1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 96 97 /* 98 * Ordering of locks: 99 * 100 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 101 */ 102 103 DEFINE_MUTEX(kvm_lock); 104 LIST_HEAD(vm_list); 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 static struct dentry *kvm_debugfs_dir; 112 113 static const struct file_operations stat_fops_per_vm; 114 115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #ifdef CONFIG_KVM_COMPAT 118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #define KVM_COMPAT(c) .compat_ioctl = (c) 121 #else 122 /* 123 * For architectures that don't implement a compat infrastructure, 124 * adopt a double line of defense: 125 * - Prevent a compat task from opening /dev/kvm 126 * - If the open has been done by a 64bit task, and the KVM fd 127 * passed to a compat task, let the ioctls fail. 128 */ 129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 130 unsigned long arg) { return -EINVAL; } 131 132 static int kvm_no_compat_open(struct inode *inode, struct file *file) 133 { 134 return is_compat_task() ? -ENODEV : 0; 135 } 136 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 137 .open = kvm_no_compat_open 138 #endif 139 static int hardware_enable_all(void); 140 static void hardware_disable_all(void); 141 142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 143 144 #define KVM_EVENT_CREATE_VM 0 145 #define KVM_EVENT_DESTROY_VM 1 146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 147 static unsigned long long kvm_createvm_count; 148 static unsigned long long kvm_active_vms; 149 150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 151 152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 153 { 154 } 155 156 bool kvm_is_zone_device_page(struct page *page) 157 { 158 /* 159 * The metadata used by is_zone_device_page() to determine whether or 160 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 161 * the device has been pinned, e.g. by get_user_pages(). WARN if the 162 * page_count() is zero to help detect bad usage of this helper. 163 */ 164 if (WARN_ON_ONCE(!page_count(page))) 165 return false; 166 167 return is_zone_device_page(page); 168 } 169 170 /* 171 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 172 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 173 * is likely incomplete, it has been compiled purely through people wanting to 174 * back guest with a certain type of memory and encountering issues. 175 */ 176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 177 { 178 struct page *page; 179 180 if (!pfn_valid(pfn)) 181 return NULL; 182 183 page = pfn_to_page(pfn); 184 if (!PageReserved(page)) 185 return page; 186 187 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 188 if (is_zero_pfn(pfn)) 189 return page; 190 191 /* 192 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 193 * perspective they are "normal" pages, albeit with slightly different 194 * usage rules. 195 */ 196 if (kvm_is_zone_device_page(page)) 197 return page; 198 199 return NULL; 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_kick(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 249 { 250 if (cpumask_empty(cpus)) 251 return false; 252 253 smp_call_function_many(cpus, ack_kick, NULL, wait); 254 return true; 255 } 256 257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 258 struct cpumask *tmp, int current_cpu) 259 { 260 int cpu; 261 262 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 263 __kvm_make_request(req, vcpu); 264 265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 266 return; 267 268 /* 269 * Note, the vCPU could get migrated to a different pCPU at any point 270 * after kvm_request_needs_ipi(), which could result in sending an IPI 271 * to the previous pCPU. But, that's OK because the purpose of the IPI 272 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 273 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 274 * after this point is also OK, as the requirement is only that KVM wait 275 * for vCPUs that were reading SPTEs _before_ any changes were 276 * finalized. See kvm_vcpu_kick() for more details on handling requests. 277 */ 278 if (kvm_request_needs_ipi(vcpu, req)) { 279 cpu = READ_ONCE(vcpu->cpu); 280 if (cpu != -1 && cpu != current_cpu) 281 __cpumask_set_cpu(cpu, tmp); 282 } 283 } 284 285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 286 unsigned long *vcpu_bitmap) 287 { 288 struct kvm_vcpu *vcpu; 289 struct cpumask *cpus; 290 int i, me; 291 bool called; 292 293 me = get_cpu(); 294 295 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 296 cpumask_clear(cpus); 297 298 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 299 vcpu = kvm_get_vcpu(kvm, i); 300 if (!vcpu) 301 continue; 302 kvm_make_vcpu_request(vcpu, req, cpus, me); 303 } 304 305 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 306 put_cpu(); 307 308 return called; 309 } 310 311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 312 { 313 struct kvm_vcpu *vcpu; 314 struct cpumask *cpus; 315 unsigned long i; 316 bool called; 317 int me; 318 319 me = get_cpu(); 320 321 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 322 cpumask_clear(cpus); 323 324 kvm_for_each_vcpu(i, vcpu, kvm) 325 kvm_make_vcpu_request(vcpu, req, cpus, me); 326 327 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 328 put_cpu(); 329 330 return called; 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 void kvm_flush_remote_tlbs(struct kvm *kvm) 335 { 336 ++kvm->stat.generic.remote_tlb_flush_requests; 337 338 /* 339 * We want to publish modifications to the page tables before reading 340 * mode. Pairs with a memory barrier in arch-specific code. 341 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 342 * and smp_mb in walk_shadow_page_lockless_begin/end. 343 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 344 * 345 * There is already an smp_mb__after_atomic() before 346 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 347 * barrier here. 348 */ 349 if (!kvm_arch_flush_remote_tlbs(kvm) 350 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 351 ++kvm->stat.generic.remote_tlb_flush; 352 } 353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 354 355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 356 { 357 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 358 return; 359 360 /* 361 * Fall back to a flushing entire TLBs if the architecture range-based 362 * TLB invalidation is unsupported or can't be performed for whatever 363 * reason. 364 */ 365 kvm_flush_remote_tlbs(kvm); 366 } 367 368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 369 const struct kvm_memory_slot *memslot) 370 { 371 /* 372 * All current use cases for flushing the TLBs for a specific memslot 373 * are related to dirty logging, and many do the TLB flush out of 374 * mmu_lock. The interaction between the various operations on memslot 375 * must be serialized by slots_locks to ensure the TLB flush from one 376 * operation is observed by any other operation on the same memslot. 377 */ 378 lockdep_assert_held(&kvm->slots_lock); 379 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 380 } 381 382 static void kvm_flush_shadow_all(struct kvm *kvm) 383 { 384 kvm_arch_flush_shadow_all(kvm); 385 kvm_arch_guest_memory_reclaimed(kvm); 386 } 387 388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 390 gfp_t gfp_flags) 391 { 392 void *page; 393 394 gfp_flags |= mc->gfp_zero; 395 396 if (mc->kmem_cache) 397 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 398 399 page = (void *)__get_free_page(gfp_flags); 400 if (page && mc->init_value) 401 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 402 return page; 403 } 404 405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 406 { 407 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 408 void *obj; 409 410 if (mc->nobjs >= min) 411 return 0; 412 413 if (unlikely(!mc->objects)) { 414 if (WARN_ON_ONCE(!capacity)) 415 return -EIO; 416 417 /* 418 * Custom init values can be used only for page allocations, 419 * and obviously conflict with __GFP_ZERO. 420 */ 421 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 588 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 589 node; \ 590 node = interval_tree_iter_next(node, start, last)) \ 591 592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 593 const struct kvm_mmu_notifier_range *range) 594 { 595 struct kvm_mmu_notifier_return r = { 596 .ret = false, 597 .found_memslot = false, 598 }; 599 struct kvm_gfn_range gfn_range; 600 struct kvm_memory_slot *slot; 601 struct kvm_memslots *slots; 602 int i, idx; 603 604 if (WARN_ON_ONCE(range->end <= range->start)) 605 return r; 606 607 /* A null handler is allowed if and only if on_lock() is provided. */ 608 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 609 IS_KVM_NULL_FN(range->handler))) 610 return r; 611 612 idx = srcu_read_lock(&kvm->srcu); 613 614 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 615 struct interval_tree_node *node; 616 617 slots = __kvm_memslots(kvm, i); 618 kvm_for_each_memslot_in_hva_range(node, slots, 619 range->start, range->end - 1) { 620 unsigned long hva_start, hva_end; 621 622 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 623 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 624 hva_end = min_t(unsigned long, range->end, 625 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 626 627 /* 628 * To optimize for the likely case where the address 629 * range is covered by zero or one memslots, don't 630 * bother making these conditional (to avoid writes on 631 * the second or later invocation of the handler). 632 */ 633 gfn_range.arg = range->arg; 634 gfn_range.may_block = range->may_block; 635 636 /* 637 * {gfn(page) | page intersects with [hva_start, hva_end)} = 638 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 639 */ 640 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 641 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 642 gfn_range.slot = slot; 643 644 if (!r.found_memslot) { 645 r.found_memslot = true; 646 KVM_MMU_LOCK(kvm); 647 if (!IS_KVM_NULL_FN(range->on_lock)) 648 range->on_lock(kvm); 649 650 if (IS_KVM_NULL_FN(range->handler)) 651 goto mmu_unlock; 652 } 653 r.ret |= range->handler(kvm, &gfn_range); 654 } 655 } 656 657 if (range->flush_on_ret && r.ret) 658 kvm_flush_remote_tlbs(kvm); 659 660 mmu_unlock: 661 if (r.found_memslot) 662 KVM_MMU_UNLOCK(kvm); 663 664 srcu_read_unlock(&kvm->srcu, idx); 665 666 return r; 667 } 668 669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 670 unsigned long start, 671 unsigned long end, 672 gfn_handler_t handler) 673 { 674 struct kvm *kvm = mmu_notifier_to_kvm(mn); 675 const struct kvm_mmu_notifier_range range = { 676 .start = start, 677 .end = end, 678 .handler = handler, 679 .on_lock = (void *)kvm_null_fn, 680 .flush_on_ret = true, 681 .may_block = false, 682 }; 683 684 return __kvm_handle_hva_range(kvm, &range).ret; 685 } 686 687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 688 unsigned long start, 689 unsigned long end, 690 gfn_handler_t handler) 691 { 692 struct kvm *kvm = mmu_notifier_to_kvm(mn); 693 const struct kvm_mmu_notifier_range range = { 694 .start = start, 695 .end = end, 696 .handler = handler, 697 .on_lock = (void *)kvm_null_fn, 698 .flush_on_ret = false, 699 .may_block = false, 700 }; 701 702 return __kvm_handle_hva_range(kvm, &range).ret; 703 } 704 705 void kvm_mmu_invalidate_begin(struct kvm *kvm) 706 { 707 lockdep_assert_held_write(&kvm->mmu_lock); 708 /* 709 * The count increase must become visible at unlock time as no 710 * spte can be established without taking the mmu_lock and 711 * count is also read inside the mmu_lock critical section. 712 */ 713 kvm->mmu_invalidate_in_progress++; 714 715 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 716 kvm->mmu_invalidate_range_start = INVALID_GPA; 717 kvm->mmu_invalidate_range_end = INVALID_GPA; 718 } 719 } 720 721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 722 { 723 lockdep_assert_held_write(&kvm->mmu_lock); 724 725 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 726 727 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 748 { 749 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 750 return kvm_unmap_gfn_range(kvm, range); 751 } 752 753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_mmu_notifier_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .handler = kvm_mmu_unmap_gfn_range, 761 .on_lock = kvm_mmu_invalidate_begin, 762 .flush_on_ret = true, 763 .may_block = mmu_notifier_range_blockable(range), 764 }; 765 766 trace_kvm_unmap_hva_range(range->start, range->end); 767 768 /* 769 * Prevent memslot modification between range_start() and range_end() 770 * so that conditionally locking provides the same result in both 771 * functions. Without that guarantee, the mmu_invalidate_in_progress 772 * adjustments will be imbalanced. 773 * 774 * Pairs with the decrement in range_end(). 775 */ 776 spin_lock(&kvm->mn_invalidate_lock); 777 kvm->mn_active_invalidate_count++; 778 spin_unlock(&kvm->mn_invalidate_lock); 779 780 /* 781 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 782 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 783 * each cache's lock. There are relatively few caches in existence at 784 * any given time, and the caches themselves can check for hva overlap, 785 * i.e. don't need to rely on memslot overlap checks for performance. 786 * Because this runs without holding mmu_lock, the pfn caches must use 787 * mn_active_invalidate_count (see above) instead of 788 * mmu_invalidate_in_progress. 789 */ 790 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 791 792 /* 793 * If one or more memslots were found and thus zapped, notify arch code 794 * that guest memory has been reclaimed. This needs to be done *after* 795 * dropping mmu_lock, as x86's reclaim path is slooooow. 796 */ 797 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 798 kvm_arch_guest_memory_reclaimed(kvm); 799 800 return 0; 801 } 802 803 void kvm_mmu_invalidate_end(struct kvm *kvm) 804 { 805 lockdep_assert_held_write(&kvm->mmu_lock); 806 807 /* 808 * This sequence increase will notify the kvm page fault that 809 * the page that is going to be mapped in the spte could have 810 * been freed. 811 */ 812 kvm->mmu_invalidate_seq++; 813 smp_wmb(); 814 /* 815 * The above sequence increase must be visible before the 816 * below count decrease, which is ensured by the smp_wmb above 817 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 818 */ 819 kvm->mmu_invalidate_in_progress--; 820 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 821 822 /* 823 * Assert that at least one range was added between start() and end(). 824 * Not adding a range isn't fatal, but it is a KVM bug. 825 */ 826 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 827 } 828 829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 830 const struct mmu_notifier_range *range) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 const struct kvm_mmu_notifier_range hva_range = { 834 .start = range->start, 835 .end = range->end, 836 .handler = (void *)kvm_null_fn, 837 .on_lock = kvm_mmu_invalidate_end, 838 .flush_on_ret = false, 839 .may_block = mmu_notifier_range_blockable(range), 840 }; 841 bool wake; 842 843 __kvm_handle_hva_range(kvm, &hva_range); 844 845 /* Pairs with the increment in range_start(). */ 846 spin_lock(&kvm->mn_invalidate_lock); 847 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 848 --kvm->mn_active_invalidate_count; 849 wake = !kvm->mn_active_invalidate_count; 850 spin_unlock(&kvm->mn_invalidate_lock); 851 852 /* 853 * There can only be one waiter, since the wait happens under 854 * slots_lock. 855 */ 856 if (wake) 857 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 858 } 859 860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 861 struct mm_struct *mm, 862 unsigned long start, 863 unsigned long end) 864 { 865 trace_kvm_age_hva(start, end); 866 867 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 868 } 869 870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 871 struct mm_struct *mm, 872 unsigned long start, 873 unsigned long end) 874 { 875 trace_kvm_age_hva(start, end); 876 877 /* 878 * Even though we do not flush TLB, this will still adversely 879 * affect performance on pre-Haswell Intel EPT, where there is 880 * no EPT Access Bit to clear so that we have to tear down EPT 881 * tables instead. If we find this unacceptable, we can always 882 * add a parameter to kvm_age_hva so that it effectively doesn't 883 * do anything on clear_young. 884 * 885 * Also note that currently we never issue secondary TLB flushes 886 * from clear_young, leaving this job up to the regular system 887 * cadence. If we find this inaccurate, we might come up with a 888 * more sophisticated heuristic later. 889 */ 890 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 891 } 892 893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 894 struct mm_struct *mm, 895 unsigned long address) 896 { 897 trace_kvm_test_age_hva(address); 898 899 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 900 kvm_test_age_gfn); 901 } 902 903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 904 struct mm_struct *mm) 905 { 906 struct kvm *kvm = mmu_notifier_to_kvm(mn); 907 int idx; 908 909 idx = srcu_read_lock(&kvm->srcu); 910 kvm_flush_shadow_all(kvm); 911 srcu_read_unlock(&kvm->srcu, idx); 912 } 913 914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 915 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 916 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 917 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 918 .clear_young = kvm_mmu_notifier_clear_young, 919 .test_young = kvm_mmu_notifier_test_young, 920 .release = kvm_mmu_notifier_release, 921 }; 922 923 static int kvm_init_mmu_notifier(struct kvm *kvm) 924 { 925 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 926 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 927 } 928 929 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 return 0; 934 } 935 936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 937 938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 939 static int kvm_pm_notifier_call(struct notifier_block *bl, 940 unsigned long state, 941 void *unused) 942 { 943 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 944 945 return kvm_arch_pm_notifier(kvm, state); 946 } 947 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 951 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 952 kvm->pm_notifier.priority = INT_MAX; 953 register_pm_notifier(&kvm->pm_notifier); 954 } 955 956 static void kvm_destroy_pm_notifier(struct kvm *kvm) 957 { 958 unregister_pm_notifier(&kvm->pm_notifier); 959 } 960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 961 static void kvm_init_pm_notifier(struct kvm *kvm) 962 { 963 } 964 965 static void kvm_destroy_pm_notifier(struct kvm *kvm) 966 { 967 } 968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 971 { 972 if (!memslot->dirty_bitmap) 973 return; 974 975 vfree(memslot->dirty_bitmap); 976 memslot->dirty_bitmap = NULL; 977 } 978 979 /* This does not remove the slot from struct kvm_memslots data structures */ 980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 981 { 982 if (slot->flags & KVM_MEM_GUEST_MEMFD) 983 kvm_gmem_unbind(slot); 984 985 kvm_destroy_dirty_bitmap(slot); 986 987 kvm_arch_free_memslot(kvm, slot); 988 989 kfree(slot); 990 } 991 992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 993 { 994 struct hlist_node *idnode; 995 struct kvm_memory_slot *memslot; 996 int bkt; 997 998 /* 999 * The same memslot objects live in both active and inactive sets, 1000 * arbitrarily free using index '1' so the second invocation of this 1001 * function isn't operating over a structure with dangling pointers 1002 * (even though this function isn't actually touching them). 1003 */ 1004 if (!slots->node_idx) 1005 return; 1006 1007 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1008 kvm_free_memslot(kvm, memslot); 1009 } 1010 1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1012 { 1013 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1014 case KVM_STATS_TYPE_INSTANT: 1015 return 0444; 1016 case KVM_STATS_TYPE_CUMULATIVE: 1017 case KVM_STATS_TYPE_PEAK: 1018 default: 1019 return 0644; 1020 } 1021 } 1022 1023 1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1025 { 1026 int i; 1027 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1028 kvm_vcpu_stats_header.num_desc; 1029 1030 if (IS_ERR(kvm->debugfs_dentry)) 1031 return; 1032 1033 debugfs_remove_recursive(kvm->debugfs_dentry); 1034 1035 if (kvm->debugfs_stat_data) { 1036 for (i = 0; i < kvm_debugfs_num_entries; i++) 1037 kfree(kvm->debugfs_stat_data[i]); 1038 kfree(kvm->debugfs_stat_data); 1039 } 1040 } 1041 1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1043 { 1044 static DEFINE_MUTEX(kvm_debugfs_lock); 1045 struct dentry *dent; 1046 char dir_name[ITOA_MAX_LEN * 2]; 1047 struct kvm_stat_data *stat_data; 1048 const struct _kvm_stats_desc *pdesc; 1049 int i, ret = -ENOMEM; 1050 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1051 kvm_vcpu_stats_header.num_desc; 1052 1053 if (!debugfs_initialized()) 1054 return 0; 1055 1056 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1057 mutex_lock(&kvm_debugfs_lock); 1058 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1059 if (dent) { 1060 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1061 dput(dent); 1062 mutex_unlock(&kvm_debugfs_lock); 1063 return 0; 1064 } 1065 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1066 mutex_unlock(&kvm_debugfs_lock); 1067 if (IS_ERR(dent)) 1068 return 0; 1069 1070 kvm->debugfs_dentry = dent; 1071 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1072 sizeof(*kvm->debugfs_stat_data), 1073 GFP_KERNEL_ACCOUNT); 1074 if (!kvm->debugfs_stat_data) 1075 goto out_err; 1076 1077 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1078 pdesc = &kvm_vm_stats_desc[i]; 1079 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1080 if (!stat_data) 1081 goto out_err; 1082 1083 stat_data->kvm = kvm; 1084 stat_data->desc = pdesc; 1085 stat_data->kind = KVM_STAT_VM; 1086 kvm->debugfs_stat_data[i] = stat_data; 1087 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1088 kvm->debugfs_dentry, stat_data, 1089 &stat_fops_per_vm); 1090 } 1091 1092 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1093 pdesc = &kvm_vcpu_stats_desc[i]; 1094 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1095 if (!stat_data) 1096 goto out_err; 1097 1098 stat_data->kvm = kvm; 1099 stat_data->desc = pdesc; 1100 stat_data->kind = KVM_STAT_VCPU; 1101 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1102 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1103 kvm->debugfs_dentry, stat_data, 1104 &stat_fops_per_vm); 1105 } 1106 1107 kvm_arch_create_vm_debugfs(kvm); 1108 return 0; 1109 out_err: 1110 kvm_destroy_vm_debugfs(kvm); 1111 return ret; 1112 } 1113 1114 /* 1115 * Called after the VM is otherwise initialized, but just before adding it to 1116 * the vm_list. 1117 */ 1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1119 { 1120 return 0; 1121 } 1122 1123 /* 1124 * Called just after removing the VM from the vm_list, but before doing any 1125 * other destruction. 