xref: /linux/virt/kvm/kvm_main.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159 
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 						   unsigned long start, unsigned long end)
162 {
163 }
164 
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167 	/*
168 	 * The metadata used by is_zone_device_page() to determine whether or
169 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
171 	 * page_count() is zero to help detect bad usage of this helper.
172 	 */
173 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 		return false;
175 
176 	return is_zone_device_page(pfn_to_page(pfn));
177 }
178 
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181 	/*
182 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 	 * perspective they are "normal" pages, albeit with slightly different
184 	 * usage rules.
185 	 */
186 	if (pfn_valid(pfn))
187 		return PageReserved(pfn_to_page(pfn)) &&
188 		       !is_zero_pfn(pfn) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 
201 	__this_cpu_write(kvm_running_vcpu, vcpu);
202 	preempt_notifier_register(&vcpu->preempt_notifier);
203 	kvm_arch_vcpu_load(vcpu, cpu);
204 	put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207 
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210 	preempt_disable();
211 	kvm_arch_vcpu_put(vcpu);
212 	preempt_notifier_unregister(&vcpu->preempt_notifier);
213 	__this_cpu_write(kvm_running_vcpu, NULL);
214 	preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217 
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222 
223 	/*
224 	 * We need to wait for the VCPU to reenable interrupts and get out of
225 	 * READING_SHADOW_PAGE_TABLES mode.
226 	 */
227 	if (req & KVM_REQUEST_WAIT)
228 		return mode != OUTSIDE_GUEST_MODE;
229 
230 	/*
231 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 	 */
233 	return mode == IN_GUEST_MODE;
234 }
235 
236 static void ack_flush(void *_completed)
237 {
238 }
239 
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250 				  unsigned int req, struct cpumask *tmp,
251 				  int current_cpu)
252 {
253 	int cpu;
254 
255 	kvm_make_request(req, vcpu);
256 
257 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 		return;
259 
260 	/*
261 	 * Note, the vCPU could get migrated to a different pCPU at any point
262 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
264 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 	 * after this point is also OK, as the requirement is only that KVM wait
267 	 * for vCPUs that were reading SPTEs _before_ any changes were
268 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 	 */
270 	if (kvm_request_needs_ipi(vcpu, req)) {
271 		cpu = READ_ONCE(vcpu->cpu);
272 		if (cpu != -1 && cpu != current_cpu)
273 			__cpumask_set_cpu(cpu, tmp);
274 	}
275 }
276 
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278 				 unsigned long *vcpu_bitmap)
279 {
280 	struct kvm_vcpu *vcpu;
281 	struct cpumask *cpus;
282 	int i, me;
283 	bool called;
284 
285 	me = get_cpu();
286 
287 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 	cpumask_clear(cpus);
289 
290 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 		vcpu = kvm_get_vcpu(kvm, i);
292 		if (!vcpu)
293 			continue;
294 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295 	}
296 
297 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298 	put_cpu();
299 
300 	return called;
301 }
302 
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 				      struct kvm_vcpu *except)
305 {
306 	struct kvm_vcpu *vcpu;
307 	struct cpumask *cpus;
308 	bool called;
309 	int i, me;
310 
311 	me = get_cpu();
312 
313 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314 	cpumask_clear(cpus);
315 
316 	kvm_for_each_vcpu(i, vcpu, kvm) {
317 		if (vcpu == except)
318 			continue;
319 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320 	}
321 
322 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323 	put_cpu();
324 
325 	return called;
326 }
327 
328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329 {
330 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
335 void kvm_flush_remote_tlbs(struct kvm *kvm)
336 {
337 	++kvm->stat.generic.remote_tlb_flush_requests;
338 
339 	/*
340 	 * We want to publish modifications to the page tables before reading
341 	 * mode. Pairs with a memory barrier in arch-specific code.
342 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
344 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345 	 *
346 	 * There is already an smp_mb__after_atomic() before
347 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348 	 * barrier here.
349 	 */
350 	if (!kvm_arch_flush_remote_tlb(kvm)
351 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
352 		++kvm->stat.generic.remote_tlb_flush;
353 }
354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
355 #endif
356 
357 void kvm_reload_remote_mmus(struct kvm *kvm)
358 {
359 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
360 }
361 
362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364 					       gfp_t gfp_flags)
365 {
366 	gfp_flags |= mc->gfp_zero;
367 
368 	if (mc->kmem_cache)
369 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370 	else
371 		return (void *)__get_free_page(gfp_flags);
372 }
373 
374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375 {
376 	void *obj;
377 
378 	if (mc->nobjs >= min)
379 		return 0;
380 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382 		if (!obj)
383 			return mc->nobjs >= min ? 0 : -ENOMEM;
384 		mc->objects[mc->nobjs++] = obj;
385 	}
386 	return 0;
387 }
388 
389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390 {
391 	return mc->nobjs;
392 }
393 
394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395 {
396 	while (mc->nobjs) {
397 		if (mc->kmem_cache)
398 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399 		else
400 			free_page((unsigned long)mc->objects[--mc->nobjs]);
401 	}
402 }
403 
404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405 {
406 	void *p;
407 
408 	if (WARN_ON(!mc->nobjs))
409 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410 	else
411 		p = mc->objects[--mc->nobjs];
412 	BUG_ON(!p);
413 	return p;
414 }
415 #endif
416 
417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
418 {
419 	mutex_init(&vcpu->mutex);
420 	vcpu->cpu = -1;
421 	vcpu->kvm = kvm;
422 	vcpu->vcpu_id = id;
423 	vcpu->pid = NULL;
424 	rcuwait_init(&vcpu->wait);
425 	kvm_async_pf_vcpu_init(vcpu);
426 
427 	vcpu->pre_pcpu = -1;
428 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429 
430 	kvm_vcpu_set_in_spin_loop(vcpu, false);
431 	kvm_vcpu_set_dy_eligible(vcpu, false);
432 	vcpu->preempted = false;
433 	vcpu->ready = false;
434 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435 	vcpu->last_used_slot = 0;
436 }
437 
438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440 	kvm_dirty_ring_free(&vcpu->dirty_ring);
441 	kvm_arch_vcpu_destroy(vcpu);
442 
443 	/*
444 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445 	 * the vcpu->pid pointer, and at destruction time all file descriptors
446 	 * are already gone.
447 	 */
448 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
449 
450 	free_page((unsigned long)vcpu->run);
451 	kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
454 
455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
457 {
458 	return container_of(mn, struct kvm, mmu_notifier);
459 }
460 
461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
462 					      struct mm_struct *mm,
463 					      unsigned long start, unsigned long end)
464 {
465 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
466 	int idx;
467 
468 	idx = srcu_read_lock(&kvm->srcu);
469 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
470 	srcu_read_unlock(&kvm->srcu, idx);
471 }
472 
473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
474 
475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
476 			     unsigned long end);
477 
478 struct kvm_hva_range {
479 	unsigned long start;
480 	unsigned long end;
481 	pte_t pte;
482 	hva_handler_t handler;
483 	on_lock_fn_t on_lock;
484 	bool flush_on_ret;
485 	bool may_block;
486 };
487 
488 /*
489  * Use a dedicated stub instead of NULL to indicate that there is no callback
490  * function/handler.  The compiler technically can't guarantee that a real
491  * function will have a non-zero address, and so it will generate code to
492  * check for !NULL, whereas comparing against a stub will be elided at compile
493  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
494  */
495 static void kvm_null_fn(void)
496 {
497 
498 }
499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
500 
501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
502 						  const struct kvm_hva_range *range)
503 {
504 	bool ret = false, locked = false;
505 	struct kvm_gfn_range gfn_range;
506 	struct kvm_memory_slot *slot;
507 	struct kvm_memslots *slots;
508 	int i, idx;
509 
510 	/* A null handler is allowed if and only if on_lock() is provided. */
511 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
512 			 IS_KVM_NULL_FN(range->handler)))
513 		return 0;
514 
515 	idx = srcu_read_lock(&kvm->srcu);
516 
517 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
518 		slots = __kvm_memslots(kvm, i);
519 		kvm_for_each_memslot(slot, slots) {
520 			unsigned long hva_start, hva_end;
521 
522 			hva_start = max(range->start, slot->userspace_addr);
523 			hva_end = min(range->end, slot->userspace_addr +
524 						  (slot->npages << PAGE_SHIFT));
525 			if (hva_start >= hva_end)
526 				continue;
527 
528 			/*
529 			 * To optimize for the likely case where the address
530 			 * range is covered by zero or one memslots, don't
531 			 * bother making these conditional (to avoid writes on
532 			 * the second or later invocation of the handler).
533 			 */
534 			gfn_range.pte = range->pte;
535 			gfn_range.may_block = range->may_block;
536 
537 			/*
538 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
539 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
540 			 */
541 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
542 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
543 			gfn_range.slot = slot;
544 
545 			if (!locked) {
546 				locked = true;
547 				KVM_MMU_LOCK(kvm);
548 				if (!IS_KVM_NULL_FN(range->on_lock))
549 					range->on_lock(kvm, range->start, range->end);
550 				if (IS_KVM_NULL_FN(range->handler))
551 					break;
552 			}
553 			ret |= range->handler(kvm, &gfn_range);
554 		}
555 	}
556 
557 	if (range->flush_on_ret && ret)
558 		kvm_flush_remote_tlbs(kvm);
559 
560 	if (locked)
561 		KVM_MMU_UNLOCK(kvm);
562 
563 	srcu_read_unlock(&kvm->srcu, idx);
564 
565 	/* The notifiers are averse to booleans. :-( */
566 	return (int)ret;
567 }
568 
569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
570 						unsigned long start,
571 						unsigned long end,
572 						pte_t pte,
573 						hva_handler_t handler)
574 {
575 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
576 	const struct kvm_hva_range range = {
577 		.start		= start,
578 		.end		= end,
579 		.pte		= pte,
580 		.handler	= handler,
581 		.on_lock	= (void *)kvm_null_fn,
582 		.flush_on_ret	= true,
583 		.may_block	= false,
584 	};
585 
586 	return __kvm_handle_hva_range(kvm, &range);
587 }
588 
589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
590 							 unsigned long start,
591 							 unsigned long end,
592 							 hva_handler_t handler)
593 {
594 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
595 	const struct kvm_hva_range range = {
596 		.start		= start,
597 		.end		= end,
598 		.pte		= __pte(0),
599 		.handler	= handler,
600 		.on_lock	= (void *)kvm_null_fn,
601 		.flush_on_ret	= false,
602 		.may_block	= false,
603 	};
604 
605 	return __kvm_handle_hva_range(kvm, &range);
606 }
607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
608 					struct mm_struct *mm,
609 					unsigned long address,
610 					pte_t pte)
611 {
612 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
613 
614 	trace_kvm_set_spte_hva(address);
615 
616 	/*
617 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
618 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
619 	 * including this one, found a relevant memslot at start(); rechecking
620 	 * memslots here is unnecessary.  Note, a false positive (count elevated
621 	 * by a different invalidation) is sub-optimal but functionally ok.
622 	 */
623 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
624 	if (!READ_ONCE(kvm->mmu_notifier_count))
625 		return;
626 
627 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
628 }
629 
630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
631 				   unsigned long end)
632 {
633 	/*
634 	 * The count increase must become visible at unlock time as no
635 	 * spte can be established without taking the mmu_lock and
636 	 * count is also read inside the mmu_lock critical section.
637 	 */
638 	kvm->mmu_notifier_count++;
639 	if (likely(kvm->mmu_notifier_count == 1)) {
640 		kvm->mmu_notifier_range_start = start;
641 		kvm->mmu_notifier_range_end = end;
642 	} else {
643 		/*
644 		 * Fully tracking multiple concurrent ranges has dimishing
645 		 * returns. Keep things simple and just find the minimal range
646 		 * which includes the current and new ranges. As there won't be
647 		 * enough information to subtract a range after its invalidate
648 		 * completes, any ranges invalidated concurrently will
649 		 * accumulate and persist until all outstanding invalidates
650 		 * complete.
651 		 */
652 		kvm->mmu_notifier_range_start =
653 			min(kvm->mmu_notifier_range_start, start);
654 		kvm->mmu_notifier_range_end =
655 			max(kvm->mmu_notifier_range_end, end);
656 	}
657 }
658 
659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
660 					const struct mmu_notifier_range *range)
661 {
662 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
663 	const struct kvm_hva_range hva_range = {
664 		.start		= range->start,
665 		.end		= range->end,
666 		.pte		= __pte(0),
667 		.handler	= kvm_unmap_gfn_range,
668 		.on_lock	= kvm_inc_notifier_count,
669 		.flush_on_ret	= true,
670 		.may_block	= mmu_notifier_range_blockable(range),
671 	};
672 
673 	trace_kvm_unmap_hva_range(range->start, range->end);
674 
675 	/*
676 	 * Prevent memslot modification between range_start() and range_end()
677 	 * so that conditionally locking provides the same result in both
678 	 * functions.  Without that guarantee, the mmu_notifier_count
679 	 * adjustments will be imbalanced.
680 	 *
681 	 * Pairs with the decrement in range_end().
682 	 */
683 	spin_lock(&kvm->mn_invalidate_lock);
684 	kvm->mn_active_invalidate_count++;
685 	spin_unlock(&kvm->mn_invalidate_lock);
686 
687 	__kvm_handle_hva_range(kvm, &hva_range);
688 
689 	return 0;
690 }
691 
692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
693 				   unsigned long end)
694 {
695 	/*
696 	 * This sequence increase will notify the kvm page fault that
697 	 * the page that is going to be mapped in the spte could have
698 	 * been freed.
699 	 */
700 	kvm->mmu_notifier_seq++;
701 	smp_wmb();
702 	/*
703 	 * The above sequence increase must be visible before the
704 	 * below count decrease, which is ensured by the smp_wmb above
705 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
706 	 */
707 	kvm->mmu_notifier_count--;
708 }
709 
710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
711 					const struct mmu_notifier_range *range)
712 {
713 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
714 	const struct kvm_hva_range hva_range = {
715 		.start		= range->start,
716 		.end		= range->end,
717 		.pte		= __pte(0),
718 		.handler	= (void *)kvm_null_fn,
719 		.on_lock	= kvm_dec_notifier_count,
720 		.flush_on_ret	= false,
721 		.may_block	= mmu_notifier_range_blockable(range),
722 	};
723 	bool wake;
724 
725 	__kvm_handle_hva_range(kvm, &hva_range);
726 
727 	/* Pairs with the increment in range_start(). */
728 	spin_lock(&kvm->mn_invalidate_lock);
729 	wake = (--kvm->mn_active_invalidate_count == 0);
730 	spin_unlock(&kvm->mn_invalidate_lock);
731 
732 	/*
733 	 * There can only be one waiter, since the wait happens under
734 	 * slots_lock.
735 	 */
736 	if (wake)
737 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
738 
739 	BUG_ON(kvm->mmu_notifier_count < 0);
740 }
741 
742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
743 					      struct mm_struct *mm,
744 					      unsigned long start,
745 					      unsigned long end)
746 {
747 	trace_kvm_age_hva(start, end);
748 
749 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
750 }
751 
752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
753 					struct mm_struct *mm,
754 					unsigned long start,
755 					unsigned long end)
756 {
757 	trace_kvm_age_hva(start, end);
758 
759 	/*
760 	 * Even though we do not flush TLB, this will still adversely
761 	 * affect performance on pre-Haswell Intel EPT, where there is
762 	 * no EPT Access Bit to clear so that we have to tear down EPT
763 	 * tables instead. If we find this unacceptable, we can always
764 	 * add a parameter to kvm_age_hva so that it effectively doesn't
765 	 * do anything on clear_young.
766 	 *
767 	 * Also note that currently we never issue secondary TLB flushes
768 	 * from clear_young, leaving this job up to the regular system
769 	 * cadence. If we find this inaccurate, we might come up with a
770 	 * more sophisticated heuristic later.
771 	 */
772 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
773 }
774 
775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
776 				       struct mm_struct *mm,
777 				       unsigned long address)
778 {
779 	trace_kvm_test_age_hva(address);
780 
781 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
782 					     kvm_test_age_gfn);
783 }
784 
785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
786 				     struct mm_struct *mm)
787 {
788 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
789 	int idx;
790 
791 	idx = srcu_read_lock(&kvm->srcu);
792 	kvm_arch_flush_shadow_all(kvm);
793 	srcu_read_unlock(&kvm->srcu, idx);
794 }
795 
796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
797 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
798 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
799 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
800 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
801 	.clear_young		= kvm_mmu_notifier_clear_young,
802 	.test_young		= kvm_mmu_notifier_test_young,
803 	.change_pte		= kvm_mmu_notifier_change_pte,
804 	.release		= kvm_mmu_notifier_release,
805 };
806 
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
810 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
811 }
812 
813 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
814 
815 static int kvm_init_mmu_notifier(struct kvm *kvm)
816 {
817 	return 0;
818 }
819 
820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821 
822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
823 static int kvm_pm_notifier_call(struct notifier_block *bl,
824 				unsigned long state,
825 				void *unused)
826 {
827 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
828 
829 	return kvm_arch_pm_notifier(kvm, state);
830 }
831 
832 static void kvm_init_pm_notifier(struct kvm *kvm)
833 {
834 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
835 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
836 	kvm->pm_notifier.priority = INT_MAX;
837 	register_pm_notifier(&kvm->pm_notifier);
838 }
839 
840 static void kvm_destroy_pm_notifier(struct kvm *kvm)
841 {
842 	unregister_pm_notifier(&kvm->pm_notifier);
843 }
844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
845 static void kvm_init_pm_notifier(struct kvm *kvm)
846 {
847 }
848 
849 static void kvm_destroy_pm_notifier(struct kvm *kvm)
850 {
851 }
852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
853 
854 static struct kvm_memslots *kvm_alloc_memslots(void)
855 {
856 	int i;
857 	struct kvm_memslots *slots;
858 
859 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
860 	if (!slots)
861 		return NULL;
862 
863 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
864 		slots->id_to_index[i] = -1;
865 
866 	return slots;
867 }
868 
869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871 	if (!memslot->dirty_bitmap)
872 		return;
873 
874 	kvfree(memslot->dirty_bitmap);
875 	memslot->dirty_bitmap = NULL;
876 }
877 
878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
879 {
880 	kvm_destroy_dirty_bitmap(slot);
881 
882 	kvm_arch_free_memslot(kvm, slot);
883 
884 	slot->flags = 0;
885 	slot->npages = 0;
886 }
887 
888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
889 {
890 	struct kvm_memory_slot *memslot;
891 
892 	if (!slots)
893 		return;
894 
895 	kvm_for_each_memslot(memslot, slots)
896 		kvm_free_memslot(kvm, memslot);
897 
898 	kvfree(slots);
899 }
900 
901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
902 {
903 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
904 	case KVM_STATS_TYPE_INSTANT:
905 		return 0444;
906 	case KVM_STATS_TYPE_CUMULATIVE:
907 	case KVM_STATS_TYPE_PEAK:
908 	default:
909 		return 0644;
910 	}
911 }
912 
913 
914 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
915 {
916 	int i;
917 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
918 				      kvm_vcpu_stats_header.num_desc;
919 
920 	if (!kvm->debugfs_dentry)
921 		return;
922 
923 	debugfs_remove_recursive(kvm->debugfs_dentry);
924 
925 	if (kvm->debugfs_stat_data) {
926 		for (i = 0; i < kvm_debugfs_num_entries; i++)
927 			kfree(kvm->debugfs_stat_data[i]);
928 		kfree(kvm->debugfs_stat_data);
929 	}
930 }
931 
932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
933 {
934 	static DEFINE_MUTEX(kvm_debugfs_lock);
935 	struct dentry *dent;
936 	char dir_name[ITOA_MAX_LEN * 2];
937 	struct kvm_stat_data *stat_data;
938 	const struct _kvm_stats_desc *pdesc;
939 	int i, ret;
940 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
941 				      kvm_vcpu_stats_header.num_desc;
942 
943 	if (!debugfs_initialized())
944 		return 0;
945 
946 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
947 	mutex_lock(&kvm_debugfs_lock);
948 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
949 	if (dent) {
950 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
951 		dput(dent);
952 		mutex_unlock(&kvm_debugfs_lock);
953 		return 0;
954 	}
955 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
956 	mutex_unlock(&kvm_debugfs_lock);
957 	if (IS_ERR(dent))
958 		return 0;
959 
960 	kvm->debugfs_dentry = dent;
961 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
962 					 sizeof(*kvm->debugfs_stat_data),
963 					 GFP_KERNEL_ACCOUNT);
964 	if (!kvm->debugfs_stat_data)
965 		return -ENOMEM;
966 
967 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
968 		pdesc = &kvm_vm_stats_desc[i];
969 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
970 		if (!stat_data)
971 			return -ENOMEM;
972 
973 		stat_data->kvm = kvm;
974 		stat_data->desc = pdesc;
975 		stat_data->kind = KVM_STAT_VM;
976 		kvm->debugfs_stat_data[i] = stat_data;
977 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
978 				    kvm->debugfs_dentry, stat_data,
979 				    &stat_fops_per_vm);
980 	}
981 
982 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
983 		pdesc = &kvm_vcpu_stats_desc[i];
984 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
985 		if (!stat_data)
986 			return -ENOMEM;
987 
988 		stat_data->kvm = kvm;
989 		stat_data->desc = pdesc;
990 		stat_data->kind = KVM_STAT_VCPU;
991 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
992 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
993 				    kvm->debugfs_dentry, stat_data,
994 				    &stat_fops_per_vm);
995 	}
996 
997 	ret = kvm_arch_create_vm_debugfs(kvm);
998 	if (ret) {
999 		kvm_destroy_vm_debugfs(kvm);
1000 		return i;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Called after the VM is otherwise initialized, but just before adding it to
1008  * the vm_list.
