xref: /linux/virt/kvm/kvm_main.c (revision d8b762070c3fde224f8b9ea3cf59bc41a5a3eb57)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine (KVM) Hypervisor
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  */
12 
13 #include <kvm/iodev.h>
14 
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61 
62 #include <trace/events/ipi.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76 
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81 
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86 
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91 
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96 
97 /*
98  * Ordering of locks:
99  *
100  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
101  */
102 
103 DEFINE_MUTEX(kvm_lock);
104 LIST_HEAD(vm_list);
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 static struct dentry *kvm_debugfs_dir;
112 
113 static const struct file_operations stat_fops_per_vm;
114 
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 			   unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119 				  unsigned long arg);
120 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
121 #else
122 /*
123  * For architectures that don't implement a compat infrastructure,
124  * adopt a double line of defense:
125  * - Prevent a compat task from opening /dev/kvm
126  * - If the open has been done by a 64bit task, and the KVM fd
127  *   passed to a compat task, let the ioctls fail.
128  */
129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
130 				unsigned long arg) { return -EINVAL; }
131 
132 static int kvm_no_compat_open(struct inode *inode, struct file *file)
133 {
134 	return is_compat_task() ? -ENODEV : 0;
135 }
136 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
137 			.open		= kvm_no_compat_open
138 #endif
139 static int hardware_enable_all(void);
140 static void hardware_disable_all(void);
141 
142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
143 
144 #define KVM_EVENT_CREATE_VM 0
145 #define KVM_EVENT_DESTROY_VM 1
146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
147 static unsigned long long kvm_createvm_count;
148 static unsigned long long kvm_active_vms;
149 
150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
151 
152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
153 {
154 }
155 
156 bool kvm_is_zone_device_page(struct page *page)
157 {
158 	/*
159 	 * The metadata used by is_zone_device_page() to determine whether or
160 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
161 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
162 	 * page_count() is zero to help detect bad usage of this helper.
163 	 */
164 	if (WARN_ON_ONCE(!page_count(page)))
165 		return false;
166 
167 	return is_zone_device_page(page);
168 }
169 
170 /*
171  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
172  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
173  * is likely incomplete, it has been compiled purely through people wanting to
174  * back guest with a certain type of memory and encountering issues.
175  */
176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
177 {
178 	struct page *page;
179 
180 	if (!pfn_valid(pfn))
181 		return NULL;
182 
183 	page = pfn_to_page(pfn);
184 	if (!PageReserved(page))
185 		return page;
186 
187 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
188 	if (is_zero_pfn(pfn))
189 		return page;
190 
191 	/*
192 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
193 	 * perspective they are "normal" pages, albeit with slightly different
194 	 * usage rules.
195 	 */
196 	if (kvm_is_zone_device_page(page))
197 		return page;
198 
199 	return NULL;
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_kick(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
249 {
250 	if (cpumask_empty(cpus))
251 		return false;
252 
253 	smp_call_function_many(cpus, ack_kick, NULL, wait);
254 	return true;
255 }
256 
257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
258 				  struct cpumask *tmp, int current_cpu)
259 {
260 	int cpu;
261 
262 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
263 		__kvm_make_request(req, vcpu);
264 
265 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266 		return;
267 
268 	/*
269 	 * Note, the vCPU could get migrated to a different pCPU at any point
270 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
271 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
272 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
273 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
274 	 * after this point is also OK, as the requirement is only that KVM wait
275 	 * for vCPUs that were reading SPTEs _before_ any changes were
276 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
277 	 */
278 	if (kvm_request_needs_ipi(vcpu, req)) {
279 		cpu = READ_ONCE(vcpu->cpu);
280 		if (cpu != -1 && cpu != current_cpu)
281 			__cpumask_set_cpu(cpu, tmp);
282 	}
283 }
284 
285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
286 				 unsigned long *vcpu_bitmap)
287 {
288 	struct kvm_vcpu *vcpu;
289 	struct cpumask *cpus;
290 	int i, me;
291 	bool called;
292 
293 	me = get_cpu();
294 
295 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
296 	cpumask_clear(cpus);
297 
298 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
299 		vcpu = kvm_get_vcpu(kvm, i);
300 		if (!vcpu)
301 			continue;
302 		kvm_make_vcpu_request(vcpu, req, cpus, me);
303 	}
304 
305 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
306 	put_cpu();
307 
308 	return called;
309 }
310 
311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
312 {
313 	struct kvm_vcpu *vcpu;
314 	struct cpumask *cpus;
315 	unsigned long i;
316 	bool called;
317 	int me;
318 
319 	me = get_cpu();
320 
321 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
322 	cpumask_clear(cpus);
323 
324 	kvm_for_each_vcpu(i, vcpu, kvm)
325 		kvm_make_vcpu_request(vcpu, req, cpus, me);
326 
327 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
328 	put_cpu();
329 
330 	return called;
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
334 void kvm_flush_remote_tlbs(struct kvm *kvm)
335 {
336 	++kvm->stat.generic.remote_tlb_flush_requests;
337 
338 	/*
339 	 * We want to publish modifications to the page tables before reading
340 	 * mode. Pairs with a memory barrier in arch-specific code.
341 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
342 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
343 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
344 	 *
345 	 * There is already an smp_mb__after_atomic() before
346 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
347 	 * barrier here.
348 	 */
349 	if (!kvm_arch_flush_remote_tlbs(kvm)
350 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
351 		++kvm->stat.generic.remote_tlb_flush;
352 }
353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
354 
355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
356 {
357 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
358 		return;
359 
360 	/*
361 	 * Fall back to a flushing entire TLBs if the architecture range-based
362 	 * TLB invalidation is unsupported or can't be performed for whatever
363 	 * reason.
364 	 */
365 	kvm_flush_remote_tlbs(kvm);
366 }
367 
368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
369 				   const struct kvm_memory_slot *memslot)
370 {
371 	/*
372 	 * All current use cases for flushing the TLBs for a specific memslot
373 	 * are related to dirty logging, and many do the TLB flush out of
374 	 * mmu_lock. The interaction between the various operations on memslot
375 	 * must be serialized by slots_locks to ensure the TLB flush from one
376 	 * operation is observed by any other operation on the same memslot.
377 	 */
378 	lockdep_assert_held(&kvm->slots_lock);
379 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
380 }
381 
382 static void kvm_flush_shadow_all(struct kvm *kvm)
383 {
384 	kvm_arch_flush_shadow_all(kvm);
385 	kvm_arch_guest_memory_reclaimed(kvm);
386 }
387 
388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390 					       gfp_t gfp_flags)
391 {
392 	void *page;
393 
394 	gfp_flags |= mc->gfp_zero;
395 
396 	if (mc->kmem_cache)
397 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
398 
399 	page = (void *)__get_free_page(gfp_flags);
400 	if (page && mc->init_value)
401 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
402 	return page;
403 }
404 
405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
406 {
407 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
408 	void *obj;
409 
410 	if (mc->nobjs >= min)
411 		return 0;
412 
413 	if (unlikely(!mc->objects)) {
414 		if (WARN_ON_ONCE(!capacity))
415 			return -EIO;
416 
417 		/*
418 		 * Custom init values can be used only for page allocations,
419 		 * and obviously conflict with __GFP_ZERO.
420 		 */
421 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
588 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
589 	     node;							     \
590 	     node = interval_tree_iter_next(node, start, last))	     \
591 
592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
593 							   const struct kvm_mmu_notifier_range *range)
594 {
595 	struct kvm_mmu_notifier_return r = {
596 		.ret = false,
597 		.found_memslot = false,
598 	};
599 	struct kvm_gfn_range gfn_range;
600 	struct kvm_memory_slot *slot;
601 	struct kvm_memslots *slots;
602 	int i, idx;
603 
604 	if (WARN_ON_ONCE(range->end <= range->start))
605 		return r;
606 
607 	/* A null handler is allowed if and only if on_lock() is provided. */
608 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
609 			 IS_KVM_NULL_FN(range->handler)))
610 		return r;
611 
612 	idx = srcu_read_lock(&kvm->srcu);
613 
614 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
615 		struct interval_tree_node *node;
616 
617 		slots = __kvm_memslots(kvm, i);
618 		kvm_for_each_memslot_in_hva_range(node, slots,
619 						  range->start, range->end - 1) {
620 			unsigned long hva_start, hva_end;
621 
622 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
623 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
624 			hva_end = min_t(unsigned long, range->end,
625 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
626 
627 			/*
628 			 * To optimize for the likely case where the address
629 			 * range is covered by zero or one memslots, don't
630 			 * bother making these conditional (to avoid writes on
631 			 * the second or later invocation of the handler).
632 			 */
633 			gfn_range.arg = range->arg;
634 			gfn_range.may_block = range->may_block;
635 
636 			/*
637 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
638 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
639 			 */
640 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
641 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
642 			gfn_range.slot = slot;
643 
644 			if (!r.found_memslot) {
645 				r.found_memslot = true;
646 				KVM_MMU_LOCK(kvm);
647 				if (!IS_KVM_NULL_FN(range->on_lock))
648 					range->on_lock(kvm);
649 
650 				if (IS_KVM_NULL_FN(range->handler))
651 					goto mmu_unlock;
652 			}
653 			r.ret |= range->handler(kvm, &gfn_range);
654 		}
655 	}
656 
657 	if (range->flush_on_ret && r.ret)
658 		kvm_flush_remote_tlbs(kvm);
659 
660 mmu_unlock:
661 	if (r.found_memslot)
662 		KVM_MMU_UNLOCK(kvm);
663 
664 	srcu_read_unlock(&kvm->srcu, idx);
665 
666 	return r;
667 }
668 
669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
670 						unsigned long start,
671 						unsigned long end,
672 						gfn_handler_t handler)
673 {
674 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
675 	const struct kvm_mmu_notifier_range range = {
676 		.start		= start,
677 		.end		= end,
678 		.handler	= handler,
679 		.on_lock	= (void *)kvm_null_fn,
680 		.flush_on_ret	= true,
681 		.may_block	= false,
682 	};
683 
684 	return __kvm_handle_hva_range(kvm, &range).ret;
685 }
686 
687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
688 							 unsigned long start,
689 							 unsigned long end,
690 							 gfn_handler_t handler)
691 {
692 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
693 	const struct kvm_mmu_notifier_range range = {
694 		.start		= start,
695 		.end		= end,
696 		.handler	= handler,
697 		.on_lock	= (void *)kvm_null_fn,
698 		.flush_on_ret	= false,
699 		.may_block	= false,
700 	};
701 
702 	return __kvm_handle_hva_range(kvm, &range).ret;
703 }
704 
705 void kvm_mmu_invalidate_begin(struct kvm *kvm)
706 {
707 	lockdep_assert_held_write(&kvm->mmu_lock);
708 	/*
709 	 * The count increase must become visible at unlock time as no
710 	 * spte can be established without taking the mmu_lock and
711 	 * count is also read inside the mmu_lock critical section.
712 	 */
713 	kvm->mmu_invalidate_in_progress++;
714 
715 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
716 		kvm->mmu_invalidate_range_start = INVALID_GPA;
717 		kvm->mmu_invalidate_range_end = INVALID_GPA;
718 	}
719 }
720 
721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
722 {
723 	lockdep_assert_held_write(&kvm->mmu_lock);
724 
725 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
726 
727 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
728 		kvm->mmu_invalidate_range_start = start;
729 		kvm->mmu_invalidate_range_end = end;
730 	} else {
731 		/*
732 		 * Fully tracking multiple concurrent ranges has diminishing
733 		 * returns. Keep things simple and just find the minimal range
734 		 * which includes the current and new ranges. As there won't be
735 		 * enough information to subtract a range after its invalidate
736 		 * completes, any ranges invalidated concurrently will
737 		 * accumulate and persist until all outstanding invalidates
738 		 * complete.
739 		 */
740 		kvm->mmu_invalidate_range_start =
741 			min(kvm->mmu_invalidate_range_start, start);
742 		kvm->mmu_invalidate_range_end =
743 			max(kvm->mmu_invalidate_range_end, end);
744 	}
745 }
746 
747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
748 {
749 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
750 	return kvm_unmap_gfn_range(kvm, range);
751 }
752 
753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
754 					const struct mmu_notifier_range *range)
755 {
756 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
757 	const struct kvm_mmu_notifier_range hva_range = {
758 		.start		= range->start,
759 		.end		= range->end,
760 		.handler	= kvm_mmu_unmap_gfn_range,
761 		.on_lock	= kvm_mmu_invalidate_begin,
762 		.flush_on_ret	= true,
763 		.may_block	= mmu_notifier_range_blockable(range),
764 	};
765 
766 	trace_kvm_unmap_hva_range(range->start, range->end);
767 
768 	/*
769 	 * Prevent memslot modification between range_start() and range_end()
770 	 * so that conditionally locking provides the same result in both
771 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
772 	 * adjustments will be imbalanced.
773 	 *
774 	 * Pairs with the decrement in range_end().
775 	 */
776 	spin_lock(&kvm->mn_invalidate_lock);
777 	kvm->mn_active_invalidate_count++;
778 	spin_unlock(&kvm->mn_invalidate_lock);
779 
780 	/*
781 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
782 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
783 	 * each cache's lock.  There are relatively few caches in existence at
784 	 * any given time, and the caches themselves can check for hva overlap,
785 	 * i.e. don't need to rely on memslot overlap checks for performance.
786 	 * Because this runs without holding mmu_lock, the pfn caches must use
787 	 * mn_active_invalidate_count (see above) instead of
788 	 * mmu_invalidate_in_progress.
789 	 */
790 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
791 
792 	/*
793 	 * If one or more memslots were found and thus zapped, notify arch code
794 	 * that guest memory has been reclaimed.  This needs to be done *after*
795 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
796 	 */
797 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
798 		kvm_arch_guest_memory_reclaimed(kvm);
799 
800 	return 0;
801 }
802 
803 void kvm_mmu_invalidate_end(struct kvm *kvm)
804 {
805 	lockdep_assert_held_write(&kvm->mmu_lock);
806 
807 	/*
808 	 * This sequence increase will notify the kvm page fault that
809 	 * the page that is going to be mapped in the spte could have
810 	 * been freed.
811 	 */
812 	kvm->mmu_invalidate_seq++;
813 	smp_wmb();
814 	/*
815 	 * The above sequence increase must be visible before the
816 	 * below count decrease, which is ensured by the smp_wmb above
817 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
818 	 */
819 	kvm->mmu_invalidate_in_progress--;
820 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
821 
822 	/*
823 	 * Assert that at least one range was added between start() and end().
824 	 * Not adding a range isn't fatal, but it is a KVM bug.
825 	 */
826 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
827 }
828 
829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
830 					const struct mmu_notifier_range *range)
831 {
832 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
833 	const struct kvm_mmu_notifier_range hva_range = {
834 		.start		= range->start,
835 		.end		= range->end,
836 		.handler	= (void *)kvm_null_fn,
837 		.on_lock	= kvm_mmu_invalidate_end,
838 		.flush_on_ret	= false,
839 		.may_block	= mmu_notifier_range_blockable(range),
840 	};
841 	bool wake;
842 
843 	__kvm_handle_hva_range(kvm, &hva_range);
844 
845 	/* Pairs with the increment in range_start(). */
846 	spin_lock(&kvm->mn_invalidate_lock);
847 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
848 		--kvm->mn_active_invalidate_count;
849 	wake = !kvm->mn_active_invalidate_count;
850 	spin_unlock(&kvm->mn_invalidate_lock);
851 
852 	/*
853 	 * There can only be one waiter, since the wait happens under
854 	 * slots_lock.
855 	 */
856 	if (wake)
857 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
858 }
859 
860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
861 					      struct mm_struct *mm,
862 					      unsigned long start,
863 					      unsigned long end)
864 {
865 	trace_kvm_age_hva(start, end);
866 
867 	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
868 }
869 
870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
871 					struct mm_struct *mm,
872 					unsigned long start,
873 					unsigned long end)
874 {
875 	trace_kvm_age_hva(start, end);
876 
877 	/*
878 	 * Even though we do not flush TLB, this will still adversely
879 	 * affect performance on pre-Haswell Intel EPT, where there is
880 	 * no EPT Access Bit to clear so that we have to tear down EPT
881 	 * tables instead. If we find this unacceptable, we can always
882 	 * add a parameter to kvm_age_hva so that it effectively doesn't
883 	 * do anything on clear_young.
884 	 *
885 	 * Also note that currently we never issue secondary TLB flushes
886 	 * from clear_young, leaving this job up to the regular system
887 	 * cadence. If we find this inaccurate, we might come up with a
888 	 * more sophisticated heuristic later.
889 	 */
890 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
891 }
892 
893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
894 				       struct mm_struct *mm,
895 				       unsigned long address)
896 {
897 	trace_kvm_test_age_hva(address);
898 
899 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
900 					     kvm_test_age_gfn);
901 }
902 
903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
904 				     struct mm_struct *mm)
905 {
906 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
907 	int idx;
908 
909 	idx = srcu_read_lock(&kvm->srcu);
910 	kvm_flush_shadow_all(kvm);
911 	srcu_read_unlock(&kvm->srcu, idx);
912 }
913 
914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
915 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
916 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
917 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
918 	.clear_young		= kvm_mmu_notifier_clear_young,
919 	.test_young		= kvm_mmu_notifier_test_young,
920 	.release		= kvm_mmu_notifier_release,
921 };
922 
923 static int kvm_init_mmu_notifier(struct kvm *kvm)
924 {
925 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927 }
928 
929 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
930 
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
932 {
933 	return 0;
934 }
935 
936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
937 
938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
939 static int kvm_pm_notifier_call(struct notifier_block *bl,
940 				unsigned long state,
941 				void *unused)
942 {
943 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944 
945 	return kvm_arch_pm_notifier(kvm, state);
946 }
947 
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
952 	kvm->pm_notifier.priority = INT_MAX;
953 	register_pm_notifier(&kvm->pm_notifier);
954 }
955 
956 static void kvm_destroy_pm_notifier(struct kvm *kvm)
957 {
958 	unregister_pm_notifier(&kvm->pm_notifier);
959 }
960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
961 static void kvm_init_pm_notifier(struct kvm *kvm)
962 {
963 }
964 
965 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 {
967 }
968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969 
970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971 {
972 	if (!memslot->dirty_bitmap)
973 		return;
974 
975 	vfree(memslot->dirty_bitmap);
976 	memslot->dirty_bitmap = NULL;
977 }
978 
979 /* This does not remove the slot from struct kvm_memslots data structures */
980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981 {
982 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
983 		kvm_gmem_unbind(slot);
984 
985 	kvm_destroy_dirty_bitmap(slot);
986 
987 	kvm_arch_free_memslot(kvm, slot);
988 
989 	kfree(slot);
990 }
991 
992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
993 {
994 	struct hlist_node *idnode;
995 	struct kvm_memory_slot *memslot;
996 	int bkt;
997 
998 	/*
999 	 * The same memslot objects live in both active and inactive sets,
1000 	 * arbitrarily free using index '1' so the second invocation of this
1001 	 * function isn't operating over a structure with dangling pointers
1002 	 * (even though this function isn't actually touching them).
1003 	 */
1004 	if (!slots->node_idx)
1005 		return;
1006 
1007 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1008 		kvm_free_memslot(kvm, memslot);
1009 }
1010 
1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1012 {
1013 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1014 	case KVM_STATS_TYPE_INSTANT:
1015 		return 0444;
1016 	case KVM_STATS_TYPE_CUMULATIVE:
1017 	case KVM_STATS_TYPE_PEAK:
1018 	default:
1019 		return 0644;
1020 	}
1021 }
1022 
1023 
1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1025 {
1026 	int i;
1027 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1028 				      kvm_vcpu_stats_header.num_desc;
1029 
1030 	if (IS_ERR(kvm->debugfs_dentry))
1031 		return;
1032 
1033 	debugfs_remove_recursive(kvm->debugfs_dentry);
1034 
1035 	if (kvm->debugfs_stat_data) {
1036 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1037 			kfree(kvm->debugfs_stat_data[i]);
1038 		kfree(kvm->debugfs_stat_data);
1039 	}
1040 }
1041 
1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1043 {
1044 	static DEFINE_MUTEX(kvm_debugfs_lock);
1045 	struct dentry *dent;
1046 	char dir_name[ITOA_MAX_LEN * 2];
1047 	struct kvm_stat_data *stat_data;
1048 	const struct _kvm_stats_desc *pdesc;
1049 	int i, ret = -ENOMEM;
1050 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1051 				      kvm_vcpu_stats_header.num_desc;
1052 
1053 	if (!debugfs_initialized())
1054 		return 0;
1055 
1056 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1057 	mutex_lock(&kvm_debugfs_lock);
1058 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1059 	if (dent) {
1060 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1061 		dput(dent);
1062 		mutex_unlock(&kvm_debugfs_lock);
1063 		return 0;
1064 	}
1065 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1066 	mutex_unlock(&kvm_debugfs_lock);
1067 	if (IS_ERR(dent))
1068 		return 0;
1069 
1070 	kvm->debugfs_dentry = dent;
1071 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1072 					 sizeof(*kvm->debugfs_stat_data),
1073 					 GFP_KERNEL_ACCOUNT);
1074 	if (!kvm->debugfs_stat_data)
1075 		goto out_err;
1076 
1077 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1078 		pdesc = &kvm_vm_stats_desc[i];
1079 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1080 		if (!stat_data)
1081 			goto out_err;
1082 
1083 		stat_data->kvm = kvm;
1084 		stat_data->desc = pdesc;
1085 		stat_data->kind = KVM_STAT_VM;
1086 		kvm->debugfs_stat_data[i] = stat_data;
1087 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1088 				    kvm->debugfs_dentry, stat_data,
1089 				    &stat_fops_per_vm);
1090 	}
1091 
1092 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1093 		pdesc = &kvm_vcpu_stats_desc[i];
1094 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1095 		if (!stat_data)
1096 			goto out_err;
1097 
1098 		stat_data->kvm = kvm;
1099 		stat_data->desc = pdesc;
1100 		stat_data->kind = KVM_STAT_VCPU;
1101 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1102 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1103 				    kvm->debugfs_dentry, stat_data,
1104 				    &stat_fops_per_vm);
1105 	}
1106 
1107 	kvm_arch_create_vm_debugfs(kvm);
1108 	return 0;
1109 out_err:
1110 	kvm_destroy_vm_debugfs(kvm);
1111 	return ret;
1112 }
1113 
1114 /*
1115  * Called after the VM is otherwise initialized, but just before adding it to
1116  * the vm_list.
1117  */
1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119 {
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Called just after removing the VM from the vm_list, but before doing any
1125  * other destruction.