1126 */ 1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1128 { 1129 } 1130 1131 /* 1132 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1133 * be setup already, so we can create arch-specific debugfs entries under it. 1134 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1135 * a per-arch destroy interface is not needed. 1136 */ 1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1138 { 1139 } 1140 1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1142 { 1143 struct kvm *kvm = kvm_arch_alloc_vm(); 1144 struct kvm_memslots *slots; 1145 int r, i, j; 1146 1147 if (!kvm) 1148 return ERR_PTR(-ENOMEM); 1149 1150 KVM_MMU_LOCK_INIT(kvm); 1151 mmgrab(current->mm); 1152 kvm->mm = current->mm; 1153 kvm_eventfd_init(kvm); 1154 mutex_init(&kvm->lock); 1155 mutex_init(&kvm->irq_lock); 1156 mutex_init(&kvm->slots_lock); 1157 mutex_init(&kvm->slots_arch_lock); 1158 spin_lock_init(&kvm->mn_invalidate_lock); 1159 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1160 xa_init(&kvm->vcpu_array); 1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1162 xa_init(&kvm->mem_attr_array); 1163 #endif 1164 1165 INIT_LIST_HEAD(&kvm->gpc_list); 1166 spin_lock_init(&kvm->gpc_lock); 1167 1168 INIT_LIST_HEAD(&kvm->devices); 1169 kvm->max_vcpus = KVM_MAX_VCPUS; 1170 1171 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1172 1173 /* 1174 * Force subsequent debugfs file creations to fail if the VM directory 1175 * is not created (by kvm_create_vm_debugfs()). 1176 */ 1177 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1178 1179 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1180 task_pid_nr(current)); 1181 1182 r = -ENOMEM; 1183 if (init_srcu_struct(&kvm->srcu)) 1184 goto out_err_no_srcu; 1185 if (init_srcu_struct(&kvm->irq_srcu)) 1186 goto out_err_no_irq_srcu; 1187 1188 r = kvm_init_irq_routing(kvm); 1189 if (r) 1190 goto out_err_no_irq_routing; 1191 1192 refcount_set(&kvm->users_count, 1); 1193 1194 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1195 for (j = 0; j < 2; j++) { 1196 slots = &kvm->__memslots[i][j]; 1197 1198 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1199 slots->hva_tree = RB_ROOT_CACHED; 1200 slots->gfn_tree = RB_ROOT; 1201 hash_init(slots->id_hash); 1202 slots->node_idx = j; 1203 1204 /* Generations must be different for each address space. */ 1205 slots->generation = i; 1206 } 1207 1208 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1209 } 1210 1211 r = -ENOMEM; 1212 for (i = 0; i < KVM_NR_BUSES; i++) { 1213 rcu_assign_pointer(kvm->buses[i], 1214 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1215 if (!kvm->buses[i]) 1216 goto out_err_no_arch_destroy_vm; 1217 } 1218 1219 r = kvm_arch_init_vm(kvm, type); 1220 if (r) 1221 goto out_err_no_arch_destroy_vm; 1222 1223 r = hardware_enable_all(); 1224 if (r) 1225 goto out_err_no_disable; 1226 1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1228 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1229 #endif 1230 1231 r = kvm_init_mmu_notifier(kvm); 1232 if (r) 1233 goto out_err_no_mmu_notifier; 1234 1235 r = kvm_coalesced_mmio_init(kvm); 1236 if (r < 0) 1237 goto out_no_coalesced_mmio; 1238 1239 r = kvm_create_vm_debugfs(kvm, fdname); 1240 if (r) 1241 goto out_err_no_debugfs; 1242 1243 r = kvm_arch_post_init_vm(kvm); 1244 if (r) 1245 goto out_err; 1246 1247 mutex_lock(&kvm_lock); 1248 list_add(&kvm->vm_list, &vm_list); 1249 mutex_unlock(&kvm_lock); 1250 1251 preempt_notifier_inc(); 1252 kvm_init_pm_notifier(kvm); 1253 1254 return kvm; 1255 1256 out_err: 1257 kvm_destroy_vm_debugfs(kvm); 1258 out_err_no_debugfs: 1259 kvm_coalesced_mmio_free(kvm); 1260 out_no_coalesced_mmio: 1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1262 if (kvm->mmu_notifier.ops) 1263 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1264 #endif 1265 out_err_no_mmu_notifier: 1266 hardware_disable_all(); 1267 out_err_no_disable: 1268 kvm_arch_destroy_vm(kvm); 1269 out_err_no_arch_destroy_vm: 1270 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1271 for (i = 0; i < KVM_NR_BUSES; i++) 1272 kfree(kvm_get_bus(kvm, i)); 1273 kvm_free_irq_routing(kvm); 1274 out_err_no_irq_routing: 1275 cleanup_srcu_struct(&kvm->irq_srcu); 1276 out_err_no_irq_srcu: 1277 cleanup_srcu_struct(&kvm->srcu); 1278 out_err_no_srcu: 1279 kvm_arch_free_vm(kvm); 1280 mmdrop(current->mm); 1281 return ERR_PTR(r); 1282 } 1283 1284 static void kvm_destroy_devices(struct kvm *kvm) 1285 { 1286 struct kvm_device *dev, *tmp; 1287 1288 /* 1289 * We do not need to take the kvm->lock here, because nobody else 1290 * has a reference to the struct kvm at this point and therefore 1291 * cannot access the devices list anyhow. 1292 * 1293 * The device list is generally managed as an rculist, but list_del() 1294 * is used intentionally here. If a bug in KVM introduced a reader that 1295 * was not backed by a reference on the kvm struct, the hope is that 1296 * it'd consume the poisoned forward pointer instead of suffering a 1297 * use-after-free, even though this cannot be guaranteed. 1298 */ 1299 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1300 list_del(&dev->vm_node); 1301 dev->ops->destroy(dev); 1302 } 1303 } 1304 1305 static void kvm_destroy_vm(struct kvm *kvm) 1306 { 1307 int i; 1308 struct mm_struct *mm = kvm->mm; 1309 1310 kvm_destroy_pm_notifier(kvm); 1311 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1312 kvm_destroy_vm_debugfs(kvm); 1313 kvm_arch_sync_events(kvm); 1314 mutex_lock(&kvm_lock); 1315 list_del(&kvm->vm_list); 1316 mutex_unlock(&kvm_lock); 1317 kvm_arch_pre_destroy_vm(kvm); 1318 1319 kvm_free_irq_routing(kvm); 1320 for (i = 0; i < KVM_NR_BUSES; i++) { 1321 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1322 1323 if (bus) 1324 kvm_io_bus_destroy(bus); 1325 kvm->buses[i] = NULL; 1326 } 1327 kvm_coalesced_mmio_free(kvm); 1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1329 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1330 /* 1331 * At this point, pending calls to invalidate_range_start() 1332 * have completed but no more MMU notifiers will run, so 1333 * mn_active_invalidate_count may remain unbalanced. 1334 * No threads can be waiting in kvm_swap_active_memslots() as the 1335 * last reference on KVM has been dropped, but freeing 1336 * memslots would deadlock without this manual intervention. 1337 * 1338 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1339 * notifier between a start() and end(), then there shouldn't be any 1340 * in-progress invalidations. 1341 */ 1342 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1343 if (kvm->mn_active_invalidate_count) 1344 kvm->mn_active_invalidate_count = 0; 1345 else 1346 WARN_ON(kvm->mmu_invalidate_in_progress); 1347 #else 1348 kvm_flush_shadow_all(kvm); 1349 #endif 1350 kvm_arch_destroy_vm(kvm); 1351 kvm_destroy_devices(kvm); 1352 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1353 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1354 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1355 } 1356 cleanup_srcu_struct(&kvm->irq_srcu); 1357 cleanup_srcu_struct(&kvm->srcu); 1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1359 xa_destroy(&kvm->mem_attr_array); 1360 #endif 1361 kvm_arch_free_vm(kvm); 1362 preempt_notifier_dec(); 1363 hardware_disable_all(); 1364 mmdrop(mm); 1365 } 1366 1367 void kvm_get_kvm(struct kvm *kvm) 1368 { 1369 refcount_inc(&kvm->users_count); 1370 } 1371 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1372 1373 /* 1374 * Make sure the vm is not during destruction, which is a safe version of 1375 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1376 */ 1377 bool kvm_get_kvm_safe(struct kvm *kvm) 1378 { 1379 return refcount_inc_not_zero(&kvm->users_count); 1380 } 1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1382 1383 void kvm_put_kvm(struct kvm *kvm) 1384 { 1385 if (refcount_dec_and_test(&kvm->users_count)) 1386 kvm_destroy_vm(kvm); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1389 1390 /* 1391 * Used to put a reference that was taken on behalf of an object associated 1392 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1393 * of the new file descriptor fails and the reference cannot be transferred to 1394 * its final owner. In such cases, the caller is still actively using @kvm and 1395 * will fail miserably if the refcount unexpectedly hits zero. 1396 */ 1397 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1398 { 1399 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1400 } 1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1402 1403 static int kvm_vm_release(struct inode *inode, struct file *filp) 1404 { 1405 struct kvm *kvm = filp->private_data; 1406 1407 kvm_irqfd_release(kvm); 1408 1409 kvm_put_kvm(kvm); 1410 return 0; 1411 } 1412 1413 /* 1414 * Allocation size is twice as large as the actual dirty bitmap size. 1415 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1416 */ 1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1418 { 1419 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1420 1421 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1422 if (!memslot->dirty_bitmap) 1423 return -ENOMEM; 1424 1425 return 0; 1426 } 1427 1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1429 { 1430 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1431 int node_idx_inactive = active->node_idx ^ 1; 1432 1433 return &kvm->__memslots[as_id][node_idx_inactive]; 1434 } 1435 1436 /* 1437 * Helper to get the address space ID when one of memslot pointers may be NULL. 1438 * This also serves as a sanity that at least one of the pointers is non-NULL, 1439 * and that their address space IDs don't diverge. 1440 */ 1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1442 struct kvm_memory_slot *b) 1443 { 1444 if (WARN_ON_ONCE(!a && !b)) 1445 return 0; 1446 1447 if (!a) 1448 return b->as_id; 1449 if (!b) 1450 return a->as_id; 1451 1452 WARN_ON_ONCE(a->as_id != b->as_id); 1453 return a->as_id; 1454 } 1455 1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1457 struct kvm_memory_slot *slot) 1458 { 1459 struct rb_root *gfn_tree = &slots->gfn_tree; 1460 struct rb_node **node, *parent; 1461 int idx = slots->node_idx; 1462 1463 parent = NULL; 1464 for (node = &gfn_tree->rb_node; *node; ) { 1465 struct kvm_memory_slot *tmp; 1466 1467 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1468 parent = *node; 1469 if (slot->base_gfn < tmp->base_gfn) 1470 node = &(*node)->rb_left; 1471 else if (slot->base_gfn > tmp->base_gfn) 1472 node = &(*node)->rb_right; 1473 else 1474 BUG(); 1475 } 1476 1477 rb_link_node(&slot->gfn_node[idx], parent, node); 1478 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1479 } 1480 1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1482 struct kvm_memory_slot *slot) 1483 { 1484 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1485 } 1486 1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1488 struct kvm_memory_slot *old, 1489 struct kvm_memory_slot *new) 1490 { 1491 int idx = slots->node_idx; 1492 1493 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1494 1495 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1496 &slots->gfn_tree); 1497 } 1498 1499 /* 1500 * Replace @old with @new in the inactive memslots. 1501 * 1502 * With NULL @old this simply adds @new. 1503 * With NULL @new this simply removes @old. 1504 * 1505 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1506 * appropriately. 1507 */ 1508 static void kvm_replace_memslot(struct kvm *kvm, 1509 struct kvm_memory_slot *old, 1510 struct kvm_memory_slot *new) 1511 { 1512 int as_id = kvm_memslots_get_as_id(old, new); 1513 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1514 int idx = slots->node_idx; 1515 1516 if (old) { 1517 hash_del(&old->id_node[idx]); 1518 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1519 1520 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1521 atomic_long_set(&slots->last_used_slot, (long)new); 1522 1523 if (!new) { 1524 kvm_erase_gfn_node(slots, old); 1525 return; 1526 } 1527 } 1528 1529 /* 1530 * Initialize @new's hva range. Do this even when replacing an @old 1531 * slot, kvm_copy_memslot() deliberately does not touch node data. 1532 */ 1533 new->hva_node[idx].start = new->userspace_addr; 1534 new->hva_node[idx].last = new->userspace_addr + 1535 (new->npages << PAGE_SHIFT) - 1; 1536 1537 /* 1538 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1539 * hva_node needs to be swapped with remove+insert even though hva can't 1540 * change when replacing an existing slot. 1541 */ 1542 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1543 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1544 1545 /* 1546 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1547 * switch the node in the gfn tree instead of removing the old and 1548 * inserting the new as two separate operations. Replacement is a 1549 * single O(1) operation versus two O(log(n)) operations for 1550 * remove+insert. 1551 */ 1552 if (old && old->base_gfn == new->base_gfn) { 1553 kvm_replace_gfn_node(slots, old, new); 1554 } else { 1555 if (old) 1556 kvm_erase_gfn_node(slots, old); 1557 kvm_insert_gfn_node(slots, new); 1558 } 1559 } 1560 1561 /* 1562 * Flags that do not access any of the extra space of struct 1563 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1564 * only allows these. 1565 */ 1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1567 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1568 1569 static int check_memory_region_flags(struct kvm *kvm, 1570 const struct kvm_userspace_memory_region2 *mem) 1571 { 1572 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1573 1574 if (kvm_arch_has_private_mem(kvm)) 1575 valid_flags |= KVM_MEM_GUEST_MEMFD; 1576 1577 /* Dirty logging private memory is not currently supported. */ 1578 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1579 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1580 1581 /* 1582 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1583 * read-only memslots have emulated MMIO, not page fault, semantics, 1584 * and KVM doesn't allow emulated MMIO for private memory. 1585 */ 1586 if (kvm_arch_has_readonly_mem(kvm) && 1587 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1588 valid_flags |= KVM_MEM_READONLY; 1589 1590 if (mem->flags & ~valid_flags) 1591 return -EINVAL; 1592 1593 return 0; 1594 } 1595 1596 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1597 { 1598 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1599 1600 /* Grab the generation from the activate memslots. */ 1601 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1602 1603 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1604 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1605 1606 /* 1607 * Do not store the new memslots while there are invalidations in 1608 * progress, otherwise the locking in invalidate_range_start and 1609 * invalidate_range_end will be unbalanced. 1610 */ 1611 spin_lock(&kvm->mn_invalidate_lock); 1612 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1613 while (kvm->mn_active_invalidate_count) { 1614 set_current_state(TASK_UNINTERRUPTIBLE); 1615 spin_unlock(&kvm->mn_invalidate_lock); 1616 schedule(); 1617 spin_lock(&kvm->mn_invalidate_lock); 1618 } 1619 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1620 rcu_assign_pointer(kvm->memslots[as_id], slots); 1621 spin_unlock(&kvm->mn_invalidate_lock); 1622 1623 /* 1624 * Acquired in kvm_set_memslot. Must be released before synchronize 1625 * SRCU below in order to avoid deadlock with another thread 1626 * acquiring the slots_arch_lock in an srcu critical section. 1627 */ 1628 mutex_unlock(&kvm->slots_arch_lock); 1629 1630 synchronize_srcu_expedited(&kvm->srcu); 1631 1632 /* 1633 * Increment the new memslot generation a second time, dropping the 1634 * update in-progress flag and incrementing the generation based on 1635 * the number of address spaces. This provides a unique and easily 1636 * identifiable generation number while the memslots are in flux. 1637 */ 1638 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1639 1640 /* 1641 * Generations must be unique even across address spaces. We do not need 1642 * a global counter for that, instead the generation space is evenly split 1643 * across address spaces. For example, with two address spaces, address 1644 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1645 * use generations 1, 3, 5, ... 1646 */ 1647 gen += kvm_arch_nr_memslot_as_ids(kvm); 1648 1649 kvm_arch_memslots_updated(kvm, gen); 1650 1651 slots->generation = gen; 1652 } 1653 1654 static int kvm_prepare_memory_region(struct kvm *kvm, 1655 const struct kvm_memory_slot *old, 1656 struct kvm_memory_slot *new, 1657 enum kvm_mr_change change) 1658 { 1659 int r; 1660 1661 /* 1662 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1663 * will be freed on "commit". If logging is enabled in both old and 1664 * new, reuse the existing bitmap. If logging is enabled only in the 1665 * new and KVM isn't using a ring buffer, allocate and initialize a 1666 * new bitmap. 1667 */ 1668 if (change != KVM_MR_DELETE) { 1669 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1670 new->dirty_bitmap = NULL; 1671 else if (old && old->dirty_bitmap) 1672 new->dirty_bitmap = old->dirty_bitmap; 1673 else if (kvm_use_dirty_bitmap(kvm)) { 1674 r = kvm_alloc_dirty_bitmap(new); 1675 if (r) 1676 return r; 1677 1678 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1679 bitmap_set(new->dirty_bitmap, 0, new->npages); 1680 } 1681 } 1682 1683 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1684 1685 /* Free the bitmap on failure if it was allocated above. */ 1686 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1687 kvm_destroy_dirty_bitmap(new); 1688 1689 return r; 1690 } 1691 1692 static void kvm_commit_memory_region(struct kvm *kvm, 1693 struct kvm_memory_slot *old, 1694 const struct kvm_memory_slot *new, 1695 enum kvm_mr_change change) 1696 { 1697 int old_flags = old ? old->flags : 0; 1698 int new_flags = new ? new->flags : 0; 1699 /* 1700 * Update the total number of memslot pages before calling the arch 1701 * hook so that architectures can consume the result directly. 1702 */ 1703 if (change == KVM_MR_DELETE) 1704 kvm->nr_memslot_pages -= old->npages; 1705 else if (change == KVM_MR_CREATE) 1706 kvm->nr_memslot_pages += new->npages; 1707 1708 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1709 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1710 atomic_set(&kvm->nr_memslots_dirty_logging, 1711 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1712 } 1713 1714 kvm_arch_commit_memory_region(kvm, old, new, change); 1715 1716 switch (change) { 1717 case KVM_MR_CREATE: 1718 /* Nothing more to do. */ 1719 break; 1720 case KVM_MR_DELETE: 1721 /* Free the old memslot and all its metadata. */ 1722 kvm_free_memslot(kvm, old); 1723 break; 1724 case KVM_MR_MOVE: 1725 case KVM_MR_FLAGS_ONLY: 1726 /* 1727 * Free the dirty bitmap as needed; the below check encompasses 1728 * both the flags and whether a ring buffer is being used) 1729 */ 1730 if (old->dirty_bitmap && !new->dirty_bitmap) 1731 kvm_destroy_dirty_bitmap(old); 1732 1733 /* 1734 * The final quirk. Free the detached, old slot, but only its 1735 * memory, not any metadata. Metadata, including arch specific 1736 * data, may be reused by @new. 1737 */ 1738 kfree(old); 1739 break; 1740 default: 1741 BUG(); 1742 } 1743 } 1744 1745 /* 1746 * Activate @new, which must be installed in the inactive slots by the caller, 1747 * by swapping the active slots and then propagating @new to @old once @old is 1748 * unreachable and can be safely modified. 1749 * 1750 * With NULL @old this simply adds @new to @active (while swapping the sets). 1751 * With NULL @new this simply removes @old from @active and frees it 1752 * (while also swapping the sets). 1753 */ 1754 static void kvm_activate_memslot(struct kvm *kvm, 1755 struct kvm_memory_slot *old, 1756 struct kvm_memory_slot *new) 1757 { 1758 int as_id = kvm_memslots_get_as_id(old, new); 1759 1760 kvm_swap_active_memslots(kvm, as_id); 1761 1762 /* Propagate the new memslot to the now inactive memslots. */ 1763 kvm_replace_memslot(kvm, old, new); 1764 } 1765 1766 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1767 const struct kvm_memory_slot *src) 1768 { 1769 dest->base_gfn = src->base_gfn; 1770 dest->npages = src->npages; 1771 dest->dirty_bitmap = src->dirty_bitmap; 1772 dest->arch = src->arch; 1773 dest->userspace_addr = src->userspace_addr; 1774 dest->flags = src->flags; 1775 dest->id = src->id; 1776 dest->as_id = src->as_id; 1777 } 1778 1779 static void kvm_invalidate_memslot(struct kvm *kvm, 1780 struct kvm_memory_slot *old, 1781 struct kvm_memory_slot *invalid_slot) 1782 { 1783 /* 1784 * Mark the current slot INVALID. As with all memslot modifications, 1785 * this must be done on an unreachable slot to avoid modifying the 1786 * current slot in the active tree. 1787 */ 1788 kvm_copy_memslot(invalid_slot, old); 1789 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1790 kvm_replace_memslot(kvm, old, invalid_slot); 1791 1792 /* 1793 * Activate the slot that is now marked INVALID, but don't propagate 1794 * the slot to the now inactive slots. The slot is either going to be 1795 * deleted or recreated as a new slot. 1796 */ 1797 kvm_swap_active_memslots(kvm, old->as_id); 1798 1799 /* 1800 * From this point no new shadow pages pointing to a deleted, or moved, 1801 * memslot will be created. Validation of sp->gfn happens in: 1802 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1803 * - kvm_is_visible_gfn (mmu_check_root) 1804 */ 1805 kvm_arch_flush_shadow_memslot(kvm, old); 1806 kvm_arch_guest_memory_reclaimed(kvm); 1807 1808 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1809 mutex_lock(&kvm->slots_arch_lock); 1810 1811 /* 1812 * Copy the arch-specific field of the newly-installed slot back to the 1813 * old slot as the arch data could have changed between releasing 1814 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1815 * above. Writers are required to retrieve memslots *after* acquiring 1816 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1817 */ 1818 old->arch = invalid_slot->arch; 1819 } 1820 1821 static void kvm_create_memslot(struct kvm *kvm, 1822 struct kvm_memory_slot *new) 1823 { 1824 /* Add the new memslot to the inactive set and activate. */ 1825 kvm_replace_memslot(kvm, NULL, new); 1826 kvm_activate_memslot(kvm, NULL, new); 1827 } 1828 1829 static void kvm_delete_memslot(struct kvm *kvm, 1830 struct kvm_memory_slot *old, 1831 struct kvm_memory_slot *invalid_slot) 1832 { 1833 /* 1834 * Remove the old memslot (in the inactive memslots) by passing NULL as 1835 * the "new" slot, and for the invalid version in the active slots. 