1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 168 { 169 /* 170 * The metadata used by is_zone_device_page() to determine whether or 171 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 172 * the device has been pinned, e.g. by get_user_pages(). WARN if the 173 * page_count() is zero to help detect bad usage of this helper. 174 */ 175 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 176 return false; 177 178 return is_zone_device_page(pfn_to_page(pfn)); 179 } 180 181 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 182 { 183 /* 184 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 185 * perspective they are "normal" pages, albeit with slightly different 186 * usage rules. 187 */ 188 if (pfn_valid(pfn)) 189 return PageReserved(pfn_to_page(pfn)) && 190 !is_zero_pfn(pfn) && 191 !kvm_is_zone_device_pfn(pfn); 192 193 return true; 194 } 195 196 /* 197 * Switches to specified vcpu, until a matching vcpu_put() 198 */ 199 void vcpu_load(struct kvm_vcpu *vcpu) 200 { 201 int cpu = get_cpu(); 202 203 __this_cpu_write(kvm_running_vcpu, vcpu); 204 preempt_notifier_register(&vcpu->preempt_notifier); 205 kvm_arch_vcpu_load(vcpu, cpu); 206 put_cpu(); 207 } 208 EXPORT_SYMBOL_GPL(vcpu_load); 209 210 void vcpu_put(struct kvm_vcpu *vcpu) 211 { 212 preempt_disable(); 213 kvm_arch_vcpu_put(vcpu); 214 preempt_notifier_unregister(&vcpu->preempt_notifier); 215 __this_cpu_write(kvm_running_vcpu, NULL); 216 preempt_enable(); 217 } 218 EXPORT_SYMBOL_GPL(vcpu_put); 219 220 /* TODO: merge with kvm_arch_vcpu_should_kick */ 221 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 222 { 223 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 224 225 /* 226 * We need to wait for the VCPU to reenable interrupts and get out of 227 * READING_SHADOW_PAGE_TABLES mode. 228 */ 229 if (req & KVM_REQUEST_WAIT) 230 return mode != OUTSIDE_GUEST_MODE; 231 232 /* 233 * Need to kick a running VCPU, but otherwise there is nothing to do. 234 */ 235 return mode == IN_GUEST_MODE; 236 } 237 238 static void ack_flush(void *_completed) 239 { 240 } 241 242 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 243 { 244 if (cpumask_empty(cpus)) 245 return false; 246 247 smp_call_function_many(cpus, ack_flush, NULL, wait); 248 return true; 249 } 250 251 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 252 struct cpumask *tmp, int current_cpu) 253 { 254 int cpu; 255 256 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 257 __kvm_make_request(req, vcpu); 258 259 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 260 return; 261 262 /* 263 * Note, the vCPU could get migrated to a different pCPU at any point 264 * after kvm_request_needs_ipi(), which could result in sending an IPI 265 * to the previous pCPU. But, that's OK because the purpose of the IPI 266 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 267 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 268 * after this point is also OK, as the requirement is only that KVM wait 269 * for vCPUs that were reading SPTEs _before_ any changes were 270 * finalized. See kvm_vcpu_kick() for more details on handling requests. 271 */ 272 if (kvm_request_needs_ipi(vcpu, req)) { 273 cpu = READ_ONCE(vcpu->cpu); 274 if (cpu != -1 && cpu != current_cpu) 275 __cpumask_set_cpu(cpu, tmp); 276 } 277 } 278 279 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 280 unsigned long *vcpu_bitmap) 281 { 282 struct kvm_vcpu *vcpu; 283 struct cpumask *cpus; 284 int i, me; 285 bool called; 286 287 me = get_cpu(); 288 289 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 290 cpumask_clear(cpus); 291 292 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 293 vcpu = kvm_get_vcpu(kvm, i); 294 if (!vcpu) 295 continue; 296 kvm_make_vcpu_request(vcpu, req, cpus, me); 297 } 298 299 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 300 put_cpu(); 301 302 return called; 303 } 304 305 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 306 struct kvm_vcpu *except) 307 { 308 struct kvm_vcpu *vcpu; 309 struct cpumask *cpus; 310 unsigned long i; 311 bool called; 312 int me; 313 314 me = get_cpu(); 315 316 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 317 cpumask_clear(cpus); 318 319 kvm_for_each_vcpu(i, vcpu, kvm) { 