1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 159 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end) 162 { 163 } 164 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 166 { 167 /* 168 * The metadata used by is_zone_device_page() to determine whether or 169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 170 * the device has been pinned, e.g. by get_user_pages(). WARN if the 171 * page_count() is zero to help detect bad usage of this helper. 172 */ 173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 174 return false; 175 176 return is_zone_device_page(pfn_to_page(pfn)); 177 } 178 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 180 { 181 /* 182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 183 * perspective they are "normal" pages, albeit with slightly different 184 * usage rules. 185 */ 186 if (pfn_valid(pfn)) 187 return PageReserved(pfn_to_page(pfn)) && 188 !is_zero_pfn(pfn) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 201 __this_cpu_write(kvm_running_vcpu, vcpu); 202 preempt_notifier_register(&vcpu->preempt_notifier); 203 kvm_arch_vcpu_load(vcpu, cpu); 204 put_cpu(); 205 } 206 EXPORT_SYMBOL_GPL(vcpu_load); 207 208 void vcpu_put(struct kvm_vcpu *vcpu) 209 { 210 preempt_disable(); 211 kvm_arch_vcpu_put(vcpu); 212 preempt_notifier_unregister(&vcpu->preempt_notifier); 213 __this_cpu_write(kvm_running_vcpu, NULL); 214 preempt_enable(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_put); 217 218 /* TODO: merge with kvm_arch_vcpu_should_kick */ 219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 220 { 221 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 222 223 /* 224 * We need to wait for the VCPU to reenable interrupts and get out of 225 * READING_SHADOW_PAGE_TABLES mode. 226 */ 227 if (req & KVM_REQUEST_WAIT) 228 return mode != OUTSIDE_GUEST_MODE; 229 230 /* 231 * Need to kick a running VCPU, but otherwise there is nothing to do. 232 */ 233 return mode == IN_GUEST_MODE; 234 } 235 236 static void ack_flush(void *_completed) 237 { 238 } 239 240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 241 { 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu, 250 unsigned int req, struct cpumask *tmp, 251 int current_cpu) 252 { 253 int cpu; 254 255 kvm_make_request(req, vcpu); 256 257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 258 return; 259 260 /* 261 * Note, the vCPU could get migrated to a different pCPU at any point 262 * after kvm_request_needs_ipi(), which could result in sending an IPI 263 * to the previous pCPU. But, that's OK because the purpose of the IPI 264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 266 * after this point is also OK, as the requirement is only that KVM wait 267 * for vCPUs that were reading SPTEs _before_ any changes were 268 * finalized. See kvm_vcpu_kick() for more details on handling requests. 269 */ 270 if (kvm_request_needs_ipi(vcpu, req)) { 271 cpu = READ_ONCE(vcpu->cpu); 272 if (cpu != -1 && cpu != current_cpu) 273 __cpumask_set_cpu(cpu, tmp); 274 } 275 } 276 277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 278 unsigned long *vcpu_bitmap) 279 { 280 struct kvm_vcpu *vcpu; 281 struct cpumask *cpus; 282 int i, me; 283 bool called; 284 285 me = get_cpu(); 286 287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 288 cpumask_clear(cpus); 289 290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 291 vcpu = kvm_get_vcpu(kvm, i); 292 if (!vcpu) 293 continue; 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 295 } 296 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 298 put_cpu(); 299 300 return called; 301 } 302 303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 304 struct kvm_vcpu *except) 305 { 306 struct kvm_vcpu *vcpu; 307 struct cpumask *cpus; 308 unsigned long i; 309 bool called; 310 int me; 311 312 me = get_cpu(); 313 314 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 315 cpumask_clear(cpus); 316 317 kvm_for_each_vcpu(i, vcpu, kvm) { 318 if (vcpu == except) 319 continue; 320 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 321 } 322 323 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 324 put_cpu(); 325 326 return called; 327 } 328 329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 330 { 331 return kvm_make_all_cpus_request_except(kvm, req, NULL); 332 } 333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 334 335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 336 void kvm_flush_remote_tlbs(struct kvm *kvm) 337 { 338 ++kvm->stat.generic.remote_tlb_flush_requests; 339 340 /* 341 * We want to publish modifications to the page tables before reading 342 * mode. Pairs with a memory barrier in arch-specific code. 343 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 344 * and smp_mb in walk_shadow_page_lockless_begin/end. 345 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 346 * 347 * There is already an smp_mb__after_atomic() before 348 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 349 * barrier here. 350 */ 351 if (!kvm_arch_flush_remote_tlb(kvm) 352 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 353 ++kvm->stat.generic.remote_tlb_flush; 354 } 355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 356 #endif 357 358 void kvm_reload_remote_mmus(struct kvm *kvm) 359 { 360 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 361 } 362 363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 365 gfp_t gfp_flags) 366 { 367 gfp_flags |= mc->gfp_zero; 368 369 if (mc->kmem_cache) 370 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 371 else 372 return (void *)__get_free_page(gfp_flags); 373 } 374 375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 376 { 377 void *obj; 378 379 if (mc->nobjs >= min) 380 return 0; 381 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 382 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 383 if (!obj) 384 return mc->nobjs >= min ? 0 : -ENOMEM; 385 mc->objects[mc->nobjs++] = obj; 386 } 387 return 0; 388 } 389 390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 391 { 392 return mc->nobjs; 393 } 394 395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 396 { 397 while (mc->nobjs) { 398 if (mc->kmem_cache) 399 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 400 else 401 free_page((unsigned long)mc->objects[--mc->nobjs]); 402 } 403 } 404 405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 406 { 407 void *p; 408 409 if (WARN_ON(!mc->nobjs)) 410 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 411 else 412 p = mc->objects[--mc->nobjs]; 413 BUG_ON(!p); 414 return p; 415 } 416 #endif 417 418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 419 { 420 mutex_init(&vcpu->mutex); 421 vcpu->cpu = -1; 422 vcpu->kvm = kvm; 423 vcpu->vcpu_id = id; 424 vcpu->pid = NULL; 425 #ifndef __KVM_HAVE_ARCH_WQP 426 rcuwait_init(&vcpu->wait); 427 #endif 428 kvm_async_pf_vcpu_init(vcpu); 429 430 kvm_vcpu_set_in_spin_loop(vcpu, false); 431 kvm_vcpu_set_dy_eligible(vcpu, false); 432 vcpu->preempted = false; 433 vcpu->ready = false; 434 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 435 vcpu->last_used_slot = NULL; 436 } 437 438 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 439 { 440 kvm_dirty_ring_free(&vcpu->dirty_ring); 441 kvm_arch_vcpu_destroy(vcpu); 442 443 /* 444 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 445 * the vcpu->pid pointer, and at destruction time all file descriptors 446 * are already gone. 447 */ 448 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 449 450 free_page((unsigned long)vcpu->run); 451 kmem_cache_free(kvm_vcpu_cache, vcpu); 452 } 453 454 void kvm_destroy_vcpus(struct kvm *kvm) 455 { 456 unsigned long i; 457 struct kvm_vcpu *vcpu; 458 459 kvm_for_each_vcpu(i, vcpu, kvm) { 460 kvm_vcpu_destroy(vcpu); 461 xa_erase(&kvm->vcpu_array, i); 462 } 463 464 atomic_set(&kvm->online_vcpus, 0); 465 } 466 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 467 468 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 469 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 470 { 471 return container_of(mn, struct kvm, mmu_notifier); 472 } 473 474 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 475 struct mm_struct *mm, 476 unsigned long start, unsigned long end) 477 { 478 struct kvm *kvm = mmu_notifier_to_kvm(mn); 479 int idx; 480 481 idx = srcu_read_lock(&kvm->srcu); 482 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 483 srcu_read_unlock(&kvm->srcu, idx); 484 } 485 486 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 487 488 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 489 unsigned long end); 490 491 struct kvm_hva_range { 492 unsigned long start; 493 unsigned long end; 494 pte_t pte; 495 hva_handler_t handler; 496 on_lock_fn_t on_lock; 497 bool flush_on_ret; 498 bool may_block; 499 }; 500 501 /* 502 * Use a dedicated stub instead of NULL to indicate that there is no callback 503 * function/handler. The compiler technically can't guarantee that a real 504 * function will have a non-zero address, and so it will generate code to 505 * check for !NULL, whereas comparing against a stub will be elided at compile 506 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 507 */ 508 static void kvm_null_fn(void) 509 { 510 511 } 512 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 513 514 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 515 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 516 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 517 node; \ 518 node = interval_tree_iter_next(node, start, last)) \ 519 520 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 521 const struct kvm_hva_range *range) 522 { 523 bool ret = false, locked = false; 524 struct kvm_gfn_range gfn_range; 525 struct kvm_memory_slot *slot; 526 struct kvm_memslots *slots; 527 int i, idx; 528 529 if (WARN_ON_ONCE(range->end <= range->start)) 530 return 0; 531 532 /* A null handler is allowed if and only if on_lock() is provided. */ 533 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 534 IS_KVM_NULL_FN(range->handler))) 535 return 0; 536 537 idx = srcu_read_lock(&kvm->srcu); 538 539 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 540 struct interval_tree_node *node; 541 542 slots = __kvm_memslots(kvm, i); 543 kvm_for_each_memslot_in_hva_range(node, slots, 544 range->start, range->end - 1) { 545 unsigned long hva_start, hva_end; 546 547 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 548 hva_start = max(range->start, slot->userspace_addr); 549 hva_end = min(range->end, slot->userspace_addr + 550 (slot->npages << PAGE_SHIFT)); 551 552 /* 553 * To optimize for the likely case where the address 554 * range is covered by zero or one memslots, don't 555 * bother making these conditional (to avoid writes on 556 * the second or later invocation of the handler). 557 */ 558 gfn_range.pte = range->pte; 559 gfn_range.may_block = range->may_block; 560 561 /* 562 * {gfn(page) | page intersects with [hva_start, hva_end)} = 563 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 564 */ 565 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 566 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 567 gfn_range.slot = slot; 568 569 if (!locked) { 570 locked = true; 571 KVM_MMU_LOCK(kvm); 572 if (!IS_KVM_NULL_FN(range->on_lock)) 573 range->on_lock(kvm, range->start, range->end); 574 if (IS_KVM_NULL_FN(range->handler)) 575 break; 576 } 577 ret |= range->handler(kvm, &gfn_range); 578 } 579 } 580 581 if (range->flush_on_ret && ret) 582 kvm_flush_remote_tlbs(kvm); 583 584 if (locked) 585 KVM_MMU_UNLOCK(kvm); 586 587 srcu_read_unlock(&kvm->srcu, idx); 588 589 /* The notifiers are averse to booleans. :-( */ 590 return (int)ret; 591 } 592 593 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 594 unsigned long start, 595 unsigned long end, 596 pte_t pte, 597 hva_handler_t handler) 598 { 599 struct kvm *kvm = mmu_notifier_to_kvm(mn); 600 const struct kvm_hva_range range = { 601 .start = start, 602 .end = end, 603 .pte = pte, 604 .handler = handler, 605 .on_lock = (void *)kvm_null_fn, 606 .flush_on_ret = true, 607 .may_block = false, 608 }; 609 610 return __kvm_handle_hva_range(kvm, &range); 611 } 612 613 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 614 unsigned long start, 615 unsigned long end, 616 hva_handler_t handler) 617 { 618 struct kvm *kvm = mmu_notifier_to_kvm(mn); 619 const struct kvm_hva_range range = { 620 .start = start, 621 .end = end, 622 .pte = __pte(0), 623 .handler = handler, 624 .on_lock = (void *)kvm_null_fn, 625 .flush_on_ret = false, 626 .may_block = false, 627 }; 628 629 return __kvm_handle_hva_range(kvm, &range); 630 } 631 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 632 struct mm_struct *mm, 633 unsigned long address, 634 pte_t pte) 635 { 636 struct kvm *kvm = mmu_notifier_to_kvm(mn); 637 638 trace_kvm_set_spte_hva(address); 639 640 /* 641 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 642 * If mmu_notifier_count is zero, then no in-progress invalidations, 643 * including this one, found a relevant memslot at start(); rechecking 644 * memslots here is unnecessary. Note, a false positive (count elevated 645 * by a different invalidation) is sub-optimal but functionally ok. 646 */ 647 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 648 if (!READ_ONCE(kvm->mmu_notifier_count)) 649 return; 650 651 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 652 } 653 654 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 655 unsigned long end) 656 { 657 /* 658 * The count increase must become visible at unlock time as no 659 * spte can be established without taking the mmu_lock and 660 * count is also read inside the mmu_lock critical section. 661 */ 662 kvm->mmu_notifier_count++; 663 if (likely(kvm->mmu_notifier_count == 1)) { 664 kvm->mmu_notifier_range_start = start; 665 kvm->mmu_notifier_range_end = end; 666 } else { 667 /* 668 * Fully tracking multiple concurrent ranges has dimishing 669 * returns. Keep things simple and just find the minimal range 670 * which includes the current and new ranges. As there won't be 671 * enough information to subtract a range after its invalidate 672 * completes, any ranges invalidated concurrently will 673 * accumulate and persist until all outstanding invalidates 674 * complete. 675 */ 676 kvm->mmu_notifier_range_start = 677 min(kvm->mmu_notifier_range_start, start); 678 kvm->mmu_notifier_range_end = 679 max(kvm->mmu_notifier_range_end, end); 680 } 681 } 682 683 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 684 const struct mmu_notifier_range *range) 685 { 686 struct kvm *kvm = mmu_notifier_to_kvm(mn); 687 const struct kvm_hva_range hva_range = { 688 .start = range->start, 689 .end = range->end, 690 .pte = __pte(0), 691 .handler = kvm_unmap_gfn_range, 692 .on_lock = kvm_inc_notifier_count, 693 .flush_on_ret = true, 694 .may_block = mmu_notifier_range_blockable(range), 695 }; 696 697 trace_kvm_unmap_hva_range(range->start, range->end); 698 699 /* 700 * Prevent memslot modification between range_start() and range_end() 701 * so that conditionally locking provides the same result in both 702 * functions. Without that guarantee, the mmu_notifier_count 703 * adjustments will be imbalanced. 704 * 705 * Pairs with the decrement in range_end(). 706 */ 707 spin_lock(&kvm->mn_invalidate_lock); 708 kvm->mn_active_invalidate_count++; 709 spin_unlock(&kvm->mn_invalidate_lock); 710 711 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 712 hva_range.may_block); 713 714 __kvm_handle_hva_range(kvm, &hva_range); 715 716 return 0; 717 } 718 719 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 720 unsigned long end) 721 { 722 /* 723 * This sequence increase will notify the kvm page fault that 724 * the page that is going to be mapped in the spte could have 725 * been freed. 726 */ 727 kvm->mmu_notifier_seq++; 728 smp_wmb(); 729 /* 730 * The above sequence increase must be visible before the 731 * below count decrease, which is ensured by the smp_wmb above 732 * in conjunction with the smp_rmb in mmu_notifier_retry(). 733 */ 734 kvm->mmu_notifier_count--; 735 } 736 737 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 738 const struct mmu_notifier_range *range) 739 { 740 struct kvm *kvm = mmu_notifier_to_kvm(mn); 741 const struct kvm_hva_range hva_range = { 742 .start = range->start, 743 .end = range->end, 744 .pte = __pte(0), 745 .handler = (void *)kvm_null_fn, 746 .on_lock = kvm_dec_notifier_count, 747 .flush_on_ret = false, 748 .may_block = mmu_notifier_range_blockable(range), 749 }; 750 bool wake; 751 752 __kvm_handle_hva_range(kvm, &hva_range); 753 754 /* Pairs with the increment in range_start(). */ 755 spin_lock(&kvm->mn_invalidate_lock); 756 wake = (--kvm->mn_active_invalidate_count == 0); 757 spin_unlock(&kvm->mn_invalidate_lock); 758 759 /* 760 * There can only be one waiter, since the wait happens under 761 * slots_lock. 762 */ 763 if (wake) 764 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 765 766 BUG_ON(kvm->mmu_notifier_count < 0); 767 } 768 769 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 770 struct mm_struct *mm, 771 unsigned long start, 772 unsigned long end) 773 { 774 trace_kvm_age_hva(start, end); 775 776 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 777 } 778 779 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 780 struct mm_struct *mm, 781 unsigned long start, 782 unsigned long end) 783 { 784 trace_kvm_age_hva(start, end); 785 786 /* 787 * Even though we do not flush TLB, this will still adversely 788 * affect performance on pre-Haswell Intel EPT, where there is 789 * no EPT Access Bit to clear so that we have to tear down EPT 790 * tables instead. If we find this unacceptable, we can always 791 * add a parameter to kvm_age_hva so that it effectively doesn't 792 * do anything on clear_young. 793 * 794 * Also note that currently we never issue secondary TLB flushes 795 * from clear_young, leaving this job up to the regular system 796 * cadence. If we find this inaccurate, we might come up with a 797 * more sophisticated heuristic later. 798 */ 799 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 800 } 801 802 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 803 struct mm_struct *mm, 804 unsigned long address) 805 { 806 trace_kvm_test_age_hva(address); 807 808 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 809 kvm_test_age_gfn); 810 } 811 812 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 813 struct mm_struct *mm) 814 { 815 struct kvm *kvm = mmu_notifier_to_kvm(mn); 816 int idx; 817 818 idx = srcu_read_lock(&kvm->srcu); 819 kvm_arch_flush_shadow_all(kvm); 820 srcu_read_unlock(&kvm->srcu, idx); 821 } 822 823 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 824 .invalidate_range = kvm_mmu_notifier_invalidate_range, 825 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 826 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 827 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 828 .clear_young = kvm_mmu_notifier_clear_young, 829 .test_young = kvm_mmu_notifier_test_young, 830 .change_pte = kvm_mmu_notifier_change_pte, 831 .release = kvm_mmu_notifier_release, 832 }; 833 834 static int kvm_init_mmu_notifier(struct kvm *kvm) 835 { 836 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 837 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 838 } 839 840 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 841 842 static int kvm_init_mmu_notifier(struct kvm *kvm) 843 { 844 return 0; 845 } 846 847 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 848 849 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 850 static int kvm_pm_notifier_call(struct notifier_block *bl, 851 unsigned long state, 852 void *unused) 853 { 854 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 855 856 return kvm_arch_pm_notifier(kvm, state); 857 } 858 859 static void kvm_init_pm_notifier(struct kvm *kvm) 860 { 861 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 862 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 863 kvm->pm_notifier.priority = INT_MAX; 864 register_pm_notifier(&kvm->pm_notifier); 865 } 866 867 static void kvm_destroy_pm_notifier(struct kvm *kvm) 868 { 869 unregister_pm_notifier(&kvm->pm_notifier); 870 } 871 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 872 static void kvm_init_pm_notifier(struct kvm *kvm) 873 { 874 } 875 876 static void kvm_destroy_pm_notifier(struct kvm *kvm) 877 { 878 } 879 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 880 881 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 882 { 883 if (!memslot->dirty_bitmap) 884 return; 885 886 kvfree(memslot->dirty_bitmap); 887 memslot->dirty_bitmap = NULL; 888 } 889 890 /* This does not remove the slot from struct kvm_memslots data structures */ 891 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 892 { 893 kvm_destroy_dirty_bitmap(slot); 894 895 kvm_arch_free_memslot(kvm, slot); 896 897 kfree(slot); 898 } 899 900 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 901 { 902 struct hlist_node *idnode; 903 struct kvm_memory_slot *memslot; 904 int bkt; 905 906 /* 907 * The same memslot objects live in both active and inactive sets, 908 * arbitrarily free using index '1' so the second invocation of this 909 * function isn't operating over a structure with dangling pointers 910 * (even though this function isn't actually touching them). 