, argp, 4536 sizeof(kvm_sigmask))) 4537 goto out; 4538 r = -EINVAL; 4539 if (kvm_sigmask.len != sizeof(sigset)) 4540 goto out; 4541 r = -EFAULT; 4542 if (copy_from_user(&sigset, sigmask_arg->sigset, 4543 sizeof(sigset))) 4544 goto out; 4545 p = &sigset; 4546 } 4547 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4548 break; 4549 } 4550 case KVM_GET_FPU: { 4551 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4552 r = -ENOMEM; 4553 if (!fpu) 4554 goto out; 4555 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4556 if (r) 4557 goto out; 4558 r = -EFAULT; 4559 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4560 goto out; 4561 r = 0; 4562 break; 4563 } 4564 case KVM_SET_FPU: { 4565 fpu = memdup_user(argp, sizeof(*fpu)); 4566 if (IS_ERR(fpu)) { 4567 r = PTR_ERR(fpu); 4568 fpu = NULL; 4569 goto out; 4570 } 4571 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4572 break; 4573 } 4574 case KVM_GET_STATS_FD: { 4575 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4576 break; 4577 } 4578 default: 4579 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4580 } 4581 out: 4582 mutex_unlock(&vcpu->mutex); 4583 kfree(fpu); 4584 kfree(kvm_sregs); 4585 return r; 4586 } 4587 4588 #ifdef CONFIG_KVM_COMPAT 4589 static long kvm_vcpu_compat_ioctl(struct file *filp, 4590 unsigned int ioctl, unsigned long arg) 4591 { 4592 struct kvm_vcpu *vcpu = filp->private_data; 4593 void __user *argp = compat_ptr(arg); 4594 int r; 4595 4596 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4597 return -EIO; 4598 4599 switch (ioctl) { 4600 case KVM_SET_SIGNAL_MASK: { 4601 struct kvm_signal_mask __user *sigmask_arg = argp; 4602 struct kvm_signal_mask kvm_sigmask; 4603 sigset_t sigset; 4604 4605 if (argp) { 4606 r = -EFAULT; 4607 if (copy_from_user(&kvm_sigmask, argp, 4608 sizeof(kvm_sigmask))) 4609 goto out; 4610 r = -EINVAL; 4611 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4612 goto out; 4613 r = -EFAULT; 4614 if (get_compat_sigset(&sigset, 4615 (compat_sigset_t __user *)sigmask_arg->sigset)) 4616 goto out; 4617 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4618 } else 4619 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4620 break; 4621 } 4622 default: 4623 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4624 } 4625 4626 out: 4627 return r; 4628 } 4629 #endif 4630 4631 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4632 { 4633 struct kvm_device *dev = filp->private_data; 4634 4635 if (dev->ops->mmap) 4636 return dev->ops->mmap(dev, vma); 4637 4638 return -ENODEV; 4639 } 4640 4641 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4642 int (*accessor)(struct kvm_device *dev, 4643 struct kvm_device_attr *attr), 4644 unsigned long arg) 4645 { 4646 struct kvm_device_attr attr; 4647 4648 if (!accessor) 4649 return -EPERM; 4650 4651 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4652 return -EFAULT; 4653 4654 return accessor(dev, &attr); 4655 } 4656 4657 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4658 unsigned long arg) 4659 { 4660 struct kvm_device *dev = filp->private_data; 4661 4662 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4663 return -EIO; 4664 4665 switch (ioctl) { 4666 case KVM_SET_DEVICE_ATTR: 4667 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4668 case KVM_GET_DEVICE_ATTR: 4669 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4670 case KVM_HAS_DEVICE_ATTR: 4671 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4672 default: 4673 if (dev->ops->ioctl) 4674 return dev->ops->ioctl(dev, ioctl, arg); 4675 4676 return -ENOTTY; 4677 } 4678 } 4679 4680 static int kvm_device_release(struct inode *inode, struct file *filp) 4681 { 4682 struct kvm_device *dev = filp->private_data; 4683 struct kvm *kvm = dev->kvm; 4684 4685 if (dev->ops->release) { 4686 mutex_lock(&kvm->lock); 4687 list_del_rcu(&dev->vm_node); 4688 synchronize_rcu(); 4689 dev->ops->release(dev); 4690 mutex_unlock(&kvm->lock); 4691 } 4692 4693 kvm_put_kvm(kvm); 4694 return 0; 4695 } 4696 4697 static struct file_operations kvm_device_fops = { 4698 .unlocked_ioctl = kvm_device_ioctl, 4699 .release = kvm_device_release, 4700 KVM_COMPAT(kvm_device_ioctl), 4701 .mmap = kvm_device_mmap, 4702 }; 4703 4704 struct kvm_device *kvm_device_from_filp(struct file *filp) 4705 { 4706 if (filp->f_op != &kvm_device_fops) 4707 return NULL; 4708 4709 return filp->private_data; 4710 } 4711 4712 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4713 #ifdef CONFIG_KVM_MPIC 4714 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4715 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4716 #endif 4717 }; 4718 4719 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4720 { 4721 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4722 return -ENOSPC; 4723 4724 if (kvm_device_ops_table[type] != NULL) 4725 return -EEXIST; 4726 4727 kvm_device_ops_table[type] = ops; 4728 return 0; 4729 } 4730 4731 void kvm_unregister_device_ops(u32 type) 4732 { 4733 if (kvm_device_ops_table[type] != NULL) 4734 kvm_device_ops_table[type] = NULL; 4735 } 4736 4737 static int kvm_ioctl_create_device(struct kvm *kvm, 4738 struct kvm_create_device *cd) 4739 { 4740 const struct kvm_device_ops *ops; 4741 struct kvm_device *dev; 4742 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4743 int type; 4744 int ret; 4745 4746 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4747 return -ENODEV; 4748 4749 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4750 ops = kvm_device_ops_table[type]; 4751 if (ops == NULL) 4752 return -ENODEV; 4753 4754 if (test) 4755 return 0; 4756 4757 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4758 if (!dev) 4759 return -ENOMEM; 4760 4761 dev->ops = ops; 4762 dev->kvm = kvm; 4763 4764 mutex_lock(&kvm->lock); 4765 ret = ops->create(dev, type); 4766 if (ret < 0) { 4767 mutex_unlock(&kvm->lock); 4768 kfree(dev); 4769 return ret; 4770 } 4771 list_add_rcu(&dev->vm_node, &kvm->devices); 4772 mutex_unlock(&kvm->lock); 4773 4774 if (ops->init) 4775 ops->init(dev); 4776 4777 kvm_get_kvm(kvm); 4778 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4779 if (ret < 0) { 4780 kvm_put_kvm_no_destroy(kvm); 4781 mutex_lock(&kvm->lock); 4782 list_del_rcu(&dev->vm_node); 4783 synchronize_rcu(); 4784 if (ops->release) 4785 ops->release(dev); 4786 mutex_unlock(&kvm->lock); 4787 if (ops->destroy) 4788 ops->destroy(dev); 4789 return ret; 4790 } 4791 4792 cd->fd = ret; 4793 return 0; 4794 } 4795 4796 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4797 { 4798 switch (arg) { 4799 case KVM_CAP_USER_MEMORY: 4800 case KVM_CAP_USER_MEMORY2: 4801 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4802 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4803 case KVM_CAP_INTERNAL_ERROR_DATA: 4804 #ifdef CONFIG_HAVE_KVM_MSI 4805 case KVM_CAP_SIGNAL_MSI: 4806 #endif 4807 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4808 case