xref: /linux/virt/kvm/kvm_main.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86 
87 /*
88  * Ordering of locks:
89  *
90  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91  */
92 
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96 
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100 
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103 
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105 
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108 
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111 
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 			   unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116 				  unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120 
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122 
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125 
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128 
129 static bool largepages_enabled = true;
130 
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133 	if (pfn_valid(pfn))
134 		return PageReserved(pfn_to_page(pfn));
135 
136 	return true;
137 }
138 
139 /*
140  * Switches to specified vcpu, until a matching vcpu_put()
141  */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144 	int cpu;
145 
146 	if (mutex_lock_killable(&vcpu->mutex))
147 		return -EINTR;
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155 
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 	preempt_disable();
159 	kvm_arch_vcpu_put(vcpu);
160 	preempt_notifier_unregister(&vcpu->preempt_notifier);
161 	preempt_enable();
162 	mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165 
166 static void ack_flush(void *_completed)
167 {
168 }
169 
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 	int i, cpu, me;
173 	cpumask_var_t cpus;
174 	bool called = true;
175 	struct kvm_vcpu *vcpu;
176 
177 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178 
179 	me = get_cpu();
180 	kvm_for_each_vcpu(i, vcpu, kvm) {
181 		kvm_make_request(req, vcpu);
182 		cpu = vcpu->cpu;
183 
184 		/* Set ->requests bit before we read ->mode. */
185 		smp_mb__after_atomic();
186 
187 		if (cpus != NULL && cpu != -1 && cpu != me &&
188 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 			cpumask_set_cpu(cpu, cpus);
190 	}
191 	if (unlikely(cpus == NULL))
192 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 	else if (!cpumask_empty(cpus))
194 		smp_call_function_many(cpus, ack_flush, NULL, 1);
195 	else
196 		called = false;
197 	put_cpu();
198 	free_cpumask_var(cpus);
199 	return called;
200 }
201 
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 	/*
206 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207 	 * kvm_make_all_cpus_request.
208 	 */
209 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210 
211 	/*
212 	 * We want to publish modifications to the page tables before reading
213 	 * mode. Pairs with a memory barrier in arch-specific code.
214 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
216 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217 	 *
218 	 * There is already an smp_mb__after_atomic() before
219 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220 	 * barrier here.
221 	 */
222 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223 		++kvm->stat.remote_tlb_flush;
224 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228 
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233 
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236 	struct page *page;
237 	int r;
238 
239 	mutex_init(&vcpu->mutex);
240 	vcpu->cpu = -1;
241 	vcpu->kvm = kvm;
242 	vcpu->vcpu_id = id;
243 	vcpu->pid = NULL;
244 	init_swait_queue_head(&vcpu->wq);
245 	kvm_async_pf_vcpu_init(vcpu);
246 
247 	vcpu->pre_pcpu = -1;
248 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249 
250 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251 	if (!page) {
252 		r = -ENOMEM;
253 		goto fail;
254 	}
255 	vcpu->run = page_address(page);
256 
257 	kvm_vcpu_set_in_spin_loop(vcpu, false);
258 	kvm_vcpu_set_dy_eligible(vcpu, false);
259 	vcpu->preempted = false;
260 
261 	r = kvm_arch_vcpu_init(vcpu);
262 	if (r < 0)
263 		goto fail_free_run;
264 	return 0;
265 
266 fail_free_run:
267 	free_page((unsigned long)vcpu->run);
268 fail:
269 	return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272 
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275 	put_pid(vcpu->pid);
276 	kvm_arch_vcpu_uninit(vcpu);
277 	free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280 
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284 	return container_of(mn, struct kvm, mmu_notifier);
285 }
286 
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288 					     struct mm_struct *mm,
289 					     unsigned long address)
290 {
291 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 	int need_tlb_flush, idx;
293 
294 	/*
295 	 * When ->invalidate_page runs, the linux pte has been zapped
296 	 * already but the page is still allocated until
297 	 * ->invalidate_page returns. So if we increase the sequence
298 	 * here the kvm page fault will notice if the spte can't be
299 	 * established because the page is going to be freed. If
300 	 * instead the kvm page fault establishes the spte before
301 	 * ->invalidate_page runs, kvm_unmap_hva will release it
302 	 * before returning.
303 	 *
304 	 * The sequence increase only need to be seen at spin_unlock
305 	 * time, and not at spin_lock time.
306 	 *
307 	 * Increasing the sequence after the spin_unlock would be
308 	 * unsafe because the kvm page fault could then establish the
309 	 * pte after kvm_unmap_hva returned, without noticing the page
310 	 * is going to be freed.
311 	 */
312 	idx = srcu_read_lock(&kvm->srcu);
313 	spin_lock(&kvm->mmu_lock);
314 
315 	kvm->mmu_notifier_seq++;
316 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317 	/* we've to flush the tlb before the pages can be freed */
318 	if (need_tlb_flush)
319 		kvm_flush_remote_tlbs(kvm);
320 
321 	spin_unlock(&kvm->mmu_lock);
322 
323 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324 
325 	srcu_read_unlock(&kvm->srcu, idx);
326 }
327 
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329 					struct mm_struct *mm,
330 					unsigned long address,
331 					pte_t pte)
332 {
333 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 	int idx;
335 
336 	idx = srcu_read_lock(&kvm->srcu);
337 	spin_lock(&kvm->mmu_lock);
338 	kvm->mmu_notifier_seq++;
339 	kvm_set_spte_hva(kvm, address, pte);
340 	spin_unlock(&kvm->mmu_lock);
341 	srcu_read_unlock(&kvm->srcu, idx);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345 						    struct mm_struct *mm,
346 						    unsigned long start,
347 						    unsigned long end)
348 {
349 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 	int need_tlb_flush = 0, idx;
351 
352 	idx = srcu_read_lock(&kvm->srcu);
353 	spin_lock(&kvm->mmu_lock);
354 	/*
355 	 * The count increase must become visible at unlock time as no
356 	 * spte can be established without taking the mmu_lock and
357 	 * count is also read inside the mmu_lock critical section.
358 	 */
359 	kvm->mmu_notifier_count++;
360 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361 	need_tlb_flush |= kvm->tlbs_dirty;
362 	/* we've to flush the tlb before the pages can be freed */
363 	if (need_tlb_flush)
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371 						  struct mm_struct *mm,
372 						  unsigned long start,
373 						  unsigned long end)
374 {
375 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 
377 	spin_lock(&kvm->mmu_lock);
378 	/*
379 	 * This sequence increase will notify the kvm page fault that
380 	 * the page that is going to be mapped in the spte could have
381 	 * been freed.
382 	 */
383 	kvm->mmu_notifier_seq++;
384 	smp_wmb();
385 	/*
386 	 * The above sequence increase must be visible before the
387 	 * below count decrease, which is ensured by the smp_wmb above
388 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
389 	 */
390 	kvm->mmu_notifier_count--;
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395 
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397 					      struct mm_struct *mm,
398 					      unsigned long start,
399 					      unsigned long end)
400 {
401 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 	int young, idx;
403 
404 	idx = srcu_read_lock(&kvm->srcu);
405 	spin_lock(&kvm->mmu_lock);
406 
407 	young = kvm_age_hva(kvm, start, end);
408 	if (young)
409 		kvm_flush_remote_tlbs(kvm);
410 
411 	spin_unlock(&kvm->mmu_lock);
412 	srcu_read_unlock(&kvm->srcu, idx);
413 
414 	return young;
415 }
416 
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418 					struct mm_struct *mm,
419 					unsigned long start,
420 					unsigned long end)
421 {
422 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 	int young, idx;
424 
425 	idx = srcu_read_lock(&kvm->srcu);
426 	spin_lock(&kvm->mmu_lock);
427 	/*
428 	 * Even though we do not flush TLB, this will still adversely
429 	 * affect performance on pre-Haswell Intel EPT, where there is
430 	 * no EPT Access Bit to clear so that we have to tear down EPT
431 	 * tables instead. If we find this unacceptable, we can always
432 	 * add a parameter to kvm_age_hva so that it effectively doesn't
433 	 * do anything on clear_young.
434 	 *
435 	 * Also note that currently we never issue secondary TLB flushes
436 	 * from clear_young, leaving this job up to the regular system
437 	 * cadence. If we find this inaccurate, we might come up with a
438 	 * more sophisticated heuristic later.
439 	 */
440 	young = kvm_age_hva(kvm, start, end);
441 	spin_unlock(&kvm->mmu_lock);
442 	srcu_read_unlock(&kvm->srcu, idx);
443 
444 	return young;
445 }
446 
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448 				       struct mm_struct *mm,
449 				       unsigned long address)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	young = kvm_test_age_hva(kvm, address);
457 	spin_unlock(&kvm->mmu_lock);
458 	srcu_read_unlock(&kvm->srcu, idx);
459 
460 	return young;
461 }
462 
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464 				     struct mm_struct *mm)
465 {
466 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 	int idx;
468 
469 	idx = srcu_read_lock(&kvm->srcu);
470 	kvm_arch_flush_shadow_all(kvm);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 }
473 
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
476 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
477 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
478 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
479 	.clear_young		= kvm_mmu_notifier_clear_young,
480 	.test_young		= kvm_mmu_notifier_test_young,
481 	.change_pte		= kvm_mmu_notifier_change_pte,
482 	.release		= kvm_mmu_notifier_release,
483 };
484 
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490 
491 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492 
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495 	return 0;
496 }
497 
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499 
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502 	int i;
503 	struct kvm_memslots *slots;
504 
505 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506 	if (!slots)
507 		return NULL;
508 
509 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
510 		slots->id_to_index[i] = slots->memslots[i].id = i;
511 
512 	return slots;
513 }
514 
515 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
516 {
517 	if (!memslot->dirty_bitmap)
518 		return;
519 
520 	kvfree(memslot->dirty_bitmap);
521 	memslot->dirty_bitmap = NULL;
522 }
523 
524 /*
525  * Free any memory in @free but not in @dont.
526  */
527 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
528 			      struct kvm_memory_slot *dont)
529 {
530 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
531 		kvm_destroy_dirty_bitmap(free);
532 
533 	kvm_arch_free_memslot(kvm, free, dont);
534 
535 	free->npages = 0;
536 }
537 
538 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
539 {
540 	struct kvm_memory_slot *memslot;
541 
542 	if (!slots)
543 		return;
544 
545 	kvm_for_each_memslot(memslot, slots)
546 		kvm_free_memslot(kvm, memslot, NULL);
547 
548 	kvfree(slots);
549 }
550 
551 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
552 {
553 	int i;
554 
555 	if (!kvm->debugfs_dentry)
556 		return;
557 
558 	debugfs_remove_recursive(kvm->debugfs_dentry);
559 
560 	if (kvm->debugfs_stat_data) {
561 		for (i = 0; i < kvm_debugfs_num_entries; i++)
562 			kfree(kvm->debugfs_stat_data[i]);
563 		kfree(kvm->debugfs_stat_data);
564 	}
565 }
566 
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569 	char dir_name[ITOA_MAX_LEN * 2];
570 	struct kvm_stat_data *stat_data;
571 	struct kvm_stats_debugfs_item *p;
572 
573 	if (!debugfs_initialized())
574 		return 0;
575 
576 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578 						 kvm_debugfs_dir);
579 	if (!kvm->debugfs_dentry)
580 		return -ENOMEM;
581 
582 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 					 sizeof(*kvm->debugfs_stat_data),
584 					 GFP_KERNEL);
585 	if (!kvm->debugfs_stat_data)
586 		return -ENOMEM;
587 
588 	for (p = debugfs_entries; p->name; p++) {
589 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590 		if (!stat_data)
591 			return -ENOMEM;
592 
593 		stat_data->kvm = kvm;
594 		stat_data->offset = p->offset;
595 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 		if (!debugfs_create_file(p->name, 0644,
597 					 kvm->debugfs_dentry,
598 					 stat_data,
599 					 stat_fops_per_vm[p->kind]))
600 			return -ENOMEM;
601 	}
602 	return 0;
603 }
604 
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607 	int r, i;
608 	struct kvm *kvm = kvm_arch_alloc_vm();
609 
610 	if (!kvm)
611 		return ERR_PTR(-ENOMEM);
612 
613 	spin_lock_init(&kvm->mmu_lock);
614 	atomic_inc(&current->mm->mm_count);
615 	kvm->mm = current->mm;
616 	kvm_eventfd_init(kvm);
617 	mutex_init(&kvm->lock);
618 	mutex_init(&kvm->irq_lock);
619 	mutex_init(&kvm->slots_lock);
620 	atomic_set(&kvm->users_count, 1);
621 	INIT_LIST_HEAD(&kvm->devices);
622 
623 	r = kvm_arch_init_vm(kvm, type);
624 	if (r)
625 		goto out_err_no_disable;
626 
627 	r = hardware_enable_all();
628 	if (r)
629 		goto out_err_no_disable;
630 
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634 
635 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636 
637 	r = -ENOMEM;
638 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 		struct kvm_memslots *slots = kvm_alloc_memslots();
640 		if (!slots)
641 			goto out_err_no_srcu;
642 		/*
643 		 * Generations must be different for each address space.
644 		 * Init kvm generation close to the maximum to easily test the
645 		 * code of handling generation number wrap-around.