911 */ 912 if (!slots->node_idx) 913 return; 914 915 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 916 kvm_free_memslot(kvm, memslot); 917 } 918 919 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 920 { 921 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 922 case KVM_STATS_TYPE_INSTANT: 923 return 0444; 924 case KVM_STATS_TYPE_CUMULATIVE: 925 case KVM_STATS_TYPE_PEAK: 926 default: 927 return 0644; 928 } 929 } 930 931 932 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 933 { 934 int i; 935 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 936 kvm_vcpu_stats_header.num_desc; 937 938 if (!kvm->debugfs_dentry) 939 return; 940 941 debugfs_remove_recursive(kvm->debugfs_dentry); 942 943 if (kvm->debugfs_stat_data) { 944 for (i = 0; i < kvm_debugfs_num_entries; i++) 945 kfree(kvm->debugfs_stat_data[i]); 946 kfree(kvm->debugfs_stat_data); 947 } 948 } 949 950 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 951 { 952 static DEFINE_MUTEX(kvm_debugfs_lock); 953 struct dentry *dent; 954 char dir_name[ITOA_MAX_LEN * 2]; 955 struct kvm_stat_data *stat_data; 956 const struct _kvm_stats_desc *pdesc; 957 int i, ret; 958 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 959 kvm_vcpu_stats_header.num_desc; 960 961 if (!debugfs_initialized()) 962 return 0; 963 964 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 965 mutex_lock(&kvm_debugfs_lock); 966 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 967 if (dent) { 968 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 969 dput(dent); 970 mutex_unlock(&kvm_debugfs_lock); 971 return 0; 972 } 973 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 974 mutex_unlock(&kvm_debugfs_lock); 975 if (IS_ERR(dent)) 976 return 0; 977 978 kvm->debugfs_dentry = dent; 979 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 980 sizeof(*kvm->debugfs_stat_data), 981 GFP_KERNEL_ACCOUNT); 982 if (!kvm->debugfs_stat_data) 983 return -ENOMEM; 984 985 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 986 pdesc = &kvm_vm_stats_desc[i]; 987 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 988 if (!stat_data) 989 return -ENOMEM; 990 991 stat_data->kvm = kvm; 992 stat_data->desc = pdesc; 993 stat_data->kind = KVM_STAT_VM; 994 kvm->debugfs_stat_data[i] = stat_data; 995 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 996 kvm->debugfs_dentry, stat_data, 997 &stat_fops_per_vm); 998 } 999 1000 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1001 pdesc = &kvm_vcpu_stats_desc[i]; 1002 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1003 if (!stat_data) 1004 return -ENOMEM; 1005 1006 stat_data->kvm = kvm; 1007 stat_data->desc = pdesc; 1008 stat_data->kind = KVM_STAT_VCPU; 1009 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1010 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1011 kvm->debugfs_dentry, stat_data, 1012 &stat_fops_per_vm); 1013 } 1014 1015 ret = kvm_arch_create_vm_debugfs(kvm); 1016 if (ret) { 1017 kvm_destroy_vm_debugfs(kvm); 1018 return i; 1019 } 1020 1021 return 0; 1022 } 1023 1024 /* 1025 * Called after the VM is otherwise initialized, but just before adding it to 1026 * the vm_list. 1027 */ 1028 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1029 { 1030 return 0; 1031 } 1032 1033 /* 1034 * Called just after removing the VM from the vm_list, but before doing any 1035 * other destruction. 1036 */ 1037 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1038 { 1039 } 1040 1041 /* 1042 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1043 * be setup already, so we can create arch-specific debugfs entries under it. 1044 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1045 * a per-arch destroy interface is not needed. 1046 */ 1047 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1048 { 1049 return 0; 1050 } 1051 1052 static struct kvm *kvm_create_vm(unsigned long type) 1053 { 1054 struct kvm *kvm = kvm_arch_alloc_vm(); 1055 struct kvm_memslots *slots; 1056 int r = -ENOMEM; 1057 int i, j; 1058 1059 if (!kvm) 1060 return ERR_PTR(-ENOMEM); 1061 1062 KVM_MMU_LOCK_INIT(kvm); 1063 mmgrab(current->mm); 1064 kvm->mm = current->mm; 1065 kvm_eventfd_init(kvm); 1066 mutex_init(&kvm->lock); 1067 mutex_init(&kvm->irq_lock); 1068 mutex_init(&kvm->slots_lock); 1069 mutex_init(&kvm->slots_arch_lock); 1070 spin_lock_init(&kvm->mn_invalidate_lock); 1071 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1072 xa_init(&kvm->vcpu_array); 1073 1074 INIT_LIST_HEAD(&kvm->gpc_list); 1075 spin_lock_init(&kvm->gpc_lock); 1076 1077 INIT_LIST_HEAD(&kvm->devices); 1078 1079 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1080 1081 if (init_srcu_struct(&kvm->srcu)) 1082 goto out_err_no_srcu; 1083 if (init_srcu_struct(&kvm->irq_srcu)) 1084 goto out_err_no_irq_srcu; 1085 1086 refcount_set(&kvm->users_count, 1); 1087 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1088 for (j = 0; j < 2; j++) { 1089 slots = &kvm->__memslots[i][j]; 1090 1091 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1092 slots->hva_tree = RB_ROOT_CACHED; 1093 slots->gfn_tree = RB_ROOT; 1094 hash_init(slots->id_hash); 1095 slots->node_idx = j; 1096 1097 /* Generations must be different for each address space. */ 1098 slots->generation = i; 1099 } 1100 1101 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1102 } 1103 1104 for (i = 0; i < KVM_NR_BUSES; i++) { 1105 rcu_assign_pointer(kvm->buses[i], 1106 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1107 if (!kvm->buses[i]) 1108 goto out_err_no_arch_destroy_vm; 1109 } 1110 1111 kvm->max_halt_poll_ns = halt_poll_ns; 1112 1113 r = kvm_arch_init_vm(kvm, type); 1114 if (r) 1115 goto out_err_no_arch_destroy_vm; 1116 1117 r = hardware_enable_all(); 1118 if (r) 1119 goto out_err_no_disable; 1120 1121 #ifdef CONFIG_HAVE_KVM_IRQFD 1122 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1123 #endif 1124 1125 r = kvm_init_mmu_notifier(kvm); 1126 if (r) 1127 goto out_err_no_mmu_notifier; 1128 1129 r = kvm_arch_post_init_vm(kvm); 1130 if (r) 1131 goto out_err; 1132 1133 mutex_lock(&kvm_lock); 1134 list_add(&kvm->vm_list, &vm_list); 1135 mutex_unlock(&kvm_lock); 1136 1137 preempt_notifier_inc(); 1138 kvm_init_pm_notifier(kvm); 1139 1140 return kvm; 1141 1142 out_err: 1143 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1144 if (kvm->mmu_notifier.ops) 1145 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1146 #endif 1147 out_err_no_mmu_notifier: 1148 hardware_disable_all(); 1149 out_err_no_disable: 1150 kvm_arch_destroy_vm(kvm); 1151 out_err_no_arch_destroy_vm: 1152 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1153 for (i = 0; i < KVM_NR_BUSES; i++) 1154 kfree(kvm_get_bus(kvm, i)); 1155 cleanup_srcu_struct(&kvm->irq_srcu); 1156 out_err_no_irq_srcu: 1157 cleanup_srcu_struct(&kvm->srcu); 1158 out_err_no_srcu: 1159 kvm_arch_free_vm(kvm); 1160 mmdrop(current->mm); 1161 return ERR_PTR(r); 1162 } 1163 1164 static void kvm_destroy_devices(struct kvm *kvm) 1165 { 1166 struct kvm_device *dev, *tmp; 1167 1168 /* 1169 * We do not need to take the kvm->lock here, because nobody else 1170 * has a reference to the struct kvm at this point and therefore 1171 * cannot access the devices list anyhow. 1172 */ 1173 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1174 list_del(&dev->vm_node); 1175 dev->ops->destroy(dev); 1176 } 1177 } 1178 1179 static void kvm_destroy_vm(struct kvm *kvm) 1180 { 1181 int i; 1182 struct mm_struct *mm = kvm->mm; 1183 1184 kvm_destroy_pm_notifier(kvm); 1185 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1186 kvm_destroy_vm_debugfs(kvm); 1187 kvm_arch_sync_events(kvm); 1188 mutex_lock(&kvm_lock); 1189 list_del(&kvm->vm_list); 1190 mutex_unlock(&kvm_lock); 1191 kvm_arch_pre_destroy_vm(kvm); 1192 1193 kvm_free_irq_routing(kvm); 1194 for (i = 0; i < KVM_NR_BUSES; i++) { 1195 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1196 1197 if (bus) 1198 kvm_io_bus_destroy(bus); 1199 kvm->buses[i] = NULL; 1200 } 1201 kvm_coalesced_mmio_free(kvm); 1202 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1203 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1204 /* 1205 * At this point, pending calls to invalidate_range_start() 1206 * have completed but no more MMU notifiers will run, so 1207 * mn_active_invalidate_count may remain unbalanced. 1208 * No threads can be waiting in install_new_memslots as the 1209 * last reference on KVM has been dropped, but freeing 1210 * memslots would deadlock without this manual intervention. 1211 */ 1212 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1213 kvm->mn_active_invalidate_count = 0; 1214 #else 1215 kvm_arch_flush_shadow_all(kvm); 1216 #endif 1217 kvm_arch_destroy_vm(kvm); 1218 kvm_destroy_devices(kvm); 1219 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1220 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1221 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1222 } 1223 cleanup_srcu_struct(&kvm->irq_srcu); 1224 cleanup_srcu_struct(&kvm->srcu); 1225 kvm_arch_free_vm(kvm); 1226 preempt_notifier_dec(); 1227 hardware_disable_all(); 1228 mmdrop(mm); 1229 } 1230 1231 void kvm_get_kvm(struct kvm *kvm) 1232 { 1233 refcount_inc(&kvm->users_count); 1234 } 1235 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1236 1237 /* 1238 * Make sure the vm is not during destruction, which is a safe version of 1239 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1240 */ 1241 bool kvm_get_kvm_safe(struct kvm *kvm) 1242 { 1243 return refcount_inc_not_zero(&kvm->users_count); 1244 } 1245 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1246 1247 void kvm_put_kvm(struct kvm *kvm) 1248 { 1249 if (refcount_dec_and_test(&kvm->users_count)) 1250 kvm_destroy_vm(kvm); 1251 } 1252 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1253 1254 /* 1255 * Used to put a reference that was taken on behalf of an object associated 1256 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1257 * of the new file descriptor fails and the reference cannot be transferred to 1258 * its final owner. In such cases, the caller is still actively using @kvm and 1259 * will fail miserably if the refcount unexpectedly hits zero. 1260 */ 1261 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1262 { 1263 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1264 } 1265 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1266 1267 static int kvm_vm_release(struct inode *inode, struct file *filp) 1268 { 1269 struct kvm *kvm = filp->private_data; 1270 1271 kvm_irqfd_release(kvm); 1272 1273 kvm_put_kvm(kvm); 1274 return 0; 1275 } 1276 1277 /* 1278 * Allocation size is twice as large as the actual dirty bitmap size. 1279 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1280 */ 1281 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1282 { 1283 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1284 1285 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1286 if (!memslot->dirty_bitmap) 1287 return -ENOMEM; 1288 1289 return 0; 1290 } 1291 1292 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1293 { 1294 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1295 int node_idx_inactive = active->node_idx ^ 1; 1296 1297 return &kvm->__memslots[as_id][node_idx_inactive]; 1298 } 1299 1300 /* 1301 * Helper to get the address space ID when one of memslot pointers may be NULL. 1302 * This also serves as a sanity that at least one of the pointers is non-NULL, 1303 * and that their address space IDs don't diverge. 1304 */ 1305 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1306 struct kvm_memory_slot *b) 1307 { 1308 if (WARN_ON_ONCE(!a && !b)) 1309 return 0; 1310 1311 if (!a) 1312 return b->as_id; 1313 if (!b) 1314 return a->as_id; 1315 1316 WARN_ON_ONCE(a->as_id != b->as_id); 1317 return a->as_id; 1318 } 1319 1320 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1321 struct kvm_memory_slot *slot) 1322 { 1323 struct rb_root *gfn_tree = &slots->gfn_tree; 1324 struct rb_node **node, *parent; 1325 int idx = slots->node_idx; 1326 1327 parent = NULL; 1328 for (node = &gfn_tree->rb_node; *node; ) { 1329 struct kvm_memory_slot *tmp; 1330 1331 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1332 parent = *node; 1333 if (slot->base_gfn < tmp->base_gfn) 1334 node = &(*node)->rb_left; 1335 else if (slot->base_gfn > tmp->base_gfn) 1336 node = &(*node)->rb_right; 1337 else 1338 BUG(); 1339 } 1340 1341 rb_link_node(&slot->gfn_node[idx], parent, node); 1342 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1343 } 1344 1345 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1346 struct kvm_memory_slot *slot) 1347 { 1348 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1349 } 1350 1351 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1352 struct kvm_memory_slot *old, 1353 struct kvm_memory_slot *new) 1354 { 1355 int idx = slots->node_idx; 1356 1357 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1358 1359 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1360 &slots->gfn_tree); 1361 } 1362 1363 /* 1364 * Replace @old with @new in the inactive memslots. 1365 * 1366 * With NULL @old this simply adds @new. 1367 * With NULL @new this simply removes @old. 1368 * 1369 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1370 * appropriately. 1371 */ 1372 static void kvm_replace_memslot(struct kvm *kvm, 1373 struct kvm_memory_slot *old, 1374 struct kvm_memory_slot *new) 1375 { 1376 int as_id = kvm_memslots_get_as_id(old, new); 1377 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1378 int idx = slots->node_idx; 1379 1380 if (old) { 1381 hash_del(&old->id_node[idx]); 1382 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1383 1384 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1385 atomic_long_set(&slots->last_used_slot, (long)new); 1386 1387 if (!new) { 1388 kvm_erase_gfn_node(slots, old); 1389 return; 1390 } 1391 } 1392 1393 /* 1394 * Initialize @new's hva range. Do this even when replacing an @old 1395 * slot, kvm_copy_memslot() deliberately does not touch node data. 1396 */ 1397 new->hva_node[idx].start = new->userspace_addr; 1398 new->hva_node[idx].last = new->userspace_addr + 1399 (new->npages << PAGE_SHIFT) - 1; 1400 1401 /* 1402 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1403 * hva_node needs to be swapped with remove+insert even though hva can't 1404 * change when replacing an existing slot. 1405 */ 1406 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1407 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1408 1409 /* 1410 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1411 * switch the node in the gfn tree instead of removing the old and 1412 * inserting the new as two separate operations. Replacement is a 1413 * single O(1) operation versus two O(log(n)) operations for 1414 * remove+insert. 1415 */ 1416 if (old && old->base_gfn == new->base_gfn) { 1417 kvm_replace_gfn_node(slots, old, new); 1418 } else { 1419 if (old) 1420 kvm_erase_gfn_node(slots, old); 1421 kvm_insert_gfn_node(slots, new); 1422 } 1423 } 1424 1425 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1426 { 1427 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1428 1429 #ifdef __KVM_HAVE_READONLY_MEM 1430 valid_flags |= KVM_MEM_READONLY; 1431 #endif 1432 1433 if (mem->flags & ~valid_flags) 1434 return -EINVAL; 1435 1436 return 0; 1437 } 1438 1439 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1440 { 1441 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1442 1443 /* Grab the generation from the activate memslots. */ 1444 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1445 1446 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1447 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1448 1449 /* 1450 * Do not store the new memslots while there are invalidations in 1451 * progress, otherwise the locking in invalidate_range_start and 1452 * invalidate_range_end will be unbalanced. 1453 */ 1454 spin_lock(&kvm->mn_invalidate_lock); 1455 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1456 while (kvm->mn_active_invalidate_count) { 1457 set_current_state(TASK_UNINTERRUPTIBLE); 1458 spin_unlock(&kvm->mn_invalidate_lock); 1459 schedule(); 1460 spin_lock(&kvm->mn_invalidate_lock); 1461 } 1462 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1463 rcu_assign_pointer(kvm->memslots[as_id], slots); 1464 spin_unlock(&kvm->mn_invalidate_lock); 1465 1466 /* 1467 * Acquired in kvm_set_memslot. Must be released before synchronize 1468 * SRCU below in order to avoid deadlock with another thread 1469 * acquiring the slots_arch_lock in an srcu critical section. 1470 */ 1471 mutex_unlock(&kvm->slots_arch_lock); 1472 1473 synchronize_srcu_expedited(&kvm->srcu); 1474 1475 /* 1476 * Increment the new memslot generation a second time, dropping the 1477 * update in-progress flag and incrementing the generation based on 1478 * the number of address spaces. This provides a unique and easily 1479 * identifiable generation number while the memslots are in flux. 1480 */ 1481 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1482 1483 /* 1484 * Generations must be unique even across address spaces. We do not need 1485 * a global counter for that, instead the generation space is evenly split 1486 * across address spaces. For example, with two address spaces, address 1487 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1488 * use generations 1, 3, 5, ... 1489 */ 1490 gen += KVM_ADDRESS_SPACE_NUM; 1491 1492 kvm_arch_memslots_updated(kvm, gen); 1493 1494 slots->generation = gen; 1495 } 1496 1497 static int kvm_prepare_memory_region(struct kvm *kvm, 1498 const struct kvm_memory_slot *old, 1499 struct kvm_memory_slot *new, 1500 enum kvm_mr_change change) 1501 { 1502 int r; 1503 1504 /* 1505 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1506 * will be freed on "commit". If logging is enabled in both old and 1507 * new, reuse the existing bitmap. If logging is enabled only in the 1508 * new and KVM isn't using a ring buffer, allocate and initialize a 1509 * new bitmap. 1510 */ 1511 if (change != KVM_MR_DELETE) { 1512 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1513 new->dirty_bitmap = NULL; 1514 else if (old && old->dirty_bitmap) 1515 new->dirty_bitmap = old->dirty_bitmap; 1516 else if (!kvm->dirty_ring_size) { 1517 r = kvm_alloc_dirty_bitmap(new); 1518 if (r) 1519 return r; 1520 1521 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1522 bitmap_set(new->dirty_bitmap, 0, new->npages); 1523 } 1524 } 1525 1526 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1527 1528 /* Free the bitmap on failure if it was allocated above. */ 1529 if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap) 1530 kvm_destroy_dirty_bitmap(new); 1531 1532 return r; 1533 } 1534 1535 static void kvm_commit_memory_region(struct kvm *kvm, 1536 struct kvm_memory_slot *old, 1537 const struct kvm_memory_slot *new, 1538 enum kvm_mr_change change) 1539 { 1540 /* 1541 * Update the total number of memslot pages before calling the arch 1542 * hook so that architectures can consume the result directly. 