1009  */
1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1011 {
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Called just after removing the VM from the vm_list, but before doing any
1017  * other destruction.
1018  */
1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1020 {
1021 }
1022 
1023 /*
1024  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1025  * be setup already, so we can create arch-specific debugfs entries under it.
1026  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1027  * a per-arch destroy interface is not needed.
1028  */
1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1030 {
1031 	return 0;
1032 }
1033 
1034 static struct kvm *kvm_create_vm(unsigned long type)
1035 {
1036 	struct kvm *kvm = kvm_arch_alloc_vm();
1037 	int r = -ENOMEM;
1038 	int i;
1039 
1040 	if (!kvm)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	KVM_MMU_LOCK_INIT(kvm);
1044 	mmgrab(current->mm);
1045 	kvm->mm = current->mm;
1046 	kvm_eventfd_init(kvm);
1047 	mutex_init(&kvm->lock);
1048 	mutex_init(&kvm->irq_lock);
1049 	mutex_init(&kvm->slots_lock);
1050 	mutex_init(&kvm->slots_arch_lock);
1051 	spin_lock_init(&kvm->mn_invalidate_lock);
1052 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1053 
1054 	INIT_LIST_HEAD(&kvm->devices);
1055 
1056 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1057 
1058 	if (init_srcu_struct(&kvm->srcu))
1059 		goto out_err_no_srcu;
1060 	if (init_srcu_struct(&kvm->irq_srcu))
1061 		goto out_err_no_irq_srcu;
1062 
1063 	refcount_set(&kvm->users_count, 1);
1064 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1065 		struct kvm_memslots *slots = kvm_alloc_memslots();
1066 
1067 		if (!slots)
1068 			goto out_err_no_arch_destroy_vm;
1069 		/* Generations must be different for each address space. */
1070 		slots->generation = i;
1071 		rcu_assign_pointer(kvm->memslots[i], slots);
1072 	}
1073 
1074 	for (i = 0; i < KVM_NR_BUSES; i++) {
1075 		rcu_assign_pointer(kvm->buses[i],
1076 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1077 		if (!kvm->buses[i])
1078 			goto out_err_no_arch_destroy_vm;
1079 	}
1080 
1081 	kvm->max_halt_poll_ns = halt_poll_ns;
1082 
1083 	r = kvm_arch_init_vm(kvm, type);
1084 	if (r)
1085 		goto out_err_no_arch_destroy_vm;
1086 
1087 	r = hardware_enable_all();
1088 	if (r)
1089 		goto out_err_no_disable;
1090 
1091 #ifdef CONFIG_HAVE_KVM_IRQFD
1092 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1093 #endif
1094 
1095 	r = kvm_init_mmu_notifier(kvm);
1096 	if (r)
1097 		goto out_err_no_mmu_notifier;
1098 
1099 	r = kvm_arch_post_init_vm(kvm);
1100 	if (r)
1101 		goto out_err;
1102 
1103 	mutex_lock(&kvm_lock);
1104 	list_add(&kvm->vm_list, &vm_list);
1105 	mutex_unlock(&kvm_lock);
1106 
1107 	preempt_notifier_inc();
1108 	kvm_init_pm_notifier(kvm);
1109 
1110 	return kvm;
1111 
1112 out_err:
1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1114 	if (kvm->mmu_notifier.ops)
1115 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1116 #endif
1117 out_err_no_mmu_notifier:
1118 	hardware_disable_all();
1119 out_err_no_disable:
1120 	kvm_arch_destroy_vm(kvm);
1121 out_err_no_arch_destroy_vm:
1122 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1123 	for (i = 0; i < KVM_NR_BUSES; i++)
1124 		kfree(kvm_get_bus(kvm, i));
1125 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1126 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1127 	cleanup_srcu_struct(&kvm->irq_srcu);
1128 out_err_no_irq_srcu:
1129 	cleanup_srcu_struct(&kvm->srcu);
1130 out_err_no_srcu:
1131 	kvm_arch_free_vm(kvm);
1132 	mmdrop(current->mm);
1133 	return ERR_PTR(r);
1134 }
1135 
1136 static void kvm_destroy_devices(struct kvm *kvm)
1137 {
1138 	struct kvm_device *dev, *tmp;
1139 
1140 	/*
1141 	 * We do not need to take the kvm->lock here, because nobody else
1142 	 * has a reference to the struct kvm at this point and therefore
1143 	 * cannot access the devices list anyhow.
1144 	 */
1145 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1146 		list_del(&dev->vm_node);
1147 		dev->ops->destroy(dev);
1148 	}
1149 }
1150 
1151 static void kvm_destroy_vm(struct kvm *kvm)
1152 {
1153 	int i;
1154 	struct mm_struct *mm = kvm->mm;
1155 
1156 	kvm_destroy_pm_notifier(kvm);
1157 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1158 	kvm_destroy_vm_debugfs(kvm);
1159 	kvm_arch_sync_events(kvm);
1160 	mutex_lock(&kvm_lock);
1161 	list_del(&kvm->vm_list);
1162 	mutex_unlock(&kvm_lock);
1163 	kvm_arch_pre_destroy_vm(kvm);
1164 
1165 	kvm_free_irq_routing(kvm);
1166 	for (i = 0; i < KVM_NR_BUSES; i++) {
1167 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1168 
1169 		if (bus)
1170 			kvm_io_bus_destroy(bus);
1171 		kvm->buses[i] = NULL;
1172 	}
1173 	kvm_coalesced_mmio_free(kvm);
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1176 	/*
1177 	 * At this point, pending calls to invalidate_range_start()
1178 	 * have completed but no more MMU notifiers will run, so
1179 	 * mn_active_invalidate_count may remain unbalanced.
1180 	 * No threads can be waiting in install_new_memslots as the
1181 	 * last reference on KVM has been dropped, but freeing
1182 	 * memslots would deadlock without this manual intervention.
1183 	 */
1184 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1185 	kvm->mn_active_invalidate_count = 0;
1186 #else
1187 	kvm_arch_flush_shadow_all(kvm);
1188 #endif
1189 	kvm_arch_destroy_vm(kvm);
1190 	kvm_destroy_devices(kvm);
1191 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1192 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1193 	cleanup_srcu_struct(&kvm->irq_srcu);
1194 	cleanup_srcu_struct(&kvm->srcu);
1195 	kvm_arch_free_vm(kvm);
1196 	preempt_notifier_dec();
1197 	hardware_disable_all();
1198 	mmdrop(mm);
1199 }
1200 
1201 void kvm_get_kvm(struct kvm *kvm)
1202 {
1203 	refcount_inc(&kvm->users_count);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1206 
1207 /*
1208  * Make sure the vm is not during destruction, which is a safe version of
1209  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1210  */
1211 bool kvm_get_kvm_safe(struct kvm *kvm)
1212 {
1213 	return refcount_inc_not_zero(&kvm->users_count);
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1216 
1217 void kvm_put_kvm(struct kvm *kvm)
1218 {
1219 	if (refcount_dec_and_test(&kvm->users_count))
1220 		kvm_destroy_vm(kvm);
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1223 
1224 /*
1225  * Used to put a reference that was taken on behalf of an object associated
1226  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1227  * of the new file descriptor fails and the reference cannot be transferred to
1228  * its final owner.  In such cases, the caller is still actively using @kvm and
1229  * will fail miserably if the refcount unexpectedly hits zero.
1230  */
1231 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1232 {
1233 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1236 
1237 static int kvm_vm_release(struct inode *inode, struct file *filp)
1238 {
1239 	struct kvm *kvm = filp->private_data;
1240 
1241 	kvm_irqfd_release(kvm);
1242 
1243 	kvm_put_kvm(kvm);
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Allocation size is twice as large as the actual dirty bitmap size.
1249  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1250  */
1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1252 {
1253 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1254 
1255 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1256 	if (!memslot->dirty_bitmap)
1257 		return -ENOMEM;
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Delete a memslot by decrementing the number of used slots and shifting all
1264  * other entries in the array forward one spot.
1265  */
1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1267 				      struct kvm_memory_slot *memslot)
1268 {
1269 	struct kvm_memory_slot *mslots = slots->memslots;
1270 	int i;
1271 
1272 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1273 		return;
1274 
1275 	slots->used_slots--;
1276 
1277 	if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1278 		atomic_set(&slots->last_used_slot, 0);
1279 
1280 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1281 		mslots[i] = mslots[i + 1];
1282 		slots->id_to_index[mslots[i].id] = i;
1283 	}
1284 	mslots[i] = *memslot;
1285 	slots->id_to_index[memslot->id] = -1;
1286 }
1287 
1288 /*
1289  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1290  * the new slot's initial index into the memslots array.
1291  */
1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1293 {
1294 	return slots->used_slots++;
1295 }
1296 
1297 /*
1298  * Move a changed memslot backwards in the array by shifting existing slots
1299  * with a higher GFN toward the front of the array.  Note, the changed memslot
1300  * itself is not preserved in the array, i.e. not swapped at this time, only
1301  * its new index into the array is tracked.  Returns the changed memslot's
1302  * current index into the memslots array.
1303  */
1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1305 					    struct kvm_memory_slot *memslot)
1306 {
1307 	struct kvm_memory_slot *mslots = slots->memslots;
1308 	int i;
1309 
1310 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1311 	    WARN_ON_ONCE(!slots->used_slots))
1312 		return -1;
1313 
1314 	/*
1315 	 * Move the target memslot backward in the array by shifting existing
1316 	 * memslots with a higher GFN (than the target memslot) towards the
1317 	 * front of the array.
1318 	 */
1319 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1320 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1321 			break;
1322 
1323 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1324 
1325 		/* Shift the next memslot forward one and update its index. */
1326 		mslots[i] = mslots[i + 1];
1327 		slots->id_to_index[mslots[i].id] = i;
1328 	}
1329 	return i;
1330 }
1331 
1332 /*
1333  * Move a changed memslot forwards in the array by shifting existing slots with
1334  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1335  * is not preserved in the array, i.e. not swapped at this time, only its new
1336  * index into the array is tracked.  Returns the changed memslot's final index
1337  * into the memslots array.
1338  */
1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1340 					   struct kvm_memory_slot *memslot,
1341 					   int start)
1342 {
1343 	struct kvm_memory_slot *mslots = slots->memslots;
1344 	int i;
1345 
1346 	for (i = start; i > 0; i--) {
1347 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1348 			break;
1349 
1350 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1351 
1352 		/* Shift the next memslot back one and update its index. */
1353 		mslots[i] = mslots[i - 1];
1354 		slots->id_to_index[mslots[i].id] = i;
1355 	}
1356 	return i;
1357 }
1358 
1359 /*
1360  * Re-sort memslots based on their GFN to account for an added, deleted, or
1361  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1362  * memslot lookup.
1363  *
1364  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1365  * at memslots[0] has the highest GFN.
1366  *
1367  * The sorting algorithm takes advantage of having initially sorted memslots
1368  * and knowing the position of the changed memslot.  Sorting is also optimized
1369  * by not swapping the updated memslot and instead only shifting other memslots
1370  * and tracking the new index for the update memslot.  Only once its final
1371  * index is known is the updated memslot copied into its position in the array.
1372  *
1373  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1374  *    the end of the array.
1375  *
1376  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1377  *    end of the array and then it forward to its correct location.
1378  *
1379  *  - When moving a memslot, the algorithm first moves the updated memslot
1380  *    backward to handle the scenario where the memslot's GFN was changed to a
1381  *    lower value.  update_memslots() then falls through and runs the same flow
1382  *    as creating a memslot to move the memslot forward to handle the scenario
1383  *    where its GFN was changed to a higher value.
1384  *
1385  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1386  * historical reasons.  Originally, invalid memslots where denoted by having
1387  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1388  * to the end of the array.  The current algorithm uses dedicated logic to
1389  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1390  *
1391  * The other historical motiviation for highest->lowest was to improve the
1392  * performance of memslot lookup.  KVM originally used a linear search starting
1393  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1394  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1395  * single memslot above the 4gb boundary.  As the largest memslot is also the
1396  * most likely to be referenced, sorting it to the front of the array was
1397  * advantageous.  The current binary search starts from the middle of the array
1398  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1399  */
1400 static void update_memslots(struct kvm_memslots *slots,
1401 			    struct kvm_memory_slot *memslot,
1402 			    enum kvm_mr_change change)
1403 {
1404 	int i;
1405 
1406 	if (change == KVM_MR_DELETE) {
1407 		kvm_memslot_delete(slots, memslot);
1408 	} else {
1409 		if (change == KVM_MR_CREATE)
1410 			i = kvm_memslot_insert_back(slots);
1411 		else
1412 			i = kvm_memslot_move_backward(slots, memslot);
1413 		i = kvm_memslot_move_forward(slots, memslot, i);
1414 
1415 		/*
1416 		 * Copy the memslot to its new position in memslots and update
1417 		 * its index accordingly.
1418 		 */
1419 		slots->memslots[i] = *memslot;
1420 		slots->id_to_index[memslot->id] = i;
1421 	}
1422 }
1423 
1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1425 {
1426 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1427 
1428 #ifdef __KVM_HAVE_READONLY_MEM
1429 	valid_flags |= KVM_MEM_READONLY;
1430 #endif
1431 
1432 	if (mem->flags & ~valid_flags)
1433 		return -EINVAL;
1434 
1435 	return 0;
1436 }
1437 
1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1439 		int as_id, struct kvm_memslots *slots)
1440 {
1441 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1442 	u64 gen = old_memslots->generation;
1443 
1444 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1445 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1446 
1447 	/*
1448 	 * Do not store the new memslots while there are invalidations in
1449 	 * progress, otherwise the locking in invalidate_range_start and
1450 	 * invalidate_range_end will be unbalanced.
1451 	 */
1452 	spin_lock(&kvm->mn_invalidate_lock);
1453 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1454 	while (kvm->mn_active_invalidate_count) {
1455 		set_current_state(TASK_UNINTERRUPTIBLE);
1456 		spin_unlock(&kvm->mn_invalidate_lock);
1457 		schedule();
1458 		spin_lock(&kvm->mn_invalidate_lock);
1459 	}
1460 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1461 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1462 	spin_unlock(&kvm->mn_invalidate_lock);
1463 
1464 	/*
1465 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1466 	 * SRCU below in order to avoid deadlock with another thread
1467 	 * acquiring the slots_arch_lock in an srcu critical section.
1468 	 */
1469 	mutex_unlock(&kvm->slots_arch_lock);
1470 
1471 	synchronize_srcu_expedited(&kvm->srcu);
1472 
1473 	/*
1474 	 * Increment the new memslot generation a second time, dropping the
1475 	 * update in-progress flag and incrementing the generation based on
1476 	 * the number of address spaces.  This provides a unique and easily
1477 	 * identifiable generation number while the memslots are in flux.
1478 	 */
1479 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1480 
1481 	/*
1482 	 * Generations must be unique even across address spaces.  We do not need
1483 	 * a global counter for that, instead the generation space is evenly split
1484 	 * across address spaces.  For example, with two address spaces, address
1485 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1486 	 * use generations 1, 3, 5, ...
1487 	 */
1488 	gen += KVM_ADDRESS_SPACE_NUM;
1489 
1490 	kvm_arch_memslots_updated(kvm, gen);
1491 
1492 	slots->generation = gen;
1493 
1494 	return old_memslots;
1495 }
1496 
1497 static size_t kvm_memslots_size(int slots)
1498 {
1499 	return sizeof(struct kvm_memslots) +
1500 	       (sizeof(struct kvm_memory_slot) * slots);
1501 }
1502 
1503 static void kvm_copy_memslots(struct kvm_memslots *to,
1504 			      struct kvm_memslots *from)
1505 {
1506 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1507 }
1508 
1509 /*
1510  * Note, at a minimum, the current number of used slots must be allocated, even
1511  * when deleting a memslot, as we need a complete duplicate of the memslots for
1512  * use when invalidating a memslot prior to deleting/moving the memslot.
1513  */
1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1515 					     enum kvm_mr_change change)
1516 {
1517 	struct kvm_memslots *slots;
1518 	size_t new_size;
1519 
1520 	if (change == KVM_MR_CREATE)
1521 		new_size = kvm_memslots_size(old->used_slots + 1);
1522 	else
1523 		new_size = kvm_memslots_size(old->used_slots);
1524 
1525 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1526 	if (likely(slots))
1527 		kvm_copy_memslots(slots, old);
1528 
1529 	return slots;
1530 }
1531 
1532 static int kvm_set_memslot(struct kvm *kvm,
1533 			   const struct kvm_userspace_memory_region *mem,
1534 			   struct kvm_memory_slot *old,
1535 			   struct kvm_memory_slot *new, int as_id,
1536 			   enum kvm_mr_change change)
1537 {
1538 	struct kvm_memory_slot *slot;
1539 	struct kvm_memslots *slots;
1540 	int r;
1541 
1542 	/*
1543 	 * Released in install_new_memslots.
1544 	 *
1545 	 * Must be held from before the current memslots are copied until
1546 	 * after the new memslots are installed with rcu_assign_pointer,
1547 	 * then released before the synchronize srcu in install_new_memslots.