1126  */
1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128 {
1129 }
1130 
1131 /*
1132  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133  * be setup already, so we can create arch-specific debugfs entries under it.
1134  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135  * a per-arch destroy interface is not needed.
1136  */
1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138 {
1139 }
1140 
1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1142 {
1143 	struct kvm *kvm = kvm_arch_alloc_vm();
1144 	struct kvm_memslots *slots;
1145 	int r, i, j;
1146 
1147 	if (!kvm)
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	KVM_MMU_LOCK_INIT(kvm);
1151 	mmgrab(current->mm);
1152 	kvm->mm = current->mm;
1153 	kvm_eventfd_init(kvm);
1154 	mutex_init(&kvm->lock);
1155 	mutex_init(&kvm->irq_lock);
1156 	mutex_init(&kvm->slots_lock);
1157 	mutex_init(&kvm->slots_arch_lock);
1158 	spin_lock_init(&kvm->mn_invalidate_lock);
1159 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1160 	xa_init(&kvm->vcpu_array);
1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1162 	xa_init(&kvm->mem_attr_array);
1163 #endif
1164 
1165 	INIT_LIST_HEAD(&kvm->gpc_list);
1166 	spin_lock_init(&kvm->gpc_lock);
1167 
1168 	INIT_LIST_HEAD(&kvm->devices);
1169 	kvm->max_vcpus = KVM_MAX_VCPUS;
1170 
1171 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1172 
1173 	/*
1174 	 * Force subsequent debugfs file creations to fail if the VM directory
1175 	 * is not created (by kvm_create_vm_debugfs()).
1176 	 */
1177 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1178 
1179 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1180 		 task_pid_nr(current));
1181 
1182 	r = -ENOMEM;
1183 	if (init_srcu_struct(&kvm->srcu))
1184 		goto out_err_no_srcu;
1185 	if (init_srcu_struct(&kvm->irq_srcu))
1186 		goto out_err_no_irq_srcu;
1187 
1188 	r = kvm_init_irq_routing(kvm);
1189 	if (r)
1190 		goto out_err_no_irq_routing;
1191 
1192 	refcount_set(&kvm->users_count, 1);
1193 
1194 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1195 		for (j = 0; j < 2; j++) {
1196 			slots = &kvm->__memslots[i][j];
1197 
1198 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1199 			slots->hva_tree = RB_ROOT_CACHED;
1200 			slots->gfn_tree = RB_ROOT;
1201 			hash_init(slots->id_hash);
1202 			slots->node_idx = j;
1203 
1204 			/* Generations must be different for each address space. */
1205 			slots->generation = i;
1206 		}
1207 
1208 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1209 	}
1210 
1211 	r = -ENOMEM;
1212 	for (i = 0; i < KVM_NR_BUSES; i++) {
1213 		rcu_assign_pointer(kvm->buses[i],
1214 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1215 		if (!kvm->buses[i])
1216 			goto out_err_no_arch_destroy_vm;
1217 	}
1218 
1219 	r = kvm_arch_init_vm(kvm, type);
1220 	if (r)
1221 		goto out_err_no_arch_destroy_vm;
1222 
1223 	r = hardware_enable_all();
1224 	if (r)
1225 		goto out_err_no_disable;
1226 
1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1228 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1229 #endif
1230 
1231 	r = kvm_init_mmu_notifier(kvm);
1232 	if (r)
1233 		goto out_err_no_mmu_notifier;
1234 
1235 	r = kvm_coalesced_mmio_init(kvm);
1236 	if (r < 0)
1237 		goto out_no_coalesced_mmio;
1238 
1239 	r = kvm_create_vm_debugfs(kvm, fdname);
1240 	if (r)
1241 		goto out_err_no_debugfs;
1242 
1243 	r = kvm_arch_post_init_vm(kvm);
1244 	if (r)
1245 		goto out_err;
1246 
1247 	mutex_lock(&kvm_lock);
1248 	list_add(&kvm->vm_list, &vm_list);
1249 	mutex_unlock(&kvm_lock);
1250 
1251 	preempt_notifier_inc();
1252 	kvm_init_pm_notifier(kvm);
1253 
1254 	return kvm;
1255 
1256 out_err:
1257 	kvm_destroy_vm_debugfs(kvm);
1258 out_err_no_debugfs:
1259 	kvm_coalesced_mmio_free(kvm);
1260 out_no_coalesced_mmio:
1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1262 	if (kvm->mmu_notifier.ops)
1263 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1264 #endif
1265 out_err_no_mmu_notifier:
1266 	hardware_disable_all();
1267 out_err_no_disable:
1268 	kvm_arch_destroy_vm(kvm);
1269 out_err_no_arch_destroy_vm:
1270 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1271 	for (i = 0; i < KVM_NR_BUSES; i++)
1272 		kfree(kvm_get_bus(kvm, i));
1273 	kvm_free_irq_routing(kvm);
1274 out_err_no_irq_routing:
1275 	cleanup_srcu_struct(&kvm->irq_srcu);
1276 out_err_no_irq_srcu:
1277 	cleanup_srcu_struct(&kvm->srcu);
1278 out_err_no_srcu:
1279 	kvm_arch_free_vm(kvm);
1280 	mmdrop(current->mm);
1281 	return ERR_PTR(r);
1282 }
1283 
1284 static void kvm_destroy_devices(struct kvm *kvm)
1285 {
1286 	struct kvm_device *dev, *tmp;
1287 
1288 	/*
1289 	 * We do not need to take the kvm->lock here, because nobody else
1290 	 * has a reference to the struct kvm at this point and therefore
1291 	 * cannot access the devices list anyhow.
1292 	 *
1293 	 * The device list is generally managed as an rculist, but list_del()
1294 	 * is used intentionally here. If a bug in KVM introduced a reader that
1295 	 * was not backed by a reference on the kvm struct, the hope is that
1296 	 * it'd consume the poisoned forward pointer instead of suffering a
1297 	 * use-after-free, even though this cannot be guaranteed.
1298 	 */
1299 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1300 		list_del(&dev->vm_node);
1301 		dev->ops->destroy(dev);
1302 	}
1303 }
1304 
1305 static void kvm_destroy_vm(struct kvm *kvm)
1306 {
1307 	int i;
1308 	struct mm_struct *mm = kvm->mm;
1309 
1310 	kvm_destroy_pm_notifier(kvm);
1311 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1312 	kvm_destroy_vm_debugfs(kvm);
1313 	kvm_arch_sync_events(kvm);
1314 	mutex_lock(&kvm_lock);
1315 	list_del(&kvm->vm_list);
1316 	mutex_unlock(&kvm_lock);
1317 	kvm_arch_pre_destroy_vm(kvm);
1318 
1319 	kvm_free_irq_routing(kvm);
1320 	for (i = 0; i < KVM_NR_BUSES; i++) {
1321 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1322 
1323 		if (bus)
1324 			kvm_io_bus_destroy(bus);
1325 		kvm->buses[i] = NULL;
1326 	}
1327 	kvm_coalesced_mmio_free(kvm);
1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1329 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1330 	/*
1331 	 * At this point, pending calls to invalidate_range_start()
1332 	 * have completed but no more MMU notifiers will run, so
1333 	 * mn_active_invalidate_count may remain unbalanced.
1334 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1335 	 * last reference on KVM has been dropped, but freeing
1336 	 * memslots would deadlock without this manual intervention.
1337 	 *
1338 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1339 	 * notifier between a start() and end(), then there shouldn't be any
1340 	 * in-progress invalidations.
1341 	 */
1342 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1343 	if (kvm->mn_active_invalidate_count)
1344 		kvm->mn_active_invalidate_count = 0;
1345 	else
1346 		WARN_ON(kvm->mmu_invalidate_in_progress);
1347 #else
1348 	kvm_flush_shadow_all(kvm);
1349 #endif
1350 	kvm_arch_destroy_vm(kvm);
1351 	kvm_destroy_devices(kvm);
1352 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1353 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1354 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1355 	}
1356 	cleanup_srcu_struct(&kvm->irq_srcu);
1357 	cleanup_srcu_struct(&kvm->srcu);
1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1359 	xa_destroy(&kvm->mem_attr_array);
1360 #endif
1361 	kvm_arch_free_vm(kvm);
1362 	preempt_notifier_dec();
1363 	hardware_disable_all();
1364 	mmdrop(mm);
1365 }
1366 
1367 void kvm_get_kvm(struct kvm *kvm)
1368 {
1369 	refcount_inc(&kvm->users_count);
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1372 
1373 /*
1374  * Make sure the vm is not during destruction, which is a safe version of
1375  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1376  */
1377 bool kvm_get_kvm_safe(struct kvm *kvm)
1378 {
1379 	return refcount_inc_not_zero(&kvm->users_count);
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1382 
1383 void kvm_put_kvm(struct kvm *kvm)
1384 {
1385 	if (refcount_dec_and_test(&kvm->users_count))
1386 		kvm_destroy_vm(kvm);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1389 
1390 /*
1391  * Used to put a reference that was taken on behalf of an object associated
1392  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1393  * of the new file descriptor fails and the reference cannot be transferred to
1394  * its final owner.  In such cases, the caller is still actively using @kvm and
1395  * will fail miserably if the refcount unexpectedly hits zero.
1396  */
1397 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1398 {
1399 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1402 
1403 static int kvm_vm_release(struct inode *inode, struct file *filp)
1404 {
1405 	struct kvm *kvm = filp->private_data;
1406 
1407 	kvm_irqfd_release(kvm);
1408 
1409 	kvm_put_kvm(kvm);
1410 	return 0;
1411 }
1412 
1413 /*
1414  * Allocation size is twice as large as the actual dirty bitmap size.
1415  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1416  */
1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1418 {
1419 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1420 
1421 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1422 	if (!memslot->dirty_bitmap)
1423 		return -ENOMEM;
1424 
1425 	return 0;
1426 }
1427 
1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1429 {
1430 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1431 	int node_idx_inactive = active->node_idx ^ 1;
1432 
1433 	return &kvm->__memslots[as_id][node_idx_inactive];
1434 }
1435 
1436 /*
1437  * Helper to get the address space ID when one of memslot pointers may be NULL.
1438  * This also serves as a sanity that at least one of the pointers is non-NULL,
1439  * and that their address space IDs don't diverge.
1440  */
1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1442 				  struct kvm_memory_slot *b)
1443 {
1444 	if (WARN_ON_ONCE(!a && !b))
1445 		return 0;
1446 
1447 	if (!a)
1448 		return b->as_id;
1449 	if (!b)
1450 		return a->as_id;
1451 
1452 	WARN_ON_ONCE(a->as_id != b->as_id);
1453 	return a->as_id;
1454 }
1455 
1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1457 				struct kvm_memory_slot *slot)
1458 {
1459 	struct rb_root *gfn_tree = &slots->gfn_tree;
1460 	struct rb_node **node, *parent;
1461 	int idx = slots->node_idx;
1462 
1463 	parent = NULL;
1464 	for (node = &gfn_tree->rb_node; *node; ) {
1465 		struct kvm_memory_slot *tmp;
1466 
1467 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1468 		parent = *node;
1469 		if (slot->base_gfn < tmp->base_gfn)
1470 			node = &(*node)->rb_left;
1471 		else if (slot->base_gfn > tmp->base_gfn)
1472 			node = &(*node)->rb_right;
1473 		else
1474 			BUG();
1475 	}
1476 
1477 	rb_link_node(&slot->gfn_node[idx], parent, node);
1478 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1479 }
1480 
1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1482 			       struct kvm_memory_slot *slot)
1483 {
1484 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1485 }
1486 
1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1488 				 struct kvm_memory_slot *old,
1489 				 struct kvm_memory_slot *new)
1490 {
1491 	int idx = slots->node_idx;
1492 
1493 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1494 
1495 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1496 			&slots->gfn_tree);
1497 }
1498 
1499 /*
1500  * Replace @old with @new in the inactive memslots.
1501  *
1502  * With NULL @old this simply adds @new.
1503  * With NULL @new this simply removes @old.
1504  *
1505  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1506  * appropriately.
1507  */
1508 static void kvm_replace_memslot(struct kvm *kvm,
1509 				struct kvm_memory_slot *old,
1510 				struct kvm_memory_slot *new)
1511 {
1512 	int as_id = kvm_memslots_get_as_id(old, new);
1513 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1514 	int idx = slots->node_idx;
1515 
1516 	if (old) {
1517 		hash_del(&old->id_node[idx]);
1518 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1519 
1520 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1521 			atomic_long_set(&slots->last_used_slot, (long)new);
1522 
1523 		if (!new) {
1524 			kvm_erase_gfn_node(slots, old);
1525 			return;
1526 		}
1527 	}
1528 
1529 	/*
1530 	 * Initialize @new's hva range.  Do this even when replacing an @old
1531 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1532 	 */
1533 	new->hva_node[idx].start = new->userspace_addr;
1534 	new->hva_node[idx].last = new->userspace_addr +
1535 				  (new->npages << PAGE_SHIFT) - 1;
1536 
1537 	/*
1538 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1539 	 * hva_node needs to be swapped with remove+insert even though hva can't
1540 	 * change when replacing an existing slot.
1541 	 */
1542 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1543 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1544 
1545 	/*
1546 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1547 	 * switch the node in the gfn tree instead of removing the old and
1548 	 * inserting the new as two separate operations. Replacement is a
1549 	 * single O(1) operation versus two O(log(n)) operations for
1550 	 * remove+insert.
1551 	 */
1552 	if (old && old->base_gfn == new->base_gfn) {
1553 		kvm_replace_gfn_node(slots, old, new);
1554 	} else {
1555 		if (old)
1556 			kvm_erase_gfn_node(slots, old);
1557 		kvm_insert_gfn_node(slots, new);
1558 	}
1559 }
1560 
1561 /*
1562  * Flags that do not access any of the extra space of struct
1563  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1564  * only allows these.
1565  */
1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1567 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1568 
1569 static int check_memory_region_flags(struct kvm *kvm,
1570 				     const struct kvm_userspace_memory_region2 *mem)
1571 {
1572 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1573 
1574 	if (kvm_arch_has_private_mem(kvm))
1575 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1576 
1577 	/* Dirty logging private memory is not currently supported. */
1578 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1579 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1580 
1581 	/*
1582 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1583 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1584 	 * and KVM doesn't allow emulated MMIO for private memory.
1585 	 */
1586 	if (kvm_arch_has_readonly_mem(kvm) &&
1587 	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1588 		valid_flags |= KVM_MEM_READONLY;
1589 
1590 	if (mem->flags & ~valid_flags)
1591 		return -EINVAL;
1592 
1593 	return 0;
1594 }
1595 
1596 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1597 {
1598 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1599 
1600 	/* Grab the generation from the activate memslots. */
1601 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1602 
1603 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1604 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1605 
1606 	/*
1607 	 * Do not store the new memslots while there are invalidations in
1608 	 * progress, otherwise the locking in invalidate_range_start and
1609 	 * invalidate_range_end will be unbalanced.
1610 	 */
1611 	spin_lock(&kvm->mn_invalidate_lock);
1612 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1613 	while (kvm->mn_active_invalidate_count) {
1614 		set_current_state(TASK_UNINTERRUPTIBLE);
1615 		spin_unlock(&kvm->mn_invalidate_lock);
1616 		schedule();
1617 		spin_lock(&kvm->mn_invalidate_lock);
1618 	}
1619 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1620 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1621 	spin_unlock(&kvm->mn_invalidate_lock);
1622 
1623 	/*
1624 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1625 	 * SRCU below in order to avoid deadlock with another thread
1626 	 * acquiring the slots_arch_lock in an srcu critical section.
1627 	 */
1628 	mutex_unlock(&kvm->slots_arch_lock);
1629 
1630 	synchronize_srcu_expedited(&kvm->srcu);
1631 
1632 	/*
1633 	 * Increment the new memslot generation a second time, dropping the
1634 	 * update in-progress flag and incrementing the generation based on
1635 	 * the number of address spaces.  This provides a unique and easily
1636 	 * identifiable generation number while the memslots are in flux.
1637 	 */
1638 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639 
1640 	/*
1641 	 * Generations must be unique even across address spaces.  We do not need
1642 	 * a global counter for that, instead the generation space is evenly split
1643 	 * across address spaces.  For example, with two address spaces, address
1644 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1645 	 * use generations 1, 3, 5, ...
1646 	 */
1647 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1648 
1649 	kvm_arch_memslots_updated(kvm, gen);
1650 
1651 	slots->generation = gen;
1652 }
1653 
1654 static int kvm_prepare_memory_region(struct kvm *kvm,
1655 				     const struct kvm_memory_slot *old,
1656 				     struct kvm_memory_slot *new,
1657 				     enum kvm_mr_change change)
1658 {
1659 	int r;
1660 
1661 	/*
1662 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1663 	 * will be freed on "commit".  If logging is enabled in both old and
1664 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1665 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1666 	 * new bitmap.
1667 	 */
1668 	if (change != KVM_MR_DELETE) {
1669 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1670 			new->dirty_bitmap = NULL;
1671 		else if (old && old->dirty_bitmap)
1672 			new->dirty_bitmap = old->dirty_bitmap;
1673 		else if (kvm_use_dirty_bitmap(kvm)) {
1674 			r = kvm_alloc_dirty_bitmap(new);
1675 			if (r)
1676 				return r;
1677 
1678 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1679 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1680 		}
1681 	}
1682 
1683 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1684 
1685 	/* Free the bitmap on failure if it was allocated above. */
1686 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1687 		kvm_destroy_dirty_bitmap(new);
1688 
1689 	return r;
1690 }
1691 
1692 static void kvm_commit_memory_region(struct kvm *kvm,
1693 				     struct kvm_memory_slot *old,
1694 				     const struct kvm_memory_slot *new,
1695 				     enum kvm_mr_change change)
1696 {
1697 	int old_flags = old ? old->flags : 0;
1698 	int new_flags = new ? new->flags : 0;
1699 	/*
1700 	 * Update the total number of memslot pages before calling the arch
1701 	 * hook so that architectures can consume the result directly.
1702 	 */
1703 	if (change == KVM_MR_DELETE)
1704 		kvm->nr_memslot_pages -= old->npages;
1705 	else if (change == KVM_MR_CREATE)
1706 		kvm->nr_memslot_pages += new->npages;
1707 
1708 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1709 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1710 		atomic_set(&kvm->nr_memslots_dirty_logging,
1711 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1712 	}
1713 
1714 	kvm_arch_commit_memory_region(kvm, old, new, change);
1715 
1716 	switch (change) {
1717 	case KVM_MR_CREATE:
1718 		/* Nothing more to do. */
1719 		break;
1720 	case KVM_MR_DELETE:
1721 		/* Free the old memslot and all its metadata. */
1722 		kvm_free_memslot(kvm, old);
1723 		break;
1724 	case KVM_MR_MOVE:
1725 	case KVM_MR_FLAGS_ONLY:
1726 		/*
1727 		 * Free the dirty bitmap as needed; the below check encompasses
1728 		 * both the flags and whether a ring buffer is being used)
1729 		 */
1730 		if (old->dirty_bitmap && !new->dirty_bitmap)
1731 			kvm_destroy_dirty_bitmap(old);
1732 
1733 		/*
1734 		 * The final quirk.  Free the detached, old slot, but only its
1735 		 * memory, not any metadata.  Metadata, including arch specific
1736 		 * data, may be reused by @new.
1737 		 */
1738 		kfree(old);
1739 		break;
1740 	default:
1741 		BUG();
1742 	}
1743 }
1744 
1745 /*
1746  * Activate @new, which must be installed in the inactive slots by the caller,
1747  * by swapping the active slots and then propagating @new to @old once @old is
1748  * unreachable and can be safely modified.
1749  *
1750  * With NULL @old this simply adds @new to @active (while swapping the sets).
1751  * With NULL @new this simply removes @old from @active and frees it
1752  * (while also swapping the sets).
1753  */
1754 static void kvm_activate_memslot(struct kvm *kvm,
1755 				 struct kvm_memory_slot *old,
1756 				 struct kvm_memory_slot *new)
1757 {
1758 	int as_id = kvm_memslots_get_as_id(old, new);
1759 
1760 	kvm_swap_active_memslots(kvm, as_id);
1761 
1762 	/* Propagate the new memslot to the now inactive memslots. */
1763 	kvm_replace_memslot(kvm, old, new);
1764 }
1765 
1766 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1767 			     const struct kvm_memory_slot *src)
1768 {
1769 	dest->base_gfn = src->base_gfn;
1770 	dest->npages = src->npages;
1771 	dest->dirty_bitmap = src->dirty_bitmap;
1772 	dest->arch = src->arch;
1773 	dest->userspace_addr = src->userspace_addr;
1774 	dest->flags = src->flags;
1775 	dest->id = src->id;
1776 	dest->as_id = src->as_id;
1777 }
1778 
1779 static void kvm_invalidate_memslot(struct kvm *kvm,
1780 				   struct kvm_memory_slot *old,
1781 				   struct kvm_memory_slot *invalid_slot)
1782 {
1783 	/*
1784 	 * Mark the current slot INVALID.  As with all memslot modifications,
1785 	 * this must be done on an unreachable slot to avoid modifying the
1786 	 * current slot in the active tree.
1787 	 */
1788 	kvm_copy_memslot(invalid_slot, old);
1789 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1790 	kvm_replace_memslot(kvm, old, invalid_slot);
1791 
1792 	/*
1793 	 * Activate the slot that is now marked INVALID, but don't propagate
1794 	 * the slot to the now inactive slots. The slot is either going to be
1795 	 * deleted or recreated as a new slot.
1796 	 */
1797 	kvm_swap_active_memslots(kvm, old->as_id);
1798 
1799 	/*
1800 	 * From this point no new shadow pages pointing to a deleted, or moved,
1801 	 * memslot will be created.  Validation of sp->gfn happens in:
1802 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1803 	 *	- kvm_is_visible_gfn (mmu_check_root)
1804 	 */
1805 	kvm_arch_flush_shadow_memslot(kvm, old);
1806 	kvm_arch_guest_memory_reclaimed(kvm);
1807 
1808 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1809 	mutex_lock(&kvm->slots_arch_lock);
1810 
1811 	/*
1812 	 * Copy the arch-specific field of the newly-installed slot back to the
1813 	 * old slot as the arch data could have changed between releasing
1814 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1815 	 * above.  Writers are required to retrieve memslots *after* acquiring
1816 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1817 	 */
1818 	old->arch = invalid_slot->arch;
1819 }
1820 
1821 static void kvm_create_memslot(struct kvm *kvm,
1822 			       struct kvm_memory_slot *new)
1823 {
1824 	/* Add the new memslot to the inactive set and activate. */
1825 	kvm_replace_memslot(kvm, NULL, new);
1826 	kvm_activate_memslot(kvm, NULL, new);
1827 }
1828 
1829 static void kvm_delete_memslot(struct kvm *kvm,
1830 			       struct kvm_memory_slot *old,
1831 			       struct kvm_memory_slot *invalid_slot)
1832 {
1833 	/*
1834 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1835 	 * the "new" slot, and for the invalid version in the active slots.