1543 */ 1544 if (change == KVM_MR_DELETE) 1545 kvm->nr_memslot_pages -= old->npages; 1546 else if (change == KVM_MR_CREATE) 1547 kvm->nr_memslot_pages += new->npages; 1548 1549 kvm_arch_commit_memory_region(kvm, old, new, change); 1550 1551 switch (change) { 1552 case KVM_MR_CREATE: 1553 /* Nothing more to do. */ 1554 break; 1555 case KVM_MR_DELETE: 1556 /* Free the old memslot and all its metadata. */ 1557 kvm_free_memslot(kvm, old); 1558 break; 1559 case KVM_MR_MOVE: 1560 case KVM_MR_FLAGS_ONLY: 1561 /* 1562 * Free the dirty bitmap as needed; the below check encompasses 1563 * both the flags and whether a ring buffer is being used) 1564 */ 1565 if (old->dirty_bitmap && !new->dirty_bitmap) 1566 kvm_destroy_dirty_bitmap(old); 1567 1568 /* 1569 * The final quirk. Free the detached, old slot, but only its 1570 * memory, not any metadata. Metadata, including arch specific 1571 * data, may be reused by @new. 1572 */ 1573 kfree(old); 1574 break; 1575 default: 1576 BUG(); 1577 } 1578 } 1579 1580 /* 1581 * Activate @new, which must be installed in the inactive slots by the caller, 1582 * by swapping the active slots and then propagating @new to @old once @old is 1583 * unreachable and can be safely modified. 1584 * 1585 * With NULL @old this simply adds @new to @active (while swapping the sets). 1586 * With NULL @new this simply removes @old from @active and frees it 1587 * (while also swapping the sets). 1588 */ 1589 static void kvm_activate_memslot(struct kvm *kvm, 1590 struct kvm_memory_slot *old, 1591 struct kvm_memory_slot *new) 1592 { 1593 int as_id = kvm_memslots_get_as_id(old, new); 1594 1595 kvm_swap_active_memslots(kvm, as_id); 1596 1597 /* Propagate the new memslot to the now inactive memslots. */ 1598 kvm_replace_memslot(kvm, old, new); 1599 } 1600 1601 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1602 const struct kvm_memory_slot *src) 1603 { 1604 dest->base_gfn = src->base_gfn; 1605 dest->npages = src->npages; 1606 dest->dirty_bitmap = src->dirty_bitmap; 1607 dest->arch = src->arch; 1608 dest->userspace_addr = src->userspace_addr; 1609 dest->flags = src->flags; 1610 dest->id = src->id; 1611 dest->as_id = src->as_id; 1612 } 1613 1614 static void kvm_invalidate_memslot(struct kvm *kvm, 1615 struct kvm_memory_slot *old, 1616 struct kvm_memory_slot *invalid_slot) 1617 { 1618 /* 1619 * Mark the current slot INVALID. As with all memslot modifications, 1620 * this must be done on an unreachable slot to avoid modifying the 1621 * current slot in the active tree. 1622 */ 1623 kvm_copy_memslot(invalid_slot, old); 1624 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1625 kvm_replace_memslot(kvm, old, invalid_slot); 1626 1627 /* 1628 * Activate the slot that is now marked INVALID, but don't propagate 1629 * the slot to the now inactive slots. The slot is either going to be 1630 * deleted or recreated as a new slot. 1631 */ 1632 kvm_swap_active_memslots(kvm, old->as_id); 1633 1634 /* 1635 * From this point no new shadow pages pointing to a deleted, or moved, 1636 * memslot will be created. Validation of sp->gfn happens in: 1637 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1638 * - kvm_is_visible_gfn (mmu_check_root) 1639 */ 1640 kvm_arch_flush_shadow_memslot(kvm, old); 1641 1642 /* Was released by kvm_swap_active_memslots, reacquire. */ 1643 mutex_lock(&kvm->slots_arch_lock); 1644 1645 /* 1646 * Copy the arch-specific field of the newly-installed slot back to the 1647 * old slot as the arch data could have changed between releasing 1648 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1649 * above. Writers are required to retrieve memslots *after* acquiring 1650 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1651 */ 1652 old->arch = invalid_slot->arch; 1653 } 1654 1655 static void kvm_create_memslot(struct kvm *kvm, 1656 struct kvm_memory_slot *new) 1657 { 1658 /* Add the new memslot to the inactive set and activate. */ 1659 kvm_replace_memslot(kvm, NULL, new); 1660 kvm_activate_memslot(kvm, NULL, new); 1661 } 1662 1663 static void kvm_delete_memslot(struct kvm *kvm, 1664 struct kvm_memory_slot *old, 1665 struct kvm_memory_slot *invalid_slot) 1666 { 1667 /* 1668 * Remove the old memslot (in the inactive memslots) by passing NULL as 1669 * the "new" slot, and for the invalid version in the active slots. 1670 */ 1671 kvm_replace_memslot(kvm, old, NULL); 1672 kvm_activate_memslot(kvm, invalid_slot, NULL); 1673 } 1674 1675 static void kvm_move_memslot(struct kvm *kvm, 1676 struct kvm_memory_slot *old, 1677 struct kvm_memory_slot *new, 1678 struct kvm_memory_slot *invalid_slot) 1679 { 1680 /* 1681 * Replace the old memslot in the inactive slots, and then swap slots 1682 * and replace the current INVALID with the new as well. 1683 */ 1684 kvm_replace_memslot(kvm, old, new); 1685 kvm_activate_memslot(kvm, invalid_slot, new); 1686 } 1687 1688 static void kvm_update_flags_memslot(struct kvm *kvm, 1689 struct kvm_memory_slot *old, 1690 struct kvm_memory_slot *new) 1691 { 1692 /* 1693 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1694 * an intermediate step. Instead, the old memslot is simply replaced 1695 * with a new, updated copy in both memslot sets. 1696 */ 1697 kvm_replace_memslot(kvm, old, new); 1698 kvm_activate_memslot(kvm, old, new); 1699 } 1700 1701 static int kvm_set_memslot(struct kvm *kvm, 1702 struct kvm_memory_slot *old, 1703 struct kvm_memory_slot *new, 1704 enum kvm_mr_change change) 1705 { 1706 struct kvm_memory_slot *invalid_slot; 1707 int r; 1708 1709 /* 1710 * Released in kvm_swap_active_memslots. 1711 * 1712 * Must be held from before the current memslots are copied until 1713 * after the new memslots are installed with rcu_assign_pointer, 1714 * then released before the synchronize srcu in kvm_swap_active_memslots. 1715 * 1716 * When modifying memslots outside of the slots_lock, must be held 1717 * before reading the pointer to the current memslots until after all 1718 * changes to those memslots are complete. 1719 * 1720 * These rules ensure that installing new memslots does not lose 1721 * changes made to the previous memslots. 1722 */ 1723 mutex_lock(&kvm->slots_arch_lock); 1724 1725 /* 1726 * Invalidate the old slot if it's being deleted or moved. This is 1727 * done prior to actually deleting/moving the memslot to allow vCPUs to 1728 * continue running by ensuring there are no mappings or shadow pages 1729 * for the memslot when it is deleted/moved. Without pre-invalidation 1730 * (and without a lock), a window would exist between effecting the 1731 * delete/move and committing the changes in arch code where KVM or a 1732 * guest could access a non-existent memslot. 1733 * 1734 * Modifications are done on a temporary, unreachable slot. The old 1735 * slot needs to be preserved in case a later step fails and the 1736 * invalidation needs to be reverted. 1737 */ 1738 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1739 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1740 if (!invalid_slot) { 1741 mutex_unlock(&kvm->slots_arch_lock); 1742 return -ENOMEM; 1743 } 1744 kvm_invalidate_memslot(kvm, old, invalid_slot); 1745 } 1746 1747 r = kvm_prepare_memory_region(kvm, old, new, change); 1748 if (r) { 1749 /* 1750 * For DELETE/MOVE, revert the above INVALID change. No 1751 * modifications required since the original slot was preserved 1752 * in the inactive slots. Changing the active memslots also 1753 * release slots_arch_lock. 1754 */ 1755 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1756 kvm_activate_memslot(kvm, invalid_slot, old); 1757 kfree(invalid_slot); 1758 } else { 1759 mutex_unlock(&kvm->slots_arch_lock); 1760 } 1761 return r; 1762 } 1763 1764 /* 1765 * For DELETE and MOVE, the working slot is now active as the INVALID 1766 * version of the old slot. MOVE is particularly special as it reuses 1767 * the old slot and returns a copy of the old slot (in working_slot). 1768 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1769 * old slot is detached but otherwise preserved. 1770 */ 1771 if (change == KVM_MR_CREATE) 1772 kvm_create_memslot(kvm, new); 1773 else if (change == KVM_MR_DELETE) 1774 kvm_delete_memslot(kvm, old, invalid_slot); 1775 else if (change == KVM_MR_MOVE) 1776 kvm_move_memslot(kvm, old, new, invalid_slot); 1777 else if (change == KVM_MR_FLAGS_ONLY) 1778 kvm_update_flags_memslot(kvm, old, new); 1779 else 1780 BUG(); 1781 1782 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1783 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1784 kfree(invalid_slot); 1785 1786 /* 1787 * No need to refresh new->arch, changes after dropping slots_arch_lock 1788 * will directly hit the final, active memsot. Architectures are 1789 * responsible for knowing that new->arch may be stale. 1790 */ 1791 kvm_commit_memory_region(kvm, old, new, change); 1792 1793 return 0; 1794 } 1795 1796 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1797 gfn_t start, gfn_t end) 1798 { 1799 struct kvm_memslot_iter iter; 1800 1801 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1802 if (iter.slot->id != id) 1803 return true; 1804 } 1805 1806 return false; 1807 } 1808 1809 /* 1810 * Allocate some memory and give it an address in the guest physical address 1811 * space. 1812 * 1813 * Discontiguous memory is allowed, mostly for framebuffers. 1814 * 1815 * Must be called holding kvm->slots_lock for write. 1816 */ 1817 int __kvm_set_memory_region(struct kvm *kvm, 1818 const struct kvm_userspace_memory_region *mem) 1819 { 1820 struct kvm_memory_slot *old, *new; 1821 struct kvm_memslots *slots; 1822 enum kvm_mr_change change; 1823 unsigned long npages; 1824 gfn_t base_gfn; 1825 int as_id, id; 1826 int r; 1827 1828 r = check_memory_region_flags(mem); 1829 if (r) 1830 return r; 1831 1832 as_id = mem->slot >> 16; 1833 id = (u16)mem->slot; 1834 1835 /* General sanity checks */ 1836 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1837 (mem->memory_size != (unsigned long)mem->memory_size)) 1838 return -EINVAL; 1839 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1840 return -EINVAL; 1841 /* We can read the guest memory with __xxx_user() later on. */ 1842 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1843 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1844 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1845 mem->memory_size)) 1846 return -EINVAL; 1847 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1848 return -EINVAL; 1849 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1850 return -EINVAL; 1851 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1852 return -EINVAL; 1853 1854 slots = __kvm_memslots(kvm, as_id); 1855 1856 /* 1857 * Note, the old memslot (and the pointer itself!) may be invalidated 1858 * and/or destroyed by kvm_set_memslot(). 1859 */ 1860 old = id_to_memslot(slots, id); 1861 1862 if (!mem->memory_size) { 1863 if (!old || !old->npages) 1864 return -EINVAL; 1865 1866 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1867 return -EIO; 1868 1869 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1870 } 1871 1872 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1873 npages = (mem->memory_size >> PAGE_SHIFT); 1874 1875 if (!old || !old->npages) { 1876 change = KVM_MR_CREATE; 1877 1878 /* 1879 * To simplify KVM internals, the total number of pages across 1880 * all memslots must fit in an unsigned long. 1881 */ 1882 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1883 return -EINVAL; 1884 } else { /* Modify an existing slot. */ 1885 if ((mem->userspace_addr != old->userspace_addr) || 1886 (npages != old->npages) || 1887 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1888 return -EINVAL; 1889 1890 if (base_gfn != old->base_gfn) 1891 change = KVM_MR_MOVE; 1892 else if (mem->flags != old->flags) 1893 change = KVM_MR_FLAGS_ONLY; 1894 else /* Nothing to change. */ 1895 return 0; 1896 } 1897 1898 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1899 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1900 return -EEXIST; 1901 1902 /* Allocate a slot that will persist in the memslot. */ 1903 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1904 if (!new) 1905 return -ENOMEM; 1906 1907 new->as_id = as_id; 1908 new->id = id; 1909 new->base_gfn = base_gfn; 1910 new->npages = npages; 1911 new->flags = mem->flags; 1912 new->userspace_addr = mem->userspace_addr; 1913 1914 r = kvm_set_memslot(kvm, old, new, change); 1915 if (r) 1916 kfree(new); 1917 return r; 1918 } 1919 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1920 1921 int kvm_set_memory_region(struct kvm *kvm, 1922 const struct kvm_userspace_memory_region *mem) 1923 { 1924 int r; 1925 1926 mutex_lock(&kvm->slots_lock); 1927 r = __kvm_set_memory_region(kvm, mem); 1928 mutex_unlock(&kvm->slots_lock); 1929 return r; 1930 } 1931 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1932 1933 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1934 struct kvm_userspace_memory_region *mem) 1935 { 1936 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1937 return -EINVAL; 1938 1939 return kvm_set_memory_region(kvm, mem); 1940 } 1941 1942 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1943 /** 1944 * kvm_get_dirty_log - get a snapshot of dirty pages 1945 * @kvm: pointer to kvm instance 1946 * @log: slot id and address to which we copy the log 1947 * @is_dirty: set to '1' if any dirty pages were found 1948 * @memslot: set to the associated memslot, always valid on success 1949 */ 1950 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1951 int *is_dirty, struct kvm_memory_slot **memslot) 1952 { 1953 struct kvm_memslots *slots; 1954 int i, as_id, id; 1955 unsigned long n; 1956 unsigned long any = 0; 1957 1958 /* Dirty ring tracking is exclusive to dirty log tracking */ 1959 if (kvm->dirty_ring_size) 1960 return -ENXIO; 1961 1962 *memslot = NULL; 1963 *is_dirty = 0; 1964 1965 as_id = log->slot >> 16; 1966 id = (u16)log->slot; 1967 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1968 return -EINVAL; 1969 1970 slots = __kvm_memslots(kvm, as_id); 1971 *memslot = id_to_memslot(slots, id); 1972 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1973 return -ENOENT; 1974 1975 kvm_arch_sync_dirty_log(kvm, *memslot); 1976 1977 n = kvm_dirty_bitmap_bytes(*memslot); 1978 1979 for (i = 0; !any && i < n/sizeof(long); ++i) 1980 any = (*memslot)->dirty_bitmap[i]; 1981 1982 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1983 return -EFAULT; 1984 1985 if (any) 1986 *is_dirty = 1; 1987 return 0; 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1990 1991 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1992 /** 1993 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1994 * and reenable dirty page tracking for the corresponding pages. 1995 * @kvm: pointer to kvm instance 1996 * @log: slot id and address to which we copy the log 1997 * 1998 * We need to keep it in mind that VCPU threads can write to the bitmap 1999 * concurrently. So, to avoid losing track of dirty pages we keep the 2000 * following order: 2001 * 2002 * 1. Take a snapshot of the bit and clear it if needed. 2003 * 2. Write protect the corresponding page. 2004 * 3. Copy the snapshot to the userspace. 2005 * 4. Upon return caller flushes TLB's if needed. 2006 * 2007 * Between 2 and 4, the guest may write to the page using the remaining TLB 2008 * entry. This is not a problem because the page is reported dirty using 2009 * the snapshot taken before and step 4 ensures that writes done after 2010 * exiting to userspace will be logged for the next call. 2011 * 2012 */ 2013 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2014 { 2015 struct kvm_memslots *slots; 2016 struct kvm_memory_slot *memslot; 2017 int i, as_id, id; 2018 unsigned long n; 2019 unsigned long *dirty_bitmap; 2020 unsigned long *dirty_bitmap_buffer; 2021 bool flush; 2022 2023 /* Dirty ring tracking is exclusive to dirty log tracking */ 2024 if (kvm->dirty_ring_size) 2025 return -ENXIO; 2026 2027 as_id = log->slot >> 16; 2028 id = (u16)log->slot; 2029 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2030 return -EINVAL; 2031 2032 slots = __kvm_memslots(kvm, as_id); 2033 memslot = id_to_memslot(slots, id); 2034 if (!memslot || !memslot->dirty_bitmap) 2035 return -ENOENT; 2036 2037 dirty_bitmap = memslot->dirty_bitmap; 2038 2039 kvm_arch_sync_dirty_log(kvm, memslot); 2040 2041 n = kvm_dirty_bitmap_bytes(memslot); 2042 flush = false; 2043 if (kvm->manual_dirty_log_protect) { 2044 /* 2045 * Unlike kvm_get_dirty_log, we always return false in *flush, 2046 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2047 * is some code duplication between this function and 2048 * kvm_get_dirty_log, but hopefully all architecture 2049 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2050 * can be eliminated. 2051 */ 2052 dirty_bitmap_buffer = dirty_bitmap; 2053 } else { 2054 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2055 memset(dirty_bitmap_buffer, 0, n); 2056 2057 KVM_MMU_LOCK(kvm); 2058 for (i = 0; i < n / sizeof(long); i++) { 2059 unsigned long mask; 2060 gfn_t offset; 2061 2062 if (!dirty_bitmap[i]) 2063 continue; 2064 2065 flush = true; 2066 mask = xchg(&dirty_bitmap[i], 0); 2067 dirty_bitmap_buffer[i] = mask; 2068 2069 offset = i * BITS_PER_LONG; 2070 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2071 offset, mask); 2072 } 2073 KVM_MMU_UNLOCK(kvm); 2074 } 2075 2076 if (flush) 2077 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2078 2079 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2080 return -EFAULT; 2081 return 0; 2082 } 2083 2084 2085 /** 2086 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2087 * @kvm: kvm instance 2088 * @log: slot id and address to which we copy the log 2089 * 2090 * Steps 1-4 below provide general overview of dirty page logging. See 2091 * kvm_get_dirty_log_protect() function description for additional details. 2092 * 2093 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2094 * always flush the TLB (step 4) even if previous step failed and the dirty 2095 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2096 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2097 * writes will be marked dirty for next log read. 2098 * 2099 * 1. Take a snapshot of the bit and clear it if needed. 2100 * 2. Write protect the corresponding page. 2101 * 3. Copy the snapshot to the userspace. 2102 * 4. Flush TLB's if needed. 2103 */ 2104 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2105 struct kvm_dirty_log *log) 2106 { 2107 int r; 2108 2109 mutex_lock(&kvm->slots_lock); 2110 2111 r = kvm_get_dirty_log_protect(kvm, log); 2112 2113 mutex_unlock(&kvm->slots_lock); 2114 return r; 2115 } 2116 2117 /** 2118 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2119 * and reenable dirty page tracking for the corresponding pages. 