xref: /linux/virt/kvm/kvm_main.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	if (mutex_lock_killable(&vcpu->mutex))
139 		return -EINTR;
140 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 		/* The thread running this VCPU changed. */
142 		struct pid *oldpid = vcpu->pid;
143 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 		rcu_assign_pointer(vcpu->pid, newpid);
145 		synchronize_rcu();
146 		put_pid(oldpid);
147 	}
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 	preempt_disable();
158 	kvm_arch_vcpu_put(vcpu);
159 	preempt_notifier_unregister(&vcpu->preempt_notifier);
160 	preempt_enable();
161 	mutex_unlock(&vcpu->mutex);
162 }
163 
164 static void ack_flush(void *_completed)
165 {
166 }
167 
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 	int i, cpu, me;
171 	cpumask_var_t cpus;
172 	bool called = true;
173 	struct kvm_vcpu *vcpu;
174 
175 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176 
177 	me = get_cpu();
178 	kvm_for_each_vcpu(i, vcpu, kvm) {
179 		kvm_make_request(req, vcpu);
180 		cpu = vcpu->cpu;
181 
182 		/* Set ->requests bit before we read ->mode */
183 		smp_mb();
184 
185 		if (cpus != NULL && cpu != -1 && cpu != me &&
186 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 			cpumask_set_cpu(cpu, cpus);
188 	}
189 	if (unlikely(cpus == NULL))
190 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 	else if (!cpumask_empty(cpus))
192 		smp_call_function_many(cpus, ack_flush, NULL, 1);
193 	else
194 		called = false;
195 	put_cpu();
196 	free_cpumask_var(cpus);
197 	return called;
198 }
199 
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	long dirty_count = kvm->tlbs_dirty;
203 
204 	smp_mb();
205 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 		++kvm->stat.remote_tlb_flush;
207 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209 
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214 
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219 
220 void kvm_make_update_eoibitmap_request(struct kvm *kvm)
221 {
222 	make_all_cpus_request(kvm, KVM_REQ_EOIBITMAP);
223 }
224 
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 	struct page *page;
228 	int r;
229 
230 	mutex_init(&vcpu->mutex);
231 	vcpu->cpu = -1;
232 	vcpu->kvm = kvm;
233 	vcpu->vcpu_id = id;
234 	vcpu->pid = NULL;
235 	init_waitqueue_head(&vcpu->wq);
236 	kvm_async_pf_vcpu_init(vcpu);
237 
238 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 	if (!page) {
240 		r = -ENOMEM;
241 		goto fail;
242 	}
243 	vcpu->run = page_address(page);
244 
245 	kvm_vcpu_set_in_spin_loop(vcpu, false);
246 	kvm_vcpu_set_dy_eligible(vcpu, false);
247 
248 	r = kvm_arch_vcpu_init(vcpu);
249 	if (r < 0)
250 		goto fail_free_run;
251 	return 0;
252 
253 fail_free_run:
254 	free_page((unsigned long)vcpu->run);
255 fail:
256 	return r;
257 }
258 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
259 
260 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
261 {
262 	put_pid(vcpu->pid);
263 	kvm_arch_vcpu_uninit(vcpu);
264 	free_page((unsigned long)vcpu->run);
265 }
266 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
267 
268 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
269 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
270 {
271 	return container_of(mn, struct kvm, mmu_notifier);
272 }
273 
274 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
275 					     struct mm_struct *mm,
276 					     unsigned long address)
277 {
278 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
279 	int need_tlb_flush, idx;
280 
281 	/*
282 	 * When ->invalidate_page runs, the linux pte has been zapped
283 	 * already but the page is still allocated until
284 	 * ->invalidate_page returns. So if we increase the sequence
285 	 * here the kvm page fault will notice if the spte can't be
286 	 * established because the page is going to be freed. If
287 	 * instead the kvm page fault establishes the spte before
288 	 * ->invalidate_page runs, kvm_unmap_hva will release it
289 	 * before returning.
290 	 *
291 	 * The sequence increase only need to be seen at spin_unlock
292 	 * time, and not at spin_lock time.
293 	 *
294 	 * Increasing the sequence after the spin_unlock would be
295 	 * unsafe because the kvm page fault could then establish the
296 	 * pte after kvm_unmap_hva returned, without noticing the page
297 	 * is going to be freed.
298 	 */
299 	idx = srcu_read_lock(&kvm->srcu);
300 	spin_lock(&kvm->mmu_lock);
301 
302 	kvm->mmu_notifier_seq++;
303 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
304 	/* we've to flush the tlb before the pages can be freed */
305 	if (need_tlb_flush)
306 		kvm_flush_remote_tlbs(kvm);
307 
308 	spin_unlock(&kvm->mmu_lock);
309 	srcu_read_unlock(&kvm->srcu, idx);
310 }
311 
312 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
313 					struct mm_struct *mm,
314 					unsigned long address,
315 					pte_t pte)
316 {
317 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 	int idx;
319 
320 	idx = srcu_read_lock(&kvm->srcu);
321 	spin_lock(&kvm->mmu_lock);
322 	kvm->mmu_notifier_seq++;
323 	kvm_set_spte_hva(kvm, address, pte);
324 	spin_unlock(&kvm->mmu_lock);
325 	srcu_read_unlock(&kvm->srcu, idx);
326 }
327 
328 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
329 						    struct mm_struct *mm,
330 						    unsigned long start,
331 						    unsigned long end)
332 {
333 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 	int need_tlb_flush = 0, idx;
335 
336 	idx = srcu_read_lock(&kvm->srcu);
337 	spin_lock(&kvm->mmu_lock);
338 	/*
339 	 * The count increase must become visible at unlock time as no
340 	 * spte can be established without taking the mmu_lock and
341 	 * count is also read inside the mmu_lock critical section.
342 	 */
343 	kvm->mmu_notifier_count++;
344 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
345 	need_tlb_flush |= kvm->tlbs_dirty;
346 	/* we've to flush the tlb before the pages can be freed */
347 	if (need_tlb_flush)
348 		kvm_flush_remote_tlbs(kvm);
349 
350 	spin_unlock(&kvm->mmu_lock);
351 	srcu_read_unlock(&kvm->srcu, idx);
352 }
353 
354 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
355 						  struct mm_struct *mm,
356 						  unsigned long start,
357 						  unsigned long end)
358 {
359 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
360 
361 	spin_lock(&kvm->mmu_lock);
362 	/*
363 	 * This sequence increase will notify the kvm page fault that
364 	 * the page that is going to be mapped in the spte could have
365 	 * been freed.
366 	 */
367 	kvm->mmu_notifier_seq++;
368 	smp_wmb();
369 	/*
370 	 * The above sequence increase must be visible before the
371 	 * below count decrease, which is ensured by the smp_wmb above
372 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
373 	 */
374 	kvm->mmu_notifier_count--;
375 	spin_unlock(&kvm->mmu_lock);
376 
377 	BUG_ON(kvm->mmu_notifier_count < 0);
378 }
379 
380 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
381 					      struct mm_struct *mm,
382 					      unsigned long address)
383 {
384 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 	int young, idx;
386 
387 	idx = srcu_read_lock(&kvm->srcu);
388 	spin_lock(&kvm->mmu_lock);
389 
390 	young = kvm_age_hva(kvm, address);
391 	if (young)
392 		kvm_flush_remote_tlbs(kvm);
393 
394 	spin_unlock(&kvm->mmu_lock);
395 	srcu_read_unlock(&kvm->srcu, idx);
396 
397 	return young;
398 }
399 
400 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
401 				       struct mm_struct *mm,
402 				       unsigned long address)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 	int young, idx;
406 
407 	idx = srcu_read_lock(&kvm->srcu);
408 	spin_lock(&kvm->mmu_lock);
409 	young = kvm_test_age_hva(kvm, address);
410 	spin_unlock(&kvm->mmu_lock);
411 	srcu_read_unlock(&kvm->srcu, idx);
412 
413 	return young;
414 }
415 
416 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
417 				     struct mm_struct *mm)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	kvm_arch_flush_shadow_all(kvm);
424 	srcu_read_unlock(&kvm->srcu, idx);
425 }
426 
427 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
428 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
429 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
430 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
431 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
432 	.test_young		= kvm_mmu_notifier_test_young,
433 	.change_pte		= kvm_mmu_notifier_change_pte,
434 	.release		= kvm_mmu_notifier_release,
435 };
436 
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
440 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
441 }
442 
443 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
444 
445 static int kvm_init_mmu_notifier(struct kvm *kvm)
446 {
447 	return 0;
448 }
449 
450 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
451 
452 static void kvm_init_memslots_id(struct kvm *kvm)
453 {
454 	int i;
455 	struct kvm_memslots *slots = kvm->memslots;
456 
457 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
458 		slots->id_to_index[i] = slots->memslots[i].id = i;
459 }
460 
461 static struct kvm *kvm_create_vm(unsigned long type)
462 {
463 	int r, i;
464 	struct kvm *kvm = kvm_arch_alloc_vm();
465 
466 	if (!kvm)
467 		return ERR_PTR(-ENOMEM);
468 
469 	r = kvm_arch_init_vm(kvm, type);
470 	if (r)
471 		goto out_err_nodisable;
472 
473 	r = hardware_enable_all();
474 	if (r)
475 		goto out_err_nodisable;
476 
477 #ifdef CONFIG_HAVE_KVM_IRQCHIP
478 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
479 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
480 #endif
481 
482 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
483 
484 	r = -ENOMEM;
485 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
486 	if (!kvm->memslots)
487 		goto out_err_nosrcu;
488 	kvm_init_memslots_id(kvm);
489 	if (init_srcu_struct(&kvm->srcu))
490 		goto out_err_nosrcu;
491 	for (i = 0; i < KVM_NR_BUSES; i++) {
492 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
493 					GFP_KERNEL);
494 		if (!kvm->buses[i])
495 			goto out_err;
496 	}
497 
498 	spin_lock_init(&kvm->mmu_lock);
499 	kvm->mm = current->mm;
500 	atomic_inc(&kvm->mm->mm_count);
501 	kvm_eventfd_init(kvm);
502 	mutex_init(&kvm->lock);
503 	mutex_init(&kvm->irq_lock);
504 	mutex_init(&kvm->slots_lock);
505 	atomic_set(&kvm->users_count, 1);
506 
507 	r = kvm_init_mmu_notifier(kvm);
508 	if (r)
509 		goto out_err;
510 
511 	raw_spin_lock(&kvm_lock);
512 	list_add(&kvm->vm_list, &vm_list);
513 	raw_spin_unlock(&kvm_lock);
514 
515 	return kvm;
516 
517 out_err:
518 	cleanup_srcu_struct(&kvm->srcu);
519 out_err_nosrcu:
520 	hardware_disable_all();
521 out_err_nodisable:
522 	for (i = 0; i < KVM_NR_BUSES; i++)
523 		kfree(kvm->buses[i]);
524 	kfree(kvm->memslots);
525 	kvm_arch_free_vm(kvm);
526 	return ERR_PTR(r);
527 }
528 
529 /*
530  * Avoid using vmalloc for a small buffer.
