1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* Default resets per-vcpu halt_poll_ns . */ 83 unsigned int halt_poll_ns_shrink; 84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 86 87 /* 88 * Ordering of locks: 89 * 90 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 91 */ 92 93 DEFINE_SPINLOCK(kvm_lock); 94 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 95 LIST_HEAD(vm_list); 96 97 static cpumask_var_t cpus_hardware_enabled; 98 static int kvm_usage_count; 99 static atomic_t hardware_enable_failed; 100 101 struct kmem_cache *kvm_vcpu_cache; 102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 103 104 static __read_mostly struct preempt_ops kvm_preempt_ops; 105 106 struct dentry *kvm_debugfs_dir; 107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 108 109 static int kvm_debugfs_num_entries; 110 static const struct file_operations *stat_fops_per_vm[]; 111 112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #ifdef CONFIG_KVM_COMPAT 115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #endif 118 static int hardware_enable_all(void); 119 static void hardware_disable_all(void); 120 121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 122 123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 125 126 __visible bool kvm_rebooting; 127 EXPORT_SYMBOL_GPL(kvm_rebooting); 128 129 static bool largepages_enabled = true; 130 131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 132 { 133 if (pfn_valid(pfn)) 134 return PageReserved(pfn_to_page(pfn)); 135 136 return true; 137 } 138 139 /* 140 * Switches to specified vcpu, until a matching vcpu_put() 141 */ 142 int vcpu_load(struct kvm_vcpu *vcpu) 143 { 144 int cpu; 145 146 if (mutex_lock_killable(&vcpu->mutex)) 147 return -EINTR; 148 cpu = get_cpu(); 149 preempt_notifier_register(&vcpu->preempt_notifier); 150 kvm_arch_vcpu_load(vcpu, cpu); 151 put_cpu(); 152 return 0; 153 } 154 EXPORT_SYMBOL_GPL(vcpu_load); 155 156 void vcpu_put(struct kvm_vcpu *vcpu) 157 { 158 preempt_disable(); 159 kvm_arch_vcpu_put(vcpu); 160 preempt_notifier_unregister(&vcpu->preempt_notifier); 161 preempt_enable(); 162 mutex_unlock(&vcpu->mutex); 163 } 164 EXPORT_SYMBOL_GPL(vcpu_put); 165 166 static void ack_flush(void *_completed) 167 { 168 } 169 170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 171 { 172 int i, cpu, me; 173 cpumask_var_t cpus; 174 bool called = true; 175 struct kvm_vcpu *vcpu; 176 177 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 178 179 me = get_cpu(); 180 kvm_for_each_vcpu(i, vcpu, kvm) { 181 kvm_make_request(req, vcpu); 182 cpu = vcpu->cpu; 183 184 /* Set ->requests bit before we read ->mode. */ 185 smp_mb__after_atomic(); 186 187 if (cpus != NULL && cpu != -1 && cpu != me && 188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 189 cpumask_set_cpu(cpu, cpus); 190 } 191 if (unlikely(cpus == NULL)) 192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 193 else if (!cpumask_empty(cpus)) 194 smp_call_function_many(cpus, ack_flush, NULL, 1); 195 else 196 called = false; 197 put_cpu(); 198 free_cpumask_var(cpus); 199 return called; 200 } 201 202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 203 void kvm_flush_remote_tlbs(struct kvm *kvm) 204 { 205 /* 206 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 207 * kvm_make_all_cpus_request. 208 */ 209 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 210 211 /* 212 * We want to publish modifications to the page tables before reading 213 * mode. Pairs with a memory barrier in arch-specific code. 214 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 215 * and smp_mb in walk_shadow_page_lockless_begin/end. 216 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 217 * 218 * There is already an smp_mb__after_atomic() before 219 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 220 * barrier here. 221 */ 222 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 223 ++kvm->stat.remote_tlb_flush; 224 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 225 } 226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 227 #endif 228 229 void kvm_reload_remote_mmus(struct kvm *kvm) 230 { 231 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 232 } 233 234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 235 { 236 struct page *page; 237 int r; 238 239 mutex_init(&vcpu->mutex); 240 vcpu->cpu = -1; 241 vcpu->kvm = kvm; 242 vcpu->vcpu_id = id; 243 vcpu->pid = NULL; 244 init_swait_queue_head(&vcpu->wq); 245 kvm_async_pf_vcpu_init(vcpu); 246 247 vcpu->pre_pcpu = -1; 248 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 249 250 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 251 if (!page) { 252 r = -ENOMEM; 253 goto fail; 254 } 255 vcpu->run = page_address(page); 256 257 kvm_vcpu_set_in_spin_loop(vcpu, false); 258 kvm_vcpu_set_dy_eligible(vcpu, false); 259 vcpu->preempted = false; 260 261 r = kvm_arch_vcpu_init(vcpu); 262 if (r < 0) 263 goto fail_free_run; 264 return 0; 265 266 fail_free_run: 267 free_page((unsigned long)vcpu->run); 268 fail: 269 return r; 270 } 271 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 272 273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 274 { 275 put_pid(vcpu->pid); 276 kvm_arch_vcpu_uninit(vcpu); 277 free_page((unsigned long)vcpu->run); 278 } 279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 280 281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 283 { 284 return container_of(mn, struct kvm, mmu_notifier); 285 } 286 287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 288 struct mm_struct *mm, 289 unsigned long address) 290 { 291 struct kvm *kvm = mmu_notifier_to_kvm(mn); 292 int need_tlb_flush, idx; 293 294 /* 295 * When ->invalidate_page runs, the linux pte has been zapped 296 * already but the page is still allocated until 297 * ->invalidate_page returns. So if we increase the sequence 298 * here the kvm page fault will notice if the spte can't be 299 * established because the page is going to be freed. If 300 * instead the kvm page fault establishes the spte before 301 * ->invalidate_page runs, kvm_unmap_hva will release it 302 * before returning. 303 * 304 * The sequence increase only need to be seen at spin_unlock 305 * time, and not at spin_lock time. 306 * 307 * Increasing the sequence after the spin_unlock would be 308 * unsafe because the kvm page fault could then establish the 309 * pte after kvm_unmap_hva returned, without noticing the page 310 * is going to be freed. 311 */ 312 idx = srcu_read_lock(&kvm->srcu); 313 spin_lock(&kvm->mmu_lock); 314 315 kvm->mmu_notifier_seq++; 316 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 317 /* we've to flush the tlb before the pages can be freed */ 318 if (need_tlb_flush) 319 kvm_flush_remote_tlbs(kvm); 320 321 spin_unlock(&kvm->mmu_lock); 322 323 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 324 325 srcu_read_unlock(&kvm->srcu, idx); 326 } 327 328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 329 struct mm_struct *mm, 330 unsigned long address, 331 pte_t pte) 332 { 333 struct kvm *kvm = mmu_notifier_to_kvm(mn); 334 int idx; 335 336 idx = srcu_read_lock(&kvm->srcu); 337 spin_lock(&kvm->mmu_lock); 338 kvm->mmu_notifier_seq++; 339 kvm_set_spte_hva(kvm, address, pte); 340 spin_unlock(&kvm->mmu_lock); 341 srcu_read_unlock(&kvm->srcu, idx); 342 } 343 344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 345 struct mm_struct *mm, 346 unsigned long start, 347 unsigned long end) 348 { 349 struct kvm *kvm = mmu_notifier_to_kvm(mn); 350 int need_tlb_flush = 0, idx; 351 352 idx = srcu_read_lock(&kvm->srcu); 353 spin_lock(&kvm->mmu_lock); 354 /* 355 * The count increase must become visible at unlock time as no 356 * spte can be established without taking the mmu_lock and 357 * count is also read inside the mmu_lock critical section. 358 */ 359 kvm->mmu_notifier_count++; 360 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 361 need_tlb_flush |= kvm->tlbs_dirty; 362 /* we've to flush the tlb before the pages can be freed */ 363 if (need_tlb_flush) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 371 struct mm_struct *mm, 372 unsigned long start, 373 unsigned long end) 374 { 375 struct kvm *kvm = mmu_notifier_to_kvm(mn); 376 377 spin_lock(&kvm->mmu_lock); 378 /* 379 * This sequence increase will notify the kvm page fault that 380 * the page that is going to be mapped in the spte could have 381 * been freed. 382 */ 383 kvm->mmu_notifier_seq++; 384 smp_wmb(); 385 /* 386 * The above sequence increase must be visible before the 387 * below count decrease, which is ensured by the smp_wmb above 388 * in conjunction with the smp_rmb in mmu_notifier_retry(). 389 */ 390 kvm->mmu_notifier_count--; 391 spin_unlock(&kvm->mmu_lock); 392 393 BUG_ON(kvm->mmu_notifier_count < 0); 394 } 395 396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 397 struct mm_struct *mm, 398 unsigned long start, 399 unsigned long end) 400 { 401 struct kvm *kvm = mmu_notifier_to_kvm(mn); 402 int young, idx; 403 404 idx = srcu_read_lock(&kvm->srcu); 405 spin_lock(&kvm->mmu_lock); 406 407 young = kvm_age_hva(kvm, start, end); 408 if (young) 409 kvm_flush_remote_tlbs(kvm); 410 411 spin_unlock(&kvm->mmu_lock); 412 srcu_read_unlock(&kvm->srcu, idx); 413 414 return young; 415 } 416 417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 418 struct mm_struct *mm, 419 unsigned long start, 420 unsigned long end) 421 { 422 struct kvm *kvm = mmu_notifier_to_kvm(mn); 423 int young, idx; 424 425 idx = srcu_read_lock(&kvm->srcu); 426 spin_lock(&kvm->mmu_lock); 427 /* 428 * Even though we do not flush TLB, this will still adversely 429 * affect performance on pre-Haswell Intel EPT, where there is 430 * no EPT Access Bit to clear so that we have to tear down EPT 431 * tables instead. If we find this unacceptable, we can always 432 * add a parameter to kvm_age_hva so that it effectively doesn't 433 * do anything on clear_young. 434 * 435 * Also note that currently we never issue secondary TLB flushes 436 * from clear_young, leaving this job up to the regular system 437 * cadence. If we find this inaccurate, we might come up with a 438 * more sophisticated heuristic later. 439 */ 440 young = kvm_age_hva(kvm, start, end); 441 spin_unlock(&kvm->mmu_lock); 442 srcu_read_unlock(&kvm->srcu, idx); 443 444 return young; 445 } 446 447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 448 struct mm_struct *mm, 449 unsigned long address) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 young = kvm_test_age_hva(kvm, address); 457 spin_unlock(&kvm->mmu_lock); 458 srcu_read_unlock(&kvm->srcu, idx); 459 460 return young; 461 } 462 463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 464 struct mm_struct *mm) 465 { 466 struct kvm *kvm = mmu_notifier_to_kvm(mn); 467 int idx; 468 469 idx = srcu_read_lock(&kvm->srcu); 470 kvm_arch_flush_shadow_all(kvm); 471 srcu_read_unlock(&kvm->srcu, idx); 472 } 473 474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 475 .invalidate_page = kvm_mmu_notifier_invalidate_page, 476 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 477 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 478 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 479 .clear_young = kvm_mmu_notifier_clear_young, 480 .test_young = kvm_mmu_notifier_test_young, 481 .change_pte = kvm_mmu_notifier_change_pte, 482 .release = kvm_mmu_notifier_release, 483 }; 484 485 static int kvm_init_mmu_notifier(struct kvm *kvm) 486 { 487 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 488 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 489 } 490 491 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 492 493 static int kvm_init_mmu_notifier(struct kvm *kvm) 494 { 495 return 0; 496 } 497 498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 499 500 static struct kvm_memslots *kvm_alloc_memslots(void) 501 { 502 int i; 503 struct kvm_memslots *slots; 504 505 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 506 if (!slots) 507 return NULL; 508 509 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 510 slots->id_to_index[i] = slots->memslots[i].id = i; 511 512 return slots; 513 } 514 515 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 516 { 517 if (!memslot->dirty_bitmap) 518 return; 519 520 kvfree(memslot->dirty_bitmap); 521 memslot->dirty_bitmap = NULL; 522 } 523 524 /* 525 * Free any memory in @free but not in @dont. 526 */ 527 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 528 struct kvm_memory_slot *dont) 529 { 530 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 531 kvm_destroy_dirty_bitmap(free); 532 533 kvm_arch_free_memslot(kvm, free, dont); 534 535 free->npages = 0; 536 } 537 538 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 539 { 540 struct kvm_memory_slot *memslot; 541 542 if (!slots) 543 return; 544 545 kvm_for_each_memslot(memslot, slots) 546 kvm_free_memslot(kvm, memslot, NULL); 547 548 kvfree(slots); 549 } 550 551 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 552 { 553 int i; 554 555 if (!kvm->debugfs_dentry) 556 return; 557 558 debugfs_remove_recursive(kvm->debugfs_dentry); 559 560 if (kvm->debugfs_stat_data) { 561 for (i = 0; i < kvm_debugfs_num_entries; i++) 562 