2120 * @kvm: pointer to kvm instance 2121 * @log: slot id and address from which to fetch the bitmap of dirty pages 2122 */ 2123 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2124 struct kvm_clear_dirty_log *log) 2125 { 2126 struct kvm_memslots *slots; 2127 struct kvm_memory_slot *memslot; 2128 int as_id, id; 2129 gfn_t offset; 2130 unsigned long i, n; 2131 unsigned long *dirty_bitmap; 2132 unsigned long *dirty_bitmap_buffer; 2133 bool flush; 2134 2135 /* Dirty ring tracking is exclusive to dirty log tracking */ 2136 if (kvm->dirty_ring_size) 2137 return -ENXIO; 2138 2139 as_id = log->slot >> 16; 2140 id = (u16)log->slot; 2141 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2142 return -EINVAL; 2143 2144 if (log->first_page & 63) 2145 return -EINVAL; 2146 2147 slots = __kvm_memslots(kvm, as_id); 2148 memslot = id_to_memslot(slots, id); 2149 if (!memslot || !memslot->dirty_bitmap) 2150 return -ENOENT; 2151 2152 dirty_bitmap = memslot->dirty_bitmap; 2153 2154 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2155 2156 if (log->first_page > memslot->npages || 2157 log->num_pages > memslot->npages - log->first_page || 2158 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2159 return -EINVAL; 2160 2161 kvm_arch_sync_dirty_log(kvm, memslot); 2162 2163 flush = false; 2164 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2165 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2166 return -EFAULT; 2167 2168 KVM_MMU_LOCK(kvm); 2169 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2170 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2171 i++, offset += BITS_PER_LONG) { 2172 unsigned long mask = *dirty_bitmap_buffer++; 2173 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2174 if (!mask) 2175 continue; 2176 2177 mask &= atomic_long_fetch_andnot(mask, p); 2178 2179 /* 2180 * mask contains the bits that really have been cleared. This 2181 * never includes any bits beyond the length of the memslot (if 2182 * the length is not aligned to 64 pages), therefore it is not 2183 * a problem if userspace sets them in log->dirty_bitmap. 2184 */ 2185 if (mask) { 2186 flush = true; 2187 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2188 offset, mask); 2189 } 2190 } 2191 KVM_MMU_UNLOCK(kvm); 2192 2193 if (flush) 2194 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2195 2196 return 0; 2197 } 2198 2199 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2200 struct kvm_clear_dirty_log *log) 2201 { 2202 int r; 2203 2204 mutex_lock(&kvm->slots_lock); 2205 2206 r = kvm_clear_dirty_log_protect(kvm, log); 2207 2208 mutex_unlock(&kvm->slots_lock); 2209 return r; 2210 } 2211 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2212 2213 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2214 { 2215 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2216 } 2217 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2218 2219 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2220 { 2221 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2222 u64 gen = slots->generation; 2223 struct kvm_memory_slot *slot; 2224 2225 /* 2226 * This also protects against using a memslot from a different address space, 2227 * since different address spaces have different generation numbers. 2228 */ 2229 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2230 vcpu->last_used_slot = NULL; 2231 vcpu->last_used_slot_gen = gen; 2232 } 2233 2234 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2235 if (slot) 2236 return slot; 2237 2238 /* 2239 * Fall back to searching all memslots. We purposely use 2240 * search_memslots() instead of __gfn_to_memslot() to avoid 2241 * thrashing the VM-wide last_used_slot in kvm_memslots. 2242 */ 2243 slot = search_memslots(slots, gfn, false); 2244 if (slot) { 2245 vcpu->last_used_slot = slot; 2246 return slot; 2247 } 2248 2249 return NULL; 2250 } 2251 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 2252 2253 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2254 { 2255 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2256 2257 return kvm_is_visible_memslot(memslot); 2258 } 2259 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2260 2261 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2262 { 2263 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2264 2265 return kvm_is_visible_memslot(memslot); 2266 } 2267 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2268 2269 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2270 { 2271 struct vm_area_struct *vma; 2272 unsigned long addr, size; 2273 2274 size = PAGE_SIZE; 2275 2276 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2277 if (kvm_is_error_hva(addr)) 2278 return PAGE_SIZE; 2279 2280 mmap_read_lock(current->mm); 2281 vma = find_vma(current->mm, addr); 2282 if (!vma) 2283 goto out; 2284 2285 size = vma_kernel_pagesize(vma); 2286 2287 out: 2288 mmap_read_unlock(current->mm); 2289 2290 return size; 2291 } 2292 2293 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2294 { 2295 return slot->flags & KVM_MEM_READONLY; 2296 } 2297 2298 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2299 gfn_t *nr_pages, bool write) 2300 { 2301 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2302 return KVM_HVA_ERR_BAD; 2303 2304 if (memslot_is_readonly(slot) && write) 2305 return KVM_HVA_ERR_RO_BAD; 2306 2307 if (nr_pages) 2308 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2309 2310 return __gfn_to_hva_memslot(slot, gfn); 2311 } 2312 2313 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2314 gfn_t *nr_pages) 2315 { 2316 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2317 } 2318 2319 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2320 gfn_t gfn) 2321 { 2322 return gfn_to_hva_many(slot, gfn, NULL); 2323 } 2324 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2325 2326 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2327 { 2328 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2329 } 2330 EXPORT_SYMBOL_GPL(gfn_to_hva); 2331 2332 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2333 { 2334 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2335 } 2336 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2337 2338 /* 2339 * Return the hva of a @gfn and the R/W attribute if possible. 2340 * 2341 * @slot: the kvm_memory_slot which contains @gfn 2342 * @gfn: the gfn to be translated 2343 * @writable: used to return the read/write attribute of the @slot if the hva 2344 * is valid and @writable is not NULL 2345 */ 2346 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2347 gfn_t gfn, bool *writable) 2348 { 2349 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2350 2351 if (!kvm_is_error_hva(hva) && writable) 2352 *writable = !memslot_is_readonly(slot); 2353 2354 return hva; 2355 } 2356 2357 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2358 { 2359 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2360 2361 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2362 } 2363 2364 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2365 { 2366 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2367 2368 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2369 } 2370 2371 static inline int check_user_page_hwpoison(unsigned long addr) 2372 { 2373 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2374 2375 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2376 return rc == -EHWPOISON; 2377 } 2378 2379 /* 2380 * The fast path to get the writable pfn which will be stored in @pfn, 2381 * true indicates success, otherwise false is returned. It's also the 2382 * only part that runs if we can in atomic context. 2383 */ 2384 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2385 bool *writable, kvm_pfn_t *pfn) 2386 { 2387 struct page *page[1]; 2388 2389 /* 2390 * Fast pin a writable pfn only if it is a write fault request 2391 * or the caller allows to map a writable pfn for a read fault 2392 * request. 2393 */ 2394 if (!(write_fault || writable)) 2395 return false; 2396 2397 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2398 *pfn = page_to_pfn(page[0]); 2399 2400 if (writable) 2401 *writable = true; 2402 return true; 2403 } 2404 2405 return false; 2406 } 2407 2408 /* 2409 * The slow path to get the pfn of the specified host virtual address, 2410 * 1 indicates success, -errno is returned if error is detected. 2411 */ 2412 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2413 bool *writable, kvm_pfn_t *pfn) 2414 { 2415 unsigned int flags = FOLL_HWPOISON; 2416 struct page *page; 2417 int npages = 0; 2418 2419 might_sleep(); 2420 2421 if (writable) 2422 *writable = write_fault; 2423 2424 if (write_fault) 2425 flags |= FOLL_WRITE; 2426 if (async) 2427 flags |= FOLL_NOWAIT; 2428 2429 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2430 if (npages != 1) 2431 return npages; 2432 2433 /* map read fault as writable if possible */ 2434 if (unlikely(!write_fault) && writable) { 2435 struct page *wpage; 2436 2437 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2438 *writable = true; 2439 put_page(page); 2440 page = wpage; 2441 } 2442 } 2443 *pfn = page_to_pfn(page); 2444 return npages; 2445 } 2446 2447 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2448 { 2449 if (unlikely(!(vma->vm_flags & VM_READ))) 2450 return false; 2451 2452 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2453 return false; 2454 2455 return true; 2456 } 2457 2458 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2459 { 2460 if (kvm_is_reserved_pfn(pfn)) 2461 return 1; 2462 return get_page_unless_zero(pfn_to_page(pfn)); 2463 } 2464 2465 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2466 unsigned long addr, bool *async, 2467 bool write_fault, bool *writable, 2468 kvm_pfn_t *p_pfn) 2469 { 2470 kvm_pfn_t pfn; 2471 pte_t *ptep; 2472 spinlock_t *ptl; 2473 int r; 2474 2475 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2476 if (r) { 2477 /* 2478 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2479 * not call the fault handler, so do it here. 2480 */ 2481 bool unlocked = false; 2482 r = fixup_user_fault(current->mm, addr, 2483 (write_fault ? FAULT_FLAG_WRITE : 0), 2484 &unlocked); 2485 if (unlocked) 2486 return -EAGAIN; 2487 if (r) 2488 return r; 2489 2490 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2491 if (r) 2492 return r; 2493 } 2494 2495 if (write_fault && !pte_write(*ptep)) { 2496 pfn = KVM_PFN_ERR_RO_FAULT; 2497 goto out; 2498 } 2499 2500 if (writable) 2501 *writable = pte_write(*ptep); 2502 pfn = pte_pfn(*ptep); 2503 2504 /* 2505 * Get a reference here because callers of *hva_to_pfn* and 2506 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2507 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2508 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2509 * simply do nothing for reserved pfns. 2510 * 2511 * Whoever called remap_pfn_range is also going to call e.g. 2512 * unmap_mapping_range before the underlying pages are freed, 2513 * causing a call to our MMU notifier. 2514 * 2515 * Certain IO or PFNMAP mappings can be backed with valid 2516 * struct pages, but be allocated without refcounting e.g., 2517 * tail pages of non-compound higher order allocations, which 2518 * would then underflow the refcount when the caller does the 2519 * required put_page. Don't allow those pages here. 2520 */ 2521 if (!kvm_try_get_pfn(pfn)) 2522 r = -EFAULT; 2523 2524 out: 2525 pte_unmap_unlock(ptep, ptl); 2526 *p_pfn = pfn; 2527 2528 return r; 2529 } 2530 2531 /* 2532 * Pin guest page in memory and return its pfn. 2533 * @addr: host virtual address which maps memory to the guest 2534 * @atomic: whether this function can sleep 2535 * @async: whether this function need to wait IO complete if the 2536 * host page is not in the memory 2537 * @write_fault: whether we should get a writable host page 2538 * @writable: whether it allows to map a writable host page for !@write_fault 2539 * 2540 * The function will map a writable host page for these two cases: 2541 * 1): @write_fault = true 2542 * 2): @write_fault = false && @writable, @writable will tell the caller 2543 * whether the mapping is writable. 2544 */ 2545 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2546 bool write_fault, bool *writable) 2547 { 2548 struct vm_area_struct *vma; 2549 kvm_pfn_t pfn = 0; 2550 int npages, r; 2551 2552 /* we can do it either atomically or asynchronously, not both */ 2553 BUG_ON(atomic && async); 2554 2555 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2556 return pfn; 2557 2558 if (atomic) 2559 return KVM_PFN_ERR_FAULT; 2560 2561 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2562 if (npages == 1) 2563 return pfn; 2564 2565 mmap_read_lock(current->mm); 2566 if (npages == -EHWPOISON || 2567 (!async && check_user_page_hwpoison(addr))) { 2568 pfn = KVM_PFN_ERR_HWPOISON; 2569 goto exit; 2570 } 2571 2572 retry: 2573 vma = vma_lookup(current->mm, addr); 2574 2575 if (vma == NULL) 2576 pfn = KVM_PFN_ERR_FAULT; 2577 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2578 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2579 if (r == -EAGAIN) 2580 goto retry; 2581 if (r < 0) 2582 pfn = KVM_PFN_ERR_FAULT; 2583 } else { 2584 if (async && vma_is_valid(vma, write_fault)) 2585 *async = true; 2586 pfn = KVM_PFN_ERR_FAULT; 2587 } 2588 exit: 2589 mmap_read_unlock(current->mm); 2590 return pfn; 2591 } 2592 2593 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2594 bool atomic, bool *async, bool write_fault, 2595 bool *writable, hva_t *hva) 2596 { 2597 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2598 2599 if (hva) 2600 *hva = addr; 2601 2602 if (addr == KVM_HVA_ERR_RO_BAD) { 2603 if (writable) 2604 *writable = false; 2605 return KVM_PFN_ERR_RO_FAULT; 2606 } 2607 2608 if (kvm_is_error_hva(addr)) { 2609 if (writable) 2610 *writable = false; 2611 return KVM_PFN_NOSLOT; 2612 } 2613 2614 /* Do not map writable pfn in the readonly memslot. */ 2615 if (writable && memslot_is_readonly(slot)) { 2616 *writable = false; 2617 writable = NULL; 2618 } 2619 2620 return hva_to_pfn(addr, atomic, async, write_fault, 2621 writable); 2622 } 2623 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2624 2625 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2626 bool *writable) 2627 { 2628 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2629 write_fault, writable, NULL); 2630 } 2631 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2632 2633 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2634 { 2635 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2636 } 2637 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2638 2639 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2640 { 2641 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2642 } 2643 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2644 2645 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2646 { 2647 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2648 } 2649 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2650 2651 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2652 { 2653 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2654 } 2655 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2656 2657 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2658 { 2659 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2660 } 2661 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2662 2663 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2664 struct page **pages, int nr_pages) 2665 { 2666 unsigned long addr; 2667 gfn_t entry = 0; 2668 2669 addr = gfn_to_hva_many(slot, gfn, &entry); 2670 if (kvm_is_error_hva(addr)) 2671 return -1; 2672 2673 if (entry < nr_pages) 2674 return 0; 2675 2676 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2677 } 2678 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2679 2680 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2681 { 2682 if (is_error_noslot_pfn(pfn)) 2683 return KVM_ERR_PTR_BAD_PAGE; 2684 2685 if (kvm_is_reserved_pfn(pfn)) { 2686 WARN_ON(1); 2687 return KVM_ERR_PTR_BAD_PAGE; 2688 } 2689 2690 return pfn_to_page(pfn); 2691 } 2692 2693 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2694 { 2695 kvm_pfn_t pfn; 2696 2697 pfn = gfn_to_pfn(kvm, gfn); 2698 2699 return kvm_pfn_to_page(pfn); 2700 } 2701 EXPORT_SYMBOL_GPL(gfn_to_page); 2702 2703 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2704 { 2705 if (pfn == 0) 2706 return; 2707 2708 if (dirty) 2709 kvm_release_pfn_dirty(pfn); 2710 else 2711 kvm_release_pfn_clean(pfn); 2712 } 2713 2714 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2715 { 2716 kvm_pfn_t pfn; 2717 void *hva = NULL; 2718 struct page *page = KVM_UNMAPPED_PAGE; 2719 2720 if (!map) 2721 return -EINVAL; 2722 2723 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2724 if (is_error_noslot_pfn(pfn)) 2725 return -EINVAL; 2726 2727 if (pfn_valid(pfn)) { 2728 page = pfn_to_page(pfn); 2729 hva = kmap(page); 2730 #ifdef CONFIG_HAS_IOMEM 2731 } else { 2732 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2733 #endif 2734 } 2735 2736 if (!hva) 2737 return -EFAULT; 2738 2739 map->page = page; 2740 map->hva = hva; 2741 map->pfn = pfn; 2742 map->gfn = gfn; 2743 2744 return 0; 2745 } 2746 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2747 2748 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2749 { 2750 if (!map) 2751 return; 2752 2753 if (!map->hva) 2754 return; 2755 2756 if (map->page != KVM_UNMAPPED_PAGE) 2757 kunmap(map->page); 2758 #ifdef CONFIG_HAS_IOMEM 2759 else 2760 memunmap(map->hva); 2761 #endif 2762 2763 if (dirty) 2764 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2765 2766 kvm_release_pfn(map->pfn, dirty); 2767 2768 map->hva = NULL; 2769 map->page = NULL; 2770 } 2771 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2772 2773 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2774 { 2775 kvm_pfn_t pfn; 2776 2777 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2778 2779 return kvm_pfn_to_page(pfn); 2780 } 2781 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2782 2783 void kvm_release_page_clean(struct page *page) 2784 { 2785 WARN_ON(is_error_page(page)); 2786 2787 kvm_release_pfn_clean(page_to_pfn(page)); 2788 } 2789 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2790 2791 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2792 { 2793 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2794 put_page(pfn_to_page(pfn)); 2795 } 2796 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2797 2798 void kvm_release_page_dirty(struct page *page) 2799 { 2800 WARN_ON(is_error_page(page)); 2801 2802 kvm_release_pfn_dirty(page_to_pfn(page)); 2803 } 2804 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2805 2806 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2807 { 2808 kvm_set_pfn_dirty(pfn); 2809 kvm_release_pfn_clean(pfn); 2810 } 2811 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2812 2813 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2814 { 2815 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2816 SetPageDirty(pfn_to_page(pfn)); 2817 } 2818 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2819 2820 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2821 { 2822 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2823 mark_page_accessed(pfn_to_page(pfn)); 2824 } 2825 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2826 2827 static int next_segment(unsigned long len, int offset) 2828 { 2829 if (len > PAGE_SIZE - offset) 2830 return PAGE_SIZE - offset; 2831 else 2832 return len; 2833 } 2834 2835 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2836 void *data, int offset, int len) 2837 { 2838 int r; 2839 unsigned long addr; 2840 2841 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2842 if (kvm_is_error_hva(addr)) 2843 return -EFAULT; 2844 r = __copy_from_user(data, (void __user *)addr + offset, len); 2845 if (r) 2846 return -EFAULT; 2847 return 0; 2848 } 2849 2850 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2851 int len) 2852 { 2853 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2854 2855 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2856 } 2857 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2858 2859 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2860 int offset, int len) 2861 { 2862 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2863 2864 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2865 } 2866 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2867 2868 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2869 { 2870 gfn_t gfn = gpa >> PAGE_SHIFT; 2871 int seg; 2872 int offset = offset_in_page(gpa); 2873 int ret; 2874 2875 while ((seg = next_segment(len, offset)) != 0) { 2876 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2877 if (ret < 0) 2878 return ret; 2879 offset = 0; 2880 len -= seg; 2881 data += seg; 2882 ++gfn; 2883 } 2884 return 0; 2885 } 2886 EXPORT_SYMBOL_GPL(kvm_read_guest); 2887 2888 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2889 { 2890 gfn_t gfn = gpa >> PAGE_SHIFT; 2891 int seg; 2892 int offset = offset_in_page(gpa); 2893 int ret; 2894 2895 while ((seg = next_segment(len, offset)) != 0) { 2896 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2897 if (ret < 0) 2898 return ret; 2899 offset = 0; 2900 len -= seg; 2901 data += seg; 2902 ++gfn; 2903 } 2904 return 0; 2905 } 2906 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2907 2908 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2909 void *data, int offset, unsigned long len) 2910 { 2911 int r; 2912 unsigned long addr; 2913 2914 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2915 if (kvm_is_error_hva(addr)) 2916 return -EFAULT; 2917 pagefault_disable(); 2918 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2919 pagefault_enable(); 2920 if (r) 2921 return -EFAULT; 2922 return 0; 2923 } 2924 2925 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2926 void *data, unsigned long len) 2927 { 2928 gfn_t gfn = gpa >> PAGE_SHIFT; 2929 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2930 int offset = offset_in_page(gpa); 2931 2932 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2933 } 2934 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2935 2936 static int __kvm_write_guest_page(struct kvm *kvm, 2937 struct kvm_memory_slot *memslot, gfn_t gfn, 2938 const void *data, int offset, int len) 2939 { 2940 int r; 2941 unsigned long addr; 2942 2943 addr = gfn_to_hva_memslot(memslot, gfn); 2944 if (kvm_is_error_hva(addr)) 2945 return -EFAULT; 2946 r = __copy_to_user((void __user *)addr + offset, data, len); 2947 if (r) 2948 return -EFAULT; 2949 mark_page_dirty_in_slot(kvm, memslot, gfn); 2950 return 0; 2951 } 2952 2953 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2954 const void *data, int offset, int len) 2955 { 2956 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2957 2958 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2959 } 2960 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2961 2962 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2963 const void *data, int offset, int len) 2964 { 2965 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2966 2967 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2968 } 2969 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2970 2971 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2972 unsigned long len) 2973 { 2974 gfn_t gfn = gpa >> PAGE_SHIFT; 2975 int seg; 2976 int offset = offset_in_page(gpa); 2977 int ret; 2978 2979 while ((seg = next_segment(len, offset)) != 0) { 2980 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2981 if (ret < 0) 2982 return ret; 2983 offset = 0; 2984 len -= seg; 2985 data += seg; 2986 ++gfn; 2987 } 2988 return 0; 2989 } 2990 EXPORT_SYMBOL_GPL(kvm_write_guest); 2991 2992 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2993 unsigned long len) 2994 { 2995 gfn_t gfn = gpa >> PAGE_SHIFT; 2996 int seg; 2997 int offset = offset_in_page(gpa); 2998 int ret; 2999 3000 while ((seg = next_segment(len, offset)) != 0) { 3001 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3002 if (ret < 0) 3003 return ret; 3004 offset = 0; 3005 len -= seg; 3006 data += seg; 3007 ++gfn; 3008 } 3009 return 0; 3010 } 3011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3012 3013 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3014 struct gfn_to_hva_cache *ghc, 3015 gpa_t gpa, unsigned long len) 3016 { 3017 int offset = offset_in_page(gpa); 3018 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3019 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3020 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3021 gfn_t nr_pages_avail; 3022 3023 /* Update ghc->generation before performing any error checks. */ 3024 ghc->generation = slots->generation; 3025 3026 if (start_gfn > end_gfn) { 3027 ghc->hva = KVM_HVA_ERR_BAD; 3028 return -EINVAL; 3029 } 3030 3031 /* 3032 * If the requested region crosses two memslots, we still 3033 * verify that the entire region is valid here. 3034 */ 3035 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3036 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3037 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3038 &nr_pages_avail); 3039 if (kvm_is_error_hva(ghc->hva)) 3040 return -EFAULT; 3041 } 3042 3043 /* Use the slow path for cross page reads and writes. */ 3044 if (nr_pages_needed == 1) 3045 ghc->hva += offset; 3046 else 3047 ghc->memslot = NULL; 3048 3049 ghc->gpa = gpa; 3050 ghc->len = len; 3051 return 0; 3052 } 3053 3054 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3055 gpa_t gpa, unsigned long len) 3056 { 3057 struct kvm_memslots *slots = kvm_memslots(kvm); 3058 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3059 } 3060 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3061 3062 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3063 void *data, unsigned int offset, 3064 unsigned long len) 3065 { 3066 struct kvm_memslots *slots = kvm_memslots(kvm); 3067 int r; 3068 gpa_t gpa = ghc->gpa + offset; 3069 3070 if (WARN_ON_ONCE(len + offset > ghc->len)) 3071 return -EINVAL; 3072 3073 if (slots->generation != ghc->generation) { 3074 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3075 return -EFAULT; 3076 } 3077 3078 if (kvm_is_error_hva(ghc->hva)) 3079 return -EFAULT; 3080 3081 if (unlikely(!ghc->memslot)) 3082 return kvm_write_guest(kvm, gpa, data, len); 3083 3084 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3085 if (r) 3086 return -EFAULT; 3087 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3088 3089 return 0; 3090 } 3091 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3092 3093 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3094 void *data, unsigned long len) 3095 { 3096 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3097 } 3098 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3099 3100 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3101 void *data, unsigned int offset, 3102 unsigned long len) 3103 { 3104 struct kvm_memslots *slots = kvm_memslots(kvm); 3105 int r; 3106 gpa_t gpa = ghc->gpa + offset; 3107 3108 if (WARN_ON_ONCE(len + offset > ghc->len)) 3109 return -EINVAL; 3110 3111 if (slots->generation != ghc->generation) { 3112 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3113 return -EFAULT; 3114 } 3115 3116 if (kvm_is_error_hva(ghc->hva)) 3117 return -EFAULT; 3118 3119 if (unlikely(!ghc->memslot)) 3120 return kvm_read_guest(kvm, gpa, data, len); 3121 3122 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3123 if (r) 3124 return -EFAULT; 3125 3126 return 0; 3127 } 3128 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3129 3130 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3131 void *data, unsigned long len) 3132 { 3133 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3134 } 3135 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3136 3137 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3138 { 3139 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3140 gfn_t gfn = gpa >> PAGE_SHIFT; 3141 int seg; 3142 int offset = offset_in_page(gpa); 3143 int ret; 3144 3145 while ((seg = next_segment(len, offset)) != 0) { 3146 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3147 if (ret < 0) 3148 return ret; 3149 offset = 0; 3150 len -= seg; 3151 ++gfn; 3152 } 3153 return 0; 3154 } 3155 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3156 3157 void mark_page_dirty_in_slot(struct kvm *kvm, 3158 const struct kvm_memory_slot *memslot, 3159 gfn_t gfn) 3160 { 3161 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3162 3163 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3164 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3165 return; 3166 #endif 3167 3168 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3169 unsigned long rel_gfn = gfn - memslot->base_gfn; 3170 u32 slot = (memslot->as_id << 16) | memslot->id; 3171 3172 if (kvm->dirty_ring_size) 3173 kvm_dirty_ring_push(&vcpu->dirty_ring, 3174 slot, rel_gfn); 3175 else 3176 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3177 } 3178 } 3179 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3180 3181 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3182 { 3183 struct kvm_memory_slot *memslot; 3184 3185 memslot = gfn_to_memslot(kvm, gfn); 3186 mark_page_dirty_in_slot(kvm, memslot, gfn); 3187 } 3188 EXPORT_SYMBOL_GPL(mark_page_dirty); 3189 3190 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3191 { 3192 struct kvm_memory_slot *memslot; 3193 3194 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3195 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3196 } 3197 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3198 3199 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3200 { 3201 if (!vcpu->sigset_active) 3202 return; 3203 3204 /* 3205 * This does a lockless modification of ->real_blocked, which is fine 3206 * because, only current can change ->real_blocked and all readers of 3207 * ->real_blocked don't care as long ->real_blocked is always a subset 3208 * of ->blocked. 3209 */ 3210 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3211 } 3212 3213 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3214 { 3215 if (!vcpu->sigset_active) 3216 return; 3217 3218 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3219 sigemptyset(¤t->real_blocked); 3220 } 3221 3222 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3223 { 3224 unsigned int old, val, grow, grow_start; 3225 3226 old = val = vcpu->halt_poll_ns; 3227 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3228 grow = READ_ONCE(halt_poll_ns_grow); 3229 if (!grow) 3230 goto out; 3231 3232 val *= grow; 3233 if (val < grow_start) 3234 val = grow_start; 3235 3236 if (val > vcpu->kvm->max_halt_poll_ns) 3237 val = vcpu->kvm->max_halt_poll_ns; 3238 3239 vcpu->halt_poll_ns = val; 3240 out: 3241 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3242 } 3243 3244 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3245 { 3246 unsigned int old, val, shrink, grow_start; 3247 3248 old = val = vcpu->halt_poll_ns; 3249 shrink = READ_ONCE(halt_poll_ns_shrink); 3250 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3251 if (shrink == 0) 3252 val = 0; 3253 else 3254 val /= shrink; 3255 3256 if (val < grow_start) 3257 val = 0; 3258 3259 vcpu->halt_poll_ns = val; 3260 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3261 } 3262 3263 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3264 { 3265 int ret = -EINTR; 3266 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3267 3268 if (kvm_arch_vcpu_runnable(vcpu)) { 3269 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3270 goto out; 3271 } 3272 if (kvm_cpu_has_pending_timer(vcpu)) 3273 goto out; 3274 if (signal_pending(current)) 3275 goto out; 3276 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3277 goto out; 3278 3279 ret = 0; 3280 out: 3281 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3282 return ret; 3283 } 3284 3285 /* 3286 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3287 * pending. This is mostly used when halting a vCPU, but may also be used 3288 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3289 */ 3290 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3291 { 3292 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3293 bool waited = false; 3294 3295 vcpu->stat.generic.blocking = 1; 3296 3297 kvm_arch_vcpu_blocking(vcpu); 3298 3299 prepare_to_rcuwait(wait); 3300 for (;;) { 3301 set_current_state(TASK_INTERRUPTIBLE); 3302 3303 if (kvm_vcpu_check_block(vcpu) < 0) 3304 break; 3305 3306 waited = true; 3307 schedule(); 3308 } 3309 finish_rcuwait(wait); 3310 3311 kvm_arch_vcpu_unblocking(vcpu); 3312 3313 vcpu->stat.generic.blocking = 0; 3314 3315 return waited; 3316 } 3317 3318 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3319 ktime_t end, bool success) 3320 { 3321 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3322 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3323 3324 ++vcpu->stat.generic.halt_attempted_poll; 3325 3326 if (success) { 3327 ++vcpu->stat.generic.halt_successful_poll; 3328 3329 if (!vcpu_valid_wakeup(vcpu)) 3330 ++vcpu->stat.generic.halt_poll_invalid; 3331 3332 stats->halt_poll_success_ns += poll_ns; 3333 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3334 } else { 3335 stats->halt_poll_fail_ns += poll_ns; 3336 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3337 } 3338 } 3339 3340 /* 3341 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3342 * polling is enabled, busy wait for a short time before blocking to avoid the 3343 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3344 * is halted. 3345 */ 3346 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3347 { 3348 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3349 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3350 ktime_t start, cur, poll_end; 3351 bool waited = false; 3352 u64 halt_ns; 3353 3354 start = cur = poll_end = ktime_get(); 3355 if (do_halt_poll) { 3356 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3357 3358 do { 3359 /* 3360 * This sets KVM_REQ_UNHALT if an interrupt 3361 * arrives. 3362 */ 3363 if (kvm_vcpu_check_block(vcpu) < 0) 3364 goto out; 3365 cpu_relax(); 3366 poll_end = cur = ktime_get(); 3367 } while (kvm_vcpu_can_poll(cur, stop)); 3368 } 3369 3370 waited = kvm_vcpu_block(vcpu); 3371 3372 cur = ktime_get(); 3373 if (waited) { 3374 vcpu->stat.generic.halt_wait_ns += 3375 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3376 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3377 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3378 } 3379 out: 3380 /* The total time the vCPU was "halted", including polling time. */ 3381 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3382 3383 /* 3384 * Note, halt-polling is considered successful so long as the vCPU was 3385 * never actually scheduled out, i.e. even if the wake event arrived 3386 * after of the halt-polling loop itself, but before the full wait. 3387 */ 3388 if (do_halt_poll) 3389 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3390 3391 if (halt_poll_allowed) { 3392 if (!vcpu_valid_wakeup(vcpu)) { 3393 shrink_halt_poll_ns(vcpu); 3394 } else if (vcpu->kvm->max_halt_poll_ns) { 3395 if (halt_ns <= vcpu->halt_poll_ns) 3396 ; 3397 /* we had a long block, shrink polling */ 3398 else if (vcpu->halt_poll_ns && 3399 halt_ns > vcpu->kvm->max_halt_poll_ns) 3400 shrink_halt_poll_ns(vcpu); 3401 /* we had a short halt and our poll time is too small */ 3402 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3403 halt_ns < vcpu->kvm->max_halt_poll_ns) 3404 grow_halt_poll_ns(vcpu); 3405 } else { 3406 vcpu->halt_poll_ns = 0; 3407 } 3408 } 3409 3410 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3411 } 3412 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3413 3414 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3415 { 3416 if (__kvm_vcpu_wake_up(vcpu)) { 3417 WRITE_ONCE(vcpu->ready, true); 3418 ++vcpu->stat.generic.halt_wakeup; 3419 return true; 3420 } 3421 3422 return false; 3423 } 3424 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3425 3426 #ifndef CONFIG_S390 3427 /* 3428 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3429 */ 3430 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3431 { 3432 int me, cpu; 3433 3434 if (kvm_vcpu_wake_up(vcpu)) 3435 return; 3436 3437 me = get_cpu(); 3438 /* 3439 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3440 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3441 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3442 * within the vCPU thread itself. 3443 */ 3444 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3445 if (vcpu->mode == IN_GUEST_MODE) 3446 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3447 goto out; 3448 } 3449 3450 /* 3451 * Note, the vCPU could get migrated to a different pCPU at any point 3452 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3453 * IPI to the previous pCPU. But, that's ok because the purpose of the 3454 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3455 * vCPU also requires it to leave IN_GUEST_MODE. 3456 */ 3457 if (kvm_arch_vcpu_should_kick(vcpu)) { 3458 cpu = READ_ONCE(vcpu->cpu); 3459 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3460 smp_send_reschedule(cpu); 3461 } 3462 out: 3463 put_cpu(); 3464 } 3465 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3466 #endif /* !CONFIG_S390 */ 3467 3468 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3469 { 3470 struct pid *pid; 3471 struct task_struct *task = NULL; 3472 int ret = 0; 3473 3474 rcu_read_lock(); 3475 pid = rcu_dereference(target->pid); 3476 if (pid) 3477 task = get_pid_task(pid, PIDTYPE_PID); 3478 rcu_read_unlock(); 3479 if (!task) 3480 return ret; 3481 ret = yield_to(task, 1); 3482 put_task_struct(task); 3483 3484 return ret; 3485 } 3486 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3487 3488 /* 3489 * Helper that checks whether a VCPU is eligible for directed yield. 3490 * Most eligible candidate to yield is decided by following heuristics: 3491 * 3492 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3493 * (preempted lock holder), indicated by @in_spin_loop. 3494 * Set at the beginning and cleared at the end of interception/PLE handler. 3495 * 3496 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3497 * chance last time (mostly it has become eligible now since we have probably 3498 * yielded to lockholder in last iteration. This is done by toggling 3499 * @dy_eligible each time a VCPU checked for eligibility.) 3500 * 3501 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3502 * to preempted lock-holder could result in wrong VCPU selection and CPU 3503 * burning. Giving priority for a potential lock-holder increases lock 3504 * progress. 