1836 */ 1837 kvm_replace_memslot(kvm, old, NULL); 1838 kvm_activate_memslot(kvm, invalid_slot, NULL); 1839 } 1840 1841 static void kvm_move_memslot(struct kvm *kvm, 1842 struct kvm_memory_slot *old, 1843 struct kvm_memory_slot *new, 1844 struct kvm_memory_slot *invalid_slot) 1845 { 1846 /* 1847 * Replace the old memslot in the inactive slots, and then swap slots 1848 * and replace the current INVALID with the new as well. 1849 */ 1850 kvm_replace_memslot(kvm, old, new); 1851 kvm_activate_memslot(kvm, invalid_slot, new); 1852 } 1853 1854 static void kvm_update_flags_memslot(struct kvm *kvm, 1855 struct kvm_memory_slot *old, 1856 struct kvm_memory_slot *new) 1857 { 1858 /* 1859 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1860 * an intermediate step. Instead, the old memslot is simply replaced 1861 * with a new, updated copy in both memslot sets. 1862 */ 1863 kvm_replace_memslot(kvm, old, new); 1864 kvm_activate_memslot(kvm, old, new); 1865 } 1866 1867 static int kvm_set_memslot(struct kvm *kvm, 1868 struct kvm_memory_slot *old, 1869 struct kvm_memory_slot *new, 1870 enum kvm_mr_change change) 1871 { 1872 struct kvm_memory_slot *invalid_slot; 1873 int r; 1874 1875 /* 1876 * Released in kvm_swap_active_memslots(). 1877 * 1878 * Must be held from before the current memslots are copied until after 1879 * the new memslots are installed with rcu_assign_pointer, then 1880 * released before the synchronize srcu in kvm_swap_active_memslots(). 1881 * 1882 * When modifying memslots outside of the slots_lock, must be held 1883 * before reading the pointer to the current memslots until after all 1884 * changes to those memslots are complete. 1885 * 1886 * These rules ensure that installing new memslots does not lose 1887 * changes made to the previous memslots. 1888 */ 1889 mutex_lock(&kvm->slots_arch_lock); 1890 1891 /* 1892 * Invalidate the old slot if it's being deleted or moved. This is 1893 * done prior to actually deleting/moving the memslot to allow vCPUs to 1894 * continue running by ensuring there are no mappings or shadow pages 1895 * for the memslot when it is deleted/moved. Without pre-invalidation 1896 * (and without a lock), a window would exist between effecting the 1897 * delete/move and committing the changes in arch code where KVM or a 1898 * guest could access a non-existent memslot. 1899 * 1900 * Modifications are done on a temporary, unreachable slot. The old 1901 * slot needs to be preserved in case a later step fails and the 1902 * invalidation needs to be reverted. 1903 */ 1904 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1905 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1906 if (!invalid_slot) { 1907 mutex_unlock(&kvm->slots_arch_lock); 1908 return -ENOMEM; 1909 } 1910 kvm_invalidate_memslot(kvm, old, invalid_slot); 1911 } 1912 1913 r = kvm_prepare_memory_region(kvm, old, new, change); 1914 if (r) { 1915 /* 1916 * For DELETE/MOVE, revert the above INVALID change. No 1917 * modifications required since the original slot was preserved 1918 * in the inactive slots. Changing the active memslots also 1919 * release slots_arch_lock. 1920 */ 1921 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1922 kvm_activate_memslot(kvm, invalid_slot, old); 1923 kfree(invalid_slot); 1924 } else { 1925 mutex_unlock(&kvm->slots_arch_lock); 1926 } 1927 return r; 1928 } 1929 1930 /* 1931 * For DELETE and MOVE, the working slot is now active as the INVALID 1932 * version of the old slot. MOVE is particularly special as it reuses 1933 * the old slot and returns a copy of the old slot (in working_slot). 1934 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1935 * old slot is detached but otherwise preserved. 1936 */ 1937 if (change == KVM_MR_CREATE) 1938 kvm_create_memslot(kvm, new); 1939 else if (change == KVM_MR_DELETE) 1940 kvm_delete_memslot(kvm, old, invalid_slot); 1941 else if (change == KVM_MR_MOVE) 1942 kvm_move_memslot(kvm, old, new, invalid_slot); 1943 else if (change == KVM_MR_FLAGS_ONLY) 1944 kvm_update_flags_memslot(kvm, old, new); 1945 else 1946 BUG(); 1947 1948 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1949 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1950 kfree(invalid_slot); 1951 1952 /* 1953 * No need to refresh new->arch, changes after dropping slots_arch_lock 1954 * will directly hit the final, active memslot. Architectures are 1955 * responsible for knowing that new->arch may be stale. 1956 */ 1957 kvm_commit_memory_region(kvm, old, new, change); 1958 1959 return 0; 1960 } 1961 1962 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1963 gfn_t start, gfn_t end) 1964 { 1965 struct kvm_memslot_iter iter; 1966 1967 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1968 if (iter.slot->id != id) 1969 return true; 1970 } 1971 1972 return false; 1973 } 1974 1975 /* 1976 * Allocate some memory and give it an address in the guest physical address 1977 * space. 1978 * 1979 * Discontiguous memory is allowed, mostly for framebuffers. 1980 * 1981 * Must be called holding kvm->slots_lock for write. 1982 */ 1983 int __kvm_set_memory_region(struct kvm *kvm, 1984 const struct kvm_userspace_memory_region2 *mem) 1985 { 1986 struct kvm_memory_slot *old, *new; 1987 struct kvm_memslots *slots; 1988 enum kvm_mr_change change; 1989 unsigned long npages; 1990 gfn_t base_gfn; 1991 int as_id, id; 1992 int r; 1993 1994 r = check_memory_region_flags(kvm, mem); 1995 if (r) 1996 return r; 1997 1998 as_id = mem->slot >> 16; 1999 id = (u16)mem->slot; 2000 2001 /* General sanity checks */ 2002 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2003 (mem->memory_size != (unsigned long)mem->memory_size)) 2004 return -EINVAL; 2005 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2006 return -EINVAL; 2007 /* We can read the guest memory with __xxx_user() later on. */ 2008 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2009 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2010 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2011 mem->memory_size)) 2012 return -EINVAL; 2013 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2014 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2015 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2016 return -EINVAL; 2017 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2018 return -EINVAL; 2019 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2020 return -EINVAL; 2021 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2022 return -EINVAL; 2023 2024 slots = __kvm_memslots(kvm, as_id); 2025 2026 /* 2027 * Note, the old memslot (and the pointer itself!) may be invalidated 2028 * and/or destroyed by kvm_set_memslot(). 2029 */ 2030 old = id_to_memslot(slots, id); 2031 2032 if (!mem->memory_size) { 2033 if (!old || !old->npages) 2034 return -EINVAL; 2035 2036 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2037 return -EIO; 2038 2039 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2040 } 2041 2042 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2043 npages = (mem->memory_size >> PAGE_SHIFT); 2044 2045 if (!old || !old->npages) { 2046 change = KVM_MR_CREATE; 2047 2048 /* 2049 * To simplify KVM internals, the total number of pages across 2050 * all memslots must fit in an unsigned long. 2051 */ 2052 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2053 return -EINVAL; 2054 } else { /* Modify an existing slot. */ 2055 /* Private memslots are immutable, they can only be deleted. */ 2056 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2057 return -EINVAL; 2058 if ((mem->userspace_addr != old->userspace_addr) || 2059 (npages != old->npages) || 2060 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2061 return -EINVAL; 2062 2063 if (base_gfn != old->base_gfn) 2064 change = KVM_MR_MOVE; 2065 else if (mem->flags != old->flags) 2066 change = KVM_MR_FLAGS_ONLY; 2067 else /* Nothing to change. */ 2068 return 0; 2069 } 2070 2071 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2072 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2073 return -EEXIST; 2074 2075 /* Allocate a slot that will persist in the memslot. */ 2076 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2077 if (!new) 2078 return -ENOMEM; 2079 2080 new->as_id = as_id; 2081 new->id = id; 2082 new->base_gfn = base_gfn; 2083 new->npages = npages; 2084 new->flags = mem->flags; 2085 new->userspace_addr = mem->userspace_addr; 2086 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2087 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2088 if (r) 2089 goto out; 2090 } 2091 2092 r = kvm_set_memslot(kvm, old, new, change); 2093 if (r) 2094 goto out_unbind; 2095 2096 return 0; 2097 2098 out_unbind: 2099 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2100 kvm_gmem_unbind(new); 2101 out: 2102 kfree(new); 2103 return r; 2104 } 2105 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2106 2107 int kvm_set_memory_region(struct kvm *kvm, 2108 const struct kvm_userspace_memory_region2 *mem) 2109 { 2110 int r; 2111 2112 mutex_lock(&kvm->slots_lock); 2113 r = __kvm_set_memory_region(kvm, mem); 2114 mutex_unlock(&kvm->slots_lock); 2115 return r; 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2118 2119 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2120 struct kvm_userspace_memory_region2 *mem) 2121 { 2122 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2123 return -EINVAL; 2124 2125 return kvm_set_memory_region(kvm, mem); 2126 } 2127 2128 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2129 /** 2130 * kvm_get_dirty_log - get a snapshot of dirty pages 2131 * @kvm: pointer to kvm instance 2132 * @log: slot id and address to which we copy the log 2133 * @is_dirty: set to '1' if any dirty pages were found 2134 * @memslot: set to the associated memslot, always valid on success 2135 */ 2136 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2137 int *is_dirty, struct kvm_memory_slot **memslot) 2138 { 2139 struct kvm_memslots *slots; 2140 int i, as_id, id; 2141 unsigned long n; 2142 unsigned long any = 0; 2143 2144 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2145 if (!kvm_use_dirty_bitmap(kvm)) 2146 return -ENXIO; 2147 2148 *memslot = NULL; 2149 *is_dirty = 0; 2150 2151 as_id = log->slot >> 16; 2152 id = (u16)log->slot; 2153 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2154 return -EINVAL; 2155 2156 slots = __kvm_memslots(kvm, as_id); 2157 *memslot = id_to_memslot(slots, id); 2158 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2159 return -ENOENT; 2160 2161 kvm_arch_sync_dirty_log(kvm, *memslot); 2162 2163 n = kvm_dirty_bitmap_bytes(*memslot); 2164 2165 for (i = 0; !any && i < n/sizeof(long); ++i) 2166 any = (*memslot)->dirty_bitmap[i]; 2167 2168 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2169 return -EFAULT; 2170 2171 if (any) 2172 *is_dirty = 1; 2173 return 0; 2174 } 2175 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2176 2177 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2178 /** 2179 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2180 * and reenable dirty page tracking for the corresponding pages. 2181 * @kvm: pointer to kvm instance 2182 * @log: slot id and address to which we copy the log 2183 * 2184 * We need to keep it in mind that VCPU threads can write to the bitmap 2185 * concurrently. So, to avoid losing track of dirty pages we keep the 2186 * following order: 2187 * 2188 * 1. Take a snapshot of the bit and clear it if needed. 2189 * 2. Write protect the corresponding page. 2190 * 3. Copy the snapshot to the userspace. 2191 * 4. Upon return caller flushes TLB's if needed. 2192 * 2193 * Between 2 and 4, the guest may write to the page using the remaining TLB 2194 * entry. This is not a problem because the page is reported dirty using 2195 * the snapshot taken before and step 4 ensures that writes done after 2196 * exiting to userspace will be logged for the next call. 2197 * 2198 */ 2199 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2200 { 2201 struct kvm_memslots *slots; 2202 struct kvm_memory_slot *memslot; 2203 int i, as_id, id; 2204 unsigned long n; 2205 unsigned long *dirty_bitmap; 2206 unsigned long *dirty_bitmap_buffer; 2207 bool flush; 2208 2209 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2210 if (!kvm_use_dirty_bitmap(kvm)) 2211 return -ENXIO; 2212 2213 as_id = log->slot >> 16; 2214 id = (u16)log->slot; 2215 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2216 return -EINVAL; 2217 2218 slots = __kvm_memslots(kvm, as_id); 2219 memslot = id_to_memslot(slots, id); 2220 if (!memslot || !memslot->dirty_bitmap) 2221 return -ENOENT; 2222 2223 dirty_bitmap = memslot->dirty_bitmap; 2224 2225 kvm_arch_sync_dirty_log(kvm, memslot); 2226 2227 n = kvm_dirty_bitmap_bytes(memslot); 2228 flush = false; 2229 if (kvm->manual_dirty_log_protect) { 2230 /* 2231 * Unlike kvm_get_dirty_log, we always return false in *flush, 2232 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2233 * is some code duplication between this function and 2234 * kvm_get_dirty_log, but hopefully all architecture 2235 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2236 * can be eliminated. 2237 */ 2238 dirty_bitmap_buffer = dirty_bitmap; 2239 } else { 2240 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2241 memset(dirty_bitmap_buffer, 0, n); 2242 2243 KVM_MMU_LOCK(kvm); 2244 for (i = 0; i < n / sizeof(long); i++) { 2245 unsigned long mask; 2246 gfn_t offset; 2247 2248 if (!dirty_bitmap[i]) 2249 continue; 2250 2251 flush = true; 2252 mask = xchg(&dirty_bitmap[i], 0); 2253 dirty_bitmap_buffer[i] = mask; 2254 2255 offset = i * BITS_PER_LONG; 2256 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2257 offset, mask); 2258 } 2259 KVM_MMU_UNLOCK(kvm); 2260 } 2261 2262 if (flush) 2263 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2264 2265 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2266 return -EFAULT; 2267 return 0; 2268 } 2269 2270 2271 /** 2272 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2273 * @kvm: kvm instance 2274 * @log: slot id and address to which we copy the log 2275 * 2276 * Steps 1-4 below provide general overview of dirty page logging. See 2277 * kvm_get_dirty_log_protect() function description for additional details. 2278 * 2279 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2280 * always flush the TLB (step 4) even if previous step failed and the dirty 2281 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2282 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2283 * writes will be marked dirty for next log read. 2284 * 2285 * 1. Take a snapshot of the bit and clear it if needed. 2286 * 2. Write protect the corresponding page. 2287 * 3. Copy the snapshot to the userspace. 2288 * 4. Flush TLB's if needed. 2289 */ 2290 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2291 struct kvm_dirty_log *log) 2292 { 2293 int r; 2294 2295 mutex_lock(&kvm->slots_lock); 2296 2297 r = kvm_get_dirty_log_protect(kvm, log); 2298 2299 mutex_unlock(&kvm->slots_lock); 2300 return r; 2301 } 2302 2303 /** 2304 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2305 * and reenable dirty page tracking for the corresponding pages. 2306 * @kvm: pointer to kvm instance 2307 * @log: slot id and address from which to fetch the bitmap of dirty pages 2308 */ 2309 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2310 struct kvm_clear_dirty_log *log) 2311 { 2312 struct kvm_memslots *slots; 2313 struct kvm_memory_slot *memslot; 2314 int as_id, id; 2315 gfn_t offset; 2316 unsigned long i, n; 2317 unsigned long *dirty_bitmap; 2318 unsigned long *dirty_bitmap_buffer; 2319 bool flush; 2320 2321 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2322 if (!kvm_use_dirty_bitmap(kvm)) 2323 return -ENXIO; 2324 2325 as_id = log->slot >> 16; 2326 id = (u16)log->slot; 2327 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2328 return -EINVAL; 2329 2330 if (log->first_page & 63) 2331 return -EINVAL; 2332 2333 slots = __kvm_memslots(kvm, as_id); 2334 memslot = id_to_memslot(slots, id); 2335 if (!memslot || !memslot->dirty_bitmap) 2336 return -ENOENT; 2337 2338 dirty_bitmap = memslot->dirty_bitmap; 2339 2340 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2341 2342 if (log->first_page > memslot->npages || 2343 log->num_pages > memslot->npages - log->first_page || 2344 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2345 return -EINVAL; 2346 2347 kvm_arch_sync_dirty_log(kvm, memslot); 2348 2349 flush = false; 2350 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2351 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2352 return -EFAULT; 2353 2354 KVM_MMU_LOCK(kvm); 2355 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2356 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2357 i++, offset += BITS_PER_LONG) { 2358 unsigned long mask = *dirty_bitmap_buffer++; 2359 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2360 if (!mask) 2361 continue; 2362 2363 mask &= atomic_long_fetch_andnot(mask, p); 2364 2365 /* 2366 * mask contains the bits that really have been cleared. This 2367 * never includes any bits beyond the length of the memslot (if 2368 * the length is not aligned to 64 pages), therefore it is not 2369 * a problem if userspace sets them in log->dirty_bitmap. 2370 */ 2371 if (mask) { 2372 flush = true; 2373 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2374 offset, mask); 2375 } 2376 } 2377 KVM_MMU_UNLOCK(kvm); 2378 2379 if (flush) 2380 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2381 2382 return 0; 2383 } 2384 2385 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2386 struct kvm_clear_dirty_log *log) 2387 { 2388 int r; 2389 2390 mutex_lock(&kvm->slots_lock); 2391 2392 r = kvm_clear_dirty_log_protect(kvm, log); 2393 2394 mutex_unlock(&kvm->slots_lock); 2395 return r; 2396 } 2397 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2398 2399 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2400 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2401 { 2402 if (!kvm || kvm_arch_has_private_mem(kvm)) 2403 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2404 2405 return 0; 2406 } 2407 2408 /* 2409 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2410 * such that the bits in @mask match @attrs. 2411 */ 2412 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2413 unsigned long mask, unsigned long attrs) 2414 { 2415 XA_STATE(xas, &kvm->mem_attr_array, start); 2416 unsigned long index; 2417 void *entry; 2418 2419 mask &= kvm_supported_mem_attributes(kvm); 2420 if (attrs & ~mask) 2421 return false; 2422 2423 if (end == start + 1) 2424 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2425 2426 guard(rcu)(); 2427 if (!attrs) 2428 return !xas_find(&xas, end - 1); 2429 2430 for (index = start; index < end; index++) { 2431 do { 2432 entry = xas_next(&xas); 2433 } while (xas_retry(&xas, entry)); 2434 2435 if (xas.xa_index != index || 2436 (xa_to_value(entry) & mask) != attrs) 2437 return false; 2438 } 2439 2440 return true; 2441 } 2442 2443 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2444 struct kvm_mmu_notifier_range *range) 2445 { 2446 struct kvm_gfn_range gfn_range; 2447 struct kvm_memory_slot *slot; 2448 struct kvm_memslots *slots; 2449 struct kvm_memslot_iter iter; 2450 bool found_memslot = false; 2451 bool ret = false; 2452 int i; 2453 2454 gfn_range.arg = range->arg; 2455 gfn_range.may_block = range->may_block; 2456 2457 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2458 slots = __kvm_memslots(kvm, i); 2459 2460 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2461 slot = iter.slot; 2462 gfn_range.slot = slot; 2463 2464 gfn_range.start = max(range->start, slot->base_gfn); 2465 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2466 if (gfn_range.start >= gfn_range.end) 2467 continue; 2468 2469 if (!found_memslot) { 2470 found_memslot = true; 2471 KVM_MMU_LOCK(kvm); 2472 if (!IS_KVM_NULL_FN(range->on_lock)) 2473 range->on_lock(kvm); 2474 } 2475 2476 ret |= range->handler(kvm, &gfn_range); 2477 } 2478 } 2479 2480 if (range->flush_on_ret && ret) 2481 kvm_flush_remote_tlbs(kvm); 2482 2483 if (found_memslot) 2484 KVM_MMU_UNLOCK(kvm); 2485 } 2486 2487 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2488 struct kvm_gfn_range *range) 2489 { 2490 /* 2491 * Unconditionally add the range to the invalidation set, regardless of 2492 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2493 * if KVM supports RWX attributes in the future and the attributes are 2494 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2495 * adding the range allows KVM to require that MMU invalidations add at 2496 * least one range between begin() and end(), e.g. allows KVM to detect 2497 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2498 * but it's not obvious that allowing new mappings while the attributes 2499 * are in flux is desirable or worth the complexity. 2500 */ 2501 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2502 2503 return kvm_arch_pre_set_memory_attributes(kvm, range); 2504 } 2505 2506 /* Set @attributes for the gfn range [@start, @end). */ 2507 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2508 unsigned long attributes) 2509 { 2510 struct kvm_mmu_notifier_range pre_set_range = { 2511 .start = start, 2512 .end = end, 2513 .handler = kvm_pre_set_memory_attributes, 2514 .on_lock = kvm_mmu_invalidate_begin, 2515 .flush_on_ret = true, 2516 .may_block = true, 2517 }; 2518 struct kvm_mmu_notifier_range post_set_range = { 2519 .start = start, 2520 .end = end, 2521 .arg.attributes = attributes, 2522 .handler = kvm_arch_post_set_memory_attributes, 2523 .on_lock = kvm_mmu_invalidate_end, 2524 .may_block = true, 2525 }; 2526 unsigned long i; 2527 void *entry; 2528 int r = 0; 2529 2530 entry = attributes ? xa_mk_value(attributes) : NULL; 2531 2532 mutex_lock(&kvm->slots_lock); 2533 2534 /* Nothing to do if the entire range as the desired attributes. */ 2535 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2536 goto out_unlock; 2537 2538 /* 2539 * Reserve memory ahead of time to avoid having to deal with failures 2540 * partway through setting the new attributes. 