646 		 */
647 		slots->generation = i * 2 - 150;
648 		rcu_assign_pointer(kvm->memslots[i], slots);
649 	}
650 
651 	if (init_srcu_struct(&kvm->srcu))
652 		goto out_err_no_srcu;
653 	if (init_srcu_struct(&kvm->irq_srcu))
654 		goto out_err_no_irq_srcu;
655 	for (i = 0; i < KVM_NR_BUSES; i++) {
656 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
657 					GFP_KERNEL);
658 		if (!kvm->buses[i])
659 			goto out_err;
660 	}
661 
662 	r = kvm_init_mmu_notifier(kvm);
663 	if (r)
664 		goto out_err;
665 
666 	spin_lock(&kvm_lock);
667 	list_add(&kvm->vm_list, &vm_list);
668 	spin_unlock(&kvm_lock);
669 
670 	preempt_notifier_inc();
671 
672 	return kvm;
673 
674 out_err:
675 	cleanup_srcu_struct(&kvm->irq_srcu);
676 out_err_no_irq_srcu:
677 	cleanup_srcu_struct(&kvm->srcu);
678 out_err_no_srcu:
679 	hardware_disable_all();
680 out_err_no_disable:
681 	for (i = 0; i < KVM_NR_BUSES; i++)
682 		kfree(kvm->buses[i]);
683 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
684 		kvm_free_memslots(kvm, kvm->memslots[i]);
685 	kvm_arch_free_vm(kvm);
686 	mmdrop(current->mm);
687 	return ERR_PTR(r);
688 }
689 
690 /*
691  * Avoid using vmalloc for a small buffer.
692  * Should not be used when the size is statically known.
693  */
694 void *kvm_kvzalloc(unsigned long size)
695 {
696 	if (size > PAGE_SIZE)
697 		return vzalloc(size);
698 	else
699 		return kzalloc(size, GFP_KERNEL);
700 }
701 
702 static void kvm_destroy_devices(struct kvm *kvm)
703 {
704 	struct kvm_device *dev, *tmp;
705 
706 	/*
707 	 * We do not need to take the kvm->lock here, because nobody else
708 	 * has a reference to the struct kvm at this point and therefore
709 	 * cannot access the devices list anyhow.
710 	 */
711 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
712 		list_del(&dev->vm_node);
713 		dev->ops->destroy(dev);
714 	}
715 }
716 
717 static void kvm_destroy_vm(struct kvm *kvm)
718 {
719 	int i;
720 	struct mm_struct *mm = kvm->mm;
721 
722 	kvm_destroy_vm_debugfs(kvm);
723 	kvm_arch_sync_events(kvm);
724 	spin_lock(&kvm_lock);
725 	list_del(&kvm->vm_list);
726 	spin_unlock(&kvm_lock);
727 	kvm_free_irq_routing(kvm);
728 	for (i = 0; i < KVM_NR_BUSES; i++)
729 		kvm_io_bus_destroy(kvm->buses[i]);
730 	kvm_coalesced_mmio_free(kvm);
731 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
732 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
733 #else
734 	kvm_arch_flush_shadow_all(kvm);
735 #endif
736 	kvm_arch_destroy_vm(kvm);
737 	kvm_destroy_devices(kvm);
738 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
739 		kvm_free_memslots(kvm, kvm->memslots[i]);
740 	cleanup_srcu_struct(&kvm->irq_srcu);
741 	cleanup_srcu_struct(&kvm->srcu);
742 	kvm_arch_free_vm(kvm);
743 	preempt_notifier_dec();
744 	hardware_disable_all();
745 	mmdrop(mm);
746 }
747 
748 void kvm_get_kvm(struct kvm *kvm)
749 {
750 	atomic_inc(&kvm->users_count);
751 }
752 EXPORT_SYMBOL_GPL(kvm_get_kvm);
753 
754 void kvm_put_kvm(struct kvm *kvm)
755 {
756 	if (atomic_dec_and_test(&kvm->users_count))
757 		kvm_destroy_vm(kvm);
758 }
759 EXPORT_SYMBOL_GPL(kvm_put_kvm);
760 
761 
762 static int kvm_vm_release(struct inode *inode, struct file *filp)
763 {
764 	struct kvm *kvm = filp->private_data;
765 
766 	kvm_irqfd_release(kvm);
767 
768 	kvm_put_kvm(kvm);
769 	return 0;
770 }
771 
772 /*
773  * Allocation size is twice as large as the actual dirty bitmap size.
774  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
775  */
776 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
777 {
778 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
779 
780 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
781 	if (!memslot->dirty_bitmap)
782 		return -ENOMEM;
783 
784 	return 0;
785 }
786 
787 /*
788  * Insert memslot and re-sort memslots based on their GFN,
789  * so binary search could be used to lookup GFN.
790  * Sorting algorithm takes advantage of having initially
791  * sorted array and known changed memslot position.
792  */
793 static void update_memslots(struct kvm_memslots *slots,
794 			    struct kvm_memory_slot *new)
795 {
796 	int id = new->id;
797 	int i = slots->id_to_index[id];
798 	struct kvm_memory_slot *mslots = slots->memslots;
799 
800 	WARN_ON(mslots[i].id != id);
801 	if (!new->npages) {
802 		WARN_ON(!mslots[i].npages);
803 		if (mslots[i].npages)
804 			slots->used_slots--;
805 	} else {
806 		if (!mslots[i].npages)
807 			slots->used_slots++;
808 	}
809 
810 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
811 	       new->base_gfn <= mslots[i + 1].base_gfn) {
812 		if (!mslots[i + 1].npages)
813 			break;
814 		mslots[i] = mslots[i + 1];
815 		slots->id_to_index[mslots[i].id] = i;
816 		i++;
817 	}
818 
819 	/*
820 	 * The ">=" is needed when creating a slot with base_gfn == 0,
821 	 * so that it moves before all those with base_gfn == npages == 0.
822 	 *
823 	 * On the other hand, if new->npages is zero, the above loop has
824 	 * already left i pointing to the beginning of the empty part of
825 	 * mslots, and the ">=" would move the hole backwards in this
826 	 * case---which is wrong.  So skip the loop when deleting a slot.
827 	 */
828 	if (new->npages) {
829 		while (i > 0 &&
830 		       new->base_gfn >= mslots[i - 1].base_gfn) {
831 			mslots[i] = mslots[i - 1];
832 			slots->id_to_index[mslots[i].id] = i;
833 			i--;
834 		}
835 	} else
836 		WARN_ON_ONCE(i != slots->used_slots);
837 
838 	mslots[i] = *new;
839 	slots->id_to_index[mslots[i].id] = i;
840 }
841 
842 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
843 {
844 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
845 
846 #ifdef __KVM_HAVE_READONLY_MEM
847 	valid_flags |= KVM_MEM_READONLY;
848 #endif
849 
850 	if (mem->flags & ~valid_flags)
851 		return -EINVAL;
852 
853 	return 0;
854 }
855 
856 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
857 		int as_id, struct kvm_memslots *slots)
858 {
859 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
860 
861 	/*
862 	 * Set the low bit in the generation, which disables SPTE caching
863 	 * until the end of synchronize_srcu_expedited.
864 	 */
865 	WARN_ON(old_memslots->generation & 1);
866 	slots->generation = old_memslots->generation + 1;
867 
868 	rcu_assign_pointer(kvm->memslots[as_id], slots);
869 	synchronize_srcu_expedited(&kvm->srcu);
870 
871 	/*
872 	 * Increment the new memslot generation a second time. This prevents
873 	 * vm exits that race with memslot updates from caching a memslot
874 	 * generation that will (potentially) be valid forever.
875 	 *
876 	 * Generations must be unique even across address spaces.  We do not need
877 	 * a global counter for that, instead the generation space is evenly split
878 	 * across address spaces.  For example, with two address spaces, address
879 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
880 	 * use generations 2, 6, 10, 14, ...
881 	 */
882 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
883 
884 	kvm_arch_memslots_updated(kvm, slots);
885 
886 	return old_memslots;
887 }
888 
889 /*
890  * Allocate some memory and give it an address in the guest physical address
891  * space.
892  *
893  * Discontiguous memory is allowed, mostly for framebuffers.
894  *
895  * Must be called holding kvm->slots_lock for write.
896  */
897 int __kvm_set_memory_region(struct kvm *kvm,
898 			    const struct kvm_userspace_memory_region *mem)
899 {
900 	int r;
901 	gfn_t base_gfn;
902 	unsigned long npages;
903 	struct kvm_memory_slot *slot;
904 	struct kvm_memory_slot old, new;
905 	struct kvm_memslots *slots = NULL, *old_memslots;
906 	int as_id, id;
907 	enum kvm_mr_change change;
908 
909 	r = check_memory_region_flags(mem);
910 	if (r)
911 		goto out;
912 
913 	r = -EINVAL;
914 	as_id = mem->slot >> 16;
915 	id = (u16)mem->slot;
916 
917 	/* General sanity checks */
918 	if (mem->memory_size & (PAGE_SIZE - 1))
919 		goto out;
920 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
921 		goto out;
922 	/* We can read the guest memory with __xxx_user() later on. */
923 	if ((id < KVM_USER_MEM_SLOTS) &&
924 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
925 	     !access_ok(VERIFY_WRITE,
926 			(void __user *)(unsigned long)mem->userspace_addr,
927 			mem->memory_size)))
928 		goto out;
929 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
930 		goto out;
931 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
932 		goto out;
933 
934 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
935 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
936 	npages = mem->memory_size >> PAGE_SHIFT;
937 
938 	if (npages > KVM_MEM_MAX_NR_PAGES)
939 		goto out;
940 
941 	new = old = *slot;
942 
943 	new.id = id;
944 	new.base_gfn = base_gfn;
945 	new.npages = npages;
946 	new.flags = mem->flags;
947 
948 	if (npages) {
949 		if (!old.npages)
950 			change = KVM_MR_CREATE;
951 		else { /* Modify an existing slot. */
952 			if ((mem->userspace_addr != old.userspace_addr) ||
953 			    (npages != old.npages) ||
954 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
955 				goto out;
956 
957 			if (base_gfn != old.base_gfn)
958 				change = KVM_MR_MOVE;
959 			else if (new.flags != old.flags)
960 				change = KVM_MR_FLAGS_ONLY;
961 			else { /* Nothing to change. */
962 				r = 0;
963 				goto out;
964 			}
965 		}
966 	} else {
967 		if (!old.npages)
968 			goto out;
969 
970 		change = KVM_MR_DELETE;
971 		new.base_gfn = 0;
972 		new.flags = 0;
973 	}
974 
975 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
976 		/* Check for overlaps */
977 		r = -EEXIST;
978 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
979 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
980 			    (slot->id == id))
981 				continue;
982 			if (!((base_gfn + npages <= slot->base_gfn) ||
983 			      (base_gfn >= slot->base_gfn + slot->npages)))
984 				goto out;
985 		}
986 	}
987 
988 	/* Free page dirty bitmap if unneeded */
989 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
990 		new.dirty_bitmap = NULL;
991 
992 	r = -ENOMEM;
993 	if (change == KVM_MR_CREATE) {
994 		new.userspace_addr = mem->userspace_addr;
995 
996 		if (kvm_arch_create_memslot(kvm, &new, npages))
997 			goto out_free;
998 	}
999 
1000 	/* Allocate page dirty bitmap if needed */
1001 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1002 		if (kvm_create_dirty_bitmap(&new) < 0)
1003 			goto out_free;
1004 	}
1005 
1006 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1007 	if (!slots)
1008 		goto out_free;
1009 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1010 
1011 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1012 		slot = id_to_memslot(slots, id);
1013 		slot->flags |= KVM_MEMSLOT_INVALID;
1014 
1015 		old_memslots = install_new_memslots(kvm, as_id, slots);
1016 
1017 		/* slot was deleted or moved, clear iommu mapping */
1018 		kvm_iommu_unmap_pages(kvm, &old);
1019 		/* From this point no new shadow pages pointing to a deleted,
1020 		 * or moved, memslot will be created.
1021 		 *
1022 		 * validation of sp->gfn happens in:
1023 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1024 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1025 		 */
1026 		kvm_arch_flush_shadow_memslot(kvm, slot);
1027 
1028 		/*
1029 		 * We can re-use the old_memslots from above, the only difference
1030 		 * from the currently installed memslots is the invalid flag.  This
1031 		 * will get overwritten by update_memslots anyway.
1032 		 */
1033 		slots = old_memslots;
1034 	}
1035 
1036 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1037 	if (r)
1038 		goto out_slots;
1039 
1040 	/* actual memory is freed via old in kvm_free_memslot below */
1041 	if (change == KVM_MR_DELETE) {
1042 		new.dirty_bitmap = NULL;
1043 		memset(&new.arch, 0, sizeof(new.arch));
1044 	}
1045 
1046 	update_memslots(slots, &new);
1047 	old_memslots = install_new_memslots(kvm, as_id, slots);
1048 
1049 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1050 
1051 	kvm_free_memslot(kvm, &old, &new);
1052 	kvfree(old_memslots);
1053 
1054 	/*
1055 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1056 	 * un-mapped and re-mapped if their base changes.  Since base change
1057 	 * unmapping is handled above with slot deletion, mapping alone is
1058 	 * needed here.  Anything else the iommu might care about for existing
1059 	 * slots (size changes, userspace addr changes and read-only flag
1060 	 * changes) is disallowed above, so any other attribute changes getting
1061 	 * here can be skipped.