1836 	 */
1837 	kvm_replace_memslot(kvm, old, NULL);
1838 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1839 }
1840 
1841 static void kvm_move_memslot(struct kvm *kvm,
1842 			     struct kvm_memory_slot *old,
1843 			     struct kvm_memory_slot *new,
1844 			     struct kvm_memory_slot *invalid_slot)
1845 {
1846 	/*
1847 	 * Replace the old memslot in the inactive slots, and then swap slots
1848 	 * and replace the current INVALID with the new as well.
1849 	 */
1850 	kvm_replace_memslot(kvm, old, new);
1851 	kvm_activate_memslot(kvm, invalid_slot, new);
1852 }
1853 
1854 static void kvm_update_flags_memslot(struct kvm *kvm,
1855 				     struct kvm_memory_slot *old,
1856 				     struct kvm_memory_slot *new)
1857 {
1858 	/*
1859 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1860 	 * an intermediate step. Instead, the old memslot is simply replaced
1861 	 * with a new, updated copy in both memslot sets.
1862 	 */
1863 	kvm_replace_memslot(kvm, old, new);
1864 	kvm_activate_memslot(kvm, old, new);
1865 }
1866 
1867 static int kvm_set_memslot(struct kvm *kvm,
1868 			   struct kvm_memory_slot *old,
1869 			   struct kvm_memory_slot *new,
1870 			   enum kvm_mr_change change)
1871 {
1872 	struct kvm_memory_slot *invalid_slot;
1873 	int r;
1874 
1875 	/*
1876 	 * Released in kvm_swap_active_memslots().
1877 	 *
1878 	 * Must be held from before the current memslots are copied until after
1879 	 * the new memslots are installed with rcu_assign_pointer, then
1880 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1881 	 *
1882 	 * When modifying memslots outside of the slots_lock, must be held
1883 	 * before reading the pointer to the current memslots until after all
1884 	 * changes to those memslots are complete.
1885 	 *
1886 	 * These rules ensure that installing new memslots does not lose
1887 	 * changes made to the previous memslots.
1888 	 */
1889 	mutex_lock(&kvm->slots_arch_lock);
1890 
1891 	/*
1892 	 * Invalidate the old slot if it's being deleted or moved.  This is
1893 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1894 	 * continue running by ensuring there are no mappings or shadow pages
1895 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1896 	 * (and without a lock), a window would exist between effecting the
1897 	 * delete/move and committing the changes in arch code where KVM or a
1898 	 * guest could access a non-existent memslot.
1899 	 *
1900 	 * Modifications are done on a temporary, unreachable slot.  The old
1901 	 * slot needs to be preserved in case a later step fails and the
1902 	 * invalidation needs to be reverted.
1903 	 */
1904 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1905 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1906 		if (!invalid_slot) {
1907 			mutex_unlock(&kvm->slots_arch_lock);
1908 			return -ENOMEM;
1909 		}
1910 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1911 	}
1912 
1913 	r = kvm_prepare_memory_region(kvm, old, new, change);
1914 	if (r) {
1915 		/*
1916 		 * For DELETE/MOVE, revert the above INVALID change.  No
1917 		 * modifications required since the original slot was preserved
1918 		 * in the inactive slots.  Changing the active memslots also
1919 		 * release slots_arch_lock.
1920 		 */
1921 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1922 			kvm_activate_memslot(kvm, invalid_slot, old);
1923 			kfree(invalid_slot);
1924 		} else {
1925 			mutex_unlock(&kvm->slots_arch_lock);
1926 		}
1927 		return r;
1928 	}
1929 
1930 	/*
1931 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1932 	 * version of the old slot.  MOVE is particularly special as it reuses
1933 	 * the old slot and returns a copy of the old slot (in working_slot).
1934 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1935 	 * old slot is detached but otherwise preserved.
1936 	 */
1937 	if (change == KVM_MR_CREATE)
1938 		kvm_create_memslot(kvm, new);
1939 	else if (change == KVM_MR_DELETE)
1940 		kvm_delete_memslot(kvm, old, invalid_slot);
1941 	else if (change == KVM_MR_MOVE)
1942 		kvm_move_memslot(kvm, old, new, invalid_slot);
1943 	else if (change == KVM_MR_FLAGS_ONLY)
1944 		kvm_update_flags_memslot(kvm, old, new);
1945 	else
1946 		BUG();
1947 
1948 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1949 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1950 		kfree(invalid_slot);
1951 
1952 	/*
1953 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1954 	 * will directly hit the final, active memslot.  Architectures are
1955 	 * responsible for knowing that new->arch may be stale.
1956 	 */
1957 	kvm_commit_memory_region(kvm, old, new, change);
1958 
1959 	return 0;
1960 }
1961 
1962 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1963 				      gfn_t start, gfn_t end)
1964 {
1965 	struct kvm_memslot_iter iter;
1966 
1967 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1968 		if (iter.slot->id != id)
1969 			return true;
1970 	}
1971 
1972 	return false;
1973 }
1974 
1975 /*
1976  * Allocate some memory and give it an address in the guest physical address
1977  * space.
1978  *
1979  * Discontiguous memory is allowed, mostly for framebuffers.
1980  *
1981  * Must be called holding kvm->slots_lock for write.
1982  */
1983 int __kvm_set_memory_region(struct kvm *kvm,
1984 			    const struct kvm_userspace_memory_region2 *mem)
1985 {
1986 	struct kvm_memory_slot *old, *new;
1987 	struct kvm_memslots *slots;
1988 	enum kvm_mr_change change;
1989 	unsigned long npages;
1990 	gfn_t base_gfn;
1991 	int as_id, id;
1992 	int r;
1993 
1994 	r = check_memory_region_flags(kvm, mem);
1995 	if (r)
1996 		return r;
1997 
1998 	as_id = mem->slot >> 16;
1999 	id = (u16)mem->slot;
2000 
2001 	/* General sanity checks */
2002 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2003 	    (mem->memory_size != (unsigned long)mem->memory_size))
2004 		return -EINVAL;
2005 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2006 		return -EINVAL;
2007 	/* We can read the guest memory with __xxx_user() later on. */
2008 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2009 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2010 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2011 			mem->memory_size))
2012 		return -EINVAL;
2013 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2014 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2015 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2016 		return -EINVAL;
2017 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2018 		return -EINVAL;
2019 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2020 		return -EINVAL;
2021 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2022 		return -EINVAL;
2023 
2024 	slots = __kvm_memslots(kvm, as_id);
2025 
2026 	/*
2027 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2028 	 * and/or destroyed by kvm_set_memslot().
2029 	 */
2030 	old = id_to_memslot(slots, id);
2031 
2032 	if (!mem->memory_size) {
2033 		if (!old || !old->npages)
2034 			return -EINVAL;
2035 
2036 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2037 			return -EIO;
2038 
2039 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2040 	}
2041 
2042 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2043 	npages = (mem->memory_size >> PAGE_SHIFT);
2044 
2045 	if (!old || !old->npages) {
2046 		change = KVM_MR_CREATE;
2047 
2048 		/*
2049 		 * To simplify KVM internals, the total number of pages across
2050 		 * all memslots must fit in an unsigned long.
2051 		 */
2052 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2053 			return -EINVAL;
2054 	} else { /* Modify an existing slot. */
2055 		/* Private memslots are immutable, they can only be deleted. */
2056 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2057 			return -EINVAL;
2058 		if ((mem->userspace_addr != old->userspace_addr) ||
2059 		    (npages != old->npages) ||
2060 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2061 			return -EINVAL;
2062 
2063 		if (base_gfn != old->base_gfn)
2064 			change = KVM_MR_MOVE;
2065 		else if (mem->flags != old->flags)
2066 			change = KVM_MR_FLAGS_ONLY;
2067 		else /* Nothing to change. */
2068 			return 0;
2069 	}
2070 
2071 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2072 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2073 		return -EEXIST;
2074 
2075 	/* Allocate a slot that will persist in the memslot. */
2076 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2077 	if (!new)
2078 		return -ENOMEM;
2079 
2080 	new->as_id = as_id;
2081 	new->id = id;
2082 	new->base_gfn = base_gfn;
2083 	new->npages = npages;
2084 	new->flags = mem->flags;
2085 	new->userspace_addr = mem->userspace_addr;
2086 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2087 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2088 		if (r)
2089 			goto out;
2090 	}
2091 
2092 	r = kvm_set_memslot(kvm, old, new, change);
2093 	if (r)
2094 		goto out_unbind;
2095 
2096 	return 0;
2097 
2098 out_unbind:
2099 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2100 		kvm_gmem_unbind(new);
2101 out:
2102 	kfree(new);
2103 	return r;
2104 }
2105 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2106 
2107 int kvm_set_memory_region(struct kvm *kvm,
2108 			  const struct kvm_userspace_memory_region2 *mem)
2109 {
2110 	int r;
2111 
2112 	mutex_lock(&kvm->slots_lock);
2113 	r = __kvm_set_memory_region(kvm, mem);
2114 	mutex_unlock(&kvm->slots_lock);
2115 	return r;
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2118 
2119 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2120 					  struct kvm_userspace_memory_region2 *mem)
2121 {
2122 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2123 		return -EINVAL;
2124 
2125 	return kvm_set_memory_region(kvm, mem);
2126 }
2127 
2128 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2129 /**
2130  * kvm_get_dirty_log - get a snapshot of dirty pages
2131  * @kvm:	pointer to kvm instance
2132  * @log:	slot id and address to which we copy the log
2133  * @is_dirty:	set to '1' if any dirty pages were found
2134  * @memslot:	set to the associated memslot, always valid on success
2135  */
2136 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2137 		      int *is_dirty, struct kvm_memory_slot **memslot)
2138 {
2139 	struct kvm_memslots *slots;
2140 	int i, as_id, id;
2141 	unsigned long n;
2142 	unsigned long any = 0;
2143 
2144 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2145 	if (!kvm_use_dirty_bitmap(kvm))
2146 		return -ENXIO;
2147 
2148 	*memslot = NULL;
2149 	*is_dirty = 0;
2150 
2151 	as_id = log->slot >> 16;
2152 	id = (u16)log->slot;
2153 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2154 		return -EINVAL;
2155 
2156 	slots = __kvm_memslots(kvm, as_id);
2157 	*memslot = id_to_memslot(slots, id);
2158 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2159 		return -ENOENT;
2160 
2161 	kvm_arch_sync_dirty_log(kvm, *memslot);
2162 
2163 	n = kvm_dirty_bitmap_bytes(*memslot);
2164 
2165 	for (i = 0; !any && i < n/sizeof(long); ++i)
2166 		any = (*memslot)->dirty_bitmap[i];
2167 
2168 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2169 		return -EFAULT;
2170 
2171 	if (any)
2172 		*is_dirty = 1;
2173 	return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2176 
2177 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2178 /**
2179  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2180  *	and reenable dirty page tracking for the corresponding pages.
2181  * @kvm:	pointer to kvm instance
2182  * @log:	slot id and address to which we copy the log
2183  *
2184  * We need to keep it in mind that VCPU threads can write to the bitmap
2185  * concurrently. So, to avoid losing track of dirty pages we keep the
2186  * following order:
2187  *
2188  *    1. Take a snapshot of the bit and clear it if needed.
2189  *    2. Write protect the corresponding page.
2190  *    3. Copy the snapshot to the userspace.
2191  *    4. Upon return caller flushes TLB's if needed.
2192  *
2193  * Between 2 and 4, the guest may write to the page using the remaining TLB
2194  * entry.  This is not a problem because the page is reported dirty using
2195  * the snapshot taken before and step 4 ensures that writes done after
2196  * exiting to userspace will be logged for the next call.
2197  *
2198  */
2199 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2200 {
2201 	struct kvm_memslots *slots;
2202 	struct kvm_memory_slot *memslot;
2203 	int i, as_id, id;
2204 	unsigned long n;
2205 	unsigned long *dirty_bitmap;
2206 	unsigned long *dirty_bitmap_buffer;
2207 	bool flush;
2208 
2209 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2210 	if (!kvm_use_dirty_bitmap(kvm))
2211 		return -ENXIO;
2212 
2213 	as_id = log->slot >> 16;
2214 	id = (u16)log->slot;
2215 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2216 		return -EINVAL;
2217 
2218 	slots = __kvm_memslots(kvm, as_id);
2219 	memslot = id_to_memslot(slots, id);
2220 	if (!memslot || !memslot->dirty_bitmap)
2221 		return -ENOENT;
2222 
2223 	dirty_bitmap = memslot->dirty_bitmap;
2224 
2225 	kvm_arch_sync_dirty_log(kvm, memslot);
2226 
2227 	n = kvm_dirty_bitmap_bytes(memslot);
2228 	flush = false;
2229 	if (kvm->manual_dirty_log_protect) {
2230 		/*
2231 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2232 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2233 		 * is some code duplication between this function and
2234 		 * kvm_get_dirty_log, but hopefully all architecture
2235 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2236 		 * can be eliminated.
2237 		 */
2238 		dirty_bitmap_buffer = dirty_bitmap;
2239 	} else {
2240 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2241 		memset(dirty_bitmap_buffer, 0, n);
2242 
2243 		KVM_MMU_LOCK(kvm);
2244 		for (i = 0; i < n / sizeof(long); i++) {
2245 			unsigned long mask;
2246 			gfn_t offset;
2247 
2248 			if (!dirty_bitmap[i])
2249 				continue;
2250 
2251 			flush = true;
2252 			mask = xchg(&dirty_bitmap[i], 0);
2253 			dirty_bitmap_buffer[i] = mask;
2254 
2255 			offset = i * BITS_PER_LONG;
2256 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2257 								offset, mask);
2258 		}
2259 		KVM_MMU_UNLOCK(kvm);
2260 	}
2261 
2262 	if (flush)
2263 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2264 
2265 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2266 		return -EFAULT;
2267 	return 0;
2268 }
2269 
2270 
2271 /**
2272  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2273  * @kvm: kvm instance
2274  * @log: slot id and address to which we copy the log
2275  *
2276  * Steps 1-4 below provide general overview of dirty page logging. See
2277  * kvm_get_dirty_log_protect() function description for additional details.
2278  *
2279  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2280  * always flush the TLB (step 4) even if previous step failed  and the dirty
2281  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2282  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2283  * writes will be marked dirty for next log read.
2284  *
2285  *   1. Take a snapshot of the bit and clear it if needed.
2286  *   2. Write protect the corresponding page.
2287  *   3. Copy the snapshot to the userspace.
2288  *   4. Flush TLB's if needed.
2289  */
2290 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2291 				      struct kvm_dirty_log *log)
2292 {
2293 	int r;
2294 
2295 	mutex_lock(&kvm->slots_lock);
2296 
2297 	r = kvm_get_dirty_log_protect(kvm, log);
2298 
2299 	mutex_unlock(&kvm->slots_lock);
2300 	return r;
2301 }
2302 
2303 /**
2304  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2305  *	and reenable dirty page tracking for the corresponding pages.
2306  * @kvm:	pointer to kvm instance
2307  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2308  */
2309 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2310 				       struct kvm_clear_dirty_log *log)
2311 {
2312 	struct kvm_memslots *slots;
2313 	struct kvm_memory_slot *memslot;
2314 	int as_id, id;
2315 	gfn_t offset;
2316 	unsigned long i, n;
2317 	unsigned long *dirty_bitmap;
2318 	unsigned long *dirty_bitmap_buffer;
2319 	bool flush;
2320 
2321 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2322 	if (!kvm_use_dirty_bitmap(kvm))
2323 		return -ENXIO;
2324 
2325 	as_id = log->slot >> 16;
2326 	id = (u16)log->slot;
2327 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2328 		return -EINVAL;
2329 
2330 	if (log->first_page & 63)
2331 		return -EINVAL;
2332 
2333 	slots = __kvm_memslots(kvm, as_id);
2334 	memslot = id_to_memslot(slots, id);
2335 	if (!memslot || !memslot->dirty_bitmap)
2336 		return -ENOENT;
2337 
2338 	dirty_bitmap = memslot->dirty_bitmap;
2339 
2340 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2341 
2342 	if (log->first_page > memslot->npages ||
2343 	    log->num_pages > memslot->npages - log->first_page ||
2344 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2345 	    return -EINVAL;
2346 
2347 	kvm_arch_sync_dirty_log(kvm, memslot);
2348 
2349 	flush = false;
2350 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2351 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2352 		return -EFAULT;
2353 
2354 	KVM_MMU_LOCK(kvm);
2355 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2356 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2357 	     i++, offset += BITS_PER_LONG) {
2358 		unsigned long mask = *dirty_bitmap_buffer++;
2359 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2360 		if (!mask)
2361 			continue;
2362 
2363 		mask &= atomic_long_fetch_andnot(mask, p);
2364 
2365 		/*
2366 		 * mask contains the bits that really have been cleared.  This
2367 		 * never includes any bits beyond the length of the memslot (if
2368 		 * the length is not aligned to 64 pages), therefore it is not
2369 		 * a problem if userspace sets them in log->dirty_bitmap.
2370 		*/
2371 		if (mask) {
2372 			flush = true;
2373 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2374 								offset, mask);
2375 		}
2376 	}
2377 	KVM_MMU_UNLOCK(kvm);
2378 
2379 	if (flush)
2380 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2381 
2382 	return 0;
2383 }
2384 
2385 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2386 					struct kvm_clear_dirty_log *log)
2387 {
2388 	int r;
2389 
2390 	mutex_lock(&kvm->slots_lock);
2391 
2392 	r = kvm_clear_dirty_log_protect(kvm, log);
2393 
2394 	mutex_unlock(&kvm->slots_lock);
2395 	return r;
2396 }
2397 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2398 
2399 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2400 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2401 {
2402 	if (!kvm || kvm_arch_has_private_mem(kvm))
2403 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2404 
2405 	return 0;
2406 }
2407 
2408 /*
2409  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2410  * such that the bits in @mask match @attrs.
2411  */
2412 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2413 				     unsigned long mask, unsigned long attrs)
2414 {
2415 	XA_STATE(xas, &kvm->mem_attr_array, start);
2416 	unsigned long index;
2417 	void *entry;
2418 
2419 	mask &= kvm_supported_mem_attributes(kvm);
2420 	if (attrs & ~mask)
2421 		return false;
2422 
2423 	if (end == start + 1)
2424 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2425 
2426 	guard(rcu)();
2427 	if (!attrs)
2428 		return !xas_find(&xas, end - 1);
2429 
2430 	for (index = start; index < end; index++) {
2431 		do {
2432 			entry = xas_next(&xas);
2433 		} while (xas_retry(&xas, entry));
2434 
2435 		if (xas.xa_index != index ||
2436 		    (xa_to_value(entry) & mask) != attrs)
2437 			return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2444 						 struct kvm_mmu_notifier_range *range)
2445 {
2446 	struct kvm_gfn_range gfn_range;
2447 	struct kvm_memory_slot *slot;
2448 	struct kvm_memslots *slots;
2449 	struct kvm_memslot_iter iter;
2450 	bool found_memslot = false;
2451 	bool ret = false;
2452 	int i;
2453 
2454 	gfn_range.arg = range->arg;
2455 	gfn_range.may_block = range->may_block;
2456 
2457 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2458 		slots = __kvm_memslots(kvm, i);
2459 
2460 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2461 			slot = iter.slot;
2462 			gfn_range.slot = slot;
2463 
2464 			gfn_range.start = max(range->start, slot->base_gfn);
2465 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2466 			if (gfn_range.start >= gfn_range.end)
2467 				continue;
2468 
2469 			if (!found_memslot) {
2470 				found_memslot = true;
2471 				KVM_MMU_LOCK(kvm);
2472 				if (!IS_KVM_NULL_FN(range->on_lock))
2473 					range->on_lock(kvm);
2474 			}
2475 
2476 			ret |= range->handler(kvm, &gfn_range);
2477 		}
2478 	}
2479 
2480 	if (range->flush_on_ret && ret)
2481 		kvm_flush_remote_tlbs(kvm);
2482 
2483 	if (found_memslot)
2484 		KVM_MMU_UNLOCK(kvm);
2485 }
2486 
2487 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2488 					  struct kvm_gfn_range *range)
2489 {
2490 	/*
2491 	 * Unconditionally add the range to the invalidation set, regardless of
2492 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2493 	 * if KVM supports RWX attributes in the future and the attributes are
2494 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2495 	 * adding the range allows KVM to require that MMU invalidations add at
2496 	 * least one range between begin() and end(), e.g. allows KVM to detect
2497 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2498 	 * but it's not obvious that allowing new mappings while the attributes
2499 	 * are in flux is desirable or worth the complexity.
2500 	 */
2501 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2502 
2503 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2504 }
2505 
2506 /* Set @attributes for the gfn range [@start, @end). */
2507 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2508 				     unsigned long attributes)
2509 {
2510 	struct kvm_mmu_notifier_range pre_set_range = {
2511 		.start = start,
2512 		.end = end,
2513 		.handler = kvm_pre_set_memory_attributes,
2514 		.on_lock = kvm_mmu_invalidate_begin,
2515 		.flush_on_ret = true,
2516 		.may_block = true,
2517 	};
2518 	struct kvm_mmu_notifier_range post_set_range = {
2519 		.start = start,
2520 		.end = end,
2521 		.arg.attributes = attributes,
2522 		.handler = kvm_arch_post_set_memory_attributes,
2523 		.on_lock = kvm_mmu_invalidate_end,
2524 		.may_block = true,
2525 	};
2526 	unsigned long i;
2527 	void *entry;
2528 	int r = 0;
2529 
2530 	entry = attributes ? xa_mk_value(attributes) : NULL;
2531 
2532 	mutex_lock(&kvm->slots_lock);
2533 
2534 	/* Nothing to do if the entire range as the desired attributes. */
2535 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2536 		goto out_unlock;
2537 
2538 	/*
2539 	 * Reserve memory ahead of time to avoid having to deal with failures
2540 	 * partway through setting the new attributes.