KVM_CAP_IRQFD: 4809 #endif 4810 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4811 case KVM_CAP_CHECK_EXTENSION_VM: 4812 case KVM_CAP_ENABLE_CAP_VM: 4813 case KVM_CAP_HALT_POLL: 4814 return 1; 4815 #ifdef CONFIG_KVM_MMIO 4816 case KVM_CAP_COALESCED_MMIO: 4817 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4818 case KVM_CAP_COALESCED_PIO: 4819 return 1; 4820 #endif 4821 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4822 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4823 return KVM_DIRTY_LOG_MANUAL_CAPS; 4824 #endif 4825 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4826 case KVM_CAP_IRQ_ROUTING: 4827 return KVM_MAX_IRQ_ROUTES; 4828 #endif 4829 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4830 case KVM_CAP_MULTI_ADDRESS_SPACE: 4831 if (kvm) 4832 return kvm_arch_nr_memslot_as_ids(kvm); 4833 return KVM_MAX_NR_ADDRESS_SPACES; 4834 #endif 4835 case KVM_CAP_NR_MEMSLOTS: 4836 return KVM_USER_MEM_SLOTS; 4837 case KVM_CAP_DIRTY_LOG_RING: 4838 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4839 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4840 #else 4841 return 0; 4842 #endif 4843 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4844 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4845 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4846 #else 4847 return 0; 4848 #endif 4849 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4850 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4851 #endif 4852 case KVM_CAP_BINARY_STATS_FD: 4853 case KVM_CAP_SYSTEM_EVENT_DATA: 4854 case KVM_CAP_DEVICE_CTRL: 4855 return 1; 4856 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4857 case KVM_CAP_MEMORY_ATTRIBUTES: 4858 return kvm_supported_mem_attributes(kvm); 4859 #endif 4860 #ifdef CONFIG_KVM_PRIVATE_MEM 4861 case KVM_CAP_GUEST_MEMFD: 4862 return !kvm || kvm_arch_has_private_mem(kvm); 4863 #endif 4864 default: 4865 break; 4866 } 4867 return kvm_vm_ioctl_check_extension(kvm, arg); 4868 } 4869 4870 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4871 { 4872 int r; 4873 4874 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4875 return -EINVAL; 4876 4877 /* the size should be power of 2 */ 4878 if (!size || (size & (size - 1))) 4879 return -EINVAL; 4880 4881 /* Should be bigger to keep the reserved entries, or a page */ 4882 if (size < kvm_dirty_ring_get_rsvd_entries() * 4883 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4884 return -EINVAL; 4885 4886 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4887 sizeof(struct kvm_dirty_gfn)) 4888 return -E2BIG; 4889 4890 /* We only allow it to set once */ 4891 if (kvm->dirty_ring_size) 4892 return -EINVAL; 4893 4894 mutex_lock(&kvm->lock); 4895 4896 if (kvm->created_vcpus) { 4897 /* We don't allow to change this value after vcpu created */ 4898 r = -EINVAL; 4899 } else { 4900 kvm->dirty_ring_size = size; 4901 r = 0; 4902 } 4903 4904 mutex_unlock(&kvm->lock); 4905 return r; 4906 } 4907 4908 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4909 { 4910 unsigned long i; 4911 struct kvm_vcpu *vcpu; 4912 int cleared = 0; 4913 4914 if (!kvm->dirty_ring_size) 4915 return -EINVAL; 4916 4917 mutex_lock(&kvm->slots_lock); 4918 4919 kvm_for_each_vcpu(i, vcpu, kvm) 4920 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4921 4922 mutex_unlock(&kvm->slots_lock); 4923 4924 if (cleared) 4925 kvm_flush_remote_tlbs(kvm); 4926 4927 return cleared; 4928 } 4929 4930 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4931 struct kvm_enable_cap *cap) 4932 { 4933 return -EINVAL; 4934 } 4935 4936 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4937 { 4938 int i; 4939 4940 lockdep_assert_held(&kvm->slots_lock); 4941 4942 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4943 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4944 return false; 4945 } 4946 4947 return true; 4948 } 4949 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4950 4951 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4952 struct kvm_enable_cap *cap) 4953 { 4954 switch (cap->cap) { 4955 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4956 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4957 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4958 4959 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4960 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4961 4962 if (cap->flags || (cap->args[0] & ~allowed_options)) 4963 return -EINVAL; 4964 kvm->manual_dirty_log_protect = cap->args[0]; 4965 return 0; 4966 } 4967 #endif 4968 case KVM_CAP_HALT_POLL: { 4969 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4970 return -EINVAL; 4971 4972 kvm->max_halt_poll_ns = cap->args[0]; 4973 4974 /* 4975 * Ensure kvm->override_halt_poll_ns does not become visible 4976 * before kvm->max_halt_poll_ns. 4977 * 4978 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4979 */ 4980 smp_wmb(); 4981 kvm->override_halt_poll_ns = true; 4982 4983 return 0; 4984 } 4985 case KVM_CAP_DIRTY_LOG_RING: 4986 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4987 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4988 return -EINVAL; 4989 4990 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4991 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4992 int r = -EINVAL; 4993 4994 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4995 !kvm->dirty_ring_size || cap->flags) 4996 return r; 4997 4998 mutex_lock(&kvm->slots_lock); 4999 5000 /* 5001 * For simplicity, allow enabling ring+bitmap if and only if 5002 * there are no memslots, e.g. to ensure all memslots allocate 5003 * a bitmap after the capability is enabled. 5004 */ 5005 if (kvm_are_all_memslots_empty(kvm)) { 5006 kvm->dirty_ring_with_bitmap = true; 5007 r = 0; 5008 } 5009 5010 mutex_unlock(&kvm->slots_lock); 5011 5012 return r; 5013 } 5014 default: 5015 return kvm_vm_ioctl_enable_cap(kvm, cap); 5016 } 5017 } 5018 5019 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5020 size_t size, loff_t *offset) 5021 { 5022 struct kvm *kvm = file->private_data; 5023 5024 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5025 &kvm_vm_stats_desc[0], &kvm->stat, 5026 sizeof(kvm->stat), user_buffer, size, offset); 5027 } 5028 5029 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5030 { 5031 struct kvm *kvm = file->private_data; 5032 5033 kvm_put_kvm(kvm); 5034 return 0; 5035 } 5036 5037 static const struct file_operations kvm_vm_stats_fops = { 5038 .owner = THIS_MODULE, 5039 .read = kvm_vm_stats_read, 5040 .release = kvm_vm_stats_release, 5041 .llseek = noop_llseek, 5042 }; 5043 5044 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5045 { 5046 int fd; 5047 struct file *file; 5048 5049 fd = get_unused_fd_flags(O_CLOEXEC); 5050 if (fd < 0) 5051 return fd; 5052 5053 file = anon_inode_getfile("kvm-vm-stats", 5054 &kvm_vm_stats_fops, kvm, O_RDONLY); 5055 if (IS_ERR(file)) { 5056 put_unused_fd(fd); 5057 