xref: /linux/virt/kvm/kvm_main.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159 
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 						   unsigned long start, unsigned long end)
162 {
163 }
164 
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167 	/*
168 	 * The metadata used by is_zone_device_page() to determine whether or
169 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
171 	 * page_count() is zero to help detect bad usage of this helper.
172 	 */
173 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 		return false;
175 
176 	return is_zone_device_page(pfn_to_page(pfn));
177 }
178 
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181 	/*
182 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 	 * perspective they are "normal" pages, albeit with slightly different
184 	 * usage rules.
185 	 */
186 	if (pfn_valid(pfn))
187 		return PageReserved(pfn_to_page(pfn)) &&
188 		       !is_zero_pfn(pfn) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 
201 	__this_cpu_write(kvm_running_vcpu, vcpu);
202 	preempt_notifier_register(&vcpu->preempt_notifier);
203 	kvm_arch_vcpu_load(vcpu, cpu);
204 	put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207 
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210 	preempt_disable();
211 	kvm_arch_vcpu_put(vcpu);
212 	preempt_notifier_unregister(&vcpu->preempt_notifier);
213 	__this_cpu_write(kvm_running_vcpu, NULL);
214 	preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217 
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222 
223 	/*
224 	 * We need to wait for the VCPU to reenable interrupts and get out of
225 	 * READING_SHADOW_PAGE_TABLES mode.
226 	 */
227 	if (req & KVM_REQUEST_WAIT)
228 		return mode != OUTSIDE_GUEST_MODE;
229 
230 	/*
231 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 	 */
233 	return mode == IN_GUEST_MODE;
234 }
235 
236 static void ack_flush(void *_completed)
237 {
238 }
239 
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250 				  unsigned int req, struct cpumask *tmp,
251 				  int current_cpu)
252 {
253 	int cpu;
254 
255 	kvm_make_request(req, vcpu);
256 
257 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 		return;
259 
260 	/*
261 	 * Note, the vCPU could get migrated to a different pCPU at any point
262 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
264 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 	 * after this point is also OK, as the requirement is only that KVM wait
267 	 * for vCPUs that were reading SPTEs _before_ any changes were
268 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 	 */
270 	if (kvm_request_needs_ipi(vcpu, req)) {
271 		cpu = READ_ONCE(vcpu->cpu);
272 		if (cpu != -1 && cpu != current_cpu)
273 			__cpumask_set_cpu(cpu, tmp);
274 	}
275 }
276 
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278 				 unsigned long *vcpu_bitmap)
279 {
280 	struct kvm_vcpu *vcpu;
281 	struct cpumask *cpus;
282 	int i, me;
283 	bool called;
284 
285 	me = get_cpu();
286 
287 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 	cpumask_clear(cpus);
289 
290 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 		vcpu = kvm_get_vcpu(kvm, i);
292 		if (!vcpu)
293 			continue;
294 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295 	}
296 
297 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298 	put_cpu();
299 
300 	return called;
301 }
302 
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 				      struct kvm_vcpu *except)
305 {
306 	struct kvm_vcpu *vcpu;
307 	struct cpumask *cpus;
308 	unsigned long i;
309 	bool called;
310 	int me;
311 
312 	me = get_cpu();
313 
314 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
315 	cpumask_clear(cpus);
316 
317 	kvm_for_each_vcpu(i, vcpu, kvm) {
318 		if (vcpu == except)
319 			continue;
320 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
321 	}
322 
323 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
324 	put_cpu();
325 
326 	return called;
327 }
328 
329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
330 {
331 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
332 }
333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
334 
335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
336 void kvm_flush_remote_tlbs(struct kvm *kvm)
337 {
338 	++kvm->stat.generic.remote_tlb_flush_requests;
339 
340 	/*
341 	 * We want to publish modifications to the page tables before reading
342 	 * mode. Pairs with a memory barrier in arch-specific code.
343 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
344 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
345 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
346 	 *
347 	 * There is already an smp_mb__after_atomic() before
348 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
349 	 * barrier here.
350 	 */
351 	if (!kvm_arch_flush_remote_tlb(kvm)
352 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
353 		++kvm->stat.generic.remote_tlb_flush;
354 }
355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
356 #endif
357 
358 void kvm_reload_remote_mmus(struct kvm *kvm)
359 {
360 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
361 }
362 
363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
365 					       gfp_t gfp_flags)
366 {
367 	gfp_flags |= mc->gfp_zero;
368 
369 	if (mc->kmem_cache)
370 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
371 	else
372 		return (void *)__get_free_page(gfp_flags);
373 }
374 
375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
376 {
377 	void *obj;
378 
379 	if (mc->nobjs >= min)
380 		return 0;
381 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
382 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
383 		if (!obj)
384 			return mc->nobjs >= min ? 0 : -ENOMEM;
385 		mc->objects[mc->nobjs++] = obj;
386 	}
387 	return 0;
388 }
389 
390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
391 {
392 	return mc->nobjs;
393 }
394 
395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
396 {
397 	while (mc->nobjs) {
398 		if (mc->kmem_cache)
399 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
400 		else
401 			free_page((unsigned long)mc->objects[--mc->nobjs]);
402 	}
403 }
404 
405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
406 {
407 	void *p;
408 
409 	if (WARN_ON(!mc->nobjs))
410 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
411 	else
412 		p = mc->objects[--mc->nobjs];
413 	BUG_ON(!p);
414 	return p;
415 }
416 #endif
417 
418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
419 {
420 	mutex_init(&vcpu->mutex);
421 	vcpu->cpu = -1;
422 	vcpu->kvm = kvm;
423 	vcpu->vcpu_id = id;
424 	vcpu->pid = NULL;
425 #ifndef __KVM_HAVE_ARCH_WQP
426 	rcuwait_init(&vcpu->wait);
427 #endif
428 	kvm_async_pf_vcpu_init(vcpu);
429 
430 	kvm_vcpu_set_in_spin_loop(vcpu, false);
431 	kvm_vcpu_set_dy_eligible(vcpu, false);
432 	vcpu->preempted = false;
433 	vcpu->ready = false;
434 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435 	vcpu->last_used_slot = NULL;
436 }
437 
438 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440 	kvm_dirty_ring_free(&vcpu->dirty_ring);
441 	kvm_arch_vcpu_destroy(vcpu);
442 
443 	/*
444 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445 	 * the vcpu->pid pointer, and at destruction time all file descriptors
446 	 * are already gone.
447 	 */
448 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
449 
450 	free_page((unsigned long)vcpu->run);
451 	kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453 
454 void kvm_destroy_vcpus(struct kvm *kvm)
455 {
456 	unsigned long i;
457 	struct kvm_vcpu *vcpu;
458 
459 	kvm_for_each_vcpu(i, vcpu, kvm) {
460 		kvm_vcpu_destroy(vcpu);
461 		xa_erase(&kvm->vcpu_array, i);
462 	}
463 
464 	atomic_set(&kvm->online_vcpus, 0);
465 }
466 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
467 
468 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
469 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
470 {
471 	return container_of(mn, struct kvm, mmu_notifier);
472 }
473 
474 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
475 					      struct mm_struct *mm,
476 					      unsigned long start, unsigned long end)
477 {
478 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 	int idx;
480 
481 	idx = srcu_read_lock(&kvm->srcu);
482 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
483 	srcu_read_unlock(&kvm->srcu, idx);
484 }
485 
486 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
487 
488 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
489 			     unsigned long end);
490 
491 struct kvm_hva_range {
492 	unsigned long start;
493 	unsigned long end;
494 	pte_t pte;
495 	hva_handler_t handler;
496 	on_lock_fn_t on_lock;
497 	bool flush_on_ret;
498 	bool may_block;
499 };
500 
501 /*
502  * Use a dedicated stub instead of NULL to indicate that there is no callback
503  * function/handler.  The compiler technically can't guarantee that a real
504  * function will have a non-zero address, and so it will generate code to
505  * check for !NULL, whereas comparing against a stub will be elided at compile
506  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
507  */
508 static void kvm_null_fn(void)
509 {
510 
511 }
512 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
513 
514 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
515 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
516 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
517 	     node;							     \
518 	     node = interval_tree_iter_next(node, start, last))	     \
519 
520 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
521 						  const struct kvm_hva_range *range)
522 {
523 	bool ret = false, locked = false;
524 	struct kvm_gfn_range gfn_range;
525 	struct kvm_memory_slot *slot;
526 	struct kvm_memslots *slots;
527 	int i, idx;
528 
529 	if (WARN_ON_ONCE(range->end <= range->start))
530 		return 0;
531 
532 	/* A null handler is allowed if and only if on_lock() is provided. */
533 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
534 			 IS_KVM_NULL_FN(range->handler)))
535 		return 0;
536 
537 	idx = srcu_read_lock(&kvm->srcu);
538 
539 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
540 		struct interval_tree_node *node;
541 
542 		slots = __kvm_memslots(kvm, i);
543 		kvm_for_each_memslot_in_hva_range(node, slots,
544 						  range->start, range->end - 1) {
545 			unsigned long hva_start, hva_end;
546 
547 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
548 			hva_start = max(range->start, slot->userspace_addr);
549 			hva_end = min(range->end, slot->userspace_addr +
550 						  (slot->npages << PAGE_SHIFT));
551 
552 			/*
553 			 * To optimize for the likely case where the address
554 			 * range is covered by zero or one memslots, don't
555 			 * bother making these conditional (to avoid writes on
556 			 * the second or later invocation of the handler).
557 			 */
558 			gfn_range.pte = range->pte;
559 			gfn_range.may_block = range->may_block;
560 
561 			/*
562 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
563 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
564 			 */
565 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
566 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
567 			gfn_range.slot = slot;
568 
569 			if (!locked) {
570 				locked = true;
571 				KVM_MMU_LOCK(kvm);
572 				if (!IS_KVM_NULL_FN(range->on_lock))
573 					range->on_lock(kvm, range->start, range->end);
574 				if (IS_KVM_NULL_FN(range->handler))
575 					break;
576 			}
577 			ret |= range->handler(kvm, &gfn_range);
578 		}
579 	}
580 
581 	if (range->flush_on_ret && ret)
582 		kvm_flush_remote_tlbs(kvm);
583 
584 	if (locked)
585 		KVM_MMU_UNLOCK(kvm);
586 
587 	srcu_read_unlock(&kvm->srcu, idx);
588 
589 	/* The notifiers are averse to booleans. :-( */
590 	return (int)ret;
591 }
592 
593 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
594 						unsigned long start,
595 						unsigned long end,
596 						pte_t pte,
597 						hva_handler_t handler)
598 {
599 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
600 	const struct kvm_hva_range range = {
601 		.start		= start,
602 		.end		= end,
603 		.pte		= pte,
604 		.handler	= handler,
605 		.on_lock	= (void *)kvm_null_fn,
606 		.flush_on_ret	= true,
607 		.may_block	= false,
608 	};
609 
610 	return __kvm_handle_hva_range(kvm, &range);
611 }
612 
613 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
614 							 unsigned long start,
615 							 unsigned long end,
616 							 hva_handler_t handler)
617 {
618 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
619 	const struct kvm_hva_range range = {
620 		.start		= start,
621 		.end		= end,
622 		.pte		= __pte(0),
623 		.handler	= handler,
624 		.on_lock	= (void *)kvm_null_fn,
625 		.flush_on_ret	= false,
626 		.may_block	= false,
627 	};
628 
629 	return __kvm_handle_hva_range(kvm, &range);
630 }
631 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
632 					struct mm_struct *mm,
633 					unsigned long address,
634 					pte_t pte)
635 {
636 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
637 
638 	trace_kvm_set_spte_hva(address);
639 
640 	/*
641 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
642 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
643 	 * including this one, found a relevant memslot at start(); rechecking
644 	 * memslots here is unnecessary.  Note, a false positive (count elevated
645 	 * by a different invalidation) is sub-optimal but functionally ok.
646 	 */
647 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
648 	if (!READ_ONCE(kvm->mmu_notifier_count))
649 		return;
650 
651 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
652 }
653 
654 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
655 				   unsigned long end)
656 {
657 	/*
658 	 * The count increase must become visible at unlock time as no
659 	 * spte can be established without taking the mmu_lock and
660 	 * count is also read inside the mmu_lock critical section.
661 	 */
662 	kvm->mmu_notifier_count++;
663 	if (likely(kvm->mmu_notifier_count == 1)) {
664 		kvm->mmu_notifier_range_start = start;
665 		kvm->mmu_notifier_range_end = end;
666 	} else {
667 		/*
668 		 * Fully tracking multiple concurrent ranges has dimishing
669 		 * returns. Keep things simple and just find the minimal range
670 		 * which includes the current and new ranges. As there won't be
671 		 * enough information to subtract a range after its invalidate
672 		 * completes, any ranges invalidated concurrently will
673 		 * accumulate and persist until all outstanding invalidates
674 		 * complete.
675 		 */
676 		kvm->mmu_notifier_range_start =
677 			min(kvm->mmu_notifier_range_start, start);
678 		kvm->mmu_notifier_range_end =
679 			max(kvm->mmu_notifier_range_end, end);
680 	}
681 }
682 
683 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
684 					const struct mmu_notifier_range *range)
685 {
686 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
687 	const struct kvm_hva_range hva_range = {
688 		.start		= range->start,
689 		.end		= range->end,
690 		.pte		= __pte(0),
691 		.handler	= kvm_unmap_gfn_range,
692 		.on_lock	= kvm_inc_notifier_count,
693 		.flush_on_ret	= true,
694 		.may_block	= mmu_notifier_range_blockable(range),
695 	};
696 
697 	trace_kvm_unmap_hva_range(range->start, range->end);
698 
699 	/*
700 	 * Prevent memslot modification between range_start() and range_end()
701 	 * so that conditionally locking provides the same result in both
702 	 * functions.  Without that guarantee, the mmu_notifier_count
703 	 * adjustments will be imbalanced.
704 	 *
705 	 * Pairs with the decrement in range_end().
706 	 */
707 	spin_lock(&kvm->mn_invalidate_lock);
708 	kvm->mn_active_invalidate_count++;
709 	spin_unlock(&kvm->mn_invalidate_lock);
710 
711 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
712 					  hva_range.may_block);
713 
714 	__kvm_handle_hva_range(kvm, &hva_range);
715 
716 	return 0;
717 }
718 
719 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
720 				   unsigned long end)
721 {
722 	/*
723 	 * This sequence increase will notify the kvm page fault that
724 	 * the page that is going to be mapped in the spte could have
725 	 * been freed.
726 	 */
727 	kvm->mmu_notifier_seq++;
728 	smp_wmb();
729 	/*
730 	 * The above sequence increase must be visible before the
731 	 * below count decrease, which is ensured by the smp_wmb above
732 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
733 	 */
734 	kvm->mmu_notifier_count--;
735 }
736 
737 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
738 					const struct mmu_notifier_range *range)
739 {
740 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
741 	const struct kvm_hva_range hva_range = {
742 		.start		= range->start,
743 		.end		= range->end,
744 		.pte		= __pte(0),
745 		.handler	= (void *)kvm_null_fn,
746 		.on_lock	= kvm_dec_notifier_count,
747 		.flush_on_ret	= false,
748 		.may_block	= mmu_notifier_range_blockable(range),
749 	};
750 	bool wake;
751 
752 	__kvm_handle_hva_range(kvm, &hva_range);
753 
754 	/* Pairs with the increment in range_start(). */
755 	spin_lock(&kvm->mn_invalidate_lock);
756 	wake = (--kvm->mn_active_invalidate_count == 0);
757 	spin_unlock(&kvm->mn_invalidate_lock);
758 
759 	/*
760 	 * There can only be one waiter, since the wait happens under
761 	 * slots_lock.
762 	 */
763 	if (wake)
764 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
765 
766 	BUG_ON(kvm->mmu_notifier_count < 0);
767 }
768 
769 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
770 					      struct mm_struct *mm,
771 					      unsigned long start,
772 					      unsigned long end)
773 {
774 	trace_kvm_age_hva(start, end);
775 
776 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
777 }
778 
779 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
780 					struct mm_struct *mm,
781 					unsigned long start,
782 					unsigned long end)
783 {
784 	trace_kvm_age_hva(start, end);
785 
786 	/*
787 	 * Even though we do not flush TLB, this will still adversely
788 	 * affect performance on pre-Haswell Intel EPT, where there is
789 	 * no EPT Access Bit to clear so that we have to tear down EPT
790 	 * tables instead. If we find this unacceptable, we can always
791 	 * add a parameter to kvm_age_hva so that it effectively doesn't
792 	 * do anything on clear_young.
793 	 *
794 	 * Also note that currently we never issue secondary TLB flushes
795 	 * from clear_young, leaving this job up to the regular system
796 	 * cadence. If we find this inaccurate, we might come up with a
797 	 * more sophisticated heuristic later.
798 	 */
799 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
800 }
801 
802 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
803 				       struct mm_struct *mm,
804 				       unsigned long address)
805 {
806 	trace_kvm_test_age_hva(address);
807 
808 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
809 					     kvm_test_age_gfn);
810 }
811 
812 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
813 				     struct mm_struct *mm)
814 {
815 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
816 	int idx;
817 
818 	idx = srcu_read_lock(&kvm->srcu);
819 	kvm_arch_flush_shadow_all(kvm);
820 	srcu_read_unlock(&kvm->srcu, idx);
821 }
822 
823 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
824 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
825 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
826 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
827 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
828 	.clear_young		= kvm_mmu_notifier_clear_young,
829 	.test_young		= kvm_mmu_notifier_test_young,
830 	.change_pte		= kvm_mmu_notifier_change_pte,
831 	.release		= kvm_mmu_notifier_release,
832 };
833 
834 static int kvm_init_mmu_notifier(struct kvm *kvm)
835 {
836 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
837 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
838 }
839 
840 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
841 
842 static int kvm_init_mmu_notifier(struct kvm *kvm)
843 {
844 	return 0;
845 }
846 
847 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
848 
849 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
850 static int kvm_pm_notifier_call(struct notifier_block *bl,
851 				unsigned long state,
852 				void *unused)
853 {
854 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
855 
856 	return kvm_arch_pm_notifier(kvm, state);
857 }
858 
859 static void kvm_init_pm_notifier(struct kvm *kvm)
860 {
861 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
862 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
863 	kvm->pm_notifier.priority = INT_MAX;
864 	register_pm_notifier(&kvm->pm_notifier);
865 }
866 
867 static void kvm_destroy_pm_notifier(struct kvm *kvm)
868 {
869 	unregister_pm_notifier(&kvm->pm_notifier);
870 }
871 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
872 static void kvm_init_pm_notifier(struct kvm *kvm)
873 {
874 }
875 
876 static void kvm_destroy_pm_notifier(struct kvm *kvm)
877 {
878 }
879 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
880 
881 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
882 {
883 	if (!memslot->dirty_bitmap)
884 		return;
885 
886 	kvfree(memslot->dirty_bitmap);
887 	memslot->dirty_bitmap = NULL;
888 }
889 
890 /* This does not remove the slot from struct kvm_memslots data structures */
891 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
892 {
893 	kvm_destroy_dirty_bitmap(slot);
894 
895 	kvm_arch_free_memslot(kvm, slot);
896 
897 	kfree(slot);
898 }
899 
900 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
901 {
902 	struct hlist_node *idnode;
903 	struct kvm_memory_slot *memslot;
904 	int bkt;
905 
906 	/*
907 	 * The same memslot objects live in both active and inactive sets,
908 	 * arbitrarily free using index '1' so the second invocation of this
909 	 * function isn't operating over a structure with dangling pointers
910 	 * (even though this function isn't actually touching them).