2541 	 */
2542 	for (i = start; i < end; i++) {
2543 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2544 		if (r)
2545 			goto out_unlock;
2546 	}
2547 
2548 	kvm_handle_gfn_range(kvm, &pre_set_range);
2549 
2550 	for (i = start; i < end; i++) {
2551 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2552 				    GFP_KERNEL_ACCOUNT));
2553 		KVM_BUG_ON(r, kvm);
2554 	}
2555 
2556 	kvm_handle_gfn_range(kvm, &post_set_range);
2557 
2558 out_unlock:
2559 	mutex_unlock(&kvm->slots_lock);
2560 
2561 	return r;
2562 }
2563 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2564 					   struct kvm_memory_attributes *attrs)
2565 {
2566 	gfn_t start, end;
2567 
2568 	/* flags is currently not used. */
2569 	if (attrs->flags)
2570 		return -EINVAL;
2571 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2572 		return -EINVAL;
2573 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2574 		return -EINVAL;
2575 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2576 		return -EINVAL;
2577 
2578 	start = attrs->address >> PAGE_SHIFT;
2579 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2580 
2581 	/*
2582 	 * xarray tracks data using "unsigned long", and as a result so does
2583 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2584 	 * architectures.
2585 	 */
2586 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2587 
2588 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2589 }
2590 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2591 
2592 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2593 {
2594 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2595 }
2596 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2597 
2598 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2599 {
2600 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2601 	u64 gen = slots->generation;
2602 	struct kvm_memory_slot *slot;
2603 
2604 	/*
2605 	 * This also protects against using a memslot from a different address space,
2606 	 * since different address spaces have different generation numbers.
2607 	 */
2608 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2609 		vcpu->last_used_slot = NULL;
2610 		vcpu->last_used_slot_gen = gen;
2611 	}
2612 
2613 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2614 	if (slot)
2615 		return slot;
2616 
2617 	/*
2618 	 * Fall back to searching all memslots. We purposely use
2619 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2620 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2621 	 */
2622 	slot = search_memslots(slots, gfn, false);
2623 	if (slot) {
2624 		vcpu->last_used_slot = slot;
2625 		return slot;
2626 	}
2627 
2628 	return NULL;
2629 }
2630 
2631 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2632 {
2633 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2634 
2635 	return kvm_is_visible_memslot(memslot);
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2638 
2639 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2640 {
2641 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2642 
2643 	return kvm_is_visible_memslot(memslot);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2646 
2647 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2648 {
2649 	struct vm_area_struct *vma;
2650 	unsigned long addr, size;
2651 
2652 	size = PAGE_SIZE;
2653 
2654 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2655 	if (kvm_is_error_hva(addr))
2656 		return PAGE_SIZE;
2657 
2658 	mmap_read_lock(current->mm);
2659 	vma = find_vma(current->mm, addr);
2660 	if (!vma)
2661 		goto out;
2662 
2663 	size = vma_kernel_pagesize(vma);
2664 
2665 out:
2666 	mmap_read_unlock(current->mm);
2667 
2668 	return size;
2669 }
2670 
2671 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2672 {
2673 	return slot->flags & KVM_MEM_READONLY;
2674 }
2675 
2676 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2677 				       gfn_t *nr_pages, bool write)
2678 {
2679 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2680 		return KVM_HVA_ERR_BAD;
2681 
2682 	if (memslot_is_readonly(slot) && write)
2683 		return KVM_HVA_ERR_RO_BAD;
2684 
2685 	if (nr_pages)
2686 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2687 
2688 	return __gfn_to_hva_memslot(slot, gfn);
2689 }
2690 
2691 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2692 				     gfn_t *nr_pages)
2693 {
2694 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2695 }
2696 
2697 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2698 					gfn_t gfn)
2699 {
2700 	return gfn_to_hva_many(slot, gfn, NULL);
2701 }
2702 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2703 
2704 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2705 {
2706 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2707 }
2708 EXPORT_SYMBOL_GPL(gfn_to_hva);
2709 
2710 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2711 {
2712 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2715 
2716 /*
2717  * Return the hva of a @gfn and the R/W attribute if possible.
2718  *
2719  * @slot: the kvm_memory_slot which contains @gfn
2720  * @gfn: the gfn to be translated
2721  * @writable: used to return the read/write attribute of the @slot if the hva
2722  * is valid and @writable is not NULL
2723  */
2724 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2725 				      gfn_t gfn, bool *writable)
2726 {
2727 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2728 
2729 	if (!kvm_is_error_hva(hva) && writable)
2730 		*writable = !memslot_is_readonly(slot);
2731 
2732 	return hva;
2733 }
2734 
2735 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2736 {
2737 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2738 
2739 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2740 }
2741 
2742 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2743 {
2744 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2745 
2746 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2747 }
2748 
2749 static inline int check_user_page_hwpoison(unsigned long addr)
2750 {
2751 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2752 
2753 	rc = get_user_pages(addr, 1, flags, NULL);
2754 	return rc == -EHWPOISON;
2755 }
2756 
2757 /*
2758  * The fast path to get the writable pfn which will be stored in @pfn,
2759  * true indicates success, otherwise false is returned.  It's also the
2760  * only part that runs if we can in atomic context.
2761  */
2762 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2763 			    bool *writable, kvm_pfn_t *pfn)
2764 {
2765 	struct page *page[1];
2766 
2767 	/*
2768 	 * Fast pin a writable pfn only if it is a write fault request
2769 	 * or the caller allows to map a writable pfn for a read fault
2770 	 * request.
2771 	 */
2772 	if (!(write_fault || writable))
2773 		return false;
2774 
2775 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2776 		*pfn = page_to_pfn(page[0]);
2777 
2778 		if (writable)
2779 			*writable = true;
2780 		return true;
2781 	}
2782 
2783 	return false;
2784 }
2785 
2786 /*
2787  * The slow path to get the pfn of the specified host virtual address,
2788  * 1 indicates success, -errno is returned if error is detected.
2789  */
2790 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2791 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2792 {
2793 	/*
2794 	 * When a VCPU accesses a page that is not mapped into the secondary
2795 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2796 	 * make progress. We always want to honor NUMA hinting faults in that
2797 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2798 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2799 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2800 	 *
2801 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2802 	 * implicitly honor NUMA hinting faults and don't need this flag.
2803 	 */
2804 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2805 	struct page *page;
2806 	int npages;
2807 
2808 	might_sleep();
2809 
2810 	if (writable)
2811 		*writable = write_fault;
2812 
2813 	if (write_fault)
2814 		flags |= FOLL_WRITE;
2815 	if (async)
2816 		flags |= FOLL_NOWAIT;
2817 	if (interruptible)
2818 		flags |= FOLL_INTERRUPTIBLE;
2819 
2820 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2821 	if (npages != 1)
2822 		return npages;
2823 
2824 	/* map read fault as writable if possible */
2825 	if (unlikely(!write_fault) && writable) {
2826 		struct page *wpage;
2827 
2828 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2829 			*writable = true;
2830 			put_page(page);
2831 			page = wpage;
2832 		}
2833 	}
2834 	*pfn = page_to_pfn(page);
2835 	return npages;
2836 }
2837 
2838 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2839 {
2840 	if (unlikely(!(vma->vm_flags & VM_READ)))
2841 		return false;
2842 
2843 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2844 		return false;
2845 
2846 	return true;
2847 }
2848 
2849 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2850 {
2851 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2852 
2853 	if (!page)
2854 		return 1;
2855 
2856 	return get_page_unless_zero(page);
2857 }
2858 
2859 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2860 			       unsigned long addr, bool write_fault,
2861 			       bool *writable, kvm_pfn_t *p_pfn)
2862 {
2863 	kvm_pfn_t pfn;
2864 	pte_t *ptep;
2865 	pte_t pte;
2866 	spinlock_t *ptl;
2867 	int r;
2868 
2869 	r = follow_pte(vma, addr, &ptep, &ptl);
2870 	if (r) {
2871 		/*
2872 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2873 		 * not call the fault handler, so do it here.
2874 		 */
2875 		bool unlocked = false;
2876 		r = fixup_user_fault(current->mm, addr,
2877 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2878 				     &unlocked);
2879 		if (unlocked)
2880 			return -EAGAIN;
2881 		if (r)
2882 			return r;
2883 
2884 		r = follow_pte(vma, addr, &ptep, &ptl);
2885 		if (r)
2886 			return r;
2887 	}
2888 
2889 	pte = ptep_get(ptep);
2890 
2891 	if (write_fault && !pte_write(pte)) {
2892 		pfn = KVM_PFN_ERR_RO_FAULT;
2893 		goto out;
2894 	}
2895 
2896 	if (writable)
2897 		*writable = pte_write(pte);
2898 	pfn = pte_pfn(pte);
2899 
2900 	/*
2901 	 * Get a reference here because callers of *hva_to_pfn* and
2902 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2903 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2904 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2905 	 * simply do nothing for reserved pfns.
2906 	 *
2907 	 * Whoever called remap_pfn_range is also going to call e.g.
2908 	 * unmap_mapping_range before the underlying pages are freed,
2909 	 * causing a call to our MMU notifier.
2910 	 *
2911 	 * Certain IO or PFNMAP mappings can be backed with valid
2912 	 * struct pages, but be allocated without refcounting e.g.,
2913 	 * tail pages of non-compound higher order allocations, which
2914 	 * would then underflow the refcount when the caller does the
2915 	 * required put_page. Don't allow those pages here.
2916 	 */
2917 	if (!kvm_try_get_pfn(pfn))
2918 		r = -EFAULT;
2919 
2920 out:
2921 	pte_unmap_unlock(ptep, ptl);
2922 	*p_pfn = pfn;
2923 
2924 	return r;
2925 }
2926 
2927 /*
2928  * Pin guest page in memory and return its pfn.
2929  * @addr: host virtual address which maps memory to the guest
2930  * @atomic: whether this function is forbidden from sleeping
2931  * @interruptible: whether the process can be interrupted by non-fatal signals
2932  * @async: whether this function need to wait IO complete if the
2933  *         host page is not in the memory
2934  * @write_fault: whether we should get a writable host page
2935  * @writable: whether it allows to map a writable host page for !@write_fault
2936  *
2937  * The function will map a writable host page for these two cases:
2938  * 1): @write_fault = true
2939  * 2): @write_fault = false && @writable, @writable will tell the caller
2940  *     whether the mapping is writable.
2941  */
2942 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2943 		     bool *async, bool write_fault, bool *writable)
2944 {
2945 	struct vm_area_struct *vma;
2946 	kvm_pfn_t pfn;
2947 	int npages, r;
2948 
2949 	/* we can do it either atomically or asynchronously, not both */
2950 	BUG_ON(atomic && async);
2951 
2952 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2953 		return pfn;
2954 
2955 	if (atomic)
2956 		return KVM_PFN_ERR_FAULT;
2957 
2958 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2959 				 writable, &pfn);
2960 	if (npages == 1)
2961 		return pfn;
2962 	if (npages == -EINTR)
2963 		return KVM_PFN_ERR_SIGPENDING;
2964 
2965 	mmap_read_lock(current->mm);
2966 	if (npages == -EHWPOISON ||
2967 	      (!async && check_user_page_hwpoison(addr))) {
2968 		pfn = KVM_PFN_ERR_HWPOISON;
2969 		goto exit;
2970 	}
2971 
2972 retry:
2973 	vma = vma_lookup(current->mm, addr);
2974 
2975 	if (vma == NULL)
2976 		pfn = KVM_PFN_ERR_FAULT;
2977 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2978 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2979 		if (r == -EAGAIN)
2980 			goto retry;
2981 		if (r < 0)
2982 			pfn = KVM_PFN_ERR_FAULT;
2983 	} else {
2984 		if (async && vma_is_valid(vma, write_fault))
2985 			*async = true;
2986 		pfn = KVM_PFN_ERR_FAULT;
2987 	}
2988 exit:
2989 	mmap_read_unlock(current->mm);
2990 	return pfn;
2991 }
2992 
2993 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2994 			       bool atomic, bool interruptible, bool *async,
2995 			       bool write_fault, bool *writable, hva_t *hva)
2996 {
2997 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2998 
2999 	if (hva)
3000 		*hva = addr;
3001 
3002 	if (kvm_is_error_hva(addr)) {
3003 		if (writable)
3004 			*writable = false;
3005 
3006 		return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3007 						    KVM_PFN_NOSLOT;
3008 	}
3009 
3010 	/* Do not map writable pfn in the readonly memslot. */
3011 	if (writable && memslot_is_readonly(slot)) {
3012 		*writable = false;
3013 		writable = NULL;
3014 	}
3015 
3016 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3017 			  writable);
3018 }
3019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3020 
3021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3022 		      bool *writable)
3023 {
3024 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3025 				    NULL, write_fault, writable, NULL);
3026 }
3027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3028 
3029 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3030 {
3031 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3032 				    NULL, NULL);
3033 }
3034 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3035 
3036 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3037 {
3038 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3039 				    NULL, NULL);
3040 }
3041 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3042 
3043 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3044 {
3045 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3046 }
3047 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3048 
3049 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3050 {
3051 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3052 }
3053 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3054 
3055 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3056 {
3057 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3060 
3061 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3062 			    struct page **pages, int nr_pages)
3063 {
3064 	unsigned long addr;
3065 	gfn_t entry = 0;
3066 
3067 	addr = gfn_to_hva_many(slot, gfn, &entry);
3068 	if (kvm_is_error_hva(addr))
3069 		return -1;
3070 
3071 	if (entry < nr_pages)
3072 		return 0;
3073 
3074 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3075 }
3076 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3077 
3078 /*
3079  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3080  * backed by 'struct page'.  A valid example is if the backing memslot is
3081  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3082  * been elevated by gfn_to_pfn().
3083  */
3084 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3085 {
3086 	struct page *page;
3087 	kvm_pfn_t pfn;
3088 
3089 	pfn = gfn_to_pfn(kvm, gfn);
3090 
3091 	if (is_error_noslot_pfn(pfn))
3092 		return KVM_ERR_PTR_BAD_PAGE;
3093 
3094 	page = kvm_pfn_to_refcounted_page(pfn);
3095 	if (!page)
3096 		return KVM_ERR_PTR_BAD_PAGE;
3097 
3098 	return page;
3099 }
3100 EXPORT_SYMBOL_GPL(gfn_to_page);
3101 
3102 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3103 {
3104 	if (dirty)
3105 		kvm_release_pfn_dirty(pfn);
3106 	else
3107 		kvm_release_pfn_clean(pfn);
3108 }
3109 
3110 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3111 {
3112 	kvm_pfn_t pfn;
3113 	void *hva = NULL;
3114 	struct page *page = KVM_UNMAPPED_PAGE;
3115 
3116 	if (!map)
3117 		return -EINVAL;
3118 
3119 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3120 	if (is_error_noslot_pfn(pfn))
3121 		return -EINVAL;
3122 
3123 	if (pfn_valid(pfn)) {
3124 		page = pfn_to_page(pfn);
3125 		hva = kmap(page);
3126 #ifdef CONFIG_HAS_IOMEM
3127 	} else {
3128 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3129 #endif
3130 	}
3131 
3132 	if (!hva)
3133 		return -EFAULT;
3134 
3135 	map->page = page;
3136 	map->hva = hva;
3137 	map->pfn = pfn;
3138 	map->gfn = gfn;
3139 
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3143 
3144 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3145 {
3146 	if (!map)
3147 		return;
3148 
3149 	if (!map->hva)
3150 		return;
3151 
3152 	if (map->page != KVM_UNMAPPED_PAGE)
3153 		kunmap(map->page);
3154 #ifdef CONFIG_HAS_IOMEM
3155 	else
3156 		memunmap(map->hva);
3157 #endif
3158 
3159 	if (dirty)
3160 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3161 
3162 	kvm_release_pfn(map->pfn, dirty);
3163 
3164 	map->hva = NULL;
3165 	map->page = NULL;
3166 }
3167 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3168 
3169 static bool kvm_is_ad_tracked_page(struct page *page)
3170 {
3171 	/*
3172 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3173 	 * touched (e.g. set dirty) except by its owner".
3174 	 */
3175 	return !PageReserved(page);
3176 }
3177 
3178 static void kvm_set_page_dirty(struct page *page)
3179 {
3180 	if (kvm_is_ad_tracked_page(page))
3181 		SetPageDirty(page);
3182 }
3183 
3184 static void kvm_set_page_accessed(struct page *page)
3185 {
3186 	if (kvm_is_ad_tracked_page(page))
3187 		mark_page_accessed(page);
3188 }
3189 
3190 void kvm_release_page_clean(struct page *page)
3191 {
3192 	WARN_ON(is_error_page(page));
3193 
3194 	kvm_set_page_accessed(page);
3195 	put_page(page);
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3198 
3199 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3200 {
3201 	struct page *page;
3202 
3203 	if (is_error_noslot_pfn(pfn))
3204 		return;
3205 
3206 	page = kvm_pfn_to_refcounted_page(pfn);
3207 	if (!page)
3208 		return;
3209 
3210 	kvm_release_page_clean(page);
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3213 
3214 void kvm_release_page_dirty(struct page *page)
3215 {
3216 	WARN_ON(is_error_page(page));
3217 
3218 	kvm_set_page_dirty(page);
3219 	kvm_release_page_clean(page);
3220 }
3221 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3222 
3223 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3224 {
3225 	struct page *page;
3226 
3227 	if (is_error_noslot_pfn(pfn))
3228 		return;
3229 
3230 	page = kvm_pfn_to_refcounted_page(pfn);
3231 	if (!page)
3232 		return;
3233 
3234 	kvm_release_page_dirty(page);
3235 }
3236 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3237 
3238 /*
3239  * Note, checking for an error/noslot pfn is the caller's responsibility when
3240  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3241  * "set" helpers are not to be used when the pfn might point at garbage.
3242  */
3243 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3244 {
3245 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3246 		return;
3247 
3248 	if (pfn_valid(pfn))
3249 		kvm_set_page_dirty(pfn_to_page(pfn));
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3252 
3253 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3254 {
3255 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3256 		return;
3257 
3258 	if (pfn_valid(pfn))
3259 		kvm_set_page_accessed(pfn_to_page(pfn));
3260 }
3261 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3262 
3263 static int next_segment(unsigned long len, int offset)
3264 {
3265 	if (len > PAGE_SIZE - offset)
3266 		return PAGE_SIZE - offset;
3267 	else
3268 		return len;
3269 }
3270 
3271 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3272 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3273 				 void *data, int offset, int len)
3274 {
3275 	int r;
3276 	unsigned long addr;
3277 
3278 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3279 	if (kvm_is_error_hva(addr))
3280 		return -EFAULT;
3281 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3282 	if (r)
3283 		return -EFAULT;
3284 	return 0;
3285 }
3286 
3287 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3288 			int len)
3289 {
3290 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3291 
3292 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3293 }
3294 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3295 
3296 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3297 			     int offset, int len)
3298 {
3299 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3300 
3301 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3302 }
3303 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3304 
3305 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3306 {
3307 	gfn_t gfn = gpa >> PAGE_SHIFT;
3308 	int seg;
3309 	int offset = offset_in_page(gpa);
3310 	int ret;
3311 
3312 	while ((seg = next_segment(len, offset)) != 0) {
3313 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3314 		if (ret < 0)
3315 			return ret;
3316 		offset = 0;
3317 		len -= seg;
3318 		data += seg;
3319 		++gfn;
3320 	}
3321 	return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(kvm_read_guest);
3324 
3325 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3326 {
3327 	gfn_t gfn = gpa >> PAGE_SHIFT;
3328 	int seg;
3329 	int offset = offset_in_page(gpa);
3330 	int ret;
3331 
3332 	while ((seg = next_segment(len, offset)) != 0) {
3333 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3334 		if (ret < 0)
3335 			return ret;
3336 		offset = 0;
3337 		len -= seg;
3338 		data += seg;
3339 		++gfn;
3340 	}
3341 	return 0;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3344 
3345 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3346 			           void *data, int offset, unsigned long len)
3347 {
3348 	int r;
3349 	unsigned long addr;
3350 
3351 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3352 	if (kvm_is_error_hva(addr))
3353 		return -EFAULT;
3354 	pagefault_disable();
3355 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3356 	pagefault_enable();
3357 	if (r)
3358 		return -EFAULT;
3359 	return 0;
3360 }
3361 
3362 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3363 			       void *data, unsigned long len)
3364 {
3365 	gfn_t gfn = gpa >> PAGE_SHIFT;
3366 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3367 	int offset = offset_in_page(gpa);
3368 
3369 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3370 }
3371 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3372 
3373 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3374 static int __kvm_write_guest_page(struct kvm *kvm,
3375 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3376 			          const void *data, int offset, int len)
3377 {
3378 	int r;
3379 	unsigned long addr;
3380 
3381 	addr = gfn_to_hva_memslot(memslot, gfn);
3382 	if (kvm_is_error_hva(addr))
3383 		return -EFAULT;
3384 	r = __copy_to_user((void __user *)addr + offset, data, len);
3385 	if (r)
3386 		return -EFAULT;
3387 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3388 	return 0;
3389 }
3390 
3391 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3392 			 const void *data, int offset, int len)
3393 {
3394 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3395 
3396 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3397 }
3398 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3399 
3400 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3401 			      const void *data, int offset, int len)
3402 {
3403 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3404 
3405 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3406 }
3407 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3408 
3409 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3410 		    unsigned long len)
3411 {
3412 	gfn_t gfn = gpa >> PAGE_SHIFT;
3413 	int seg;
3414 	int offset = offset_in_page(gpa);
3415 	int ret;
3416 
3417 	while ((seg = next_segment(len, offset)) != 0) {
3418 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3419 		if (ret < 0)
3420 			return ret;
3421 		offset = 0;
3422 		len -= seg;
3423 		data += seg;
3424 		++gfn;
3425 	}
3426 	return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(kvm_write_guest);
3429 
3430 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3431 		         unsigned long len)
3432 {
3433 	gfn_t gfn = gpa >> PAGE_SHIFT;
3434 	int seg;
3435 	int offset = offset_in_page(gpa);
3436 	int ret;
3437 
3438 	while ((seg = next_segment(len, offset)) != 0) {
3439 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3440 		if (ret < 0)
3441 			return ret;
3442 		offset = 0;
3443 		len -= seg;
3444 		data += seg;
3445 		++gfn;
3446 	}
3447 	return 0;
3448 }
3449 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3450 
3451 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3452 				       struct gfn_to_hva_cache *ghc,
3453 				       gpa_t gpa, unsigned long len)
3454 {
3455 	int offset = offset_in_page(gpa);
3456 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3457 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3458 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3459 	gfn_t nr_pages_avail;
3460 
3461 	/* Update ghc->generation before performing any error checks. */
3462 	ghc->generation = slots->generation;
3463 
3464 	if (start_gfn > end_gfn) {
3465 		ghc->hva = KVM_HVA_ERR_BAD;
3466 		return -EINVAL;
3467 	}
3468 
3469 	/*
3470 	 * If the requested region crosses two memslots, we still
3471 	 * verify that the entire region is valid here.