1548 	 *
1549 	 * When modifying memslots outside of the slots_lock, must be held
1550 	 * before reading the pointer to the current memslots until after all
1551 	 * changes to those memslots are complete.
1552 	 *
1553 	 * These rules ensure that installing new memslots does not lose
1554 	 * changes made to the previous memslots.
1555 	 */
1556 	mutex_lock(&kvm->slots_arch_lock);
1557 
1558 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1559 	if (!slots) {
1560 		mutex_unlock(&kvm->slots_arch_lock);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1565 		/*
1566 		 * Note, the INVALID flag needs to be in the appropriate entry
1567 		 * in the freshly allocated memslots, not in @old or @new.
1568 		 */
1569 		slot = id_to_memslot(slots, old->id);
1570 		slot->flags |= KVM_MEMSLOT_INVALID;
1571 
1572 		/*
1573 		 * We can re-use the memory from the old memslots.
1574 		 * It will be overwritten with a copy of the new memslots
1575 		 * after reacquiring the slots_arch_lock below.
1576 		 */
1577 		slots = install_new_memslots(kvm, as_id, slots);
1578 
1579 		/* From this point no new shadow pages pointing to a deleted,
1580 		 * or moved, memslot will be created.
1581 		 *
1582 		 * validation of sp->gfn happens in:
1583 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1584 		 *	- kvm_is_visible_gfn (mmu_check_root)
1585 		 */
1586 		kvm_arch_flush_shadow_memslot(kvm, slot);
1587 
1588 		/* Released in install_new_memslots. */
1589 		mutex_lock(&kvm->slots_arch_lock);
1590 
1591 		/*
1592 		 * The arch-specific fields of the memslots could have changed
1593 		 * between releasing the slots_arch_lock in
1594 		 * install_new_memslots and here, so get a fresh copy of the
1595 		 * slots.
1596 		 */
1597 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1598 	}
1599 
1600 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1601 	if (r)
1602 		goto out_slots;
1603 
1604 	update_memslots(slots, new, change);
1605 	slots = install_new_memslots(kvm, as_id, slots);
1606 
1607 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1608 
1609 	kvfree(slots);
1610 	return 0;
1611 
1612 out_slots:
1613 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1614 		slot = id_to_memslot(slots, old->id);
1615 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1616 		slots = install_new_memslots(kvm, as_id, slots);
1617 	} else {
1618 		mutex_unlock(&kvm->slots_arch_lock);
1619 	}
1620 	kvfree(slots);
1621 	return r;
1622 }
1623 
1624 static int kvm_delete_memslot(struct kvm *kvm,
1625 			      const struct kvm_userspace_memory_region *mem,
1626 			      struct kvm_memory_slot *old, int as_id)
1627 {
1628 	struct kvm_memory_slot new;
1629 	int r;
1630 
1631 	if (!old->npages)
1632 		return -EINVAL;
1633 
1634 	memset(&new, 0, sizeof(new));
1635 	new.id = old->id;
1636 	/*
1637 	 * This is only for debugging purpose; it should never be referenced
1638 	 * for a removed memslot.
1639 	 */
1640 	new.as_id = as_id;
1641 
1642 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1643 	if (r)
1644 		return r;
1645 
1646 	kvm_free_memslot(kvm, old);
1647 	return 0;
1648 }
1649 
1650 /*
1651  * Allocate some memory and give it an address in the guest physical address
1652  * space.
1653  *
1654  * Discontiguous memory is allowed, mostly for framebuffers.
1655  *
1656  * Must be called holding kvm->slots_lock for write.
1657  */
1658 int __kvm_set_memory_region(struct kvm *kvm,
1659 			    const struct kvm_userspace_memory_region *mem)
1660 {
1661 	struct kvm_memory_slot old, new;
1662 	struct kvm_memory_slot *tmp;
1663 	enum kvm_mr_change change;
1664 	int as_id, id;
1665 	int r;
1666 
1667 	r = check_memory_region_flags(mem);
1668 	if (r)
1669 		return r;
1670 
1671 	as_id = mem->slot >> 16;
1672 	id = (u16)mem->slot;
1673 
1674 	/* General sanity checks */
1675 	if (mem->memory_size & (PAGE_SIZE - 1))
1676 		return -EINVAL;
1677 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1678 		return -EINVAL;
1679 	/* We can read the guest memory with __xxx_user() later on. */
1680 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1681 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1682 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1683 			mem->memory_size))
1684 		return -EINVAL;
1685 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1686 		return -EINVAL;
1687 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1688 		return -EINVAL;
1689 
1690 	/*
1691 	 * Make a full copy of the old memslot, the pointer will become stale
1692 	 * when the memslots are re-sorted by update_memslots(), and the old
1693 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1694 	 * to free its resources and for arch specific behavior.
1695 	 */
1696 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1697 	if (tmp) {
1698 		old = *tmp;
1699 		tmp = NULL;
1700 	} else {
1701 		memset(&old, 0, sizeof(old));
1702 		old.id = id;
1703 	}
1704 
1705 	if (!mem->memory_size)
1706 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1707 
1708 	new.as_id = as_id;
1709 	new.id = id;
1710 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1711 	new.npages = mem->memory_size >> PAGE_SHIFT;
1712 	new.flags = mem->flags;
1713 	new.userspace_addr = mem->userspace_addr;
1714 
1715 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1716 		return -EINVAL;
1717 
1718 	if (!old.npages) {
1719 		change = KVM_MR_CREATE;
1720 		new.dirty_bitmap = NULL;
1721 		memset(&new.arch, 0, sizeof(new.arch));
1722 	} else { /* Modify an existing slot. */
1723 		if ((new.userspace_addr != old.userspace_addr) ||
1724 		    (new.npages != old.npages) ||
1725 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1726 			return -EINVAL;
1727 
1728 		if (new.base_gfn != old.base_gfn)
1729 			change = KVM_MR_MOVE;
1730 		else if (new.flags != old.flags)
1731 			change = KVM_MR_FLAGS_ONLY;
1732 		else /* Nothing to change. */
1733 			return 0;
1734 
1735 		/* Copy dirty_bitmap and arch from the current memslot. */
1736 		new.dirty_bitmap = old.dirty_bitmap;
1737 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1738 	}
1739 
1740 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1741 		/* Check for overlaps */
1742 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1743 			if (tmp->id == id)
1744 				continue;
1745 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1746 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1747 				return -EEXIST;
1748 		}
1749 	}
1750 
1751 	/* Allocate/free page dirty bitmap as needed */
1752 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1753 		new.dirty_bitmap = NULL;
1754 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1755 		r = kvm_alloc_dirty_bitmap(&new);
1756 		if (r)
1757 			return r;
1758 
1759 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1760 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1761 	}
1762 
1763 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1764 	if (r)
1765 		goto out_bitmap;
1766 
1767 	if (old.dirty_bitmap && !new.dirty_bitmap)
1768 		kvm_destroy_dirty_bitmap(&old);
1769 	return 0;
1770 
1771 out_bitmap:
1772 	if (new.dirty_bitmap && !old.dirty_bitmap)
1773 		kvm_destroy_dirty_bitmap(&new);
1774 	return r;
1775 }
1776 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1777 
1778 int kvm_set_memory_region(struct kvm *kvm,
1779 			  const struct kvm_userspace_memory_region *mem)
1780 {
1781 	int r;
1782 
1783 	mutex_lock(&kvm->slots_lock);
1784 	r = __kvm_set_memory_region(kvm, mem);
1785 	mutex_unlock(&kvm->slots_lock);
1786 	return r;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1789 
1790 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1791 					  struct kvm_userspace_memory_region *mem)
1792 {
1793 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1794 		return -EINVAL;
1795 
1796 	return kvm_set_memory_region(kvm, mem);
1797 }
1798 
1799 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1800 /**
1801  * kvm_get_dirty_log - get a snapshot of dirty pages
1802  * @kvm:	pointer to kvm instance
1803  * @log:	slot id and address to which we copy the log
1804  * @is_dirty:	set to '1' if any dirty pages were found
1805  * @memslot:	set to the associated memslot, always valid on success
1806  */
1807 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1808 		      int *is_dirty, struct kvm_memory_slot **memslot)
1809 {
1810 	struct kvm_memslots *slots;
1811 	int i, as_id, id;
1812 	unsigned long n;
1813 	unsigned long any = 0;
1814 
1815 	/* Dirty ring tracking is exclusive to dirty log tracking */
1816 	if (kvm->dirty_ring_size)
1817 		return -ENXIO;
1818 
1819 	*memslot = NULL;
1820 	*is_dirty = 0;
1821 
1822 	as_id = log->slot >> 16;
1823 	id = (u16)log->slot;
1824 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1825 		return -EINVAL;
1826 
1827 	slots = __kvm_memslots(kvm, as_id);
1828 	*memslot = id_to_memslot(slots, id);
1829 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1830 		return -ENOENT;
1831 
1832 	kvm_arch_sync_dirty_log(kvm, *memslot);
1833 
1834 	n = kvm_dirty_bitmap_bytes(*memslot);
1835 
1836 	for (i = 0; !any && i < n/sizeof(long); ++i)
1837 		any = (*memslot)->dirty_bitmap[i];
1838 
1839 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1840 		return -EFAULT;
1841 
1842 	if (any)
1843 		*is_dirty = 1;
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1847 
1848 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1849 /**
1850  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1851  *	and reenable dirty page tracking for the corresponding pages.
1852  * @kvm:	pointer to kvm instance
1853  * @log:	slot id and address to which we copy the log
1854  *
1855  * We need to keep it in mind that VCPU threads can write to the bitmap
1856  * concurrently. So, to avoid losing track of dirty pages we keep the
1857  * following order:
1858  *
1859  *    1. Take a snapshot of the bit and clear it if needed.
1860  *    2. Write protect the corresponding page.
1861  *    3. Copy the snapshot to the userspace.
1862  *    4. Upon return caller flushes TLB's if needed.
1863  *
1864  * Between 2 and 4, the guest may write to the page using the remaining TLB
1865  * entry.  This is not a problem because the page is reported dirty using
1866  * the snapshot taken before and step 4 ensures that writes done after
1867  * exiting to userspace will be logged for the next call.
1868  *
1869  */
1870 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1871 {
1872 	struct kvm_memslots *slots;
1873 	struct kvm_memory_slot *memslot;
1874 	int i, as_id, id;
1875 	unsigned long n;
1876 	unsigned long *dirty_bitmap;
1877 	unsigned long *dirty_bitmap_buffer;
1878 	bool flush;
1879 
1880 	/* Dirty ring tracking is exclusive to dirty log tracking */
1881 	if (kvm->dirty_ring_size)
1882 		return -ENXIO;
1883 
1884 	as_id = log->slot >> 16;
1885 	id = (u16)log->slot;
1886 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1887 		return -EINVAL;
1888 
1889 	slots = __kvm_memslots(kvm, as_id);
1890 	memslot = id_to_memslot(slots, id);
1891 	if (!memslot || !memslot->dirty_bitmap)
1892 		return -ENOENT;
1893 
1894 	dirty_bitmap = memslot->dirty_bitmap;
1895 
1896 	kvm_arch_sync_dirty_log(kvm, memslot);
1897 
1898 	n = kvm_dirty_bitmap_bytes(memslot);
1899 	flush = false;
1900 	if (kvm->manual_dirty_log_protect) {
1901 		/*
1902 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1903 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1904 		 * is some code duplication between this function and
1905 		 * kvm_get_dirty_log, but hopefully all architecture
1906 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1907 		 * can be eliminated.
1908 		 */
1909 		dirty_bitmap_buffer = dirty_bitmap;
1910 	} else {
1911 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1912 		memset(dirty_bitmap_buffer, 0, n);
1913 
1914 		KVM_MMU_LOCK(kvm);
1915 		for (i = 0; i < n / sizeof(long); i++) {
1916 			unsigned long mask;
1917 			gfn_t offset;
1918 
1919 			if (!dirty_bitmap[i])
1920 				continue;
1921 
1922 			flush = true;
1923 			mask = xchg(&dirty_bitmap[i], 0);
1924 			dirty_bitmap_buffer[i] = mask;
1925 
1926 			offset = i * BITS_PER_LONG;
1927 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1928 								offset, mask);
1929 		}
1930 		KVM_MMU_UNLOCK(kvm);
1931 	}
1932 
1933 	if (flush)
1934 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1935 
1936 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1937 		return -EFAULT;
1938 	return 0;
1939 }
1940 
1941 
1942 /**
1943  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1944  * @kvm: kvm instance
1945  * @log: slot id and address to which we copy the log
1946  *
1947  * Steps 1-4 below provide general overview of dirty page logging. See
1948  * kvm_get_dirty_log_protect() function description for additional details.
1949  *
1950  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1951  * always flush the TLB (step 4) even if previous step failed  and the dirty
1952  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1953  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1954  * writes will be marked dirty for next log read.
1955  *
1956  *   1. Take a snapshot of the bit and clear it if needed.
1957  *   2. Write protect the corresponding page.
1958  *   3. Copy the snapshot to the userspace.
1959  *   4. Flush TLB's if needed.
1960  */
1961 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1962 				      struct kvm_dirty_log *log)
1963 {
1964 	int r;
1965 
1966 	mutex_lock(&kvm->slots_lock);
1967 
1968 	r = kvm_get_dirty_log_protect(kvm, log);
1969 
1970 	mutex_unlock(&kvm->slots_lock);
1971 	return r;
1972 }
1973 
1974 /**
1975  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1976  *	and reenable dirty page tracking for the corresponding pages.
1977  * @kvm:	pointer to kvm instance
1978  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1979  */
1980 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1981 				       struct kvm_clear_dirty_log *log)
1982 {
1983 	struct kvm_memslots *slots;
1984 	struct kvm_memory_slot *memslot;
1985 	int as_id, id;
1986 	gfn_t offset;
1987 	unsigned long i, n;
1988 	unsigned long *dirty_bitmap;
1989 	unsigned long *dirty_bitmap_buffer;
1990 	bool flush;
1991 
1992 	/* Dirty ring tracking is exclusive to dirty log tracking */
1993 	if (kvm->dirty_ring_size)
1994 		return -ENXIO;
1995 
1996 	as_id = log->slot >> 16;
1997 	id = (u16)log->slot;
1998 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1999 		return -EINVAL;
2000 
2001 	if (log->first_page & 63)
2002 		return -EINVAL;
2003 
2004 	slots = __kvm_memslots(kvm, as_id);
2005 	memslot = id_to_memslot(slots, id);
2006 	if (!memslot || !memslot->dirty_bitmap)
2007 		return -ENOENT;
2008 
2009 	dirty_bitmap = memslot->dirty_bitmap;
2010 
2011 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2012 
2013 	if (log->first_page > memslot->npages ||
2014 	    log->num_pages > memslot->npages - log->first_page ||
2015 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2016 	    return -EINVAL;
2017 
2018 	kvm_arch_sync_dirty_log(kvm, memslot);
2019 
2020 	flush = false;
2021 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2022 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2023 		return -EFAULT;
2024 
2025 	KVM_MMU_LOCK(kvm);
2026 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2027 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2028 	     i++, offset += BITS_PER_LONG) {
2029 		unsigned long mask = *dirty_bitmap_buffer++;
2030 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2031 		if (!mask)
2032 			continue;
2033 
2034 		mask &= atomic_long_fetch_andnot(mask, p);
2035 
2036 		/*
2037 		 * mask contains the bits that really have been cleared.  This
2038 		 * never includes any bits beyond the length of the memslot (if
2039 		 * the length is not aligned to 64 pages), therefore it is not
2040 		 * a problem if userspace sets them in log->dirty_bitmap.
2041 		*/
2042 		if (mask) {
2043 			flush = true;
2044 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2045 								offset, mask);
2046 		}
2047 	}
2048 	KVM_MMU_UNLOCK(kvm);
2049 
2050 	if (flush)
2051 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2052 
2053 	return 0;
2054 }
2055 
2056 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2057 					struct kvm_clear_dirty_log *log)
2058 {
2059 	int r;
2060 
2061 	mutex_lock(&kvm->slots_lock);
2062 
2063 	r = kvm_clear_dirty_log_protect(kvm, log);
2064 
2065 	mutex_unlock(&kvm->slots_lock);
2066 	return r;
2067 }
2068 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2069 
2070 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2071 {
2072 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2075 
2076 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2077 {
2078 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2079 	struct kvm_memory_slot *slot;
2080 	int slot_index;
2081 
2082 	slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2083 	if (slot)
2084 		return slot;
2085 
2086 	/*
2087 	 * Fall back to searching all memslots. We purposely use
2088 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2089 	 * thrashing the VM-wide last_used_index in kvm_memslots.
2090 	 */
2091 	slot = search_memslots(slots, gfn, &slot_index);
2092 	if (slot) {
2093 		vcpu->last_used_slot = slot_index;
2094 		return slot;
2095 	}
2096 
2097 	return NULL;
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2100 
2101 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2102 {
2103 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2104 
2105 	return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2108 
2109 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2112 
2113 	return kvm_is_visible_memslot(memslot);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2116 
2117 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2118 {
2119 	struct vm_area_struct *vma;
2120 	unsigned long addr, size;
2121 
2122 	size = PAGE_SIZE;
2123 
2124 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2125 	if (kvm_is_error_hva(addr))
2126 		return PAGE_SIZE;
2127 
2128 	mmap_read_lock(current->mm);
2129 	vma = find_vma(current->mm, addr);
2130 	if (!vma)
2131 		goto out;
2132 
2133 	size = vma_kernel_pagesize(vma);
2134 
2135 out:
2136 	mmap_read_unlock(current->mm);
2137 
2138 	return size;
2139 }
2140 
2141 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2142 {
2143 	return slot->flags & KVM_MEM_READONLY;
2144 }
2145 
2146 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2147 				       gfn_t *nr_pages, bool write)
2148 {
2149 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2150 		return KVM_HVA_ERR_BAD;
2151 
2152 	if (memslot_is_readonly(slot) && write)
2153 		return KVM_HVA_ERR_RO_BAD;
2154 
2155 	if (nr_pages)
2156 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2157 
2158 	return __gfn_to_hva_memslot(slot, gfn);
2159 }
2160 
2161 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2162 				     gfn_t *nr_pages)
2163 {
2164 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2165 }
2166 
2167 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2168 					gfn_t gfn)
2169 {
2170 	return gfn_to_hva_many(slot, gfn, NULL);
2171 }
2172 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2173 
2174 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2175 {
2176 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2177 }
2178 EXPORT_SYMBOL_GPL(gfn_to_hva);
2179 
2180 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2185 
2186 /*
2187  * Return the hva of a @gfn and the R/W attribute if possible.
2188  *
2189  * @slot: the kvm_memory_slot which contains @gfn
2190  * @gfn: the gfn to be translated
2191  * @writable: used to return the read/write attribute of the @slot if the hva
2192  * is valid and @writable is not NULL
2193  */
2194 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2195 				      gfn_t gfn, bool *writable)
2196 {
2197 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2198 
2199 	if (!kvm_is_error_hva(hva) && writable)
2200 		*writable = !memslot_is_readonly(slot);
2201 
2202 	return hva;
2203 }
2204 
2205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2206 {
2207 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2208 
2209 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2210 }
2211 
2212 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2213 {
2214 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2215 
2216 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2217 }
2218 
2219 static inline int check_user_page_hwpoison(unsigned long addr)
2220 {
2221 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2222 
2223 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2224 	return rc == -EHWPOISON;
2225 }
2226 
2227 /*
2228  * The fast path to get the writable pfn which will be stored in @pfn,
2229  * true indicates success, otherwise false is returned.  It's also the
2230  * only part that runs if we can in atomic context.