3505 * 3506 * Since algorithm is based on heuristics, accessing another VCPU data without 3507 * locking does not harm. It may result in trying to yield to same VCPU, fail 3508 * and continue with next VCPU and so on. 3509 */ 3510 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3511 { 3512 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3513 bool eligible; 3514 3515 eligible = !vcpu->spin_loop.in_spin_loop || 3516 vcpu->spin_loop.dy_eligible; 3517 3518 if (vcpu->spin_loop.in_spin_loop) 3519 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3520 3521 return eligible; 3522 #else 3523 return true; 3524 #endif 3525 } 3526 3527 /* 3528 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3529 * a vcpu_load/vcpu_put pair. However, for most architectures 3530 * kvm_arch_vcpu_runnable does not require vcpu_load. 3531 */ 3532 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3533 { 3534 return kvm_arch_vcpu_runnable(vcpu); 3535 } 3536 3537 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3538 { 3539 if (kvm_arch_dy_runnable(vcpu)) 3540 return true; 3541 3542 #ifdef CONFIG_KVM_ASYNC_PF 3543 if (!list_empty_careful(&vcpu->async_pf.done)) 3544 return true; 3545 #endif 3546 3547 return false; 3548 } 3549 3550 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3551 { 3552 return false; 3553 } 3554 3555 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3556 { 3557 struct kvm *kvm = me->kvm; 3558 struct kvm_vcpu *vcpu; 3559 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3560 unsigned long i; 3561 int yielded = 0; 3562 int try = 3; 3563 int pass; 3564 3565 kvm_vcpu_set_in_spin_loop(me, true); 3566 /* 3567 * We boost the priority of a VCPU that is runnable but not 3568 * currently running, because it got preempted by something 3569 * else and called schedule in __vcpu_run. Hopefully that 3570 * VCPU is holding the lock that we need and will release it. 3571 * We approximate round-robin by starting at the last boosted VCPU. 3572 */ 3573 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3574 kvm_for_each_vcpu(i, vcpu, kvm) { 3575 if (!pass && i <= last_boosted_vcpu) { 3576 i = last_boosted_vcpu; 3577 continue; 3578 } else if (pass && i > last_boosted_vcpu) 3579 break; 3580 if (!READ_ONCE(vcpu->ready)) 3581 continue; 3582 if (vcpu == me) 3583 continue; 3584 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3585 continue; 3586 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3587 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3588 !kvm_arch_vcpu_in_kernel(vcpu)) 3589 continue; 3590 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3591 continue; 3592 3593 yielded = kvm_vcpu_yield_to(vcpu); 3594 if (yielded > 0) { 3595 kvm->last_boosted_vcpu = i; 3596 break; 3597 } else if (yielded < 0) { 3598 try--; 3599 if (!try) 3600 break; 3601 } 3602 } 3603 } 3604 kvm_vcpu_set_in_spin_loop(me, false); 3605 3606 /* Ensure vcpu is not eligible during next spinloop */ 3607 kvm_vcpu_set_dy_eligible(me, false); 3608 } 3609 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3610 3611 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3612 { 3613 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3614 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3615 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3616 kvm->dirty_ring_size / PAGE_SIZE); 3617 #else 3618 return false; 3619 #endif 3620 } 3621 3622 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3623 { 3624 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3625 struct page *page; 3626 3627 if (vmf->pgoff == 0) 3628 page = virt_to_page(vcpu->run); 3629 #ifdef CONFIG_X86 3630 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3631 page = virt_to_page(vcpu->arch.pio_data); 3632 #endif 3633 #ifdef CONFIG_KVM_MMIO 3634 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3635 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3636 #endif 3637 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3638 page = kvm_dirty_ring_get_page( 3639 &vcpu->dirty_ring, 3640 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3641 else 3642 return kvm_arch_vcpu_fault(vcpu, vmf); 3643 get_page(page); 3644 vmf->page = page; 3645 return 0; 3646 } 3647 3648 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3649 .fault = kvm_vcpu_fault, 3650 }; 3651 3652 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3653 { 3654 struct kvm_vcpu *vcpu = file->private_data; 3655 unsigned long pages = vma_pages(vma); 3656 3657 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3658 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3659 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3660 return -EINVAL; 3661 3662 vma->vm_ops = &kvm_vcpu_vm_ops; 3663 return 0; 3664 } 3665 3666 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3667 { 3668 struct kvm_vcpu *vcpu = filp->private_data; 3669 3670 kvm_put_kvm(vcpu->kvm); 3671 return 0; 3672 } 3673 3674 static struct file_operations kvm_vcpu_fops = { 3675 .release = kvm_vcpu_release, 3676 .unlocked_ioctl = kvm_vcpu_ioctl, 3677 .mmap = kvm_vcpu_mmap, 3678 .llseek = noop_llseek, 3679 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3680 }; 3681 3682 /* 3683 * Allocates an inode for the vcpu. 3684 */ 3685 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3686 { 3687 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3688 3689 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3690 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3691 } 3692 3693 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3694 { 3695 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3696 struct dentry *debugfs_dentry; 3697 char dir_name[ITOA_MAX_LEN * 2]; 3698 3699 if (!debugfs_initialized()) 3700 return; 3701 3702 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3703 debugfs_dentry = debugfs_create_dir(dir_name, 3704 vcpu->kvm->debugfs_dentry); 3705 3706 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3707 #endif 3708 } 3709 3710 /* 3711 * Creates some virtual cpus. Good luck creating more than one. 3712 */ 3713 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3714 { 3715 int r; 3716 struct kvm_vcpu *vcpu; 3717 struct page *page; 3718 3719 if (id >= KVM_MAX_VCPU_IDS) 3720 return -EINVAL; 3721 3722 mutex_lock(&kvm->lock); 3723 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3724 mutex_unlock(&kvm->lock); 3725 return -EINVAL; 3726 } 3727 3728 kvm->created_vcpus++; 3729 mutex_unlock(&kvm->lock); 3730 3731 r = kvm_arch_vcpu_precreate(kvm, id); 3732 if (r) 3733 goto vcpu_decrement; 3734 3735 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3736 if (!vcpu) { 3737 r = -ENOMEM; 3738 goto vcpu_decrement; 3739 } 3740 3741 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3742 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3743 if (!page) { 3744 r = -ENOMEM; 3745 goto vcpu_free; 3746 } 3747 vcpu->run = page_address(page); 3748 3749 kvm_vcpu_init(vcpu, kvm, id); 3750 3751 r = kvm_arch_vcpu_create(vcpu); 3752 if (r) 3753 goto vcpu_free_run_page; 3754 3755 if (kvm->dirty_ring_size) { 3756 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3757 id, kvm->dirty_ring_size); 3758 if (r) 3759 goto arch_vcpu_destroy; 3760 } 3761 3762 mutex_lock(&kvm->lock); 3763 if (kvm_get_vcpu_by_id(kvm, id)) { 3764 r = -EEXIST; 3765 goto unlock_vcpu_destroy; 3766 } 3767 3768 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3769 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3770 BUG_ON(r == -EBUSY); 3771 if (r) 3772 goto unlock_vcpu_destroy; 3773 3774 /* Fill the stats id string for the vcpu */ 3775 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3776 task_pid_nr(current), id); 3777 3778 /* Now it's all set up, let userspace reach it */ 3779 kvm_get_kvm(kvm); 3780 r = create_vcpu_fd(vcpu); 3781 if (r < 0) { 3782 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3783 kvm_put_kvm_no_destroy(kvm); 3784 goto unlock_vcpu_destroy; 3785 } 3786 3787 /* 3788 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3789 * pointer before kvm->online_vcpu's incremented value. 3790 */ 3791 smp_wmb(); 3792 atomic_inc(&kvm->online_vcpus); 3793 3794 mutex_unlock(&kvm->lock); 3795 kvm_arch_vcpu_postcreate(vcpu); 3796 kvm_create_vcpu_debugfs(vcpu); 3797 return r; 3798 3799 unlock_vcpu_destroy: 3800 mutex_unlock(&kvm->lock); 3801 kvm_dirty_ring_free(&vcpu->dirty_ring); 3802 arch_vcpu_destroy: 3803 kvm_arch_vcpu_destroy(vcpu); 3804 vcpu_free_run_page: 3805 free_page((unsigned long)vcpu->run); 3806 vcpu_free: 3807 kmem_cache_free(kvm_vcpu_cache, vcpu); 3808 vcpu_decrement: 3809 mutex_lock(&kvm->lock); 3810 kvm->created_vcpus--; 3811 mutex_unlock(&kvm->lock); 3812 return r; 3813 } 3814 3815 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3816 { 3817 if (sigset) { 3818 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3819 vcpu->sigset_active = 1; 3820 vcpu->sigset = *sigset; 3821 } else 3822 vcpu->sigset_active = 0; 3823 return 0; 3824 } 3825 3826 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3827 size_t size, loff_t *offset) 3828 { 3829 struct kvm_vcpu *vcpu = file->private_data; 3830 3831 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3832 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3833 sizeof(vcpu->stat), user_buffer, size, offset); 3834 } 3835 3836 static const struct file_operations kvm_vcpu_stats_fops = { 3837 .read = kvm_vcpu_stats_read, 3838 .llseek = noop_llseek, 3839 }; 3840 3841 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3842 { 3843 int fd; 3844 struct file *file; 3845 char name[15 + ITOA_MAX_LEN + 1]; 3846 3847 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3848 3849 fd = get_unused_fd_flags(O_CLOEXEC); 3850 if (fd < 0) 3851 return fd; 3852 3853 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3854 if (IS_ERR(file)) { 3855 put_unused_fd(fd); 3856 return PTR_ERR(file); 3857 } 3858 file->f_mode |= FMODE_PREAD; 3859 fd_install(fd, file); 3860 3861 return fd; 3862 } 3863 3864 static long kvm_vcpu_ioctl(struct file *filp, 3865 unsigned int ioctl, unsigned long arg) 3866 { 3867 struct kvm_vcpu *vcpu = filp->private_data; 3868 void __user *argp = (void __user *)arg; 3869 int r; 3870 struct kvm_fpu *fpu = NULL; 3871 struct kvm_sregs *kvm_sregs = NULL; 3872 3873 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3874 return -EIO; 3875 3876 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3877 return -EINVAL; 3878 3879 /* 3880 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3881 * execution; mutex_lock() would break them. 3882 */ 3883 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3884 if (r != -ENOIOCTLCMD) 3885 return r; 3886 3887 if (mutex_lock_killable(&vcpu->mutex)) 3888 return -EINTR; 3889 switch (ioctl) { 3890 case KVM_RUN: { 3891 struct pid *oldpid; 3892 r = -EINVAL; 3893 if (arg) 3894 goto out; 3895 oldpid = rcu_access_pointer(vcpu->pid); 3896 if (unlikely(oldpid != task_pid(current))) { 3897 /* The thread running this VCPU changed. */ 3898 struct pid *newpid; 3899 3900 r = kvm_arch_vcpu_run_pid_change(vcpu); 3901 if (r) 3902 break; 3903 3904 newpid = get_task_pid(current, PIDTYPE_PID); 3905 rcu_assign_pointer(vcpu->pid, newpid); 3906 if (oldpid) 3907 synchronize_rcu(); 3908 put_pid(oldpid); 3909 } 3910 r = kvm_arch_vcpu_ioctl_run(vcpu); 3911 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3912 break; 3913 } 3914 case KVM_GET_REGS: { 3915 struct kvm_regs *kvm_regs; 3916 3917 r = -ENOMEM; 3918 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3919 if (!kvm_regs) 3920 goto out; 3921 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3922 if (r) 3923 goto out_free1; 3924 r = -EFAULT; 3925 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3926 goto out_free1; 3927 r = 0; 3928 out_free1: 3929 kfree(kvm_regs); 3930 break; 3931 } 3932 case KVM_SET_REGS: { 3933 struct kvm_regs *kvm_regs; 3934 3935 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3936 if (IS_ERR(kvm_regs)) { 3937 r = PTR_ERR(kvm_regs); 3938 goto out; 3939 } 3940 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3941 kfree(kvm_regs); 3942 break; 3943 } 3944 case KVM_GET_SREGS: { 3945 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3946 GFP_KERNEL_ACCOUNT); 3947 r = -ENOMEM; 3948 if (!kvm_sregs) 3949 goto out; 3950 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3951 if (r) 3952 goto out; 3953 r = -EFAULT; 3954 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3955 goto out; 3956 r = 0; 3957 break; 3958 } 3959 case KVM_SET_SREGS: { 3960 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3961 if (IS_ERR(kvm_sregs)) { 3962 r = PTR_ERR(kvm_sregs); 3963 kvm_sregs = NULL; 3964 goto out; 3965 } 3966 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3967 break; 3968 } 3969 case KVM_GET_MP_STATE: { 3970 struct kvm_mp_state mp_state; 3971 3972 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3973 if (r) 3974 goto out; 3975 r = -EFAULT; 3976 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3977 goto out; 3978 r = 0; 3979 break; 3980 } 3981 case KVM_SET_MP_STATE: { 3982 struct kvm_mp_state mp_state; 3983 3984 r = -EFAULT; 3985 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3986 goto out; 3987 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3988 break; 3989 } 3990 case KVM_TRANSLATE: { 3991 struct kvm_translation tr; 3992 3993 r = -EFAULT; 3994 if (copy_from_user(&tr, argp, sizeof(tr))) 3995 goto out; 3996 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3997 if (r) 3998 goto out; 3999 r = -EFAULT; 4000 if (copy_to_user(argp, &tr, sizeof(tr))) 4001 goto out; 4002 r = 0; 4003 break; 4004 } 4005 case KVM_SET_GUEST_DEBUG: { 4006 struct kvm_guest_debug dbg; 4007 4008 r = -EFAULT; 4009 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4010 goto out; 4011 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4012 break; 4013 } 4014 case KVM_SET_SIGNAL_MASK: { 4015 struct kvm_signal_mask __user *sigmask_arg = argp; 4016 struct kvm_signal_mask kvm_sigmask; 4017 sigset_t sigset, *p; 4018 4019 p = NULL; 4020 if (argp) { 4021 r = -EFAULT; 4022 if (copy_from_user(&kvm_sigmask, argp, 4023 sizeof(kvm_sigmask))) 4024 goto out; 4025 r = -EINVAL; 4026 if (kvm_sigmask.len != sizeof(sigset)) 4027 goto out; 4028 r = -EFAULT; 4029 if (copy_from_user(&sigset, sigmask_arg->sigset, 4030 sizeof(sigset))) 4031 goto out; 4032 p = &sigset; 4033 } 4034 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4035 break; 4036 } 4037 case KVM_GET_FPU: { 4038 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4039 r = -ENOMEM; 4040 if (!fpu) 4041 goto out; 4042 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4043 if (r) 4044 goto out; 4045 r = -EFAULT; 4046 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4047 goto out; 4048 r = 0; 4049 break; 4050 } 4051 case KVM_SET_FPU: { 4052 fpu = memdup_user(argp, sizeof(*fpu)); 4053 if (IS_ERR(fpu)) { 4054 r = PTR_ERR(fpu); 4055 fpu = NULL; 4056 goto out; 4057 } 4058 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4059 break; 4060 } 4061 case KVM_GET_STATS_FD: { 4062 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4063 break; 4064 } 4065 default: 4066 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4067 } 4068 out: 4069 mutex_unlock(&vcpu->mutex); 4070 kfree(fpu); 4071 kfree(kvm_sregs); 4072 return r; 4073 } 4074 4075 #ifdef CONFIG_KVM_COMPAT 4076 static long kvm_vcpu_compat_ioctl(struct file *filp, 4077 unsigned int ioctl, unsigned long arg) 4078 { 4079 struct kvm_vcpu *vcpu = filp->private_data; 4080 void __user *argp = compat_ptr(arg); 4081 int r; 4082 4083 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4084 return -EIO; 4085 4086 switch (ioctl) { 4087 case KVM_SET_SIGNAL_MASK: { 4088 struct kvm_signal_mask __user *sigmask_arg = argp; 4089 struct kvm_signal_mask kvm_sigmask; 4090 sigset_t sigset; 4091 4092 if (argp) { 4093 r = -EFAULT; 4094 if (copy_from_user(&kvm_sigmask, argp, 4095 sizeof(kvm_sigmask))) 4096 goto out; 4097 r = -EINVAL; 4098 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4099 goto out; 4100 r = -EFAULT; 4101 if (get_compat_sigset(&sigset, 4102 (compat_sigset_t __user *)sigmask_arg->sigset)) 4103 goto out; 4104 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4105 } else 4106 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4107 break; 4108 } 4109 default: 4110 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4111 } 4112 4113 out: 4114 return r; 4115 } 4116 #endif 4117 4118 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4119 { 4120 struct kvm_device *dev = filp->private_data; 4121 4122 if (dev->ops->mmap) 4123 return dev->ops->mmap(dev, vma); 4124 4125 return -ENODEV; 4126 } 4127 4128 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4129 int (*accessor)(struct kvm_device *dev, 4130 struct kvm_device_attr *attr), 4131 unsigned long arg) 4132 { 4133 struct kvm_device_attr attr; 4134 4135 if (!accessor) 4136 return -EPERM; 4137 4138 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4139 return -EFAULT; 4140 4141 return accessor(dev, &attr); 4142 } 4143 4144 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4145 unsigned long arg) 4146 { 4147 struct kvm_device *dev = filp->private_data; 4148 4149 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4150 return -EIO; 4151 4152 switch (ioctl) { 4153 case KVM_SET_DEVICE_ATTR: 4154 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4155 case KVM_GET_DEVICE_ATTR: 4156 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4157 case KVM_HAS_DEVICE_ATTR: 4158 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4159 default: 4160 if (dev->ops->ioctl) 4161 return dev->ops->ioctl(dev, ioctl, arg); 4162 4163 return -ENOTTY; 4164 } 4165 } 4166 4167 static int kvm_device_release(struct inode *inode, struct file *filp) 4168 { 4169 struct kvm_device *dev = filp->private_data; 4170 struct kvm *kvm = dev->kvm; 4171 4172 if (dev->ops->release) { 4173 mutex_lock(&kvm->lock); 4174 list_del(&dev->vm_node); 4175 dev->ops->release(dev); 4176 mutex_unlock(&kvm->lock); 4177 } 4178 4179 kvm_put_kvm(kvm); 4180 return 0; 4181 } 4182 4183 static const struct file_operations kvm_device_fops = { 4184 .unlocked_ioctl = kvm_device_ioctl, 4185 .release = kvm_device_release, 4186 KVM_COMPAT(kvm_device_ioctl), 4187 .mmap = kvm_device_mmap, 4188 }; 4189 4190 struct kvm_device *kvm_device_from_filp(struct file *filp) 4191 { 4192 if (filp->f_op != &kvm_device_fops) 4193 return NULL; 4194 4195 return filp->private_data; 4196 } 4197 4198 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4199 #ifdef CONFIG_KVM_MPIC 4200 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4201 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4202 #endif 4203 }; 4204 4205 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4206 { 4207 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4208 return -ENOSPC; 4209 4210 if (kvm_device_ops_table[type] != NULL) 4211 return -EEXIST; 4212 4213 kvm_device_ops_table[type] = ops; 4214 return 0; 4215 } 4216 4217 void kvm_unregister_device_ops(u32 type) 4218 { 4219 if (kvm_device_ops_table[type] != NULL) 4220 kvm_device_ops_table[type] = NULL; 4221 } 4222 4223 static int kvm_ioctl_create_device(struct kvm *kvm, 4224 struct kvm_create_device *cd) 4225 { 4226 const struct kvm_device_ops *ops = NULL; 4227 struct kvm_device *dev; 4228 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4229 int type; 4230 int ret; 4231 4232 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4233 return -ENODEV; 4234 4235 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4236 ops = kvm_device_ops_table[type]; 4237 if (ops == NULL) 4238 return -ENODEV; 4239 4240 if (test) 4241 return 0; 4242 4243 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4244 if (!dev) 4245 return -ENOMEM; 4246 4247 dev->ops = ops; 4248 dev->kvm = kvm; 4249 4250 mutex_lock(&kvm->lock); 4251 ret = ops->create(dev, type); 4252 if (ret < 0) { 4253 mutex_unlock(&kvm->lock); 4254 kfree(dev); 4255 return ret; 4256 } 4257 list_add(&dev->vm_node, &kvm->devices); 4258 mutex_unlock(&kvm->lock); 4259 4260 if (ops->init) 4261 ops->init(dev); 4262 4263 kvm_get_kvm(kvm); 4264 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4265 if (ret < 0) { 4266 kvm_put_kvm_no_destroy(kvm); 4267 mutex_lock(&kvm->lock); 4268 list_del(&dev->vm_node); 4269 mutex_unlock(&kvm->lock); 4270 ops->destroy(dev); 4271 return ret; 4272 } 4273 4274 cd->fd = ret; 4275 return 0; 4276 } 4277 4278 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4279 { 4280 switch (arg) { 4281 case KVM_CAP_USER_MEMORY: 4282 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4283 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4284 case KVM_CAP_INTERNAL_ERROR_DATA: 4285 #ifdef CONFIG_HAVE_KVM_MSI 4286 case KVM_CAP_SIGNAL_MSI: 4287 #endif 4288 #ifdef CONFIG_HAVE_KVM_IRQFD 4289 case KVM_CAP_IRQFD: 4290 case KVM_CAP_IRQFD_RESAMPLE: 4291 #endif 4292 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4293 case KVM_CAP_CHECK_EXTENSION_VM: 4294 case KVM_CAP_ENABLE_CAP_VM: 4295 case KVM_CAP_HALT_POLL: 4296 return 1; 4297 #ifdef CONFIG_KVM_MMIO 4298 case KVM_CAP_COALESCED_MMIO: 4299 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4300 case KVM_CAP_COALESCED_PIO: 4301 return 1; 4302 #endif 4303 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4304 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4305 return KVM_DIRTY_LOG_MANUAL_CAPS; 4306 #endif 4307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4308 case KVM_CAP_IRQ_ROUTING: 4309 return KVM_MAX_IRQ_ROUTES; 4310 #endif 4311 #if KVM_ADDRESS_SPACE_NUM > 1 4312 case KVM_CAP_MULTI_ADDRESS_SPACE: 4313 return KVM_ADDRESS_SPACE_NUM; 4314 #endif 4315 case KVM_CAP_NR_MEMSLOTS: 4316 return KVM_USER_MEM_SLOTS; 4317 case KVM_CAP_DIRTY_LOG_RING: 4318 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4319 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4320 #else 4321 return 0; 4322 #endif 4323 case KVM_CAP_BINARY_STATS_FD: 4324 return 1; 4325 default: 4326 break; 4327 } 4328 return kvm_vm_ioctl_check_extension(kvm, arg); 4329 } 4330 4331 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4332 { 4333 int r; 4334 4335 