320 if (vcpu == except) 321 continue; 322 kvm_make_vcpu_request(vcpu, req, cpus, me); 323 } 324 325 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 326 put_cpu(); 327 328 return called; 329 } 330 331 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 332 { 333 return kvm_make_all_cpus_request_except(kvm, req, NULL); 334 } 335 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 336 337 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 338 void kvm_flush_remote_tlbs(struct kvm *kvm) 339 { 340 ++kvm->stat.generic.remote_tlb_flush_requests; 341 342 /* 343 * We want to publish modifications to the page tables before reading 344 * mode. Pairs with a memory barrier in arch-specific code. 345 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 346 * and smp_mb in walk_shadow_page_lockless_begin/end. 347 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 348 * 349 * There is already an smp_mb__after_atomic() before 350 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 351 * barrier here. 352 */ 353 if (!kvm_arch_flush_remote_tlb(kvm) 354 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 355 ++kvm->stat.generic.remote_tlb_flush; 356 } 357 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 358 #endif 359 360 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 361 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 362 gfp_t gfp_flags) 363 { 364 gfp_flags |= mc->gfp_zero; 365 366 if (mc->kmem_cache) 367 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 368 else 369 return (void *)__get_free_page(gfp_flags); 370 } 371 372 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 373 { 374 void *obj; 375 376 if (mc->nobjs >= min) 377 return 0; 378 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 379 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 380 if (!obj) 381 return mc->nobjs >= min ? 0 : -ENOMEM; 382 mc->objects[mc->nobjs++] = obj; 383 } 384 return 0; 385 } 386 387 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 388 { 389 return mc->nobjs; 390 } 391 392 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 393 { 394 while (mc->nobjs) { 395 if (mc->kmem_cache) 396 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 397 else 398 free_page((unsigned long)mc->objects[--mc->nobjs]); 399 } 400 } 401 402 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 403 { 404 void *p; 405 406 if (WARN_ON(!mc->nobjs)) 407 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 408 else 409 p = mc->objects[--mc->nobjs]; 410 BUG_ON(!p); 411 return p; 412 } 413 #endif 414 415 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 416 { 417 mutex_init(&vcpu->mutex); 418 vcpu->cpu = -1; 419 vcpu->kvm = kvm; 420 vcpu->vcpu_id = id; 421 vcpu->pid = NULL; 422 #ifndef __KVM_HAVE_ARCH_WQP 423 rcuwait_init(&vcpu->wait); 424 #endif 425 kvm_async_pf_vcpu_init(vcpu); 426 427 kvm_vcpu_set_in_spin_loop(vcpu, false); 428 kvm_vcpu_set_dy_eligible(vcpu, false); 429 vcpu->preempted = false; 430 vcpu->ready = false; 431 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 432 vcpu->last_used_slot = NULL; 433 } 434 435 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 436 { 437 kvm_arch_vcpu_destroy(vcpu); 438 kvm_dirty_ring_free(&vcpu->dirty_ring); 439 440 /* 441 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 442 * the vcpu->pid pointer, and at destruction time all file descriptors 443 * are already gone. 444 */ 445 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 446 447 free_page((unsigned long)vcpu->run); 448 kmem_cache_free(kvm_vcpu_cache, vcpu); 449 } 450 451 void kvm_destroy_vcpus(struct kvm *kvm) 452 { 453 unsigned long i; 454 struct kvm_vcpu *vcpu; 455 456 kvm_for_each_vcpu(i, vcpu, kvm) { 457 kvm_vcpu_destroy(vcpu); 458 xa_erase(&kvm->vcpu_array, i); 459 } 460 461 atomic_set(&kvm->online_vcpus, 0); 462 } 463 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 464 465 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 466 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 467 { 468 return container_of(mn, struct kvm, mmu_notifier); 469 } 470 471 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 472 struct mm_struct *mm, 473 unsigned long start, unsigned long end) 474 { 