2231  */
2232 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2233 			    bool *writable, kvm_pfn_t *pfn)
2234 {
2235 	struct page *page[1];
2236 
2237 	/*
2238 	 * Fast pin a writable pfn only if it is a write fault request
2239 	 * or the caller allows to map a writable pfn for a read fault
2240 	 * request.
2241 	 */
2242 	if (!(write_fault || writable))
2243 		return false;
2244 
2245 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2246 		*pfn = page_to_pfn(page[0]);
2247 
2248 		if (writable)
2249 			*writable = true;
2250 		return true;
2251 	}
2252 
2253 	return false;
2254 }
2255 
2256 /*
2257  * The slow path to get the pfn of the specified host virtual address,
2258  * 1 indicates success, -errno is returned if error is detected.
2259  */
2260 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2261 			   bool *writable, kvm_pfn_t *pfn)
2262 {
2263 	unsigned int flags = FOLL_HWPOISON;
2264 	struct page *page;
2265 	int npages = 0;
2266 
2267 	might_sleep();
2268 
2269 	if (writable)
2270 		*writable = write_fault;
2271 
2272 	if (write_fault)
2273 		flags |= FOLL_WRITE;
2274 	if (async)
2275 		flags |= FOLL_NOWAIT;
2276 
2277 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2278 	if (npages != 1)
2279 		return npages;
2280 
2281 	/* map read fault as writable if possible */
2282 	if (unlikely(!write_fault) && writable) {
2283 		struct page *wpage;
2284 
2285 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2286 			*writable = true;
2287 			put_page(page);
2288 			page = wpage;
2289 		}
2290 	}
2291 	*pfn = page_to_pfn(page);
2292 	return npages;
2293 }
2294 
2295 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2296 {
2297 	if (unlikely(!(vma->vm_flags & VM_READ)))
2298 		return false;
2299 
2300 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2301 		return false;
2302 
2303 	return true;
2304 }
2305 
2306 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2307 {
2308 	if (kvm_is_reserved_pfn(pfn))
2309 		return 1;
2310 	return get_page_unless_zero(pfn_to_page(pfn));
2311 }
2312 
2313 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2314 			       unsigned long addr, bool *async,
2315 			       bool write_fault, bool *writable,
2316 			       kvm_pfn_t *p_pfn)
2317 {
2318 	kvm_pfn_t pfn;
2319 	pte_t *ptep;
2320 	spinlock_t *ptl;
2321 	int r;
2322 
2323 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2324 	if (r) {
2325 		/*
2326 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2327 		 * not call the fault handler, so do it here.
2328 		 */
2329 		bool unlocked = false;
2330 		r = fixup_user_fault(current->mm, addr,
2331 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2332 				     &unlocked);
2333 		if (unlocked)
2334 			return -EAGAIN;
2335 		if (r)
2336 			return r;
2337 
2338 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2339 		if (r)
2340 			return r;
2341 	}
2342 
2343 	if (write_fault && !pte_write(*ptep)) {
2344 		pfn = KVM_PFN_ERR_RO_FAULT;
2345 		goto out;
2346 	}
2347 
2348 	if (writable)
2349 		*writable = pte_write(*ptep);
2350 	pfn = pte_pfn(*ptep);
2351 
2352 	/*
2353 	 * Get a reference here because callers of *hva_to_pfn* and
2354 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2355 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2356 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2357 	 * simply do nothing for reserved pfns.
2358 	 *
2359 	 * Whoever called remap_pfn_range is also going to call e.g.
2360 	 * unmap_mapping_range before the underlying pages are freed,
2361 	 * causing a call to our MMU notifier.
2362 	 *
2363 	 * Certain IO or PFNMAP mappings can be backed with valid
2364 	 * struct pages, but be allocated without refcounting e.g.,
2365 	 * tail pages of non-compound higher order allocations, which
2366 	 * would then underflow the refcount when the caller does the
2367 	 * required put_page. Don't allow those pages here.
2368 	 */
2369 	if (!kvm_try_get_pfn(pfn))
2370 		r = -EFAULT;
2371 
2372 out:
2373 	pte_unmap_unlock(ptep, ptl);
2374 	*p_pfn = pfn;
2375 
2376 	return r;
2377 }
2378 
2379 /*
2380  * Pin guest page in memory and return its pfn.
2381  * @addr: host virtual address which maps memory to the guest
2382  * @atomic: whether this function can sleep
2383  * @async: whether this function need to wait IO complete if the
2384  *         host page is not in the memory
2385  * @write_fault: whether we should get a writable host page
2386  * @writable: whether it allows to map a writable host page for !@write_fault
2387  *
2388  * The function will map a writable host page for these two cases:
2389  * 1): @write_fault = true
2390  * 2): @write_fault = false && @writable, @writable will tell the caller
2391  *     whether the mapping is writable.
2392  */
2393 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2394 			bool write_fault, bool *writable)
2395 {
2396 	struct vm_area_struct *vma;
2397 	kvm_pfn_t pfn = 0;
2398 	int npages, r;
2399 
2400 	/* we can do it either atomically or asynchronously, not both */
2401 	BUG_ON(atomic && async);
2402 
2403 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2404 		return pfn;
2405 
2406 	if (atomic)
2407 		return KVM_PFN_ERR_FAULT;
2408 
2409 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2410 	if (npages == 1)
2411 		return pfn;
2412 
2413 	mmap_read_lock(current->mm);
2414 	if (npages == -EHWPOISON ||
2415 	      (!async && check_user_page_hwpoison(addr))) {
2416 		pfn = KVM_PFN_ERR_HWPOISON;
2417 		goto exit;
2418 	}
2419 
2420 retry:
2421 	vma = vma_lookup(current->mm, addr);
2422 
2423 	if (vma == NULL)
2424 		pfn = KVM_PFN_ERR_FAULT;
2425 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2426 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2427 		if (r == -EAGAIN)
2428 			goto retry;
2429 		if (r < 0)
2430 			pfn = KVM_PFN_ERR_FAULT;
2431 	} else {
2432 		if (async && vma_is_valid(vma, write_fault))
2433 			*async = true;
2434 		pfn = KVM_PFN_ERR_FAULT;
2435 	}
2436 exit:
2437 	mmap_read_unlock(current->mm);
2438 	return pfn;
2439 }
2440 
2441 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2442 			       bool atomic, bool *async, bool write_fault,
2443 			       bool *writable, hva_t *hva)
2444 {
2445 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2446 
2447 	if (hva)
2448 		*hva = addr;
2449 
2450 	if (addr == KVM_HVA_ERR_RO_BAD) {
2451 		if (writable)
2452 			*writable = false;
2453 		return KVM_PFN_ERR_RO_FAULT;
2454 	}
2455 
2456 	if (kvm_is_error_hva(addr)) {
2457 		if (writable)
2458 			*writable = false;
2459 		return KVM_PFN_NOSLOT;
2460 	}
2461 
2462 	/* Do not map writable pfn in the readonly memslot. */
2463 	if (writable && memslot_is_readonly(slot)) {
2464 		*writable = false;
2465 		writable = NULL;
2466 	}
2467 
2468 	return hva_to_pfn(addr, atomic, async, write_fault,
2469 			  writable);
2470 }
2471 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2472 
2473 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2474 		      bool *writable)
2475 {
2476 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2477 				    write_fault, writable, NULL);
2478 }
2479 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2480 
2481 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2482 {
2483 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2484 }
2485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2486 
2487 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2488 {
2489 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2490 }
2491 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2492 
2493 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2494 {
2495 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2498 
2499 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2500 {
2501 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2502 }
2503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2504 
2505 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2506 {
2507 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2510 
2511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2512 			    struct page **pages, int nr_pages)
2513 {
2514 	unsigned long addr;
2515 	gfn_t entry = 0;
2516 
2517 	addr = gfn_to_hva_many(slot, gfn, &entry);
2518 	if (kvm_is_error_hva(addr))
2519 		return -1;
2520 
2521 	if (entry < nr_pages)
2522 		return 0;
2523 
2524 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2525 }
2526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2527 
2528 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2529 {
2530 	if (is_error_noslot_pfn(pfn))
2531 		return KVM_ERR_PTR_BAD_PAGE;
2532 
2533 	if (kvm_is_reserved_pfn(pfn)) {
2534 		WARN_ON(1);
2535 		return KVM_ERR_PTR_BAD_PAGE;
2536 	}
2537 
2538 	return pfn_to_page(pfn);
2539 }
2540 
2541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2542 {
2543 	kvm_pfn_t pfn;
2544 
2545 	pfn = gfn_to_pfn(kvm, gfn);
2546 
2547 	return kvm_pfn_to_page(pfn);
2548 }
2549 EXPORT_SYMBOL_GPL(gfn_to_page);
2550 
2551 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2552 {
2553 	if (pfn == 0)
2554 		return;
2555 
2556 	if (cache)
2557 		cache->pfn = cache->gfn = 0;
2558 
2559 	if (dirty)
2560 		kvm_release_pfn_dirty(pfn);
2561 	else
2562 		kvm_release_pfn_clean(pfn);
2563 }
2564 
2565 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2566 				 struct gfn_to_pfn_cache *cache, u64 gen)
2567 {
2568 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2569 
2570 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2571 	cache->gfn = gfn;
2572 	cache->dirty = false;
2573 	cache->generation = gen;
2574 }
2575 
2576 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2577 			 struct kvm_host_map *map,
2578 			 struct gfn_to_pfn_cache *cache,
2579 			 bool atomic)
2580 {
2581 	kvm_pfn_t pfn;
2582 	void *hva = NULL;
2583 	struct page *page = KVM_UNMAPPED_PAGE;
2584 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2585 	u64 gen = slots->generation;
2586 
2587 	if (!map)
2588 		return -EINVAL;
2589 
2590 	if (cache) {
2591 		if (!cache->pfn || cache->gfn != gfn ||
2592 			cache->generation != gen) {
2593 			if (atomic)
2594 				return -EAGAIN;
2595 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2596 		}
2597 		pfn = cache->pfn;
2598 	} else {
2599 		if (atomic)
2600 			return -EAGAIN;
2601 		pfn = gfn_to_pfn_memslot(slot, gfn);
2602 	}
2603 	if (is_error_noslot_pfn(pfn))
2604 		return -EINVAL;
2605 
2606 	if (pfn_valid(pfn)) {
2607 		page = pfn_to_page(pfn);
2608 		if (atomic)
2609 			hva = kmap_atomic(page);
2610 		else
2611 			hva = kmap(page);
2612 #ifdef CONFIG_HAS_IOMEM
2613 	} else if (!atomic) {
2614 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2615 	} else {
2616 		return -EINVAL;
2617 #endif
2618 	}
2619 
2620 	if (!hva)
2621 		return -EFAULT;
2622 
2623 	map->page = page;
2624 	map->hva = hva;
2625 	map->pfn = pfn;
2626 	map->gfn = gfn;
2627 
2628 	return 0;
2629 }
2630 
2631 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2632 		struct gfn_to_pfn_cache *cache, bool atomic)
2633 {
2634 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2635 			cache, atomic);
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2638 
2639 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2640 {
2641 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2642 		NULL, false);
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2645 
2646 static void __kvm_unmap_gfn(struct kvm *kvm,
2647 			struct kvm_memory_slot *memslot,
2648 			struct kvm_host_map *map,
2649 			struct gfn_to_pfn_cache *cache,
2650 			bool dirty, bool atomic)
2651 {
2652 	if (!map)
2653 		return;
2654 
2655 	if (!map->hva)
2656 		return;
2657 
2658 	if (map->page != KVM_UNMAPPED_PAGE) {
2659 		if (atomic)
2660 			kunmap_atomic(map->hva);
2661 		else
2662 			kunmap(map->page);
2663 	}
2664 #ifdef CONFIG_HAS_IOMEM
2665 	else if (!atomic)
2666 		memunmap(map->hva);
2667 	else
2668 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2669 #endif
2670 
2671 	if (dirty)
2672 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2673 
2674 	if (cache)
2675 		cache->dirty |= dirty;
2676 	else
2677 		kvm_release_pfn(map->pfn, dirty, NULL);
2678 
2679 	map->hva = NULL;
2680 	map->page = NULL;
2681 }
2682 
2683 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2684 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2685 {
2686 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2687 			cache, dirty, atomic);
2688 	return 0;
2689 }
2690 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2691 
2692 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2693 {
2694 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2695 			map, NULL, dirty, false);
2696 }
2697 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2698 
2699 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2700 {
2701 	kvm_pfn_t pfn;
2702 
2703 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2704 
2705 	return kvm_pfn_to_page(pfn);
2706 }
2707 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2708 
2709 void kvm_release_page_clean(struct page *page)
2710 {
2711 	WARN_ON(is_error_page(page));
2712 
2713 	kvm_release_pfn_clean(page_to_pfn(page));
2714 }
2715 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2716 
2717 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2718 {
2719 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2720 		put_page(pfn_to_page(pfn));
2721 }
2722 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2723 
2724 void kvm_release_page_dirty(struct page *page)
2725 {
2726 	WARN_ON(is_error_page(page));
2727 
2728 	kvm_release_pfn_dirty(page_to_pfn(page));
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2731 
2732 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2733 {
2734 	kvm_set_pfn_dirty(pfn);
2735 	kvm_release_pfn_clean(pfn);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2738 
2739 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2740 {
2741 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2742 		SetPageDirty(pfn_to_page(pfn));
2743 }
2744 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2745 
2746 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2747 {
2748 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2749 		mark_page_accessed(pfn_to_page(pfn));
2750 }
2751 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2752 
2753 static int next_segment(unsigned long len, int offset)
2754 {
2755 	if (len > PAGE_SIZE - offset)
2756 		return PAGE_SIZE - offset;
2757 	else
2758 		return len;
2759 }
2760 
2761 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2762 				 void *data, int offset, int len)
2763 {
2764 	int r;
2765 	unsigned long addr;
2766 
2767 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2768 	if (kvm_is_error_hva(addr))
2769 		return -EFAULT;
2770 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2771 	if (r)
2772 		return -EFAULT;
2773 	return 0;
2774 }
2775 
2776 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2777 			int len)
2778 {
2779 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2780 
2781 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2782 }
2783 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2784 
2785 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2786 			     int offset, int len)
2787 {
2788 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2789 
2790 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2791 }
2792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2793 
2794 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2795 {
2796 	gfn_t gfn = gpa >> PAGE_SHIFT;
2797 	int seg;
2798 	int offset = offset_in_page(gpa);
2799 	int ret;
2800 
2801 	while ((seg = next_segment(len, offset)) != 0) {
2802 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2803 		if (ret < 0)
2804 			return ret;
2805 		offset = 0;
2806 		len -= seg;
2807 		data += seg;
2808 		++gfn;
2809 	}
2810 	return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(kvm_read_guest);
2813 
2814 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2815 {
2816 	gfn_t gfn = gpa >> PAGE_SHIFT;
2817 	int seg;
2818 	int offset = offset_in_page(gpa);
2819 	int ret;
2820 
2821 	while ((seg = next_segment(len, offset)) != 0) {
2822 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2823 		if (ret < 0)
2824 			return ret;
2825 		offset = 0;
2826 		len -= seg;
2827 		data += seg;
2828 		++gfn;
2829 	}
2830 	return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2833 
2834 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2835 			           void *data, int offset, unsigned long len)
2836 {
2837 	int r;
2838 	unsigned long addr;
2839 
2840 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2841 	if (kvm_is_error_hva(addr))
2842 		return -EFAULT;
2843 	pagefault_disable();
2844 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2845 	pagefault_enable();
2846 	if (r)
2847 		return -EFAULT;
2848 	return 0;
2849 }
2850 
2851 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2852 			       void *data, unsigned long len)
2853 {
2854 	gfn_t gfn = gpa >> PAGE_SHIFT;
2855 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2856 	int offset = offset_in_page(gpa);
2857 
2858 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2859 }
2860 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2861 
2862 static int __kvm_write_guest_page(struct kvm *kvm,
2863 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2864 			          const void *data, int offset, int len)
2865 {
2866 	int r;
2867 	unsigned long addr;
2868 
2869 	addr = gfn_to_hva_memslot(memslot, gfn);
2870 	if (kvm_is_error_hva(addr))
2871 		return -EFAULT;
2872 	r = __copy_to_user((void __user *)addr + offset, data, len);
2873 	if (r)
2874 		return -EFAULT;
2875 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2876 	return 0;
2877 }
2878 
2879 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2880 			 const void *data, int offset, int len)
2881 {
2882 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2883 
2884 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2887 
2888 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2889 			      const void *data, int offset, int len)
2890 {
2891 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2892 
2893 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2894 }
2895 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2896 
2897 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2898 		    unsigned long len)
2899 {
2900 	gfn_t gfn = gpa >> PAGE_SHIFT;
2901 	int seg;
2902 	int offset = offset_in_page(gpa);
2903 	int ret;
2904 
2905 	while ((seg = next_segment(len, offset)) != 0) {
2906 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2907 		if (ret < 0)
2908 			return ret;
2909 		offset = 0;
2910 		len -= seg;
2911 		data += seg;
2912 		++gfn;
2913 	}
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(kvm_write_guest);
2917 
2918 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2919 		         unsigned long len)
2920 {
2921 	gfn_t gfn = gpa >> PAGE_SHIFT;
2922 	int seg;
2923 	int offset = offset_in_page(gpa);
2924 	int ret;
2925 
2926 	while ((seg = next_segment(len, offset)) != 0) {
2927 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2928 		if (ret < 0)
2929 			return ret;
2930 		offset = 0;
2931 		len -= seg;
2932 		data += seg;
2933 		++gfn;
2934 	}
2935 	return 0;
2936 }
2937 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2938 
2939 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2940 				       struct gfn_to_hva_cache *ghc,
2941 				       gpa_t gpa, unsigned long len)
2942 {
2943 	int offset = offset_in_page(gpa);
2944 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2945 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2946 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2947 	gfn_t nr_pages_avail;
2948 
2949 	/* Update ghc->generation before performing any error checks. */
2950 	ghc->generation = slots->generation;
2951 
2952 	if (start_gfn > end_gfn) {
2953 		ghc->hva = KVM_HVA_ERR_BAD;
2954 		return -EINVAL;
2955 	}
2956 
2957 	/*
2958 	 * If the requested region crosses two memslots, we still
2959 	 * verify that the entire region is valid here.
