1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 96 97 /* 98 * Allow direct access (from KVM or the CPU) without MMU notifier protection 99 * to unpinned pages. 100 */ 101 static bool allow_unsafe_mappings; 102 module_param(allow_unsafe_mappings, bool, 0444); 103 104 /* 105 * Ordering of locks: 106 * 107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 108 */ 109 110 DEFINE_MUTEX(kvm_lock); 111 LIST_HEAD(vm_list); 112 113 static struct kmem_cache *kvm_vcpu_cache; 114 115 static __read_mostly struct preempt_ops kvm_preempt_ops; 116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 117 118 static struct dentry *kvm_debugfs_dir; 119 120 static const struct file_operations stat_fops_per_vm; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int kvm_enable_virtualization(void); 147 static void kvm_disable_virtualization(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 #define KVM_EVENT_CREATE_VM 0 152 #define KVM_EVENT_DESTROY_VM 1 153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 154 static unsigned long long kvm_createvm_count; 155 static unsigned long long kvm_active_vms; 156 157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 158 159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 160 { 161 } 162 163 /* 164 * Switches to specified vcpu, until a matching vcpu_put() 165 */ 166 void vcpu_load(struct kvm_vcpu *vcpu) 167 { 168 int cpu = get_cpu(); 169 170 __this_cpu_write(kvm_running_vcpu, vcpu); 171 preempt_notifier_register(&vcpu->preempt_notifier); 172 kvm_arch_vcpu_load(vcpu, cpu); 173 put_cpu(); 174 } 175 EXPORT_SYMBOL_GPL(vcpu_load); 176 177 void vcpu_put(struct kvm_vcpu *vcpu) 178 { 179 preempt_disable(); 180 kvm_arch_vcpu_put(vcpu); 181 preempt_notifier_unregister(&vcpu->preempt_notifier); 182 __this_cpu_write(kvm_running_vcpu, NULL); 183 preempt_enable(); 184 } 185 EXPORT_SYMBOL_GPL(vcpu_put); 186 187 /* TODO: merge with kvm_arch_vcpu_should_kick */ 188 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 189 { 190 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 191 192 /* 193 * We need to wait for the VCPU to reenable interrupts and get out of 194 * READING_SHADOW_PAGE_TABLES mode. 195 */ 196 if (req & KVM_REQUEST_WAIT) 197 return mode != OUTSIDE_GUEST_MODE; 198 199 /* 200 * Need to kick a running VCPU, but otherwise there is nothing to do. 201 */ 202 return mode == IN_GUEST_MODE; 203 } 204 205 static void ack_kick(void *_completed) 206 { 207 } 208 209 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 210 { 211 if (cpumask_empty(cpus)) 212 return false; 213 214 smp_call_function_many(cpus, ack_kick, NULL, wait); 215 return true; 216 } 217 218 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 219 struct cpumask *tmp, int current_cpu) 220 { 221 int cpu; 222 223 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 224 __kvm_make_request(req, vcpu); 225 226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 227 return; 228 229 /* 230 * Note, the vCPU could get migrated to a different pCPU at any point 231 * after kvm_request_needs_ipi(), which could result in sending an IPI 232 * to the previous pCPU. But, that's OK because the purpose of the IPI 233 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 234 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 235 * after this point is also OK, as the requirement is only that KVM wait 236 * for vCPUs that were reading SPTEs _before_ any changes were 237 * finalized. See kvm_vcpu_kick() for more details on handling requests. 238 */ 239 if (kvm_request_needs_ipi(vcpu, req)) { 240 cpu = READ_ONCE(vcpu->cpu); 241 if (cpu != -1 && cpu != current_cpu) 242 __cpumask_set_cpu(cpu, tmp); 243 } 244 } 245 246 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 247 unsigned long *vcpu_bitmap) 248 { 249 struct kvm_vcpu *vcpu; 250 struct cpumask *cpus; 251 int i, me; 252 bool called; 253 254 me = get_cpu(); 255 256 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 257 cpumask_clear(cpus); 258 259 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 260 vcpu = kvm_get_vcpu(kvm, i); 261 if (!vcpu) 262 continue; 263 kvm_make_vcpu_request(vcpu, req, cpus, me); 264 } 265 266 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 267 put_cpu(); 268 269 return called; 270 } 271 272 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 273 { 274 struct kvm_vcpu *vcpu; 275 struct cpumask *cpus; 276 unsigned long i; 277 bool called; 278 int me; 279 280 me = get_cpu(); 281 282 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 283 cpumask_clear(cpus); 284 285 kvm_for_each_vcpu(i, vcpu, kvm) 286 kvm_make_vcpu_request(vcpu, req, cpus, me); 287 288 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 289 put_cpu(); 290 291 return called; 292 } 293 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 294 295 void kvm_flush_remote_tlbs(struct kvm *kvm) 296 { 297 ++kvm->stat.generic.remote_tlb_flush_requests; 298 299 /* 300 * We want to publish modifications to the page tables before reading 301 * mode. Pairs with a memory barrier in arch-specific code. 302 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 303 * and smp_mb in walk_shadow_page_lockless_begin/end. 304 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 305 * 306 * There is already an smp_mb__after_atomic() before 307 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 308 * barrier here. 309 */ 310 if (!kvm_arch_flush_remote_tlbs(kvm) 311 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 312 ++kvm->stat.generic.remote_tlb_flush; 313 } 314 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 315 316 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 317 { 318 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 319 return; 320 321 /* 322 * Fall back to a flushing entire TLBs if the architecture range-based 323 * TLB invalidation is unsupported or can't be performed for whatever 324 * reason. 325 */ 326 kvm_flush_remote_tlbs(kvm); 327 } 328 329 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 330 const struct kvm_memory_slot *memslot) 331 { 332 /* 333 * All current use cases for flushing the TLBs for a specific memslot 334 * are related to dirty logging, and many do the TLB flush out of 335 * mmu_lock. The interaction between the various operations on memslot 336 * must be serialized by slots_locks to ensure the TLB flush from one 337 * operation is observed by any other operation on the same memslot. 338 */ 339 lockdep_assert_held(&kvm->slots_lock); 340 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 341 } 342 343 static void kvm_flush_shadow_all(struct kvm *kvm) 344 { 345 kvm_arch_flush_shadow_all(kvm); 346 kvm_arch_guest_memory_reclaimed(kvm); 347 } 348 349 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 350 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 351 gfp_t gfp_flags) 352 { 353 void *page; 354 355 gfp_flags |= mc->gfp_zero; 356 357 if (mc->kmem_cache) 358 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 359 360 page = (void *)__get_free_page(gfp_flags); 361 if (page && mc->init_value) 362 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 363 return page; 364 } 365 366 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 367 { 368 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 369 void *obj; 370 371 if (mc->nobjs >= min) 372 return 0; 373 374 if (unlikely(!mc->objects)) { 375 if (WARN_ON_ONCE(!capacity)) 376 return -EIO; 377 378 /* 379 * Custom init values can be used only for page allocations, 380 * and obviously conflict with __GFP_ZERO. 381 */ 382 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 383 return -EIO; 384 385 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 386 if (!mc->objects) 387 return -ENOMEM; 388 389 mc->capacity = capacity; 390 } 391 392 /* It is illegal to request a different capacity across topups. */ 393 if (WARN_ON_ONCE(mc->capacity != capacity)) 394 return -EIO; 395 396 while (mc->nobjs < mc->capacity) { 397 obj = mmu_memory_cache_alloc_obj(mc, gfp); 398 if (!obj) 399 return mc->nobjs >= min ? 0 : -ENOMEM; 400 mc->objects[mc->nobjs++] = obj; 401 } 402 return 0; 403 } 404 405 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 406 { 407 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 408 } 409 410 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 411 { 412 return mc->nobjs; 413 } 414 415 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 416 { 417 while (mc->nobjs) { 418 if (mc->kmem_cache) 419 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 420 else 421 free_page((unsigned long)mc->objects[--mc->nobjs]); 422 } 423 424 kvfree(mc->objects); 425 426 mc->objects = NULL; 427 mc->capacity = 0; 428 } 429 430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 431 { 432 void *p; 433 434 if (WARN_ON(!mc->nobjs)) 435 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 436 else 437 p = mc->objects[--mc->nobjs]; 438 BUG_ON(!p); 439 return p; 440 } 441 #endif 442 443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 444 { 445 mutex_init(&vcpu->mutex); 446 vcpu->cpu = -1; 447 vcpu->kvm = kvm; 448 vcpu->vcpu_id = id; 449 vcpu->pid = NULL; 450 rwlock_init(&vcpu->pid_lock); 451 #ifndef __KVM_HAVE_ARCH_WQP 452 rcuwait_init(&vcpu->wait); 453 #endif 454 kvm_async_pf_vcpu_init(vcpu); 455 456 kvm_vcpu_set_in_spin_loop(vcpu, false); 457 kvm_vcpu_set_dy_eligible(vcpu, false); 458 vcpu->preempted = false; 459 vcpu->ready = false; 460 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 461 vcpu->last_used_slot = NULL; 462 463 /* Fill the stats id string for the vcpu */ 464 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 465 task_pid_nr(current), id); 466 } 467 468 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 469 { 470 kvm_arch_vcpu_destroy(vcpu); 471 kvm_dirty_ring_free(&vcpu->dirty_ring); 472 473 /* 474 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 475 * the vcpu->pid pointer, and at destruction time all file descriptors 476 * are already gone. 477 */ 478 put_pid(vcpu->pid); 479 480 free_page((unsigned long)vcpu->run); 481 kmem_cache_free(kvm_vcpu_cache, vcpu); 482 } 483 484 void kvm_destroy_vcpus(struct kvm *kvm) 485 { 486 unsigned long i; 487 struct kvm_vcpu *vcpu; 488 489 kvm_for_each_vcpu(i, vcpu, kvm) { 490 kvm_vcpu_destroy(vcpu); 491 xa_erase(&kvm->vcpu_array, i); 492 } 493 494 atomic_set(&kvm->online_vcpus, 0); 495 } 496 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 497 498 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 499 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 500 { 501 return container_of(mn, struct kvm, mmu_notifier); 502 } 503 504 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 505 506 typedef void (*on_lock_fn_t)(struct kvm *kvm); 507 508 struct kvm_mmu_notifier_range { 509 /* 510 * 64-bit addresses, as KVM notifiers can operate on host virtual 511 * addresses (unsigned long) and guest physical addresses (64-bit). 512 */ 513 u64 start; 514 u64 end; 515 union kvm_mmu_notifier_arg arg; 516 gfn_handler_t handler; 517 on_lock_fn_t on_lock; 518 bool flush_on_ret; 519 bool may_block; 520 }; 521 522 /* 523 * The inner-most helper returns a tuple containing the return value from the 524 * arch- and action-specific handler, plus a flag indicating whether or not at 525 * least one memslot was found, i.e. if the handler found guest memory. 526 * 527 * Note, most notifiers are averse to booleans, so even though KVM tracks the 528 * return from arch code as a bool, outer helpers will cast it to an int. :-( 529 */ 530 typedef struct kvm_mmu_notifier_return { 531 bool ret; 532 bool found_memslot; 533 } kvm_mn_ret_t; 534 535 /* 536 * Use a dedicated stub instead of NULL to indicate that there is no callback 537 * function/handler. The compiler technically can't guarantee that a real 538 * function will have a non-zero address, and so it will generate code to 539 * check for !NULL, whereas comparing against a stub will be elided at compile 540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 541 */ 542 static void kvm_null_fn(void) 543 { 544 545 } 546 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 547 548 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 549 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 550 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 551 node; \ 552 node = interval_tree_iter_next(node, start, last)) \ 553 554 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 555 const struct kvm_mmu_notifier_range *range) 556 { 557 struct kvm_mmu_notifier_return r = { 558 .ret = false, 559 .found_memslot = false, 560 }; 561 struct kvm_gfn_range gfn_range; 562 struct kvm_memory_slot *slot; 563 struct kvm_memslots *slots; 564 int i, idx; 565 566 if (WARN_ON_ONCE(range->end <= range->start)) 567 return r; 568 569 /* A null handler is allowed if and only if on_lock() is provided. */ 570 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 571 IS_KVM_NULL_FN(range->handler))) 572 return r; 573 574 idx = srcu_read_lock(&kvm->srcu); 575 576 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 577 struct interval_tree_node *node; 578 579 slots = __kvm_memslots(kvm, i); 580 kvm_for_each_memslot_in_hva_range(node, slots, 581 range->start, range->end - 1) { 582 unsigned long hva_start, hva_end; 583 584 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 585 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 586 hva_end = min_t(unsigned long, range->end, 587 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 588 589 /* 590 * To optimize for the likely case where the address 591 * range is covered by zero or one memslots, don't 592 * bother making these conditional (to avoid writes on 593 * the second or later invocation of the handler). 594 */ 595 gfn_range.arg = range->arg; 596 gfn_range.may_block = range->may_block; 597 598 /* 599 * {gfn(page) | page intersects with [hva_start, hva_end)} = 600 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 601 */ 602 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 603 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 604 gfn_range.slot = slot; 605 606 if (!r.found_memslot) { 607 r.found_memslot = true; 608 KVM_MMU_LOCK(kvm); 609 if (!IS_KVM_NULL_FN(range->on_lock)) 610 range->on_lock(kvm); 611 612 if (IS_KVM_NULL_FN(range->handler)) 613 goto mmu_unlock; 614 } 615 r.ret |= range->handler(kvm, &gfn_range); 616 } 617 } 618 619 if (range->flush_on_ret && r.ret) 620 kvm_flush_remote_tlbs(kvm); 621 622 mmu_unlock: 623 if (r.found_memslot) 624 KVM_MMU_UNLOCK(kvm); 625 626 srcu_read_unlock(&kvm->srcu, idx); 627 628 return r; 629 } 630 631 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 632 unsigned long start, 633 unsigned long end, 634 gfn_handler_t handler, 635 bool flush_on_ret) 636 { 637 struct kvm *kvm = mmu_notifier_to_kvm(mn); 638 const struct kvm_mmu_notifier_range range = { 639 .start = start, 640 .end = end, 641 .handler = handler, 642 .on_lock = (void *)kvm_null_fn, 643 .flush_on_ret = flush_on_ret, 644 .may_block = false, 645 }; 646 647 return __kvm_handle_hva_range(kvm, &range).ret; 648 } 649 650 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 651 unsigned long start, 652 unsigned long end, 653 gfn_handler_t handler) 654 { 655 return kvm_handle_hva_range(mn, start, end, handler, false); 656 } 657 658 void kvm_mmu_invalidate_begin(struct kvm *kvm) 659 { 660 lockdep_assert_held_write(&kvm->mmu_lock); 661 /* 662 * The count increase must become visible at unlock time as no 663 * spte can be established without taking the mmu_lock and 664 * count is also read inside the mmu_lock critical section. 665 */ 666 kvm->mmu_invalidate_in_progress++; 667 668 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 669 kvm->mmu_invalidate_range_start = INVALID_GPA; 670 kvm->mmu_invalidate_range_end = INVALID_GPA; 671 } 672 } 673 674 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 675 { 676 lockdep_assert_held_write(&kvm->mmu_lock); 677 678 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 679 680 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 681 kvm->mmu_invalidate_range_start = start; 682 kvm->mmu_invalidate_range_end = end; 683 } else { 684 /* 685 * Fully tracking multiple concurrent ranges has diminishing 686 * returns. Keep things simple and just find the minimal range 687 * which includes the current and new ranges. As there won't be 688 * enough information to subtract a range after its invalidate 689 * completes, any ranges invalidated concurrently will 690 * accumulate and persist until all outstanding invalidates 691 * complete. 692 */ 693 kvm->mmu_invalidate_range_start = 694 min(kvm->mmu_invalidate_range_start, start); 695 kvm->mmu_invalidate_range_end = 696 max(kvm->mmu_invalidate_range_end, end); 697 } 698 } 699 700 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 701 { 702 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 703 return kvm_unmap_gfn_range(kvm, range); 704 } 705 706 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 707 const struct mmu_notifier_range *range) 708 { 709 struct kvm *kvm = mmu_notifier_to_kvm(mn); 710 const struct kvm_mmu_notifier_range hva_range = { 711 .start = range->start, 712 .end = range->end, 713 .handler = kvm_mmu_unmap_gfn_range, 714 .on_lock = kvm_mmu_invalidate_begin, 715 .flush_on_ret = true, 716 .may_block = mmu_notifier_range_blockable(range), 717 }; 718 719 trace_kvm_unmap_hva_range(range->start, range->end); 720 721 /* 722 * Prevent memslot modification between range_start() and range_end() 723 * so that conditionally locking provides the same result in both 724 * functions. Without that guarantee, the mmu_invalidate_in_progress 725 * adjustments will be imbalanced. 726 * 727 * Pairs with the decrement in range_end(). 728 */ 729 spin_lock(&kvm->mn_invalidate_lock); 730 kvm->mn_active_invalidate_count++; 731 spin_unlock(&kvm->mn_invalidate_lock); 732 733 /* 734 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 735 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 736 * each cache's lock. There are relatively few caches in existence at 737 * any given time, and the caches themselves can check for hva overlap, 738 * i.e. don't need to rely on memslot overlap checks for performance. 739 * Because this runs without holding mmu_lock, the pfn caches must use 740 * mn_active_invalidate_count (see above) instead of 741 * mmu_invalidate_in_progress. 742 */ 743 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 744 745 /* 746 * If one or more memslots were found and thus zapped, notify arch code 747 * that guest memory has been reclaimed. This needs to be done *after* 748 * dropping mmu_lock, as x86's reclaim path is slooooow. 749 */ 750 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 751 kvm_arch_guest_memory_reclaimed(kvm); 752 753 return 0; 754 } 755 756 void kvm_mmu_invalidate_end(struct kvm *kvm) 757 { 758 lockdep_assert_held_write(&kvm->mmu_lock); 759 760 /* 761 * This sequence increase will notify the kvm page fault that 762 * the page that is going to be mapped in the spte could have 763 * been freed. 764 */ 765 kvm->mmu_invalidate_seq++; 766 smp_wmb(); 767 /* 768 * The above sequence increase must be visible before the 769 * below count decrease, which is ensured by the smp_wmb above 770 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 771 */ 772 kvm->mmu_invalidate_in_progress--; 773 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 774 775 /* 776 * Assert that at least one range was added between start() and end(). 777 * Not adding a range isn't fatal, but it is a KVM bug. 778 */ 779 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 780 } 781 782 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 783 const struct mmu_notifier_range *range) 784 { 785 struct kvm *kvm = mmu_notifier_to_kvm(mn); 786 const struct kvm_mmu_notifier_range hva_range = { 787 .start = range->start, 788 .end = range->end, 789 .handler = (void *)kvm_null_fn, 790 .on_lock = kvm_mmu_invalidate_end, 791 .flush_on_ret = false, 792 .may_block = mmu_notifier_range_blockable(range), 793 }; 794 bool wake; 795 796 __kvm_handle_hva_range(kvm, &hva_range); 797 798 /* Pairs with the increment in range_start(). */ 799 spin_lock(&kvm->mn_invalidate_lock); 800 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 801 --kvm->mn_active_invalidate_count; 802 wake = !kvm->mn_active_invalidate_count; 803 spin_unlock(&kvm->mn_invalidate_lock); 804 805 /* 806 * There can only be one waiter, since the wait happens under 807 * slots_lock. 808 */ 809 if (wake) 810 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 811 } 812 813 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 814 struct mm_struct *mm, 815 unsigned long start, 816 unsigned long end) 817 { 818 trace_kvm_age_hva(start, end); 819 820 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn, 821 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); 822 } 823 824 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 825 struct mm_struct *mm, 826 unsigned long start, 827 unsigned long end) 828 { 829 trace_kvm_age_hva(start, end); 830 831 /* 832 * Even though we do not flush TLB, this will still adversely 833 * affect performance on pre-Haswell Intel EPT, where there is 834 * no EPT Access Bit to clear so that we have to tear down EPT 835 * tables instead. If we find this unacceptable, we can always 836 * add a parameter to kvm_age_hva so that it effectively doesn't 837 * do anything on clear_young. 838 * 839 * Also note that currently we never issue secondary TLB flushes 840 * from clear_young, leaving this job up to the regular system 841 * cadence. If we find this inaccurate, we might come up with a 842 * more sophisticated heuristic later. 