1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 96 97 /* 98 * Ordering of locks: 99 * 100 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 101 */ 102 103 DEFINE_MUTEX(kvm_lock); 104 LIST_HEAD(vm_list); 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 static struct dentry *kvm_debugfs_dir; 112 113 static const struct file_operations stat_fops_per_vm; 114 115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #ifdef CONFIG_KVM_COMPAT 118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #define KVM_COMPAT(c) .compat_ioctl = (c) 121 #else 122 /* 123 * For architectures that don't implement a compat infrastructure, 124 * adopt a double line of defense: 125 * - Prevent a compat task from opening /dev/kvm 126 * - If the open has been done by a 64bit task, and the KVM fd 127 * passed to a compat task, let the ioctls fail. 128 */ 129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 130 unsigned long arg) { return -EINVAL; } 131 132 static int kvm_no_compat_open(struct inode *inode, struct file *file) 133 { 134 return is_compat_task() ? -ENODEV : 0; 135 } 136 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 137 .open = kvm_no_compat_open 138 #endif 139 static int kvm_enable_virtualization(void); 140 static void kvm_disable_virtualization(void); 141 142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 143 144 #define KVM_EVENT_CREATE_VM 0 145 #define KVM_EVENT_DESTROY_VM 1 146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 147 static unsigned long long kvm_createvm_count; 148 static unsigned long long kvm_active_vms; 149 150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 151 152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 153 { 154 } 155 156 bool kvm_is_zone_device_page(struct page *page) 157 { 158 /* 159 * The metadata used by is_zone_device_page() to determine whether or 160 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 161 * the device has been pinned, e.g. by get_user_pages(). WARN if the 162 * page_count() is zero to help detect bad usage of this helper. 163 */ 164 if (WARN_ON_ONCE(!page_count(page))) 165 return false; 166 167 return is_zone_device_page(page); 168 } 169 170 /* 171 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 172 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 173 * is likely incomplete, it has been compiled purely through people wanting to 174 * back guest with a certain type of memory and encountering issues. 175 */ 176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 177 { 178 struct page *page; 179 180 if (!pfn_valid(pfn)) 181 return NULL; 182 183 page = pfn_to_page(pfn); 184 if (!PageReserved(page)) 185 return page; 186 187 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 188 if (is_zero_pfn(pfn)) 189 return page; 190 191 /* 192 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 193 * perspective they are "normal" pages, albeit with slightly different 194 * usage rules. 195 */ 196 if (kvm_is_zone_device_page(page)) 197 return page; 198 199 return NULL; 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_kick(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 249 { 250 if (cpumask_empty(cpus)) 251 return false; 252 253 smp_call_function_many(cpus, ack_kick, NULL, wait); 254 return true; 255 } 256 257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 258 struct cpumask *tmp, int current_cpu) 259 { 260 int cpu; 261 262 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 263 __kvm_make_request(req, vcpu); 264 265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 266 return; 267 268 /* 269 * Note, the vCPU could get migrated to a different pCPU at any point 270 * after kvm_request_needs_ipi(), which could result in sending an IPI 271 * to the previous pCPU. But, that's OK because the purpose of the IPI 272 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 273 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 274 * after this point is also OK, as the requirement is only that KVM wait 275 * for vCPUs that were reading SPTEs _before_ any changes were 276 * finalized. See kvm_vcpu_kick() for more details on handling requests. 277 */ 278 if (kvm_request_needs_ipi(vcpu, req)) { 279 cpu = READ_ONCE(vcpu->cpu); 280 if (cpu != -1 && cpu != current_cpu) 281 __cpumask_set_cpu(cpu, tmp); 282 } 283 } 284 285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 286 unsigned long *vcpu_bitmap) 287 { 288 struct kvm_vcpu *vcpu; 289 struct cpumask *cpus; 290 int i, me; 291 bool called; 292 293 me = get_cpu(); 294 295 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 296 cpumask_clear(cpus); 297 298 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 299 vcpu = kvm_get_vcpu(kvm, i); 300 if (!vcpu) 301 continue; 302 kvm_make_vcpu_request(vcpu, req, cpus, me); 303 } 304 305 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 306 put_cpu(); 307 308 return called; 309 } 310 311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 312 { 313 struct kvm_vcpu *vcpu; 314 struct cpumask *cpus; 315 unsigned long i; 316 bool called; 317 int me; 318 319 me = get_cpu(); 320 321 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 322 cpumask_clear(cpus); 323 324 kvm_for_each_vcpu(i, vcpu, kvm) 325 kvm_make_vcpu_request(vcpu, req, cpus, me); 326 327 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 328 put_cpu(); 329 330 return called; 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 void kvm_flush_remote_tlbs(struct kvm *kvm) 335 { 336 ++kvm->stat.generic.remote_tlb_flush_requests; 337 338 /* 339 * We want to publish modifications to the page tables before reading 340 * mode. Pairs with a memory barrier in arch-specific code. 341 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 342 * and smp_mb in walk_shadow_page_lockless_begin/end. 343 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 344 * 345 * There is already an smp_mb__after_atomic() before 346 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 347 * barrier here. 348 */ 349 if (!kvm_arch_flush_remote_tlbs(kvm) 350 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 351 ++kvm->stat.generic.remote_tlb_flush; 352 } 353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 354 355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 356 { 357 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 358 return; 359 360 /* 361 * Fall back to a flushing entire TLBs if the architecture range-based 362 * TLB invalidation is unsupported or can't be performed for whatever 363 * reason. 364 */ 365 kvm_flush_remote_tlbs(kvm); 366 } 367 368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 369 const struct kvm_memory_slot *memslot) 370 { 371 /* 372 * All current use cases for flushing the TLBs for a specific memslot 373 * are related to dirty logging, and many do the TLB flush out of 374 * mmu_lock. The interaction between the various operations on memslot 375 * must be serialized by slots_locks to ensure the TLB flush from one 376 * operation is observed by any other operation on the same memslot. 377 */ 378 lockdep_assert_held(&kvm->slots_lock); 379 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 380 } 381 382 static void kvm_flush_shadow_all(struct kvm *kvm) 383 { 384 kvm_arch_flush_shadow_all(kvm); 385 kvm_arch_guest_memory_reclaimed(kvm); 386 } 387 388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 390 gfp_t gfp_flags) 391 { 392 void *page; 393 394 gfp_flags |= mc->gfp_zero; 395 396 if (mc->kmem_cache) 397 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 398 399 page = (void *)__get_free_page(gfp_flags); 400 if (page && mc->init_value) 401 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 402 return page; 403 } 404 405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 406 { 407 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 408 void *obj; 409 410 if (mc->nobjs >= min) 411 return 0; 412 413 if (unlikely(!mc->objects)) { 414 if (WARN_ON_ONCE(!capacity)) 415 return -EIO; 416 417 /* 418 * Custom init values can be used only for page allocations, 419 * and obviously conflict with __GFP_ZERO. 420 */ 421 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 588 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 589 node; \ 590 node = interval_tree_iter_next(node, start, last)) \ 591 592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 593 const struct kvm_mmu_notifier_range *range) 594 { 595 struct kvm_mmu_notifier_return r = { 596 .ret = false, 597 .found_memslot = false, 598 }; 599 struct kvm_gfn_range gfn_range; 600 struct kvm_memory_slot *slot; 601 struct kvm_memslots *slots; 602 int i, idx; 603 604 if (WARN_ON_ONCE(range->end <= range->start)) 605 return r; 606 607 /* A null handler is allowed if and only if on_lock() is provided. */ 608 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 609 IS_KVM_NULL_FN(range->handler))) 610 return r; 611 612 idx = srcu_read_lock(&kvm->srcu); 613 614 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 615 struct interval_tree_node *node; 616 617 slots = __kvm_memslots(kvm, i); 618 kvm_for_each_memslot_in_hva_range(node, slots, 619 range->start, range->end - 1) { 620 unsigned long hva_start, hva_end; 621 622 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 623 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 624 hva_end = min_t(unsigned long, range->end, 625 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 626 627 /* 628 * To optimize for the likely case where the address 629 * range is covered by zero or one memslots, don't 630 * bother making these conditional (to avoid writes on 631 * the second or later invocation of the handler). 632 */ 633 gfn_range.arg = range->arg; 634 gfn_range.may_block = range->may_block; 635 636 /* 637 * {gfn(page) | page intersects with [hva_start, hva_end)} = 638 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 639 */ 640 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 641 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 642 gfn_range.slot = slot; 643 644 if (!r.found_memslot) { 645 r.found_memslot = true; 646 KVM_MMU_LOCK(kvm); 647 if (!IS_KVM_NULL_FN(range->on_lock)) 648 range->on_lock(kvm); 649 650 if (IS_KVM_NULL_FN(range->handler)) 651 goto mmu_unlock; 652 } 653 r.ret |= range->handler(kvm, &gfn_range); 654 } 655 } 656 657 if (range->flush_on_ret && r.ret) 658 kvm_flush_remote_tlbs(kvm); 659 660 mmu_unlock: 661 if (r.found_memslot) 662 KVM_MMU_UNLOCK(kvm); 663 664 srcu_read_unlock(&kvm->srcu, idx); 665 666 return r; 667 } 668 669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 670 unsigned long start, 671 unsigned long end, 672 gfn_handler_t handler) 673 { 674 struct kvm *kvm = mmu_notifier_to_kvm(mn); 675 const struct kvm_mmu_notifier_range range = { 676 .start = start, 677 .end = end, 678 .handler = handler, 679 .on_lock = (void *)kvm_null_fn, 680 .flush_on_ret = true, 681 .may_block = false, 682 }; 683 684 return __kvm_handle_hva_range(kvm, &range).ret; 685 } 686 687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 688 unsigned long start, 689 unsigned long end, 690 gfn_handler_t handler) 691 { 692 struct kvm *kvm = mmu_notifier_to_kvm(mn); 693 const struct kvm_mmu_notifier_range range = { 694 .start = start, 695 .end = end, 696 .handler = handler, 697 .on_lock = (void *)kvm_null_fn, 698 .flush_on_ret = false, 699 .may_block = false, 700 }; 701 702 return __kvm_handle_hva_range(kvm, &range).ret; 703 } 704 705 void kvm_mmu_invalidate_begin(struct kvm *kvm) 706 { 707 lockdep_assert_held_write(&kvm->mmu_lock); 708 /* 709 * The count increase must become visible at unlock time as no 710 * spte can be established without taking the mmu_lock and 711 * count is also read inside the mmu_lock critical section. 712 */ 713 kvm->mmu_invalidate_in_progress++; 714 715 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 716 kvm->mmu_invalidate_range_start = INVALID_GPA; 717 kvm->mmu_invalidate_range_end = INVALID_GPA; 718 } 719 } 720 721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 722 { 723 lockdep_assert_held_write(&kvm->mmu_lock); 724 725 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 726 727 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 748 { 749 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 750 return kvm_unmap_gfn_range(kvm, range); 751 } 752 753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_mmu_notifier_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .handler = kvm_mmu_unmap_gfn_range, 761 .on_lock = kvm_mmu_invalidate_begin, 762 .flush_on_ret = true, 763 .may_block = mmu_notifier_range_blockable(range), 764 }; 765 766 trace_kvm_unmap_hva_range(range->start, range->end); 767 768 /* 769 * Prevent memslot modification between range_start() and range_end() 770 * so that conditionally locking provides the same result in both 771 * functions. Without that guarantee, the mmu_invalidate_in_progress 772 * adjustments will be imbalanced. 773 * 774 * Pairs with the decrement in range_end(). 775 */ 776 spin_lock(&kvm->mn_invalidate_lock); 777 kvm->mn_active_invalidate_count++; 778 spin_unlock(&kvm->mn_invalidate_lock); 779 780 /* 781 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 782 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 783 * each cache's lock. There are relatively few caches in existence at 784 * any given time, and the caches themselves can check for hva overlap, 785 * i.e. don't need to rely on memslot overlap checks for performance. 786 * Because this runs without holding mmu_lock, the pfn caches must use 787 * mn_active_invalidate_count (see above) instead of 788 * mmu_invalidate_in_progress. 789 */ 790 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 791 792 /* 793 * If one or more memslots were found and thus zapped, notify arch code 794 * that guest memory has been reclaimed. This needs to be done *after* 795 * dropping mmu_lock, as x86's reclaim path is slooooow. 796 */ 797 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 798 kvm_arch_guest_memory_reclaimed(kvm); 799 800 return 0; 801 } 802 803 void kvm_mmu_invalidate_end(struct kvm *kvm) 804 { 805 lockdep_assert_held_write(&kvm->mmu_lock); 806 807 /* 808 * This sequence increase will notify the kvm page fault that 809 * the page that is going to be mapped in the spte could have 810 * been freed. 811 */ 812 kvm->mmu_invalidate_seq++; 813 smp_wmb(); 814 /* 815 * The above sequence increase must be visible before the 816 * below count decrease, which is ensured by the smp_wmb above 817 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 818 */ 819 kvm->mmu_invalidate_in_progress--; 820 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 821 822 /* 823 * Assert that at least one range was added between start() and end(). 824 * Not adding a range isn't fatal, but it is a KVM bug. 825 */ 826 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 827 } 828 829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 830 const struct mmu_notifier_range *range) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 const struct kvm_mmu_notifier_range hva_range = { 834 .start = range->start, 835 .end = range->end, 836 .handler = (void *)kvm_null_fn, 837 .on_lock = kvm_mmu_invalidate_end, 838 .flush_on_ret = false, 839 .may_block = mmu_notifier_range_blockable(range), 840 }; 841 bool wake; 842 843 __kvm_handle_hva_range(kvm, &hva_range); 844 845 /* Pairs with the increment in range_start(). */ 846 spin_lock(&kvm->mn_invalidate_lock); 847 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 848 --kvm->mn_active_invalidate_count; 849 wake = !kvm->mn_active_invalidate_count; 850 spin_unlock(&kvm->mn_invalidate_lock); 851 852 /* 853 * There can only be one waiter, since the wait happens under 854 * slots_lock. 855 */ 856 if (wake) 857 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 858 } 859 860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 861 struct mm_struct *mm, 862 unsigned long start, 863 unsigned long end) 864 { 865 trace_kvm_age_hva(start, end); 866 867 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 868 } 869 870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 871 struct mm_struct *mm, 872 unsigned long start, 873 unsigned long end) 874 { 875 trace_kvm_age_hva(start, end); 876 877 /* 878 * Even though we do not flush TLB, this will still adversely 879 * affect performance on pre-Haswell Intel EPT, where there is 880 * no EPT Access Bit to clear so that we have to tear down EPT 881 * tables instead. If we find this unacceptable, we can always 882 * add a parameter to kvm_age_hva so that it effectively doesn't 883 * do anything on clear_young. 884 * 885 * Also note that currently we never issue secondary TLB flushes 886 * from clear_young, leaving this job up to the regular system 887 * cadence. If we find this inaccurate, we might come up with a 888 * more sophisticated heuristic later. 889 */ 890 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 891 } 892 893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 894 struct mm_struct *mm, 895 unsigned long address) 896 { 897 trace_kvm_test_age_hva(address); 898 899 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 900 kvm_test_age_gfn); 901 } 902 903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 904 struct mm_struct *mm) 905 { 906 struct kvm *kvm = mmu_notifier_to_kvm(mn); 907 int idx; 908 909 idx = srcu_read_lock(&kvm->srcu); 910 kvm_flush_shadow_all(kvm); 911 srcu_read_unlock(&kvm->srcu, idx); 912 } 913 914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 915 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 916 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 917 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 918 .clear_young = kvm_mmu_notifier_clear_young, 919 .test_young = kvm_mmu_notifier_test_young, 920 .release = kvm_mmu_notifier_release, 921 }; 922 923 static int kvm_init_mmu_notifier(struct kvm *kvm) 924 { 925 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 926 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 927 } 928 929 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 return 0; 934 } 935 936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 937 938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 939 static int kvm_pm_notifier_call(struct notifier_block *bl, 940 unsigned long state, 941 void *unused) 942 { 943 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 944 945 return kvm_arch_pm_notifier(kvm, state); 946 } 947 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 951 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 952 kvm->pm_notifier.priority = INT_MAX; 953 register_pm_notifier(&kvm->pm_notifier); 954 } 955 956 static void kvm_destroy_pm_notifier(struct kvm *kvm) 957 { 958 unregister_pm_notifier(&kvm->pm_notifier); 959 } 960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 961 static void kvm_init_pm_notifier(struct kvm *kvm) 962 { 963 } 964 965 static void kvm_destroy_pm_notifier(struct kvm *kvm) 966 { 967 } 968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 971 { 972 if (!memslot->dirty_bitmap) 973 return; 974 975 vfree(memslot->dirty_bitmap); 976 memslot->dirty_bitmap = NULL; 977 } 978 979 /* This does not remove the slot from struct kvm_memslots data structures */ 980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 981 { 982 if (slot->flags & KVM_MEM_GUEST_MEMFD) 983 kvm_gmem_unbind(slot); 984 985 kvm_destroy_dirty_bitmap(slot); 986 987 kvm_arch_free_memslot(kvm, slot); 988 989 kfree(slot); 990 } 991 992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 993 { 994 struct hlist_node *idnode; 995 struct kvm_memory_slot *memslot; 996 int bkt; 997 998 /* 999 * The same memslot objects live in both active and inactive sets, 1000 * arbitrarily free using index '1' so the second invocation of this 1001 * function isn't operating over a structure with dangling pointers 1002 * (even though this function isn't actually touching them). 1003 */ 1004 if (!slots->node_idx) 1005 return; 1006 1007 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1008 kvm_free_memslot(kvm, memslot); 1009 } 1010 1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1012 { 1013 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1014 case KVM_STATS_TYPE_INSTANT: 1015 return 0444; 1016 case KVM_STATS_TYPE_CUMULATIVE: 1017 case KVM_STATS_TYPE_PEAK: 1018 default: 1019 return 0644; 1020 } 1021 } 1022 1023 1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1025 { 1026 int i; 1027 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1028 kvm_vcpu_stats_header.num_desc; 1029 1030 if (IS_ERR(kvm->debugfs_dentry)) 1031 return; 1032 1033 debugfs_remove_recursive(kvm->debugfs_dentry); 1034 1035 if (kvm->debugfs_stat_data) { 1036 for (i = 0; i < kvm_debugfs_num_entries; i++) 1037 kfree(kvm->debugfs_stat_data[i]); 1038 kfree(kvm->debugfs_stat_data); 1039 } 1040 } 1041 1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1043 { 1044 static DEFINE_MUTEX(kvm_debugfs_lock); 1045 struct dentry *dent; 1046 char dir_name[ITOA_MAX_LEN * 2]; 1047 struct kvm_stat_data *stat_data; 1048 const struct _kvm_stats_desc *pdesc; 1049 int i, ret = -ENOMEM; 1050 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1051 kvm_vcpu_stats_header.num_desc; 1052 1053 if (!debugfs_initialized()) 1054 return 0; 1055 1056 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1057 mutex_lock(&kvm_debugfs_lock); 1058 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1059 if (dent) { 1060 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1061 dput(dent); 1062 mutex_unlock(&kvm_debugfs_lock); 1063 return 0; 1064 } 1065 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1066 mutex_unlock(&kvm_debugfs_lock); 1067 if (IS_ERR(dent)) 1068 return 0; 1069 1070 kvm->debugfs_dentry = dent; 1071 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1072 sizeof(*kvm->debugfs_stat_data), 1073 GFP_KERNEL_ACCOUNT); 1074 if (!kvm->debugfs_stat_data) 1075 goto out_err; 1076 1077 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1078 pdesc = &kvm_vm_stats_desc[i]; 1079 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1080 if (!stat_data) 1081 goto out_err; 1082 1083 stat_data->kvm = kvm; 1084 stat_data->desc = pdesc; 1085 stat_data->kind = KVM_STAT_VM; 1086 kvm->debugfs_stat_data[i] = stat_data; 1087 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1088 kvm->debugfs_dentry, stat_data, 1089 &stat_fops_per_vm); 1090 } 1091 1092 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1093 pdesc = &kvm_vcpu_stats_desc[i]; 1094 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1095 if (!stat_data) 1096 goto out_err; 1097 1098 stat_data->kvm = kvm; 1099 stat_data->desc = pdesc; 1100 stat_data->kind = KVM_STAT_VCPU; 1101 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1102 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1103 kvm->debugfs_dentry, stat_data, 1104 &stat_fops_per_vm); 1105 } 1106 1107 kvm_arch_create_vm_debugfs(kvm); 1108 return 0; 1109 out_err: 1110 kvm_destroy_vm_debugfs(kvm); 1111 return ret; 1112 } 1113 1114 /* 1115 * Called after the VM is otherwise initialized, but just before adding it to 1116 * the vm_list. 1117 */ 1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1119 { 1120 return 0; 1121 } 1122 1123 /* 1124 * Called just after removing the VM from the vm_list, but before doing any 1125 * other destruction. 