531  * Should not be used when the size is statically known.
532  */
533 void *kvm_kvzalloc(unsigned long size)
534 {
535 	if (size > PAGE_SIZE)
536 		return vzalloc(size);
537 	else
538 		return kzalloc(size, GFP_KERNEL);
539 }
540 
541 void kvm_kvfree(const void *addr)
542 {
543 	if (is_vmalloc_addr(addr))
544 		vfree(addr);
545 	else
546 		kfree(addr);
547 }
548 
549 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
550 {
551 	if (!memslot->dirty_bitmap)
552 		return;
553 
554 	kvm_kvfree(memslot->dirty_bitmap);
555 	memslot->dirty_bitmap = NULL;
556 }
557 
558 /*
559  * Free any memory in @free but not in @dont.
560  */
561 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
562 				  struct kvm_memory_slot *dont)
563 {
564 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
565 		kvm_destroy_dirty_bitmap(free);
566 
567 	kvm_arch_free_memslot(free, dont);
568 
569 	free->npages = 0;
570 }
571 
572 void kvm_free_physmem(struct kvm *kvm)
573 {
574 	struct kvm_memslots *slots = kvm->memslots;
575 	struct kvm_memory_slot *memslot;
576 
577 	kvm_for_each_memslot(memslot, slots)
578 		kvm_free_physmem_slot(memslot, NULL);
579 
580 	kfree(kvm->memslots);
581 }
582 
583 static void kvm_destroy_vm(struct kvm *kvm)
584 {
585 	int i;
586 	struct mm_struct *mm = kvm->mm;
587 
588 	kvm_arch_sync_events(kvm);
589 	raw_spin_lock(&kvm_lock);
590 	list_del(&kvm->vm_list);
591 	raw_spin_unlock(&kvm_lock);
592 	kvm_free_irq_routing(kvm);
593 	for (i = 0; i < KVM_NR_BUSES; i++)
594 		kvm_io_bus_destroy(kvm->buses[i]);
595 	kvm_coalesced_mmio_free(kvm);
596 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
597 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
598 #else
599 	kvm_arch_flush_shadow_all(kvm);
600 #endif
601 	kvm_arch_destroy_vm(kvm);
602 	kvm_free_physmem(kvm);
603 	cleanup_srcu_struct(&kvm->srcu);
604 	kvm_arch_free_vm(kvm);
605 	hardware_disable_all();
606 	mmdrop(mm);
607 }
608 
609 void kvm_get_kvm(struct kvm *kvm)
610 {
611 	atomic_inc(&kvm->users_count);
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_kvm);
614 
615 void kvm_put_kvm(struct kvm *kvm)
616 {
617 	if (atomic_dec_and_test(&kvm->users_count))
618 		kvm_destroy_vm(kvm);
619 }
620 EXPORT_SYMBOL_GPL(kvm_put_kvm);
621 
622 
623 static int kvm_vm_release(struct inode *inode, struct file *filp)
624 {
625 	struct kvm *kvm = filp->private_data;
626 
627 	kvm_irqfd_release(kvm);
628 
629 	kvm_put_kvm(kvm);
630 	return 0;
631 }
632 
633 /*
634  * Allocation size is twice as large as the actual dirty bitmap size.
635  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
636  */
637 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
638 {
639 #ifndef CONFIG_S390
640 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
641 
642 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
643 	if (!memslot->dirty_bitmap)
644 		return -ENOMEM;
645 
646 #endif /* !CONFIG_S390 */
647 	return 0;
648 }
649 
650 static int cmp_memslot(const void *slot1, const void *slot2)
651 {
652 	struct kvm_memory_slot *s1, *s2;
653 
654 	s1 = (struct kvm_memory_slot *)slot1;
655 	s2 = (struct kvm_memory_slot *)slot2;
656 
657 	if (s1->npages < s2->npages)
658 		return 1;
659 	if (s1->npages > s2->npages)
660 		return -1;
661 
662 	return 0;
663 }
664 
665 /*
666  * Sort the memslots base on its size, so the larger slots
667  * will get better fit.
668  */
669 static void sort_memslots(struct kvm_memslots *slots)
670 {
671 	int i;
672 
673 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
674 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
675 
676 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
677 		slots->id_to_index[slots->memslots[i].id] = i;
678 }
679 
680 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
681 		     u64 last_generation)
682 {
683 	if (new) {
684 		int id = new->id;
685 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
686 		unsigned long npages = old->npages;
687 
688 		*old = *new;
689 		if (new->npages != npages)
690 			sort_memslots(slots);
691 	}
692 
693 	slots->generation = last_generation + 1;
694 }
695 
696 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
697 {
698 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
699 
700 #ifdef KVM_CAP_READONLY_MEM
701 	valid_flags |= KVM_MEM_READONLY;
702 #endif
703 
704 	if (mem->flags & ~valid_flags)
705 		return -EINVAL;
706 
707 	return 0;
708 }
709 
710 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
711 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
712 {
713 	struct kvm_memslots *old_memslots = kvm->memslots;
714 
715 	update_memslots(slots, new, kvm->memslots->generation);
716 	rcu_assign_pointer(kvm->memslots, slots);
717 	synchronize_srcu_expedited(&kvm->srcu);
718 	return old_memslots;
719 }
720 
721 /*
722  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
723  * - create a new memory slot
724  * - delete an existing memory slot
725  * - modify an existing memory slot
726  *   -- move it in the guest physical memory space
727  *   -- just change its flags
728  *
729  * Since flags can be changed by some of these operations, the following
730  * differentiation is the best we can do for __kvm_set_memory_region():
731  */
732 enum kvm_mr_change {
733 	KVM_MR_CREATE,
734 	KVM_MR_DELETE,
735 	KVM_MR_MOVE,
736 	KVM_MR_FLAGS_ONLY,
737 };
738 
739 /*
740  * Allocate some memory and give it an address in the guest physical address
741  * space.
742  *
743  * Discontiguous memory is allowed, mostly for framebuffers.
744  *
745  * Must be called holding mmap_sem for write.
746  */
747 int __kvm_set_memory_region(struct kvm *kvm,
748 			    struct kvm_userspace_memory_region *mem,
749 			    bool user_alloc)
750 {
751 	int r;
752 	gfn_t base_gfn;
753 	unsigned long npages;
754 	struct kvm_memory_slot *slot;
755 	struct kvm_memory_slot old, new;
756 	struct kvm_memslots *slots = NULL, *old_memslots;
757 	enum kvm_mr_change change;
758 
759 	r = check_memory_region_flags(mem);
760 	if (r)
761 		goto out;
762 
763 	r = -EINVAL;
764 	/* General sanity checks */
765 	if (mem->memory_size & (PAGE_SIZE - 1))
766 		goto out;
767 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
768 		goto out;
769 	/* We can read the guest memory with __xxx_user() later on. */
770 	if (user_alloc &&
771 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
772 	     !access_ok(VERIFY_WRITE,
773 			(void __user *)(unsigned long)mem->userspace_addr,
774 			mem->memory_size)))
775 		goto out;
776 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
777 		goto out;
778 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
779 		goto out;
780 
781 	slot = id_to_memslot(kvm->memslots, mem->slot);
782 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
783 	npages = mem->memory_size >> PAGE_SHIFT;
784 
785 	r = -EINVAL;
786 	if (npages > KVM_MEM_MAX_NR_PAGES)
787 		goto out;
788 
789 	if (!npages)
790 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
791 
792 	new = old = *slot;
793 
794 	new.id = mem->slot;
795 	new.base_gfn = base_gfn;
796 	new.npages = npages;
797 	new.flags = mem->flags;
798 
799 	r = -EINVAL;
800 	if (npages) {
801 		if (!old.npages)
802 			change = KVM_MR_CREATE;
803 		else { /* Modify an existing slot. */
804 			if ((mem->userspace_addr != old.userspace_addr) ||
805 			    (npages != old.npages) ||
806 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
807 				goto out;
808 
809 			if (base_gfn != old.base_gfn)
810 				change = KVM_MR_MOVE;
811 			else if (new.flags != old.flags)
812 				change = KVM_MR_FLAGS_ONLY;
813 			else { /* Nothing to change. */
814 				r = 0;
815 				goto out;
816 			}
817 		}
818 	} else if (old.npages) {
819 		change = KVM_MR_DELETE;
820 	} else /* Modify a non-existent slot: disallowed. */
821 		goto out;
822 
823 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
824 		/* Check for overlaps */
825 		r = -EEXIST;
826 		kvm_for_each_memslot(slot, kvm->memslots) {
827 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
828 			    (slot->id == mem->slot))
829 				continue;
830 			if (!((base_gfn + npages <= slot->base_gfn) ||
831 			      (base_gfn >= slot->base_gfn + slot->npages)))
832 				goto out;
833 		}
834 	}
835 
836 	/* Free page dirty bitmap if unneeded */
837 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
838 		new.dirty_bitmap = NULL;
839 
840 	r = -ENOMEM;
841 	if (change == KVM_MR_CREATE) {
842 		new.userspace_addr = mem->userspace_addr;
843 
844 		if (kvm_arch_create_memslot(&new, npages))
845 			goto out_free;
846 	}
847 
848 	/* Allocate page dirty bitmap if needed */
849 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
850 		if (kvm_create_dirty_bitmap(&new) < 0)
851 			goto out_free;
852 	}
853 
854 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
855 		r = -ENOMEM;
856 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
857 				GFP_KERNEL);
858 		if (!slots)
859 			goto out_free;
860 		slot = id_to_memslot(slots, mem->slot);
861 		slot->flags |= KVM_MEMSLOT_INVALID;
862 
863 		old_memslots = install_new_memslots(kvm, slots, NULL);
864 
865 		/* slot was deleted or moved, clear iommu mapping */
866 		kvm_iommu_unmap_pages(kvm, &old);
867 		/* From this point no new shadow pages pointing to a deleted,
868 		 * or moved, memslot will be created.