kfree(kvm->debugfs_stat_data[i]); 563 kfree(kvm->debugfs_stat_data); 564 } 565 } 566 567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 568 { 569 char dir_name[ITOA_MAX_LEN * 2]; 570 struct kvm_stat_data *stat_data; 571 struct kvm_stats_debugfs_item *p; 572 573 if (!debugfs_initialized()) 574 return 0; 575 576 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 577 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 578 kvm_debugfs_dir); 579 if (!kvm->debugfs_dentry) 580 return -ENOMEM; 581 582 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 583 sizeof(*kvm->debugfs_stat_data), 584 GFP_KERNEL); 585 if (!kvm->debugfs_stat_data) 586 return -ENOMEM; 587 588 for (p = debugfs_entries; p->name; p++) { 589 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 590 if (!stat_data) 591 return -ENOMEM; 592 593 stat_data->kvm = kvm; 594 stat_data->offset = p->offset; 595 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 596 if (!debugfs_create_file(p->name, 0644, 597 kvm->debugfs_dentry, 598 stat_data, 599 stat_fops_per_vm[p->kind])) 600 return -ENOMEM; 601 } 602 return 0; 603 } 604 605 static struct kvm *kvm_create_vm(unsigned long type) 606 { 607 int r, i; 608 struct kvm *kvm = kvm_arch_alloc_vm(); 609 610 if (!kvm) 611 return ERR_PTR(-ENOMEM); 612 613 spin_lock_init(&kvm->mmu_lock); 614 atomic_inc(¤t->mm->mm_count); 615 kvm->mm = current->mm; 616 kvm_eventfd_init(kvm); 617 mutex_init(&kvm->lock); 618 mutex_init(&kvm->irq_lock); 619 mutex_init(&kvm->slots_lock); 620 atomic_set(&kvm->users_count, 1); 621 INIT_LIST_HEAD(&kvm->devices); 622 623 r = kvm_arch_init_vm(kvm, type); 624 if (r) 625 goto out_err_no_disable; 626 627 r = hardware_enable_all(); 628 if (r) 629 goto out_err_no_disable; 630 631 #ifdef CONFIG_HAVE_KVM_IRQFD 632 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 633 #endif 634 635 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 636 637 r = -ENOMEM; 638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 639 struct kvm_memslots *slots = kvm_alloc_memslots(); 640 if (!slots) 641 goto out_err_no_srcu; 642 /* 643 * Generations must be different for each address space. 644 * Init kvm generation close to the maximum to easily test the 645 * code of handling generation number wrap-around. 646 */ 647 slots->generation = i * 2 - 150; 648 rcu_assign_pointer(kvm->memslots[i], slots); 649 } 650 651 if (init_srcu_struct(&kvm->srcu)) 652 goto out_err_no_srcu; 653 if (init_srcu_struct(&kvm->irq_srcu)) 654 goto out_err_no_irq_srcu; 655 for (i = 0; i < KVM_NR_BUSES; i++) { 656 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 657 GFP_KERNEL); 658 if (!kvm->buses[i]) 659 goto out_err; 660 } 661 662 r = kvm_init_mmu_notifier(kvm); 663 if (r) 664 goto out_err; 665 666 spin_lock(&kvm_lock); 667 list_add(&kvm->vm_list, &vm_list); 668 spin_unlock(&kvm_lock); 669 670 preempt_notifier_inc(); 671 672 return kvm; 673 674 out_err: 675 cleanup_srcu_struct(&kvm->irq_srcu); 676 out_err_no_irq_srcu: 677 cleanup_srcu_struct(&kvm->srcu); 678 out_err_no_srcu: 679 hardware_disable_all(); 680 out_err_no_disable: 681 for (i = 0; i < KVM_NR_BUSES; i++) 682 kfree(kvm->buses[i]); 683 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 684 kvm_free_memslots(kvm, kvm->memslots[i]); 685 kvm_arch_free_vm(kvm); 686 mmdrop(current->mm); 687 return ERR_PTR(r); 688 } 689 690 /* 691 * Avoid using vmalloc for a small buffer. 692 * Should not be used when the size is statically known. 693 */ 694 void *kvm_kvzalloc(unsigned long size) 695 { 696 if (size > PAGE_SIZE) 697 return vzalloc(size); 698 else 699 return kzalloc(size, GFP_KERNEL); 700 } 701 702 static void kvm_destroy_devices(struct kvm *kvm) 703 { 704 struct kvm_device *dev, *tmp; 705 706 /* 707 * We do not need to take the kvm->lock here, because nobody else 708 * has a reference to the struct kvm at this point and therefore 709 * cannot access the devices list anyhow. 710 */ 711 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 712 list_del(&dev->vm_node); 713 dev->ops->destroy(dev); 714 } 715 } 716 717 static void kvm_destroy_vm(struct kvm *kvm) 718 { 719 int i; 720 struct mm_struct *mm = kvm->mm; 721 722 kvm_destroy_vm_debugfs(kvm); 723 kvm_arch_sync_events(kvm); 724 spin_lock(&kvm_lock); 725 list_del(&kvm->vm_list); 726 spin_unlock(&kvm_lock); 727 kvm_free_irq_routing(kvm); 728 for (i = 0; i < KVM_NR_BUSES; i++) 729 kvm_io_bus_destroy(kvm->buses[i]); 730 kvm_coalesced_mmio_free(kvm); 731 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 732 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 733 #else 734 kvm_arch_flush_shadow_all(kvm); 735 #endif 736 kvm_arch_destroy_vm(kvm); 737 kvm_destroy_devices(kvm); 738 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 739 kvm_free_memslots(kvm, kvm->memslots[i]); 740 cleanup_srcu_struct(&kvm->irq_srcu); 741 cleanup_srcu_struct(&kvm->srcu); 742 kvm_arch_free_vm(kvm); 743 preempt_notifier_dec(); 744 hardware_disable_all(); 745 mmdrop(mm); 746 } 747 748 void kvm_get_kvm(struct kvm *kvm) 749 { 750 atomic_inc(&kvm->users_count); 751 } 752 EXPORT_SYMBOL_GPL(kvm_get_kvm); 753 754 void kvm_put_kvm(struct kvm *kvm) 755 { 756 if (atomic_dec_and_test(&kvm->users_count)) 757 kvm_destroy_vm(kvm); 758 } 759 EXPORT_SYMBOL_GPL(kvm_put_kvm); 760 761 762 static int kvm_vm_release(struct inode *inode, struct file *filp) 763 { 764 struct kvm *kvm = filp->private_data; 765 766 kvm_irqfd_release(kvm); 767 768 kvm_put_kvm(kvm); 769 return 0; 770 } 771 772 /* 773 * Allocation size is twice as large as the actual dirty bitmap size. 774 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 775 */ 776 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 777 { 778 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 779 780 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 781 if (!memslot->dirty_bitmap) 782 return -ENOMEM; 783 784 return 0; 785 } 786 787 /* 788 * Insert memslot and re-sort memslots based on their GFN, 789 * so binary search could be used to lookup GFN. 790 * Sorting algorithm takes advantage of having initially 791 * sorted array and known changed memslot position. 792 */ 793 static void update_memslots(struct kvm_memslots *slots, 794 struct kvm_memory_slot *new) 795 { 796 int id = new->id; 797 int i = slots->id_to_index[id]; 798 struct kvm_memory_slot *mslots = slots->memslots; 799 800 WARN_ON(mslots[i].id != id); 801 if (!new->npages) { 802 WARN_ON(!mslots[i].npages); 803 if (mslots[i].npages) 804 slots->used_slots--; 805 } else { 806 if (!mslots[i].npages) 807 slots->used_slots++; 808 } 809 810 while (i < KVM_MEM_SLOTS_NUM - 1 && 811 new->base_gfn <= mslots[i + 1].base_gfn) { 812 if (!mslots[i + 1].npages) 813 break; 814 mslots[i] = mslots[i + 1]; 815 slots->id_to_index[mslots[i].id] = i; 816 i++; 817 } 818 819 /* 820 * The ">=" is needed when creating a slot with base_gfn == 0, 821 * so that it moves before all those with base_gfn == npages == 0. 822 * 823 * On the other hand, if new->npages is zero, the above loop has 824 * already left i pointing to the beginning of the empty part of 825 * mslots, and the ">=" would move the hole backwards in this 826 * case---which is wrong. So skip the loop when deleting a slot. 827 */ 828 if (new->npages) { 829 while (i > 0 && 830 new->base_gfn >= mslots[i - 1].base_gfn) { 831 mslots[i] = mslots[i - 1]; 832 slots->id_to_index[mslots[i].id] = i; 833 i--; 834 } 835 } else 836 WARN_ON_ONCE(i != slots->used_slots); 837 838 mslots[i] = *new; 839 slots->id_to_index[mslots[i].id] = i; 840 } 841 842 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 843 { 844 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 845 846 #ifdef __KVM_HAVE_READONLY_MEM 847 valid_flags |= KVM_MEM_READONLY; 848 #endif 849 850 if (mem->flags & ~valid_flags) 851 return -EINVAL; 852 853 return 0; 854 } 855 856 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 857 int as_id, struct kvm_memslots *slots) 858 { 859 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 860 861 /* 862 * Set the low bit in the generation, which disables SPTE caching 863 * until the end of synchronize_srcu_expedited. 864 */ 865 WARN_ON(old_memslots->generation & 1); 866 slots->generation = old_memslots->generation + 1; 867 868 rcu_assign_pointer(kvm->memslots[as_id], slots); 869 synchronize_srcu_expedited(&kvm->srcu); 870 871 /* 872 * Increment the new memslot generation a second time. This prevents 873 * vm exits that race with memslot updates from caching a memslot 874 * generation that will (potentially) be valid forever. 875 * 876 * Generations must be unique even across address spaces. We do not need 877 * a global counter for that, instead the generation space is evenly split 878 * across address spaces. For example, with two address spaces, address 879 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 880 * use generations 2, 6, 10, 14, ... 881 */ 882 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 883 884 kvm_arch_memslots_updated(kvm, slots); 885 886 return old_memslots; 887 } 888 889 /* 890 * Allocate some memory and give it an address in the guest physical address 891 * space. 892 * 893 * Discontiguous memory is allowed, mostly for framebuffers. 894 * 895 * Must be called holding kvm->slots_lock for write. 896 */ 897 int __kvm_set_memory_region(struct kvm *kvm, 898 const struct kvm_userspace_memory_region *mem) 899 { 900 int r; 901 gfn_t base_gfn; 902 unsigned long npages; 903 struct kvm_memory_slot *slot; 904 struct kvm_memory_slot old, new; 905 struct kvm_memslots *slots = NULL, *old_memslots; 906 int as_id, id; 907 enum kvm_mr_change change; 908 909 r = check_memory_region_flags(mem); 910 if (r) 911 goto out; 912 913 r = -EINVAL; 914 as_id = mem->slot >> 16; 915 id = (u16)mem->slot; 916 917 /* General sanity checks */ 918 if (mem->memory_size & (PAGE_SIZE - 1)) 919 goto out; 920 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 921 goto out; 922 /* We can read the guest memory with __xxx_user() later on. */ 923 if ((id < KVM_USER_MEM_SLOTS) && 924 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 925 !access_ok(VERIFY_WRITE, 926 (void __user *)(unsigned long)mem->userspace_addr, 927 mem->memory_size))) 928 goto out; 929 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 930 goto out; 931 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 932 goto out; 933 934 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 935 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 936 npages = mem->memory_size >> PAGE_SHIFT; 937 938 if (npages > KVM_MEM_MAX_NR_PAGES) 939 goto out; 940 941 new = old = *slot; 942 943 new.id = id; 944 new.base_gfn = base_gfn; 945 new.npages = npages; 946 new.flags = mem->flags; 947 948 if (npages) { 949 if (!old.npages) 950 change = KVM_MR_CREATE; 951 else { /* Modify an existing slot. */ 952 if ((mem->userspace_addr != old.userspace_addr) || 953 (npages != old.npages) || 954 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 955 goto out; 956 957 if (base_gfn != old.base_gfn) 958 change = KVM_MR_MOVE; 959 else if (new.flags != old.flags) 960 change = KVM_MR_FLAGS_ONLY; 961 else { /* Nothing to change. */ 962 r = 0; 963 goto out; 964 } 965 } 966 } else { 967 if (!old.npages) 968 goto out; 969 970 change = KVM_MR_DELETE; 971 new.base_gfn = 0; 972 new.flags = 0; 973 } 974 975 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 976 /* Check for overlaps */ 977 r = -EEXIST; 978 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 979 if ((slot->id >= KVM_USER_MEM_SLOTS) || 980 (slot->id == id)) 981 continue; 982 if (!((base_gfn + npages <= slot->base_gfn) || 983 (base_gfn >= slot->base_gfn + slot->npages))) 984 goto out; 985 } 986 } 987 988 /* Free page dirty bitmap if unneeded */ 989 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 990 new.dirty_bitmap = NULL; 991 992 r = -ENOMEM; 993 if (change == KVM_MR_CREATE) { 994 new.userspace_addr = mem->userspace_addr; 995 996 if (kvm_arch_create_memslot(kvm, &new, npages)) 997 goto out_free; 998 } 999 1000 /* Allocate page dirty bitmap if needed */ 1001 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1002 if (kvm_create_dirty_bitmap(&new) < 0) 1003 goto out_free; 1004 } 1005 1006 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 1007 if (!slots) 1008 goto out_free; 1009 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1010 1011 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1012 slot = id_to_memslot(slots, id); 1013 slot->flags |= KVM_MEMSLOT_INVALID; 1014 1015 old_memslots = install_new_memslots(kvm, as_id, slots); 1016 1017 /* slot was deleted or moved, clear iommu mapping */ 1018 kvm_iommu_unmap_pages(kvm, &old); 1019 /* From this point no new shadow pages pointing to a deleted, 1020 * or moved, memslot will be created. 1021 * 1022 * validation of sp->gfn happens in: 1023 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1024 * - kvm_is_visible_gfn (mmu_check_roots) 1025 */ 1026 kvm_arch_flush_shadow_memslot(kvm, slot); 1027 1028 /* 1029 * We can re-use the old_memslots from above, the only difference 1030 * from the currently installed memslots is the invalid flag. This 1031 * will get overwritten by update_memslots anyway. 