3472 	 */
3473 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3474 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3475 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3476 					   &nr_pages_avail);
3477 		if (kvm_is_error_hva(ghc->hva))
3478 			return -EFAULT;
3479 	}
3480 
3481 	/* Use the slow path for cross page reads and writes. */
3482 	if (nr_pages_needed == 1)
3483 		ghc->hva += offset;
3484 	else
3485 		ghc->memslot = NULL;
3486 
3487 	ghc->gpa = gpa;
3488 	ghc->len = len;
3489 	return 0;
3490 }
3491 
3492 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3493 			      gpa_t gpa, unsigned long len)
3494 {
3495 	struct kvm_memslots *slots = kvm_memslots(kvm);
3496 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3497 }
3498 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3499 
3500 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3501 				  void *data, unsigned int offset,
3502 				  unsigned long len)
3503 {
3504 	struct kvm_memslots *slots = kvm_memslots(kvm);
3505 	int r;
3506 	gpa_t gpa = ghc->gpa + offset;
3507 
3508 	if (WARN_ON_ONCE(len + offset > ghc->len))
3509 		return -EINVAL;
3510 
3511 	if (slots->generation != ghc->generation) {
3512 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3513 			return -EFAULT;
3514 	}
3515 
3516 	if (kvm_is_error_hva(ghc->hva))
3517 		return -EFAULT;
3518 
3519 	if (unlikely(!ghc->memslot))
3520 		return kvm_write_guest(kvm, gpa, data, len);
3521 
3522 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3523 	if (r)
3524 		return -EFAULT;
3525 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3526 
3527 	return 0;
3528 }
3529 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3530 
3531 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3532 			   void *data, unsigned long len)
3533 {
3534 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3535 }
3536 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3537 
3538 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3539 				 void *data, unsigned int offset,
3540 				 unsigned long len)
3541 {
3542 	struct kvm_memslots *slots = kvm_memslots(kvm);
3543 	int r;
3544 	gpa_t gpa = ghc->gpa + offset;
3545 
3546 	if (WARN_ON_ONCE(len + offset > ghc->len))
3547 		return -EINVAL;
3548 
3549 	if (slots->generation != ghc->generation) {
3550 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3551 			return -EFAULT;
3552 	}
3553 
3554 	if (kvm_is_error_hva(ghc->hva))
3555 		return -EFAULT;
3556 
3557 	if (unlikely(!ghc->memslot))
3558 		return kvm_read_guest(kvm, gpa, data, len);
3559 
3560 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3561 	if (r)
3562 		return -EFAULT;
3563 
3564 	return 0;
3565 }
3566 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3567 
3568 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569 			  void *data, unsigned long len)
3570 {
3571 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3572 }
3573 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3574 
3575 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3576 {
3577 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3578 	gfn_t gfn = gpa >> PAGE_SHIFT;
3579 	int seg;
3580 	int offset = offset_in_page(gpa);
3581 	int ret;
3582 
3583 	while ((seg = next_segment(len, offset)) != 0) {
3584 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3585 		if (ret < 0)
3586 			return ret;
3587 		offset = 0;
3588 		len -= seg;
3589 		++gfn;
3590 	}
3591 	return 0;
3592 }
3593 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3594 
3595 void mark_page_dirty_in_slot(struct kvm *kvm,
3596 			     const struct kvm_memory_slot *memslot,
3597 		 	     gfn_t gfn)
3598 {
3599 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3600 
3601 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3602 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3603 		return;
3604 
3605 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3606 #endif
3607 
3608 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3609 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3610 		u32 slot = (memslot->as_id << 16) | memslot->id;
3611 
3612 		if (kvm->dirty_ring_size && vcpu)
3613 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3614 		else if (memslot->dirty_bitmap)
3615 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3616 	}
3617 }
3618 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3619 
3620 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3621 {
3622 	struct kvm_memory_slot *memslot;
3623 
3624 	memslot = gfn_to_memslot(kvm, gfn);
3625 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3626 }
3627 EXPORT_SYMBOL_GPL(mark_page_dirty);
3628 
3629 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3630 {
3631 	struct kvm_memory_slot *memslot;
3632 
3633 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3634 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3635 }
3636 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3637 
3638 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3639 {
3640 	if (!vcpu->sigset_active)
3641 		return;
3642 
3643 	/*
3644 	 * This does a lockless modification of ->real_blocked, which is fine
3645 	 * because, only current can change ->real_blocked and all readers of
3646 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3647 	 * of ->blocked.
3648 	 */
3649 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3650 }
3651 
3652 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3653 {
3654 	if (!vcpu->sigset_active)
3655 		return;
3656 
3657 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3658 	sigemptyset(&current->real_blocked);
3659 }
3660 
3661 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3662 {
3663 	unsigned int old, val, grow, grow_start;
3664 
3665 	old = val = vcpu->halt_poll_ns;
3666 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3667 	grow = READ_ONCE(halt_poll_ns_grow);
3668 	if (!grow)
3669 		goto out;
3670 
3671 	val *= grow;
3672 	if (val < grow_start)
3673 		val = grow_start;
3674 
3675 	vcpu->halt_poll_ns = val;
3676 out:
3677 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3678 }
3679 
3680 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3681 {
3682 	unsigned int old, val, shrink, grow_start;
3683 
3684 	old = val = vcpu->halt_poll_ns;
3685 	shrink = READ_ONCE(halt_poll_ns_shrink);
3686 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3687 	if (shrink == 0)
3688 		val = 0;
3689 	else
3690 		val /= shrink;
3691 
3692 	if (val < grow_start)
3693 		val = 0;
3694 
3695 	vcpu->halt_poll_ns = val;
3696 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3697 }
3698 
3699 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3700 {
3701 	int ret = -EINTR;
3702 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3703 
3704 	if (kvm_arch_vcpu_runnable(vcpu))
3705 		goto out;
3706 	if (kvm_cpu_has_pending_timer(vcpu))
3707 		goto out;
3708 	if (signal_pending(current))
3709 		goto out;
3710 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3711 		goto out;
3712 
3713 	ret = 0;
3714 out:
3715 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3716 	return ret;
3717 }
3718 
3719 /*
3720  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3721  * pending.  This is mostly used when halting a vCPU, but may also be used
3722  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3723  */
3724 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3725 {
3726 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3727 	bool waited = false;
3728 
3729 	vcpu->stat.generic.blocking = 1;
3730 
3731 	preempt_disable();
3732 	kvm_arch_vcpu_blocking(vcpu);
3733 	prepare_to_rcuwait(wait);
3734 	preempt_enable();
3735 
3736 	for (;;) {
3737 		set_current_state(TASK_INTERRUPTIBLE);
3738 
3739 		if (kvm_vcpu_check_block(vcpu) < 0)
3740 			break;
3741 
3742 		waited = true;
3743 		schedule();
3744 	}
3745 
3746 	preempt_disable();
3747 	finish_rcuwait(wait);
3748 	kvm_arch_vcpu_unblocking(vcpu);
3749 	preempt_enable();
3750 
3751 	vcpu->stat.generic.blocking = 0;
3752 
3753 	return waited;
3754 }
3755 
3756 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3757 					  ktime_t end, bool success)
3758 {
3759 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3760 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3761 
3762 	++vcpu->stat.generic.halt_attempted_poll;
3763 
3764 	if (success) {
3765 		++vcpu->stat.generic.halt_successful_poll;
3766 
3767 		if (!vcpu_valid_wakeup(vcpu))
3768 			++vcpu->stat.generic.halt_poll_invalid;
3769 
3770 		stats->halt_poll_success_ns += poll_ns;
3771 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3772 	} else {
3773 		stats->halt_poll_fail_ns += poll_ns;
3774 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3775 	}
3776 }
3777 
3778 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3779 {
3780 	struct kvm *kvm = vcpu->kvm;
3781 
3782 	if (kvm->override_halt_poll_ns) {
3783 		/*
3784 		 * Ensure kvm->max_halt_poll_ns is not read before
3785 		 * kvm->override_halt_poll_ns.
3786 		 *
3787 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3788 		 */
3789 		smp_rmb();
3790 		return READ_ONCE(kvm->max_halt_poll_ns);
3791 	}
3792 
3793 	return READ_ONCE(halt_poll_ns);
3794 }
3795 
3796 /*
3797  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3798  * polling is enabled, busy wait for a short time before blocking to avoid the
3799  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3800  * is halted.
3801  */
3802 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3803 {
3804 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3805 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3806 	ktime_t start, cur, poll_end;
3807 	bool waited = false;
3808 	bool do_halt_poll;
3809 	u64 halt_ns;
3810 
3811 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3812 		vcpu->halt_poll_ns = max_halt_poll_ns;
3813 
3814 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3815 
3816 	start = cur = poll_end = ktime_get();
3817 	if (do_halt_poll) {
3818 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3819 
3820 		do {
3821 			if (kvm_vcpu_check_block(vcpu) < 0)
3822 				goto out;
3823 			cpu_relax();
3824 			poll_end = cur = ktime_get();
3825 		} while (kvm_vcpu_can_poll(cur, stop));
3826 	}
3827 
3828 	waited = kvm_vcpu_block(vcpu);
3829 
3830 	cur = ktime_get();
3831 	if (waited) {
3832 		vcpu->stat.generic.halt_wait_ns +=
3833 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3834 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3835 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3836 	}
3837 out:
3838 	/* The total time the vCPU was "halted", including polling time. */
3839 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3840 
3841 	/*
3842 	 * Note, halt-polling is considered successful so long as the vCPU was
3843 	 * never actually scheduled out, i.e. even if the wake event arrived
3844 	 * after of the halt-polling loop itself, but before the full wait.
3845 	 */
3846 	if (do_halt_poll)
3847 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3848 
3849 	if (halt_poll_allowed) {
3850 		/* Recompute the max halt poll time in case it changed. */
3851 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3852 
3853 		if (!vcpu_valid_wakeup(vcpu)) {
3854 			shrink_halt_poll_ns(vcpu);
3855 		} else if (max_halt_poll_ns) {
3856 			if (halt_ns <= vcpu->halt_poll_ns)
3857 				;
3858 			/* we had a long block, shrink polling */
3859 			else if (vcpu->halt_poll_ns &&
3860 				 halt_ns > max_halt_poll_ns)
3861 				shrink_halt_poll_ns(vcpu);
3862 			/* we had a short halt and our poll time is too small */
3863 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3864 				 halt_ns < max_halt_poll_ns)
3865 				grow_halt_poll_ns(vcpu);
3866 		} else {
3867 			vcpu->halt_poll_ns = 0;
3868 		}
3869 	}
3870 
3871 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3872 }
3873 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3874 
3875 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3876 {
3877 	if (__kvm_vcpu_wake_up(vcpu)) {
3878 		WRITE_ONCE(vcpu->ready, true);
3879 		++vcpu->stat.generic.halt_wakeup;
3880 		return true;
3881 	}
3882 
3883 	return false;
3884 }
3885 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3886 
3887 #ifndef CONFIG_S390
3888 /*
3889  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3890  */
3891 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3892 {
3893 	int me, cpu;
3894 
3895 	if (kvm_vcpu_wake_up(vcpu))
3896 		return;
3897 
3898 	me = get_cpu();
3899 	/*
3900 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3901 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3902 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3903 	 * within the vCPU thread itself.
3904 	 */
3905 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3906 		if (vcpu->mode == IN_GUEST_MODE)
3907 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3908 		goto out;
3909 	}
3910 
3911 	/*
3912 	 * Note, the vCPU could get migrated to a different pCPU at any point
3913 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3914 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3915 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3916 	 * vCPU also requires it to leave IN_GUEST_MODE.
3917 	 */
3918 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3919 		cpu = READ_ONCE(vcpu->cpu);
3920 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3921 			smp_send_reschedule(cpu);
3922 	}
3923 out:
3924 	put_cpu();
3925 }
3926 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3927 #endif /* !CONFIG_S390 */
3928 
3929 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3930 {
3931 	struct pid *pid;
3932 	struct task_struct *task = NULL;
3933 	int ret = 0;
3934 
3935 	rcu_read_lock();
3936 	pid = rcu_dereference(target->pid);
3937 	if (pid)
3938 		task = get_pid_task(pid, PIDTYPE_PID);
3939 	rcu_read_unlock();
3940 	if (!task)
3941 		return ret;
3942 	ret = yield_to(task, 1);
3943 	put_task_struct(task);
3944 
3945 	return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3948 
3949 /*
3950  * Helper that checks whether a VCPU is eligible for directed yield.
3951  * Most eligible candidate to yield is decided by following heuristics:
3952  *
3953  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3954  *  (preempted lock holder), indicated by @in_spin_loop.
3955  *  Set at the beginning and cleared at the end of interception/PLE handler.
3956  *
3957  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3958  *  chance last time (mostly it has become eligible now since we have probably
3959  *  yielded to lockholder in last iteration. This is done by toggling
3960  *  @dy_eligible each time a VCPU checked for eligibility.)
3961  *
3962  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3963  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3964  *  burning. Giving priority for a potential lock-holder increases lock
3965  *  progress.
3966  *
3967  *  Since algorithm is based on heuristics, accessing another VCPU data without
3968  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3969  *  and continue with next VCPU and so on.
3970  */
3971 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3972 {
3973 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3974 	bool eligible;
3975 
3976 	eligible = !vcpu->spin_loop.in_spin_loop ||
3977 		    vcpu->spin_loop.dy_eligible;
3978 
3979 	if (vcpu->spin_loop.in_spin_loop)
3980 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3981 
3982 	return eligible;
3983 #else
3984 	return true;
3985 #endif
3986 }
3987 
3988 /*
3989  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3990  * a vcpu_load/vcpu_put pair.  However, for most architectures
3991  * kvm_arch_vcpu_runnable does not require vcpu_load.
3992  */
3993 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3994 {
3995 	return kvm_arch_vcpu_runnable(vcpu);
3996 }
3997 
3998 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3999 {
4000 	if (kvm_arch_dy_runnable(vcpu))
4001 		return true;
4002 
4003 #ifdef CONFIG_KVM_ASYNC_PF
4004 	if (!list_empty_careful(&vcpu->async_pf.done))
4005 		return true;
4006 #endif
4007 
4008 	return false;
4009 }
4010 
4011 /*
4012  * By default, simply query the target vCPU's current mode when checking if a
4013  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4014  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4015  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4016  * directly for cross-vCPU checks is functionally correct and accurate.
4017  */
4018 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4019 {
4020 	return kvm_arch_vcpu_in_kernel(vcpu);
4021 }
4022 
4023 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4024 {
4025 	return false;
4026 }
4027 
4028 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4029 {
4030 	struct kvm *kvm = me->kvm;
4031 	struct kvm_vcpu *vcpu;
4032 	int last_boosted_vcpu;
4033 	unsigned long i;
4034 	int yielded = 0;
4035 	int try = 3;
4036 	int pass;
4037 
4038 	last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
4039 	kvm_vcpu_set_in_spin_loop(me, true);
4040 	/*
4041 	 * We boost the priority of a VCPU that is runnable but not
4042 	 * currently running, because it got preempted by something
4043 	 * else and called schedule in __vcpu_run.  Hopefully that
4044 	 * VCPU is holding the lock that we need and will release it.
4045 	 * We approximate round-robin by starting at the last boosted VCPU.
4046 	 */
4047 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4048 		kvm_for_each_vcpu(i, vcpu, kvm) {
4049 			if (!pass && i <= last_boosted_vcpu) {
4050 				i = last_boosted_vcpu;
4051 				continue;
4052 			} else if (pass && i > last_boosted_vcpu)
4053 				break;
4054 			if (!READ_ONCE(vcpu->ready))
4055 				continue;
4056 			if (vcpu == me)
4057 				continue;
4058 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4059 				continue;
4060 
4061 			/*
4062 			 * Treat the target vCPU as being in-kernel if it has a
4063 			 * pending interrupt, as the vCPU trying to yield may
4064 			 * be spinning waiting on IPI delivery, i.e. the target
4065 			 * vCPU is in-kernel for the purposes of directed yield.
4066 			 */
4067 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4068 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4069 			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4070 				continue;
4071 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4072 				continue;
4073 
4074 			yielded = kvm_vcpu_yield_to(vcpu);
4075 			if (yielded > 0) {
4076 				WRITE_ONCE(kvm->last_boosted_vcpu, i);
4077 				break;
4078 			} else if (yielded < 0) {
4079 				try--;
4080 				if (!try)
4081 					break;
4082 			}
4083 		}
4084 	}
4085 	kvm_vcpu_set_in_spin_loop(me, false);
4086 
4087 	/* Ensure vcpu is not eligible during next spinloop */
4088 	kvm_vcpu_set_dy_eligible(me, false);
4089 }
4090 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4091 
4092 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4093 {
4094 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4095 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4096 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4097 	     kvm->dirty_ring_size / PAGE_SIZE);
4098 #else
4099 	return false;
4100 #endif
4101 }
4102 
4103 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4104 {
4105 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4106 	struct page *page;
4107 
4108 	if (vmf->pgoff == 0)
4109 		page = virt_to_page(vcpu->run);
4110 #ifdef CONFIG_X86
4111 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4112 		page = virt_to_page(vcpu->arch.pio_data);
4113 #endif
4114 #ifdef CONFIG_KVM_MMIO
4115 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4116 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4117 #endif
4118 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4119 		page = kvm_dirty_ring_get_page(
4120 		    &vcpu->dirty_ring,
4121 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4122 	else
4123 		return kvm_arch_vcpu_fault(vcpu, vmf);
4124 	get_page(page);
4125 	vmf->page = page;
4126 	return 0;
4127 }
4128 
4129 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4130 	.fault = kvm_vcpu_fault,
4131 };
4132 
4133 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4134 {
4135 	struct kvm_vcpu *vcpu = file->private_data;
4136 	unsigned long pages = vma_pages(vma);
4137 
4138 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4139 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4140 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4141 		return -EINVAL;
4142 
4143 	vma->vm_ops = &kvm_vcpu_vm_ops;
4144 	return 0;
4145 }
4146 
4147 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4148 {
4149 	struct kvm_vcpu *vcpu = filp->private_data;
4150 
4151 	kvm_put_kvm(vcpu->kvm);
4152 	return 0;
4153 }
4154 
4155 static struct file_operations kvm_vcpu_fops = {
4156 	.release        = kvm_vcpu_release,
4157 	.unlocked_ioctl = kvm_vcpu_ioctl,
4158 	.mmap           = kvm_vcpu_mmap,
4159 	.llseek		= noop_llseek,
4160 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4161 };
4162 
4163 /*
4164  * Allocates an inode for the vcpu.
4165  */
4166 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4167 {
4168 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4169 
4170 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4171 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4172 }
4173 
4174 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4175 static int vcpu_get_pid(void *data, u64 *val)
4176 {
4177 	struct kvm_vcpu *vcpu = data;
4178 
4179 	rcu_read_lock();
4180 	*val = pid_nr(rcu_dereference(vcpu->pid));
4181 	rcu_read_unlock();
4182 	return 0;
4183 }
4184 
4185 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4186 
4187 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4188 {
4189 	struct dentry *debugfs_dentry;
4190 	char dir_name[ITOA_MAX_LEN * 2];
4191 
4192 	if (!debugfs_initialized())
4193 		return;
4194 
4195 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4196 	debugfs_dentry = debugfs_create_dir(dir_name,
4197 					    vcpu->kvm->debugfs_dentry);
4198 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4199 			    &vcpu_get_pid_fops);
4200 
4201 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4202 }
4203 #endif
4204 
4205 /*
4206  * Creates some virtual cpus.  Good luck creating more than one.
4207  */
4208 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4209 {
4210 	int r;
4211 	struct kvm_vcpu *vcpu;
4212 	struct page *page;
4213 
4214 	/*
4215 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4216 	 * too-large values instead of silently truncating.
4217 	 *
4218 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4219 	 * changing the storage type (at the very least, IDs should be tracked
4220 	 * as unsigned ints).
4221 	 */
4222 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4223 	if (id >= KVM_MAX_VCPU_IDS)
4224 		return -EINVAL;
4225 
4226 	mutex_lock(&kvm->lock);
4227 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4228 		mutex_unlock(&kvm->lock);
4229 		return -EINVAL;
4230 	}
4231 
4232 	r = kvm_arch_vcpu_precreate(kvm, id);
4233 	if (r) {
4234 		mutex_unlock(&kvm->lock);
4235 		return r;
4236 	}
4237 
4238 	kvm->created_vcpus++;
4239 	mutex_unlock(&kvm->lock);
4240 
4241 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4242 	if (!vcpu) {
4243 		r = -ENOMEM;
4244 		goto vcpu_decrement;
4245 	}
4246 
4247 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4248 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4249 	if (!page) {
4250 		r = -ENOMEM;
4251 		goto vcpu_free;
4252 	}
4253 	vcpu->run = page_address(page);
4254 
4255 	kvm_vcpu_init(vcpu, kvm, id);
4256 
4257 	r = kvm_arch_vcpu_create(vcpu);
4258 	if (r)
4259 		goto vcpu_free_run_page;
4260 
4261 	if (kvm->dirty_ring_size) {
4262 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4263 					 id, kvm->dirty_ring_size);
4264 		if (r)
4265 			goto arch_vcpu_destroy;
4266 	}
4267 
4268 	mutex_lock(&kvm->lock);
4269 
4270 #ifdef CONFIG_LOCKDEP
4271 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4272 	mutex_lock(&vcpu->mutex);
4273 	mutex_unlock(&vcpu->mutex);
4274 #endif
4275 
4276 	if (kvm_get_vcpu_by_id(kvm, id)) {
4277 		r = -EEXIST;
4278 		goto unlock_vcpu_destroy;
4279 	}
4280 
4281 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4282 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4283 	if (r)
4284 		goto unlock_vcpu_destroy;
4285 
4286 	/* Now it's all set up, let userspace reach it */
4287 	kvm_get_kvm(kvm);
4288 	r = create_vcpu_fd(vcpu);
4289 	if (r < 0)
4290 		goto kvm_put_xa_release;
4291 
4292 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4293 		r = -EINVAL;
4294 		goto kvm_put_xa_release;
4295 	}
4296 
4297 	/*
4298 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4299 	 * pointer before kvm->online_vcpu's incremented value.