869 		 *
870 		 * validation of sp->gfn happens in:
871 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
872 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
873 		 */
874 		kvm_arch_flush_shadow_memslot(kvm, slot);
875 		slots = old_memslots;
876 	}
877 
878 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
879 	if (r)
880 		goto out_slots;
881 
882 	r = -ENOMEM;
883 	/*
884 	 * We can re-use the old_memslots from above, the only difference
885 	 * from the currently installed memslots is the invalid flag.  This
886 	 * will get overwritten by update_memslots anyway.
887 	 */
888 	if (!slots) {
889 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
890 				GFP_KERNEL);
891 		if (!slots)
892 			goto out_free;
893 	}
894 
895 	/*
896 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
897 	 * un-mapped and re-mapped if their base changes.  Since base change
898 	 * unmapping is handled above with slot deletion, mapping alone is
899 	 * needed here.  Anything else the iommu might care about for existing
900 	 * slots (size changes, userspace addr changes and read-only flag
901 	 * changes) is disallowed above, so any other attribute changes getting
902 	 * here can be skipped.
903 	 */
904 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
905 		r = kvm_iommu_map_pages(kvm, &new);
906 		if (r)
907 			goto out_slots;
908 	}
909 
910 	/* actual memory is freed via old in kvm_free_physmem_slot below */
911 	if (change == KVM_MR_DELETE) {
912 		new.dirty_bitmap = NULL;
913 		memset(&new.arch, 0, sizeof(new.arch));
914 	}
915 
916 	old_memslots = install_new_memslots(kvm, slots, &new);
917 
918 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
919 
920 	kvm_free_physmem_slot(&old, &new);
921 	kfree(old_memslots);
922 
923 	return 0;
924 
925 out_slots:
926 	kfree(slots);
927 out_free:
928 	kvm_free_physmem_slot(&new, &old);
929 out:
930 	return r;
931 }
932 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
933 
934 int kvm_set_memory_region(struct kvm *kvm,
935 			  struct kvm_userspace_memory_region *mem,
936 			  bool user_alloc)
937 {
938 	int r;
939 
940 	mutex_lock(&kvm->slots_lock);
941 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
942 	mutex_unlock(&kvm->slots_lock);
943 	return r;
944 }
945 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
946 
947 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
948 				   struct
949 				   kvm_userspace_memory_region *mem,
950 				   bool user_alloc)
951 {
952 	if (mem->slot >= KVM_USER_MEM_SLOTS)
953 		return -EINVAL;
954 	return kvm_set_memory_region(kvm, mem, user_alloc);
955 }
956 
957 int kvm_get_dirty_log(struct kvm *kvm,
958 			struct kvm_dirty_log *log, int *is_dirty)
959 {
960 	struct kvm_memory_slot *memslot;
961 	int r, i;
962 	unsigned long n;
963 	unsigned long any = 0;
964 
965 	r = -EINVAL;
966 	if (log->slot >= KVM_USER_MEM_SLOTS)
967 		goto out;
968 
969 	memslot = id_to_memslot(kvm->memslots, log->slot);
970 	r = -ENOENT;
971 	if (!memslot->dirty_bitmap)
972 		goto out;
973 
974 	n = kvm_dirty_bitmap_bytes(memslot);
975 
976 	for (i = 0; !any && i < n/sizeof(long); ++i)
977 		any = memslot->dirty_bitmap[i];
978 
979 	r = -EFAULT;
980 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
981 		goto out;
982 
983 	if (any)
984 		*is_dirty = 1;
985 
986 	r = 0;
987 out:
988 	return r;
989 }
990 
991 bool kvm_largepages_enabled(void)
992 {
993 	return largepages_enabled;
994 }
995 
996 void kvm_disable_largepages(void)
997 {
998 	largepages_enabled = false;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1001 
1002 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1003 {
1004 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1005 }
1006 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1007 
1008 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1009 {
1010 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1011 
1012 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1013 	      memslot->flags & KVM_MEMSLOT_INVALID)
1014 		return 0;
1015 
1016 	return 1;
1017 }
1018 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1019 
1020 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1021 {
1022 	struct vm_area_struct *vma;
1023 	unsigned long addr, size;
1024 
1025 	size = PAGE_SIZE;
1026 
1027 	addr = gfn_to_hva(kvm, gfn);
1028 	if (kvm_is_error_hva(addr))
1029 		return PAGE_SIZE;
1030 
1031 	down_read(&current->mm->mmap_sem);
1032 	vma = find_vma(current->mm, addr);
1033 	if (!vma)
1034 		goto out;
1035 
1036 	size = vma_kernel_pagesize(vma);
1037 
1038 out:
1039 	up_read(&current->mm->mmap_sem);
1040 
1041 	return size;
1042 }
1043 
1044 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1045 {
1046 	return slot->flags & KVM_MEM_READONLY;
1047 }
1048 
1049 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1050 				       gfn_t *nr_pages, bool write)
1051 {
1052 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1053 		return KVM_HVA_ERR_BAD;
1054 
1055 	if (memslot_is_readonly(slot) && write)
1056 		return KVM_HVA_ERR_RO_BAD;
1057 
1058 	if (nr_pages)
1059 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1060 
1061 	return __gfn_to_hva_memslot(slot, gfn);
1062 }
1063 
1064 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1065 				     gfn_t *nr_pages)
1066 {
1067 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1068 }
1069 
1070 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1071 				 gfn_t gfn)
1072 {
1073 	return gfn_to_hva_many(slot, gfn, NULL);
1074 }
1075 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1076 
1077 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1078 {
1079 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1080 }
1081 EXPORT_SYMBOL_GPL(gfn_to_hva);
1082 
1083 /*
1084  * The hva returned by this function is only allowed to be read.
1085  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1086  */
1087 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1088 {
1089 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1090 }
1091 
1092 static int kvm_read_hva(void *data, void __user *hva, int len)
1093 {
1094 	return __copy_from_user(data, hva, len);
1095 }
1096 
1097 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1098 {
1099 	return __copy_from_user_inatomic(data, hva, len);
1100 }
1101 
1102 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1103 	unsigned long start, int write, struct page **page)
1104 {
1105 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1106 
1107 	if (write)
1108 		flags |= FOLL_WRITE;
1109 
1110 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1111 }
1112 
1113 static inline int check_user_page_hwpoison(unsigned long addr)
1114 {
1115 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1116 
1117 	rc = __get_user_pages(current, current->mm, addr, 1,
1118 			      flags, NULL, NULL, NULL);
1119 	return rc == -EHWPOISON;
1120 }
1121 
1122 /*
1123  * The atomic path to get the writable pfn which will be stored in @pfn,
1124  * true indicates success, otherwise false is returned.
1125  */
1126 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1127 			    bool write_fault, bool *writable, pfn_t *pfn)
1128 {
1129 	struct page *page[1];
1130 	int npages;
1131 
1132 	if (!(async || atomic))
1133 		return false;
1134 
1135 	/*
1136 	 * Fast pin a writable pfn only if it is a write fault request
1137 	 * or the caller allows to map a writable pfn for a read fault
1138 	 * request.
1139 	 */
1140 	if (!(write_fault || writable))
1141 		return false;
1142 
1143 	npages = __get_user_pages_fast(addr, 1, 1, page);
1144 	if (npages == 1) {
1145 		*pfn = page_to_pfn(page[0]);
1146 
1147 		if (writable)
1148 			*writable = true;
1149 		return true;
1150 	}
1151 
1152 	return false;
1153 }
1154 
1155 /*
1156  * The slow path to get the pfn of the specified host virtual address,
1157  * 1 indicates success, -errno is returned if error is detected.
1158  */
1159 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1160 			   bool *writable, pfn_t *pfn)
1161 {
1162 	struct page *page[1];
1163 	int npages = 0;
1164 
1165 	might_sleep();
1166 
1167 	if (writable)
1168 		*writable = write_fault;
1169 
1170 	if (async) {
1171 		down_read(&current->mm->mmap_sem);
1172 		npages = get_user_page_nowait(current, current->mm,
1173 					      addr, write_fault, page);
1174 		up_read(&current->mm->mmap_sem);
1175 	} else
1176 		npages = get_user_pages_fast(addr, 1, write_fault,
1177 					     page);
1178 	if (npages != 1)
1179 		return npages;
1180 
1181 	/* map read fault as writable if possible */
1182 	if (unlikely(!write_fault) && writable) {
1183 		struct page *wpage[1];
1184 
1185 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1186 		if (npages == 1) {
1187 			*writable = true;
1188 			put_page(page[0]);
1189 			page[0] = wpage[0];
1190 		}
1191 
1192 		npages = 1;
1193 	}
1194 	*pfn = page_to_pfn(page[0]);
1195 	return npages;
1196 }
1197 
1198 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1199 {
1200 	if (unlikely(!(vma->vm_flags & VM_READ)))
1201 		return false;
1202 
1203 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1204 		return false;
1205 
1206 	return true;
1207 }
1208 
1209 /*
1210  * Pin guest page in memory and return its pfn.
1211  * @addr: host virtual address which maps memory to the guest
1212  * @atomic: whether this function can sleep
1213  * @async: whether this function need to wait IO complete if the
1214  *         host page is not in the memory
1215  * @write_fault: whether we should get a writable host page
1216  * @writable: whether it allows to map a writable host page for !@write_fault
1217  *
1218  * The function will map a writable host page for these two cases:
1219  * 1): @write_fault = true
1220  * 2): @write_fault = false && @writable, @writable will tell the caller
1221  *     whether the mapping is writable.