1126 */ 1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1128 { 1129 } 1130 1131 /* 1132 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1133 * be setup already, so we can create arch-specific debugfs entries under it. 1134 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1135 * a per-arch destroy interface is not needed. 1136 */ 1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1138 { 1139 } 1140 1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1142 { 1143 struct kvm *kvm = kvm_arch_alloc_vm(); 1144 struct kvm_memslots *slots; 1145 int r, i, j; 1146 1147 if (!kvm) 1148 return ERR_PTR(-ENOMEM); 1149 1150 KVM_MMU_LOCK_INIT(kvm); 1151 mmgrab(current->mm); 1152 kvm->mm = current->mm; 1153 kvm_eventfd_init(kvm); 1154 mutex_init(&kvm->lock); 1155 mutex_init(&kvm->irq_lock); 1156 mutex_init(&kvm->slots_lock); 1157 mutex_init(&kvm->slots_arch_lock); 1158 spin_lock_init(&kvm->mn_invalidate_lock); 1159 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1160 xa_init(&kvm->vcpu_array); 1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1162 xa_init(&kvm->mem_attr_array); 1163 #endif 1164 1165 INIT_LIST_HEAD(&kvm->gpc_list); 1166 spin_lock_init(&kvm->gpc_lock); 1167 1168 INIT_LIST_HEAD(&kvm->devices); 1169 kvm->max_vcpus = KVM_MAX_VCPUS; 1170 1171 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1172 1173 /* 1174 * Force subsequent debugfs file creations to fail if the VM directory 1175 * is not created (by kvm_create_vm_debugfs()). 1176 */ 1177 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1178 1179 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1180 task_pid_nr(current)); 1181 1182 r = -ENOMEM; 1183 if (init_srcu_struct(&kvm->srcu)) 1184 goto out_err_no_srcu; 1185 if (init_srcu_struct(&kvm->irq_srcu)) 1186 goto out_err_no_irq_srcu; 1187 1188 r = kvm_init_irq_routing(kvm); 1189 if (r) 1190 goto out_err_no_irq_routing; 1191 1192 refcount_set(&kvm->users_count, 1); 1193 1194 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1195 for (j = 0; j < 2; j++) { 1196 slots = &kvm->__memslots[i][j]; 1197 1198 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1199 slots->hva_tree = RB_ROOT_CACHED; 1200 slots->gfn_tree = RB_ROOT; 1201 hash_init(slots->id_hash); 1202 slots->node_idx = j; 1203 1204 /* Generations must be different for each address space. */ 1205 slots->generation = i; 1206 } 1207 1208 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1209 } 1210 1211 r = -ENOMEM; 1212 for (i = 0; i < KVM_NR_BUSES; i++) { 1213 rcu_assign_pointer(kvm->buses[i], 1214 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1215 if (!kvm->buses[i]) 1216 goto out_err_no_arch_destroy_vm; 1217 } 1218 1219 r = kvm_arch_init_vm(kvm, type); 1220 if (r) 1221 goto out_err_no_arch_destroy_vm; 1222 1223 r = kvm_enable_virtualization(); 1224 if (r) 1225 goto out_err_no_disable; 1226 1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1228 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1229 #endif 1230 1231 r = kvm_init_mmu_notifier(kvm); 1232 if (r) 1233 goto out_err_no_mmu_notifier; 1234 1235 r = kvm_coalesced_mmio_init(kvm); 1236 if (r < 0) 1237 goto out_no_coalesced_mmio; 1238 1239 r = kvm_create_vm_debugfs(kvm, fdname); 1240 if (r) 1241 goto out_err_no_debugfs; 1242 1243 r = kvm_arch_post_init_vm(kvm); 1244 if (r) 1245 goto out_err; 1246 1247 mutex_lock(&kvm_lock); 1248 list_add(&kvm->vm_list, &vm_list); 1249 mutex_unlock(&kvm_lock); 1250 1251 preempt_notifier_inc(); 1252 kvm_init_pm_notifier(kvm); 1253 1254 return kvm; 1255 1256 out_err: 1257 kvm_destroy_vm_debugfs(kvm); 1258 out_err_no_debugfs: 1259 kvm_coalesced_mmio_free(kvm); 1260 out_no_coalesced_mmio: 1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1262 if (kvm->mmu_notifier.ops) 1263 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1264 #endif 1265 out_err_no_mmu_notifier: 1266 kvm_disable_virtualization(); 1267 out_err_no_disable: 1268 kvm_arch_destroy_vm(kvm); 1269 out_err_no_arch_destroy_vm: 1270 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1271 for (i = 0; i < KVM_NR_BUSES; i++) 1272 kfree(kvm_get_bus(kvm, i)); 1273 kvm_free_irq_routing(kvm); 1274 out_err_no_irq_routing: 1275 cleanup_srcu_struct(&kvm->irq_srcu); 1276 out_err_no_irq_srcu: 1277 cleanup_srcu_struct(&kvm->srcu); 1278 out_err_no_srcu: 1279 kvm_arch_free_vm(kvm); 1280 mmdrop(current->mm); 1281 return ERR_PTR(r); 1282 } 1283 1284 static void kvm_destroy_devices(struct kvm *kvm) 1285 { 1286 struct kvm_device *dev, *tmp; 1287 1288 /* 1289 * We do not need to take the kvm->lock here, because nobody else 1290 * has a reference to the struct kvm at this point and therefore 1291 * cannot access the devices list anyhow. 1292 * 1293 * The device list is generally managed as an rculist, but list_del() 1294 * is used intentionally here. If a bug in KVM introduced a reader that 1295 * was not backed by a reference on the kvm struct, the hope is that 1296 * it'd consume the poisoned forward pointer instead of suffering a 1297 * use-after-free, even though this cannot be guaranteed. 1298 */ 1299 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1300 list_del(&dev->vm_node); 1301 dev->ops->destroy(dev); 1302 } 1303 } 1304 1305 static void kvm_destroy_vm(struct kvm *kvm) 1306 { 1307 int i; 1308 struct mm_struct *mm = kvm->mm; 1309 1310 kvm_destroy_pm_notifier(kvm); 1311 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1312 kvm_destroy_vm_debugfs(kvm); 1313 kvm_arch_sync_events(kvm); 1314 mutex_lock(&kvm_lock); 1315 list_del(&kvm->vm_list); 1316 mutex_unlock(&kvm_lock); 1317 kvm_arch_pre_destroy_vm(kvm); 1318 1319 kvm_free_irq_routing(kvm); 1320 for (i = 0; i < KVM_NR_BUSES; i++) { 1321 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1322 1323 if (bus) 1324 kvm_io_bus_destroy(bus); 1325 kvm->buses[i] = NULL; 1326 } 1327 kvm_coalesced_mmio_free(kvm); 1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1329 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1330 /* 1331 * At this point, pending calls to invalidate_range_start() 1332 * have completed but no more MMU notifiers will run, so 1333 * mn_active_invalidate_count may remain unbalanced. 1334 * No threads can be waiting in kvm_swap_active_memslots() as the 1335 * last reference on KVM has been dropped, but freeing 1336 * memslots would deadlock without this manual intervention. 1337 * 1338 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1339 * notifier between a start() and end(), then there shouldn't be any 1340 * in-progress invalidations. 1341 */ 1342 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1343 if (kvm->mn_active_invalidate_count) 1344 kvm->mn_active_invalidate_count = 0; 1345 else 1346 WARN_ON(kvm->mmu_invalidate_in_progress); 1347 #else 1348 kvm_flush_shadow_all(kvm); 1349 #endif 1350 kvm_arch_destroy_vm(kvm); 1351 kvm_destroy_devices(kvm); 1352 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1353 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1354 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1355 } 1356 cleanup_srcu_struct(&kvm->irq_srcu); 1357 cleanup_srcu_struct(&kvm->srcu); 1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1359 xa_destroy(&kvm->mem_attr_array); 1360 #endif 1361 kvm_arch_free_vm(kvm); 1362 preempt_notifier_dec(); 1363 kvm_disable_virtualization(); 1364 mmdrop(mm); 1365 } 1366 1367 void kvm_get_kvm(struct kvm *kvm) 1368 { 1369 refcount_inc(&kvm->users_count); 1370 } 1371 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1372 1373 /* 1374 * Make sure the vm is not during destruction, which is a safe version of 1375 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1376 */ 1377 bool kvm_get_kvm_safe(struct kvm *kvm) 1378 { 1379 return refcount_inc_not_zero(&kvm->users_count); 1380 } 1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1382 1383 void kvm_put_kvm(struct kvm *kvm) 1384 { 1385 if (refcount_dec_and_test(&kvm->users_count)) 1386 kvm_destroy_vm(kvm); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1389 1390 /* 1391 * Used to put a reference that was taken on behalf of an object associated 1392 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1393 * of the new file descriptor fails and the reference cannot be transferred to 1394 * its final owner. In such cases, the caller is still actively using @kvm and 1395 * will fail miserably if the refcount unexpectedly hits zero. 1396 */ 1397 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1398 { 1399 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1400 } 1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1402 1403 static int kvm_vm_release(struct inode *inode, struct file *filp) 1404 { 1405 struct kvm *kvm = filp->private_data; 1406 1407 kvm_irqfd_release(kvm); 1408 1409 kvm_put_kvm(kvm); 1410 return 0; 1411 } 1412 1413 /* 1414 * Allocation size is twice as large as the actual dirty bitmap size. 1415 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1416 */ 1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1418 { 1419 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1420 1421 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1422 if (!memslot->dirty_bitmap) 1423 return -ENOMEM; 1424 1425 return 0; 1426 } 1427 1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1429 { 1430 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1431 int node_idx_inactive = active->node_idx ^ 1; 1432 1433 return &kvm->__memslots[as_id][node_idx_inactive]; 1434 } 1435 1436 /* 1437 * Helper to get the address space ID when one of memslot pointers may be NULL. 1438 * This also serves as a sanity that at least one of the pointers is non-NULL, 1439 * and that their address space IDs don't diverge. 1440 */ 1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1442 struct kvm_memory_slot *b) 1443 { 1444 if (WARN_ON_ONCE(!a && !b)) 1445 return 0; 1446 1447 if (!a) 1448 return b->as_id; 1449 if (!b) 1450 return a->as_id; 1451 1452 WARN_ON_ONCE(a->as_id != b->as_id); 1453 return a->as_id; 1454 } 1455 1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1457 struct kvm_memory_slot *slot) 1458 { 1459 struct rb_root *gfn_tree = &slots->gfn_tree; 1460 struct rb_node **node, *parent; 1461 int idx = slots->node_idx; 1462 1463 parent = NULL; 1464 for (node = &gfn_tree->rb_node; *node; ) { 1465 struct kvm_memory_slot *tmp; 1466 1467 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1468 parent = *node; 1469 if (slot->base_gfn < tmp->base_gfn) 1470 node = &(*node)->rb_left; 1471 else if (slot->base_gfn > tmp->base_gfn) 1472 node = &(*node)->rb_right; 1473 else 1474 BUG(); 1475 } 1476 1477 rb_link_node(&slot->gfn_node[idx], parent, node); 1478 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1479 } 1480 1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1482 struct kvm_memory_slot *slot) 1483 { 1484 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1485 } 1486 1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1488 struct kvm_memory_slot *old, 1489 struct kvm_memory_slot *new) 1490 { 1491 int idx = slots->node_idx; 1492 1493 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1494 1495 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1496 &slots->gfn_tree); 1497 } 1498 1499 /* 1500 * Replace @old with @new in the inactive memslots. 1501 * 1502 * With NULL @old this simply adds @new. 1503 * With NULL @new this simply removes @old. 1504 * 1505 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1506 * appropriately. 1507 */ 1508 static void kvm_replace_memslot(struct kvm *kvm, 1509 struct kvm_memory_slot *old, 1510 struct kvm_memory_slot *new) 1511 { 1512 int as_id = kvm_memslots_get_as_id(old, new); 1513 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1514 int idx = slots->node_idx; 1515 1516 if (old) { 1517 hash_del(&old->id_node[idx]); 1518 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1519 1520 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1521 atomic_long_set(&slots->last_used_slot, (long)new); 1522 1523 if (!new) { 1524 kvm_erase_gfn_node(slots, old); 1525 return; 1526 } 1527 } 1528 1529 /* 1530 * Initialize @new's hva range. Do this even when replacing an @old 1531 * slot, kvm_copy_memslot() deliberately does not touch node data. 1532 */ 1533 new->hva_node[idx].start = new->userspace_addr; 1534 new->hva_node[idx].last = new->userspace_addr + 1535 (new->npages << PAGE_SHIFT) - 1; 1536 1537 /* 1538 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1539 * hva_node needs to be swapped with remove+insert even though hva can't 1540 * change when replacing an existing slot. 1541 */ 1542 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1543 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1544 1545 /* 1546 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1547 * switch the node in the gfn tree instead of removing the old and 1548 * inserting the new as two separate operations. Replacement is a 1549 * single O(1) operation versus two O(log(n)) operations for 1550 * remove+insert. 1551 */ 1552 if (old && old->base_gfn == new->base_gfn) { 1553 kvm_replace_gfn_node(slots, old, new); 1554 } else { 1555 if (old) 1556 kvm_erase_gfn_node(slots, old); 1557 kvm_insert_gfn_node(slots, new); 1558 } 1559 } 1560 1561 /* 1562 * Flags that do not access any of the extra space of struct 1563 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1564 * only allows these. 1565 */ 1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1567 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1568 1569 static int check_memory_region_flags(struct kvm *kvm, 1570 const struct kvm_userspace_memory_region2 *mem) 1571 { 1572 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1573 1574 if (kvm_arch_has_private_mem(kvm)) 1575 valid_flags |= KVM_MEM_GUEST_MEMFD; 1576 1577 /* Dirty logging private memory is not currently supported. */ 1578 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1579 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1580 1581 /* 1582 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1583 * read-only memslots have emulated MMIO, not page fault, semantics, 1584 * and KVM doesn't allow emulated MMIO for private memory. 1585 */ 1586 if (kvm_arch_has_readonly_mem(kvm) && 1587 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1588 valid_flags |= KVM_MEM_READONLY; 1589 1590 if (mem->flags & ~valid_flags) 1591 return -EINVAL; 1592 1593 return 0; 1594 } 1595 1596 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1597 { 1598 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1599 1600 /* Grab the generation from the activate memslots. */ 1601 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1602 1603 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1604 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1605 1606 /* 1607 * Do not store the new memslots while there are invalidations in 1608 * progress, otherwise the locking in invalidate_range_start and 1609 * invalidate_range_end will be unbalanced. 1610 */ 1611 spin_lock(&kvm->mn_invalidate_lock); 1612 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1613 while (kvm->mn_active_invalidate_count) { 1614 set_current_state(TASK_UNINTERRUPTIBLE); 1615 spin_unlock(&kvm->mn_invalidate_lock); 1616 schedule(); 1617 spin_lock(&kvm->mn_invalidate_lock); 1618 } 1619 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1620 rcu_assign_pointer(kvm->memslots[as_id], slots); 1621 spin_unlock(&kvm->mn_invalidate_lock); 1622 1623 /* 1624 * Acquired in kvm_set_memslot. Must be released before synchronize 1625 * SRCU below in order to avoid deadlock with another thread 1626 * acquiring the slots_arch_lock in an srcu critical section. 1627 */ 1628 mutex_unlock(&kvm->slots_arch_lock); 1629 1630 synchronize_srcu_expedited(&kvm->srcu); 1631 1632 /* 1633 * Increment the new memslot generation a second time, dropping the 1634 * update in-progress flag and incrementing the generation based on 1635 * the number of address spaces. This provides a unique and easily 1636 * identifiable generation number while the memslots are in flux. 1637 */ 1638 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1639 1640 /* 1641 * Generations must be unique even across address spaces. We do not need 1642 * a global counter for that, instead the generation space is evenly split 1643 * across address spaces. For example, with two address spaces, address 1644 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1645 * use generations 1, 3, 5, ... 1646 */ 1647 gen += kvm_arch_nr_memslot_as_ids(kvm); 1648 1649 kvm_arch_memslots_updated(kvm, gen); 1650 1651 slots->generation = gen; 1652 } 1653 1654 static int kvm_prepare_memory_region(struct kvm *kvm, 1655 const struct kvm_memory_slot *old, 1656 struct kvm_memory_slot *new, 1657 enum kvm_mr_change change) 1658 { 1659 int r; 1660 1661 /* 1662 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1663 * will be freed on "commit". If logging is enabled in both old and 1664 * new, reuse the existing bitmap. If logging is enabled only in the 1665 * new and KVM isn't using a ring buffer, allocate and initialize a 1666 * new bitmap. 1667 */ 1668 if (change != KVM_MR_DELETE) { 1669 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1670 new->dirty_bitmap = NULL; 1671 else if (old && old->dirty_bitmap) 1672 new->dirty_bitmap = old->dirty_bitmap; 1673 else if (kvm_use_dirty_bitmap(kvm)) { 1674 r = kvm_alloc_dirty_bitmap(new); 1675 if (r) 1676 return r; 1677 1678 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1679 bitmap_set(new->dirty_bitmap, 0, new->npages); 1680 } 1681 } 1682 1683 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1684 1685 /* Free the bitmap on failure if it was allocated above. */ 1686 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1687 kvm_destroy_dirty_bitmap(new); 1688 1689 return r; 1690 } 1691 1692 static void kvm_commit_memory_region(struct kvm *kvm, 1693 struct kvm_memory_slot *old, 1694 const struct kvm_memory_slot *new, 1695 enum kvm_mr_change change) 1696 { 1697 int old_flags = old ? old->flags : 0; 1698 int new_flags = new ? new->flags : 0; 1699 /* 1700 * Update the total number of memslot pages before calling the arch 1701 * hook so that architectures can consume the result directly. 1702 */ 1703 if (change == KVM_MR_DELETE) 1704 kvm->nr_memslot_pages -= old->npages; 1705 else if (change == KVM_MR_CREATE) 1706 kvm->nr_memslot_pages += new->npages; 1707 1708 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1709 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1710 atomic_set(&kvm->nr_memslots_dirty_logging, 1711 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1712 } 1713 1714 kvm_arch_commit_memory_region(kvm, old, new, change); 1715 1716 switch (change) { 1717 case KVM_MR_CREATE: 1718 /* Nothing more to do. */ 1719 break; 1720 case KVM_MR_DELETE: 1721 /* Free the old memslot and all its metadata. */ 1722 kvm_free_memslot(kvm, old); 1723 break; 1724 case KVM_MR_MOVE: 1725 case KVM_MR_FLAGS_ONLY: 1726 /* 1727 * Free the dirty bitmap as needed; the below check encompasses 1728 * both the flags and whether a ring buffer is being used) 1729 */ 1730 if (old->dirty_bitmap && !new->dirty_bitmap) 1731 kvm_destroy_dirty_bitmap(old); 1732 1733 /* 1734 * The final quirk. Free the detached, old slot, but only its 1735 * memory, not any metadata. Metadata, including arch specific 1736 * data, may be reused by @new. 1737 */ 1738 kfree(old); 1739 break; 1740 default: 1741 BUG(); 1742 } 1743 } 1744 1745 /* 1746 * Activate @new, which must be installed in the inactive slots by the caller, 1747 * by swapping the active slots and then propagating @new to @old once @old is 1748 * unreachable and can be safely modified. 1749 * 1750 * With NULL @old this simply adds @new to @active (while swapping the sets). 1751 * With NULL @new this simply removes @old from @active and frees it 1752 * (while also swapping the sets). 1753 */ 1754 static void kvm_activate_memslot(struct kvm *kvm, 1755 struct kvm_memory_slot *old, 1756 struct kvm_memory_slot *new) 1757 { 1758 int as_id = kvm_memslots_get_as_id(old, new); 1759 1760 kvm_swap_active_memslots(kvm, as_id); 1761 1762 /* Propagate the new memslot to the now inactive memslots. */ 1763 kvm_replace_memslot(kvm, old, new); 1764 } 1765 1766 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1767 const struct kvm_memory_slot *src) 1768 { 1769 dest->base_gfn = src->base_gfn; 1770 dest->npages = src->npages; 1771 dest->dirty_bitmap = src->dirty_bitmap; 1772 dest->arch = src->arch; 1773 dest->userspace_addr = src->userspace_addr; 1774 dest->flags = src->flags; 1775 dest->id = src->id; 1776 dest->as_id = src->as_id; 1777 } 1778 1779 static void kvm_invalidate_memslot(struct kvm *kvm, 1780 struct kvm_memory_slot *old, 1781 struct kvm_memory_slot *invalid_slot) 1782 { 1783 /* 1784 * Mark the current slot INVALID. As with all memslot modifications, 1785 * this must be done on an unreachable slot to avoid modifying the 1786 * current slot in the active tree. 1787 */ 1788 kvm_copy_memslot(invalid_slot, old); 1789 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1790 kvm_replace_memslot(kvm, old, invalid_slot); 1791 1792 /* 1793 * Activate the slot that is now marked INVALID, but don't propagate 1794 * the slot to the now inactive slots. The slot is either going to be 1795 * deleted or recreated as a new slot. 1796 */ 1797 kvm_swap_active_memslots(kvm, old->as_id); 1798 1799 /* 1800 * From this point no new shadow pages pointing to a deleted, or moved, 1801 * memslot will be created. Validation of sp->gfn happens in: 1802 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1803 * - kvm_is_visible_gfn (mmu_check_root) 1804 */ 1805 kvm_arch_flush_shadow_memslot(kvm, old); 1806 kvm_arch_guest_memory_reclaimed(kvm); 1807 1808 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1809 mutex_lock(&kvm->slots_arch_lock); 1810 1811 /* 1812 * Copy the arch-specific field of the newly-installed slot back to the 1813 * old slot as the arch data could have changed between releasing 1814 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1815 * above. Writers are required to retrieve memslots *after* acquiring 1816 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1817 */ 1818 old->arch = invalid_slot->arch; 1819 } 1820 1821 static void kvm_create_memslot(struct kvm *kvm, 1822 struct kvm_memory_slot *new) 1823 { 1824 /* Add the new memslot to the inactive set and activate. */ 1825 kvm_replace_memslot(kvm, NULL, new); 1826 kvm_activate_memslot(kvm, NULL, new); 1827 } 1828 1829 static void kvm_delete_memslot(struct kvm *kvm, 1830 struct kvm_memory_slot *old, 1831 struct kvm_memory_slot *invalid_slot) 1832 { 1833 /* 1834 * Remove the old memslot (in the inactive memslots) by passing NULL as 1835 * the "new" slot, and for the invalid version in the active slots. 