2541 */ 2542 for (i = start; i < end; i++) { 2543 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2544 if (r) 2545 goto out_unlock; 2546 } 2547 2548 kvm_handle_gfn_range(kvm, &pre_set_range); 2549 2550 for (i = start; i < end; i++) { 2551 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2552 GFP_KERNEL_ACCOUNT)); 2553 KVM_BUG_ON(r, kvm); 2554 } 2555 2556 kvm_handle_gfn_range(kvm, &post_set_range); 2557 2558 out_unlock: 2559 mutex_unlock(&kvm->slots_lock); 2560 2561 return r; 2562 } 2563 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2564 struct kvm_memory_attributes *attrs) 2565 { 2566 gfn_t start, end; 2567 2568 /* flags is currently not used. */ 2569 if (attrs->flags) 2570 return -EINVAL; 2571 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2572 return -EINVAL; 2573 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2574 return -EINVAL; 2575 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2576 return -EINVAL; 2577 2578 start = attrs->address >> PAGE_SHIFT; 2579 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2580 2581 /* 2582 * xarray tracks data using "unsigned long", and as a result so does 2583 * KVM. For simplicity, supports generic attributes only on 64-bit 2584 * architectures. 2585 */ 2586 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2587 2588 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2589 } 2590 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2591 2592 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2593 { 2594 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2595 } 2596 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2597 2598 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2599 { 2600 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2601 u64 gen = slots->generation; 2602 struct kvm_memory_slot *slot; 2603 2604 /* 2605 * This also protects against using a memslot from a different address space, 2606 * since different address spaces have different generation numbers. 2607 */ 2608 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2609 vcpu->last_used_slot = NULL; 2610 vcpu->last_used_slot_gen = gen; 2611 } 2612 2613 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2614 if (slot) 2615 return slot; 2616 2617 /* 2618 * Fall back to searching all memslots. We purposely use 2619 * search_memslots() instead of __gfn_to_memslot() to avoid 2620 * thrashing the VM-wide last_used_slot in kvm_memslots. 2621 */ 2622 slot = search_memslots(slots, gfn, false); 2623 if (slot) { 2624 vcpu->last_used_slot = slot; 2625 return slot; 2626 } 2627 2628 return NULL; 2629 } 2630 2631 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2632 { 2633 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2634 2635 return kvm_is_visible_memslot(memslot); 2636 } 2637 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2638 2639 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2640 { 2641 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2642 2643 return kvm_is_visible_memslot(memslot); 2644 } 2645 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2646 2647 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2648 { 2649 struct vm_area_struct *vma; 2650 unsigned long addr, size; 2651 2652 size = PAGE_SIZE; 2653 2654 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2655 if (kvm_is_error_hva(addr)) 2656 return PAGE_SIZE; 2657 2658 mmap_read_lock(current->mm); 2659 vma = find_vma(current->mm, addr); 2660 if (!vma) 2661 goto out; 2662 2663 size = vma_kernel_pagesize(vma); 2664 2665 out: 2666 mmap_read_unlock(current->mm); 2667 2668 return size; 2669 } 2670 2671 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2672 { 2673 return slot->flags & KVM_MEM_READONLY; 2674 } 2675 2676 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2677 gfn_t *nr_pages, bool write) 2678 { 2679 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2680 return KVM_HVA_ERR_BAD; 2681 2682 if (memslot_is_readonly(slot) && write) 2683 return KVM_HVA_ERR_RO_BAD; 2684 2685 if (nr_pages) 2686 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2687 2688 return __gfn_to_hva_memslot(slot, gfn); 2689 } 2690 2691 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2692 gfn_t *nr_pages) 2693 { 2694 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2695 } 2696 2697 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2698 gfn_t gfn) 2699 { 2700 return gfn_to_hva_many(slot, gfn, NULL); 2701 } 2702 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2703 2704 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2705 { 2706 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2707 } 2708 EXPORT_SYMBOL_GPL(gfn_to_hva); 2709 2710 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2711 { 2712 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2713 } 2714 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2715 2716 /* 2717 * Return the hva of a @gfn and the R/W attribute if possible. 2718 * 2719 * @slot: the kvm_memory_slot which contains @gfn 2720 * @gfn: the gfn to be translated 2721 * @writable: used to return the read/write attribute of the @slot if the hva 2722 * is valid and @writable is not NULL 2723 */ 2724 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2725 gfn_t gfn, bool *writable) 2726 { 2727 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2728 2729 if (!kvm_is_error_hva(hva) && writable) 2730 *writable = !memslot_is_readonly(slot); 2731 2732 return hva; 2733 } 2734 2735 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2736 { 2737 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2738 2739 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2740 } 2741 2742 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2743 { 2744 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2745 2746 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2747 } 2748 2749 static inline int check_user_page_hwpoison(unsigned long addr) 2750 { 2751 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2752 2753 rc = get_user_pages(addr, 1, flags, NULL); 2754 return rc == -EHWPOISON; 2755 } 2756 2757 /* 2758 * The fast path to get the writable pfn which will be stored in @pfn, 2759 * true indicates success, otherwise false is returned. It's also the 2760 * only part that runs if we can in atomic context. 2761 */ 2762 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2763 bool *writable, kvm_pfn_t *pfn) 2764 { 2765 struct page *page[1]; 2766 2767 /* 2768 * Fast pin a writable pfn only if it is a write fault request 2769 * or the caller allows to map a writable pfn for a read fault 2770 * request. 2771 */ 2772 if (!(write_fault || writable)) 2773 return false; 2774 2775 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2776 *pfn = page_to_pfn(page[0]); 2777 2778 if (writable) 2779 *writable = true; 2780 return true; 2781 } 2782 2783 return false; 2784 } 2785 2786 /* 2787 * The slow path to get the pfn of the specified host virtual address, 2788 * 1 indicates success, -errno is returned if error is detected. 2789 */ 2790 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2791 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2792 { 2793 /* 2794 * When a VCPU accesses a page that is not mapped into the secondary 2795 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2796 * make progress. We always want to honor NUMA hinting faults in that 2797 * case, because GUP usage corresponds to memory accesses from the VCPU. 2798 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2799 * mapped into the secondary MMU and gets accessed by a VCPU. 2800 * 2801 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2802 * implicitly honor NUMA hinting faults and don't need this flag. 2803 */ 2804 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2805 struct page *page; 2806 int npages; 2807 2808 might_sleep(); 2809 2810 if (writable) 2811 *writable = write_fault; 2812 2813 if (write_fault) 2814 flags |= FOLL_WRITE; 2815 if (async) 2816 flags |= FOLL_NOWAIT; 2817 if (interruptible) 2818 flags |= FOLL_INTERRUPTIBLE; 2819 2820 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2821 if (npages != 1) 2822 return npages; 2823 2824 /* map read fault as writable if possible */ 2825 if (unlikely(!write_fault) && writable) { 2826 struct page *wpage; 2827 2828 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2829 *writable = true; 2830 put_page(page); 2831 page = wpage; 2832 } 2833 } 2834 *pfn = page_to_pfn(page); 2835 return npages; 2836 } 2837 2838 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2839 { 2840 if (unlikely(!(vma->vm_flags & VM_READ))) 2841 return false; 2842 2843 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2844 return false; 2845 2846 return true; 2847 } 2848 2849 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2850 { 2851 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2852 2853 if (!page) 2854 return 1; 2855 2856 return get_page_unless_zero(page); 2857 } 2858 2859 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2860 unsigned long addr, bool write_fault, 2861 bool *writable, kvm_pfn_t *p_pfn) 2862 { 2863 kvm_pfn_t pfn; 2864 pte_t *ptep; 2865 pte_t pte; 2866 spinlock_t *ptl; 2867 int r; 2868 2869 r = follow_pte(vma, addr, &ptep, &ptl); 2870 if (r) { 2871 /* 2872 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2873 * not call the fault handler, so do it here. 2874 */ 2875 bool unlocked = false; 2876 r = fixup_user_fault(current->mm, addr, 2877 (write_fault ? FAULT_FLAG_WRITE : 0), 2878 &unlocked); 2879 if (unlocked) 2880 return -EAGAIN; 2881 if (r) 2882 return r; 2883 2884 r = follow_pte(vma, addr, &ptep, &ptl); 2885 if (r) 2886 return r; 2887 } 2888 2889 pte = ptep_get(ptep); 2890 2891 if (write_fault && !pte_write(pte)) { 2892 pfn = KVM_PFN_ERR_RO_FAULT; 2893 goto out; 2894 } 2895 2896 if (writable) 2897 *writable = pte_write(pte); 2898 pfn = pte_pfn(pte); 2899 2900 /* 2901 * Get a reference here because callers of *hva_to_pfn* and 2902 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2903 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2904 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2905 * simply do nothing for reserved pfns. 2906 * 2907 * Whoever called remap_pfn_range is also going to call e.g. 2908 * unmap_mapping_range before the underlying pages are freed, 2909 * causing a call to our MMU notifier. 2910 * 2911 * Certain IO or PFNMAP mappings can be backed with valid 2912 * struct pages, but be allocated without refcounting e.g., 2913 * tail pages of non-compound higher order allocations, which 2914 * would then underflow the refcount when the caller does the 2915 * required put_page. Don't allow those pages here. 2916 */ 2917 if (!kvm_try_get_pfn(pfn)) 2918 r = -EFAULT; 2919 2920 out: 2921 pte_unmap_unlock(ptep, ptl); 2922 *p_pfn = pfn; 2923 2924 return r; 2925 } 2926 2927 /* 2928 * Pin guest page in memory and return its pfn. 2929 * @addr: host virtual address which maps memory to the guest 2930 * @atomic: whether this function is forbidden from sleeping 2931 * @interruptible: whether the process can be interrupted by non-fatal signals 2932 * @async: whether this function need to wait IO complete if the 2933 * host page is not in the memory 2934 * @write_fault: whether we should get a writable host page 2935 * @writable: whether it allows to map a writable host page for !@write_fault 2936 * 2937 * The function will map a writable host page for these two cases: 2938 * 1): @write_fault = true 2939 * 2): @write_fault = false && @writable, @writable will tell the caller 2940 * whether the mapping is writable. 2941 */ 2942 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2943 bool *async, bool write_fault, bool *writable) 2944 { 2945 struct vm_area_struct *vma; 2946 kvm_pfn_t pfn; 2947 int npages, r; 2948 2949 /* we can do it either atomically or asynchronously, not both */ 2950 BUG_ON(atomic && async); 2951 2952 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2953 return pfn; 2954 2955 if (atomic) 2956 return KVM_PFN_ERR_FAULT; 2957 2958 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2959 writable, &pfn); 2960 if (npages == 1) 2961 return pfn; 2962 if (npages == -EINTR) 2963 return KVM_PFN_ERR_SIGPENDING; 2964 2965 mmap_read_lock(current->mm); 2966 if (npages == -EHWPOISON || 2967 (!async && check_user_page_hwpoison(addr))) { 2968 pfn = KVM_PFN_ERR_HWPOISON; 2969 goto exit; 2970 } 2971 2972 retry: 2973 vma = vma_lookup(current->mm, addr); 2974 2975 if (vma == NULL) 2976 pfn = KVM_PFN_ERR_FAULT; 2977 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2978 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2979 if (r == -EAGAIN) 2980 goto retry; 2981 if (r < 0) 2982 pfn = KVM_PFN_ERR_FAULT; 2983 } else { 2984 if (async && vma_is_valid(vma, write_fault)) 2985 *async = true; 2986 pfn = KVM_PFN_ERR_FAULT; 2987 } 2988 exit: 2989 mmap_read_unlock(current->mm); 2990 return pfn; 2991 } 2992 2993 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2994 bool atomic, bool interruptible, bool *async, 2995 bool write_fault, bool *writable, hva_t *hva) 2996 { 2997 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2998 2999 if (hva) 3000 *hva = addr; 3001 3002 if (kvm_is_error_hva(addr)) { 3003 if (writable) 3004 *writable = false; 3005 3006 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT : 3007 KVM_PFN_NOSLOT; 3008 } 3009 3010 /* Do not map writable pfn in the readonly memslot. */ 3011 if (writable && memslot_is_readonly(slot)) { 3012 *writable = false; 3013 writable = NULL; 3014 } 3015 3016 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3017 writable); 3018 } 3019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3020 3021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3022 bool *writable) 3023 { 3024 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3025 NULL, write_fault, writable, NULL); 3026 } 3027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3028 3029 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3030 { 3031 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3032 NULL, NULL); 3033 } 3034 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3035 3036 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3037 { 3038 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3039 NULL, NULL); 3040 } 3041 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3042 3043 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3044 { 3045 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3046 } 3047 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3048 3049 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3050 { 3051 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3052 } 3053 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3054 3055 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3056 { 3057 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3058 } 3059 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3060 3061 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3062 struct page **pages, int nr_pages) 3063 { 3064 unsigned long addr; 3065 gfn_t entry = 0; 3066 3067 addr = gfn_to_hva_many(slot, gfn, &entry); 3068 if (kvm_is_error_hva(addr)) 3069 return -1; 3070 3071 if (entry < nr_pages) 3072 return 0; 3073 3074 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3075 } 3076 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3077 3078 /* 3079 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3080 * backed by 'struct page'. A valid example is if the backing memslot is 3081 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3082 * been elevated by gfn_to_pfn(). 3083 */ 3084 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3085 { 3086 struct page *page; 3087 kvm_pfn_t pfn; 3088 3089 pfn = gfn_to_pfn(kvm, gfn); 3090 3091 if (is_error_noslot_pfn(pfn)) 3092 return KVM_ERR_PTR_BAD_PAGE; 3093 3094 page = kvm_pfn_to_refcounted_page(pfn); 3095 if (!page) 3096 return KVM_ERR_PTR_BAD_PAGE; 3097 3098 return page; 3099 } 3100 EXPORT_SYMBOL_GPL(gfn_to_page); 3101 3102 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3103 { 3104 if (dirty) 3105 kvm_release_pfn_dirty(pfn); 3106 else 3107 kvm_release_pfn_clean(pfn); 3108 } 3109 3110 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3111 { 3112 kvm_pfn_t pfn; 3113 void *hva = NULL; 3114 struct page *page = KVM_UNMAPPED_PAGE; 3115 3116 if (!map) 3117 return -EINVAL; 3118 3119 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3120 if (is_error_noslot_pfn(pfn)) 3121 return -EINVAL; 3122 3123 if (pfn_valid(pfn)) { 3124 page = pfn_to_page(pfn); 3125 hva = kmap(page); 3126 #ifdef CONFIG_HAS_IOMEM 3127 } else { 3128 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3129 #endif 3130 } 3131 3132 if (!hva) 3133 return -EFAULT; 3134 3135 map->page = page; 3136 map->hva = hva; 3137 map->pfn = pfn; 3138 map->gfn = gfn; 3139 3140 return 0; 3141 } 3142 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3143 3144 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3145 { 3146 if (!map) 3147 return; 3148 3149 if (!map->hva) 3150 return; 3151 3152 if (map->page != KVM_UNMAPPED_PAGE) 3153 kunmap(map->page); 3154 #ifdef CONFIG_HAS_IOMEM 3155 else 3156 memunmap(map->hva); 3157 #endif 3158 3159 if (dirty) 3160 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3161 3162 kvm_release_pfn(map->pfn, dirty); 3163 3164 map->hva = NULL; 3165 map->page = NULL; 3166 } 3167 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3168 3169 static bool kvm_is_ad_tracked_page(struct page *page) 3170 { 3171 /* 3172 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3173 * touched (e.g. set dirty) except by its owner". 3174 */ 3175 return !PageReserved(page); 3176 } 3177 3178 static void kvm_set_page_dirty(struct page *page) 3179 { 3180 if (kvm_is_ad_tracked_page(page)) 3181 SetPageDirty(page); 3182 } 3183 3184 static void kvm_set_page_accessed(struct page *page) 3185 { 3186 if (kvm_is_ad_tracked_page(page)) 3187 mark_page_accessed(page); 3188 } 3189 3190 void kvm_release_page_clean(struct page *page) 3191 { 3192 WARN_ON(is_error_page(page)); 3193 3194 kvm_set_page_accessed(page); 3195 put_page(page); 3196 } 3197 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3198 3199 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3200 { 3201 struct page *page; 3202 3203 if (is_error_noslot_pfn(pfn)) 3204 return; 3205 3206 page = kvm_pfn_to_refcounted_page(pfn); 3207 if (!page) 3208 return; 3209 3210 kvm_release_page_clean(page); 3211 } 3212 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3213 3214 void kvm_release_page_dirty(struct page *page) 3215 { 3216 WARN_ON(is_error_page(page)); 3217 3218 kvm_set_page_dirty(page); 3219 kvm_release_page_clean(page); 3220 } 3221 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3222 3223 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3224 { 3225 struct page *page; 3226 3227 if (is_error_noslot_pfn(pfn)) 3228 return; 3229 3230 page = kvm_pfn_to_refcounted_page(pfn); 3231 if (!page) 3232 return; 3233 3234 kvm_release_page_dirty(page); 3235 } 3236 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3237 3238 /* 3239 * Note, checking for an error/noslot pfn is the caller's responsibility when 3240 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3241 * "set" helpers are not to be used when the pfn might point at garbage. 