1222  */
1223 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1224 			bool write_fault, bool *writable)
1225 {
1226 	struct vm_area_struct *vma;
1227 	pfn_t pfn = 0;
1228 	int npages;
1229 
1230 	/* we can do it either atomically or asynchronously, not both */
1231 	BUG_ON(atomic && async);
1232 
1233 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1234 		return pfn;
1235 
1236 	if (atomic)
1237 		return KVM_PFN_ERR_FAULT;
1238 
1239 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1240 	if (npages == 1)
1241 		return pfn;
1242 
1243 	down_read(&current->mm->mmap_sem);
1244 	if (npages == -EHWPOISON ||
1245 	      (!async && check_user_page_hwpoison(addr))) {
1246 		pfn = KVM_PFN_ERR_HWPOISON;
1247 		goto exit;
1248 	}
1249 
1250 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1251 
1252 	if (vma == NULL)
1253 		pfn = KVM_PFN_ERR_FAULT;
1254 	else if ((vma->vm_flags & VM_PFNMAP)) {
1255 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1256 			vma->vm_pgoff;
1257 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1258 	} else {
1259 		if (async && vma_is_valid(vma, write_fault))
1260 			*async = true;
1261 		pfn = KVM_PFN_ERR_FAULT;
1262 	}
1263 exit:
1264 	up_read(&current->mm->mmap_sem);
1265 	return pfn;
1266 }
1267 
1268 static pfn_t
1269 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1270 		     bool *async, bool write_fault, bool *writable)
1271 {
1272 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1273 
1274 	if (addr == KVM_HVA_ERR_RO_BAD)
1275 		return KVM_PFN_ERR_RO_FAULT;
1276 
1277 	if (kvm_is_error_hva(addr))
1278 		return KVM_PFN_NOSLOT;
1279 
1280 	/* Do not map writable pfn in the readonly memslot. */
1281 	if (writable && memslot_is_readonly(slot)) {
1282 		*writable = false;
1283 		writable = NULL;
1284 	}
1285 
1286 	return hva_to_pfn(addr, atomic, async, write_fault,
1287 			  writable);
1288 }
1289 
1290 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1291 			  bool write_fault, bool *writable)
1292 {
1293 	struct kvm_memory_slot *slot;
1294 
1295 	if (async)
1296 		*async = false;
1297 
1298 	slot = gfn_to_memslot(kvm, gfn);
1299 
1300 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1301 				    writable);
1302 }
1303 
1304 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1305 {
1306 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1309 
1310 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1311 		       bool write_fault, bool *writable)
1312 {
1313 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1314 }
1315 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1316 
1317 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1318 {
1319 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1320 }
1321 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1322 
1323 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1324 		      bool *writable)
1325 {
1326 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1327 }
1328 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1329 
1330 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1331 {
1332 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1333 }
1334 
1335 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1336 {
1337 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1338 }
1339 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1340 
1341 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1342 								  int nr_pages)
1343 {
1344 	unsigned long addr;
1345 	gfn_t entry;
1346 
1347 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1348 	if (kvm_is_error_hva(addr))
1349 		return -1;
1350 
1351 	if (entry < nr_pages)
1352 		return 0;
1353 
1354 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1355 }
1356 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1357 
1358 static struct page *kvm_pfn_to_page(pfn_t pfn)
1359 {
1360 	if (is_error_noslot_pfn(pfn))
1361 		return KVM_ERR_PTR_BAD_PAGE;
1362 
1363 	if (kvm_is_mmio_pfn(pfn)) {
1364 		WARN_ON(1);
1365 		return KVM_ERR_PTR_BAD_PAGE;
1366 	}
1367 
1368 	return pfn_to_page(pfn);
1369 }
1370 
1371 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1372 {
1373 	pfn_t pfn;
1374 
1375 	pfn = gfn_to_pfn(kvm, gfn);
1376 
1377 	return kvm_pfn_to_page(pfn);
1378 }
1379 
1380 EXPORT_SYMBOL_GPL(gfn_to_page);
1381 
1382 void kvm_release_page_clean(struct page *page)
1383 {
1384 	WARN_ON(is_error_page(page));
1385 
1386 	kvm_release_pfn_clean(page_to_pfn(page));
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1389 
1390 void kvm_release_pfn_clean(pfn_t pfn)
1391 {
1392 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1393 		put_page(pfn_to_page(pfn));
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1396 
1397 void kvm_release_page_dirty(struct page *page)
1398 {
1399 	WARN_ON(is_error_page(page));
1400 
1401 	kvm_release_pfn_dirty(page_to_pfn(page));
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1404 
1405 void kvm_release_pfn_dirty(pfn_t pfn)
1406 {
1407 	kvm_set_pfn_dirty(pfn);
1408 	kvm_release_pfn_clean(pfn);
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1411 
1412 void kvm_set_page_dirty(struct page *page)
1413 {
1414 	kvm_set_pfn_dirty(page_to_pfn(page));
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1417 
1418 void kvm_set_pfn_dirty(pfn_t pfn)
1419 {
1420 	if (!kvm_is_mmio_pfn(pfn)) {
1421 		struct page *page = pfn_to_page(pfn);
1422 		if (!PageReserved(page))
1423 			SetPageDirty(page);
1424 	}
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1427 
1428 void kvm_set_pfn_accessed(pfn_t pfn)
1429 {
1430 	if (!kvm_is_mmio_pfn(pfn))
1431 		mark_page_accessed(pfn_to_page(pfn));
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1434 
1435 void kvm_get_pfn(pfn_t pfn)
1436 {
1437 	if (!kvm_is_mmio_pfn(pfn))
1438 		get_page(pfn_to_page(pfn));
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1441 
1442 static int next_segment(unsigned long len, int offset)
1443 {
1444 	if (len > PAGE_SIZE - offset)
1445 		return PAGE_SIZE - offset;
1446 	else
1447 		return len;
1448 }
1449 
1450 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1451 			int len)
1452 {
1453 	int r;
1454 	unsigned long addr;
1455 
1456 	addr = gfn_to_hva_read(kvm, gfn);
1457 	if (kvm_is_error_hva(addr))
1458 		return -EFAULT;
1459 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1460 	if (r)
1461 		return -EFAULT;
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1465 
1466 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1467 {
1468 	gfn_t gfn = gpa >> PAGE_SHIFT;
1469 	int seg;
1470 	int offset = offset_in_page(gpa);
1471 	int ret;
1472 
1473 	while ((seg = next_segment(len, offset)) != 0) {
1474 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1475 		if (ret < 0)
1476 			return ret;
1477 		offset = 0;
1478 		len -= seg;
1479 		data += seg;
1480 		++gfn;
1481 	}
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_read_guest);
1485 
1486 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1487 			  unsigned long len)
1488 {
1489 	int r;
1490 	unsigned long addr;
1491 	gfn_t gfn = gpa >> PAGE_SHIFT;
1492 	int offset = offset_in_page(gpa);
1493 
1494 	addr = gfn_to_hva_read(kvm, gfn);
1495 	if (kvm_is_error_hva(addr))
1496 		return -EFAULT;
1497 	pagefault_disable();
1498 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1499 	pagefault_enable();
1500 	if (r)
1501 		return -EFAULT;
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL(kvm_read_guest_atomic);
1505 
1506 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1507 			 int offset, int len)
1508 {
1509 	int r;
1510 	unsigned long addr;
1511 
1512 	addr = gfn_to_hva(kvm, gfn);
1513 	if (kvm_is_error_hva(addr))
1514 		return -EFAULT;
1515 	r = __copy_to_user((void __user *)addr + offset, data, len);
1516 	if (r)
1517 		return -EFAULT;
1518 	mark_page_dirty(kvm, gfn);
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1522 
1523 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1524 		    unsigned long len)
1525 {
1526 	gfn_t gfn = gpa >> PAGE_SHIFT;
1527 	int seg;
1528 	int offset = offset_in_page(gpa);
1529 	int ret;
1530 
1531 	while ((seg = next_segment(len, offset)) != 0) {
1532 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1533 		if (ret < 0)
1534 			return ret;
1535 		offset = 0;
1536 		len -= seg;
1537 		data += seg;
1538 		++gfn;
1539 	}
1540 	return 0;
1541 }
1542 
1543 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1544 			      gpa_t gpa, unsigned long len)
1545 {
1546 	struct kvm_memslots *slots = kvm_memslots(kvm);
1547 	int offset = offset_in_page(gpa);
1548 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1549 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1550 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1551 	gfn_t nr_pages_avail;
1552 
1553 	ghc->gpa = gpa;
1554 	ghc->generation = slots->generation;
1555 	ghc->len = len;
1556 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1557 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1558 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1559 		ghc->hva += offset;
1560 	} else {
1561 		/*
1562 		 * If the requested region crosses two memslots, we still
1563 		 * verify that the entire region is valid here.