1062 	 */
1063 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1064 		r = kvm_iommu_map_pages(kvm, &new);
1065 		return r;
1066 	}
1067 
1068 	return 0;
1069 
1070 out_slots:
1071 	kvfree(slots);
1072 out_free:
1073 	kvm_free_memslot(kvm, &new, &old);
1074 out:
1075 	return r;
1076 }
1077 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1078 
1079 int kvm_set_memory_region(struct kvm *kvm,
1080 			  const struct kvm_userspace_memory_region *mem)
1081 {
1082 	int r;
1083 
1084 	mutex_lock(&kvm->slots_lock);
1085 	r = __kvm_set_memory_region(kvm, mem);
1086 	mutex_unlock(&kvm->slots_lock);
1087 	return r;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1090 
1091 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1092 					  struct kvm_userspace_memory_region *mem)
1093 {
1094 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1095 		return -EINVAL;
1096 
1097 	return kvm_set_memory_region(kvm, mem);
1098 }
1099 
1100 int kvm_get_dirty_log(struct kvm *kvm,
1101 			struct kvm_dirty_log *log, int *is_dirty)
1102 {
1103 	struct kvm_memslots *slots;
1104 	struct kvm_memory_slot *memslot;
1105 	int i, as_id, id;
1106 	unsigned long n;
1107 	unsigned long any = 0;
1108 
1109 	as_id = log->slot >> 16;
1110 	id = (u16)log->slot;
1111 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1112 		return -EINVAL;
1113 
1114 	slots = __kvm_memslots(kvm, as_id);
1115 	memslot = id_to_memslot(slots, id);
1116 	if (!memslot->dirty_bitmap)
1117 		return -ENOENT;
1118 
1119 	n = kvm_dirty_bitmap_bytes(memslot);
1120 
1121 	for (i = 0; !any && i < n/sizeof(long); ++i)
1122 		any = memslot->dirty_bitmap[i];
1123 
1124 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1125 		return -EFAULT;
1126 
1127 	if (any)
1128 		*is_dirty = 1;
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1132 
1133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1134 /**
1135  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1136  *	are dirty write protect them for next write.
1137  * @kvm:	pointer to kvm instance
1138  * @log:	slot id and address to which we copy the log
1139  * @is_dirty:	flag set if any page is dirty
1140  *
1141  * We need to keep it in mind that VCPU threads can write to the bitmap
1142  * concurrently. So, to avoid losing track of dirty pages we keep the
1143  * following order:
1144  *
1145  *    1. Take a snapshot of the bit and clear it if needed.
1146  *    2. Write protect the corresponding page.
1147  *    3. Copy the snapshot to the userspace.
1148  *    4. Upon return caller flushes TLB's if needed.
1149  *
1150  * Between 2 and 4, the guest may write to the page using the remaining TLB
1151  * entry.  This is not a problem because the page is reported dirty using
1152  * the snapshot taken before and step 4 ensures that writes done after
1153  * exiting to userspace will be logged for the next call.
1154  *
1155  */
1156 int kvm_get_dirty_log_protect(struct kvm *kvm,
1157 			struct kvm_dirty_log *log, bool *is_dirty)
1158 {
1159 	struct kvm_memslots *slots;
1160 	struct kvm_memory_slot *memslot;
1161 	int i, as_id, id;
1162 	unsigned long n;
1163 	unsigned long *dirty_bitmap;
1164 	unsigned long *dirty_bitmap_buffer;
1165 
1166 	as_id = log->slot >> 16;
1167 	id = (u16)log->slot;
1168 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1169 		return -EINVAL;
1170 
1171 	slots = __kvm_memslots(kvm, as_id);
1172 	memslot = id_to_memslot(slots, id);
1173 
1174 	dirty_bitmap = memslot->dirty_bitmap;
1175 	if (!dirty_bitmap)
1176 		return -ENOENT;
1177 
1178 	n = kvm_dirty_bitmap_bytes(memslot);
1179 
1180 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181 	memset(dirty_bitmap_buffer, 0, n);
1182 
1183 	spin_lock(&kvm->mmu_lock);
1184 	*is_dirty = false;
1185 	for (i = 0; i < n / sizeof(long); i++) {
1186 		unsigned long mask;
1187 		gfn_t offset;
1188 
1189 		if (!dirty_bitmap[i])
1190 			continue;
1191 
1192 		*is_dirty = true;
1193 
1194 		mask = xchg(&dirty_bitmap[i], 0);
1195 		dirty_bitmap_buffer[i] = mask;
1196 
1197 		if (mask) {
1198 			offset = i * BITS_PER_LONG;
1199 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 								offset, mask);
1201 		}
1202 	}
1203 
1204 	spin_unlock(&kvm->mmu_lock);
1205 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1206 		return -EFAULT;
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210 #endif
1211 
1212 bool kvm_largepages_enabled(void)
1213 {
1214 	return largepages_enabled;
1215 }
1216 
1217 void kvm_disable_largepages(void)
1218 {
1219 	largepages_enabled = false;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222 
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224 {
1225 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228 
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232 }
1233 
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237 
1238 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239 	      memslot->flags & KVM_MEMSLOT_INVALID)
1240 		return false;
1241 
1242 	return true;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245 
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247 {
1248 	struct vm_area_struct *vma;
1249 	unsigned long addr, size;
1250 
1251 	size = PAGE_SIZE;
1252 
1253 	addr = gfn_to_hva(kvm, gfn);
1254 	if (kvm_is_error_hva(addr))
1255 		return PAGE_SIZE;
1256 
1257 	down_read(&current->mm->mmap_sem);
1258 	vma = find_vma(current->mm, addr);
1259 	if (!vma)
1260 		goto out;
1261 
1262 	size = vma_kernel_pagesize(vma);
1263 
1264 out:
1265 	up_read(&current->mm->mmap_sem);
1266 
1267 	return size;
1268 }
1269 
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271 {
1272 	return slot->flags & KVM_MEM_READONLY;
1273 }
1274 
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276 				       gfn_t *nr_pages, bool write)
1277 {
1278 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 		return KVM_HVA_ERR_BAD;
1280 
1281 	if (memslot_is_readonly(slot) && write)
1282 		return KVM_HVA_ERR_RO_BAD;
1283 
1284 	if (nr_pages)
1285 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1286 
1287 	return __gfn_to_hva_memslot(slot, gfn);
1288 }
1289 
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291 				     gfn_t *nr_pages)
1292 {
1293 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294 }
1295 
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297 					gfn_t gfn)
1298 {
1299 	return gfn_to_hva_many(slot, gfn, NULL);
1300 }
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302 
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304 {
1305 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1308 
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314 
1315 /*
1316  * If writable is set to false, the hva returned by this function is only
1317  * allowed to be read.
1318  */
1319 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1320 				      gfn_t gfn, bool *writable)
1321 {
1322 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1323 
1324 	if (!kvm_is_error_hva(hva) && writable)
1325 		*writable = !memslot_is_readonly(slot);
1326 
1327 	return hva;
1328 }
1329 
1330 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1331 {
1332 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1333 
1334 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336 
1337 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1338 {
1339 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1340 
1341 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342 }
1343 
1344 static int get_user_page_nowait(unsigned long start, int write,
1345 		struct page **page)
1346 {
1347 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1348 
1349 	if (write)
1350 		flags |= FOLL_WRITE;
1351 
1352 	return get_user_pages(start, 1, flags, page, NULL);
1353 }
1354 
1355 static inline int check_user_page_hwpoison(unsigned long addr)
1356 {
1357 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1358 
1359 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1360 	return rc == -EHWPOISON;
1361 }
1362 
1363 /*
1364  * The atomic path to get the writable pfn which will be stored in @pfn,
1365  * true indicates success, otherwise false is returned.
1366  */
1367 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1368 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1369 {
1370 	struct page *page[1];
1371 	int npages;
1372 
1373 	if (!(async || atomic))
1374 		return false;
1375 
1376 	/*
1377 	 * Fast pin a writable pfn only if it is a write fault request
1378 	 * or the caller allows to map a writable pfn for a read fault
1379 	 * request.
1380 	 */
1381 	if (!(write_fault || writable))
1382 		return false;
1383 
1384 	npages = __get_user_pages_fast(addr, 1, 1, page);
1385 	if (npages == 1) {
1386 		*pfn = page_to_pfn(page[0]);
1387 
1388 		if (writable)
1389 			*writable = true;
1390 		return true;
1391 	}
1392 
1393 	return false;
1394 }
1395 
1396 /*
1397  * The slow path to get the pfn of the specified host virtual address,
1398  * 1 indicates success, -errno is returned if error is detected.
1399  */
1400 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1401 			   bool *writable, kvm_pfn_t *pfn)
1402 {
1403 	struct page *page[1];
1404 	int npages = 0;
1405 
1406 	might_sleep();
1407 
1408 	if (writable)
1409 		*writable = write_fault;
1410 
1411 	if (async) {
1412 		down_read(&current->mm->mmap_sem);
1413 		npages = get_user_page_nowait(addr, write_fault, page);
1414 		up_read(&current->mm->mmap_sem);
1415 	} else {
1416 		unsigned int flags = FOLL_HWPOISON;
1417 
1418 		if (write_fault)
1419 			flags |= FOLL_WRITE;
1420 
1421 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1422 	}
1423 	if (npages != 1)
1424 		return npages;
1425 
1426 	/* map read fault as writable if possible */
1427 	if (unlikely(!write_fault) && writable) {
1428 		struct page *wpage[1];
1429 
1430 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1431 		if (npages == 1) {
1432 			*writable = true;
1433 			put_page(page[0]);
1434 			page[0] = wpage[0];
1435 		}
1436 
1437 		npages = 1;
1438 	}
1439 	*pfn = page_to_pfn(page[0]);
1440 	return npages;
1441 }
1442 
1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1444 {
1445 	if (unlikely(!(vma->vm_flags & VM_READ)))
1446 		return false;
1447 
1448 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1449 		return false;
1450 
1451 	return true;
1452 }
1453 
1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1455 			       unsigned long addr, bool *async,
1456 			       bool write_fault, kvm_pfn_t *p_pfn)
1457 {
1458 	unsigned long pfn;
1459 	int r;
1460 
1461 	r = follow_pfn(vma, addr, &pfn);
1462 	if (r) {
1463 		/*
1464 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1465 		 * not call the fault handler, so do it here.
1466 		 */
1467 		bool unlocked = false;
1468 		r = fixup_user_fault(current, current->mm, addr,
1469 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1470 				     &unlocked);
1471 		if (unlocked)
1472 			return -EAGAIN;
1473 		if (r)
1474 			return r;
1475 
1476 		r = follow_pfn(vma, addr, &pfn);
1477 		if (r)
1478 			return r;
1479 
1480 	}
1481 
1482 
1483 	/*
1484 	 * Get a reference here because callers of *hva_to_pfn* and
1485 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1486 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1487 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1488 	 * simply do nothing for reserved pfns.
1489 	 *
1490 	 * Whoever called remap_pfn_range is also going to call e.g.
1491 	 * unmap_mapping_range before the underlying pages are freed,
1492 	 * causing a call to our MMU notifier.
1493 	 */
1494 	kvm_get_pfn(pfn);
1495 
1496 	*p_pfn = pfn;
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Pin guest page in memory and return its pfn.
1502  * @addr: host virtual address which maps memory to the guest
1503  * @atomic: whether this function can sleep
1504  * @async: whether this function need to wait IO complete if the
1505  *         host page is not in the memory
1506  * @write_fault: whether we should get a writable host page
1507  * @writable: whether it allows to map a writable host page for !@write_fault
1508  *
1509  * The function will map a writable host page for these two cases:
1510  * 1): @write_fault = true
1511  * 2): @write_fault = false && @writable, @writable will tell the caller
1512  *     whether the mapping is writable.