return PTR_ERR(file); 5058 } 5059 5060 kvm_get_kvm(kvm); 5061 5062 file->f_mode |= FMODE_PREAD; 5063 fd_install(fd, file); 5064 5065 return fd; 5066 } 5067 5068 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5069 do { \ 5070 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5071 offsetof(struct kvm_userspace_memory_region2, field)); \ 5072 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5073 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5074 } while (0) 5075 5076 static long kvm_vm_ioctl(struct file *filp, 5077 unsigned int ioctl, unsigned long arg) 5078 { 5079 struct kvm *kvm = filp->private_data; 5080 void __user *argp = (void __user *)arg; 5081 int r; 5082 5083 if (kvm->mm != current->mm || kvm->vm_dead) 5084 return -EIO; 5085 switch (ioctl) { 5086 case KVM_CREATE_VCPU: 5087 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5088 break; 5089 case KVM_ENABLE_CAP: { 5090 struct kvm_enable_cap cap; 5091 5092 r = -EFAULT; 5093 if (copy_from_user(&cap, argp, sizeof(cap))) 5094 goto out; 5095 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5096 break; 5097 } 5098 case KVM_SET_USER_MEMORY_REGION2: 5099 case KVM_SET_USER_MEMORY_REGION: { 5100 struct kvm_userspace_memory_region2 mem; 5101 unsigned long size; 5102 5103 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5104 /* 5105 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5106 * accessed, but avoid leaking kernel memory in case of a bug. 5107 */ 5108 memset(&mem, 0, sizeof(mem)); 5109 size = sizeof(struct kvm_userspace_memory_region); 5110 } else { 5111 size = sizeof(struct kvm_userspace_memory_region2); 5112 } 5113 5114 /* Ensure the common parts of the two structs are identical. */ 5115 SANITY_CHECK_MEM_REGION_FIELD(slot); 5116 SANITY_CHECK_MEM_REGION_FIELD(flags); 5117 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5118 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5119 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5120 5121 r = -EFAULT; 5122 if (copy_from_user(&mem, argp, size)) 5123 goto out; 5124 5125 r = -EINVAL; 5126 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5127 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5128 goto out; 5129 5130 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5131 break; 5132 } 5133 case KVM_GET_DIRTY_LOG: { 5134 struct kvm_dirty_log log; 5135 5136 r = -EFAULT; 5137 if (copy_from_user(&log, argp, sizeof(log))) 5138 goto out; 5139 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5140 break; 5141 } 5142 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5143 case KVM_CLEAR_DIRTY_LOG: { 5144 struct kvm_clear_dirty_log log; 5145 5146 r = -EFAULT; 5147 if (copy_from_user(&log, argp, sizeof(log))) 5148 goto out; 5149 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5150 break; 5151 } 5152 #endif 5153 #ifdef CONFIG_KVM_MMIO 5154 case KVM_REGISTER_COALESCED_MMIO: { 5155 struct kvm_coalesced_mmio_zone zone; 5156 5157 r = -EFAULT; 5158 if (copy_from_user(&zone, argp, sizeof(zone))) 5159 goto out; 5160 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5161 break; 5162 } 5163 case KVM_UNREGISTER_COALESCED_MMIO: { 5164 struct kvm_coalesced_mmio_zone zone; 5165 5166 r = -EFAULT; 5167 if (copy_from_user(&zone, argp, sizeof(zone))) 5168 goto out; 5169 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5170 break; 5171 } 5172 #endif 5173 case KVM_IRQFD: { 5174 struct kvm_irqfd data; 5175 5176 r = -EFAULT; 5177 if (copy_from_user(&data, argp, sizeof(data))) 5178 goto out; 5179 r = kvm_irqfd(kvm, &data); 5180 break; 5181 } 5182 case KVM_IOEVENTFD: { 5183 struct kvm_ioeventfd data; 5184 5185 r = -EFAULT; 5186 if (copy_from_user(&data, argp, sizeof(data))) 5187 goto out; 5188 r = kvm_ioeventfd(kvm, &data); 5189 break; 5190 } 5191 #ifdef CONFIG_HAVE_KVM_MSI 5192 case KVM_SIGNAL_MSI: { 5193 struct kvm_msi msi; 5194 5195 r = -EFAULT; 5196 if (copy_from_user(&msi, argp, sizeof(msi))) 5197 goto out; 5198 r = kvm_send_userspace_msi(kvm, &msi); 5199 break; 5200 } 5201 #endif 5202 #ifdef __KVM_HAVE_IRQ_LINE 5203 case KVM_IRQ_LINE_STATUS: 5204 case KVM_IRQ_LINE: { 5205 struct kvm_irq_level irq_event; 5206 5207 r = -EFAULT; 5208 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5209 goto out; 5210 5211 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5212 ioctl == KVM_IRQ_LINE_STATUS); 5213 if (r) 5214 goto out; 5215 5216 r = -EFAULT; 5217 if (ioctl == KVM_IRQ_LINE_STATUS) { 5218 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5219 goto out; 5220 } 5221 5222 r = 0; 5223 break; 5224 } 5225 #endif 5226 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5227 case KVM_SET_GSI_ROUTING: { 5228 struct kvm_irq_routing routing; 5229 struct kvm_irq_routing __user *urouting; 5230 struct kvm_irq_routing_entry *entries = NULL; 5231 5232 r = -EFAULT; 5233 if (copy_from_user(&routing, argp, sizeof(routing))) 5234 goto out; 5235 r = -EINVAL; 5236 if (!kvm_arch_can_set_irq_routing(kvm)) 5237 goto out; 5238 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5239 goto out; 5240 if (routing.flags) 5241 goto out; 5242 if (routing.nr) { 5243 urouting = argp; 5244 entries = vmemdup_array_user(urouting->entries, 5245 routing.nr, sizeof(*entries)); 5246 if (IS_ERR(entries)) { 5247 r = PTR_ERR(entries); 5248 goto out; 5249 } 5250 } 5251 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5252 routing.flags); 5253 kvfree(entries); 5254 break; 5255 } 5256 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5257 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5258 case KVM_SET_MEMORY_ATTRIBUTES: { 5259 struct kvm_memory_attributes attrs; 5260 5261 r = -EFAULT; 5262 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5263 goto out; 5264 5265 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5266 break; 5267 } 5268 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5269 case KVM_CREATE_DEVICE: { 5270 struct kvm_create_device cd; 5271 5272 r = -EFAULT; 5273 if (copy_from_user(&cd, argp, sizeof(cd))) 5274 goto out; 5275 5276 r = kvm_ioctl_create_device(kvm, &cd); 5277 if (r) 5278 goto out; 5279 5280 r = -EFAULT; 5281 if (copy_to_user(argp, &cd, sizeof(cd))) 5282 goto out; 5283 5284 r = 0; 5285 break; 5286 } 5287 case KVM_CHECK_EXTENSION: 5288 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5289 break; 5290 case KVM_RESET_DIRTY_RINGS: 5291 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5292 break; 5293 case KVM_GET_STATS_FD: 5294 r = kvm_vm_ioctl_get_stats_fd(kvm); 5295 break; 5296 #ifdef CONFIG_KVM_PRIVATE_MEM 5297 case KVM_CREATE_GUEST_MEMFD: { 5298 struct kvm_create_guest_memfd guest_memfd; 5299 5300 r = -EFAULT; 5301 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5302 goto out; 5303 5304 r = kvm_gmem_create(kvm, &guest_memfd); 5305 break; 5306 } 5307 #endif 5308 default: 5309 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5310 } 5311 out: 5312 return r; 5313 } 5314 5315 #ifdef CONFIG_KVM_COMPAT 5316 struct compat_kvm_dirty_log { 5317 __u32 slot; 5318 __u32 padding1; 5319 union { 5320 compat_uptr_t dirty_bitmap; /* one bit per page */ 5321 __u64 padding2; 5322 }; 5323 }; 5324 5325 struct compat_kvm_clear_dirty_log { 5326 __u32 slot; 5327 __u32 num_pages; 5328 __u64 first_page; 5329 union { 5330 compat_uptr_t dirty_bitmap; /* one bit per page */ 5331 __u64 padding2; 5332 }; 5333 }; 5334 5335 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5336 unsigned long arg) 5337 { 5338 return -ENOTTY; 5339 } 5340 5341 static long kvm_vm_compat_ioctl(struct file *filp, 5342 unsigned int ioctl, unsigned long arg) 5343 { 5344 struct kvm *kvm = filp->private_data; 5345 int r; 5346 5347 if (kvm->mm != current->mm || kvm->vm_dead) 5348 return -EIO; 5349 5350 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5351 if (r != -ENOTTY) 5352 return r; 5353 5354 switch (ioctl) { 5355 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5356 case KVM_CLEAR_DIRTY_LOG: { 5357 struct compat_kvm_clear_dirty_log compat_log; 5358 struct kvm_clear_dirty_log log; 5359 5360 if (copy_from_user(&compat_log, (void __user *)arg, 5361 sizeof(compat_log))) 5362 return -EFAULT; 5363 log.slot = compat_log.slot; 5364 log.num_pages = compat_log.num_pages; 5365 log.first_page = compat_log.first_page; 5366 log.padding2 = compat_log.padding2; 5367 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5368 5369 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5370 break; 5371 } 5372 #endif 5373 case KVM_GET_DIRTY_LOG: { 5374 struct compat_kvm_dirty_log compat_log; 5375 struct kvm_dirty_log log; 5376 5377 if (copy_from_user(&compat_log, (void __user *)arg, 5378 sizeof(compat_log))) 5379 return -EFAULT; 5380 log.slot = compat_log.slot; 5381 log.padding1 = compat_log.padding1; 5382 log.padding2 = compat_log.padding2; 5383 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5384 5385 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5386 break; 5387 } 5388 default: 5389 r = kvm_vm_ioctl(filp, ioctl, arg); 5390 } 5391 return r; 5392 } 5393 #endif 5394 5395 static struct file_operations kvm_vm_fops = { 5396 .release = kvm_vm_release, 5397 .unlocked_ioctl = kvm_vm_ioctl, 5398 .llseek = noop_llseek, 5399 KVM_COMPAT(kvm_vm_compat_ioctl), 5400 }; 5401 5402 bool file_is_kvm(struct file *file) 5403 { 5404 return file && file->f_op == &kvm_vm_fops; 5405 } 5406 EXPORT_SYMBOL_GPL(file_is_kvm); 5407 5408 static int kvm_dev_ioctl_create_vm(unsigned long type) 5409 { 5410 char fdname[ITOA_MAX_LEN + 1]; 5411 int r, fd; 5412 struct kvm *kvm; 5413 struct file *file; 5414 5415 fd = get_unused_fd_flags(O_CLOEXEC); 5416 if (fd < 0) 5417 return fd; 5418 5419 snprintf(fdname, sizeof(fdname), "%d", fd); 5420 5421 kvm = kvm_create_vm(type, fdname); 5422 if (IS_ERR(kvm)) { 5423 r = PTR_ERR(kvm); 5424 goto put_fd; 5425 } 5426 5427 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5428 if (IS_ERR(file)) { 5429 r = PTR_ERR(file); 5430 goto put_kvm; 5431 } 5432 5433 /* 5434 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5435 * already set, with ->release() being kvm_vm_release(). In error 5436 * cases it will be called by the final fput(file) and will take 5437 * care of doing kvm_put_kvm(kvm). 5438 */ 5439 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5440 5441 fd_install(fd, file); 5442 return fd; 5443 5444 put_kvm: 5445 kvm_put_kvm(kvm); 5446 put_fd: 5447 put_unused_fd(fd); 5448 return r; 5449 } 5450 5451 static long kvm_dev_ioctl(struct file *filp, 5452 unsigned int ioctl, unsigned long arg) 5453 { 5454 int r = -EINVAL; 5455 5456 switch (ioctl) { 5457 case KVM_GET_API_VERSION: 5458 if (arg) 5459 goto out; 5460 r = KVM_API_VERSION; 5461 break; 5462 case KVM_CREATE_VM: 5463 r = kvm_dev_ioctl_create_vm(arg); 5464 break; 5465 case KVM_CHECK_EXTENSION: 5466 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5467 break; 5468 case KVM_GET_VCPU_MMAP_SIZE: 5469 if (arg) 5470 goto out; 5471 r = PAGE_SIZE; /* struct kvm_run */ 5472 #ifdef CONFIG_X86 5473 r += PAGE_SIZE; /* pio data page */ 5474 #endif 5475 #ifdef CONFIG_KVM_MMIO 5476 r += PAGE_SIZE; /* coalesced mmio ring page */ 5477 #endif 5478 break; 5479 default: 5480 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5481 } 5482 out: 5483 return r; 5484 } 5485 5486 static struct file_operations kvm_chardev_ops = { 5487 .unlocked_ioctl = kvm_dev_ioctl, 5488 .llseek = noop_llseek, 5489 KVM_COMPAT(kvm_dev_ioctl), 5490 }; 5491 5492 static struct miscdevice kvm_dev = { 5493 KVM_MINOR, 5494 "kvm", 5495 &kvm_chardev_ops, 5496 }; 5497 5498 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5499 __visible bool kvm_rebooting; 5500 EXPORT_SYMBOL_GPL(kvm_rebooting); 5501 5502 static DEFINE_PER_CPU(bool, hardware_enabled); 5503 static int kvm_usage_count; 5504 5505 static int __hardware_enable_nolock(void) 5506 { 5507 if (__this_cpu_read(hardware_enabled)) 5508 return 0; 5509 5510 if (kvm_arch_hardware_enable()) { 5511 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5512 raw_smp_processor_id()); 5513 return -EIO; 5514 } 5515 5516 __this_cpu_write(hardware_enabled, true); 5517 return 0; 5518 } 5519 5520 static void hardware_enable_nolock(void *failed) 5521 { 5522 if (__hardware_enable_nolock()) 5523 atomic_inc(failed); 5524 } 5525 5526 static int kvm_online_cpu(unsigned int cpu) 5527 { 5528 int ret = 0; 5529 5530 /* 5531 * Abort the CPU online process if hardware virtualization cannot 5532 * be enabled. Otherwise running VMs would encounter unrecoverable 5533 * errors when scheduled to this CPU. 5534 */ 5535 mutex_lock(&kvm_lock); 5536 if (kvm_usage_count) 5537 ret = __hardware_enable_nolock(); 5538 mutex_unlock(&kvm_lock); 5539 return ret; 5540 } 5541 5542 static void hardware_disable_nolock(void *junk) 5543 { 5544 /* 5545 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5546 * hardware, not just CPUs that successfully enabled hardware! 5547 */ 5548 if (!__this_cpu_read(hardware_enabled)) 5549 return; 5550 5551 kvm_arch_hardware_disable(); 5552 5553 __this_cpu_write(hardware_enabled, false); 5554 } 5555 5556 static int kvm_offline_cpu(unsigned int cpu) 5557 { 5558 mutex_lock(&kvm_lock); 5559 if (kvm_usage_count) 5560 hardware_disable_nolock(NULL); 5561 mutex_unlock(&kvm_lock); 5562 return 0; 5563 } 5564 5565 static void hardware_disable_all_nolock(void) 5566 { 5567 BUG_ON(!kvm_usage_count); 5568 5569 kvm_usage_count--; 5570 if (!kvm_usage_count) 5571 on_each_cpu(hardware_disable_nolock, NULL, 1); 5572 } 5573 5574 static void hardware_disable_all(void) 5575 { 5576 cpus_read_lock(); 5577 mutex_lock(&kvm_lock); 5578 hardware_disable_all_nolock(); 5579 mutex_unlock(&kvm_lock); 5580 cpus_read_unlock(); 5581 } 5582 5583 static int hardware_enable_all(void) 5584 { 5585 atomic_t failed = ATOMIC_INIT(0); 5586 int r; 5587 5588 /* 5589 * Do not enable hardware virtualization if the system is going down. 5590 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5591 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5592 * after kvm_reboot() is called. Note, this relies on system_state 5593 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5594 * hook instead of registering a dedicated reboot notifier (the latter 5595 * runs before system_state is updated). 