1032 */ 1033 slots = old_memslots; 1034 } 1035 1036 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1037 if (r) 1038 goto out_slots; 1039 1040 /* actual memory is freed via old in kvm_free_memslot below */ 1041 if (change == KVM_MR_DELETE) { 1042 new.dirty_bitmap = NULL; 1043 memset(&new.arch, 0, sizeof(new.arch)); 1044 } 1045 1046 update_memslots(slots, &new); 1047 old_memslots = install_new_memslots(kvm, as_id, slots); 1048 1049 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1050 1051 kvm_free_memslot(kvm, &old, &new); 1052 kvfree(old_memslots); 1053 1054 /* 1055 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1056 * un-mapped and re-mapped if their base changes. Since base change 1057 * unmapping is handled above with slot deletion, mapping alone is 1058 * needed here. Anything else the iommu might care about for existing 1059 * slots (size changes, userspace addr changes and read-only flag 1060 * changes) is disallowed above, so any other attribute changes getting 1061 * here can be skipped. 1062 */ 1063 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1064 r = kvm_iommu_map_pages(kvm, &new); 1065 return r; 1066 } 1067 1068 return 0; 1069 1070 out_slots: 1071 kvfree(slots); 1072 out_free: 1073 kvm_free_memslot(kvm, &new, &old); 1074 out: 1075 return r; 1076 } 1077 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1078 1079 int kvm_set_memory_region(struct kvm *kvm, 1080 const struct kvm_userspace_memory_region *mem) 1081 { 1082 int r; 1083 1084 mutex_lock(&kvm->slots_lock); 1085 r = __kvm_set_memory_region(kvm, mem); 1086 mutex_unlock(&kvm->slots_lock); 1087 return r; 1088 } 1089 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1090 1091 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1092 struct kvm_userspace_memory_region *mem) 1093 { 1094 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1095 return -EINVAL; 1096 1097 return kvm_set_memory_region(kvm, mem); 1098 } 1099 1100 int kvm_get_dirty_log(struct kvm *kvm, 1101 struct kvm_dirty_log *log, int *is_dirty) 1102 { 1103 struct kvm_memslots *slots; 1104 struct kvm_memory_slot *memslot; 1105 int i, as_id, id; 1106 unsigned long n; 1107 unsigned long any = 0; 1108 1109 as_id = log->slot >> 16; 1110 id = (u16)log->slot; 1111 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1112 return -EINVAL; 1113 1114 slots = __kvm_memslots(kvm, as_id); 1115 memslot = id_to_memslot(slots, id); 1116 if (!memslot->dirty_bitmap) 1117 return -ENOENT; 1118 1119 n = kvm_dirty_bitmap_bytes(memslot); 1120 1121 for (i = 0; !any && i < n/sizeof(long); ++i) 1122 any = memslot->dirty_bitmap[i]; 1123 1124 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1125 return -EFAULT; 1126 1127 if (any) 1128 *is_dirty = 1; 1129 return 0; 1130 } 1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1132 1133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1134 /** 1135 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1136 * are dirty write protect them for next write. 1137 * @kvm: pointer to kvm instance 1138 * @log: slot id and address to which we copy the log 1139 * @is_dirty: flag set if any page is dirty 1140 * 1141 * We need to keep it in mind that VCPU threads can write to the bitmap 1142 * concurrently. So, to avoid losing track of dirty pages we keep the 1143 * following order: 1144 * 1145 * 1. Take a snapshot of the bit and clear it if needed. 1146 * 2. Write protect the corresponding page. 1147 * 3. Copy the snapshot to the userspace. 1148 * 4. Upon return caller flushes TLB's if needed. 1149 * 1150 * Between 2 and 4, the guest may write to the page using the remaining TLB 1151 * entry. This is not a problem because the page is reported dirty using 1152 * the snapshot taken before and step 4 ensures that writes done after 1153 * exiting to userspace will be logged for the next call. 1154 * 1155 */ 1156 int kvm_get_dirty_log_protect(struct kvm *kvm, 1157 struct kvm_dirty_log *log, bool *is_dirty) 1158 { 1159 struct kvm_memslots *slots; 1160 struct kvm_memory_slot *memslot; 1161 int i, as_id, id; 1162 unsigned long n; 1163 unsigned long *dirty_bitmap; 1164 unsigned long *dirty_bitmap_buffer; 1165 1166 as_id = log->slot >> 16; 1167 id = (u16)log->slot; 1168 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1169 return -EINVAL; 1170 1171 slots = __kvm_memslots(kvm, as_id); 1172 memslot = id_to_memslot(slots, id); 1173 1174 dirty_bitmap = memslot->dirty_bitmap; 1175 if (!dirty_bitmap) 1176 return -ENOENT; 1177 1178 n = kvm_dirty_bitmap_bytes(memslot); 1179 1180 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1181 memset(dirty_bitmap_buffer, 0, n); 1182 1183 spin_lock(&kvm->mmu_lock); 1184 *is_dirty = false; 1185 for (i = 0; i < n / sizeof(long); i++) { 1186 unsigned long mask; 1187 gfn_t offset; 1188 1189 if (!dirty_bitmap[i]) 1190 continue; 1191 1192 *is_dirty = true; 1193 1194 mask = xchg(&dirty_bitmap[i], 0); 1195 dirty_bitmap_buffer[i] = mask; 1196 1197 if (mask) { 1198 offset = i * BITS_PER_LONG; 1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1200 offset, mask); 1201 } 1202 } 1203 1204 spin_unlock(&kvm->mmu_lock); 1205 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1206 return -EFAULT; 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1210 #endif 1211 1212 bool kvm_largepages_enabled(void) 1213 { 1214 return largepages_enabled; 1215 } 1216 1217 void kvm_disable_largepages(void) 1218 { 1219 largepages_enabled = false; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1222 1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1224 { 1225 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1226 } 1227 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1228 1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1230 { 1231 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1232 } 1233 1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1235 { 1236 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1237 1238 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1239 memslot->flags & KVM_MEMSLOT_INVALID) 1240 return false; 1241 1242 return true; 1243 } 1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1245 1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1247 { 1248 struct vm_area_struct *vma; 1249 unsigned long addr, size; 1250 1251 size = PAGE_SIZE; 1252 1253 addr = gfn_to_hva(kvm, gfn); 1254 if (kvm_is_error_hva(addr)) 1255 return PAGE_SIZE; 1256 1257 down_read(¤t->mm->mmap_sem); 1258 vma = find_vma(current->mm, addr); 1259 if (!vma) 1260 goto out; 1261 1262 size = vma_kernel_pagesize(vma); 1263 1264 out: 1265 up_read(¤t->mm->mmap_sem); 1266 1267 return size; 1268 } 1269 1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1271 { 1272 return slot->flags & KVM_MEM_READONLY; 1273 } 1274 1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1276 gfn_t *nr_pages, bool write) 1277 { 1278 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1279 return KVM_HVA_ERR_BAD; 1280 1281 if (memslot_is_readonly(slot) && write) 1282 return KVM_HVA_ERR_RO_BAD; 1283 1284 if (nr_pages) 1285 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1286 1287 return __gfn_to_hva_memslot(slot, gfn); 1288 } 1289 1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1291 gfn_t *nr_pages) 1292 { 1293 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1294 } 1295 1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1297 gfn_t gfn) 1298 { 1299 return gfn_to_hva_many(slot, gfn, NULL); 1300 } 1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1302 1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1304 { 1305 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1306 } 1307 EXPORT_SYMBOL_GPL(gfn_to_hva); 1308 1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1310 { 1311 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1314 1315 /* 1316 * If writable is set to false, the hva returned by this function is only 1317 * allowed to be read. 1318 */ 1319 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1320 gfn_t gfn, bool *writable) 1321 { 1322 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1323 1324 if (!kvm_is_error_hva(hva) && writable) 1325 *writable = !memslot_is_readonly(slot); 1326 1327 return hva; 1328 } 1329 1330 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1331 { 1332 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1333 1334 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1335 } 1336 1337 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1338 { 1339 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1340 1341 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1342 } 1343 1344 static int get_user_page_nowait(unsigned long start, int write, 1345 struct page **page) 1346 { 1347 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1348 1349 if (write) 1350 flags |= FOLL_WRITE; 1351 1352 return get_user_pages(start, 1, flags, page, NULL); 1353 } 1354 1355 static inline int check_user_page_hwpoison(unsigned long addr) 1356 { 1357 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1358 1359 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1360 return rc == -EHWPOISON; 1361 } 1362 1363 /* 1364 * The atomic path to get the writable pfn which will be stored in @pfn, 1365 * true indicates success, otherwise false is returned. 1366 */ 1367 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1368 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1369 { 1370 struct page *page[1]; 1371 int npages; 1372 1373 if (!(async || atomic)) 1374 return false; 1375 1376 /* 1377 * Fast pin a writable pfn only if it is a write fault request 1378 * or the caller allows to map a writable pfn for a read fault 1379 * request. 1380 */ 1381 if (!(write_fault || writable)) 1382 return false; 1383 1384 npages = __get_user_pages_fast(addr, 1, 1, page); 1385 if (npages == 1) { 1386 *pfn = page_to_pfn(page[0]); 1387 1388 if (writable) 1389 *writable = true; 1390 return true; 1391 } 1392 1393 return false; 1394 } 1395 1396 /* 1397 * The slow path to get the pfn of the specified host virtual address, 1398 * 1 indicates success, -errno is returned if error is detected. 1399 */ 1400 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1401 bool *writable, kvm_pfn_t *pfn) 1402 { 1403 struct page *page[1]; 1404 int npages = 0; 1405 1406 might_sleep(); 1407 1408 if (writable) 1409 *writable = write_fault; 1410 1411 if (async) { 1412 down_read(¤t->mm->mmap_sem); 1413 npages = get_user_page_nowait(addr, write_fault, page); 1414 up_read(¤t->mm->mmap_sem); 1415 } else { 1416 unsigned int flags = FOLL_HWPOISON; 1417 1418 if (write_fault) 1419 flags |= FOLL_WRITE; 1420 1421 npages = get_user_pages_unlocked(addr, 1, page, flags); 1422 } 1423 if (npages != 1) 1424 return npages; 1425 1426 /* map read fault as writable if possible */ 1427 if (unlikely(!write_fault) && writable) { 1428 struct page *wpage[1]; 1429 1430 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1431 if (npages == 1) { 1432 *writable = true; 1433 put_page(page[0]); 1434 page[0] = wpage[0]; 1435 } 1436 1437 npages = 1; 1438 } 1439 *pfn = page_to_pfn(page[0]); 1440 return npages; 1441 } 1442 1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1444 { 1445 if (unlikely(!(vma->vm_flags & VM_READ))) 1446 return false; 1447 1448 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1449 return false; 1450 1451 return true; 1452 } 1453 1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1455 unsigned long addr, bool *async, 1456 bool write_fault, kvm_pfn_t *p_pfn) 1457 { 1458 unsigned long pfn; 1459 int r; 1460 1461 r = follow_pfn(vma, addr, &pfn); 1462 if (r) { 1463 /* 1464 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1465 * not call the fault handler, so do it here. 1466 */ 1467 bool unlocked = false; 1468 r = fixup_user_fault(current, current->mm, addr, 1469 (write_fault ? FAULT_FLAG_WRITE : 0), 1470 &unlocked); 1471 if (unlocked) 1472 return -EAGAIN; 1473 if (r) 1474 return r; 1475 1476 r = follow_pfn(vma, addr, &pfn); 1477 if (r) 1478 return r; 1479 1480 } 1481 1482 1483 /* 1484 * Get a reference here because callers of *hva_to_pfn* and 1485 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1486 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1487 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1488 * simply do nothing for reserved pfns. 1489 * 1490 * Whoever called remap_pfn_range is also going to call e.g. 1491 * unmap_mapping_range before the underlying pages are freed, 1492 * causing a call to our MMU notifier. 1493 */ 1494 kvm_get_pfn(pfn); 1495 1496 *p_pfn = pfn; 1497 return 0; 1498 } 1499 1500 /* 1501 * Pin guest page in memory and return its pfn. 1502 * @addr: host virtual address which maps memory to the guest 1503 * @atomic: whether this function can sleep 1504 * @async: whether this function need to wait IO complete if the 1505 * host page is not in the memory 1506 * @write_fault: whether we should get a writable host page 1507 * @writable: whether it allows to map a writable host page for !@write_fault 1508 * 1509 * The function will map a writable host page for these two cases: 1510 * 1): @write_fault = true 1511 * 2): @write_fault = false && @writable, @writable will tell the caller 1512 * whether the mapping is writable. 