3242 */ 3243 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3244 { 3245 if (WARN_ON(is_error_noslot_pfn(pfn))) 3246 return; 3247 3248 if (pfn_valid(pfn)) 3249 kvm_set_page_dirty(pfn_to_page(pfn)); 3250 } 3251 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3252 3253 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3254 { 3255 if (WARN_ON(is_error_noslot_pfn(pfn))) 3256 return; 3257 3258 if (pfn_valid(pfn)) 3259 kvm_set_page_accessed(pfn_to_page(pfn)); 3260 } 3261 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3262 3263 static int next_segment(unsigned long len, int offset) 3264 { 3265 if (len > PAGE_SIZE - offset) 3266 return PAGE_SIZE - offset; 3267 else 3268 return len; 3269 } 3270 3271 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3272 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3273 void *data, int offset, int len) 3274 { 3275 int r; 3276 unsigned long addr; 3277 3278 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3279 if (kvm_is_error_hva(addr)) 3280 return -EFAULT; 3281 r = __copy_from_user(data, (void __user *)addr + offset, len); 3282 if (r) 3283 return -EFAULT; 3284 return 0; 3285 } 3286 3287 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3288 int len) 3289 { 3290 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3291 3292 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3293 } 3294 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3295 3296 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3297 int offset, int len) 3298 { 3299 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3300 3301 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3302 } 3303 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3304 3305 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3306 { 3307 gfn_t gfn = gpa >> PAGE_SHIFT; 3308 int seg; 3309 int offset = offset_in_page(gpa); 3310 int ret; 3311 3312 while ((seg = next_segment(len, offset)) != 0) { 3313 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3314 if (ret < 0) 3315 return ret; 3316 offset = 0; 3317 len -= seg; 3318 data += seg; 3319 ++gfn; 3320 } 3321 return 0; 3322 } 3323 EXPORT_SYMBOL_GPL(kvm_read_guest); 3324 3325 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3326 { 3327 gfn_t gfn = gpa >> PAGE_SHIFT; 3328 int seg; 3329 int offset = offset_in_page(gpa); 3330 int ret; 3331 3332 while ((seg = next_segment(len, offset)) != 0) { 3333 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3334 if (ret < 0) 3335 return ret; 3336 offset = 0; 3337 len -= seg; 3338 data += seg; 3339 ++gfn; 3340 } 3341 return 0; 3342 } 3343 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3344 3345 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3346 void *data, int offset, unsigned long len) 3347 { 3348 int r; 3349 unsigned long addr; 3350 3351 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3352 if (kvm_is_error_hva(addr)) 3353 return -EFAULT; 3354 pagefault_disable(); 3355 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3356 pagefault_enable(); 3357 if (r) 3358 return -EFAULT; 3359 return 0; 3360 } 3361 3362 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3363 void *data, unsigned long len) 3364 { 3365 gfn_t gfn = gpa >> PAGE_SHIFT; 3366 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3367 int offset = offset_in_page(gpa); 3368 3369 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3370 } 3371 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3372 3373 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3374 static int __kvm_write_guest_page(struct kvm *kvm, 3375 struct kvm_memory_slot *memslot, gfn_t gfn, 3376 const void *data, int offset, int len) 3377 { 3378 int r; 3379 unsigned long addr; 3380 3381 addr = gfn_to_hva_memslot(memslot, gfn); 3382 if (kvm_is_error_hva(addr)) 3383 return -EFAULT; 3384 r = __copy_to_user((void __user *)addr + offset, data, len); 3385 if (r) 3386 return -EFAULT; 3387 mark_page_dirty_in_slot(kvm, memslot, gfn); 3388 return 0; 3389 } 3390 3391 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3392 const void *data, int offset, int len) 3393 { 3394 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3395 3396 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3397 } 3398 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3399 3400 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3401 const void *data, int offset, int len) 3402 { 3403 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3404 3405 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3406 } 3407 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3408 3409 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3410 unsigned long len) 3411 { 3412 gfn_t gfn = gpa >> PAGE_SHIFT; 3413 int seg; 3414 int offset = offset_in_page(gpa); 3415 int ret; 3416 3417 while ((seg = next_segment(len, offset)) != 0) { 3418 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3419 if (ret < 0) 3420 return ret; 3421 offset = 0; 3422 len -= seg; 3423 data += seg; 3424 ++gfn; 3425 } 3426 return 0; 3427 } 3428 EXPORT_SYMBOL_GPL(kvm_write_guest); 3429 3430 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3431 unsigned long len) 3432 { 3433 gfn_t gfn = gpa >> PAGE_SHIFT; 3434 int seg; 3435 int offset = offset_in_page(gpa); 3436 int ret; 3437 3438 while ((seg = next_segment(len, offset)) != 0) { 3439 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3440 if (ret < 0) 3441 return ret; 3442 offset = 0; 3443 len -= seg; 3444 data += seg; 3445 ++gfn; 3446 } 3447 return 0; 3448 } 3449 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3450 3451 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3452 struct gfn_to_hva_cache *ghc, 3453 gpa_t gpa, unsigned long len) 3454 { 3455 int offset = offset_in_page(gpa); 3456 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3457 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3458 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3459 gfn_t nr_pages_avail; 3460 3461 /* Update ghc->generation before performing any error checks. */ 3462 ghc->generation = slots->generation; 3463 3464 if (start_gfn > end_gfn) { 3465 ghc->hva = KVM_HVA_ERR_BAD; 3466 return -EINVAL; 3467 } 3468 3469 /* 3470 * If the requested region crosses two memslots, we still 3471 * verify that the entire region is valid here. 3472 */ 3473 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3474 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3475 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3476 &nr_pages_avail); 3477 if (kvm_is_error_hva(ghc->hva)) 3478 return -EFAULT; 3479 } 3480 3481 /* Use the slow path for cross page reads and writes. */ 3482 if (nr_pages_needed == 1) 3483 ghc->hva += offset; 3484 else 3485 ghc->memslot = NULL; 3486 3487 ghc->gpa = gpa; 3488 ghc->len = len; 3489 return 0; 3490 } 3491 3492 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3493 gpa_t gpa, unsigned long len) 3494 { 3495 struct kvm_memslots *slots = kvm_memslots(kvm); 3496 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3497 } 3498 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3499 3500 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3501 void *data, unsigned int offset, 3502 unsigned long len) 3503 { 3504 struct kvm_memslots *slots = kvm_memslots(kvm); 3505 int r; 3506 gpa_t gpa = ghc->gpa + offset; 3507 3508 if (WARN_ON_ONCE(len + offset > ghc->len)) 3509 return -EINVAL; 3510 3511 if (slots->generation != ghc->generation) { 3512 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3513 return -EFAULT; 3514 } 3515 3516 if (kvm_is_error_hva(ghc->hva)) 3517 return -EFAULT; 3518 3519 if (unlikely(!ghc->memslot)) 3520 return kvm_write_guest(kvm, gpa, data, len); 3521 3522 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3523 if (r) 3524 return -EFAULT; 3525 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3526 3527 return 0; 3528 } 3529 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3530 3531 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3532 void *data, unsigned long len) 3533 { 3534 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3535 } 3536 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3537 3538 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3539 void *data, unsigned int offset, 3540 unsigned long len) 3541 { 3542 struct kvm_memslots *slots = kvm_memslots(kvm); 3543 int r; 3544 gpa_t gpa = ghc->gpa + offset; 3545 3546 if (WARN_ON_ONCE(len + offset > ghc->len)) 3547 return -EINVAL; 3548 3549 if (slots->generation != ghc->generation) { 3550 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3551 return -EFAULT; 3552 } 3553 3554 if (kvm_is_error_hva(ghc->hva)) 3555 return -EFAULT; 3556 3557 if (unlikely(!ghc->memslot)) 3558 return kvm_read_guest(kvm, gpa, data, len); 3559 3560 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3561 if (r) 3562 return -EFAULT; 3563 3564 return 0; 3565 } 3566 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3567 3568 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3569 void *data, unsigned long len) 3570 { 3571 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3572 } 3573 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3574 3575 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3576 { 3577 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3578 gfn_t gfn = gpa >> PAGE_SHIFT; 3579 int seg; 3580 int offset = offset_in_page(gpa); 3581 int ret; 3582 3583 while ((seg = next_segment(len, offset)) != 0) { 3584 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3585 if (ret < 0) 3586 return ret; 3587 offset = 0; 3588 len -= seg; 3589 ++gfn; 3590 } 3591 return 0; 3592 } 3593 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3594 3595 void mark_page_dirty_in_slot(struct kvm *kvm, 3596 const struct kvm_memory_slot *memslot, 3597 gfn_t gfn) 3598 { 3599 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3600 3601 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3602 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3603 return; 3604 3605 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3606 #endif 3607 3608 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3609 unsigned long rel_gfn = gfn - memslot->base_gfn; 3610 u32 slot = (memslot->as_id << 16) | memslot->id; 3611 3612 if (kvm->dirty_ring_size && vcpu) 3613 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3614 else if (memslot->dirty_bitmap) 3615 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3616 } 3617 } 3618 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3619 3620 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3621 { 3622 struct kvm_memory_slot *memslot; 3623 3624 memslot = gfn_to_memslot(kvm, gfn); 3625 mark_page_dirty_in_slot(kvm, memslot, gfn); 3626 } 3627 EXPORT_SYMBOL_GPL(mark_page_dirty); 3628 3629 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3630 { 3631 struct kvm_memory_slot *memslot; 3632 3633 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3634 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3635 } 3636 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3637 3638 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3639 { 3640 if (!vcpu->sigset_active) 3641 return; 3642 3643 /* 3644 * This does a lockless modification of ->real_blocked, which is fine 3645 * because, only current can change ->real_blocked and all readers of 3646 * ->real_blocked don't care as long ->real_blocked is always a subset 3647 * of ->blocked. 3648 */ 3649 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3650 } 3651 3652 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3653 { 3654 if (!vcpu->sigset_active) 3655 return; 3656 3657 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3658 sigemptyset(¤t->real_blocked); 3659 } 3660 3661 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3662 { 3663 unsigned int old, val, grow, grow_start; 3664 3665 old = val = vcpu->halt_poll_ns; 3666 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3667 grow = READ_ONCE(halt_poll_ns_grow); 3668 if (!grow) 3669 goto out; 3670 3671 val *= grow; 3672 if (val < grow_start) 3673 val = grow_start; 3674 3675 vcpu->halt_poll_ns = val; 3676 out: 3677 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3678 } 3679 3680 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3681 { 3682 unsigned int old, val, shrink, grow_start; 3683 3684 old = val = vcpu->halt_poll_ns; 3685 shrink = READ_ONCE(halt_poll_ns_shrink); 3686 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3687 if (shrink == 0) 3688 val = 0; 3689 else 3690 val /= shrink; 3691 3692 if (val < grow_start) 3693 val = 0; 3694 3695 vcpu->halt_poll_ns = val; 3696 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3697 } 3698 3699 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3700 { 3701 int ret = -EINTR; 3702 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3703 3704 if (kvm_arch_vcpu_runnable(vcpu)) 3705 goto out; 3706 if (kvm_cpu_has_pending_timer(vcpu)) 3707 goto out; 3708 if (signal_pending(current)) 3709 goto out; 3710 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3711 goto out; 3712 3713 ret = 0; 3714 out: 3715 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3716 return ret; 3717 } 3718 3719 /* 3720 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3721 * pending. This is mostly used when halting a vCPU, but may also be used 3722 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3723 */ 3724 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3725 { 3726 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3727 bool waited = false; 3728 3729 vcpu->stat.generic.blocking = 1; 3730 3731 preempt_disable(); 3732 kvm_arch_vcpu_blocking(vcpu); 3733 prepare_to_rcuwait(wait); 3734 preempt_enable(); 3735 3736 for (;;) { 3737 set_current_state(TASK_INTERRUPTIBLE); 3738 3739 if (kvm_vcpu_check_block(vcpu) < 0) 3740 break; 3741 3742 waited = true; 3743 schedule(); 3744 } 3745 3746 preempt_disable(); 3747 finish_rcuwait(wait); 3748 kvm_arch_vcpu_unblocking(vcpu); 3749 preempt_enable(); 3750 3751 vcpu->stat.generic.blocking = 0; 3752 3753 return waited; 3754 } 3755 3756 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3757 ktime_t end, bool success) 3758 { 3759 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3760 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3761 3762 ++vcpu->stat.generic.halt_attempted_poll; 3763 3764 if (success) { 3765 ++vcpu->stat.generic.halt_successful_poll; 3766 3767 if (!vcpu_valid_wakeup(vcpu)) 3768 ++vcpu->stat.generic.halt_poll_invalid; 3769 3770 stats->halt_poll_success_ns += poll_ns; 3771 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3772 } else { 3773 stats->halt_poll_fail_ns += poll_ns; 3774 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3775 } 3776 } 3777 3778 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3779 { 3780 struct kvm *kvm = vcpu->kvm; 3781 3782 if (kvm->override_halt_poll_ns) { 3783 /* 3784 * Ensure kvm->max_halt_poll_ns is not read before 3785 * kvm->override_halt_poll_ns. 3786 * 3787 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3788 */ 3789 smp_rmb(); 3790 return READ_ONCE(kvm->max_halt_poll_ns); 3791 } 3792 3793 return READ_ONCE(halt_poll_ns); 3794 } 3795 3796 /* 3797 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3798 * polling is enabled, busy wait for a short time before blocking to avoid the 3799 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3800 * is halted. 3801 */ 3802 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3803 { 3804 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3805 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3806 ktime_t start, cur, poll_end; 3807 bool waited = false; 3808 bool do_halt_poll; 3809 u64 halt_ns; 3810 3811 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3812 vcpu->halt_poll_ns = max_halt_poll_ns; 3813 3814 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3815 3816 start = cur = poll_end = ktime_get(); 3817 if (do_halt_poll) { 3818 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3819 3820 do { 3821 if (kvm_vcpu_check_block(vcpu) < 0) 3822 goto out; 3823 cpu_relax(); 3824 poll_end = cur = ktime_get(); 3825 } while (kvm_vcpu_can_poll(cur, stop)); 3826 } 3827 3828 waited = kvm_vcpu_block(vcpu); 3829 3830 cur = ktime_get(); 3831 if (waited) { 3832 vcpu->stat.generic.halt_wait_ns += 3833 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3834 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3835 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3836 } 3837 out: 3838 /* The total time the vCPU was "halted", including polling time. */ 3839 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3840 3841 /* 3842 * Note, halt-polling is considered successful so long as the vCPU was 3843 * never actually scheduled out, i.e. even if the wake event arrived 3844 * after of the halt-polling loop itself, but before the full wait. 3845 */ 3846 if (do_halt_poll) 3847 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3848 3849 if (halt_poll_allowed) { 3850 /* Recompute the max halt poll time in case it changed. */ 3851 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3852 3853 if (!vcpu_valid_wakeup(vcpu)) { 3854 shrink_halt_poll_ns(vcpu); 3855 } else if (max_halt_poll_ns) { 3856 if (halt_ns <= vcpu->halt_poll_ns) 3857 ; 3858 /* we had a long block, shrink polling */ 3859 else if (vcpu->halt_poll_ns && 3860 halt_ns > max_halt_poll_ns) 3861 shrink_halt_poll_ns(vcpu); 3862 /* we had a short halt and our poll time is too small */ 3863 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3864 halt_ns < max_halt_poll_ns) 3865 grow_halt_poll_ns(vcpu); 3866 } else { 3867 vcpu->halt_poll_ns = 0; 3868 } 3869 } 3870 3871 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3872 } 3873 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3874 3875 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3876 { 3877 if (__kvm_vcpu_wake_up(vcpu)) { 3878 WRITE_ONCE(vcpu->ready, true); 3879 ++vcpu->stat.generic.halt_wakeup; 3880 return true; 3881 } 3882 3883 return false; 3884 } 3885 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3886 3887 #ifndef CONFIG_S390 3888 /* 3889 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3890 */ 3891 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3892 { 3893 int me, cpu; 3894 3895 if (kvm_vcpu_wake_up(vcpu)) 3896 return; 3897 3898 me = get_cpu(); 3899 /* 3900 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3901 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3902 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3903 * within the vCPU thread itself. 3904 */ 3905 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3906 if (vcpu->mode == IN_GUEST_MODE) 3907 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3908 goto out; 3909 } 3910 3911 /* 3912 * Note, the vCPU could get migrated to a different pCPU at any point 3913 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3914 * IPI to the previous pCPU. But, that's ok because the purpose of the 3915 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3916 * vCPU also requires it to leave IN_GUEST_MODE. 3917 */ 3918 if (kvm_arch_vcpu_should_kick(vcpu)) { 3919 cpu = READ_ONCE(vcpu->cpu); 3920 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3921 smp_send_reschedule(cpu); 3922 } 3923 out: 3924 put_cpu(); 3925 } 3926 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3927 #endif /* !CONFIG_S390 */ 3928 3929 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3930 { 3931 struct pid *pid; 3932 struct task_struct *task = NULL; 3933 int ret = 0; 3934 3935 rcu_read_lock(); 3936 pid = rcu_dereference(target->pid); 3937 if (pid) 3938 task = get_pid_task(pid, PIDTYPE_PID); 3939 rcu_read_unlock(); 3940 if (!task) 3941 return ret; 3942 ret = yield_to(task, 1); 3943 put_task_struct(task); 3944 3945 return ret; 3946 } 3947 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3948 3949 /* 3950 * Helper that checks whether a VCPU is eligible for directed yield. 3951 * Most eligible candidate to yield is decided by following heuristics: 3952 * 3953 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3954 * (preempted lock holder), indicated by @in_spin_loop. 3955 * Set at the beginning and cleared at the end of interception/PLE handler. 3956 * 3957 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3958 * chance last time (mostly it has become eligible now since we have probably 3959 * yielded to lockholder in last iteration. This is done by toggling 3960 * @dy_eligible each time a VCPU checked for eligibility.) 3961 * 3962 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3963 * to preempted lock-holder could result in wrong VCPU selection and CPU 3964 * burning. Giving priority for a potential lock-holder increases lock 3965 * progress. 3966 * 3967 * Since algorithm is based on heuristics, accessing another VCPU data without 3968 * locking does not harm. It may result in trying to yield to same VCPU, fail 3969 * and continue with next VCPU and so on. 3970 */ 3971 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3972 { 3973 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3974 bool eligible; 3975 3976 eligible = !vcpu->spin_loop.in_spin_loop || 3977 vcpu->spin_loop.dy_eligible; 3978 3979 if (vcpu->spin_loop.in_spin_loop) 3980 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3981 3982 return eligible; 3983 #else 3984 return true; 3985 #endif 3986 } 3987 3988 /* 3989 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3990 * a vcpu_load/vcpu_put pair. However, for most architectures 3991 * kvm_arch_vcpu_runnable does not require vcpu_load. 3992 */ 3993 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3994 { 3995 return kvm_arch_vcpu_runnable(vcpu); 3996 } 3997 3998 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3999 { 4000 if (kvm_arch_dy_runnable(vcpu)) 4001 return true; 4002 4003 #ifdef CONFIG_KVM_ASYNC_PF 4004 if (!list_empty_careful(&vcpu->async_pf.done)) 4005 return true; 4006 #endif 4007 4008 return false; 4009 } 4010 4011 /* 4012 * By default, simply query the target vCPU's current mode when checking if a 4013 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4014 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4015 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4016 * directly for cross-vCPU checks is functionally correct and accurate. 4017 */ 4018 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4019 { 4020 return kvm_arch_vcpu_in_kernel(vcpu); 4021 } 4022 4023 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4024 { 4025 return false; 4026 } 4027 4028 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4029 { 4030 struct kvm *kvm = me->kvm; 4031 struct kvm_vcpu *vcpu; 4032 int last_boosted_vcpu; 4033 unsigned long i; 4034 int yielded = 0; 4035 int try = 3; 4036 int pass; 4037 4038 last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu); 4039 kvm_vcpu_set_in_spin_loop(me, true); 4040 /* 4041 * We boost the priority of a VCPU that is runnable but not 4042 * currently running, because it got preempted by something 4043 * else and called schedule in __vcpu_run. Hopefully that 4044 * VCPU is holding the lock that we need and will release it. 4045 * We approximate round-robin by starting at the last boosted VCPU. 4046 */ 4047 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4048 kvm_for_each_vcpu(i, vcpu, kvm) { 4049 if (!pass && i <= last_boosted_vcpu) { 4050 i = last_boosted_vcpu; 4051 continue; 4052 } else if (pass && i > last_boosted_vcpu) 4053 break; 4054 if (!READ_ONCE(vcpu->ready)) 4055 continue; 4056 if (vcpu == me) 4057 continue; 4058 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4059 continue; 4060 4061 /* 4062 * Treat the target vCPU as being in-kernel if it has a 4063 * pending interrupt, as the vCPU trying to yield may 4064 * be spinning waiting on IPI delivery, i.e. the target 4065 * vCPU is in-kernel for the purposes of directed yield. 