843 */ 844 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 845 } 846 847 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 848 struct mm_struct *mm, 849 unsigned long address) 850 { 851 trace_kvm_test_age_hva(address); 852 853 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 854 kvm_test_age_gfn); 855 } 856 857 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 858 struct mm_struct *mm) 859 { 860 struct kvm *kvm = mmu_notifier_to_kvm(mn); 861 int idx; 862 863 idx = srcu_read_lock(&kvm->srcu); 864 kvm_flush_shadow_all(kvm); 865 srcu_read_unlock(&kvm->srcu, idx); 866 } 867 868 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 869 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 870 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 871 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 872 .clear_young = kvm_mmu_notifier_clear_young, 873 .test_young = kvm_mmu_notifier_test_young, 874 .release = kvm_mmu_notifier_release, 875 }; 876 877 static int kvm_init_mmu_notifier(struct kvm *kvm) 878 { 879 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 880 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 881 } 882 883 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 884 885 static int kvm_init_mmu_notifier(struct kvm *kvm) 886 { 887 return 0; 888 } 889 890 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 891 892 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 893 static int kvm_pm_notifier_call(struct notifier_block *bl, 894 unsigned long state, 895 void *unused) 896 { 897 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 898 899 return kvm_arch_pm_notifier(kvm, state); 900 } 901 902 static void kvm_init_pm_notifier(struct kvm *kvm) 903 { 904 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 905 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 906 kvm->pm_notifier.priority = INT_MAX; 907 register_pm_notifier(&kvm->pm_notifier); 908 } 909 910 static void kvm_destroy_pm_notifier(struct kvm *kvm) 911 { 912 unregister_pm_notifier(&kvm->pm_notifier); 913 } 914 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 915 static void kvm_init_pm_notifier(struct kvm *kvm) 916 { 917 } 918 919 static void kvm_destroy_pm_notifier(struct kvm *kvm) 920 { 921 } 922 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 923 924 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 925 { 926 if (!memslot->dirty_bitmap) 927 return; 928 929 vfree(memslot->dirty_bitmap); 930 memslot->dirty_bitmap = NULL; 931 } 932 933 /* This does not remove the slot from struct kvm_memslots data structures */ 934 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 935 { 936 if (slot->flags & KVM_MEM_GUEST_MEMFD) 937 kvm_gmem_unbind(slot); 938 939 kvm_destroy_dirty_bitmap(slot); 940 941 kvm_arch_free_memslot(kvm, slot); 942 943 kfree(slot); 944 } 945 946 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 947 { 948 struct hlist_node *idnode; 949 struct kvm_memory_slot *memslot; 950 int bkt; 951 952 /* 953 * The same memslot objects live in both active and inactive sets, 954 * arbitrarily free using index '1' so the second invocation of this 955 * function isn't operating over a structure with dangling pointers 956 * (even though this function isn't actually touching them). 957 */ 958 if (!slots->node_idx) 959 return; 960 961 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 962 kvm_free_memslot(kvm, memslot); 963 } 964 965 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 966 { 967 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 968 case KVM_STATS_TYPE_INSTANT: 969 return 0444; 970 case KVM_STATS_TYPE_CUMULATIVE: 971 case KVM_STATS_TYPE_PEAK: 972 default: 973 return 0644; 974 } 975 } 976 977 978 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 979 { 980 int i; 981 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 982 kvm_vcpu_stats_header.num_desc; 983 984 if (IS_ERR(kvm->debugfs_dentry)) 985 return; 986 987 debugfs_remove_recursive(kvm->debugfs_dentry); 988 989 if (kvm->debugfs_stat_data) { 990 for (i = 0; i < kvm_debugfs_num_entries; i++) 991 kfree(kvm->debugfs_stat_data[i]); 992 kfree(kvm->debugfs_stat_data); 993 } 994 } 995 996 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 997 { 998 static DEFINE_MUTEX(kvm_debugfs_lock); 999 struct dentry *dent; 1000 char dir_name[ITOA_MAX_LEN * 2]; 1001 struct kvm_stat_data *stat_data; 1002 const struct _kvm_stats_desc *pdesc; 1003 int i, ret = -ENOMEM; 1004 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1005 kvm_vcpu_stats_header.num_desc; 1006 1007 if (!debugfs_initialized()) 1008 return 0; 1009 1010 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1011 mutex_lock(&kvm_debugfs_lock); 1012 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1013 if (dent) { 1014 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1015 dput(dent); 1016 mutex_unlock(&kvm_debugfs_lock); 1017 return 0; 1018 } 1019 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1020 mutex_unlock(&kvm_debugfs_lock); 1021 if (IS_ERR(dent)) 1022 return 0; 1023 1024 kvm->debugfs_dentry = dent; 1025 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1026 sizeof(*kvm->debugfs_stat_data), 1027 GFP_KERNEL_ACCOUNT); 1028 if (!kvm->debugfs_stat_data) 1029 goto out_err; 1030 1031 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1032 pdesc = &kvm_vm_stats_desc[i]; 1033 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1034 if (!stat_data) 1035 goto out_err; 1036 1037 stat_data->kvm = kvm; 1038 stat_data->desc = pdesc; 1039 stat_data->kind = KVM_STAT_VM; 1040 kvm->debugfs_stat_data[i] = stat_data; 1041 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1042 kvm->debugfs_dentry, stat_data, 1043 &stat_fops_per_vm); 1044 } 1045 1046 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1047 pdesc = &kvm_vcpu_stats_desc[i]; 1048 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1049 if (!stat_data) 1050 goto out_err; 1051 1052 stat_data->kvm = kvm; 1053 stat_data->desc = pdesc; 1054 stat_data->kind = KVM_STAT_VCPU; 1055 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1056 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1057 kvm->debugfs_dentry, stat_data, 1058 &stat_fops_per_vm); 1059 } 1060 1061 kvm_arch_create_vm_debugfs(kvm); 1062 return 0; 1063 out_err: 1064 kvm_destroy_vm_debugfs(kvm); 1065 return ret; 1066 } 1067 1068 /* 1069 * Called after the VM is otherwise initialized, but just before adding it to 1070 * the vm_list. 1071 */ 1072 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1073 { 1074 return 0; 1075 } 1076 1077 /* 1078 * Called just after removing the VM from the vm_list, but before doing any 1079 * other destruction. 1080 */ 1081 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1082 { 1083 } 1084 1085 /* 1086 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1087 * be setup already, so we can create arch-specific debugfs entries under it. 1088 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1089 * a per-arch destroy interface is not needed. 1090 */ 1091 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1092 { 1093 } 1094 1095 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1096 { 1097 struct kvm *kvm = kvm_arch_alloc_vm(); 1098 struct kvm_memslots *slots; 1099 int r, i, j; 1100 1101 if (!kvm) 1102 return ERR_PTR(-ENOMEM); 1103 1104 KVM_MMU_LOCK_INIT(kvm); 1105 mmgrab(current->mm); 1106 kvm->mm = current->mm; 1107 kvm_eventfd_init(kvm); 1108 mutex_init(&kvm->lock); 1109 mutex_init(&kvm->irq_lock); 1110 mutex_init(&kvm->slots_lock); 1111 mutex_init(&kvm->slots_arch_lock); 1112 spin_lock_init(&kvm->mn_invalidate_lock); 1113 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1114 xa_init(&kvm->vcpu_array); 1115 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1116 xa_init(&kvm->mem_attr_array); 1117 #endif 1118 1119 INIT_LIST_HEAD(&kvm->gpc_list); 1120 spin_lock_init(&kvm->gpc_lock); 1121 1122 INIT_LIST_HEAD(&kvm->devices); 1123 kvm->max_vcpus = KVM_MAX_VCPUS; 1124 1125 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1126 1127 /* 1128 * Force subsequent debugfs file creations to fail if the VM directory 1129 * is not created (by kvm_create_vm_debugfs()). 1130 */ 1131 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1132 1133 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1134 task_pid_nr(current)); 1135 1136 r = -ENOMEM; 1137 if (init_srcu_struct(&kvm->srcu)) 1138 goto out_err_no_srcu; 1139 if (init_srcu_struct(&kvm->irq_srcu)) 1140 goto out_err_no_irq_srcu; 1141 1142 r = kvm_init_irq_routing(kvm); 1143 if (r) 1144 goto out_err_no_irq_routing; 1145 1146 refcount_set(&kvm->users_count, 1); 1147 1148 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1149 for (j = 0; j < 2; j++) { 1150 slots = &kvm->__memslots[i][j]; 1151 1152 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1153 slots->hva_tree = RB_ROOT_CACHED; 1154 slots->gfn_tree = RB_ROOT; 1155 hash_init(slots->id_hash); 1156 slots->node_idx = j; 1157 1158 /* Generations must be different for each address space. */ 1159 slots->generation = i; 1160 } 1161 1162 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1163 } 1164 1165 r = -ENOMEM; 1166 for (i = 0; i < KVM_NR_BUSES; i++) { 1167 rcu_assign_pointer(kvm->buses[i], 1168 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1169 if (!kvm->buses[i]) 1170 goto out_err_no_arch_destroy_vm; 1171 } 1172 1173 r = kvm_arch_init_vm(kvm, type); 1174 if (r) 1175 goto out_err_no_arch_destroy_vm; 1176 1177 r = kvm_enable_virtualization(); 1178 if (r) 1179 goto out_err_no_disable; 1180 1181 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1182 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1183 #endif 1184 1185 r = kvm_init_mmu_notifier(kvm); 1186 if (r) 1187 goto out_err_no_mmu_notifier; 1188 1189 r = kvm_coalesced_mmio_init(kvm); 1190 if (r < 0) 1191 goto out_no_coalesced_mmio; 1192 1193 r = kvm_create_vm_debugfs(kvm, fdname); 1194 if (r) 1195 goto out_err_no_debugfs; 1196 1197 r = kvm_arch_post_init_vm(kvm); 1198 if (r) 1199 goto out_err; 1200 1201 mutex_lock(&kvm_lock); 1202 list_add(&kvm->vm_list, &vm_list); 1203 mutex_unlock(&kvm_lock); 1204 1205 preempt_notifier_inc(); 1206 kvm_init_pm_notifier(kvm); 1207 1208 return kvm; 1209 1210 out_err: 1211 kvm_destroy_vm_debugfs(kvm); 1212 out_err_no_debugfs: 1213 kvm_coalesced_mmio_free(kvm); 1214 out_no_coalesced_mmio: 1215 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1216 if (kvm->mmu_notifier.ops) 1217 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1218 #endif 1219 out_err_no_mmu_notifier: 1220 kvm_disable_virtualization(); 1221 out_err_no_disable: 1222 kvm_arch_destroy_vm(kvm); 1223 out_err_no_arch_destroy_vm: 1224 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1225 for (i = 0; i < KVM_NR_BUSES; i++) 1226 kfree(kvm_get_bus(kvm, i)); 1227 kvm_free_irq_routing(kvm); 1228 out_err_no_irq_routing: 1229 cleanup_srcu_struct(&kvm->irq_srcu); 1230 out_err_no_irq_srcu: 1231 cleanup_srcu_struct(&kvm->srcu); 1232 out_err_no_srcu: 1233 kvm_arch_free_vm(kvm); 1234 mmdrop(current->mm); 1235 return ERR_PTR(r); 1236 } 1237 1238 static void kvm_destroy_devices(struct kvm *kvm) 1239 { 1240 struct kvm_device *dev, *tmp; 1241 1242 /* 1243 * We do not need to take the kvm->lock here, because nobody else 1244 * has a reference to the struct kvm at this point and therefore 1245 * cannot access the devices list anyhow. 1246 * 1247 * The device list is generally managed as an rculist, but list_del() 1248 * is used intentionally here. If a bug in KVM introduced a reader that 1249 * was not backed by a reference on the kvm struct, the hope is that 1250 * it'd consume the poisoned forward pointer instead of suffering a 1251 * use-after-free, even though this cannot be guaranteed. 1252 */ 1253 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1254 list_del(&dev->vm_node); 1255 dev->ops->destroy(dev); 1256 } 1257 } 1258 1259 static void kvm_destroy_vm(struct kvm *kvm) 1260 { 1261 int i; 1262 struct mm_struct *mm = kvm->mm; 1263 1264 kvm_destroy_pm_notifier(kvm); 1265 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1266 kvm_destroy_vm_debugfs(kvm); 1267 kvm_arch_sync_events(kvm); 1268 mutex_lock(&kvm_lock); 1269 list_del(&kvm->vm_list); 1270 mutex_unlock(&kvm_lock); 1271 kvm_arch_pre_destroy_vm(kvm); 1272 1273 kvm_free_irq_routing(kvm); 1274 for (i = 0; i < KVM_NR_BUSES; i++) { 1275 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1276 1277 if (bus) 1278 kvm_io_bus_destroy(bus); 1279 kvm->buses[i] = NULL; 1280 } 1281 kvm_coalesced_mmio_free(kvm); 1282 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1283 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1284 /* 1285 * At this point, pending calls to invalidate_range_start() 1286 * have completed but no more MMU notifiers will run, so 1287 * mn_active_invalidate_count may remain unbalanced. 1288 * No threads can be waiting in kvm_swap_active_memslots() as the 1289 * last reference on KVM has been dropped, but freeing 1290 * memslots would deadlock without this manual intervention. 1291 * 1292 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1293 * notifier between a start() and end(), then there shouldn't be any 1294 * in-progress invalidations. 1295 */ 1296 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1297 if (kvm->mn_active_invalidate_count) 1298 kvm->mn_active_invalidate_count = 0; 1299 else 1300 WARN_ON(kvm->mmu_invalidate_in_progress); 1301 #else 1302 kvm_flush_shadow_all(kvm); 1303 #endif 1304 kvm_arch_destroy_vm(kvm); 1305 kvm_destroy_devices(kvm); 1306 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1307 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1308 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1309 } 1310 cleanup_srcu_struct(&kvm->irq_srcu); 1311 cleanup_srcu_struct(&kvm->srcu); 1312 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1313 xa_destroy(&kvm->mem_attr_array); 1314 #endif 1315 kvm_arch_free_vm(kvm); 1316 preempt_notifier_dec(); 1317 kvm_disable_virtualization(); 1318 mmdrop(mm); 1319 } 1320 1321 void kvm_get_kvm(struct kvm *kvm) 1322 { 1323 refcount_inc(&kvm->users_count); 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1326 1327 /* 1328 * Make sure the vm is not during destruction, which is a safe version of 1329 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1330 */ 1331 bool kvm_get_kvm_safe(struct kvm *kvm) 1332 { 1333 return refcount_inc_not_zero(&kvm->users_count); 1334 } 1335 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1336 1337 void kvm_put_kvm(struct kvm *kvm) 1338 { 1339 if (refcount_dec_and_test(&kvm->users_count)) 1340 kvm_destroy_vm(kvm); 1341 } 1342 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1343 1344 /* 1345 * Used to put a reference that was taken on behalf of an object associated 1346 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1347 * of the new file descriptor fails and the reference cannot be transferred to 1348 * its final owner. In such cases, the caller is still actively using @kvm and 1349 * will fail miserably if the refcount unexpectedly hits zero. 1350 */ 1351 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1352 { 1353 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1354 } 1355 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1356 1357 static int kvm_vm_release(struct inode *inode, struct file *filp) 1358 { 1359 struct kvm *kvm = filp->private_data; 1360 1361 kvm_irqfd_release(kvm); 1362 1363 kvm_put_kvm(kvm); 1364 return 0; 1365 } 1366 1367 /* 1368 * Allocation size is twice as large as the actual dirty bitmap size. 1369 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1370 */ 1371 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1372 { 1373 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1374 1375 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1376 if (!memslot->dirty_bitmap) 1377 return -ENOMEM; 1378 1379 return 0; 1380 } 1381 1382 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1383 { 1384 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1385 int node_idx_inactive = active->node_idx ^ 1; 1386 1387 return &kvm->__memslots[as_id][node_idx_inactive]; 1388 } 1389 1390 /* 1391 * Helper to get the address space ID when one of memslot pointers may be NULL. 1392 * This also serves as a sanity that at least one of the pointers is non-NULL, 1393 * and that their address space IDs don't diverge. 1394 */ 1395 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1396 struct kvm_memory_slot *b) 1397 { 1398 if (WARN_ON_ONCE(!a && !b)) 1399 return 0; 1400 1401 if (!a) 1402 return b->as_id; 1403 if (!b) 1404 return a->as_id; 1405 1406 WARN_ON_ONCE(a->as_id != b->as_id); 1407 return a->as_id; 1408 } 1409 1410 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1411 struct kvm_memory_slot *slot) 1412 { 1413 struct rb_root *gfn_tree = &slots->gfn_tree; 1414 struct rb_node **node, *parent; 1415 int idx = slots->node_idx; 1416 1417 parent = NULL; 1418 for (node = &gfn_tree->rb_node; *node; ) { 1419 struct kvm_memory_slot *tmp; 1420 1421 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1422 parent = *node; 1423 if (slot->base_gfn < tmp->base_gfn) 1424 node = &(*node)->rb_left; 1425 else if (slot->base_gfn > tmp->base_gfn) 1426 node = &(*node)->rb_right; 1427 else 1428 BUG(); 1429 } 1430 1431 rb_link_node(&slot->gfn_node[idx], parent, node); 1432 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1433 } 1434 1435 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1436 struct kvm_memory_slot *slot) 1437 { 1438 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1439 } 1440 1441 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1442 struct kvm_memory_slot *old, 1443 struct kvm_memory_slot *new) 1444 { 1445 int idx = slots->node_idx; 1446 1447 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1448 1449 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1450 &slots->gfn_tree); 1451 } 1452 1453 /* 1454 * Replace @old with @new in the inactive memslots. 1455 * 1456 * With NULL @old this simply adds @new. 1457 * With NULL @new this simply removes @old. 1458 * 1459 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1460 * appropriately. 1461 */ 1462 static void kvm_replace_memslot(struct kvm *kvm, 1463 struct kvm_memory_slot *old, 1464 struct kvm_memory_slot *new) 1465 { 1466 int as_id = kvm_memslots_get_as_id(old, new); 1467 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1468 int idx = slots->node_idx; 1469 1470 if (old) { 1471 hash_del(&old->id_node[idx]); 1472 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1473 1474 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1475 atomic_long_set(&slots->last_used_slot, (long)new); 1476 1477 if (!new) { 1478 kvm_erase_gfn_node(slots, old); 1479 return; 1480 } 1481 } 1482 1483 /* 1484 * Initialize @new's hva range. Do this even when replacing an @old 1485 * slot, kvm_copy_memslot() deliberately does not touch node data. 1486 */ 1487 new->hva_node[idx].start = new->userspace_addr; 1488 new->hva_node[idx].last = new->userspace_addr + 1489 (new->npages << PAGE_SHIFT) - 1; 1490 1491 /* 1492 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1493 * hva_node needs to be swapped with remove+insert even though hva can't 1494 * change when replacing an existing slot. 1495 */ 1496 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1497 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1498 1499 /* 1500 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1501 * switch the node in the gfn tree instead of removing the old and 1502 * inserting the new as two separate operations. Replacement is a 1503 * single O(1) operation versus two O(log(n)) operations for 1504 * remove+insert. 1505 */ 1506 if (old && old->base_gfn == new->base_gfn) { 1507 kvm_replace_gfn_node(slots, old, new); 1508 } else { 1509 if (old) 1510 kvm_erase_gfn_node(slots, old); 1511 kvm_insert_gfn_node(slots, new); 1512 } 1513 } 1514 1515 /* 1516 * Flags that do not access any of the extra space of struct 1517 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1518 * only allows these. 1519 */ 1520 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1521 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1522 1523 static int check_memory_region_flags(struct kvm *kvm, 1524 const struct kvm_userspace_memory_region2 *mem) 1525 { 1526 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1527 1528 if (kvm_arch_has_private_mem(kvm)) 1529 valid_flags |= KVM_MEM_GUEST_MEMFD; 1530 1531 /* Dirty logging private memory is not currently supported. */ 1532 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1533 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1534 1535 /* 1536 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1537 * read-only memslots have emulated MMIO, not page fault, semantics, 1538 * and KVM doesn't allow emulated MMIO for private memory. 1539 */ 1540 if (kvm_arch_has_readonly_mem(kvm) && 1541 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1542 valid_flags |= KVM_MEM_READONLY; 1543 1544 if (mem->flags & ~valid_flags) 1545 return -EINVAL; 1546 1547 return 0; 1548 } 1549 1550 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1551 { 1552 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1553 1554 /* Grab the generation from the activate memslots. */ 1555 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1556 1557 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1558 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1559 1560 /* 1561 * Do not store the new memslots while there are invalidations in 1562 * progress, otherwise the locking in invalidate_range_start and 1563 * invalidate_range_end will be unbalanced. 1564 */ 1565 spin_lock(&kvm->mn_invalidate_lock); 1566 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1567 while (kvm->mn_active_invalidate_count) { 1568 set_current_state(TASK_UNINTERRUPTIBLE); 1569 spin_unlock(&kvm->mn_invalidate_lock); 1570 schedule(); 1571 spin_lock(&kvm->mn_invalidate_lock); 1572 } 1573 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1574 rcu_assign_pointer(kvm->memslots[as_id], slots); 1575 spin_unlock(&kvm->mn_invalidate_lock); 1576 1577 /* 1578 * Acquired in kvm_set_memslot. Must be released before synchronize 1579 * SRCU below in order to avoid deadlock with another thread 1580 * acquiring the slots_arch_lock in an srcu critical section. 1581 */ 1582 mutex_unlock(&kvm->slots_arch_lock); 1583 1584 synchronize_srcu_expedited(&kvm->srcu); 1585 1586 /* 1587 * Increment the new memslot generation a second time, dropping the 1588 * update in-progress flag and incrementing the generation based on 1589 * the number of address spaces. This provides a unique and easily 1590 * identifiable generation number while the memslots are in flux. 1591 */ 1592 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1593 1594 /* 1595 * Generations must be unique even across address spaces. We do not need 1596 * a global counter for that, instead the generation space is evenly split 1597 * across address spaces. For example, with two address spaces, address 1598 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1599 * use generations 1, 3, 5, ... 