1513  */
1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1515 			bool write_fault, bool *writable)
1516 {
1517 	struct vm_area_struct *vma;
1518 	kvm_pfn_t pfn = 0;
1519 	int npages, r;
1520 
1521 	/* we can do it either atomically or asynchronously, not both */
1522 	BUG_ON(atomic && async);
1523 
1524 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1525 		return pfn;
1526 
1527 	if (atomic)
1528 		return KVM_PFN_ERR_FAULT;
1529 
1530 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1531 	if (npages == 1)
1532 		return pfn;
1533 
1534 	down_read(&current->mm->mmap_sem);
1535 	if (npages == -EHWPOISON ||
1536 	      (!async && check_user_page_hwpoison(addr))) {
1537 		pfn = KVM_PFN_ERR_HWPOISON;
1538 		goto exit;
1539 	}
1540 
1541 retry:
1542 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1543 
1544 	if (vma == NULL)
1545 		pfn = KVM_PFN_ERR_FAULT;
1546 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1547 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1548 		if (r == -EAGAIN)
1549 			goto retry;
1550 		if (r < 0)
1551 			pfn = KVM_PFN_ERR_FAULT;
1552 	} else {
1553 		if (async && vma_is_valid(vma, write_fault))
1554 			*async = true;
1555 		pfn = KVM_PFN_ERR_FAULT;
1556 	}
1557 exit:
1558 	up_read(&current->mm->mmap_sem);
1559 	return pfn;
1560 }
1561 
1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1563 			       bool atomic, bool *async, bool write_fault,
1564 			       bool *writable)
1565 {
1566 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1567 
1568 	if (addr == KVM_HVA_ERR_RO_BAD) {
1569 		if (writable)
1570 			*writable = false;
1571 		return KVM_PFN_ERR_RO_FAULT;
1572 	}
1573 
1574 	if (kvm_is_error_hva(addr)) {
1575 		if (writable)
1576 			*writable = false;
1577 		return KVM_PFN_NOSLOT;
1578 	}
1579 
1580 	/* Do not map writable pfn in the readonly memslot. */
1581 	if (writable && memslot_is_readonly(slot)) {
1582 		*writable = false;
1583 		writable = NULL;
1584 	}
1585 
1586 	return hva_to_pfn(addr, atomic, async, write_fault,
1587 			  writable);
1588 }
1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1590 
1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1592 		      bool *writable)
1593 {
1594 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1595 				    write_fault, writable);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1598 
1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1600 {
1601 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1604 
1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1610 
1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1612 {
1613 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1616 
1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1622 
1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1624 {
1625 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1628 
1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1634 
1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1636 			    struct page **pages, int nr_pages)
1637 {
1638 	unsigned long addr;
1639 	gfn_t entry;
1640 
1641 	addr = gfn_to_hva_many(slot, gfn, &entry);
1642 	if (kvm_is_error_hva(addr))
1643 		return -1;
1644 
1645 	if (entry < nr_pages)
1646 		return 0;
1647 
1648 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1649 }
1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1651 
1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1653 {
1654 	if (is_error_noslot_pfn(pfn))
1655 		return KVM_ERR_PTR_BAD_PAGE;
1656 
1657 	if (kvm_is_reserved_pfn(pfn)) {
1658 		WARN_ON(1);
1659 		return KVM_ERR_PTR_BAD_PAGE;
1660 	}
1661 
1662 	return pfn_to_page(pfn);
1663 }
1664 
1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1666 {
1667 	kvm_pfn_t pfn;
1668 
1669 	pfn = gfn_to_pfn(kvm, gfn);
1670 
1671 	return kvm_pfn_to_page(pfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_page);
1674 
1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677 	kvm_pfn_t pfn;
1678 
1679 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1680 
1681 	return kvm_pfn_to_page(pfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1684 
1685 void kvm_release_page_clean(struct page *page)
1686 {
1687 	WARN_ON(is_error_page(page));
1688 
1689 	kvm_release_pfn_clean(page_to_pfn(page));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1692 
1693 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1694 {
1695 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1696 		put_page(pfn_to_page(pfn));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1699 
1700 void kvm_release_page_dirty(struct page *page)
1701 {
1702 	WARN_ON(is_error_page(page));
1703 
1704 	kvm_release_pfn_dirty(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1707 
1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1709 {
1710 	kvm_set_pfn_dirty(pfn);
1711 	kvm_release_pfn_clean(pfn);
1712 }
1713 
1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716 	if (!kvm_is_reserved_pfn(pfn)) {
1717 		struct page *page = pfn_to_page(pfn);
1718 
1719 		if (!PageReserved(page))
1720 			SetPageDirty(page);
1721 	}
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1724 
1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1726 {
1727 	if (!kvm_is_reserved_pfn(pfn))
1728 		mark_page_accessed(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1731 
1732 void kvm_get_pfn(kvm_pfn_t pfn)
1733 {
1734 	if (!kvm_is_reserved_pfn(pfn))
1735 		get_page(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1738 
1739 static int next_segment(unsigned long len, int offset)
1740 {
1741 	if (len > PAGE_SIZE - offset)
1742 		return PAGE_SIZE - offset;
1743 	else
1744 		return len;
1745 }
1746 
1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1748 				 void *data, int offset, int len)
1749 {
1750 	int r;
1751 	unsigned long addr;
1752 
1753 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1754 	if (kvm_is_error_hva(addr))
1755 		return -EFAULT;
1756 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1757 	if (r)
1758 		return -EFAULT;
1759 	return 0;
1760 }
1761 
1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1763 			int len)
1764 {
1765 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1766 
1767 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1770 
1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1772 			     int offset, int len)
1773 {
1774 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775 
1776 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1779 
1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1781 {
1782 	gfn_t gfn = gpa >> PAGE_SHIFT;
1783 	int seg;
1784 	int offset = offset_in_page(gpa);
1785 	int ret;
1786 
1787 	while ((seg = next_segment(len, offset)) != 0) {
1788 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1789 		if (ret < 0)
1790 			return ret;
1791 		offset = 0;
1792 		len -= seg;
1793 		data += seg;
1794 		++gfn;
1795 	}
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_read_guest);
1799 
1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1801 {
1802 	gfn_t gfn = gpa >> PAGE_SHIFT;
1803 	int seg;
1804 	int offset = offset_in_page(gpa);
1805 	int ret;
1806 
1807 	while ((seg = next_segment(len, offset)) != 0) {
1808 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1809 		if (ret < 0)
1810 			return ret;
1811 		offset = 0;
1812 		len -= seg;
1813 		data += seg;
1814 		++gfn;
1815 	}
1816 	return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1819 
1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1821 			           void *data, int offset, unsigned long len)
1822 {
1823 	int r;
1824 	unsigned long addr;
1825 
1826 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1827 	if (kvm_is_error_hva(addr))
1828 		return -EFAULT;
1829 	pagefault_disable();
1830 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1831 	pagefault_enable();
1832 	if (r)
1833 		return -EFAULT;
1834 	return 0;
1835 }
1836 
1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1838 			  unsigned long len)
1839 {
1840 	gfn_t gfn = gpa >> PAGE_SHIFT;
1841 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1842 	int offset = offset_in_page(gpa);
1843 
1844 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1847 
1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1849 			       void *data, unsigned long len)
1850 {
1851 	gfn_t gfn = gpa >> PAGE_SHIFT;
1852 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1853 	int offset = offset_in_page(gpa);
1854 
1855 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1858 
1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1860 			          const void *data, int offset, int len)
1861 {
1862 	int r;
1863 	unsigned long addr;
1864 
1865 	addr = gfn_to_hva_memslot(memslot, gfn);
1866 	if (kvm_is_error_hva(addr))
1867 		return -EFAULT;
1868 	r = __copy_to_user((void __user *)addr + offset, data, len);
1869 	if (r)
1870 		return -EFAULT;
1871 	mark_page_dirty_in_slot(memslot, gfn);
1872 	return 0;
1873 }
1874 
1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1876 			 const void *data, int offset, int len)
1877 {
1878 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1879 
1880 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1883 
1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1885 			      const void *data, int offset, int len)
1886 {
1887 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1888 
1889 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1892 
1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1894 		    unsigned long len)
1895 {
1896 	gfn_t gfn = gpa >> PAGE_SHIFT;
1897 	int seg;
1898 	int offset = offset_in_page(gpa);
1899 	int ret;
1900 
1901 	while ((seg = next_segment(len, offset)) != 0) {
1902 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1903 		if (ret < 0)
1904 			return ret;
1905 		offset = 0;
1906 		len -= seg;
1907 		data += seg;
1908 		++gfn;
1909 	}
1910 	return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_write_guest);
1913 
1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1915 		         unsigned long len)
1916 {
1917 	gfn_t gfn = gpa >> PAGE_SHIFT;
1918 	int seg;
1919 	int offset = offset_in_page(gpa);
1920 	int ret;
1921 
1922 	while ((seg = next_segment(len, offset)) != 0) {
1923 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1924 		if (ret < 0)
1925 			return ret;
1926 		offset = 0;
1927 		len -= seg;
1928 		data += seg;
1929 		++gfn;
1930 	}
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1934 
1935 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1936 				       struct gfn_to_hva_cache *ghc,
1937 				       gpa_t gpa, unsigned long len)
1938 {
1939 	int offset = offset_in_page(gpa);
1940 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1941 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1942 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1943 	gfn_t nr_pages_avail;
1944 
1945 	ghc->gpa = gpa;
1946 	ghc->generation = slots->generation;
1947 	ghc->len = len;
1948 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1949 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1950 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1951 		ghc->hva += offset;
1952 	} else {
1953 		/*
1954 		 * If the requested region crosses two memslots, we still
1955 		 * verify that the entire region is valid here.
1956 		 */
1957 		while (start_gfn <= end_gfn) {
1958 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1959 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1960 						   &nr_pages_avail);
1961 			if (kvm_is_error_hva(ghc->hva))
1962 				return -EFAULT;
1963 			start_gfn += nr_pages_avail;
1964 		}
1965 		/* Use the slow path for cross page reads and writes. */
1966 		ghc->memslot = NULL;
1967 	}
1968 	return 0;
1969 }
1970 
1971 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1972 			      gpa_t gpa, unsigned long len)
1973 {
1974 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1975 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1978 
1979 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1980 				       void *data, int offset, unsigned long len)
1981 {
1982 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1983 	int r;
1984 	gpa_t gpa = ghc->gpa + offset;
1985 
1986 	BUG_ON(len + offset > ghc->len);
1987 
1988 	if (slots->generation != ghc->generation)
1989 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1990 
1991 	if (unlikely(!ghc->memslot))
1992 		return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1993 
1994 	if (kvm_is_error_hva(ghc->hva))
1995 		return -EFAULT;
1996 
1997 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1998 	if (r)
1999 		return -EFAULT;
2000 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2001 
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2005 
2006 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2007 			       void *data, unsigned long len)
2008 {
2009 	return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2012 
2013 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2014 			       void *data, unsigned long len)
2015 {
2016 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2017 	int r;
2018 
2019 	BUG_ON(len > ghc->len);
2020 
2021 	if (slots->generation != ghc->generation)
2022 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2023 
2024 	if (unlikely(!ghc->memslot))
2025 		return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2026 
2027 	if (kvm_is_error_hva(ghc->hva))
2028 		return -EFAULT;
2029 
2030 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2031 	if (r)
2032 		return -EFAULT;
2033 
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2037 
2038 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2039 {
2040 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2041 
2042 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2043 }
2044 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2045 
2046 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2047 {
2048 	gfn_t gfn = gpa >> PAGE_SHIFT;
2049 	int seg;
2050 	int offset = offset_in_page(gpa);
2051 	int ret;
2052 
2053 	while ((seg = next_segment(len, offset)) != 0) {
2054 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2055 		if (ret < 0)
2056 			return ret;
2057 		offset = 0;
2058 		len -= seg;
2059 		++gfn;
2060 	}
2061 	return 0;
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2064 
2065 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2066 				    gfn_t gfn)
2067 {
2068 	if (memslot && memslot->dirty_bitmap) {
2069 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2070 
2071 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2072 	}
2073 }
2074 
2075 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2076 {
2077 	struct kvm_memory_slot *memslot;
2078 
2079 	memslot = gfn_to_memslot(kvm, gfn);
2080 	mark_page_dirty_in_slot(memslot, gfn);
2081 }
2082 EXPORT_SYMBOL_GPL(mark_page_dirty);
2083 
2084 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2085 {
2086 	struct kvm_memory_slot *memslot;
2087 
2088 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2089 	mark_page_dirty_in_slot(memslot, gfn);
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2092 
2093 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2094 {
2095 	unsigned int old, val, grow;
2096 
2097 	old = val = vcpu->halt_poll_ns;
2098 	grow = READ_ONCE(halt_poll_ns_grow);
2099 	/* 10us base */
2100 	if (val == 0 && grow)
2101 		val = 10000;
2102 	else
2103 		val *= grow;
2104 
2105 	if (val > halt_poll_ns)
2106 		val = halt_poll_ns;
2107 
2108 	vcpu->halt_poll_ns = val;
2109 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2110 }
2111 
2112 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2113 {
2114 	unsigned int old, val, shrink;
2115 
2116 	old = val = vcpu->halt_poll_ns;
2117 	shrink = READ_ONCE(halt_poll_ns_shrink);
2118 	if (shrink == 0)
2119 		val = 0;
2120 	else
2121 		val /= shrink;
2122 
2123 	vcpu->halt_poll_ns = val;
2124 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2125 }
2126 
2127 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2128 {
2129 	if (kvm_arch_vcpu_runnable(vcpu)) {
2130 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2131 		return -EINTR;
2132 	}
2133 	if (kvm_cpu_has_pending_timer(vcpu))
2134 		return -EINTR;
2135 	if (signal_pending(current))
2136 		return -EINTR;
2137 
2138 	return 0;
2139 }
2140 
2141 /*
2142  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2143  */
2144 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2145 {
2146 	ktime_t start, cur;
2147 	DECLARE_SWAITQUEUE(wait);
2148 	bool waited = false;
2149 	u64 block_ns;
2150 
2151 	start = cur = ktime_get();
2152 	if (vcpu->halt_poll_ns) {
2153 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2154 
2155 		++vcpu->stat.halt_attempted_poll;
2156 		do {
2157 			/*
2158 			 * This sets KVM_REQ_UNHALT if an interrupt
2159 			 * arrives.