4066 */ 4067 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4068 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4069 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4070 continue; 4071 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4072 continue; 4073 4074 yielded = kvm_vcpu_yield_to(vcpu); 4075 if (yielded > 0) { 4076 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4077 break; 4078 } else if (yielded < 0) { 4079 try--; 4080 if (!try) 4081 break; 4082 } 4083 } 4084 } 4085 kvm_vcpu_set_in_spin_loop(me, false); 4086 4087 /* Ensure vcpu is not eligible during next spinloop */ 4088 kvm_vcpu_set_dy_eligible(me, false); 4089 } 4090 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4091 4092 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4093 { 4094 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4095 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4096 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4097 kvm->dirty_ring_size / PAGE_SIZE); 4098 #else 4099 return false; 4100 #endif 4101 } 4102 4103 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4104 { 4105 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4106 struct page *page; 4107 4108 if (vmf->pgoff == 0) 4109 page = virt_to_page(vcpu->run); 4110 #ifdef CONFIG_X86 4111 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4112 page = virt_to_page(vcpu->arch.pio_data); 4113 #endif 4114 #ifdef CONFIG_KVM_MMIO 4115 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4116 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4117 #endif 4118 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4119 page = kvm_dirty_ring_get_page( 4120 &vcpu->dirty_ring, 4121 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4122 else 4123 return kvm_arch_vcpu_fault(vcpu, vmf); 4124 get_page(page); 4125 vmf->page = page; 4126 return 0; 4127 } 4128 4129 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4130 .fault = kvm_vcpu_fault, 4131 }; 4132 4133 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4134 { 4135 struct kvm_vcpu *vcpu = file->private_data; 4136 unsigned long pages = vma_pages(vma); 4137 4138 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4139 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4140 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4141 return -EINVAL; 4142 4143 vma->vm_ops = &kvm_vcpu_vm_ops; 4144 return 0; 4145 } 4146 4147 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4148 { 4149 struct kvm_vcpu *vcpu = filp->private_data; 4150 4151 kvm_put_kvm(vcpu->kvm); 4152 return 0; 4153 } 4154 4155 static struct file_operations kvm_vcpu_fops = { 4156 .release = kvm_vcpu_release, 4157 .unlocked_ioctl = kvm_vcpu_ioctl, 4158 .mmap = kvm_vcpu_mmap, 4159 .llseek = noop_llseek, 4160 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4161 }; 4162 4163 /* 4164 * Allocates an inode for the vcpu. 4165 */ 4166 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4167 { 4168 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4169 4170 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4171 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4172 } 4173 4174 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4175 static int vcpu_get_pid(void *data, u64 *val) 4176 { 4177 struct kvm_vcpu *vcpu = data; 4178 4179 rcu_read_lock(); 4180 *val = pid_nr(rcu_dereference(vcpu->pid)); 4181 rcu_read_unlock(); 4182 return 0; 4183 } 4184 4185 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4186 4187 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4188 { 4189 struct dentry *debugfs_dentry; 4190 char dir_name[ITOA_MAX_LEN * 2]; 4191 4192 if (!debugfs_initialized()) 4193 return; 4194 4195 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4196 debugfs_dentry = debugfs_create_dir(dir_name, 4197 vcpu->kvm->debugfs_dentry); 4198 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4199 &vcpu_get_pid_fops); 4200 4201 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4202 } 4203 #endif 4204 4205 /* 4206 * Creates some virtual cpus. Good luck creating more than one. 4207 */ 4208 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4209 { 4210 int r; 4211 struct kvm_vcpu *vcpu; 4212 struct page *page; 4213 4214 /* 4215 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4216 * too-large values instead of silently truncating. 4217 * 4218 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4219 * changing the storage type (at the very least, IDs should be tracked 4220 * as unsigned ints). 4221 */ 4222 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4223 if (id >= KVM_MAX_VCPU_IDS) 4224 return -EINVAL; 4225 4226 mutex_lock(&kvm->lock); 4227 if (kvm->created_vcpus >= kvm->max_vcpus) { 4228 mutex_unlock(&kvm->lock); 4229 return -EINVAL; 4230 } 4231 4232 r = kvm_arch_vcpu_precreate(kvm, id); 4233 if (r) { 4234 mutex_unlock(&kvm->lock); 4235 return r; 4236 } 4237 4238 kvm->created_vcpus++; 4239 mutex_unlock(&kvm->lock); 4240 4241 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4242 if (!vcpu) { 4243 r = -ENOMEM; 4244 goto vcpu_decrement; 4245 } 4246 4247 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4248 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4249 if (!page) { 4250 r = -ENOMEM; 4251 goto vcpu_free; 4252 } 4253 vcpu->run = page_address(page); 4254 4255 kvm_vcpu_init(vcpu, kvm, id); 4256 4257 r = kvm_arch_vcpu_create(vcpu); 4258 if (r) 4259 goto vcpu_free_run_page; 4260 4261 if (kvm->dirty_ring_size) { 4262 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4263 id, kvm->dirty_ring_size); 4264 if (r) 4265 goto arch_vcpu_destroy; 4266 } 4267 4268 mutex_lock(&kvm->lock); 4269 4270 #ifdef CONFIG_LOCKDEP 4271 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4272 mutex_lock(&vcpu->mutex); 4273 mutex_unlock(&vcpu->mutex); 4274 #endif 4275 4276 if (kvm_get_vcpu_by_id(kvm, id)) { 4277 r = -EEXIST; 4278 goto unlock_vcpu_destroy; 4279 } 4280 4281 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4282 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4283 if (r) 4284 goto unlock_vcpu_destroy; 4285 4286 /* Now it's all set up, let userspace reach it */ 4287 kvm_get_kvm(kvm); 4288 r = create_vcpu_fd(vcpu); 4289 if (r < 0) 4290 goto kvm_put_xa_release; 4291 4292 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4293 r = -EINVAL; 4294 goto kvm_put_xa_release; 4295 } 4296 4297 /* 4298 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4299 * pointer before kvm->online_vcpu's incremented value. 4300 */ 4301 smp_wmb(); 4302 atomic_inc(&kvm->online_vcpus); 4303 4304 mutex_unlock(&kvm->lock); 4305 kvm_arch_vcpu_postcreate(vcpu); 4306 kvm_create_vcpu_debugfs(vcpu); 4307 return r; 4308 4309 kvm_put_xa_release: 4310 kvm_put_kvm_no_destroy(kvm); 4311 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4312 unlock_vcpu_destroy: 4313 mutex_unlock(&kvm->lock); 4314 kvm_dirty_ring_free(&vcpu->dirty_ring); 4315 arch_vcpu_destroy: 4316 kvm_arch_vcpu_destroy(vcpu); 4317 vcpu_free_run_page: 4318 free_page((unsigned long)vcpu->run); 4319 vcpu_free: 4320 kmem_cache_free(kvm_vcpu_cache, vcpu); 4321 vcpu_decrement: 4322 mutex_lock(&kvm->lock); 4323 kvm->created_vcpus--; 4324 mutex_unlock(&kvm->lock); 4325 return r; 4326 } 4327 4328 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4329 { 4330 if (sigset) { 4331 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4332 vcpu->sigset_active = 1; 4333 vcpu->sigset = *sigset; 4334 } else 4335 vcpu->sigset_active = 0; 4336 return 0; 4337 } 4338 4339 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4340 size_t size, loff_t *offset) 4341 { 4342 struct kvm_vcpu *vcpu = file->private_data; 4343 4344 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4345 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4346 sizeof(vcpu->stat), user_buffer, size, offset); 4347 } 4348 4349 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4350 { 4351 struct kvm_vcpu *vcpu = file->private_data; 4352 4353 kvm_put_kvm(vcpu->kvm); 4354 return 0; 4355 } 4356 4357 static const struct file_operations kvm_vcpu_stats_fops = { 4358 .owner = THIS_MODULE, 4359 .read = kvm_vcpu_stats_read, 4360 .release = kvm_vcpu_stats_release, 4361 .llseek = noop_llseek, 4362 }; 4363 4364 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4365 { 4366 int fd; 4367 struct file *file; 4368 char name[15 + ITOA_MAX_LEN + 1]; 4369 4370 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4371 4372 fd = get_unused_fd_flags(O_CLOEXEC); 4373 if (fd < 0) 4374 return fd; 4375 4376 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4377 if (IS_ERR(file)) { 4378 put_unused_fd(fd); 4379 return PTR_ERR(file); 4380 } 4381 4382 kvm_get_kvm(vcpu->kvm); 4383 4384 file->f_mode |= FMODE_PREAD; 4385 fd_install(fd, file); 4386 4387 return fd; 4388 } 4389 4390 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4391 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4392 struct kvm_pre_fault_memory *range) 4393 { 4394 int idx; 4395 long r; 4396 u64 full_size; 4397 4398 if (range->flags) 4399 return -EINVAL; 4400 4401 if (!PAGE_ALIGNED(range->gpa) || 4402 !PAGE_ALIGNED(range->size) || 4403 range->gpa + range->size <= range->gpa) 4404 return -EINVAL; 4405 4406 vcpu_load(vcpu); 4407 idx = srcu_read_lock(&vcpu->kvm->srcu); 4408 4409 full_size = range->size; 4410 do { 4411 if (signal_pending(current)) { 4412 r = -EINTR; 4413 break; 4414 } 4415 4416 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4417 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4418 break; 4419 4420 if (r < 0) 4421 break; 4422 4423 range->size -= r; 4424 range->gpa += r; 4425 cond_resched(); 4426 } while (range->size); 4427 4428 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4429 vcpu_put(vcpu); 4430 4431 /* Return success if at least one page was mapped successfully. */ 4432 return full_size == range->size ? r : 0; 4433 } 4434 #endif 4435 4436 static long kvm_vcpu_ioctl(struct file *filp, 4437 unsigned int ioctl, unsigned long arg) 4438 { 4439 struct kvm_vcpu *vcpu = filp->private_data; 4440 void __user *argp = (void __user *)arg; 4441 int r; 4442 struct kvm_fpu *fpu = NULL; 4443 struct kvm_sregs *kvm_sregs = NULL; 4444 4445 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4446 return -EIO; 4447 4448 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4449 return -EINVAL; 4450 4451 /* 4452 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4453 * execution; mutex_lock() would break them. 4454 */ 4455 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4456 if (r != -ENOIOCTLCMD) 4457 return r; 4458 4459 if (mutex_lock_killable(&vcpu->mutex)) 4460 return -EINTR; 4461 switch (ioctl) { 4462 case KVM_RUN: { 4463 struct pid *oldpid; 4464 r = -EINVAL; 4465 if (arg) 4466 goto out; 4467 oldpid = rcu_access_pointer(vcpu->pid); 4468 if (unlikely(oldpid != task_pid(current))) { 4469 /* The thread running this VCPU changed. */ 4470 struct pid *newpid; 4471 4472 r = kvm_arch_vcpu_run_pid_change(vcpu); 4473 if (r) 4474 break; 4475 4476 newpid = get_task_pid(current, PIDTYPE_PID); 4477 rcu_assign_pointer(vcpu->pid, newpid); 4478 if (oldpid) 4479 synchronize_rcu(); 4480 put_pid(oldpid); 4481 } 4482 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4483 r = kvm_arch_vcpu_ioctl_run(vcpu); 4484 vcpu->wants_to_run = false; 4485 4486 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4487 break; 4488 } 4489 case KVM_GET_REGS: { 4490 struct kvm_regs *kvm_regs; 4491 4492 r = -ENOMEM; 4493 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4494 if (!kvm_regs) 4495 goto out; 4496 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4497 if (r) 4498 goto out_free1; 4499 r = -EFAULT; 4500 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4501 goto out_free1; 4502 r = 0; 4503 out_free1: 4504 kfree(kvm_regs); 4505 break; 4506 } 4507 case KVM_SET_REGS: { 4508 struct kvm_regs *kvm_regs; 4509 4510 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4511 if (IS_ERR(kvm_regs)) { 4512 r = PTR_ERR(kvm_regs); 4513 goto out; 4514 } 4515 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4516 kfree(kvm_regs); 4517 break; 4518 } 4519 case KVM_GET_SREGS: { 4520 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4521 r = -ENOMEM; 4522 if (!kvm_sregs) 4523 goto out; 4524 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4525 if (r) 4526 goto out; 4527 r = -EFAULT; 4528 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4529 goto out; 4530 r = 0; 4531 break; 4532 } 4533 case KVM_SET_SREGS: { 4534 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4535 if (IS_ERR(kvm_sregs)) { 4536 r = PTR_ERR(kvm_sregs); 4537 kvm_sregs = NULL; 4538 goto out; 4539 } 4540 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4541 break; 4542 } 4543 case KVM_GET_MP_STATE: { 4544 struct kvm_mp_state mp_state; 4545 4546 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4547 if (r) 4548 goto out; 4549 r = -EFAULT; 4550 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4551 goto out; 4552 r = 0; 4553 break; 4554 } 4555 case KVM_SET_MP_STATE: { 4556 struct kvm_mp_state mp_state; 4557 4558 r = -EFAULT; 4559 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4560 goto out; 4561 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4562 break; 4563 } 4564 case KVM_TRANSLATE: { 4565 struct kvm_translation tr; 4566 4567 r = -EFAULT; 4568 if (copy_from_user(&tr, argp, sizeof(tr))) 4569 goto out; 4570 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4571 if (r) 4572 goto out; 4573 r = -EFAULT; 4574 if (copy_to_user(argp, &tr, sizeof(tr))) 4575 goto out; 4576 r = 0; 4577 break; 4578 } 4579 case KVM_SET_GUEST_DEBUG: { 4580 struct kvm_guest_debug dbg; 4581 4582 r = -EFAULT; 4583 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4584 goto out; 4585 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4586 break; 4587 } 4588 case KVM_SET_SIGNAL_MASK: { 4589 struct kvm_signal_mask __user *sigmask_arg = argp; 4590 struct kvm_signal_mask kvm_sigmask; 4591 sigset_t sigset, *p; 4592 4593 p = NULL; 4594 if (argp) { 4595 r = -EFAULT; 4596 if (copy_from_user(&kvm_sigmask, argp, 4597 sizeof(kvm_sigmask))) 4598 goto out; 4599 r = -EINVAL; 4600 if (kvm_sigmask.len != sizeof(sigset)) 4601 goto out; 4602 r = -EFAULT; 4603 if (copy_from_user(&sigset, sigmask_arg->sigset, 4604 sizeof(sigset))) 4605 goto out; 4606 p = &sigset; 4607 } 4608 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4609 break; 4610 } 4611 case KVM_GET_FPU: { 4612 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4613 r = -ENOMEM; 4614 if (!fpu) 4615 goto out; 4616 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4617 if (r) 4618 goto out; 4619 r = -EFAULT; 4620 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4621 goto out; 4622 r = 0; 4623 break; 4624 } 4625 case KVM_SET_FPU: { 4626 fpu = memdup_user(argp, sizeof(*fpu)); 4627 if (IS_ERR(fpu)) { 4628 r = PTR_ERR(fpu); 4629 fpu = NULL; 4630 goto out; 4631 } 4632 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4633 break; 4634 } 4635 case KVM_GET_STATS_FD: { 4636 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4637 break; 4638 } 4639 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4640 case KVM_PRE_FAULT_MEMORY: { 4641 struct kvm_pre_fault_memory range; 4642 4643 r = -EFAULT; 4644 if (copy_from_user(&range, argp, sizeof(range))) 4645 break; 4646 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4647 /* Pass back leftover range. */ 4648 if (copy_to_user(argp, &range, sizeof(range))) 4649 r = -EFAULT; 4650 break; 4651 } 4652 #endif 4653 default: 4654 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4655 } 4656 out: 4657 mutex_unlock(&vcpu->mutex); 4658 kfree(fpu); 4659 kfree(kvm_sregs); 4660 return r; 4661 } 4662 4663 #ifdef CONFIG_KVM_COMPAT 4664 static long kvm_vcpu_compat_ioctl(struct file *filp, 4665 unsigned int ioctl, unsigned long arg) 4666 { 4667 struct kvm_vcpu *vcpu = filp->private_data; 4668 void __user *argp = compat_ptr(arg); 4669 int r; 4670 4671 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4672 return -EIO; 4673 4674 switch (ioctl) { 4675 case KVM_SET_SIGNAL_MASK: { 4676 struct kvm_signal_mask __user *sigmask_arg = argp; 4677 struct kvm_signal_mask kvm_sigmask; 4678 sigset_t sigset; 4679 4680 if (argp) { 4681 r = -EFAULT; 4682 if (copy_from_user(&kvm_sigmask, argp, 4683 sizeof(kvm_sigmask))) 4684 goto out; 4685 r = -EINVAL; 4686 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4687 goto out; 4688 r = -EFAULT; 4689 if (get_compat_sigset(&sigset, 4690 (compat_sigset_t __user *)sigmask_arg->sigset)) 4691 goto out; 4692 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4693 } else 4694 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4695 break; 4696 } 4697 default: 4698 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4699 } 4700 4701 out: 4702 return r; 4703 } 4704 #endif 4705 4706 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4707 { 4708 struct kvm_device *dev = filp->private_data; 4709 4710 if (dev->ops->mmap) 4711 return dev->ops->mmap(dev, vma); 4712 4713 return -ENODEV; 4714 } 4715 4716 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4717 int (*accessor)(struct kvm_device *dev, 4718 struct kvm_device_attr *attr), 4719 unsigned long arg) 4720 { 4721 struct kvm_device_attr attr; 4722 4723 if (!accessor) 4724 return -EPERM; 4725 4726 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4727 return -EFAULT; 4728 4729 return accessor(dev, &attr); 4730 } 4731 4732 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4733 unsigned long arg) 4734 { 4735 struct kvm_device *dev = filp->private_data; 4736 4737 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4738 return -EIO; 4739 4740 switch (ioctl) { 4741 case KVM_SET_DEVICE_ATTR: 4742 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4743 case KVM_GET_DEVICE_ATTR: 4744 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4745 case KVM_HAS_DEVICE_ATTR: 4746 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4747 default: 4748 if (dev->ops->ioctl) 4749 return dev->ops->ioctl(dev, ioctl, arg); 4750 4751 return -ENOTTY; 4752 } 4753 } 4754 4755 static int kvm_device_release(struct inode *inode, struct file *filp) 4756 { 4757 struct kvm_device *dev = filp->private_data; 4758 struct kvm *kvm = dev->kvm; 4759 4760 if (dev->ops->release) { 4761 mutex_lock(&kvm->lock); 4762 list_del_rcu(&dev->vm_node); 4763 synchronize_rcu(); 4764 dev->ops->release(dev); 4765 mutex_unlock(&kvm->lock); 4766 } 4767 4768 kvm_put_kvm(kvm); 4769 return 0; 4770 } 4771 4772 static struct file_operations kvm_device_fops = { 4773 .unlocked_ioctl = kvm_device_ioctl, 4774 .release = kvm_device_release, 4775 KVM_COMPAT(kvm_device_ioctl), 4776 .mmap = kvm_device_mmap, 4777 }; 4778 4779 struct kvm_device *kvm_device_from_filp(struct file *filp) 4780 { 4781 if (filp->f_op != &kvm_device_fops) 4782 return NULL; 4783 4784 return filp->private_data; 4785 } 4786 4787 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4788 #ifdef CONFIG_KVM_MPIC 4789 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4790 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4791 #endif 4792 }; 4793 4794 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4795 { 4796 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4797 return -ENOSPC; 4798 4799 if (kvm_device_ops_table[type] != NULL) 4800 return -EEXIST; 4801 4802 kvm_device_ops_table[type] = ops; 4803 return 0; 4804 } 4805 4806 void kvm_unregister_device_ops(u32 type) 4807 { 4808 if (kvm_device_ops_table[type] != NULL) 4809 kvm_device_ops_table[type] = NULL; 4810 } 4811 4812 static int kvm_ioctl_create_device(struct kvm *kvm, 4813 struct kvm_create_device *cd) 4814 { 4815 const struct kvm_device_ops *ops; 4816 struct kvm_device *dev; 4817 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4818 int type; 4819 int ret; 4820 4821 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4822 return -ENODEV; 4823 4824 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4825 ops = kvm_device_ops_table[type]; 4826 if (ops == NULL) 4827 return -ENODEV; 4828 4829 if (test) 4830 return 0; 4831 4832 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4833 if (!dev) 4834 return -ENOMEM; 4835 4836 dev->ops = ops; 4837 dev->kvm = kvm; 4838 4839 mutex_lock(&kvm->lock); 4840 ret = ops->create(dev, type); 4841 if (ret < 0) { 4842 mutex_unlock(&kvm->lock); 4843 kfree(dev); 4844 return ret; 4845 } 4846 list_add_rcu(&dev->vm_node, &kvm->devices); 4847 mutex_unlock(&kvm->lock); 4848 4849 if (ops->init) 4850 ops->init(dev); 4851 4852 kvm_get_kvm(kvm); 4853 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4854 if (ret < 0) { 4855 kvm_put_kvm_no_destroy(kvm); 4856 mutex_lock(&kvm->lock); 4857 list_del_rcu(&dev->vm_node); 4858 synchronize_rcu(); 4859 if (ops->release) 4860 ops->release(dev); 4861 mutex_unlock(&kvm->lock); 4862 if (ops->destroy) 4863 ops->destroy(dev); 4864 return ret; 4865 } 4866 4867 cd->fd = ret; 4868 return 0; 4869 } 4870 4871 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4872 { 4873 switch (arg) { 4874 case KVM_CAP_USER_MEMORY: 4875 case KVM_CAP_USER_MEMORY2: 4876 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4877 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4878 case KVM_CAP_INTERNAL_ERROR_DATA: 4879 #ifdef CONFIG_HAVE_KVM_MSI 4880 case KVM_CAP_SIGNAL_MSI: 4881 #endif 4882 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4883 case KVM_CAP_IRQFD: 4884 #endif 4885 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4886 case KVM_CAP_CHECK_EXTENSION_VM: 4887 case KVM_CAP_ENABLE_CAP_VM: 4888 case KVM_CAP_HALT_POLL: 4889 return 1; 4890 #ifdef CONFIG_KVM_MMIO 4891 case KVM_CAP_COALESCED_MMIO: 4892 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4893 case KVM_CAP_COALESCED_PIO: 4894 return 1; 4895 #endif 4896 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4897 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4898 return KVM_DIRTY_LOG_MANUAL_CAPS; 4899 #endif 4900 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4901 case KVM_CAP_IRQ_ROUTING: 4902 return KVM_MAX_IRQ_ROUTES; 4903 #endif 4904 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4905 case KVM_CAP_MULTI_ADDRESS_SPACE: 4906 if (kvm) 4907 return kvm_arch_nr_memslot_as_ids(kvm); 4908 return KVM_MAX_NR_ADDRESS_SPACES; 4909 #endif 4910 case KVM_CAP_NR_MEMSLOTS: 4911 return KVM_USER_MEM_SLOTS; 4912 case KVM_CAP_DIRTY_LOG_RING: 4913 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4914 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4915 #else 4916 return 0; 4917 #endif 4918 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4919 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4920 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4921 #else 4922 return 0; 4923 #endif 4924 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4925 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4926 #endif 4927 case KVM_CAP_BINARY_STATS_FD: 4928 case KVM_CAP_SYSTEM_EVENT_DATA: 4929 case KVM_CAP_DEVICE_CTRL: 4930 return 1; 4931 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4932 case KVM_CAP_MEMORY_ATTRIBUTES: 4933 return kvm_supported_mem_attributes(kvm); 4934 #endif 4935 #ifdef CONFIG_KVM_PRIVATE_MEM 4936 case KVM_CAP_GUEST_MEMFD: 4937 return !kvm || kvm_arch_has_private_mem(kvm); 4938 #endif 4939 default: 4940 break; 4941 } 4942 return kvm_vm_ioctl_check_extension(kvm, arg); 4943 } 4944 4945 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4946 { 4947 int r; 4948 4949 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4950 return -EINVAL; 4951 4952 /* the size should be power of 2 */ 4953 if (!size || (size & (size - 1))) 4954 return -EINVAL; 4955 4956 /* Should be bigger to keep the reserved entries, or a page */ 4957 if (size < kvm_dirty_ring_get_rsvd_entries() * 4958 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4959 return -EINVAL; 4960 4961 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4962 sizeof(struct kvm_dirty_gfn)) 4963 return -E2BIG; 4964 4965 /* We only allow it to set once */ 4966 if (kvm->dirty_ring_size) 4967 return -EINVAL; 4968 4969 mutex_lock(&kvm->lock); 4970 4971 if (kvm->created_vcpus) { 4972 /* We don't allow to change this value after vcpu created */ 4973 r = -EINVAL; 4974 } else { 4975 kvm->dirty_ring_size = size; 4976 r = 0; 4977 } 4978 4979 mutex_unlock(&kvm->lock); 4980 return r; 4981 } 4982 4983 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4984 { 4985 unsigned long i; 4986 struct kvm_vcpu *vcpu; 4987 int cleared = 0; 4988 4989 if (!kvm->dirty_ring_size) 4990 return -EINVAL; 4991 4992 mutex_lock(&kvm->slots_lock); 4993 4994 kvm_for_each_vcpu(i, vcpu, kvm) 4995 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4996 4997 mutex_unlock(&kvm->slots_lock); 4998 4999 if (cleared) 5000 kvm_flush_remote_tlbs(kvm); 5001 5002 return cleared; 5003 } 5004 5005 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5006 struct kvm_enable_cap *cap) 5007 { 5008 return -EINVAL; 5009 } 5010 5011 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5012 { 5013 int i; 5014 5015 lockdep_assert_held(&kvm->slots_lock); 5016 5017 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5018 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5019 return false; 5020 } 5021 5022 return true; 5023 } 5024 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 5025 5026 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5027 struct kvm_enable_cap *cap) 5028 { 5029 switch (cap->cap) { 5030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5031 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5032 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5033 5034 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5035 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5036 5037 if (cap->flags || (cap->args[0] & ~allowed_options)) 5038 return -EINVAL; 5039 kvm->manual_dirty_log_protect = cap->args[0]; 5040 return 0; 5041 } 5042 #endif 5043 case KVM_CAP_HALT_POLL: { 5044 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5045 return -EINVAL; 5046 5047 kvm->max_halt_poll_ns = cap->args[0]; 5048 5049 /* 5050 * Ensure kvm->override_halt_poll_ns does not become visible 5051 * before kvm->max_halt_poll_ns. 5052 * 5053 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5054 */ 5055 smp_wmb(); 5056 kvm->override_halt_poll_ns = true; 5057 5058 return 0; 5059 } 5060 case KVM_CAP_DIRTY_LOG_RING: 5061 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5062 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5063 return -EINVAL; 5064 5065 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5066 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5067 int r = -EINVAL; 5068 5069 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5070 !kvm->dirty_ring_size || cap->flags) 5071 return r; 5072 5073 mutex_lock(&kvm->slots_lock); 5074 5075 /* 5076 * For simplicity, allow enabling ring+bitmap if and only if 5077 * there are no memslots, e.g. to ensure all memslots allocate 5078 * a bitmap after the capability is enabled. 