1836 */ 1837 kvm_replace_memslot(kvm, old, NULL); 1838 kvm_activate_memslot(kvm, invalid_slot, NULL); 1839 } 1840 1841 static void kvm_move_memslot(struct kvm *kvm, 1842 struct kvm_memory_slot *old, 1843 struct kvm_memory_slot *new, 1844 struct kvm_memory_slot *invalid_slot) 1845 { 1846 /* 1847 * Replace the old memslot in the inactive slots, and then swap slots 1848 * and replace the current INVALID with the new as well. 1849 */ 1850 kvm_replace_memslot(kvm, old, new); 1851 kvm_activate_memslot(kvm, invalid_slot, new); 1852 } 1853 1854 static void kvm_update_flags_memslot(struct kvm *kvm, 1855 struct kvm_memory_slot *old, 1856 struct kvm_memory_slot *new) 1857 { 1858 /* 1859 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1860 * an intermediate step. Instead, the old memslot is simply replaced 1861 * with a new, updated copy in both memslot sets. 1862 */ 1863 kvm_replace_memslot(kvm, old, new); 1864 kvm_activate_memslot(kvm, old, new); 1865 } 1866 1867 static int kvm_set_memslot(struct kvm *kvm, 1868 struct kvm_memory_slot *old, 1869 struct kvm_memory_slot *new, 1870 enum kvm_mr_change change) 1871 { 1872 struct kvm_memory_slot *invalid_slot; 1873 int r; 1874 1875 /* 1876 * Released in kvm_swap_active_memslots(). 1877 * 1878 * Must be held from before the current memslots are copied until after 1879 * the new memslots are installed with rcu_assign_pointer, then 1880 * released before the synchronize srcu in kvm_swap_active_memslots(). 1881 * 1882 * When modifying memslots outside of the slots_lock, must be held 1883 * before reading the pointer to the current memslots until after all 1884 * changes to those memslots are complete. 1885 * 1886 * These rules ensure that installing new memslots does not lose 1887 * changes made to the previous memslots. 1888 */ 1889 mutex_lock(&kvm->slots_arch_lock); 1890 1891 /* 1892 * Invalidate the old slot if it's being deleted or moved. This is 1893 * done prior to actually deleting/moving the memslot to allow vCPUs to 1894 * continue running by ensuring there are no mappings or shadow pages 1895 * for the memslot when it is deleted/moved. Without pre-invalidation 1896 * (and without a lock), a window would exist between effecting the 1897 * delete/move and committing the changes in arch code where KVM or a 1898 * guest could access a non-existent memslot. 1899 * 1900 * Modifications are done on a temporary, unreachable slot. The old 1901 * slot needs to be preserved in case a later step fails and the 1902 * invalidation needs to be reverted. 1903 */ 1904 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1905 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1906 if (!invalid_slot) { 1907 mutex_unlock(&kvm->slots_arch_lock); 1908 return -ENOMEM; 1909 } 1910 kvm_invalidate_memslot(kvm, old, invalid_slot); 1911 } 1912 1913 r = kvm_prepare_memory_region(kvm, old, new, change); 1914 if (r) { 1915 /* 1916 * For DELETE/MOVE, revert the above INVALID change. No 1917 * modifications required since the original slot was preserved 1918 * in the inactive slots. Changing the active memslots also 1919 * release slots_arch_lock. 1920 */ 1921 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1922 kvm_activate_memslot(kvm, invalid_slot, old); 1923 kfree(invalid_slot); 1924 } else { 1925 mutex_unlock(&kvm->slots_arch_lock); 1926 } 1927 return r; 1928 } 1929 1930 /* 1931 * For DELETE and MOVE, the working slot is now active as the INVALID 1932 * version of the old slot. MOVE is particularly special as it reuses 1933 * the old slot and returns a copy of the old slot (in working_slot). 1934 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1935 * old slot is detached but otherwise preserved. 1936 */ 1937 if (change == KVM_MR_CREATE) 1938 kvm_create_memslot(kvm, new); 1939 else if (change == KVM_MR_DELETE) 1940 kvm_delete_memslot(kvm, old, invalid_slot); 1941 else if (change == KVM_MR_MOVE) 1942 kvm_move_memslot(kvm, old, new, invalid_slot); 1943 else if (change == KVM_MR_FLAGS_ONLY) 1944 kvm_update_flags_memslot(kvm, old, new); 1945 else 1946 BUG(); 1947 1948 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1949 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1950 kfree(invalid_slot); 1951 1952 /* 1953 * No need to refresh new->arch, changes after dropping slots_arch_lock 1954 * will directly hit the final, active memslot. Architectures are 1955 * responsible for knowing that new->arch may be stale. 1956 */ 1957 kvm_commit_memory_region(kvm, old, new, change); 1958 1959 return 0; 1960 } 1961 1962 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1963 gfn_t start, gfn_t end) 1964 { 1965 struct kvm_memslot_iter iter; 1966 1967 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1968 if (iter.slot->id != id) 1969 return true; 1970 } 1971 1972 return false; 1973 } 1974 1975 /* 1976 * Allocate some memory and give it an address in the guest physical address 1977 * space. 1978 * 1979 * Discontiguous memory is allowed, mostly for framebuffers. 1980 * 1981 * Must be called holding kvm->slots_lock for write. 1982 */ 1983 int __kvm_set_memory_region(struct kvm *kvm, 1984 const struct kvm_userspace_memory_region2 *mem) 1985 { 1986 struct kvm_memory_slot *old, *new; 1987 struct kvm_memslots *slots; 1988 enum kvm_mr_change change; 1989 unsigned long npages; 1990 gfn_t base_gfn; 1991 int as_id, id; 1992 int r; 1993 1994 r = check_memory_region_flags(kvm, mem); 1995 if (r) 1996 return r; 1997 1998 as_id = mem->slot >> 16; 1999 id = (u16)mem->slot; 2000 2001 /* General sanity checks */ 2002 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2003 (mem->memory_size != (unsigned long)mem->memory_size)) 2004 return -EINVAL; 2005 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2006 return -EINVAL; 2007 /* We can read the guest memory with __xxx_user() later on. */ 2008 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2009 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2010 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2011 mem->memory_size)) 2012 return -EINVAL; 2013 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2014 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2015 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2016 return -EINVAL; 2017 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2018 return -EINVAL; 2019 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2020 return -EINVAL; 2021 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2022 return -EINVAL; 2023 2024 slots = __kvm_memslots(kvm, as_id); 2025 2026 /* 2027 * Note, the old memslot (and the pointer itself!) may be invalidated 2028 * and/or destroyed by kvm_set_memslot(). 2029 */ 2030 old = id_to_memslot(slots, id); 2031 2032 if (!mem->memory_size) { 2033 if (!old || !old->npages) 2034 return -EINVAL; 2035 2036 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2037 return -EIO; 2038 2039 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2040 } 2041 2042 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2043 npages = (mem->memory_size >> PAGE_SHIFT); 2044 2045 if (!old || !old->npages) { 2046 change = KVM_MR_CREATE; 2047 2048 /* 2049 * To simplify KVM internals, the total number of pages across 2050 * all memslots must fit in an unsigned long. 2051 */ 2052 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2053 return -EINVAL; 2054 } else { /* Modify an existing slot. */ 2055 /* Private memslots are immutable, they can only be deleted. */ 2056 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2057 return -EINVAL; 2058 if ((mem->userspace_addr != old->userspace_addr) || 2059 (npages != old->npages) || 2060 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2061 return -EINVAL; 2062 2063 if (base_gfn != old->base_gfn) 2064 change = KVM_MR_MOVE; 2065 else if (mem->flags != old->flags) 2066 change = KVM_MR_FLAGS_ONLY; 2067 else /* Nothing to change. */ 2068 return 0; 2069 } 2070 2071 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2072 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2073 return -EEXIST; 2074 2075 /* Allocate a slot that will persist in the memslot. */ 2076 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2077 if (!new) 2078 return -ENOMEM; 2079 2080 new->as_id = as_id; 2081 new->id = id; 2082 new->base_gfn = base_gfn; 2083 new->npages = npages; 2084 new->flags = mem->flags; 2085 new->userspace_addr = mem->userspace_addr; 2086 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2087 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2088 if (r) 2089 goto out; 2090 } 2091 2092 r = kvm_set_memslot(kvm, old, new, change); 2093 if (r) 2094 goto out_unbind; 2095 2096 return 0; 2097 2098 out_unbind: 2099 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2100 kvm_gmem_unbind(new); 2101 out: 2102 kfree(new); 2103 return r; 2104 } 2105 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2106 2107 int kvm_set_memory_region(struct kvm *kvm, 2108 const struct kvm_userspace_memory_region2 *mem) 2109 { 2110 int r; 2111 2112 mutex_lock(&kvm->slots_lock); 2113 r = __kvm_set_memory_region(kvm, mem); 2114 mutex_unlock(&kvm->slots_lock); 2115 return r; 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2118 2119 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2120 struct kvm_userspace_memory_region2 *mem) 2121 { 2122 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2123 return -EINVAL; 2124 2125 return kvm_set_memory_region(kvm, mem); 2126 } 2127 2128 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2129 /** 2130 * kvm_get_dirty_log - get a snapshot of dirty pages 2131 * @kvm: pointer to kvm instance 2132 * @log: slot id and address to which we copy the log 2133 * @is_dirty: set to '1' if any dirty pages were found 2134 * @memslot: set to the associated memslot, always valid on success 2135 */ 2136 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2137 int *is_dirty, struct kvm_memory_slot **memslot) 2138 { 2139 struct kvm_memslots *slots; 2140 int i, as_id, id; 2141 unsigned long n; 2142 unsigned long any = 0; 2143 2144 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2145 if (!kvm_use_dirty_bitmap(kvm)) 2146 return -ENXIO; 2147 2148 *memslot = NULL; 2149 *is_dirty = 0; 2150 2151 as_id = log->slot >> 16; 2152 id = (u16)log->slot; 2153 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2154 return -EINVAL; 2155 2156 slots = __kvm_memslots(kvm, as_id); 2157 *memslot = id_to_memslot(slots, id); 2158 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2159 return -ENOENT; 2160 2161 kvm_arch_sync_dirty_log(kvm, *memslot); 2162 2163 n = kvm_dirty_bitmap_bytes(*memslot); 2164 2165 for (i = 0; !any && i < n/sizeof(long); ++i) 2166 any = (*memslot)->dirty_bitmap[i]; 2167 2168 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2169 return -EFAULT; 2170 2171 if (any) 2172 *is_dirty = 1; 2173 return 0; 2174 } 2175 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2176 2177 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2178 /** 2179 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2180 * and reenable dirty page tracking for the corresponding pages. 2181 * @kvm: pointer to kvm instance 2182 * @log: slot id and address to which we copy the log 2183 * 2184 * We need to keep it in mind that VCPU threads can write to the bitmap 2185 * concurrently. So, to avoid losing track of dirty pages we keep the 2186 * following order: 2187 * 2188 * 1. Take a snapshot of the bit and clear it if needed. 2189 * 2. Write protect the corresponding page. 2190 * 3. Copy the snapshot to the userspace. 2191 * 4. Upon return caller flushes TLB's if needed. 2192 * 2193 * Between 2 and 4, the guest may write to the page using the remaining TLB 2194 * entry. This is not a problem because the page is reported dirty using 2195 * the snapshot taken before and step 4 ensures that writes done after 2196 * exiting to userspace will be logged for the next call. 2197 * 2198 */ 2199 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2200 { 2201 struct kvm_memslots *slots; 2202 struct kvm_memory_slot *memslot; 2203 int i, as_id, id; 2204 unsigned long n; 2205 unsigned long *dirty_bitmap; 2206 unsigned long *dirty_bitmap_buffer; 2207 bool flush; 2208 2209 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2210 if (!kvm_use_dirty_bitmap(kvm)) 2211 return -ENXIO; 2212 2213 as_id = log->slot >> 16; 2214 id = (u16)log->slot; 2215 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2216 return -EINVAL; 2217 2218 slots = __kvm_memslots(kvm, as_id); 2219 memslot = id_to_memslot(slots, id); 2220 if (!memslot || !memslot->dirty_bitmap) 2221 return -ENOENT; 2222 2223 dirty_bitmap = memslot->dirty_bitmap; 2224 2225 kvm_arch_sync_dirty_log(kvm, memslot); 2226 2227 n = kvm_dirty_bitmap_bytes(memslot); 2228 flush = false; 2229 if (kvm->manual_dirty_log_protect) { 2230 /* 2231 * Unlike kvm_get_dirty_log, we always return false in *flush, 2232 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2233 * is some code duplication between this function and 2234 * kvm_get_dirty_log, but hopefully all architecture 2235 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2236 * can be eliminated. 2237 */ 2238 dirty_bitmap_buffer = dirty_bitmap; 2239 } else { 2240 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2241 memset(dirty_bitmap_buffer, 0, n); 2242 2243 KVM_MMU_LOCK(kvm); 2244 for (i = 0; i < n / sizeof(long); i++) { 2245 unsigned long mask; 2246 gfn_t offset; 2247 2248 if (!dirty_bitmap[i]) 2249 continue; 2250 2251 flush = true; 2252 mask = xchg(&dirty_bitmap[i], 0); 2253 dirty_bitmap_buffer[i] = mask; 2254 2255 offset = i * BITS_PER_LONG; 2256 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2257 offset, mask); 2258 } 2259 KVM_MMU_UNLOCK(kvm); 2260 } 2261 2262 if (flush) 2263 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2264 2265 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2266 return -EFAULT; 2267 return 0; 2268 } 2269 2270 2271 /** 2272 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2273 * @kvm: kvm instance 2274 * @log: slot id and address to which we copy the log 2275 * 2276 * Steps 1-4 below provide general overview of dirty page logging. See 2277 * kvm_get_dirty_log_protect() function description for additional details. 2278 * 2279 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2280 * always flush the TLB (step 4) even if previous step failed and the dirty 2281 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2282 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2283 * writes will be marked dirty for next log read. 2284 * 2285 * 1. Take a snapshot of the bit and clear it if needed. 2286 * 2. Write protect the corresponding page. 2287 * 3. Copy the snapshot to the userspace. 2288 * 4. Flush TLB's if needed. 2289 */ 2290 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2291 struct kvm_dirty_log *log) 2292 { 2293 int r; 2294 2295 mutex_lock(&kvm->slots_lock); 2296 2297 r = kvm_get_dirty_log_protect(kvm, log); 2298 2299 mutex_unlock(&kvm->slots_lock); 2300 return r; 2301 } 2302 2303 /** 2304 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2305 * and reenable dirty page tracking for the corresponding pages. 2306 * @kvm: pointer to kvm instance 2307 * @log: slot id and address from which to fetch the bitmap of dirty pages 2308 */ 2309 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2310 struct kvm_clear_dirty_log *log) 2311 { 2312 struct kvm_memslots *slots; 2313 struct kvm_memory_slot *memslot; 2314 int as_id, id; 2315 gfn_t offset; 2316 unsigned long i, n; 2317 unsigned long *dirty_bitmap; 2318 unsigned long *dirty_bitmap_buffer; 2319 bool flush; 2320 2321 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2322 if (!kvm_use_dirty_bitmap(kvm)) 2323 return -ENXIO; 2324 2325 as_id = log->slot >> 16; 2326 id = (u16)log->slot; 2327 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2328 return -EINVAL; 2329 2330 if (log->first_page & 63) 2331 return -EINVAL; 2332 2333 slots = __kvm_memslots(kvm, as_id); 2334 memslot = id_to_memslot(slots, id); 2335 if (!memslot || !memslot->dirty_bitmap) 2336 return -ENOENT; 2337 2338 dirty_bitmap = memslot->dirty_bitmap; 2339 2340 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2341 2342 if (log->first_page > memslot->npages || 2343 log->num_pages > memslot->npages - log->first_page || 2344 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2345 return -EINVAL; 2346 2347 kvm_arch_sync_dirty_log(kvm, memslot); 2348 2349 flush = false; 2350 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2351 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2352 return -EFAULT; 2353 2354 KVM_MMU_LOCK(kvm); 2355 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2356 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2357 i++, offset += BITS_PER_LONG) { 2358 unsigned long mask = *dirty_bitmap_buffer++; 2359 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2360 if (!mask) 2361 continue; 2362 2363 mask &= atomic_long_fetch_andnot(mask, p); 2364 2365 /* 2366 * mask contains the bits that really have been cleared. This 2367 * never includes any bits beyond the length of the memslot (if 2368 * the length is not aligned to 64 pages), therefore it is not 2369 * a problem if userspace sets them in log->dirty_bitmap. 2370 */ 2371 if (mask) { 2372 flush = true; 2373 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2374 offset, mask); 2375 } 2376 } 2377 KVM_MMU_UNLOCK(kvm); 2378 2379 if (flush) 2380 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2381 2382 return 0; 2383 } 2384 2385 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2386 struct kvm_clear_dirty_log *log) 2387 { 2388 int r; 2389 2390 mutex_lock(&kvm->slots_lock); 2391 2392 r = kvm_clear_dirty_log_protect(kvm, log); 2393 2394 mutex_unlock(&kvm->slots_lock); 2395 return r; 2396 } 2397 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2398 2399 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2400 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2401 { 2402 if (!kvm || kvm_arch_has_private_mem(kvm)) 2403 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2404 2405 return 0; 2406 } 2407 2408 /* 2409 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2410 * such that the bits in @mask match @attrs. 2411 */ 2412 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2413 unsigned long mask, unsigned long attrs) 2414 { 2415 XA_STATE(xas, &kvm->mem_attr_array, start); 2416 unsigned long index; 2417 void *entry; 2418 2419 mask &= kvm_supported_mem_attributes(kvm); 2420 if (attrs & ~mask) 2421 return false; 2422 2423 if (end == start + 1) 2424 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2425 2426 guard(rcu)(); 2427 if (!attrs) 2428 return !xas_find(&xas, end - 1); 2429 2430 for (index = start; index < end; index++) { 2431 do { 2432 entry = xas_next(&xas); 2433 } while (xas_retry(&xas, entry)); 2434 2435 if (xas.xa_index != index || 2436 (xa_to_value(entry) & mask) != attrs) 2437 return false; 2438 } 2439 2440 return true; 2441 } 2442 2443 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2444 struct kvm_mmu_notifier_range *range) 2445 { 2446 struct kvm_gfn_range gfn_range; 2447 struct kvm_memory_slot *slot; 2448 struct kvm_memslots *slots; 2449 struct kvm_memslot_iter iter; 2450 bool found_memslot = false; 2451 bool ret = false; 2452 int i; 2453 2454 gfn_range.arg = range->arg; 2455 gfn_range.may_block = range->may_block; 2456 2457 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2458 slots = __kvm_memslots(kvm, i); 2459 2460 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2461 slot = iter.slot; 2462 gfn_range.slot = slot; 2463 2464 gfn_range.start = max(range->start, slot->base_gfn); 2465 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2466 if (gfn_range.start >= gfn_range.end) 2467 continue; 2468 2469 if (!found_memslot) { 2470 found_memslot = true; 2471 KVM_MMU_LOCK(kvm); 2472 if (!IS_KVM_NULL_FN(range->on_lock)) 2473 range->on_lock(kvm); 2474 } 2475 2476 ret |= range->handler(kvm, &gfn_range); 2477 } 2478 } 2479 2480 if (range->flush_on_ret && ret) 2481 kvm_flush_remote_tlbs(kvm); 2482 2483 if (found_memslot) 2484 KVM_MMU_UNLOCK(kvm); 2485 } 2486 2487 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2488 struct kvm_gfn_range *range) 2489 { 2490 /* 2491 * Unconditionally add the range to the invalidation set, regardless of 2492 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2493 * if KVM supports RWX attributes in the future and the attributes are 2494 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2495 * adding the range allows KVM to require that MMU invalidations add at 2496 * least one range between begin() and end(), e.g. allows KVM to detect 2497 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2498 * but it's not obvious that allowing new mappings while the attributes 2499 * are in flux is desirable or worth the complexity. 2500 */ 2501 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2502 2503 return kvm_arch_pre_set_memory_attributes(kvm, range); 2504 } 2505 2506 /* Set @attributes for the gfn range [@start, @end). */ 2507 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2508 unsigned long attributes) 2509 { 2510 struct kvm_mmu_notifier_range pre_set_range = { 2511 .start = start, 2512 .end = end, 2513 .handler = kvm_pre_set_memory_attributes, 2514 .on_lock = kvm_mmu_invalidate_begin, 2515 .flush_on_ret = true, 2516 .may_block = true, 2517 }; 2518 struct kvm_mmu_notifier_range post_set_range = { 2519 .start = start, 2520 .end = end, 2521 .arg.attributes = attributes, 2522 .handler = kvm_arch_post_set_memory_attributes, 2523 .on_lock = kvm_mmu_invalidate_end, 2524 .may_block = true, 2525 }; 2526 unsigned long i; 2527 void *entry; 2528 int r = 0; 2529 2530 entry = attributes ? xa_mk_value(attributes) : NULL; 2531 2532 mutex_lock(&kvm->slots_lock); 2533 2534 /* Nothing to do if the entire range as the desired attributes. */ 2535 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2536 goto out_unlock; 2537 2538 /* 2539 * Reserve memory ahead of time to avoid having to deal with failures 2540 * partway through setting the new attributes. 