911 	 */
912 	if (!slots->node_idx)
913 		return;
914 
915 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
916 		kvm_free_memslot(kvm, memslot);
917 }
918 
919 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
920 {
921 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
922 	case KVM_STATS_TYPE_INSTANT:
923 		return 0444;
924 	case KVM_STATS_TYPE_CUMULATIVE:
925 	case KVM_STATS_TYPE_PEAK:
926 	default:
927 		return 0644;
928 	}
929 }
930 
931 
932 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
933 {
934 	int i;
935 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
936 				      kvm_vcpu_stats_header.num_desc;
937 
938 	if (!kvm->debugfs_dentry)
939 		return;
940 
941 	debugfs_remove_recursive(kvm->debugfs_dentry);
942 
943 	if (kvm->debugfs_stat_data) {
944 		for (i = 0; i < kvm_debugfs_num_entries; i++)
945 			kfree(kvm->debugfs_stat_data[i]);
946 		kfree(kvm->debugfs_stat_data);
947 	}
948 }
949 
950 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
951 {
952 	static DEFINE_MUTEX(kvm_debugfs_lock);
953 	struct dentry *dent;
954 	char dir_name[ITOA_MAX_LEN * 2];
955 	struct kvm_stat_data *stat_data;
956 	const struct _kvm_stats_desc *pdesc;
957 	int i, ret;
958 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
959 				      kvm_vcpu_stats_header.num_desc;
960 
961 	if (!debugfs_initialized())
962 		return 0;
963 
964 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
965 	mutex_lock(&kvm_debugfs_lock);
966 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
967 	if (dent) {
968 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
969 		dput(dent);
970 		mutex_unlock(&kvm_debugfs_lock);
971 		return 0;
972 	}
973 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
974 	mutex_unlock(&kvm_debugfs_lock);
975 	if (IS_ERR(dent))
976 		return 0;
977 
978 	kvm->debugfs_dentry = dent;
979 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
980 					 sizeof(*kvm->debugfs_stat_data),
981 					 GFP_KERNEL_ACCOUNT);
982 	if (!kvm->debugfs_stat_data)
983 		return -ENOMEM;
984 
985 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
986 		pdesc = &kvm_vm_stats_desc[i];
987 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
988 		if (!stat_data)
989 			return -ENOMEM;
990 
991 		stat_data->kvm = kvm;
992 		stat_data->desc = pdesc;
993 		stat_data->kind = KVM_STAT_VM;
994 		kvm->debugfs_stat_data[i] = stat_data;
995 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
996 				    kvm->debugfs_dentry, stat_data,
997 				    &stat_fops_per_vm);
998 	}
999 
1000 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1001 		pdesc = &kvm_vcpu_stats_desc[i];
1002 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1003 		if (!stat_data)
1004 			return -ENOMEM;
1005 
1006 		stat_data->kvm = kvm;
1007 		stat_data->desc = pdesc;
1008 		stat_data->kind = KVM_STAT_VCPU;
1009 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1010 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1011 				    kvm->debugfs_dentry, stat_data,
1012 				    &stat_fops_per_vm);
1013 	}
1014 
1015 	ret = kvm_arch_create_vm_debugfs(kvm);
1016 	if (ret) {
1017 		kvm_destroy_vm_debugfs(kvm);
1018 		return i;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Called after the VM is otherwise initialized, but just before adding it to
1026  * the vm_list.
1027  */
1028 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1029 {
1030 	return 0;
1031 }
1032 
1033 /*
1034  * Called just after removing the VM from the vm_list, but before doing any
1035  * other destruction.
1036  */
1037 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1038 {
1039 }
1040 
1041 /*
1042  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1043  * be setup already, so we can create arch-specific debugfs entries under it.
1044  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1045  * a per-arch destroy interface is not needed.
1046  */
1047 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1048 {
1049 	return 0;
1050 }
1051 
1052 static struct kvm *kvm_create_vm(unsigned long type)
1053 {
1054 	struct kvm *kvm = kvm_arch_alloc_vm();
1055 	struct kvm_memslots *slots;
1056 	int r = -ENOMEM;
1057 	int i, j;
1058 
1059 	if (!kvm)
1060 		return ERR_PTR(-ENOMEM);
1061 
1062 	KVM_MMU_LOCK_INIT(kvm);
1063 	mmgrab(current->mm);
1064 	kvm->mm = current->mm;
1065 	kvm_eventfd_init(kvm);
1066 	mutex_init(&kvm->lock);
1067 	mutex_init(&kvm->irq_lock);
1068 	mutex_init(&kvm->slots_lock);
1069 	mutex_init(&kvm->slots_arch_lock);
1070 	spin_lock_init(&kvm->mn_invalidate_lock);
1071 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1072 	xa_init(&kvm->vcpu_array);
1073 
1074 	INIT_LIST_HEAD(&kvm->gpc_list);
1075 	spin_lock_init(&kvm->gpc_lock);
1076 
1077 	INIT_LIST_HEAD(&kvm->devices);
1078 
1079 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1080 
1081 	if (init_srcu_struct(&kvm->srcu))
1082 		goto out_err_no_srcu;
1083 	if (init_srcu_struct(&kvm->irq_srcu))
1084 		goto out_err_no_irq_srcu;
1085 
1086 	refcount_set(&kvm->users_count, 1);
1087 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1088 		for (j = 0; j < 2; j++) {
1089 			slots = &kvm->__memslots[i][j];
1090 
1091 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1092 			slots->hva_tree = RB_ROOT_CACHED;
1093 			slots->gfn_tree = RB_ROOT;
1094 			hash_init(slots->id_hash);
1095 			slots->node_idx = j;
1096 
1097 			/* Generations must be different for each address space. */
1098 			slots->generation = i;
1099 		}
1100 
1101 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1102 	}
1103 
1104 	for (i = 0; i < KVM_NR_BUSES; i++) {
1105 		rcu_assign_pointer(kvm->buses[i],
1106 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1107 		if (!kvm->buses[i])
1108 			goto out_err_no_arch_destroy_vm;
1109 	}
1110 
1111 	kvm->max_halt_poll_ns = halt_poll_ns;
1112 
1113 	r = kvm_arch_init_vm(kvm, type);
1114 	if (r)
1115 		goto out_err_no_arch_destroy_vm;
1116 
1117 	r = hardware_enable_all();
1118 	if (r)
1119 		goto out_err_no_disable;
1120 
1121 #ifdef CONFIG_HAVE_KVM_IRQFD
1122 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1123 #endif
1124 
1125 	r = kvm_init_mmu_notifier(kvm);
1126 	if (r)
1127 		goto out_err_no_mmu_notifier;
1128 
1129 	r = kvm_arch_post_init_vm(kvm);
1130 	if (r)
1131 		goto out_err;
1132 
1133 	mutex_lock(&kvm_lock);
1134 	list_add(&kvm->vm_list, &vm_list);
1135 	mutex_unlock(&kvm_lock);
1136 
1137 	preempt_notifier_inc();
1138 	kvm_init_pm_notifier(kvm);
1139 
1140 	return kvm;
1141 
1142 out_err:
1143 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1144 	if (kvm->mmu_notifier.ops)
1145 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1146 #endif
1147 out_err_no_mmu_notifier:
1148 	hardware_disable_all();
1149 out_err_no_disable:
1150 	kvm_arch_destroy_vm(kvm);
1151 out_err_no_arch_destroy_vm:
1152 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1153 	for (i = 0; i < KVM_NR_BUSES; i++)
1154 		kfree(kvm_get_bus(kvm, i));
1155 	cleanup_srcu_struct(&kvm->irq_srcu);
1156 out_err_no_irq_srcu:
1157 	cleanup_srcu_struct(&kvm->srcu);
1158 out_err_no_srcu:
1159 	kvm_arch_free_vm(kvm);
1160 	mmdrop(current->mm);
1161 	return ERR_PTR(r);
1162 }
1163 
1164 static void kvm_destroy_devices(struct kvm *kvm)
1165 {
1166 	struct kvm_device *dev, *tmp;
1167 
1168 	/*
1169 	 * We do not need to take the kvm->lock here, because nobody else
1170 	 * has a reference to the struct kvm at this point and therefore
1171 	 * cannot access the devices list anyhow.
1172 	 */
1173 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1174 		list_del(&dev->vm_node);
1175 		dev->ops->destroy(dev);
1176 	}
1177 }
1178 
1179 static void kvm_destroy_vm(struct kvm *kvm)
1180 {
1181 	int i;
1182 	struct mm_struct *mm = kvm->mm;
1183 
1184 	kvm_destroy_pm_notifier(kvm);
1185 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1186 	kvm_destroy_vm_debugfs(kvm);
1187 	kvm_arch_sync_events(kvm);
1188 	mutex_lock(&kvm_lock);
1189 	list_del(&kvm->vm_list);
1190 	mutex_unlock(&kvm_lock);
1191 	kvm_arch_pre_destroy_vm(kvm);
1192 
1193 	kvm_free_irq_routing(kvm);
1194 	for (i = 0; i < KVM_NR_BUSES; i++) {
1195 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1196 
1197 		if (bus)
1198 			kvm_io_bus_destroy(bus);
1199 		kvm->buses[i] = NULL;
1200 	}
1201 	kvm_coalesced_mmio_free(kvm);
1202 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1203 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1204 	/*
1205 	 * At this point, pending calls to invalidate_range_start()
1206 	 * have completed but no more MMU notifiers will run, so
1207 	 * mn_active_invalidate_count may remain unbalanced.
1208 	 * No threads can be waiting in install_new_memslots as the
1209 	 * last reference on KVM has been dropped, but freeing
1210 	 * memslots would deadlock without this manual intervention.
1211 	 */
1212 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1213 	kvm->mn_active_invalidate_count = 0;
1214 #else
1215 	kvm_arch_flush_shadow_all(kvm);
1216 #endif
1217 	kvm_arch_destroy_vm(kvm);
1218 	kvm_destroy_devices(kvm);
1219 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1220 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1221 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1222 	}
1223 	cleanup_srcu_struct(&kvm->irq_srcu);
1224 	cleanup_srcu_struct(&kvm->srcu);
1225 	kvm_arch_free_vm(kvm);
1226 	preempt_notifier_dec();
1227 	hardware_disable_all();
1228 	mmdrop(mm);
1229 }
1230 
1231 void kvm_get_kvm(struct kvm *kvm)
1232 {
1233 	refcount_inc(&kvm->users_count);
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1236 
1237 /*
1238  * Make sure the vm is not during destruction, which is a safe version of
1239  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1240  */
1241 bool kvm_get_kvm_safe(struct kvm *kvm)
1242 {
1243 	return refcount_inc_not_zero(&kvm->users_count);
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1246 
1247 void kvm_put_kvm(struct kvm *kvm)
1248 {
1249 	if (refcount_dec_and_test(&kvm->users_count))
1250 		kvm_destroy_vm(kvm);
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1253 
1254 /*
1255  * Used to put a reference that was taken on behalf of an object associated
1256  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1257  * of the new file descriptor fails and the reference cannot be transferred to
1258  * its final owner.  In such cases, the caller is still actively using @kvm and
1259  * will fail miserably if the refcount unexpectedly hits zero.
1260  */
1261 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1262 {
1263 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1266 
1267 static int kvm_vm_release(struct inode *inode, struct file *filp)
1268 {
1269 	struct kvm *kvm = filp->private_data;
1270 
1271 	kvm_irqfd_release(kvm);
1272 
1273 	kvm_put_kvm(kvm);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Allocation size is twice as large as the actual dirty bitmap size.
1279  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1280  */
1281 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1282 {
1283 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1284 
1285 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1286 	if (!memslot->dirty_bitmap)
1287 		return -ENOMEM;
1288 
1289 	return 0;
1290 }
1291 
1292 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1293 {
1294 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1295 	int node_idx_inactive = active->node_idx ^ 1;
1296 
1297 	return &kvm->__memslots[as_id][node_idx_inactive];
1298 }
1299 
1300 /*
1301  * Helper to get the address space ID when one of memslot pointers may be NULL.
1302  * This also serves as a sanity that at least one of the pointers is non-NULL,
1303  * and that their address space IDs don't diverge.
1304  */
1305 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1306 				  struct kvm_memory_slot *b)
1307 {
1308 	if (WARN_ON_ONCE(!a && !b))
1309 		return 0;
1310 
1311 	if (!a)
1312 		return b->as_id;
1313 	if (!b)
1314 		return a->as_id;
1315 
1316 	WARN_ON_ONCE(a->as_id != b->as_id);
1317 	return a->as_id;
1318 }
1319 
1320 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1321 				struct kvm_memory_slot *slot)
1322 {
1323 	struct rb_root *gfn_tree = &slots->gfn_tree;
1324 	struct rb_node **node, *parent;
1325 	int idx = slots->node_idx;
1326 
1327 	parent = NULL;
1328 	for (node = &gfn_tree->rb_node; *node; ) {
1329 		struct kvm_memory_slot *tmp;
1330 
1331 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1332 		parent = *node;
1333 		if (slot->base_gfn < tmp->base_gfn)
1334 			node = &(*node)->rb_left;
1335 		else if (slot->base_gfn > tmp->base_gfn)
1336 			node = &(*node)->rb_right;
1337 		else
1338 			BUG();
1339 	}
1340 
1341 	rb_link_node(&slot->gfn_node[idx], parent, node);
1342 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1343 }
1344 
1345 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1346 			       struct kvm_memory_slot *slot)
1347 {
1348 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1349 }
1350 
1351 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1352 				 struct kvm_memory_slot *old,
1353 				 struct kvm_memory_slot *new)
1354 {
1355 	int idx = slots->node_idx;
1356 
1357 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1358 
1359 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1360 			&slots->gfn_tree);
1361 }
1362 
1363 /*
1364  * Replace @old with @new in the inactive memslots.
1365  *
1366  * With NULL @old this simply adds @new.
1367  * With NULL @new this simply removes @old.
1368  *
1369  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1370  * appropriately.
1371  */
1372 static void kvm_replace_memslot(struct kvm *kvm,
1373 				struct kvm_memory_slot *old,
1374 				struct kvm_memory_slot *new)
1375 {
1376 	int as_id = kvm_memslots_get_as_id(old, new);
1377 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1378 	int idx = slots->node_idx;
1379 
1380 	if (old) {
1381 		hash_del(&old->id_node[idx]);
1382 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1383 
1384 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1385 			atomic_long_set(&slots->last_used_slot, (long)new);
1386 
1387 		if (!new) {
1388 			kvm_erase_gfn_node(slots, old);
1389 			return;
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * Initialize @new's hva range.  Do this even when replacing an @old
1395 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1396 	 */
1397 	new->hva_node[idx].start = new->userspace_addr;
1398 	new->hva_node[idx].last = new->userspace_addr +
1399 				  (new->npages << PAGE_SHIFT) - 1;
1400 
1401 	/*
1402 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1403 	 * hva_node needs to be swapped with remove+insert even though hva can't
1404 	 * change when replacing an existing slot.
1405 	 */
1406 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1407 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1408 
1409 	/*
1410 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1411 	 * switch the node in the gfn tree instead of removing the old and
1412 	 * inserting the new as two separate operations. Replacement is a
1413 	 * single O(1) operation versus two O(log(n)) operations for
1414 	 * remove+insert.
1415 	 */
1416 	if (old && old->base_gfn == new->base_gfn) {
1417 		kvm_replace_gfn_node(slots, old, new);
1418 	} else {
1419 		if (old)
1420 			kvm_erase_gfn_node(slots, old);
1421 		kvm_insert_gfn_node(slots, new);
1422 	}
1423 }
1424 
1425 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1426 {
1427 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1428 
1429 #ifdef __KVM_HAVE_READONLY_MEM
1430 	valid_flags |= KVM_MEM_READONLY;
1431 #endif
1432 
1433 	if (mem->flags & ~valid_flags)
1434 		return -EINVAL;
1435 
1436 	return 0;
1437 }
1438 
1439 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1440 {
1441 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1442 
1443 	/* Grab the generation from the activate memslots. */
1444 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1445 
1446 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1447 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1448 
1449 	/*
1450 	 * Do not store the new memslots while there are invalidations in
1451 	 * progress, otherwise the locking in invalidate_range_start and
1452 	 * invalidate_range_end will be unbalanced.
1453 	 */
1454 	spin_lock(&kvm->mn_invalidate_lock);
1455 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1456 	while (kvm->mn_active_invalidate_count) {
1457 		set_current_state(TASK_UNINTERRUPTIBLE);
1458 		spin_unlock(&kvm->mn_invalidate_lock);
1459 		schedule();
1460 		spin_lock(&kvm->mn_invalidate_lock);
1461 	}
1462 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1463 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1464 	spin_unlock(&kvm->mn_invalidate_lock);
1465 
1466 	/*
1467 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1468 	 * SRCU below in order to avoid deadlock with another thread
1469 	 * acquiring the slots_arch_lock in an srcu critical section.
1470 	 */
1471 	mutex_unlock(&kvm->slots_arch_lock);
1472 
1473 	synchronize_srcu_expedited(&kvm->srcu);
1474 
1475 	/*
1476 	 * Increment the new memslot generation a second time, dropping the
1477 	 * update in-progress flag and incrementing the generation based on
1478 	 * the number of address spaces.  This provides a unique and easily
1479 	 * identifiable generation number while the memslots are in flux.
1480 	 */
1481 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1482 
1483 	/*
1484 	 * Generations must be unique even across address spaces.  We do not need
1485 	 * a global counter for that, instead the generation space is evenly split
1486 	 * across address spaces.  For example, with two address spaces, address
1487 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1488 	 * use generations 1, 3, 5, ...
1489 	 */
1490 	gen += KVM_ADDRESS_SPACE_NUM;
1491 
1492 	kvm_arch_memslots_updated(kvm, gen);
1493 
1494 	slots->generation = gen;
1495 }
1496 
1497 static int kvm_prepare_memory_region(struct kvm *kvm,
1498 				     const struct kvm_memory_slot *old,
1499 				     struct kvm_memory_slot *new,
1500 				     enum kvm_mr_change change)
1501 {
1502 	int r;
1503 
1504 	/*
1505 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1506 	 * will be freed on "commit".  If logging is enabled in both old and
1507 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1508 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1509 	 * new bitmap.
1510 	 */
1511 	if (change != KVM_MR_DELETE) {
1512 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1513 			new->dirty_bitmap = NULL;
1514 		else if (old && old->dirty_bitmap)
1515 			new->dirty_bitmap = old->dirty_bitmap;
1516 		else if (!kvm->dirty_ring_size) {
1517 			r = kvm_alloc_dirty_bitmap(new);
1518 			if (r)
1519 				return r;
1520 
1521 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1522 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1523 		}
1524 	}
1525 
1526 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1527 
1528 	/* Free the bitmap on failure if it was allocated above. */
1529 	if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1530 		kvm_destroy_dirty_bitmap(new);
1531 
1532 	return r;
1533 }
1534 
1535 static void kvm_commit_memory_region(struct kvm *kvm,
1536 				     struct kvm_memory_slot *old,
1537 				     const struct kvm_memory_slot *new,
1538 				     enum kvm_mr_change change)
1539 {
1540 	/*
1541 	 * Update the total number of memslot pages before calling the arch
1542 	 * hook so that architectures can consume the result directly.
1543 	 */
1544 	if (change == KVM_MR_DELETE)
1545 		kvm->nr_memslot_pages -= old->npages;
1546 	else if (change == KVM_MR_CREATE)
1547 		kvm->nr_memslot_pages += new->npages;
1548 
1549 	kvm_arch_commit_memory_region(kvm, old, new, change);
1550 
1551 	switch (change) {
1552 	case KVM_MR_CREATE:
1553 		/* Nothing more to do. */
1554 		break;
1555 	case KVM_MR_DELETE:
1556 		/* Free the old memslot and all its metadata. */
1557 		kvm_free_memslot(kvm, old);
1558 		break;
1559 	case KVM_MR_MOVE:
1560 	case KVM_MR_FLAGS_ONLY:
1561 		/*
1562 		 * Free the dirty bitmap as needed; the below check encompasses
1563 		 * both the flags and whether a ring buffer is being used)
1564 		 */
1565 		if (old->dirty_bitmap && !new->dirty_bitmap)
1566 			kvm_destroy_dirty_bitmap(old);
1567 
1568 		/*
1569 		 * The final quirk.  Free the detached, old slot, but only its
1570 		 * memory, not any metadata.  Metadata, including arch specific
1571 		 * data, may be reused by @new.
1572 		 */
1573 		kfree(old);
1574 		break;
1575 	default:
1576 		BUG();
1577 	}
1578 }
1579 
1580 /*
1581  * Activate @new, which must be installed in the inactive slots by the caller,
1582  * by swapping the active slots and then propagating @new to @old once @old is
1583  * unreachable and can be safely modified.
1584  *
1585  * With NULL @old this simply adds @new to @active (while swapping the sets).