1600 */ 1601 gen += kvm_arch_nr_memslot_as_ids(kvm); 1602 1603 kvm_arch_memslots_updated(kvm, gen); 1604 1605 slots->generation = gen; 1606 } 1607 1608 static int kvm_prepare_memory_region(struct kvm *kvm, 1609 const struct kvm_memory_slot *old, 1610 struct kvm_memory_slot *new, 1611 enum kvm_mr_change change) 1612 { 1613 int r; 1614 1615 /* 1616 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1617 * will be freed on "commit". If logging is enabled in both old and 1618 * new, reuse the existing bitmap. If logging is enabled only in the 1619 * new and KVM isn't using a ring buffer, allocate and initialize a 1620 * new bitmap. 1621 */ 1622 if (change != KVM_MR_DELETE) { 1623 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1624 new->dirty_bitmap = NULL; 1625 else if (old && old->dirty_bitmap) 1626 new->dirty_bitmap = old->dirty_bitmap; 1627 else if (kvm_use_dirty_bitmap(kvm)) { 1628 r = kvm_alloc_dirty_bitmap(new); 1629 if (r) 1630 return r; 1631 1632 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1633 bitmap_set(new->dirty_bitmap, 0, new->npages); 1634 } 1635 } 1636 1637 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1638 1639 /* Free the bitmap on failure if it was allocated above. */ 1640 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1641 kvm_destroy_dirty_bitmap(new); 1642 1643 return r; 1644 } 1645 1646 static void kvm_commit_memory_region(struct kvm *kvm, 1647 struct kvm_memory_slot *old, 1648 const struct kvm_memory_slot *new, 1649 enum kvm_mr_change change) 1650 { 1651 int old_flags = old ? old->flags : 0; 1652 int new_flags = new ? new->flags : 0; 1653 /* 1654 * Update the total number of memslot pages before calling the arch 1655 * hook so that architectures can consume the result directly. 1656 */ 1657 if (change == KVM_MR_DELETE) 1658 kvm->nr_memslot_pages -= old->npages; 1659 else if (change == KVM_MR_CREATE) 1660 kvm->nr_memslot_pages += new->npages; 1661 1662 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1663 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1664 atomic_set(&kvm->nr_memslots_dirty_logging, 1665 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1666 } 1667 1668 kvm_arch_commit_memory_region(kvm, old, new, change); 1669 1670 switch (change) { 1671 case KVM_MR_CREATE: 1672 /* Nothing more to do. */ 1673 break; 1674 case KVM_MR_DELETE: 1675 /* Free the old memslot and all its metadata. */ 1676 kvm_free_memslot(kvm, old); 1677 break; 1678 case KVM_MR_MOVE: 1679 case KVM_MR_FLAGS_ONLY: 1680 /* 1681 * Free the dirty bitmap as needed; the below check encompasses 1682 * both the flags and whether a ring buffer is being used) 1683 */ 1684 if (old->dirty_bitmap && !new->dirty_bitmap) 1685 kvm_destroy_dirty_bitmap(old); 1686 1687 /* 1688 * The final quirk. Free the detached, old slot, but only its 1689 * memory, not any metadata. Metadata, including arch specific 1690 * data, may be reused by @new. 1691 */ 1692 kfree(old); 1693 break; 1694 default: 1695 BUG(); 1696 } 1697 } 1698 1699 /* 1700 * Activate @new, which must be installed in the inactive slots by the caller, 1701 * by swapping the active slots and then propagating @new to @old once @old is 1702 * unreachable and can be safely modified. 1703 * 1704 * With NULL @old this simply adds @new to @active (while swapping the sets). 1705 * With NULL @new this simply removes @old from @active and frees it 1706 * (while also swapping the sets). 1707 */ 1708 static void kvm_activate_memslot(struct kvm *kvm, 1709 struct kvm_memory_slot *old, 1710 struct kvm_memory_slot *new) 1711 { 1712 int as_id = kvm_memslots_get_as_id(old, new); 1713 1714 kvm_swap_active_memslots(kvm, as_id); 1715 1716 /* Propagate the new memslot to the now inactive memslots. */ 1717 kvm_replace_memslot(kvm, old, new); 1718 } 1719 1720 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1721 const struct kvm_memory_slot *src) 1722 { 1723 dest->base_gfn = src->base_gfn; 1724 dest->npages = src->npages; 1725 dest->dirty_bitmap = src->dirty_bitmap; 1726 dest->arch = src->arch; 1727 dest->userspace_addr = src->userspace_addr; 1728 dest->flags = src->flags; 1729 dest->id = src->id; 1730 dest->as_id = src->as_id; 1731 } 1732 1733 static void kvm_invalidate_memslot(struct kvm *kvm, 1734 struct kvm_memory_slot *old, 1735 struct kvm_memory_slot *invalid_slot) 1736 { 1737 /* 1738 * Mark the current slot INVALID. As with all memslot modifications, 1739 * this must be done on an unreachable slot to avoid modifying the 1740 * current slot in the active tree. 1741 */ 1742 kvm_copy_memslot(invalid_slot, old); 1743 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1744 kvm_replace_memslot(kvm, old, invalid_slot); 1745 1746 /* 1747 * Activate the slot that is now marked INVALID, but don't propagate 1748 * the slot to the now inactive slots. The slot is either going to be 1749 * deleted or recreated as a new slot. 1750 */ 1751 kvm_swap_active_memslots(kvm, old->as_id); 1752 1753 /* 1754 * From this point no new shadow pages pointing to a deleted, or moved, 1755 * memslot will be created. Validation of sp->gfn happens in: 1756 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1757 * - kvm_is_visible_gfn (mmu_check_root) 1758 */ 1759 kvm_arch_flush_shadow_memslot(kvm, old); 1760 kvm_arch_guest_memory_reclaimed(kvm); 1761 1762 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1763 mutex_lock(&kvm->slots_arch_lock); 1764 1765 /* 1766 * Copy the arch-specific field of the newly-installed slot back to the 1767 * old slot as the arch data could have changed between releasing 1768 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1769 * above. Writers are required to retrieve memslots *after* acquiring 1770 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1771 */ 1772 old->arch = invalid_slot->arch; 1773 } 1774 1775 static void kvm_create_memslot(struct kvm *kvm, 1776 struct kvm_memory_slot *new) 1777 { 1778 /* Add the new memslot to the inactive set and activate. */ 1779 kvm_replace_memslot(kvm, NULL, new); 1780 kvm_activate_memslot(kvm, NULL, new); 1781 } 1782 1783 static void kvm_delete_memslot(struct kvm *kvm, 1784 struct kvm_memory_slot *old, 1785 struct kvm_memory_slot *invalid_slot) 1786 { 1787 /* 1788 * Remove the old memslot (in the inactive memslots) by passing NULL as 1789 * the "new" slot, and for the invalid version in the active slots. 1790 */ 1791 kvm_replace_memslot(kvm, old, NULL); 1792 kvm_activate_memslot(kvm, invalid_slot, NULL); 1793 } 1794 1795 static void kvm_move_memslot(struct kvm *kvm, 1796 struct kvm_memory_slot *old, 1797 struct kvm_memory_slot *new, 1798 struct kvm_memory_slot *invalid_slot) 1799 { 1800 /* 1801 * Replace the old memslot in the inactive slots, and then swap slots 1802 * and replace the current INVALID with the new as well. 1803 */ 1804 kvm_replace_memslot(kvm, old, new); 1805 kvm_activate_memslot(kvm, invalid_slot, new); 1806 } 1807 1808 static void kvm_update_flags_memslot(struct kvm *kvm, 1809 struct kvm_memory_slot *old, 1810 struct kvm_memory_slot *new) 1811 { 1812 /* 1813 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1814 * an intermediate step. Instead, the old memslot is simply replaced 1815 * with a new, updated copy in both memslot sets. 1816 */ 1817 kvm_replace_memslot(kvm, old, new); 1818 kvm_activate_memslot(kvm, old, new); 1819 } 1820 1821 static int kvm_set_memslot(struct kvm *kvm, 1822 struct kvm_memory_slot *old, 1823 struct kvm_memory_slot *new, 1824 enum kvm_mr_change change) 1825 { 1826 struct kvm_memory_slot *invalid_slot; 1827 int r; 1828 1829 /* 1830 * Released in kvm_swap_active_memslots(). 1831 * 1832 * Must be held from before the current memslots are copied until after 1833 * the new memslots are installed with rcu_assign_pointer, then 1834 * released before the synchronize srcu in kvm_swap_active_memslots(). 1835 * 1836 * When modifying memslots outside of the slots_lock, must be held 1837 * before reading the pointer to the current memslots until after all 1838 * changes to those memslots are complete. 1839 * 1840 * These rules ensure that installing new memslots does not lose 1841 * changes made to the previous memslots. 1842 */ 1843 mutex_lock(&kvm->slots_arch_lock); 1844 1845 /* 1846 * Invalidate the old slot if it's being deleted or moved. This is 1847 * done prior to actually deleting/moving the memslot to allow vCPUs to 1848 * continue running by ensuring there are no mappings or shadow pages 1849 * for the memslot when it is deleted/moved. Without pre-invalidation 1850 * (and without a lock), a window would exist between effecting the 1851 * delete/move and committing the changes in arch code where KVM or a 1852 * guest could access a non-existent memslot. 1853 * 1854 * Modifications are done on a temporary, unreachable slot. The old 1855 * slot needs to be preserved in case a later step fails and the 1856 * invalidation needs to be reverted. 1857 */ 1858 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1859 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1860 if (!invalid_slot) { 1861 mutex_unlock(&kvm->slots_arch_lock); 1862 return -ENOMEM; 1863 } 1864 kvm_invalidate_memslot(kvm, old, invalid_slot); 1865 } 1866 1867 r = kvm_prepare_memory_region(kvm, old, new, change); 1868 if (r) { 1869 /* 1870 * For DELETE/MOVE, revert the above INVALID change. No 1871 * modifications required since the original slot was preserved 1872 * in the inactive slots. Changing the active memslots also 1873 * release slots_arch_lock. 1874 */ 1875 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1876 kvm_activate_memslot(kvm, invalid_slot, old); 1877 kfree(invalid_slot); 1878 } else { 1879 mutex_unlock(&kvm->slots_arch_lock); 1880 } 1881 return r; 1882 } 1883 1884 /* 1885 * For DELETE and MOVE, the working slot is now active as the INVALID 1886 * version of the old slot. MOVE is particularly special as it reuses 1887 * the old slot and returns a copy of the old slot (in working_slot). 1888 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1889 * old slot is detached but otherwise preserved. 1890 */ 1891 if (change == KVM_MR_CREATE) 1892 kvm_create_memslot(kvm, new); 1893 else if (change == KVM_MR_DELETE) 1894 kvm_delete_memslot(kvm, old, invalid_slot); 1895 else if (change == KVM_MR_MOVE) 1896 kvm_move_memslot(kvm, old, new, invalid_slot); 1897 else if (change == KVM_MR_FLAGS_ONLY) 1898 kvm_update_flags_memslot(kvm, old, new); 1899 else 1900 BUG(); 1901 1902 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1903 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1904 kfree(invalid_slot); 1905 1906 /* 1907 * No need to refresh new->arch, changes after dropping slots_arch_lock 1908 * will directly hit the final, active memslot. Architectures are 1909 * responsible for knowing that new->arch may be stale. 1910 */ 1911 kvm_commit_memory_region(kvm, old, new, change); 1912 1913 return 0; 1914 } 1915 1916 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1917 gfn_t start, gfn_t end) 1918 { 1919 struct kvm_memslot_iter iter; 1920 1921 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1922 if (iter.slot->id != id) 1923 return true; 1924 } 1925 1926 return false; 1927 } 1928 1929 /* 1930 * Allocate some memory and give it an address in the guest physical address 1931 * space. 1932 * 1933 * Discontiguous memory is allowed, mostly for framebuffers. 1934 * 1935 * Must be called holding kvm->slots_lock for write. 1936 */ 1937 int __kvm_set_memory_region(struct kvm *kvm, 1938 const struct kvm_userspace_memory_region2 *mem) 1939 { 1940 struct kvm_memory_slot *old, *new; 1941 struct kvm_memslots *slots; 1942 enum kvm_mr_change change; 1943 unsigned long npages; 1944 gfn_t base_gfn; 1945 int as_id, id; 1946 int r; 1947 1948 r = check_memory_region_flags(kvm, mem); 1949 if (r) 1950 return r; 1951 1952 as_id = mem->slot >> 16; 1953 id = (u16)mem->slot; 1954 1955 /* General sanity checks */ 1956 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1957 (mem->memory_size != (unsigned long)mem->memory_size)) 1958 return -EINVAL; 1959 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1960 return -EINVAL; 1961 /* We can read the guest memory with __xxx_user() later on. */ 1962 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1963 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1964 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1965 mem->memory_size)) 1966 return -EINVAL; 1967 if (mem->flags & KVM_MEM_GUEST_MEMFD && 1968 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 1969 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 1970 return -EINVAL; 1971 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 1972 return -EINVAL; 1973 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1974 return -EINVAL; 1975 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1976 return -EINVAL; 1977 1978 slots = __kvm_memslots(kvm, as_id); 1979 1980 /* 1981 * Note, the old memslot (and the pointer itself!) may be invalidated 1982 * and/or destroyed by kvm_set_memslot(). 1983 */ 1984 old = id_to_memslot(slots, id); 1985 1986 if (!mem->memory_size) { 1987 if (!old || !old->npages) 1988 return -EINVAL; 1989 1990 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1991 return -EIO; 1992 1993 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1994 } 1995 1996 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1997 npages = (mem->memory_size >> PAGE_SHIFT); 1998 1999 if (!old || !old->npages) { 2000 change = KVM_MR_CREATE; 2001 2002 /* 2003 * To simplify KVM internals, the total number of pages across 2004 * all memslots must fit in an unsigned long. 2005 */ 2006 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2007 return -EINVAL; 2008 } else { /* Modify an existing slot. */ 2009 /* Private memslots are immutable, they can only be deleted. */ 2010 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2011 return -EINVAL; 2012 if ((mem->userspace_addr != old->userspace_addr) || 2013 (npages != old->npages) || 2014 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2015 return -EINVAL; 2016 2017 if (base_gfn != old->base_gfn) 2018 change = KVM_MR_MOVE; 2019 else if (mem->flags != old->flags) 2020 change = KVM_MR_FLAGS_ONLY; 2021 else /* Nothing to change. */ 2022 return 0; 2023 } 2024 2025 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2026 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2027 return -EEXIST; 2028 2029 /* Allocate a slot that will persist in the memslot. */ 2030 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2031 if (!new) 2032 return -ENOMEM; 2033 2034 new->as_id = as_id; 2035 new->id = id; 2036 new->base_gfn = base_gfn; 2037 new->npages = npages; 2038 new->flags = mem->flags; 2039 new->userspace_addr = mem->userspace_addr; 2040 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2041 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2042 if (r) 2043 goto out; 2044 } 2045 2046 r = kvm_set_memslot(kvm, old, new, change); 2047 if (r) 2048 goto out_unbind; 2049 2050 return 0; 2051 2052 out_unbind: 2053 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2054 kvm_gmem_unbind(new); 2055 out: 2056 kfree(new); 2057 return r; 2058 } 2059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2060 2061 int kvm_set_memory_region(struct kvm *kvm, 2062 const struct kvm_userspace_memory_region2 *mem) 2063 { 2064 int r; 2065 2066 mutex_lock(&kvm->slots_lock); 2067 r = __kvm_set_memory_region(kvm, mem); 2068 mutex_unlock(&kvm->slots_lock); 2069 return r; 2070 } 2071 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2072 2073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2074 struct kvm_userspace_memory_region2 *mem) 2075 { 2076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2077 return -EINVAL; 2078 2079 return kvm_set_memory_region(kvm, mem); 2080 } 2081 2082 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2083 /** 2084 * kvm_get_dirty_log - get a snapshot of dirty pages 2085 * @kvm: pointer to kvm instance 2086 * @log: slot id and address to which we copy the log 2087 * @is_dirty: set to '1' if any dirty pages were found 2088 * @memslot: set to the associated memslot, always valid on success 2089 */ 2090 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2091 int *is_dirty, struct kvm_memory_slot **memslot) 2092 { 2093 struct kvm_memslots *slots; 2094 int i, as_id, id; 2095 unsigned long n; 2096 unsigned long any = 0; 2097 2098 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2099 if (!kvm_use_dirty_bitmap(kvm)) 2100 return -ENXIO; 2101 2102 *memslot = NULL; 2103 *is_dirty = 0; 2104 2105 as_id = log->slot >> 16; 2106 id = (u16)log->slot; 2107 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2108 return -EINVAL; 2109 2110 slots = __kvm_memslots(kvm, as_id); 2111 *memslot = id_to_memslot(slots, id); 2112 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2113 return -ENOENT; 2114 2115 kvm_arch_sync_dirty_log(kvm, *memslot); 2116 2117 n = kvm_dirty_bitmap_bytes(*memslot); 2118 2119 for (i = 0; !any && i < n/sizeof(long); ++i) 2120 any = (*memslot)->dirty_bitmap[i]; 2121 2122 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2123 return -EFAULT; 2124 2125 if (any) 2126 *is_dirty = 1; 2127 return 0; 2128 } 2129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2130 2131 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2132 /** 2133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2134 * and reenable dirty page tracking for the corresponding pages. 2135 * @kvm: pointer to kvm instance 2136 * @log: slot id and address to which we copy the log 2137 * 2138 * We need to keep it in mind that VCPU threads can write to the bitmap 2139 * concurrently. So, to avoid losing track of dirty pages we keep the 2140 * following order: 2141 * 2142 * 1. Take a snapshot of the bit and clear it if needed. 2143 * 2. Write protect the corresponding page. 2144 * 3. Copy the snapshot to the userspace. 2145 * 4. Upon return caller flushes TLB's if needed. 2146 * 2147 * Between 2 and 4, the guest may write to the page using the remaining TLB 2148 * entry. This is not a problem because the page is reported dirty using 2149 * the snapshot taken before and step 4 ensures that writes done after 2150 * exiting to userspace will be logged for the next call. 2151 * 2152 */ 2153 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2154 { 2155 struct kvm_memslots *slots; 2156 struct kvm_memory_slot *memslot; 2157 int i, as_id, id; 2158 unsigned long n; 2159 unsigned long *dirty_bitmap; 2160 unsigned long *dirty_bitmap_buffer; 2161 bool flush; 2162 2163 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2164 if (!kvm_use_dirty_bitmap(kvm)) 2165 return -ENXIO; 2166 2167 as_id = log->slot >> 16; 2168 id = (u16)log->slot; 2169 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2170 return -EINVAL; 2171 2172 slots = __kvm_memslots(kvm, as_id); 2173 memslot = id_to_memslot(slots, id); 2174 if (!memslot || !memslot->dirty_bitmap) 2175 return -ENOENT; 2176 2177 dirty_bitmap = memslot->dirty_bitmap; 2178 2179 kvm_arch_sync_dirty_log(kvm, memslot); 2180 2181 n = kvm_dirty_bitmap_bytes(memslot); 2182 flush = false; 2183 if (kvm->manual_dirty_log_protect) { 2184 /* 2185 * Unlike kvm_get_dirty_log, we always return false in *flush, 2186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2187 * is some code duplication between this function and 2188 * kvm_get_dirty_log, but hopefully all architecture 2189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2190 * can be eliminated. 2191 */ 2192 dirty_bitmap_buffer = dirty_bitmap; 2193 } else { 2194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2195 memset(dirty_bitmap_buffer, 0, n); 2196 2197 KVM_MMU_LOCK(kvm); 2198 for (i = 0; i < n / sizeof(long); i++) { 2199 unsigned long mask; 2200 gfn_t offset; 2201 2202 if (!dirty_bitmap[i]) 2203 continue; 2204 2205 flush = true; 2206 mask = xchg(&dirty_bitmap[i], 0); 2207 dirty_bitmap_buffer[i] = mask; 2208 2209 offset = i * BITS_PER_LONG; 2210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2211 offset, mask); 2212 } 2213 KVM_MMU_UNLOCK(kvm); 2214 } 2215 2216 if (flush) 2217 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2218 2219 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2220 return -EFAULT; 2221 return 0; 2222 } 2223 2224 2225 /** 2226 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2227 * @kvm: kvm instance 2228 * @log: slot id and address to which we copy the log 2229 * 2230 * Steps 1-4 below provide general overview of dirty page logging. See 2231 * kvm_get_dirty_log_protect() function description for additional details. 2232 * 2233 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2234 * always flush the TLB (step 4) even if previous step failed and the dirty 2235 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2236 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2237 * writes will be marked dirty for next log read. 2238 * 2239 * 1. Take a snapshot of the bit and clear it if needed. 2240 * 2. Write protect the corresponding page. 2241 * 3. Copy the snapshot to the userspace. 2242 * 4. Flush TLB's if needed. 2243 */ 2244 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2245 struct kvm_dirty_log *log) 2246 { 2247 int r; 2248 2249 mutex_lock(&kvm->slots_lock); 2250 2251 r = kvm_get_dirty_log_protect(kvm, log); 2252 2253 mutex_unlock(&kvm->slots_lock); 2254 return r; 2255 } 2256 2257 /** 2258 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2259 * and reenable dirty page tracking for the corresponding pages. 2260 * @kvm: pointer to kvm instance 2261 * @log: slot id and address from which to fetch the bitmap of dirty pages 2262 */ 2263 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2264 struct kvm_clear_dirty_log *log) 2265 { 2266 struct kvm_memslots *slots; 2267 struct kvm_memory_slot *memslot; 2268 int as_id, id; 2269 gfn_t offset; 2270 unsigned long i, n; 2271 unsigned long *dirty_bitmap; 2272 unsigned long *dirty_bitmap_buffer; 2273 bool flush; 2274 2275 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2276 if (!kvm_use_dirty_bitmap(kvm)) 2277 return -ENXIO; 2278 2279 as_id = log->slot >> 16; 2280 id = (u16)log->slot; 2281 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2282 return -EINVAL; 2283 2284 if (log->first_page & 63) 2285 return -EINVAL; 2286 2287 slots = __kvm_memslots(kvm, as_id); 2288 memslot = id_to_memslot(slots, id); 2289 if (!memslot || !memslot->dirty_bitmap) 2290 return -ENOENT; 2291 2292 dirty_bitmap = memslot->dirty_bitmap; 2293 2294 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2295 2296 if (log->first_page > memslot->npages || 2297 log->num_pages > memslot->npages - log->first_page || 2298 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2299 return -EINVAL; 2300 2301 kvm_arch_sync_dirty_log(kvm, memslot); 2302 2303 flush = false; 2304 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2305 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2306 return -EFAULT; 2307 2308 KVM_MMU_LOCK(kvm); 2309 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2310 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2311 i++, offset += BITS_PER_LONG) { 2312 unsigned long mask = *dirty_bitmap_buffer++; 2313 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2314 if (!mask) 2315 continue; 2316 2317 mask &= atomic_long_fetch_andnot(mask, p); 2318 2319 /* 2320 * mask contains the bits that really have been cleared. This 2321 * never includes any bits beyond the length of the memslot (if 2322 * the length is not aligned to 64 pages), therefore it is not 2323 * a problem if userspace sets them in log->dirty_bitmap. 