1564 		 */
1565 		while (start_gfn <= end_gfn) {
1566 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1567 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1568 						   &nr_pages_avail);
1569 			if (kvm_is_error_hva(ghc->hva))
1570 				return -EFAULT;
1571 			start_gfn += nr_pages_avail;
1572 		}
1573 		/* Use the slow path for cross page reads and writes. */
1574 		ghc->memslot = NULL;
1575 	}
1576 	return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1579 
1580 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1581 			   void *data, unsigned long len)
1582 {
1583 	struct kvm_memslots *slots = kvm_memslots(kvm);
1584 	int r;
1585 
1586 	BUG_ON(len > ghc->len);
1587 
1588 	if (slots->generation != ghc->generation)
1589 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1590 
1591 	if (unlikely(!ghc->memslot))
1592 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1593 
1594 	if (kvm_is_error_hva(ghc->hva))
1595 		return -EFAULT;
1596 
1597 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1598 	if (r)
1599 		return -EFAULT;
1600 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1601 
1602 	return 0;
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1605 
1606 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1607 			   void *data, unsigned long len)
1608 {
1609 	struct kvm_memslots *slots = kvm_memslots(kvm);
1610 	int r;
1611 
1612 	BUG_ON(len > ghc->len);
1613 
1614 	if (slots->generation != ghc->generation)
1615 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1616 
1617 	if (unlikely(!ghc->memslot))
1618 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1619 
1620 	if (kvm_is_error_hva(ghc->hva))
1621 		return -EFAULT;
1622 
1623 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1624 	if (r)
1625 		return -EFAULT;
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1630 
1631 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1632 {
1633 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1634 				    offset, len);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1637 
1638 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1639 {
1640 	gfn_t gfn = gpa >> PAGE_SHIFT;
1641 	int seg;
1642 	int offset = offset_in_page(gpa);
1643 	int ret;
1644 
1645         while ((seg = next_segment(len, offset)) != 0) {
1646 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1647 		if (ret < 0)
1648 			return ret;
1649 		offset = 0;
1650 		len -= seg;
1651 		++gfn;
1652 	}
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1656 
1657 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1658 			     gfn_t gfn)
1659 {
1660 	if (memslot && memslot->dirty_bitmap) {
1661 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1662 
1663 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1664 	}
1665 }
1666 
1667 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1668 {
1669 	struct kvm_memory_slot *memslot;
1670 
1671 	memslot = gfn_to_memslot(kvm, gfn);
1672 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1673 }
1674 
1675 /*
1676  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1677  */
1678 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1679 {
1680 	DEFINE_WAIT(wait);
1681 
1682 	for (;;) {
1683 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1684 
1685 		if (kvm_arch_vcpu_runnable(vcpu)) {
1686 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1687 			break;
1688 		}
1689 		if (kvm_cpu_has_pending_timer(vcpu))
1690 			break;
1691 		if (signal_pending(current))
1692 			break;
1693 
1694 		schedule();
1695 	}
1696 
1697 	finish_wait(&vcpu->wq, &wait);
1698 }
1699 
1700 #ifndef CONFIG_S390
1701 /*
1702  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1703  */
1704 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1705 {
1706 	int me;
1707 	int cpu = vcpu->cpu;
1708 	wait_queue_head_t *wqp;
1709 
1710 	wqp = kvm_arch_vcpu_wq(vcpu);
1711 	if (waitqueue_active(wqp)) {
1712 		wake_up_interruptible(wqp);
1713 		++vcpu->stat.halt_wakeup;
1714 	}
1715 
1716 	me = get_cpu();
1717 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1718 		if (kvm_arch_vcpu_should_kick(vcpu))
1719 			smp_send_reschedule(cpu);
1720 	put_cpu();
1721 }
1722 #endif /* !CONFIG_S390 */
1723 
1724 void kvm_resched(struct kvm_vcpu *vcpu)
1725 {
1726 	if (!need_resched())
1727 		return;
1728 	cond_resched();
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_resched);
1731 
1732 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1733 {
1734 	struct pid *pid;
1735 	struct task_struct *task = NULL;
1736 	bool ret = false;
1737 
1738 	rcu_read_lock();
1739 	pid = rcu_dereference(target->pid);
1740 	if (pid)
1741 		task = get_pid_task(target->pid, PIDTYPE_PID);
1742 	rcu_read_unlock();
1743 	if (!task)
1744 		return ret;
1745 	if (task->flags & PF_VCPU) {
1746 		put_task_struct(task);
1747 		return ret;
1748 	}
1749 	ret = yield_to(task, 1);
1750 	put_task_struct(task);
1751 
1752 	return ret;
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1755 
1756 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1757 /*
1758  * Helper that checks whether a VCPU is eligible for directed yield.
1759  * Most eligible candidate to yield is decided by following heuristics:
1760  *
1761  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1762  *  (preempted lock holder), indicated by @in_spin_loop.
1763  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1764  *
1765  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1766  *  chance last time (mostly it has become eligible now since we have probably
1767  *  yielded to lockholder in last iteration. This is done by toggling
1768  *  @dy_eligible each time a VCPU checked for eligibility.)
1769  *
1770  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1771  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1772  *  burning. Giving priority for a potential lock-holder increases lock
1773  *  progress.
1774  *
1775  *  Since algorithm is based on heuristics, accessing another VCPU data without
1776  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1777  *  and continue with next VCPU and so on.
1778  */
1779 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1780 {
1781 	bool eligible;
1782 
1783 	eligible = !vcpu->spin_loop.in_spin_loop ||
1784 			(vcpu->spin_loop.in_spin_loop &&
1785 			 vcpu->spin_loop.dy_eligible);
1786 
1787 	if (vcpu->spin_loop.in_spin_loop)
1788 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1789 
1790 	return eligible;
1791 }
1792 #endif
1793 
1794 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1795 {
1796 	struct kvm *kvm = me->kvm;
1797 	struct kvm_vcpu *vcpu;
1798 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1799 	int yielded = 0;
1800 	int try = 3;
1801 	int pass;
1802 	int i;
1803 
1804 	kvm_vcpu_set_in_spin_loop(me, true);
1805 	/*
1806 	 * We boost the priority of a VCPU that is runnable but not
1807 	 * currently running, because it got preempted by something
1808 	 * else and called schedule in __vcpu_run.  Hopefully that
1809 	 * VCPU is holding the lock that we need and will release it.
1810 	 * We approximate round-robin by starting at the last boosted VCPU.
1811 	 */
1812 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1813 		kvm_for_each_vcpu(i, vcpu, kvm) {
1814 			if (!pass && i <= last_boosted_vcpu) {
1815 				i = last_boosted_vcpu;
1816 				continue;
1817 			} else if (pass && i > last_boosted_vcpu)
1818 				break;
1819 			if (vcpu == me)
1820 				continue;
1821 			if (waitqueue_active(&vcpu->wq))
1822 				continue;
1823 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1824 				continue;
1825 
1826 			yielded = kvm_vcpu_yield_to(vcpu);
1827 			if (yielded > 0) {
1828 				kvm->last_boosted_vcpu = i;
1829 				break;
1830 			} else if (yielded < 0) {
1831 				try--;
1832 				if (!try)
1833 					break;
1834 			}
1835 		}
1836 	}
1837 	kvm_vcpu_set_in_spin_loop(me, false);
1838 
1839 	/* Ensure vcpu is not eligible during next spinloop */
1840 	kvm_vcpu_set_dy_eligible(me, false);
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1843 
1844 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1845 {
1846 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1847 	struct page *page;
1848 
1849 	if (vmf->pgoff == 0)
1850 		page = virt_to_page(vcpu->run);
1851 #ifdef CONFIG_X86
1852 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1853 		page = virt_to_page(vcpu->arch.pio_data);
1854 #endif
1855 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1856 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1857 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1858 #endif
1859 	else
1860 		return kvm_arch_vcpu_fault(vcpu, vmf);
1861 	get_page(page);
1862 	vmf->page = page;
1863 	return 0;
1864 }
1865 
1866 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1867 	.fault = kvm_vcpu_fault,
1868 };
1869 
1870 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1871 {
1872 	vma->vm_ops = &kvm_vcpu_vm_ops;
1873 	return 0;
1874 }
1875 
1876 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1877 {
1878 	struct kvm_vcpu *vcpu = filp->private_data;
1879 
1880 	kvm_put_kvm(vcpu->kvm);
1881 	return 0;
1882 }
1883 
1884 static struct file_operations kvm_vcpu_fops = {
1885 	.release        = kvm_vcpu_release,
1886 	.unlocked_ioctl = kvm_vcpu_ioctl,
1887 #ifdef CONFIG_COMPAT
1888 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1889 #endif
1890 	.mmap           = kvm_vcpu_mmap,
1891 	.llseek		= noop_llseek,
1892 };
1893 
1894 /*
1895  * Allocates an inode for the vcpu.
1896  */
1897 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1898 {
1899 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1900 }
1901 
1902 /*
1903  * Creates some virtual cpus.  Good luck creating more than one.
1904  */
1905 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1906 {
1907 	int r;
1908 	struct kvm_vcpu *vcpu, *v;
1909 
1910 	vcpu = kvm_arch_vcpu_create(kvm, id);
1911 	if (IS_ERR(vcpu))
1912 		return PTR_ERR(vcpu);
1913 
1914 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1915 
1916 	r = kvm_arch_vcpu_setup(vcpu);
1917 	if (r)
1918 		goto vcpu_destroy;
1919 
1920 	mutex_lock(&kvm->lock);
1921 	if (!kvm_vcpu_compatible(vcpu)) {
1922 		r = -EINVAL;
1923 		goto unlock_vcpu_destroy;
1924 	}
1925 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1926 		r = -EINVAL;
1927 		goto unlock_vcpu_destroy;
1928 	}
1929 
1930 	kvm_for_each_vcpu(r, v, kvm)
1931 		if (v->vcpu_id == id) {
1932 			r = -EEXIST;
1933 			goto unlock_vcpu_destroy;
1934 		}
1935 
1936 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1937 
1938 	/* Now it's all set up, let userspace reach it */
1939 	kvm_get_kvm(kvm);
1940 	r = create_vcpu_fd(vcpu);
1941 	if (r < 0) {
1942 		kvm_put_kvm(kvm);
1943 		goto unlock_vcpu_destroy;
1944 	}
1945 
1946 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1947 	smp_wmb();
1948 	atomic_inc(&kvm->online_vcpus);
1949 
1950 	mutex_unlock(&kvm->lock);
1951 	kvm_arch_vcpu_postcreate(vcpu);
1952 	return r;
1953 
1954 unlock_vcpu_destroy:
1955 	mutex_unlock(&kvm->lock);
1956 vcpu_destroy:
1957 	kvm_arch_vcpu_destroy(vcpu);
1958 	return r;
1959 }
1960 
1961 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1962 {
1963 	if (sigset) {
1964 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1965 		vcpu->sigset_active = 1;
1966 		vcpu->sigset = *sigset;
1967 	} else
1968 		vcpu->sigset_active = 0;
1969 	return 0;
1970 }
1971 
1972 static long kvm_vcpu_ioctl(struct file *filp,
1973 			   unsigned int ioctl, unsigned long arg)
1974 {
1975 	struct kvm_vcpu *vcpu = filp->private_data;
1976 	void __user *argp = (void __user *)arg;
1977 	int r;
1978 	struct kvm_fpu *fpu = NULL;
1979 	struct kvm_sregs *kvm_sregs = NULL;
1980 
1981 	if (vcpu->kvm->mm != current->mm)
1982 		return -EIO;
1983 
1984 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1985 	/*
1986 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1987 	 * so vcpu_load() would break it.