1586  * With NULL @new this simply removes @old from @active and frees it
1587  * (while also swapping the sets).
1588  */
1589 static void kvm_activate_memslot(struct kvm *kvm,
1590 				 struct kvm_memory_slot *old,
1591 				 struct kvm_memory_slot *new)
1592 {
1593 	int as_id = kvm_memslots_get_as_id(old, new);
1594 
1595 	kvm_swap_active_memslots(kvm, as_id);
1596 
1597 	/* Propagate the new memslot to the now inactive memslots. */
1598 	kvm_replace_memslot(kvm, old, new);
1599 }
1600 
1601 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1602 			     const struct kvm_memory_slot *src)
1603 {
1604 	dest->base_gfn = src->base_gfn;
1605 	dest->npages = src->npages;
1606 	dest->dirty_bitmap = src->dirty_bitmap;
1607 	dest->arch = src->arch;
1608 	dest->userspace_addr = src->userspace_addr;
1609 	dest->flags = src->flags;
1610 	dest->id = src->id;
1611 	dest->as_id = src->as_id;
1612 }
1613 
1614 static void kvm_invalidate_memslot(struct kvm *kvm,
1615 				   struct kvm_memory_slot *old,
1616 				   struct kvm_memory_slot *invalid_slot)
1617 {
1618 	/*
1619 	 * Mark the current slot INVALID.  As with all memslot modifications,
1620 	 * this must be done on an unreachable slot to avoid modifying the
1621 	 * current slot in the active tree.
1622 	 */
1623 	kvm_copy_memslot(invalid_slot, old);
1624 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1625 	kvm_replace_memslot(kvm, old, invalid_slot);
1626 
1627 	/*
1628 	 * Activate the slot that is now marked INVALID, but don't propagate
1629 	 * the slot to the now inactive slots. The slot is either going to be
1630 	 * deleted or recreated as a new slot.
1631 	 */
1632 	kvm_swap_active_memslots(kvm, old->as_id);
1633 
1634 	/*
1635 	 * From this point no new shadow pages pointing to a deleted, or moved,
1636 	 * memslot will be created.  Validation of sp->gfn happens in:
1637 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1638 	 *	- kvm_is_visible_gfn (mmu_check_root)
1639 	 */
1640 	kvm_arch_flush_shadow_memslot(kvm, old);
1641 
1642 	/* Was released by kvm_swap_active_memslots, reacquire. */
1643 	mutex_lock(&kvm->slots_arch_lock);
1644 
1645 	/*
1646 	 * Copy the arch-specific field of the newly-installed slot back to the
1647 	 * old slot as the arch data could have changed between releasing
1648 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1649 	 * above.  Writers are required to retrieve memslots *after* acquiring
1650 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1651 	 */
1652 	old->arch = invalid_slot->arch;
1653 }
1654 
1655 static void kvm_create_memslot(struct kvm *kvm,
1656 			       struct kvm_memory_slot *new)
1657 {
1658 	/* Add the new memslot to the inactive set and activate. */
1659 	kvm_replace_memslot(kvm, NULL, new);
1660 	kvm_activate_memslot(kvm, NULL, new);
1661 }
1662 
1663 static void kvm_delete_memslot(struct kvm *kvm,
1664 			       struct kvm_memory_slot *old,
1665 			       struct kvm_memory_slot *invalid_slot)
1666 {
1667 	/*
1668 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1669 	 * the "new" slot, and for the invalid version in the active slots.
1670 	 */
1671 	kvm_replace_memslot(kvm, old, NULL);
1672 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1673 }
1674 
1675 static void kvm_move_memslot(struct kvm *kvm,
1676 			     struct kvm_memory_slot *old,
1677 			     struct kvm_memory_slot *new,
1678 			     struct kvm_memory_slot *invalid_slot)
1679 {
1680 	/*
1681 	 * Replace the old memslot in the inactive slots, and then swap slots
1682 	 * and replace the current INVALID with the new as well.
1683 	 */
1684 	kvm_replace_memslot(kvm, old, new);
1685 	kvm_activate_memslot(kvm, invalid_slot, new);
1686 }
1687 
1688 static void kvm_update_flags_memslot(struct kvm *kvm,
1689 				     struct kvm_memory_slot *old,
1690 				     struct kvm_memory_slot *new)
1691 {
1692 	/*
1693 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1694 	 * an intermediate step. Instead, the old memslot is simply replaced
1695 	 * with a new, updated copy in both memslot sets.
1696 	 */
1697 	kvm_replace_memslot(kvm, old, new);
1698 	kvm_activate_memslot(kvm, old, new);
1699 }
1700 
1701 static int kvm_set_memslot(struct kvm *kvm,
1702 			   struct kvm_memory_slot *old,
1703 			   struct kvm_memory_slot *new,
1704 			   enum kvm_mr_change change)
1705 {
1706 	struct kvm_memory_slot *invalid_slot;
1707 	int r;
1708 
1709 	/*
1710 	 * Released in kvm_swap_active_memslots.
1711 	 *
1712 	 * Must be held from before the current memslots are copied until
1713 	 * after the new memslots are installed with rcu_assign_pointer,
1714 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1715 	 *
1716 	 * When modifying memslots outside of the slots_lock, must be held
1717 	 * before reading the pointer to the current memslots until after all
1718 	 * changes to those memslots are complete.
1719 	 *
1720 	 * These rules ensure that installing new memslots does not lose
1721 	 * changes made to the previous memslots.
1722 	 */
1723 	mutex_lock(&kvm->slots_arch_lock);
1724 
1725 	/*
1726 	 * Invalidate the old slot if it's being deleted or moved.  This is
1727 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1728 	 * continue running by ensuring there are no mappings or shadow pages
1729 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1730 	 * (and without a lock), a window would exist between effecting the
1731 	 * delete/move and committing the changes in arch code where KVM or a
1732 	 * guest could access a non-existent memslot.
1733 	 *
1734 	 * Modifications are done on a temporary, unreachable slot.  The old
1735 	 * slot needs to be preserved in case a later step fails and the
1736 	 * invalidation needs to be reverted.
1737 	 */
1738 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1739 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1740 		if (!invalid_slot) {
1741 			mutex_unlock(&kvm->slots_arch_lock);
1742 			return -ENOMEM;
1743 		}
1744 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1745 	}
1746 
1747 	r = kvm_prepare_memory_region(kvm, old, new, change);
1748 	if (r) {
1749 		/*
1750 		 * For DELETE/MOVE, revert the above INVALID change.  No
1751 		 * modifications required since the original slot was preserved
1752 		 * in the inactive slots.  Changing the active memslots also
1753 		 * release slots_arch_lock.
1754 		 */
1755 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1756 			kvm_activate_memslot(kvm, invalid_slot, old);
1757 			kfree(invalid_slot);
1758 		} else {
1759 			mutex_unlock(&kvm->slots_arch_lock);
1760 		}
1761 		return r;
1762 	}
1763 
1764 	/*
1765 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1766 	 * version of the old slot.  MOVE is particularly special as it reuses
1767 	 * the old slot and returns a copy of the old slot (in working_slot).
1768 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1769 	 * old slot is detached but otherwise preserved.
1770 	 */
1771 	if (change == KVM_MR_CREATE)
1772 		kvm_create_memslot(kvm, new);
1773 	else if (change == KVM_MR_DELETE)
1774 		kvm_delete_memslot(kvm, old, invalid_slot);
1775 	else if (change == KVM_MR_MOVE)
1776 		kvm_move_memslot(kvm, old, new, invalid_slot);
1777 	else if (change == KVM_MR_FLAGS_ONLY)
1778 		kvm_update_flags_memslot(kvm, old, new);
1779 	else
1780 		BUG();
1781 
1782 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1783 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1784 		kfree(invalid_slot);
1785 
1786 	/*
1787 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1788 	 * will directly hit the final, active memsot.  Architectures are
1789 	 * responsible for knowing that new->arch may be stale.
1790 	 */
1791 	kvm_commit_memory_region(kvm, old, new, change);
1792 
1793 	return 0;
1794 }
1795 
1796 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1797 				      gfn_t start, gfn_t end)
1798 {
1799 	struct kvm_memslot_iter iter;
1800 
1801 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1802 		if (iter.slot->id != id)
1803 			return true;
1804 	}
1805 
1806 	return false;
1807 }
1808 
1809 /*
1810  * Allocate some memory and give it an address in the guest physical address
1811  * space.
1812  *
1813  * Discontiguous memory is allowed, mostly for framebuffers.
1814  *
1815  * Must be called holding kvm->slots_lock for write.
1816  */
1817 int __kvm_set_memory_region(struct kvm *kvm,
1818 			    const struct kvm_userspace_memory_region *mem)
1819 {
1820 	struct kvm_memory_slot *old, *new;
1821 	struct kvm_memslots *slots;
1822 	enum kvm_mr_change change;
1823 	unsigned long npages;
1824 	gfn_t base_gfn;
1825 	int as_id, id;
1826 	int r;
1827 
1828 	r = check_memory_region_flags(mem);
1829 	if (r)
1830 		return r;
1831 
1832 	as_id = mem->slot >> 16;
1833 	id = (u16)mem->slot;
1834 
1835 	/* General sanity checks */
1836 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1837 	    (mem->memory_size != (unsigned long)mem->memory_size))
1838 		return -EINVAL;
1839 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1840 		return -EINVAL;
1841 	/* We can read the guest memory with __xxx_user() later on. */
1842 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1843 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1844 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1845 			mem->memory_size))
1846 		return -EINVAL;
1847 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1848 		return -EINVAL;
1849 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1850 		return -EINVAL;
1851 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1852 		return -EINVAL;
1853 
1854 	slots = __kvm_memslots(kvm, as_id);
1855 
1856 	/*
1857 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1858 	 * and/or destroyed by kvm_set_memslot().
1859 	 */
1860 	old = id_to_memslot(slots, id);
1861 
1862 	if (!mem->memory_size) {
1863 		if (!old || !old->npages)
1864 			return -EINVAL;
1865 
1866 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1867 			return -EIO;
1868 
1869 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1870 	}
1871 
1872 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1873 	npages = (mem->memory_size >> PAGE_SHIFT);
1874 
1875 	if (!old || !old->npages) {
1876 		change = KVM_MR_CREATE;
1877 
1878 		/*
1879 		 * To simplify KVM internals, the total number of pages across
1880 		 * all memslots must fit in an unsigned long.
1881 		 */
1882 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1883 			return -EINVAL;
1884 	} else { /* Modify an existing slot. */
1885 		if ((mem->userspace_addr != old->userspace_addr) ||
1886 		    (npages != old->npages) ||
1887 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1888 			return -EINVAL;
1889 
1890 		if (base_gfn != old->base_gfn)
1891 			change = KVM_MR_MOVE;
1892 		else if (mem->flags != old->flags)
1893 			change = KVM_MR_FLAGS_ONLY;
1894 		else /* Nothing to change. */
1895 			return 0;
1896 	}
1897 
1898 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1899 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1900 		return -EEXIST;
1901 
1902 	/* Allocate a slot that will persist in the memslot. */
1903 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1904 	if (!new)
1905 		return -ENOMEM;
1906 
1907 	new->as_id = as_id;
1908 	new->id = id;
1909 	new->base_gfn = base_gfn;
1910 	new->npages = npages;
1911 	new->flags = mem->flags;
1912 	new->userspace_addr = mem->userspace_addr;
1913 
1914 	r = kvm_set_memslot(kvm, old, new, change);
1915 	if (r)
1916 		kfree(new);
1917 	return r;
1918 }
1919 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1920 
1921 int kvm_set_memory_region(struct kvm *kvm,
1922 			  const struct kvm_userspace_memory_region *mem)
1923 {
1924 	int r;
1925 
1926 	mutex_lock(&kvm->slots_lock);
1927 	r = __kvm_set_memory_region(kvm, mem);
1928 	mutex_unlock(&kvm->slots_lock);
1929 	return r;
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1932 
1933 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1934 					  struct kvm_userspace_memory_region *mem)
1935 {
1936 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1937 		return -EINVAL;
1938 
1939 	return kvm_set_memory_region(kvm, mem);
1940 }
1941 
1942 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1943 /**
1944  * kvm_get_dirty_log - get a snapshot of dirty pages
1945  * @kvm:	pointer to kvm instance
1946  * @log:	slot id and address to which we copy the log
1947  * @is_dirty:	set to '1' if any dirty pages were found
1948  * @memslot:	set to the associated memslot, always valid on success
1949  */
1950 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1951 		      int *is_dirty, struct kvm_memory_slot **memslot)
1952 {
1953 	struct kvm_memslots *slots;
1954 	int i, as_id, id;
1955 	unsigned long n;
1956 	unsigned long any = 0;
1957 
1958 	/* Dirty ring tracking is exclusive to dirty log tracking */
1959 	if (kvm->dirty_ring_size)
1960 		return -ENXIO;
1961 
1962 	*memslot = NULL;
1963 	*is_dirty = 0;
1964 
1965 	as_id = log->slot >> 16;
1966 	id = (u16)log->slot;
1967 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1968 		return -EINVAL;
1969 
1970 	slots = __kvm_memslots(kvm, as_id);
1971 	*memslot = id_to_memslot(slots, id);
1972 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1973 		return -ENOENT;
1974 
1975 	kvm_arch_sync_dirty_log(kvm, *memslot);
1976 
1977 	n = kvm_dirty_bitmap_bytes(*memslot);
1978 
1979 	for (i = 0; !any && i < n/sizeof(long); ++i)
1980 		any = (*memslot)->dirty_bitmap[i];
1981 
1982 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1983 		return -EFAULT;
1984 
1985 	if (any)
1986 		*is_dirty = 1;
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1990 
1991 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1992 /**
1993  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1994  *	and reenable dirty page tracking for the corresponding pages.
1995  * @kvm:	pointer to kvm instance
1996  * @log:	slot id and address to which we copy the log
1997  *
1998  * We need to keep it in mind that VCPU threads can write to the bitmap
1999  * concurrently. So, to avoid losing track of dirty pages we keep the
2000  * following order:
2001  *
2002  *    1. Take a snapshot of the bit and clear it if needed.
2003  *    2. Write protect the corresponding page.
2004  *    3. Copy the snapshot to the userspace.
2005  *    4. Upon return caller flushes TLB's if needed.
2006  *
2007  * Between 2 and 4, the guest may write to the page using the remaining TLB
2008  * entry.  This is not a problem because the page is reported dirty using
2009  * the snapshot taken before and step 4 ensures that writes done after
2010  * exiting to userspace will be logged for the next call.
2011  *
2012  */
2013 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2014 {
2015 	struct kvm_memslots *slots;
2016 	struct kvm_memory_slot *memslot;
2017 	int i, as_id, id;
2018 	unsigned long n;
2019 	unsigned long *dirty_bitmap;
2020 	unsigned long *dirty_bitmap_buffer;
2021 	bool flush;
2022 
2023 	/* Dirty ring tracking is exclusive to dirty log tracking */
2024 	if (kvm->dirty_ring_size)
2025 		return -ENXIO;
2026 
2027 	as_id = log->slot >> 16;
2028 	id = (u16)log->slot;
2029 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2030 		return -EINVAL;
2031 
2032 	slots = __kvm_memslots(kvm, as_id);
2033 	memslot = id_to_memslot(slots, id);
2034 	if (!memslot || !memslot->dirty_bitmap)
2035 		return -ENOENT;
2036 
2037 	dirty_bitmap = memslot->dirty_bitmap;
2038 
2039 	kvm_arch_sync_dirty_log(kvm, memslot);
2040 
2041 	n = kvm_dirty_bitmap_bytes(memslot);
2042 	flush = false;
2043 	if (kvm->manual_dirty_log_protect) {
2044 		/*
2045 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2046 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2047 		 * is some code duplication between this function and
2048 		 * kvm_get_dirty_log, but hopefully all architecture
2049 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2050 		 * can be eliminated.
2051 		 */
2052 		dirty_bitmap_buffer = dirty_bitmap;
2053 	} else {
2054 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2055 		memset(dirty_bitmap_buffer, 0, n);
2056 
2057 		KVM_MMU_LOCK(kvm);
2058 		for (i = 0; i < n / sizeof(long); i++) {
2059 			unsigned long mask;
2060 			gfn_t offset;
2061 
2062 			if (!dirty_bitmap[i])
2063 				continue;
2064 
2065 			flush = true;
2066 			mask = xchg(&dirty_bitmap[i], 0);
2067 			dirty_bitmap_buffer[i] = mask;
2068 
2069 			offset = i * BITS_PER_LONG;
2070 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2071 								offset, mask);
2072 		}
2073 		KVM_MMU_UNLOCK(kvm);
2074 	}
2075 
2076 	if (flush)
2077 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2078 
2079 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2080 		return -EFAULT;
2081 	return 0;
2082 }
2083 
2084 
2085 /**
2086  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2087  * @kvm: kvm instance
2088  * @log: slot id and address to which we copy the log
2089  *
2090  * Steps 1-4 below provide general overview of dirty page logging. See
2091  * kvm_get_dirty_log_protect() function description for additional details.
2092  *
2093  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2094  * always flush the TLB (step 4) even if previous step failed  and the dirty
2095  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2096  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2097  * writes will be marked dirty for next log read.
2098  *
2099  *   1. Take a snapshot of the bit and clear it if needed.
2100  *   2. Write protect the corresponding page.
2101  *   3. Copy the snapshot to the userspace.
2102  *   4. Flush TLB's if needed.
2103  */
2104 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2105 				      struct kvm_dirty_log *log)
2106 {
2107 	int r;
2108 
2109 	mutex_lock(&kvm->slots_lock);
2110 
2111 	r = kvm_get_dirty_log_protect(kvm, log);
2112 
2113 	mutex_unlock(&kvm->slots_lock);
2114 	return r;
2115 }
2116 
2117 /**
2118  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2119  *	and reenable dirty page tracking for the corresponding pages.
2120  * @kvm:	pointer to kvm instance
2121  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2122  */
2123 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2124 				       struct kvm_clear_dirty_log *log)
2125 {
2126 	struct kvm_memslots *slots;
2127 	struct kvm_memory_slot *memslot;
2128 	int as_id, id;
2129 	gfn_t offset;
2130 	unsigned long i, n;
2131 	unsigned long *dirty_bitmap;
2132 	unsigned long *dirty_bitmap_buffer;
2133 	bool flush;
2134 
2135 	/* Dirty ring tracking is exclusive to dirty log tracking */
2136 	if (kvm->dirty_ring_size)
2137 		return -ENXIO;
2138 
2139 	as_id = log->slot >> 16;
2140 	id = (u16)log->slot;
2141 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2142 		return -EINVAL;
2143 
2144 	if (log->first_page & 63)
2145 		return -EINVAL;
2146 
2147 	slots = __kvm_memslots(kvm, as_id);
2148 	memslot = id_to_memslot(slots, id);
2149 	if (!memslot || !memslot->dirty_bitmap)
2150 		return -ENOENT;
2151 
2152 	dirty_bitmap = memslot->dirty_bitmap;
2153 
2154 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2155 
2156 	if (log->first_page > memslot->npages ||
2157 	    log->num_pages > memslot->npages - log->first_page ||
2158 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2159 	    return -EINVAL;
2160 
2161 	kvm_arch_sync_dirty_log(kvm, memslot);
2162 
2163 	flush = false;
2164 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2165 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2166 		return -EFAULT;
2167 
2168 	KVM_MMU_LOCK(kvm);
2169 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2170 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2171 	     i++, offset += BITS_PER_LONG) {
2172 		unsigned long mask = *dirty_bitmap_buffer++;
2173 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2174 		if (!mask)
2175 			continue;
2176 
2177 		mask &= atomic_long_fetch_andnot(mask, p);
2178 
2179 		/*
2180 		 * mask contains the bits that really have been cleared.  This
2181 		 * never includes any bits beyond the length of the memslot (if
2182 		 * the length is not aligned to 64 pages), therefore it is not
2183 		 * a problem if userspace sets them in log->dirty_bitmap.