2960 	 */
2961 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2962 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2963 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2964 					   &nr_pages_avail);
2965 		if (kvm_is_error_hva(ghc->hva))
2966 			return -EFAULT;
2967 	}
2968 
2969 	/* Use the slow path for cross page reads and writes. */
2970 	if (nr_pages_needed == 1)
2971 		ghc->hva += offset;
2972 	else
2973 		ghc->memslot = NULL;
2974 
2975 	ghc->gpa = gpa;
2976 	ghc->len = len;
2977 	return 0;
2978 }
2979 
2980 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2981 			      gpa_t gpa, unsigned long len)
2982 {
2983 	struct kvm_memslots *slots = kvm_memslots(kvm);
2984 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2987 
2988 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2989 				  void *data, unsigned int offset,
2990 				  unsigned long len)
2991 {
2992 	struct kvm_memslots *slots = kvm_memslots(kvm);
2993 	int r;
2994 	gpa_t gpa = ghc->gpa + offset;
2995 
2996 	BUG_ON(len + offset > ghc->len);
2997 
2998 	if (slots->generation != ghc->generation) {
2999 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3000 			return -EFAULT;
3001 	}
3002 
3003 	if (kvm_is_error_hva(ghc->hva))
3004 		return -EFAULT;
3005 
3006 	if (unlikely(!ghc->memslot))
3007 		return kvm_write_guest(kvm, gpa, data, len);
3008 
3009 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3010 	if (r)
3011 		return -EFAULT;
3012 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3013 
3014 	return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3017 
3018 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3019 			   void *data, unsigned long len)
3020 {
3021 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3022 }
3023 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3024 
3025 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3026 				 void *data, unsigned int offset,
3027 				 unsigned long len)
3028 {
3029 	struct kvm_memslots *slots = kvm_memslots(kvm);
3030 	int r;
3031 	gpa_t gpa = ghc->gpa + offset;
3032 
3033 	BUG_ON(len + offset > ghc->len);
3034 
3035 	if (slots->generation != ghc->generation) {
3036 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3037 			return -EFAULT;
3038 	}
3039 
3040 	if (kvm_is_error_hva(ghc->hva))
3041 		return -EFAULT;
3042 
3043 	if (unlikely(!ghc->memslot))
3044 		return kvm_read_guest(kvm, gpa, data, len);
3045 
3046 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3047 	if (r)
3048 		return -EFAULT;
3049 
3050 	return 0;
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3053 
3054 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3055 			  void *data, unsigned long len)
3056 {
3057 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3060 
3061 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3062 {
3063 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3064 	gfn_t gfn = gpa >> PAGE_SHIFT;
3065 	int seg;
3066 	int offset = offset_in_page(gpa);
3067 	int ret;
3068 
3069 	while ((seg = next_segment(len, offset)) != 0) {
3070 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3071 		if (ret < 0)
3072 			return ret;
3073 		offset = 0;
3074 		len -= seg;
3075 		++gfn;
3076 	}
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3080 
3081 void mark_page_dirty_in_slot(struct kvm *kvm,
3082 			     struct kvm_memory_slot *memslot,
3083 		 	     gfn_t gfn)
3084 {
3085 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3086 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3087 		u32 slot = (memslot->as_id << 16) | memslot->id;
3088 
3089 		if (kvm->dirty_ring_size)
3090 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3091 					    slot, rel_gfn);
3092 		else
3093 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3094 	}
3095 }
3096 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3097 
3098 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3099 {
3100 	struct kvm_memory_slot *memslot;
3101 
3102 	memslot = gfn_to_memslot(kvm, gfn);
3103 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3104 }
3105 EXPORT_SYMBOL_GPL(mark_page_dirty);
3106 
3107 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3108 {
3109 	struct kvm_memory_slot *memslot;
3110 
3111 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3112 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3113 }
3114 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3115 
3116 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3117 {
3118 	if (!vcpu->sigset_active)
3119 		return;
3120 
3121 	/*
3122 	 * This does a lockless modification of ->real_blocked, which is fine
3123 	 * because, only current can change ->real_blocked and all readers of
3124 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3125 	 * of ->blocked.
3126 	 */
3127 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3128 }
3129 
3130 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3131 {
3132 	if (!vcpu->sigset_active)
3133 		return;
3134 
3135 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3136 	sigemptyset(&current->real_blocked);
3137 }
3138 
3139 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3140 {
3141 	unsigned int old, val, grow, grow_start;
3142 
3143 	old = val = vcpu->halt_poll_ns;
3144 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3145 	grow = READ_ONCE(halt_poll_ns_grow);
3146 	if (!grow)
3147 		goto out;
3148 
3149 	val *= grow;
3150 	if (val < grow_start)
3151 		val = grow_start;
3152 
3153 	if (val > vcpu->kvm->max_halt_poll_ns)
3154 		val = vcpu->kvm->max_halt_poll_ns;
3155 
3156 	vcpu->halt_poll_ns = val;
3157 out:
3158 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3159 }
3160 
3161 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3162 {
3163 	unsigned int old, val, shrink, grow_start;
3164 
3165 	old = val = vcpu->halt_poll_ns;
3166 	shrink = READ_ONCE(halt_poll_ns_shrink);
3167 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3168 	if (shrink == 0)
3169 		val = 0;
3170 	else
3171 		val /= shrink;
3172 
3173 	if (val < grow_start)
3174 		val = 0;
3175 
3176 	vcpu->halt_poll_ns = val;
3177 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3178 }
3179 
3180 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3181 {
3182 	int ret = -EINTR;
3183 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3184 
3185 	if (kvm_arch_vcpu_runnable(vcpu)) {
3186 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3187 		goto out;
3188 	}
3189 	if (kvm_cpu_has_pending_timer(vcpu))
3190 		goto out;
3191 	if (signal_pending(current))
3192 		goto out;
3193 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3194 		goto out;
3195 
3196 	ret = 0;
3197 out:
3198 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3199 	return ret;
3200 }
3201 
3202 static inline void
3203 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3204 {
3205 	if (waited)
3206 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3207 	else
3208 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3209 }
3210 
3211 /*
3212  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3213  */
3214 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3215 {
3216 	ktime_t start, cur, poll_end;
3217 	bool waited = false;
3218 	u64 block_ns;
3219 
3220 	kvm_arch_vcpu_blocking(vcpu);
3221 
3222 	start = cur = poll_end = ktime_get();
3223 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3224 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3225 
3226 		++vcpu->stat.generic.halt_attempted_poll;
3227 		do {
3228 			/*
3229 			 * This sets KVM_REQ_UNHALT if an interrupt
3230 			 * arrives.
3231 			 */
3232 			if (kvm_vcpu_check_block(vcpu) < 0) {
3233 				++vcpu->stat.generic.halt_successful_poll;
3234 				if (!vcpu_valid_wakeup(vcpu))
3235 					++vcpu->stat.generic.halt_poll_invalid;
3236 
3237 				KVM_STATS_LOG_HIST_UPDATE(
3238 				      vcpu->stat.generic.halt_poll_success_hist,
3239 				      ktime_to_ns(ktime_get()) -
3240 				      ktime_to_ns(start));
3241 				goto out;
3242 			}
3243 			cpu_relax();
3244 			poll_end = cur = ktime_get();
3245 		} while (kvm_vcpu_can_poll(cur, stop));
3246 
3247 		KVM_STATS_LOG_HIST_UPDATE(
3248 				vcpu->stat.generic.halt_poll_fail_hist,
3249 				ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3250 	}
3251 
3252 
3253 	prepare_to_rcuwait(&vcpu->wait);
3254 	for (;;) {
3255 		set_current_state(TASK_INTERRUPTIBLE);
3256 
3257 		if (kvm_vcpu_check_block(vcpu) < 0)
3258 			break;
3259 
3260 		waited = true;
3261 		schedule();
3262 	}
3263 	finish_rcuwait(&vcpu->wait);
3264 	cur = ktime_get();
3265 	if (waited) {
3266 		vcpu->stat.generic.halt_wait_ns +=
3267 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3268 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3269 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3270 	}
3271 out:
3272 	kvm_arch_vcpu_unblocking(vcpu);
3273 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3274 
3275 	update_halt_poll_stats(
3276 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3277 
3278 	if (!kvm_arch_no_poll(vcpu)) {
3279 		if (!vcpu_valid_wakeup(vcpu)) {
3280 			shrink_halt_poll_ns(vcpu);
3281 		} else if (vcpu->kvm->max_halt_poll_ns) {
3282 			if (block_ns <= vcpu->halt_poll_ns)
3283 				;
3284 			/* we had a long block, shrink polling */
3285 			else if (vcpu->halt_poll_ns &&
3286 					block_ns > vcpu->kvm->max_halt_poll_ns)
3287 				shrink_halt_poll_ns(vcpu);
3288 			/* we had a short halt and our poll time is too small */
3289 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3290 					block_ns < vcpu->kvm->max_halt_poll_ns)
3291 				grow_halt_poll_ns(vcpu);
3292 		} else {
3293 			vcpu->halt_poll_ns = 0;
3294 		}
3295 	}
3296 
3297 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3298 	kvm_arch_vcpu_block_finish(vcpu);
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3301 
3302 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3303 {
3304 	struct rcuwait *waitp;
3305 
3306 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3307 	if (rcuwait_wake_up(waitp)) {
3308 		WRITE_ONCE(vcpu->ready, true);
3309 		++vcpu->stat.generic.halt_wakeup;
3310 		return true;
3311 	}
3312 
3313 	return false;
3314 }
3315 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3316 
3317 #ifndef CONFIG_S390
3318 /*
3319  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3320  */
3321 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3322 {
3323 	int me, cpu;
3324 
3325 	if (kvm_vcpu_wake_up(vcpu))
3326 		return;
3327 
3328 	/*
3329 	 * Note, the vCPU could get migrated to a different pCPU at any point
3330 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3331 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3332 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3333 	 * vCPU also requires it to leave IN_GUEST_MODE.
3334 	 */
3335 	me = get_cpu();
3336 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3337 		cpu = READ_ONCE(vcpu->cpu);
3338 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3339 			smp_send_reschedule(cpu);
3340 	}
3341 	put_cpu();
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3344 #endif /* !CONFIG_S390 */
3345 
3346 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3347 {
3348 	struct pid *pid;
3349 	struct task_struct *task = NULL;
3350 	int ret = 0;
3351 
3352 	rcu_read_lock();
3353 	pid = rcu_dereference(target->pid);
3354 	if (pid)
3355 		task = get_pid_task(pid, PIDTYPE_PID);
3356 	rcu_read_unlock();
3357 	if (!task)
3358 		return ret;
3359 	ret = yield_to(task, 1);
3360 	put_task_struct(task);
3361 
3362 	return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3365 
3366 /*
3367  * Helper that checks whether a VCPU is eligible for directed yield.
3368  * Most eligible candidate to yield is decided by following heuristics:
3369  *
3370  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3371  *  (preempted lock holder), indicated by @in_spin_loop.
3372  *  Set at the beginning and cleared at the end of interception/PLE handler.
3373  *
3374  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3375  *  chance last time (mostly it has become eligible now since we have probably
3376  *  yielded to lockholder in last iteration. This is done by toggling
3377  *  @dy_eligible each time a VCPU checked for eligibility.)
3378  *
3379  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3380  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3381  *  burning. Giving priority for a potential lock-holder increases lock
3382  *  progress.
3383  *
3384  *  Since algorithm is based on heuristics, accessing another VCPU data without
3385  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3386  *  and continue with next VCPU and so on.
3387  */
3388 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3389 {
3390 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3391 	bool eligible;
3392 
3393 	eligible = !vcpu->spin_loop.in_spin_loop ||
3394 		    vcpu->spin_loop.dy_eligible;
3395 
3396 	if (vcpu->spin_loop.in_spin_loop)
3397 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3398 
3399 	return eligible;
3400 #else
3401 	return true;
3402 #endif
3403 }
3404 
3405 /*
3406  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3407  * a vcpu_load/vcpu_put pair.  However, for most architectures
3408  * kvm_arch_vcpu_runnable does not require vcpu_load.
3409  */
3410 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3411 {
3412 	return kvm_arch_vcpu_runnable(vcpu);
3413 }
3414 
3415 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3416 {
3417 	if (kvm_arch_dy_runnable(vcpu))
3418 		return true;
3419 
3420 #ifdef CONFIG_KVM_ASYNC_PF
3421 	if (!list_empty_careful(&vcpu->async_pf.done))
3422 		return true;
3423 #endif
3424 
3425 	return false;
3426 }
3427 
3428 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3429 {
3430 	return false;
3431 }
3432 
3433 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3434 {
3435 	struct kvm *kvm = me->kvm;
3436 	struct kvm_vcpu *vcpu;
3437 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3438 	int yielded = 0;
3439 	int try = 3;
3440 	int pass;
3441 	int i;
3442 
3443 	kvm_vcpu_set_in_spin_loop(me, true);
3444 	/*
3445 	 * We boost the priority of a VCPU that is runnable but not
3446 	 * currently running, because it got preempted by something
3447 	 * else and called schedule in __vcpu_run.  Hopefully that
3448 	 * VCPU is holding the lock that we need and will release it.
3449 	 * We approximate round-robin by starting at the last boosted VCPU.
3450 	 */
3451 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3452 		kvm_for_each_vcpu(i, vcpu, kvm) {
3453 			if (!pass && i <= last_boosted_vcpu) {
3454 				i = last_boosted_vcpu;
3455 				continue;
3456 			} else if (pass && i > last_boosted_vcpu)
3457 				break;
3458 			if (!READ_ONCE(vcpu->ready))
3459 				continue;
3460 			if (vcpu == me)
3461 				continue;
3462 			if (rcuwait_active(&vcpu->wait) &&
3463 			    !vcpu_dy_runnable(vcpu))
3464 				continue;
3465 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3466 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3467 			    !kvm_arch_vcpu_in_kernel(vcpu))
3468 				continue;
3469 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3470 				continue;
3471 
3472 			yielded = kvm_vcpu_yield_to(vcpu);
3473 			if (yielded > 0) {
3474 				kvm->last_boosted_vcpu = i;
3475 				break;
3476 			} else if (yielded < 0) {
3477 				try--;
3478 				if (!try)
3479 					break;
3480 			}
3481 		}
3482 	}
3483 	kvm_vcpu_set_in_spin_loop(me, false);
3484 
3485 	/* Ensure vcpu is not eligible during next spinloop */
3486 	kvm_vcpu_set_dy_eligible(me, false);
3487 }
3488 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3489 
3490 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3491 {
3492 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3493 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3494 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3495 	     kvm->dirty_ring_size / PAGE_SIZE);
3496 #else
3497 	return false;
3498 #endif
3499 }
3500 
3501 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3502 {
3503 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3504 	struct page *page;
3505 
3506 	if (vmf->pgoff == 0)
3507 		page = virt_to_page(vcpu->run);
3508 #ifdef CONFIG_X86
3509 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3510 		page = virt_to_page(vcpu->arch.pio_data);
3511 #endif
3512 #ifdef CONFIG_KVM_MMIO
3513 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3514 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3515 #endif
3516 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3517 		page = kvm_dirty_ring_get_page(
3518 		    &vcpu->dirty_ring,
3519 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3520 	else
3521 		return kvm_arch_vcpu_fault(vcpu, vmf);
3522 	get_page(page);
3523 	vmf->page = page;
3524 	return 0;
3525 }
3526 
3527 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3528 	.fault = kvm_vcpu_fault,
3529 };
3530 
3531 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3532 {
3533 	struct kvm_vcpu *vcpu = file->private_data;
3534 	unsigned long pages = vma_pages(vma);
3535 
3536 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3537 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3538 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3539 		return -EINVAL;
3540 
3541 	vma->vm_ops = &kvm_vcpu_vm_ops;
3542 	return 0;
3543 }
3544 
3545 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3546 {
3547 	struct kvm_vcpu *vcpu = filp->private_data;
3548 
3549 	kvm_put_kvm(vcpu->kvm);
3550 	return 0;
3551 }
3552 
3553 static struct file_operations kvm_vcpu_fops = {
3554 	.release        = kvm_vcpu_release,
3555 	.unlocked_ioctl = kvm_vcpu_ioctl,
3556 	.mmap           = kvm_vcpu_mmap,
3557 	.llseek		= noop_llseek,
3558 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3559 };
3560 
3561 /*
3562  * Allocates an inode for the vcpu.
3563  */
3564 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3565 {
3566 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3567 
3568 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3569 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3570 }
3571 
3572 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3573 {
3574 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3575 	struct dentry *debugfs_dentry;
3576 	char dir_name[ITOA_MAX_LEN * 2];
3577 
3578 	if (!debugfs_initialized())
3579 		return;
3580 
3581 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3582 	debugfs_dentry = debugfs_create_dir(dir_name,
3583 					    vcpu->kvm->debugfs_dentry);
3584 
3585 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3586 #endif
3587 }
3588 
3589 /*
3590  * Creates some virtual cpus.  Good luck creating more than one.
3591  */
3592 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3593 {
3594 	int r;
3595 	struct kvm_vcpu *vcpu;
3596 	struct page *page;
3597 
3598 	if (id >= KVM_MAX_VCPU_IDS)
3599 		return -EINVAL;
3600 
3601 	mutex_lock(&kvm->lock);
3602 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3603 		mutex_unlock(&kvm->lock);
3604 		return -EINVAL;
3605 	}
3606 
3607 	kvm->created_vcpus++;
3608 	mutex_unlock(&kvm->lock);
3609 
3610 	r = kvm_arch_vcpu_precreate(kvm, id);
3611 	if (r)
3612 		goto vcpu_decrement;
3613 
3614 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3615 	if (!vcpu) {
3616 		r = -ENOMEM;
3617 		goto vcpu_decrement;
3618 	}
3619 
3620 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3621 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3622 	if (!page) {
3623 		r = -ENOMEM;
3624 		goto vcpu_free;
3625 	}
3626 	vcpu->run = page_address(page);
3627 
3628 	kvm_vcpu_init(vcpu, kvm, id);
3629 
3630 	r = kvm_arch_vcpu_create(vcpu);
3631 	if (r)
3632 		goto vcpu_free_run_page;
3633 
3634 	if (kvm->dirty_ring_size) {
3635 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3636 					 id, kvm->dirty_ring_size);
3637 		if (r)
3638 			goto arch_vcpu_destroy;
3639 	}
3640 
3641 	mutex_lock(&kvm->lock);
3642 	if (kvm_get_vcpu_by_id(kvm, id)) {
3643 		r = -EEXIST;
3644 		goto unlock_vcpu_destroy;
3645 	}
3646 
3647 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3648 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3649 
3650 	/* Fill the stats id string for the vcpu */
3651 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3652 		 task_pid_nr(current), id);
3653 
3654 	/* Now it's all set up, let userspace reach it */
3655 	kvm_get_kvm(kvm);
3656 	r = create_vcpu_fd(vcpu);
3657 	if (r < 0) {
3658 		kvm_put_kvm_no_destroy(kvm);
3659 		goto unlock_vcpu_destroy;
3660 	}
3661 
3662 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3663 
3664 	/*
3665 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3666 	 * before kvm->online_vcpu's incremented value.