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4336 return -EINVAL; 4337 4338 /* the size should be power of 2 */ 4339 if (!size || (size & (size - 1))) 4340 return -EINVAL; 4341 4342 /* Should be bigger to keep the reserved entries, or a page */ 4343 if (size < kvm_dirty_ring_get_rsvd_entries() * 4344 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4345 return -EINVAL; 4346 4347 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4348 sizeof(struct kvm_dirty_gfn)) 4349 return -E2BIG; 4350 4351 /* We only allow it to set once */ 4352 if (kvm->dirty_ring_size) 4353 return -EINVAL; 4354 4355 mutex_lock(&kvm->lock); 4356 4357 if (kvm->created_vcpus) { 4358 /* We don't allow to change this value after vcpu created */ 4359 r = -EINVAL; 4360 } else { 4361 kvm->dirty_ring_size = size; 4362 r = 0; 4363 } 4364 4365 mutex_unlock(&kvm->lock); 4366 return r; 4367 } 4368 4369 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4370 { 4371 unsigned long i; 4372 struct kvm_vcpu *vcpu; 4373 int cleared = 0; 4374 4375 if (!kvm->dirty_ring_size) 4376 return -EINVAL; 4377 4378 mutex_lock(&kvm->slots_lock); 4379 4380 kvm_for_each_vcpu(i, vcpu, kvm) 4381 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4382 4383 mutex_unlock(&kvm->slots_lock); 4384 4385 if (cleared) 4386 kvm_flush_remote_tlbs(kvm); 4387 4388 return cleared; 4389 } 4390 4391 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4392 struct kvm_enable_cap *cap) 4393 { 4394 return -EINVAL; 4395 } 4396 4397 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4398 struct kvm_enable_cap *cap) 4399 { 4400 switch (cap->cap) { 4401 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4402 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4403 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4404 4405 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4406 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4407 4408 if (cap->flags || (cap->args[0] & ~allowed_options)) 4409 return -EINVAL; 4410 kvm->manual_dirty_log_protect = cap->args[0]; 4411 return 0; 4412 } 4413 #endif 4414 case KVM_CAP_HALT_POLL: { 4415 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4416 return -EINVAL; 4417 4418 kvm->max_halt_poll_ns = cap->args[0]; 4419 return 0; 4420 } 4421 case KVM_CAP_DIRTY_LOG_RING: 4422 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4423 default: 4424 return kvm_vm_ioctl_enable_cap(kvm, cap); 4425 } 4426 } 4427 4428 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4429 size_t size, loff_t *offset) 4430 { 4431 struct kvm *kvm = file->private_data; 4432 4433 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4434 &kvm_vm_stats_desc[0], &kvm->stat, 4435 sizeof(kvm->stat), user_buffer, size, offset); 4436 } 4437 4438 static const struct file_operations kvm_vm_stats_fops = { 4439 .read = kvm_vm_stats_read, 4440 .llseek = noop_llseek, 4441 }; 4442 4443 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4444 { 4445 int fd; 4446 struct file *file; 4447 4448 fd = get_unused_fd_flags(O_CLOEXEC); 4449 if (fd < 0) 4450 return fd; 4451 4452 file = anon_inode_getfile("kvm-vm-stats", 4453 &kvm_vm_stats_fops, kvm, O_RDONLY); 4454 if (IS_ERR(file)) { 4455 put_unused_fd(fd); 4456 return PTR_ERR(file); 4457 } 4458 file->f_mode |= FMODE_PREAD; 4459 fd_install(fd, file); 4460 4461 return fd; 4462 } 4463 4464 static long kvm_vm_ioctl(struct file *filp, 4465 unsigned int ioctl, unsigned long arg) 4466 { 4467 struct kvm *kvm = filp->private_data; 4468 void __user *argp = (void __user *)arg; 4469 int r; 4470 4471 if (kvm->mm != current->mm || kvm->vm_dead) 4472 return -EIO; 4473 switch (ioctl) { 4474 case KVM_CREATE_VCPU: 4475 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4476 break; 4477 case KVM_ENABLE_CAP: { 4478 struct kvm_enable_cap cap; 4479 4480 r = -EFAULT; 4481 if (copy_from_user(&cap, argp, sizeof(cap))) 4482 goto out; 4483 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4484 break; 4485 } 4486 case KVM_SET_USER_MEMORY_REGION: { 4487 struct kvm_userspace_memory_region kvm_userspace_mem; 4488 4489 r = -EFAULT; 4490 if (copy_from_user(&kvm_userspace_mem, argp, 4491 sizeof(kvm_userspace_mem))) 4492 goto out; 4493 4494 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4495 break; 4496 } 4497 case KVM_GET_DIRTY_LOG: { 4498 struct kvm_dirty_log log; 4499 4500 r = -EFAULT; 4501 if (copy_from_user(&log, argp, sizeof(log))) 4502 goto out; 4503 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4504 break; 4505 } 4506 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4507 case KVM_CLEAR_DIRTY_LOG: { 4508 struct kvm_clear_dirty_log log; 4509 4510 r = -EFAULT; 4511 if (copy_from_user(&log, argp, sizeof(log))) 4512 goto out; 4513 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4514 break; 4515 } 4516 #endif 4517 #ifdef CONFIG_KVM_MMIO 4518 case KVM_REGISTER_COALESCED_MMIO: { 4519 struct kvm_coalesced_mmio_zone zone; 4520 4521 r = -EFAULT; 4522 if (copy_from_user(&zone, argp, sizeof(zone))) 4523 goto out; 4524 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4525 break; 4526 } 4527 case KVM_UNREGISTER_COALESCED_MMIO: { 4528 struct kvm_coalesced_mmio_zone zone; 4529 4530 r = -EFAULT; 4531 if (copy_from_user(&zone, argp, sizeof(zone))) 4532 goto out; 4533 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4534 break; 4535 } 4536 #endif 4537 case KVM_IRQFD: { 4538 struct kvm_irqfd data; 4539 4540 r = -EFAULT; 4541 if (copy_from_user(&data, argp, sizeof(data))) 4542 goto out; 4543 r = kvm_irqfd(kvm, &data); 4544 break; 4545 } 4546 case KVM_IOEVENTFD: { 4547 struct kvm_ioeventfd data; 4548 4549 r = -EFAULT; 4550 if (copy_from_user(&data, argp, sizeof(data))) 4551 goto out; 4552 r = kvm_ioeventfd(kvm, &data); 4553 break; 4554 } 4555 #ifdef CONFIG_HAVE_KVM_MSI 4556 case KVM_SIGNAL_MSI: { 4557 struct kvm_msi msi; 4558 4559 r = -EFAULT; 4560 if (copy_from_user(&msi, argp, sizeof(msi))) 4561 goto out; 4562 r = kvm_send_userspace_msi(kvm, &msi); 4563 break; 4564 } 4565 #endif 4566 #ifdef __KVM_HAVE_IRQ_LINE 4567 case KVM_IRQ_LINE_STATUS: 4568 case KVM_IRQ_LINE: { 4569 struct kvm_irq_level irq_event; 4570 4571 r = -EFAULT; 4572 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4573 goto out; 4574 4575 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4576 ioctl == KVM_IRQ_LINE_STATUS); 4577 if (r) 4578 goto out; 4579 4580 r = -EFAULT; 4581 if (ioctl == KVM_IRQ_LINE_STATUS) { 4582 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4583 goto out; 4584 } 4585 4586 r = 0; 4587 break; 4588 } 4589 #endif 4590 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4591 case KVM_SET_GSI_ROUTING: { 4592 struct kvm_irq_routing routing; 4593 struct kvm_irq_routing __user *urouting; 4594 struct kvm_irq_routing_entry *entries = NULL; 4595 4596 r = -EFAULT; 4597 if (copy_from_user(&routing, argp, sizeof(routing))) 4598 goto out; 4599 r = -EINVAL; 4600 if (!kvm_arch_can_set_irq_routing(kvm)) 4601 goto out; 4602 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4603 goto out; 4604 if (routing.flags) 4605 goto out; 4606 if (routing.nr) { 4607 urouting = argp; 4608 entries = vmemdup_user(urouting->entries, 4609 array_size(sizeof(*entries), 4610 routing.nr)); 4611 if (IS_ERR(entries)) { 4612 r = PTR_ERR(entries); 4613 goto out; 4614 } 4615 } 4616 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4617 routing.flags); 4618 kvfree(entries); 4619 break; 4620 } 4621 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4622 case KVM_CREATE_DEVICE: { 4623 struct kvm_create_device cd; 4624 4625 r = -EFAULT; 4626 if (copy_from_user(&cd, argp, sizeof(cd))) 4627 goto out; 4628 4629 r = kvm_ioctl_create_device(kvm, &cd); 4630 if (r) 4631 goto out; 4632 4633 r = -EFAULT; 4634 if (copy_to_user(argp, &cd, sizeof(cd))) 4635 goto out; 4636 4637 r = 0; 4638 break; 4639 } 4640 case KVM_CHECK_EXTENSION: 4641 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4642 break; 4643 case KVM_RESET_DIRTY_RINGS: 4644 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4645 break; 4646 case KVM_GET_STATS_FD: 4647 r = kvm_vm_ioctl_get_stats_fd(kvm); 4648 break; 4649 default: 4650 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4651 } 4652 out: 4653 return r; 4654 } 4655 4656 #ifdef CONFIG_KVM_COMPAT 4657 struct compat_kvm_dirty_log { 4658 __u32 slot; 4659 __u32 padding1; 4660 union { 4661 compat_uptr_t dirty_bitmap; /* one bit per page */ 4662 __u64 padding2; 4663 }; 4664 }; 4665 4666 struct compat_kvm_clear_dirty_log { 4667 __u32 slot; 4668 __u32 num_pages; 4669 __u64 first_page; 4670 union { 4671 compat_uptr_t dirty_bitmap; /* one bit per page */ 4672 __u64 padding2; 4673 }; 4674 }; 4675 4676 static long kvm_vm_compat_ioctl(struct file *filp, 4677 unsigned int ioctl, unsigned long arg) 4678 { 4679 struct kvm *kvm = filp->private_data; 4680 int r; 4681 4682 if (kvm->mm != current->mm || kvm->vm_dead) 4683 return -EIO; 4684 switch (ioctl) { 4685 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4686 case KVM_CLEAR_DIRTY_LOG: { 4687 struct compat_kvm_clear_dirty_log compat_log; 4688 struct kvm_clear_dirty_log log; 4689 4690 if (copy_from_user(&compat_log, (void __user *)arg, 4691 sizeof(compat_log))) 4692 return -EFAULT; 4693 log.slot = compat_log.slot; 4694 log.num_pages = compat_log.num_pages; 4695 log.first_page = compat_log.first_page; 4696 log.padding2 = compat_log.padding2; 4697 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4698 4699 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4700 break; 4701 } 4702 #endif 4703 case KVM_GET_DIRTY_LOG: { 4704 struct compat_kvm_dirty_log compat_log; 4705 struct kvm_dirty_log log; 4706 4707 if (copy_from_user(&compat_log, (void __user *)arg, 4708 sizeof(compat_log))) 4709 return -EFAULT; 4710 log.slot = compat_log.slot; 4711 log.padding1 = compat_log.padding1; 4712 log.padding2 = compat_log.padding2; 4713 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4714 4715 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4716 break; 4717 } 4718 default: 4719 r = kvm_vm_ioctl(filp, ioctl, arg); 4720 } 4721 return r; 4722 } 4723 #endif 4724 4725 static struct file_operations kvm_vm_fops = { 4726 .release = kvm_vm_release, 4727 .unlocked_ioctl = kvm_vm_ioctl, 4728 .llseek = noop_llseek, 4729 KVM_COMPAT(kvm_vm_compat_ioctl), 4730 }; 4731 4732 bool file_is_kvm(struct file *file) 4733 { 4734 return file && file->f_op == &kvm_vm_fops; 4735 } 4736 EXPORT_SYMBOL_GPL(file_is_kvm); 4737 4738 static int kvm_dev_ioctl_create_vm(unsigned long type) 4739 { 4740 int r; 4741 struct kvm *kvm; 4742 struct file *file; 4743 4744 kvm = kvm_create_vm(type); 4745 if (IS_ERR(kvm)) 4746 return PTR_ERR(kvm); 4747 #ifdef CONFIG_KVM_MMIO 4748 r = kvm_coalesced_mmio_init(kvm); 4749 if (r < 0) 4750 goto put_kvm; 4751 #endif 4752 r = get_unused_fd_flags(O_CLOEXEC); 4753 if (r < 0) 4754 goto put_kvm; 4755 4756 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4757 "kvm-%d", task_pid_nr(current)); 4758 4759 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4760 if (IS_ERR(file)) { 4761 put_unused_fd(r); 4762 r = PTR_ERR(file); 4763 goto put_kvm; 4764 } 4765 4766 /* 4767 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4768 * already set, with ->release() being kvm_vm_release(). In error 4769 * cases it will be called by the final fput(file) and will take 4770 * care of doing kvm_put_kvm(kvm). 4771 */ 4772 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4773 put_unused_fd(r); 4774 fput(file); 4775 return -ENOMEM; 4776 } 4777 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4778 4779 fd_install(r, file); 4780 return r; 4781 4782 put_kvm: 4783 kvm_put_kvm(kvm); 4784 return r; 4785 } 4786 4787 static long kvm_dev_ioctl(struct file *filp, 4788 unsigned int ioctl, unsigned long arg) 4789 { 4790 long r = -EINVAL; 4791 4792 switch (ioctl) { 4793 case KVM_GET_API_VERSION: 4794 if (arg) 4795 goto out; 4796 r = KVM_API_VERSION; 4797 break; 4798 case KVM_CREATE_VM: 4799 r = kvm_dev_ioctl_create_vm(arg); 4800 break; 4801 case KVM_CHECK_EXTENSION: 4802 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4803 break; 4804 case KVM_GET_VCPU_MMAP_SIZE: 4805 if (arg) 4806 goto out; 4807 r = PAGE_SIZE; /* struct kvm_run */ 4808 #ifdef CONFIG_X86 4809 r += PAGE_SIZE; /* pio data page */ 4810 #endif 4811 #ifdef CONFIG_KVM_MMIO 4812 r += PAGE_SIZE; /* coalesced mmio ring page */ 4813 #endif 4814 break; 4815 case KVM_TRACE_ENABLE: 4816 case KVM_TRACE_PAUSE: 4817 case KVM_TRACE_DISABLE: 4818 r = -EOPNOTSUPP; 4819 break; 4820 default: 4821 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4822 } 4823 out: 4824 return r; 4825 } 4826 4827 static struct file_operations kvm_chardev_ops = { 4828 .unlocked_ioctl = kvm_dev_ioctl, 4829 .llseek = noop_llseek, 4830 KVM_COMPAT(kvm_dev_ioctl), 4831 }; 4832 4833 static struct miscdevice kvm_dev = { 4834 KVM_MINOR, 4835 "kvm", 4836 &kvm_chardev_ops, 4837 }; 4838 4839 static void hardware_enable_nolock(void *junk) 4840 { 4841 int cpu = raw_smp_processor_id(); 4842 int r; 4843 4844 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4845 return; 4846 4847 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4848 4849 r = kvm_arch_hardware_enable(); 4850 4851 if (r) { 4852 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4853 atomic_inc(&hardware_enable_failed); 4854 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4855 } 4856 } 4857 4858 static int kvm_starting_cpu(unsigned int cpu) 4859 { 4860 raw_spin_lock(&kvm_count_lock); 4861 if (kvm_usage_count) 4862 hardware_enable_nolock(NULL); 4863 raw_spin_unlock(&kvm_count_lock); 4864 return 0; 4865 } 4866 4867 static void hardware_disable_nolock(void *junk) 4868 { 4869 int cpu = raw_smp_processor_id(); 4870 4871 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4872 return; 4873 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4874 kvm_arch_hardware_disable(); 4875 } 4876 4877 static int kvm_dying_cpu(unsigned int cpu) 4878 { 4879 raw_spin_lock(&kvm_count_lock); 4880 if (kvm_usage_count) 4881 hardware_disable_nolock(NULL); 4882 raw_spin_unlock(&kvm_count_lock); 4883 return 0; 4884 } 4885 4886 static void hardware_disable_all_nolock(void) 4887 { 4888 BUG_ON(!kvm_usage_count); 4889 4890 kvm_usage_count--; 4891 if (!kvm_usage_count) 4892 on_each_cpu(hardware_disable_nolock, NULL, 1); 4893 } 4894 4895 static void hardware_disable_all(void) 4896 { 4897 raw_spin_lock(&kvm_count_lock); 4898 hardware_disable_all_nolock(); 4899 raw_spin_unlock(&kvm_count_lock); 4900 } 4901 4902 static int hardware_enable_all(void) 4903 { 4904 int r = 0; 4905 4906 raw_spin_lock(&kvm_count_lock); 4907 4908 kvm_usage_count++; 4909 if (kvm_usage_count == 1) { 4910 atomic_set(&hardware_enable_failed, 0); 4911 on_each_cpu(hardware_enable_nolock, NULL, 1); 4912 4913 if (atomic_read(&hardware_enable_failed)) { 4914 hardware_disable_all_nolock(); 4915 r = -EBUSY; 4916 } 4917 } 4918 4919 raw_spin_unlock(&kvm_count_lock); 4920 4921 return r; 4922 } 4923 4924 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4925 void *v) 4926 { 4927 /* 4928 * Some (well, at least mine) BIOSes hang on reboot if 4929 * in vmx root mode. 4930 * 4931 * And Intel TXT required VMX off for all cpu when system shutdown. 4932 */ 4933 pr_info("kvm: exiting hardware virtualization\n"); 4934 kvm_rebooting = true; 4935 on_each_cpu(hardware_disable_nolock, NULL, 1); 4936 return NOTIFY_OK; 4937 } 4938 4939 static struct notifier_block kvm_reboot_notifier = { 4940 .notifier_call = kvm_reboot, 4941 .priority = 0, 4942 }; 4943 4944 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4945 { 4946 int i; 4947 4948 for (i = 0; i < bus->dev_count; i++) { 4949 struct kvm_io_device *pos = bus->range[i].dev; 4950 4951 kvm_iodevice_destructor(pos); 4952 } 4953 kfree(bus); 4954 } 4955 4956 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4957 const struct kvm_io_range *r2) 4958 { 4959 gpa_t addr1 = r1->addr; 4960 gpa_t addr2 = r2->addr; 4961 4962 if (addr1 < addr2) 4963 return -1; 4964 4965 /* If r2->len == 0, match the exact address. If r2->len != 0, 4966 * accept any overlapping write. Any order is acceptable for 4967 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4968 * we process all of them. 4969 */ 4970 if (r2->len) { 4971 addr1 += r1->len; 4972 addr2 += r2->len; 4973 } 4974 4975 if (addr1 > addr2) 4976 return 1; 4977 4978 return 0; 4979 } 4980 4981 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4982 { 4983 return kvm_io_bus_cmp(p1, p2); 4984 } 4985 4986 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4987 gpa_t addr, int len) 4988 { 4989 struct kvm_io_range *range, key; 4990 int off; 4991 4992 key = (struct kvm_io_range) { 4993 .addr = addr, 4994 .len = len, 4995 }; 4996 4997 range = bsearch(&key, bus->range, bus->dev_count, 4998 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4999 if (range == NULL) 5000 return -ENOENT; 5001 5002 off = range - bus->range; 5003 5004 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5005 off--; 5006 5007 return off; 5008 } 5009 5010 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5011 struct kvm_io_range *range, const void *val) 5012 { 5013 int idx; 5014 5015 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5016 if (idx < 0) 5017 return -EOPNOTSUPP; 5018 5019 while (idx < bus->dev_count && 5020 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5021 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5022 range->len, val)) 5023 return idx; 5024 idx++; 5025 } 5026 5027 return -EOPNOTSUPP; 5028 } 5029 5030 /* kvm_io_bus_write - called under kvm->slots_lock */ 5031 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5032 int len, const void *val) 5033 { 5034 struct kvm_io_bus *bus; 5035 struct kvm_io_range range; 5036 int r; 5037 5038 range = (struct kvm_io_range) { 5039 .addr = addr, 5040 .len = len, 5041 }; 5042 5043 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5044 if (!bus) 5045 return -ENOMEM; 5046 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5047 return r < 0 ? r : 0; 5048 } 5049 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5050 5051 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5052 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5053 gpa_t addr, int len, const void *val, long cookie) 5054 { 5055 struct kvm_io_bus *bus; 5056 struct kvm_io_range range; 5057 5058 range = (struct kvm_io_range) { 5059 .addr = addr, 5060 .len = len, 5061 }; 5062 5063 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5064 if (!bus) 5065 return -ENOMEM; 5066 5067 /* First try the device referenced by cookie. */ 5068 if ((cookie >= 0) && (cookie < bus->dev_count) && 5069 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5070 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5071 val)) 5072 return cookie; 5073 5074 /* 5075 * cookie contained garbage; fall back to search and return the 5076 * correct cookie value. 