2160 			 */
2161 			if (kvm_vcpu_check_block(vcpu) < 0) {
2162 				++vcpu->stat.halt_successful_poll;
2163 				if (!vcpu_valid_wakeup(vcpu))
2164 					++vcpu->stat.halt_poll_invalid;
2165 				goto out;
2166 			}
2167 			cur = ktime_get();
2168 		} while (single_task_running() && ktime_before(cur, stop));
2169 	}
2170 
2171 	kvm_arch_vcpu_blocking(vcpu);
2172 
2173 	for (;;) {
2174 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2175 
2176 		if (kvm_vcpu_check_block(vcpu) < 0)
2177 			break;
2178 
2179 		waited = true;
2180 		schedule();
2181 	}
2182 
2183 	finish_swait(&vcpu->wq, &wait);
2184 	cur = ktime_get();
2185 
2186 	kvm_arch_vcpu_unblocking(vcpu);
2187 out:
2188 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2189 
2190 	if (!vcpu_valid_wakeup(vcpu))
2191 		shrink_halt_poll_ns(vcpu);
2192 	else if (halt_poll_ns) {
2193 		if (block_ns <= vcpu->halt_poll_ns)
2194 			;
2195 		/* we had a long block, shrink polling */
2196 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2197 			shrink_halt_poll_ns(vcpu);
2198 		/* we had a short halt and our poll time is too small */
2199 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2200 			block_ns < halt_poll_ns)
2201 			grow_halt_poll_ns(vcpu);
2202 	} else
2203 		vcpu->halt_poll_ns = 0;
2204 
2205 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2206 	kvm_arch_vcpu_block_finish(vcpu);
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2209 
2210 #ifndef CONFIG_S390
2211 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2212 {
2213 	struct swait_queue_head *wqp;
2214 
2215 	wqp = kvm_arch_vcpu_wq(vcpu);
2216 	if (swait_active(wqp)) {
2217 		swake_up(wqp);
2218 		++vcpu->stat.halt_wakeup;
2219 	}
2220 
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2223 
2224 /*
2225  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2226  */
2227 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2228 {
2229 	int me;
2230 	int cpu = vcpu->cpu;
2231 
2232 	kvm_vcpu_wake_up(vcpu);
2233 	me = get_cpu();
2234 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2235 		if (kvm_arch_vcpu_should_kick(vcpu))
2236 			smp_send_reschedule(cpu);
2237 	put_cpu();
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2240 #endif /* !CONFIG_S390 */
2241 
2242 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2243 {
2244 	struct pid *pid;
2245 	struct task_struct *task = NULL;
2246 	int ret = 0;
2247 
2248 	rcu_read_lock();
2249 	pid = rcu_dereference(target->pid);
2250 	if (pid)
2251 		task = get_pid_task(pid, PIDTYPE_PID);
2252 	rcu_read_unlock();
2253 	if (!task)
2254 		return ret;
2255 	ret = yield_to(task, 1);
2256 	put_task_struct(task);
2257 
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2261 
2262 /*
2263  * Helper that checks whether a VCPU is eligible for directed yield.
2264  * Most eligible candidate to yield is decided by following heuristics:
2265  *
2266  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2267  *  (preempted lock holder), indicated by @in_spin_loop.
2268  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2269  *
2270  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2271  *  chance last time (mostly it has become eligible now since we have probably
2272  *  yielded to lockholder in last iteration. This is done by toggling
2273  *  @dy_eligible each time a VCPU checked for eligibility.)
2274  *
2275  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2276  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2277  *  burning. Giving priority for a potential lock-holder increases lock
2278  *  progress.
2279  *
2280  *  Since algorithm is based on heuristics, accessing another VCPU data without
2281  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2282  *  and continue with next VCPU and so on.
2283  */
2284 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2285 {
2286 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2287 	bool eligible;
2288 
2289 	eligible = !vcpu->spin_loop.in_spin_loop ||
2290 		    vcpu->spin_loop.dy_eligible;
2291 
2292 	if (vcpu->spin_loop.in_spin_loop)
2293 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2294 
2295 	return eligible;
2296 #else
2297 	return true;
2298 #endif
2299 }
2300 
2301 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2302 {
2303 	struct kvm *kvm = me->kvm;
2304 	struct kvm_vcpu *vcpu;
2305 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2306 	int yielded = 0;
2307 	int try = 3;
2308 	int pass;
2309 	int i;
2310 
2311 	kvm_vcpu_set_in_spin_loop(me, true);
2312 	/*
2313 	 * We boost the priority of a VCPU that is runnable but not
2314 	 * currently running, because it got preempted by something
2315 	 * else and called schedule in __vcpu_run.  Hopefully that
2316 	 * VCPU is holding the lock that we need and will release it.
2317 	 * We approximate round-robin by starting at the last boosted VCPU.
2318 	 */
2319 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2320 		kvm_for_each_vcpu(i, vcpu, kvm) {
2321 			if (!pass && i <= last_boosted_vcpu) {
2322 				i = last_boosted_vcpu;
2323 				continue;
2324 			} else if (pass && i > last_boosted_vcpu)
2325 				break;
2326 			if (!ACCESS_ONCE(vcpu->preempted))
2327 				continue;
2328 			if (vcpu == me)
2329 				continue;
2330 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2331 				continue;
2332 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2333 				continue;
2334 
2335 			yielded = kvm_vcpu_yield_to(vcpu);
2336 			if (yielded > 0) {
2337 				kvm->last_boosted_vcpu = i;
2338 				break;
2339 			} else if (yielded < 0) {
2340 				try--;
2341 				if (!try)
2342 					break;
2343 			}
2344 		}
2345 	}
2346 	kvm_vcpu_set_in_spin_loop(me, false);
2347 
2348 	/* Ensure vcpu is not eligible during next spinloop */
2349 	kvm_vcpu_set_dy_eligible(me, false);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2352 
2353 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2354 {
2355 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2356 	struct page *page;
2357 
2358 	if (vmf->pgoff == 0)
2359 		page = virt_to_page(vcpu->run);
2360 #ifdef CONFIG_X86
2361 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2362 		page = virt_to_page(vcpu->arch.pio_data);
2363 #endif
2364 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2365 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2366 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2367 #endif
2368 	else
2369 		return kvm_arch_vcpu_fault(vcpu, vmf);
2370 	get_page(page);
2371 	vmf->page = page;
2372 	return 0;
2373 }
2374 
2375 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2376 	.fault = kvm_vcpu_fault,
2377 };
2378 
2379 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2380 {
2381 	vma->vm_ops = &kvm_vcpu_vm_ops;
2382 	return 0;
2383 }
2384 
2385 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2386 {
2387 	struct kvm_vcpu *vcpu = filp->private_data;
2388 
2389 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2390 	kvm_put_kvm(vcpu->kvm);
2391 	return 0;
2392 }
2393 
2394 static struct file_operations kvm_vcpu_fops = {
2395 	.release        = kvm_vcpu_release,
2396 	.unlocked_ioctl = kvm_vcpu_ioctl,
2397 #ifdef CONFIG_KVM_COMPAT
2398 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2399 #endif
2400 	.mmap           = kvm_vcpu_mmap,
2401 	.llseek		= noop_llseek,
2402 };
2403 
2404 /*
2405  * Allocates an inode for the vcpu.
2406  */
2407 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2408 {
2409 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2410 }
2411 
2412 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2413 {
2414 	char dir_name[ITOA_MAX_LEN * 2];
2415 	int ret;
2416 
2417 	if (!kvm_arch_has_vcpu_debugfs())
2418 		return 0;
2419 
2420 	if (!debugfs_initialized())
2421 		return 0;
2422 
2423 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2424 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2425 								vcpu->kvm->debugfs_dentry);
2426 	if (!vcpu->debugfs_dentry)
2427 		return -ENOMEM;
2428 
2429 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2430 	if (ret < 0) {
2431 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2432 		return ret;
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 /*
2439  * Creates some virtual cpus.  Good luck creating more than one.
2440  */
2441 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2442 {
2443 	int r;
2444 	struct kvm_vcpu *vcpu;
2445 
2446 	if (id >= KVM_MAX_VCPU_ID)
2447 		return -EINVAL;
2448 
2449 	mutex_lock(&kvm->lock);
2450 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2451 		mutex_unlock(&kvm->lock);
2452 		return -EINVAL;
2453 	}
2454 
2455 	kvm->created_vcpus++;
2456 	mutex_unlock(&kvm->lock);
2457 
2458 	vcpu = kvm_arch_vcpu_create(kvm, id);
2459 	if (IS_ERR(vcpu)) {
2460 		r = PTR_ERR(vcpu);
2461 		goto vcpu_decrement;
2462 	}
2463 
2464 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2465 
2466 	r = kvm_arch_vcpu_setup(vcpu);
2467 	if (r)
2468 		goto vcpu_destroy;
2469 
2470 	r = kvm_create_vcpu_debugfs(vcpu);
2471 	if (r)
2472 		goto vcpu_destroy;
2473 
2474 	mutex_lock(&kvm->lock);
2475 	if (kvm_get_vcpu_by_id(kvm, id)) {
2476 		r = -EEXIST;
2477 		goto unlock_vcpu_destroy;
2478 	}
2479 
2480 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2481 
2482 	/* Now it's all set up, let userspace reach it */
2483 	kvm_get_kvm(kvm);
2484 	r = create_vcpu_fd(vcpu);
2485 	if (r < 0) {
2486 		kvm_put_kvm(kvm);
2487 		goto unlock_vcpu_destroy;
2488 	}
2489 
2490 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2491 
2492 	/*
2493 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2494 	 * before kvm->online_vcpu's incremented value.
2495 	 */
2496 	smp_wmb();
2497 	atomic_inc(&kvm->online_vcpus);
2498 
2499 	mutex_unlock(&kvm->lock);
2500 	kvm_arch_vcpu_postcreate(vcpu);
2501 	return r;
2502 
2503 unlock_vcpu_destroy:
2504 	mutex_unlock(&kvm->lock);
2505 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2506 vcpu_destroy:
2507 	kvm_arch_vcpu_destroy(vcpu);
2508 vcpu_decrement:
2509 	mutex_lock(&kvm->lock);
2510 	kvm->created_vcpus--;
2511 	mutex_unlock(&kvm->lock);
2512 	return r;
2513 }
2514 
2515 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2516 {
2517 	if (sigset) {
2518 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2519 		vcpu->sigset_active = 1;
2520 		vcpu->sigset = *sigset;
2521 	} else
2522 		vcpu->sigset_active = 0;
2523 	return 0;
2524 }
2525 
2526 static long kvm_vcpu_ioctl(struct file *filp,
2527 			   unsigned int ioctl, unsigned long arg)
2528 {
2529 	struct kvm_vcpu *vcpu = filp->private_data;
2530 	void __user *argp = (void __user *)arg;
2531 	int r;
2532 	struct kvm_fpu *fpu = NULL;
2533 	struct kvm_sregs *kvm_sregs = NULL;
2534 
2535 	if (vcpu->kvm->mm != current->mm)
2536 		return -EIO;
2537 
2538 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2539 		return -EINVAL;
2540 
2541 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2542 	/*
2543 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2544 	 * so vcpu_load() would break it.