3667 	 */
3668 	smp_wmb();
3669 	atomic_inc(&kvm->online_vcpus);
3670 
3671 	mutex_unlock(&kvm->lock);
3672 	kvm_arch_vcpu_postcreate(vcpu);
3673 	kvm_create_vcpu_debugfs(vcpu);
3674 	return r;
3675 
3676 unlock_vcpu_destroy:
3677 	mutex_unlock(&kvm->lock);
3678 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3679 arch_vcpu_destroy:
3680 	kvm_arch_vcpu_destroy(vcpu);
3681 vcpu_free_run_page:
3682 	free_page((unsigned long)vcpu->run);
3683 vcpu_free:
3684 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3685 vcpu_decrement:
3686 	mutex_lock(&kvm->lock);
3687 	kvm->created_vcpus--;
3688 	mutex_unlock(&kvm->lock);
3689 	return r;
3690 }
3691 
3692 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3693 {
3694 	if (sigset) {
3695 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3696 		vcpu->sigset_active = 1;
3697 		vcpu->sigset = *sigset;
3698 	} else
3699 		vcpu->sigset_active = 0;
3700 	return 0;
3701 }
3702 
3703 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3704 			      size_t size, loff_t *offset)
3705 {
3706 	struct kvm_vcpu *vcpu = file->private_data;
3707 
3708 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3709 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3710 			sizeof(vcpu->stat), user_buffer, size, offset);
3711 }
3712 
3713 static const struct file_operations kvm_vcpu_stats_fops = {
3714 	.read = kvm_vcpu_stats_read,
3715 	.llseek = noop_llseek,
3716 };
3717 
3718 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3719 {
3720 	int fd;
3721 	struct file *file;
3722 	char name[15 + ITOA_MAX_LEN + 1];
3723 
3724 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3725 
3726 	fd = get_unused_fd_flags(O_CLOEXEC);
3727 	if (fd < 0)
3728 		return fd;
3729 
3730 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3731 	if (IS_ERR(file)) {
3732 		put_unused_fd(fd);
3733 		return PTR_ERR(file);
3734 	}
3735 	file->f_mode |= FMODE_PREAD;
3736 	fd_install(fd, file);
3737 
3738 	return fd;
3739 }
3740 
3741 static long kvm_vcpu_ioctl(struct file *filp,
3742 			   unsigned int ioctl, unsigned long arg)
3743 {
3744 	struct kvm_vcpu *vcpu = filp->private_data;
3745 	void __user *argp = (void __user *)arg;
3746 	int r;
3747 	struct kvm_fpu *fpu = NULL;
3748 	struct kvm_sregs *kvm_sregs = NULL;
3749 
3750 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3751 		return -EIO;
3752 
3753 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3754 		return -EINVAL;
3755 
3756 	/*
3757 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3758 	 * execution; mutex_lock() would break them.
3759 	 */
3760 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3761 	if (r != -ENOIOCTLCMD)
3762 		return r;
3763 
3764 	if (mutex_lock_killable(&vcpu->mutex))
3765 		return -EINTR;
3766 	switch (ioctl) {
3767 	case KVM_RUN: {
3768 		struct pid *oldpid;
3769 		r = -EINVAL;
3770 		if (arg)
3771 			goto out;
3772 		oldpid = rcu_access_pointer(vcpu->pid);
3773 		if (unlikely(oldpid != task_pid(current))) {
3774 			/* The thread running this VCPU changed. */
3775 			struct pid *newpid;
3776 
3777 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3778 			if (r)
3779 				break;
3780 
3781 			newpid = get_task_pid(current, PIDTYPE_PID);
3782 			rcu_assign_pointer(vcpu->pid, newpid);
3783 			if (oldpid)
3784 				synchronize_rcu();
3785 			put_pid(oldpid);
3786 		}
3787 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3788 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3789 		break;
3790 	}
3791 	case KVM_GET_REGS: {
3792 		struct kvm_regs *kvm_regs;
3793 
3794 		r = -ENOMEM;
3795 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3796 		if (!kvm_regs)
3797 			goto out;
3798 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3799 		if (r)
3800 			goto out_free1;
3801 		r = -EFAULT;
3802 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3803 			goto out_free1;
3804 		r = 0;
3805 out_free1:
3806 		kfree(kvm_regs);
3807 		break;
3808 	}
3809 	case KVM_SET_REGS: {
3810 		struct kvm_regs *kvm_regs;
3811 
3812 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3813 		if (IS_ERR(kvm_regs)) {
3814 			r = PTR_ERR(kvm_regs);
3815 			goto out;
3816 		}
3817 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3818 		kfree(kvm_regs);
3819 		break;
3820 	}
3821 	case KVM_GET_SREGS: {
3822 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3823 				    GFP_KERNEL_ACCOUNT);
3824 		r = -ENOMEM;
3825 		if (!kvm_sregs)
3826 			goto out;
3827 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3828 		if (r)
3829 			goto out;
3830 		r = -EFAULT;
3831 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3832 			goto out;
3833 		r = 0;
3834 		break;
3835 	}
3836 	case KVM_SET_SREGS: {
3837 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3838 		if (IS_ERR(kvm_sregs)) {
3839 			r = PTR_ERR(kvm_sregs);
3840 			kvm_sregs = NULL;
3841 			goto out;
3842 		}
3843 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3844 		break;
3845 	}
3846 	case KVM_GET_MP_STATE: {
3847 		struct kvm_mp_state mp_state;
3848 
3849 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3850 		if (r)
3851 			goto out;
3852 		r = -EFAULT;
3853 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3854 			goto out;
3855 		r = 0;
3856 		break;
3857 	}
3858 	case KVM_SET_MP_STATE: {
3859 		struct kvm_mp_state mp_state;
3860 
3861 		r = -EFAULT;
3862 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3863 			goto out;
3864 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3865 		break;
3866 	}
3867 	case KVM_TRANSLATE: {
3868 		struct kvm_translation tr;
3869 
3870 		r = -EFAULT;
3871 		if (copy_from_user(&tr, argp, sizeof(tr)))
3872 			goto out;
3873 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3874 		if (r)
3875 			goto out;
3876 		r = -EFAULT;
3877 		if (copy_to_user(argp, &tr, sizeof(tr)))
3878 			goto out;
3879 		r = 0;
3880 		break;
3881 	}
3882 	case KVM_SET_GUEST_DEBUG: {
3883 		struct kvm_guest_debug dbg;
3884 
3885 		r = -EFAULT;
3886 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3887 			goto out;
3888 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3889 		break;
3890 	}
3891 	case KVM_SET_SIGNAL_MASK: {
3892 		struct kvm_signal_mask __user *sigmask_arg = argp;
3893 		struct kvm_signal_mask kvm_sigmask;
3894 		sigset_t sigset, *p;
3895 
3896 		p = NULL;
3897 		if (argp) {
3898 			r = -EFAULT;
3899 			if (copy_from_user(&kvm_sigmask, argp,
3900 					   sizeof(kvm_sigmask)))
3901 				goto out;
3902 			r = -EINVAL;
3903 			if (kvm_sigmask.len != sizeof(sigset))
3904 				goto out;
3905 			r = -EFAULT;
3906 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3907 					   sizeof(sigset)))
3908 				goto out;
3909 			p = &sigset;
3910 		}
3911 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3912 		break;
3913 	}
3914 	case KVM_GET_FPU: {
3915 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3916 		r = -ENOMEM;
3917 		if (!fpu)
3918 			goto out;
3919 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3920 		if (r)
3921 			goto out;
3922 		r = -EFAULT;
3923 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3924 			goto out;
3925 		r = 0;
3926 		break;
3927 	}
3928 	case KVM_SET_FPU: {
3929 		fpu = memdup_user(argp, sizeof(*fpu));
3930 		if (IS_ERR(fpu)) {
3931 			r = PTR_ERR(fpu);
3932 			fpu = NULL;
3933 			goto out;
3934 		}
3935 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3936 		break;
3937 	}
3938 	case KVM_GET_STATS_FD: {
3939 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3940 		break;
3941 	}
3942 	default:
3943 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3944 	}
3945 out:
3946 	mutex_unlock(&vcpu->mutex);
3947 	kfree(fpu);
3948 	kfree(kvm_sregs);
3949 	return r;
3950 }
3951 
3952 #ifdef CONFIG_KVM_COMPAT
3953 static long kvm_vcpu_compat_ioctl(struct file *filp,
3954 				  unsigned int ioctl, unsigned long arg)
3955 {
3956 	struct kvm_vcpu *vcpu = filp->private_data;
3957 	void __user *argp = compat_ptr(arg);
3958 	int r;
3959 
3960 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3961 		return -EIO;
3962 
3963 	switch (ioctl) {
3964 	case KVM_SET_SIGNAL_MASK: {
3965 		struct kvm_signal_mask __user *sigmask_arg = argp;
3966 		struct kvm_signal_mask kvm_sigmask;
3967 		sigset_t sigset;
3968 
3969 		if (argp) {
3970 			r = -EFAULT;
3971 			if (copy_from_user(&kvm_sigmask, argp,
3972 					   sizeof(kvm_sigmask)))
3973 				goto out;
3974 			r = -EINVAL;
3975 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3976 				goto out;
3977 			r = -EFAULT;
3978 			if (get_compat_sigset(&sigset,
3979 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3980 				goto out;
3981 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3982 		} else
3983 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3984 		break;
3985 	}
3986 	default:
3987 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3988 	}
3989 
3990 out:
3991 	return r;
3992 }
3993 #endif
3994 
3995 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3996 {
3997 	struct kvm_device *dev = filp->private_data;
3998 
3999 	if (dev->ops->mmap)
4000 		return dev->ops->mmap(dev, vma);
4001 
4002 	return -ENODEV;
4003 }
4004 
4005 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4006 				 int (*accessor)(struct kvm_device *dev,
4007 						 struct kvm_device_attr *attr),
4008 				 unsigned long arg)
4009 {
4010 	struct kvm_device_attr attr;
4011 
4012 	if (!accessor)
4013 		return -EPERM;
4014 
4015 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4016 		return -EFAULT;
4017 
4018 	return accessor(dev, &attr);
4019 }
4020 
4021 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4022 			     unsigned long arg)
4023 {
4024 	struct kvm_device *dev = filp->private_data;
4025 
4026 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4027 		return -EIO;
4028 
4029 	switch (ioctl) {
4030 	case KVM_SET_DEVICE_ATTR:
4031 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4032 	case KVM_GET_DEVICE_ATTR:
4033 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4034 	case KVM_HAS_DEVICE_ATTR:
4035 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4036 	default:
4037 		if (dev->ops->ioctl)
4038 			return dev->ops->ioctl(dev, ioctl, arg);
4039 
4040 		return -ENOTTY;
4041 	}
4042 }
4043 
4044 static int kvm_device_release(struct inode *inode, struct file *filp)
4045 {
4046 	struct kvm_device *dev = filp->private_data;
4047 	struct kvm *kvm = dev->kvm;
4048 
4049 	if (dev->ops->release) {
4050 		mutex_lock(&kvm->lock);
4051 		list_del(&dev->vm_node);
4052 		dev->ops->release(dev);
4053 		mutex_unlock(&kvm->lock);
4054 	}
4055 
4056 	kvm_put_kvm(kvm);
4057 	return 0;
4058 }
4059 
4060 static const struct file_operations kvm_device_fops = {
4061 	.unlocked_ioctl = kvm_device_ioctl,
4062 	.release = kvm_device_release,
4063 	KVM_COMPAT(kvm_device_ioctl),
4064 	.mmap = kvm_device_mmap,
4065 };
4066 
4067 struct kvm_device *kvm_device_from_filp(struct file *filp)
4068 {
4069 	if (filp->f_op != &kvm_device_fops)
4070 		return NULL;
4071 
4072 	return filp->private_data;
4073 }
4074 
4075 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4076 #ifdef CONFIG_KVM_MPIC
4077 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4078 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4079 #endif
4080 };
4081 
4082 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4083 {
4084 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4085 		return -ENOSPC;
4086 
4087 	if (kvm_device_ops_table[type] != NULL)
4088 		return -EEXIST;
4089 
4090 	kvm_device_ops_table[type] = ops;
4091 	return 0;
4092 }
4093 
4094 void kvm_unregister_device_ops(u32 type)
4095 {
4096 	if (kvm_device_ops_table[type] != NULL)
4097 		kvm_device_ops_table[type] = NULL;
4098 }
4099 
4100 static int kvm_ioctl_create_device(struct kvm *kvm,
4101 				   struct kvm_create_device *cd)
4102 {
4103 	const struct kvm_device_ops *ops = NULL;
4104 	struct kvm_device *dev;
4105 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4106 	int type;
4107 	int ret;
4108 
4109 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4110 		return -ENODEV;
4111 
4112 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4113 	ops = kvm_device_ops_table[type];
4114 	if (ops == NULL)
4115 		return -ENODEV;
4116 
4117 	if (test)
4118 		return 0;
4119 
4120 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4121 	if (!dev)
4122 		return -ENOMEM;
4123 
4124 	dev->ops = ops;
4125 	dev->kvm = kvm;
4126 
4127 	mutex_lock(&kvm->lock);
4128 	ret = ops->create(dev, type);
4129 	if (ret < 0) {
4130 		mutex_unlock(&kvm->lock);
4131 		kfree(dev);
4132 		return ret;
4133 	}
4134 	list_add(&dev->vm_node, &kvm->devices);
4135 	mutex_unlock(&kvm->lock);
4136 
4137 	if (ops->init)
4138 		ops->init(dev);
4139 
4140 	kvm_get_kvm(kvm);
4141 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4142 	if (ret < 0) {
4143 		kvm_put_kvm_no_destroy(kvm);
4144 		mutex_lock(&kvm->lock);
4145 		list_del(&dev->vm_node);
4146 		mutex_unlock(&kvm->lock);
4147 		ops->destroy(dev);
4148 		return ret;
4149 	}
4150 
4151 	cd->fd = ret;
4152 	return 0;
4153 }
4154 
4155 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4156 {
4157 	switch (arg) {
4158 	case KVM_CAP_USER_MEMORY:
4159 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4160 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4161 	case KVM_CAP_INTERNAL_ERROR_DATA:
4162 #ifdef CONFIG_HAVE_KVM_MSI
4163 	case KVM_CAP_SIGNAL_MSI:
4164 #endif
4165 #ifdef CONFIG_HAVE_KVM_IRQFD
4166 	case KVM_CAP_IRQFD:
4167 	case KVM_CAP_IRQFD_RESAMPLE:
4168 #endif
4169 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4170 	case KVM_CAP_CHECK_EXTENSION_VM:
4171 	case KVM_CAP_ENABLE_CAP_VM:
4172 	case KVM_CAP_HALT_POLL:
4173 		return 1;
4174 #ifdef CONFIG_KVM_MMIO
4175 	case KVM_CAP_COALESCED_MMIO:
4176 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4177 	case KVM_CAP_COALESCED_PIO:
4178 		return 1;
4179 #endif
4180 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4181 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4182 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4183 #endif
4184 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4185 	case KVM_CAP_IRQ_ROUTING:
4186 		return KVM_MAX_IRQ_ROUTES;
4187 #endif
4188 #if KVM_ADDRESS_SPACE_NUM > 1
4189 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4190 		return KVM_ADDRESS_SPACE_NUM;
4191 #endif
4192 	case KVM_CAP_NR_MEMSLOTS:
4193 		return KVM_USER_MEM_SLOTS;
4194 	case KVM_CAP_DIRTY_LOG_RING:
4195 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4196 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4197 #else
4198 		return 0;
4199 #endif
4200 	case KVM_CAP_BINARY_STATS_FD:
4201 		return 1;
4202 	default:
4203 		break;
4204 	}
4205 	return kvm_vm_ioctl_check_extension(kvm, arg);
4206 }
4207 
4208 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4209 {
4210 	int r;
4211 
4212 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4213 		return -EINVAL;
4214 
4215 	/* the size should be power of 2 */
4216 	if (!size || (size & (size - 1)))
4217 		return -EINVAL;
4218 
4219 	/* Should be bigger to keep the reserved entries, or a page */
4220 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4221 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4222 		return -EINVAL;
4223 
4224 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4225 	    sizeof(struct kvm_dirty_gfn))
4226 		return -E2BIG;
4227 
4228 	/* We only allow it to set once */
4229 	if (kvm->dirty_ring_size)
4230 		return -EINVAL;
4231 
4232 	mutex_lock(&kvm->lock);
4233 
4234 	if (kvm->created_vcpus) {
4235 		/* We don't allow to change this value after vcpu created */
4236 		r = -EINVAL;
4237 	} else {
4238 		kvm->dirty_ring_size = size;
4239 		r = 0;
4240 	}
4241 
4242 	mutex_unlock(&kvm->lock);
4243 	return r;
4244 }
4245 
4246 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4247 {
4248 	int i;
4249 	struct kvm_vcpu *vcpu;
4250 	int cleared = 0;
4251 
4252 	if (!kvm->dirty_ring_size)
4253 		return -EINVAL;
4254 
4255 	mutex_lock(&kvm->slots_lock);
4256 
4257 	kvm_for_each_vcpu(i, vcpu, kvm)
4258 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4259 
4260 	mutex_unlock(&kvm->slots_lock);
4261 
4262 	if (cleared)
4263 		kvm_flush_remote_tlbs(kvm);
4264 
4265 	return cleared;
4266 }
4267 
4268 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4269 						  struct kvm_enable_cap *cap)
4270 {
4271 	return -EINVAL;
4272 }
4273 
4274 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4275 					   struct kvm_enable_cap *cap)
4276 {
4277 	switch (cap->cap) {
4278 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4279 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4280 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4281 
4282 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4283 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4284 
4285 		if (cap->flags || (cap->args[0] & ~allowed_options))
4286 			return -EINVAL;
4287 		kvm->manual_dirty_log_protect = cap->args[0];
4288 		return 0;
4289 	}
4290 #endif
4291 	case KVM_CAP_HALT_POLL: {
4292 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4293 			return -EINVAL;
4294 
4295 		kvm->max_halt_poll_ns = cap->args[0];
4296 		return 0;
4297 	}
4298 	case KVM_CAP_DIRTY_LOG_RING:
4299 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4300 	default:
4301 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4302 	}
4303 }
4304 
4305 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4306 			      size_t size, loff_t *offset)
4307 {
4308 	struct kvm *kvm = file->private_data;
4309 
4310 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4311 				&kvm_vm_stats_desc[0], &kvm->stat,
4312 				sizeof(kvm->stat), user_buffer, size, offset);
4313 }
4314 
4315 static const struct file_operations kvm_vm_stats_fops = {
4316 	.read = kvm_vm_stats_read,
4317 	.llseek = noop_llseek,
4318 };
4319 
4320 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4321 {
4322 	int fd;
4323 	struct file *file;
4324 
4325 	fd = get_unused_fd_flags(O_CLOEXEC);
4326 	if (fd < 0)
4327 		return fd;
4328 
4329 	file = anon_inode_getfile("kvm-vm-stats",
4330 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4331 	if (IS_ERR(file)) {
4332 		put_unused_fd(fd);
4333 		return PTR_ERR(file);
4334 	}
4335 	file->f_mode |= FMODE_PREAD;
4336 	fd_install(fd, file);
4337 
4338 	return fd;
4339 }
4340 
4341 static long kvm_vm_ioctl(struct file *filp,
4342 			   unsigned int ioctl, unsigned long arg)
4343 {
4344 	struct kvm *kvm = filp->private_data;
4345 	void __user *argp = (void __user *)arg;
4346 	int r;
4347 
4348 	if (kvm->mm != current->mm || kvm->vm_dead)
4349 		return -EIO;
4350 	switch (ioctl) {
4351 	case KVM_CREATE_VCPU:
4352 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4353 		break;
4354 	case KVM_ENABLE_CAP: {
4355 		struct kvm_enable_cap cap;
4356 
4357 		r = -EFAULT;
4358 		if (copy_from_user(&cap, argp, sizeof(cap)))
4359 			goto out;
4360 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4361 		break;
4362 	}
4363 	case KVM_SET_USER_MEMORY_REGION: {
4364 		struct kvm_userspace_memory_region kvm_userspace_mem;
4365 
4366 		r = -EFAULT;
4367 		if (copy_from_user(&kvm_userspace_mem, argp,
4368 						sizeof(kvm_userspace_mem)))
4369 			goto out;
4370 
4371 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4372 		break;
4373 	}
4374 	case KVM_GET_DIRTY_LOG: {
4375 		struct kvm_dirty_log log;
4376 
4377 		r = -EFAULT;
4378 		if (copy_from_user(&log, argp, sizeof(log)))
4379 			goto out;
4380 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4381 		break;
4382 	}
4383 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4384 	case KVM_CLEAR_DIRTY_LOG: {
4385 		struct kvm_clear_dirty_log log;
4386 
4387 		r = -EFAULT;