1513 */ 1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1515 bool write_fault, bool *writable) 1516 { 1517 struct vm_area_struct *vma; 1518 kvm_pfn_t pfn = 0; 1519 int npages, r; 1520 1521 /* we can do it either atomically or asynchronously, not both */ 1522 BUG_ON(atomic && async); 1523 1524 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1525 return pfn; 1526 1527 if (atomic) 1528 return KVM_PFN_ERR_FAULT; 1529 1530 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1531 if (npages == 1) 1532 return pfn; 1533 1534 down_read(¤t->mm->mmap_sem); 1535 if (npages == -EHWPOISON || 1536 (!async && check_user_page_hwpoison(addr))) { 1537 pfn = KVM_PFN_ERR_HWPOISON; 1538 goto exit; 1539 } 1540 1541 retry: 1542 vma = find_vma_intersection(current->mm, addr, addr + 1); 1543 1544 if (vma == NULL) 1545 pfn = KVM_PFN_ERR_FAULT; 1546 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1547 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1548 if (r == -EAGAIN) 1549 goto retry; 1550 if (r < 0) 1551 pfn = KVM_PFN_ERR_FAULT; 1552 } else { 1553 if (async && vma_is_valid(vma, write_fault)) 1554 *async = true; 1555 pfn = KVM_PFN_ERR_FAULT; 1556 } 1557 exit: 1558 up_read(¤t->mm->mmap_sem); 1559 return pfn; 1560 } 1561 1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1563 bool atomic, bool *async, bool write_fault, 1564 bool *writable) 1565 { 1566 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1567 1568 if (addr == KVM_HVA_ERR_RO_BAD) { 1569 if (writable) 1570 *writable = false; 1571 return KVM_PFN_ERR_RO_FAULT; 1572 } 1573 1574 if (kvm_is_error_hva(addr)) { 1575 if (writable) 1576 *writable = false; 1577 return KVM_PFN_NOSLOT; 1578 } 1579 1580 /* Do not map writable pfn in the readonly memslot. */ 1581 if (writable && memslot_is_readonly(slot)) { 1582 *writable = false; 1583 writable = NULL; 1584 } 1585 1586 return hva_to_pfn(addr, atomic, async, write_fault, 1587 writable); 1588 } 1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1590 1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1592 bool *writable) 1593 { 1594 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1595 write_fault, writable); 1596 } 1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1598 1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1600 { 1601 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1602 } 1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1604 1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1606 { 1607 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1608 } 1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1610 1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1612 { 1613 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1614 } 1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1616 1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1618 { 1619 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1620 } 1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1622 1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1624 { 1625 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1626 } 1627 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1628 1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1630 { 1631 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1632 } 1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1634 1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1636 struct page **pages, int nr_pages) 1637 { 1638 unsigned long addr; 1639 gfn_t entry; 1640 1641 addr = gfn_to_hva_many(slot, gfn, &entry); 1642 if (kvm_is_error_hva(addr)) 1643 return -1; 1644 1645 if (entry < nr_pages) 1646 return 0; 1647 1648 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1649 } 1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1651 1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1653 { 1654 if (is_error_noslot_pfn(pfn)) 1655 return KVM_ERR_PTR_BAD_PAGE; 1656 1657 if (kvm_is_reserved_pfn(pfn)) { 1658 WARN_ON(1); 1659 return KVM_ERR_PTR_BAD_PAGE; 1660 } 1661 1662 return pfn_to_page(pfn); 1663 } 1664 1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1666 { 1667 kvm_pfn_t pfn; 1668 1669 pfn = gfn_to_pfn(kvm, gfn); 1670 1671 return kvm_pfn_to_page(pfn); 1672 } 1673 EXPORT_SYMBOL_GPL(gfn_to_page); 1674 1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1676 { 1677 kvm_pfn_t pfn; 1678 1679 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1680 1681 return kvm_pfn_to_page(pfn); 1682 } 1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1684 1685 void kvm_release_page_clean(struct page *page) 1686 { 1687 WARN_ON(is_error_page(page)); 1688 1689 kvm_release_pfn_clean(page_to_pfn(page)); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1692 1693 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1694 { 1695 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1696 put_page(pfn_to_page(pfn)); 1697 } 1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1699 1700 void kvm_release_page_dirty(struct page *page) 1701 { 1702 WARN_ON(is_error_page(page)); 1703 1704 kvm_release_pfn_dirty(page_to_pfn(page)); 1705 } 1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1707 1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1709 { 1710 kvm_set_pfn_dirty(pfn); 1711 kvm_release_pfn_clean(pfn); 1712 } 1713 1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1715 { 1716 if (!kvm_is_reserved_pfn(pfn)) { 1717 struct page *page = pfn_to_page(pfn); 1718 1719 if (!PageReserved(page)) 1720 SetPageDirty(page); 1721 } 1722 } 1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1724 1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1726 { 1727 if (!kvm_is_reserved_pfn(pfn)) 1728 mark_page_accessed(pfn_to_page(pfn)); 1729 } 1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1731 1732 void kvm_get_pfn(kvm_pfn_t pfn) 1733 { 1734 if (!kvm_is_reserved_pfn(pfn)) 1735 get_page(pfn_to_page(pfn)); 1736 } 1737 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1738 1739 static int next_segment(unsigned long len, int offset) 1740 { 1741 if (len > PAGE_SIZE - offset) 1742 return PAGE_SIZE - offset; 1743 else 1744 return len; 1745 } 1746 1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1748 void *data, int offset, int len) 1749 { 1750 int r; 1751 unsigned long addr; 1752 1753 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1754 if (kvm_is_error_hva(addr)) 1755 return -EFAULT; 1756 r = __copy_from_user(data, (void __user *)addr + offset, len); 1757 if (r) 1758 return -EFAULT; 1759 return 0; 1760 } 1761 1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1763 int len) 1764 { 1765 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1766 1767 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1768 } 1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1770 1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1772 int offset, int len) 1773 { 1774 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1775 1776 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1779 1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1781 { 1782 gfn_t gfn = gpa >> PAGE_SHIFT; 1783 int seg; 1784 int offset = offset_in_page(gpa); 1785 int ret; 1786 1787 while ((seg = next_segment(len, offset)) != 0) { 1788 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1789 if (ret < 0) 1790 return ret; 1791 offset = 0; 1792 len -= seg; 1793 data += seg; 1794 ++gfn; 1795 } 1796 return 0; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_read_guest); 1799 1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1801 { 1802 gfn_t gfn = gpa >> PAGE_SHIFT; 1803 int seg; 1804 int offset = offset_in_page(gpa); 1805 int ret; 1806 1807 while ((seg = next_segment(len, offset)) != 0) { 1808 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1809 if (ret < 0) 1810 return ret; 1811 offset = 0; 1812 len -= seg; 1813 data += seg; 1814 ++gfn; 1815 } 1816 return 0; 1817 } 1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1819 1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1821 void *data, int offset, unsigned long len) 1822 { 1823 int r; 1824 unsigned long addr; 1825 1826 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1827 if (kvm_is_error_hva(addr)) 1828 return -EFAULT; 1829 pagefault_disable(); 1830 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1831 pagefault_enable(); 1832 if (r) 1833 return -EFAULT; 1834 return 0; 1835 } 1836 1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1838 unsigned long len) 1839 { 1840 gfn_t gfn = gpa >> PAGE_SHIFT; 1841 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1842 int offset = offset_in_page(gpa); 1843 1844 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1845 } 1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1847 1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1849 void *data, unsigned long len) 1850 { 1851 gfn_t gfn = gpa >> PAGE_SHIFT; 1852 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1853 int offset = offset_in_page(gpa); 1854 1855 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1856 } 1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1858 1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1860 const void *data, int offset, int len) 1861 { 1862 int r; 1863 unsigned long addr; 1864 1865 addr = gfn_to_hva_memslot(memslot, gfn); 1866 if (kvm_is_error_hva(addr)) 1867 return -EFAULT; 1868 r = __copy_to_user((void __user *)addr + offset, data, len); 1869 if (r) 1870 return -EFAULT; 1871 mark_page_dirty_in_slot(memslot, gfn); 1872 return 0; 1873 } 1874 1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1876 const void *data, int offset, int len) 1877 { 1878 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1879 1880 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1881 } 1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1883 1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1885 const void *data, int offset, int len) 1886 { 1887 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1888 1889 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1890 } 1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1892 1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1894 unsigned long len) 1895 { 1896 gfn_t gfn = gpa >> PAGE_SHIFT; 1897 int seg; 1898 int offset = offset_in_page(gpa); 1899 int ret; 1900 1901 while ((seg = next_segment(len, offset)) != 0) { 1902 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1903 if (ret < 0) 1904 return ret; 1905 offset = 0; 1906 len -= seg; 1907 data += seg; 1908 ++gfn; 1909 } 1910 return 0; 1911 } 1912 EXPORT_SYMBOL_GPL(kvm_write_guest); 1913 1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1915 unsigned long len) 1916 { 1917 gfn_t gfn = gpa >> PAGE_SHIFT; 1918 int seg; 1919 int offset = offset_in_page(gpa); 1920 int ret; 1921 1922 while ((seg = next_segment(len, offset)) != 0) { 1923 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1924 if (ret < 0) 1925 return ret; 1926 offset = 0; 1927 len -= seg; 1928 data += seg; 1929 ++gfn; 1930 } 1931 return 0; 1932 } 1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1934 1935 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1936 struct gfn_to_hva_cache *ghc, 1937 gpa_t gpa, unsigned long len) 1938 { 1939 int offset = offset_in_page(gpa); 1940 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1941 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1942 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1943 gfn_t nr_pages_avail; 1944 1945 ghc->gpa = gpa; 1946 ghc->generation = slots->generation; 1947 ghc->len = len; 1948 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1949 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1950 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1951 ghc->hva += offset; 1952 } else { 1953 /* 1954 * If the requested region crosses two memslots, we still 1955 * verify that the entire region is valid here. 1956 */ 1957 while (start_gfn <= end_gfn) { 1958 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1959 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1960 &nr_pages_avail); 1961 if (kvm_is_error_hva(ghc->hva)) 1962 return -EFAULT; 1963 start_gfn += nr_pages_avail; 1964 } 1965 /* Use the slow path for cross page reads and writes. */ 1966 ghc->memslot = NULL; 1967 } 1968 return 0; 1969 } 1970 1971 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 1972 gpa_t gpa, unsigned long len) 1973 { 1974 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 1975 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1976 } 1977 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init); 1978 1979 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 1980 void *data, int offset, unsigned long len) 1981 { 1982 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 1983 int r; 1984 gpa_t gpa = ghc->gpa + offset; 1985 1986 BUG_ON(len + offset > ghc->len); 1987 1988 if (slots->generation != ghc->generation) 1989 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1990 1991 if (unlikely(!ghc->memslot)) 1992 return kvm_vcpu_write_guest(vcpu, gpa, data, len); 1993 1994 if (kvm_is_error_hva(ghc->hva)) 1995 return -EFAULT; 1996 1997 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1998 if (r) 1999 return -EFAULT; 2000 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2001 2002 return 0; 2003 } 2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached); 2005 2006 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 2007 void *data, unsigned long len) 2008 { 2009 return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len); 2010 } 2011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached); 2012 2013 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 2014 void *data, unsigned long len) 2015 { 2016 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2017 int r; 2018 2019 BUG_ON(len > ghc->len); 2020 2021 if (slots->generation != ghc->generation) 2022 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2023 2024 if (unlikely(!ghc->memslot)) 2025 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len); 2026 2027 if (kvm_is_error_hva(ghc->hva)) 2028 return -EFAULT; 2029 2030 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2031 if (r) 2032 return -EFAULT; 2033 2034 return 0; 2035 } 2036 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached); 2037 2038 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2039 { 2040 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2041 2042 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2043 } 2044 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2045 2046 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2047 { 2048 gfn_t gfn = gpa >> PAGE_SHIFT; 2049 int seg; 2050 int offset = offset_in_page(gpa); 2051 int ret; 2052 2053 while ((seg = next_segment(len, offset)) != 0) { 2054 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2055 if (ret < 0) 2056 return ret; 2057 offset = 0; 2058 len -= seg; 2059 ++gfn; 2060 } 2061 return 0; 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2064 2065 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2066 gfn_t gfn) 2067 { 2068 if (memslot && memslot->dirty_bitmap) { 2069 unsigned long rel_gfn = gfn - memslot->base_gfn; 2070 2071 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2072 } 2073 } 2074 2075 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2076 { 2077 struct kvm_memory_slot *memslot; 2078 2079 memslot = gfn_to_memslot(kvm, gfn); 2080 mark_page_dirty_in_slot(memslot, gfn); 2081 } 2082 EXPORT_SYMBOL_GPL(mark_page_dirty); 2083 2084 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2085 { 2086 struct kvm_memory_slot *memslot; 2087 2088 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2089 mark_page_dirty_in_slot(memslot, gfn); 2090 } 2091 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2092 2093 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2094 { 2095 unsigned int old, val, grow; 2096 2097 old = val = vcpu->halt_poll_ns; 2098 grow = READ_ONCE(halt_poll_ns_grow); 2099 /* 10us base */ 2100 if (val == 0 && grow) 2101 val = 10000; 2102 else 2103 val *= grow; 2104 2105 if (val > halt_poll_ns) 2106 val = halt_poll_ns; 2107 2108 vcpu->halt_poll_ns = val; 2109 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2110 } 2111 2112 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2113 { 2114 unsigned int old, val, shrink; 2115 2116 old = val = vcpu->halt_poll_ns; 2117 shrink = READ_ONCE(halt_poll_ns_shrink); 2118 if (shrink == 0) 2119 val = 0; 2120 else 2121 val /= shrink; 2122 2123 vcpu->halt_poll_ns = val; 2124 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2125 } 2126 2127 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2128 { 2129 if (kvm_arch_vcpu_runnable(vcpu)) { 2130 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2131 return -EINTR; 2132 } 2133 if (kvm_cpu_has_pending_timer(vcpu)) 2134 return -EINTR; 2135 if (signal_pending(current)) 2136 return -EINTR; 2137 2138 return 0; 2139 } 2140 2141 /* 2142 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2143 */ 2144 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2145 { 2146 ktime_t start, cur; 2147 DECLARE_SWAITQUEUE(wait); 2148 bool waited = false; 2149 u64 block_ns; 2150 2151 start = cur = ktime_get(); 2152 if (vcpu->halt_poll_ns) { 2153 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2154 2155 ++vcpu->stat.halt_attempted_poll; 2156 do { 2157 /* 2158 * This sets KVM_REQ_UNHALT if an interrupt 2159 * arrives. 2160 */ 2161 if (kvm_vcpu_check_block(vcpu) < 0) { 2162 ++vcpu->stat.halt_successful_poll; 2163 if (!vcpu_valid_wakeup(vcpu)) 2164 ++vcpu->stat.halt_poll_invalid; 2165 goto out; 2166 } 2167 cur = ktime_get(); 2168 } while (single_task_running() && ktime_before(cur, stop)); 2169 } 2170 2171 kvm_arch_vcpu_blocking(vcpu); 2172 2173 for (;;) { 2174 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2175 2176 if (kvm_vcpu_check_block(vcpu) < 0) 2177 break; 2178 2179 waited = true; 2180 schedule(); 2181 } 2182 2183 finish_swait(&vcpu->wq, &wait); 2184 cur = ktime_get(); 2185 2186 kvm_arch_vcpu_unblocking(vcpu); 2187 out: 2188 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2189 2190 if (!vcpu_valid_wakeup(vcpu)) 2191 shrink_halt_poll_ns(vcpu); 2192 else if (halt_poll_ns) { 2193 if (block_ns <= vcpu->halt_poll_ns) 2194 ; 2195 /* we had a long block, shrink polling */ 2196 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2197 shrink_halt_poll_ns(vcpu); 2198 /* we had a short halt and our poll time is too small */ 2199 else if (vcpu->halt_poll_ns < halt_poll_ns && 2200 block_ns < halt_poll_ns) 2201 grow_halt_poll_ns(vcpu); 2202 } else 2203 vcpu->halt_poll_ns = 0; 2204 2205 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2206 kvm_arch_vcpu_block_finish(vcpu); 2207 } 2208 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2209 2210 #ifndef CONFIG_S390 2211 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2212 { 2213 struct swait_queue_head *wqp; 2214 2215 wqp = kvm_arch_vcpu_wq(vcpu); 2216 if (swait_active(wqp)) { 2217 swake_up(wqp); 2218 ++vcpu->stat.halt_wakeup; 2219 } 2220 2221 } 2222 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2223 2224 /* 2225 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2226 */ 2227 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2228 { 2229 int me; 2230 int cpu = vcpu->cpu; 2231 2232 kvm_vcpu_wake_up(vcpu); 2233 me = get_cpu(); 2234 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2235 if (kvm_arch_vcpu_should_kick(vcpu)) 2236 smp_send_reschedule(cpu); 2237 put_cpu(); 2238 } 2239 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2240 #endif /* !CONFIG_S390 */ 2241 2242 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2243 { 2244 struct pid *pid; 2245 struct task_struct *task = NULL; 2246 int ret = 0; 2247 2248 rcu_read_lock(); 2249 pid = rcu_dereference(target->pid); 2250 if (pid) 2251 task = get_pid_task(pid, PIDTYPE_PID); 2252 rcu_read_unlock(); 2253 if (!task) 2254 return ret; 2255 ret = yield_to(task, 1); 2256 put_task_struct(task); 2257 2258 return ret; 2259 } 2260 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2261 2262 /* 2263 * Helper that checks whether a VCPU is eligible for directed yield. 2264 * Most eligible candidate to yield is decided by following heuristics: 2265 * 2266 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2267 * (preempted lock holder), indicated by @in_spin_loop. 2268 * Set at the beiginning and cleared at the end of interception/PLE handler. 2269 * 2270 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2271 * chance last time (mostly it has become eligible now since we have probably 2272 * yielded to lockholder in last iteration. This is done by toggling 2273 * @dy_eligible each time a VCPU checked for eligibility.) 2274 * 2275 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2276 * to preempted lock-holder could result in wrong VCPU selection and CPU 2277 * burning. Giving priority for a potential lock-holder increases lock 2278 * progress. 2279 * 2280 * Since algorithm is based on heuristics, accessing another VCPU data without 2281 * locking does not harm. It may result in trying to yield to same VCPU, fail 2282 * and continue with next VCPU and so on. 2283 */ 2284 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2285 { 2286 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2287 bool eligible; 2288 2289 eligible = !vcpu->spin_loop.in_spin_loop || 2290 vcpu->spin_loop.dy_eligible; 2291 2292 if (vcpu->spin_loop.in_spin_loop) 2293 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2294 2295 return eligible; 2296 #else 2297 return true; 2298 #endif 2299 } 2300 2301 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2302 { 2303 struct kvm *kvm = me->kvm; 2304 struct kvm_vcpu *vcpu; 2305 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2306 int yielded = 0; 2307 int try = 3; 2308 int pass; 2309 int i; 2310 2311 kvm_vcpu_set_in_spin_loop(me, true); 2312 /* 2313 * We boost the priority of a VCPU that is runnable but not 2314 * currently running, because it got preempted by something 2315 * else and called schedule in __vcpu_run. Hopefully that 2316 * VCPU is holding the lock that we need and will release it. 2317 * We approximate round-robin by starting at the last boosted VCPU. 2318 */ 2319 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2320 kvm_for_each_vcpu(i, vcpu, kvm) { 2321 if (!pass && i <= last_boosted_vcpu) { 2322 i = last_boosted_vcpu; 2323 continue; 2324 } else if (pass && i > last_boosted_vcpu) 2325 break; 2326 if (!ACCESS_ONCE(vcpu->preempted)) 2327 continue; 2328 if (vcpu == me) 2329 continue; 2330 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2331 continue; 2332 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2333 continue; 2334 2335 yielded = kvm_vcpu_yield_to(vcpu); 2336 if (yielded > 0) { 2337 kvm->last_boosted_vcpu = i; 2338 break; 2339 } else if (yielded < 0) { 2340 try--; 2341 if (!try) 2342 break; 2343 } 2344 } 2345 } 2346 kvm_vcpu_set_in_spin_loop(me, false); 2347 2348 /* Ensure vcpu is not eligible during next spinloop */ 2349 kvm_vcpu_set_dy_eligible(me, false); 2350 } 2351 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2352 2353 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2354 { 2355 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2356 struct page *page; 2357 2358 if (vmf->pgoff == 0) 2359 page = virt_to_page(vcpu->run); 2360 #ifdef CONFIG_X86 2361 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2362 page = virt_to_page(vcpu->arch.pio_data); 2363 #endif 2364 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2365 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2366 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2367 #endif 2368 else 2369 return kvm_arch_vcpu_fault(vcpu, vmf); 2370 get_page(page); 2371 vmf->page = page; 2372 return 0; 2373 } 2374 2375 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2376 .fault = kvm_vcpu_fault, 2377 }; 2378 2379 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2380 { 2381 vma->vm_ops = &kvm_vcpu_vm_ops; 2382 return 0; 2383 } 2384 2385 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2386 { 2387 struct kvm_vcpu *vcpu = filp->private_data; 2388 2389 debugfs_remove_recursive(vcpu->debugfs_dentry); 2390 kvm_put_kvm(vcpu->kvm); 2391 return 0; 2392 } 2393 2394 static struct file_operations kvm_vcpu_fops = { 2395 .release = kvm_vcpu_release, 2396 .unlocked_ioctl = kvm_vcpu_ioctl, 2397 #ifdef CONFIG_KVM_COMPAT 2398 .compat_ioctl = kvm_vcpu_compat_ioctl, 2399 #endif 2400 .mmap = kvm_vcpu_mmap, 2401 .llseek = noop_llseek, 2402 }; 2403 2404 /* 2405 * Allocates an inode for the vcpu. 2406 */ 2407 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2408 { 2409 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2410 } 2411 2412 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2413 { 2414 char dir_name[ITOA_MAX_LEN * 2]; 2415 int ret; 2416 2417 if (!kvm_arch_has_vcpu_debugfs()) 2418 return 0; 2419 2420 if (!debugfs_initialized()) 2421 return 0; 2422 2423 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2424 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2425 vcpu->kvm->debugfs_dentry); 2426 if (!vcpu->debugfs_dentry) 2427 return -ENOMEM; 2428 2429 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2430 if (ret < 0) { 2431 debugfs_remove_recursive(vcpu->debugfs_dentry); 2432 return ret; 2433 } 2434 2435 return 0; 2436 } 2437 2438 /* 2439 * Creates some virtual cpus. Good luck creating more than one. 2440 */ 2441 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2442 { 2443 int r; 2444 struct kvm_vcpu *vcpu; 2445 2446 if (id >= KVM_MAX_VCPU_ID) 2447 return -EINVAL; 2448 2449 mutex_lock(&kvm->lock); 2450 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2451 mutex_unlock(&kvm->lock); 2452 return -EINVAL; 2453 } 2454 2455 kvm->created_vcpus++; 2456 mutex_unlock(&kvm->lock); 2457 2458 vcpu = kvm_arch_vcpu_create(kvm, id); 2459 if (IS_ERR(vcpu)) { 2460 r = PTR_ERR(vcpu); 2461 goto vcpu_decrement; 2462 } 2463 2464 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2465 2466 r = kvm_arch_vcpu_setup(vcpu); 2467 if (r) 2468 goto vcpu_destroy; 2469 2470 r = kvm_create_vcpu_debugfs(vcpu); 2471 if (r) 2472 goto vcpu_destroy; 2473 2474 mutex_lock(&kvm->lock); 2475 if (kvm_get_vcpu_by_id(kvm, id)) { 2476 r = -EEXIST; 2477 goto unlock_vcpu_destroy; 2478 } 2479 2480 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2481 2482 /* Now it's all set up, let userspace reach it */ 2483 kvm_get_kvm(kvm); 2484 r = create_vcpu_fd(vcpu); 2485 if (r < 0) { 2486 kvm_put_kvm(kvm); 2487 goto unlock_vcpu_destroy; 2488 } 2489 2490 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2491 2492 /* 2493 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2494 * before kvm->online_vcpu's incremented value. 