2324 */ 2325 if (mask) { 2326 flush = true; 2327 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2328 offset, mask); 2329 } 2330 } 2331 KVM_MMU_UNLOCK(kvm); 2332 2333 if (flush) 2334 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2335 2336 return 0; 2337 } 2338 2339 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2340 struct kvm_clear_dirty_log *log) 2341 { 2342 int r; 2343 2344 mutex_lock(&kvm->slots_lock); 2345 2346 r = kvm_clear_dirty_log_protect(kvm, log); 2347 2348 mutex_unlock(&kvm->slots_lock); 2349 return r; 2350 } 2351 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2352 2353 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2354 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2355 { 2356 if (!kvm || kvm_arch_has_private_mem(kvm)) 2357 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2358 2359 return 0; 2360 } 2361 2362 /* 2363 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2364 * such that the bits in @mask match @attrs. 2365 */ 2366 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2367 unsigned long mask, unsigned long attrs) 2368 { 2369 XA_STATE(xas, &kvm->mem_attr_array, start); 2370 unsigned long index; 2371 void *entry; 2372 2373 mask &= kvm_supported_mem_attributes(kvm); 2374 if (attrs & ~mask) 2375 return false; 2376 2377 if (end == start + 1) 2378 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2379 2380 guard(rcu)(); 2381 if (!attrs) 2382 return !xas_find(&xas, end - 1); 2383 2384 for (index = start; index < end; index++) { 2385 do { 2386 entry = xas_next(&xas); 2387 } while (xas_retry(&xas, entry)); 2388 2389 if (xas.xa_index != index || 2390 (xa_to_value(entry) & mask) != attrs) 2391 return false; 2392 } 2393 2394 return true; 2395 } 2396 2397 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2398 struct kvm_mmu_notifier_range *range) 2399 { 2400 struct kvm_gfn_range gfn_range; 2401 struct kvm_memory_slot *slot; 2402 struct kvm_memslots *slots; 2403 struct kvm_memslot_iter iter; 2404 bool found_memslot = false; 2405 bool ret = false; 2406 int i; 2407 2408 gfn_range.arg = range->arg; 2409 gfn_range.may_block = range->may_block; 2410 2411 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2412 slots = __kvm_memslots(kvm, i); 2413 2414 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2415 slot = iter.slot; 2416 gfn_range.slot = slot; 2417 2418 gfn_range.start = max(range->start, slot->base_gfn); 2419 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2420 if (gfn_range.start >= gfn_range.end) 2421 continue; 2422 2423 if (!found_memslot) { 2424 found_memslot = true; 2425 KVM_MMU_LOCK(kvm); 2426 if (!IS_KVM_NULL_FN(range->on_lock)) 2427 range->on_lock(kvm); 2428 } 2429 2430 ret |= range->handler(kvm, &gfn_range); 2431 } 2432 } 2433 2434 if (range->flush_on_ret && ret) 2435 kvm_flush_remote_tlbs(kvm); 2436 2437 if (found_memslot) 2438 KVM_MMU_UNLOCK(kvm); 2439 } 2440 2441 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2442 struct kvm_gfn_range *range) 2443 { 2444 /* 2445 * Unconditionally add the range to the invalidation set, regardless of 2446 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2447 * if KVM supports RWX attributes in the future and the attributes are 2448 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2449 * adding the range allows KVM to require that MMU invalidations add at 2450 * least one range between begin() and end(), e.g. allows KVM to detect 2451 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2452 * but it's not obvious that allowing new mappings while the attributes 2453 * are in flux is desirable or worth the complexity. 2454 */ 2455 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2456 2457 return kvm_arch_pre_set_memory_attributes(kvm, range); 2458 } 2459 2460 /* Set @attributes for the gfn range [@start, @end). */ 2461 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2462 unsigned long attributes) 2463 { 2464 struct kvm_mmu_notifier_range pre_set_range = { 2465 .start = start, 2466 .end = end, 2467 .handler = kvm_pre_set_memory_attributes, 2468 .on_lock = kvm_mmu_invalidate_begin, 2469 .flush_on_ret = true, 2470 .may_block = true, 2471 }; 2472 struct kvm_mmu_notifier_range post_set_range = { 2473 .start = start, 2474 .end = end, 2475 .arg.attributes = attributes, 2476 .handler = kvm_arch_post_set_memory_attributes, 2477 .on_lock = kvm_mmu_invalidate_end, 2478 .may_block = true, 2479 }; 2480 unsigned long i; 2481 void *entry; 2482 int r = 0; 2483 2484 entry = attributes ? xa_mk_value(attributes) : NULL; 2485 2486 mutex_lock(&kvm->slots_lock); 2487 2488 /* Nothing to do if the entire range as the desired attributes. */ 2489 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2490 goto out_unlock; 2491 2492 /* 2493 * Reserve memory ahead of time to avoid having to deal with failures 2494 * partway through setting the new attributes. 2495 */ 2496 for (i = start; i < end; i++) { 2497 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2498 if (r) 2499 goto out_unlock; 2500 } 2501 2502 kvm_handle_gfn_range(kvm, &pre_set_range); 2503 2504 for (i = start; i < end; i++) { 2505 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2506 GFP_KERNEL_ACCOUNT)); 2507 KVM_BUG_ON(r, kvm); 2508 } 2509 2510 kvm_handle_gfn_range(kvm, &post_set_range); 2511 2512 out_unlock: 2513 mutex_unlock(&kvm->slots_lock); 2514 2515 return r; 2516 } 2517 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2518 struct kvm_memory_attributes *attrs) 2519 { 2520 gfn_t start, end; 2521 2522 /* flags is currently not used. */ 2523 if (attrs->flags) 2524 return -EINVAL; 2525 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2526 return -EINVAL; 2527 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2528 return -EINVAL; 2529 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2530 return -EINVAL; 2531 2532 start = attrs->address >> PAGE_SHIFT; 2533 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2534 2535 /* 2536 * xarray tracks data using "unsigned long", and as a result so does 2537 * KVM. For simplicity, supports generic attributes only on 64-bit 2538 * architectures. 2539 */ 2540 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2541 2542 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2543 } 2544 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2545 2546 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2547 { 2548 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2549 } 2550 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2551 2552 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2553 { 2554 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2555 u64 gen = slots->generation; 2556 struct kvm_memory_slot *slot; 2557 2558 /* 2559 * This also protects against using a memslot from a different address space, 2560 * since different address spaces have different generation numbers. 2561 */ 2562 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2563 vcpu->last_used_slot = NULL; 2564 vcpu->last_used_slot_gen = gen; 2565 } 2566 2567 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2568 if (slot) 2569 return slot; 2570 2571 /* 2572 * Fall back to searching all memslots. We purposely use 2573 * search_memslots() instead of __gfn_to_memslot() to avoid 2574 * thrashing the VM-wide last_used_slot in kvm_memslots. 2575 */ 2576 slot = search_memslots(slots, gfn, false); 2577 if (slot) { 2578 vcpu->last_used_slot = slot; 2579 return slot; 2580 } 2581 2582 return NULL; 2583 } 2584 2585 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2586 { 2587 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2588 2589 return kvm_is_visible_memslot(memslot); 2590 } 2591 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2592 2593 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2594 { 2595 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2596 2597 return kvm_is_visible_memslot(memslot); 2598 } 2599 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2600 2601 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2602 { 2603 struct vm_area_struct *vma; 2604 unsigned long addr, size; 2605 2606 size = PAGE_SIZE; 2607 2608 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2609 if (kvm_is_error_hva(addr)) 2610 return PAGE_SIZE; 2611 2612 mmap_read_lock(current->mm); 2613 vma = find_vma(current->mm, addr); 2614 if (!vma) 2615 goto out; 2616 2617 size = vma_kernel_pagesize(vma); 2618 2619 out: 2620 mmap_read_unlock(current->mm); 2621 2622 return size; 2623 } 2624 2625 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2626 { 2627 return slot->flags & KVM_MEM_READONLY; 2628 } 2629 2630 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2631 gfn_t *nr_pages, bool write) 2632 { 2633 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2634 return KVM_HVA_ERR_BAD; 2635 2636 if (memslot_is_readonly(slot) && write) 2637 return KVM_HVA_ERR_RO_BAD; 2638 2639 if (nr_pages) 2640 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2641 2642 return __gfn_to_hva_memslot(slot, gfn); 2643 } 2644 2645 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2646 gfn_t *nr_pages) 2647 { 2648 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2649 } 2650 2651 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2652 gfn_t gfn) 2653 { 2654 return gfn_to_hva_many(slot, gfn, NULL); 2655 } 2656 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2657 2658 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2659 { 2660 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2661 } 2662 EXPORT_SYMBOL_GPL(gfn_to_hva); 2663 2664 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2665 { 2666 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2667 } 2668 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2669 2670 /* 2671 * Return the hva of a @gfn and the R/W attribute if possible. 2672 * 2673 * @slot: the kvm_memory_slot which contains @gfn 2674 * @gfn: the gfn to be translated 2675 * @writable: used to return the read/write attribute of the @slot if the hva 2676 * is valid and @writable is not NULL 2677 */ 2678 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2679 gfn_t gfn, bool *writable) 2680 { 2681 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2682 2683 if (!kvm_is_error_hva(hva) && writable) 2684 *writable = !memslot_is_readonly(slot); 2685 2686 return hva; 2687 } 2688 2689 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2690 { 2691 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2692 2693 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2694 } 2695 2696 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2697 { 2698 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2699 2700 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2701 } 2702 2703 static bool kvm_is_ad_tracked_page(struct page *page) 2704 { 2705 /* 2706 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2707 * touched (e.g. set dirty) except by its owner". 2708 */ 2709 return !PageReserved(page); 2710 } 2711 2712 static void kvm_set_page_dirty(struct page *page) 2713 { 2714 if (kvm_is_ad_tracked_page(page)) 2715 SetPageDirty(page); 2716 } 2717 2718 static void kvm_set_page_accessed(struct page *page) 2719 { 2720 if (kvm_is_ad_tracked_page(page)) 2721 mark_page_accessed(page); 2722 } 2723 2724 void kvm_release_page_clean(struct page *page) 2725 { 2726 if (!page) 2727 return; 2728 2729 kvm_set_page_accessed(page); 2730 put_page(page); 2731 } 2732 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2733 2734 void kvm_release_page_dirty(struct page *page) 2735 { 2736 if (!page) 2737 return; 2738 2739 kvm_set_page_dirty(page); 2740 kvm_release_page_clean(page); 2741 } 2742 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2743 2744 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, 2745 struct follow_pfnmap_args *map, bool writable) 2746 { 2747 kvm_pfn_t pfn; 2748 2749 WARN_ON_ONCE(!!page == !!map); 2750 2751 if (kfp->map_writable) 2752 *kfp->map_writable = writable; 2753 2754 if (map) 2755 pfn = map->pfn; 2756 else 2757 pfn = page_to_pfn(page); 2758 2759 *kfp->refcounted_page = page; 2760 2761 return pfn; 2762 } 2763 2764 /* 2765 * The fast path to get the writable pfn which will be stored in @pfn, 2766 * true indicates success, otherwise false is returned. 2767 */ 2768 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2769 { 2770 struct page *page; 2771 bool r; 2772 2773 /* 2774 * Try the fast-only path when the caller wants to pin/get the page for 2775 * writing. If the caller only wants to read the page, KVM must go 2776 * down the full, slow path in order to avoid racing an operation that 2777 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing 2778 * at the old, read-only page while mm/ points at a new, writable page. 2779 */ 2780 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) 2781 return false; 2782 2783 if (kfp->pin) 2784 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; 2785 else 2786 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); 2787 2788 if (r) { 2789 *pfn = kvm_resolve_pfn(kfp, page, NULL, true); 2790 return true; 2791 } 2792 2793 return false; 2794 } 2795 2796 /* 2797 * The slow path to get the pfn of the specified host virtual address, 2798 * 1 indicates success, -errno is returned if error is detected. 2799 */ 2800 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2801 { 2802 /* 2803 * When a VCPU accesses a page that is not mapped into the secondary 2804 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2805 * make progress. We always want to honor NUMA hinting faults in that 2806 * case, because GUP usage corresponds to memory accesses from the VCPU. 2807 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2808 * mapped into the secondary MMU and gets accessed by a VCPU. 2809 * 2810 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2811 * implicitly honor NUMA hinting faults and don't need this flag. 2812 */ 2813 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; 2814 struct page *page, *wpage; 2815 int npages; 2816 2817 if (kfp->pin) 2818 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); 2819 else 2820 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); 2821 if (npages != 1) 2822 return npages; 2823 2824 /* 2825 * Pinning is mutually exclusive with opportunistically mapping a read 2826 * fault as writable, as KVM should never pin pages when mapping memory 2827 * into the guest (pinning is only for direct accesses from KVM). 2828 */ 2829 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) 2830 goto out; 2831 2832 /* map read fault as writable if possible */ 2833 if (!(flags & FOLL_WRITE) && kfp->map_writable && 2834 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { 2835 put_page(page); 2836 page = wpage; 2837 flags |= FOLL_WRITE; 2838 } 2839 2840 out: 2841 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); 2842 return npages; 2843 } 2844 2845 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2846 { 2847 if (unlikely(!(vma->vm_flags & VM_READ))) 2848 return false; 2849 2850 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2851 return false; 2852 2853 return true; 2854 } 2855 2856 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2857 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) 2858 { 2859 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; 2860 bool write_fault = kfp->flags & FOLL_WRITE; 2861 int r; 2862 2863 /* 2864 * Remapped memory cannot be pinned in any meaningful sense. Bail if 2865 * the caller wants to pin the page, i.e. access the page outside of 2866 * MMU notifier protection, and unsafe umappings are disallowed. 2867 */ 2868 if (kfp->pin && !allow_unsafe_mappings) 2869 return -EINVAL; 2870 2871 r = follow_pfnmap_start(&args); 2872 if (r) { 2873 /* 2874 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2875 * not call the fault handler, so do it here. 2876 */ 2877 bool unlocked = false; 2878 r = fixup_user_fault(current->mm, kfp->hva, 2879 (write_fault ? FAULT_FLAG_WRITE : 0), 2880 &unlocked); 2881 if (unlocked) 2882 return -EAGAIN; 2883 if (r) 2884 return r; 2885 2886 r = follow_pfnmap_start(&args); 2887 if (r) 2888 return r; 2889 } 2890 2891 if (write_fault && !args.writable) { 2892 *p_pfn = KVM_PFN_ERR_RO_FAULT; 2893 goto out; 2894 } 2895 2896 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); 2897 out: 2898 follow_pfnmap_end(&args); 2899 return r; 2900 } 2901 2902 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) 2903 { 2904 struct vm_area_struct *vma; 2905 kvm_pfn_t pfn; 2906 int npages, r; 2907 2908 might_sleep(); 2909 2910 if (WARN_ON_ONCE(!kfp->refcounted_page)) 2911 return KVM_PFN_ERR_FAULT; 2912 2913 if (hva_to_pfn_fast(kfp, &pfn)) 2914 return pfn; 2915 2916 npages = hva_to_pfn_slow(kfp, &pfn); 2917 if (npages == 1) 2918 return pfn; 2919 if (npages == -EINTR || npages == -EAGAIN) 2920 return KVM_PFN_ERR_SIGPENDING; 2921 if (npages == -EHWPOISON) 2922 return KVM_PFN_ERR_HWPOISON; 2923 2924 mmap_read_lock(current->mm); 2925 retry: 2926 vma = vma_lookup(current->mm, kfp->hva); 2927 2928 if (vma == NULL) 2929 pfn = KVM_PFN_ERR_FAULT; 2930 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2931 r = hva_to_pfn_remapped(vma, kfp, &pfn); 2932 if (r == -EAGAIN) 2933 goto retry; 2934 if (r < 0) 2935 pfn = KVM_PFN_ERR_FAULT; 2936 } else { 2937 if ((kfp->flags & FOLL_NOWAIT) && 2938 vma_is_valid(vma, kfp->flags & FOLL_WRITE)) 2939 pfn = KVM_PFN_ERR_NEEDS_IO; 2940 else 2941 pfn = KVM_PFN_ERR_FAULT; 2942 } 2943 mmap_read_unlock(current->mm); 2944 return pfn; 2945 } 2946 2947 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) 2948 { 2949 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, 2950 kfp->flags & FOLL_WRITE); 2951 2952 if (kfp->hva == KVM_HVA_ERR_RO_BAD) 2953 return KVM_PFN_ERR_RO_FAULT; 2954 2955 if (kvm_is_error_hva(kfp->hva)) 2956 return KVM_PFN_NOSLOT; 2957 2958 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { 2959 *kfp->map_writable = false; 2960 kfp->map_writable = NULL; 2961 } 2962 2963 return hva_to_pfn(kfp); 2964 } 2965 2966 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 2967 unsigned int foll, bool *writable, 2968 struct page **refcounted_page) 2969 { 2970 struct kvm_follow_pfn kfp = { 2971 .slot = slot, 2972 .gfn = gfn, 2973 .flags = foll, 2974 .map_writable = writable, 2975 .refcounted_page = refcounted_page, 2976 }; 2977 2978 if (WARN_ON_ONCE(!writable || !refcounted_page)) 2979 return KVM_PFN_ERR_FAULT; 2980 2981 *writable = false; 2982 *refcounted_page = NULL; 2983 2984 return kvm_follow_pfn(&kfp); 2985 } 2986 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn); 2987 2988 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 2989 struct page **pages, int nr_pages) 2990 { 2991 unsigned long addr; 2992 gfn_t entry = 0; 2993 2994 addr = gfn_to_hva_many(slot, gfn, &entry); 2995 if (kvm_is_error_hva(addr)) 2996 return -1; 2997 2998 if (entry < nr_pages) 2999 return 0; 3000 3001 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3002 } 3003 EXPORT_SYMBOL_GPL(kvm_prefetch_pages); 3004 3005 /* 3006 * Don't use this API unless you are absolutely, positively certain that KVM 3007 * needs to get a struct page, e.g. to pin the page for firmware DMA. 3008 * 3009 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate 3010 * its refcount. 3011 */ 3012 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) 3013 { 3014 struct page *refcounted_page = NULL; 3015 struct kvm_follow_pfn kfp = { 3016 .slot = gfn_to_memslot(kvm, gfn), 3017 .gfn = gfn, 3018 .flags = write ? FOLL_WRITE : 0, 3019 .refcounted_page = &refcounted_page, 3020 }; 3021 3022 (void)kvm_follow_pfn(&kfp); 3023 return refcounted_page; 3024 } 3025 EXPORT_SYMBOL_GPL(__gfn_to_page); 3026 3027 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 3028 bool writable) 3029 { 3030 struct kvm_follow_pfn kfp = { 3031 .slot = gfn_to_memslot(vcpu->kvm, gfn), 3032 .gfn = gfn, 3033 .flags = writable ? FOLL_WRITE : 0, 3034 .refcounted_page = &map->pinned_page, 3035 .pin = true, 3036 }; 3037 3038 map->pinned_page = NULL; 3039 map->page = NULL; 3040 map->hva = NULL; 3041 map->gfn = gfn; 3042 map->writable = writable; 3043 3044 map->pfn = kvm_follow_pfn(&kfp); 3045 if (is_error_noslot_pfn(map->pfn)) 3046 return -EINVAL; 3047 3048 if (pfn_valid(map->pfn)) { 3049 map->page = pfn_to_page(map->pfn); 3050 map->hva = kmap(map->page); 3051 #ifdef CONFIG_HAS_IOMEM 3052 } else { 3053 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); 3054 #endif 3055 } 3056 3057 return map->hva ? 