475 struct kvm *kvm = mmu_notifier_to_kvm(mn); 476 int idx; 477 478 idx = srcu_read_lock(&kvm->srcu); 479 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 480 srcu_read_unlock(&kvm->srcu, idx); 481 } 482 483 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 484 485 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 486 unsigned long end); 487 488 struct kvm_hva_range { 489 unsigned long start; 490 unsigned long end; 491 pte_t pte; 492 hva_handler_t handler; 493 on_lock_fn_t on_lock; 494 bool flush_on_ret; 495 bool may_block; 496 }; 497 498 /* 499 * Use a dedicated stub instead of NULL to indicate that there is no callback 500 * function/handler. The compiler technically can't guarantee that a real 501 * function will have a non-zero address, and so it will generate code to 502 * check for !NULL, whereas comparing against a stub will be elided at compile 503 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 504 */ 505 static void kvm_null_fn(void) 506 { 507 508 } 509 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 510 511 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 512 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 513 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 514 node; \ 515 node = interval_tree_iter_next(node, start, last)) \ 516 517 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 518 const struct kvm_hva_range *range) 519 { 520 bool ret = false, locked = false; 521 struct kvm_gfn_range gfn_range; 522 struct kvm_memory_slot *slot; 523 struct kvm_memslots *slots; 524 int i, idx; 525 526 if (WARN_ON_ONCE(range->end <= range->start)) 527 return 0; 528 529 /* A null handler is allowed if and only if on_lock() is provided. */ 530 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 531 IS_KVM_NULL_FN(range->handler))) 532 return 0; 533 534 idx = srcu_read_lock(&kvm->srcu); 535 536 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 537 struct interval_tree_node *node; 538 539 slots = __kvm_memslots(kvm, i); 540 kvm_for_each_memslot_in_hva_range(node, slots, 541 range->start, range->end - 1) { 542 unsigned long hva_start, hva_end; 543 544 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 545 hva_start = max(range->start, slot->userspace_addr); 546 hva_end = min(range->end, slot->userspace_addr + 547 (slot->npages << PAGE_SHIFT)); 548 549 /* 550 * To optimize for the likely case where the address 551 * range is covered by zero or one memslots, don't 552 * bother making these conditional (to avoid writes on 553 * the second or later invocation of the handler). 554 */ 555 gfn_range.pte = range->pte; 556 gfn_range.may_block = range->may_block; 557 558 /* 559 * {gfn(page) | page intersects with [hva_start, hva_end)} = 560 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 561 */ 562 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 563 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 564 gfn_range.slot = slot; 565 566 if (!locked) { 567 locked = true; 568 KVM_MMU_LOCK(kvm); 569 if (!IS_KVM_NULL_FN(range->on_lock)) 570 range->on_lock(kvm, range->start, range->end); 571 if (IS_KVM_NULL_FN(range->handler)) 572 break; 573 } 574 ret |= range->handler(kvm, &gfn_range); 575 } 576 } 577 578 if (range->flush_on_ret && ret) 579 kvm_flush_remote_tlbs(kvm); 580 581 if (locked) 582 KVM_MMU_UNLOCK(kvm); 583 584 srcu_read_unlock(&kvm->srcu, idx); 585 586 /* The notifiers are averse to booleans. :-( */ 587 return (int)ret; 588 } 589 590 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 591 unsigned long start, 592 unsigned long end, 593 pte_t pte, 594 hva_handler_t handler) 595 { 596 struct kvm *kvm = mmu_notifier_to_kvm(mn); 597 const struct kvm_hva_range range = { 598 .start = start, 599 .end = end, 600 .pte = pte, 601 .handler = handler, 602 .on_lock = (void *)kvm_null_fn, 603 .flush_on_ret = true, 604 .may_block = false, 605 }; 606 607 return __kvm_handle_hva_range(kvm, &range); 608 } 609 610 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 611 unsigned long start, 612 unsigned long end, 613 hva_handler_t handler) 614 { 615 struct kvm *kvm = mmu_notifier_to_kvm(mn); 616 const struct kvm_hva_range range = { 617 .start = start, 618 .end = end, 619 .pte = __pte(0), 