2495 */ 2496 smp_wmb(); 2497 atomic_inc(&kvm->online_vcpus); 2498 2499 mutex_unlock(&kvm->lock); 2500 kvm_arch_vcpu_postcreate(vcpu); 2501 return r; 2502 2503 unlock_vcpu_destroy: 2504 mutex_unlock(&kvm->lock); 2505 debugfs_remove_recursive(vcpu->debugfs_dentry); 2506 vcpu_destroy: 2507 kvm_arch_vcpu_destroy(vcpu); 2508 vcpu_decrement: 2509 mutex_lock(&kvm->lock); 2510 kvm->created_vcpus--; 2511 mutex_unlock(&kvm->lock); 2512 return r; 2513 } 2514 2515 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2516 { 2517 if (sigset) { 2518 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2519 vcpu->sigset_active = 1; 2520 vcpu->sigset = *sigset; 2521 } else 2522 vcpu->sigset_active = 0; 2523 return 0; 2524 } 2525 2526 static long kvm_vcpu_ioctl(struct file *filp, 2527 unsigned int ioctl, unsigned long arg) 2528 { 2529 struct kvm_vcpu *vcpu = filp->private_data; 2530 void __user *argp = (void __user *)arg; 2531 int r; 2532 struct kvm_fpu *fpu = NULL; 2533 struct kvm_sregs *kvm_sregs = NULL; 2534 2535 if (vcpu->kvm->mm != current->mm) 2536 return -EIO; 2537 2538 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2539 return -EINVAL; 2540 2541 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2542 /* 2543 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2544 * so vcpu_load() would break it. 2545 */ 2546 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2547 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2548 #endif 2549 2550 2551 r = vcpu_load(vcpu); 2552 if (r) 2553 return r; 2554 switch (ioctl) { 2555 case KVM_RUN: 2556 r = -EINVAL; 2557 if (arg) 2558 goto out; 2559 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2560 /* The thread running this VCPU changed. */ 2561 struct pid *oldpid = vcpu->pid; 2562 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2563 2564 rcu_assign_pointer(vcpu->pid, newpid); 2565 if (oldpid) 2566 synchronize_rcu(); 2567 put_pid(oldpid); 2568 } 2569 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2570 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2571 break; 2572 case KVM_GET_REGS: { 2573 struct kvm_regs *kvm_regs; 2574 2575 r = -ENOMEM; 2576 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2577 if (!kvm_regs) 2578 goto out; 2579 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2580 if (r) 2581 goto out_free1; 2582 r = -EFAULT; 2583 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2584 goto out_free1; 2585 r = 0; 2586 out_free1: 2587 kfree(kvm_regs); 2588 break; 2589 } 2590 case KVM_SET_REGS: { 2591 struct kvm_regs *kvm_regs; 2592 2593 r = -ENOMEM; 2594 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2595 if (IS_ERR(kvm_regs)) { 2596 r = PTR_ERR(kvm_regs); 2597 goto out; 2598 } 2599 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2600 kfree(kvm_regs); 2601 break; 2602 } 2603 case KVM_GET_SREGS: { 2604 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2605 r = -ENOMEM; 2606 if (!kvm_sregs) 2607 goto out; 2608 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2609 if (r) 2610 goto out; 2611 r = -EFAULT; 2612 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2613 goto out; 2614 r = 0; 2615 break; 2616 } 2617 case KVM_SET_SREGS: { 2618 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2619 if (IS_ERR(kvm_sregs)) { 2620 r = PTR_ERR(kvm_sregs); 2621 kvm_sregs = NULL; 2622 goto out; 2623 } 2624 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2625 break; 2626 } 2627 case KVM_GET_MP_STATE: { 2628 struct kvm_mp_state mp_state; 2629 2630 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2631 if (r) 2632 goto out; 2633 r = -EFAULT; 2634 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2635 goto out; 2636 r = 0; 2637 break; 2638 } 2639 case KVM_SET_MP_STATE: { 2640 struct kvm_mp_state mp_state; 2641 2642 r = -EFAULT; 2643 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2644 goto out; 2645 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2646 break; 2647 } 2648 case KVM_TRANSLATE: { 2649 struct kvm_translation tr; 2650 2651 r = -EFAULT; 2652 if (copy_from_user(&tr, argp, sizeof(tr))) 2653 goto out; 2654 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2655 if (r) 2656 goto out; 2657 r = -EFAULT; 2658 if (copy_to_user(argp, &tr, sizeof(tr))) 2659 goto out; 2660 r = 0; 2661 break; 2662 } 2663 case KVM_SET_GUEST_DEBUG: { 2664 struct kvm_guest_debug dbg; 2665 2666 r = -EFAULT; 2667 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2668 goto out; 2669 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2670 break; 2671 } 2672 case KVM_SET_SIGNAL_MASK: { 2673 struct kvm_signal_mask __user *sigmask_arg = argp; 2674 struct kvm_signal_mask kvm_sigmask; 2675 sigset_t sigset, *p; 2676 2677 p = NULL; 2678 if (argp) { 2679 r = -EFAULT; 2680 if (copy_from_user(&kvm_sigmask, argp, 2681 sizeof(kvm_sigmask))) 2682 goto out; 2683 r = -EINVAL; 2684 if (kvm_sigmask.len != sizeof(sigset)) 2685 goto out; 2686 r = -EFAULT; 2687 if (copy_from_user(&sigset, sigmask_arg->sigset, 2688 sizeof(sigset))) 2689 goto out; 2690 p = &sigset; 2691 } 2692 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2693 break; 2694 } 2695 case KVM_GET_FPU: { 2696 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2697 r = -ENOMEM; 2698 if (!fpu) 2699 goto out; 2700 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2701 if (r) 2702 goto out; 2703 r = -EFAULT; 2704 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2705 goto out; 2706 r = 0; 2707 break; 2708 } 2709 case KVM_SET_FPU: { 2710 fpu = memdup_user(argp, sizeof(*fpu)); 2711 if (IS_ERR(fpu)) { 2712 r = PTR_ERR(fpu); 2713 fpu = NULL; 2714 goto out; 2715 } 2716 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2717 break; 2718 } 2719 default: 2720 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2721 } 2722 out: 2723 vcpu_put(vcpu); 2724 kfree(fpu); 2725 kfree(kvm_sregs); 2726 return r; 2727 } 2728 2729 #ifdef CONFIG_KVM_COMPAT 2730 static long kvm_vcpu_compat_ioctl(struct file *filp, 2731 unsigned int ioctl, unsigned long arg) 2732 { 2733 struct kvm_vcpu *vcpu = filp->private_data; 2734 void __user *argp = compat_ptr(arg); 2735 int r; 2736 2737 if (vcpu->kvm->mm != current->mm) 2738 return -EIO; 2739 2740 switch (ioctl) { 2741 case KVM_SET_SIGNAL_MASK: { 2742 struct kvm_signal_mask __user *sigmask_arg = argp; 2743 struct kvm_signal_mask kvm_sigmask; 2744 compat_sigset_t csigset; 2745 sigset_t sigset; 2746 2747 if (argp) { 2748 r = -EFAULT; 2749 if (copy_from_user(&kvm_sigmask, argp, 2750 sizeof(kvm_sigmask))) 2751 goto out; 2752 r = -EINVAL; 2753 if (kvm_sigmask.len != sizeof(csigset)) 2754 goto out; 2755 r = -EFAULT; 2756 if (copy_from_user(&csigset, sigmask_arg->sigset, 2757 sizeof(csigset))) 2758 goto out; 2759 sigset_from_compat(&sigset, &csigset); 2760 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2761 } else 2762 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2763 break; 2764 } 2765 default: 2766 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2767 } 2768 2769 out: 2770 return r; 2771 } 2772 #endif 2773 2774 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2775 int (*accessor)(struct kvm_device *dev, 2776 struct kvm_device_attr *attr), 2777 unsigned long arg) 2778 { 2779 struct kvm_device_attr attr; 2780 2781 if (!accessor) 2782 return -EPERM; 2783 2784 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2785 return -EFAULT; 2786 2787 return accessor(dev, &attr); 2788 } 2789 2790 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2791 unsigned long arg) 2792 { 2793 struct kvm_device *dev = filp->private_data; 2794 2795 switch (ioctl) { 2796 case KVM_SET_DEVICE_ATTR: 2797 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2798 case KVM_GET_DEVICE_ATTR: 2799 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2800 case KVM_HAS_DEVICE_ATTR: 2801 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2802 default: 2803 if (dev->ops->ioctl) 2804 return dev->ops->ioctl(dev, ioctl, arg); 2805 2806 return -ENOTTY; 2807 } 2808 } 2809 2810 static int kvm_device_release(struct inode *inode, struct file *filp) 2811 { 2812 struct kvm_device *dev = filp->private_data; 2813 struct kvm *kvm = dev->kvm; 2814 2815 kvm_put_kvm(kvm); 2816 return 0; 2817 } 2818 2819 static const struct file_operations kvm_device_fops = { 2820 .unlocked_ioctl = kvm_device_ioctl, 2821 #ifdef CONFIG_KVM_COMPAT 2822 .compat_ioctl = kvm_device_ioctl, 2823 #endif 2824 .release = kvm_device_release, 2825 }; 2826 2827 struct kvm_device *kvm_device_from_filp(struct file *filp) 2828 { 2829 if (filp->f_op != &kvm_device_fops) 2830 return NULL; 2831 2832 return filp->private_data; 2833 } 2834 2835 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2836 #ifdef CONFIG_KVM_MPIC 2837 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2838 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2839 #endif 2840 2841 #ifdef CONFIG_KVM_XICS 2842 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2843 #endif 2844 }; 2845 2846 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2847 { 2848 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2849 return -ENOSPC; 2850 2851 if (kvm_device_ops_table[type] != NULL) 2852 return -EEXIST; 2853 2854 kvm_device_ops_table[type] = ops; 2855 return 0; 2856 } 2857 2858 void kvm_unregister_device_ops(u32 type) 2859 { 2860 if (kvm_device_ops_table[type] != NULL) 2861 kvm_device_ops_table[type] = NULL; 2862 } 2863 2864 static int kvm_ioctl_create_device(struct kvm *kvm, 2865 struct kvm_create_device *cd) 2866 { 2867 struct kvm_device_ops *ops = NULL; 2868 struct kvm_device *dev; 2869 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2870 int ret; 2871 2872 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2873 return -ENODEV; 2874 2875 ops = kvm_device_ops_table[cd->type]; 2876 if (ops == NULL) 2877 return -ENODEV; 2878 2879 if (test) 2880 return 0; 2881 2882 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2883 if (!dev) 2884 return -ENOMEM; 2885 2886 dev->ops = ops; 2887 dev->kvm = kvm; 2888 2889 mutex_lock(&kvm->lock); 2890 ret = ops->create(dev, cd->type); 2891 if (ret < 0) { 2892 mutex_unlock(&kvm->lock); 2893 kfree(dev); 2894 return ret; 2895 } 2896 list_add(&dev->vm_node, &kvm->devices); 2897 mutex_unlock(&kvm->lock); 2898 2899 if (ops->init) 2900 ops->init(dev); 2901 2902 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2903 if (ret < 0) { 2904 mutex_lock(&kvm->lock); 2905 list_del(&dev->vm_node); 2906 mutex_unlock(&kvm->lock); 2907 ops->destroy(dev); 2908 return ret; 2909 } 2910 2911 kvm_get_kvm(kvm); 2912 cd->fd = ret; 2913 return 0; 2914 } 2915 2916 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2917 { 2918 switch (arg) { 2919 case KVM_CAP_USER_MEMORY: 2920 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2921 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2922 case KVM_CAP_INTERNAL_ERROR_DATA: 2923 #ifdef CONFIG_HAVE_KVM_MSI 2924 case KVM_CAP_SIGNAL_MSI: 2925 #endif 2926 #ifdef CONFIG_HAVE_KVM_IRQFD 2927 case KVM_CAP_IRQFD: 2928 case KVM_CAP_IRQFD_RESAMPLE: 2929 #endif 2930 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2931 case KVM_CAP_CHECK_EXTENSION_VM: 2932 return 1; 2933 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2934 case KVM_CAP_IRQ_ROUTING: 2935 return KVM_MAX_IRQ_ROUTES; 2936 #endif 2937 #if KVM_ADDRESS_SPACE_NUM > 1 2938 case KVM_CAP_MULTI_ADDRESS_SPACE: 2939 return KVM_ADDRESS_SPACE_NUM; 2940 #endif 2941 case KVM_CAP_MAX_VCPU_ID: 2942 return KVM_MAX_VCPU_ID; 2943 default: 2944 break; 2945 } 2946 return kvm_vm_ioctl_check_extension(kvm, arg); 2947 } 2948 2949 static long kvm_vm_ioctl(struct file *filp, 2950 unsigned int ioctl, unsigned long arg) 2951 { 2952 struct kvm *kvm = filp->private_data; 2953 void __user *argp = (void __user *)arg; 2954 int r; 2955 2956 if (kvm->mm != current->mm) 2957 return -EIO; 2958 switch (ioctl) { 2959 case KVM_CREATE_VCPU: 2960 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2961 break; 2962 case KVM_SET_USER_MEMORY_REGION: { 2963 struct kvm_userspace_memory_region kvm_userspace_mem; 2964 2965 r = -EFAULT; 2966 if (copy_from_user(&kvm_userspace_mem, argp, 2967 sizeof(kvm_userspace_mem))) 2968 goto out; 2969 2970 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2971 break; 2972 } 2973 case KVM_GET_DIRTY_LOG: { 2974 struct kvm_dirty_log log; 2975 2976 r = -EFAULT; 2977 if (copy_from_user(&log, argp, sizeof(log))) 2978 goto out; 2979 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2980 break; 2981 } 2982 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2983 case KVM_REGISTER_COALESCED_MMIO: { 2984 struct kvm_coalesced_mmio_zone zone; 2985 2986 r = -EFAULT; 2987 if (copy_from_user(&zone, argp, sizeof(zone))) 2988 goto out; 2989 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2990 break; 2991 } 2992 case KVM_UNREGISTER_COALESCED_MMIO: { 2993 struct kvm_coalesced_mmio_zone zone; 2994 2995 r = -EFAULT; 2996 if (copy_from_user(&zone, argp, sizeof(zone))) 2997 goto out; 2998 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2999 break; 3000 } 3001 #endif 3002 case KVM_IRQFD: { 3003 struct kvm_irqfd data; 3004 3005 r = -EFAULT; 3006 if (copy_from_user(&data, argp, sizeof(data))) 3007 goto out; 3008 r = kvm_irqfd(kvm, &data); 3009 break; 3010 } 3011 case KVM_IOEVENTFD: { 3012 struct kvm_ioeventfd data; 3013 3014 r = -EFAULT; 3015 if (copy_from_user(&data, argp, sizeof(data))) 3016 goto out; 3017 r = kvm_ioeventfd(kvm, &data); 3018 break; 3019 } 3020 #ifdef CONFIG_HAVE_KVM_MSI 3021 case KVM_SIGNAL_MSI: { 3022 struct kvm_msi msi; 3023 3024 r = -EFAULT; 3025 if (copy_from_user(&msi, argp, sizeof(msi))) 3026 goto out; 3027 r = kvm_send_userspace_msi(kvm, &msi); 3028 break; 3029 } 3030 #endif 3031 #ifdef __KVM_HAVE_IRQ_LINE 3032 case KVM_IRQ_LINE_STATUS: 3033 case KVM_IRQ_LINE: { 3034 struct kvm_irq_level irq_event; 3035 3036 r = -EFAULT; 3037 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3038 goto out; 3039 3040 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3041 ioctl == KVM_IRQ_LINE_STATUS); 3042 if (r) 3043 goto out; 3044 3045 r = -EFAULT; 3046 if (ioctl == KVM_IRQ_LINE_STATUS) { 3047 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3048 goto out; 3049 } 3050 3051 r = 0; 3052 break; 3053 } 3054 #endif 3055 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3056 case KVM_SET_GSI_ROUTING: { 3057 struct kvm_irq_routing routing; 3058 struct kvm_irq_routing __user *urouting; 3059 struct kvm_irq_routing_entry *entries = NULL; 3060 3061 r = -EFAULT; 3062 if (copy_from_user(&routing, argp, sizeof(routing))) 3063 goto out; 3064 r = -EINVAL; 3065 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3066 goto out; 3067 if (routing.flags) 3068 goto out; 3069 if (routing.nr) { 3070 r = -ENOMEM; 3071 entries = vmalloc(routing.nr * sizeof(*entries)); 3072 if (!entries) 3073 goto out; 3074 r = -EFAULT; 3075 urouting = argp; 3076 if (copy_from_user(entries, urouting->entries, 3077 routing.nr * sizeof(*entries))) 3078 goto out_free_irq_routing; 3079 } 3080 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3081 routing.flags); 3082 out_free_irq_routing: 3083 vfree(entries); 3084 break; 3085 } 3086 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3087 case KVM_CREATE_DEVICE: { 3088 struct kvm_create_device cd; 3089 3090 r = -EFAULT; 3091 if (copy_from_user(&cd, argp, sizeof(cd))) 3092 goto out; 3093 3094 r = kvm_ioctl_create_device(kvm, &cd); 3095 if (r) 3096 goto out; 3097 3098 r = -EFAULT; 3099 if (copy_to_user(argp, &cd, sizeof(cd))) 3100 goto out; 3101 3102 r = 0; 3103 break; 3104 } 3105 case KVM_CHECK_EXTENSION: 3106 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3107 break; 3108 default: 3109 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3110 } 3111 out: 3112 return r; 3113 } 3114 3115 #ifdef CONFIG_KVM_COMPAT 3116 struct compat_kvm_dirty_log { 3117 __u32 slot; 3118 __u32 padding1; 3119 union { 3120 compat_uptr_t dirty_bitmap; /* one bit per page */ 3121 __u64 padding2; 3122 }; 3123 }; 3124 3125 static long kvm_vm_compat_ioctl(struct file *filp, 3126 unsigned int ioctl, unsigned long arg) 3127 { 3128 struct kvm *kvm = filp->private_data; 3129 int r; 3130 3131 if (kvm->mm != current->mm) 3132 return -EIO; 3133 switch (ioctl) { 3134 case KVM_GET_DIRTY_LOG: { 3135 struct compat_kvm_dirty_log compat_log; 3136 struct kvm_dirty_log log; 3137 3138 if (copy_from_user(&compat_log, (void __user *)arg, 3139 sizeof(compat_log))) 3140 return -EFAULT; 3141 log.slot = compat_log.slot; 3142 log.padding1 = compat_log.padding1; 3143 log.padding2 = compat_log.padding2; 3144 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3145 3146 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3147 break; 3148 } 3149 default: 3150 r = kvm_vm_ioctl(filp, ioctl, arg); 3151 } 3152 return r; 3153 } 3154 #endif 3155 3156 static struct file_operations kvm_vm_fops = { 3157 .release = kvm_vm_release, 3158 .unlocked_ioctl = kvm_vm_ioctl, 3159 #ifdef CONFIG_KVM_COMPAT 3160 .compat_ioctl = kvm_vm_compat_ioctl, 3161 #endif 3162 .llseek = noop_llseek, 3163 }; 3164 3165 static int kvm_dev_ioctl_create_vm(unsigned long type) 3166 { 3167 int r; 3168 struct kvm *kvm; 3169 struct file *file; 3170 3171 kvm = kvm_create_vm(type); 3172 if (IS_ERR(kvm)) 3173 return PTR_ERR(kvm); 3174 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3175 r = kvm_coalesced_mmio_init(kvm); 3176 if (r < 0) { 3177 kvm_put_kvm(kvm); 3178 return r; 3179 } 3180 #endif 3181 r = get_unused_fd_flags(O_CLOEXEC); 3182 if (r < 0) { 3183 kvm_put_kvm(kvm); 3184 return r; 3185 } 3186 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3187 if (IS_ERR(file)) { 3188 put_unused_fd(r); 3189 kvm_put_kvm(kvm); 3190 return PTR_ERR(file); 3191 } 3192 3193 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3194 put_unused_fd(r); 3195 fput(file); 3196 return -ENOMEM; 3197 } 3198 3199 fd_install(r, file); 3200 return r; 3201 } 3202 3203 static long kvm_dev_ioctl(struct file *filp, 3204 unsigned int ioctl, unsigned long arg) 3205 { 3206 long r = -EINVAL; 3207 3208 switch (ioctl) { 3209 case KVM_GET_API_VERSION: 3210 if (arg) 3211 goto out; 3212 r = KVM_API_VERSION; 3213 break; 3214 case KVM_CREATE_VM: 3215 r = kvm_dev_ioctl_create_vm(arg); 3216 break; 3217 case KVM_CHECK_EXTENSION: 3218 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3219 break; 3220 case KVM_GET_VCPU_MMAP_SIZE: 3221 if (arg) 3222 goto out; 3223 r = PAGE_SIZE; /* struct kvm_run */ 3224 #ifdef CONFIG_X86 3225 r += PAGE_SIZE; /* pio data page */ 3226 #endif 3227 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3228 r += PAGE_SIZE; /* coalesced mmio ring page */ 3229 #endif 3230 break; 3231 case KVM_TRACE_ENABLE: 3232 case KVM_TRACE_PAUSE: 3233 case KVM_TRACE_DISABLE: 3234 r = -EOPNOTSUPP; 3235 break; 3236 default: 3237 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3238 } 3239 out: 3240 return r; 3241 } 3242 3243 static struct file_operations kvm_chardev_ops = { 3244 .unlocked_ioctl = kvm_dev_ioctl, 3245 .compat_ioctl = kvm_dev_ioctl, 3246 .llseek = noop_llseek, 3247 }; 3248 3249 static struct miscdevice kvm_dev = { 3250 KVM_MINOR, 3251 "kvm", 3252 &kvm_chardev_ops, 3253 }; 3254 3255 static void hardware_enable_nolock(void *junk) 3256 { 3257 int cpu = raw_smp_processor_id(); 3258 int r; 3259 3260 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3261 return; 3262 3263 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3264 3265 r = kvm_arch_hardware_enable(); 3266 3267 if (r) { 3268 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3269 atomic_inc(&hardware_enable_failed); 3270 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3271 } 3272 } 3273 3274 static int kvm_starting_cpu(unsigned int cpu) 3275 { 3276 raw_spin_lock(&kvm_count_lock); 3277 if (kvm_usage_count) 3278 hardware_enable_nolock(NULL); 3279 raw_spin_unlock(&kvm_count_lock); 3280 return 0; 3281 } 3282 3283 static void hardware_disable_nolock(void *junk) 3284 { 3285 int cpu = raw_smp_processor_id(); 3286 3287 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3288 return; 3289 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3290 kvm_arch_hardware_disable(); 3291 } 3292 3293 static int kvm_dying_cpu(unsigned int cpu) 3294 { 3295 raw_spin_lock(&kvm_count_lock); 3296 if (kvm_usage_count) 3297 hardware_disable_nolock(NULL); 3298 raw_spin_unlock(&kvm_count_lock); 3299 return 0; 3300 } 3301 3302 static void hardware_disable_all_nolock(void) 3303 { 3304 BUG_ON(!kvm_usage_count); 3305 3306 kvm_usage_count--; 3307 if (!kvm_usage_count) 3308 on_each_cpu(hardware_disable_nolock, NULL, 1); 3309 } 3310 3311 static void hardware_disable_all(void) 3312 { 3313 raw_spin_lock(&kvm_count_lock); 3314 hardware_disable_all_nolock(); 3315 raw_spin_unlock(&kvm_count_lock); 3316 } 3317 3318 static int hardware_enable_all(void) 3319 { 3320 int r = 0; 3321 3322 raw_spin_lock(&kvm_count_lock); 3323 3324 kvm_usage_count++; 3325 if (kvm_usage_count == 1) { 3326 atomic_set(&hardware_enable_failed, 0); 3327 on_each_cpu(hardware_enable_nolock, NULL, 1); 3328 3329 if (atomic_read(&hardware_enable_failed)) { 3330 hardware_disable_all_nolock(); 3331 r = -EBUSY; 3332 } 3333 } 3334 3335 raw_spin_unlock(&kvm_count_lock); 3336 3337 return r; 3338 } 3339 3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3341 void *v) 3342 { 3343 /* 3344 * Some (well, at least mine) BIOSes hang on reboot if 3345 * in vmx root mode. 3346 * 3347 * And Intel TXT required VMX off for all cpu when system shutdown. 3348 */ 3349 pr_info("kvm: exiting hardware virtualization\n"); 3350 kvm_rebooting = true; 3351 on_each_cpu(hardware_disable_nolock, NULL, 1); 3352 return NOTIFY_OK; 3353 } 3354 3355 static struct notifier_block kvm_reboot_notifier = { 3356 .notifier_call = kvm_reboot, 3357 .priority = 0, 3358 }; 3359 3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3361 { 3362 int i; 3363 3364 for (i = 0; i < bus->dev_count; i++) { 3365 struct kvm_io_device *pos = bus->range[i].dev; 3366 3367 kvm_iodevice_destructor(pos); 3368 } 3369 kfree(bus); 3370 } 3371 3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3373 const struct kvm_io_range *r2) 3374 { 3375 gpa_t addr1 = r1->addr; 3376 gpa_t addr2 = r2->addr; 3377 3378 if (addr1 < addr2) 3379 return -1; 3380 3381 /* If r2->len == 0, match the exact address. If r2->len != 0, 3382 * accept any overlapping write. Any order is acceptable for 3383 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3384 * we process all of them. 3385 */ 3386 if (r2->len) { 3387 addr1 += r1->len; 3388 addr2 += r2->len; 3389 } 3390 3391 if (addr1 > addr2) 3392 return 1; 3393 3394 return 0; 3395 } 3396 3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3398 { 3399 return kvm_io_bus_cmp(p1, p2); 3400 } 3401 3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3403 gpa_t addr, int len) 3404 { 3405 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3406 .addr = addr, 3407 .len = len, 3408 .dev = dev, 3409 }; 3410 3411 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3412 kvm_io_bus_sort_cmp, NULL); 3413 3414 return 0; 3415 } 3416 3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3418 gpa_t addr, int len) 3419 { 3420 struct kvm_io_range *range, key; 3421 int off; 3422 3423 key = (struct kvm_io_range) { 3424 .addr = addr, 3425 .len = len, 3426 }; 3427 3428 range = bsearch(&key, bus->range, bus->dev_count, 3429 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3430 if (range == NULL) 3431 return -ENOENT; 3432 3433 off = range - bus->range; 3434 3435 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3436 off--; 3437 3438 return off; 3439 } 3440 3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3442 struct kvm_io_range *range, const void *val) 3443 { 3444 int idx; 3445 3446 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3447 if (idx < 0) 3448 return -EOPNOTSUPP; 3449 3450 while (idx < bus->dev_count && 3451 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3452 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3453 range->len, val)) 3454 return idx; 3455 idx++; 3456 } 3457 3458 return -EOPNOTSUPP; 3459 } 3460 3461 /* kvm_io_bus_write - called under kvm->slots_lock */ 3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3463 int len, const void *val) 3464 { 3465 struct kvm_io_bus *bus; 3466 struct kvm_io_range range; 3467 int r; 3468 3469 range = (struct kvm_io_range) { 3470 .addr = addr, 3471 .len = len, 3472 }; 3473 3474 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3475 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3476 return r < 0 ? r : 0; 3477 } 3478 3479 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3480 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3481 gpa_t addr, int len, const void *val, long cookie) 3482 { 3483 struct kvm_io_bus *bus; 3484 struct kvm_io_range range; 3485 3486 range = (struct kvm_io_range) { 3487 .addr = addr, 3488 .len = len, 3489 }; 3490 3491 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3492 3493 /* First try the device referenced by cookie. */ 3494 if ((cookie >= 0) && (cookie < bus->dev_count) && 3495 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3496 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3497 val)) 3498 return cookie; 3499 3500 /* 3501 * cookie contained garbage; fall back to search and return the 3502 * correct cookie value. 