4300 	 */
4301 	smp_wmb();
4302 	atomic_inc(&kvm->online_vcpus);
4303 
4304 	mutex_unlock(&kvm->lock);
4305 	kvm_arch_vcpu_postcreate(vcpu);
4306 	kvm_create_vcpu_debugfs(vcpu);
4307 	return r;
4308 
4309 kvm_put_xa_release:
4310 	kvm_put_kvm_no_destroy(kvm);
4311 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4312 unlock_vcpu_destroy:
4313 	mutex_unlock(&kvm->lock);
4314 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4315 arch_vcpu_destroy:
4316 	kvm_arch_vcpu_destroy(vcpu);
4317 vcpu_free_run_page:
4318 	free_page((unsigned long)vcpu->run);
4319 vcpu_free:
4320 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4321 vcpu_decrement:
4322 	mutex_lock(&kvm->lock);
4323 	kvm->created_vcpus--;
4324 	mutex_unlock(&kvm->lock);
4325 	return r;
4326 }
4327 
4328 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4329 {
4330 	if (sigset) {
4331 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4332 		vcpu->sigset_active = 1;
4333 		vcpu->sigset = *sigset;
4334 	} else
4335 		vcpu->sigset_active = 0;
4336 	return 0;
4337 }
4338 
4339 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4340 			      size_t size, loff_t *offset)
4341 {
4342 	struct kvm_vcpu *vcpu = file->private_data;
4343 
4344 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4345 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4346 			sizeof(vcpu->stat), user_buffer, size, offset);
4347 }
4348 
4349 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4350 {
4351 	struct kvm_vcpu *vcpu = file->private_data;
4352 
4353 	kvm_put_kvm(vcpu->kvm);
4354 	return 0;
4355 }
4356 
4357 static const struct file_operations kvm_vcpu_stats_fops = {
4358 	.owner = THIS_MODULE,
4359 	.read = kvm_vcpu_stats_read,
4360 	.release = kvm_vcpu_stats_release,
4361 	.llseek = noop_llseek,
4362 };
4363 
4364 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4365 {
4366 	int fd;
4367 	struct file *file;
4368 	char name[15 + ITOA_MAX_LEN + 1];
4369 
4370 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4371 
4372 	fd = get_unused_fd_flags(O_CLOEXEC);
4373 	if (fd < 0)
4374 		return fd;
4375 
4376 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4377 	if (IS_ERR(file)) {
4378 		put_unused_fd(fd);
4379 		return PTR_ERR(file);
4380 	}
4381 
4382 	kvm_get_kvm(vcpu->kvm);
4383 
4384 	file->f_mode |= FMODE_PREAD;
4385 	fd_install(fd, file);
4386 
4387 	return fd;
4388 }
4389 
4390 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4391 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4392 				     struct kvm_pre_fault_memory *range)
4393 {
4394 	int idx;
4395 	long r;
4396 	u64 full_size;
4397 
4398 	if (range->flags)
4399 		return -EINVAL;
4400 
4401 	if (!PAGE_ALIGNED(range->gpa) ||
4402 	    !PAGE_ALIGNED(range->size) ||
4403 	    range->gpa + range->size <= range->gpa)
4404 		return -EINVAL;
4405 
4406 	vcpu_load(vcpu);
4407 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4408 
4409 	full_size = range->size;
4410 	do {
4411 		if (signal_pending(current)) {
4412 			r = -EINTR;
4413 			break;
4414 		}
4415 
4416 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4417 		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4418 			break;
4419 
4420 		if (r < 0)
4421 			break;
4422 
4423 		range->size -= r;
4424 		range->gpa += r;
4425 		cond_resched();
4426 	} while (range->size);
4427 
4428 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4429 	vcpu_put(vcpu);
4430 
4431 	/* Return success if at least one page was mapped successfully.  */
4432 	return full_size == range->size ? r : 0;
4433 }
4434 #endif
4435 
4436 static long kvm_vcpu_ioctl(struct file *filp,
4437 			   unsigned int ioctl, unsigned long arg)
4438 {
4439 	struct kvm_vcpu *vcpu = filp->private_data;
4440 	void __user *argp = (void __user *)arg;
4441 	int r;
4442 	struct kvm_fpu *fpu = NULL;
4443 	struct kvm_sregs *kvm_sregs = NULL;
4444 
4445 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4446 		return -EIO;
4447 
4448 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4449 		return -EINVAL;
4450 
4451 	/*
4452 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4453 	 * execution; mutex_lock() would break them.
4454 	 */
4455 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4456 	if (r != -ENOIOCTLCMD)
4457 		return r;
4458 
4459 	if (mutex_lock_killable(&vcpu->mutex))
4460 		return -EINTR;
4461 	switch (ioctl) {
4462 	case KVM_RUN: {
4463 		struct pid *oldpid;
4464 		r = -EINVAL;
4465 		if (arg)
4466 			goto out;
4467 		oldpid = rcu_access_pointer(vcpu->pid);
4468 		if (unlikely(oldpid != task_pid(current))) {
4469 			/* The thread running this VCPU changed. */
4470 			struct pid *newpid;
4471 
4472 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4473 			if (r)
4474 				break;
4475 
4476 			newpid = get_task_pid(current, PIDTYPE_PID);
4477 			rcu_assign_pointer(vcpu->pid, newpid);
4478 			if (oldpid)
4479 				synchronize_rcu();
4480 			put_pid(oldpid);
4481 		}
4482 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4483 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4484 		vcpu->wants_to_run = false;
4485 
4486 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4487 		break;
4488 	}
4489 	case KVM_GET_REGS: {
4490 		struct kvm_regs *kvm_regs;
4491 
4492 		r = -ENOMEM;
4493 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4494 		if (!kvm_regs)
4495 			goto out;
4496 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4497 		if (r)
4498 			goto out_free1;
4499 		r = -EFAULT;
4500 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4501 			goto out_free1;
4502 		r = 0;
4503 out_free1:
4504 		kfree(kvm_regs);
4505 		break;
4506 	}
4507 	case KVM_SET_REGS: {
4508 		struct kvm_regs *kvm_regs;
4509 
4510 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4511 		if (IS_ERR(kvm_regs)) {
4512 			r = PTR_ERR(kvm_regs);
4513 			goto out;
4514 		}
4515 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4516 		kfree(kvm_regs);
4517 		break;
4518 	}
4519 	case KVM_GET_SREGS: {
4520 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4521 		r = -ENOMEM;
4522 		if (!kvm_sregs)
4523 			goto out;
4524 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4525 		if (r)
4526 			goto out;
4527 		r = -EFAULT;
4528 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4529 			goto out;
4530 		r = 0;
4531 		break;
4532 	}
4533 	case KVM_SET_SREGS: {
4534 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4535 		if (IS_ERR(kvm_sregs)) {
4536 			r = PTR_ERR(kvm_sregs);
4537 			kvm_sregs = NULL;
4538 			goto out;
4539 		}
4540 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4541 		break;
4542 	}
4543 	case KVM_GET_MP_STATE: {
4544 		struct kvm_mp_state mp_state;
4545 
4546 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4547 		if (r)
4548 			goto out;
4549 		r = -EFAULT;
4550 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4551 			goto out;
4552 		r = 0;
4553 		break;
4554 	}
4555 	case KVM_SET_MP_STATE: {
4556 		struct kvm_mp_state mp_state;
4557 
4558 		r = -EFAULT;
4559 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4560 			goto out;
4561 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4562 		break;
4563 	}
4564 	case KVM_TRANSLATE: {
4565 		struct kvm_translation tr;
4566 
4567 		r = -EFAULT;
4568 		if (copy_from_user(&tr, argp, sizeof(tr)))
4569 			goto out;
4570 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4571 		if (r)
4572 			goto out;
4573 		r = -EFAULT;
4574 		if (copy_to_user(argp, &tr, sizeof(tr)))
4575 			goto out;
4576 		r = 0;
4577 		break;
4578 	}
4579 	case KVM_SET_GUEST_DEBUG: {
4580 		struct kvm_guest_debug dbg;
4581 
4582 		r = -EFAULT;
4583 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4584 			goto out;
4585 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4586 		break;
4587 	}
4588 	case KVM_SET_SIGNAL_MASK: {
4589 		struct kvm_signal_mask __user *sigmask_arg = argp;
4590 		struct kvm_signal_mask kvm_sigmask;
4591 		sigset_t sigset, *p;
4592 
4593 		p = NULL;
4594 		if (argp) {
4595 			r = -EFAULT;
4596 			if (copy_from_user(&kvm_sigmask, argp,
4597 					   sizeof(kvm_sigmask)))
4598 				goto out;
4599 			r = -EINVAL;
4600 			if (kvm_sigmask.len != sizeof(sigset))
4601 				goto out;
4602 			r = -EFAULT;
4603 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4604 					   sizeof(sigset)))
4605 				goto out;
4606 			p = &sigset;
4607 		}
4608 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4609 		break;
4610 	}
4611 	case KVM_GET_FPU: {
4612 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4613 		r = -ENOMEM;
4614 		if (!fpu)
4615 			goto out;
4616 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4617 		if (r)
4618 			goto out;
4619 		r = -EFAULT;
4620 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4621 			goto out;
4622 		r = 0;
4623 		break;
4624 	}
4625 	case KVM_SET_FPU: {
4626 		fpu = memdup_user(argp, sizeof(*fpu));
4627 		if (IS_ERR(fpu)) {
4628 			r = PTR_ERR(fpu);
4629 			fpu = NULL;
4630 			goto out;
4631 		}
4632 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4633 		break;
4634 	}
4635 	case KVM_GET_STATS_FD: {
4636 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4637 		break;
4638 	}
4639 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4640 	case KVM_PRE_FAULT_MEMORY: {
4641 		struct kvm_pre_fault_memory range;
4642 
4643 		r = -EFAULT;
4644 		if (copy_from_user(&range, argp, sizeof(range)))
4645 			break;
4646 		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4647 		/* Pass back leftover range. */
4648 		if (copy_to_user(argp, &range, sizeof(range)))
4649 			r = -EFAULT;
4650 		break;
4651 	}
4652 #endif
4653 	default:
4654 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4655 	}
4656 out:
4657 	mutex_unlock(&vcpu->mutex);
4658 	kfree(fpu);
4659 	kfree(kvm_sregs);
4660 	return r;
4661 }
4662 
4663 #ifdef CONFIG_KVM_COMPAT
4664 static long kvm_vcpu_compat_ioctl(struct file *filp,
4665 				  unsigned int ioctl, unsigned long arg)
4666 {
4667 	struct kvm_vcpu *vcpu = filp->private_data;
4668 	void __user *argp = compat_ptr(arg);
4669 	int r;
4670 
4671 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4672 		return -EIO;
4673 
4674 	switch (ioctl) {
4675 	case KVM_SET_SIGNAL_MASK: {
4676 		struct kvm_signal_mask __user *sigmask_arg = argp;
4677 		struct kvm_signal_mask kvm_sigmask;
4678 		sigset_t sigset;
4679 
4680 		if (argp) {
4681 			r = -EFAULT;
4682 			if (copy_from_user(&kvm_sigmask, argp,
4683 					   sizeof(kvm_sigmask)))
4684 				goto out;
4685 			r = -EINVAL;
4686 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4687 				goto out;
4688 			r = -EFAULT;
4689 			if (get_compat_sigset(&sigset,
4690 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4691 				goto out;
4692 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4693 		} else
4694 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4695 		break;
4696 	}
4697 	default:
4698 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4699 	}
4700 
4701 out:
4702 	return r;
4703 }
4704 #endif
4705 
4706 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4707 {
4708 	struct kvm_device *dev = filp->private_data;
4709 
4710 	if (dev->ops->mmap)
4711 		return dev->ops->mmap(dev, vma);
4712 
4713 	return -ENODEV;
4714 }
4715 
4716 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4717 				 int (*accessor)(struct kvm_device *dev,
4718 						 struct kvm_device_attr *attr),
4719 				 unsigned long arg)
4720 {
4721 	struct kvm_device_attr attr;
4722 
4723 	if (!accessor)
4724 		return -EPERM;
4725 
4726 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4727 		return -EFAULT;
4728 
4729 	return accessor(dev, &attr);
4730 }
4731 
4732 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4733 			     unsigned long arg)
4734 {
4735 	struct kvm_device *dev = filp->private_data;
4736 
4737 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4738 		return -EIO;
4739 
4740 	switch (ioctl) {
4741 	case KVM_SET_DEVICE_ATTR:
4742 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4743 	case KVM_GET_DEVICE_ATTR:
4744 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4745 	case KVM_HAS_DEVICE_ATTR:
4746 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4747 	default:
4748 		if (dev->ops->ioctl)
4749 			return dev->ops->ioctl(dev, ioctl, arg);
4750 
4751 		return -ENOTTY;
4752 	}
4753 }
4754 
4755 static int kvm_device_release(struct inode *inode, struct file *filp)
4756 {
4757 	struct kvm_device *dev = filp->private_data;
4758 	struct kvm *kvm = dev->kvm;
4759 
4760 	if (dev->ops->release) {
4761 		mutex_lock(&kvm->lock);
4762 		list_del_rcu(&dev->vm_node);
4763 		synchronize_rcu();
4764 		dev->ops->release(dev);
4765 		mutex_unlock(&kvm->lock);
4766 	}
4767 
4768 	kvm_put_kvm(kvm);
4769 	return 0;
4770 }
4771 
4772 static struct file_operations kvm_device_fops = {
4773 	.unlocked_ioctl = kvm_device_ioctl,
4774 	.release = kvm_device_release,
4775 	KVM_COMPAT(kvm_device_ioctl),
4776 	.mmap = kvm_device_mmap,
4777 };
4778 
4779 struct kvm_device *kvm_device_from_filp(struct file *filp)
4780 {
4781 	if (filp->f_op != &kvm_device_fops)
4782 		return NULL;
4783 
4784 	return filp->private_data;
4785 }
4786 
4787 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4788 #ifdef CONFIG_KVM_MPIC
4789 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4790 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4791 #endif
4792 };
4793 
4794 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4795 {
4796 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4797 		return -ENOSPC;
4798 
4799 	if (kvm_device_ops_table[type] != NULL)
4800 		return -EEXIST;
4801 
4802 	kvm_device_ops_table[type] = ops;
4803 	return 0;
4804 }
4805 
4806 void kvm_unregister_device_ops(u32 type)
4807 {
4808 	if (kvm_device_ops_table[type] != NULL)
4809 		kvm_device_ops_table[type] = NULL;
4810 }
4811 
4812 static int kvm_ioctl_create_device(struct kvm *kvm,
4813 				   struct kvm_create_device *cd)
4814 {
4815 	const struct kvm_device_ops *ops;
4816 	struct kvm_device *dev;
4817 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4818 	int type;
4819 	int ret;
4820 
4821 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4822 		return -ENODEV;
4823 
4824 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4825 	ops = kvm_device_ops_table[type];
4826 	if (ops == NULL)
4827 		return -ENODEV;
4828 
4829 	if (test)
4830 		return 0;
4831 
4832 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4833 	if (!dev)
4834 		return -ENOMEM;
4835 
4836 	dev->ops = ops;
4837 	dev->kvm = kvm;
4838 
4839 	mutex_lock(&kvm->lock);
4840 	ret = ops->create(dev, type);
4841 	if (ret < 0) {
4842 		mutex_unlock(&kvm->lock);
4843 		kfree(dev);
4844 		return ret;
4845 	}
4846 	list_add_rcu(&dev->vm_node, &kvm->devices);
4847 	mutex_unlock(&kvm->lock);
4848 
4849 	if (ops->init)
4850 		ops->init(dev);
4851 
4852 	kvm_get_kvm(kvm);
4853 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4854 	if (ret < 0) {
4855 		kvm_put_kvm_no_destroy(kvm);
4856 		mutex_lock(&kvm->lock);
4857 		list_del_rcu(&dev->vm_node);
4858 		synchronize_rcu();
4859 		if (ops->release)
4860 			ops->release(dev);
4861 		mutex_unlock(&kvm->lock);
4862 		if (ops->destroy)
4863 			ops->destroy(dev);
4864 		return ret;
4865 	}
4866 
4867 	cd->fd = ret;
4868 	return 0;
4869 }
4870 
4871 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4872 {
4873 	switch (arg) {
4874 	case KVM_CAP_USER_MEMORY:
4875 	case KVM_CAP_USER_MEMORY2:
4876 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4877 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4878 	case KVM_CAP_INTERNAL_ERROR_DATA:
4879 #ifdef CONFIG_HAVE_KVM_MSI
4880 	case KVM_CAP_SIGNAL_MSI:
4881 #endif
4882 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4883 	case KVM_CAP_IRQFD:
4884 #endif
4885 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4886 	case KVM_CAP_CHECK_EXTENSION_VM:
4887 	case KVM_CAP_ENABLE_CAP_VM:
4888 	case KVM_CAP_HALT_POLL:
4889 		return 1;
4890 #ifdef CONFIG_KVM_MMIO
4891 	case KVM_CAP_COALESCED_MMIO:
4892 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4893 	case KVM_CAP_COALESCED_PIO:
4894 		return 1;
4895 #endif
4896 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4897 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4898 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4899 #endif
4900 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4901 	case KVM_CAP_IRQ_ROUTING:
4902 		return KVM_MAX_IRQ_ROUTES;
4903 #endif
4904 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4905 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4906 		if (kvm)
4907 			return kvm_arch_nr_memslot_as_ids(kvm);
4908 		return KVM_MAX_NR_ADDRESS_SPACES;
4909 #endif
4910 	case KVM_CAP_NR_MEMSLOTS:
4911 		return KVM_USER_MEM_SLOTS;
4912 	case KVM_CAP_DIRTY_LOG_RING:
4913 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4914 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4915 #else
4916 		return 0;
4917 #endif
4918 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4920 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4921 #else
4922 		return 0;
4923 #endif
4924 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4925 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4926 #endif
4927 	case KVM_CAP_BINARY_STATS_FD:
4928 	case KVM_CAP_SYSTEM_EVENT_DATA:
4929 	case KVM_CAP_DEVICE_CTRL:
4930 		return 1;
4931 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4932 	case KVM_CAP_MEMORY_ATTRIBUTES:
4933 		return kvm_supported_mem_attributes(kvm);
4934 #endif
4935 #ifdef CONFIG_KVM_PRIVATE_MEM
4936 	case KVM_CAP_GUEST_MEMFD:
4937 		return !kvm || kvm_arch_has_private_mem(kvm);
4938 #endif
4939 	default:
4940 		break;
4941 	}
4942 	return kvm_vm_ioctl_check_extension(kvm, arg);
4943 }
4944 
4945 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4946 {
4947 	int r;
4948 
4949 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4950 		return -EINVAL;
4951 
4952 	/* the size should be power of 2 */
4953 	if (!size || (size & (size - 1)))
4954 		return -EINVAL;
4955 
4956 	/* Should be bigger to keep the reserved entries, or a page */
4957 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4958 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4959 		return -EINVAL;
4960 
4961 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4962 	    sizeof(struct kvm_dirty_gfn))
4963 		return -E2BIG;
4964 
4965 	/* We only allow it to set once */
4966 	if (kvm->dirty_ring_size)
4967 		return -EINVAL;
4968 
4969 	mutex_lock(&kvm->lock);
4970 
4971 	if (kvm->created_vcpus) {
4972 		/* We don't allow to change this value after vcpu created */
4973 		r = -EINVAL;
4974 	} else {
4975 		kvm->dirty_ring_size = size;
4976 		r = 0;
4977 	}
4978 
4979 	mutex_unlock(&kvm->lock);
4980 	return r;
4981 }
4982 
4983 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4984 {
4985 	unsigned long i;
4986 	struct kvm_vcpu *vcpu;
4987 	int cleared = 0;
4988 
4989 	if (!kvm->dirty_ring_size)
4990 		return -EINVAL;
4991 
4992 	mutex_lock(&kvm->slots_lock);
4993 
4994 	kvm_for_each_vcpu(i, vcpu, kvm)
4995 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4996 
4997 	mutex_unlock(&kvm->slots_lock);
4998 
4999 	if (cleared)
5000 		kvm_flush_remote_tlbs(kvm);
5001 
5002 	return cleared;
5003 }
5004 
5005 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5006 						  struct kvm_enable_cap *cap)
5007 {
5008 	return -EINVAL;
5009 }
5010 
5011 bool kvm_are_all_memslots_empty(struct kvm *kvm)
5012 {
5013 	int i;
5014 
5015 	lockdep_assert_held(&kvm->slots_lock);
5016 
5017 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5018 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5019 			return false;
5020 	}
5021 
5022 	return true;
5023 }
5024 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5025 
5026 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5027 					   struct kvm_enable_cap *cap)
5028 {
5029 	switch (cap->cap) {
5030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5031 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5032 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5033 
5034 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5035 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5036 
5037 		if (cap->flags || (cap->args[0] & ~allowed_options))
5038 			return -EINVAL;
5039 		kvm->manual_dirty_log_protect = cap->args[0];
5040 		return 0;
5041 	}
5042 #endif
5043 	case KVM_CAP_HALT_POLL: {
5044 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5045 			return -EINVAL;
5046 
5047 		kvm->max_halt_poll_ns = cap->args[0];
5048 
5049 		/*
5050 		 * Ensure kvm->override_halt_poll_ns does not become visible
5051 		 * before kvm->max_halt_poll_ns.
5052 		 *
5053 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5054 		 */
5055 		smp_wmb();
5056 		kvm->override_halt_poll_ns = true;
5057 
5058 		return 0;
5059 	}
5060 	case KVM_CAP_DIRTY_LOG_RING:
5061 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5062 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5063 			return -EINVAL;
5064 
5065 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5066 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5067 		int r = -EINVAL;
5068 
5069 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5070 		    !kvm->dirty_ring_size || cap->flags)
5071 			return r;
5072 
5073 		mutex_lock(&kvm->slots_lock);
5074 
5075 		/*
5076 		 * For simplicity, allow enabling ring+bitmap if and only if
5077 		 * there are no memslots, e.g. to ensure all memslots allocate
5078 		 * a bitmap after the capability is enabled.