1988 	 */
1989 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1990 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1991 #endif
1992 
1993 
1994 	r = vcpu_load(vcpu);
1995 	if (r)
1996 		return r;
1997 	switch (ioctl) {
1998 	case KVM_RUN:
1999 		r = -EINVAL;
2000 		if (arg)
2001 			goto out;
2002 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2003 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2004 		break;
2005 	case KVM_GET_REGS: {
2006 		struct kvm_regs *kvm_regs;
2007 
2008 		r = -ENOMEM;
2009 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2010 		if (!kvm_regs)
2011 			goto out;
2012 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2013 		if (r)
2014 			goto out_free1;
2015 		r = -EFAULT;
2016 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2017 			goto out_free1;
2018 		r = 0;
2019 out_free1:
2020 		kfree(kvm_regs);
2021 		break;
2022 	}
2023 	case KVM_SET_REGS: {
2024 		struct kvm_regs *kvm_regs;
2025 
2026 		r = -ENOMEM;
2027 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2028 		if (IS_ERR(kvm_regs)) {
2029 			r = PTR_ERR(kvm_regs);
2030 			goto out;
2031 		}
2032 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2033 		kfree(kvm_regs);
2034 		break;
2035 	}
2036 	case KVM_GET_SREGS: {
2037 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2038 		r = -ENOMEM;
2039 		if (!kvm_sregs)
2040 			goto out;
2041 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2042 		if (r)
2043 			goto out;
2044 		r = -EFAULT;
2045 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2046 			goto out;
2047 		r = 0;
2048 		break;
2049 	}
2050 	case KVM_SET_SREGS: {
2051 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2052 		if (IS_ERR(kvm_sregs)) {
2053 			r = PTR_ERR(kvm_sregs);
2054 			kvm_sregs = NULL;
2055 			goto out;
2056 		}
2057 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2058 		break;
2059 	}
2060 	case KVM_GET_MP_STATE: {
2061 		struct kvm_mp_state mp_state;
2062 
2063 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2064 		if (r)
2065 			goto out;
2066 		r = -EFAULT;
2067 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2068 			goto out;
2069 		r = 0;
2070 		break;
2071 	}
2072 	case KVM_SET_MP_STATE: {
2073 		struct kvm_mp_state mp_state;
2074 
2075 		r = -EFAULT;
2076 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2077 			goto out;
2078 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2079 		break;
2080 	}
2081 	case KVM_TRANSLATE: {
2082 		struct kvm_translation tr;
2083 
2084 		r = -EFAULT;
2085 		if (copy_from_user(&tr, argp, sizeof tr))
2086 			goto out;
2087 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2088 		if (r)
2089 			goto out;
2090 		r = -EFAULT;
2091 		if (copy_to_user(argp, &tr, sizeof tr))
2092 			goto out;
2093 		r = 0;
2094 		break;
2095 	}
2096 	case KVM_SET_GUEST_DEBUG: {
2097 		struct kvm_guest_debug dbg;
2098 
2099 		r = -EFAULT;
2100 		if (copy_from_user(&dbg, argp, sizeof dbg))
2101 			goto out;
2102 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2103 		break;
2104 	}
2105 	case KVM_SET_SIGNAL_MASK: {
2106 		struct kvm_signal_mask __user *sigmask_arg = argp;
2107 		struct kvm_signal_mask kvm_sigmask;
2108 		sigset_t sigset, *p;
2109 
2110 		p = NULL;
2111 		if (argp) {
2112 			r = -EFAULT;
2113 			if (copy_from_user(&kvm_sigmask, argp,
2114 					   sizeof kvm_sigmask))
2115 				goto out;
2116 			r = -EINVAL;
2117 			if (kvm_sigmask.len != sizeof sigset)
2118 				goto out;
2119 			r = -EFAULT;
2120 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2121 					   sizeof sigset))
2122 				goto out;
2123 			p = &sigset;
2124 		}
2125 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2126 		break;
2127 	}
2128 	case KVM_GET_FPU: {
2129 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2130 		r = -ENOMEM;
2131 		if (!fpu)
2132 			goto out;
2133 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2134 		if (r)
2135 			goto out;
2136 		r = -EFAULT;
2137 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2138 			goto out;
2139 		r = 0;
2140 		break;
2141 	}
2142 	case KVM_SET_FPU: {
2143 		fpu = memdup_user(argp, sizeof(*fpu));
2144 		if (IS_ERR(fpu)) {
2145 			r = PTR_ERR(fpu);
2146 			fpu = NULL;
2147 			goto out;
2148 		}
2149 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2150 		break;
2151 	}
2152 	default:
2153 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2154 	}
2155 out:
2156 	vcpu_put(vcpu);
2157 	kfree(fpu);
2158 	kfree(kvm_sregs);
2159 	return r;
2160 }
2161 
2162 #ifdef CONFIG_COMPAT
2163 static long kvm_vcpu_compat_ioctl(struct file *filp,
2164 				  unsigned int ioctl, unsigned long arg)
2165 {
2166 	struct kvm_vcpu *vcpu = filp->private_data;
2167 	void __user *argp = compat_ptr(arg);
2168 	int r;
2169 
2170 	if (vcpu->kvm->mm != current->mm)
2171 		return -EIO;
2172 
2173 	switch (ioctl) {
2174 	case KVM_SET_SIGNAL_MASK: {
2175 		struct kvm_signal_mask __user *sigmask_arg = argp;
2176 		struct kvm_signal_mask kvm_sigmask;
2177 		compat_sigset_t csigset;
2178 		sigset_t sigset;
2179 
2180 		if (argp) {
2181 			r = -EFAULT;
2182 			if (copy_from_user(&kvm_sigmask, argp,
2183 					   sizeof kvm_sigmask))
2184 				goto out;
2185 			r = -EINVAL;
2186 			if (kvm_sigmask.len != sizeof csigset)
2187 				goto out;
2188 			r = -EFAULT;
2189 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2190 					   sizeof csigset))
2191 				goto out;
2192 			sigset_from_compat(&sigset, &csigset);
2193 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2194 		} else
2195 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2196 		break;
2197 	}
2198 	default:
2199 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2200 	}
2201 
2202 out:
2203 	return r;
2204 }
2205 #endif
2206 
2207 static long kvm_vm_ioctl(struct file *filp,
2208 			   unsigned int ioctl, unsigned long arg)
2209 {
2210 	struct kvm *kvm = filp->private_data;
2211 	void __user *argp = (void __user *)arg;
2212 	int r;
2213 
2214 	if (kvm->mm != current->mm)
2215 		return -EIO;
2216 	switch (ioctl) {
2217 	case KVM_CREATE_VCPU:
2218 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2219 		break;
2220 	case KVM_SET_USER_MEMORY_REGION: {
2221 		struct kvm_userspace_memory_region kvm_userspace_mem;
2222 
2223 		r = -EFAULT;
2224 		if (copy_from_user(&kvm_userspace_mem, argp,
2225 						sizeof kvm_userspace_mem))
2226 			goto out;
2227 
2228 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true);
2229 		break;
2230 	}
2231 	case KVM_GET_DIRTY_LOG: {
2232 		struct kvm_dirty_log log;
2233 
2234 		r = -EFAULT;
2235 		if (copy_from_user(&log, argp, sizeof log))
2236 			goto out;
2237 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2238 		break;
2239 	}
2240 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2241 	case KVM_REGISTER_COALESCED_MMIO: {
2242 		struct kvm_coalesced_mmio_zone zone;
2243 		r = -EFAULT;
2244 		if (copy_from_user(&zone, argp, sizeof zone))
2245 			goto out;
2246 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2247 		break;
2248 	}
2249 	case KVM_UNREGISTER_COALESCED_MMIO: {
2250 		struct kvm_coalesced_mmio_zone zone;
2251 		r = -EFAULT;
2252 		if (copy_from_user(&zone, argp, sizeof zone))
2253 			goto out;
2254 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2255 		break;
2256 	}
2257 #endif
2258 	case KVM_IRQFD: {
2259 		struct kvm_irqfd data;
2260 
2261 		r = -EFAULT;
2262 		if (copy_from_user(&data, argp, sizeof data))
2263 			goto out;
2264 		r = kvm_irqfd(kvm, &data);
2265 		break;
2266 	}
2267 	case KVM_IOEVENTFD: {
2268 		struct kvm_ioeventfd data;
2269 
2270 		r = -EFAULT;
2271 		if (copy_from_user(&data, argp, sizeof data))
2272 			goto out;
2273 		r = kvm_ioeventfd(kvm, &data);
2274 		break;
2275 	}
2276 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2277 	case KVM_SET_BOOT_CPU_ID:
2278 		r = 0;
2279 		mutex_lock(&kvm->lock);
2280 		if (atomic_read(&kvm->online_vcpus) != 0)
2281 			r = -EBUSY;
2282 		else
2283 			kvm->bsp_vcpu_id = arg;
2284 		mutex_unlock(&kvm->lock);
2285 		break;
2286 #endif
2287 #ifdef CONFIG_HAVE_KVM_MSI
2288 	case KVM_SIGNAL_MSI: {
2289 		struct kvm_msi msi;
2290 
2291 		r = -EFAULT;
2292 		if (copy_from_user(&msi, argp, sizeof msi))
2293 			goto out;
2294 		r = kvm_send_userspace_msi(kvm, &msi);
2295 		break;
2296 	}
2297 #endif
2298 #ifdef __KVM_HAVE_IRQ_LINE
2299 	case KVM_IRQ_LINE_STATUS:
2300 	case KVM_IRQ_LINE: {