620 .handler = handler, 621 .on_lock = (void *)kvm_null_fn, 622 .flush_on_ret = false, 623 .may_block = false, 624 }; 625 626 return __kvm_handle_hva_range(kvm, &range); 627 } 628 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 629 struct mm_struct *mm, 630 unsigned long address, 631 pte_t pte) 632 { 633 struct kvm *kvm = mmu_notifier_to_kvm(mn); 634 635 trace_kvm_set_spte_hva(address); 636 637 /* 638 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 639 * If mmu_notifier_count is zero, then no in-progress invalidations, 640 * including this one, found a relevant memslot at start(); rechecking 641 * memslots here is unnecessary. Note, a false positive (count elevated 642 * by a different invalidation) is sub-optimal but functionally ok. 643 */ 644 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 645 if (!READ_ONCE(kvm->mmu_notifier_count)) 646 return; 647 648 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 649 } 650 651 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 652 unsigned long end) 653 { 654 /* 655 * The count increase must become visible at unlock time as no 656 * spte can be established without taking the mmu_lock and 657 * count is also read inside the mmu_lock critical section. 658 */ 659 kvm->mmu_notifier_count++; 660 if (likely(kvm->mmu_notifier_count == 1)) { 661 kvm->mmu_notifier_range_start = start; 662 kvm->mmu_notifier_range_end = end; 663 } else { 664 /* 665 * Fully tracking multiple concurrent ranges has dimishing 666 * returns. Keep things simple and just find the minimal range 667 * which includes the current and new ranges. As there won't be 668 * enough information to subtract a range after its invalidate 669 * completes, any ranges invalidated concurrently will 670 * accumulate and persist until all outstanding invalidates 671 * complete. 672 */ 673 kvm->mmu_notifier_range_start = 674 min(kvm->mmu_notifier_range_start, start); 675 kvm->mmu_notifier_range_end = 676 max(kvm->mmu_notifier_range_end, end); 677 } 678 } 679 680 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 681 const struct mmu_notifier_range *range) 682 { 683 struct kvm *kvm = mmu_notifier_to_kvm(mn); 684 const struct kvm_hva_range hva_range = { 685 .start = range->start, 686 .end = range->end, 687 .pte = __pte(0), 688 .handler = kvm_unmap_gfn_range, 689 .on_lock = kvm_inc_notifier_count, 690 .flush_on_ret = true, 691 .may_block = mmu_notifier_range_blockable(range), 692 }; 693 694 trace_kvm_unmap_hva_range(range->start, range->end); 695 696 /* 697 * Prevent memslot modification between range_start() and range_end() 698 * so that conditionally locking provides the same result in both 699 * functions. Without that guarantee, the mmu_notifier_count 700 * adjustments will be imbalanced. 701 * 702 * Pairs with the decrement in range_end(). 703 */ 704 spin_lock(&kvm->mn_invalidate_lock); 705 kvm->mn_active_invalidate_count++; 706 spin_unlock(&kvm->mn_invalidate_lock); 707 708 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 709 hva_range.may_block); 710 711 __kvm_handle_hva_range(kvm, &hva_range); 712 713 return 0; 714 } 715 716 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 717 unsigned long end) 718 { 719 /* 720 * This sequence increase will notify the kvm page fault that 721 * the page that is going to be mapped in the spte could have 722 * been freed. 723 */ 724 kvm->mmu_notifier_seq++; 725 smp_wmb(); 726 /* 727 * The above sequence increase must be visible before the 728 * below count decrease, which is ensured by the smp_wmb above 729 * in conjunction with the smp_rmb in mmu_notifier_retry(). 