5079 */ 5080 if (kvm_are_all_memslots_empty(kvm)) { 5081 kvm->dirty_ring_with_bitmap = true; 5082 r = 0; 5083 } 5084 5085 mutex_unlock(&kvm->slots_lock); 5086 5087 return r; 5088 } 5089 default: 5090 return kvm_vm_ioctl_enable_cap(kvm, cap); 5091 } 5092 } 5093 5094 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5095 size_t size, loff_t *offset) 5096 { 5097 struct kvm *kvm = file->private_data; 5098 5099 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5100 &kvm_vm_stats_desc[0], &kvm->stat, 5101 sizeof(kvm->stat), user_buffer, size, offset); 5102 } 5103 5104 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5105 { 5106 struct kvm *kvm = file->private_data; 5107 5108 kvm_put_kvm(kvm); 5109 return 0; 5110 } 5111 5112 static const struct file_operations kvm_vm_stats_fops = { 5113 .owner = THIS_MODULE, 5114 .read = kvm_vm_stats_read, 5115 .release = kvm_vm_stats_release, 5116 .llseek = noop_llseek, 5117 }; 5118 5119 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5120 { 5121 int fd; 5122 struct file *file; 5123 5124 fd = get_unused_fd_flags(O_CLOEXEC); 5125 if (fd < 0) 5126 return fd; 5127 5128 file = anon_inode_getfile("kvm-vm-stats", 5129 &kvm_vm_stats_fops, kvm, O_RDONLY); 5130 if (IS_ERR(file)) { 5131 put_unused_fd(fd); 5132 return PTR_ERR(file); 5133 } 5134 5135 kvm_get_kvm(kvm); 5136 5137 file->f_mode |= FMODE_PREAD; 5138 fd_install(fd, file); 5139 5140 return fd; 5141 } 5142 5143 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5144 do { \ 5145 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5146 offsetof(struct kvm_userspace_memory_region2, field)); \ 5147 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5148 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5149 } while (0) 5150 5151 static long kvm_vm_ioctl(struct file *filp, 5152 unsigned int ioctl, unsigned long arg) 5153 { 5154 struct kvm *kvm = filp->private_data; 5155 void __user *argp = (void __user *)arg; 5156 int r; 5157 5158 if (kvm->mm != current->mm || kvm->vm_dead) 5159 return -EIO; 5160 switch (ioctl) { 5161 case KVM_CREATE_VCPU: 5162 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5163 break; 5164 case KVM_ENABLE_CAP: { 5165 struct kvm_enable_cap cap; 5166 5167 r = -EFAULT; 5168 if (copy_from_user(&cap, argp, sizeof(cap))) 5169 goto out; 5170 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5171 break; 5172 } 5173 case KVM_SET_USER_MEMORY_REGION2: 5174 case KVM_SET_USER_MEMORY_REGION: { 5175 struct kvm_userspace_memory_region2 mem; 5176 unsigned long size; 5177 5178 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5179 /* 5180 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5181 * accessed, but avoid leaking kernel memory in case of a bug. 5182 */ 5183 memset(&mem, 0, sizeof(mem)); 5184 size = sizeof(struct kvm_userspace_memory_region); 5185 } else { 5186 size = sizeof(struct kvm_userspace_memory_region2); 5187 } 5188 5189 /* Ensure the common parts of the two structs are identical. */ 5190 SANITY_CHECK_MEM_REGION_FIELD(slot); 5191 SANITY_CHECK_MEM_REGION_FIELD(flags); 5192 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5193 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5194 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5195 5196 r = -EFAULT; 5197 if (copy_from_user(&mem, argp, size)) 5198 goto out; 5199 5200 r = -EINVAL; 5201 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5202 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5203 goto out; 5204 5205 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5206 break; 5207 } 5208 case KVM_GET_DIRTY_LOG: { 5209 struct kvm_dirty_log log; 5210 5211 r = -EFAULT; 5212 if (copy_from_user(&log, argp, sizeof(log))) 5213 goto out; 5214 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5215 break; 5216 } 5217 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5218 case KVM_CLEAR_DIRTY_LOG: { 5219 struct kvm_clear_dirty_log log; 5220 5221 r = -EFAULT; 5222 if (copy_from_user(&log, argp, sizeof(log))) 5223 goto out; 5224 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5225 break; 5226 } 5227 #endif 5228 #ifdef CONFIG_KVM_MMIO 5229 case KVM_REGISTER_COALESCED_MMIO: { 5230 struct kvm_coalesced_mmio_zone zone; 5231 5232 r = -EFAULT; 5233 if (copy_from_user(&zone, argp, sizeof(zone))) 5234 goto out; 5235 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5236 break; 5237 } 5238 case KVM_UNREGISTER_COALESCED_MMIO: { 5239 struct kvm_coalesced_mmio_zone zone; 5240 5241 r = -EFAULT; 5242 if (copy_from_user(&zone, argp, sizeof(zone))) 5243 goto out; 5244 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5245 break; 5246 } 5247 #endif 5248 case KVM_IRQFD: { 5249 struct kvm_irqfd data; 5250 5251 r = -EFAULT; 5252 if (copy_from_user(&data, argp, sizeof(data))) 5253 goto out; 5254 r = kvm_irqfd(kvm, &data); 5255 break; 5256 } 5257 case KVM_IOEVENTFD: { 5258 struct kvm_ioeventfd data; 5259 5260 r = -EFAULT; 5261 if (copy_from_user(&data, argp, sizeof(data))) 5262 goto out; 5263 r = kvm_ioeventfd(kvm, &data); 5264 break; 5265 } 5266 #ifdef CONFIG_HAVE_KVM_MSI 5267 case KVM_SIGNAL_MSI: { 5268 struct kvm_msi msi; 5269 5270 r = -EFAULT; 5271 if (copy_from_user(&msi, argp, sizeof(msi))) 5272 goto out; 5273 r = kvm_send_userspace_msi(kvm, &msi); 5274 break; 5275 } 5276 #endif 5277 #ifdef __KVM_HAVE_IRQ_LINE 5278 case KVM_IRQ_LINE_STATUS: 5279 case KVM_IRQ_LINE: { 5280 struct kvm_irq_level irq_event; 5281 5282 r = -EFAULT; 5283 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5284 goto out; 5285 5286 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5287 ioctl == KVM_IRQ_LINE_STATUS); 5288 if (r) 5289 goto out; 5290 5291 r = -EFAULT; 5292 if (ioctl == KVM_IRQ_LINE_STATUS) { 5293 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5294 goto out; 5295 } 5296 5297 r = 0; 5298 break; 5299 } 5300 #endif 5301 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5302 case KVM_SET_GSI_ROUTING: { 5303 struct kvm_irq_routing routing; 5304 struct kvm_irq_routing __user *urouting; 5305 struct kvm_irq_routing_entry *entries = NULL; 5306 5307 r = -EFAULT; 5308 if (copy_from_user(&routing, argp, sizeof(routing))) 5309 goto out; 5310 r = -EINVAL; 5311 if (!kvm_arch_can_set_irq_routing(kvm)) 5312 goto out; 5313 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5314 goto out; 5315 if (routing.flags) 5316 goto out; 5317 if (routing.nr) { 5318 urouting = argp; 5319 entries = vmemdup_array_user(urouting->entries, 5320 routing.nr, sizeof(*entries)); 5321 if (IS_ERR(entries)) { 5322 r = PTR_ERR(entries); 5323 goto out; 5324 } 5325 } 5326 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5327 routing.flags); 5328 kvfree(entries); 5329 break; 5330 } 5331 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5332 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5333 case KVM_SET_MEMORY_ATTRIBUTES: { 5334 struct kvm_memory_attributes attrs; 5335 5336 r = -EFAULT; 5337 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5338 goto out; 5339 5340 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5341 break; 5342 } 5343 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5344 case KVM_CREATE_DEVICE: { 5345 struct kvm_create_device cd; 5346 5347 r = -EFAULT; 5348 if (copy_from_user(&cd, argp, sizeof(cd))) 5349 goto out; 5350 5351 r = kvm_ioctl_create_device(kvm, &cd); 5352 if (r) 5353 goto out; 5354 5355 r = -EFAULT; 5356 if (copy_to_user(argp, &cd, sizeof(cd))) 5357 goto out; 5358 5359 r = 0; 5360 break; 5361 } 5362 case KVM_CHECK_EXTENSION: 5363 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5364 break; 5365 case KVM_RESET_DIRTY_RINGS: 5366 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5367 break; 5368 case KVM_GET_STATS_FD: 5369 r = kvm_vm_ioctl_get_stats_fd(kvm); 5370 break; 5371 #ifdef CONFIG_KVM_PRIVATE_MEM 5372 case KVM_CREATE_GUEST_MEMFD: { 5373 struct kvm_create_guest_memfd guest_memfd; 5374 5375 r = -EFAULT; 5376 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5377 goto out; 5378 5379 r = kvm_gmem_create(kvm, &guest_memfd); 5380 break; 5381 } 5382 #endif 5383 default: 5384 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5385 } 5386 out: 5387 return r; 5388 } 5389 5390 #ifdef CONFIG_KVM_COMPAT 5391 struct compat_kvm_dirty_log { 5392 __u32 slot; 5393 __u32 padding1; 5394 union { 5395 compat_uptr_t dirty_bitmap; /* one bit per page */ 5396 __u64 padding2; 5397 }; 5398 }; 5399 5400 struct compat_kvm_clear_dirty_log { 5401 __u32 slot; 5402 __u32 num_pages; 5403 __u64 first_page; 5404 union { 5405 compat_uptr_t dirty_bitmap; /* one bit per page */ 5406 __u64 padding2; 5407 }; 5408 }; 5409 5410 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5411 unsigned long arg) 5412 { 5413 return -ENOTTY; 5414 } 5415 5416 static long kvm_vm_compat_ioctl(struct file *filp, 5417 unsigned int ioctl, unsigned long arg) 5418 { 5419 struct kvm *kvm = filp->private_data; 5420 int r; 5421 5422 if (kvm->mm != current->mm || kvm->vm_dead) 5423 return -EIO; 5424 5425 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5426 if (r != -ENOTTY) 5427 return r; 5428 5429 switch (ioctl) { 5430 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5431 case KVM_CLEAR_DIRTY_LOG: { 5432 struct compat_kvm_clear_dirty_log compat_log; 5433 struct kvm_clear_dirty_log log; 5434 5435 if (copy_from_user(&compat_log, (void __user *)arg, 5436 sizeof(compat_log))) 5437 return -EFAULT; 5438 log.slot = compat_log.slot; 5439 log.num_pages = compat_log.num_pages; 5440 log.first_page = compat_log.first_page; 5441 log.padding2 = compat_log.padding2; 5442 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5443 5444 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5445 break; 5446 } 5447 #endif 5448 case KVM_GET_DIRTY_LOG: { 5449 struct compat_kvm_dirty_log compat_log; 5450 struct kvm_dirty_log log; 5451 5452 if (copy_from_user(&compat_log, (void __user *)arg, 5453 sizeof(compat_log))) 5454 return -EFAULT; 5455 log.slot = compat_log.slot; 5456 log.padding1 = compat_log.padding1; 5457 log.padding2 = compat_log.padding2; 5458 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5459 5460 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5461 break; 5462 } 5463 default: 5464 r = kvm_vm_ioctl(filp, ioctl, arg); 5465 } 5466 return r; 5467 } 5468 #endif 5469 5470 static struct file_operations kvm_vm_fops = { 5471 .release = kvm_vm_release, 5472 .unlocked_ioctl = kvm_vm_ioctl, 5473 .llseek = noop_llseek, 5474 KVM_COMPAT(kvm_vm_compat_ioctl), 5475 }; 5476 5477 bool file_is_kvm(struct file *file) 5478 { 5479 return file && file->f_op == &kvm_vm_fops; 5480 } 5481 EXPORT_SYMBOL_GPL(file_is_kvm); 5482 5483 static int kvm_dev_ioctl_create_vm(unsigned long type) 5484 { 5485 char fdname[ITOA_MAX_LEN + 1]; 5486 int r, fd; 5487 struct kvm *kvm; 5488 struct file *file; 5489 5490 fd = get_unused_fd_flags(O_CLOEXEC); 5491 if (fd < 0) 5492 return fd; 5493 5494 snprintf(fdname, sizeof(fdname), "%d", fd); 5495 5496 kvm = kvm_create_vm(type, fdname); 5497 if (IS_ERR(kvm)) { 5498 r = PTR_ERR(kvm); 5499 goto put_fd; 5500 } 5501 5502 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5503 if (IS_ERR(file)) { 5504 r = PTR_ERR(file); 5505 goto put_kvm; 5506 } 5507 5508 /* 5509 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5510 * already set, with ->release() being kvm_vm_release(). In error 5511 * cases it will be called by the final fput(file) and will take 5512 * care of doing kvm_put_kvm(kvm). 5513 */ 5514 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5515 5516 fd_install(fd, file); 5517 return fd; 5518 5519 put_kvm: 5520 kvm_put_kvm(kvm); 5521 put_fd: 5522 put_unused_fd(fd); 5523 return r; 5524 } 5525 5526 static long kvm_dev_ioctl(struct file *filp, 5527 unsigned int ioctl, unsigned long arg) 5528 { 5529 int r = -EINVAL; 5530 5531 switch (ioctl) { 5532 case KVM_GET_API_VERSION: 5533 if (arg) 5534 goto out; 5535 r = KVM_API_VERSION; 5536 break; 5537 case KVM_CREATE_VM: 5538 r = kvm_dev_ioctl_create_vm(arg); 5539 break; 5540 case KVM_CHECK_EXTENSION: 5541 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5542 break; 5543 case KVM_GET_VCPU_MMAP_SIZE: 5544 if (arg) 5545 goto out; 5546 r = PAGE_SIZE; /* struct kvm_run */ 5547 #ifdef CONFIG_X86 5548 r += PAGE_SIZE; /* pio data page */ 5549 #endif 5550 #ifdef CONFIG_KVM_MMIO 5551 r += PAGE_SIZE; /* coalesced mmio ring page */ 5552 #endif 5553 break; 5554 default: 5555 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5556 } 5557 out: 5558 return r; 5559 } 5560 5561 static struct file_operations kvm_chardev_ops = { 5562 .unlocked_ioctl = kvm_dev_ioctl, 5563 .llseek = noop_llseek, 5564 KVM_COMPAT(kvm_dev_ioctl), 5565 }; 5566 5567 static struct miscdevice kvm_dev = { 5568 KVM_MINOR, 5569 "kvm", 5570 &kvm_chardev_ops, 5571 }; 5572 5573 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5574 __visible bool kvm_rebooting; 5575 EXPORT_SYMBOL_GPL(kvm_rebooting); 5576 5577 static DEFINE_PER_CPU(bool, hardware_enabled); 5578 static int kvm_usage_count; 5579 5580 static int __hardware_enable_nolock(void) 5581 { 5582 if (__this_cpu_read(hardware_enabled)) 5583 return 0; 5584 5585 if (kvm_arch_hardware_enable()) { 5586 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5587 raw_smp_processor_id()); 5588 return -EIO; 5589 } 5590 5591 __this_cpu_write(hardware_enabled, true); 5592 return 0; 5593 } 5594 5595 static void hardware_enable_nolock(void *failed) 5596 { 5597 if (__hardware_enable_nolock()) 5598 atomic_inc(failed); 5599 } 5600 5601 static int kvm_online_cpu(unsigned int cpu) 5602 { 5603 int ret = 0; 5604 5605 /* 5606 * Abort the CPU online process if hardware virtualization cannot 5607 * be enabled. Otherwise running VMs would encounter unrecoverable 5608 * errors when scheduled to this CPU. 5609 */ 5610 mutex_lock(&kvm_lock); 5611 if (kvm_usage_count) 5612 ret = __hardware_enable_nolock(); 5613 mutex_unlock(&kvm_lock); 5614 return ret; 5615 } 5616 5617 static void hardware_disable_nolock(void *junk) 5618 { 5619 /* 5620 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5621 * hardware, not just CPUs that successfully enabled hardware! 5622 */ 5623 if (!__this_cpu_read(hardware_enabled)) 5624 return; 5625 5626 kvm_arch_hardware_disable(); 5627 5628 __this_cpu_write(hardware_enabled, false); 5629 } 5630 5631 static int kvm_offline_cpu(unsigned int cpu) 5632 { 5633 mutex_lock(&kvm_lock); 5634 if (kvm_usage_count) 5635 hardware_disable_nolock(NULL); 5636 mutex_unlock(&kvm_lock); 5637 return 0; 5638 } 5639 5640 static void hardware_disable_all_nolock(void) 5641 { 5642 BUG_ON(!kvm_usage_count); 5643 5644 kvm_usage_count--; 5645 if (!kvm_usage_count) 5646 on_each_cpu(hardware_disable_nolock, NULL, 1); 5647 } 5648 5649 static void hardware_disable_all(void) 5650 { 5651 cpus_read_lock(); 5652 mutex_lock(&kvm_lock); 5653 hardware_disable_all_nolock(); 5654 mutex_unlock(&kvm_lock); 5655 cpus_read_unlock(); 5656 } 5657 5658 static int hardware_enable_all(void) 5659 { 5660 atomic_t failed = ATOMIC_INIT(0); 5661 int r; 5662 5663 /* 5664 * Do not enable hardware virtualization if the system is going down. 5665 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5666 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5667 * after kvm_reboot() is called. Note, this relies on system_state 5668 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5669 * hook instead of registering a dedicated reboot notifier (the latter 5670 * runs before system_state is updated). 5671 */ 5672 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5673 system_state == SYSTEM_RESTART) 5674 return -EBUSY; 5675 5676 /* 5677 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5678 * is called, and so on_each_cpu() between them includes the CPU that 5679 * is being onlined. As a result, hardware_enable_nolock() may get 5680 * invoked before kvm_online_cpu(), which also enables hardware if the 5681 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5682 * enable hardware multiple times. 5683 */ 5684 cpus_read_lock(); 5685 mutex_lock(&kvm_lock); 5686 5687 r = 0; 5688 5689 kvm_usage_count++; 5690 if (kvm_usage_count == 1) { 5691 on_each_cpu(hardware_enable_nolock, &failed, 1); 5692 5693 if (atomic_read(&failed)) { 5694 hardware_disable_all_nolock(); 5695 r = -EBUSY; 5696 } 5697 } 5698 5699 mutex_unlock(&kvm_lock); 5700 cpus_read_unlock(); 5701 5702 return r; 5703 } 5704 5705 static void kvm_shutdown(void) 5706 { 5707 /* 5708 * Disable hardware virtualization and set kvm_rebooting to indicate 5709 * that KVM has asynchronously disabled hardware virtualization, i.e. 5710 * that relevant errors and exceptions aren't entirely unexpected. 5711 * Some flavors of hardware virtualization need to be disabled before 5712 * transferring control to firmware (to perform shutdown/reboot), e.g. 5713 * on x86, virtualization can block INIT interrupts, which are used by 5714 * firmware to pull APs back under firmware control. Note, this path 5715 * is used for both shutdown and reboot scenarios, i.e. neither name is 5716 * 100% comprehensive. 5717 */ 5718 pr_info("kvm: exiting hardware virtualization\n"); 5719 kvm_rebooting = true; 5720 on_each_cpu(hardware_disable_nolock, NULL, 1); 5721 } 5722 5723 static int kvm_suspend(void) 5724 { 5725 /* 5726 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5727 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5728 * is stable. Assert that kvm_lock is not held to ensure the system 5729 * isn't suspended while KVM is enabling hardware. Hardware enabling 5730 * can be preempted, but the task cannot be frozen until it has dropped 5731 * all locks (userspace tasks are frozen via a fake signal). 5732 */ 5733 lockdep_assert_not_held(&kvm_lock); 5734 lockdep_assert_irqs_disabled(); 5735 5736 if (kvm_usage_count) 5737 hardware_disable_nolock(NULL); 5738 return 0; 5739 } 5740 5741 static void kvm_resume(void) 5742 { 5743 lockdep_assert_not_held(&kvm_lock); 5744 lockdep_assert_irqs_disabled(); 5745 5746 if (kvm_usage_count) 5747 WARN_ON_ONCE(__hardware_enable_nolock()); 5748 } 5749 5750 static struct syscore_ops kvm_syscore_ops = { 5751 .suspend = kvm_suspend, 5752 .resume = kvm_resume, 5753 .shutdown = kvm_shutdown, 5754 }; 5755 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5756 static int hardware_enable_all(void) 5757 { 5758 return 0; 5759 } 5760 5761 static void hardware_disable_all(void) 5762 { 5763 5764 } 5765 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5766 5767 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5768 { 5769 if (dev->ops->destructor) 5770 dev->ops->destructor(dev); 5771 } 5772 5773 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5774 { 5775 int i; 5776 5777 for (i = 0; i < bus->dev_count; i++) { 5778 struct kvm_io_device *pos = bus->range[i].dev; 5779 5780 kvm_iodevice_destructor(pos); 5781 } 5782 kfree(bus); 5783 } 5784 5785 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5786 const struct kvm_io_range *r2) 5787 { 5788 gpa_t addr1 = r1->addr; 5789 gpa_t addr2 = r2->addr; 5790 5791 if (addr1 < addr2) 5792 return -1; 5793 5794 /* If r2->len == 0, match the exact address. If r2->len != 0, 5795 * accept any overlapping write. Any order is acceptable for 5796 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5797 * we process all of them. 5798 */ 5799 if (r2->len) { 5800 addr1 += r1->len; 5801 addr2 += r2->len; 5802 } 5803 5804 if (addr1 > addr2) 5805 return 1; 5806 5807 return 0; 5808 } 5809 5810 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5811 { 5812 return kvm_io_bus_cmp(p1, p2); 5813 } 5814 5815 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5816 gpa_t addr, int len) 5817 { 5818 struct kvm_io_range *range, key; 5819 int off; 5820 5821 key = (struct kvm_io_range) { 5822 .addr = addr, 5823 .len = len, 5824 }; 5825 5826 range = bsearch(&key, bus->range, bus->dev_count, 5827 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5828 if (range == NULL) 5829 return -ENOENT; 5830 5831 off = range - bus->range; 5832 5833 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5834 off--; 5835 5836 return off; 5837 } 5838 5839 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5840 struct kvm_io_range *range, const void *val) 5841 { 5842 int idx; 5843 5844 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5845 if (idx < 0) 5846 return -EOPNOTSUPP; 5847 5848 while (idx < bus->dev_count && 5849 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5850 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5851 range->len, val)) 5852 return idx; 5853 idx++; 5854 } 5855 5856 return -EOPNOTSUPP; 5857 } 5858 5859 /* kvm_io_bus_write - called under kvm->slots_lock */ 5860 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5861 int len, const void *val) 5862 { 5863 struct kvm_io_bus *bus; 5864 struct kvm_io_range range; 5865 int r; 5866 5867 range = (struct kvm_io_range) { 5868 .addr = addr, 5869 .len = len, 5870 }; 5871 5872 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5873 if (!bus) 5874 return -ENOMEM; 5875 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5876 return r < 0 ? r : 0; 5877 } 5878 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5879 5880 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5881 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5882 gpa_t addr, int len, const void *val, long cookie) 5883 { 5884 struct kvm_io_bus *bus; 5885 struct kvm_io_range range; 5886 5887 range = (struct kvm_io_range) { 5888 .addr = addr, 5889 .len = len, 5890 }; 5891 5892 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5893 if (!bus) 5894 return -ENOMEM; 5895 5896 /* First try the device referenced by cookie. */ 5897 if ((cookie >= 0) && (cookie < bus->dev_count) && 5898 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5899 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5900 val)) 5901 return cookie; 5902 5903 /* 5904 * cookie contained garbage; fall back to search and return the 5905 * correct cookie value. 