5596 */ 5597 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5598 system_state == SYSTEM_RESTART) 5599 return -EBUSY; 5600 5601 /* 5602 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5603 * is called, and so on_each_cpu() between them includes the CPU that 5604 * is being onlined. As a result, hardware_enable_nolock() may get 5605 * invoked before kvm_online_cpu(), which also enables hardware if the 5606 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5607 * enable hardware multiple times. 5608 */ 5609 cpus_read_lock(); 5610 mutex_lock(&kvm_lock); 5611 5612 r = 0; 5613 5614 kvm_usage_count++; 5615 if (kvm_usage_count == 1) { 5616 on_each_cpu(hardware_enable_nolock, &failed, 1); 5617 5618 if (atomic_read(&failed)) { 5619 hardware_disable_all_nolock(); 5620 r = -EBUSY; 5621 } 5622 } 5623 5624 mutex_unlock(&kvm_lock); 5625 cpus_read_unlock(); 5626 5627 return r; 5628 } 5629 5630 static void kvm_shutdown(void) 5631 { 5632 /* 5633 * Disable hardware virtualization and set kvm_rebooting to indicate 5634 * that KVM has asynchronously disabled hardware virtualization, i.e. 5635 * that relevant errors and exceptions aren't entirely unexpected. 5636 * Some flavors of hardware virtualization need to be disabled before 5637 * transferring control to firmware (to perform shutdown/reboot), e.g. 5638 * on x86, virtualization can block INIT interrupts, which are used by 5639 * firmware to pull APs back under firmware control. Note, this path 5640 * is used for both shutdown and reboot scenarios, i.e. neither name is 5641 * 100% comprehensive. 5642 */ 5643 pr_info("kvm: exiting hardware virtualization\n"); 5644 kvm_rebooting = true; 5645 on_each_cpu(hardware_disable_nolock, NULL, 1); 5646 } 5647 5648 static int kvm_suspend(void) 5649 { 5650 /* 5651 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5652 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5653 * is stable. Assert that kvm_lock is not held to ensure the system 5654 * isn't suspended while KVM is enabling hardware. Hardware enabling 5655 * can be preempted, but the task cannot be frozen until it has dropped 5656 * all locks (userspace tasks are frozen via a fake signal). 5657 */ 5658 lockdep_assert_not_held(&kvm_lock); 5659 lockdep_assert_irqs_disabled(); 5660 5661 if (kvm_usage_count) 5662 hardware_disable_nolock(NULL); 5663 return 0; 5664 } 5665 5666 static void kvm_resume(void) 5667 { 5668 lockdep_assert_not_held(&kvm_lock); 5669 lockdep_assert_irqs_disabled(); 5670 5671 if (kvm_usage_count) 5672 WARN_ON_ONCE(__hardware_enable_nolock()); 5673 } 5674 5675 static struct syscore_ops kvm_syscore_ops = { 5676 .suspend = kvm_suspend, 5677 .resume = kvm_resume, 5678 .shutdown = kvm_shutdown, 5679 }; 5680 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5681 static int hardware_enable_all(void) 5682 { 5683 return 0; 5684 } 5685 5686 static void hardware_disable_all(void) 5687 { 5688 5689 } 5690 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5691 5692 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5693 { 5694 if (dev->ops->destructor) 5695 dev->ops->destructor(dev); 5696 } 5697 5698 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5699 { 5700 int i; 5701 5702 for (i = 0; i < bus->dev_count; i++) { 5703 struct kvm_io_device *pos = bus->range[i].dev; 5704 5705 kvm_iodevice_destructor(pos); 5706 } 5707 kfree(bus); 5708 } 5709 5710 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5711 const struct kvm_io_range *r2) 5712 { 5713 gpa_t addr1 = r1->addr; 5714 gpa_t addr2 = r2->addr; 5715 5716 if (addr1 < addr2) 5717 return -1; 5718 5719 /* If r2->len == 0, match the exact address. If r2->len != 0, 5720 * accept any overlapping write. Any order is acceptable for 5721 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5722 * we process all of them. 5723 */ 5724 if (r2->len) { 5725 addr1 += r1->len; 5726 addr2 += r2->len; 5727 } 5728 5729 if (addr1 > addr2) 5730 return 1; 5731 5732 return 0; 5733 } 5734 5735 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5736 { 5737 return kvm_io_bus_cmp(p1, p2); 5738 } 5739 5740 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5741 gpa_t addr, int len) 5742 { 5743 struct kvm_io_range *range, key; 5744 int off; 5745 5746 key = (struct kvm_io_range) { 5747 .addr = addr, 5748 .len = len, 5749 }; 5750 5751 range = bsearch(&key, bus->range, bus->dev_count, 5752 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5753 if (range == NULL) 5754 return -ENOENT; 5755 5756 off = range - bus->range; 5757 5758 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5759 off--; 5760 5761 return off; 5762 } 5763 5764 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5765 struct kvm_io_range *range, const void *val) 5766 { 5767 int idx; 5768 5769 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5770 if (idx < 0) 5771 return -EOPNOTSUPP; 5772 5773 while (idx < bus->dev_count && 5774 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5775 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5776 range->len, val)) 5777 return idx; 5778 idx++; 5779 } 5780 5781 return -EOPNOTSUPP; 5782 } 5783 5784 /* kvm_io_bus_write - called under kvm->slots_lock */ 5785 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5786 int len, const void *val) 5787 { 5788 struct kvm_io_bus *bus; 5789 struct kvm_io_range range; 5790 int r; 5791 5792 range = (struct kvm_io_range) { 5793 .addr = addr, 5794 .len = len, 5795 }; 5796 5797 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5798 if (!bus) 5799 return -ENOMEM; 5800 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5801 return r < 0 ? r : 0; 5802 } 5803 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5804 5805 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5806 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5807 gpa_t addr, int len, const void *val, long cookie) 5808 { 5809 struct kvm_io_bus *bus; 5810 struct kvm_io_range range; 5811 5812 range = (struct kvm_io_range) { 5813 .addr = addr, 5814 .len = len, 5815 }; 5816 5817 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5818 if (!bus) 5819 return -ENOMEM; 5820 5821 /* First try the device referenced by cookie. */ 5822 if ((cookie >= 0) && (cookie < bus->dev_count) && 5823 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5824 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5825 val)) 5826 return cookie; 5827 5828 /* 5829 * cookie contained garbage; fall back to search and return the 5830 * correct cookie value. 