2541 */ 2542 for (i = start; i < end; i++) { 2543 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2544 if (r) 2545 goto out_unlock; 2546 } 2547 2548 kvm_handle_gfn_range(kvm, &pre_set_range); 2549 2550 for (i = start; i < end; i++) { 2551 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2552 GFP_KERNEL_ACCOUNT)); 2553 KVM_BUG_ON(r, kvm); 2554 } 2555 2556 kvm_handle_gfn_range(kvm, &post_set_range); 2557 2558 out_unlock: 2559 mutex_unlock(&kvm->slots_lock); 2560 2561 return r; 2562 } 2563 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2564 struct kvm_memory_attributes *attrs) 2565 { 2566 gfn_t start, end; 2567 2568 /* flags is currently not used. */ 2569 if (attrs->flags) 2570 return -EINVAL; 2571 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2572 return -EINVAL; 2573 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2574 return -EINVAL; 2575 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2576 return -EINVAL; 2577 2578 start = attrs->address >> PAGE_SHIFT; 2579 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2580 2581 /* 2582 * xarray tracks data using "unsigned long", and as a result so does 2583 * KVM. For simplicity, supports generic attributes only on 64-bit 2584 * architectures. 2585 */ 2586 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2587 2588 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2589 } 2590 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2591 2592 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2593 { 2594 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2595 } 2596 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2597 2598 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2599 { 2600 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2601 u64 gen = slots->generation; 2602 struct kvm_memory_slot *slot; 2603 2604 /* 2605 * This also protects against using a memslot from a different address space, 2606 * since different address spaces have different generation numbers. 2607 */ 2608 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2609 vcpu->last_used_slot = NULL; 2610 vcpu->last_used_slot_gen = gen; 2611 } 2612 2613 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2614 if (slot) 2615 return slot; 2616 2617 /* 2618 * Fall back to searching all memslots. We purposely use 2619 * search_memslots() instead of __gfn_to_memslot() to avoid 2620 * thrashing the VM-wide last_used_slot in kvm_memslots. 2621 */ 2622 slot = search_memslots(slots, gfn, false); 2623 if (slot) { 2624 vcpu->last_used_slot = slot; 2625 return slot; 2626 } 2627 2628 return NULL; 2629 } 2630 2631 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2632 { 2633 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2634 2635 return kvm_is_visible_memslot(memslot); 2636 } 2637 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2638 2639 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2640 { 2641 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2642 2643 return kvm_is_visible_memslot(memslot); 2644 } 2645 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2646 2647 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2648 { 2649 struct vm_area_struct *vma; 2650 unsigned long addr, size; 2651 2652 size = PAGE_SIZE; 2653 2654 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2655 if (kvm_is_error_hva(addr)) 2656 return PAGE_SIZE; 2657 2658 mmap_read_lock(current->mm); 2659 vma = find_vma(current->mm, addr); 2660 if (!vma) 2661 goto out; 2662 2663 size = vma_kernel_pagesize(vma); 2664 2665 out: 2666 mmap_read_unlock(current->mm); 2667 2668 return size; 2669 } 2670 2671 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2672 { 2673 return slot->flags & KVM_MEM_READONLY; 2674 } 2675 2676 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2677 gfn_t *nr_pages, bool write) 2678 { 2679 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2680 return KVM_HVA_ERR_BAD; 2681 2682 if (memslot_is_readonly(slot) && write) 2683 return KVM_HVA_ERR_RO_BAD; 2684 2685 if (nr_pages) 2686 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2687 2688 return __gfn_to_hva_memslot(slot, gfn); 2689 } 2690 2691 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2692 gfn_t *nr_pages) 2693 { 2694 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2695 } 2696 2697 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2698 gfn_t gfn) 2699 { 2700 return gfn_to_hva_many(slot, gfn, NULL); 2701 } 2702 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2703 2704 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2705 { 2706 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2707 } 2708 EXPORT_SYMBOL_GPL(gfn_to_hva); 2709 2710 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2711 { 2712 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2713 } 2714 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2715 2716 /* 2717 * Return the hva of a @gfn and the R/W attribute if possible. 2718 * 2719 * @slot: the kvm_memory_slot which contains @gfn 2720 * @gfn: the gfn to be translated 2721 * @writable: used to return the read/write attribute of the @slot if the hva 2722 * is valid and @writable is not NULL 2723 */ 2724 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2725 gfn_t gfn, bool *writable) 2726 { 2727 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2728 2729 if (!kvm_is_error_hva(hva) && writable) 2730 *writable = !memslot_is_readonly(slot); 2731 2732 return hva; 2733 } 2734 2735 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2736 { 2737 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2738 2739 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2740 } 2741 2742 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2743 { 2744 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2745 2746 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2747 } 2748 2749 static inline int check_user_page_hwpoison(unsigned long addr) 2750 { 2751 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2752 2753 rc = get_user_pages(addr, 1, flags, NULL); 2754 return rc == -EHWPOISON; 2755 } 2756 2757 /* 2758 * The fast path to get the writable pfn which will be stored in @pfn, 2759 * true indicates success, otherwise false is returned. It's also the 2760 * only part that runs if we can in atomic context. 2761 */ 2762 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2763 bool *writable, kvm_pfn_t *pfn) 2764 { 2765 struct page *page[1]; 2766 2767 /* 2768 * Fast pin a writable pfn only if it is a write fault request 2769 * or the caller allows to map a writable pfn for a read fault 2770 * request. 2771 */ 2772 if (!(write_fault || writable)) 2773 return false; 2774 2775 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2776 *pfn = page_to_pfn(page[0]); 2777 2778 if (writable) 2779 *writable = true; 2780 return true; 2781 } 2782 2783 return false; 2784 } 2785 2786 /* 2787 * The slow path to get the pfn of the specified host virtual address, 2788 * 1 indicates success, -errno is returned if error is detected. 2789 */ 2790 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2791 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2792 { 2793 /* 2794 * When a VCPU accesses a page that is not mapped into the secondary 2795 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2796 * make progress. We always want to honor NUMA hinting faults in that 2797 * case, because GUP usage corresponds to memory accesses from the VCPU. 2798 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2799 * mapped into the secondary MMU and gets accessed by a VCPU. 2800 * 2801 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2802 * implicitly honor NUMA hinting faults and don't need this flag. 2803 */ 2804 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2805 struct page *page; 2806 int npages; 2807 2808 might_sleep(); 2809 2810 if (writable) 2811 *writable = write_fault; 2812 2813 if (write_fault) 2814 flags |= FOLL_WRITE; 2815 if (async) 2816 flags |= FOLL_NOWAIT; 2817 if (interruptible) 2818 flags |= FOLL_INTERRUPTIBLE; 2819 2820 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2821 if (npages != 1) 2822 return npages; 2823 2824 /* map read fault as writable if possible */ 2825 if (unlikely(!write_fault) && writable) { 2826 struct page *wpage; 2827 2828 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2829 *writable = true; 2830 put_page(page); 2831 page = wpage; 2832 } 2833 } 2834 *pfn = page_to_pfn(page); 2835 return npages; 2836 } 2837 2838 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2839 { 2840 if (unlikely(!(vma->vm_flags & VM_READ))) 2841 return false; 2842 2843 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2844 return false; 2845 2846 return true; 2847 } 2848 2849 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2850 { 2851 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2852 2853 if (!page) 2854 return 1; 2855 2856 return get_page_unless_zero(page); 2857 } 2858 2859 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2860 unsigned long addr, bool write_fault, 2861 bool *writable, kvm_pfn_t *p_pfn) 2862 { 2863 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 2864 kvm_pfn_t pfn; 2865 int r; 2866 2867 r = follow_pfnmap_start(&args); 2868 if (r) { 2869 /* 2870 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2871 * not call the fault handler, so do it here. 2872 */ 2873 bool unlocked = false; 2874 r = fixup_user_fault(current->mm, addr, 2875 (write_fault ? FAULT_FLAG_WRITE : 0), 2876 &unlocked); 2877 if (unlocked) 2878 return -EAGAIN; 2879 if (r) 2880 return r; 2881 2882 r = follow_pfnmap_start(&args); 2883 if (r) 2884 return r; 2885 } 2886 2887 if (write_fault && !args.writable) { 2888 pfn = KVM_PFN_ERR_RO_FAULT; 2889 goto out; 2890 } 2891 2892 if (writable) 2893 *writable = args.writable; 2894 pfn = args.pfn; 2895 2896 /* 2897 * Get a reference here because callers of *hva_to_pfn* and 2898 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2899 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2900 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2901 * simply do nothing for reserved pfns. 2902 * 2903 * Whoever called remap_pfn_range is also going to call e.g. 2904 * unmap_mapping_range before the underlying pages are freed, 2905 * causing a call to our MMU notifier. 2906 * 2907 * Certain IO or PFNMAP mappings can be backed with valid 2908 * struct pages, but be allocated without refcounting e.g., 2909 * tail pages of non-compound higher order allocations, which 2910 * would then underflow the refcount when the caller does the 2911 * required put_page. Don't allow those pages here. 2912 */ 2913 if (!kvm_try_get_pfn(pfn)) 2914 r = -EFAULT; 2915 out: 2916 follow_pfnmap_end(&args); 2917 *p_pfn = pfn; 2918 2919 return r; 2920 } 2921 2922 /* 2923 * Pin guest page in memory and return its pfn. 2924 * @addr: host virtual address which maps memory to the guest 2925 * @atomic: whether this function is forbidden from sleeping 2926 * @interruptible: whether the process can be interrupted by non-fatal signals 2927 * @async: whether this function need to wait IO complete if the 2928 * host page is not in the memory 2929 * @write_fault: whether we should get a writable host page 2930 * @writable: whether it allows to map a writable host page for !@write_fault 2931 * 2932 * The function will map a writable host page for these two cases: 2933 * 1): @write_fault = true 2934 * 2): @write_fault = false && @writable, @writable will tell the caller 2935 * whether the mapping is writable. 2936 */ 2937 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2938 bool *async, bool write_fault, bool *writable) 2939 { 2940 struct vm_area_struct *vma; 2941 kvm_pfn_t pfn; 2942 int npages, r; 2943 2944 /* we can do it either atomically or asynchronously, not both */ 2945 BUG_ON(atomic && async); 2946 2947 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2948 return pfn; 2949 2950 if (atomic) 2951 return KVM_PFN_ERR_FAULT; 2952 2953 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2954 writable, &pfn); 2955 if (npages == 1) 2956 return pfn; 2957 if (npages == -EINTR) 2958 return KVM_PFN_ERR_SIGPENDING; 2959 2960 mmap_read_lock(current->mm); 2961 if (npages == -EHWPOISON || 2962 (!async && check_user_page_hwpoison(addr))) { 2963 pfn = KVM_PFN_ERR_HWPOISON; 2964 goto exit; 2965 } 2966 2967 retry: 2968 vma = vma_lookup(current->mm, addr); 2969 2970 if (vma == NULL) 2971 pfn = KVM_PFN_ERR_FAULT; 2972 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2973 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2974 if (r == -EAGAIN) 2975 goto retry; 2976 if (r < 0) 2977 pfn = KVM_PFN_ERR_FAULT; 2978 } else { 2979 if (async && vma_is_valid(vma, write_fault)) 2980 *async = true; 2981 pfn = KVM_PFN_ERR_FAULT; 2982 } 2983 exit: 2984 mmap_read_unlock(current->mm); 2985 return pfn; 2986 } 2987 2988 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2989 bool atomic, bool interruptible, bool *async, 2990 bool write_fault, bool *writable, hva_t *hva) 2991 { 2992 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2993 2994 if (hva) 2995 *hva = addr; 2996 2997 if (kvm_is_error_hva(addr)) { 2998 if (writable) 2999 *writable = false; 3000 3001 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT : 3002 KVM_PFN_NOSLOT; 3003 } 3004 3005 /* Do not map writable pfn in the readonly memslot. */ 3006 if (writable && memslot_is_readonly(slot)) { 3007 *writable = false; 3008 writable = NULL; 3009 } 3010 3011 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3012 writable); 3013 } 3014 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3015 3016 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3017 bool *writable) 3018 { 3019 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3020 NULL, write_fault, writable, NULL); 3021 } 3022 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3023 3024 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3025 { 3026 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3027 NULL, NULL); 3028 } 3029 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3030 3031 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3032 { 3033 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3034 NULL, NULL); 3035 } 3036 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3037 3038 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3039 { 3040 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3041 } 3042 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3043 3044 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3045 struct page **pages, int nr_pages) 3046 { 3047 unsigned long addr; 3048 gfn_t entry = 0; 3049 3050 addr = gfn_to_hva_many(slot, gfn, &entry); 3051 if (kvm_is_error_hva(addr)) 3052 return -1; 3053 3054 if (entry < nr_pages) 3055 return 0; 3056 3057 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3058 } 3059 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3060 3061 /* 3062 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3063 * backed by 'struct page'. A valid example is if the backing memslot is 3064 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3065 * been elevated by gfn_to_pfn(). 3066 */ 3067 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3068 { 3069 struct page *page; 3070 kvm_pfn_t pfn; 3071 3072 pfn = gfn_to_pfn(kvm, gfn); 3073 3074 if (is_error_noslot_pfn(pfn)) 3075 return KVM_ERR_PTR_BAD_PAGE; 3076 3077 page = kvm_pfn_to_refcounted_page(pfn); 3078 if (!page) 3079 return KVM_ERR_PTR_BAD_PAGE; 3080 3081 return page; 3082 } 3083 EXPORT_SYMBOL_GPL(gfn_to_page); 3084 3085 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3086 { 3087 if (dirty) 3088 kvm_release_pfn_dirty(pfn); 3089 else 3090 kvm_release_pfn_clean(pfn); 3091 } 3092 3093 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3094 { 3095 kvm_pfn_t pfn; 3096 void *hva = NULL; 3097 struct page *page = KVM_UNMAPPED_PAGE; 3098 3099 if (!map) 3100 return -EINVAL; 3101 3102 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3103 if (is_error_noslot_pfn(pfn)) 3104 return -EINVAL; 3105 3106 if (pfn_valid(pfn)) { 3107 page = pfn_to_page(pfn); 3108 hva = kmap(page); 3109 #ifdef CONFIG_HAS_IOMEM 3110 } else { 3111 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3112 #endif 3113 } 3114 3115 if (!hva) 3116 return -EFAULT; 3117 3118 map->page = page; 3119 map->hva = hva; 3120 map->pfn = pfn; 3121 map->gfn = gfn; 3122 3123 return 0; 3124 } 3125 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3126 3127 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3128 { 3129 if (!map) 3130 return; 3131 3132 if (!map->hva) 3133 return; 3134 3135 if (map->page != KVM_UNMAPPED_PAGE) 3136 kunmap(map->page); 3137 #ifdef CONFIG_HAS_IOMEM 3138 else 3139 memunmap(map->hva); 3140 #endif 3141 3142 if (dirty) 3143 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3144 3145 kvm_release_pfn(map->pfn, dirty); 3146 3147 map->hva = NULL; 3148 map->page = NULL; 3149 } 3150 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3151 3152 static bool kvm_is_ad_tracked_page(struct page *page) 3153 { 3154 /* 3155 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3156 * touched (e.g. set dirty) except by its owner". 3157 */ 3158 return !PageReserved(page); 3159 } 3160 3161 static void kvm_set_page_dirty(struct page *page) 3162 { 3163 if (kvm_is_ad_tracked_page(page)) 3164 SetPageDirty(page); 3165 } 3166 3167 static void kvm_set_page_accessed(struct page *page) 3168 { 3169 if (kvm_is_ad_tracked_page(page)) 3170 mark_page_accessed(page); 3171 } 3172 3173 void kvm_release_page_clean(struct page *page) 3174 { 3175 WARN_ON(is_error_page(page)); 3176 3177 kvm_set_page_accessed(page); 3178 put_page(page); 3179 } 3180 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3181 3182 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3183 { 3184 struct page *page; 3185 3186 if (is_error_noslot_pfn(pfn)) 3187 return; 3188 3189 page = kvm_pfn_to_refcounted_page(pfn); 3190 if (!page) 3191 return; 3192 3193 kvm_release_page_clean(page); 3194 } 3195 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3196 3197 void kvm_release_page_dirty(struct page *page) 3198 { 3199 WARN_ON(is_error_page(page)); 3200 3201 kvm_set_page_dirty(page); 3202 kvm_release_page_clean(page); 3203 } 3204 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3205 3206 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3207 { 3208 struct page *page; 3209 3210 if (is_error_noslot_pfn(pfn)) 3211 return; 3212 3213 page = kvm_pfn_to_refcounted_page(pfn); 3214 if (!page) 3215 return; 3216 3217 kvm_release_page_dirty(page); 3218 } 3219 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3220 3221 /* 3222 * Note, checking for an error/noslot pfn is the caller's responsibility when 3223 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3224 * "set" helpers are not to be used when the pfn might point at garbage. 