5906 */ 5907 return __kvm_io_bus_write(vcpu, bus, &range, val); 5908 } 5909 5910 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5911 struct kvm_io_range *range, void *val) 5912 { 5913 int idx; 5914 5915 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5916 if (idx < 0) 5917 return -EOPNOTSUPP; 5918 5919 while (idx < bus->dev_count && 5920 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5921 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5922 range->len, val)) 5923 return idx; 5924 idx++; 5925 } 5926 5927 return -EOPNOTSUPP; 5928 } 5929 5930 /* kvm_io_bus_read - called under kvm->slots_lock */ 5931 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5932 int len, void *val) 5933 { 5934 struct kvm_io_bus *bus; 5935 struct kvm_io_range range; 5936 int r; 5937 5938 range = (struct kvm_io_range) { 5939 .addr = addr, 5940 .len = len, 5941 }; 5942 5943 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5944 if (!bus) 5945 return -ENOMEM; 5946 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5947 return r < 0 ? r : 0; 5948 } 5949 5950 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5951 int len, struct kvm_io_device *dev) 5952 { 5953 int i; 5954 struct kvm_io_bus *new_bus, *bus; 5955 struct kvm_io_range range; 5956 5957 lockdep_assert_held(&kvm->slots_lock); 5958 5959 bus = kvm_get_bus(kvm, bus_idx); 5960 if (!bus) 5961 return -ENOMEM; 5962 5963 /* exclude ioeventfd which is limited by maximum fd */ 5964 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5965 return -ENOSPC; 5966 5967 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5968 GFP_KERNEL_ACCOUNT); 5969 if (!new_bus) 5970 return -ENOMEM; 5971 5972 range = (struct kvm_io_range) { 5973 .addr = addr, 5974 .len = len, 5975 .dev = dev, 5976 }; 5977 5978 for (i = 0; i < bus->dev_count; i++) 5979 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5980 break; 5981 5982 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5983 new_bus->dev_count++; 5984 new_bus->range[i] = range; 5985 memcpy(new_bus->range + i + 1, bus->range + i, 5986 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5987 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5988 synchronize_srcu_expedited(&kvm->srcu); 5989 kfree(bus); 5990 5991 return 0; 5992 } 5993 5994 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5995 struct kvm_io_device *dev) 5996 { 5997 int i; 5998 struct kvm_io_bus *new_bus, *bus; 5999 6000 lockdep_assert_held(&kvm->slots_lock); 6001 6002 bus = kvm_get_bus(kvm, bus_idx); 6003 if (!bus) 6004 return 0; 6005 6006 for (i = 0; i < bus->dev_count; i++) { 6007 if (bus->range[i].dev == dev) { 6008 break; 6009 } 6010 } 6011 6012 if (i == bus->dev_count) 6013 return 0; 6014 6015 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6016 GFP_KERNEL_ACCOUNT); 6017 if (new_bus) { 6018 memcpy(new_bus, bus, struct_size(bus, range, i)); 6019 new_bus->dev_count--; 6020 memcpy(new_bus->range + i, bus->range + i + 1, 6021 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6022 } 6023 6024 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6025 synchronize_srcu_expedited(&kvm->srcu); 6026 6027 /* 6028 * If NULL bus is installed, destroy the old bus, including all the 6029 * attached devices. Otherwise, destroy the caller's device only. 6030 */ 6031 if (!new_bus) { 6032 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6033 kvm_io_bus_destroy(bus); 6034 return -ENOMEM; 6035 } 6036 6037 kvm_iodevice_destructor(dev); 6038 kfree(bus); 6039 return 0; 6040 } 6041 6042 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6043 gpa_t addr) 6044 { 6045 struct kvm_io_bus *bus; 6046 int dev_idx, srcu_idx; 6047 struct kvm_io_device *iodev = NULL; 6048 6049 srcu_idx = srcu_read_lock(&kvm->srcu); 6050 6051 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6052 if (!bus) 6053 goto out_unlock; 6054 6055 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6056 if (dev_idx < 0) 6057 goto out_unlock; 6058 6059 iodev = bus->range[dev_idx].dev; 6060 6061 out_unlock: 6062 srcu_read_unlock(&kvm->srcu, srcu_idx); 6063 6064 return iodev; 6065 } 6066 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6067 6068 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6069 int (*get)(void *, u64 *), int (*set)(void *, u64), 6070 const char *fmt) 6071 { 6072 int ret; 6073 struct kvm_stat_data *stat_data = inode->i_private; 6074 6075 /* 6076 * The debugfs files are a reference to the kvm struct which 6077 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6078 * avoids the race between open and the removal of the debugfs directory. 6079 */ 6080 if (!kvm_get_kvm_safe(stat_data->kvm)) 6081 return -ENOENT; 6082 6083 ret = simple_attr_open(inode, file, get, 6084 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6085 ? set : NULL, fmt); 6086 if (ret) 6087 kvm_put_kvm(stat_data->kvm); 6088 6089 return ret; 6090 } 6091 6092 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6093 { 6094 struct kvm_stat_data *stat_data = inode->i_private; 6095 6096 simple_attr_release(inode, file); 6097 kvm_put_kvm(stat_data->kvm); 6098 6099 return 0; 6100 } 6101 6102 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6103 { 6104 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6105 6106 return 0; 6107 } 6108 6109 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6110 { 6111 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6112 6113 return 0; 6114 } 6115 6116 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6117 { 6118 unsigned long i; 6119 struct kvm_vcpu *vcpu; 6120 6121 *val = 0; 6122 6123 kvm_for_each_vcpu(i, vcpu, kvm) 6124 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6125 6126 return 0; 6127 } 6128 6129 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6130 { 6131 unsigned long i; 6132 struct kvm_vcpu *vcpu; 6133 6134 kvm_for_each_vcpu(i, vcpu, kvm) 6135 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6136 6137 return 0; 6138 } 6139 6140 static int kvm_stat_data_get(void *data, u64 *val) 6141 { 6142 int r = -EFAULT; 6143 struct kvm_stat_data *stat_data = data; 6144 6145 switch (stat_data->kind) { 6146 case KVM_STAT_VM: 6147 r = kvm_get_stat_per_vm(stat_data->kvm, 6148 stat_data->desc->desc.offset, val); 6149 break; 6150 case KVM_STAT_VCPU: 6151 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6152 stat_data->desc->desc.offset, val); 6153 break; 6154 } 6155 6156 return r; 6157 } 6158 6159 static int kvm_stat_data_clear(void *data, u64 val) 6160 { 6161 int r = -EFAULT; 6162 struct kvm_stat_data *stat_data = data; 6163 6164 if (val) 6165 return -EINVAL; 6166 6167 switch (stat_data->kind) { 6168 case KVM_STAT_VM: 6169 r = kvm_clear_stat_per_vm(stat_data->kvm, 6170 stat_data->desc->desc.offset); 6171 break; 6172 case KVM_STAT_VCPU: 6173 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6174 stat_data->desc->desc.offset); 6175 break; 6176 } 6177 6178 return r; 6179 } 6180 6181 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6182 { 6183 __simple_attr_check_format("%llu\n", 0ull); 6184 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6185 kvm_stat_data_clear, "%llu\n"); 6186 } 6187 6188 static const struct file_operations stat_fops_per_vm = { 6189 .owner = THIS_MODULE, 6190 .open = kvm_stat_data_open, 6191 .release = kvm_debugfs_release, 6192 .read = simple_attr_read, 6193 .write = simple_attr_write, 6194 .llseek = no_llseek, 6195 }; 6196 6197 static int vm_stat_get(void *_offset, u64 *val) 6198 { 6199 unsigned offset = (long)_offset; 6200 struct kvm *kvm; 6201 u64 tmp_val; 6202 6203 *val = 0; 6204 mutex_lock(&kvm_lock); 6205 list_for_each_entry(kvm, &vm_list, vm_list) { 6206 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6207 *val += tmp_val; 6208 } 6209 mutex_unlock(&kvm_lock); 6210 return 0; 6211 } 6212 6213 static int vm_stat_clear(void *_offset, u64 val) 6214 { 6215 unsigned offset = (long)_offset; 6216 struct kvm *kvm; 6217 6218 if (val) 6219 return -EINVAL; 6220 6221 mutex_lock(&kvm_lock); 6222 list_for_each_entry(kvm, &vm_list, vm_list) { 6223 kvm_clear_stat_per_vm(kvm, offset); 6224 } 6225 mutex_unlock(&kvm_lock); 6226 6227 return 0; 6228 } 6229 6230 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6231 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6232 6233 static int vcpu_stat_get(void *_offset, u64 *val) 6234 { 6235 unsigned offset = (long)_offset; 6236 struct kvm *kvm; 6237 u64 tmp_val; 6238 6239 *val = 0; 6240 mutex_lock(&kvm_lock); 6241 list_for_each_entry(kvm, &vm_list, vm_list) { 6242 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6243 *val += tmp_val; 6244 } 6245 mutex_unlock(&kvm_lock); 6246 return 0; 6247 } 6248 6249 static int vcpu_stat_clear(void *_offset, u64 val) 6250 { 6251 unsigned offset = (long)_offset; 6252 struct kvm *kvm; 6253 6254 if (val) 6255 return -EINVAL; 6256 6257 mutex_lock(&kvm_lock); 6258 list_for_each_entry(kvm, &vm_list, vm_list) { 6259 kvm_clear_stat_per_vcpu(kvm, offset); 6260 } 6261 mutex_unlock(&kvm_lock); 6262 6263 return 0; 6264 } 6265 6266 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6267 "%llu\n"); 6268 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6269 6270 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6271 { 6272 struct kobj_uevent_env *env; 6273 unsigned long long created, active; 6274 6275 if (!kvm_dev.this_device || !kvm) 6276 return; 6277 6278 mutex_lock(&kvm_lock); 6279 if (type == KVM_EVENT_CREATE_VM) { 6280 kvm_createvm_count++; 6281 kvm_active_vms++; 6282 } else if (type == KVM_EVENT_DESTROY_VM) { 6283 kvm_active_vms--; 6284 } 6285 created = kvm_createvm_count; 6286 active = kvm_active_vms; 6287 mutex_unlock(&kvm_lock); 6288 6289 env = kzalloc(sizeof(*env), GFP_KERNEL); 6290 if (!env) 6291 return; 6292 6293 add_uevent_var(env, "CREATED=%llu", created); 6294 add_uevent_var(env, "COUNT=%llu", active); 6295 6296 if (type == KVM_EVENT_CREATE_VM) { 6297 add_uevent_var(env, "EVENT=create"); 6298 kvm->userspace_pid = task_pid_nr(current); 6299 } else if (type == KVM_EVENT_DESTROY_VM) { 6300 add_uevent_var(env, "EVENT=destroy"); 6301 } 6302 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6303 6304 if (!IS_ERR(kvm->debugfs_dentry)) { 6305 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6306 6307 if (p) { 6308 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6309 if (!IS_ERR(tmp)) 6310 add_uevent_var(env, "STATS_PATH=%s", tmp); 6311 kfree(p); 6312 } 6313 } 6314 /* no need for checks, since we are adding at most only 5 keys */ 6315 env->envp[env->envp_idx++] = NULL; 6316 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6317 kfree(env); 6318 } 6319 6320 static void kvm_init_debug(void) 6321 { 6322 const struct file_operations *fops; 6323 const struct _kvm_stats_desc *pdesc; 6324 int i; 6325 6326 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6327 6328 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6329 pdesc = &kvm_vm_stats_desc[i]; 6330 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6331 fops = &vm_stat_fops; 6332 else 6333 fops = &vm_stat_readonly_fops; 6334 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6335 kvm_debugfs_dir, 6336 (void *)(long)pdesc->desc.offset, fops); 6337 } 6338 6339 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6340 pdesc = &kvm_vcpu_stats_desc[i]; 6341 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6342 fops = &vcpu_stat_fops; 6343 else 6344 fops = &vcpu_stat_readonly_fops; 6345 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6346 kvm_debugfs_dir, 6347 (void *)(long)pdesc->desc.offset, fops); 6348 } 6349 } 6350 6351 static inline 6352 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6353 { 6354 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6355 } 6356 6357 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6358 { 6359 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6360 6361 WRITE_ONCE(vcpu->preempted, false); 6362 WRITE_ONCE(vcpu->ready, false); 6363 6364 __this_cpu_write(kvm_running_vcpu, vcpu); 6365 kvm_arch_vcpu_load(vcpu, cpu); 6366 6367 WRITE_ONCE(vcpu->scheduled_out, false); 6368 } 6369 6370 static void kvm_sched_out(struct preempt_notifier *pn, 6371 struct task_struct *next) 6372 { 6373 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6374 6375 WRITE_ONCE(vcpu->scheduled_out, true); 6376 6377 if (current->on_rq && vcpu->wants_to_run) { 6378 WRITE_ONCE(vcpu->preempted, true); 6379 WRITE_ONCE(vcpu->ready, true); 6380 } 6381 kvm_arch_vcpu_put(vcpu); 6382 __this_cpu_write(kvm_running_vcpu, NULL); 6383 } 6384 6385 /** 6386 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6387 * 6388 * We can disable preemption locally around accessing the per-CPU variable, 6389 * and use the resolved vcpu pointer after enabling preemption again, 6390 * because even if the current thread is migrated to another CPU, reading 6391 * the per-CPU value later will give us the same value as we update the 6392 * per-CPU variable in the preempt notifier handlers. 6393 */ 6394 struct kvm_vcpu *kvm_get_running_vcpu(void) 6395 { 6396 struct kvm_vcpu *vcpu; 6397 6398 preempt_disable(); 6399 vcpu = __this_cpu_read(kvm_running_vcpu); 6400 preempt_enable(); 6401 6402 return vcpu; 6403 } 6404 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6405 6406 /** 6407 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6408 */ 6409 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6410 { 6411 return &kvm_running_vcpu; 6412 } 6413 6414 #ifdef CONFIG_GUEST_PERF_EVENTS 6415 static unsigned int kvm_guest_state(void) 6416 { 6417 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6418 unsigned int state; 6419 6420 if (!kvm_arch_pmi_in_guest(vcpu)) 6421 return 0; 6422 6423 state = PERF_GUEST_ACTIVE; 6424 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6425 state |= PERF_GUEST_USER; 6426 6427 return state; 6428 } 6429 6430 static unsigned long kvm_guest_get_ip(void) 6431 { 6432 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6433 6434 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6435 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6436 return 0; 6437 6438 return kvm_arch_vcpu_get_ip(vcpu); 6439 } 6440 6441 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6442 .state = kvm_guest_state, 6443 .get_ip = kvm_guest_get_ip, 6444 .handle_intel_pt_intr = NULL, 6445 }; 6446 6447 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6448 { 6449 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6450 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6451 } 6452 void kvm_unregister_perf_callbacks(void) 6453 { 6454 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6455 } 6456 #endif 6457 6458 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6459 { 6460 int r; 6461 int cpu; 6462 6463 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6464 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6465 kvm_online_cpu, kvm_offline_cpu); 6466 if (r) 6467 return r; 6468 6469 register_syscore_ops(&kvm_syscore_ops); 6470 #endif 6471 6472 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6473 if (!vcpu_align) 6474 vcpu_align = __alignof__(struct kvm_vcpu); 6475 kvm_vcpu_cache = 6476 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6477 SLAB_ACCOUNT, 6478 offsetof(struct kvm_vcpu, arch), 6479 offsetofend(struct kvm_vcpu, stats_id) 6480 - offsetof(struct kvm_vcpu, arch), 6481 NULL); 6482 if (!kvm_vcpu_cache) { 6483 r = -ENOMEM; 6484 goto err_vcpu_cache; 6485 } 6486 6487 for_each_possible_cpu(cpu) { 6488 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6489 GFP_KERNEL, cpu_to_node(cpu))) { 6490 r = -ENOMEM; 6491 goto err_cpu_kick_mask; 6492 } 6493 } 6494 6495 r = kvm_irqfd_init(); 6496 if (r) 6497 goto err_irqfd; 6498 6499 r = kvm_async_pf_init(); 6500 if (r) 6501 goto err_async_pf; 6502 6503 kvm_chardev_ops.owner = module; 6504 kvm_vm_fops.owner = module; 6505 kvm_vcpu_fops.owner = module; 6506 kvm_device_fops.owner = module; 6507 6508 kvm_preempt_ops.sched_in = kvm_sched_in; 6509 kvm_preempt_ops.sched_out = kvm_sched_out; 6510 6511 kvm_init_debug(); 6512 6513 r = kvm_vfio_ops_init(); 6514 if (WARN_ON_ONCE(r)) 6515 goto err_vfio; 6516 6517 kvm_gmem_init(module); 6518 6519 /* 6520 * Registration _must_ be the very last thing done, as this exposes 6521 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6522 */ 6523 r = misc_register(&kvm_dev); 6524 if (r) { 6525 pr_err("kvm: misc device register failed\n"); 6526 goto err_register; 6527 } 6528 6529 return 0; 6530 6531 err_register: 6532 kvm_vfio_ops_exit(); 6533 err_vfio: 6534 kvm_async_pf_deinit(); 6535 err_async_pf: 6536 kvm_irqfd_exit(); 6537 err_irqfd: 6538 err_cpu_kick_mask: 6539 for_each_possible_cpu(cpu) 6540 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6541 kmem_cache_destroy(kvm_vcpu_cache); 6542 err_vcpu_cache: 6543 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6544 unregister_syscore_ops(&kvm_syscore_ops); 6545 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6546 #endif 6547 return r; 6548 } 6549 EXPORT_SYMBOL_GPL(kvm_init); 6550 6551 void kvm_exit(void) 6552 { 6553 int cpu; 6554 6555 /* 6556 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6557 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6558 * to KVM while the module is being stopped. 6559 */ 6560 misc_deregister(&kvm_dev); 6561 6562 debugfs_remove_recursive(kvm_debugfs_dir); 6563 for_each_possible_cpu(cpu) 6564 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6565 kmem_cache_destroy(kvm_vcpu_cache); 6566 kvm_vfio_ops_exit(); 6567 kvm_async_pf_deinit(); 6568 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6569 unregister_syscore_ops(&kvm_syscore_ops); 6570 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6571 #endif 6572 kvm_irqfd_exit(); 6573 } 6574 EXPORT_SYMBOL_GPL(kvm_exit); 6575 6576 struct kvm_vm_worker_thread_context { 6577 struct kvm *kvm; 6578 struct task_struct *parent; 6579 struct completion init_done; 6580 kvm_vm_thread_fn_t thread_fn; 6581 uintptr_t data; 6582 int err; 6583 }; 6584 6585 static int kvm_vm_worker_thread(void *context) 6586 { 6587 /* 6588 * The init_context is allocated on the stack of the parent thread, so 6589 * we have to locally copy anything that is needed beyond initialization 6590 */ 6591 struct kvm_vm_worker_thread_context *init_context = context; 6592 struct task_struct *parent; 6593 struct kvm *kvm = init_context->kvm; 6594 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6595 uintptr_t data = init_context->data; 6596 int err; 6597 6598 err = kthread_park(current); 6599 /* kthread_park(current) is never supposed to return an error */ 6600 WARN_ON(err != 0); 6601 if (err) 6602 goto init_complete; 6603 6604 err = cgroup_attach_task_all(init_context->parent, current); 6605 if (err) { 6606 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6607 __func__, err); 6608 goto init_complete; 6609 } 6610 6611 set_user_nice(current, task_nice(init_context->parent)); 6612 6613 init_complete: 6614 init_context->err = err; 6615 complete(&init_context->init_done); 6616 init_context = NULL; 6617 6618 if (err) 6619 goto out; 6620 6621 /* Wait to be woken up by the spawner before proceeding. */ 6622 kthread_parkme(); 6623 6624 if (!kthread_should_stop()) 6625 err = thread_fn(kvm, data); 6626 6627 out: 6628 /* 6629 * Move kthread back to its original cgroup to prevent it lingering in 6630 * the cgroup of the VM process, after the latter finishes its 6631 * execution. 6632 * 6633 * kthread_stop() waits on the 'exited' completion condition which is 6634 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6635 * kthread is removed from the cgroup in the cgroup_exit() which is 6636 * called after the exit_mm(). This causes the kthread_stop() to return 6637 * before the kthread actually quits the cgroup. 6638 */ 6639 rcu_read_lock(); 6640 parent = rcu_dereference(current->real_parent); 6641 get_task_struct(parent); 6642 rcu_read_unlock(); 6643 cgroup_attach_task_all(parent, current); 6644 put_task_struct(parent); 6645 6646 return err; 6647 } 6648 6649 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6650 uintptr_t data, const char *name, 6651 struct task_struct **thread_ptr) 6652 { 6653 struct kvm_vm_worker_thread_context init_context = {}; 6654 struct task_struct *thread; 6655 6656 *thread_ptr = NULL; 6657 init_context.kvm = kvm; 6658 init_context.parent = current; 6659 init_context.thread_fn = thread_fn; 6660 init_context.data = data; 6661 init_completion(&init_context.init_done); 6662 6663 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6664 "%s-%d", name, task_pid_nr(current)); 6665 if (IS_ERR(thread)) 6666 return PTR_ERR(thread); 6667 6668 /* kthread_run is never supposed to return NULL */ 6669 WARN_ON(thread == NULL); 6670 6671 wait_for_completion(&init_context.init_done); 6672 6673 if (!init_context.err) 6674 *thread_ptr = thread; 6675 6676 return init_context.err; 6677 } 6678