5079 		 */
5080 		if (kvm_are_all_memslots_empty(kvm)) {
5081 			kvm->dirty_ring_with_bitmap = true;
5082 			r = 0;
5083 		}
5084 
5085 		mutex_unlock(&kvm->slots_lock);
5086 
5087 		return r;
5088 	}
5089 	default:
5090 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5091 	}
5092 }
5093 
5094 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5095 			      size_t size, loff_t *offset)
5096 {
5097 	struct kvm *kvm = file->private_data;
5098 
5099 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5100 				&kvm_vm_stats_desc[0], &kvm->stat,
5101 				sizeof(kvm->stat), user_buffer, size, offset);
5102 }
5103 
5104 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5105 {
5106 	struct kvm *kvm = file->private_data;
5107 
5108 	kvm_put_kvm(kvm);
5109 	return 0;
5110 }
5111 
5112 static const struct file_operations kvm_vm_stats_fops = {
5113 	.owner = THIS_MODULE,
5114 	.read = kvm_vm_stats_read,
5115 	.release = kvm_vm_stats_release,
5116 	.llseek = noop_llseek,
5117 };
5118 
5119 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5120 {
5121 	int fd;
5122 	struct file *file;
5123 
5124 	fd = get_unused_fd_flags(O_CLOEXEC);
5125 	if (fd < 0)
5126 		return fd;
5127 
5128 	file = anon_inode_getfile("kvm-vm-stats",
5129 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5130 	if (IS_ERR(file)) {
5131 		put_unused_fd(fd);
5132 		return PTR_ERR(file);
5133 	}
5134 
5135 	kvm_get_kvm(kvm);
5136 
5137 	file->f_mode |= FMODE_PREAD;
5138 	fd_install(fd, file);
5139 
5140 	return fd;
5141 }
5142 
5143 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5144 do {										\
5145 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5146 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5147 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5148 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5149 } while (0)
5150 
5151 static long kvm_vm_ioctl(struct file *filp,
5152 			   unsigned int ioctl, unsigned long arg)
5153 {
5154 	struct kvm *kvm = filp->private_data;
5155 	void __user *argp = (void __user *)arg;
5156 	int r;
5157 
5158 	if (kvm->mm != current->mm || kvm->vm_dead)
5159 		return -EIO;
5160 	switch (ioctl) {
5161 	case KVM_CREATE_VCPU:
5162 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5163 		break;
5164 	case KVM_ENABLE_CAP: {
5165 		struct kvm_enable_cap cap;
5166 
5167 		r = -EFAULT;
5168 		if (copy_from_user(&cap, argp, sizeof(cap)))
5169 			goto out;
5170 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5171 		break;
5172 	}
5173 	case KVM_SET_USER_MEMORY_REGION2:
5174 	case KVM_SET_USER_MEMORY_REGION: {
5175 		struct kvm_userspace_memory_region2 mem;
5176 		unsigned long size;
5177 
5178 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5179 			/*
5180 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5181 			 * accessed, but avoid leaking kernel memory in case of a bug.
5182 			 */
5183 			memset(&mem, 0, sizeof(mem));
5184 			size = sizeof(struct kvm_userspace_memory_region);
5185 		} else {
5186 			size = sizeof(struct kvm_userspace_memory_region2);
5187 		}
5188 
5189 		/* Ensure the common parts of the two structs are identical. */
5190 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5191 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5192 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5193 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5194 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5195 
5196 		r = -EFAULT;
5197 		if (copy_from_user(&mem, argp, size))
5198 			goto out;
5199 
5200 		r = -EINVAL;
5201 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5202 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5203 			goto out;
5204 
5205 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5206 		break;
5207 	}
5208 	case KVM_GET_DIRTY_LOG: {
5209 		struct kvm_dirty_log log;
5210 
5211 		r = -EFAULT;
5212 		if (copy_from_user(&log, argp, sizeof(log)))
5213 			goto out;
5214 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5215 		break;
5216 	}
5217 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5218 	case KVM_CLEAR_DIRTY_LOG: {
5219 		struct kvm_clear_dirty_log log;
5220 
5221 		r = -EFAULT;
5222 		if (copy_from_user(&log, argp, sizeof(log)))
5223 			goto out;
5224 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5225 		break;
5226 	}
5227 #endif
5228 #ifdef CONFIG_KVM_MMIO
5229 	case KVM_REGISTER_COALESCED_MMIO: {
5230 		struct kvm_coalesced_mmio_zone zone;
5231 
5232 		r = -EFAULT;
5233 		if (copy_from_user(&zone, argp, sizeof(zone)))
5234 			goto out;
5235 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5236 		break;
5237 	}
5238 	case KVM_UNREGISTER_COALESCED_MMIO: {
5239 		struct kvm_coalesced_mmio_zone zone;
5240 
5241 		r = -EFAULT;
5242 		if (copy_from_user(&zone, argp, sizeof(zone)))
5243 			goto out;
5244 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5245 		break;
5246 	}
5247 #endif
5248 	case KVM_IRQFD: {
5249 		struct kvm_irqfd data;
5250 
5251 		r = -EFAULT;
5252 		if (copy_from_user(&data, argp, sizeof(data)))
5253 			goto out;
5254 		r = kvm_irqfd(kvm, &data);
5255 		break;
5256 	}
5257 	case KVM_IOEVENTFD: {
5258 		struct kvm_ioeventfd data;
5259 
5260 		r = -EFAULT;
5261 		if (copy_from_user(&data, argp, sizeof(data)))
5262 			goto out;
5263 		r = kvm_ioeventfd(kvm, &data);
5264 		break;
5265 	}
5266 #ifdef CONFIG_HAVE_KVM_MSI
5267 	case KVM_SIGNAL_MSI: {
5268 		struct kvm_msi msi;
5269 
5270 		r = -EFAULT;
5271 		if (copy_from_user(&msi, argp, sizeof(msi)))
5272 			goto out;
5273 		r = kvm_send_userspace_msi(kvm, &msi);
5274 		break;
5275 	}
5276 #endif
5277 #ifdef __KVM_HAVE_IRQ_LINE
5278 	case KVM_IRQ_LINE_STATUS:
5279 	case KVM_IRQ_LINE: {
5280 		struct kvm_irq_level irq_event;
5281 
5282 		r = -EFAULT;
5283 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5284 			goto out;
5285 
5286 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5287 					ioctl == KVM_IRQ_LINE_STATUS);
5288 		if (r)
5289 			goto out;
5290 
5291 		r = -EFAULT;
5292 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5293 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5294 				goto out;
5295 		}
5296 
5297 		r = 0;
5298 		break;
5299 	}
5300 #endif
5301 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5302 	case KVM_SET_GSI_ROUTING: {
5303 		struct kvm_irq_routing routing;
5304 		struct kvm_irq_routing __user *urouting;
5305 		struct kvm_irq_routing_entry *entries = NULL;
5306 
5307 		r = -EFAULT;
5308 		if (copy_from_user(&routing, argp, sizeof(routing)))
5309 			goto out;
5310 		r = -EINVAL;
5311 		if (!kvm_arch_can_set_irq_routing(kvm))
5312 			goto out;
5313 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5314 			goto out;
5315 		if (routing.flags)
5316 			goto out;
5317 		if (routing.nr) {
5318 			urouting = argp;
5319 			entries = vmemdup_array_user(urouting->entries,
5320 						     routing.nr, sizeof(*entries));
5321 			if (IS_ERR(entries)) {
5322 				r = PTR_ERR(entries);
5323 				goto out;
5324 			}
5325 		}
5326 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5327 					routing.flags);
5328 		kvfree(entries);
5329 		break;
5330 	}
5331 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5332 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5333 	case KVM_SET_MEMORY_ATTRIBUTES: {
5334 		struct kvm_memory_attributes attrs;
5335 
5336 		r = -EFAULT;
5337 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5338 			goto out;
5339 
5340 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5341 		break;
5342 	}
5343 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5344 	case KVM_CREATE_DEVICE: {
5345 		struct kvm_create_device cd;
5346 
5347 		r = -EFAULT;
5348 		if (copy_from_user(&cd, argp, sizeof(cd)))
5349 			goto out;
5350 
5351 		r = kvm_ioctl_create_device(kvm, &cd);
5352 		if (r)
5353 			goto out;
5354 
5355 		r = -EFAULT;
5356 		if (copy_to_user(argp, &cd, sizeof(cd)))
5357 			goto out;
5358 
5359 		r = 0;
5360 		break;
5361 	}
5362 	case KVM_CHECK_EXTENSION:
5363 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5364 		break;
5365 	case KVM_RESET_DIRTY_RINGS:
5366 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5367 		break;
5368 	case KVM_GET_STATS_FD:
5369 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5370 		break;
5371 #ifdef CONFIG_KVM_PRIVATE_MEM
5372 	case KVM_CREATE_GUEST_MEMFD: {
5373 		struct kvm_create_guest_memfd guest_memfd;
5374 
5375 		r = -EFAULT;
5376 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5377 			goto out;
5378 
5379 		r = kvm_gmem_create(kvm, &guest_memfd);
5380 		break;
5381 	}
5382 #endif
5383 	default:
5384 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5385 	}
5386 out:
5387 	return r;
5388 }
5389 
5390 #ifdef CONFIG_KVM_COMPAT
5391 struct compat_kvm_dirty_log {
5392 	__u32 slot;
5393 	__u32 padding1;
5394 	union {
5395 		compat_uptr_t dirty_bitmap; /* one bit per page */
5396 		__u64 padding2;
5397 	};
5398 };
5399 
5400 struct compat_kvm_clear_dirty_log {
5401 	__u32 slot;
5402 	__u32 num_pages;
5403 	__u64 first_page;
5404 	union {
5405 		compat_uptr_t dirty_bitmap; /* one bit per page */
5406 		__u64 padding2;
5407 	};
5408 };
5409 
5410 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5411 				     unsigned long arg)
5412 {
5413 	return -ENOTTY;
5414 }
5415 
5416 static long kvm_vm_compat_ioctl(struct file *filp,
5417 			   unsigned int ioctl, unsigned long arg)
5418 {
5419 	struct kvm *kvm = filp->private_data;
5420 	int r;
5421 
5422 	if (kvm->mm != current->mm || kvm->vm_dead)
5423 		return -EIO;
5424 
5425 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5426 	if (r != -ENOTTY)
5427 		return r;
5428 
5429 	switch (ioctl) {
5430 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5431 	case KVM_CLEAR_DIRTY_LOG: {
5432 		struct compat_kvm_clear_dirty_log compat_log;
5433 		struct kvm_clear_dirty_log log;
5434 
5435 		if (copy_from_user(&compat_log, (void __user *)arg,
5436 				   sizeof(compat_log)))
5437 			return -EFAULT;
5438 		log.slot	 = compat_log.slot;
5439 		log.num_pages	 = compat_log.num_pages;
5440 		log.first_page	 = compat_log.first_page;
5441 		log.padding2	 = compat_log.padding2;
5442 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5443 
5444 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5445 		break;
5446 	}
5447 #endif
5448 	case KVM_GET_DIRTY_LOG: {
5449 		struct compat_kvm_dirty_log compat_log;
5450 		struct kvm_dirty_log log;
5451 
5452 		if (copy_from_user(&compat_log, (void __user *)arg,
5453 				   sizeof(compat_log)))
5454 			return -EFAULT;
5455 		log.slot	 = compat_log.slot;
5456 		log.padding1	 = compat_log.padding1;
5457 		log.padding2	 = compat_log.padding2;
5458 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5459 
5460 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5461 		break;
5462 	}
5463 	default:
5464 		r = kvm_vm_ioctl(filp, ioctl, arg);
5465 	}
5466 	return r;
5467 }
5468 #endif
5469 
5470 static struct file_operations kvm_vm_fops = {
5471 	.release        = kvm_vm_release,
5472 	.unlocked_ioctl = kvm_vm_ioctl,
5473 	.llseek		= noop_llseek,
5474 	KVM_COMPAT(kvm_vm_compat_ioctl),
5475 };
5476 
5477 bool file_is_kvm(struct file *file)
5478 {
5479 	return file && file->f_op == &kvm_vm_fops;
5480 }
5481 EXPORT_SYMBOL_GPL(file_is_kvm);
5482 
5483 static int kvm_dev_ioctl_create_vm(unsigned long type)
5484 {
5485 	char fdname[ITOA_MAX_LEN + 1];
5486 	int r, fd;
5487 	struct kvm *kvm;
5488 	struct file *file;
5489 
5490 	fd = get_unused_fd_flags(O_CLOEXEC);
5491 	if (fd < 0)
5492 		return fd;
5493 
5494 	snprintf(fdname, sizeof(fdname), "%d", fd);
5495 
5496 	kvm = kvm_create_vm(type, fdname);
5497 	if (IS_ERR(kvm)) {
5498 		r = PTR_ERR(kvm);
5499 		goto put_fd;
5500 	}
5501 
5502 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5503 	if (IS_ERR(file)) {
5504 		r = PTR_ERR(file);
5505 		goto put_kvm;
5506 	}
5507 
5508 	/*
5509 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5510 	 * already set, with ->release() being kvm_vm_release().  In error
5511 	 * cases it will be called by the final fput(file) and will take
5512 	 * care of doing kvm_put_kvm(kvm).
5513 	 */
5514 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5515 
5516 	fd_install(fd, file);
5517 	return fd;
5518 
5519 put_kvm:
5520 	kvm_put_kvm(kvm);
5521 put_fd:
5522 	put_unused_fd(fd);
5523 	return r;
5524 }
5525 
5526 static long kvm_dev_ioctl(struct file *filp,
5527 			  unsigned int ioctl, unsigned long arg)
5528 {
5529 	int r = -EINVAL;
5530 
5531 	switch (ioctl) {
5532 	case KVM_GET_API_VERSION:
5533 		if (arg)
5534 			goto out;
5535 		r = KVM_API_VERSION;
5536 		break;
5537 	case KVM_CREATE_VM:
5538 		r = kvm_dev_ioctl_create_vm(arg);
5539 		break;
5540 	case KVM_CHECK_EXTENSION:
5541 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5542 		break;
5543 	case KVM_GET_VCPU_MMAP_SIZE:
5544 		if (arg)
5545 			goto out;
5546 		r = PAGE_SIZE;     /* struct kvm_run */
5547 #ifdef CONFIG_X86
5548 		r += PAGE_SIZE;    /* pio data page */
5549 #endif
5550 #ifdef CONFIG_KVM_MMIO
5551 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5552 #endif
5553 		break;
5554 	default:
5555 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5556 	}
5557 out:
5558 	return r;
5559 }
5560 
5561 static struct file_operations kvm_chardev_ops = {
5562 	.unlocked_ioctl = kvm_dev_ioctl,
5563 	.llseek		= noop_llseek,
5564 	KVM_COMPAT(kvm_dev_ioctl),
5565 };
5566 
5567 static struct miscdevice kvm_dev = {
5568 	KVM_MINOR,
5569 	"kvm",
5570 	&kvm_chardev_ops,
5571 };
5572 
5573 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5574 __visible bool kvm_rebooting;
5575 EXPORT_SYMBOL_GPL(kvm_rebooting);
5576 
5577 static DEFINE_PER_CPU(bool, hardware_enabled);
5578 static int kvm_usage_count;
5579 
5580 static int __hardware_enable_nolock(void)
5581 {
5582 	if (__this_cpu_read(hardware_enabled))
5583 		return 0;
5584 
5585 	if (kvm_arch_hardware_enable()) {
5586 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5587 			raw_smp_processor_id());
5588 		return -EIO;
5589 	}
5590 
5591 	__this_cpu_write(hardware_enabled, true);
5592 	return 0;
5593 }
5594 
5595 static void hardware_enable_nolock(void *failed)
5596 {
5597 	if (__hardware_enable_nolock())
5598 		atomic_inc(failed);
5599 }
5600 
5601 static int kvm_online_cpu(unsigned int cpu)
5602 {
5603 	int ret = 0;
5604 
5605 	/*
5606 	 * Abort the CPU online process if hardware virtualization cannot
5607 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5608 	 * errors when scheduled to this CPU.
5609 	 */
5610 	mutex_lock(&kvm_lock);
5611 	if (kvm_usage_count)
5612 		ret = __hardware_enable_nolock();
5613 	mutex_unlock(&kvm_lock);
5614 	return ret;
5615 }
5616 
5617 static void hardware_disable_nolock(void *junk)
5618 {
5619 	/*
5620 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5621 	 * hardware, not just CPUs that successfully enabled hardware!
5622 	 */
5623 	if (!__this_cpu_read(hardware_enabled))
5624 		return;
5625 
5626 	kvm_arch_hardware_disable();
5627 
5628 	__this_cpu_write(hardware_enabled, false);
5629 }
5630 
5631 static int kvm_offline_cpu(unsigned int cpu)
5632 {
5633 	mutex_lock(&kvm_lock);
5634 	if (kvm_usage_count)
5635 		hardware_disable_nolock(NULL);
5636 	mutex_unlock(&kvm_lock);
5637 	return 0;
5638 }
5639 
5640 static void hardware_disable_all_nolock(void)
5641 {
5642 	BUG_ON(!kvm_usage_count);
5643 
5644 	kvm_usage_count--;
5645 	if (!kvm_usage_count)
5646 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5647 }
5648 
5649 static void hardware_disable_all(void)
5650 {
5651 	cpus_read_lock();
5652 	mutex_lock(&kvm_lock);
5653 	hardware_disable_all_nolock();
5654 	mutex_unlock(&kvm_lock);
5655 	cpus_read_unlock();
5656 }
5657 
5658 static int hardware_enable_all(void)
5659 {
5660 	atomic_t failed = ATOMIC_INIT(0);
5661 	int r;
5662 
5663 	/*
5664 	 * Do not enable hardware virtualization if the system is going down.
5665 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5666 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5667 	 * after kvm_reboot() is called.  Note, this relies on system_state
5668 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5669 	 * hook instead of registering a dedicated reboot notifier (the latter
5670 	 * runs before system_state is updated).
5671 	 */
5672 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5673 	    system_state == SYSTEM_RESTART)
5674 		return -EBUSY;
5675 
5676 	/*
5677 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5678 	 * is called, and so on_each_cpu() between them includes the CPU that
5679 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5680 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5681 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5682 	 * enable hardware multiple times.
5683 	 */
5684 	cpus_read_lock();
5685 	mutex_lock(&kvm_lock);
5686 
5687 	r = 0;
5688 
5689 	kvm_usage_count++;
5690 	if (kvm_usage_count == 1) {
5691 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5692 
5693 		if (atomic_read(&failed)) {
5694 			hardware_disable_all_nolock();
5695 			r = -EBUSY;
5696 		}
5697 	}
5698 
5699 	mutex_unlock(&kvm_lock);
5700 	cpus_read_unlock();
5701 
5702 	return r;
5703 }
5704 
5705 static void kvm_shutdown(void)
5706 {
5707 	/*
5708 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5709 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5710 	 * that relevant errors and exceptions aren't entirely unexpected.
5711 	 * Some flavors of hardware virtualization need to be disabled before
5712 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5713 	 * on x86, virtualization can block INIT interrupts, which are used by
5714 	 * firmware to pull APs back under firmware control.  Note, this path
5715 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5716 	 * 100% comprehensive.
5717 	 */
5718 	pr_info("kvm: exiting hardware virtualization\n");
5719 	kvm_rebooting = true;
5720 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5721 }
5722 
5723 static int kvm_suspend(void)
5724 {
5725 	/*
5726 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5727 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5728 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5729 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5730 	 * can be preempted, but the task cannot be frozen until it has dropped
5731 	 * all locks (userspace tasks are frozen via a fake signal).
5732 	 */
5733 	lockdep_assert_not_held(&kvm_lock);
5734 	lockdep_assert_irqs_disabled();
5735 
5736 	if (kvm_usage_count)
5737 		hardware_disable_nolock(NULL);
5738 	return 0;
5739 }
5740 
5741 static void kvm_resume(void)
5742 {
5743 	lockdep_assert_not_held(&kvm_lock);
5744 	lockdep_assert_irqs_disabled();
5745 
5746 	if (kvm_usage_count)
5747 		WARN_ON_ONCE(__hardware_enable_nolock());
5748 }
5749 
5750 static struct syscore_ops kvm_syscore_ops = {
5751 	.suspend = kvm_suspend,
5752 	.resume = kvm_resume,
5753 	.shutdown = kvm_shutdown,
5754 };
5755 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5756 static int hardware_enable_all(void)
5757 {
5758 	return 0;
5759 }
5760 
5761 static void hardware_disable_all(void)
5762 {
5763 
5764 }
5765 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5766 
5767 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5768 {
5769 	if (dev->ops->destructor)
5770 		dev->ops->destructor(dev);
5771 }
5772 
5773 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5774 {
5775 	int i;
5776 
5777 	for (i = 0; i < bus->dev_count; i++) {
5778 		struct kvm_io_device *pos = bus->range[i].dev;
5779 
5780 		kvm_iodevice_destructor(pos);
5781 	}
5782 	kfree(bus);
5783 }
5784 
5785 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5786 				 const struct kvm_io_range *r2)
5787 {
5788 	gpa_t addr1 = r1->addr;
5789 	gpa_t addr2 = r2->addr;
5790 
5791 	if (addr1 < addr2)
5792 		return -1;
5793 
5794 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5795 	 * accept any overlapping write.  Any order is acceptable for
5796 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5797 	 * we process all of them.
5798 	 */
5799 	if (r2->len) {
5800 		addr1 += r1->len;
5801 		addr2 += r2->len;
5802 	}
5803 
5804 	if (addr1 > addr2)
5805 		return 1;
5806 
5807 	return 0;
5808 }
5809 
5810 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5811 {
5812 	return kvm_io_bus_cmp(p1, p2);
5813 }
5814 
5815 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5816 			     gpa_t addr, int len)
5817 {
5818 	struct kvm_io_range *range, key;
5819 	int off;
5820 
5821 	key = (struct kvm_io_range) {
5822 		.addr = addr,
5823 		.len = len,
5824 	};
5825 
5826 	range = bsearch(&key, bus->range, bus->dev_count,
5827 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5828 	if (range == NULL)
5829 		return -ENOENT;
5830 
5831 	off = range - bus->range;
5832 
5833 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5834 		off--;
5835 
5836 	return off;
5837 }
5838 
5839 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5840 			      struct kvm_io_range *range, const void *val)
5841 {
5842 	int idx;
5843 
5844 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5845 	if (idx < 0)
5846 		return -EOPNOTSUPP;
5847 
5848 	while (idx < bus->dev_count &&
5849 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5850 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5851 					range->len, val))
5852 			return idx;
5853 		idx++;
5854 	}
5855 
5856 	return -EOPNOTSUPP;
5857 }
5858 
5859 /* kvm_io_bus_write - called under kvm->slots_lock */
5860 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5861 		     int len, const void *val)
5862 {
5863 	struct kvm_io_bus *bus;
5864 	struct kvm_io_range range;
5865 	int r;
5866 
5867 	range = (struct kvm_io_range) {
5868 		.addr = addr,
5869 		.len = len,
5870 	};
5871 
5872 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5873 	if (!bus)
5874 		return -ENOMEM;
5875 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5876 	return r < 0 ? r : 0;
5877 }
5878 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5879 
5880 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5881 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5882 			    gpa_t addr, int len, const void *val, long cookie)
5883 {
5884 	struct kvm_io_bus *bus;
5885 	struct kvm_io_range range;
5886 
5887 	range = (struct kvm_io_range) {
5888 		.addr = addr,
5889 		.len = len,
5890 	};
5891 
5892 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5893 	if (!bus)
5894 		return -ENOMEM;
5895 
5896 	/* First try the device referenced by cookie. */
5897 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5898 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5899 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5900 					val))
5901 			return cookie;
5902 
5903 	/*
5904 	 * cookie contained garbage; fall back to search and return the
5905 	 * correct cookie value.