4388 		if (copy_from_user(&log, argp, sizeof(log)))
4389 			goto out;
4390 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4391 		break;
4392 	}
4393 #endif
4394 #ifdef CONFIG_KVM_MMIO
4395 	case KVM_REGISTER_COALESCED_MMIO: {
4396 		struct kvm_coalesced_mmio_zone zone;
4397 
4398 		r = -EFAULT;
4399 		if (copy_from_user(&zone, argp, sizeof(zone)))
4400 			goto out;
4401 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4402 		break;
4403 	}
4404 	case KVM_UNREGISTER_COALESCED_MMIO: {
4405 		struct kvm_coalesced_mmio_zone zone;
4406 
4407 		r = -EFAULT;
4408 		if (copy_from_user(&zone, argp, sizeof(zone)))
4409 			goto out;
4410 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4411 		break;
4412 	}
4413 #endif
4414 	case KVM_IRQFD: {
4415 		struct kvm_irqfd data;
4416 
4417 		r = -EFAULT;
4418 		if (copy_from_user(&data, argp, sizeof(data)))
4419 			goto out;
4420 		r = kvm_irqfd(kvm, &data);
4421 		break;
4422 	}
4423 	case KVM_IOEVENTFD: {
4424 		struct kvm_ioeventfd data;
4425 
4426 		r = -EFAULT;
4427 		if (copy_from_user(&data, argp, sizeof(data)))
4428 			goto out;
4429 		r = kvm_ioeventfd(kvm, &data);
4430 		break;
4431 	}
4432 #ifdef CONFIG_HAVE_KVM_MSI
4433 	case KVM_SIGNAL_MSI: {
4434 		struct kvm_msi msi;
4435 
4436 		r = -EFAULT;
4437 		if (copy_from_user(&msi, argp, sizeof(msi)))
4438 			goto out;
4439 		r = kvm_send_userspace_msi(kvm, &msi);
4440 		break;
4441 	}
4442 #endif
4443 #ifdef __KVM_HAVE_IRQ_LINE
4444 	case KVM_IRQ_LINE_STATUS:
4445 	case KVM_IRQ_LINE: {
4446 		struct kvm_irq_level irq_event;
4447 
4448 		r = -EFAULT;
4449 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4450 			goto out;
4451 
4452 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4453 					ioctl == KVM_IRQ_LINE_STATUS);
4454 		if (r)
4455 			goto out;
4456 
4457 		r = -EFAULT;
4458 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4459 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4460 				goto out;
4461 		}
4462 
4463 		r = 0;
4464 		break;
4465 	}
4466 #endif
4467 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4468 	case KVM_SET_GSI_ROUTING: {
4469 		struct kvm_irq_routing routing;
4470 		struct kvm_irq_routing __user *urouting;
4471 		struct kvm_irq_routing_entry *entries = NULL;
4472 
4473 		r = -EFAULT;
4474 		if (copy_from_user(&routing, argp, sizeof(routing)))
4475 			goto out;
4476 		r = -EINVAL;
4477 		if (!kvm_arch_can_set_irq_routing(kvm))
4478 			goto out;
4479 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4480 			goto out;
4481 		if (routing.flags)
4482 			goto out;
4483 		if (routing.nr) {
4484 			urouting = argp;
4485 			entries = vmemdup_user(urouting->entries,
4486 					       array_size(sizeof(*entries),
4487 							  routing.nr));
4488 			if (IS_ERR(entries)) {
4489 				r = PTR_ERR(entries);
4490 				goto out;
4491 			}
4492 		}
4493 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4494 					routing.flags);
4495 		kvfree(entries);
4496 		break;
4497 	}
4498 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4499 	case KVM_CREATE_DEVICE: {
4500 		struct kvm_create_device cd;
4501 
4502 		r = -EFAULT;
4503 		if (copy_from_user(&cd, argp, sizeof(cd)))
4504 			goto out;
4505 
4506 		r = kvm_ioctl_create_device(kvm, &cd);
4507 		if (r)
4508 			goto out;
4509 
4510 		r = -EFAULT;
4511 		if (copy_to_user(argp, &cd, sizeof(cd)))
4512 			goto out;
4513 
4514 		r = 0;
4515 		break;
4516 	}
4517 	case KVM_CHECK_EXTENSION:
4518 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4519 		break;
4520 	case KVM_RESET_DIRTY_RINGS:
4521 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4522 		break;
4523 	case KVM_GET_STATS_FD:
4524 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4525 		break;
4526 	default:
4527 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4528 	}
4529 out:
4530 	return r;
4531 }
4532 
4533 #ifdef CONFIG_KVM_COMPAT
4534 struct compat_kvm_dirty_log {
4535 	__u32 slot;
4536 	__u32 padding1;
4537 	union {
4538 		compat_uptr_t dirty_bitmap; /* one bit per page */
4539 		__u64 padding2;
4540 	};
4541 };
4542 
4543 struct compat_kvm_clear_dirty_log {
4544 	__u32 slot;
4545 	__u32 num_pages;
4546 	__u64 first_page;
4547 	union {
4548 		compat_uptr_t dirty_bitmap; /* one bit per page */
4549 		__u64 padding2;
4550 	};
4551 };
4552 
4553 static long kvm_vm_compat_ioctl(struct file *filp,
4554 			   unsigned int ioctl, unsigned long arg)
4555 {
4556 	struct kvm *kvm = filp->private_data;
4557 	int r;
4558 
4559 	if (kvm->mm != current->mm || kvm->vm_dead)
4560 		return -EIO;
4561 	switch (ioctl) {
4562 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4563 	case KVM_CLEAR_DIRTY_LOG: {
4564 		struct compat_kvm_clear_dirty_log compat_log;
4565 		struct kvm_clear_dirty_log log;
4566 
4567 		if (copy_from_user(&compat_log, (void __user *)arg,
4568 				   sizeof(compat_log)))
4569 			return -EFAULT;
4570 		log.slot	 = compat_log.slot;
4571 		log.num_pages	 = compat_log.num_pages;
4572 		log.first_page	 = compat_log.first_page;
4573 		log.padding2	 = compat_log.padding2;
4574 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4575 
4576 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4577 		break;
4578 	}
4579 #endif
4580 	case KVM_GET_DIRTY_LOG: {
4581 		struct compat_kvm_dirty_log compat_log;
4582 		struct kvm_dirty_log log;
4583 
4584 		if (copy_from_user(&compat_log, (void __user *)arg,
4585 				   sizeof(compat_log)))
4586 			return -EFAULT;
4587 		log.slot	 = compat_log.slot;
4588 		log.padding1	 = compat_log.padding1;
4589 		log.padding2	 = compat_log.padding2;
4590 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4591 
4592 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4593 		break;
4594 	}
4595 	default:
4596 		r = kvm_vm_ioctl(filp, ioctl, arg);
4597 	}
4598 	return r;
4599 }
4600 #endif
4601 
4602 static struct file_operations kvm_vm_fops = {
4603 	.release        = kvm_vm_release,
4604 	.unlocked_ioctl = kvm_vm_ioctl,
4605 	.llseek		= noop_llseek,
4606 	KVM_COMPAT(kvm_vm_compat_ioctl),
4607 };
4608 
4609 bool file_is_kvm(struct file *file)
4610 {
4611 	return file && file->f_op == &kvm_vm_fops;
4612 }
4613 EXPORT_SYMBOL_GPL(file_is_kvm);
4614 
4615 static int kvm_dev_ioctl_create_vm(unsigned long type)
4616 {
4617 	int r;
4618 	struct kvm *kvm;
4619 	struct file *file;
4620 
4621 	kvm = kvm_create_vm(type);
4622 	if (IS_ERR(kvm))
4623 		return PTR_ERR(kvm);
4624 #ifdef CONFIG_KVM_MMIO
4625 	r = kvm_coalesced_mmio_init(kvm);
4626 	if (r < 0)
4627 		goto put_kvm;
4628 #endif
4629 	r = get_unused_fd_flags(O_CLOEXEC);
4630 	if (r < 0)
4631 		goto put_kvm;
4632 
4633 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4634 			"kvm-%d", task_pid_nr(current));
4635 
4636 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4637 	if (IS_ERR(file)) {
4638 		put_unused_fd(r);
4639 		r = PTR_ERR(file);
4640 		goto put_kvm;
4641 	}
4642 
4643 	/*
4644 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4645 	 * already set, with ->release() being kvm_vm_release().  In error
4646 	 * cases it will be called by the final fput(file) and will take
4647 	 * care of doing kvm_put_kvm(kvm).
4648 	 */
4649 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4650 		put_unused_fd(r);
4651 		fput(file);
4652 		return -ENOMEM;
4653 	}
4654 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4655 
4656 	fd_install(r, file);
4657 	return r;
4658 
4659 put_kvm:
4660 	kvm_put_kvm(kvm);
4661 	return r;
4662 }
4663 
4664 static long kvm_dev_ioctl(struct file *filp,
4665 			  unsigned int ioctl, unsigned long arg)
4666 {
4667 	long r = -EINVAL;
4668 
4669 	switch (ioctl) {
4670 	case KVM_GET_API_VERSION:
4671 		if (arg)
4672 			goto out;
4673 		r = KVM_API_VERSION;
4674 		break;
4675 	case KVM_CREATE_VM:
4676 		r = kvm_dev_ioctl_create_vm(arg);
4677 		break;
4678 	case KVM_CHECK_EXTENSION:
4679 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4680 		break;
4681 	case KVM_GET_VCPU_MMAP_SIZE:
4682 		if (arg)
4683 			goto out;
4684 		r = PAGE_SIZE;     /* struct kvm_run */
4685 #ifdef CONFIG_X86
4686 		r += PAGE_SIZE;    /* pio data page */
4687 #endif
4688 #ifdef CONFIG_KVM_MMIO
4689 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4690 #endif
4691 		break;
4692 	case KVM_TRACE_ENABLE:
4693 	case KVM_TRACE_PAUSE:
4694 	case KVM_TRACE_DISABLE:
4695 		r = -EOPNOTSUPP;
4696 		break;
4697 	default:
4698 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4699 	}
4700 out:
4701 	return r;
4702 }
4703 
4704 static struct file_operations kvm_chardev_ops = {
4705 	.unlocked_ioctl = kvm_dev_ioctl,
4706 	.llseek		= noop_llseek,
4707 	KVM_COMPAT(kvm_dev_ioctl),
4708 };
4709 
4710 static struct miscdevice kvm_dev = {
4711 	KVM_MINOR,
4712 	"kvm",
4713 	&kvm_chardev_ops,
4714 };
4715 
4716 static void hardware_enable_nolock(void *junk)
4717 {
4718 	int cpu = raw_smp_processor_id();
4719 	int r;
4720 
4721 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4722 		return;
4723 
4724 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4725 
4726 	r = kvm_arch_hardware_enable();
4727 
4728 	if (r) {
4729 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4730 		atomic_inc(&hardware_enable_failed);
4731 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4732 	}
4733 }
4734 
4735 static int kvm_starting_cpu(unsigned int cpu)
4736 {
4737 	raw_spin_lock(&kvm_count_lock);
4738 	if (kvm_usage_count)
4739 		hardware_enable_nolock(NULL);
4740 	raw_spin_unlock(&kvm_count_lock);
4741 	return 0;
4742 }
4743 
4744 static void hardware_disable_nolock(void *junk)
4745 {
4746 	int cpu = raw_smp_processor_id();
4747 
4748 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4749 		return;
4750 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4751 	kvm_arch_hardware_disable();
4752 }
4753 
4754 static int kvm_dying_cpu(unsigned int cpu)
4755 {
4756 	raw_spin_lock(&kvm_count_lock);
4757 	if (kvm_usage_count)
4758 		hardware_disable_nolock(NULL);
4759 	raw_spin_unlock(&kvm_count_lock);
4760 	return 0;
4761 }
4762 
4763 static void hardware_disable_all_nolock(void)
4764 {
4765 	BUG_ON(!kvm_usage_count);
4766 
4767 	kvm_usage_count--;
4768 	if (!kvm_usage_count)
4769 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4770 }
4771 
4772 static void hardware_disable_all(void)
4773 {
4774 	raw_spin_lock(&kvm_count_lock);
4775 	hardware_disable_all_nolock();
4776 	raw_spin_unlock(&kvm_count_lock);
4777 }
4778 
4779 static int hardware_enable_all(void)
4780 {
4781 	int r = 0;
4782 
4783 	raw_spin_lock(&kvm_count_lock);
4784 
4785 	kvm_usage_count++;
4786 	if (kvm_usage_count == 1) {
4787 		atomic_set(&hardware_enable_failed, 0);
4788 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4789 
4790 		if (atomic_read(&hardware_enable_failed)) {
4791 			hardware_disable_all_nolock();
4792 			r = -EBUSY;
4793 		}
4794 	}
4795 
4796 	raw_spin_unlock(&kvm_count_lock);
4797 
4798 	return r;
4799 }
4800 
4801 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4802 		      void *v)
4803 {
4804 	/*
4805 	 * Some (well, at least mine) BIOSes hang on reboot if
4806 	 * in vmx root mode.
4807 	 *
4808 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4809 	 */
4810 	pr_info("kvm: exiting hardware virtualization\n");
4811 	kvm_rebooting = true;
4812 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4813 	return NOTIFY_OK;
4814 }
4815 
4816 static struct notifier_block kvm_reboot_notifier = {
4817 	.notifier_call = kvm_reboot,
4818 	.priority = 0,
4819 };
4820 
4821 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4822 {
4823 	int i;
4824 
4825 	for (i = 0; i < bus->dev_count; i++) {
4826 		struct kvm_io_device *pos = bus->range[i].dev;
4827 
4828 		kvm_iodevice_destructor(pos);
4829 	}
4830 	kfree(bus);
4831 }
4832 
4833 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4834 				 const struct kvm_io_range *r2)
4835 {
4836 	gpa_t addr1 = r1->addr;
4837 	gpa_t addr2 = r2->addr;
4838 
4839 	if (addr1 < addr2)
4840 		return -1;
4841 
4842 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4843 	 * accept any overlapping write.  Any order is acceptable for
4844 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4845 	 * we process all of them.
4846 	 */
4847 	if (r2->len) {
4848 		addr1 += r1->len;
4849 		addr2 += r2->len;
4850 	}
4851 
4852 	if (addr1 > addr2)
4853 		return 1;
4854 
4855 	return 0;
4856 }
4857 
4858 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4859 {
4860 	return kvm_io_bus_cmp(p1, p2);
4861 }
4862 
4863 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4864 			     gpa_t addr, int len)
4865 {
4866 	struct kvm_io_range *range, key;
4867 	int off;
4868 
4869 	key = (struct kvm_io_range) {
4870 		.addr = addr,
4871 		.len = len,
4872 	};
4873 
4874 	range = bsearch(&key, bus->range, bus->dev_count,
4875 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4876 	if (range == NULL)
4877 		return -ENOENT;
4878 
4879 	off = range - bus->range;
4880 
4881 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4882 		off--;
4883 
4884 	return off;
4885 }
4886 
4887 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4888 			      struct kvm_io_range *range, const void *val)
4889 {
4890 	int idx;
4891 
4892 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4893 	if (idx < 0)
4894 		return -EOPNOTSUPP;
4895 
4896 	while (idx < bus->dev_count &&
4897 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4898 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4899 					range->len, val))
4900 			return idx;
4901 		idx++;
4902 	}
4903 
4904 	return -EOPNOTSUPP;
4905 }
4906 
4907 /* kvm_io_bus_write - called under kvm->slots_lock */
4908 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4909 		     int len, const void *val)
4910 {
4911 	struct kvm_io_bus *bus;
4912 	struct kvm_io_range range;
4913 	int r;
4914 
4915 	range = (struct kvm_io_range) {
4916 		.addr = addr,
4917 		.len = len,
4918 	};
4919 
4920 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4921 	if (!bus)
4922 		return -ENOMEM;
4923 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4924 	return r < 0 ? r : 0;
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4927 
4928 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4929 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4930 			    gpa_t addr, int len, const void *val, long cookie)
4931 {
4932 	struct kvm_io_bus *bus;
4933 	struct kvm_io_range range;
4934 
4935 	range = (struct kvm_io_range) {
4936 		.addr = addr,
4937 		.len = len,
4938 	};
4939 
4940 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4941 	if (!bus)
4942 		return -ENOMEM;
4943 
4944 	/* First try the device referenced by cookie. */
4945 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4946 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4947 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4948 					val))
4949 			return cookie;
4950 
4951 	/*
4952 	 * cookie contained garbage; fall back to search and return the
4953 	 * correct cookie value.
4954 	 */
4955 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4956 }
4957 
4958 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4959 			     struct kvm_io_range *range, void *val)
4960 {
4961 	int idx;
4962 
4963 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4964 	if (idx < 0)
4965 		return -EOPNOTSUPP;
4966 
4967 	while (idx < bus->dev_count &&
4968 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4969 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4970 				       range->len, val))
4971 			return idx;
4972 		idx++;
4973 	}
4974 
4975 	return -EOPNOTSUPP;
4976 }
4977 
4978 /* kvm_io_bus_read - called under kvm->slots_lock */
4979 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4980 		    int len, void *val)
4981 {
4982 	struct kvm_io_bus *bus;
4983 	struct kvm_io_range range;
4984 	int r;
4985 
4986 	range = (struct kvm_io_range) {
4987 		.addr = addr,
4988 		.len = len,
4989 	};
4990 
4991 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4992 	if (!bus)
4993 		return -ENOMEM;
4994 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4995 	return r < 0 ? r : 0;
4996 }
4997 
4998 /* Caller must hold slots_lock. */
4999 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5000 			    int len, struct kvm_io_device *dev)
5001 {
5002 	int i;
5003 	struct kvm_io_bus *new_bus, *bus;
5004 	struct kvm_io_range range;
5005 
5006 	bus = kvm_get_bus(kvm, bus_idx);
5007 	if (!bus)
5008 		return -ENOMEM;
5009 
5010 	/* exclude ioeventfd which is limited by maximum fd */
5011 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5012 		return -ENOSPC;
5013 
5014 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5015 			  GFP_KERNEL_ACCOUNT);
5016 	if (!new_bus)
5017 		return -ENOMEM;
5018 
5019 	range = (struct kvm_io_range) {
5020 		.addr = addr,
5021 		.len = len,
5022 		.dev = dev,
5023 	};
5024 
5025 	for (i = 0; i < bus->dev_count; i++)
5026 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5027 			break;
5028 
5029 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5030 	new_bus->dev_count++;
5031 	new_bus->range[i] = range;
5032 	memcpy(new_bus->range + i + 1, bus->range + i,
5033 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5034 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5035 	synchronize_srcu_expedited(&kvm->srcu);
5036 	kfree(bus);
5037 
5038 	return 0;
5039 }
5040 
5041 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5042 			      struct kvm_io_device *dev)
5043 {
5044 	int i, j;
5045 	struct kvm_io_bus *new_bus, *bus;
5046 
5047 	lockdep_assert_held(&kvm->slots_lock);
5048 
5049 	bus = kvm_get_bus(kvm, bus_idx);
5050 	if (!bus)
5051 		return 0;
5052 
5053 	for (i = 0; i < bus->dev_count; i++) {
5054 		if (bus->range[i].dev == dev) {
5055 			break;
5056 		}
5057 	}
5058 
5059 	if (i == bus->dev_count)
5060 		return 0;
5061 
5062 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5063 			  GFP_KERNEL_ACCOUNT);
5064 	if (new_bus) {
5065 		memcpy(new_bus, bus, struct_size(bus, range, i));
5066 		new_bus->dev_count--;
5067 		memcpy(new_bus->range + i, bus->range + i + 1,
5068 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5069 	}
5070 
5071 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5072 	synchronize_srcu_expedited(&kvm->srcu);
5073 
5074 	/* Destroy the old bus _after_ installing the (null) bus. */
5075 	if (!new_bus) {
5076 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5077 		for (j = 0; j < bus->dev_count; j++) {
5078 			if (j == i)
5079 				continue;
5080 			kvm_iodevice_destructor(bus->range[j].dev);
5081 		}
5082 	}
5083 
5084 	kfree(bus);
5085 	return new_bus ? 0 : -ENOMEM;
5086 }
5087 
5088 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5089 					 gpa_t addr)
5090 {
5091 	struct kvm_io_bus *bus;
5092 	int dev_idx, srcu_idx;
5093 	struct kvm_io_device *iodev = NULL;
5094 
5095 	srcu_idx = srcu_read_lock(&kvm->srcu);
5096 
5097 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5098 	if (!bus)
5099 		goto out_unlock;
5100 
5101 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5102 	if (dev_idx < 0)
5103 		goto out_unlock;
5104 
5105 	iodev = bus->range[dev_idx].dev;
5106 
5107 out_unlock:
5108 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5109 
5110 	return iodev;
5111 }
5112 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5113 
5114 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5115 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5116 			   const char *fmt)
5117 {
5118 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5119 					  inode->i_private;
5120 
5121 	/*
5122 	 * The debugfs files are a reference to the kvm struct which
5123         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5124         * avoids the race between open and the removal of the debugfs directory.