5831 */ 5832 return __kvm_io_bus_write(vcpu, bus, &range, val); 5833 } 5834 5835 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5836 struct kvm_io_range *range, void *val) 5837 { 5838 int idx; 5839 5840 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5841 if (idx < 0) 5842 return -EOPNOTSUPP; 5843 5844 while (idx < bus->dev_count && 5845 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5846 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5847 range->len, val)) 5848 return idx; 5849 idx++; 5850 } 5851 5852 return -EOPNOTSUPP; 5853 } 5854 5855 /* kvm_io_bus_read - called under kvm->slots_lock */ 5856 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5857 int len, void *val) 5858 { 5859 struct kvm_io_bus *bus; 5860 struct kvm_io_range range; 5861 int r; 5862 5863 range = (struct kvm_io_range) { 5864 .addr = addr, 5865 .len = len, 5866 }; 5867 5868 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5869 if (!bus) 5870 return -ENOMEM; 5871 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5872 return r < 0 ? r : 0; 5873 } 5874 5875 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5876 int len, struct kvm_io_device *dev) 5877 { 5878 int i; 5879 struct kvm_io_bus *new_bus, *bus; 5880 struct kvm_io_range range; 5881 5882 lockdep_assert_held(&kvm->slots_lock); 5883 5884 bus = kvm_get_bus(kvm, bus_idx); 5885 if (!bus) 5886 return -ENOMEM; 5887 5888 /* exclude ioeventfd which is limited by maximum fd */ 5889 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5890 return -ENOSPC; 5891 5892 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5893 GFP_KERNEL_ACCOUNT); 5894 if (!new_bus) 5895 return -ENOMEM; 5896 5897 range = (struct kvm_io_range) { 5898 .addr = addr, 5899 .len = len, 5900 .dev = dev, 5901 }; 5902 5903 for (i = 0; i < bus->dev_count; i++) 5904 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5905 break; 5906 5907 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5908 new_bus->dev_count++; 5909 new_bus->range[i] = range; 5910 memcpy(new_bus->range + i + 1, bus->range + i, 5911 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5912 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5913 synchronize_srcu_expedited(&kvm->srcu); 5914 kfree(bus); 5915 5916 return 0; 5917 } 5918 5919 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5920 struct kvm_io_device *dev) 5921 { 5922 int i; 5923 struct kvm_io_bus *new_bus, *bus; 5924 5925 lockdep_assert_held(&kvm->slots_lock); 5926 5927 bus = kvm_get_bus(kvm, bus_idx); 5928 if (!bus) 5929 return 0; 5930 5931 for (i = 0; i < bus->dev_count; i++) { 5932 if (bus->range[i].dev == dev) { 5933 break; 5934 } 5935 } 5936 5937 if (i == bus->dev_count) 5938 return 0; 5939 5940 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5941 GFP_KERNEL_ACCOUNT); 5942 if (new_bus) { 5943 memcpy(new_bus, bus, struct_size(bus, range, i)); 5944 new_bus->dev_count--; 5945 memcpy(new_bus->range + i, bus->range + i + 1, 5946 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5947 } 5948 5949 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5950 synchronize_srcu_expedited(&kvm->srcu); 5951 5952 /* 5953 * If NULL bus is installed, destroy the old bus, including all the 5954 * attached devices. Otherwise, destroy the caller's device only. 5955 */ 5956 if (!new_bus) { 5957 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5958 kvm_io_bus_destroy(bus); 5959 return -ENOMEM; 5960 } 5961 5962 kvm_iodevice_destructor(dev); 5963 kfree(bus); 5964 return 0; 5965 } 5966 5967 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5968 gpa_t addr) 5969 { 5970 struct kvm_io_bus *bus; 5971 int dev_idx, srcu_idx; 5972 struct kvm_io_device *iodev = NULL; 5973 5974 srcu_idx = srcu_read_lock(&kvm->srcu); 5975 5976 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5977 if (!bus) 5978 goto out_unlock; 5979 5980 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5981 if (dev_idx < 0) 5982 goto out_unlock; 5983 5984 iodev = bus->range[dev_idx].dev; 5985 5986 out_unlock: 5987 srcu_read_unlock(&kvm->srcu, srcu_idx); 5988 5989 return iodev; 5990 } 5991 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5992 5993 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5994 int (*get)(void *, u64 *), int (*set)(void *, u64), 5995 const char *fmt) 5996 { 5997 int ret; 5998 struct kvm_stat_data *stat_data = inode->i_private; 5999 6000 /* 6001 * The debugfs files are a reference to the kvm struct which 6002 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6003 * avoids the race between open and the removal of the debugfs directory. 6004 */ 6005 if (!kvm_get_kvm_safe(stat_data->kvm)) 6006 return -ENOENT; 6007 6008 ret = simple_attr_open(inode, file, get, 6009 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6010 ? set : NULL, fmt); 6011 if (ret) 6012 kvm_put_kvm(stat_data->kvm); 6013 6014 return ret; 6015 } 6016 6017 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6018 { 6019 struct kvm_stat_data *stat_data = inode->i_private; 6020 6021 simple_attr_release(inode, file); 6022 kvm_put_kvm(stat_data->kvm); 6023 6024 return 0; 6025 } 6026 6027 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6028 { 6029 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6030 6031 return 0; 6032 } 6033 6034 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6035 { 6036 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6037 6038 return 0; 6039 } 6040 6041 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6042 { 6043 unsigned long i; 6044 struct kvm_vcpu *vcpu; 6045 6046 *val = 0; 6047 6048 kvm_for_each_vcpu(i, vcpu, kvm) 6049 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6050 6051 return 0; 6052 } 6053 6054 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6055 { 6056 unsigned long i; 6057 struct kvm_vcpu *vcpu; 6058 6059 kvm_for_each_vcpu(i, vcpu, kvm) 6060 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6061 6062 return 0; 6063 } 6064 6065 static int kvm_stat_data_get(void *data, u64 *val) 6066 { 6067 int r = -EFAULT; 6068 struct kvm_stat_data *stat_data = data; 6069 6070 switch (stat_data->kind) { 6071 case KVM_STAT_VM: 6072 r = kvm_get_stat_per_vm(stat_data->kvm, 6073 stat_data->desc->desc.offset, val); 6074 break; 6075 case KVM_STAT_VCPU: 6076 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6077 stat_data->desc->desc.offset, val); 6078 break; 6079 } 6080 6081 return r; 6082 } 6083 6084 static int kvm_stat_data_clear(void *data, u64 val) 6085 { 6086 int r = -EFAULT; 6087 struct kvm_stat_data *stat_data = data; 6088 6089 if (val) 6090 return -EINVAL; 6091 6092 switch (stat_data->kind) { 6093 case KVM_STAT_VM: 6094 r = kvm_clear_stat_per_vm(stat_data->kvm, 6095 stat_data->desc->desc.offset); 6096 break; 6097 case KVM_STAT_VCPU: 6098 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6099 stat_data->desc->desc.offset); 6100 break; 6101 } 6102 6103 return r; 6104 } 6105 6106 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6107 { 6108 __simple_attr_check_format("%llu\n", 0ull); 6109 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6110 kvm_stat_data_clear, "%llu\n"); 6111 } 6112 6113 static const struct file_operations stat_fops_per_vm = { 6114 .owner = THIS_MODULE, 6115 .open = kvm_stat_data_open, 6116 .release = kvm_debugfs_release, 6117 .read = simple_attr_read, 6118 .write = simple_attr_write, 6119 .llseek = no_llseek, 6120 }; 6121 6122 static int vm_stat_get(void *_offset, u64 *val) 6123 { 6124 unsigned offset = (long)_offset; 6125 struct kvm *kvm; 6126 u64 tmp_val; 6127 6128 *val = 0; 6129 mutex_lock(&kvm_lock); 6130 list_for_each_entry(kvm, &vm_list, vm_list) { 6131 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6132 *val += tmp_val; 6133 } 6134 mutex_unlock(&kvm_lock); 6135 return 0; 6136 } 6137 6138 static int vm_stat_clear(void *_offset, u64 val) 6139 { 6140 unsigned offset = (long)_offset; 6141 struct kvm *kvm; 6142 6143 if (val) 6144 return -EINVAL; 6145 6146 mutex_lock(&kvm_lock); 6147 list_for_each_entry(kvm, &vm_list, vm_list) { 6148 kvm_clear_stat_per_vm(kvm, offset); 6149 } 6150 mutex_unlock(&kvm_lock); 6151 6152 return 0; 6153 } 6154 6155 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6156 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6157 6158 static int vcpu_stat_get(void *_offset, u64 *val) 6159 { 6160 unsigned offset = (long)_offset; 6161 struct kvm *kvm; 6162 u64 tmp_val; 6163 6164 *val = 0; 6165 mutex_lock(&kvm_lock); 6166 list_for_each_entry(kvm, &vm_list, vm_list) { 6167 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6168 *val += tmp_val; 6169 } 6170 mutex_unlock(&kvm_lock); 6171 return 0; 6172 } 6173 6174 static int vcpu_stat_clear(void *_offset, u64 val) 6175 { 6176 unsigned offset = (long)_offset; 6177 struct kvm *kvm; 6178 6179 if (val) 6180 return -EINVAL; 6181 6182 mutex_lock(&kvm_lock); 6183 list_for_each_entry(kvm, &vm_list, vm_list) { 6184 kvm_clear_stat_per_vcpu(kvm, offset); 6185 } 6186 mutex_unlock(&kvm_lock); 6187 6188 return 0; 6189 } 6190 6191 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6192 "%llu\n"); 6193 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6194 6195 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6196 { 6197 struct kobj_uevent_env *env; 6198 unsigned long long created, active; 6199 6200 if (!kvm_dev.this_device || !kvm) 6201 return; 6202 6203 mutex_lock(&kvm_lock); 6204 if (type == KVM_EVENT_CREATE_VM) { 6205 kvm_createvm_count++; 6206 kvm_active_vms++; 6207 } else if (type == KVM_EVENT_DESTROY_VM) { 6208 kvm_active_vms--; 6209 } 6210 created = kvm_createvm_count; 6211 active = kvm_active_vms; 6212 mutex_unlock(&kvm_lock); 6213 6214 env = kzalloc(sizeof(*env), GFP_KERNEL); 6215 if (!env) 6216 return; 6217 6218 add_uevent_var(env, "CREATED=%llu", created); 6219 add_uevent_var(env, "COUNT=%llu", active); 6220 6221 if (type == KVM_EVENT_CREATE_VM) { 6222 add_uevent_var(env, "EVENT=create"); 6223 kvm->userspace_pid = task_pid_nr(current); 6224 } else if (type == KVM_EVENT_DESTROY_VM) { 6225 add_uevent_var(env, "EVENT=destroy"); 6226 } 6227 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6228 6229 if (!IS_ERR(kvm->debugfs_dentry)) { 6230 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6231 6232 if (p) { 6233 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6234 if (!IS_ERR(tmp)) 6235 add_uevent_var(env, "STATS_PATH=%s", tmp); 6236 kfree(p); 6237 } 6238 } 6239 /* no need for checks, since we are adding at most only 5 keys */ 6240 env->envp[env->envp_idx++] = NULL; 6241 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6242 kfree(env); 6243 } 6244 6245 static void kvm_init_debug(void) 6246 { 6247 const struct file_operations *fops; 6248 const struct _kvm_stats_desc *pdesc; 6249 int i; 6250 6251 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6252 6253 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6254 pdesc = &kvm_vm_stats_desc[i]; 6255 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6256 fops = &vm_stat_fops; 6257 else 6258 fops = &vm_stat_readonly_fops; 6259 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6260 kvm_debugfs_dir, 6261 (void *)(long)pdesc->desc.offset, fops); 6262 } 6263 6264 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6265 pdesc = &kvm_vcpu_stats_desc[i]; 6266 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6267 fops = &vcpu_stat_fops; 6268 else 6269 fops = &vcpu_stat_readonly_fops; 6270 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6271 kvm_debugfs_dir, 6272 (void *)(long)pdesc->desc.offset, fops); 6273 } 6274 } 6275 6276 static inline 6277 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6278 { 6279 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6280 } 6281 6282 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6283 { 6284 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6285 6286 WRITE_ONCE(vcpu->preempted, false); 6287 WRITE_ONCE(vcpu->ready, false); 6288 6289 __this_cpu_write(kvm_running_vcpu, vcpu); 6290 kvm_arch_sched_in(vcpu, cpu); 6291 kvm_arch_vcpu_load(vcpu, cpu); 6292 } 6293 6294 static void kvm_sched_out(struct preempt_notifier *pn, 6295 struct task_struct *next) 6296 { 6297 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6298 6299 if (current->on_rq) { 6300 WRITE_ONCE(vcpu->preempted, true); 6301 WRITE_ONCE(vcpu->ready, true); 6302 } 6303 kvm_arch_vcpu_put(vcpu); 6304 __this_cpu_write(kvm_running_vcpu, NULL); 6305 } 6306 6307 /** 6308 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6309 * 6310 * We can disable preemption locally around accessing the per-CPU variable, 6311 * and use the resolved vcpu pointer after enabling preemption again, 6312 * because even if the current thread is migrated to another CPU, reading 6313 * the per-CPU value later will give us the same value as we update the 6314 * per-CPU variable in the preempt notifier handlers. 