2184 		*/
2185 		if (mask) {
2186 			flush = true;
2187 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2188 								offset, mask);
2189 		}
2190 	}
2191 	KVM_MMU_UNLOCK(kvm);
2192 
2193 	if (flush)
2194 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2195 
2196 	return 0;
2197 }
2198 
2199 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2200 					struct kvm_clear_dirty_log *log)
2201 {
2202 	int r;
2203 
2204 	mutex_lock(&kvm->slots_lock);
2205 
2206 	r = kvm_clear_dirty_log_protect(kvm, log);
2207 
2208 	mutex_unlock(&kvm->slots_lock);
2209 	return r;
2210 }
2211 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212 
2213 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2214 {
2215 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2216 }
2217 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2218 
2219 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2220 {
2221 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2222 	u64 gen = slots->generation;
2223 	struct kvm_memory_slot *slot;
2224 
2225 	/*
2226 	 * This also protects against using a memslot from a different address space,
2227 	 * since different address spaces have different generation numbers.
2228 	 */
2229 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2230 		vcpu->last_used_slot = NULL;
2231 		vcpu->last_used_slot_gen = gen;
2232 	}
2233 
2234 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2235 	if (slot)
2236 		return slot;
2237 
2238 	/*
2239 	 * Fall back to searching all memslots. We purposely use
2240 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2241 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2242 	 */
2243 	slot = search_memslots(slots, gfn, false);
2244 	if (slot) {
2245 		vcpu->last_used_slot = slot;
2246 		return slot;
2247 	}
2248 
2249 	return NULL;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2252 
2253 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2254 {
2255 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2256 
2257 	return kvm_is_visible_memslot(memslot);
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2260 
2261 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2262 {
2263 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2264 
2265 	return kvm_is_visible_memslot(memslot);
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2268 
2269 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2270 {
2271 	struct vm_area_struct *vma;
2272 	unsigned long addr, size;
2273 
2274 	size = PAGE_SIZE;
2275 
2276 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2277 	if (kvm_is_error_hva(addr))
2278 		return PAGE_SIZE;
2279 
2280 	mmap_read_lock(current->mm);
2281 	vma = find_vma(current->mm, addr);
2282 	if (!vma)
2283 		goto out;
2284 
2285 	size = vma_kernel_pagesize(vma);
2286 
2287 out:
2288 	mmap_read_unlock(current->mm);
2289 
2290 	return size;
2291 }
2292 
2293 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2294 {
2295 	return slot->flags & KVM_MEM_READONLY;
2296 }
2297 
2298 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2299 				       gfn_t *nr_pages, bool write)
2300 {
2301 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2302 		return KVM_HVA_ERR_BAD;
2303 
2304 	if (memslot_is_readonly(slot) && write)
2305 		return KVM_HVA_ERR_RO_BAD;
2306 
2307 	if (nr_pages)
2308 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2309 
2310 	return __gfn_to_hva_memslot(slot, gfn);
2311 }
2312 
2313 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2314 				     gfn_t *nr_pages)
2315 {
2316 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2317 }
2318 
2319 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2320 					gfn_t gfn)
2321 {
2322 	return gfn_to_hva_many(slot, gfn, NULL);
2323 }
2324 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2325 
2326 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2327 {
2328 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2329 }
2330 EXPORT_SYMBOL_GPL(gfn_to_hva);
2331 
2332 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2333 {
2334 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2337 
2338 /*
2339  * Return the hva of a @gfn and the R/W attribute if possible.
2340  *
2341  * @slot: the kvm_memory_slot which contains @gfn
2342  * @gfn: the gfn to be translated
2343  * @writable: used to return the read/write attribute of the @slot if the hva
2344  * is valid and @writable is not NULL
2345  */
2346 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2347 				      gfn_t gfn, bool *writable)
2348 {
2349 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2350 
2351 	if (!kvm_is_error_hva(hva) && writable)
2352 		*writable = !memslot_is_readonly(slot);
2353 
2354 	return hva;
2355 }
2356 
2357 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2358 {
2359 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2360 
2361 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2362 }
2363 
2364 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2365 {
2366 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2367 
2368 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2369 }
2370 
2371 static inline int check_user_page_hwpoison(unsigned long addr)
2372 {
2373 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2374 
2375 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2376 	return rc == -EHWPOISON;
2377 }
2378 
2379 /*
2380  * The fast path to get the writable pfn which will be stored in @pfn,
2381  * true indicates success, otherwise false is returned.  It's also the
2382  * only part that runs if we can in atomic context.
2383  */
2384 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2385 			    bool *writable, kvm_pfn_t *pfn)
2386 {
2387 	struct page *page[1];
2388 
2389 	/*
2390 	 * Fast pin a writable pfn only if it is a write fault request
2391 	 * or the caller allows to map a writable pfn for a read fault
2392 	 * request.
2393 	 */
2394 	if (!(write_fault || writable))
2395 		return false;
2396 
2397 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2398 		*pfn = page_to_pfn(page[0]);
2399 
2400 		if (writable)
2401 			*writable = true;
2402 		return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 /*
2409  * The slow path to get the pfn of the specified host virtual address,
2410  * 1 indicates success, -errno is returned if error is detected.
2411  */
2412 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2413 			   bool *writable, kvm_pfn_t *pfn)
2414 {
2415 	unsigned int flags = FOLL_HWPOISON;
2416 	struct page *page;
2417 	int npages = 0;
2418 
2419 	might_sleep();
2420 
2421 	if (writable)
2422 		*writable = write_fault;
2423 
2424 	if (write_fault)
2425 		flags |= FOLL_WRITE;
2426 	if (async)
2427 		flags |= FOLL_NOWAIT;
2428 
2429 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2430 	if (npages != 1)
2431 		return npages;
2432 
2433 	/* map read fault as writable if possible */
2434 	if (unlikely(!write_fault) && writable) {
2435 		struct page *wpage;
2436 
2437 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2438 			*writable = true;
2439 			put_page(page);
2440 			page = wpage;
2441 		}
2442 	}
2443 	*pfn = page_to_pfn(page);
2444 	return npages;
2445 }
2446 
2447 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2448 {
2449 	if (unlikely(!(vma->vm_flags & VM_READ)))
2450 		return false;
2451 
2452 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2453 		return false;
2454 
2455 	return true;
2456 }
2457 
2458 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2459 {
2460 	if (kvm_is_reserved_pfn(pfn))
2461 		return 1;
2462 	return get_page_unless_zero(pfn_to_page(pfn));
2463 }
2464 
2465 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2466 			       unsigned long addr, bool *async,
2467 			       bool write_fault, bool *writable,
2468 			       kvm_pfn_t *p_pfn)
2469 {
2470 	kvm_pfn_t pfn;
2471 	pte_t *ptep;
2472 	spinlock_t *ptl;
2473 	int r;
2474 
2475 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2476 	if (r) {
2477 		/*
2478 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2479 		 * not call the fault handler, so do it here.
2480 		 */
2481 		bool unlocked = false;
2482 		r = fixup_user_fault(current->mm, addr,
2483 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2484 				     &unlocked);
2485 		if (unlocked)
2486 			return -EAGAIN;
2487 		if (r)
2488 			return r;
2489 
2490 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2491 		if (r)
2492 			return r;
2493 	}
2494 
2495 	if (write_fault && !pte_write(*ptep)) {
2496 		pfn = KVM_PFN_ERR_RO_FAULT;
2497 		goto out;
2498 	}
2499 
2500 	if (writable)
2501 		*writable = pte_write(*ptep);
2502 	pfn = pte_pfn(*ptep);
2503 
2504 	/*
2505 	 * Get a reference here because callers of *hva_to_pfn* and
2506 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2507 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2508 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2509 	 * simply do nothing for reserved pfns.
2510 	 *
2511 	 * Whoever called remap_pfn_range is also going to call e.g.
2512 	 * unmap_mapping_range before the underlying pages are freed,
2513 	 * causing a call to our MMU notifier.
2514 	 *
2515 	 * Certain IO or PFNMAP mappings can be backed with valid
2516 	 * struct pages, but be allocated without refcounting e.g.,
2517 	 * tail pages of non-compound higher order allocations, which
2518 	 * would then underflow the refcount when the caller does the
2519 	 * required put_page. Don't allow those pages here.
2520 	 */
2521 	if (!kvm_try_get_pfn(pfn))
2522 		r = -EFAULT;
2523 
2524 out:
2525 	pte_unmap_unlock(ptep, ptl);
2526 	*p_pfn = pfn;
2527 
2528 	return r;
2529 }
2530 
2531 /*
2532  * Pin guest page in memory and return its pfn.
2533  * @addr: host virtual address which maps memory to the guest
2534  * @atomic: whether this function can sleep
2535  * @async: whether this function need to wait IO complete if the
2536  *         host page is not in the memory
2537  * @write_fault: whether we should get a writable host page
2538  * @writable: whether it allows to map a writable host page for !@write_fault
2539  *
2540  * The function will map a writable host page for these two cases:
2541  * 1): @write_fault = true
2542  * 2): @write_fault = false && @writable, @writable will tell the caller
2543  *     whether the mapping is writable.
2544  */
2545 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2546 		     bool write_fault, bool *writable)
2547 {
2548 	struct vm_area_struct *vma;
2549 	kvm_pfn_t pfn = 0;
2550 	int npages, r;
2551 
2552 	/* we can do it either atomically or asynchronously, not both */
2553 	BUG_ON(atomic && async);
2554 
2555 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2556 		return pfn;
2557 
2558 	if (atomic)
2559 		return KVM_PFN_ERR_FAULT;
2560 
2561 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2562 	if (npages == 1)
2563 		return pfn;
2564 
2565 	mmap_read_lock(current->mm);
2566 	if (npages == -EHWPOISON ||
2567 	      (!async && check_user_page_hwpoison(addr))) {
2568 		pfn = KVM_PFN_ERR_HWPOISON;
2569 		goto exit;
2570 	}
2571 
2572 retry:
2573 	vma = vma_lookup(current->mm, addr);
2574 
2575 	if (vma == NULL)
2576 		pfn = KVM_PFN_ERR_FAULT;
2577 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2578 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2579 		if (r == -EAGAIN)
2580 			goto retry;
2581 		if (r < 0)
2582 			pfn = KVM_PFN_ERR_FAULT;
2583 	} else {
2584 		if (async && vma_is_valid(vma, write_fault))
2585 			*async = true;
2586 		pfn = KVM_PFN_ERR_FAULT;
2587 	}
2588 exit:
2589 	mmap_read_unlock(current->mm);
2590 	return pfn;
2591 }
2592 
2593 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2594 			       bool atomic, bool *async, bool write_fault,
2595 			       bool *writable, hva_t *hva)
2596 {
2597 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2598 
2599 	if (hva)
2600 		*hva = addr;
2601 
2602 	if (addr == KVM_HVA_ERR_RO_BAD) {
2603 		if (writable)
2604 			*writable = false;
2605 		return KVM_PFN_ERR_RO_FAULT;
2606 	}
2607 
2608 	if (kvm_is_error_hva(addr)) {
2609 		if (writable)
2610 			*writable = false;
2611 		return KVM_PFN_NOSLOT;
2612 	}
2613 
2614 	/* Do not map writable pfn in the readonly memslot. */
2615 	if (writable && memslot_is_readonly(slot)) {
2616 		*writable = false;
2617 		writable = NULL;
2618 	}
2619 
2620 	return hva_to_pfn(addr, atomic, async, write_fault,
2621 			  writable);
2622 }
2623 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2624 
2625 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2626 		      bool *writable)
2627 {
2628 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2629 				    write_fault, writable, NULL);
2630 }
2631 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2632 
2633 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2634 {
2635 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2636 }
2637 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2638 
2639 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2640 {
2641 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2642 }
2643 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2644 
2645 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2646 {
2647 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2648 }
2649 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2650 
2651 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2652 {
2653 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2654 }
2655 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2656 
2657 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2658 {
2659 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2660 }
2661 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2662 
2663 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2664 			    struct page **pages, int nr_pages)
2665 {
2666 	unsigned long addr;
2667 	gfn_t entry = 0;
2668 
2669 	addr = gfn_to_hva_many(slot, gfn, &entry);
2670 	if (kvm_is_error_hva(addr))
2671 		return -1;
2672 
2673 	if (entry < nr_pages)
2674 		return 0;
2675 
2676 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2677 }
2678 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2679 
2680 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2681 {
2682 	if (is_error_noslot_pfn(pfn))
2683 		return KVM_ERR_PTR_BAD_PAGE;
2684 
2685 	if (kvm_is_reserved_pfn(pfn)) {
2686 		WARN_ON(1);
2687 		return KVM_ERR_PTR_BAD_PAGE;
2688 	}
2689 
2690 	return pfn_to_page(pfn);
2691 }
2692 
2693 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2694 {
2695 	kvm_pfn_t pfn;
2696 
2697 	pfn = gfn_to_pfn(kvm, gfn);
2698 
2699 	return kvm_pfn_to_page(pfn);
2700 }
2701 EXPORT_SYMBOL_GPL(gfn_to_page);
2702 
2703 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2704 {
2705 	if (pfn == 0)
2706 		return;
2707 
2708 	if (dirty)
2709 		kvm_release_pfn_dirty(pfn);
2710 	else
2711 		kvm_release_pfn_clean(pfn);
2712 }
2713 
2714 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2715 {
2716 	kvm_pfn_t pfn;
2717 	void *hva = NULL;
2718 	struct page *page = KVM_UNMAPPED_PAGE;
2719 
2720 	if (!map)
2721 		return -EINVAL;
2722 
2723 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2724 	if (is_error_noslot_pfn(pfn))
2725 		return -EINVAL;
2726 
2727 	if (pfn_valid(pfn)) {
2728 		page = pfn_to_page(pfn);
2729 		hva = kmap(page);
2730 #ifdef CONFIG_HAS_IOMEM
2731 	} else {
2732 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2733 #endif
2734 	}
2735 
2736 	if (!hva)
2737 		return -EFAULT;
2738 
2739 	map->page = page;
2740 	map->hva = hva;
2741 	map->pfn = pfn;
2742 	map->gfn = gfn;
2743 
2744 	return 0;
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2747 
2748 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2749 {
2750 	if (!map)
2751 		return;
2752 
2753 	if (!map->hva)
2754 		return;
2755 
2756 	if (map->page != KVM_UNMAPPED_PAGE)
2757 		kunmap(map->page);
2758 #ifdef CONFIG_HAS_IOMEM
2759 	else
2760 		memunmap(map->hva);
2761 #endif
2762 
2763 	if (dirty)
2764 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2765 
2766 	kvm_release_pfn(map->pfn, dirty);
2767 
2768 	map->hva = NULL;
2769 	map->page = NULL;
2770 }
2771 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2772 
2773 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2774 {
2775 	kvm_pfn_t pfn;
2776 
2777 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2778 
2779 	return kvm_pfn_to_page(pfn);
2780 }
2781 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2782 
2783 void kvm_release_page_clean(struct page *page)
2784 {
2785 	WARN_ON(is_error_page(page));
2786 
2787 	kvm_release_pfn_clean(page_to_pfn(page));
2788 }
2789 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2790 
2791 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2792 {
2793 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2794 		put_page(pfn_to_page(pfn));
2795 }
2796 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2797 
2798 void kvm_release_page_dirty(struct page *page)
2799 {
2800 	WARN_ON(is_error_page(page));
2801 
2802 	kvm_release_pfn_dirty(page_to_pfn(page));
2803 }
2804 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2805 
2806 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2807 {
2808 	kvm_set_pfn_dirty(pfn);
2809 	kvm_release_pfn_clean(pfn);
2810 }
2811 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2812 
2813 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2814 {
2815 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2816 		SetPageDirty(pfn_to_page(pfn));
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2819 
2820 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2821 {
2822 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2823 		mark_page_accessed(pfn_to_page(pfn));
2824 }
2825 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2826 
2827 static int next_segment(unsigned long len, int offset)
2828 {
2829 	if (len > PAGE_SIZE - offset)
2830 		return PAGE_SIZE - offset;
2831 	else
2832 		return len;
2833 }
2834 
2835 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2836 				 void *data, int offset, int len)
2837 {
2838 	int r;
2839 	unsigned long addr;
2840 
2841 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2842 	if (kvm_is_error_hva(addr))
2843 		return -EFAULT;
2844 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2845 	if (r)
2846 		return -EFAULT;
2847 	return 0;
2848 }
2849 
2850 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2851 			int len)
2852 {
2853 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2854 
2855 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2856 }
2857 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2858 
2859 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2860 			     int offset, int len)
2861 {
2862 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2863 
2864 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2867 
2868 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2869 {
2870 	gfn_t gfn = gpa >> PAGE_SHIFT;
2871 	int seg;
2872 	int offset = offset_in_page(gpa);
2873 	int ret;
2874 
2875 	while ((seg = next_segment(len, offset)) != 0) {
2876 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2877 		if (ret < 0)
2878 			return ret;
2879 		offset = 0;
2880 		len -= seg;
2881 		data += seg;
2882 		++gfn;
2883 	}
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_read_guest);
2887 
2888 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2889 {
2890 	gfn_t gfn = gpa >> PAGE_SHIFT;
2891 	int seg;
2892 	int offset = offset_in_page(gpa);
2893 	int ret;
2894 
2895 	while ((seg = next_segment(len, offset)) != 0) {
2896 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2897 		if (ret < 0)
2898 			return ret;
2899 		offset = 0;
2900 		len -= seg;
2901 		data += seg;
2902 		++gfn;
2903 	}
2904 	return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2907 
2908 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2909 			           void *data, int offset, unsigned long len)
2910 {
2911 	int r;
2912 	unsigned long addr;
2913 
2914 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2915 	if (kvm_is_error_hva(addr))
2916 		return -EFAULT;
2917 	pagefault_disable();
2918 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2919 	pagefault_enable();
2920 	if (r)
2921 		return -EFAULT;
2922 	return 0;
2923 }
2924 
2925 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2926 			       void *data, unsigned long len)
2927 {
2928 	gfn_t gfn = gpa >> PAGE_SHIFT;
2929 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2930 	int offset = offset_in_page(gpa);
2931 
2932 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2935 
2936 static int __kvm_write_guest_page(struct kvm *kvm,
2937 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2938 			          const void *data, int offset, int len)
2939 {
2940 	int r;
2941 	unsigned long addr;
2942 
2943 	addr = gfn_to_hva_memslot(memslot, gfn);
2944 	if (kvm_is_error_hva(addr))
2945 		return -EFAULT;
2946 	r = __copy_to_user((void __user *)addr + offset, data, len);
2947 	if (r)
2948 		return -EFAULT;
2949 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2950 	return 0;
2951 }
2952 
2953 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2954 			 const void *data, int offset, int len)
2955 {
2956 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2957 
2958 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2961 
2962 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2963 			      const void *data, int offset, int len)
2964 {
2965 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2966 
2967 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2968 }
2969 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2970 
2971 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2972 		    unsigned long len)
2973 {
2974 	gfn_t gfn = gpa >> PAGE_SHIFT;
2975 	int seg;
2976 	int offset = offset_in_page(gpa);
2977 	int ret;
2978 
2979 	while ((seg = next_segment(len, offset)) != 0) {
2980 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2981 		if (ret < 0)
2982 			return ret;
2983 		offset = 0;
2984 		len -= seg;
2985 		data += seg;
2986 		++gfn;
2987 	}
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(kvm_write_guest);
2991 
2992 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2993 		         unsigned long len)
2994 {
2995 	gfn_t gfn = gpa >> PAGE_SHIFT;
2996 	int seg;
2997 	int offset = offset_in_page(gpa);
2998 	int ret;
2999 
3000 	while ((seg = next_segment(len, offset)) != 0) {
3001 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3002 		if (ret < 0)
3003 			return ret;
3004 		offset = 0;
3005 		len -= seg;
3006 		data += seg;
3007 		++gfn;
3008 	}
3009 	return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3012 
3013 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3014 				       struct gfn_to_hva_cache *ghc,
3015 				       gpa_t gpa, unsigned long len)
3016 {
3017 	int offset = offset_in_page(gpa);
3018 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3019 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3020 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3021 	gfn_t nr_pages_avail;
3022 
3023 	/* Update ghc->generation before performing any error checks. */
3024 	ghc->generation = slots->generation;
3025 
3026 	if (start_gfn > end_gfn) {
3027 		ghc->hva = KVM_HVA_ERR_BAD;
3028 		return -EINVAL;
3029 	}
3030 
3031 	/*
3032 	 * If the requested region crosses two memslots, we still
3033 	 * verify that the entire region is valid here.