2301 		struct kvm_irq_level irq_event;
2302 
2303 		r = -EFAULT;
2304 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2305 			goto out;
2306 
2307 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2308 		if (r)
2309 			goto out;
2310 
2311 		r = -EFAULT;
2312 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2313 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2314 				goto out;
2315 		}
2316 
2317 		r = 0;
2318 		break;
2319 	}
2320 #endif
2321 	default:
2322 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2323 		if (r == -ENOTTY)
2324 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2325 	}
2326 out:
2327 	return r;
2328 }
2329 
2330 #ifdef CONFIG_COMPAT
2331 struct compat_kvm_dirty_log {
2332 	__u32 slot;
2333 	__u32 padding1;
2334 	union {
2335 		compat_uptr_t dirty_bitmap; /* one bit per page */
2336 		__u64 padding2;
2337 	};
2338 };
2339 
2340 static long kvm_vm_compat_ioctl(struct file *filp,
2341 			   unsigned int ioctl, unsigned long arg)
2342 {
2343 	struct kvm *kvm = filp->private_data;
2344 	int r;
2345 
2346 	if (kvm->mm != current->mm)
2347 		return -EIO;
2348 	switch (ioctl) {
2349 	case KVM_GET_DIRTY_LOG: {
2350 		struct compat_kvm_dirty_log compat_log;
2351 		struct kvm_dirty_log log;
2352 
2353 		r = -EFAULT;
2354 		if (copy_from_user(&compat_log, (void __user *)arg,
2355 				   sizeof(compat_log)))
2356 			goto out;
2357 		log.slot	 = compat_log.slot;
2358 		log.padding1	 = compat_log.padding1;
2359 		log.padding2	 = compat_log.padding2;
2360 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2361 
2362 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2363 		break;
2364 	}
2365 	default:
2366 		r = kvm_vm_ioctl(filp, ioctl, arg);
2367 	}
2368 
2369 out:
2370 	return r;
2371 }
2372 #endif
2373 
2374 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2375 {
2376 	struct page *page[1];
2377 	unsigned long addr;
2378 	int npages;
2379 	gfn_t gfn = vmf->pgoff;
2380 	struct kvm *kvm = vma->vm_file->private_data;
2381 
2382 	addr = gfn_to_hva(kvm, gfn);
2383 	if (kvm_is_error_hva(addr))
2384 		return VM_FAULT_SIGBUS;
2385 
2386 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2387 				NULL);
2388 	if (unlikely(npages != 1))
2389 		return VM_FAULT_SIGBUS;
2390 
2391 	vmf->page = page[0];
2392 	return 0;
2393 }
2394 
2395 static const struct vm_operations_struct kvm_vm_vm_ops = {
2396 	.fault = kvm_vm_fault,
2397 };
2398 
2399 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2400 {
2401 	vma->vm_ops = &kvm_vm_vm_ops;
2402 	return 0;
2403 }
2404 
2405 static struct file_operations kvm_vm_fops = {
2406 	.release        = kvm_vm_release,
2407 	.unlocked_ioctl = kvm_vm_ioctl,
2408 #ifdef CONFIG_COMPAT
2409 	.compat_ioctl   = kvm_vm_compat_ioctl,
2410 #endif
2411 	.mmap           = kvm_vm_mmap,
2412 	.llseek		= noop_llseek,
2413 };
2414 
2415 static int kvm_dev_ioctl_create_vm(unsigned long type)
2416 {
2417 	int r;
2418 	struct kvm *kvm;
2419 
2420 	kvm = kvm_create_vm(type);
2421 	if (IS_ERR(kvm))
2422 		return PTR_ERR(kvm);
2423 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2424 	r = kvm_coalesced_mmio_init(kvm);
2425 	if (r < 0) {
2426 		kvm_put_kvm(kvm);
2427 		return r;
2428 	}
2429 #endif
2430 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2431 	if (r < 0)
2432 		kvm_put_kvm(kvm);
2433 
2434 	return r;
2435 }
2436 
2437 static long kvm_dev_ioctl_check_extension_generic(long arg)
2438 {
2439 	switch (arg) {
2440 	case KVM_CAP_USER_MEMORY:
2441 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2442 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2443 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2444 	case KVM_CAP_SET_BOOT_CPU_ID:
2445 #endif
2446 	case KVM_CAP_INTERNAL_ERROR_DATA:
2447 #ifdef CONFIG_HAVE_KVM_MSI
2448 	case KVM_CAP_SIGNAL_MSI:
2449 #endif
2450 		return 1;
2451 #ifdef KVM_CAP_IRQ_ROUTING
2452 	case KVM_CAP_IRQ_ROUTING:
2453 		return KVM_MAX_IRQ_ROUTES;
2454 #endif
2455 	default:
2456 		break;
2457 	}
2458 	return kvm_dev_ioctl_check_extension(arg);
2459 }
2460 
2461 static long kvm_dev_ioctl(struct file *filp,
2462 			  unsigned int ioctl, unsigned long arg)
2463 {
2464 	long r = -EINVAL;
2465 
2466 	switch (ioctl) {
2467 	case KVM_GET_API_VERSION:
2468 		r = -EINVAL;
2469 		if (arg)
2470 			goto out;
2471 		r = KVM_API_VERSION;
2472 		break;
2473 	case KVM_CREATE_VM:
2474 		r = kvm_dev_ioctl_create_vm(arg);
2475 		break;
2476 	case KVM_CHECK_EXTENSION:
2477 		r = kvm_dev_ioctl_check_extension_generic(arg);
2478 		break;
2479 	case KVM_GET_VCPU_MMAP_SIZE:
2480 		r = -EINVAL;
2481 		if (arg)
2482 			goto out;
2483 		r = PAGE_SIZE;     /* struct kvm_run */
2484 #ifdef CONFIG_X86
2485 		r += PAGE_SIZE;    /* pio data page */
2486 #endif
2487 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2488 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2489 #endif
2490 		break;
2491 	case KVM_TRACE_ENABLE:
2492 	case KVM_TRACE_PAUSE:
2493 	case KVM_TRACE_DISABLE:
2494 		r = -EOPNOTSUPP;
2495 		break;
2496 	default:
2497 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2498 	}
2499 out:
2500 	return r;
2501 }
2502 
2503 static struct file_operations kvm_chardev_ops = {
2504 	.unlocked_ioctl = kvm_dev_ioctl,
2505 	.compat_ioctl   = kvm_dev_ioctl,
2506 	.llseek		= noop_llseek,
2507 };
2508 
2509 static struct miscdevice kvm_dev = {
2510 	KVM_MINOR,
2511 	"kvm",
2512 	&kvm_chardev_ops,
2513 };
2514 
2515 static void hardware_enable_nolock(void *junk)
2516 {
2517 	int cpu = raw_smp_processor_id();
2518 	int r;
2519 
2520 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2521 		return;
2522 
2523 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2524 
2525 	r = kvm_arch_hardware_enable(NULL);
2526 
2527 	if (r) {
2528 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2529 		atomic_inc(&hardware_enable_failed);
2530 		printk(KERN_INFO "kvm: enabling virtualization on "
2531 				 "CPU%d failed\n", cpu);
2532 	}
2533 }
2534 
2535 static void hardware_enable(void *junk)
2536 {
2537 	raw_spin_lock(&kvm_lock);
2538 	hardware_enable_nolock(junk);
2539 	raw_spin_unlock(&kvm_lock);
2540 }
2541 
2542 static void hardware_disable_nolock(void *junk)
2543 {
2544 	int cpu = raw_smp_processor_id();
2545 
2546 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2547 		return;
2548 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2549 	kvm_arch_hardware_disable(NULL);
2550 }
2551 
2552 static void hardware_disable(void *junk)
2553 {
2554 	raw_spin_lock(&kvm_lock);
2555 	hardware_disable_nolock(junk);
2556 	raw_spin_unlock(&kvm_lock);
2557 }
2558 
2559 static void hardware_disable_all_nolock(void)
2560 {
2561 	BUG_ON(!kvm_usage_count);
2562 
2563 	kvm_usage_count--;
2564 	if (!kvm_usage_count)
2565 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2566 }
2567 
2568 static void hardware_disable_all(void)
2569 {
2570 	raw_spin_lock(&kvm_lock);
2571 	hardware_disable_all_nolock();
2572 	raw_spin_unlock(&kvm_lock);
2573 }
2574 
2575 static int hardware_enable_all(void)
2576 {
2577 	int r = 0;
2578 
2579 	raw_spin_lock(&kvm_lock);
2580 
2581 	kvm_usage_count++;
2582 	if (kvm_usage_count == 1) {
2583 		atomic_set(&hardware_enable_failed, 0);
2584 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2585 
2586 		if (atomic_read(&hardware_enable_failed)) {
2587 			hardware_disable_all_nolock();
2588 			r = -EBUSY;
2589 		}
2590 	}
2591 
2592 	raw_spin_unlock(&kvm_lock);
2593 
2594 	return r;
2595 }
2596 
2597 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2598 			   void *v)
2599 {
2600 	int cpu = (long)v;
2601 
2602 	if (!kvm_usage_count)
2603 		return NOTIFY_OK;
2604 
2605 	val &= ~CPU_TASKS_FROZEN;
2606 	switch (val) {
2607 	case CPU_DYING:
2608 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2609 		       cpu);
2610 		hardware_disable(NULL);
2611 		break;
2612 	case CPU_STARTING:
2613 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2614 		       cpu);
2615 		hardware_enable(NULL);
2616 		break;
2617 	}
2618 	return NOTIFY_OK;
2619 }
2620 
2621 
2622 asmlinkage void kvm_spurious_fault(void)
2623 {
2624 	/* Fault while not rebooting.  We want the trace. */
2625 	BUG();
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2628 
2629 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2630 		      void *v)
2631 {
2632 	/*
2633 	 * Some (well, at least mine) BIOSes hang on reboot if
2634 	 * in vmx root mode.