6315 */ 6316 struct kvm_vcpu *kvm_get_running_vcpu(void) 6317 { 6318 struct kvm_vcpu *vcpu; 6319 6320 preempt_disable(); 6321 vcpu = __this_cpu_read(kvm_running_vcpu); 6322 preempt_enable(); 6323 6324 return vcpu; 6325 } 6326 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6327 6328 /** 6329 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6330 */ 6331 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6332 { 6333 return &kvm_running_vcpu; 6334 } 6335 6336 #ifdef CONFIG_GUEST_PERF_EVENTS 6337 static unsigned int kvm_guest_state(void) 6338 { 6339 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6340 unsigned int state; 6341 6342 if (!kvm_arch_pmi_in_guest(vcpu)) 6343 return 0; 6344 6345 state = PERF_GUEST_ACTIVE; 6346 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6347 state |= PERF_GUEST_USER; 6348 6349 return state; 6350 } 6351 6352 static unsigned long kvm_guest_get_ip(void) 6353 { 6354 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6355 6356 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6357 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6358 return 0; 6359 6360 return kvm_arch_vcpu_get_ip(vcpu); 6361 } 6362 6363 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6364 .state = kvm_guest_state, 6365 .get_ip = kvm_guest_get_ip, 6366 .handle_intel_pt_intr = NULL, 6367 }; 6368 6369 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6370 { 6371 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6372 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6373 } 6374 void kvm_unregister_perf_callbacks(void) 6375 { 6376 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6377 } 6378 #endif 6379 6380 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6381 { 6382 int r; 6383 int cpu; 6384 6385 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6386 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6387 kvm_online_cpu, kvm_offline_cpu); 6388 if (r) 6389 return r; 6390 6391 register_syscore_ops(&kvm_syscore_ops); 6392 #endif 6393 6394 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6395 if (!vcpu_align) 6396 vcpu_align = __alignof__(struct kvm_vcpu); 6397 kvm_vcpu_cache = 6398 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6399 SLAB_ACCOUNT, 6400 offsetof(struct kvm_vcpu, arch), 6401 offsetofend(struct kvm_vcpu, stats_id) 6402 - offsetof(struct kvm_vcpu, arch), 6403 NULL); 6404 if (!kvm_vcpu_cache) { 6405 r = -ENOMEM; 6406 goto err_vcpu_cache; 6407 } 6408 6409 for_each_possible_cpu(cpu) { 6410 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6411 GFP_KERNEL, cpu_to_node(cpu))) { 6412 r = -ENOMEM; 6413 goto err_cpu_kick_mask; 6414 } 6415 } 6416 6417 r = kvm_irqfd_init(); 6418 if (r) 6419 goto err_irqfd; 6420 6421 r = kvm_async_pf_init(); 6422 if (r) 6423 goto err_async_pf; 6424 6425 kvm_chardev_ops.owner = module; 6426 kvm_vm_fops.owner = module; 6427 kvm_vcpu_fops.owner = module; 6428 kvm_device_fops.owner = module; 6429 6430 kvm_preempt_ops.sched_in = kvm_sched_in; 6431 kvm_preempt_ops.sched_out = kvm_sched_out; 6432 6433 kvm_init_debug(); 6434 6435 r = kvm_vfio_ops_init(); 6436 if (WARN_ON_ONCE(r)) 6437 goto err_vfio; 6438 6439 kvm_gmem_init(module); 6440 6441 /* 6442 * Registration _must_ be the very last thing done, as this exposes 6443 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6444 */ 6445 r = misc_register(&kvm_dev); 6446 if (r) { 6447 pr_err("kvm: misc device register failed\n"); 6448 goto err_register; 6449 } 6450 6451 return 0; 6452 6453 err_register: 6454 kvm_vfio_ops_exit(); 6455 err_vfio: 6456 kvm_async_pf_deinit(); 6457 err_async_pf: 6458 kvm_irqfd_exit(); 6459 err_irqfd: 6460 err_cpu_kick_mask: 6461 for_each_possible_cpu(cpu) 6462 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6463 kmem_cache_destroy(kvm_vcpu_cache); 6464 err_vcpu_cache: 6465 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6466 unregister_syscore_ops(&kvm_syscore_ops); 6467 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6468 #endif 6469 return r; 6470 } 6471 EXPORT_SYMBOL_GPL(kvm_init); 6472 6473 void kvm_exit(void) 6474 { 6475 int cpu; 6476 6477 /* 6478 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6479 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6480 * to KVM while the module is being stopped. 6481 */ 6482 misc_deregister(&kvm_dev); 6483 6484 debugfs_remove_recursive(kvm_debugfs_dir); 6485 for_each_possible_cpu(cpu) 6486 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6487 kmem_cache_destroy(kvm_vcpu_cache); 6488 kvm_vfio_ops_exit(); 6489 kvm_async_pf_deinit(); 6490 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6491 unregister_syscore_ops(&kvm_syscore_ops); 6492 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6493 #endif 6494 kvm_irqfd_exit(); 6495 } 6496 EXPORT_SYMBOL_GPL(kvm_exit); 6497 6498 struct kvm_vm_worker_thread_context { 6499 struct kvm *kvm; 6500 struct task_struct *parent; 6501 struct completion init_done; 6502 kvm_vm_thread_fn_t thread_fn; 6503 uintptr_t data; 6504 int err; 6505 }; 6506 6507 static int kvm_vm_worker_thread(void *context) 6508 { 6509 /* 6510 * The init_context is allocated on the stack of the parent thread, so 6511 * we have to locally copy anything that is needed beyond initialization 6512 */ 6513 struct kvm_vm_worker_thread_context *init_context = context; 6514 struct task_struct *parent; 6515 struct kvm *kvm = init_context->kvm; 6516 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6517 uintptr_t data = init_context->data; 6518 int err; 6519 6520 err = kthread_park(current); 6521 /* kthread_park(current) is never supposed to return an error */ 6522 WARN_ON(err != 0); 6523 if (err) 6524 goto init_complete; 6525 6526 err = cgroup_attach_task_all(init_context->parent, current); 6527 if (err) { 6528 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6529 __func__, err); 6530 goto init_complete; 6531 } 6532 6533 set_user_nice(current, task_nice(init_context->parent)); 6534 6535 init_complete: 6536 init_context->err = err; 6537 complete(&init_context->init_done); 6538 init_context = NULL; 6539 6540 if (err) 6541 goto out; 6542 6543 /* Wait to be woken up by the spawner before proceeding. */ 6544 kthread_parkme(); 6545 6546 if (!kthread_should_stop()) 6547 err = thread_fn(kvm, data); 6548 6549 out: 6550 /* 6551 * Move kthread back to its original cgroup to prevent it lingering in 6552 * the cgroup of the VM process, after the latter finishes its 6553 * execution. 6554 * 6555 * kthread_stop() waits on the 'exited' completion condition which is 6556 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6557 * kthread is removed from the cgroup in the cgroup_exit() which is 6558 * called after the exit_mm(). This causes the kthread_stop() to return 6559 * before the kthread actually quits the cgroup. 6560 */ 6561 rcu_read_lock(); 6562 parent = rcu_dereference(current->real_parent); 6563 get_task_struct(parent); 6564 rcu_read_unlock(); 6565 cgroup_attach_task_all(parent, current); 6566 put_task_struct(parent); 6567 6568 return err; 6569 } 6570 6571 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6572 uintptr_t data, const char *name, 6573 struct task_struct **thread_ptr) 6574 { 6575 struct kvm_vm_worker_thread_context init_context = {}; 6576 struct task_struct *thread; 6577 6578 *thread_ptr = NULL; 6579 init_context.kvm = kvm; 6580 init_context.parent = current; 6581 init_context.thread_fn = thread_fn; 6582 init_context.data = data; 6583 init_completion(&init_context.init_done); 6584 6585 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6586 "%s-%d", name, task_pid_nr(current)); 6587 if (IS_ERR(thread)) 6588 return PTR_ERR(thread); 6589 6590 /* kthread_run is never supposed to return NULL */ 6591 WARN_ON(thread == NULL); 6592 6593 wait_for_completion(&init_context.init_done); 6594 6595 if (!init_context.err) 6596 *thread_ptr = thread; 6597 6598 return init_context.err; 6599 } 6600