3034 	 */
3035 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3036 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3037 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3038 					   &nr_pages_avail);
3039 		if (kvm_is_error_hva(ghc->hva))
3040 			return -EFAULT;
3041 	}
3042 
3043 	/* Use the slow path for cross page reads and writes. */
3044 	if (nr_pages_needed == 1)
3045 		ghc->hva += offset;
3046 	else
3047 		ghc->memslot = NULL;
3048 
3049 	ghc->gpa = gpa;
3050 	ghc->len = len;
3051 	return 0;
3052 }
3053 
3054 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3055 			      gpa_t gpa, unsigned long len)
3056 {
3057 	struct kvm_memslots *slots = kvm_memslots(kvm);
3058 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3059 }
3060 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3061 
3062 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3063 				  void *data, unsigned int offset,
3064 				  unsigned long len)
3065 {
3066 	struct kvm_memslots *slots = kvm_memslots(kvm);
3067 	int r;
3068 	gpa_t gpa = ghc->gpa + offset;
3069 
3070 	if (WARN_ON_ONCE(len + offset > ghc->len))
3071 		return -EINVAL;
3072 
3073 	if (slots->generation != ghc->generation) {
3074 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3075 			return -EFAULT;
3076 	}
3077 
3078 	if (kvm_is_error_hva(ghc->hva))
3079 		return -EFAULT;
3080 
3081 	if (unlikely(!ghc->memslot))
3082 		return kvm_write_guest(kvm, gpa, data, len);
3083 
3084 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3085 	if (r)
3086 		return -EFAULT;
3087 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3088 
3089 	return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3092 
3093 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3094 			   void *data, unsigned long len)
3095 {
3096 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3097 }
3098 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3099 
3100 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3101 				 void *data, unsigned int offset,
3102 				 unsigned long len)
3103 {
3104 	struct kvm_memslots *slots = kvm_memslots(kvm);
3105 	int r;
3106 	gpa_t gpa = ghc->gpa + offset;
3107 
3108 	if (WARN_ON_ONCE(len + offset > ghc->len))
3109 		return -EINVAL;
3110 
3111 	if (slots->generation != ghc->generation) {
3112 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3113 			return -EFAULT;
3114 	}
3115 
3116 	if (kvm_is_error_hva(ghc->hva))
3117 		return -EFAULT;
3118 
3119 	if (unlikely(!ghc->memslot))
3120 		return kvm_read_guest(kvm, gpa, data, len);
3121 
3122 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3123 	if (r)
3124 		return -EFAULT;
3125 
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3129 
3130 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3131 			  void *data, unsigned long len)
3132 {
3133 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3134 }
3135 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3136 
3137 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3138 {
3139 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3140 	gfn_t gfn = gpa >> PAGE_SHIFT;
3141 	int seg;
3142 	int offset = offset_in_page(gpa);
3143 	int ret;
3144 
3145 	while ((seg = next_segment(len, offset)) != 0) {
3146 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3147 		if (ret < 0)
3148 			return ret;
3149 		offset = 0;
3150 		len -= seg;
3151 		++gfn;
3152 	}
3153 	return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3156 
3157 void mark_page_dirty_in_slot(struct kvm *kvm,
3158 			     const struct kvm_memory_slot *memslot,
3159 		 	     gfn_t gfn)
3160 {
3161 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3162 
3163 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3164 	if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3165 		return;
3166 #endif
3167 
3168 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3169 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3170 		u32 slot = (memslot->as_id << 16) | memslot->id;
3171 
3172 		if (kvm->dirty_ring_size)
3173 			kvm_dirty_ring_push(&vcpu->dirty_ring,
3174 					    slot, rel_gfn);
3175 		else
3176 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3177 	}
3178 }
3179 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3180 
3181 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3182 {
3183 	struct kvm_memory_slot *memslot;
3184 
3185 	memslot = gfn_to_memslot(kvm, gfn);
3186 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3187 }
3188 EXPORT_SYMBOL_GPL(mark_page_dirty);
3189 
3190 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3191 {
3192 	struct kvm_memory_slot *memslot;
3193 
3194 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3195 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3198 
3199 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3200 {
3201 	if (!vcpu->sigset_active)
3202 		return;
3203 
3204 	/*
3205 	 * This does a lockless modification of ->real_blocked, which is fine
3206 	 * because, only current can change ->real_blocked and all readers of
3207 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3208 	 * of ->blocked.
3209 	 */
3210 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3211 }
3212 
3213 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3214 {
3215 	if (!vcpu->sigset_active)
3216 		return;
3217 
3218 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3219 	sigemptyset(&current->real_blocked);
3220 }
3221 
3222 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3223 {
3224 	unsigned int old, val, grow, grow_start;
3225 
3226 	old = val = vcpu->halt_poll_ns;
3227 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3228 	grow = READ_ONCE(halt_poll_ns_grow);
3229 	if (!grow)
3230 		goto out;
3231 
3232 	val *= grow;
3233 	if (val < grow_start)
3234 		val = grow_start;
3235 
3236 	if (val > vcpu->kvm->max_halt_poll_ns)
3237 		val = vcpu->kvm->max_halt_poll_ns;
3238 
3239 	vcpu->halt_poll_ns = val;
3240 out:
3241 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3242 }
3243 
3244 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3245 {
3246 	unsigned int old, val, shrink, grow_start;
3247 
3248 	old = val = vcpu->halt_poll_ns;
3249 	shrink = READ_ONCE(halt_poll_ns_shrink);
3250 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3251 	if (shrink == 0)
3252 		val = 0;
3253 	else
3254 		val /= shrink;
3255 
3256 	if (val < grow_start)
3257 		val = 0;
3258 
3259 	vcpu->halt_poll_ns = val;
3260 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3261 }
3262 
3263 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3264 {
3265 	int ret = -EINTR;
3266 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3267 
3268 	if (kvm_arch_vcpu_runnable(vcpu)) {
3269 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3270 		goto out;
3271 	}
3272 	if (kvm_cpu_has_pending_timer(vcpu))
3273 		goto out;
3274 	if (signal_pending(current))
3275 		goto out;
3276 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3277 		goto out;
3278 
3279 	ret = 0;
3280 out:
3281 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3282 	return ret;
3283 }
3284 
3285 /*
3286  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3287  * pending.  This is mostly used when halting a vCPU, but may also be used
3288  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3289  */
3290 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3291 {
3292 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3293 	bool waited = false;
3294 
3295 	vcpu->stat.generic.blocking = 1;
3296 
3297 	kvm_arch_vcpu_blocking(vcpu);
3298 
3299 	prepare_to_rcuwait(wait);
3300 	for (;;) {
3301 		set_current_state(TASK_INTERRUPTIBLE);
3302 
3303 		if (kvm_vcpu_check_block(vcpu) < 0)
3304 			break;
3305 
3306 		waited = true;
3307 		schedule();
3308 	}
3309 	finish_rcuwait(wait);
3310 
3311 	kvm_arch_vcpu_unblocking(vcpu);
3312 
3313 	vcpu->stat.generic.blocking = 0;
3314 
3315 	return waited;
3316 }
3317 
3318 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3319 					  ktime_t end, bool success)
3320 {
3321 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3322 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3323 
3324 	++vcpu->stat.generic.halt_attempted_poll;
3325 
3326 	if (success) {
3327 		++vcpu->stat.generic.halt_successful_poll;
3328 
3329 		if (!vcpu_valid_wakeup(vcpu))
3330 			++vcpu->stat.generic.halt_poll_invalid;
3331 
3332 		stats->halt_poll_success_ns += poll_ns;
3333 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3334 	} else {
3335 		stats->halt_poll_fail_ns += poll_ns;
3336 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3337 	}
3338 }
3339 
3340 /*
3341  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3342  * polling is enabled, busy wait for a short time before blocking to avoid the
3343  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3344  * is halted.
3345  */
3346 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3347 {
3348 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3349 	bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3350 	ktime_t start, cur, poll_end;
3351 	bool waited = false;
3352 	u64 halt_ns;
3353 
3354 	start = cur = poll_end = ktime_get();
3355 	if (do_halt_poll) {
3356 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3357 
3358 		do {
3359 			/*
3360 			 * This sets KVM_REQ_UNHALT if an interrupt
3361 			 * arrives.
3362 			 */
3363 			if (kvm_vcpu_check_block(vcpu) < 0)
3364 				goto out;
3365 			cpu_relax();
3366 			poll_end = cur = ktime_get();
3367 		} while (kvm_vcpu_can_poll(cur, stop));
3368 	}
3369 
3370 	waited = kvm_vcpu_block(vcpu);
3371 
3372 	cur = ktime_get();
3373 	if (waited) {
3374 		vcpu->stat.generic.halt_wait_ns +=
3375 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3376 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3377 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3378 	}
3379 out:
3380 	/* The total time the vCPU was "halted", including polling time. */
3381 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3382 
3383 	/*
3384 	 * Note, halt-polling is considered successful so long as the vCPU was
3385 	 * never actually scheduled out, i.e. even if the wake event arrived
3386 	 * after of the halt-polling loop itself, but before the full wait.
3387 	 */
3388 	if (do_halt_poll)
3389 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3390 
3391 	if (halt_poll_allowed) {
3392 		if (!vcpu_valid_wakeup(vcpu)) {
3393 			shrink_halt_poll_ns(vcpu);
3394 		} else if (vcpu->kvm->max_halt_poll_ns) {
3395 			if (halt_ns <= vcpu->halt_poll_ns)
3396 				;
3397 			/* we had a long block, shrink polling */
3398 			else if (vcpu->halt_poll_ns &&
3399 				 halt_ns > vcpu->kvm->max_halt_poll_ns)
3400 				shrink_halt_poll_ns(vcpu);
3401 			/* we had a short halt and our poll time is too small */
3402 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3403 				 halt_ns < vcpu->kvm->max_halt_poll_ns)
3404 				grow_halt_poll_ns(vcpu);
3405 		} else {
3406 			vcpu->halt_poll_ns = 0;
3407 		}
3408 	}
3409 
3410 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3413 
3414 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3415 {
3416 	if (__kvm_vcpu_wake_up(vcpu)) {
3417 		WRITE_ONCE(vcpu->ready, true);
3418 		++vcpu->stat.generic.halt_wakeup;
3419 		return true;
3420 	}
3421 
3422 	return false;
3423 }
3424 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3425 
3426 #ifndef CONFIG_S390
3427 /*
3428  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3429  */
3430 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3431 {
3432 	int me, cpu;
3433 
3434 	if (kvm_vcpu_wake_up(vcpu))
3435 		return;
3436 
3437 	me = get_cpu();
3438 	/*
3439 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3440 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3441 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3442 	 * within the vCPU thread itself.
3443 	 */
3444 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3445 		if (vcpu->mode == IN_GUEST_MODE)
3446 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3447 		goto out;
3448 	}
3449 
3450 	/*
3451 	 * Note, the vCPU could get migrated to a different pCPU at any point
3452 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3453 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3454 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3455 	 * vCPU also requires it to leave IN_GUEST_MODE.
3456 	 */
3457 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3458 		cpu = READ_ONCE(vcpu->cpu);
3459 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3460 			smp_send_reschedule(cpu);
3461 	}
3462 out:
3463 	put_cpu();
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3466 #endif /* !CONFIG_S390 */
3467 
3468 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3469 {
3470 	struct pid *pid;
3471 	struct task_struct *task = NULL;
3472 	int ret = 0;
3473 
3474 	rcu_read_lock();
3475 	pid = rcu_dereference(target->pid);
3476 	if (pid)
3477 		task = get_pid_task(pid, PIDTYPE_PID);
3478 	rcu_read_unlock();
3479 	if (!task)
3480 		return ret;
3481 	ret = yield_to(task, 1);
3482 	put_task_struct(task);
3483 
3484 	return ret;
3485 }
3486 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3487 
3488 /*
3489  * Helper that checks whether a VCPU is eligible for directed yield.
3490  * Most eligible candidate to yield is decided by following heuristics:
3491  *
3492  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3493  *  (preempted lock holder), indicated by @in_spin_loop.
3494  *  Set at the beginning and cleared at the end of interception/PLE handler.
3495  *
3496  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3497  *  chance last time (mostly it has become eligible now since we have probably
3498  *  yielded to lockholder in last iteration. This is done by toggling
3499  *  @dy_eligible each time a VCPU checked for eligibility.)
3500  *
3501  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3502  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3503  *  burning. Giving priority for a potential lock-holder increases lock
3504  *  progress.
3505  *
3506  *  Since algorithm is based on heuristics, accessing another VCPU data without
3507  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3508  *  and continue with next VCPU and so on.
3509  */
3510 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3511 {
3512 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3513 	bool eligible;
3514 
3515 	eligible = !vcpu->spin_loop.in_spin_loop ||
3516 		    vcpu->spin_loop.dy_eligible;
3517 
3518 	if (vcpu->spin_loop.in_spin_loop)
3519 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3520 
3521 	return eligible;
3522 #else
3523 	return true;
3524 #endif
3525 }
3526 
3527 /*
3528  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3529  * a vcpu_load/vcpu_put pair.  However, for most architectures
3530  * kvm_arch_vcpu_runnable does not require vcpu_load.
3531  */
3532 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3533 {
3534 	return kvm_arch_vcpu_runnable(vcpu);
3535 }
3536 
3537 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3538 {
3539 	if (kvm_arch_dy_runnable(vcpu))
3540 		return true;
3541 
3542 #ifdef CONFIG_KVM_ASYNC_PF
3543 	if (!list_empty_careful(&vcpu->async_pf.done))
3544 		return true;
3545 #endif
3546 
3547 	return false;
3548 }
3549 
3550 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3551 {
3552 	return false;
3553 }
3554 
3555 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3556 {
3557 	struct kvm *kvm = me->kvm;
3558 	struct kvm_vcpu *vcpu;
3559 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3560 	unsigned long i;
3561 	int yielded = 0;
3562 	int try = 3;
3563 	int pass;
3564 
3565 	kvm_vcpu_set_in_spin_loop(me, true);
3566 	/*
3567 	 * We boost the priority of a VCPU that is runnable but not
3568 	 * currently running, because it got preempted by something
3569 	 * else and called schedule in __vcpu_run.  Hopefully that
3570 	 * VCPU is holding the lock that we need and will release it.
3571 	 * We approximate round-robin by starting at the last boosted VCPU.
3572 	 */
3573 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3574 		kvm_for_each_vcpu(i, vcpu, kvm) {
3575 			if (!pass && i <= last_boosted_vcpu) {
3576 				i = last_boosted_vcpu;
3577 				continue;
3578 			} else if (pass && i > last_boosted_vcpu)
3579 				break;
3580 			if (!READ_ONCE(vcpu->ready))
3581 				continue;
3582 			if (vcpu == me)
3583 				continue;
3584 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3585 				continue;
3586 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3587 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3588 			    !kvm_arch_vcpu_in_kernel(vcpu))
3589 				continue;
3590 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3591 				continue;
3592 
3593 			yielded = kvm_vcpu_yield_to(vcpu);
3594 			if (yielded > 0) {
3595 				kvm->last_boosted_vcpu = i;
3596 				break;
3597 			} else if (yielded < 0) {
3598 				try--;
3599 				if (!try)
3600 					break;
3601 			}
3602 		}
3603 	}
3604 	kvm_vcpu_set_in_spin_loop(me, false);
3605 
3606 	/* Ensure vcpu is not eligible during next spinloop */
3607 	kvm_vcpu_set_dy_eligible(me, false);
3608 }
3609 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3610 
3611 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3612 {
3613 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3614 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3615 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3616 	     kvm->dirty_ring_size / PAGE_SIZE);
3617 #else
3618 	return false;
3619 #endif
3620 }
3621 
3622 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3623 {
3624 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3625 	struct page *page;
3626 
3627 	if (vmf->pgoff == 0)
3628 		page = virt_to_page(vcpu->run);
3629 #ifdef CONFIG_X86
3630 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3631 		page = virt_to_page(vcpu->arch.pio_data);
3632 #endif
3633 #ifdef CONFIG_KVM_MMIO
3634 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3635 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3636 #endif
3637 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3638 		page = kvm_dirty_ring_get_page(
3639 		    &vcpu->dirty_ring,
3640 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3641 	else
3642 		return kvm_arch_vcpu_fault(vcpu, vmf);
3643 	get_page(page);
3644 	vmf->page = page;
3645 	return 0;
3646 }
3647 
3648 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3649 	.fault = kvm_vcpu_fault,
3650 };
3651 
3652 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3653 {
3654 	struct kvm_vcpu *vcpu = file->private_data;
3655 	unsigned long pages = vma_pages(vma);
3656 
3657 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3658 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3659 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3660 		return -EINVAL;
3661 
3662 	vma->vm_ops = &kvm_vcpu_vm_ops;
3663 	return 0;
3664 }
3665 
3666 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3667 {
3668 	struct kvm_vcpu *vcpu = filp->private_data;
3669 
3670 	kvm_put_kvm(vcpu->kvm);
3671 	return 0;
3672 }
3673 
3674 static struct file_operations kvm_vcpu_fops = {
3675 	.release        = kvm_vcpu_release,
3676 	.unlocked_ioctl = kvm_vcpu_ioctl,
3677 	.mmap           = kvm_vcpu_mmap,
3678 	.llseek		= noop_llseek,
3679 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3680 };
3681 
3682 /*
3683  * Allocates an inode for the vcpu.
3684  */
3685 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3686 {
3687 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3688 
3689 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3690 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3691 }
3692 
3693 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3694 {
3695 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3696 	struct dentry *debugfs_dentry;
3697 	char dir_name[ITOA_MAX_LEN * 2];
3698 
3699 	if (!debugfs_initialized())
3700 		return;
3701 
3702 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3703 	debugfs_dentry = debugfs_create_dir(dir_name,
3704 					    vcpu->kvm->debugfs_dentry);
3705 
3706 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3707 #endif
3708 }
3709 
3710 /*
3711  * Creates some virtual cpus.  Good luck creating more than one.
3712  */
3713 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3714 {
3715 	int r;
3716 	struct kvm_vcpu *vcpu;
3717 	struct page *page;
3718 
3719 	if (id >= KVM_MAX_VCPU_IDS)
3720 		return -EINVAL;
3721 
3722 	mutex_lock(&kvm->lock);
3723 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3724 		mutex_unlock(&kvm->lock);
3725 		return -EINVAL;
3726 	}
3727 
3728 	kvm->created_vcpus++;
3729 	mutex_unlock(&kvm->lock);
3730 
3731 	r = kvm_arch_vcpu_precreate(kvm, id);
3732 	if (r)
3733 		goto vcpu_decrement;
3734 
3735 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3736 	if (!vcpu) {
3737 		r = -ENOMEM;
3738 		goto vcpu_decrement;
3739 	}
3740 
3741 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3742 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3743 	if (!page) {
3744 		r = -ENOMEM;
3745 		goto vcpu_free;
3746 	}
3747 	vcpu->run = page_address(page);
3748 
3749 	kvm_vcpu_init(vcpu, kvm, id);
3750 
3751 	r = kvm_arch_vcpu_create(vcpu);
3752 	if (r)
3753 		goto vcpu_free_run_page;
3754 
3755 	if (kvm->dirty_ring_size) {
3756 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3757 					 id, kvm->dirty_ring_size);
3758 		if (r)
3759 			goto arch_vcpu_destroy;
3760 	}
3761 
3762 	mutex_lock(&kvm->lock);
3763 	if (kvm_get_vcpu_by_id(kvm, id)) {
3764 		r = -EEXIST;
3765 		goto unlock_vcpu_destroy;
3766 	}
3767 
3768 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3769 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3770 	BUG_ON(r == -EBUSY);
3771 	if (r)
3772 		goto unlock_vcpu_destroy;
3773 
3774 	/* Fill the stats id string for the vcpu */
3775 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3776 		 task_pid_nr(current), id);
3777 
3778 	/* Now it's all set up, let userspace reach it */
3779 	kvm_get_kvm(kvm);
3780 	r = create_vcpu_fd(vcpu);
3781 	if (r < 0) {
3782 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3783 		kvm_put_kvm_no_destroy(kvm);
3784 		goto unlock_vcpu_destroy;
3785 	}
3786 
3787 	/*
3788 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3789 	 * pointer before kvm->online_vcpu's incremented value.