3225 */ 3226 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3227 { 3228 if (WARN_ON(is_error_noslot_pfn(pfn))) 3229 return; 3230 3231 if (pfn_valid(pfn)) 3232 kvm_set_page_dirty(pfn_to_page(pfn)); 3233 } 3234 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3235 3236 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3237 { 3238 if (WARN_ON(is_error_noslot_pfn(pfn))) 3239 return; 3240 3241 if (pfn_valid(pfn)) 3242 kvm_set_page_accessed(pfn_to_page(pfn)); 3243 } 3244 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3245 3246 static int next_segment(unsigned long len, int offset) 3247 { 3248 if (len > PAGE_SIZE - offset) 3249 return PAGE_SIZE - offset; 3250 else 3251 return len; 3252 } 3253 3254 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3255 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3256 void *data, int offset, int len) 3257 { 3258 int r; 3259 unsigned long addr; 3260 3261 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3262 return -EFAULT; 3263 3264 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3265 if (kvm_is_error_hva(addr)) 3266 return -EFAULT; 3267 r = __copy_from_user(data, (void __user *)addr + offset, len); 3268 if (r) 3269 return -EFAULT; 3270 return 0; 3271 } 3272 3273 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3274 int len) 3275 { 3276 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3277 3278 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3279 } 3280 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3281 3282 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3283 int offset, int len) 3284 { 3285 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3286 3287 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3288 } 3289 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3290 3291 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3292 { 3293 gfn_t gfn = gpa >> PAGE_SHIFT; 3294 int seg; 3295 int offset = offset_in_page(gpa); 3296 int ret; 3297 3298 while ((seg = next_segment(len, offset)) != 0) { 3299 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3300 if (ret < 0) 3301 return ret; 3302 offset = 0; 3303 len -= seg; 3304 data += seg; 3305 ++gfn; 3306 } 3307 return 0; 3308 } 3309 EXPORT_SYMBOL_GPL(kvm_read_guest); 3310 3311 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3312 { 3313 gfn_t gfn = gpa >> PAGE_SHIFT; 3314 int seg; 3315 int offset = offset_in_page(gpa); 3316 int ret; 3317 3318 while ((seg = next_segment(len, offset)) != 0) { 3319 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3320 if (ret < 0) 3321 return ret; 3322 offset = 0; 3323 len -= seg; 3324 data += seg; 3325 ++gfn; 3326 } 3327 return 0; 3328 } 3329 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3330 3331 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3332 void *data, int offset, unsigned long len) 3333 { 3334 int r; 3335 unsigned long addr; 3336 3337 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3338 return -EFAULT; 3339 3340 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3341 if (kvm_is_error_hva(addr)) 3342 return -EFAULT; 3343 pagefault_disable(); 3344 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3345 pagefault_enable(); 3346 if (r) 3347 return -EFAULT; 3348 return 0; 3349 } 3350 3351 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3352 void *data, unsigned long len) 3353 { 3354 gfn_t gfn = gpa >> PAGE_SHIFT; 3355 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3356 int offset = offset_in_page(gpa); 3357 3358 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3359 } 3360 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3361 3362 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3363 static int __kvm_write_guest_page(struct kvm *kvm, 3364 struct kvm_memory_slot *memslot, gfn_t gfn, 3365 const void *data, int offset, int len) 3366 { 3367 int r; 3368 unsigned long addr; 3369 3370 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3371 return -EFAULT; 3372 3373 addr = gfn_to_hva_memslot(memslot, gfn); 3374 if (kvm_is_error_hva(addr)) 3375 return -EFAULT; 3376 r = __copy_to_user((void __user *)addr + offset, data, len); 3377 if (r) 3378 return -EFAULT; 3379 mark_page_dirty_in_slot(kvm, memslot, gfn); 3380 return 0; 3381 } 3382 3383 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3384 const void *data, int offset, int len) 3385 { 3386 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3387 3388 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3389 } 3390 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3391 3392 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3393 const void *data, int offset, int len) 3394 { 3395 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3396 3397 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3398 } 3399 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3400 3401 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3402 unsigned long len) 3403 { 3404 gfn_t gfn = gpa >> PAGE_SHIFT; 3405 int seg; 3406 int offset = offset_in_page(gpa); 3407 int ret; 3408 3409 while ((seg = next_segment(len, offset)) != 0) { 3410 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3411 if (ret < 0) 3412 return ret; 3413 offset = 0; 3414 len -= seg; 3415 data += seg; 3416 ++gfn; 3417 } 3418 return 0; 3419 } 3420 EXPORT_SYMBOL_GPL(kvm_write_guest); 3421 3422 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3423 unsigned long len) 3424 { 3425 gfn_t gfn = gpa >> PAGE_SHIFT; 3426 int seg; 3427 int offset = offset_in_page(gpa); 3428 int ret; 3429 3430 while ((seg = next_segment(len, offset)) != 0) { 3431 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3432 if (ret < 0) 3433 return ret; 3434 offset = 0; 3435 len -= seg; 3436 data += seg; 3437 ++gfn; 3438 } 3439 return 0; 3440 } 3441 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3442 3443 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3444 struct gfn_to_hva_cache *ghc, 3445 gpa_t gpa, unsigned long len) 3446 { 3447 int offset = offset_in_page(gpa); 3448 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3449 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3450 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3451 gfn_t nr_pages_avail; 3452 3453 /* Update ghc->generation before performing any error checks. */ 3454 ghc->generation = slots->generation; 3455 3456 if (start_gfn > end_gfn) { 3457 ghc->hva = KVM_HVA_ERR_BAD; 3458 return -EINVAL; 3459 } 3460 3461 /* 3462 * If the requested region crosses two memslots, we still 3463 * verify that the entire region is valid here. 3464 */ 3465 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3466 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3467 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3468 &nr_pages_avail); 3469 if (kvm_is_error_hva(ghc->hva)) 3470 return -EFAULT; 3471 } 3472 3473 /* Use the slow path for cross page reads and writes. */ 3474 if (nr_pages_needed == 1) 3475 ghc->hva += offset; 3476 else 3477 ghc->memslot = NULL; 3478 3479 ghc->gpa = gpa; 3480 ghc->len = len; 3481 return 0; 3482 } 3483 3484 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3485 gpa_t gpa, unsigned long len) 3486 { 3487 struct kvm_memslots *slots = kvm_memslots(kvm); 3488 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3489 } 3490 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3491 3492 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3493 void *data, unsigned int offset, 3494 unsigned long len) 3495 { 3496 struct kvm_memslots *slots = kvm_memslots(kvm); 3497 int r; 3498 gpa_t gpa = ghc->gpa + offset; 3499 3500 if (WARN_ON_ONCE(len + offset > ghc->len)) 3501 return -EINVAL; 3502 3503 if (slots->generation != ghc->generation) { 3504 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3505 return -EFAULT; 3506 } 3507 3508 if (kvm_is_error_hva(ghc->hva)) 3509 return -EFAULT; 3510 3511 if (unlikely(!ghc->memslot)) 3512 return kvm_write_guest(kvm, gpa, data, len); 3513 3514 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3515 if (r) 3516 return -EFAULT; 3517 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3518 3519 return 0; 3520 } 3521 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3522 3523 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3524 void *data, unsigned long len) 3525 { 3526 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3527 } 3528 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3529 3530 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3531 void *data, unsigned int offset, 3532 unsigned long len) 3533 { 3534 struct kvm_memslots *slots = kvm_memslots(kvm); 3535 int r; 3536 gpa_t gpa = ghc->gpa + offset; 3537 3538 if (WARN_ON_ONCE(len + offset > ghc->len)) 3539 return -EINVAL; 3540 3541 if (slots->generation != ghc->generation) { 3542 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3543 return -EFAULT; 3544 } 3545 3546 if (kvm_is_error_hva(ghc->hva)) 3547 return -EFAULT; 3548 3549 if (unlikely(!ghc->memslot)) 3550 return kvm_read_guest(kvm, gpa, data, len); 3551 3552 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3553 if (r) 3554 return -EFAULT; 3555 3556 return 0; 3557 } 3558 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3559 3560 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3561 void *data, unsigned long len) 3562 { 3563 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3564 } 3565 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3566 3567 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3568 { 3569 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3570 gfn_t gfn = gpa >> PAGE_SHIFT; 3571 int seg; 3572 int offset = offset_in_page(gpa); 3573 int ret; 3574 3575 while ((seg = next_segment(len, offset)) != 0) { 3576 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); 3577 if (ret < 0) 3578 return ret; 3579 offset = 0; 3580 len -= seg; 3581 ++gfn; 3582 } 3583 return 0; 3584 } 3585 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3586 3587 void mark_page_dirty_in_slot(struct kvm *kvm, 3588 const struct kvm_memory_slot *memslot, 3589 gfn_t gfn) 3590 { 3591 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3592 3593 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3594 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3595 return; 3596 3597 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3598 #endif 3599 3600 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3601 unsigned long rel_gfn = gfn - memslot->base_gfn; 3602 u32 slot = (memslot->as_id << 16) | memslot->id; 3603 3604 if (kvm->dirty_ring_size && vcpu) 3605 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3606 else if (memslot->dirty_bitmap) 3607 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3608 } 3609 } 3610 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3611 3612 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3613 { 3614 struct kvm_memory_slot *memslot; 3615 3616 memslot = gfn_to_memslot(kvm, gfn); 3617 mark_page_dirty_in_slot(kvm, memslot, gfn); 3618 } 3619 EXPORT_SYMBOL_GPL(mark_page_dirty); 3620 3621 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3622 { 3623 struct kvm_memory_slot *memslot; 3624 3625 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3626 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3627 } 3628 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3629 3630 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3631 { 3632 if (!vcpu->sigset_active) 3633 return; 3634 3635 /* 3636 * This does a lockless modification of ->real_blocked, which is fine 3637 * because, only current can change ->real_blocked and all readers of 3638 * ->real_blocked don't care as long ->real_blocked is always a subset 3639 * of ->blocked. 3640 */ 3641 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3642 } 3643 3644 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3645 { 3646 if (!vcpu->sigset_active) 3647 return; 3648 3649 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3650 sigemptyset(¤t->real_blocked); 3651 } 3652 3653 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3654 { 3655 unsigned int old, val, grow, grow_start; 3656 3657 old = val = vcpu->halt_poll_ns; 3658 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3659 grow = READ_ONCE(halt_poll_ns_grow); 3660 if (!grow) 3661 goto out; 3662 3663 val *= grow; 3664 if (val < grow_start) 3665 val = grow_start; 3666 3667 vcpu->halt_poll_ns = val; 3668 out: 3669 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3670 } 3671 3672 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3673 { 3674 unsigned int old, val, shrink, grow_start; 3675 3676 old = val = vcpu->halt_poll_ns; 3677 shrink = READ_ONCE(halt_poll_ns_shrink); 3678 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3679 if (shrink == 0) 3680 val = 0; 3681 else 3682 val /= shrink; 3683 3684 if (val < grow_start) 3685 val = 0; 3686 3687 vcpu->halt_poll_ns = val; 3688 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3689 } 3690 3691 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3692 { 3693 int ret = -EINTR; 3694 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3695 3696 if (kvm_arch_vcpu_runnable(vcpu)) 3697 goto out; 3698 if (kvm_cpu_has_pending_timer(vcpu)) 3699 goto out; 3700 if (signal_pending(current)) 3701 goto out; 3702 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3703 goto out; 3704 3705 ret = 0; 3706 out: 3707 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3708 return ret; 3709 } 3710 3711 /* 3712 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3713 * pending. This is mostly used when halting a vCPU, but may also be used 3714 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3715 */ 3716 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3717 { 3718 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3719 bool waited = false; 3720 3721 vcpu->stat.generic.blocking = 1; 3722 3723 preempt_disable(); 3724 kvm_arch_vcpu_blocking(vcpu); 3725 prepare_to_rcuwait(wait); 3726 preempt_enable(); 3727 3728 for (;;) { 3729 set_current_state(TASK_INTERRUPTIBLE); 3730 3731 if (kvm_vcpu_check_block(vcpu) < 0) 3732 break; 3733 3734 waited = true; 3735 schedule(); 3736 } 3737 3738 preempt_disable(); 3739 finish_rcuwait(wait); 3740 kvm_arch_vcpu_unblocking(vcpu); 3741 preempt_enable(); 3742 3743 vcpu->stat.generic.blocking = 0; 3744 3745 return waited; 3746 } 3747 3748 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3749 ktime_t end, bool success) 3750 { 3751 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3752 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3753 3754 ++vcpu->stat.generic.halt_attempted_poll; 3755 3756 if (success) { 3757 ++vcpu->stat.generic.halt_successful_poll; 3758 3759 if (!vcpu_valid_wakeup(vcpu)) 3760 ++vcpu->stat.generic.halt_poll_invalid; 3761 3762 stats->halt_poll_success_ns += poll_ns; 3763 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3764 } else { 3765 stats->halt_poll_fail_ns += poll_ns; 3766 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3767 } 3768 } 3769 3770 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3771 { 3772 struct kvm *kvm = vcpu->kvm; 3773 3774 if (kvm->override_halt_poll_ns) { 3775 /* 3776 * Ensure kvm->max_halt_poll_ns is not read before 3777 * kvm->override_halt_poll_ns. 3778 * 3779 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3780 */ 3781 smp_rmb(); 3782 return READ_ONCE(kvm->max_halt_poll_ns); 3783 } 3784 3785 return READ_ONCE(halt_poll_ns); 3786 } 3787 3788 /* 3789 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3790 * polling is enabled, busy wait for a short time before blocking to avoid the 3791 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3792 * is halted. 3793 */ 3794 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3795 { 3796 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3797 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3798 ktime_t start, cur, poll_end; 3799 bool waited = false; 3800 bool do_halt_poll; 3801 u64 halt_ns; 3802 3803 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3804 vcpu->halt_poll_ns = max_halt_poll_ns; 3805 3806 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3807 3808 start = cur = poll_end = ktime_get(); 3809 if (do_halt_poll) { 3810 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3811 3812 do { 3813 if (kvm_vcpu_check_block(vcpu) < 0) 3814 goto out; 3815 cpu_relax(); 3816 poll_end = cur = ktime_get(); 3817 } while (kvm_vcpu_can_poll(cur, stop)); 3818 } 3819 3820 waited = kvm_vcpu_block(vcpu); 3821 3822 cur = ktime_get(); 3823 if (waited) { 3824 vcpu->stat.generic.halt_wait_ns += 3825 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3826 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3827 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3828 } 3829 out: 3830 /* The total time the vCPU was "halted", including polling time. */ 3831 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3832 3833 /* 3834 * Note, halt-polling is considered successful so long as the vCPU was 3835 * never actually scheduled out, i.e. even if the wake event arrived 3836 * after of the halt-polling loop itself, but before the full wait. 3837 */ 3838 if (do_halt_poll) 3839 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3840 3841 if (halt_poll_allowed) { 3842 /* Recompute the max halt poll time in case it changed. */ 3843 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3844 3845 if (!vcpu_valid_wakeup(vcpu)) { 3846 shrink_halt_poll_ns(vcpu); 3847 } else if (max_halt_poll_ns) { 3848 if (halt_ns <= vcpu->halt_poll_ns) 3849 ; 3850 /* we had a long block, shrink polling */ 3851 else if (vcpu->halt_poll_ns && 3852 halt_ns > max_halt_poll_ns) 3853 shrink_halt_poll_ns(vcpu); 3854 /* we had a short halt and our poll time is too small */ 3855 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3856 halt_ns < max_halt_poll_ns) 3857 grow_halt_poll_ns(vcpu); 3858 } else { 3859 vcpu->halt_poll_ns = 0; 3860 } 3861 } 3862 3863 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3864 } 3865 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3866 3867 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3868 { 3869 if (__kvm_vcpu_wake_up(vcpu)) { 3870 WRITE_ONCE(vcpu->ready, true); 3871 ++vcpu->stat.generic.halt_wakeup; 3872 return true; 3873 } 3874 3875 return false; 3876 } 3877 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3878 3879 #ifndef CONFIG_S390 3880 /* 3881 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3882 */ 3883 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3884 { 3885 int me, cpu; 3886 3887 if (kvm_vcpu_wake_up(vcpu)) 3888 return; 3889 3890 me = get_cpu(); 3891 /* 3892 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3893 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3894 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3895 * within the vCPU thread itself. 3896 */ 3897 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3898 if (vcpu->mode == IN_GUEST_MODE) 3899 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3900 goto out; 3901 } 3902 3903 /* 3904 * Note, the vCPU could get migrated to a different pCPU at any point 3905 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3906 * IPI to the previous pCPU. But, that's ok because the purpose of the 3907 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3908 * vCPU also requires it to leave IN_GUEST_MODE. 3909 */ 3910 if (kvm_arch_vcpu_should_kick(vcpu)) { 3911 cpu = READ_ONCE(vcpu->cpu); 3912 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3913 smp_send_reschedule(cpu); 3914 } 3915 out: 3916 put_cpu(); 3917 } 3918 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3919 #endif /* !CONFIG_S390 */ 3920 3921 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3922 { 3923 struct pid *pid; 3924 struct task_struct *task = NULL; 3925 int ret = 0; 3926 3927 rcu_read_lock(); 3928 pid = rcu_dereference(target->pid); 3929 if (pid) 3930 task = get_pid_task(pid, PIDTYPE_PID); 3931 rcu_read_unlock(); 3932 if (!task) 3933 return ret; 3934 ret = yield_to(task, 1); 3935 put_task_struct(task); 3936 3937 return ret; 3938 } 3939 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3940 3941 /* 3942 * Helper that checks whether a VCPU is eligible for directed yield. 3943 * Most eligible candidate to yield is decided by following heuristics: 3944 * 3945 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3946 * (preempted lock holder), indicated by @in_spin_loop. 3947 * Set at the beginning and cleared at the end of interception/PLE handler. 3948 * 3949 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3950 * chance last time (mostly it has become eligible now since we have probably 3951 * yielded to lockholder in last iteration. This is done by toggling 3952 * @dy_eligible each time a VCPU checked for eligibility.) 3953 * 3954 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3955 * to preempted lock-holder could result in wrong VCPU selection and CPU 3956 * burning. Giving priority for a potential lock-holder increases lock 3957 * progress. 3958 * 3959 * Since algorithm is based on heuristics, accessing another VCPU data without 3960 * locking does not harm. It may result in trying to yield to same VCPU, fail 3961 * and continue with next VCPU and so on. 3962 */ 3963 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3964 { 3965 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3966 bool eligible; 3967 3968 eligible = !vcpu->spin_loop.in_spin_loop || 3969 vcpu->spin_loop.dy_eligible; 3970 3971 if (vcpu->spin_loop.in_spin_loop) 3972 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3973 3974 return eligible; 3975 #else 3976 return true; 3977 #endif 3978 } 3979 3980 /* 3981 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3982 * a vcpu_load/vcpu_put pair. However, for most architectures 3983 * kvm_arch_vcpu_runnable does not require vcpu_load. 3984 */ 3985 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3986 { 3987 return kvm_arch_vcpu_runnable(vcpu); 3988 } 3989 3990 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3991 { 3992 if (kvm_arch_dy_runnable(vcpu)) 3993 return true; 3994 3995 #ifdef CONFIG_KVM_ASYNC_PF 3996 if (!list_empty_careful(&vcpu->async_pf.done)) 3997 return true; 3998 #endif 3999 4000 return false; 4001 } 4002 4003 /* 4004 * By default, simply query the target vCPU's current mode when checking if a 4005 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4006 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4007 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4008 * directly for cross-vCPU checks is functionally correct and accurate. 4009 */ 4010 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4011 { 4012 return kvm_arch_vcpu_in_kernel(vcpu); 4013 } 4014 4015 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4016 { 4017 return false; 4018 } 4019 4020 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4021 { 4022 struct kvm *kvm = me->kvm; 4023 struct kvm_vcpu *vcpu; 4024 int last_boosted_vcpu; 4025 unsigned long i; 4026 int yielded = 0; 4027 int try = 3; 4028 int pass; 4029 4030 last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu); 4031 kvm_vcpu_set_in_spin_loop(me, true); 4032 /* 4033 * We boost the priority of a VCPU that is runnable but not 4034 * currently running, because it got preempted by something 4035 * else and called schedule in __vcpu_run. Hopefully that 4036 * VCPU is holding the lock that we need and will release it. 4037 * We approximate round-robin by starting at the last boosted VCPU. 4038 */ 4039 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4040 kvm_for_each_vcpu(i, vcpu, kvm) { 4041 if (!pass && i <= last_boosted_vcpu) { 4042 i = last_boosted_vcpu; 4043 continue; 4044 } else if (pass && i > last_boosted_vcpu) 4045 break; 4046 if (!READ_ONCE(vcpu->ready)) 4047 continue; 4048 if (vcpu == me) 4049 continue; 4050 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4051 continue; 4052 4053 /* 4054 * Treat the target vCPU as being in-kernel if it has a 4055 * pending interrupt, as the vCPU trying to yield may 4056 * be spinning waiting on IPI delivery, i.e. the target 4057 * vCPU is in-kernel for the purposes of directed yield. 