5906 	 */
5907 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5908 }
5909 
5910 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5911 			     struct kvm_io_range *range, void *val)
5912 {
5913 	int idx;
5914 
5915 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5916 	if (idx < 0)
5917 		return -EOPNOTSUPP;
5918 
5919 	while (idx < bus->dev_count &&
5920 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5921 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5922 				       range->len, val))
5923 			return idx;
5924 		idx++;
5925 	}
5926 
5927 	return -EOPNOTSUPP;
5928 }
5929 
5930 /* kvm_io_bus_read - called under kvm->slots_lock */
5931 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5932 		    int len, void *val)
5933 {
5934 	struct kvm_io_bus *bus;
5935 	struct kvm_io_range range;
5936 	int r;
5937 
5938 	range = (struct kvm_io_range) {
5939 		.addr = addr,
5940 		.len = len,
5941 	};
5942 
5943 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5944 	if (!bus)
5945 		return -ENOMEM;
5946 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5947 	return r < 0 ? r : 0;
5948 }
5949 
5950 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5951 			    int len, struct kvm_io_device *dev)
5952 {
5953 	int i;
5954 	struct kvm_io_bus *new_bus, *bus;
5955 	struct kvm_io_range range;
5956 
5957 	lockdep_assert_held(&kvm->slots_lock);
5958 
5959 	bus = kvm_get_bus(kvm, bus_idx);
5960 	if (!bus)
5961 		return -ENOMEM;
5962 
5963 	/* exclude ioeventfd which is limited by maximum fd */
5964 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5965 		return -ENOSPC;
5966 
5967 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5968 			  GFP_KERNEL_ACCOUNT);
5969 	if (!new_bus)
5970 		return -ENOMEM;
5971 
5972 	range = (struct kvm_io_range) {
5973 		.addr = addr,
5974 		.len = len,
5975 		.dev = dev,
5976 	};
5977 
5978 	for (i = 0; i < bus->dev_count; i++)
5979 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5980 			break;
5981 
5982 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5983 	new_bus->dev_count++;
5984 	new_bus->range[i] = range;
5985 	memcpy(new_bus->range + i + 1, bus->range + i,
5986 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5987 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5988 	synchronize_srcu_expedited(&kvm->srcu);
5989 	kfree(bus);
5990 
5991 	return 0;
5992 }
5993 
5994 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5995 			      struct kvm_io_device *dev)
5996 {
5997 	int i;
5998 	struct kvm_io_bus *new_bus, *bus;
5999 
6000 	lockdep_assert_held(&kvm->slots_lock);
6001 
6002 	bus = kvm_get_bus(kvm, bus_idx);
6003 	if (!bus)
6004 		return 0;
6005 
6006 	for (i = 0; i < bus->dev_count; i++) {
6007 		if (bus->range[i].dev == dev) {
6008 			break;
6009 		}
6010 	}
6011 
6012 	if (i == bus->dev_count)
6013 		return 0;
6014 
6015 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6016 			  GFP_KERNEL_ACCOUNT);
6017 	if (new_bus) {
6018 		memcpy(new_bus, bus, struct_size(bus, range, i));
6019 		new_bus->dev_count--;
6020 		memcpy(new_bus->range + i, bus->range + i + 1,
6021 				flex_array_size(new_bus, range, new_bus->dev_count - i));
6022 	}
6023 
6024 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6025 	synchronize_srcu_expedited(&kvm->srcu);
6026 
6027 	/*
6028 	 * If NULL bus is installed, destroy the old bus, including all the
6029 	 * attached devices. Otherwise, destroy the caller's device only.
6030 	 */
6031 	if (!new_bus) {
6032 		pr_err("kvm: failed to shrink bus, removing it completely\n");
6033 		kvm_io_bus_destroy(bus);
6034 		return -ENOMEM;
6035 	}
6036 
6037 	kvm_iodevice_destructor(dev);
6038 	kfree(bus);
6039 	return 0;
6040 }
6041 
6042 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6043 					 gpa_t addr)
6044 {
6045 	struct kvm_io_bus *bus;
6046 	int dev_idx, srcu_idx;
6047 	struct kvm_io_device *iodev = NULL;
6048 
6049 	srcu_idx = srcu_read_lock(&kvm->srcu);
6050 
6051 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6052 	if (!bus)
6053 		goto out_unlock;
6054 
6055 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6056 	if (dev_idx < 0)
6057 		goto out_unlock;
6058 
6059 	iodev = bus->range[dev_idx].dev;
6060 
6061 out_unlock:
6062 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6063 
6064 	return iodev;
6065 }
6066 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6067 
6068 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6069 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6070 			   const char *fmt)
6071 {
6072 	int ret;
6073 	struct kvm_stat_data *stat_data = inode->i_private;
6074 
6075 	/*
6076 	 * The debugfs files are a reference to the kvm struct which
6077         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6078         * avoids the race between open and the removal of the debugfs directory.
6079 	 */
6080 	if (!kvm_get_kvm_safe(stat_data->kvm))
6081 		return -ENOENT;
6082 
6083 	ret = simple_attr_open(inode, file, get,
6084 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6085 			       ? set : NULL, fmt);
6086 	if (ret)
6087 		kvm_put_kvm(stat_data->kvm);
6088 
6089 	return ret;
6090 }
6091 
6092 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6093 {
6094 	struct kvm_stat_data *stat_data = inode->i_private;
6095 
6096 	simple_attr_release(inode, file);
6097 	kvm_put_kvm(stat_data->kvm);
6098 
6099 	return 0;
6100 }
6101 
6102 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6103 {
6104 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6105 
6106 	return 0;
6107 }
6108 
6109 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6110 {
6111 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6112 
6113 	return 0;
6114 }
6115 
6116 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6117 {
6118 	unsigned long i;
6119 	struct kvm_vcpu *vcpu;
6120 
6121 	*val = 0;
6122 
6123 	kvm_for_each_vcpu(i, vcpu, kvm)
6124 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6125 
6126 	return 0;
6127 }
6128 
6129 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6130 {
6131 	unsigned long i;
6132 	struct kvm_vcpu *vcpu;
6133 
6134 	kvm_for_each_vcpu(i, vcpu, kvm)
6135 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6136 
6137 	return 0;
6138 }
6139 
6140 static int kvm_stat_data_get(void *data, u64 *val)
6141 {
6142 	int r = -EFAULT;
6143 	struct kvm_stat_data *stat_data = data;
6144 
6145 	switch (stat_data->kind) {
6146 	case KVM_STAT_VM:
6147 		r = kvm_get_stat_per_vm(stat_data->kvm,
6148 					stat_data->desc->desc.offset, val);
6149 		break;
6150 	case KVM_STAT_VCPU:
6151 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6152 					  stat_data->desc->desc.offset, val);
6153 		break;
6154 	}
6155 
6156 	return r;
6157 }
6158 
6159 static int kvm_stat_data_clear(void *data, u64 val)
6160 {
6161 	int r = -EFAULT;
6162 	struct kvm_stat_data *stat_data = data;
6163 
6164 	if (val)
6165 		return -EINVAL;
6166 
6167 	switch (stat_data->kind) {
6168 	case KVM_STAT_VM:
6169 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6170 					  stat_data->desc->desc.offset);
6171 		break;
6172 	case KVM_STAT_VCPU:
6173 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6174 					    stat_data->desc->desc.offset);
6175 		break;
6176 	}
6177 
6178 	return r;
6179 }
6180 
6181 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6182 {
6183 	__simple_attr_check_format("%llu\n", 0ull);
6184 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6185 				kvm_stat_data_clear, "%llu\n");
6186 }
6187 
6188 static const struct file_operations stat_fops_per_vm = {
6189 	.owner = THIS_MODULE,
6190 	.open = kvm_stat_data_open,
6191 	.release = kvm_debugfs_release,
6192 	.read = simple_attr_read,
6193 	.write = simple_attr_write,
6194 	.llseek = no_llseek,
6195 };
6196 
6197 static int vm_stat_get(void *_offset, u64 *val)
6198 {
6199 	unsigned offset = (long)_offset;
6200 	struct kvm *kvm;
6201 	u64 tmp_val;
6202 
6203 	*val = 0;
6204 	mutex_lock(&kvm_lock);
6205 	list_for_each_entry(kvm, &vm_list, vm_list) {
6206 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6207 		*val += tmp_val;
6208 	}
6209 	mutex_unlock(&kvm_lock);
6210 	return 0;
6211 }
6212 
6213 static int vm_stat_clear(void *_offset, u64 val)
6214 {
6215 	unsigned offset = (long)_offset;
6216 	struct kvm *kvm;
6217 
6218 	if (val)
6219 		return -EINVAL;
6220 
6221 	mutex_lock(&kvm_lock);
6222 	list_for_each_entry(kvm, &vm_list, vm_list) {
6223 		kvm_clear_stat_per_vm(kvm, offset);
6224 	}
6225 	mutex_unlock(&kvm_lock);
6226 
6227 	return 0;
6228 }
6229 
6230 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6231 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6232 
6233 static int vcpu_stat_get(void *_offset, u64 *val)
6234 {
6235 	unsigned offset = (long)_offset;
6236 	struct kvm *kvm;
6237 	u64 tmp_val;
6238 
6239 	*val = 0;
6240 	mutex_lock(&kvm_lock);
6241 	list_for_each_entry(kvm, &vm_list, vm_list) {
6242 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6243 		*val += tmp_val;
6244 	}
6245 	mutex_unlock(&kvm_lock);
6246 	return 0;
6247 }
6248 
6249 static int vcpu_stat_clear(void *_offset, u64 val)
6250 {
6251 	unsigned offset = (long)_offset;
6252 	struct kvm *kvm;
6253 
6254 	if (val)
6255 		return -EINVAL;
6256 
6257 	mutex_lock(&kvm_lock);
6258 	list_for_each_entry(kvm, &vm_list, vm_list) {
6259 		kvm_clear_stat_per_vcpu(kvm, offset);
6260 	}
6261 	mutex_unlock(&kvm_lock);
6262 
6263 	return 0;
6264 }
6265 
6266 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6267 			"%llu\n");
6268 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6269 
6270 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6271 {
6272 	struct kobj_uevent_env *env;
6273 	unsigned long long created, active;
6274 
6275 	if (!kvm_dev.this_device || !kvm)
6276 		return;
6277 
6278 	mutex_lock(&kvm_lock);
6279 	if (type == KVM_EVENT_CREATE_VM) {
6280 		kvm_createvm_count++;
6281 		kvm_active_vms++;
6282 	} else if (type == KVM_EVENT_DESTROY_VM) {
6283 		kvm_active_vms--;
6284 	}
6285 	created = kvm_createvm_count;
6286 	active = kvm_active_vms;
6287 	mutex_unlock(&kvm_lock);
6288 
6289 	env = kzalloc(sizeof(*env), GFP_KERNEL);
6290 	if (!env)
6291 		return;
6292 
6293 	add_uevent_var(env, "CREATED=%llu", created);
6294 	add_uevent_var(env, "COUNT=%llu", active);
6295 
6296 	if (type == KVM_EVENT_CREATE_VM) {
6297 		add_uevent_var(env, "EVENT=create");
6298 		kvm->userspace_pid = task_pid_nr(current);
6299 	} else if (type == KVM_EVENT_DESTROY_VM) {
6300 		add_uevent_var(env, "EVENT=destroy");
6301 	}
6302 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6303 
6304 	if (!IS_ERR(kvm->debugfs_dentry)) {
6305 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6306 
6307 		if (p) {
6308 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6309 			if (!IS_ERR(tmp))
6310 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6311 			kfree(p);
6312 		}
6313 	}
6314 	/* no need for checks, since we are adding at most only 5 keys */
6315 	env->envp[env->envp_idx++] = NULL;
6316 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6317 	kfree(env);
6318 }
6319 
6320 static void kvm_init_debug(void)
6321 {
6322 	const struct file_operations *fops;
6323 	const struct _kvm_stats_desc *pdesc;
6324 	int i;
6325 
6326 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6327 
6328 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6329 		pdesc = &kvm_vm_stats_desc[i];
6330 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6331 			fops = &vm_stat_fops;
6332 		else
6333 			fops = &vm_stat_readonly_fops;
6334 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6335 				kvm_debugfs_dir,
6336 				(void *)(long)pdesc->desc.offset, fops);
6337 	}
6338 
6339 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6340 		pdesc = &kvm_vcpu_stats_desc[i];
6341 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6342 			fops = &vcpu_stat_fops;
6343 		else
6344 			fops = &vcpu_stat_readonly_fops;
6345 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6346 				kvm_debugfs_dir,
6347 				(void *)(long)pdesc->desc.offset, fops);
6348 	}
6349 }
6350 
6351 static inline
6352 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6353 {
6354 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6355 }
6356 
6357 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6358 {
6359 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6360 
6361 	WRITE_ONCE(vcpu->preempted, false);
6362 	WRITE_ONCE(vcpu->ready, false);
6363 
6364 	__this_cpu_write(kvm_running_vcpu, vcpu);
6365 	kvm_arch_vcpu_load(vcpu, cpu);
6366 
6367 	WRITE_ONCE(vcpu->scheduled_out, false);
6368 }
6369 
6370 static void kvm_sched_out(struct preempt_notifier *pn,
6371 			  struct task_struct *next)
6372 {
6373 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6374 
6375 	WRITE_ONCE(vcpu->scheduled_out, true);
6376 
6377 	if (current->on_rq && vcpu->wants_to_run) {
6378 		WRITE_ONCE(vcpu->preempted, true);
6379 		WRITE_ONCE(vcpu->ready, true);
6380 	}
6381 	kvm_arch_vcpu_put(vcpu);
6382 	__this_cpu_write(kvm_running_vcpu, NULL);
6383 }
6384 
6385 /**
6386  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6387  *
6388  * We can disable preemption locally around accessing the per-CPU variable,
6389  * and use the resolved vcpu pointer after enabling preemption again,
6390  * because even if the current thread is migrated to another CPU, reading
6391  * the per-CPU value later will give us the same value as we update the
6392  * per-CPU variable in the preempt notifier handlers.
6393  */
6394 struct kvm_vcpu *kvm_get_running_vcpu(void)
6395 {
6396 	struct kvm_vcpu *vcpu;
6397 
6398 	preempt_disable();
6399 	vcpu = __this_cpu_read(kvm_running_vcpu);
6400 	preempt_enable();
6401 
6402 	return vcpu;
6403 }
6404 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6405 
6406 /**
6407  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6408  */
6409 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6410 {
6411         return &kvm_running_vcpu;
6412 }
6413 
6414 #ifdef CONFIG_GUEST_PERF_EVENTS
6415 static unsigned int kvm_guest_state(void)
6416 {
6417 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6418 	unsigned int state;
6419 
6420 	if (!kvm_arch_pmi_in_guest(vcpu))
6421 		return 0;
6422 
6423 	state = PERF_GUEST_ACTIVE;
6424 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6425 		state |= PERF_GUEST_USER;
6426 
6427 	return state;
6428 }
6429 
6430 static unsigned long kvm_guest_get_ip(void)
6431 {
6432 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6433 
6434 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6435 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6436 		return 0;
6437 
6438 	return kvm_arch_vcpu_get_ip(vcpu);
6439 }
6440 
6441 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6442 	.state			= kvm_guest_state,
6443 	.get_ip			= kvm_guest_get_ip,
6444 	.handle_intel_pt_intr	= NULL,
6445 };
6446 
6447 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6448 {
6449 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6450 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6451 }
6452 void kvm_unregister_perf_callbacks(void)
6453 {
6454 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6455 }
6456 #endif
6457 
6458 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6459 {
6460 	int r;
6461 	int cpu;
6462 
6463 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6464 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6465 				      kvm_online_cpu, kvm_offline_cpu);
6466 	if (r)
6467 		return r;
6468 
6469 	register_syscore_ops(&kvm_syscore_ops);
6470 #endif
6471 
6472 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6473 	if (!vcpu_align)
6474 		vcpu_align = __alignof__(struct kvm_vcpu);
6475 	kvm_vcpu_cache =
6476 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6477 					   SLAB_ACCOUNT,
6478 					   offsetof(struct kvm_vcpu, arch),
6479 					   offsetofend(struct kvm_vcpu, stats_id)
6480 					   - offsetof(struct kvm_vcpu, arch),
6481 					   NULL);
6482 	if (!kvm_vcpu_cache) {
6483 		r = -ENOMEM;
6484 		goto err_vcpu_cache;
6485 	}
6486 
6487 	for_each_possible_cpu(cpu) {
6488 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6489 					    GFP_KERNEL, cpu_to_node(cpu))) {
6490 			r = -ENOMEM;
6491 			goto err_cpu_kick_mask;
6492 		}
6493 	}
6494 
6495 	r = kvm_irqfd_init();
6496 	if (r)
6497 		goto err_irqfd;
6498 
6499 	r = kvm_async_pf_init();
6500 	if (r)
6501 		goto err_async_pf;
6502 
6503 	kvm_chardev_ops.owner = module;
6504 	kvm_vm_fops.owner = module;
6505 	kvm_vcpu_fops.owner = module;
6506 	kvm_device_fops.owner = module;
6507 
6508 	kvm_preempt_ops.sched_in = kvm_sched_in;
6509 	kvm_preempt_ops.sched_out = kvm_sched_out;
6510 
6511 	kvm_init_debug();
6512 
6513 	r = kvm_vfio_ops_init();
6514 	if (WARN_ON_ONCE(r))
6515 		goto err_vfio;
6516 
6517 	kvm_gmem_init(module);
6518 
6519 	/*
6520 	 * Registration _must_ be the very last thing done, as this exposes
6521 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6522 	 */
6523 	r = misc_register(&kvm_dev);
6524 	if (r) {
6525 		pr_err("kvm: misc device register failed\n");
6526 		goto err_register;
6527 	}
6528 
6529 	return 0;
6530 
6531 err_register:
6532 	kvm_vfio_ops_exit();
6533 err_vfio:
6534 	kvm_async_pf_deinit();
6535 err_async_pf:
6536 	kvm_irqfd_exit();
6537 err_irqfd:
6538 err_cpu_kick_mask:
6539 	for_each_possible_cpu(cpu)
6540 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6541 	kmem_cache_destroy(kvm_vcpu_cache);
6542 err_vcpu_cache:
6543 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6544 	unregister_syscore_ops(&kvm_syscore_ops);
6545 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6546 #endif
6547 	return r;
6548 }
6549 EXPORT_SYMBOL_GPL(kvm_init);
6550 
6551 void kvm_exit(void)
6552 {
6553 	int cpu;
6554 
6555 	/*
6556 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6557 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6558 	 * to KVM while the module is being stopped.
6559 	 */
6560 	misc_deregister(&kvm_dev);
6561 
6562 	debugfs_remove_recursive(kvm_debugfs_dir);
6563 	for_each_possible_cpu(cpu)
6564 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6565 	kmem_cache_destroy(kvm_vcpu_cache);
6566 	kvm_vfio_ops_exit();
6567 	kvm_async_pf_deinit();
6568 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6569 	unregister_syscore_ops(&kvm_syscore_ops);
6570 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6571 #endif
6572 	kvm_irqfd_exit();
6573 }
6574 EXPORT_SYMBOL_GPL(kvm_exit);
6575 
6576 struct kvm_vm_worker_thread_context {
6577 	struct kvm *kvm;
6578 	struct task_struct *parent;
6579 	struct completion init_done;
6580 	kvm_vm_thread_fn_t thread_fn;
6581 	uintptr_t data;
6582 	int err;
6583 };
6584 
6585 static int kvm_vm_worker_thread(void *context)
6586 {
6587 	/*
6588 	 * The init_context is allocated on the stack of the parent thread, so
6589 	 * we have to locally copy anything that is needed beyond initialization
6590 	 */
6591 	struct kvm_vm_worker_thread_context *init_context = context;
6592 	struct task_struct *parent;
6593 	struct kvm *kvm = init_context->kvm;
6594 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6595 	uintptr_t data = init_context->data;
6596 	int err;
6597 
6598 	err = kthread_park(current);
6599 	/* kthread_park(current) is never supposed to return an error */
6600 	WARN_ON(err != 0);
6601 	if (err)
6602 		goto init_complete;
6603 
6604 	err = cgroup_attach_task_all(init_context->parent, current);
6605 	if (err) {
6606 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6607 			__func__, err);
6608 		goto init_complete;
6609 	}
6610 
6611 	set_user_nice(current, task_nice(init_context->parent));
6612 
6613 init_complete:
6614 	init_context->err = err;
6615 	complete(&init_context->init_done);
6616 	init_context = NULL;
6617 
6618 	if (err)
6619 		goto out;
6620 
6621 	/* Wait to be woken up by the spawner before proceeding. */
6622 	kthread_parkme();
6623 
6624 	if (!kthread_should_stop())
6625 		err = thread_fn(kvm, data);
6626 
6627 out:
6628 	/*
6629 	 * Move kthread back to its original cgroup to prevent it lingering in
6630 	 * the cgroup of the VM process, after the latter finishes its
6631 	 * execution.
6632 	 *
6633 	 * kthread_stop() waits on the 'exited' completion condition which is
6634 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6635 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6636 	 * called after the exit_mm(). This causes the kthread_stop() to return
6637 	 * before the kthread actually quits the cgroup.
6638 	 */
6639 	rcu_read_lock();
6640 	parent = rcu_dereference(current->real_parent);
6641 	get_task_struct(parent);
6642 	rcu_read_unlock();
6643 	cgroup_attach_task_all(parent, current);
6644 	put_task_struct(parent);
6645 
6646 	return err;
6647 }
6648 
6649 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6650 				uintptr_t data, const char *name,
6651 				struct task_struct **thread_ptr)
6652 {
6653 	struct kvm_vm_worker_thread_context init_context = {};
6654 	struct task_struct *thread;
6655 
6656 	*thread_ptr = NULL;
6657 	init_context.kvm = kvm;
6658 	init_context.parent = current;
6659 	init_context.thread_fn = thread_fn;
6660 	init_context.data = data;
6661 	init_completion(&init_context.init_done);
6662 
6663 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6664 			     "%s-%d", name, task_pid_nr(current));
6665 	if (IS_ERR(thread))
6666 		return PTR_ERR(thread);
6667 
6668 	/* kthread_run is never supposed to return NULL */
6669 	WARN_ON(thread == NULL);
6670 
6671 	wait_for_completion(&init_context.init_done);
6672 
6673 	if (!init_context.err)
6674 		*thread_ptr = thread;
6675 
6676 	return init_context.err;
6677 }
6678