0 : -EFAULT; 3058 } 3059 EXPORT_SYMBOL_GPL(__kvm_vcpu_map); 3060 3061 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) 3062 { 3063 if (!map->hva) 3064 return; 3065 3066 if (map->page) 3067 kunmap(map->page); 3068 #ifdef CONFIG_HAS_IOMEM 3069 else 3070 memunmap(map->hva); 3071 #endif 3072 3073 if (map->writable) 3074 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3075 3076 if (map->pinned_page) { 3077 if (map->writable) 3078 kvm_set_page_dirty(map->pinned_page); 3079 kvm_set_page_accessed(map->pinned_page); 3080 unpin_user_page(map->pinned_page); 3081 } 3082 3083 map->hva = NULL; 3084 map->page = NULL; 3085 map->pinned_page = NULL; 3086 } 3087 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3088 3089 static int next_segment(unsigned long len, int offset) 3090 { 3091 if (len > PAGE_SIZE - offset) 3092 return PAGE_SIZE - offset; 3093 else 3094 return len; 3095 } 3096 3097 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3098 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3099 void *data, int offset, int len) 3100 { 3101 int r; 3102 unsigned long addr; 3103 3104 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3105 return -EFAULT; 3106 3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3108 if (kvm_is_error_hva(addr)) 3109 return -EFAULT; 3110 r = __copy_from_user(data, (void __user *)addr + offset, len); 3111 if (r) 3112 return -EFAULT; 3113 return 0; 3114 } 3115 3116 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3117 int len) 3118 { 3119 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3120 3121 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3122 } 3123 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3124 3125 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3126 int offset, int len) 3127 { 3128 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3129 3130 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3131 } 3132 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3133 3134 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3135 { 3136 gfn_t gfn = gpa >> PAGE_SHIFT; 3137 int seg; 3138 int offset = offset_in_page(gpa); 3139 int ret; 3140 3141 while ((seg = next_segment(len, offset)) != 0) { 3142 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3143 if (ret < 0) 3144 return ret; 3145 offset = 0; 3146 len -= seg; 3147 data += seg; 3148 ++gfn; 3149 } 3150 return 0; 3151 } 3152 EXPORT_SYMBOL_GPL(kvm_read_guest); 3153 3154 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3155 { 3156 gfn_t gfn = gpa >> PAGE_SHIFT; 3157 int seg; 3158 int offset = offset_in_page(gpa); 3159 int ret; 3160 3161 while ((seg = next_segment(len, offset)) != 0) { 3162 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3163 if (ret < 0) 3164 return ret; 3165 offset = 0; 3166 len -= seg; 3167 data += seg; 3168 ++gfn; 3169 } 3170 return 0; 3171 } 3172 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3173 3174 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3175 void *data, int offset, unsigned long len) 3176 { 3177 int r; 3178 unsigned long addr; 3179 3180 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3181 return -EFAULT; 3182 3183 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3184 if (kvm_is_error_hva(addr)) 3185 return -EFAULT; 3186 pagefault_disable(); 3187 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3188 pagefault_enable(); 3189 if (r) 3190 return -EFAULT; 3191 return 0; 3192 } 3193 3194 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3195 void *data, unsigned long len) 3196 { 3197 gfn_t gfn = gpa >> PAGE_SHIFT; 3198 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3199 int offset = offset_in_page(gpa); 3200 3201 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3202 } 3203 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3204 3205 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3206 static int __kvm_write_guest_page(struct kvm *kvm, 3207 struct kvm_memory_slot *memslot, gfn_t gfn, 3208 const void *data, int offset, int len) 3209 { 3210 int r; 3211 unsigned long addr; 3212 3213 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3214 return -EFAULT; 3215 3216 addr = gfn_to_hva_memslot(memslot, gfn); 3217 if (kvm_is_error_hva(addr)) 3218 return -EFAULT; 3219 r = __copy_to_user((void __user *)addr + offset, data, len); 3220 if (r) 3221 return -EFAULT; 3222 mark_page_dirty_in_slot(kvm, memslot, gfn); 3223 return 0; 3224 } 3225 3226 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3227 const void *data, int offset, int len) 3228 { 3229 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3230 3231 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3232 } 3233 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3234 3235 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3236 const void *data, int offset, int len) 3237 { 3238 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3239 3240 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3241 } 3242 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3243 3244 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3245 unsigned long len) 3246 { 3247 gfn_t gfn = gpa >> PAGE_SHIFT; 3248 int seg; 3249 int offset = offset_in_page(gpa); 3250 int ret; 3251 3252 while ((seg = next_segment(len, offset)) != 0) { 3253 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3254 if (ret < 0) 3255 return ret; 3256 offset = 0; 3257 len -= seg; 3258 data += seg; 3259 ++gfn; 3260 } 3261 return 0; 3262 } 3263 EXPORT_SYMBOL_GPL(kvm_write_guest); 3264 3265 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3266 unsigned long len) 3267 { 3268 gfn_t gfn = gpa >> PAGE_SHIFT; 3269 int seg; 3270 int offset = offset_in_page(gpa); 3271 int ret; 3272 3273 while ((seg = next_segment(len, offset)) != 0) { 3274 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3275 if (ret < 0) 3276 return ret; 3277 offset = 0; 3278 len -= seg; 3279 data += seg; 3280 ++gfn; 3281 } 3282 return 0; 3283 } 3284 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3285 3286 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3287 struct gfn_to_hva_cache *ghc, 3288 gpa_t gpa, unsigned long len) 3289 { 3290 int offset = offset_in_page(gpa); 3291 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3292 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3293 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3294 gfn_t nr_pages_avail; 3295 3296 /* Update ghc->generation before performing any error checks. */ 3297 ghc->generation = slots->generation; 3298 3299 if (start_gfn > end_gfn) { 3300 ghc->hva = KVM_HVA_ERR_BAD; 3301 return -EINVAL; 3302 } 3303 3304 /* 3305 * If the requested region crosses two memslots, we still 3306 * verify that the entire region is valid here. 3307 */ 3308 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3309 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3310 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3311 &nr_pages_avail); 3312 if (kvm_is_error_hva(ghc->hva)) 3313 return -EFAULT; 3314 } 3315 3316 /* Use the slow path for cross page reads and writes. */ 3317 if (nr_pages_needed == 1) 3318 ghc->hva += offset; 3319 else 3320 ghc->memslot = NULL; 3321 3322 ghc->gpa = gpa; 3323 ghc->len = len; 3324 return 0; 3325 } 3326 3327 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3328 gpa_t gpa, unsigned long len) 3329 { 3330 struct kvm_memslots *slots = kvm_memslots(kvm); 3331 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3332 } 3333 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3334 3335 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3336 void *data, unsigned int offset, 3337 unsigned long len) 3338 { 3339 struct kvm_memslots *slots = kvm_memslots(kvm); 3340 int r; 3341 gpa_t gpa = ghc->gpa + offset; 3342 3343 if (WARN_ON_ONCE(len + offset > ghc->len)) 3344 return -EINVAL; 3345 3346 if (slots->generation != ghc->generation) { 3347 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3348 return -EFAULT; 3349 } 3350 3351 if (kvm_is_error_hva(ghc->hva)) 3352 return -EFAULT; 3353 3354 if (unlikely(!ghc->memslot)) 3355 return kvm_write_guest(kvm, gpa, data, len); 3356 3357 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3358 if (r) 3359 return -EFAULT; 3360 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3361 3362 return 0; 3363 } 3364 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3365 3366 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3367 void *data, unsigned long len) 3368 { 3369 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3370 } 3371 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3372 3373 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3374 void *data, unsigned int offset, 3375 unsigned long len) 3376 { 3377 struct kvm_memslots *slots = kvm_memslots(kvm); 3378 int r; 3379 gpa_t gpa = ghc->gpa + offset; 3380 3381 if (WARN_ON_ONCE(len + offset > ghc->len)) 3382 return -EINVAL; 3383 3384 if (slots->generation != ghc->generation) { 3385 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3386 return -EFAULT; 3387 } 3388 3389 if (kvm_is_error_hva(ghc->hva)) 3390 return -EFAULT; 3391 3392 if (unlikely(!ghc->memslot)) 3393 return kvm_read_guest(kvm, gpa, data, len); 3394 3395 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3396 if (r) 3397 return -EFAULT; 3398 3399 return 0; 3400 } 3401 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3402 3403 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3404 void *data, unsigned long len) 3405 { 3406 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3407 } 3408 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3409 3410 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3411 { 3412 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3413 gfn_t gfn = gpa >> PAGE_SHIFT; 3414 int seg; 3415 int offset = offset_in_page(gpa); 3416 int ret; 3417 3418 while ((seg = next_segment(len, offset)) != 0) { 3419 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); 3420 if (ret < 0) 3421 return ret; 3422 offset = 0; 3423 len -= seg; 3424 ++gfn; 3425 } 3426 return 0; 3427 } 3428 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3429 3430 void mark_page_dirty_in_slot(struct kvm *kvm, 3431 const struct kvm_memory_slot *memslot, 3432 gfn_t gfn) 3433 { 3434 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3435 3436 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3437 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3438 return; 3439 3440 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3441 #endif 3442 3443 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3444 unsigned long rel_gfn = gfn - memslot->base_gfn; 3445 u32 slot = (memslot->as_id << 16) | memslot->id; 3446 3447 if (kvm->dirty_ring_size && vcpu) 3448 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3449 else if (memslot->dirty_bitmap) 3450 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3451 } 3452 } 3453 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3454 3455 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3456 { 3457 struct kvm_memory_slot *memslot; 3458 3459 memslot = gfn_to_memslot(kvm, gfn); 3460 mark_page_dirty_in_slot(kvm, memslot, gfn); 3461 } 3462 EXPORT_SYMBOL_GPL(mark_page_dirty); 3463 3464 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3465 { 3466 struct kvm_memory_slot *memslot; 3467 3468 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3469 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3470 } 3471 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3472 3473 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3474 { 3475 if (!vcpu->sigset_active) 3476 return; 3477 3478 /* 3479 * This does a lockless modification of ->real_blocked, which is fine 3480 * because, only current can change ->real_blocked and all readers of 3481 * ->real_blocked don't care as long ->real_blocked is always a subset 3482 * of ->blocked. 3483 */ 3484 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3485 } 3486 3487 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3488 { 3489 if (!vcpu->sigset_active) 3490 return; 3491 3492 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3493 sigemptyset(¤t->real_blocked); 3494 } 3495 3496 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3497 { 3498 unsigned int old, val, grow, grow_start; 3499 3500 old = val = vcpu->halt_poll_ns; 3501 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3502 grow = READ_ONCE(halt_poll_ns_grow); 3503 if (!grow) 3504 goto out; 3505 3506 val *= grow; 3507 if (val < grow_start) 3508 val = grow_start; 3509 3510 vcpu->halt_poll_ns = val; 3511 out: 3512 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3513 } 3514 3515 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3516 { 3517 unsigned int old, val, shrink, grow_start; 3518 3519 old = val = vcpu->halt_poll_ns; 3520 shrink = READ_ONCE(halt_poll_ns_shrink); 3521 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3522 if (shrink == 0) 3523 val = 0; 3524 else 3525 val /= shrink; 3526 3527 if (val < grow_start) 3528 val = 0; 3529 3530 vcpu->halt_poll_ns = val; 3531 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3532 } 3533 3534 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3535 { 3536 int ret = -EINTR; 3537 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3538 3539 if (kvm_arch_vcpu_runnable(vcpu)) 3540 goto out; 3541 if (kvm_cpu_has_pending_timer(vcpu)) 3542 goto out; 3543 if (signal_pending(current)) 3544 goto out; 3545 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3546 goto out; 3547 3548 ret = 0; 3549 out: 3550 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3551 return ret; 3552 } 3553 3554 /* 3555 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3556 * pending. This is mostly used when halting a vCPU, but may also be used 3557 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3558 */ 3559 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3560 { 3561 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3562 bool waited = false; 3563 3564 vcpu->stat.generic.blocking = 1; 3565 3566 preempt_disable(); 3567 kvm_arch_vcpu_blocking(vcpu); 3568 prepare_to_rcuwait(wait); 3569 preempt_enable(); 3570 3571 for (;;) { 3572 set_current_state(TASK_INTERRUPTIBLE); 3573 3574 if (kvm_vcpu_check_block(vcpu) < 0) 3575 break; 3576 3577 waited = true; 3578 schedule(); 3579 } 3580 3581 preempt_disable(); 3582 finish_rcuwait(wait); 3583 kvm_arch_vcpu_unblocking(vcpu); 3584 preempt_enable(); 3585 3586 vcpu->stat.generic.blocking = 0; 3587 3588 return waited; 3589 } 3590 3591 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3592 ktime_t end, bool success) 3593 { 3594 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3595 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3596 3597 ++vcpu->stat.generic.halt_attempted_poll; 3598 3599 if (success) { 3600 ++vcpu->stat.generic.halt_successful_poll; 3601 3602 if (!vcpu_valid_wakeup(vcpu)) 3603 ++vcpu->stat.generic.halt_poll_invalid; 3604 3605 stats->halt_poll_success_ns += poll_ns; 3606 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3607 } else { 3608 stats->halt_poll_fail_ns += poll_ns; 3609 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3610 } 3611 } 3612 3613 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3614 { 3615 struct kvm *kvm = vcpu->kvm; 3616 3617 if (kvm->override_halt_poll_ns) { 3618 /* 3619 * Ensure kvm->max_halt_poll_ns is not read before 3620 * kvm->override_halt_poll_ns. 3621 * 3622 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3623 */ 3624 smp_rmb(); 3625 return READ_ONCE(kvm->max_halt_poll_ns); 3626 } 3627 3628 return READ_ONCE(halt_poll_ns); 3629 } 3630 3631 /* 3632 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3633 * polling is enabled, busy wait for a short time before blocking to avoid the 3634 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3635 * is halted. 3636 */ 3637 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3638 { 3639 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3640 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3641 ktime_t start, cur, poll_end; 3642 bool waited = false; 3643 bool do_halt_poll; 3644 u64 halt_ns; 3645 3646 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3647 vcpu->halt_poll_ns = max_halt_poll_ns; 3648 3649 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3650 3651 start = cur = poll_end = ktime_get(); 3652 if (do_halt_poll) { 3653 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3654 3655 do { 3656 if (kvm_vcpu_check_block(vcpu) < 0) 3657 goto out; 3658 cpu_relax(); 3659 poll_end = cur = ktime_get(); 3660 } while (kvm_vcpu_can_poll(cur, stop)); 3661 } 3662 3663 waited = kvm_vcpu_block(vcpu); 3664 3665 cur = ktime_get(); 3666 if (waited) { 3667 vcpu->stat.generic.halt_wait_ns += 3668 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3669 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3670 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3671 } 3672 out: 3673 /* The total time the vCPU was "halted", including polling time. */ 3674 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3675 3676 /* 3677 * Note, halt-polling is considered successful so long as the vCPU was 3678 * never actually scheduled out, i.e. even if the wake event arrived 3679 * after of the halt-polling loop itself, but before the full wait. 3680 */ 3681 if (do_halt_poll) 3682 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3683 3684 if (halt_poll_allowed) { 3685 /* Recompute the max halt poll time in case it changed. */ 3686 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3687 3688 if (!vcpu_valid_wakeup(vcpu)) { 3689 shrink_halt_poll_ns(vcpu); 3690 } else if (max_halt_poll_ns) { 3691 if (halt_ns <= vcpu->halt_poll_ns) 3692 ; 3693 /* we had a long block, shrink polling */ 3694 else if (vcpu->halt_poll_ns && 3695 halt_ns > max_halt_poll_ns) 3696 shrink_halt_poll_ns(vcpu); 3697 /* we had a short halt and our poll time is too small */ 3698 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3699 halt_ns < max_halt_poll_ns) 3700 grow_halt_poll_ns(vcpu); 3701 } else { 3702 vcpu->halt_poll_ns = 0; 3703 } 3704 } 3705 3706 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3707 } 3708 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3709 3710 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3711 { 3712 if (__kvm_vcpu_wake_up(vcpu)) { 3713 WRITE_ONCE(vcpu->ready, true); 3714 ++vcpu->stat.generic.halt_wakeup; 3715 return true; 3716 } 3717 3718 return false; 3719 } 3720 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3721 3722 #ifndef CONFIG_S390 3723 /* 3724 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3725 */ 3726 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3727 { 3728 int me, cpu; 3729 3730 if (kvm_vcpu_wake_up(vcpu)) 3731 return; 3732 3733 me = get_cpu(); 3734 /* 3735 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3736 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3737 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3738 * within the vCPU thread itself. 3739 */ 3740 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3741 if (vcpu->mode == IN_GUEST_MODE) 3742 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3743 goto out; 3744 } 3745 3746 /* 3747 * Note, the vCPU could get migrated to a different pCPU at any point 3748 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3749 * IPI to the previous pCPU. But, that's ok because the purpose of the 3750 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3751 * vCPU also requires it to leave IN_GUEST_MODE. 3752 */ 3753 if (kvm_arch_vcpu_should_kick(vcpu)) { 3754 cpu = READ_ONCE(vcpu->cpu); 3755 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3756 smp_send_reschedule(cpu); 3757 } 3758 out: 3759 put_cpu(); 3760 } 3761 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3762 #endif /* !CONFIG_S390 */ 3763 3764 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3765 { 3766 struct task_struct *task = NULL; 3767 int ret; 3768 3769 if (!read_trylock(&target->pid_lock)) 3770 return 0; 3771 3772 if (target->pid) 3773 task = get_pid_task(target->pid, PIDTYPE_PID); 3774 3775 read_unlock(&target->pid_lock); 3776 3777 if (!task) 3778 return 0; 3779 ret = yield_to(task, 1); 3780 put_task_struct(task); 3781 3782 return ret; 3783 } 3784 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3785 3786 /* 3787 * Helper that checks whether a VCPU is eligible for directed yield. 3788 * Most eligible candidate to yield is decided by following heuristics: 3789 * 3790 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3791 * (preempted lock holder), indicated by @in_spin_loop. 3792 * Set at the beginning and cleared at the end of interception/PLE handler. 3793 * 3794 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3795 * chance last time (mostly it has become eligible now since we have probably 3796 * yielded to lockholder in last iteration. This is done by toggling 3797 * @dy_eligible each time a VCPU checked for eligibility.) 3798 * 3799 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3800 * to preempted lock-holder could result in wrong VCPU selection and CPU 3801 * burning. Giving priority for a potential lock-holder increases lock 3802 * progress. 3803 * 3804 * Since algorithm is based on heuristics, accessing another VCPU data without 3805 * locking does not harm. It may result in trying to yield to same VCPU, fail 3806 * and continue with next VCPU and so on. 3807 */ 3808 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3809 { 3810 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3811 bool eligible; 3812 3813 eligible = !vcpu->spin_loop.in_spin_loop || 3814 vcpu->spin_loop.dy_eligible; 3815 3816 if (vcpu->spin_loop.in_spin_loop) 3817 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3818 3819 return eligible; 3820 #else 3821 return true; 3822 #endif 3823 } 3824 3825 /* 3826 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3827 * a vcpu_load/vcpu_put pair. However, for most architectures 3828 * kvm_arch_vcpu_runnable does not require vcpu_load. 3829 */ 3830 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3831 { 3832 return kvm_arch_vcpu_runnable(vcpu); 3833 } 3834 3835 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3836 { 3837 if (kvm_arch_dy_runnable(vcpu)) 3838 return true; 3839 3840 #ifdef CONFIG_KVM_ASYNC_PF 3841 if (!list_empty_careful(&vcpu->async_pf.done)) 3842 return true; 3843 #endif 3844 3845 return false; 3846 } 3847 3848 /* 3849 * By default, simply query the target vCPU's current mode when checking if a 3850 * vCPU was preempted in kernel mode. All architectures except x86 (or more 3851 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 3852 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 3853 * directly for cross-vCPU checks is functionally correct and accurate. 3854 */ 3855 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 3856 { 3857 return kvm_arch_vcpu_in_kernel(vcpu); 3858 } 3859 3860 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3861 { 3862 return false; 3863 } 3864 3865 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3866 { 3867 int nr_vcpus, start, i, idx, yielded; 3868 struct kvm *kvm = me->kvm; 3869 struct kvm_vcpu *vcpu; 3870 int try = 3; 3871 3872 nr_vcpus = atomic_read(&kvm->online_vcpus); 3873 if (nr_vcpus < 2) 3874 return; 3875 3876 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ 3877 smp_rmb(); 3878 3879 kvm_vcpu_set_in_spin_loop(me, true); 3880 3881 /* 3882 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely 3883 * waiting for a resource to become available. Attempt to yield to a 3884 * vCPU that is runnable, but not currently running, e.g. because the 3885 * vCPU was preempted by a higher priority task. With luck, the vCPU 3886 * that was preempted is holding a lock or some other resource that the 3887 * current vCPU is waiting to acquire, and yielding to the other vCPU 3888 * will allow it to make forward progress and release the lock (or kick 3889 * the spinning vCPU, etc). 