2545 	 */
2546 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2547 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2548 #endif
2549 
2550 
2551 	r = vcpu_load(vcpu);
2552 	if (r)
2553 		return r;
2554 	switch (ioctl) {
2555 	case KVM_RUN:
2556 		r = -EINVAL;
2557 		if (arg)
2558 			goto out;
2559 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2560 			/* The thread running this VCPU changed. */
2561 			struct pid *oldpid = vcpu->pid;
2562 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2563 
2564 			rcu_assign_pointer(vcpu->pid, newpid);
2565 			if (oldpid)
2566 				synchronize_rcu();
2567 			put_pid(oldpid);
2568 		}
2569 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2570 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2571 		break;
2572 	case KVM_GET_REGS: {
2573 		struct kvm_regs *kvm_regs;
2574 
2575 		r = -ENOMEM;
2576 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2577 		if (!kvm_regs)
2578 			goto out;
2579 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2580 		if (r)
2581 			goto out_free1;
2582 		r = -EFAULT;
2583 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2584 			goto out_free1;
2585 		r = 0;
2586 out_free1:
2587 		kfree(kvm_regs);
2588 		break;
2589 	}
2590 	case KVM_SET_REGS: {
2591 		struct kvm_regs *kvm_regs;
2592 
2593 		r = -ENOMEM;
2594 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2595 		if (IS_ERR(kvm_regs)) {
2596 			r = PTR_ERR(kvm_regs);
2597 			goto out;
2598 		}
2599 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2600 		kfree(kvm_regs);
2601 		break;
2602 	}
2603 	case KVM_GET_SREGS: {
2604 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2605 		r = -ENOMEM;
2606 		if (!kvm_sregs)
2607 			goto out;
2608 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2609 		if (r)
2610 			goto out;
2611 		r = -EFAULT;
2612 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2613 			goto out;
2614 		r = 0;
2615 		break;
2616 	}
2617 	case KVM_SET_SREGS: {
2618 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2619 		if (IS_ERR(kvm_sregs)) {
2620 			r = PTR_ERR(kvm_sregs);
2621 			kvm_sregs = NULL;
2622 			goto out;
2623 		}
2624 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2625 		break;
2626 	}
2627 	case KVM_GET_MP_STATE: {
2628 		struct kvm_mp_state mp_state;
2629 
2630 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2631 		if (r)
2632 			goto out;
2633 		r = -EFAULT;
2634 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2635 			goto out;
2636 		r = 0;
2637 		break;
2638 	}
2639 	case KVM_SET_MP_STATE: {
2640 		struct kvm_mp_state mp_state;
2641 
2642 		r = -EFAULT;
2643 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2644 			goto out;
2645 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2646 		break;
2647 	}
2648 	case KVM_TRANSLATE: {
2649 		struct kvm_translation tr;
2650 
2651 		r = -EFAULT;
2652 		if (copy_from_user(&tr, argp, sizeof(tr)))
2653 			goto out;
2654 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2655 		if (r)
2656 			goto out;
2657 		r = -EFAULT;
2658 		if (copy_to_user(argp, &tr, sizeof(tr)))
2659 			goto out;
2660 		r = 0;
2661 		break;
2662 	}
2663 	case KVM_SET_GUEST_DEBUG: {
2664 		struct kvm_guest_debug dbg;
2665 
2666 		r = -EFAULT;
2667 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2668 			goto out;
2669 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2670 		break;
2671 	}
2672 	case KVM_SET_SIGNAL_MASK: {
2673 		struct kvm_signal_mask __user *sigmask_arg = argp;
2674 		struct kvm_signal_mask kvm_sigmask;
2675 		sigset_t sigset, *p;
2676 
2677 		p = NULL;
2678 		if (argp) {
2679 			r = -EFAULT;
2680 			if (copy_from_user(&kvm_sigmask, argp,
2681 					   sizeof(kvm_sigmask)))
2682 				goto out;
2683 			r = -EINVAL;
2684 			if (kvm_sigmask.len != sizeof(sigset))
2685 				goto out;
2686 			r = -EFAULT;
2687 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2688 					   sizeof(sigset)))
2689 				goto out;
2690 			p = &sigset;
2691 		}
2692 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2693 		break;
2694 	}
2695 	case KVM_GET_FPU: {
2696 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2697 		r = -ENOMEM;
2698 		if (!fpu)
2699 			goto out;
2700 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2701 		if (r)
2702 			goto out;
2703 		r = -EFAULT;
2704 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2705 			goto out;
2706 		r = 0;
2707 		break;
2708 	}
2709 	case KVM_SET_FPU: {
2710 		fpu = memdup_user(argp, sizeof(*fpu));
2711 		if (IS_ERR(fpu)) {
2712 			r = PTR_ERR(fpu);
2713 			fpu = NULL;
2714 			goto out;
2715 		}
2716 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2717 		break;
2718 	}
2719 	default:
2720 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2721 	}
2722 out:
2723 	vcpu_put(vcpu);
2724 	kfree(fpu);
2725 	kfree(kvm_sregs);
2726 	return r;
2727 }
2728 
2729 #ifdef CONFIG_KVM_COMPAT
2730 static long kvm_vcpu_compat_ioctl(struct file *filp,
2731 				  unsigned int ioctl, unsigned long arg)
2732 {
2733 	struct kvm_vcpu *vcpu = filp->private_data;
2734 	void __user *argp = compat_ptr(arg);
2735 	int r;
2736 
2737 	if (vcpu->kvm->mm != current->mm)
2738 		return -EIO;
2739 
2740 	switch (ioctl) {
2741 	case KVM_SET_SIGNAL_MASK: {
2742 		struct kvm_signal_mask __user *sigmask_arg = argp;
2743 		struct kvm_signal_mask kvm_sigmask;
2744 		compat_sigset_t csigset;
2745 		sigset_t sigset;
2746 
2747 		if (argp) {
2748 			r = -EFAULT;
2749 			if (copy_from_user(&kvm_sigmask, argp,
2750 					   sizeof(kvm_sigmask)))
2751 				goto out;
2752 			r = -EINVAL;
2753 			if (kvm_sigmask.len != sizeof(csigset))
2754 				goto out;
2755 			r = -EFAULT;
2756 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2757 					   sizeof(csigset)))
2758 				goto out;
2759 			sigset_from_compat(&sigset, &csigset);
2760 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2761 		} else
2762 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2763 		break;
2764 	}
2765 	default:
2766 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2767 	}
2768 
2769 out:
2770 	return r;
2771 }
2772 #endif
2773 
2774 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2775 				 int (*accessor)(struct kvm_device *dev,
2776 						 struct kvm_device_attr *attr),
2777 				 unsigned long arg)
2778 {
2779 	struct kvm_device_attr attr;
2780 
2781 	if (!accessor)
2782 		return -EPERM;
2783 
2784 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2785 		return -EFAULT;
2786 
2787 	return accessor(dev, &attr);
2788 }
2789 
2790 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2791 			     unsigned long arg)
2792 {
2793 	struct kvm_device *dev = filp->private_data;
2794 
2795 	switch (ioctl) {
2796 	case KVM_SET_DEVICE_ATTR:
2797 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2798 	case KVM_GET_DEVICE_ATTR:
2799 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2800 	case KVM_HAS_DEVICE_ATTR:
2801 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2802 	default:
2803 		if (dev->ops->ioctl)
2804 			return dev->ops->ioctl(dev, ioctl, arg);
2805 
2806 		return -ENOTTY;
2807 	}
2808 }
2809 
2810 static int kvm_device_release(struct inode *inode, struct file *filp)
2811 {
2812 	struct kvm_device *dev = filp->private_data;
2813 	struct kvm *kvm = dev->kvm;
2814 
2815 	kvm_put_kvm(kvm);
2816 	return 0;
2817 }
2818 
2819 static const struct file_operations kvm_device_fops = {
2820 	.unlocked_ioctl = kvm_device_ioctl,
2821 #ifdef CONFIG_KVM_COMPAT
2822 	.compat_ioctl = kvm_device_ioctl,
2823 #endif
2824 	.release = kvm_device_release,
2825 };
2826 
2827 struct kvm_device *kvm_device_from_filp(struct file *filp)
2828 {
2829 	if (filp->f_op != &kvm_device_fops)
2830 		return NULL;
2831 
2832 	return filp->private_data;
2833 }
2834 
2835 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2836 #ifdef CONFIG_KVM_MPIC
2837 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2838 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2839 #endif
2840 
2841 #ifdef CONFIG_KVM_XICS
2842 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2843 #endif
2844 };
2845 
2846 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2847 {
2848 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2849 		return -ENOSPC;
2850 
2851 	if (kvm_device_ops_table[type] != NULL)
2852 		return -EEXIST;
2853 
2854 	kvm_device_ops_table[type] = ops;
2855 	return 0;
2856 }
2857 
2858 void kvm_unregister_device_ops(u32 type)
2859 {
2860 	if (kvm_device_ops_table[type] != NULL)
2861 		kvm_device_ops_table[type] = NULL;
2862 }
2863 
2864 static int kvm_ioctl_create_device(struct kvm *kvm,
2865 				   struct kvm_create_device *cd)
2866 {
2867 	struct kvm_device_ops *ops = NULL;
2868 	struct kvm_device *dev;
2869 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2870 	int ret;
2871 
2872 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2873 		return -ENODEV;
2874 
2875 	ops = kvm_device_ops_table[cd->type];
2876 	if (ops == NULL)
2877 		return -ENODEV;
2878 
2879 	if (test)
2880 		return 0;
2881 
2882 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2883 	if (!dev)
2884 		return -ENOMEM;
2885 
2886 	dev->ops = ops;
2887 	dev->kvm = kvm;
2888 
2889 	mutex_lock(&kvm->lock);
2890 	ret = ops->create(dev, cd->type);
2891 	if (ret < 0) {
2892 		mutex_unlock(&kvm->lock);
2893 		kfree(dev);
2894 		return ret;
2895 	}
2896 	list_add(&dev->vm_node, &kvm->devices);
2897 	mutex_unlock(&kvm->lock);
2898 
2899 	if (ops->init)
2900 		ops->init(dev);
2901 
2902 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2903 	if (ret < 0) {
2904 		mutex_lock(&kvm->lock);
2905 		list_del(&dev->vm_node);
2906 		mutex_unlock(&kvm->lock);
2907 		ops->destroy(dev);
2908 		return ret;
2909 	}
2910 
2911 	kvm_get_kvm(kvm);
2912 	cd->fd = ret;
2913 	return 0;
2914 }
2915 
2916 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2917 {
2918 	switch (arg) {
2919 	case KVM_CAP_USER_MEMORY:
2920 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2921 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2922 	case KVM_CAP_INTERNAL_ERROR_DATA:
2923 #ifdef CONFIG_HAVE_KVM_MSI
2924 	case KVM_CAP_SIGNAL_MSI:
2925 #endif
2926 #ifdef CONFIG_HAVE_KVM_IRQFD
2927 	case KVM_CAP_IRQFD:
2928 	case KVM_CAP_IRQFD_RESAMPLE:
2929 #endif
2930 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2931 	case KVM_CAP_CHECK_EXTENSION_VM:
2932 		return 1;
2933 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2934 	case KVM_CAP_IRQ_ROUTING:
2935 		return KVM_MAX_IRQ_ROUTES;
2936 #endif
2937 #if KVM_ADDRESS_SPACE_NUM > 1
2938 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2939 		return KVM_ADDRESS_SPACE_NUM;
2940 #endif
2941 	case KVM_CAP_MAX_VCPU_ID:
2942 		return KVM_MAX_VCPU_ID;
2943 	default:
2944 		break;
2945 	}
2946 	return kvm_vm_ioctl_check_extension(kvm, arg);
2947 }
2948 
2949 static long kvm_vm_ioctl(struct file *filp,
2950 			   unsigned int ioctl, unsigned long arg)
2951 {
2952 	struct kvm *kvm = filp->private_data;
2953 	void __user *argp = (void __user *)arg;
2954 	int r;
2955 
2956 	if (kvm->mm != current->mm)
2957 		return -EIO;
2958 	switch (ioctl) {
2959 	case KVM_CREATE_VCPU:
2960 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2961 		break;
2962 	case KVM_SET_USER_MEMORY_REGION: {
2963 		struct kvm_userspace_memory_region kvm_userspace_mem;
2964 
2965 		r = -EFAULT;
2966 		if (copy_from_user(&kvm_userspace_mem, argp,
2967 						sizeof(kvm_userspace_mem)))
2968 			goto out;
2969 
2970 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2971 		break;
2972 	}
2973 	case KVM_GET_DIRTY_LOG: {
2974 		struct kvm_dirty_log log;
2975 
2976 		r = -EFAULT;
2977 		if (copy_from_user(&log, argp, sizeof(log)))
2978 			goto out;
2979 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2980 		break;
2981 	}
2982 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2983 	case KVM_REGISTER_COALESCED_MMIO: {
2984 		struct kvm_coalesced_mmio_zone zone;
2985 
2986 		r = -EFAULT;
2987 		if (copy_from_user(&zone, argp, sizeof(zone)))
2988 			goto out;
2989 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2990 		break;
2991 	}
2992 	case KVM_UNREGISTER_COALESCED_MMIO: {
2993 		struct kvm_coalesced_mmio_zone zone;
2994 
2995 		r = -EFAULT;
2996 		if (copy_from_user(&zone, argp, sizeof(zone)))
2997 			goto out;
2998 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2999 		break;
3000 	}
3001 #endif
3002 	case KVM_IRQFD: {
3003 		struct kvm_irqfd data;
3004 
3005 		r = -EFAULT;
3006 		if (copy_from_user(&data, argp, sizeof(data)))
3007 			goto out;
3008 		r = kvm_irqfd(kvm, &data);
3009 		break;
3010 	}
3011 	case KVM_IOEVENTFD: {
3012 		struct kvm_ioeventfd data;