5077 */ 5078 return __kvm_io_bus_write(vcpu, bus, &range, val); 5079 } 5080 5081 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5082 struct kvm_io_range *range, void *val) 5083 { 5084 int idx; 5085 5086 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5087 if (idx < 0) 5088 return -EOPNOTSUPP; 5089 5090 while (idx < bus->dev_count && 5091 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5092 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5093 range->len, val)) 5094 return idx; 5095 idx++; 5096 } 5097 5098 return -EOPNOTSUPP; 5099 } 5100 5101 /* kvm_io_bus_read - called under kvm->slots_lock */ 5102 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5103 int len, void *val) 5104 { 5105 struct kvm_io_bus *bus; 5106 struct kvm_io_range range; 5107 int r; 5108 5109 range = (struct kvm_io_range) { 5110 .addr = addr, 5111 .len = len, 5112 }; 5113 5114 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5115 if (!bus) 5116 return -ENOMEM; 5117 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5118 return r < 0 ? r : 0; 5119 } 5120 5121 /* Caller must hold slots_lock. */ 5122 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5123 int len, struct kvm_io_device *dev) 5124 { 5125 int i; 5126 struct kvm_io_bus *new_bus, *bus; 5127 struct kvm_io_range range; 5128 5129 bus = kvm_get_bus(kvm, bus_idx); 5130 if (!bus) 5131 return -ENOMEM; 5132 5133 /* exclude ioeventfd which is limited by maximum fd */ 5134 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5135 return -ENOSPC; 5136 5137 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5138 GFP_KERNEL_ACCOUNT); 5139 if (!new_bus) 5140 return -ENOMEM; 5141 5142 range = (struct kvm_io_range) { 5143 .addr = addr, 5144 .len = len, 5145 .dev = dev, 5146 }; 5147 5148 for (i = 0; i < bus->dev_count; i++) 5149 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5150 break; 5151 5152 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5153 new_bus->dev_count++; 5154 new_bus->range[i] = range; 5155 memcpy(new_bus->range + i + 1, bus->range + i, 5156 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5157 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5158 synchronize_srcu_expedited(&kvm->srcu); 5159 kfree(bus); 5160 5161 return 0; 5162 } 5163 5164 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5165 struct kvm_io_device *dev) 5166 { 5167 int i, j; 5168 struct kvm_io_bus *new_bus, *bus; 5169 5170 lockdep_assert_held(&kvm->slots_lock); 5171 5172 bus = kvm_get_bus(kvm, bus_idx); 5173 if (!bus) 5174 return 0; 5175 5176 for (i = 0; i < bus->dev_count; i++) { 5177 if (bus->range[i].dev == dev) { 5178 break; 5179 } 5180 } 5181 5182 if (i == bus->dev_count) 5183 return 0; 5184 5185 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5186 GFP_KERNEL_ACCOUNT); 5187 if (new_bus) { 5188 memcpy(new_bus, bus, struct_size(bus, range, i)); 5189 new_bus->dev_count--; 5190 memcpy(new_bus->range + i, bus->range + i + 1, 5191 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5192 } 5193 5194 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5195 synchronize_srcu_expedited(&kvm->srcu); 5196 5197 /* Destroy the old bus _after_ installing the (null) bus. */ 5198 if (!new_bus) { 5199 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5200 for (j = 0; j < bus->dev_count; j++) { 5201 if (j == i) 5202 continue; 5203 kvm_iodevice_destructor(bus->range[j].dev); 5204 } 5205 } 5206 5207 kfree(bus); 5208 return new_bus ? 0 : -ENOMEM; 5209 } 5210 5211 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5212 gpa_t addr) 5213 { 5214 struct kvm_io_bus *bus; 5215 int dev_idx, srcu_idx; 5216 struct kvm_io_device *iodev = NULL; 5217 5218 srcu_idx = srcu_read_lock(&kvm->srcu); 5219 5220 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5221 if (!bus) 5222 goto out_unlock; 5223 5224 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5225 if (dev_idx < 0) 5226 goto out_unlock; 5227 5228 iodev = bus->range[dev_idx].dev; 5229 5230 out_unlock: 5231 srcu_read_unlock(&kvm->srcu, srcu_idx); 5232 5233 return iodev; 5234 } 5235 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5236 5237 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5238 int (*get)(void *, u64 *), int (*set)(void *, u64), 5239 const char *fmt) 5240 { 5241 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5242 inode->i_private; 5243 5244 /* 5245 * The debugfs files are a reference to the kvm struct which 5246 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5247 * avoids the race between open and the removal of the debugfs directory. 5248 */ 5249 if (!kvm_get_kvm_safe(stat_data->kvm)) 5250 return -ENOENT; 5251 5252 if (simple_attr_open(inode, file, get, 5253 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5254 ? set : NULL, 5255 fmt)) { 5256 kvm_put_kvm(stat_data->kvm); 5257 return -ENOMEM; 5258 } 5259 5260 return 0; 5261 } 5262 5263 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5264 { 5265 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5266 inode->i_private; 5267 5268 simple_attr_release(inode, file); 5269 kvm_put_kvm(stat_data->kvm); 5270 5271 return 0; 5272 } 5273 5274 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5275 { 5276 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5277 5278 return 0; 5279 } 5280 5281 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5282 { 5283 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5284 5285 return 0; 5286 } 5287 5288 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5289 { 5290 unsigned long i; 5291 struct kvm_vcpu *vcpu; 5292 5293 *val = 0; 5294 5295 kvm_for_each_vcpu(i, vcpu, kvm) 5296 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5297 5298 return 0; 5299 } 5300 5301 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5302 { 5303 unsigned long i; 5304 struct kvm_vcpu *vcpu; 5305 5306 kvm_for_each_vcpu(i, vcpu, kvm) 5307 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5308 5309 return 0; 5310 } 5311 5312 static int kvm_stat_data_get(void *data, u64 *val) 5313 { 5314 int r = -EFAULT; 5315 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5316 5317 switch (stat_data->kind) { 5318 case KVM_STAT_VM: 5319 r = kvm_get_stat_per_vm(stat_data->kvm, 5320 stat_data->desc->desc.offset, val); 5321 break; 5322 case KVM_STAT_VCPU: 5323 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5324 stat_data->desc->desc.offset, val); 5325 break; 5326 } 5327 5328 return r; 5329 } 5330 5331 static int kvm_stat_data_clear(void *data, u64 val) 5332 { 5333 int r = -EFAULT; 5334 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5335 5336 if (val) 5337 return -EINVAL; 5338 5339 switch (stat_data->kind) { 5340 case KVM_STAT_VM: 5341 r = kvm_clear_stat_per_vm(stat_data->kvm, 5342 stat_data->desc->desc.offset); 5343 break; 5344 case KVM_STAT_VCPU: 5345 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5346 stat_data->desc->desc.offset); 5347 break; 5348 } 5349 5350 return r; 5351 } 5352 5353 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5354 { 5355 __simple_attr_check_format("%llu\n", 0ull); 5356 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5357 kvm_stat_data_clear, "%llu\n"); 5358 } 5359 5360 static const struct file_operations stat_fops_per_vm = { 5361 .owner = THIS_MODULE, 5362 .open = kvm_stat_data_open, 5363 .release = kvm_debugfs_release, 5364 .read = simple_attr_read, 5365 .write = simple_attr_write, 5366 .llseek = no_llseek, 5367 }; 5368 5369 static int vm_stat_get(void *_offset, u64 *val) 5370 { 5371 unsigned offset = (long)_offset; 5372 struct kvm *kvm; 5373 u64 tmp_val; 5374 5375 *val = 0; 5376 mutex_lock(&kvm_lock); 5377 list_for_each_entry(kvm, &vm_list, vm_list) { 5378 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5379 *val += tmp_val; 5380 } 5381 mutex_unlock(&kvm_lock); 5382 return 0; 5383 } 5384 5385 static int vm_stat_clear(void *_offset, u64 val) 5386 { 5387 unsigned offset = (long)_offset; 5388 struct kvm *kvm; 5389 5390 if (val) 5391 return -EINVAL; 5392 5393 mutex_lock(&kvm_lock); 5394 list_for_each_entry(kvm, &vm_list, vm_list) { 5395 kvm_clear_stat_per_vm(kvm, offset); 5396 } 5397 mutex_unlock(&kvm_lock); 5398 5399 return 0; 5400 } 5401 5402 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5404 5405 static int vcpu_stat_get(void *_offset, u64 *val) 5406 { 5407 unsigned offset = (long)_offset; 5408 struct kvm *kvm; 5409 u64 tmp_val; 5410 5411 *val = 0; 5412 mutex_lock(&kvm_lock); 5413 list_for_each_entry(kvm, &vm_list, vm_list) { 5414 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5415 *val += tmp_val; 5416 } 5417 mutex_unlock(&kvm_lock); 5418 return 0; 5419 } 5420 5421 static int vcpu_stat_clear(void *_offset, u64 val) 5422 { 5423 unsigned offset = (long)_offset; 5424 struct kvm *kvm; 5425 5426 if (val) 5427 return -EINVAL; 5428 5429 mutex_lock(&kvm_lock); 5430 list_for_each_entry(kvm, &vm_list, vm_list) { 5431 kvm_clear_stat_per_vcpu(kvm, offset); 5432 } 5433 mutex_unlock(&kvm_lock); 5434 5435 return 0; 5436 } 5437 5438 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5439 "%llu\n"); 5440 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5441 5442 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5443 { 5444 struct kobj_uevent_env *env; 5445 unsigned long long created, active; 5446 5447 if (!kvm_dev.this_device || !kvm) 5448 return; 5449 5450 mutex_lock(&kvm_lock); 5451 if (type == KVM_EVENT_CREATE_VM) { 5452 kvm_createvm_count++; 5453 kvm_active_vms++; 5454 } else if (type == KVM_EVENT_DESTROY_VM) { 5455 kvm_active_vms--; 5456 } 5457 created = kvm_createvm_count; 5458 active = kvm_active_vms; 5459 mutex_unlock(&kvm_lock); 5460 5461 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5462 if (!env) 5463 return; 5464 5465 add_uevent_var(env, "CREATED=%llu", created); 5466 add_uevent_var(env, "COUNT=%llu", active); 5467 5468 if (type == KVM_EVENT_CREATE_VM) { 5469 add_uevent_var(env, "EVENT=create"); 5470 kvm->userspace_pid = task_pid_nr(current); 5471 } else if (type == KVM_EVENT_DESTROY_VM) { 5472 add_uevent_var(env, "EVENT=destroy"); 5473 } 5474 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5475 5476 if (kvm->debugfs_dentry) { 5477 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5478 5479 if (p) { 5480 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5481 if (!IS_ERR(tmp)) 5482 add_uevent_var(env, "STATS_PATH=%s", tmp); 5483 kfree(p); 5484 } 5485 } 5486 /* no need for checks, since we are adding at most only 5 keys */ 5487 env->envp[env->envp_idx++] = NULL; 5488 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5489 kfree(env); 5490 } 5491 5492 static void kvm_init_debug(void) 5493 { 5494 const struct file_operations *fops; 5495 const struct _kvm_stats_desc *pdesc; 5496 int i; 5497 5498 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5499 5500 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5501 pdesc = &kvm_vm_stats_desc[i]; 5502 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5503 fops = &vm_stat_fops; 5504 else 5505 fops = &vm_stat_readonly_fops; 5506 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5507 kvm_debugfs_dir, 5508 (void *)(long)pdesc->desc.offset, fops); 5509 } 5510 5511 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5512 pdesc = &kvm_vcpu_stats_desc[i]; 5513 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5514 fops = &vcpu_stat_fops; 5515 else 5516 fops = &vcpu_stat_readonly_fops; 5517 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5518 kvm_debugfs_dir, 5519 (void *)(long)pdesc->desc.offset, fops); 5520 } 5521 } 5522 5523 static int kvm_suspend(void) 5524 { 5525 if (kvm_usage_count) 5526 hardware_disable_nolock(NULL); 5527 return 0; 5528 } 5529 5530 static void kvm_resume(void) 5531 { 5532 if (kvm_usage_count) { 5533 #ifdef CONFIG_LOCKDEP 5534 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5535 #endif 5536 hardware_enable_nolock(NULL); 5537 } 5538 } 5539 5540 static struct syscore_ops kvm_syscore_ops = { 5541 .suspend = kvm_suspend, 5542 .resume = kvm_resume, 5543 }; 5544 5545 static inline 5546 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5547 { 5548 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5549 } 5550 5551 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5552 { 5553 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5554 5555 WRITE_ONCE(vcpu->preempted, false); 5556 WRITE_ONCE(vcpu->ready, false); 5557 5558 __this_cpu_write(kvm_running_vcpu, vcpu); 5559 kvm_arch_sched_in(vcpu, cpu); 5560 kvm_arch_vcpu_load(vcpu, cpu); 5561 } 5562 5563 static void kvm_sched_out(struct preempt_notifier *pn, 5564 struct task_struct *next) 5565 { 5566 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5567 5568 if (current->on_rq) { 5569 WRITE_ONCE(vcpu->preempted, true); 5570 WRITE_ONCE(vcpu->ready, true); 5571 } 5572 kvm_arch_vcpu_put(vcpu); 5573 __this_cpu_write(kvm_running_vcpu, NULL); 5574 } 5575 5576 /** 5577 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5578 * 5579 * We can disable preemption locally around accessing the per-CPU variable, 5580 * and use the resolved vcpu pointer after enabling preemption again, 5581 * because even if the current thread is migrated to another CPU, reading 5582 * the per-CPU value later will give us the same value as we update the 5583 * per-CPU variable in the preempt notifier handlers. 5584 */ 5585 struct kvm_vcpu *kvm_get_running_vcpu(void) 5586 { 5587 struct kvm_vcpu *vcpu; 5588 5589 preempt_disable(); 5590 vcpu = __this_cpu_read(kvm_running_vcpu); 5591 preempt_enable(); 5592 5593 return vcpu; 5594 } 5595 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5596 5597 /** 5598 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5599 */ 5600 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5601 { 5602 return &kvm_running_vcpu; 5603 } 5604 5605 #ifdef CONFIG_GUEST_PERF_EVENTS 5606 static unsigned int kvm_guest_state(void) 5607 { 5608 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5609 unsigned int state; 5610 5611 if (!kvm_arch_pmi_in_guest(vcpu)) 5612 return 0; 5613 5614 state = PERF_GUEST_ACTIVE; 5615 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5616 state |= PERF_GUEST_USER; 5617 5618 return state; 5619 } 5620 5621 static unsigned long kvm_guest_get_ip(void) 5622 { 5623 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5624 5625 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5626 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5627 return 0; 5628 5629 return kvm_arch_vcpu_get_ip(vcpu); 5630 } 5631 5632 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5633 .state = kvm_guest_state, 5634 .get_ip = kvm_guest_get_ip, 5635 .handle_intel_pt_intr = NULL, 5636 }; 5637 5638 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5639 { 5640 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5641 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5642 } 5643 void kvm_unregister_perf_callbacks(void) 5644 { 5645 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5646 } 5647 #endif 5648 5649 struct kvm_cpu_compat_check { 5650 void *opaque; 5651 int *ret; 5652 }; 5653 5654 static void check_processor_compat(void *data) 5655 { 5656 struct kvm_cpu_compat_check *c = data; 5657 5658 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5659 } 5660 5661 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5662 struct module *module) 5663 { 5664 struct kvm_cpu_compat_check c; 5665 int r; 5666 int cpu; 5667 5668 r = kvm_arch_init(opaque); 5669 if (r) 5670 goto out_fail; 5671 5672 /* 5673 * kvm_arch_init makes sure there's at most one caller 5674 * for architectures that support multiple implementations, 5675 * like intel and amd on x86. 5676 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5677 * conflicts in case kvm is already setup for another implementation. 5678 */ 5679 r = kvm_irqfd_init(); 5680 if (r) 5681 goto out_irqfd; 5682 5683 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5684 r = -ENOMEM; 5685 goto out_free_0; 5686 } 5687 5688 r = kvm_arch_hardware_setup(opaque); 5689 if (r < 0) 5690 goto out_free_1; 5691 5692 c.ret = &r; 5693 c.opaque = opaque; 5694 for_each_online_cpu(cpu) { 5695 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5696 if (r < 0) 5697 goto out_free_2; 5698 } 5699 5700 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5701 kvm_starting_cpu, kvm_dying_cpu); 5702 if (r) 5703 goto out_free_2; 5704 register_reboot_notifier(&kvm_reboot_notifier); 5705 5706 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5707 if (!vcpu_align) 5708 vcpu_align = __alignof__(struct kvm_vcpu); 5709 kvm_vcpu_cache = 5710 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5711 SLAB_ACCOUNT, 5712 offsetof(struct kvm_vcpu, arch), 5713 offsetofend(struct kvm_vcpu, stats_id) 5714 - offsetof(struct kvm_vcpu, arch), 5715 NULL); 5716 if (!kvm_vcpu_cache) { 5717 r = -ENOMEM; 5718 goto out_free_3; 5719 } 5720 5721 for_each_possible_cpu(cpu) { 5722 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5723 GFP_KERNEL, cpu_to_node(cpu))) { 5724 r = -ENOMEM; 5725 goto out_free_4; 5726 } 5727 } 5728 5729 r = kvm_async_pf_init(); 5730 if (r) 5731 goto out_free_5; 5732 5733 kvm_chardev_ops.owner = module; 5734 kvm_vm_fops.owner = module; 5735 kvm_vcpu_fops.owner = module; 5736 5737 r = misc_register(&kvm_dev); 5738 if (r) { 5739 pr_err("kvm: misc device register failed\n"); 5740 goto out_unreg; 5741 } 5742 5743 register_syscore_ops(&kvm_syscore_ops); 5744 5745 kvm_preempt_ops.sched_in = kvm_sched_in; 5746 kvm_preempt_ops.sched_out = kvm_sched_out; 5747 5748 kvm_init_debug(); 5749 5750 r = kvm_vfio_ops_init(); 5751 WARN_ON(r); 5752 5753 return 0; 5754 5755 out_unreg: 5756 kvm_async_pf_deinit(); 5757 out_free_5: 5758 for_each_possible_cpu(cpu) 5759 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5760 out_free_4: 5761 kmem_cache_destroy(kvm_vcpu_cache); 5762 out_free_3: 5763 unregister_reboot_notifier(&kvm_reboot_notifier); 5764 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5765 out_free_2: 5766 kvm_arch_hardware_unsetup(); 5767 out_free_1: 5768 free_cpumask_var(cpus_hardware_enabled); 5769 out_free_0: 5770 kvm_irqfd_exit(); 5771 out_irqfd: 5772 kvm_arch_exit(); 5773 out_fail: 5774 return r; 5775 } 5776 EXPORT_SYMBOL_GPL(kvm_init); 5777 5778 void kvm_exit(void) 5779 { 5780 int cpu; 5781 5782 debugfs_remove_recursive(kvm_debugfs_dir); 5783 misc_deregister(&kvm_dev); 5784 for_each_possible_cpu(cpu) 5785 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5786 kmem_cache_destroy(kvm_vcpu_cache); 5787 kvm_async_pf_deinit(); 5788 unregister_syscore_ops(&kvm_syscore_ops); 5789 unregister_reboot_notifier(&kvm_reboot_notifier); 5790 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5791 on_each_cpu(hardware_disable_nolock, NULL, 1); 5792 kvm_arch_hardware_unsetup(); 5793 kvm_arch_exit(); 5794 kvm_irqfd_exit(); 5795 free_cpumask_var(cpus_hardware_enabled); 5796 kvm_vfio_ops_exit(); 5797 } 5798 EXPORT_SYMBOL_GPL(kvm_exit); 5799 5800 struct kvm_vm_worker_thread_context { 5801 struct kvm *kvm; 5802 struct task_struct *parent; 5803 struct completion init_done; 5804 kvm_vm_thread_fn_t thread_fn; 5805 uintptr_t data; 5806 int err; 5807 }; 5808 5809 static int kvm_vm_worker_thread(void *context) 5810 { 5811 /* 5812 * The init_context is allocated on the stack of the parent thread, so 5813 * we have to locally copy anything that is needed beyond initialization 5814 */ 5815 struct kvm_vm_worker_thread_context *init_context = context; 5816 struct kvm *kvm = init_context->kvm; 5817 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5818 uintptr_t data = init_context->data; 5819 int err; 5820 5821 err = kthread_park(current); 5822 /* kthread_park(current) is never supposed to return an error */ 5823 WARN_ON(err != 0); 5824 if (err) 5825 goto init_complete; 5826 5827 err = cgroup_attach_task_all(init_context->parent, current); 5828 if (err) { 5829 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5830 __func__, err); 5831 goto init_complete; 5832 } 5833 5834 set_user_nice(current, task_nice(init_context->parent)); 5835 5836 init_complete: 5837 init_context->err = err; 5838 complete(&init_context->init_done); 5839 init_context = NULL; 5840 5841 if (err) 5842 return err; 5843 5844 /* Wait to be woken up by the spawner before proceeding. */ 5845 kthread_parkme(); 5846 5847 if (!kthread_should_stop()) 5848 err = thread_fn(kvm, data); 5849 5850 return err; 5851 } 5852 5853 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5854 uintptr_t data, const char *name, 5855 struct task_struct **thread_ptr) 5856 { 5857 struct kvm_vm_worker_thread_context init_context = {}; 5858 struct task_struct *thread; 5859 5860 *thread_ptr = NULL; 5861 init_context.kvm = kvm; 5862 init_context.parent = current; 5863 init_context.thread_fn = thread_fn; 5864 init_context.data = data; 5865 init_completion(&init_context.init_done); 5866 5867 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5868 "%s-%d", name, task_pid_nr(current)); 5869 if (IS_ERR(thread)) 5870 return PTR_ERR(thread); 5871 5872 /* kthread_run is never supposed to return NULL */ 5873 WARN_ON(thread == NULL); 5874 5875 wait_for_completion(&init_context.init_done); 5876 5877 if (!init_context.err) 5878 *thread_ptr = thread; 5879 5880 return init_context.err; 5881 } 5882