3890 * 3891 * Since KVM has no insight into what exactly the guest is doing, 3892 * approximate a round-robin selection by iterating over all vCPUs, 3893 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu, 3894 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. 3895 * 3896 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, 3897 * they may all try to yield to the same vCPU(s). But as above, this 3898 * is all best effort due to KVM's lack of visibility into the guest. 3899 */ 3900 start = READ_ONCE(kvm->last_boosted_vcpu) + 1; 3901 for (i = 0; i < nr_vcpus; i++) { 3902 idx = (start + i) % nr_vcpus; 3903 if (idx == me->vcpu_idx) 3904 continue; 3905 3906 vcpu = xa_load(&kvm->vcpu_array, idx); 3907 if (!READ_ONCE(vcpu->ready)) 3908 continue; 3909 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3910 continue; 3911 3912 /* 3913 * Treat the target vCPU as being in-kernel if it has a pending 3914 * interrupt, as the vCPU trying to yield may be spinning 3915 * waiting on IPI delivery, i.e. the target vCPU is in-kernel 3916 * for the purposes of directed yield. 3917 */ 3918 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3919 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3920 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 3921 continue; 3922 3923 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3924 continue; 3925 3926 yielded = kvm_vcpu_yield_to(vcpu); 3927 if (yielded > 0) { 3928 WRITE_ONCE(kvm->last_boosted_vcpu, i); 3929 break; 3930 } else if (yielded < 0 && !--try) { 3931 break; 3932 } 3933 } 3934 kvm_vcpu_set_in_spin_loop(me, false); 3935 3936 /* Ensure vcpu is not eligible during next spinloop */ 3937 kvm_vcpu_set_dy_eligible(me, false); 3938 } 3939 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3940 3941 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3942 { 3943 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3944 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3945 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3946 kvm->dirty_ring_size / PAGE_SIZE); 3947 #else 3948 return false; 3949 #endif 3950 } 3951 3952 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3953 { 3954 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3955 struct page *page; 3956 3957 if (vmf->pgoff == 0) 3958 page = virt_to_page(vcpu->run); 3959 #ifdef CONFIG_X86 3960 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3961 page = virt_to_page(vcpu->arch.pio_data); 3962 #endif 3963 #ifdef CONFIG_KVM_MMIO 3964 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3965 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3966 #endif 3967 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3968 page = kvm_dirty_ring_get_page( 3969 &vcpu->dirty_ring, 3970 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3971 else 3972 return kvm_arch_vcpu_fault(vcpu, vmf); 3973 get_page(page); 3974 vmf->page = page; 3975 return 0; 3976 } 3977 3978 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3979 .fault = kvm_vcpu_fault, 3980 }; 3981 3982 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3983 { 3984 struct kvm_vcpu *vcpu = file->private_data; 3985 unsigned long pages = vma_pages(vma); 3986 3987 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3988 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3989 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3990 return -EINVAL; 3991 3992 vma->vm_ops = &kvm_vcpu_vm_ops; 3993 return 0; 3994 } 3995 3996 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3997 { 3998 struct kvm_vcpu *vcpu = filp->private_data; 3999 4000 kvm_put_kvm(vcpu->kvm); 4001 return 0; 4002 } 4003 4004 static struct file_operations kvm_vcpu_fops = { 4005 .release = kvm_vcpu_release, 4006 .unlocked_ioctl = kvm_vcpu_ioctl, 4007 .mmap = kvm_vcpu_mmap, 4008 .llseek = noop_llseek, 4009 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4010 }; 4011 4012 /* 4013 * Allocates an inode for the vcpu. 4014 */ 4015 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4016 { 4017 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4018 4019 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4020 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4021 } 4022 4023 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4024 static int vcpu_get_pid(void *data, u64 *val) 4025 { 4026 struct kvm_vcpu *vcpu = data; 4027 4028 read_lock(&vcpu->pid_lock); 4029 *val = pid_nr(vcpu->pid); 4030 read_unlock(&vcpu->pid_lock); 4031 return 0; 4032 } 4033 4034 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4035 4036 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4037 { 4038 struct dentry *debugfs_dentry; 4039 char dir_name[ITOA_MAX_LEN * 2]; 4040 4041 if (!debugfs_initialized()) 4042 return; 4043 4044 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4045 debugfs_dentry = debugfs_create_dir(dir_name, 4046 vcpu->kvm->debugfs_dentry); 4047 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4048 &vcpu_get_pid_fops); 4049 4050 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4051 } 4052 #endif 4053 4054 /* 4055 * Creates some virtual cpus. Good luck creating more than one. 4056 */ 4057 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4058 { 4059 int r; 4060 struct kvm_vcpu *vcpu; 4061 struct page *page; 4062 4063 /* 4064 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4065 * too-large values instead of silently truncating. 4066 * 4067 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4068 * changing the storage type (at the very least, IDs should be tracked 4069 * as unsigned ints). 4070 */ 4071 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4072 if (id >= KVM_MAX_VCPU_IDS) 4073 return -EINVAL; 4074 4075 mutex_lock(&kvm->lock); 4076 if (kvm->created_vcpus >= kvm->max_vcpus) { 4077 mutex_unlock(&kvm->lock); 4078 return -EINVAL; 4079 } 4080 4081 r = kvm_arch_vcpu_precreate(kvm, id); 4082 if (r) { 4083 mutex_unlock(&kvm->lock); 4084 return r; 4085 } 4086 4087 kvm->created_vcpus++; 4088 mutex_unlock(&kvm->lock); 4089 4090 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4091 if (!vcpu) { 4092 r = -ENOMEM; 4093 goto vcpu_decrement; 4094 } 4095 4096 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4097 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4098 if (!page) { 4099 r = -ENOMEM; 4100 goto vcpu_free; 4101 } 4102 vcpu->run = page_address(page); 4103 4104 kvm_vcpu_init(vcpu, kvm, id); 4105 4106 r = kvm_arch_vcpu_create(vcpu); 4107 if (r) 4108 goto vcpu_free_run_page; 4109 4110 if (kvm->dirty_ring_size) { 4111 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4112 id, kvm->dirty_ring_size); 4113 if (r) 4114 goto arch_vcpu_destroy; 4115 } 4116 4117 mutex_lock(&kvm->lock); 4118 4119 #ifdef CONFIG_LOCKDEP 4120 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4121 mutex_lock(&vcpu->mutex); 4122 mutex_unlock(&vcpu->mutex); 4123 #endif 4124 4125 if (kvm_get_vcpu_by_id(kvm, id)) { 4126 r = -EEXIST; 4127 goto unlock_vcpu_destroy; 4128 } 4129 4130 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4131 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4132 if (r) 4133 goto unlock_vcpu_destroy; 4134 4135 /* Now it's all set up, let userspace reach it */ 4136 kvm_get_kvm(kvm); 4137 r = create_vcpu_fd(vcpu); 4138 if (r < 0) 4139 goto kvm_put_xa_release; 4140 4141 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4142 r = -EINVAL; 4143 goto kvm_put_xa_release; 4144 } 4145 4146 /* 4147 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4148 * pointer before kvm->online_vcpu's incremented value. 4149 */ 4150 smp_wmb(); 4151 atomic_inc(&kvm->online_vcpus); 4152 4153 mutex_unlock(&kvm->lock); 4154 kvm_arch_vcpu_postcreate(vcpu); 4155 kvm_create_vcpu_debugfs(vcpu); 4156 return r; 4157 4158 kvm_put_xa_release: 4159 kvm_put_kvm_no_destroy(kvm); 4160 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4161 unlock_vcpu_destroy: 4162 mutex_unlock(&kvm->lock); 4163 kvm_dirty_ring_free(&vcpu->dirty_ring); 4164 arch_vcpu_destroy: 4165 kvm_arch_vcpu_destroy(vcpu); 4166 vcpu_free_run_page: 4167 free_page((unsigned long)vcpu->run); 4168 vcpu_free: 4169 kmem_cache_free(kvm_vcpu_cache, vcpu); 4170 vcpu_decrement: 4171 mutex_lock(&kvm->lock); 4172 kvm->created_vcpus--; 4173 mutex_unlock(&kvm->lock); 4174 return r; 4175 } 4176 4177 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4178 { 4179 if (sigset) { 4180 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4181 vcpu->sigset_active = 1; 4182 vcpu->sigset = *sigset; 4183 } else 4184 vcpu->sigset_active = 0; 4185 return 0; 4186 } 4187 4188 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4189 size_t size, loff_t *offset) 4190 { 4191 struct kvm_vcpu *vcpu = file->private_data; 4192 4193 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4194 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4195 sizeof(vcpu->stat), user_buffer, size, offset); 4196 } 4197 4198 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4199 { 4200 struct kvm_vcpu *vcpu = file->private_data; 4201 4202 kvm_put_kvm(vcpu->kvm); 4203 return 0; 4204 } 4205 4206 static const struct file_operations kvm_vcpu_stats_fops = { 4207 .owner = THIS_MODULE, 4208 .read = kvm_vcpu_stats_read, 4209 .release = kvm_vcpu_stats_release, 4210 .llseek = noop_llseek, 4211 }; 4212 4213 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4214 { 4215 int fd; 4216 struct file *file; 4217 char name[15 + ITOA_MAX_LEN + 1]; 4218 4219 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4220 4221 fd = get_unused_fd_flags(O_CLOEXEC); 4222 if (fd < 0) 4223 return fd; 4224 4225 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4226 if (IS_ERR(file)) { 4227 put_unused_fd(fd); 4228 return PTR_ERR(file); 4229 } 4230 4231 kvm_get_kvm(vcpu->kvm); 4232 4233 file->f_mode |= FMODE_PREAD; 4234 fd_install(fd, file); 4235 4236 return fd; 4237 } 4238 4239 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4240 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4241 struct kvm_pre_fault_memory *range) 4242 { 4243 int idx; 4244 long r; 4245 u64 full_size; 4246 4247 if (range->flags) 4248 return -EINVAL; 4249 4250 if (!PAGE_ALIGNED(range->gpa) || 4251 !PAGE_ALIGNED(range->size) || 4252 range->gpa + range->size <= range->gpa) 4253 return -EINVAL; 4254 4255 vcpu_load(vcpu); 4256 idx = srcu_read_lock(&vcpu->kvm->srcu); 4257 4258 full_size = range->size; 4259 do { 4260 if (signal_pending(current)) { 4261 r = -EINTR; 4262 break; 4263 } 4264 4265 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4266 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4267 break; 4268 4269 if (r < 0) 4270 break; 4271 4272 range->size -= r; 4273 range->gpa += r; 4274 cond_resched(); 4275 } while (range->size); 4276 4277 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4278 vcpu_put(vcpu); 4279 4280 /* Return success if at least one page was mapped successfully. */ 4281 return full_size == range->size ? r : 0; 4282 } 4283 #endif 4284 4285 static long kvm_vcpu_ioctl(struct file *filp, 4286 unsigned int ioctl, unsigned long arg) 4287 { 4288 struct kvm_vcpu *vcpu = filp->private_data; 4289 void __user *argp = (void __user *)arg; 4290 int r; 4291 struct kvm_fpu *fpu = NULL; 4292 struct kvm_sregs *kvm_sregs = NULL; 4293 4294 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4295 return -EIO; 4296 4297 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4298 return -EINVAL; 4299 4300 /* 4301 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4302 * execution; mutex_lock() would break them. 4303 */ 4304 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4305 if (r != -ENOIOCTLCMD) 4306 return r; 4307 4308 if (mutex_lock_killable(&vcpu->mutex)) 4309 return -EINTR; 4310 switch (ioctl) { 4311 case KVM_RUN: { 4312 struct pid *oldpid; 4313 r = -EINVAL; 4314 if (arg) 4315 goto out; 4316 4317 /* 4318 * Note, vcpu->pid is primarily protected by vcpu->mutex. The 4319 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to 4320 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield 4321 * directly to this vCPU 4322 */ 4323 oldpid = vcpu->pid; 4324 if (unlikely(oldpid != task_pid(current))) { 4325 /* The thread running this VCPU changed. */ 4326 struct pid *newpid; 4327 4328 r = kvm_arch_vcpu_run_pid_change(vcpu); 4329 if (r) 4330 break; 4331 4332 newpid = get_task_pid(current, PIDTYPE_PID); 4333 write_lock(&vcpu->pid_lock); 4334 vcpu->pid = newpid; 4335 write_unlock(&vcpu->pid_lock); 4336 4337 put_pid(oldpid); 4338 } 4339 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4340 r = kvm_arch_vcpu_ioctl_run(vcpu); 4341 vcpu->wants_to_run = false; 4342 4343 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4344 break; 4345 } 4346 case KVM_GET_REGS: { 4347 struct kvm_regs *kvm_regs; 4348 4349 r = -ENOMEM; 4350 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4351 if (!kvm_regs) 4352 goto out; 4353 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4354 if (r) 4355 goto out_free1; 4356 r = -EFAULT; 4357 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4358 goto out_free1; 4359 r = 0; 4360 out_free1: 4361 kfree(kvm_regs); 4362 break; 4363 } 4364 case KVM_SET_REGS: { 4365 struct kvm_regs *kvm_regs; 4366 4367 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4368 if (IS_ERR(kvm_regs)) { 4369 r = PTR_ERR(kvm_regs); 4370 goto out; 4371 } 4372 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4373 kfree(kvm_regs); 4374 break; 4375 } 4376 case KVM_GET_SREGS: { 4377 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4378 r = -ENOMEM; 4379 if (!kvm_sregs) 4380 goto out; 4381 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4382 if (r) 4383 goto out; 4384 r = -EFAULT; 4385 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4386 goto out; 4387 r = 0; 4388 break; 4389 } 4390 case KVM_SET_SREGS: { 4391 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4392 if (IS_ERR(kvm_sregs)) { 4393 r = PTR_ERR(kvm_sregs); 4394 kvm_sregs = NULL; 4395 goto out; 4396 } 4397 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4398 break; 4399 } 4400 case KVM_GET_MP_STATE: { 4401 struct kvm_mp_state mp_state; 4402 4403 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4404 if (r) 4405 goto out; 4406 r = -EFAULT; 4407 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4408 goto out; 4409 r = 0; 4410 break; 4411 } 4412 case KVM_SET_MP_STATE: { 4413 struct kvm_mp_state mp_state; 4414 4415 r = -EFAULT; 4416 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4417 goto out; 4418 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4419 break; 4420 } 4421 case KVM_TRANSLATE: { 4422 struct kvm_translation tr; 4423 4424 r = -EFAULT; 4425 if (copy_from_user(&tr, argp, sizeof(tr))) 4426 goto out; 4427 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4428 if (r) 4429 goto out; 4430 r = -EFAULT; 4431 if (copy_to_user(argp, &tr, sizeof(tr))) 4432 goto out; 4433 r = 0; 4434 break; 4435 } 4436 case KVM_SET_GUEST_DEBUG: { 4437 struct kvm_guest_debug dbg; 4438 4439 r = -EFAULT; 4440 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4441 goto out; 4442 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4443 break; 4444 } 4445 case KVM_SET_SIGNAL_MASK: { 4446 struct kvm_signal_mask __user *sigmask_arg = argp; 4447 struct kvm_signal_mask kvm_sigmask; 4448 sigset_t sigset, *p; 4449 4450 p = NULL; 4451 if (argp) { 4452 r = -EFAULT; 4453 if (copy_from_user(&kvm_sigmask, argp, 4454 sizeof(kvm_sigmask))) 4455 goto out; 4456 r = -EINVAL; 4457 if (kvm_sigmask.len != sizeof(sigset)) 4458 goto out; 4459 r = -EFAULT; 4460 if (copy_from_user(&sigset, sigmask_arg->sigset, 4461 sizeof(sigset))) 4462 goto out; 4463 p = &sigset; 4464 } 4465 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4466 break; 4467 } 4468 case KVM_GET_FPU: { 4469 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4470 r = -ENOMEM; 4471 if (!fpu) 4472 goto out; 4473 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4474 if (r) 4475 goto out; 4476 r = -EFAULT; 4477 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4478 goto out; 4479 r = 0; 4480 break; 4481 } 4482 case KVM_SET_FPU: { 4483 fpu = memdup_user(argp, sizeof(*fpu)); 4484 if (IS_ERR(fpu)) { 4485 r = PTR_ERR(fpu); 4486 fpu = NULL; 4487 goto out; 4488 } 4489 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4490 break; 4491 } 4492 case KVM_GET_STATS_FD: { 4493 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4494 break; 4495 } 4496 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4497 case KVM_PRE_FAULT_MEMORY: { 4498 struct kvm_pre_fault_memory range; 4499 4500 r = -EFAULT; 4501 if (copy_from_user(&range, argp, sizeof(range))) 4502 break; 4503 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4504 /* Pass back leftover range. */ 4505 if (copy_to_user(argp, &range, sizeof(range))) 4506 r = -EFAULT; 4507 break; 4508 } 4509 #endif 4510 default: 4511 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4512 } 4513 out: 4514 mutex_unlock(&vcpu->mutex); 4515 kfree(fpu); 4516 kfree(kvm_sregs); 4517 return r; 4518 } 4519 4520 #ifdef CONFIG_KVM_COMPAT 4521 static long kvm_vcpu_compat_ioctl(struct file *filp, 4522 unsigned int ioctl, unsigned long arg) 4523 { 4524 struct kvm_vcpu *vcpu = filp->private_data; 4525 void __user *argp = compat_ptr(arg); 4526 int r; 4527 4528 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4529 return -EIO; 4530 4531 switch (ioctl) { 4532 case KVM_SET_SIGNAL_MASK: { 4533 struct kvm_signal_mask __user *sigmask_arg = argp; 4534 struct kvm_signal_mask kvm_sigmask; 4535 sigset_t sigset; 4536 4537 if (argp) { 4538 r = -EFAULT; 4539 if (copy_from_user(&kvm_sigmask, argp, 4540 sizeof(kvm_sigmask))) 4541 goto out; 4542 r = -EINVAL; 4543 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4544 goto out; 4545 r = -EFAULT; 4546 if (get_compat_sigset(&sigset, 4547 (compat_sigset_t __user *)sigmask_arg->sigset)) 4548 goto out; 4549 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4550 } else 4551 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4552 break; 4553 } 4554 default: 4555 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4556 } 4557 4558 out: 4559 return r; 4560 } 4561 #endif 4562 4563 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4564 { 4565 struct kvm_device *dev = filp->private_data; 4566 4567 if (dev->ops->mmap) 4568 return dev->ops->mmap(dev, vma); 4569 4570 return -ENODEV; 4571 } 4572 4573 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4574 int (*accessor)(struct kvm_device *dev, 4575 struct kvm_device_attr *attr), 4576 unsigned long arg) 4577 { 4578 struct kvm_device_attr attr; 4579 4580 if (!accessor) 4581 return -EPERM; 4582 4583 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4584 return -EFAULT; 4585 4586 return accessor(dev, &attr); 4587 } 4588 4589 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4590 unsigned long arg) 4591 { 4592 struct kvm_device *dev = filp->private_data; 4593 4594 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4595 return -EIO; 4596 4597 switch (ioctl) { 4598 case KVM_SET_DEVICE_ATTR: 4599 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4600 case KVM_GET_DEVICE_ATTR: 4601 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4602 case KVM_HAS_DEVICE_ATTR: 4603 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4604 default: 4605 if (dev->ops->ioctl) 4606 return dev->ops->ioctl(dev, ioctl, arg); 4607 4608 return -ENOTTY; 4609 } 4610 } 4611 4612 static int kvm_device_release(struct inode *inode, struct file *filp) 4613 { 4614 struct kvm_device *dev = filp->private_data; 4615 struct kvm *kvm = dev->kvm; 4616 4617 if (dev->ops->release) { 4618 mutex_lock(&kvm->lock); 4619 list_del_rcu(&dev->vm_node); 4620 synchronize_rcu(); 4621 dev->ops->release(dev); 4622 mutex_unlock(&kvm->lock); 4623 } 4624 4625 kvm_put_kvm(kvm); 4626 return 0; 4627 } 4628 4629 static struct file_operations kvm_device_fops = { 4630 .unlocked_ioctl = kvm_device_ioctl, 4631 .release = kvm_device_release, 4632 KVM_COMPAT(kvm_device_ioctl), 4633 .mmap = kvm_device_mmap, 4634 }; 4635 4636 struct kvm_device *kvm_device_from_filp(struct file *filp) 4637 { 4638 if (filp->f_op != &kvm_device_fops) 4639 return NULL; 4640 4641 return filp->private_data; 4642 } 4643 4644 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4645 #ifdef CONFIG_KVM_MPIC 4646 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4647 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4648 #endif 4649 }; 4650 4651 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4652 { 4653 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4654 return -ENOSPC; 4655 4656 if (kvm_device_ops_table[type] != NULL) 4657 return -EEXIST; 4658 4659 kvm_device_ops_table[type] = ops; 4660 return 0; 4661 } 4662 4663 void kvm_unregister_device_ops(u32 type) 4664 { 4665 if (kvm_device_ops_table[type] != NULL) 4666 kvm_device_ops_table[type] = NULL; 4667 } 4668 4669 static int kvm_ioctl_create_device(struct kvm *kvm, 4670 struct kvm_create_device *cd) 4671 { 4672 const struct kvm_device_ops *ops; 4673 struct kvm_device *dev; 4674 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4675 int type; 4676 int ret; 4677 4678 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4679 return -ENODEV; 4680 4681 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4682 ops = kvm_device_ops_table[type]; 4683 if (ops == NULL) 4684 return -ENODEV; 4685 4686 if (test) 4687 return 0; 4688 4689 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4690 if (!dev) 4691 return -ENOMEM; 4692 4693 dev->ops = ops; 4694 dev->kvm = kvm; 4695 4696 mutex_lock(&kvm->lock); 4697 ret = ops->create(dev, type); 4698 if (ret < 0) { 4699 mutex_unlock(&kvm->lock); 4700 kfree(dev); 4701 return ret; 4702 } 4703 list_add_rcu(&dev->vm_node, &kvm->devices); 4704 mutex_unlock(&kvm->lock); 4705 4706 if (ops->init) 4707 ops->init(dev); 4708 4709 kvm_get_kvm(kvm); 4710 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4711 if (ret < 0) { 4712 kvm_put_kvm_no_destroy(kvm); 4713 mutex_lock(&kvm->lock); 4714 list_del_rcu(&dev->vm_node); 4715 synchronize_rcu(); 4716 if (ops->release) 4717 ops->release(dev); 4718 mutex_unlock(&kvm->lock); 4719 if (ops->destroy) 4720 ops->destroy(dev); 4721 return ret; 4722 } 4723 4724 cd->fd = ret; 4725 return 0; 4726 } 4727 4728 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4729 { 4730 switch (arg) { 4731 case KVM_CAP_USER_MEMORY: 4732 case KVM_CAP_USER_MEMORY2: 4733 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4734 