3013 
3014 		r = -EFAULT;
3015 		if (copy_from_user(&data, argp, sizeof(data)))
3016 			goto out;
3017 		r = kvm_ioeventfd(kvm, &data);
3018 		break;
3019 	}
3020 #ifdef CONFIG_HAVE_KVM_MSI
3021 	case KVM_SIGNAL_MSI: {
3022 		struct kvm_msi msi;
3023 
3024 		r = -EFAULT;
3025 		if (copy_from_user(&msi, argp, sizeof(msi)))
3026 			goto out;
3027 		r = kvm_send_userspace_msi(kvm, &msi);
3028 		break;
3029 	}
3030 #endif
3031 #ifdef __KVM_HAVE_IRQ_LINE
3032 	case KVM_IRQ_LINE_STATUS:
3033 	case KVM_IRQ_LINE: {
3034 		struct kvm_irq_level irq_event;
3035 
3036 		r = -EFAULT;
3037 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3038 			goto out;
3039 
3040 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3041 					ioctl == KVM_IRQ_LINE_STATUS);
3042 		if (r)
3043 			goto out;
3044 
3045 		r = -EFAULT;
3046 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3047 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3048 				goto out;
3049 		}
3050 
3051 		r = 0;
3052 		break;
3053 	}
3054 #endif
3055 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3056 	case KVM_SET_GSI_ROUTING: {
3057 		struct kvm_irq_routing routing;
3058 		struct kvm_irq_routing __user *urouting;
3059 		struct kvm_irq_routing_entry *entries = NULL;
3060 
3061 		r = -EFAULT;
3062 		if (copy_from_user(&routing, argp, sizeof(routing)))
3063 			goto out;
3064 		r = -EINVAL;
3065 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3066 			goto out;
3067 		if (routing.flags)
3068 			goto out;
3069 		if (routing.nr) {
3070 			r = -ENOMEM;
3071 			entries = vmalloc(routing.nr * sizeof(*entries));
3072 			if (!entries)
3073 				goto out;
3074 			r = -EFAULT;
3075 			urouting = argp;
3076 			if (copy_from_user(entries, urouting->entries,
3077 					   routing.nr * sizeof(*entries)))
3078 				goto out_free_irq_routing;
3079 		}
3080 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3081 					routing.flags);
3082 out_free_irq_routing:
3083 		vfree(entries);
3084 		break;
3085 	}
3086 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3087 	case KVM_CREATE_DEVICE: {
3088 		struct kvm_create_device cd;
3089 
3090 		r = -EFAULT;
3091 		if (copy_from_user(&cd, argp, sizeof(cd)))
3092 			goto out;
3093 
3094 		r = kvm_ioctl_create_device(kvm, &cd);
3095 		if (r)
3096 			goto out;
3097 
3098 		r = -EFAULT;
3099 		if (copy_to_user(argp, &cd, sizeof(cd)))
3100 			goto out;
3101 
3102 		r = 0;
3103 		break;
3104 	}
3105 	case KVM_CHECK_EXTENSION:
3106 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3107 		break;
3108 	default:
3109 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3110 	}
3111 out:
3112 	return r;
3113 }
3114 
3115 #ifdef CONFIG_KVM_COMPAT
3116 struct compat_kvm_dirty_log {
3117 	__u32 slot;
3118 	__u32 padding1;
3119 	union {
3120 		compat_uptr_t dirty_bitmap; /* one bit per page */
3121 		__u64 padding2;
3122 	};
3123 };
3124 
3125 static long kvm_vm_compat_ioctl(struct file *filp,
3126 			   unsigned int ioctl, unsigned long arg)
3127 {
3128 	struct kvm *kvm = filp->private_data;
3129 	int r;
3130 
3131 	if (kvm->mm != current->mm)
3132 		return -EIO;
3133 	switch (ioctl) {
3134 	case KVM_GET_DIRTY_LOG: {
3135 		struct compat_kvm_dirty_log compat_log;
3136 		struct kvm_dirty_log log;
3137 
3138 		if (copy_from_user(&compat_log, (void __user *)arg,
3139 				   sizeof(compat_log)))
3140 			return -EFAULT;
3141 		log.slot	 = compat_log.slot;
3142 		log.padding1	 = compat_log.padding1;
3143 		log.padding2	 = compat_log.padding2;
3144 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3145 
3146 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3147 		break;
3148 	}
3149 	default:
3150 		r = kvm_vm_ioctl(filp, ioctl, arg);
3151 	}
3152 	return r;
3153 }
3154 #endif
3155 
3156 static struct file_operations kvm_vm_fops = {
3157 	.release        = kvm_vm_release,
3158 	.unlocked_ioctl = kvm_vm_ioctl,
3159 #ifdef CONFIG_KVM_COMPAT
3160 	.compat_ioctl   = kvm_vm_compat_ioctl,
3161 #endif
3162 	.llseek		= noop_llseek,
3163 };
3164 
3165 static int kvm_dev_ioctl_create_vm(unsigned long type)
3166 {
3167 	int r;
3168 	struct kvm *kvm;
3169 	struct file *file;
3170 
3171 	kvm = kvm_create_vm(type);
3172 	if (IS_ERR(kvm))
3173 		return PTR_ERR(kvm);
3174 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3175 	r = kvm_coalesced_mmio_init(kvm);
3176 	if (r < 0) {
3177 		kvm_put_kvm(kvm);
3178 		return r;
3179 	}
3180 #endif
3181 	r = get_unused_fd_flags(O_CLOEXEC);
3182 	if (r < 0) {
3183 		kvm_put_kvm(kvm);
3184 		return r;
3185 	}
3186 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3187 	if (IS_ERR(file)) {
3188 		put_unused_fd(r);
3189 		kvm_put_kvm(kvm);
3190 		return PTR_ERR(file);
3191 	}
3192 
3193 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3194 		put_unused_fd(r);
3195 		fput(file);
3196 		return -ENOMEM;
3197 	}
3198 
3199 	fd_install(r, file);
3200 	return r;
3201 }
3202 
3203 static long kvm_dev_ioctl(struct file *filp,
3204 			  unsigned int ioctl, unsigned long arg)
3205 {
3206 	long r = -EINVAL;
3207 
3208 	switch (ioctl) {
3209 	case KVM_GET_API_VERSION:
3210 		if (arg)
3211 			goto out;
3212 		r = KVM_API_VERSION;
3213 		break;
3214 	case KVM_CREATE_VM:
3215 		r = kvm_dev_ioctl_create_vm(arg);
3216 		break;
3217 	case KVM_CHECK_EXTENSION:
3218 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3219 		break;
3220 	case KVM_GET_VCPU_MMAP_SIZE:
3221 		if (arg)
3222 			goto out;
3223 		r = PAGE_SIZE;     /* struct kvm_run */
3224 #ifdef CONFIG_X86
3225 		r += PAGE_SIZE;    /* pio data page */
3226 #endif
3227 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3228 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3229 #endif
3230 		break;
3231 	case KVM_TRACE_ENABLE:
3232 	case KVM_TRACE_PAUSE:
3233 	case KVM_TRACE_DISABLE:
3234 		r = -EOPNOTSUPP;
3235 		break;
3236 	default:
3237 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3238 	}
3239 out:
3240 	return r;
3241 }
3242 
3243 static struct file_operations kvm_chardev_ops = {
3244 	.unlocked_ioctl = kvm_dev_ioctl,
3245 	.compat_ioctl   = kvm_dev_ioctl,
3246 	.llseek		= noop_llseek,
3247 };
3248 
3249 static struct miscdevice kvm_dev = {
3250 	KVM_MINOR,
3251 	"kvm",
3252 	&kvm_chardev_ops,
3253 };
3254 
3255 static void hardware_enable_nolock(void *junk)
3256 {
3257 	int cpu = raw_smp_processor_id();
3258 	int r;
3259 
3260 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3261 		return;
3262 
3263 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3264 
3265 	r = kvm_arch_hardware_enable();
3266 
3267 	if (r) {
3268 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3269 		atomic_inc(&hardware_enable_failed);
3270 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3271 	}
3272 }
3273 
3274 static int kvm_starting_cpu(unsigned int cpu)
3275 {
3276 	raw_spin_lock(&kvm_count_lock);
3277 	if (kvm_usage_count)
3278 		hardware_enable_nolock(NULL);
3279 	raw_spin_unlock(&kvm_count_lock);
3280 	return 0;
3281 }
3282 
3283 static void hardware_disable_nolock(void *junk)
3284 {
3285 	int cpu = raw_smp_processor_id();
3286 
3287 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3288 		return;
3289 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3290 	kvm_arch_hardware_disable();
3291 }
3292 
3293 static int kvm_dying_cpu(unsigned int cpu)
3294 {
3295 	raw_spin_lock(&kvm_count_lock);
3296 	if (kvm_usage_count)
3297 		hardware_disable_nolock(NULL);
3298 	raw_spin_unlock(&kvm_count_lock);
3299 	return 0;
3300 }
3301 
3302 static void hardware_disable_all_nolock(void)
3303 {
3304 	BUG_ON(!kvm_usage_count);
3305 
3306 	kvm_usage_count--;
3307 	if (!kvm_usage_count)
3308 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3309 }
3310 
3311 static void hardware_disable_all(void)
3312 {
3313 	raw_spin_lock(&kvm_count_lock);
3314 	hardware_disable_all_nolock();
3315 	raw_spin_unlock(&kvm_count_lock);
3316 }
3317 
3318 static int hardware_enable_all(void)
3319 {
3320 	int r = 0;
3321 
3322 	raw_spin_lock(&kvm_count_lock);
3323 
3324 	kvm_usage_count++;
3325 	if (kvm_usage_count == 1) {
3326 		atomic_set(&hardware_enable_failed, 0);
3327 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3328 
3329 		if (atomic_read(&hardware_enable_failed)) {
3330 			hardware_disable_all_nolock();
3331 			r = -EBUSY;
3332 		}
3333 	}
3334 
3335 	raw_spin_unlock(&kvm_count_lock);
3336 
3337 	return r;
3338 }
3339 
3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3341 		      void *v)
3342 {
3343 	/*
3344 	 * Some (well, at least mine) BIOSes hang on reboot if
3345 	 * in vmx root mode.
3346 	 *
3347 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3348 	 */
3349 	pr_info("kvm: exiting hardware virtualization\n");
3350 	kvm_rebooting = true;
3351 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3352 	return NOTIFY_OK;
3353 }
3354 
3355 static struct notifier_block kvm_reboot_notifier = {
3356 	.notifier_call = kvm_reboot,
3357 	.priority = 0,
3358 };
3359 
3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3361 {
3362 	int i;
3363 
3364 	for (i = 0; i < bus->dev_count; i++) {
3365 		struct kvm_io_device *pos = bus->range[i].dev;
3366 
3367 		kvm_iodevice_destructor(pos);
3368 	}
3369 	kfree(bus);
3370 }
3371 
3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3373 				 const struct kvm_io_range *r2)
3374 {
3375 	gpa_t addr1 = r1->addr;
3376 	gpa_t addr2 = r2->addr;
3377 
3378 	if (addr1 < addr2)
3379 		return -1;
3380 
3381 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3382 	 * accept any overlapping write.  Any order is acceptable for
3383 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3384 	 * we process all of them.
3385 	 */
3386 	if (r2->len) {
3387 		addr1 += r1->len;
3388 		addr2 += r2->len;
3389 	}
3390 
3391 	if (addr1 > addr2)
3392 		return 1;
3393 
3394 	return 0;
3395 }
3396 
3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3398 {
3399 	return kvm_io_bus_cmp(p1, p2);
3400 }
3401 
3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3403 			  gpa_t addr, int len)
3404 {
3405 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3406 		.addr = addr,
3407 		.len = len,
3408 		.dev = dev,
3409 	};
3410 
3411 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3412 		kvm_io_bus_sort_cmp, NULL);
3413 
3414 	return 0;
3415 }
3416 
3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3418 			     gpa_t addr, int len)
3419 {
3420 	struct kvm_io_range *range, key;
3421 	int off;
3422 
3423 	key = (struct kvm_io_range) {
3424 		.addr = addr,
3425 		.len = len,
3426 	};
3427 
3428 	range = bsearch(&key, bus->range, bus->dev_count,
3429 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3430 	if (range == NULL)
3431 		return -ENOENT;
3432 
3433 	off = range - bus->range;
3434 
3435 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3436 		off--;
3437 
3438 	return off;
3439 }
3440 
3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3442 			      struct kvm_io_range *range, const void *val)
3443 {
3444 	int idx;
3445 
3446 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3447 	if (idx < 0)
3448 		return -EOPNOTSUPP;
3449 
3450 	while (idx < bus->dev_count &&
3451 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3452 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3453 					range->len, val))
3454 			return idx;
3455 		idx++;
3456 	}
3457 
3458 	return -EOPNOTSUPP;
3459 }
3460 
3461 /* kvm_io_bus_write - called under kvm->slots_lock */
3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3463 		     int len, const void *val)
3464 {
3465 	struct kvm_io_bus *bus;
3466 	struct kvm_io_range range;
3467 	int r;
3468 
3469 	range = (struct kvm_io_range) {
3470 		.addr = addr,
3471 		.len = len,
3472 	};
3473 
3474 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3475 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3476 	return r < 0 ? r : 0;
3477 }
3478 
3479 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3480 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3481 			    gpa_t addr, int len, const void *val, long cookie)
3482 {
3483 	struct kvm_io_bus *bus;
3484 	struct kvm_io_range range;
3485 
3486 	range = (struct kvm_io_range) {
3487 		.addr = addr,
3488 		.len = len,
3489 	};
3490 
3491 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3492 
3493 	/* First try the device referenced by cookie. */
3494 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3495 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3496 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3497 					val))
3498 			return cookie;
3499 
3500 	/*
3501 	 * cookie contained garbage; fall back to search and return the
3502 	 * correct cookie value.