4058 */ 4059 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4060 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4061 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4062 continue; 4063 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4064 continue; 4065 4066 yielded = kvm_vcpu_yield_to(vcpu); 4067 if (yielded > 0) { 4068 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4069 break; 4070 } else if (yielded < 0) { 4071 try--; 4072 if (!try) 4073 break; 4074 } 4075 } 4076 } 4077 kvm_vcpu_set_in_spin_loop(me, false); 4078 4079 /* Ensure vcpu is not eligible during next spinloop */ 4080 kvm_vcpu_set_dy_eligible(me, false); 4081 } 4082 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4083 4084 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4085 { 4086 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4087 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4088 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4089 kvm->dirty_ring_size / PAGE_SIZE); 4090 #else 4091 return false; 4092 #endif 4093 } 4094 4095 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4096 { 4097 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4098 struct page *page; 4099 4100 if (vmf->pgoff == 0) 4101 page = virt_to_page(vcpu->run); 4102 #ifdef CONFIG_X86 4103 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4104 page = virt_to_page(vcpu->arch.pio_data); 4105 #endif 4106 #ifdef CONFIG_KVM_MMIO 4107 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4108 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4109 #endif 4110 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4111 page = kvm_dirty_ring_get_page( 4112 &vcpu->dirty_ring, 4113 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4114 else 4115 return kvm_arch_vcpu_fault(vcpu, vmf); 4116 get_page(page); 4117 vmf->page = page; 4118 return 0; 4119 } 4120 4121 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4122 .fault = kvm_vcpu_fault, 4123 }; 4124 4125 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4126 { 4127 struct kvm_vcpu *vcpu = file->private_data; 4128 unsigned long pages = vma_pages(vma); 4129 4130 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4131 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4132 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4133 return -EINVAL; 4134 4135 vma->vm_ops = &kvm_vcpu_vm_ops; 4136 return 0; 4137 } 4138 4139 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4140 { 4141 struct kvm_vcpu *vcpu = filp->private_data; 4142 4143 kvm_put_kvm(vcpu->kvm); 4144 return 0; 4145 } 4146 4147 static struct file_operations kvm_vcpu_fops = { 4148 .release = kvm_vcpu_release, 4149 .unlocked_ioctl = kvm_vcpu_ioctl, 4150 .mmap = kvm_vcpu_mmap, 4151 .llseek = noop_llseek, 4152 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4153 }; 4154 4155 /* 4156 * Allocates an inode for the vcpu. 4157 */ 4158 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4159 { 4160 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4161 4162 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4163 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4164 } 4165 4166 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4167 static int vcpu_get_pid(void *data, u64 *val) 4168 { 4169 struct kvm_vcpu *vcpu = data; 4170 4171 rcu_read_lock(); 4172 *val = pid_nr(rcu_dereference(vcpu->pid)); 4173 rcu_read_unlock(); 4174 return 0; 4175 } 4176 4177 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4178 4179 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4180 { 4181 struct dentry *debugfs_dentry; 4182 char dir_name[ITOA_MAX_LEN * 2]; 4183 4184 if (!debugfs_initialized()) 4185 return; 4186 4187 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4188 debugfs_dentry = debugfs_create_dir(dir_name, 4189 vcpu->kvm->debugfs_dentry); 4190 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4191 &vcpu_get_pid_fops); 4192 4193 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4194 } 4195 #endif 4196 4197 /* 4198 * Creates some virtual cpus. Good luck creating more than one. 4199 */ 4200 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4201 { 4202 int r; 4203 struct kvm_vcpu *vcpu; 4204 struct page *page; 4205 4206 /* 4207 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4208 * too-large values instead of silently truncating. 4209 * 4210 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4211 * changing the storage type (at the very least, IDs should be tracked 4212 * as unsigned ints). 4213 */ 4214 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4215 if (id >= KVM_MAX_VCPU_IDS) 4216 return -EINVAL; 4217 4218 mutex_lock(&kvm->lock); 4219 if (kvm->created_vcpus >= kvm->max_vcpus) { 4220 mutex_unlock(&kvm->lock); 4221 return -EINVAL; 4222 } 4223 4224 r = kvm_arch_vcpu_precreate(kvm, id); 4225 if (r) { 4226 mutex_unlock(&kvm->lock); 4227 return r; 4228 } 4229 4230 kvm->created_vcpus++; 4231 mutex_unlock(&kvm->lock); 4232 4233 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4234 if (!vcpu) { 4235 r = -ENOMEM; 4236 goto vcpu_decrement; 4237 } 4238 4239 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4240 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4241 if (!page) { 4242 r = -ENOMEM; 4243 goto vcpu_free; 4244 } 4245 vcpu->run = page_address(page); 4246 4247 kvm_vcpu_init(vcpu, kvm, id); 4248 4249 r = kvm_arch_vcpu_create(vcpu); 4250 if (r) 4251 goto vcpu_free_run_page; 4252 4253 if (kvm->dirty_ring_size) { 4254 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4255 id, kvm->dirty_ring_size); 4256 if (r) 4257 goto arch_vcpu_destroy; 4258 } 4259 4260 mutex_lock(&kvm->lock); 4261 4262 #ifdef CONFIG_LOCKDEP 4263 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4264 mutex_lock(&vcpu->mutex); 4265 mutex_unlock(&vcpu->mutex); 4266 #endif 4267 4268 if (kvm_get_vcpu_by_id(kvm, id)) { 4269 r = -EEXIST; 4270 goto unlock_vcpu_destroy; 4271 } 4272 4273 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4274 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4275 if (r) 4276 goto unlock_vcpu_destroy; 4277 4278 /* Now it's all set up, let userspace reach it */ 4279 kvm_get_kvm(kvm); 4280 r = create_vcpu_fd(vcpu); 4281 if (r < 0) 4282 goto kvm_put_xa_release; 4283 4284 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4285 r = -EINVAL; 4286 goto kvm_put_xa_release; 4287 } 4288 4289 /* 4290 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4291 * pointer before kvm->online_vcpu's incremented value. 4292 */ 4293 smp_wmb(); 4294 atomic_inc(&kvm->online_vcpus); 4295 4296 mutex_unlock(&kvm->lock); 4297 kvm_arch_vcpu_postcreate(vcpu); 4298 kvm_create_vcpu_debugfs(vcpu); 4299 return r; 4300 4301 kvm_put_xa_release: 4302 kvm_put_kvm_no_destroy(kvm); 4303 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4304 unlock_vcpu_destroy: 4305 mutex_unlock(&kvm->lock); 4306 kvm_dirty_ring_free(&vcpu->dirty_ring); 4307 arch_vcpu_destroy: 4308 kvm_arch_vcpu_destroy(vcpu); 4309 vcpu_free_run_page: 4310 free_page((unsigned long)vcpu->run); 4311 vcpu_free: 4312 kmem_cache_free(kvm_vcpu_cache, vcpu); 4313 vcpu_decrement: 4314 mutex_lock(&kvm->lock); 4315 kvm->created_vcpus--; 4316 mutex_unlock(&kvm->lock); 4317 return r; 4318 } 4319 4320 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4321 { 4322 if (sigset) { 4323 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4324 vcpu->sigset_active = 1; 4325 vcpu->sigset = *sigset; 4326 } else 4327 vcpu->sigset_active = 0; 4328 return 0; 4329 } 4330 4331 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4332 size_t size, loff_t *offset) 4333 { 4334 struct kvm_vcpu *vcpu = file->private_data; 4335 4336 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4337 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4338 sizeof(vcpu->stat), user_buffer, size, offset); 4339 } 4340 4341 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4342 { 4343 struct kvm_vcpu *vcpu = file->private_data; 4344 4345 kvm_put_kvm(vcpu->kvm); 4346 return 0; 4347 } 4348 4349 static const struct file_operations kvm_vcpu_stats_fops = { 4350 .owner = THIS_MODULE, 4351 .read = kvm_vcpu_stats_read, 4352 .release = kvm_vcpu_stats_release, 4353 .llseek = noop_llseek, 4354 }; 4355 4356 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4357 { 4358 int fd; 4359 struct file *file; 4360 char name[15 + ITOA_MAX_LEN + 1]; 4361 4362 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4363 4364 fd = get_unused_fd_flags(O_CLOEXEC); 4365 if (fd < 0) 4366 return fd; 4367 4368 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4369 if (IS_ERR(file)) { 4370 put_unused_fd(fd); 4371 return PTR_ERR(file); 4372 } 4373 4374 kvm_get_kvm(vcpu->kvm); 4375 4376 file->f_mode |= FMODE_PREAD; 4377 fd_install(fd, file); 4378 4379 return fd; 4380 } 4381 4382 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4383 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4384 struct kvm_pre_fault_memory *range) 4385 { 4386 int idx; 4387 long r; 4388 u64 full_size; 4389 4390 if (range->flags) 4391 return -EINVAL; 4392 4393 if (!PAGE_ALIGNED(range->gpa) || 4394 !PAGE_ALIGNED(range->size) || 4395 range->gpa + range->size <= range->gpa) 4396 return -EINVAL; 4397 4398 vcpu_load(vcpu); 4399 idx = srcu_read_lock(&vcpu->kvm->srcu); 4400 4401 full_size = range->size; 4402 do { 4403 if (signal_pending(current)) { 4404 r = -EINTR; 4405 break; 4406 } 4407 4408 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4409 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4410 break; 4411 4412 if (r < 0) 4413 break; 4414 4415 range->size -= r; 4416 range->gpa += r; 4417 cond_resched(); 4418 } while (range->size); 4419 4420 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4421 vcpu_put(vcpu); 4422 4423 /* Return success if at least one page was mapped successfully. */ 4424 return full_size == range->size ? r : 0; 4425 } 4426 #endif 4427 4428 static long kvm_vcpu_ioctl(struct file *filp, 4429 unsigned int ioctl, unsigned long arg) 4430 { 4431 struct kvm_vcpu *vcpu = filp->private_data; 4432 void __user *argp = (void __user *)arg; 4433 int r; 4434 struct kvm_fpu *fpu = NULL; 4435 struct kvm_sregs *kvm_sregs = NULL; 4436 4437 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4438 return -EIO; 4439 4440 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4441 return -EINVAL; 4442 4443 /* 4444 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4445 * execution; mutex_lock() would break them. 4446 */ 4447 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4448 if (r != -ENOIOCTLCMD) 4449 return r; 4450 4451 if (mutex_lock_killable(&vcpu->mutex)) 4452 return -EINTR; 4453 switch (ioctl) { 4454 case KVM_RUN: { 4455 struct pid *oldpid; 4456 r = -EINVAL; 4457 if (arg) 4458 goto out; 4459 oldpid = rcu_access_pointer(vcpu->pid); 4460 if (unlikely(oldpid != task_pid(current))) { 4461 /* The thread running this VCPU changed. */ 4462 struct pid *newpid; 4463 4464 r = kvm_arch_vcpu_run_pid_change(vcpu); 4465 if (r) 4466 break; 4467 4468 newpid = get_task_pid(current, PIDTYPE_PID); 4469 rcu_assign_pointer(vcpu->pid, newpid); 4470 if (oldpid) 4471 synchronize_rcu(); 4472 put_pid(oldpid); 4473 } 4474 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4475 r = kvm_arch_vcpu_ioctl_run(vcpu); 4476 vcpu->wants_to_run = false; 4477 4478 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4479 break; 4480 } 4481 case KVM_GET_REGS: { 4482 struct kvm_regs *kvm_regs; 4483 4484 r = -ENOMEM; 4485 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4486 if (!kvm_regs) 4487 goto out; 4488 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4489 if (r) 4490 goto out_free1; 4491 r = -EFAULT; 4492 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4493 goto out_free1; 4494 r = 0; 4495 out_free1: 4496 kfree(kvm_regs); 4497 break; 4498 } 4499 case KVM_SET_REGS: { 4500 struct kvm_regs *kvm_regs; 4501 4502 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4503 if (IS_ERR(kvm_regs)) { 4504 r = PTR_ERR(kvm_regs); 4505 goto out; 4506 } 4507 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4508 kfree(kvm_regs); 4509 break; 4510 } 4511 case KVM_GET_SREGS: { 4512 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4513 r = -ENOMEM; 4514 if (!kvm_sregs) 4515 goto out; 4516 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4517 if (r) 4518 goto out; 4519 r = -EFAULT; 4520 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4521 goto out; 4522 r = 0; 4523 break; 4524 } 4525 case KVM_SET_SREGS: { 4526 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4527 if (IS_ERR(kvm_sregs)) { 4528 r = PTR_ERR(kvm_sregs); 4529 kvm_sregs = NULL; 4530 goto out; 4531 } 4532 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4533 break; 4534 } 4535 case KVM_GET_MP_STATE: { 4536 struct kvm_mp_state mp_state; 4537 4538 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4539 if (r) 4540 goto out; 4541 r = -EFAULT; 4542 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4543 goto out; 4544 r = 0; 4545 break; 4546 } 4547 case KVM_SET_MP_STATE: { 4548 struct kvm_mp_state mp_state; 4549 4550 r = -EFAULT; 4551 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4552 goto out; 4553 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4554 break; 4555 } 4556 case KVM_TRANSLATE: { 4557 struct kvm_translation tr; 4558 4559 r = -EFAULT; 4560 if (copy_from_user(&tr, argp, sizeof(tr))) 4561 goto out; 4562 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4563 if (r) 4564 goto out; 4565 r = -EFAULT; 4566 if (copy_to_user(argp, &tr, sizeof(tr))) 4567 goto out; 4568 r = 0; 4569 break; 4570 } 4571 case KVM_SET_GUEST_DEBUG: { 4572 struct kvm_guest_debug dbg; 4573 4574 r = -EFAULT; 4575 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4576 goto out; 4577 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4578 break; 4579 } 4580 case KVM_SET_SIGNAL_MASK: { 4581 struct kvm_signal_mask __user *sigmask_arg = argp; 4582 struct kvm_signal_mask kvm_sigmask; 4583 sigset_t sigset, *p; 4584 4585 p = NULL; 4586 if (argp) { 4587 r = -EFAULT; 4588 if (copy_from_user(&kvm_sigmask, argp, 4589 sizeof(kvm_sigmask))) 4590 goto out; 4591 r = -EINVAL; 4592 if (kvm_sigmask.len != sizeof(sigset)) 4593 goto out; 4594 r = -EFAULT; 4595 if (copy_from_user(&sigset, sigmask_arg->sigset, 4596 sizeof(sigset))) 4597 goto out; 4598 p = &sigset; 4599 } 4600 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4601 break; 4602 } 4603 case KVM_GET_FPU: { 4604 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4605 r = -ENOMEM; 4606 if (!fpu) 4607 goto out; 4608 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4609 if (r) 4610 goto out; 4611 r = -EFAULT; 4612 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4613 goto out; 4614 r = 0; 4615 break; 4616 } 4617 case KVM_SET_FPU: { 4618 fpu = memdup_user(argp, sizeof(*fpu)); 4619 if (IS_ERR(fpu)) { 4620 r = PTR_ERR(fpu); 4621 fpu = NULL; 4622 goto out; 4623 } 4624 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4625 break; 4626 } 4627 case KVM_GET_STATS_FD: { 4628 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4629 break; 4630 } 4631 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4632 case KVM_PRE_FAULT_MEMORY: { 4633 struct kvm_pre_fault_memory range; 4634 4635 r = -EFAULT; 4636 if (copy_from_user(&range, argp, sizeof(range))) 4637 break; 4638 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4639 /* Pass back leftover range. */ 4640 if (copy_to_user(argp, &range, sizeof(range))) 4641 r = -EFAULT; 4642 break; 4643 } 4644 #endif 4645 default: 4646 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4647 } 4648 out: 4649 mutex_unlock(&vcpu->mutex); 4650 kfree(fpu); 4651 kfree(kvm_sregs); 4652 return r; 4653 } 4654 4655 #ifdef CONFIG_KVM_COMPAT 4656 static long kvm_vcpu_compat_ioctl(struct file *filp, 4657 unsigned int ioctl, unsigned long arg) 4658 { 4659 struct kvm_vcpu *vcpu = filp->private_data; 4660 void __user *argp = compat_ptr(arg); 4661 int r; 4662 4663 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4664 return -EIO; 4665 4666 switch (ioctl) { 4667 case KVM_SET_SIGNAL_MASK: { 4668 struct kvm_signal_mask __user *sigmask_arg = argp; 4669 struct kvm_signal_mask kvm_sigmask; 4670 sigset_t sigset; 4671 4672 if (argp) { 4673 r = -EFAULT; 4674 if (copy_from_user(&kvm_sigmask, argp, 4675 sizeof(kvm_sigmask))) 4676 goto out; 4677 r = -EINVAL; 4678 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4679 goto out; 4680 r = -EFAULT; 4681 if (get_compat_sigset(&sigset, 4682 (compat_sigset_t __user *)sigmask_arg->sigset)) 4683 goto out; 4684 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4685 } else 4686 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4687 break; 4688 } 4689 default: 4690 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4691 } 4692 4693 out: 4694 return r; 4695 } 4696 #endif 4697 4698 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4699 { 4700 struct kvm_device *dev = filp->private_data; 4701 4702 if (dev->ops->mmap) 4703 return dev->ops->mmap(dev, vma); 4704 4705 return -ENODEV; 4706 } 4707 4708 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4709 int (*accessor)(struct kvm_device *dev, 4710 struct kvm_device_attr *attr), 4711 unsigned long arg) 4712 { 4713 struct kvm_device_attr attr; 4714 4715 if (!accessor) 4716 return -EPERM; 4717 4718 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4719 return -EFAULT; 4720 4721 return accessor(dev, &attr); 4722 } 4723 4724 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4725 unsigned long arg) 4726 { 4727 struct kvm_device *dev = filp->private_data; 4728 4729 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4730 return -EIO; 4731 4732 switch (ioctl) { 4733 case KVM_SET_DEVICE_ATTR: 4734 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4735 case KVM_GET_DEVICE_ATTR: 4736 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4737 case KVM_HAS_DEVICE_ATTR: 4738 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4739 default: 4740 if (dev->ops->ioctl) 4741 return dev->ops->ioctl(dev, ioctl, arg); 4742 4743 return -ENOTTY; 4744 } 4745 } 4746 4747 static int kvm_device_release(struct inode *inode, struct file *filp) 4748 { 4749 struct kvm_device *dev = filp->private_data; 4750 struct kvm *kvm = dev->kvm; 4751 4752 if (dev->ops->release) { 4753 mutex_lock(&kvm->lock); 4754 list_del_rcu(&dev->vm_node); 4755 synchronize_rcu(); 4756 dev->ops->release(dev); 4757 mutex_unlock(&kvm->lock); 4758 } 4759 4760 kvm_put_kvm(kvm); 4761 return 0; 4762 } 4763 4764 static struct file_operations kvm_device_fops = { 4765 .unlocked_ioctl = kvm_device_ioctl, 4766 .release = kvm_device_release, 4767 KVM_COMPAT(kvm_device_ioctl), 4768 .mmap = kvm_device_mmap, 4769 }; 4770 4771 struct kvm_device *kvm_device_from_filp(struct file *filp) 4772 { 4773 if (filp->f_op != &kvm_device_fops) 4774 return NULL; 4775 4776 return filp->private_data; 4777 } 4778 4779 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4780 #ifdef CONFIG_KVM_MPIC 4781 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4782 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4783 #endif 4784 }; 4785 4786 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4787 { 4788 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4789 return -ENOSPC; 4790 4791 if (kvm_device_ops_table[type] != NULL) 4792 return -EEXIST; 4793 4794 kvm_device_ops_table[type] = ops; 4795 return 0; 4796 } 4797 4798 void kvm_unregister_device_ops(u32 type) 4799 { 4800 if (kvm_device_ops_table[type] != NULL) 4801 kvm_device_ops_table[type] = NULL; 4802 } 4803 4804 static int kvm_ioctl_create_device(struct kvm *kvm, 4805 struct kvm_create_device *cd) 4806 { 4807 const struct kvm_device_ops *ops; 4808 struct kvm_device *dev; 4809 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4810 int type; 4811 int ret; 4812 4813 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4814 return -ENODEV; 4815 4816 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4817 ops = kvm_device_ops_table[type]; 4818 if (ops == NULL) 4819 return -ENODEV; 4820 4821 if (test) 4822 return 0; 4823 4824 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4825 if (!dev) 4826 return -ENOMEM; 4827 4828 dev->ops = ops; 4829 dev->kvm = kvm; 4830 4831 mutex_lock(&kvm->lock); 4832 ret = ops->create(dev, type); 4833 if (ret < 0) { 4834 mutex_unlock(&kvm->lock); 4835 kfree(dev); 4836 return ret; 4837 } 4838 list_add_rcu(&dev->vm_node, &kvm->devices); 4839 mutex_unlock(&kvm->lock); 4840 4841 if (ops->init) 4842 ops->init(dev); 4843 4844 kvm_get_kvm(kvm); 4845 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4846 if (ret < 0) { 4847 kvm_put_kvm_no_destroy(kvm); 4848 mutex_lock(&kvm->lock); 4849 list_del_rcu(&dev->vm_node); 4850 synchronize_rcu(); 4851 if (ops->release) 4852 ops->release(dev); 4853 mutex_unlock(&kvm->lock); 4854 if (ops->destroy) 4855 ops->destroy(dev); 4856 return ret; 4857 } 4858 4859 cd->fd = ret; 4860 return 0; 4861 } 4862 4863 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4864 { 4865 switch (arg) { 4866 case KVM_CAP_USER_MEMORY: 4867 case KVM_CAP_USER_MEMORY2: 4868 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4869 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4870 case KVM_CAP_INTERNAL_ERROR_DATA: 4871 #ifdef CONFIG_HAVE_KVM_MSI 4872 case KVM_CAP_SIGNAL_MSI: 4873 #endif 4874 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4875 case KVM_CAP_IRQFD: 4876 #endif 4877 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4878 case KVM_CAP_CHECK_EXTENSION_VM: 4879 case KVM_CAP_ENABLE_CAP_VM: 4880 case KVM_CAP_HALT_POLL: 4881 return 1; 4882 #ifdef CONFIG_KVM_MMIO 4883 case KVM_CAP_COALESCED_MMIO: 4884 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4885 case KVM_CAP_COALESCED_PIO: 4886 return 1; 4887 #endif 4888 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4889 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4890 return KVM_DIRTY_LOG_MANUAL_CAPS; 4891 #endif 4892 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4893 case KVM_CAP_IRQ_ROUTING: 4894 return KVM_MAX_IRQ_ROUTES; 4895 #endif 4896 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4897 case KVM_CAP_MULTI_ADDRESS_SPACE: 4898 if (kvm) 4899 return kvm_arch_nr_memslot_as_ids(kvm); 4900 return KVM_MAX_NR_ADDRESS_SPACES; 4901 #endif 4902 case KVM_CAP_NR_MEMSLOTS: 4903 return KVM_USER_MEM_SLOTS; 4904 case KVM_CAP_DIRTY_LOG_RING: 4905 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4906 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4907 #else 4908 return 0; 4909 #endif 4910 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4911 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4912 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4913 #else 4914 return 0; 4915 #endif 4916 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4917 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4918 #endif 4919 case KVM_CAP_BINARY_STATS_FD: 4920 case KVM_CAP_SYSTEM_EVENT_DATA: 4921 case KVM_CAP_DEVICE_CTRL: 4922 return 1; 4923 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4924 case KVM_CAP_MEMORY_ATTRIBUTES: 4925 return kvm_supported_mem_attributes(kvm); 4926 #endif 4927 #ifdef CONFIG_KVM_PRIVATE_MEM 4928 case KVM_CAP_GUEST_MEMFD: 4929 return !kvm || kvm_arch_has_private_mem(kvm); 4930 #endif 4931 default: 4932 break; 4933 } 4934 return kvm_vm_ioctl_check_extension(kvm, arg); 4935 } 4936 4937 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4938 { 4939 int r; 4940 4941 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4942 return -EINVAL; 4943 4944 /* the size should be power of 2 */ 4945 if (!size || (size & (size - 1))) 4946 return -EINVAL; 4947 4948 /* Should be bigger to keep the reserved entries, or a page */ 4949 if (size < kvm_dirty_ring_get_rsvd_entries() * 4950 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4951 return -EINVAL; 4952 4953 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4954 sizeof(struct kvm_dirty_gfn)) 4955 return -E2BIG; 4956 4957 /* We only allow it to set once */ 4958 if (kvm->dirty_ring_size) 4959 return -EINVAL; 4960 4961 mutex_lock(&kvm->lock); 4962 4963 if (kvm->created_vcpus) { 4964 /* We don't allow to change this value after vcpu created */ 4965 r = -EINVAL; 4966 } else { 4967 kvm->dirty_ring_size = size; 4968 r = 0; 4969 } 4970 4971 mutex_unlock(&kvm->lock); 4972 return r; 4973 } 4974 4975 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4976 { 4977 unsigned long i; 4978 struct kvm_vcpu *vcpu; 4979 int cleared = 0; 4980 4981 if (!kvm->dirty_ring_size) 4982 return -EINVAL; 4983 4984 mutex_lock(&kvm->slots_lock); 4985 4986 kvm_for_each_vcpu(i, vcpu, kvm) 4987 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4988 4989 mutex_unlock(&kvm->slots_lock); 4990 4991 if (cleared) 4992 kvm_flush_remote_tlbs(kvm); 4993 4994 return cleared; 4995 } 4996 4997 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4998 struct kvm_enable_cap *cap) 4999 { 5000 return -EINVAL; 5001 } 5002 5003 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5004 { 5005 int i; 5006 5007 lockdep_assert_held(&kvm->slots_lock); 5008 5009 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5010 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5011 return false; 5012 } 5013 5014 return true; 5015 } 5016 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 5017 5018 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5019 struct kvm_enable_cap *cap) 5020 { 5021 switch (cap->cap) { 5022 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5023 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5024 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5025 5026 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5027 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5028 5029 if (cap->flags || (cap->args[0] & ~allowed_options)) 5030 return -EINVAL; 5031 kvm->manual_dirty_log_protect = cap->args[0]; 5032 return 0; 5033 } 5034 #endif 5035 case KVM_CAP_HALT_POLL: { 5036 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5037 return -EINVAL; 5038 5039 kvm->max_halt_poll_ns = cap->args[0]; 5040 5041 /* 5042 * Ensure kvm->override_halt_poll_ns does not become visible 5043 * before kvm->max_halt_poll_ns. 5044 * 5045 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5046 */ 5047 smp_wmb(); 5048 kvm->override_halt_poll_ns = true; 5049 5050 return 0; 5051 } 5052 case KVM_CAP_DIRTY_LOG_RING: 5053 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5054 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5055 return -EINVAL; 5056 5057 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5058 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5059 int r = -EINVAL; 5060 5061 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5062 !kvm->dirty_ring_size || cap->flags) 5063 return r; 5064 5065 mutex_lock(&kvm->slots_lock); 5066 5067 /* 5068 * For simplicity, allow enabling ring+bitmap if and only if 5069 * there are no memslots, e.g. to ensure all memslots allocate 5070 * a bitmap after the capability is enabled. 