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4735 case KVM_CAP_INTERNAL_ERROR_DATA: 4736 #ifdef CONFIG_HAVE_KVM_MSI 4737 case KVM_CAP_SIGNAL_MSI: 4738 #endif 4739 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4740 case KVM_CAP_IRQFD: 4741 #endif 4742 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4743 case KVM_CAP_CHECK_EXTENSION_VM: 4744 case KVM_CAP_ENABLE_CAP_VM: 4745 case KVM_CAP_HALT_POLL: 4746 return 1; 4747 #ifdef CONFIG_KVM_MMIO 4748 case KVM_CAP_COALESCED_MMIO: 4749 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4750 case KVM_CAP_COALESCED_PIO: 4751 return 1; 4752 #endif 4753 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4754 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4755 return KVM_DIRTY_LOG_MANUAL_CAPS; 4756 #endif 4757 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4758 case KVM_CAP_IRQ_ROUTING: 4759 return KVM_MAX_IRQ_ROUTES; 4760 #endif 4761 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4762 case KVM_CAP_MULTI_ADDRESS_SPACE: 4763 if (kvm) 4764 return kvm_arch_nr_memslot_as_ids(kvm); 4765 return KVM_MAX_NR_ADDRESS_SPACES; 4766 #endif 4767 case KVM_CAP_NR_MEMSLOTS: 4768 return KVM_USER_MEM_SLOTS; 4769 case KVM_CAP_DIRTY_LOG_RING: 4770 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4771 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4772 #else 4773 return 0; 4774 #endif 4775 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4776 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4777 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4778 #else 4779 return 0; 4780 #endif 4781 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4782 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4783 #endif 4784 case KVM_CAP_BINARY_STATS_FD: 4785 case KVM_CAP_SYSTEM_EVENT_DATA: 4786 case KVM_CAP_DEVICE_CTRL: 4787 return 1; 4788 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4789 case KVM_CAP_MEMORY_ATTRIBUTES: 4790 return kvm_supported_mem_attributes(kvm); 4791 #endif 4792 #ifdef CONFIG_KVM_PRIVATE_MEM 4793 case KVM_CAP_GUEST_MEMFD: 4794 return !kvm || kvm_arch_has_private_mem(kvm); 4795 #endif 4796 default: 4797 break; 4798 } 4799 return kvm_vm_ioctl_check_extension(kvm, arg); 4800 } 4801 4802 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4803 { 4804 int r; 4805 4806 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4807 return -EINVAL; 4808 4809 /* the size should be power of 2 */ 4810 if (!size || (size & (size - 1))) 4811 return -EINVAL; 4812 4813 /* Should be bigger to keep the reserved entries, or a page */ 4814 if (size < kvm_dirty_ring_get_rsvd_entries() * 4815 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4816 return -EINVAL; 4817 4818 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4819 sizeof(struct kvm_dirty_gfn)) 4820 return -E2BIG; 4821 4822 /* We only allow it to set once */ 4823 if (kvm->dirty_ring_size) 4824 return -EINVAL; 4825 4826 mutex_lock(&kvm->lock); 4827 4828 if (kvm->created_vcpus) { 4829 /* We don't allow to change this value after vcpu created */ 4830 r = -EINVAL; 4831 } else { 4832 kvm->dirty_ring_size = size; 4833 r = 0; 4834 } 4835 4836 mutex_unlock(&kvm->lock); 4837 return r; 4838 } 4839 4840 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4841 { 4842 unsigned long i; 4843 struct kvm_vcpu *vcpu; 4844 int cleared = 0; 4845 4846 if (!kvm->dirty_ring_size) 4847 return -EINVAL; 4848 4849 mutex_lock(&kvm->slots_lock); 4850 4851 kvm_for_each_vcpu(i, vcpu, kvm) 4852 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4853 4854 mutex_unlock(&kvm->slots_lock); 4855 4856 if (cleared) 4857 kvm_flush_remote_tlbs(kvm); 4858 4859 return cleared; 4860 } 4861 4862 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4863 struct kvm_enable_cap *cap) 4864 { 4865 return -EINVAL; 4866 } 4867 4868 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4869 { 4870 int i; 4871 4872 lockdep_assert_held(&kvm->slots_lock); 4873 4874 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4875 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4876 return false; 4877 } 4878 4879 return true; 4880 } 4881 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4882 4883 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4884 struct kvm_enable_cap *cap) 4885 { 4886 switch (cap->cap) { 4887 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4888 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4889 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4890 4891 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4892 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4893 4894 if (cap->flags || (cap->args[0] & ~allowed_options)) 4895 return -EINVAL; 4896 kvm->manual_dirty_log_protect = cap->args[0]; 4897 return 0; 4898 } 4899 #endif 4900 case KVM_CAP_HALT_POLL: { 4901 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4902 return -EINVAL; 4903 4904 kvm->max_halt_poll_ns = cap->args[0]; 4905 4906 /* 4907 * Ensure kvm->override_halt_poll_ns does not become visible 4908 * before kvm->max_halt_poll_ns. 4909 * 4910 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4911 */ 4912 smp_wmb(); 4913 kvm->override_halt_poll_ns = true; 4914 4915 return 0; 4916 } 4917 case KVM_CAP_DIRTY_LOG_RING: 4918 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4919 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4920 return -EINVAL; 4921 4922 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4923 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4924 int r = -EINVAL; 4925 4926 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4927 !kvm->dirty_ring_size || cap->flags) 4928 return r; 4929 4930 mutex_lock(&kvm->slots_lock); 4931 4932 /* 4933 * For simplicity, allow enabling ring+bitmap if and only if 4934 * there are no memslots, e.g. to ensure all memslots allocate 4935 * a bitmap after the capability is enabled. 4936 */ 4937 if (kvm_are_all_memslots_empty(kvm)) { 4938 kvm->dirty_ring_with_bitmap = true; 4939 r = 0; 4940 } 4941 4942 mutex_unlock(&kvm->slots_lock); 4943 4944 return r; 4945 } 4946 default: 4947 return kvm_vm_ioctl_enable_cap(kvm, cap); 4948 } 4949 } 4950 4951 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4952 size_t size, loff_t *offset) 4953 { 4954 struct kvm *kvm = file->private_data; 4955 4956 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4957 &kvm_vm_stats_desc[0], &kvm->stat, 4958 sizeof(kvm->stat), user_buffer, size, offset); 4959 } 4960 4961 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 4962 { 4963 struct kvm *kvm = file->private_data; 4964 4965 kvm_put_kvm(kvm); 4966 return 0; 4967 } 4968 4969 static const struct file_operations kvm_vm_stats_fops = { 4970 .owner = THIS_MODULE, 4971 .read = kvm_vm_stats_read, 4972 .release = kvm_vm_stats_release, 4973 .llseek = noop_llseek, 4974 }; 4975 4976 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4977 { 4978 int fd; 4979 struct file *file; 4980 4981 fd = get_unused_fd_flags(O_CLOEXEC); 4982 if (fd < 0) 4983 return fd; 4984 4985 file = anon_inode_getfile("kvm-vm-stats", 4986 &kvm_vm_stats_fops, kvm, O_RDONLY); 4987 if (IS_ERR(file)) { 4988 put_unused_fd(fd); 4989 return PTR_ERR(file); 4990 } 4991 4992 kvm_get_kvm(kvm); 4993 4994 file->f_mode |= FMODE_PREAD; 4995 fd_install(fd, file); 4996 4997 return fd; 4998 } 4999 5000 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5001 do { \ 5002 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5003 offsetof(struct kvm_userspace_memory_region2, field)); \ 5004 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5005 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5006 } while (0) 5007 5008 static long kvm_vm_ioctl(struct file *filp, 5009 unsigned int ioctl, unsigned long arg) 5010 { 5011 struct kvm *kvm = filp->private_data; 5012 void __user *argp = (void __user *)arg; 5013 int r; 5014 5015 if (kvm->mm != current->mm || kvm->vm_dead) 5016 return -EIO; 5017 switch (ioctl) { 5018 case KVM_CREATE_VCPU: 5019 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5020 break; 5021 case KVM_ENABLE_CAP: { 5022 struct kvm_enable_cap cap; 5023 5024 r = -EFAULT; 5025 if (copy_from_user(&cap, argp, sizeof(cap))) 5026 goto out; 5027 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5028 break; 5029 } 5030 case KVM_SET_USER_MEMORY_REGION2: 5031 case KVM_SET_USER_MEMORY_REGION: { 5032 struct kvm_userspace_memory_region2 mem; 5033 unsigned long size; 5034 5035 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5036 /* 5037 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5038 * accessed, but avoid leaking kernel memory in case of a bug. 5039 */ 5040 memset(&mem, 0, sizeof(mem)); 5041 size = sizeof(struct kvm_userspace_memory_region); 5042 } else { 5043 size = sizeof(struct kvm_userspace_memory_region2); 5044 } 5045 5046 /* Ensure the common parts of the two structs are identical. */ 5047 SANITY_CHECK_MEM_REGION_FIELD(slot); 5048 SANITY_CHECK_MEM_REGION_FIELD(flags); 5049 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5050 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5051 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5052 5053 r = -EFAULT; 5054 if (copy_from_user(&mem, argp, size)) 5055 goto out; 5056 5057 r = -EINVAL; 5058 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5059 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5060 goto out; 5061 5062 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5063 break; 5064 } 5065 case KVM_GET_DIRTY_LOG: { 5066 struct kvm_dirty_log log; 5067 5068 r = -EFAULT; 5069 if (copy_from_user(&log, argp, sizeof(log))) 5070 goto out; 5071 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5072 break; 5073 } 5074 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5075 case KVM_CLEAR_DIRTY_LOG: { 5076 struct kvm_clear_dirty_log log; 5077 5078 r = -EFAULT; 5079 if (copy_from_user(&log, argp, sizeof(log))) 5080 goto out; 5081 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5082 break; 5083 } 5084 #endif 5085 #ifdef CONFIG_KVM_MMIO 5086 case KVM_REGISTER_COALESCED_MMIO: { 5087 struct kvm_coalesced_mmio_zone zone; 5088 5089 r = -EFAULT; 5090 if (copy_from_user(&zone, argp, sizeof(zone))) 5091 goto out; 5092 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5093 break; 5094 } 5095 case KVM_UNREGISTER_COALESCED_MMIO: { 5096 struct kvm_coalesced_mmio_zone zone; 5097 5098 r = -EFAULT; 5099 if (copy_from_user(&zone, argp, sizeof(zone))) 5100 goto out; 5101 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5102 break; 5103 } 5104 #endif 5105 case KVM_IRQFD: { 5106 struct kvm_irqfd data; 5107 5108 r = -EFAULT; 5109 if (copy_from_user(&data, argp, sizeof(data))) 5110 goto out; 5111 r = kvm_irqfd(kvm, &data); 5112 break; 5113 } 5114 case KVM_IOEVENTFD: { 5115 struct kvm_ioeventfd data; 5116 5117 r = -EFAULT; 5118 if (copy_from_user(&data, argp, sizeof(data))) 5119 goto out; 5120 r = kvm_ioeventfd(kvm, &data); 5121 break; 5122 } 5123 #ifdef CONFIG_HAVE_KVM_MSI 5124 case KVM_SIGNAL_MSI: { 5125 struct kvm_msi msi; 5126 5127 r = -EFAULT; 5128 if (copy_from_user(&msi, argp, sizeof(msi))) 5129 goto out; 5130 r = kvm_send_userspace_msi(kvm, &msi); 5131 break; 5132 } 5133 #endif 5134 #ifdef __KVM_HAVE_IRQ_LINE 5135 case KVM_IRQ_LINE_STATUS: 5136 case KVM_IRQ_LINE: { 5137 struct kvm_irq_level irq_event; 5138 5139 r = -EFAULT; 5140 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5141 goto out; 5142 5143 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5144 ioctl == KVM_IRQ_LINE_STATUS); 5145 if (r) 5146 goto out; 5147 5148 r = -EFAULT; 5149 if (ioctl == KVM_IRQ_LINE_STATUS) { 5150 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5151 goto out; 5152 } 5153 5154 r = 0; 5155 break; 5156 } 5157 #endif 5158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5159 case KVM_SET_GSI_ROUTING: { 5160 struct kvm_irq_routing routing; 5161 struct kvm_irq_routing __user *urouting; 5162 struct kvm_irq_routing_entry *entries = NULL; 5163 5164 r = -EFAULT; 5165 if (copy_from_user(&routing, argp, sizeof(routing))) 5166 goto out; 5167 r = -EINVAL; 5168 if (!kvm_arch_can_set_irq_routing(kvm)) 5169 goto out; 5170 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5171 goto out; 5172 if (routing.flags) 5173 goto out; 5174 if (routing.nr) { 5175 urouting = argp; 5176 entries = vmemdup_array_user(urouting->entries, 5177 routing.nr, sizeof(*entries)); 5178 if (IS_ERR(entries)) { 5179 r = PTR_ERR(entries); 5180 goto out; 5181 } 5182 } 5183 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5184 routing.flags); 5185 kvfree(entries); 5186 break; 5187 } 5188 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5189 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5190 case KVM_SET_MEMORY_ATTRIBUTES: { 5191 struct kvm_memory_attributes attrs; 5192 5193 r = -EFAULT; 5194 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5195 goto out; 5196 5197 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5198 break; 5199 } 5200 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5201 case KVM_CREATE_DEVICE: { 5202 struct kvm_create_device cd; 5203 5204 r = -EFAULT; 5205 if (copy_from_user(&cd, argp, sizeof(cd))) 5206 goto out; 5207 5208 r = kvm_ioctl_create_device(kvm, &cd); 5209 if (r) 5210 goto out; 5211 5212 r = -EFAULT; 5213 if (copy_to_user(argp, &cd, sizeof(cd))) 5214 goto out; 5215 5216 r = 0; 5217 break; 5218 } 5219 case KVM_CHECK_EXTENSION: 5220 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5221 break; 5222 case KVM_RESET_DIRTY_RINGS: 5223 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5224 break; 5225 case KVM_GET_STATS_FD: 5226 r = kvm_vm_ioctl_get_stats_fd(kvm); 5227 break; 5228 #ifdef CONFIG_KVM_PRIVATE_MEM 5229 case KVM_CREATE_GUEST_MEMFD: { 5230 struct kvm_create_guest_memfd guest_memfd; 5231 5232 r = -EFAULT; 5233 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5234 goto out; 5235 5236 r = kvm_gmem_create(kvm, &guest_memfd); 5237 break; 5238 } 5239 #endif 5240 default: 5241 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5242 } 5243 out: 5244 return r; 5245 } 5246 5247 #ifdef CONFIG_KVM_COMPAT 5248 struct compat_kvm_dirty_log { 5249 __u32 slot; 5250 __u32 padding1; 5251 union { 5252 compat_uptr_t dirty_bitmap; /* one bit per page */ 5253 __u64 padding2; 5254 }; 5255 }; 5256 5257 struct compat_kvm_clear_dirty_log { 5258 __u32 slot; 5259 __u32 num_pages; 5260 __u64 first_page; 5261 union { 5262 compat_uptr_t dirty_bitmap; /* one bit per page */ 5263 __u64 padding2; 5264 }; 5265 }; 5266 5267 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5268 unsigned long arg) 5269 { 5270 return -ENOTTY; 5271 } 5272 5273 static long kvm_vm_compat_ioctl(struct file *filp, 5274 unsigned int ioctl, unsigned long arg) 5275 { 5276 struct kvm *kvm = filp->private_data; 5277 int r; 5278 5279 if (kvm->mm != current->mm || kvm->vm_dead) 5280 return -EIO; 5281 5282 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5283 if (r != -ENOTTY) 5284 return r; 5285 5286 switch (ioctl) { 5287 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5288 case KVM_CLEAR_DIRTY_LOG: { 5289 struct compat_kvm_clear_dirty_log compat_log; 5290 struct kvm_clear_dirty_log log; 5291 5292 if (copy_from_user(&compat_log, (void __user *)arg, 5293 sizeof(compat_log))) 5294 return -EFAULT; 5295 log.slot = compat_log.slot; 5296 log.num_pages = compat_log.num_pages; 5297 log.first_page = compat_log.first_page; 5298 log.padding2 = compat_log.padding2; 5299 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5300 5301 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5302 break; 5303 } 5304 #endif 5305 case KVM_GET_DIRTY_LOG: { 5306 struct compat_kvm_dirty_log compat_log; 5307 struct kvm_dirty_log log; 5308 5309 if (copy_from_user(&compat_log, (void __user *)arg, 5310 sizeof(compat_log))) 5311 return -EFAULT; 5312 log.slot = compat_log.slot; 5313 log.padding1 = compat_log.padding1; 5314 log.padding2 = compat_log.padding2; 5315 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5316 5317 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5318 break; 5319 } 5320 default: 5321 r = kvm_vm_ioctl(filp, ioctl, arg); 5322 } 5323 return r; 5324 } 5325 #endif 5326 5327 static struct file_operations kvm_vm_fops = { 5328 .release = kvm_vm_release, 5329 .unlocked_ioctl = kvm_vm_ioctl, 5330 .llseek = noop_llseek, 5331 KVM_COMPAT(kvm_vm_compat_ioctl), 5332 }; 5333 5334 bool file_is_kvm(struct file *file) 5335 { 5336 return file && file->f_op == &kvm_vm_fops; 5337 } 5338 EXPORT_SYMBOL_GPL(file_is_kvm); 5339 5340 static int kvm_dev_ioctl_create_vm(unsigned long type) 5341 { 5342 char fdname[ITOA_MAX_LEN + 1]; 5343 int r, fd; 5344 struct kvm *kvm; 5345 struct file *file; 5346 5347 fd = get_unused_fd_flags(O_CLOEXEC); 5348 if (fd < 0) 5349 return fd; 5350 5351 snprintf(fdname, sizeof(fdname), "%d", fd); 5352 5353 kvm = kvm_create_vm(type, fdname); 5354 if (IS_ERR(kvm)) { 5355 r = PTR_ERR(kvm); 5356 goto put_fd; 5357 } 5358 5359 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5360 if (IS_ERR(file)) { 5361 r = PTR_ERR(file); 5362 goto put_kvm; 5363 } 5364 5365 /* 5366 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5367 * already set, with ->release() being kvm_vm_release(). In error 5368 * cases it will be called by the final fput(file) and will take 5369 * care of doing kvm_put_kvm(kvm). 5370 */ 5371 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5372 5373 fd_install(fd, file); 5374 return fd; 5375 5376 put_kvm: 5377 kvm_put_kvm(kvm); 5378 put_fd: 5379 put_unused_fd(fd); 5380 return r; 5381 } 5382 5383 static long kvm_dev_ioctl(struct file *filp, 5384 unsigned int ioctl, unsigned long arg) 5385 { 5386 int r = -EINVAL; 5387 5388 switch (ioctl) { 5389 case KVM_GET_API_VERSION: 5390 if (arg) 5391 goto out; 5392 r = KVM_API_VERSION; 5393 break; 5394 case KVM_CREATE_VM: 5395 r = kvm_dev_ioctl_create_vm(arg); 5396 break; 5397 case KVM_CHECK_EXTENSION: 5398 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5399 break; 5400 case KVM_GET_VCPU_MMAP_SIZE: 5401 if (arg) 5402 goto out; 5403 r = PAGE_SIZE; /* struct kvm_run */ 5404 #ifdef CONFIG_X86 5405 r += PAGE_SIZE; /* pio data page */ 5406 #endif 5407 #ifdef CONFIG_KVM_MMIO 5408 r += PAGE_SIZE; /* coalesced mmio ring page */ 5409 #endif 5410 break; 5411 default: 5412 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5413 } 5414 out: 5415 return r; 5416 } 5417 5418 static struct file_operations kvm_chardev_ops = { 5419 .unlocked_ioctl = kvm_dev_ioctl, 5420 .llseek = noop_llseek, 5421 KVM_COMPAT(kvm_dev_ioctl), 5422 }; 5423 5424 static struct miscdevice kvm_dev = { 5425 KVM_MINOR, 5426 "kvm", 5427 &kvm_chardev_ops, 5428 }; 5429 5430 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5431 static bool enable_virt_at_load = true; 5432 module_param(enable_virt_at_load, bool, 0444); 5433 5434 __visible bool kvm_rebooting; 5435 EXPORT_SYMBOL_GPL(kvm_rebooting); 5436 5437 static DEFINE_PER_CPU(bool, virtualization_enabled); 5438 static DEFINE_MUTEX(kvm_usage_lock); 5439 static int kvm_usage_count; 5440 5441 __weak void kvm_arch_enable_virtualization(void) 5442 { 5443 5444 } 5445 5446 __weak void kvm_arch_disable_virtualization(void) 5447 { 5448 5449 } 5450 5451 static int kvm_enable_virtualization_cpu(void) 5452 { 5453 if (__this_cpu_read(virtualization_enabled)) 5454 return 0; 5455 5456 if (kvm_arch_enable_virtualization_cpu()) { 5457 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5458 raw_smp_processor_id()); 5459 return -EIO; 5460 } 5461 5462 __this_cpu_write(virtualization_enabled, true); 5463 return 0; 5464 } 5465 5466 static int kvm_online_cpu(unsigned int cpu) 5467 { 5468 /* 5469 * Abort the CPU online process if hardware virtualization cannot 5470 * be enabled. Otherwise running VMs would encounter unrecoverable 5471 * errors when scheduled to this CPU. 5472 */ 5473 return kvm_enable_virtualization_cpu(); 5474 } 5475 5476 static void kvm_disable_virtualization_cpu(void *ign) 5477 { 5478 if (!__this_cpu_read(virtualization_enabled)) 5479 return; 5480 5481 kvm_arch_disable_virtualization_cpu(); 5482 5483 __this_cpu_write(virtualization_enabled, false); 5484 } 5485 5486 static int kvm_offline_cpu(unsigned int cpu) 5487 { 5488 kvm_disable_virtualization_cpu(NULL); 5489 return 0; 5490 } 5491 5492 static void kvm_shutdown(void) 5493 { 5494 /* 5495 * Disable hardware virtualization and set kvm_rebooting to indicate 5496 * that KVM has asynchronously disabled hardware virtualization, i.e. 5497 * that relevant errors and exceptions aren't entirely unexpected. 5498 * Some flavors of hardware virtualization need to be disabled before 5499 * transferring control to firmware (to perform shutdown/reboot), e.g. 5500 * on x86, virtualization can block INIT interrupts, which are used by 5501 * firmware to pull APs back under firmware control. Note, this path 5502 * is used for both shutdown and reboot scenarios, i.e. neither name is 5503 * 100% comprehensive. 5504 */ 5505 pr_info("kvm: exiting hardware virtualization\n"); 5506 kvm_rebooting = true; 5507 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); 5508 } 5509 5510 static int kvm_suspend(void) 5511 { 5512 /* 5513 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5514 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5515 * count is stable. Assert that kvm_usage_lock is not held to ensure 5516 * the system isn't suspended while KVM is enabling hardware. Hardware 5517 * enabling can be preempted, but the task cannot be frozen until it has 5518 * dropped all locks (userspace tasks are frozen via a fake signal). 5519 */ 5520 lockdep_assert_not_held(&kvm_usage_lock); 5521 lockdep_assert_irqs_disabled(); 5522 5523 kvm_disable_virtualization_cpu(NULL); 5524 return 0; 5525 } 5526 5527 static void kvm_resume(void) 5528 { 5529 lockdep_assert_not_held(&kvm_usage_lock); 5530 lockdep_assert_irqs_disabled(); 5531 5532 WARN_ON_ONCE(kvm_enable_virtualization_cpu()); 5533 } 5534 5535 static struct syscore_ops kvm_syscore_ops = { 5536 .suspend = kvm_suspend, 5537 .resume = kvm_resume, 5538 .shutdown = kvm_shutdown, 5539 }; 5540 5541 static int kvm_enable_virtualization(void) 5542 { 5543 int r; 5544 5545 guard(mutex)(&kvm_usage_lock); 5546 5547 if (kvm_usage_count++) 5548 return 0; 5549 5550 kvm_arch_enable_virtualization(); 5551 5552 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5553 kvm_online_cpu, kvm_offline_cpu); 5554 if (r) 5555 goto err_cpuhp; 5556 5557 register_syscore_ops(&kvm_syscore_ops); 5558 5559 /* 5560 * Undo virtualization enabling and bail if the system is going down. 5561 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5562 * possible for an in-flight operation to enable virtualization after 5563 * syscore_shutdown() is called, i.e. without kvm_shutdown() being 5564 * invoked. Note, this relies on system_state being set _before_ 5565 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked 5566 * or this CPU observes the impending shutdown. Which is why KVM uses 5567 * a syscore ops hook instead of registering a dedicated reboot 5568 * notifier (the latter runs before system_state is updated). 