2635 	 *
2636 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2637 	 */
2638 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2639 	kvm_rebooting = true;
2640 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2641 	return NOTIFY_OK;
2642 }
2643 
2644 static struct notifier_block kvm_reboot_notifier = {
2645 	.notifier_call = kvm_reboot,
2646 	.priority = 0,
2647 };
2648 
2649 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2650 {
2651 	int i;
2652 
2653 	for (i = 0; i < bus->dev_count; i++) {
2654 		struct kvm_io_device *pos = bus->range[i].dev;
2655 
2656 		kvm_iodevice_destructor(pos);
2657 	}
2658 	kfree(bus);
2659 }
2660 
2661 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2662 {
2663 	const struct kvm_io_range *r1 = p1;
2664 	const struct kvm_io_range *r2 = p2;
2665 
2666 	if (r1->addr < r2->addr)
2667 		return -1;
2668 	if (r1->addr + r1->len > r2->addr + r2->len)
2669 		return 1;
2670 	return 0;
2671 }
2672 
2673 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2674 			  gpa_t addr, int len)
2675 {
2676 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2677 		.addr = addr,
2678 		.len = len,
2679 		.dev = dev,
2680 	};
2681 
2682 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2683 		kvm_io_bus_sort_cmp, NULL);
2684 
2685 	return 0;
2686 }
2687 
2688 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2689 			     gpa_t addr, int len)
2690 {
2691 	struct kvm_io_range *range, key;
2692 	int off;
2693 
2694 	key = (struct kvm_io_range) {
2695 		.addr = addr,
2696 		.len = len,
2697 	};
2698 
2699 	range = bsearch(&key, bus->range, bus->dev_count,
2700 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2701 	if (range == NULL)
2702 		return -ENOENT;
2703 
2704 	off = range - bus->range;
2705 
2706 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2707 		off--;
2708 
2709 	return off;
2710 }
2711 
2712 /* kvm_io_bus_write - called under kvm->slots_lock */
2713 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2714 		     int len, const void *val)
2715 {
2716 	int idx;
2717 	struct kvm_io_bus *bus;
2718 	struct kvm_io_range range;
2719 
2720 	range = (struct kvm_io_range) {
2721 		.addr = addr,
2722 		.len = len,
2723 	};
2724 
2725 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2726 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2727 	if (idx < 0)
2728 		return -EOPNOTSUPP;
2729 
2730 	while (idx < bus->dev_count &&
2731 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2732 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2733 			return 0;
2734 		idx++;
2735 	}
2736 
2737 	return -EOPNOTSUPP;
2738 }
2739 
2740 /* kvm_io_bus_read - called under kvm->slots_lock */
2741 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2742 		    int len, void *val)
2743 {
2744 	int idx;
2745 	struct kvm_io_bus *bus;
2746 	struct kvm_io_range range;
2747 
2748 	range = (struct kvm_io_range) {
2749 		.addr = addr,
2750 		.len = len,
2751 	};
2752 
2753 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2754 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2755 	if (idx < 0)
2756 		return -EOPNOTSUPP;
2757 
2758 	while (idx < bus->dev_count &&
2759 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2760 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2761 			return 0;
2762 		idx++;
2763 	}
2764 
2765 	return -EOPNOTSUPP;
2766 }
2767 
2768 /* Caller must hold slots_lock. */
2769 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2770 			    int len, struct kvm_io_device *dev)
2771 {
2772 	struct kvm_io_bus *new_bus, *bus;
2773 
2774 	bus = kvm->buses[bus_idx];
2775 	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2776 		return -ENOSPC;
2777 
2778 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2779 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2780 	if (!new_bus)
2781 		return -ENOMEM;
2782 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2783 	       sizeof(struct kvm_io_range)));
2784 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2785 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2786 	synchronize_srcu_expedited(&kvm->srcu);
2787 	kfree(bus);
2788 
2789 	return 0;
2790 }
2791 
2792 /* Caller must hold slots_lock. */
2793 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2794 			      struct kvm_io_device *dev)
2795 {
2796 	int i, r;
2797 	struct kvm_io_bus *new_bus, *bus;
2798 
2799 	bus = kvm->buses[bus_idx];
2800 	r = -ENOENT;
2801 	for (i = 0; i < bus->dev_count; i++)
2802 		if (bus->range[i].dev == dev) {
2803 			r = 0;
2804 			break;
2805 		}
2806 
2807 	if (r)
2808 		return r;
2809 
2810 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2811 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2812 	if (!new_bus)
2813 		return -ENOMEM;
2814 
2815 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2816 	new_bus->dev_count--;
2817 	memcpy(new_bus->range + i, bus->range + i + 1,
2818 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2819 
2820 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2821 	synchronize_srcu_expedited(&kvm->srcu);
2822 	kfree(bus);
2823 	return r;
2824 }
2825 
2826 static struct notifier_block kvm_cpu_notifier = {
2827 	.notifier_call = kvm_cpu_hotplug,
2828 };
2829 
2830 static int vm_stat_get(void *_offset, u64 *val)
2831 {
2832 	unsigned offset = (long)_offset;
2833 	struct kvm *kvm;
2834 
2835 	*val = 0;
2836 	raw_spin_lock(&kvm_lock);
2837 	list_for_each_entry(kvm, &vm_list, vm_list)
2838 		*val += *(u32 *)((void *)kvm + offset);
2839 	raw_spin_unlock(&kvm_lock);
2840 	return 0;
2841 }
2842 
2843 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2844 
2845 static int vcpu_stat_get(void *_offset, u64 *val)
2846 {
2847 	unsigned offset = (long)_offset;
2848 	struct kvm *kvm;
2849 	struct kvm_vcpu *vcpu;
2850 	int i;
2851 
2852 	*val = 0;
2853 	raw_spin_lock(&kvm_lock);
2854 	list_for_each_entry(kvm, &vm_list, vm_list)
2855 		kvm_for_each_vcpu(i, vcpu, kvm)
2856 			*val += *(u32 *)((void *)vcpu + offset);
2857 
2858 	raw_spin_unlock(&kvm_lock);
2859 	return 0;
2860 }
2861 
2862 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2863 
2864 static const struct file_operations *stat_fops[] = {
2865 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2866 	[KVM_STAT_VM]   = &vm_stat_fops,
2867 };
2868 
2869 static int kvm_init_debug(void)
2870 {
2871 	int r = -EFAULT;
2872 	struct kvm_stats_debugfs_item *p;
2873 
2874 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2875 	if (kvm_debugfs_dir == NULL)
2876 		goto out;
2877 
2878 	for (p = debugfs_entries; p->name; ++p) {
2879 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2880 						(void *)(long)p->offset,
2881 						stat_fops[p->kind]);
2882 		if (p->dentry == NULL)
2883 			goto out_dir;
2884 	}
2885 
2886 	return 0;
2887 
2888 out_dir:
2889 	debugfs_remove_recursive(kvm_debugfs_dir);
2890 out:
2891 	return r;
2892 }
2893 
2894 static void kvm_exit_debug(void)
2895 {
2896 	struct kvm_stats_debugfs_item *p;
2897 
2898 	for (p = debugfs_entries; p->name; ++p)
2899 		debugfs_remove(p->dentry);
2900 	debugfs_remove(kvm_debugfs_dir);
2901 }
2902 
2903 static int kvm_suspend(void)
2904 {
2905 	if (kvm_usage_count)
2906 		hardware_disable_nolock(NULL);
2907 	return 0;
2908 }
2909 
2910 static void kvm_resume(void)
2911 {
2912 	if (kvm_usage_count) {
2913 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2914 		hardware_enable_nolock(NULL);
2915 	}
2916 }
2917 
2918 static struct syscore_ops kvm_syscore_ops = {
2919 	.suspend = kvm_suspend,
2920 	.resume = kvm_resume,
2921 };
2922 
2923 static inline
2924 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2925 {
2926 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2927 }
2928 
2929 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2930 {
2931 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2932 
2933 	kvm_arch_vcpu_load(vcpu, cpu);
2934 }
2935 
2936 static void kvm_sched_out(struct preempt_notifier *pn,
2937 			  struct task_struct *next)
2938 {
2939 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2940 
2941 	kvm_arch_vcpu_put(vcpu);
2942 }
2943 
2944 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2945 		  struct module *module)
2946 {
2947 	int r;
2948 	int cpu;
2949 
2950 	r = kvm_arch_init(opaque);
2951 	if (r)
2952 		goto out_fail;
2953 
2954 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2955 		r = -ENOMEM;
2956 		goto out_free_0;
2957 	}
2958 
2959 	r = kvm_arch_hardware_setup();
2960 	if (r < 0)
2961 		goto out_free_0a;
2962 
2963 	for_each_online_cpu(cpu) {
2964 		smp_call_function_single(cpu,
2965 				kvm_arch_check_processor_compat,
2966 				&r, 1);
2967 		if (r < 0)
2968 			goto out_free_1;
2969 	}
2970 
2971 	r = register_cpu_notifier(&kvm_cpu_notifier);
2972 	if (r)
2973 		goto out_free_2;
2974 	register_reboot_notifier(&kvm_reboot_notifier);
2975 
2976 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2977 	if (!vcpu_align)
2978 		vcpu_align = __alignof__(struct kvm_vcpu);
2979 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2980 					   0, NULL);
2981 	if (!kvm_vcpu_cache) {
2982 		r = -ENOMEM;
2983 		goto out_free_3;
2984 	}
2985 
2986 	r = kvm_async_pf_init();
2987 	if (r)
2988 		goto out_free;
2989 
2990 	kvm_chardev_ops.owner = module;
2991 	kvm_vm_fops.owner = module;
2992 	kvm_vcpu_fops.owner = module;
2993 
2994 	r = misc_register(&kvm_dev);
2995 	if (r) {
2996 		printk(KERN_ERR "kvm: misc device register failed\n");
2997 		goto out_unreg;
2998 	}
2999 
3000 	register_syscore_ops(&kvm_syscore_ops);
3001 
3002 	kvm_preempt_ops.sched_in = kvm_sched_in;
3003 	kvm_preempt_ops.sched_out = kvm_sched_out;
3004 
3005 	r = kvm_init_debug();
3006 	if (r) {
3007 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3008 		goto out_undebugfs;
3009 	}
3010 
3011 	return 0;
3012 
3013 out_undebugfs:
3014 	unregister_syscore_ops(&kvm_syscore_ops);
3015 out_unreg:
3016 	kvm_async_pf_deinit();
3017 out_free:
3018 	kmem_cache_destroy(kvm_vcpu_cache);
3019 out_free_3:
3020 	unregister_reboot_notifier(&kvm_reboot_notifier);
3021 	unregister_cpu_notifier(&kvm_cpu_notifier);
3022 out_free_2:
3023 out_free_1:
3024 	kvm_arch_hardware_unsetup();
3025 out_free_0a:
3026 	free_cpumask_var(cpus_hardware_enabled);
3027 out_free_0:
3028 	kvm_arch_exit();
3029 out_fail:
3030 	return r;
3031 }
3032 EXPORT_SYMBOL_GPL(kvm_init);
3033 
3034 void kvm_exit(void)
3035 {
3036 	kvm_exit_debug();
3037 	misc_deregister(&kvm_dev);
3038 	kmem_cache_destroy(kvm_vcpu_cache);
3039 	kvm_async_pf_deinit();
3040 	unregister_syscore_ops(&kvm_syscore_ops);
3041 	unregister_reboot_notifier(&kvm_reboot_notifier);
3042 	unregister_cpu_notifier(&kvm_cpu_notifier);
3043 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3044 	kvm_arch_hardware_unsetup();
3045 	kvm_arch_exit();
3046 	free_cpumask_var(cpus_hardware_enabled);
3047 }
3048 EXPORT_SYMBOL_GPL(kvm_exit);
3049