730 */ 731 kvm->mmu_notifier_count--; 732 } 733 734 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 735 const struct mmu_notifier_range *range) 736 { 737 struct kvm *kvm = mmu_notifier_to_kvm(mn); 738 const struct kvm_hva_range hva_range = { 739 .start = range->start, 740 .end = range->end, 741 .pte = __pte(0), 742 .handler = (void *)kvm_null_fn, 743 .on_lock = kvm_dec_notifier_count, 744 .flush_on_ret = false, 745 .may_block = mmu_notifier_range_blockable(range), 746 }; 747 bool wake; 748 749 __kvm_handle_hva_range(kvm, &hva_range); 750 751 /* Pairs with the increment in range_start(). */ 752 spin_lock(&kvm->mn_invalidate_lock); 753 wake = (--kvm->mn_active_invalidate_count == 0); 754 spin_unlock(&kvm->mn_invalidate_lock); 755 756 /* 757 * There can only be one waiter, since the wait happens under 758 * slots_lock. 759 */ 760 if (wake) 761 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 762 763 BUG_ON(kvm->mmu_notifier_count < 0); 764 } 765 766 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 767 struct mm_struct *mm, 768 unsigned long start, 769 unsigned long end) 770 { 771 trace_kvm_age_hva(start, end); 772 773 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 774 } 775 776 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 777 struct mm_struct *mm, 778 unsigned long start, 779 unsigned long end) 780 { 781 trace_kvm_age_hva(start, end); 782 783 /* 784 * Even though we do not flush TLB, this will still adversely 785 * affect performance on pre-Haswell Intel EPT, where there is 786 * no EPT Access Bit to clear so that we have to tear down EPT 787 * tables instead. If we find this unacceptable, we can always 788 * add a parameter to kvm_age_hva so that it effectively doesn't 789 * do anything on clear_young. 790 * 791 * Also note that currently we never issue secondary TLB flushes 792 * from clear_young, leaving this job up to the regular system 793 * cadence. If we find this inaccurate, we might come up with a 794 * more sophisticated heuristic later. 795 */ 796 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 797 } 798 799 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 800 struct mm_struct *mm, 801 unsigned long address) 802 { 803 trace_kvm_test_age_hva(address); 804 805 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 806 kvm_test_age_gfn); 807 } 808 809 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 810 struct mm_struct *mm) 811 { 812 struct kvm *kvm = mmu_notifier_to_kvm(mn); 813 int idx; 814 815 idx = srcu_read_lock(&kvm->srcu); 816 kvm_arch_flush_shadow_all(kvm); 817 srcu_read_unlock(&kvm->srcu, idx); 818 } 819 820 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 821 .invalidate_range = kvm_mmu_notifier_invalidate_range, 822 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 823 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 824 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 825 .clear_young = kvm_mmu_notifier_clear_young, 826 .test_young = kvm_mmu_notifier_test_young, 827 .change_pte = kvm_mmu_notifier_change_pte, 828 .release = kvm_mmu_notifier_release, 829 }; 830 831 static int kvm_init_mmu_notifier(struct kvm *kvm) 832 { 833 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 834 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 835 } 836 837 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 838 839 static int kvm_init_mmu_notifier(struct kvm *kvm) 840 { 841 return 0; 842 } 843 844 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 845 846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 847 static int kvm_pm_notifier_call(struct notifier_block *bl, 848 unsigned long state, 849 void *unused) 850 { 851 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 852 853 return kvm_arch_pm_notifier(kvm, state); 854 } 855 856 static void kvm_init_pm_notifier(struct kvm *kvm) 857 { 858 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 859 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 860 kvm->pm_notifier.priority = INT_MAX; 861 register_pm_notifier(&kvm->pm_notifier); 862 } 863 864 static void kvm_destroy_pm_notifier(struct kvm *kvm) 865 { 866 unregister_pm_notifier(&kvm->pm_notifier); 867 } 868 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 869 static void kvm_init_pm_notifier(struct kvm *kvm) 870 { 871 } 872 873 static void kvm_destroy_pm_notifier(struct kvm *kvm) 874 { 875 } 876 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 877 878 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 879 { 880 if (!memslot->dirty_bitmap) 881 return; 882 883 kvfree(memslot->dirty_bitmap); 884 memslot->dirty_bitmap = NULL; 885 } 886 887 /* This does not remove the slot from struct kvm_memslots data structures */ 888 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 889 { 890 kvm_destroy_dirty_bitmap(slot); 891 892 kvm_arch_free_memslot(kvm, slot); 893 894 kfree(slot); 895 } 896 897 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 898 { 899 struct hlist_node *idnode; 900 struct kvm_memory_slot *memslot; 901 int bkt; 902 903 /* 904 * The same memslot objects live in both active and inactive sets, 905 * arbitrarily free using index '1' so the second invocation of this 906 * function isn't operating over a structure with dangling pointers 907 * (even though this function isn't actually touching them). 