5071 */ 5072 if (kvm_are_all_memslots_empty(kvm)) { 5073 kvm->dirty_ring_with_bitmap = true; 5074 r = 0; 5075 } 5076 5077 mutex_unlock(&kvm->slots_lock); 5078 5079 return r; 5080 } 5081 default: 5082 return kvm_vm_ioctl_enable_cap(kvm, cap); 5083 } 5084 } 5085 5086 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5087 size_t size, loff_t *offset) 5088 { 5089 struct kvm *kvm = file->private_data; 5090 5091 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5092 &kvm_vm_stats_desc[0], &kvm->stat, 5093 sizeof(kvm->stat), user_buffer, size, offset); 5094 } 5095 5096 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5097 { 5098 struct kvm *kvm = file->private_data; 5099 5100 kvm_put_kvm(kvm); 5101 return 0; 5102 } 5103 5104 static const struct file_operations kvm_vm_stats_fops = { 5105 .owner = THIS_MODULE, 5106 .read = kvm_vm_stats_read, 5107 .release = kvm_vm_stats_release, 5108 .llseek = noop_llseek, 5109 }; 5110 5111 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5112 { 5113 int fd; 5114 struct file *file; 5115 5116 fd = get_unused_fd_flags(O_CLOEXEC); 5117 if (fd < 0) 5118 return fd; 5119 5120 file = anon_inode_getfile("kvm-vm-stats", 5121 &kvm_vm_stats_fops, kvm, O_RDONLY); 5122 if (IS_ERR(file)) { 5123 put_unused_fd(fd); 5124 return PTR_ERR(file); 5125 } 5126 5127 kvm_get_kvm(kvm); 5128 5129 file->f_mode |= FMODE_PREAD; 5130 fd_install(fd, file); 5131 5132 return fd; 5133 } 5134 5135 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5136 do { \ 5137 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5138 offsetof(struct kvm_userspace_memory_region2, field)); \ 5139 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5140 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5141 } while (0) 5142 5143 static long kvm_vm_ioctl(struct file *filp, 5144 unsigned int ioctl, unsigned long arg) 5145 { 5146 struct kvm *kvm = filp->private_data; 5147 void __user *argp = (void __user *)arg; 5148 int r; 5149 5150 if (kvm->mm != current->mm || kvm->vm_dead) 5151 return -EIO; 5152 switch (ioctl) { 5153 case KVM_CREATE_VCPU: 5154 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5155 break; 5156 case KVM_ENABLE_CAP: { 5157 struct kvm_enable_cap cap; 5158 5159 r = -EFAULT; 5160 if (copy_from_user(&cap, argp, sizeof(cap))) 5161 goto out; 5162 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5163 break; 5164 } 5165 case KVM_SET_USER_MEMORY_REGION2: 5166 case KVM_SET_USER_MEMORY_REGION: { 5167 struct kvm_userspace_memory_region2 mem; 5168 unsigned long size; 5169 5170 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5171 /* 5172 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5173 * accessed, but avoid leaking kernel memory in case of a bug. 5174 */ 5175 memset(&mem, 0, sizeof(mem)); 5176 size = sizeof(struct kvm_userspace_memory_region); 5177 } else { 5178 size = sizeof(struct kvm_userspace_memory_region2); 5179 } 5180 5181 /* Ensure the common parts of the two structs are identical. */ 5182 SANITY_CHECK_MEM_REGION_FIELD(slot); 5183 SANITY_CHECK_MEM_REGION_FIELD(flags); 5184 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5185 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5186 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5187 5188 r = -EFAULT; 5189 if (copy_from_user(&mem, argp, size)) 5190 goto out; 5191 5192 r = -EINVAL; 5193 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5194 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5195 goto out; 5196 5197 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5198 break; 5199 } 5200 case KVM_GET_DIRTY_LOG: { 5201 struct kvm_dirty_log log; 5202 5203 r = -EFAULT; 5204 if (copy_from_user(&log, argp, sizeof(log))) 5205 goto out; 5206 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5207 break; 5208 } 5209 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5210 case KVM_CLEAR_DIRTY_LOG: { 5211 struct kvm_clear_dirty_log log; 5212 5213 r = -EFAULT; 5214 if (copy_from_user(&log, argp, sizeof(log))) 5215 goto out; 5216 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5217 break; 5218 } 5219 #endif 5220 #ifdef CONFIG_KVM_MMIO 5221 case KVM_REGISTER_COALESCED_MMIO: { 5222 struct kvm_coalesced_mmio_zone zone; 5223 5224 r = -EFAULT; 5225 if (copy_from_user(&zone, argp, sizeof(zone))) 5226 goto out; 5227 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5228 break; 5229 } 5230 case KVM_UNREGISTER_COALESCED_MMIO: { 5231 struct kvm_coalesced_mmio_zone zone; 5232 5233 r = -EFAULT; 5234 if (copy_from_user(&zone, argp, sizeof(zone))) 5235 goto out; 5236 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5237 break; 5238 } 5239 #endif 5240 case KVM_IRQFD: { 5241 struct kvm_irqfd data; 5242 5243 r = -EFAULT; 5244 if (copy_from_user(&data, argp, sizeof(data))) 5245 goto out; 5246 r = kvm_irqfd(kvm, &data); 5247 break; 5248 } 5249 case KVM_IOEVENTFD: { 5250 struct kvm_ioeventfd data; 5251 5252 r = -EFAULT; 5253 if (copy_from_user(&data, argp, sizeof(data))) 5254 goto out; 5255 r = kvm_ioeventfd(kvm, &data); 5256 break; 5257 } 5258 #ifdef CONFIG_HAVE_KVM_MSI 5259 case KVM_SIGNAL_MSI: { 5260 struct kvm_msi msi; 5261 5262 r = -EFAULT; 5263 if (copy_from_user(&msi, argp, sizeof(msi))) 5264 goto out; 5265 r = kvm_send_userspace_msi(kvm, &msi); 5266 break; 5267 } 5268 #endif 5269 #ifdef __KVM_HAVE_IRQ_LINE 5270 case KVM_IRQ_LINE_STATUS: 5271 case KVM_IRQ_LINE: { 5272 struct kvm_irq_level irq_event; 5273 5274 r = -EFAULT; 5275 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5276 goto out; 5277 5278 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5279 ioctl == KVM_IRQ_LINE_STATUS); 5280 if (r) 5281 goto out; 5282 5283 r = -EFAULT; 5284 if (ioctl == KVM_IRQ_LINE_STATUS) { 5285 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5286 goto out; 5287 } 5288 5289 r = 0; 5290 break; 5291 } 5292 #endif 5293 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5294 case KVM_SET_GSI_ROUTING: { 5295 struct kvm_irq_routing routing; 5296 struct kvm_irq_routing __user *urouting; 5297 struct kvm_irq_routing_entry *entries = NULL; 5298 5299 r = -EFAULT; 5300 if (copy_from_user(&routing, argp, sizeof(routing))) 5301 goto out; 5302 r = -EINVAL; 5303 if (!kvm_arch_can_set_irq_routing(kvm)) 5304 goto out; 5305 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5306 goto out; 5307 if (routing.flags) 5308 goto out; 5309 if (routing.nr) { 5310 urouting = argp; 5311 entries = vmemdup_array_user(urouting->entries, 5312 routing.nr, sizeof(*entries)); 5313 if (IS_ERR(entries)) { 5314 r = PTR_ERR(entries); 5315 goto out; 5316 } 5317 } 5318 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5319 routing.flags); 5320 kvfree(entries); 5321 break; 5322 } 5323 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5324 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5325 case KVM_SET_MEMORY_ATTRIBUTES: { 5326 struct kvm_memory_attributes attrs; 5327 5328 r = -EFAULT; 5329 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5330 goto out; 5331 5332 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5333 break; 5334 } 5335 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5336 case KVM_CREATE_DEVICE: { 5337 struct kvm_create_device cd; 5338 5339 r = -EFAULT; 5340 if (copy_from_user(&cd, argp, sizeof(cd))) 5341 goto out; 5342 5343 r = kvm_ioctl_create_device(kvm, &cd); 5344 if (r) 5345 goto out; 5346 5347 r = -EFAULT; 5348 if (copy_to_user(argp, &cd, sizeof(cd))) 5349 goto out; 5350 5351 r = 0; 5352 break; 5353 } 5354 case KVM_CHECK_EXTENSION: 5355 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5356 break; 5357 case KVM_RESET_DIRTY_RINGS: 5358 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5359 break; 5360 case KVM_GET_STATS_FD: 5361 r = kvm_vm_ioctl_get_stats_fd(kvm); 5362 break; 5363 #ifdef CONFIG_KVM_PRIVATE_MEM 5364 case KVM_CREATE_GUEST_MEMFD: { 5365 struct kvm_create_guest_memfd guest_memfd; 5366 5367 r = -EFAULT; 5368 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5369 goto out; 5370 5371 r = kvm_gmem_create(kvm, &guest_memfd); 5372 break; 5373 } 5374 #endif 5375 default: 5376 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5377 } 5378 out: 5379 return r; 5380 } 5381 5382 #ifdef CONFIG_KVM_COMPAT 5383 struct compat_kvm_dirty_log { 5384 __u32 slot; 5385 __u32 padding1; 5386 union { 5387 compat_uptr_t dirty_bitmap; /* one bit per page */ 5388 __u64 padding2; 5389 }; 5390 }; 5391 5392 struct compat_kvm_clear_dirty_log { 5393 __u32 slot; 5394 __u32 num_pages; 5395 __u64 first_page; 5396 union { 5397 compat_uptr_t dirty_bitmap; /* one bit per page */ 5398 __u64 padding2; 5399 }; 5400 }; 5401 5402 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5403 unsigned long arg) 5404 { 5405 return -ENOTTY; 5406 } 5407 5408 static long kvm_vm_compat_ioctl(struct file *filp, 5409 unsigned int ioctl, unsigned long arg) 5410 { 5411 struct kvm *kvm = filp->private_data; 5412 int r; 5413 5414 if (kvm->mm != current->mm || kvm->vm_dead) 5415 return -EIO; 5416 5417 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5418 if (r != -ENOTTY) 5419 return r; 5420 5421 switch (ioctl) { 5422 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5423 case KVM_CLEAR_DIRTY_LOG: { 5424 struct compat_kvm_clear_dirty_log compat_log; 5425 struct kvm_clear_dirty_log log; 5426 5427 if (copy_from_user(&compat_log, (void __user *)arg, 5428 sizeof(compat_log))) 5429 return -EFAULT; 5430 log.slot = compat_log.slot; 5431 log.num_pages = compat_log.num_pages; 5432 log.first_page = compat_log.first_page; 5433 log.padding2 = compat_log.padding2; 5434 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5435 5436 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5437 break; 5438 } 5439 #endif 5440 case KVM_GET_DIRTY_LOG: { 5441 struct compat_kvm_dirty_log compat_log; 5442 struct kvm_dirty_log log; 5443 5444 if (copy_from_user(&compat_log, (void __user *)arg, 5445 sizeof(compat_log))) 5446 return -EFAULT; 5447 log.slot = compat_log.slot; 5448 log.padding1 = compat_log.padding1; 5449 log.padding2 = compat_log.padding2; 5450 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5451 5452 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5453 break; 5454 } 5455 default: 5456 r = kvm_vm_ioctl(filp, ioctl, arg); 5457 } 5458 return r; 5459 } 5460 #endif 5461 5462 static struct file_operations kvm_vm_fops = { 5463 .release = kvm_vm_release, 5464 .unlocked_ioctl = kvm_vm_ioctl, 5465 .llseek = noop_llseek, 5466 KVM_COMPAT(kvm_vm_compat_ioctl), 5467 }; 5468 5469 bool file_is_kvm(struct file *file) 5470 { 5471 return file && file->f_op == &kvm_vm_fops; 5472 } 5473 EXPORT_SYMBOL_GPL(file_is_kvm); 5474 5475 static int kvm_dev_ioctl_create_vm(unsigned long type) 5476 { 5477 char fdname[ITOA_MAX_LEN + 1]; 5478 int r, fd; 5479 struct kvm *kvm; 5480 struct file *file; 5481 5482 fd = get_unused_fd_flags(O_CLOEXEC); 5483 if (fd < 0) 5484 return fd; 5485 5486 snprintf(fdname, sizeof(fdname), "%d", fd); 5487 5488 kvm = kvm_create_vm(type, fdname); 5489 if (IS_ERR(kvm)) { 5490 r = PTR_ERR(kvm); 5491 goto put_fd; 5492 } 5493 5494 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5495 if (IS_ERR(file)) { 5496 r = PTR_ERR(file); 5497 goto put_kvm; 5498 } 5499 5500 /* 5501 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5502 * already set, with ->release() being kvm_vm_release(). In error 5503 * cases it will be called by the final fput(file) and will take 5504 * care of doing kvm_put_kvm(kvm). 5505 */ 5506 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5507 5508 fd_install(fd, file); 5509 return fd; 5510 5511 put_kvm: 5512 kvm_put_kvm(kvm); 5513 put_fd: 5514 put_unused_fd(fd); 5515 return r; 5516 } 5517 5518 static long kvm_dev_ioctl(struct file *filp, 5519 unsigned int ioctl, unsigned long arg) 5520 { 5521 int r = -EINVAL; 5522 5523 switch (ioctl) { 5524 case KVM_GET_API_VERSION: 5525 if (arg) 5526 goto out; 5527 r = KVM_API_VERSION; 5528 break; 5529 case KVM_CREATE_VM: 5530 r = kvm_dev_ioctl_create_vm(arg); 5531 break; 5532 case KVM_CHECK_EXTENSION: 5533 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5534 break; 5535 case KVM_GET_VCPU_MMAP_SIZE: 5536 if (arg) 5537 goto out; 5538 r = PAGE_SIZE; /* struct kvm_run */ 5539 #ifdef CONFIG_X86 5540 r += PAGE_SIZE; /* pio data page */ 5541 #endif 5542 #ifdef CONFIG_KVM_MMIO 5543 r += PAGE_SIZE; /* coalesced mmio ring page */ 5544 #endif 5545 break; 5546 default: 5547 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5548 } 5549 out: 5550 return r; 5551 } 5552 5553 static struct file_operations kvm_chardev_ops = { 5554 .unlocked_ioctl = kvm_dev_ioctl, 5555 .llseek = noop_llseek, 5556 KVM_COMPAT(kvm_dev_ioctl), 5557 }; 5558 5559 static struct miscdevice kvm_dev = { 5560 KVM_MINOR, 5561 "kvm", 5562 &kvm_chardev_ops, 5563 }; 5564 5565 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5566 static bool enable_virt_at_load = true; 5567 module_param(enable_virt_at_load, bool, 0444); 5568 5569 __visible bool kvm_rebooting; 5570 EXPORT_SYMBOL_GPL(kvm_rebooting); 5571 5572 static DEFINE_PER_CPU(bool, virtualization_enabled); 5573 static DEFINE_MUTEX(kvm_usage_lock); 5574 static int kvm_usage_count; 5575 5576 __weak void kvm_arch_enable_virtualization(void) 5577 { 5578 5579 } 5580 5581 __weak void kvm_arch_disable_virtualization(void) 5582 { 5583 5584 } 5585 5586 static int kvm_enable_virtualization_cpu(void) 5587 { 5588 if (__this_cpu_read(virtualization_enabled)) 5589 return 0; 5590 5591 if (kvm_arch_enable_virtualization_cpu()) { 5592 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5593 raw_smp_processor_id()); 5594 return -EIO; 5595 } 5596 5597 __this_cpu_write(virtualization_enabled, true); 5598 return 0; 5599 } 5600 5601 static int kvm_online_cpu(unsigned int cpu) 5602 { 5603 /* 5604 * Abort the CPU online process if hardware virtualization cannot 5605 * be enabled. Otherwise running VMs would encounter unrecoverable 5606 * errors when scheduled to this CPU. 5607 */ 5608 return kvm_enable_virtualization_cpu(); 5609 } 5610 5611 static void kvm_disable_virtualization_cpu(void *ign) 5612 { 5613 if (!__this_cpu_read(virtualization_enabled)) 5614 return; 5615 5616 kvm_arch_disable_virtualization_cpu(); 5617 5618 __this_cpu_write(virtualization_enabled, false); 5619 } 5620 5621 static int kvm_offline_cpu(unsigned int cpu) 5622 { 5623 kvm_disable_virtualization_cpu(NULL); 5624 return 0; 5625 } 5626 5627 static void kvm_shutdown(void) 5628 { 5629 /* 5630 * Disable hardware virtualization and set kvm_rebooting to indicate 5631 * that KVM has asynchronously disabled hardware virtualization, i.e. 5632 * that relevant errors and exceptions aren't entirely unexpected. 5633 * Some flavors of hardware virtualization need to be disabled before 5634 * transferring control to firmware (to perform shutdown/reboot), e.g. 5635 * on x86, virtualization can block INIT interrupts, which are used by 5636 * firmware to pull APs back under firmware control. Note, this path 5637 * is used for both shutdown and reboot scenarios, i.e. neither name is 5638 * 100% comprehensive. 5639 */ 5640 pr_info("kvm: exiting hardware virtualization\n"); 5641 kvm_rebooting = true; 5642 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); 5643 } 5644 5645 static int kvm_suspend(void) 5646 { 5647 /* 5648 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5649 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5650 * count is stable. Assert that kvm_usage_lock is not held to ensure 5651 * the system isn't suspended while KVM is enabling hardware. Hardware 5652 * enabling can be preempted, but the task cannot be frozen until it has 5653 * dropped all locks (userspace tasks are frozen via a fake signal). 5654 */ 5655 lockdep_assert_not_held(&kvm_usage_lock); 5656 lockdep_assert_irqs_disabled(); 5657 5658 kvm_disable_virtualization_cpu(NULL); 5659 return 0; 5660 } 5661 5662 static void kvm_resume(void) 5663 { 5664 lockdep_assert_not_held(&kvm_usage_lock); 5665 lockdep_assert_irqs_disabled(); 5666 5667 WARN_ON_ONCE(kvm_enable_virtualization_cpu()); 5668 } 5669 5670 static struct syscore_ops kvm_syscore_ops = { 5671 .suspend = kvm_suspend, 5672 .resume = kvm_resume, 5673 .shutdown = kvm_shutdown, 5674 }; 5675 5676 static int kvm_enable_virtualization(void) 5677 { 5678 int r; 5679 5680 guard(mutex)(&kvm_usage_lock); 5681 5682 if (kvm_usage_count++) 5683 return 0; 5684 5685 kvm_arch_enable_virtualization(); 5686 5687 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5688 kvm_online_cpu, kvm_offline_cpu); 5689 if (r) 5690 goto err_cpuhp; 5691 5692 register_syscore_ops(&kvm_syscore_ops); 5693 5694 /* 5695 * Undo virtualization enabling and bail if the system is going down. 5696 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5697 * possible for an in-flight operation to enable virtualization after 5698 * syscore_shutdown() is called, i.e. without kvm_shutdown() being 5699 * invoked. Note, this relies on system_state being set _before_ 5700 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked 5701 * or this CPU observes the impending shutdown. Which is why KVM uses 5702 * a syscore ops hook instead of registering a dedicated reboot 5703 * notifier (the latter runs before system_state is updated). 5704 */ 5705 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5706 system_state == SYSTEM_RESTART) { 5707 r = -EBUSY; 5708 goto err_rebooting; 5709 } 5710 5711 return 0; 5712 5713 err_rebooting: 5714 unregister_syscore_ops(&kvm_syscore_ops); 5715 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5716 err_cpuhp: 5717 kvm_arch_disable_virtualization(); 5718 --kvm_usage_count; 5719 return r; 5720 } 5721 5722 static void kvm_disable_virtualization(void) 5723 { 5724 guard(mutex)(&kvm_usage_lock); 5725 5726 if (--kvm_usage_count) 5727 return; 5728 5729 unregister_syscore_ops(&kvm_syscore_ops); 5730 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5731 kvm_arch_disable_virtualization(); 5732 } 5733 5734 static int kvm_init_virtualization(void) 5735 { 5736 if (enable_virt_at_load) 5737 return kvm_enable_virtualization(); 5738 5739 return 0; 5740 } 5741 5742 static void kvm_uninit_virtualization(void) 5743 { 5744 if (enable_virt_at_load) 5745 kvm_disable_virtualization(); 5746 } 5747 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5748 static int kvm_enable_virtualization(void) 5749 { 5750 return 0; 5751 } 5752 5753 static int kvm_init_virtualization(void) 5754 { 5755 return 0; 5756 } 5757 5758 static void kvm_disable_virtualization(void) 5759 { 5760 5761 } 5762 5763 static void kvm_uninit_virtualization(void) 5764 { 5765 5766 } 5767 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5768 5769 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5770 { 5771 if (dev->ops->destructor) 5772 dev->ops->destructor(dev); 5773 } 5774 5775 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5776 { 5777 int i; 5778 5779 for (i = 0; i < bus->dev_count; i++) { 5780 struct kvm_io_device *pos = bus->range[i].dev; 5781 5782 kvm_iodevice_destructor(pos); 5783 } 5784 kfree(bus); 5785 } 5786 5787 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5788 const struct kvm_io_range *r2) 5789 { 5790 gpa_t addr1 = r1->addr; 5791 gpa_t addr2 = r2->addr; 5792 5793 if (addr1 < addr2) 5794 return -1; 5795 5796 /* If r2->len == 0, match the exact address. If r2->len != 0, 5797 * accept any overlapping write. Any order is acceptable for 5798 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5799 * we process all of them. 5800 */ 5801 if (r2->len) { 5802 addr1 += r1->len; 5803 addr2 += r2->len; 5804 } 5805 5806 if (addr1 > addr2) 5807 return 1; 5808 5809 return 0; 5810 } 5811 5812 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5813 { 5814 return kvm_io_bus_cmp(p1, p2); 5815 } 5816 5817 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5818 gpa_t addr, int len) 5819 { 5820 struct kvm_io_range *range, key; 5821 int off; 5822 5823 key = (struct kvm_io_range) { 5824 .addr = addr, 5825 .len = len, 5826 }; 5827 5828 range = bsearch(&key, bus->range, bus->dev_count, 5829 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5830 if (range == NULL) 5831 return -ENOENT; 5832 5833 off = range - bus->range; 5834 5835 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5836 off--; 5837 5838 return off; 5839 } 5840 5841 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5842 struct kvm_io_range *range, const void *val) 5843 { 5844 int idx; 5845 5846 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5847 if (idx < 0) 5848 return -EOPNOTSUPP; 5849 5850 while (idx < bus->dev_count && 5851 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5852 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5853 range->len, val)) 5854 return idx; 5855 idx++; 5856 } 5857 5858 return -EOPNOTSUPP; 5859 } 5860 5861 /* kvm_io_bus_write - called under kvm->slots_lock */ 5862 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5863 int len, const void *val) 5864 { 5865 struct kvm_io_bus *bus; 5866 struct kvm_io_range range; 5867 int r; 5868 5869 range = (struct kvm_io_range) { 5870 .addr = addr, 5871 .len = len, 5872 }; 5873 5874 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5875 if (!bus) 5876 return -ENOMEM; 5877 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5878 return r < 0 ? r : 0; 5879 } 5880 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5881 5882 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5883 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5884 gpa_t addr, int len, const void *val, long cookie) 5885 { 5886 struct kvm_io_bus *bus; 5887 struct kvm_io_range range; 5888 5889 range = (struct kvm_io_range) { 5890 .addr = addr, 5891 .len = len, 5892 }; 5893 5894 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5895 if (!bus) 5896 return -ENOMEM; 5897 5898 /* First try the device referenced by cookie. */ 5899 if ((cookie >= 0) && (cookie < bus->dev_count) && 5900 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5901 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5902 val)) 5903 return cookie; 5904 5905 /* 5906 * cookie contained garbage; fall back to search and return the 5907 * correct cookie value. 