3790 	 */
3791 	smp_wmb();
3792 	atomic_inc(&kvm->online_vcpus);
3793 
3794 	mutex_unlock(&kvm->lock);
3795 	kvm_arch_vcpu_postcreate(vcpu);
3796 	kvm_create_vcpu_debugfs(vcpu);
3797 	return r;
3798 
3799 unlock_vcpu_destroy:
3800 	mutex_unlock(&kvm->lock);
3801 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3802 arch_vcpu_destroy:
3803 	kvm_arch_vcpu_destroy(vcpu);
3804 vcpu_free_run_page:
3805 	free_page((unsigned long)vcpu->run);
3806 vcpu_free:
3807 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3808 vcpu_decrement:
3809 	mutex_lock(&kvm->lock);
3810 	kvm->created_vcpus--;
3811 	mutex_unlock(&kvm->lock);
3812 	return r;
3813 }
3814 
3815 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3816 {
3817 	if (sigset) {
3818 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3819 		vcpu->sigset_active = 1;
3820 		vcpu->sigset = *sigset;
3821 	} else
3822 		vcpu->sigset_active = 0;
3823 	return 0;
3824 }
3825 
3826 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3827 			      size_t size, loff_t *offset)
3828 {
3829 	struct kvm_vcpu *vcpu = file->private_data;
3830 
3831 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3832 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3833 			sizeof(vcpu->stat), user_buffer, size, offset);
3834 }
3835 
3836 static const struct file_operations kvm_vcpu_stats_fops = {
3837 	.read = kvm_vcpu_stats_read,
3838 	.llseek = noop_llseek,
3839 };
3840 
3841 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3842 {
3843 	int fd;
3844 	struct file *file;
3845 	char name[15 + ITOA_MAX_LEN + 1];
3846 
3847 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3848 
3849 	fd = get_unused_fd_flags(O_CLOEXEC);
3850 	if (fd < 0)
3851 		return fd;
3852 
3853 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3854 	if (IS_ERR(file)) {
3855 		put_unused_fd(fd);
3856 		return PTR_ERR(file);
3857 	}
3858 	file->f_mode |= FMODE_PREAD;
3859 	fd_install(fd, file);
3860 
3861 	return fd;
3862 }
3863 
3864 static long kvm_vcpu_ioctl(struct file *filp,
3865 			   unsigned int ioctl, unsigned long arg)
3866 {
3867 	struct kvm_vcpu *vcpu = filp->private_data;
3868 	void __user *argp = (void __user *)arg;
3869 	int r;
3870 	struct kvm_fpu *fpu = NULL;
3871 	struct kvm_sregs *kvm_sregs = NULL;
3872 
3873 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3874 		return -EIO;
3875 
3876 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3877 		return -EINVAL;
3878 
3879 	/*
3880 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3881 	 * execution; mutex_lock() would break them.
3882 	 */
3883 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3884 	if (r != -ENOIOCTLCMD)
3885 		return r;
3886 
3887 	if (mutex_lock_killable(&vcpu->mutex))
3888 		return -EINTR;
3889 	switch (ioctl) {
3890 	case KVM_RUN: {
3891 		struct pid *oldpid;
3892 		r = -EINVAL;
3893 		if (arg)
3894 			goto out;
3895 		oldpid = rcu_access_pointer(vcpu->pid);
3896 		if (unlikely(oldpid != task_pid(current))) {
3897 			/* The thread running this VCPU changed. */
3898 			struct pid *newpid;
3899 
3900 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3901 			if (r)
3902 				break;
3903 
3904 			newpid = get_task_pid(current, PIDTYPE_PID);
3905 			rcu_assign_pointer(vcpu->pid, newpid);
3906 			if (oldpid)
3907 				synchronize_rcu();
3908 			put_pid(oldpid);
3909 		}
3910 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3911 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3912 		break;
3913 	}
3914 	case KVM_GET_REGS: {
3915 		struct kvm_regs *kvm_regs;
3916 
3917 		r = -ENOMEM;
3918 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3919 		if (!kvm_regs)
3920 			goto out;
3921 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3922 		if (r)
3923 			goto out_free1;
3924 		r = -EFAULT;
3925 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3926 			goto out_free1;
3927 		r = 0;
3928 out_free1:
3929 		kfree(kvm_regs);
3930 		break;
3931 	}
3932 	case KVM_SET_REGS: {
3933 		struct kvm_regs *kvm_regs;
3934 
3935 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3936 		if (IS_ERR(kvm_regs)) {
3937 			r = PTR_ERR(kvm_regs);
3938 			goto out;
3939 		}
3940 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3941 		kfree(kvm_regs);
3942 		break;
3943 	}
3944 	case KVM_GET_SREGS: {
3945 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3946 				    GFP_KERNEL_ACCOUNT);
3947 		r = -ENOMEM;
3948 		if (!kvm_sregs)
3949 			goto out;
3950 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3951 		if (r)
3952 			goto out;
3953 		r = -EFAULT;
3954 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3955 			goto out;
3956 		r = 0;
3957 		break;
3958 	}
3959 	case KVM_SET_SREGS: {
3960 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3961 		if (IS_ERR(kvm_sregs)) {
3962 			r = PTR_ERR(kvm_sregs);
3963 			kvm_sregs = NULL;
3964 			goto out;
3965 		}
3966 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3967 		break;
3968 	}
3969 	case KVM_GET_MP_STATE: {
3970 		struct kvm_mp_state mp_state;
3971 
3972 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3973 		if (r)
3974 			goto out;
3975 		r = -EFAULT;
3976 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3977 			goto out;
3978 		r = 0;
3979 		break;
3980 	}
3981 	case KVM_SET_MP_STATE: {
3982 		struct kvm_mp_state mp_state;
3983 
3984 		r = -EFAULT;
3985 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3986 			goto out;
3987 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3988 		break;
3989 	}
3990 	case KVM_TRANSLATE: {
3991 		struct kvm_translation tr;
3992 
3993 		r = -EFAULT;
3994 		if (copy_from_user(&tr, argp, sizeof(tr)))
3995 			goto out;
3996 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3997 		if (r)
3998 			goto out;
3999 		r = -EFAULT;
4000 		if (copy_to_user(argp, &tr, sizeof(tr)))
4001 			goto out;
4002 		r = 0;
4003 		break;
4004 	}
4005 	case KVM_SET_GUEST_DEBUG: {
4006 		struct kvm_guest_debug dbg;
4007 
4008 		r = -EFAULT;
4009 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4010 			goto out;
4011 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4012 		break;
4013 	}
4014 	case KVM_SET_SIGNAL_MASK: {
4015 		struct kvm_signal_mask __user *sigmask_arg = argp;
4016 		struct kvm_signal_mask kvm_sigmask;
4017 		sigset_t sigset, *p;
4018 
4019 		p = NULL;
4020 		if (argp) {
4021 			r = -EFAULT;
4022 			if (copy_from_user(&kvm_sigmask, argp,
4023 					   sizeof(kvm_sigmask)))
4024 				goto out;
4025 			r = -EINVAL;
4026 			if (kvm_sigmask.len != sizeof(sigset))
4027 				goto out;
4028 			r = -EFAULT;
4029 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4030 					   sizeof(sigset)))
4031 				goto out;
4032 			p = &sigset;
4033 		}
4034 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4035 		break;
4036 	}
4037 	case KVM_GET_FPU: {
4038 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4039 		r = -ENOMEM;
4040 		if (!fpu)
4041 			goto out;
4042 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4043 		if (r)
4044 			goto out;
4045 		r = -EFAULT;
4046 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4047 			goto out;
4048 		r = 0;
4049 		break;
4050 	}
4051 	case KVM_SET_FPU: {
4052 		fpu = memdup_user(argp, sizeof(*fpu));
4053 		if (IS_ERR(fpu)) {
4054 			r = PTR_ERR(fpu);
4055 			fpu = NULL;
4056 			goto out;
4057 		}
4058 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4059 		break;
4060 	}
4061 	case KVM_GET_STATS_FD: {
4062 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4063 		break;
4064 	}
4065 	default:
4066 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4067 	}
4068 out:
4069 	mutex_unlock(&vcpu->mutex);
4070 	kfree(fpu);
4071 	kfree(kvm_sregs);
4072 	return r;
4073 }
4074 
4075 #ifdef CONFIG_KVM_COMPAT
4076 static long kvm_vcpu_compat_ioctl(struct file *filp,
4077 				  unsigned int ioctl, unsigned long arg)
4078 {
4079 	struct kvm_vcpu *vcpu = filp->private_data;
4080 	void __user *argp = compat_ptr(arg);
4081 	int r;
4082 
4083 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4084 		return -EIO;
4085 
4086 	switch (ioctl) {
4087 	case KVM_SET_SIGNAL_MASK: {
4088 		struct kvm_signal_mask __user *sigmask_arg = argp;
4089 		struct kvm_signal_mask kvm_sigmask;
4090 		sigset_t sigset;
4091 
4092 		if (argp) {
4093 			r = -EFAULT;
4094 			if (copy_from_user(&kvm_sigmask, argp,
4095 					   sizeof(kvm_sigmask)))
4096 				goto out;
4097 			r = -EINVAL;
4098 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4099 				goto out;
4100 			r = -EFAULT;
4101 			if (get_compat_sigset(&sigset,
4102 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4103 				goto out;
4104 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4105 		} else
4106 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4107 		break;
4108 	}
4109 	default:
4110 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4111 	}
4112 
4113 out:
4114 	return r;
4115 }
4116 #endif
4117 
4118 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4119 {
4120 	struct kvm_device *dev = filp->private_data;
4121 
4122 	if (dev->ops->mmap)
4123 		return dev->ops->mmap(dev, vma);
4124 
4125 	return -ENODEV;
4126 }
4127 
4128 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4129 				 int (*accessor)(struct kvm_device *dev,
4130 						 struct kvm_device_attr *attr),
4131 				 unsigned long arg)
4132 {
4133 	struct kvm_device_attr attr;
4134 
4135 	if (!accessor)
4136 		return -EPERM;
4137 
4138 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4139 		return -EFAULT;
4140 
4141 	return accessor(dev, &attr);
4142 }
4143 
4144 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4145 			     unsigned long arg)
4146 {
4147 	struct kvm_device *dev = filp->private_data;
4148 
4149 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4150 		return -EIO;
4151 
4152 	switch (ioctl) {
4153 	case KVM_SET_DEVICE_ATTR:
4154 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4155 	case KVM_GET_DEVICE_ATTR:
4156 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4157 	case KVM_HAS_DEVICE_ATTR:
4158 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4159 	default:
4160 		if (dev->ops->ioctl)
4161 			return dev->ops->ioctl(dev, ioctl, arg);
4162 
4163 		return -ENOTTY;
4164 	}
4165 }
4166 
4167 static int kvm_device_release(struct inode *inode, struct file *filp)
4168 {
4169 	struct kvm_device *dev = filp->private_data;
4170 	struct kvm *kvm = dev->kvm;
4171 
4172 	if (dev->ops->release) {
4173 		mutex_lock(&kvm->lock);
4174 		list_del(&dev->vm_node);
4175 		dev->ops->release(dev);
4176 		mutex_unlock(&kvm->lock);
4177 	}
4178 
4179 	kvm_put_kvm(kvm);
4180 	return 0;
4181 }
4182 
4183 static const struct file_operations kvm_device_fops = {
4184 	.unlocked_ioctl = kvm_device_ioctl,
4185 	.release = kvm_device_release,
4186 	KVM_COMPAT(kvm_device_ioctl),
4187 	.mmap = kvm_device_mmap,
4188 };
4189 
4190 struct kvm_device *kvm_device_from_filp(struct file *filp)
4191 {
4192 	if (filp->f_op != &kvm_device_fops)
4193 		return NULL;
4194 
4195 	return filp->private_data;
4196 }
4197 
4198 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4199 #ifdef CONFIG_KVM_MPIC
4200 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4201 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4202 #endif
4203 };
4204 
4205 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4206 {
4207 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4208 		return -ENOSPC;
4209 
4210 	if (kvm_device_ops_table[type] != NULL)
4211 		return -EEXIST;
4212 
4213 	kvm_device_ops_table[type] = ops;
4214 	return 0;
4215 }
4216 
4217 void kvm_unregister_device_ops(u32 type)
4218 {
4219 	if (kvm_device_ops_table[type] != NULL)
4220 		kvm_device_ops_table[type] = NULL;
4221 }
4222 
4223 static int kvm_ioctl_create_device(struct kvm *kvm,
4224 				   struct kvm_create_device *cd)
4225 {
4226 	const struct kvm_device_ops *ops = NULL;
4227 	struct kvm_device *dev;
4228 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4229 	int type;
4230 	int ret;
4231 
4232 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4233 		return -ENODEV;
4234 
4235 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4236 	ops = kvm_device_ops_table[type];
4237 	if (ops == NULL)
4238 		return -ENODEV;
4239 
4240 	if (test)
4241 		return 0;
4242 
4243 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4244 	if (!dev)
4245 		return -ENOMEM;
4246 
4247 	dev->ops = ops;
4248 	dev->kvm = kvm;
4249 
4250 	mutex_lock(&kvm->lock);
4251 	ret = ops->create(dev, type);
4252 	if (ret < 0) {
4253 		mutex_unlock(&kvm->lock);
4254 		kfree(dev);
4255 		return ret;
4256 	}
4257 	list_add(&dev->vm_node, &kvm->devices);
4258 	mutex_unlock(&kvm->lock);
4259 
4260 	if (ops->init)
4261 		ops->init(dev);
4262 
4263 	kvm_get_kvm(kvm);
4264 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4265 	if (ret < 0) {
4266 		kvm_put_kvm_no_destroy(kvm);
4267 		mutex_lock(&kvm->lock);
4268 		list_del(&dev->vm_node);
4269 		mutex_unlock(&kvm->lock);
4270 		ops->destroy(dev);
4271 		return ret;
4272 	}
4273 
4274 	cd->fd = ret;
4275 	return 0;
4276 }
4277 
4278 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4279 {
4280 	switch (arg) {
4281 	case KVM_CAP_USER_MEMORY:
4282 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4283 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4284 	case KVM_CAP_INTERNAL_ERROR_DATA:
4285 #ifdef CONFIG_HAVE_KVM_MSI
4286 	case KVM_CAP_SIGNAL_MSI:
4287 #endif
4288 #ifdef CONFIG_HAVE_KVM_IRQFD
4289 	case KVM_CAP_IRQFD:
4290 	case KVM_CAP_IRQFD_RESAMPLE:
4291 #endif
4292 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4293 	case KVM_CAP_CHECK_EXTENSION_VM:
4294 	case KVM_CAP_ENABLE_CAP_VM:
4295 	case KVM_CAP_HALT_POLL:
4296 		return 1;
4297 #ifdef CONFIG_KVM_MMIO
4298 	case KVM_CAP_COALESCED_MMIO:
4299 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4300 	case KVM_CAP_COALESCED_PIO:
4301 		return 1;
4302 #endif
4303 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4304 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4305 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4306 #endif
4307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4308 	case KVM_CAP_IRQ_ROUTING:
4309 		return KVM_MAX_IRQ_ROUTES;
4310 #endif
4311 #if KVM_ADDRESS_SPACE_NUM > 1
4312 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4313 		return KVM_ADDRESS_SPACE_NUM;
4314 #endif
4315 	case KVM_CAP_NR_MEMSLOTS:
4316 		return KVM_USER_MEM_SLOTS;
4317 	case KVM_CAP_DIRTY_LOG_RING:
4318 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4319 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4320 #else
4321 		return 0;
4322 #endif
4323 	case KVM_CAP_BINARY_STATS_FD:
4324 		return 1;
4325 	default:
4326 		break;
4327 	}
4328 	return kvm_vm_ioctl_check_extension(kvm, arg);
4329 }
4330 
4331 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4332 {
4333 	int r;
4334 
4335 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4336 		return -EINVAL;
4337 
4338 	/* the size should be power of 2 */
4339 	if (!size || (size & (size - 1)))
4340 		return -EINVAL;
4341 
4342 	/* Should be bigger to keep the reserved entries, or a page */
4343 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4344 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4345 		return -EINVAL;
4346 
4347 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4348 	    sizeof(struct kvm_dirty_gfn))
4349 		return -E2BIG;
4350 
4351 	/* We only allow it to set once */
4352 	if (kvm->dirty_ring_size)
4353 		return -EINVAL;
4354 
4355 	mutex_lock(&kvm->lock);
4356 
4357 	if (kvm->created_vcpus) {
4358 		/* We don't allow to change this value after vcpu created */
4359 		r = -EINVAL;
4360 	} else {
4361 		kvm->dirty_ring_size = size;
4362 		r = 0;
4363 	}
4364 
4365 	mutex_unlock(&kvm->lock);
4366 	return r;
4367 }
4368 
4369 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4370 {
4371 	unsigned long i;
4372 	struct kvm_vcpu *vcpu;
4373 	int cleared = 0;
4374 
4375 	if (!kvm->dirty_ring_size)
4376 		return -EINVAL;
4377 
4378 	mutex_lock(&kvm->slots_lock);
4379 
4380 	kvm_for_each_vcpu(i, vcpu, kvm)
4381 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4382 
4383 	mutex_unlock(&kvm->slots_lock);
4384 
4385 	if (cleared)
4386 		kvm_flush_remote_tlbs(kvm);
4387 
4388 	return cleared;
4389 }
4390 
4391 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4392 						  struct kvm_enable_cap *cap)
4393 {
4394 	return -EINVAL;
4395 }
4396 
4397 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4398 					   struct kvm_enable_cap *cap)
4399 {
4400 	switch (cap->cap) {
4401 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4402 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4403 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4404 
4405 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4406 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4407 
4408 		if (cap->flags || (cap->args[0] & ~allowed_options))
4409 			return -EINVAL;
4410 		kvm->manual_dirty_log_protect = cap->args[0];
4411 		return 0;
4412 	}
4413 #endif
4414 	case KVM_CAP_HALT_POLL: {
4415 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4416 			return -EINVAL;
4417 
4418 		kvm->max_halt_poll_ns = cap->args[0];
4419 		return 0;
4420 	}
4421 	case KVM_CAP_DIRTY_LOG_RING:
4422 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4423 	default:
4424 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4425 	}
4426 }
4427 
4428 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4429 			      size_t size, loff_t *offset)
4430 {
4431 	struct kvm *kvm = file->private_data;
4432 
4433 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4434 				&kvm_vm_stats_desc[0], &kvm->stat,
4435 				sizeof(kvm->stat), user_buffer, size, offset);
4436 }
4437 
4438 static const struct file_operations kvm_vm_stats_fops = {
4439 	.read = kvm_vm_stats_read,
4440 	.llseek = noop_llseek,
4441 };
4442 
4443 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4444 {
4445 	int fd;
4446 	struct file *file;
4447 
4448 	fd = get_unused_fd_flags(O_CLOEXEC);
4449 	if (fd < 0)
4450 		return fd;
4451 
4452 	file = anon_inode_getfile("kvm-vm-stats",
4453 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4454 	if (IS_ERR(file)) {
4455 		put_unused_fd(fd);
4456 		return PTR_ERR(file);
4457 	}
4458 	file->f_mode |= FMODE_PREAD;
4459 	fd_install(fd, file);
4460 
4461 	return fd;
4462 }
4463 
4464 static long kvm_vm_ioctl(struct file *filp,
4465 			   unsigned int ioctl, unsigned long arg)
4466 {
4467 	struct kvm *kvm = filp->private_data;
4468 	void __user *argp = (void __user *)arg;
4469 	int r;
4470 
4471 	if (kvm->mm != current->mm || kvm->vm_dead)
4472 		return -EIO;
4473 	switch (ioctl) {
4474 	case KVM_CREATE_VCPU:
4475 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4476 		break;
4477 	case KVM_ENABLE_CAP: {
4478 		struct kvm_enable_cap cap;
4479 
4480 		r = -EFAULT;
4481 		if (copy_from_user(&cap, argp, sizeof(cap)))
4482 			goto out;
4483 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4484 		break;
4485 	}
4486 	case KVM_SET_USER_MEMORY_REGION: {
4487 		struct kvm_userspace_memory_region kvm_userspace_mem;
4488 
4489 		r = -EFAULT;
4490 		if (copy_from_user(&kvm_userspace_mem, argp,
4491 						sizeof(kvm_userspace_mem)))
4492 			goto out;
4493 
4494 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4495 		break;
4496 	}
4497 	case KVM_GET_DIRTY_LOG: {
4498 		struct kvm_dirty_log log;
4499 
4500 		r = -EFAULT;
4501 		if (copy_from_user(&log, argp, sizeof(log)))
4502 			goto out;
4503 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4504 		break;
4505 	}
4506 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4507 	case KVM_CLEAR_DIRTY_LOG: {
4508 		struct kvm_clear_dirty_log log;
4509 
4510 		r = -EFAULT;