5569 */ 5570 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5571 system_state == SYSTEM_RESTART) { 5572 r = -EBUSY; 5573 goto err_rebooting; 5574 } 5575 5576 return 0; 5577 5578 err_rebooting: 5579 unregister_syscore_ops(&kvm_syscore_ops); 5580 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5581 err_cpuhp: 5582 kvm_arch_disable_virtualization(); 5583 --kvm_usage_count; 5584 return r; 5585 } 5586 5587 static void kvm_disable_virtualization(void) 5588 { 5589 guard(mutex)(&kvm_usage_lock); 5590 5591 if (--kvm_usage_count) 5592 return; 5593 5594 unregister_syscore_ops(&kvm_syscore_ops); 5595 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5596 kvm_arch_disable_virtualization(); 5597 } 5598 5599 static int kvm_init_virtualization(void) 5600 { 5601 if (enable_virt_at_load) 5602 return kvm_enable_virtualization(); 5603 5604 return 0; 5605 } 5606 5607 static void kvm_uninit_virtualization(void) 5608 { 5609 if (enable_virt_at_load) 5610 kvm_disable_virtualization(); 5611 } 5612 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5613 static int kvm_enable_virtualization(void) 5614 { 5615 return 0; 5616 } 5617 5618 static int kvm_init_virtualization(void) 5619 { 5620 return 0; 5621 } 5622 5623 static void kvm_disable_virtualization(void) 5624 { 5625 5626 } 5627 5628 static void kvm_uninit_virtualization(void) 5629 { 5630 5631 } 5632 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5633 5634 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5635 { 5636 if (dev->ops->destructor) 5637 dev->ops->destructor(dev); 5638 } 5639 5640 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5641 { 5642 int i; 5643 5644 for (i = 0; i < bus->dev_count; i++) { 5645 struct kvm_io_device *pos = bus->range[i].dev; 5646 5647 kvm_iodevice_destructor(pos); 5648 } 5649 kfree(bus); 5650 } 5651 5652 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5653 const struct kvm_io_range *r2) 5654 { 5655 gpa_t addr1 = r1->addr; 5656 gpa_t addr2 = r2->addr; 5657 5658 if (addr1 < addr2) 5659 return -1; 5660 5661 /* If r2->len == 0, match the exact address. If r2->len != 0, 5662 * accept any overlapping write. Any order is acceptable for 5663 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5664 * we process all of them. 5665 */ 5666 if (r2->len) { 5667 addr1 += r1->len; 5668 addr2 += r2->len; 5669 } 5670 5671 if (addr1 > addr2) 5672 return 1; 5673 5674 return 0; 5675 } 5676 5677 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5678 { 5679 return kvm_io_bus_cmp(p1, p2); 5680 } 5681 5682 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5683 gpa_t addr, int len) 5684 { 5685 struct kvm_io_range *range, key; 5686 int off; 5687 5688 key = (struct kvm_io_range) { 5689 .addr = addr, 5690 .len = len, 5691 }; 5692 5693 range = bsearch(&key, bus->range, bus->dev_count, 5694 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5695 if (range == NULL) 5696 return -ENOENT; 5697 5698 off = range - bus->range; 5699 5700 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5701 off--; 5702 5703 return off; 5704 } 5705 5706 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5707 struct kvm_io_range *range, const void *val) 5708 { 5709 int idx; 5710 5711 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5712 if (idx < 0) 5713 return -EOPNOTSUPP; 5714 5715 while (idx < bus->dev_count && 5716 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5717 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5718 range->len, val)) 5719 return idx; 5720 idx++; 5721 } 5722 5723 return -EOPNOTSUPP; 5724 } 5725 5726 /* kvm_io_bus_write - called under kvm->slots_lock */ 5727 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5728 int len, const void *val) 5729 { 5730 struct kvm_io_bus *bus; 5731 struct kvm_io_range range; 5732 int r; 5733 5734 range = (struct kvm_io_range) { 5735 .addr = addr, 5736 .len = len, 5737 }; 5738 5739 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5740 if (!bus) 5741 return -ENOMEM; 5742 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5743 return r < 0 ? r : 0; 5744 } 5745 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5746 5747 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5748 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5749 gpa_t addr, int len, const void *val, long cookie) 5750 { 5751 struct kvm_io_bus *bus; 5752 struct kvm_io_range range; 5753 5754 range = (struct kvm_io_range) { 5755 .addr = addr, 5756 .len = len, 5757 }; 5758 5759 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5760 if (!bus) 5761 return -ENOMEM; 5762 5763 /* First try the device referenced by cookie. */ 5764 if ((cookie >= 0) && (cookie < bus->dev_count) && 5765 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5766 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5767 val)) 5768 return cookie; 5769 5770 /* 5771 * cookie contained garbage; fall back to search and return the 5772 * correct cookie value. 5773 */ 5774 return __kvm_io_bus_write(vcpu, bus, &range, val); 5775 } 5776 5777 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5778 struct kvm_io_range *range, void *val) 5779 { 5780 int idx; 5781 5782 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5783 if (idx < 0) 5784 return -EOPNOTSUPP; 5785 5786 while (idx < bus->dev_count && 5787 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5788 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5789 range->len, val)) 5790 return idx; 5791 idx++; 5792 } 5793 5794 return -EOPNOTSUPP; 5795 } 5796 5797 /* kvm_io_bus_read - called under kvm->slots_lock */ 5798 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5799 int len, void *val) 5800 { 5801 struct kvm_io_bus *bus; 5802 struct kvm_io_range range; 5803 int r; 5804 5805 range = (struct kvm_io_range) { 5806 .addr = addr, 5807 .len = len, 5808 }; 5809 5810 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5811 if (!bus) 5812 return -ENOMEM; 5813 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5814 return r < 0 ? r : 0; 5815 } 5816 5817 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5818 int len, struct kvm_io_device *dev) 5819 { 5820 int i; 5821 struct kvm_io_bus *new_bus, *bus; 5822 struct kvm_io_range range; 5823 5824 lockdep_assert_held(&kvm->slots_lock); 5825 5826 bus = kvm_get_bus(kvm, bus_idx); 5827 if (!bus) 5828 return -ENOMEM; 5829 5830 /* exclude ioeventfd which is limited by maximum fd */ 5831 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5832 return -ENOSPC; 5833 5834 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5835 GFP_KERNEL_ACCOUNT); 5836 if (!new_bus) 5837 return -ENOMEM; 5838 5839 range = (struct kvm_io_range) { 5840 .addr = addr, 5841 .len = len, 5842 .dev = dev, 5843 }; 5844 5845 for (i = 0; i < bus->dev_count; i++) 5846 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5847 break; 5848 5849 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5850 new_bus->dev_count++; 5851 new_bus->range[i] = range; 5852 memcpy(new_bus->range + i + 1, bus->range + i, 5853 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5854 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5855 synchronize_srcu_expedited(&kvm->srcu); 5856 kfree(bus); 5857 5858 return 0; 5859 } 5860 5861 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5862 struct kvm_io_device *dev) 5863 { 5864 int i; 5865 struct kvm_io_bus *new_bus, *bus; 5866 5867 lockdep_assert_held(&kvm->slots_lock); 5868 5869 bus = kvm_get_bus(kvm, bus_idx); 5870 if (!bus) 5871 return 0; 5872 5873 for (i = 0; i < bus->dev_count; i++) { 5874 if (bus->range[i].dev == dev) { 5875 break; 5876 } 5877 } 5878 5879 if (i == bus->dev_count) 5880 return 0; 5881 5882 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5883 GFP_KERNEL_ACCOUNT); 5884 if (new_bus) { 5885 memcpy(new_bus, bus, struct_size(bus, range, i)); 5886 new_bus->dev_count--; 5887 memcpy(new_bus->range + i, bus->range + i + 1, 5888 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5889 } 5890 5891 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5892 synchronize_srcu_expedited(&kvm->srcu); 5893 5894 /* 5895 * If NULL bus is installed, destroy the old bus, including all the 5896 * attached devices. Otherwise, destroy the caller's device only. 5897 */ 5898 if (!new_bus) { 5899 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5900 kvm_io_bus_destroy(bus); 5901 return -ENOMEM; 5902 } 5903 5904 kvm_iodevice_destructor(dev); 5905 kfree(bus); 5906 return 0; 5907 } 5908 5909 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5910 gpa_t addr) 5911 { 5912 struct kvm_io_bus *bus; 5913 int dev_idx, srcu_idx; 5914 struct kvm_io_device *iodev = NULL; 5915 5916 srcu_idx = srcu_read_lock(&kvm->srcu); 5917 5918 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5919 if (!bus) 5920 goto out_unlock; 5921 5922 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5923 if (dev_idx < 0) 5924 goto out_unlock; 5925 5926 iodev = bus->range[dev_idx].dev; 5927 5928 out_unlock: 5929 srcu_read_unlock(&kvm->srcu, srcu_idx); 5930 5931 return iodev; 5932 } 5933 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5934 5935 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5936 int (*get)(void *, u64 *), int (*set)(void *, u64), 5937 const char *fmt) 5938 { 5939 int ret; 5940 struct kvm_stat_data *stat_data = inode->i_private; 5941 5942 /* 5943 * The debugfs files are a reference to the kvm struct which 5944 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5945 * avoids the race between open and the removal of the debugfs directory. 5946 */ 5947 if (!kvm_get_kvm_safe(stat_data->kvm)) 5948 return -ENOENT; 5949 5950 ret = simple_attr_open(inode, file, get, 5951 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5952 ? set : NULL, fmt); 5953 if (ret) 5954 kvm_put_kvm(stat_data->kvm); 5955 5956 return ret; 5957 } 5958 5959 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5960 { 5961 struct kvm_stat_data *stat_data = inode->i_private; 5962 5963 simple_attr_release(inode, file); 5964 kvm_put_kvm(stat_data->kvm); 5965 5966 return 0; 5967 } 5968 5969 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5970 { 5971 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5972 5973 return 0; 5974 } 5975 5976 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5977 { 5978 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5979 5980 return 0; 5981 } 5982 5983 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5984 { 5985 unsigned long i; 5986 struct kvm_vcpu *vcpu; 5987 5988 *val = 0; 5989 5990 kvm_for_each_vcpu(i, vcpu, kvm) 5991 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5992 5993 return 0; 5994 } 5995 5996 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5997 { 5998 unsigned long i; 5999 struct kvm_vcpu *vcpu; 6000 6001 kvm_for_each_vcpu(i, vcpu, kvm) 6002 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6003 6004 return 0; 6005 } 6006 6007 static int kvm_stat_data_get(void *data, u64 *val) 6008 { 6009 int r = -EFAULT; 6010 struct kvm_stat_data *stat_data = data; 6011 6012 switch (stat_data->kind) { 6013 case KVM_STAT_VM: 6014 r = kvm_get_stat_per_vm(stat_data->kvm, 6015 stat_data->desc->desc.offset, val); 6016 break; 6017 case KVM_STAT_VCPU: 6018 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6019 stat_data->desc->desc.offset, val); 6020 break; 6021 } 6022 6023 return r; 6024 } 6025 6026 static int kvm_stat_data_clear(void *data, u64 val) 6027 { 6028 int r = -EFAULT; 6029 struct kvm_stat_data *stat_data = data; 6030 6031 if (val) 6032 return -EINVAL; 6033 6034 switch (stat_data->kind) { 6035 case KVM_STAT_VM: 6036 r = kvm_clear_stat_per_vm(stat_data->kvm, 6037 stat_data->desc->desc.offset); 6038 break; 6039 case KVM_STAT_VCPU: 6040 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6041 stat_data->desc->desc.offset); 6042 break; 6043 } 6044 6045 return r; 6046 } 6047 6048 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6049 { 6050 __simple_attr_check_format("%llu\n", 0ull); 6051 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6052 kvm_stat_data_clear, "%llu\n"); 6053 } 6054 6055 static const struct file_operations stat_fops_per_vm = { 6056 .owner = THIS_MODULE, 6057 .open = kvm_stat_data_open, 6058 .release = kvm_debugfs_release, 6059 .read = simple_attr_read, 6060 .write = simple_attr_write, 6061 }; 6062 6063 static int vm_stat_get(void *_offset, u64 *val) 6064 { 6065 unsigned offset = (long)_offset; 6066 struct kvm *kvm; 6067 u64 tmp_val; 6068 6069 *val = 0; 6070 mutex_lock(&kvm_lock); 6071 list_for_each_entry(kvm, &vm_list, vm_list) { 6072 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6073 *val += tmp_val; 6074 } 6075 mutex_unlock(&kvm_lock); 6076 return 0; 6077 } 6078 6079 static int vm_stat_clear(void *_offset, u64 val) 6080 { 6081 unsigned offset = (long)_offset; 6082 struct kvm *kvm; 6083 6084 if (val) 6085 return -EINVAL; 6086 6087 mutex_lock(&kvm_lock); 6088 list_for_each_entry(kvm, &vm_list, vm_list) { 6089 kvm_clear_stat_per_vm(kvm, offset); 6090 } 6091 mutex_unlock(&kvm_lock); 6092 6093 return 0; 6094 } 6095 6096 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6097 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6098 6099 static int vcpu_stat_get(void *_offset, u64 *val) 6100 { 6101 unsigned offset = (long)_offset; 6102 struct kvm *kvm; 6103 u64 tmp_val; 6104 6105 *val = 0; 6106 mutex_lock(&kvm_lock); 6107 list_for_each_entry(kvm, &vm_list, vm_list) { 6108 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6109 *val += tmp_val; 6110 } 6111 mutex_unlock(&kvm_lock); 6112 return 0; 6113 } 6114 6115 static int vcpu_stat_clear(void *_offset, u64 val) 6116 { 6117 unsigned offset = (long)_offset; 6118 struct kvm *kvm; 6119 6120 if (val) 6121 return -EINVAL; 6122 6123 mutex_lock(&kvm_lock); 6124 list_for_each_entry(kvm, &vm_list, vm_list) { 6125 kvm_clear_stat_per_vcpu(kvm, offset); 6126 } 6127 mutex_unlock(&kvm_lock); 6128 6129 return 0; 6130 } 6131 6132 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6133 "%llu\n"); 6134 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6135 6136 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6137 { 6138 struct kobj_uevent_env *env; 6139 unsigned long long created, active; 6140 6141 if (!kvm_dev.this_device || !kvm) 6142 return; 6143 6144 mutex_lock(&kvm_lock); 6145 if (type == KVM_EVENT_CREATE_VM) { 6146 kvm_createvm_count++; 6147 kvm_active_vms++; 6148 } else if (type == KVM_EVENT_DESTROY_VM) { 6149 kvm_active_vms--; 6150 } 6151 created = kvm_createvm_count; 6152 active = kvm_active_vms; 6153 mutex_unlock(&kvm_lock); 6154 6155 env = kzalloc(sizeof(*env), GFP_KERNEL); 6156 if (!env) 6157 return; 6158 6159 add_uevent_var(env, "CREATED=%llu", created); 6160 add_uevent_var(env, "COUNT=%llu", active); 6161 6162 if (type == KVM_EVENT_CREATE_VM) { 6163 add_uevent_var(env, "EVENT=create"); 6164 kvm->userspace_pid = task_pid_nr(current); 6165 } else if (type == KVM_EVENT_DESTROY_VM) { 6166 add_uevent_var(env, "EVENT=destroy"); 6167 } 6168 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6169 6170 if (!IS_ERR(kvm->debugfs_dentry)) { 6171 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6172 6173 if (p) { 6174 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6175 if (!IS_ERR(tmp)) 6176 add_uevent_var(env, "STATS_PATH=%s", tmp); 6177 kfree(p); 6178 } 6179 } 6180 /* no need for checks, since we are adding at most only 5 keys */ 6181 env->envp[env->envp_idx++] = NULL; 6182 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6183 kfree(env); 6184 } 6185 6186 static void kvm_init_debug(void) 6187 { 6188 const struct file_operations *fops; 6189 const struct _kvm_stats_desc *pdesc; 6190 int i; 6191 6192 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6193 6194 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6195 pdesc = &kvm_vm_stats_desc[i]; 6196 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6197 fops = &vm_stat_fops; 6198 else 6199 fops = &vm_stat_readonly_fops; 6200 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6201 kvm_debugfs_dir, 6202 (void *)(long)pdesc->desc.offset, fops); 6203 } 6204 6205 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6206 pdesc = &kvm_vcpu_stats_desc[i]; 6207 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6208 fops = &vcpu_stat_fops; 6209 else 6210 fops = &vcpu_stat_readonly_fops; 6211 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6212 kvm_debugfs_dir, 6213 (void *)(long)pdesc->desc.offset, fops); 6214 } 6215 } 6216 6217 static inline 6218 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6219 { 6220 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6221 } 6222 6223 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6224 { 6225 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6226 6227 WRITE_ONCE(vcpu->preempted, false); 6228 WRITE_ONCE(vcpu->ready, false); 6229 6230 __this_cpu_write(kvm_running_vcpu, vcpu); 6231 kvm_arch_vcpu_load(vcpu, cpu); 6232 6233 WRITE_ONCE(vcpu->scheduled_out, false); 6234 } 6235 6236 static void kvm_sched_out(struct preempt_notifier *pn, 6237 struct task_struct *next) 6238 { 6239 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6240 6241 WRITE_ONCE(vcpu->scheduled_out, true); 6242 6243 if (task_is_runnable(current) && vcpu->wants_to_run) { 6244 WRITE_ONCE(vcpu->preempted, true); 6245 WRITE_ONCE(vcpu->ready, true); 6246 } 6247 kvm_arch_vcpu_put(vcpu); 6248 __this_cpu_write(kvm_running_vcpu, NULL); 6249 } 6250 6251 /** 6252 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6253 * 6254 * We can disable preemption locally around accessing the per-CPU variable, 6255 * and use the resolved vcpu pointer after enabling preemption again, 6256 * because even if the current thread is migrated to another CPU, reading 6257 * the per-CPU value later will give us the same value as we update the 6258 * per-CPU variable in the preempt notifier handlers. 6259 */ 6260 struct kvm_vcpu *kvm_get_running_vcpu(void) 6261 { 6262 struct kvm_vcpu *vcpu; 6263 6264 preempt_disable(); 6265 vcpu = __this_cpu_read(kvm_running_vcpu); 6266 preempt_enable(); 6267 6268 return vcpu; 6269 } 6270 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6271 6272 /** 6273 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6274 */ 6275 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6276 { 6277 return &kvm_running_vcpu; 6278 } 6279 6280 #ifdef CONFIG_GUEST_PERF_EVENTS 6281 static unsigned int kvm_guest_state(void) 6282 { 6283 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6284 unsigned int state; 6285 6286 if (!kvm_arch_pmi_in_guest(vcpu)) 6287 return 0; 6288 6289 state = PERF_GUEST_ACTIVE; 6290 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6291 state |= PERF_GUEST_USER; 6292 6293 return state; 6294 } 6295 6296 static unsigned long kvm_guest_get_ip(void) 6297 { 6298 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6299 6300 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6301 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6302 return 0; 6303 6304 return kvm_arch_vcpu_get_ip(vcpu); 6305 } 6306 6307 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6308 .state = kvm_guest_state, 6309 .get_ip = kvm_guest_get_ip, 6310 .handle_intel_pt_intr = NULL, 6311 }; 6312 6313 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6314 { 6315 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6316 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6317 } 6318 void kvm_unregister_perf_callbacks(void) 6319 { 6320 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6321 } 6322 #endif 6323 6324 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6325 { 6326 int r; 6327 int cpu; 6328 6329 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6330 if (!vcpu_align) 6331 vcpu_align = __alignof__(struct kvm_vcpu); 6332 kvm_vcpu_cache = 6333 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6334 SLAB_ACCOUNT, 6335 offsetof(struct kvm_vcpu, arch), 6336 offsetofend(struct kvm_vcpu, stats_id) 6337 - offsetof(struct kvm_vcpu, arch), 6338 NULL); 6339 if (!kvm_vcpu_cache) 6340 return -ENOMEM; 6341 6342 for_each_possible_cpu(cpu) { 6343 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6344 GFP_KERNEL, cpu_to_node(cpu))) { 6345 r = -ENOMEM; 6346 goto err_cpu_kick_mask; 6347 } 6348 } 6349 6350 r = kvm_irqfd_init(); 6351 if (r) 6352 goto err_irqfd; 6353 6354 r = kvm_async_pf_init(); 6355 if (r) 6356 goto err_async_pf; 6357 6358 kvm_chardev_ops.owner = module; 6359 kvm_vm_fops.owner = module; 6360 kvm_vcpu_fops.owner = module; 6361 kvm_device_fops.owner = module; 6362 6363 kvm_preempt_ops.sched_in = kvm_sched_in; 6364 kvm_preempt_ops.sched_out = kvm_sched_out; 6365 6366 kvm_init_debug(); 6367 6368 r = kvm_vfio_ops_init(); 6369 if (WARN_ON_ONCE(r)) 6370 goto err_vfio; 6371 6372 kvm_gmem_init(module); 6373 6374 r = kvm_init_virtualization(); 6375 if (r) 6376 goto err_virt; 6377 6378 /* 6379 * Registration _must_ be the very last thing done, as this exposes 6380 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6381 */ 6382 r = misc_register(&kvm_dev); 6383 if (r) { 6384 pr_err("kvm: misc device register failed\n"); 6385 goto err_register; 6386 } 6387 6388 return 0; 6389 6390 err_register: 6391 kvm_uninit_virtualization(); 6392 err_virt: 6393 kvm_vfio_ops_exit(); 6394 err_vfio: 6395 kvm_async_pf_deinit(); 6396 err_async_pf: 6397 kvm_irqfd_exit(); 6398 err_irqfd: 6399 err_cpu_kick_mask: 6400 for_each_possible_cpu(cpu) 6401 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6402 kmem_cache_destroy(kvm_vcpu_cache); 6403 return r; 6404 } 6405 EXPORT_SYMBOL_GPL(kvm_init); 6406 6407 void kvm_exit(void) 6408 { 6409 int cpu; 6410 6411 /* 6412 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6413 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6414 * to KVM while the module is being stopped. 6415 */ 6416 misc_deregister(&kvm_dev); 6417 6418 kvm_uninit_virtualization(); 6419 6420 debugfs_remove_recursive(kvm_debugfs_dir); 6421 for_each_possible_cpu(cpu) 6422 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6423 kmem_cache_destroy(kvm_vcpu_cache); 6424 kvm_vfio_ops_exit(); 6425 kvm_async_pf_deinit(); 6426 kvm_irqfd_exit(); 6427 } 6428 EXPORT_SYMBOL_GPL(kvm_exit); 6429