5125 	 */
5126 	if (!kvm_get_kvm_safe(stat_data->kvm))
5127 		return -ENOENT;
5128 
5129 	if (simple_attr_open(inode, file, get,
5130 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5131 		    ? set : NULL,
5132 		    fmt)) {
5133 		kvm_put_kvm(stat_data->kvm);
5134 		return -ENOMEM;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5141 {
5142 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5143 					  inode->i_private;
5144 
5145 	simple_attr_release(inode, file);
5146 	kvm_put_kvm(stat_data->kvm);
5147 
5148 	return 0;
5149 }
5150 
5151 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5152 {
5153 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5154 
5155 	return 0;
5156 }
5157 
5158 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5159 {
5160 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5161 
5162 	return 0;
5163 }
5164 
5165 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5166 {
5167 	int i;
5168 	struct kvm_vcpu *vcpu;
5169 
5170 	*val = 0;
5171 
5172 	kvm_for_each_vcpu(i, vcpu, kvm)
5173 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5174 
5175 	return 0;
5176 }
5177 
5178 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5179 {
5180 	int i;
5181 	struct kvm_vcpu *vcpu;
5182 
5183 	kvm_for_each_vcpu(i, vcpu, kvm)
5184 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5185 
5186 	return 0;
5187 }
5188 
5189 static int kvm_stat_data_get(void *data, u64 *val)
5190 {
5191 	int r = -EFAULT;
5192 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5193 
5194 	switch (stat_data->kind) {
5195 	case KVM_STAT_VM:
5196 		r = kvm_get_stat_per_vm(stat_data->kvm,
5197 					stat_data->desc->desc.offset, val);
5198 		break;
5199 	case KVM_STAT_VCPU:
5200 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5201 					  stat_data->desc->desc.offset, val);
5202 		break;
5203 	}
5204 
5205 	return r;
5206 }
5207 
5208 static int kvm_stat_data_clear(void *data, u64 val)
5209 {
5210 	int r = -EFAULT;
5211 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5212 
5213 	if (val)
5214 		return -EINVAL;
5215 
5216 	switch (stat_data->kind) {
5217 	case KVM_STAT_VM:
5218 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5219 					  stat_data->desc->desc.offset);
5220 		break;
5221 	case KVM_STAT_VCPU:
5222 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5223 					    stat_data->desc->desc.offset);
5224 		break;
5225 	}
5226 
5227 	return r;
5228 }
5229 
5230 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5231 {
5232 	__simple_attr_check_format("%llu\n", 0ull);
5233 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5234 				kvm_stat_data_clear, "%llu\n");
5235 }
5236 
5237 static const struct file_operations stat_fops_per_vm = {
5238 	.owner = THIS_MODULE,
5239 	.open = kvm_stat_data_open,
5240 	.release = kvm_debugfs_release,
5241 	.read = simple_attr_read,
5242 	.write = simple_attr_write,
5243 	.llseek = no_llseek,
5244 };
5245 
5246 static int vm_stat_get(void *_offset, u64 *val)
5247 {
5248 	unsigned offset = (long)_offset;
5249 	struct kvm *kvm;
5250 	u64 tmp_val;
5251 
5252 	*val = 0;
5253 	mutex_lock(&kvm_lock);
5254 	list_for_each_entry(kvm, &vm_list, vm_list) {
5255 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5256 		*val += tmp_val;
5257 	}
5258 	mutex_unlock(&kvm_lock);
5259 	return 0;
5260 }
5261 
5262 static int vm_stat_clear(void *_offset, u64 val)
5263 {
5264 	unsigned offset = (long)_offset;
5265 	struct kvm *kvm;
5266 
5267 	if (val)
5268 		return -EINVAL;
5269 
5270 	mutex_lock(&kvm_lock);
5271 	list_for_each_entry(kvm, &vm_list, vm_list) {
5272 		kvm_clear_stat_per_vm(kvm, offset);
5273 	}
5274 	mutex_unlock(&kvm_lock);
5275 
5276 	return 0;
5277 }
5278 
5279 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5280 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5281 
5282 static int vcpu_stat_get(void *_offset, u64 *val)
5283 {
5284 	unsigned offset = (long)_offset;
5285 	struct kvm *kvm;
5286 	u64 tmp_val;
5287 
5288 	*val = 0;
5289 	mutex_lock(&kvm_lock);
5290 	list_for_each_entry(kvm, &vm_list, vm_list) {
5291 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5292 		*val += tmp_val;
5293 	}
5294 	mutex_unlock(&kvm_lock);
5295 	return 0;
5296 }
5297 
5298 static int vcpu_stat_clear(void *_offset, u64 val)
5299 {
5300 	unsigned offset = (long)_offset;
5301 	struct kvm *kvm;
5302 
5303 	if (val)
5304 		return -EINVAL;
5305 
5306 	mutex_lock(&kvm_lock);
5307 	list_for_each_entry(kvm, &vm_list, vm_list) {
5308 		kvm_clear_stat_per_vcpu(kvm, offset);
5309 	}
5310 	mutex_unlock(&kvm_lock);
5311 
5312 	return 0;
5313 }
5314 
5315 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5316 			"%llu\n");
5317 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5318 
5319 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5320 {
5321 	struct kobj_uevent_env *env;
5322 	unsigned long long created, active;
5323 
5324 	if (!kvm_dev.this_device || !kvm)
5325 		return;
5326 
5327 	mutex_lock(&kvm_lock);
5328 	if (type == KVM_EVENT_CREATE_VM) {
5329 		kvm_createvm_count++;
5330 		kvm_active_vms++;
5331 	} else if (type == KVM_EVENT_DESTROY_VM) {
5332 		kvm_active_vms--;
5333 	}
5334 	created = kvm_createvm_count;
5335 	active = kvm_active_vms;
5336 	mutex_unlock(&kvm_lock);
5337 
5338 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5339 	if (!env)
5340 		return;
5341 
5342 	add_uevent_var(env, "CREATED=%llu", created);
5343 	add_uevent_var(env, "COUNT=%llu", active);
5344 
5345 	if (type == KVM_EVENT_CREATE_VM) {
5346 		add_uevent_var(env, "EVENT=create");
5347 		kvm->userspace_pid = task_pid_nr(current);
5348 	} else if (type == KVM_EVENT_DESTROY_VM) {
5349 		add_uevent_var(env, "EVENT=destroy");
5350 	}
5351 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5352 
5353 	if (kvm->debugfs_dentry) {
5354 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5355 
5356 		if (p) {
5357 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5358 			if (!IS_ERR(tmp))
5359 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5360 			kfree(p);
5361 		}
5362 	}
5363 	/* no need for checks, since we are adding at most only 5 keys */
5364 	env->envp[env->envp_idx++] = NULL;
5365 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5366 	kfree(env);
5367 }
5368 
5369 static void kvm_init_debug(void)
5370 {
5371 	const struct file_operations *fops;
5372 	const struct _kvm_stats_desc *pdesc;
5373 	int i;
5374 
5375 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5376 
5377 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5378 		pdesc = &kvm_vm_stats_desc[i];
5379 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5380 			fops = &vm_stat_fops;
5381 		else
5382 			fops = &vm_stat_readonly_fops;
5383 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5384 				kvm_debugfs_dir,
5385 				(void *)(long)pdesc->desc.offset, fops);
5386 	}
5387 
5388 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5389 		pdesc = &kvm_vcpu_stats_desc[i];
5390 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5391 			fops = &vcpu_stat_fops;
5392 		else
5393 			fops = &vcpu_stat_readonly_fops;
5394 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5395 				kvm_debugfs_dir,
5396 				(void *)(long)pdesc->desc.offset, fops);
5397 	}
5398 }
5399 
5400 static int kvm_suspend(void)
5401 {
5402 	if (kvm_usage_count)
5403 		hardware_disable_nolock(NULL);
5404 	return 0;
5405 }
5406 
5407 static void kvm_resume(void)
5408 {
5409 	if (kvm_usage_count) {
5410 #ifdef CONFIG_LOCKDEP
5411 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5412 #endif
5413 		hardware_enable_nolock(NULL);
5414 	}
5415 }
5416 
5417 static struct syscore_ops kvm_syscore_ops = {
5418 	.suspend = kvm_suspend,
5419 	.resume = kvm_resume,
5420 };
5421 
5422 static inline
5423 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5424 {
5425 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5426 }
5427 
5428 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5429 {
5430 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5431 
5432 	WRITE_ONCE(vcpu->preempted, false);
5433 	WRITE_ONCE(vcpu->ready, false);
5434 
5435 	__this_cpu_write(kvm_running_vcpu, vcpu);
5436 	kvm_arch_sched_in(vcpu, cpu);
5437 	kvm_arch_vcpu_load(vcpu, cpu);
5438 }
5439 
5440 static void kvm_sched_out(struct preempt_notifier *pn,
5441 			  struct task_struct *next)
5442 {
5443 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5444 
5445 	if (current->on_rq) {
5446 		WRITE_ONCE(vcpu->preempted, true);
5447 		WRITE_ONCE(vcpu->ready, true);
5448 	}
5449 	kvm_arch_vcpu_put(vcpu);
5450 	__this_cpu_write(kvm_running_vcpu, NULL);
5451 }
5452 
5453 /**
5454  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5455  *
5456  * We can disable preemption locally around accessing the per-CPU variable,
5457  * and use the resolved vcpu pointer after enabling preemption again,
5458  * because even if the current thread is migrated to another CPU, reading
5459  * the per-CPU value later will give us the same value as we update the
5460  * per-CPU variable in the preempt notifier handlers.
5461  */
5462 struct kvm_vcpu *kvm_get_running_vcpu(void)
5463 {
5464 	struct kvm_vcpu *vcpu;
5465 
5466 	preempt_disable();
5467 	vcpu = __this_cpu_read(kvm_running_vcpu);
5468 	preempt_enable();
5469 
5470 	return vcpu;
5471 }
5472 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5473 
5474 /**
5475  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5476  */
5477 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5478 {
5479         return &kvm_running_vcpu;
5480 }
5481 
5482 struct kvm_cpu_compat_check {
5483 	void *opaque;
5484 	int *ret;
5485 };
5486 
5487 static void check_processor_compat(void *data)
5488 {
5489 	struct kvm_cpu_compat_check *c = data;
5490 
5491 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5492 }
5493 
5494 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5495 		  struct module *module)
5496 {
5497 	struct kvm_cpu_compat_check c;
5498 	int r;
5499 	int cpu;
5500 
5501 	r = kvm_arch_init(opaque);
5502 	if (r)
5503 		goto out_fail;
5504 
5505 	/*
5506 	 * kvm_arch_init makes sure there's at most one caller
5507 	 * for architectures that support multiple implementations,
5508 	 * like intel and amd on x86.
5509 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5510 	 * conflicts in case kvm is already setup for another implementation.
5511 	 */
5512 	r = kvm_irqfd_init();
5513 	if (r)
5514 		goto out_irqfd;
5515 
5516 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5517 		r = -ENOMEM;
5518 		goto out_free_0;
5519 	}
5520 
5521 	r = kvm_arch_hardware_setup(opaque);
5522 	if (r < 0)
5523 		goto out_free_1;
5524 
5525 	c.ret = &r;
5526 	c.opaque = opaque;
5527 	for_each_online_cpu(cpu) {
5528 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5529 		if (r < 0)
5530 			goto out_free_2;
5531 	}
5532 
5533 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5534 				      kvm_starting_cpu, kvm_dying_cpu);
5535 	if (r)
5536 		goto out_free_2;
5537 	register_reboot_notifier(&kvm_reboot_notifier);
5538 
5539 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5540 	if (!vcpu_align)
5541 		vcpu_align = __alignof__(struct kvm_vcpu);
5542 	kvm_vcpu_cache =
5543 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5544 					   SLAB_ACCOUNT,
5545 					   offsetof(struct kvm_vcpu, arch),
5546 					   offsetofend(struct kvm_vcpu, stats_id)
5547 					   - offsetof(struct kvm_vcpu, arch),
5548 					   NULL);
5549 	if (!kvm_vcpu_cache) {
5550 		r = -ENOMEM;
5551 		goto out_free_3;
5552 	}
5553 
5554 	for_each_possible_cpu(cpu) {
5555 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5556 					    GFP_KERNEL, cpu_to_node(cpu))) {
5557 			r = -ENOMEM;
5558 			goto out_free_4;
5559 		}
5560 	}
5561 
5562 	r = kvm_async_pf_init();
5563 	if (r)
5564 		goto out_free_5;
5565 
5566 	kvm_chardev_ops.owner = module;
5567 	kvm_vm_fops.owner = module;
5568 	kvm_vcpu_fops.owner = module;
5569 
5570 	r = misc_register(&kvm_dev);
5571 	if (r) {
5572 		pr_err("kvm: misc device register failed\n");
5573 		goto out_unreg;
5574 	}
5575 
5576 	register_syscore_ops(&kvm_syscore_ops);
5577 
5578 	kvm_preempt_ops.sched_in = kvm_sched_in;
5579 	kvm_preempt_ops.sched_out = kvm_sched_out;
5580 
5581 	kvm_init_debug();
5582 
5583 	r = kvm_vfio_ops_init();
5584 	WARN_ON(r);
5585 
5586 	return 0;
5587 
5588 out_unreg:
5589 	kvm_async_pf_deinit();
5590 out_free_5:
5591 	for_each_possible_cpu(cpu)
5592 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5593 out_free_4:
5594 	kmem_cache_destroy(kvm_vcpu_cache);
5595 out_free_3:
5596 	unregister_reboot_notifier(&kvm_reboot_notifier);
5597 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5598 out_free_2:
5599 	kvm_arch_hardware_unsetup();
5600 out_free_1:
5601 	free_cpumask_var(cpus_hardware_enabled);
5602 out_free_0:
5603 	kvm_irqfd_exit();
5604 out_irqfd:
5605 	kvm_arch_exit();
5606 out_fail:
5607 	return r;
5608 }
5609 EXPORT_SYMBOL_GPL(kvm_init);
5610 
5611 void kvm_exit(void)
5612 {
5613 	int cpu;
5614 
5615 	debugfs_remove_recursive(kvm_debugfs_dir);
5616 	misc_deregister(&kvm_dev);
5617 	for_each_possible_cpu(cpu)
5618 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5619 	kmem_cache_destroy(kvm_vcpu_cache);
5620 	kvm_async_pf_deinit();
5621 	unregister_syscore_ops(&kvm_syscore_ops);
5622 	unregister_reboot_notifier(&kvm_reboot_notifier);
5623 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5624 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5625 	kvm_arch_hardware_unsetup();
5626 	kvm_arch_exit();
5627 	kvm_irqfd_exit();
5628 	free_cpumask_var(cpus_hardware_enabled);
5629 	kvm_vfio_ops_exit();
5630 }
5631 EXPORT_SYMBOL_GPL(kvm_exit);
5632 
5633 struct kvm_vm_worker_thread_context {
5634 	struct kvm *kvm;
5635 	struct task_struct *parent;
5636 	struct completion init_done;
5637 	kvm_vm_thread_fn_t thread_fn;
5638 	uintptr_t data;
5639 	int err;
5640 };
5641 
5642 static int kvm_vm_worker_thread(void *context)
5643 {
5644 	/*
5645 	 * The init_context is allocated on the stack of the parent thread, so
5646 	 * we have to locally copy anything that is needed beyond initialization
5647 	 */
5648 	struct kvm_vm_worker_thread_context *init_context = context;
5649 	struct kvm *kvm = init_context->kvm;
5650 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5651 	uintptr_t data = init_context->data;
5652 	int err;
5653 
5654 	err = kthread_park(current);
5655 	/* kthread_park(current) is never supposed to return an error */
5656 	WARN_ON(err != 0);
5657 	if (err)
5658 		goto init_complete;
5659 
5660 	err = cgroup_attach_task_all(init_context->parent, current);
5661 	if (err) {
5662 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5663 			__func__, err);
5664 		goto init_complete;
5665 	}
5666 
5667 	set_user_nice(current, task_nice(init_context->parent));
5668 
5669 init_complete:
5670 	init_context->err = err;
5671 	complete(&init_context->init_done);
5672 	init_context = NULL;
5673 
5674 	if (err)
5675 		return err;
5676 
5677 	/* Wait to be woken up by the spawner before proceeding. */
5678 	kthread_parkme();
5679 
5680 	if (!kthread_should_stop())
5681 		err = thread_fn(kvm, data);
5682 
5683 	return err;
5684 }
5685 
5686 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5687 				uintptr_t data, const char *name,
5688 				struct task_struct **thread_ptr)
5689 {
5690 	struct kvm_vm_worker_thread_context init_context = {};
5691 	struct task_struct *thread;
5692 
5693 	*thread_ptr = NULL;
5694 	init_context.kvm = kvm;
5695 	init_context.parent = current;
5696 	init_context.thread_fn = thread_fn;
5697 	init_context.data = data;
5698 	init_completion(&init_context.init_done);
5699 
5700 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5701 			     "%s-%d", name, task_pid_nr(current));
5702 	if (IS_ERR(thread))
5703 		return PTR_ERR(thread);
5704 
5705 	/* kthread_run is never supposed to return NULL */
5706 	WARN_ON(thread == NULL);
5707 
5708 	wait_for_completion(&init_context.init_done);
5709 
5710 	if (!init_context.err)
5711 		*thread_ptr = thread;
5712 
5713 	return init_context.err;
5714 }
5715