4511 		if (copy_from_user(&log, argp, sizeof(log)))
4512 			goto out;
4513 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4514 		break;
4515 	}
4516 #endif
4517 #ifdef CONFIG_KVM_MMIO
4518 	case KVM_REGISTER_COALESCED_MMIO: {
4519 		struct kvm_coalesced_mmio_zone zone;
4520 
4521 		r = -EFAULT;
4522 		if (copy_from_user(&zone, argp, sizeof(zone)))
4523 			goto out;
4524 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4525 		break;
4526 	}
4527 	case KVM_UNREGISTER_COALESCED_MMIO: {
4528 		struct kvm_coalesced_mmio_zone zone;
4529 
4530 		r = -EFAULT;
4531 		if (copy_from_user(&zone, argp, sizeof(zone)))
4532 			goto out;
4533 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4534 		break;
4535 	}
4536 #endif
4537 	case KVM_IRQFD: {
4538 		struct kvm_irqfd data;
4539 
4540 		r = -EFAULT;
4541 		if (copy_from_user(&data, argp, sizeof(data)))
4542 			goto out;
4543 		r = kvm_irqfd(kvm, &data);
4544 		break;
4545 	}
4546 	case KVM_IOEVENTFD: {
4547 		struct kvm_ioeventfd data;
4548 
4549 		r = -EFAULT;
4550 		if (copy_from_user(&data, argp, sizeof(data)))
4551 			goto out;
4552 		r = kvm_ioeventfd(kvm, &data);
4553 		break;
4554 	}
4555 #ifdef CONFIG_HAVE_KVM_MSI
4556 	case KVM_SIGNAL_MSI: {
4557 		struct kvm_msi msi;
4558 
4559 		r = -EFAULT;
4560 		if (copy_from_user(&msi, argp, sizeof(msi)))
4561 			goto out;
4562 		r = kvm_send_userspace_msi(kvm, &msi);
4563 		break;
4564 	}
4565 #endif
4566 #ifdef __KVM_HAVE_IRQ_LINE
4567 	case KVM_IRQ_LINE_STATUS:
4568 	case KVM_IRQ_LINE: {
4569 		struct kvm_irq_level irq_event;
4570 
4571 		r = -EFAULT;
4572 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4573 			goto out;
4574 
4575 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4576 					ioctl == KVM_IRQ_LINE_STATUS);
4577 		if (r)
4578 			goto out;
4579 
4580 		r = -EFAULT;
4581 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4582 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4583 				goto out;
4584 		}
4585 
4586 		r = 0;
4587 		break;
4588 	}
4589 #endif
4590 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4591 	case KVM_SET_GSI_ROUTING: {
4592 		struct kvm_irq_routing routing;
4593 		struct kvm_irq_routing __user *urouting;
4594 		struct kvm_irq_routing_entry *entries = NULL;
4595 
4596 		r = -EFAULT;
4597 		if (copy_from_user(&routing, argp, sizeof(routing)))
4598 			goto out;
4599 		r = -EINVAL;
4600 		if (!kvm_arch_can_set_irq_routing(kvm))
4601 			goto out;
4602 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4603 			goto out;
4604 		if (routing.flags)
4605 			goto out;
4606 		if (routing.nr) {
4607 			urouting = argp;
4608 			entries = vmemdup_user(urouting->entries,
4609 					       array_size(sizeof(*entries),
4610 							  routing.nr));
4611 			if (IS_ERR(entries)) {
4612 				r = PTR_ERR(entries);
4613 				goto out;
4614 			}
4615 		}
4616 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4617 					routing.flags);
4618 		kvfree(entries);
4619 		break;
4620 	}
4621 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4622 	case KVM_CREATE_DEVICE: {
4623 		struct kvm_create_device cd;
4624 
4625 		r = -EFAULT;
4626 		if (copy_from_user(&cd, argp, sizeof(cd)))
4627 			goto out;
4628 
4629 		r = kvm_ioctl_create_device(kvm, &cd);
4630 		if (r)
4631 			goto out;
4632 
4633 		r = -EFAULT;
4634 		if (copy_to_user(argp, &cd, sizeof(cd)))
4635 			goto out;
4636 
4637 		r = 0;
4638 		break;
4639 	}
4640 	case KVM_CHECK_EXTENSION:
4641 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4642 		break;
4643 	case KVM_RESET_DIRTY_RINGS:
4644 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4645 		break;
4646 	case KVM_GET_STATS_FD:
4647 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4648 		break;
4649 	default:
4650 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4651 	}
4652 out:
4653 	return r;
4654 }
4655 
4656 #ifdef CONFIG_KVM_COMPAT
4657 struct compat_kvm_dirty_log {
4658 	__u32 slot;
4659 	__u32 padding1;
4660 	union {
4661 		compat_uptr_t dirty_bitmap; /* one bit per page */
4662 		__u64 padding2;
4663 	};
4664 };
4665 
4666 struct compat_kvm_clear_dirty_log {
4667 	__u32 slot;
4668 	__u32 num_pages;
4669 	__u64 first_page;
4670 	union {
4671 		compat_uptr_t dirty_bitmap; /* one bit per page */
4672 		__u64 padding2;
4673 	};
4674 };
4675 
4676 static long kvm_vm_compat_ioctl(struct file *filp,
4677 			   unsigned int ioctl, unsigned long arg)
4678 {
4679 	struct kvm *kvm = filp->private_data;
4680 	int r;
4681 
4682 	if (kvm->mm != current->mm || kvm->vm_dead)
4683 		return -EIO;
4684 	switch (ioctl) {
4685 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4686 	case KVM_CLEAR_DIRTY_LOG: {
4687 		struct compat_kvm_clear_dirty_log compat_log;
4688 		struct kvm_clear_dirty_log log;
4689 
4690 		if (copy_from_user(&compat_log, (void __user *)arg,
4691 				   sizeof(compat_log)))
4692 			return -EFAULT;
4693 		log.slot	 = compat_log.slot;
4694 		log.num_pages	 = compat_log.num_pages;
4695 		log.first_page	 = compat_log.first_page;
4696 		log.padding2	 = compat_log.padding2;
4697 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4698 
4699 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4700 		break;
4701 	}
4702 #endif
4703 	case KVM_GET_DIRTY_LOG: {
4704 		struct compat_kvm_dirty_log compat_log;
4705 		struct kvm_dirty_log log;
4706 
4707 		if (copy_from_user(&compat_log, (void __user *)arg,
4708 				   sizeof(compat_log)))
4709 			return -EFAULT;
4710 		log.slot	 = compat_log.slot;
4711 		log.padding1	 = compat_log.padding1;
4712 		log.padding2	 = compat_log.padding2;
4713 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4714 
4715 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4716 		break;
4717 	}
4718 	default:
4719 		r = kvm_vm_ioctl(filp, ioctl, arg);
4720 	}
4721 	return r;
4722 }
4723 #endif
4724 
4725 static struct file_operations kvm_vm_fops = {
4726 	.release        = kvm_vm_release,
4727 	.unlocked_ioctl = kvm_vm_ioctl,
4728 	.llseek		= noop_llseek,
4729 	KVM_COMPAT(kvm_vm_compat_ioctl),
4730 };
4731 
4732 bool file_is_kvm(struct file *file)
4733 {
4734 	return file && file->f_op == &kvm_vm_fops;
4735 }
4736 EXPORT_SYMBOL_GPL(file_is_kvm);
4737 
4738 static int kvm_dev_ioctl_create_vm(unsigned long type)
4739 {
4740 	int r;
4741 	struct kvm *kvm;
4742 	struct file *file;
4743 
4744 	kvm = kvm_create_vm(type);
4745 	if (IS_ERR(kvm))
4746 		return PTR_ERR(kvm);
4747 #ifdef CONFIG_KVM_MMIO
4748 	r = kvm_coalesced_mmio_init(kvm);
4749 	if (r < 0)
4750 		goto put_kvm;
4751 #endif
4752 	r = get_unused_fd_flags(O_CLOEXEC);
4753 	if (r < 0)
4754 		goto put_kvm;
4755 
4756 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4757 			"kvm-%d", task_pid_nr(current));
4758 
4759 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4760 	if (IS_ERR(file)) {
4761 		put_unused_fd(r);
4762 		r = PTR_ERR(file);
4763 		goto put_kvm;
4764 	}
4765 
4766 	/*
4767 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4768 	 * already set, with ->release() being kvm_vm_release().  In error
4769 	 * cases it will be called by the final fput(file) and will take
4770 	 * care of doing kvm_put_kvm(kvm).
4771 	 */
4772 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4773 		put_unused_fd(r);
4774 		fput(file);
4775 		return -ENOMEM;
4776 	}
4777 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4778 
4779 	fd_install(r, file);
4780 	return r;
4781 
4782 put_kvm:
4783 	kvm_put_kvm(kvm);
4784 	return r;
4785 }
4786 
4787 static long kvm_dev_ioctl(struct file *filp,
4788 			  unsigned int ioctl, unsigned long arg)
4789 {
4790 	long r = -EINVAL;
4791 
4792 	switch (ioctl) {
4793 	case KVM_GET_API_VERSION:
4794 		if (arg)
4795 			goto out;
4796 		r = KVM_API_VERSION;
4797 		break;
4798 	case KVM_CREATE_VM:
4799 		r = kvm_dev_ioctl_create_vm(arg);
4800 		break;
4801 	case KVM_CHECK_EXTENSION:
4802 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4803 		break;
4804 	case KVM_GET_VCPU_MMAP_SIZE:
4805 		if (arg)
4806 			goto out;
4807 		r = PAGE_SIZE;     /* struct kvm_run */
4808 #ifdef CONFIG_X86
4809 		r += PAGE_SIZE;    /* pio data page */
4810 #endif
4811 #ifdef CONFIG_KVM_MMIO
4812 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4813 #endif
4814 		break;
4815 	case KVM_TRACE_ENABLE:
4816 	case KVM_TRACE_PAUSE:
4817 	case KVM_TRACE_DISABLE:
4818 		r = -EOPNOTSUPP;
4819 		break;
4820 	default:
4821 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4822 	}
4823 out:
4824 	return r;
4825 }
4826 
4827 static struct file_operations kvm_chardev_ops = {
4828 	.unlocked_ioctl = kvm_dev_ioctl,
4829 	.llseek		= noop_llseek,
4830 	KVM_COMPAT(kvm_dev_ioctl),
4831 };
4832 
4833 static struct miscdevice kvm_dev = {
4834 	KVM_MINOR,
4835 	"kvm",
4836 	&kvm_chardev_ops,
4837 };
4838 
4839 static void hardware_enable_nolock(void *junk)
4840 {
4841 	int cpu = raw_smp_processor_id();
4842 	int r;
4843 
4844 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4845 		return;
4846 
4847 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4848 
4849 	r = kvm_arch_hardware_enable();
4850 
4851 	if (r) {
4852 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4853 		atomic_inc(&hardware_enable_failed);
4854 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4855 	}
4856 }
4857 
4858 static int kvm_starting_cpu(unsigned int cpu)
4859 {
4860 	raw_spin_lock(&kvm_count_lock);
4861 	if (kvm_usage_count)
4862 		hardware_enable_nolock(NULL);
4863 	raw_spin_unlock(&kvm_count_lock);
4864 	return 0;
4865 }
4866 
4867 static void hardware_disable_nolock(void *junk)
4868 {
4869 	int cpu = raw_smp_processor_id();
4870 
4871 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4872 		return;
4873 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4874 	kvm_arch_hardware_disable();
4875 }
4876 
4877 static int kvm_dying_cpu(unsigned int cpu)
4878 {
4879 	raw_spin_lock(&kvm_count_lock);
4880 	if (kvm_usage_count)
4881 		hardware_disable_nolock(NULL);
4882 	raw_spin_unlock(&kvm_count_lock);
4883 	return 0;
4884 }
4885 
4886 static void hardware_disable_all_nolock(void)
4887 {
4888 	BUG_ON(!kvm_usage_count);
4889 
4890 	kvm_usage_count--;
4891 	if (!kvm_usage_count)
4892 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4893 }
4894 
4895 static void hardware_disable_all(void)
4896 {
4897 	raw_spin_lock(&kvm_count_lock);
4898 	hardware_disable_all_nolock();
4899 	raw_spin_unlock(&kvm_count_lock);
4900 }
4901 
4902 static int hardware_enable_all(void)
4903 {
4904 	int r = 0;
4905 
4906 	raw_spin_lock(&kvm_count_lock);
4907 
4908 	kvm_usage_count++;
4909 	if (kvm_usage_count == 1) {
4910 		atomic_set(&hardware_enable_failed, 0);
4911 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4912 
4913 		if (atomic_read(&hardware_enable_failed)) {
4914 			hardware_disable_all_nolock();
4915 			r = -EBUSY;
4916 		}
4917 	}
4918 
4919 	raw_spin_unlock(&kvm_count_lock);
4920 
4921 	return r;
4922 }
4923 
4924 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4925 		      void *v)
4926 {
4927 	/*
4928 	 * Some (well, at least mine) BIOSes hang on reboot if
4929 	 * in vmx root mode.
4930 	 *
4931 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4932 	 */
4933 	pr_info("kvm: exiting hardware virtualization\n");
4934 	kvm_rebooting = true;
4935 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4936 	return NOTIFY_OK;
4937 }
4938 
4939 static struct notifier_block kvm_reboot_notifier = {
4940 	.notifier_call = kvm_reboot,
4941 	.priority = 0,
4942 };
4943 
4944 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4945 {
4946 	int i;
4947 
4948 	for (i = 0; i < bus->dev_count; i++) {
4949 		struct kvm_io_device *pos = bus->range[i].dev;
4950 
4951 		kvm_iodevice_destructor(pos);
4952 	}
4953 	kfree(bus);
4954 }
4955 
4956 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4957 				 const struct kvm_io_range *r2)
4958 {
4959 	gpa_t addr1 = r1->addr;
4960 	gpa_t addr2 = r2->addr;
4961 
4962 	if (addr1 < addr2)
4963 		return -1;
4964 
4965 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4966 	 * accept any overlapping write.  Any order is acceptable for
4967 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4968 	 * we process all of them.
4969 	 */
4970 	if (r2->len) {
4971 		addr1 += r1->len;
4972 		addr2 += r2->len;
4973 	}
4974 
4975 	if (addr1 > addr2)
4976 		return 1;
4977 
4978 	return 0;
4979 }
4980 
4981 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4982 {
4983 	return kvm_io_bus_cmp(p1, p2);
4984 }
4985 
4986 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4987 			     gpa_t addr, int len)
4988 {
4989 	struct kvm_io_range *range, key;
4990 	int off;
4991 
4992 	key = (struct kvm_io_range) {
4993 		.addr = addr,
4994 		.len = len,
4995 	};
4996 
4997 	range = bsearch(&key, bus->range, bus->dev_count,
4998 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4999 	if (range == NULL)
5000 		return -ENOENT;
5001 
5002 	off = range - bus->range;
5003 
5004 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5005 		off--;
5006 
5007 	return off;
5008 }
5009 
5010 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5011 			      struct kvm_io_range *range, const void *val)
5012 {
5013 	int idx;
5014 
5015 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5016 	if (idx < 0)
5017 		return -EOPNOTSUPP;
5018 
5019 	while (idx < bus->dev_count &&
5020 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5021 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5022 					range->len, val))
5023 			return idx;
5024 		idx++;
5025 	}
5026 
5027 	return -EOPNOTSUPP;
5028 }
5029 
5030 /* kvm_io_bus_write - called under kvm->slots_lock */
5031 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5032 		     int len, const void *val)
5033 {
5034 	struct kvm_io_bus *bus;
5035 	struct kvm_io_range range;
5036 	int r;
5037 
5038 	range = (struct kvm_io_range) {
5039 		.addr = addr,
5040 		.len = len,
5041 	};
5042 
5043 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5044 	if (!bus)
5045 		return -ENOMEM;
5046 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5047 	return r < 0 ? r : 0;
5048 }
5049 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5050 
5051 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5052 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5053 			    gpa_t addr, int len, const void *val, long cookie)
5054 {
5055 	struct kvm_io_bus *bus;
5056 	struct kvm_io_range range;
5057 
5058 	range = (struct kvm_io_range) {
5059 		.addr = addr,
5060 		.len = len,
5061 	};
5062 
5063 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5064 	if (!bus)
5065 		return -ENOMEM;
5066 
5067 	/* First try the device referenced by cookie. */
5068 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5069 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5070 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5071 					val))
5072 			return cookie;
5073 
5074 	/*
5075 	 * cookie contained garbage; fall back to search and return the
5076 	 * correct cookie value.
5077 	 */
5078 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5079 }
5080 
5081 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5082 			     struct kvm_io_range *range, void *val)
5083 {
5084 	int idx;
5085 
5086 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5087 	if (idx < 0)
5088 		return -EOPNOTSUPP;
5089 
5090 	while (idx < bus->dev_count &&
5091 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5092 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5093 				       range->len, val))
5094 			return idx;
5095 		idx++;
5096 	}
5097 
5098 	return -EOPNOTSUPP;
5099 }
5100 
5101 /* kvm_io_bus_read - called under kvm->slots_lock */
5102 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5103 		    int len, void *val)
5104 {
5105 	struct kvm_io_bus *bus;
5106 	struct kvm_io_range range;
5107 	int r;
5108 
5109 	range = (struct kvm_io_range) {
5110 		.addr = addr,
5111 		.len = len,
5112 	};
5113 
5114 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5115 	if (!bus)
5116 		return -ENOMEM;
5117 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5118 	return r < 0 ? r : 0;
5119 }
5120 
5121 /* Caller must hold slots_lock. */
5122 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5123 			    int len, struct kvm_io_device *dev)
5124 {
5125 	int i;
5126 	struct kvm_io_bus *new_bus, *bus;
5127 	struct kvm_io_range range;
5128 
5129 	bus = kvm_get_bus(kvm, bus_idx);
5130 	if (!bus)
5131 		return -ENOMEM;
5132 
5133 	/* exclude ioeventfd which is limited by maximum fd */
5134 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5135 		return -ENOSPC;
5136 
5137 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5138 			  GFP_KERNEL_ACCOUNT);
5139 	if (!new_bus)
5140 		return -ENOMEM;
5141 
5142 	range = (struct kvm_io_range) {
5143 		.addr = addr,
5144 		.len = len,
5145 		.dev = dev,
5146 	};
5147 
5148 	for (i = 0; i < bus->dev_count; i++)
5149 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5150 			break;
5151 
5152 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5153 	new_bus->dev_count++;
5154 	new_bus->range[i] = range;
5155 	memcpy(new_bus->range + i + 1, bus->range + i,
5156 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5157 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5158 	synchronize_srcu_expedited(&kvm->srcu);
5159 	kfree(bus);
5160 
5161 	return 0;
5162 }
5163 
5164 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5165 			      struct kvm_io_device *dev)
5166 {
5167 	int i, j;
5168 	struct kvm_io_bus *new_bus, *bus;
5169 
5170 	lockdep_assert_held(&kvm->slots_lock);
5171 
5172 	bus = kvm_get_bus(kvm, bus_idx);
5173 	if (!bus)
5174 		return 0;
5175 
5176 	for (i = 0; i < bus->dev_count; i++) {
5177 		if (bus->range[i].dev == dev) {
5178 			break;
5179 		}
5180 	}
5181 
5182 	if (i == bus->dev_count)
5183 		return 0;
5184 
5185 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5186 			  GFP_KERNEL_ACCOUNT);
5187 	if (new_bus) {
5188 		memcpy(new_bus, bus, struct_size(bus, range, i));
5189 		new_bus->dev_count--;
5190 		memcpy(new_bus->range + i, bus->range + i + 1,
5191 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5192 	}
5193 
5194 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5195 	synchronize_srcu_expedited(&kvm->srcu);
5196 
5197 	/* Destroy the old bus _after_ installing the (null) bus. */
5198 	if (!new_bus) {
5199 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5200 		for (j = 0; j < bus->dev_count; j++) {
5201 			if (j == i)
5202 				continue;
5203 			kvm_iodevice_destructor(bus->range[j].dev);
5204 		}
5205 	}
5206 
5207 	kfree(bus);
5208 	return new_bus ? 0 : -ENOMEM;
5209 }
5210 
5211 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5212 					 gpa_t addr)
5213 {
5214 	struct kvm_io_bus *bus;
5215 	int dev_idx, srcu_idx;
5216 	struct kvm_io_device *iodev = NULL;
5217 
5218 	srcu_idx = srcu_read_lock(&kvm->srcu);
5219 
5220 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5221 	if (!bus)
5222 		goto out_unlock;
5223 
5224 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5225 	if (dev_idx < 0)
5226 		goto out_unlock;
5227 
5228 	iodev = bus->range[dev_idx].dev;
5229 
5230 out_unlock:
5231 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5232 
5233 	return iodev;
5234 }
5235 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5236 
5237 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5238 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5239 			   const char *fmt)
5240 {
5241 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5242 					  inode->i_private;
5243 
5244 	/*
5245 	 * The debugfs files are a reference to the kvm struct which
5246         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5247         * avoids the race between open and the removal of the debugfs directory.