3503 	 */
3504 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3505 }
3506 
3507 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3508 			     struct kvm_io_range *range, void *val)
3509 {
3510 	int idx;
3511 
3512 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3513 	if (idx < 0)
3514 		return -EOPNOTSUPP;
3515 
3516 	while (idx < bus->dev_count &&
3517 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3518 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3519 				       range->len, val))
3520 			return idx;
3521 		idx++;
3522 	}
3523 
3524 	return -EOPNOTSUPP;
3525 }
3526 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3527 
3528 /* kvm_io_bus_read - called under kvm->slots_lock */
3529 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3530 		    int len, void *val)
3531 {
3532 	struct kvm_io_bus *bus;
3533 	struct kvm_io_range range;
3534 	int r;
3535 
3536 	range = (struct kvm_io_range) {
3537 		.addr = addr,
3538 		.len = len,
3539 	};
3540 
3541 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3542 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3543 	return r < 0 ? r : 0;
3544 }
3545 
3546 
3547 /* Caller must hold slots_lock. */
3548 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3549 			    int len, struct kvm_io_device *dev)
3550 {
3551 	struct kvm_io_bus *new_bus, *bus;
3552 
3553 	bus = kvm->buses[bus_idx];
3554 	/* exclude ioeventfd which is limited by maximum fd */
3555 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3556 		return -ENOSPC;
3557 
3558 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3559 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3560 	if (!new_bus)
3561 		return -ENOMEM;
3562 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3563 	       sizeof(struct kvm_io_range)));
3564 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3565 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3566 	synchronize_srcu_expedited(&kvm->srcu);
3567 	kfree(bus);
3568 
3569 	return 0;
3570 }
3571 
3572 /* Caller must hold slots_lock. */
3573 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3574 			      struct kvm_io_device *dev)
3575 {
3576 	int i, r;
3577 	struct kvm_io_bus *new_bus, *bus;
3578 
3579 	bus = kvm->buses[bus_idx];
3580 	r = -ENOENT;
3581 	for (i = 0; i < bus->dev_count; i++)
3582 		if (bus->range[i].dev == dev) {
3583 			r = 0;
3584 			break;
3585 		}
3586 
3587 	if (r)
3588 		return r;
3589 
3590 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3591 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3592 	if (!new_bus)
3593 		return -ENOMEM;
3594 
3595 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596 	new_bus->dev_count--;
3597 	memcpy(new_bus->range + i, bus->range + i + 1,
3598 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3599 
3600 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3601 	synchronize_srcu_expedited(&kvm->srcu);
3602 	kfree(bus);
3603 	return r;
3604 }
3605 
3606 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3607 					 gpa_t addr)
3608 {
3609 	struct kvm_io_bus *bus;
3610 	int dev_idx, srcu_idx;
3611 	struct kvm_io_device *iodev = NULL;
3612 
3613 	srcu_idx = srcu_read_lock(&kvm->srcu);
3614 
3615 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3616 
3617 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3618 	if (dev_idx < 0)
3619 		goto out_unlock;
3620 
3621 	iodev = bus->range[dev_idx].dev;
3622 
3623 out_unlock:
3624 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3625 
3626 	return iodev;
3627 }
3628 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3629 
3630 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3631 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3632 			   const char *fmt)
3633 {
3634 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3635 					  inode->i_private;
3636 
3637 	/* The debugfs files are a reference to the kvm struct which
3638 	 * is still valid when kvm_destroy_vm is called.
3639 	 * To avoid the race between open and the removal of the debugfs
3640 	 * directory we test against the users count.
3641 	 */
3642 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3643 		return -ENOENT;
3644 
3645 	if (simple_attr_open(inode, file, get, set, fmt)) {
3646 		kvm_put_kvm(stat_data->kvm);
3647 		return -ENOMEM;
3648 	}
3649 
3650 	return 0;
3651 }
3652 
3653 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3654 {
3655 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3656 					  inode->i_private;
3657 
3658 	simple_attr_release(inode, file);
3659 	kvm_put_kvm(stat_data->kvm);
3660 
3661 	return 0;
3662 }
3663 
3664 static int vm_stat_get_per_vm(void *data, u64 *val)
3665 {
3666 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3667 
3668 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3669 
3670 	return 0;
3671 }
3672 
3673 static int vm_stat_clear_per_vm(void *data, u64 val)
3674 {
3675 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3676 
3677 	if (val)
3678 		return -EINVAL;
3679 
3680 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3681 
3682 	return 0;
3683 }
3684 
3685 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3686 {
3687 	__simple_attr_check_format("%llu\n", 0ull);
3688 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3689 				vm_stat_clear_per_vm, "%llu\n");
3690 }
3691 
3692 static const struct file_operations vm_stat_get_per_vm_fops = {
3693 	.owner   = THIS_MODULE,
3694 	.open    = vm_stat_get_per_vm_open,
3695 	.release = kvm_debugfs_release,
3696 	.read    = simple_attr_read,
3697 	.write   = simple_attr_write,
3698 	.llseek  = generic_file_llseek,
3699 };
3700 
3701 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3702 {
3703 	int i;
3704 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3705 	struct kvm_vcpu *vcpu;
3706 
3707 	*val = 0;
3708 
3709 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3710 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3711 
3712 	return 0;
3713 }
3714 
3715 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3716 {
3717 	int i;
3718 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3719 	struct kvm_vcpu *vcpu;
3720 
3721 	if (val)
3722 		return -EINVAL;
3723 
3724 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3725 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3726 
3727 	return 0;
3728 }
3729 
3730 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3731 {
3732 	__simple_attr_check_format("%llu\n", 0ull);
3733 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3734 				 vcpu_stat_clear_per_vm, "%llu\n");
3735 }
3736 
3737 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3738 	.owner   = THIS_MODULE,
3739 	.open    = vcpu_stat_get_per_vm_open,
3740 	.release = kvm_debugfs_release,
3741 	.read    = simple_attr_read,
3742 	.write   = simple_attr_write,
3743 	.llseek  = generic_file_llseek,
3744 };
3745 
3746 static const struct file_operations *stat_fops_per_vm[] = {
3747 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3748 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3749 };
3750 
3751 static int vm_stat_get(void *_offset, u64 *val)
3752 {
3753 	unsigned offset = (long)_offset;
3754 	struct kvm *kvm;
3755 	struct kvm_stat_data stat_tmp = {.offset = offset};
3756 	u64 tmp_val;
3757 
3758 	*val = 0;
3759 	spin_lock(&kvm_lock);
3760 	list_for_each_entry(kvm, &vm_list, vm_list) {
3761 		stat_tmp.kvm = kvm;
3762 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3763 		*val += tmp_val;
3764 	}
3765 	spin_unlock(&kvm_lock);
3766 	return 0;
3767 }
3768 
3769 static int vm_stat_clear(void *_offset, u64 val)
3770 {
3771 	unsigned offset = (long)_offset;
3772 	struct kvm *kvm;
3773 	struct kvm_stat_data stat_tmp = {.offset = offset};
3774 
3775 	if (val)
3776 		return -EINVAL;
3777 
3778 	spin_lock(&kvm_lock);
3779 	list_for_each_entry(kvm, &vm_list, vm_list) {
3780 		stat_tmp.kvm = kvm;
3781 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3782 	}
3783 	spin_unlock(&kvm_lock);
3784 
3785 	return 0;
3786 }
3787 
3788 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3789 
3790 static int vcpu_stat_get(void *_offset, u64 *val)
3791 {
3792 	unsigned offset = (long)_offset;
3793 	struct kvm *kvm;
3794 	struct kvm_stat_data stat_tmp = {.offset = offset};
3795 	u64 tmp_val;
3796 
3797 	*val = 0;
3798 	spin_lock(&kvm_lock);
3799 	list_for_each_entry(kvm, &vm_list, vm_list) {
3800 		stat_tmp.kvm = kvm;
3801 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3802 		*val += tmp_val;
3803 	}
3804 	spin_unlock(&kvm_lock);
3805 	return 0;
3806 }
3807 
3808 static int vcpu_stat_clear(void *_offset, u64 val)
3809 {
3810 	unsigned offset = (long)_offset;
3811 	struct kvm *kvm;
3812 	struct kvm_stat_data stat_tmp = {.offset = offset};
3813 
3814 	if (val)
3815 		return -EINVAL;
3816 
3817 	spin_lock(&kvm_lock);
3818 	list_for_each_entry(kvm, &vm_list, vm_list) {
3819 		stat_tmp.kvm = kvm;
3820 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3821 	}
3822 	spin_unlock(&kvm_lock);
3823 
3824 	return 0;
3825 }
3826 
3827 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3828 			"%llu\n");
3829 
3830 static const struct file_operations *stat_fops[] = {
3831 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3832 	[KVM_STAT_VM]   = &vm_stat_fops,
3833 };
3834 
3835 static int kvm_init_debug(void)
3836 {
3837 	int r = -EEXIST;
3838 	struct kvm_stats_debugfs_item *p;
3839 
3840 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3841 	if (kvm_debugfs_dir == NULL)
3842 		goto out;
3843 
3844 	kvm_debugfs_num_entries = 0;
3845 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3846 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3847 					 (void *)(long)p->offset,
3848 					 stat_fops[p->kind]))
3849 			goto out_dir;
3850 	}
3851 
3852 	return 0;
3853 
3854 out_dir:
3855 	debugfs_remove_recursive(kvm_debugfs_dir);
3856 out:
3857 	return r;
3858 }
3859 
3860 static int kvm_suspend(void)
3861 {
3862 	if (kvm_usage_count)
3863 		hardware_disable_nolock(NULL);
3864 	return 0;
3865 }
3866 
3867 static void kvm_resume(void)
3868 {
3869 	if (kvm_usage_count) {
3870 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3871 		hardware_enable_nolock(NULL);
3872 	}
3873 }
3874 
3875 static struct syscore_ops kvm_syscore_ops = {
3876 	.suspend = kvm_suspend,
3877 	.resume = kvm_resume,
3878 };
3879 
3880 static inline
3881 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3882 {
3883 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3884 }
3885 
3886 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3887 {
3888 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3889 
3890 	if (vcpu->preempted)
3891 		vcpu->preempted = false;
3892 
3893 	kvm_arch_sched_in(vcpu, cpu);
3894 
3895 	kvm_arch_vcpu_load(vcpu, cpu);
3896 }
3897 
3898 static void kvm_sched_out(struct preempt_notifier *pn,
3899 			  struct task_struct *next)
3900 {
3901 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3902 
3903 	if (current->state == TASK_RUNNING)
3904 		vcpu->preempted = true;
3905 	kvm_arch_vcpu_put(vcpu);
3906 }
3907 
3908 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3909 		  struct module *module)
3910 {
3911 	int r;
3912 	int cpu;
3913 
3914 	r = kvm_arch_init(opaque);
3915 	if (r)
3916 		goto out_fail;
3917 
3918 	/*
3919 	 * kvm_arch_init makes sure there's at most one caller
3920 	 * for architectures that support multiple implementations,
3921 	 * like intel and amd on x86.
3922 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3923 	 * conflicts in case kvm is already setup for another implementation.
3924 	 */
3925 	r = kvm_irqfd_init();
3926 	if (r)
3927 		goto out_irqfd;
3928 
3929 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3930 		r = -ENOMEM;
3931 		goto out_free_0;
3932 	}
3933 
3934 	r = kvm_arch_hardware_setup();
3935 	if (r < 0)
3936 		goto out_free_0a;
3937 
3938 	for_each_online_cpu(cpu) {
3939 		smp_call_function_single(cpu,
3940 				kvm_arch_check_processor_compat,
3941 				&r, 1);
3942 		if (r < 0)
3943 			goto out_free_1;
3944 	}
3945 
3946 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3947 				      kvm_starting_cpu, kvm_dying_cpu);
3948 	if (r)
3949 		goto out_free_2;
3950 	register_reboot_notifier(&kvm_reboot_notifier);
3951 
3952 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3953 	if (!vcpu_align)
3954 		vcpu_align = __alignof__(struct kvm_vcpu);
3955 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3956 					   0, NULL);
3957 	if (!kvm_vcpu_cache) {
3958 		r = -ENOMEM;
3959 		goto out_free_3;
3960 	}
3961 
3962 	r = kvm_async_pf_init();
3963 	if (r)
3964 		goto out_free;
3965 
3966 	kvm_chardev_ops.owner = module;
3967 	kvm_vm_fops.owner = module;
3968 	kvm_vcpu_fops.owner = module;
3969 
3970 	r = misc_register(&kvm_dev);
3971 	if (r) {
3972 		pr_err("kvm: misc device register failed\n");
3973 		goto out_unreg;
3974 	}
3975 
3976 	register_syscore_ops(&kvm_syscore_ops);
3977 
3978 	kvm_preempt_ops.sched_in = kvm_sched_in;
3979 	kvm_preempt_ops.sched_out = kvm_sched_out;
3980 
3981 	r = kvm_init_debug();
3982 	if (r) {
3983 		pr_err("kvm: create debugfs files failed\n");
3984 		goto out_undebugfs;
3985 	}
3986 
3987 	r = kvm_vfio_ops_init();
3988 	WARN_ON(r);
3989 
3990 	return 0;
3991 
3992 out_undebugfs:
3993 	unregister_syscore_ops(&kvm_syscore_ops);
3994 	misc_deregister(&kvm_dev);
3995 out_unreg:
3996 	kvm_async_pf_deinit();
3997 out_free:
3998 	kmem_cache_destroy(kvm_vcpu_cache);
3999 out_free_3:
4000 	unregister_reboot_notifier(&kvm_reboot_notifier);
4001 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4002 out_free_2:
4003 out_free_1:
4004 	kvm_arch_hardware_unsetup();
4005 out_free_0a:
4006 	free_cpumask_var(cpus_hardware_enabled);
4007 out_free_0:
4008 	kvm_irqfd_exit();
4009 out_irqfd:
4010 	kvm_arch_exit();
4011 out_fail:
4012 	return r;
4013 }
4014 EXPORT_SYMBOL_GPL(kvm_init);
4015 
4016 void kvm_exit(void)
4017 {
4018 	debugfs_remove_recursive(kvm_debugfs_dir);
4019 	misc_deregister(&kvm_dev);
4020 	kmem_cache_destroy(kvm_vcpu_cache);
4021 	kvm_async_pf_deinit();
4022 	unregister_syscore_ops(&kvm_syscore_ops);
4023 	unregister_reboot_notifier(&kvm_reboot_notifier);
4024 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4025 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4026 	kvm_arch_hardware_unsetup();
4027 	kvm_arch_exit();
4028 	kvm_irqfd_exit();
4029 	free_cpumask_var(cpus_hardware_enabled);
4030 	kvm_vfio_ops_exit();
4031 }
4032 EXPORT_SYMBOL_GPL(kvm_exit);
4033