5908 */ 5909 return __kvm_io_bus_write(vcpu, bus, &range, val); 5910 } 5911 5912 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5913 struct kvm_io_range *range, void *val) 5914 { 5915 int idx; 5916 5917 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5918 if (idx < 0) 5919 return -EOPNOTSUPP; 5920 5921 while (idx < bus->dev_count && 5922 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5923 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5924 range->len, val)) 5925 return idx; 5926 idx++; 5927 } 5928 5929 return -EOPNOTSUPP; 5930 } 5931 5932 /* kvm_io_bus_read - called under kvm->slots_lock */ 5933 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5934 int len, void *val) 5935 { 5936 struct kvm_io_bus *bus; 5937 struct kvm_io_range range; 5938 int r; 5939 5940 range = (struct kvm_io_range) { 5941 .addr = addr, 5942 .len = len, 5943 }; 5944 5945 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5946 if (!bus) 5947 return -ENOMEM; 5948 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5949 return r < 0 ? r : 0; 5950 } 5951 5952 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5953 int len, struct kvm_io_device *dev) 5954 { 5955 int i; 5956 struct kvm_io_bus *new_bus, *bus; 5957 struct kvm_io_range range; 5958 5959 lockdep_assert_held(&kvm->slots_lock); 5960 5961 bus = kvm_get_bus(kvm, bus_idx); 5962 if (!bus) 5963 return -ENOMEM; 5964 5965 /* exclude ioeventfd which is limited by maximum fd */ 5966 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5967 return -ENOSPC; 5968 5969 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5970 GFP_KERNEL_ACCOUNT); 5971 if (!new_bus) 5972 return -ENOMEM; 5973 5974 range = (struct kvm_io_range) { 5975 .addr = addr, 5976 .len = len, 5977 .dev = dev, 5978 }; 5979 5980 for (i = 0; i < bus->dev_count; i++) 5981 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5982 break; 5983 5984 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5985 new_bus->dev_count++; 5986 new_bus->range[i] = range; 5987 memcpy(new_bus->range + i + 1, bus->range + i, 5988 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5989 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5990 synchronize_srcu_expedited(&kvm->srcu); 5991 kfree(bus); 5992 5993 return 0; 5994 } 5995 5996 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5997 struct kvm_io_device *dev) 5998 { 5999 int i; 6000 struct kvm_io_bus *new_bus, *bus; 6001 6002 lockdep_assert_held(&kvm->slots_lock); 6003 6004 bus = kvm_get_bus(kvm, bus_idx); 6005 if (!bus) 6006 return 0; 6007 6008 for (i = 0; i < bus->dev_count; i++) { 6009 if (bus->range[i].dev == dev) { 6010 break; 6011 } 6012 } 6013 6014 if (i == bus->dev_count) 6015 return 0; 6016 6017 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6018 GFP_KERNEL_ACCOUNT); 6019 if (new_bus) { 6020 memcpy(new_bus, bus, struct_size(bus, range, i)); 6021 new_bus->dev_count--; 6022 memcpy(new_bus->range + i, bus->range + i + 1, 6023 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6024 } 6025 6026 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6027 synchronize_srcu_expedited(&kvm->srcu); 6028 6029 /* 6030 * If NULL bus is installed, destroy the old bus, including all the 6031 * attached devices. Otherwise, destroy the caller's device only. 6032 */ 6033 if (!new_bus) { 6034 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6035 kvm_io_bus_destroy(bus); 6036 return -ENOMEM; 6037 } 6038 6039 kvm_iodevice_destructor(dev); 6040 kfree(bus); 6041 return 0; 6042 } 6043 6044 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6045 gpa_t addr) 6046 { 6047 struct kvm_io_bus *bus; 6048 int dev_idx, srcu_idx; 6049 struct kvm_io_device *iodev = NULL; 6050 6051 srcu_idx = srcu_read_lock(&kvm->srcu); 6052 6053 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6054 if (!bus) 6055 goto out_unlock; 6056 6057 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6058 if (dev_idx < 0) 6059 goto out_unlock; 6060 6061 iodev = bus->range[dev_idx].dev; 6062 6063 out_unlock: 6064 srcu_read_unlock(&kvm->srcu, srcu_idx); 6065 6066 return iodev; 6067 } 6068 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6069 6070 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6071 int (*get)(void *, u64 *), int (*set)(void *, u64), 6072 const char *fmt) 6073 { 6074 int ret; 6075 struct kvm_stat_data *stat_data = inode->i_private; 6076 6077 /* 6078 * The debugfs files are a reference to the kvm struct which 6079 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6080 * avoids the race between open and the removal of the debugfs directory. 6081 */ 6082 if (!kvm_get_kvm_safe(stat_data->kvm)) 6083 return -ENOENT; 6084 6085 ret = simple_attr_open(inode, file, get, 6086 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6087 ? set : NULL, fmt); 6088 if (ret) 6089 kvm_put_kvm(stat_data->kvm); 6090 6091 return ret; 6092 } 6093 6094 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6095 { 6096 struct kvm_stat_data *stat_data = inode->i_private; 6097 6098 simple_attr_release(inode, file); 6099 kvm_put_kvm(stat_data->kvm); 6100 6101 return 0; 6102 } 6103 6104 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6105 { 6106 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6107 6108 return 0; 6109 } 6110 6111 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6112 { 6113 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6114 6115 return 0; 6116 } 6117 6118 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6119 { 6120 unsigned long i; 6121 struct kvm_vcpu *vcpu; 6122 6123 *val = 0; 6124 6125 kvm_for_each_vcpu(i, vcpu, kvm) 6126 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6127 6128 return 0; 6129 } 6130 6131 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6132 { 6133 unsigned long i; 6134 struct kvm_vcpu *vcpu; 6135 6136 kvm_for_each_vcpu(i, vcpu, kvm) 6137 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6138 6139 return 0; 6140 } 6141 6142 static int kvm_stat_data_get(void *data, u64 *val) 6143 { 6144 int r = -EFAULT; 6145 struct kvm_stat_data *stat_data = data; 6146 6147 switch (stat_data->kind) { 6148 case KVM_STAT_VM: 6149 r = kvm_get_stat_per_vm(stat_data->kvm, 6150 stat_data->desc->desc.offset, val); 6151 break; 6152 case KVM_STAT_VCPU: 6153 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6154 stat_data->desc->desc.offset, val); 6155 break; 6156 } 6157 6158 return r; 6159 } 6160 6161 static int kvm_stat_data_clear(void *data, u64 val) 6162 { 6163 int r = -EFAULT; 6164 struct kvm_stat_data *stat_data = data; 6165 6166 if (val) 6167 return -EINVAL; 6168 6169 switch (stat_data->kind) { 6170 case KVM_STAT_VM: 6171 r = kvm_clear_stat_per_vm(stat_data->kvm, 6172 stat_data->desc->desc.offset); 6173 break; 6174 case KVM_STAT_VCPU: 6175 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6176 stat_data->desc->desc.offset); 6177 break; 6178 } 6179 6180 return r; 6181 } 6182 6183 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6184 { 6185 __simple_attr_check_format("%llu\n", 0ull); 6186 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6187 kvm_stat_data_clear, "%llu\n"); 6188 } 6189 6190 static const struct file_operations stat_fops_per_vm = { 6191 .owner = THIS_MODULE, 6192 .open = kvm_stat_data_open, 6193 .release = kvm_debugfs_release, 6194 .read = simple_attr_read, 6195 .write = simple_attr_write, 6196 }; 6197 6198 static int vm_stat_get(void *_offset, u64 *val) 6199 { 6200 unsigned offset = (long)_offset; 6201 struct kvm *kvm; 6202 u64 tmp_val; 6203 6204 *val = 0; 6205 mutex_lock(&kvm_lock); 6206 list_for_each_entry(kvm, &vm_list, vm_list) { 6207 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6208 *val += tmp_val; 6209 } 6210 mutex_unlock(&kvm_lock); 6211 return 0; 6212 } 6213 6214 static int vm_stat_clear(void *_offset, u64 val) 6215 { 6216 unsigned offset = (long)_offset; 6217 struct kvm *kvm; 6218 6219 if (val) 6220 return -EINVAL; 6221 6222 mutex_lock(&kvm_lock); 6223 list_for_each_entry(kvm, &vm_list, vm_list) { 6224 kvm_clear_stat_per_vm(kvm, offset); 6225 } 6226 mutex_unlock(&kvm_lock); 6227 6228 return 0; 6229 } 6230 6231 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6232 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6233 6234 static int vcpu_stat_get(void *_offset, u64 *val) 6235 { 6236 unsigned offset = (long)_offset; 6237 struct kvm *kvm; 6238 u64 tmp_val; 6239 6240 *val = 0; 6241 mutex_lock(&kvm_lock); 6242 list_for_each_entry(kvm, &vm_list, vm_list) { 6243 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6244 *val += tmp_val; 6245 } 6246 mutex_unlock(&kvm_lock); 6247 return 0; 6248 } 6249 6250 static int vcpu_stat_clear(void *_offset, u64 val) 6251 { 6252 unsigned offset = (long)_offset; 6253 struct kvm *kvm; 6254 6255 if (val) 6256 return -EINVAL; 6257 6258 mutex_lock(&kvm_lock); 6259 list_for_each_entry(kvm, &vm_list, vm_list) { 6260 kvm_clear_stat_per_vcpu(kvm, offset); 6261 } 6262 mutex_unlock(&kvm_lock); 6263 6264 return 0; 6265 } 6266 6267 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6268 "%llu\n"); 6269 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6270 6271 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6272 { 6273 struct kobj_uevent_env *env; 6274 unsigned long long created, active; 6275 6276 if (!kvm_dev.this_device || !kvm) 6277 return; 6278 6279 mutex_lock(&kvm_lock); 6280 if (type == KVM_EVENT_CREATE_VM) { 6281 kvm_createvm_count++; 6282 kvm_active_vms++; 6283 } else if (type == KVM_EVENT_DESTROY_VM) { 6284 kvm_active_vms--; 6285 } 6286 created = kvm_createvm_count; 6287 active = kvm_active_vms; 6288 mutex_unlock(&kvm_lock); 6289 6290 env = kzalloc(sizeof(*env), GFP_KERNEL); 6291 if (!env) 6292 return; 6293 6294 add_uevent_var(env, "CREATED=%llu", created); 6295 add_uevent_var(env, "COUNT=%llu", active); 6296 6297 if (type == KVM_EVENT_CREATE_VM) { 6298 add_uevent_var(env, "EVENT=create"); 6299 kvm->userspace_pid = task_pid_nr(current); 6300 } else if (type == KVM_EVENT_DESTROY_VM) { 6301 add_uevent_var(env, "EVENT=destroy"); 6302 } 6303 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6304 6305 if (!IS_ERR(kvm->debugfs_dentry)) { 6306 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6307 6308 if (p) { 6309 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6310 if (!IS_ERR(tmp)) 6311 add_uevent_var(env, "STATS_PATH=%s", tmp); 6312 kfree(p); 6313 } 6314 } 6315 /* no need for checks, since we are adding at most only 5 keys */ 6316 env->envp[env->envp_idx++] = NULL; 6317 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6318 kfree(env); 6319 } 6320 6321 static void kvm_init_debug(void) 6322 { 6323 const struct file_operations *fops; 6324 const struct _kvm_stats_desc *pdesc; 6325 int i; 6326 6327 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6328 6329 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6330 pdesc = &kvm_vm_stats_desc[i]; 6331 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6332 fops = &vm_stat_fops; 6333 else 6334 fops = &vm_stat_readonly_fops; 6335 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6336 kvm_debugfs_dir, 6337 (void *)(long)pdesc->desc.offset, fops); 6338 } 6339 6340 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6341 pdesc = &kvm_vcpu_stats_desc[i]; 6342 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6343 fops = &vcpu_stat_fops; 6344 else 6345 fops = &vcpu_stat_readonly_fops; 6346 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6347 kvm_debugfs_dir, 6348 (void *)(long)pdesc->desc.offset, fops); 6349 } 6350 } 6351 6352 static inline 6353 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6354 { 6355 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6356 } 6357 6358 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6359 { 6360 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6361 6362 WRITE_ONCE(vcpu->preempted, false); 6363 WRITE_ONCE(vcpu->ready, false); 6364 6365 __this_cpu_write(kvm_running_vcpu, vcpu); 6366 kvm_arch_vcpu_load(vcpu, cpu); 6367 6368 WRITE_ONCE(vcpu->scheduled_out, false); 6369 } 6370 6371 static void kvm_sched_out(struct preempt_notifier *pn, 6372 struct task_struct *next) 6373 { 6374 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6375 6376 WRITE_ONCE(vcpu->scheduled_out, true); 6377 6378 if (task_is_runnable(current) && vcpu->wants_to_run) { 6379 WRITE_ONCE(vcpu->preempted, true); 6380 WRITE_ONCE(vcpu->ready, true); 6381 } 6382 kvm_arch_vcpu_put(vcpu); 6383 __this_cpu_write(kvm_running_vcpu, NULL); 6384 } 6385 6386 /** 6387 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6388 * 6389 * We can disable preemption locally around accessing the per-CPU variable, 6390 * and use the resolved vcpu pointer after enabling preemption again, 6391 * because even if the current thread is migrated to another CPU, reading 6392 * the per-CPU value later will give us the same value as we update the 6393 * per-CPU variable in the preempt notifier handlers. 6394 */ 6395 struct kvm_vcpu *kvm_get_running_vcpu(void) 6396 { 6397 struct kvm_vcpu *vcpu; 6398 6399 preempt_disable(); 6400 vcpu = __this_cpu_read(kvm_running_vcpu); 6401 preempt_enable(); 6402 6403 return vcpu; 6404 } 6405 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6406 6407 /** 6408 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6409 */ 6410 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6411 { 6412 return &kvm_running_vcpu; 6413 } 6414 6415 #ifdef CONFIG_GUEST_PERF_EVENTS 6416 static unsigned int kvm_guest_state(void) 6417 { 6418 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6419 unsigned int state; 6420 6421 if (!kvm_arch_pmi_in_guest(vcpu)) 6422 return 0; 6423 6424 state = PERF_GUEST_ACTIVE; 6425 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6426 state |= PERF_GUEST_USER; 6427 6428 return state; 6429 } 6430 6431 static unsigned long kvm_guest_get_ip(void) 6432 { 6433 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6434 6435 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6436 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6437 return 0; 6438 6439 return kvm_arch_vcpu_get_ip(vcpu); 6440 } 6441 6442 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6443 .state = kvm_guest_state, 6444 .get_ip = kvm_guest_get_ip, 6445 .handle_intel_pt_intr = NULL, 6446 }; 6447 6448 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6449 { 6450 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6451 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6452 } 6453 void kvm_unregister_perf_callbacks(void) 6454 { 6455 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6456 } 6457 #endif 6458 6459 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6460 { 6461 int r; 6462 int cpu; 6463 6464 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6465 if (!vcpu_align) 6466 vcpu_align = __alignof__(struct kvm_vcpu); 6467 kvm_vcpu_cache = 6468 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6469 SLAB_ACCOUNT, 6470 offsetof(struct kvm_vcpu, arch), 6471 offsetofend(struct kvm_vcpu, stats_id) 6472 - offsetof(struct kvm_vcpu, arch), 6473 NULL); 6474 if (!kvm_vcpu_cache) 6475 return -ENOMEM; 6476 6477 for_each_possible_cpu(cpu) { 6478 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6479 GFP_KERNEL, cpu_to_node(cpu))) { 6480 r = -ENOMEM; 6481 goto err_cpu_kick_mask; 6482 } 6483 } 6484 6485 r = kvm_irqfd_init(); 6486 if (r) 6487 goto err_irqfd; 6488 6489 r = kvm_async_pf_init(); 6490 if (r) 6491 goto err_async_pf; 6492 6493 kvm_chardev_ops.owner = module; 6494 kvm_vm_fops.owner = module; 6495 kvm_vcpu_fops.owner = module; 6496 kvm_device_fops.owner = module; 6497 6498 kvm_preempt_ops.sched_in = kvm_sched_in; 6499 kvm_preempt_ops.sched_out = kvm_sched_out; 6500 6501 kvm_init_debug(); 6502 6503 r = kvm_vfio_ops_init(); 6504 if (WARN_ON_ONCE(r)) 6505 goto err_vfio; 6506 6507 kvm_gmem_init(module); 6508 6509 r = kvm_init_virtualization(); 6510 if (r) 6511 goto err_virt; 6512 6513 /* 6514 * Registration _must_ be the very last thing done, as this exposes 6515 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6516 */ 6517 r = misc_register(&kvm_dev); 6518 if (r) { 6519 pr_err("kvm: misc device register failed\n"); 6520 goto err_register; 6521 } 6522 6523 return 0; 6524 6525 err_register: 6526 kvm_uninit_virtualization(); 6527 err_virt: 6528 kvm_vfio_ops_exit(); 6529 err_vfio: 6530 kvm_async_pf_deinit(); 6531 err_async_pf: 6532 kvm_irqfd_exit(); 6533 err_irqfd: 6534 err_cpu_kick_mask: 6535 for_each_possible_cpu(cpu) 6536 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6537 kmem_cache_destroy(kvm_vcpu_cache); 6538 return r; 6539 } 6540 EXPORT_SYMBOL_GPL(kvm_init); 6541 6542 void kvm_exit(void) 6543 { 6544 int cpu; 6545 6546 /* 6547 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6548 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6549 * to KVM while the module is being stopped. 6550 */ 6551 misc_deregister(&kvm_dev); 6552 6553 kvm_uninit_virtualization(); 6554 6555 debugfs_remove_recursive(kvm_debugfs_dir); 6556 for_each_possible_cpu(cpu) 6557 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6558 kmem_cache_destroy(kvm_vcpu_cache); 6559 kvm_vfio_ops_exit(); 6560 kvm_async_pf_deinit(); 6561 kvm_irqfd_exit(); 6562 } 6563 EXPORT_SYMBOL_GPL(kvm_exit); 6564 6565 struct kvm_vm_worker_thread_context { 6566 struct kvm *kvm; 6567 struct task_struct *parent; 6568 struct completion init_done; 6569 kvm_vm_thread_fn_t thread_fn; 6570 uintptr_t data; 6571 int err; 6572 }; 6573 6574 static int kvm_vm_worker_thread(void *context) 6575 { 6576 /* 6577 * The init_context is allocated on the stack of the parent thread, so 6578 * we have to locally copy anything that is needed beyond initialization 6579 */ 6580 struct kvm_vm_worker_thread_context *init_context = context; 6581 struct task_struct *parent; 6582 struct kvm *kvm = init_context->kvm; 6583 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6584 uintptr_t data = init_context->data; 6585 int err; 6586 6587 err = kthread_park(current); 6588 /* kthread_park(current) is never supposed to return an error */ 6589 WARN_ON(err != 0); 6590 if (err) 6591 goto init_complete; 6592 6593 err = cgroup_attach_task_all(init_context->parent, current); 6594 if (err) { 6595 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6596 __func__, err); 6597 goto init_complete; 6598 } 6599 6600 set_user_nice(current, task_nice(init_context->parent)); 6601 6602 init_complete: 6603 init_context->err = err; 6604 complete(&init_context->init_done); 6605 init_context = NULL; 6606 6607 if (err) 6608 goto out; 6609 6610 /* Wait to be woken up by the spawner before proceeding. */ 6611 kthread_parkme(); 6612 6613 if (!kthread_should_stop()) 6614 err = thread_fn(kvm, data); 6615 6616 out: 6617 /* 6618 * Move kthread back to its original cgroup to prevent it lingering in 6619 * the cgroup of the VM process, after the latter finishes its 6620 * execution. 6621 * 6622 * kthread_stop() waits on the 'exited' completion condition which is 6623 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6624 * kthread is removed from the cgroup in the cgroup_exit() which is 6625 * called after the exit_mm(). This causes the kthread_stop() to return 6626 * before the kthread actually quits the cgroup. 6627 */ 6628 rcu_read_lock(); 6629 parent = rcu_dereference(current->real_parent); 6630 get_task_struct(parent); 6631 rcu_read_unlock(); 6632 cgroup_attach_task_all(parent, current); 6633 put_task_struct(parent); 6634 6635 return err; 6636 } 6637 6638 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6639 uintptr_t data, const char *name, 6640 struct task_struct **thread_ptr) 6641 { 6642 struct kvm_vm_worker_thread_context init_context = {}; 6643 struct task_struct *thread; 6644 6645 *thread_ptr = NULL; 6646 init_context.kvm = kvm; 6647 init_context.parent = current; 6648 init_context.thread_fn = thread_fn; 6649 init_context.data = data; 6650 init_completion(&init_context.init_done); 6651 6652 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6653 "%s-%d", name, task_pid_nr(current)); 6654 if (IS_ERR(thread)) 6655 return PTR_ERR(thread); 6656 6657 /* kthread_run is never supposed to return NULL */ 6658 WARN_ON(thread == NULL); 6659 6660 wait_for_completion(&init_context.init_done); 6661 6662 if (!init_context.err) 6663 *thread_ptr = thread; 6664 6665 return init_context.err; 6666 } 6667