5248 	 */
5249 	if (!kvm_get_kvm_safe(stat_data->kvm))
5250 		return -ENOENT;
5251 
5252 	if (simple_attr_open(inode, file, get,
5253 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5254 		    ? set : NULL,
5255 		    fmt)) {
5256 		kvm_put_kvm(stat_data->kvm);
5257 		return -ENOMEM;
5258 	}
5259 
5260 	return 0;
5261 }
5262 
5263 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5264 {
5265 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5266 					  inode->i_private;
5267 
5268 	simple_attr_release(inode, file);
5269 	kvm_put_kvm(stat_data->kvm);
5270 
5271 	return 0;
5272 }
5273 
5274 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5275 {
5276 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5277 
5278 	return 0;
5279 }
5280 
5281 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5282 {
5283 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5284 
5285 	return 0;
5286 }
5287 
5288 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5289 {
5290 	unsigned long i;
5291 	struct kvm_vcpu *vcpu;
5292 
5293 	*val = 0;
5294 
5295 	kvm_for_each_vcpu(i, vcpu, kvm)
5296 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5297 
5298 	return 0;
5299 }
5300 
5301 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5302 {
5303 	unsigned long i;
5304 	struct kvm_vcpu *vcpu;
5305 
5306 	kvm_for_each_vcpu(i, vcpu, kvm)
5307 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5308 
5309 	return 0;
5310 }
5311 
5312 static int kvm_stat_data_get(void *data, u64 *val)
5313 {
5314 	int r = -EFAULT;
5315 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5316 
5317 	switch (stat_data->kind) {
5318 	case KVM_STAT_VM:
5319 		r = kvm_get_stat_per_vm(stat_data->kvm,
5320 					stat_data->desc->desc.offset, val);
5321 		break;
5322 	case KVM_STAT_VCPU:
5323 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5324 					  stat_data->desc->desc.offset, val);
5325 		break;
5326 	}
5327 
5328 	return r;
5329 }
5330 
5331 static int kvm_stat_data_clear(void *data, u64 val)
5332 {
5333 	int r = -EFAULT;
5334 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5335 
5336 	if (val)
5337 		return -EINVAL;
5338 
5339 	switch (stat_data->kind) {
5340 	case KVM_STAT_VM:
5341 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5342 					  stat_data->desc->desc.offset);
5343 		break;
5344 	case KVM_STAT_VCPU:
5345 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5346 					    stat_data->desc->desc.offset);
5347 		break;
5348 	}
5349 
5350 	return r;
5351 }
5352 
5353 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5354 {
5355 	__simple_attr_check_format("%llu\n", 0ull);
5356 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5357 				kvm_stat_data_clear, "%llu\n");
5358 }
5359 
5360 static const struct file_operations stat_fops_per_vm = {
5361 	.owner = THIS_MODULE,
5362 	.open = kvm_stat_data_open,
5363 	.release = kvm_debugfs_release,
5364 	.read = simple_attr_read,
5365 	.write = simple_attr_write,
5366 	.llseek = no_llseek,
5367 };
5368 
5369 static int vm_stat_get(void *_offset, u64 *val)
5370 {
5371 	unsigned offset = (long)_offset;
5372 	struct kvm *kvm;
5373 	u64 tmp_val;
5374 
5375 	*val = 0;
5376 	mutex_lock(&kvm_lock);
5377 	list_for_each_entry(kvm, &vm_list, vm_list) {
5378 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5379 		*val += tmp_val;
5380 	}
5381 	mutex_unlock(&kvm_lock);
5382 	return 0;
5383 }
5384 
5385 static int vm_stat_clear(void *_offset, u64 val)
5386 {
5387 	unsigned offset = (long)_offset;
5388 	struct kvm *kvm;
5389 
5390 	if (val)
5391 		return -EINVAL;
5392 
5393 	mutex_lock(&kvm_lock);
5394 	list_for_each_entry(kvm, &vm_list, vm_list) {
5395 		kvm_clear_stat_per_vm(kvm, offset);
5396 	}
5397 	mutex_unlock(&kvm_lock);
5398 
5399 	return 0;
5400 }
5401 
5402 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5404 
5405 static int vcpu_stat_get(void *_offset, u64 *val)
5406 {
5407 	unsigned offset = (long)_offset;
5408 	struct kvm *kvm;
5409 	u64 tmp_val;
5410 
5411 	*val = 0;
5412 	mutex_lock(&kvm_lock);
5413 	list_for_each_entry(kvm, &vm_list, vm_list) {
5414 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5415 		*val += tmp_val;
5416 	}
5417 	mutex_unlock(&kvm_lock);
5418 	return 0;
5419 }
5420 
5421 static int vcpu_stat_clear(void *_offset, u64 val)
5422 {
5423 	unsigned offset = (long)_offset;
5424 	struct kvm *kvm;
5425 
5426 	if (val)
5427 		return -EINVAL;
5428 
5429 	mutex_lock(&kvm_lock);
5430 	list_for_each_entry(kvm, &vm_list, vm_list) {
5431 		kvm_clear_stat_per_vcpu(kvm, offset);
5432 	}
5433 	mutex_unlock(&kvm_lock);
5434 
5435 	return 0;
5436 }
5437 
5438 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5439 			"%llu\n");
5440 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5441 
5442 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5443 {
5444 	struct kobj_uevent_env *env;
5445 	unsigned long long created, active;
5446 
5447 	if (!kvm_dev.this_device || !kvm)
5448 		return;
5449 
5450 	mutex_lock(&kvm_lock);
5451 	if (type == KVM_EVENT_CREATE_VM) {
5452 		kvm_createvm_count++;
5453 		kvm_active_vms++;
5454 	} else if (type == KVM_EVENT_DESTROY_VM) {
5455 		kvm_active_vms--;
5456 	}
5457 	created = kvm_createvm_count;
5458 	active = kvm_active_vms;
5459 	mutex_unlock(&kvm_lock);
5460 
5461 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5462 	if (!env)
5463 		return;
5464 
5465 	add_uevent_var(env, "CREATED=%llu", created);
5466 	add_uevent_var(env, "COUNT=%llu", active);
5467 
5468 	if (type == KVM_EVENT_CREATE_VM) {
5469 		add_uevent_var(env, "EVENT=create");
5470 		kvm->userspace_pid = task_pid_nr(current);
5471 	} else if (type == KVM_EVENT_DESTROY_VM) {
5472 		add_uevent_var(env, "EVENT=destroy");
5473 	}
5474 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5475 
5476 	if (kvm->debugfs_dentry) {
5477 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5478 
5479 		if (p) {
5480 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5481 			if (!IS_ERR(tmp))
5482 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5483 			kfree(p);
5484 		}
5485 	}
5486 	/* no need for checks, since we are adding at most only 5 keys */
5487 	env->envp[env->envp_idx++] = NULL;
5488 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5489 	kfree(env);
5490 }
5491 
5492 static void kvm_init_debug(void)
5493 {
5494 	const struct file_operations *fops;
5495 	const struct _kvm_stats_desc *pdesc;
5496 	int i;
5497 
5498 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5499 
5500 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5501 		pdesc = &kvm_vm_stats_desc[i];
5502 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5503 			fops = &vm_stat_fops;
5504 		else
5505 			fops = &vm_stat_readonly_fops;
5506 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5507 				kvm_debugfs_dir,
5508 				(void *)(long)pdesc->desc.offset, fops);
5509 	}
5510 
5511 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5512 		pdesc = &kvm_vcpu_stats_desc[i];
5513 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5514 			fops = &vcpu_stat_fops;
5515 		else
5516 			fops = &vcpu_stat_readonly_fops;
5517 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5518 				kvm_debugfs_dir,
5519 				(void *)(long)pdesc->desc.offset, fops);
5520 	}
5521 }
5522 
5523 static int kvm_suspend(void)
5524 {
5525 	if (kvm_usage_count)
5526 		hardware_disable_nolock(NULL);
5527 	return 0;
5528 }
5529 
5530 static void kvm_resume(void)
5531 {
5532 	if (kvm_usage_count) {
5533 #ifdef CONFIG_LOCKDEP
5534 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5535 #endif
5536 		hardware_enable_nolock(NULL);
5537 	}
5538 }
5539 
5540 static struct syscore_ops kvm_syscore_ops = {
5541 	.suspend = kvm_suspend,
5542 	.resume = kvm_resume,
5543 };
5544 
5545 static inline
5546 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5547 {
5548 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5549 }
5550 
5551 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5552 {
5553 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5554 
5555 	WRITE_ONCE(vcpu->preempted, false);
5556 	WRITE_ONCE(vcpu->ready, false);
5557 
5558 	__this_cpu_write(kvm_running_vcpu, vcpu);
5559 	kvm_arch_sched_in(vcpu, cpu);
5560 	kvm_arch_vcpu_load(vcpu, cpu);
5561 }
5562 
5563 static void kvm_sched_out(struct preempt_notifier *pn,
5564 			  struct task_struct *next)
5565 {
5566 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5567 
5568 	if (current->on_rq) {
5569 		WRITE_ONCE(vcpu->preempted, true);
5570 		WRITE_ONCE(vcpu->ready, true);
5571 	}
5572 	kvm_arch_vcpu_put(vcpu);
5573 	__this_cpu_write(kvm_running_vcpu, NULL);
5574 }
5575 
5576 /**
5577  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5578  *
5579  * We can disable preemption locally around accessing the per-CPU variable,
5580  * and use the resolved vcpu pointer after enabling preemption again,
5581  * because even if the current thread is migrated to another CPU, reading
5582  * the per-CPU value later will give us the same value as we update the
5583  * per-CPU variable in the preempt notifier handlers.
5584  */
5585 struct kvm_vcpu *kvm_get_running_vcpu(void)
5586 {
5587 	struct kvm_vcpu *vcpu;
5588 
5589 	preempt_disable();
5590 	vcpu = __this_cpu_read(kvm_running_vcpu);
5591 	preempt_enable();
5592 
5593 	return vcpu;
5594 }
5595 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5596 
5597 /**
5598  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5599  */
5600 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5601 {
5602         return &kvm_running_vcpu;
5603 }
5604 
5605 #ifdef CONFIG_GUEST_PERF_EVENTS
5606 static unsigned int kvm_guest_state(void)
5607 {
5608 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5609 	unsigned int state;
5610 
5611 	if (!kvm_arch_pmi_in_guest(vcpu))
5612 		return 0;
5613 
5614 	state = PERF_GUEST_ACTIVE;
5615 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5616 		state |= PERF_GUEST_USER;
5617 
5618 	return state;
5619 }
5620 
5621 static unsigned long kvm_guest_get_ip(void)
5622 {
5623 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5624 
5625 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5626 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5627 		return 0;
5628 
5629 	return kvm_arch_vcpu_get_ip(vcpu);
5630 }
5631 
5632 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5633 	.state			= kvm_guest_state,
5634 	.get_ip			= kvm_guest_get_ip,
5635 	.handle_intel_pt_intr	= NULL,
5636 };
5637 
5638 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5639 {
5640 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5641 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5642 }
5643 void kvm_unregister_perf_callbacks(void)
5644 {
5645 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5646 }
5647 #endif
5648 
5649 struct kvm_cpu_compat_check {
5650 	void *opaque;
5651 	int *ret;
5652 };
5653 
5654 static void check_processor_compat(void *data)
5655 {
5656 	struct kvm_cpu_compat_check *c = data;
5657 
5658 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5659 }
5660 
5661 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5662 		  struct module *module)
5663 {
5664 	struct kvm_cpu_compat_check c;
5665 	int r;
5666 	int cpu;
5667 
5668 	r = kvm_arch_init(opaque);
5669 	if (r)
5670 		goto out_fail;
5671 
5672 	/*
5673 	 * kvm_arch_init makes sure there's at most one caller
5674 	 * for architectures that support multiple implementations,
5675 	 * like intel and amd on x86.
5676 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5677 	 * conflicts in case kvm is already setup for another implementation.
5678 	 */
5679 	r = kvm_irqfd_init();
5680 	if (r)
5681 		goto out_irqfd;
5682 
5683 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5684 		r = -ENOMEM;
5685 		goto out_free_0;
5686 	}
5687 
5688 	r = kvm_arch_hardware_setup(opaque);
5689 	if (r < 0)
5690 		goto out_free_1;
5691 
5692 	c.ret = &r;
5693 	c.opaque = opaque;
5694 	for_each_online_cpu(cpu) {
5695 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5696 		if (r < 0)
5697 			goto out_free_2;
5698 	}
5699 
5700 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5701 				      kvm_starting_cpu, kvm_dying_cpu);
5702 	if (r)
5703 		goto out_free_2;
5704 	register_reboot_notifier(&kvm_reboot_notifier);
5705 
5706 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5707 	if (!vcpu_align)
5708 		vcpu_align = __alignof__(struct kvm_vcpu);
5709 	kvm_vcpu_cache =
5710 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5711 					   SLAB_ACCOUNT,
5712 					   offsetof(struct kvm_vcpu, arch),
5713 					   offsetofend(struct kvm_vcpu, stats_id)
5714 					   - offsetof(struct kvm_vcpu, arch),
5715 					   NULL);
5716 	if (!kvm_vcpu_cache) {
5717 		r = -ENOMEM;
5718 		goto out_free_3;
5719 	}
5720 
5721 	for_each_possible_cpu(cpu) {
5722 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5723 					    GFP_KERNEL, cpu_to_node(cpu))) {
5724 			r = -ENOMEM;
5725 			goto out_free_4;
5726 		}
5727 	}
5728 
5729 	r = kvm_async_pf_init();
5730 	if (r)
5731 		goto out_free_5;
5732 
5733 	kvm_chardev_ops.owner = module;
5734 	kvm_vm_fops.owner = module;
5735 	kvm_vcpu_fops.owner = module;
5736 
5737 	r = misc_register(&kvm_dev);
5738 	if (r) {
5739 		pr_err("kvm: misc device register failed\n");
5740 		goto out_unreg;
5741 	}
5742 
5743 	register_syscore_ops(&kvm_syscore_ops);
5744 
5745 	kvm_preempt_ops.sched_in = kvm_sched_in;
5746 	kvm_preempt_ops.sched_out = kvm_sched_out;
5747 
5748 	kvm_init_debug();
5749 
5750 	r = kvm_vfio_ops_init();
5751 	WARN_ON(r);
5752 
5753 	return 0;
5754 
5755 out_unreg:
5756 	kvm_async_pf_deinit();
5757 out_free_5:
5758 	for_each_possible_cpu(cpu)
5759 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5760 out_free_4:
5761 	kmem_cache_destroy(kvm_vcpu_cache);
5762 out_free_3:
5763 	unregister_reboot_notifier(&kvm_reboot_notifier);
5764 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5765 out_free_2:
5766 	kvm_arch_hardware_unsetup();
5767 out_free_1:
5768 	free_cpumask_var(cpus_hardware_enabled);
5769 out_free_0:
5770 	kvm_irqfd_exit();
5771 out_irqfd:
5772 	kvm_arch_exit();
5773 out_fail:
5774 	return r;
5775 }
5776 EXPORT_SYMBOL_GPL(kvm_init);
5777 
5778 void kvm_exit(void)
5779 {
5780 	int cpu;
5781 
5782 	debugfs_remove_recursive(kvm_debugfs_dir);
5783 	misc_deregister(&kvm_dev);
5784 	for_each_possible_cpu(cpu)
5785 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5786 	kmem_cache_destroy(kvm_vcpu_cache);
5787 	kvm_async_pf_deinit();
5788 	unregister_syscore_ops(&kvm_syscore_ops);
5789 	unregister_reboot_notifier(&kvm_reboot_notifier);
5790 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5791 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5792 	kvm_arch_hardware_unsetup();
5793 	kvm_arch_exit();
5794 	kvm_irqfd_exit();
5795 	free_cpumask_var(cpus_hardware_enabled);
5796 	kvm_vfio_ops_exit();
5797 }
5798 EXPORT_SYMBOL_GPL(kvm_exit);
5799 
5800 struct kvm_vm_worker_thread_context {
5801 	struct kvm *kvm;
5802 	struct task_struct *parent;
5803 	struct completion init_done;
5804 	kvm_vm_thread_fn_t thread_fn;
5805 	uintptr_t data;
5806 	int err;
5807 };
5808 
5809 static int kvm_vm_worker_thread(void *context)
5810 {
5811 	/*
5812 	 * The init_context is allocated on the stack of the parent thread, so
5813 	 * we have to locally copy anything that is needed beyond initialization
5814 	 */
5815 	struct kvm_vm_worker_thread_context *init_context = context;
5816 	struct kvm *kvm = init_context->kvm;
5817 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5818 	uintptr_t data = init_context->data;
5819 	int err;
5820 
5821 	err = kthread_park(current);
5822 	/* kthread_park(current) is never supposed to return an error */
5823 	WARN_ON(err != 0);
5824 	if (err)
5825 		goto init_complete;
5826 
5827 	err = cgroup_attach_task_all(init_context->parent, current);
5828 	if (err) {
5829 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5830 			__func__, err);
5831 		goto init_complete;
5832 	}
5833 
5834 	set_user_nice(current, task_nice(init_context->parent));
5835 
5836 init_complete:
5837 	init_context->err = err;
5838 	complete(&init_context->init_done);
5839 	init_context = NULL;
5840 
5841 	if (err)
5842 		return err;
5843 
5844 	/* Wait to be woken up by the spawner before proceeding. */
5845 	kthread_parkme();
5846 
5847 	if (!kthread_should_stop())
5848 		err = thread_fn(kvm, data);
5849 
5850 	return err;
5851 }
5852 
5853 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5854 				uintptr_t data, const char *name,
5855 				struct task_struct **thread_ptr)
5856 {
5857 	struct kvm_vm_worker_thread_context init_context = {};
5858 	struct task_struct *thread;
5859 
5860 	*thread_ptr = NULL;
5861 	init_context.kvm = kvm;
5862 	init_context.parent = current;
5863 	init_context.thread_fn = thread_fn;
5864 	init_context.data = data;
5865 	init_completion(&init_context.init_done);
5866 
5867 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5868 			     "%s-%d", name, task_pid_nr(current));
5869 	if (IS_ERR(thread))
5870 		return PTR_ERR(thread);
5871 
5872 	/* kthread_run is never supposed to return NULL */
5873 	WARN_ON(thread == NULL);
5874 
5875 	wait_for_completion(&init_context.init_done);
5876 
5877 	if (!init_context.err)
5878 		*thread_ptr = thread;
5879 
5880 	return init_context.err;
5881 }
5882