3503 */ 3504 return __kvm_io_bus_write(vcpu, bus, &range, val); 3505 } 3506 3507 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3508 struct kvm_io_range *range, void *val) 3509 { 3510 int idx; 3511 3512 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3513 if (idx < 0) 3514 return -EOPNOTSUPP; 3515 3516 while (idx < bus->dev_count && 3517 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3518 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3519 range->len, val)) 3520 return idx; 3521 idx++; 3522 } 3523 3524 return -EOPNOTSUPP; 3525 } 3526 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3527 3528 /* kvm_io_bus_read - called under kvm->slots_lock */ 3529 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3530 int len, void *val) 3531 { 3532 struct kvm_io_bus *bus; 3533 struct kvm_io_range range; 3534 int r; 3535 3536 range = (struct kvm_io_range) { 3537 .addr = addr, 3538 .len = len, 3539 }; 3540 3541 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3542 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3543 return r < 0 ? r : 0; 3544 } 3545 3546 3547 /* Caller must hold slots_lock. */ 3548 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3549 int len, struct kvm_io_device *dev) 3550 { 3551 struct kvm_io_bus *new_bus, *bus; 3552 3553 bus = kvm->buses[bus_idx]; 3554 /* exclude ioeventfd which is limited by maximum fd */ 3555 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3556 return -ENOSPC; 3557 3558 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3559 sizeof(struct kvm_io_range)), GFP_KERNEL); 3560 if (!new_bus) 3561 return -ENOMEM; 3562 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3563 sizeof(struct kvm_io_range))); 3564 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3565 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3566 synchronize_srcu_expedited(&kvm->srcu); 3567 kfree(bus); 3568 3569 return 0; 3570 } 3571 3572 /* Caller must hold slots_lock. */ 3573 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3574 struct kvm_io_device *dev) 3575 { 3576 int i, r; 3577 struct kvm_io_bus *new_bus, *bus; 3578 3579 bus = kvm->buses[bus_idx]; 3580 r = -ENOENT; 3581 for (i = 0; i < bus->dev_count; i++) 3582 if (bus->range[i].dev == dev) { 3583 r = 0; 3584 break; 3585 } 3586 3587 if (r) 3588 return r; 3589 3590 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3591 sizeof(struct kvm_io_range)), GFP_KERNEL); 3592 if (!new_bus) 3593 return -ENOMEM; 3594 3595 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3596 new_bus->dev_count--; 3597 memcpy(new_bus->range + i, bus->range + i + 1, 3598 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3599 3600 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3601 synchronize_srcu_expedited(&kvm->srcu); 3602 kfree(bus); 3603 return r; 3604 } 3605 3606 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3607 gpa_t addr) 3608 { 3609 struct kvm_io_bus *bus; 3610 int dev_idx, srcu_idx; 3611 struct kvm_io_device *iodev = NULL; 3612 3613 srcu_idx = srcu_read_lock(&kvm->srcu); 3614 3615 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3616 3617 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3618 if (dev_idx < 0) 3619 goto out_unlock; 3620 3621 iodev = bus->range[dev_idx].dev; 3622 3623 out_unlock: 3624 srcu_read_unlock(&kvm->srcu, srcu_idx); 3625 3626 return iodev; 3627 } 3628 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3629 3630 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3631 int (*get)(void *, u64 *), int (*set)(void *, u64), 3632 const char *fmt) 3633 { 3634 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3635 inode->i_private; 3636 3637 /* The debugfs files are a reference to the kvm struct which 3638 * is still valid when kvm_destroy_vm is called. 3639 * To avoid the race between open and the removal of the debugfs 3640 * directory we test against the users count. 3641 */ 3642 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3643 return -ENOENT; 3644 3645 if (simple_attr_open(inode, file, get, set, fmt)) { 3646 kvm_put_kvm(stat_data->kvm); 3647 return -ENOMEM; 3648 } 3649 3650 return 0; 3651 } 3652 3653 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3654 { 3655 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3656 inode->i_private; 3657 3658 simple_attr_release(inode, file); 3659 kvm_put_kvm(stat_data->kvm); 3660 3661 return 0; 3662 } 3663 3664 static int vm_stat_get_per_vm(void *data, u64 *val) 3665 { 3666 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3667 3668 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3669 3670 return 0; 3671 } 3672 3673 static int vm_stat_clear_per_vm(void *data, u64 val) 3674 { 3675 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3676 3677 if (val) 3678 return -EINVAL; 3679 3680 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3681 3682 return 0; 3683 } 3684 3685 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3686 { 3687 __simple_attr_check_format("%llu\n", 0ull); 3688 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3689 vm_stat_clear_per_vm, "%llu\n"); 3690 } 3691 3692 static const struct file_operations vm_stat_get_per_vm_fops = { 3693 .owner = THIS_MODULE, 3694 .open = vm_stat_get_per_vm_open, 3695 .release = kvm_debugfs_release, 3696 .read = simple_attr_read, 3697 .write = simple_attr_write, 3698 .llseek = generic_file_llseek, 3699 }; 3700 3701 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3702 { 3703 int i; 3704 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3705 struct kvm_vcpu *vcpu; 3706 3707 *val = 0; 3708 3709 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3710 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3711 3712 return 0; 3713 } 3714 3715 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3716 { 3717 int i; 3718 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3719 struct kvm_vcpu *vcpu; 3720 3721 if (val) 3722 return -EINVAL; 3723 3724 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3725 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3726 3727 return 0; 3728 } 3729 3730 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3731 { 3732 __simple_attr_check_format("%llu\n", 0ull); 3733 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3734 vcpu_stat_clear_per_vm, "%llu\n"); 3735 } 3736 3737 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3738 .owner = THIS_MODULE, 3739 .open = vcpu_stat_get_per_vm_open, 3740 .release = kvm_debugfs_release, 3741 .read = simple_attr_read, 3742 .write = simple_attr_write, 3743 .llseek = generic_file_llseek, 3744 }; 3745 3746 static const struct file_operations *stat_fops_per_vm[] = { 3747 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3748 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3749 }; 3750 3751 static int vm_stat_get(void *_offset, u64 *val) 3752 { 3753 unsigned offset = (long)_offset; 3754 struct kvm *kvm; 3755 struct kvm_stat_data stat_tmp = {.offset = offset}; 3756 u64 tmp_val; 3757 3758 *val = 0; 3759 spin_lock(&kvm_lock); 3760 list_for_each_entry(kvm, &vm_list, vm_list) { 3761 stat_tmp.kvm = kvm; 3762 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3763 *val += tmp_val; 3764 } 3765 spin_unlock(&kvm_lock); 3766 return 0; 3767 } 3768 3769 static int vm_stat_clear(void *_offset, u64 val) 3770 { 3771 unsigned offset = (long)_offset; 3772 struct kvm *kvm; 3773 struct kvm_stat_data stat_tmp = {.offset = offset}; 3774 3775 if (val) 3776 return -EINVAL; 3777 3778 spin_lock(&kvm_lock); 3779 list_for_each_entry(kvm, &vm_list, vm_list) { 3780 stat_tmp.kvm = kvm; 3781 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3782 } 3783 spin_unlock(&kvm_lock); 3784 3785 return 0; 3786 } 3787 3788 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3789 3790 static int vcpu_stat_get(void *_offset, u64 *val) 3791 { 3792 unsigned offset = (long)_offset; 3793 struct kvm *kvm; 3794 struct kvm_stat_data stat_tmp = {.offset = offset}; 3795 u64 tmp_val; 3796 3797 *val = 0; 3798 spin_lock(&kvm_lock); 3799 list_for_each_entry(kvm, &vm_list, vm_list) { 3800 stat_tmp.kvm = kvm; 3801 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3802 *val += tmp_val; 3803 } 3804 spin_unlock(&kvm_lock); 3805 return 0; 3806 } 3807 3808 static int vcpu_stat_clear(void *_offset, u64 val) 3809 { 3810 unsigned offset = (long)_offset; 3811 struct kvm *kvm; 3812 struct kvm_stat_data stat_tmp = {.offset = offset}; 3813 3814 if (val) 3815 return -EINVAL; 3816 3817 spin_lock(&kvm_lock); 3818 list_for_each_entry(kvm, &vm_list, vm_list) { 3819 stat_tmp.kvm = kvm; 3820 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3821 } 3822 spin_unlock(&kvm_lock); 3823 3824 return 0; 3825 } 3826 3827 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3828 "%llu\n"); 3829 3830 static const struct file_operations *stat_fops[] = { 3831 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3832 [KVM_STAT_VM] = &vm_stat_fops, 3833 }; 3834 3835 static int kvm_init_debug(void) 3836 { 3837 int r = -EEXIST; 3838 struct kvm_stats_debugfs_item *p; 3839 3840 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3841 if (kvm_debugfs_dir == NULL) 3842 goto out; 3843 3844 kvm_debugfs_num_entries = 0; 3845 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3846 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3847 (void *)(long)p->offset, 3848 stat_fops[p->kind])) 3849 goto out_dir; 3850 } 3851 3852 return 0; 3853 3854 out_dir: 3855 debugfs_remove_recursive(kvm_debugfs_dir); 3856 out: 3857 return r; 3858 } 3859 3860 static int kvm_suspend(void) 3861 { 3862 if (kvm_usage_count) 3863 hardware_disable_nolock(NULL); 3864 return 0; 3865 } 3866 3867 static void kvm_resume(void) 3868 { 3869 if (kvm_usage_count) { 3870 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3871 hardware_enable_nolock(NULL); 3872 } 3873 } 3874 3875 static struct syscore_ops kvm_syscore_ops = { 3876 .suspend = kvm_suspend, 3877 .resume = kvm_resume, 3878 }; 3879 3880 static inline 3881 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3882 { 3883 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3884 } 3885 3886 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3887 { 3888 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3889 3890 if (vcpu->preempted) 3891 vcpu->preempted = false; 3892 3893 kvm_arch_sched_in(vcpu, cpu); 3894 3895 kvm_arch_vcpu_load(vcpu, cpu); 3896 } 3897 3898 static void kvm_sched_out(struct preempt_notifier *pn, 3899 struct task_struct *next) 3900 { 3901 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3902 3903 if (current->state == TASK_RUNNING) 3904 vcpu->preempted = true; 3905 kvm_arch_vcpu_put(vcpu); 3906 } 3907 3908 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3909 struct module *module) 3910 { 3911 int r; 3912 int cpu; 3913 3914 r = kvm_arch_init(opaque); 3915 if (r) 3916 goto out_fail; 3917 3918 /* 3919 * kvm_arch_init makes sure there's at most one caller 3920 * for architectures that support multiple implementations, 3921 * like intel and amd on x86. 3922 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3923 * conflicts in case kvm is already setup for another implementation. 3924 */ 3925 r = kvm_irqfd_init(); 3926 if (r) 3927 goto out_irqfd; 3928 3929 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3930 r = -ENOMEM; 3931 goto out_free_0; 3932 } 3933 3934 r = kvm_arch_hardware_setup(); 3935 if (r < 0) 3936 goto out_free_0a; 3937 3938 for_each_online_cpu(cpu) { 3939 smp_call_function_single(cpu, 3940 kvm_arch_check_processor_compat, 3941 &r, 1); 3942 if (r < 0) 3943 goto out_free_1; 3944 } 3945 3946 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 3947 kvm_starting_cpu, kvm_dying_cpu); 3948 if (r) 3949 goto out_free_2; 3950 register_reboot_notifier(&kvm_reboot_notifier); 3951 3952 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3953 if (!vcpu_align) 3954 vcpu_align = __alignof__(struct kvm_vcpu); 3955 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3956 0, NULL); 3957 if (!kvm_vcpu_cache) { 3958 r = -ENOMEM; 3959 goto out_free_3; 3960 } 3961 3962 r = kvm_async_pf_init(); 3963 if (r) 3964 goto out_free; 3965 3966 kvm_chardev_ops.owner = module; 3967 kvm_vm_fops.owner = module; 3968 kvm_vcpu_fops.owner = module; 3969 3970 r = misc_register(&kvm_dev); 3971 if (r) { 3972 pr_err("kvm: misc device register failed\n"); 3973 goto out_unreg; 3974 } 3975 3976 register_syscore_ops(&kvm_syscore_ops); 3977 3978 kvm_preempt_ops.sched_in = kvm_sched_in; 3979 kvm_preempt_ops.sched_out = kvm_sched_out; 3980 3981 r = kvm_init_debug(); 3982 if (r) { 3983 pr_err("kvm: create debugfs files failed\n"); 3984 goto out_undebugfs; 3985 } 3986 3987 r = kvm_vfio_ops_init(); 3988 WARN_ON(r); 3989 3990 return 0; 3991 3992 out_undebugfs: 3993 unregister_syscore_ops(&kvm_syscore_ops); 3994 misc_deregister(&kvm_dev); 3995 out_unreg: 3996 kvm_async_pf_deinit(); 3997 out_free: 3998 kmem_cache_destroy(kvm_vcpu_cache); 3999 out_free_3: 4000 unregister_reboot_notifier(&kvm_reboot_notifier); 4001 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4002 out_free_2: 4003 out_free_1: 4004 kvm_arch_hardware_unsetup(); 4005 out_free_0a: 4006 free_cpumask_var(cpus_hardware_enabled); 4007 out_free_0: 4008 kvm_irqfd_exit(); 4009 out_irqfd: 4010 kvm_arch_exit(); 4011 out_fail: 4012 return r; 4013 } 4014 EXPORT_SYMBOL_GPL(kvm_init); 4015 4016 void kvm_exit(void) 4017 { 4018 debugfs_remove_recursive(kvm_debugfs_dir); 4019 misc_deregister(&kvm_dev); 4020 kmem_cache_destroy(kvm_vcpu_cache); 4021 kvm_async_pf_deinit(); 4022 unregister_syscore_ops(&kvm_syscore_ops); 4023 unregister_reboot_notifier(&kvm_reboot_notifier); 4024 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4025 on_each_cpu(hardware_disable_nolock, NULL, 1); 4026 kvm_arch_hardware_unsetup(); 4027 kvm_arch_exit(); 4028 kvm_irqfd_exit(); 4029 free_cpumask_var(cpus_hardware_enabled); 4030 kvm_vfio_ops_exit(); 4031 } 4032 EXPORT_SYMBOL_GPL(kvm_exit); 4033