908 */ 909 if (!slots->node_idx) 910 return; 911 912 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 913 kvm_free_memslot(kvm, memslot); 914 } 915 916 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 917 { 918 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 919 case KVM_STATS_TYPE_INSTANT: 920 return 0444; 921 case KVM_STATS_TYPE_CUMULATIVE: 922 case KVM_STATS_TYPE_PEAK: 923 default: 924 return 0644; 925 } 926 } 927 928 929 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 930 { 931 int i; 932 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 933 kvm_vcpu_stats_header.num_desc; 934 935 if (IS_ERR(kvm->debugfs_dentry)) 936 return; 937 938 debugfs_remove_recursive(kvm->debugfs_dentry); 939 940 if (kvm->debugfs_stat_data) { 941 for (i = 0; i < kvm_debugfs_num_entries; i++) 942 kfree(kvm->debugfs_stat_data[i]); 943 kfree(kvm->debugfs_stat_data); 944 } 945 } 946 947 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 948 { 949 static DEFINE_MUTEX(kvm_debugfs_lock); 950 struct dentry *dent; 951 char dir_name[ITOA_MAX_LEN * 2]; 952 struct kvm_stat_data *stat_data; 953 const struct _kvm_stats_desc *pdesc; 954 int i, ret; 955 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 956 kvm_vcpu_stats_header.num_desc; 957 958 /* 959 * Force subsequent debugfs file creations to fail if the VM directory 960 * is not created. 961 */ 962 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 963 964 if (!debugfs_initialized()) 965 return 0; 966 967 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 968 mutex_lock(&kvm_debugfs_lock); 969 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 970 if (dent) { 971 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 972 dput(dent); 973 mutex_unlock(&kvm_debugfs_lock); 974 return 0; 975 } 976 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 977 mutex_unlock(&kvm_debugfs_lock); 978 if (IS_ERR(dent)) 979 return 0; 980 981 kvm->debugfs_dentry = dent; 982 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 983 sizeof(*kvm->debugfs_stat_data), 984 GFP_KERNEL_ACCOUNT); 985 if (!kvm->debugfs_stat_data) 986 return -ENOMEM; 987 988 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 989 pdesc = &kvm_vm_stats_desc[i]; 990 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 991 if (!stat_data) 992 return -ENOMEM; 993 994 stat_data->kvm = kvm; 995 stat_data->desc = pdesc; 996 stat_data->kind = KVM_STAT_VM; 997 kvm->debugfs_stat_data[i] = stat_data; 998 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 999 kvm->debugfs_dentry, stat_data, 1000 &stat_fops_per_vm); 1001 } 1002 1003 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1004 pdesc = &kvm_vcpu_stats_desc[i]; 1005 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1006 if (!stat_data) 1007 return -ENOMEM; 1008 1009 stat_data->kvm = kvm; 1010 stat_data->desc = pdesc; 1011 stat_data->kind = KVM_STAT_VCPU; 1012 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1013 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1014 kvm->debugfs_dentry, stat_data, 1015 &stat_fops_per_vm); 1016 } 1017 1018 ret = kvm_arch_create_vm_debugfs(kvm); 1019 if (ret) { 1020 kvm_destroy_vm_debugfs(kvm); 1021 return i; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * Called after the VM is otherwise initialized, but just before adding it to 1029 * the vm_list. 1030 */ 1031 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1032 { 1033 return 0; 1034 } 1035 1036 /* 1037 * Called just after removing the VM from the vm_list, but before doing any 1038 * other destruction. 1039 */ 1040 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1041 { 1042 } 1043 1044 /* 1045 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1046 * be setup already, so we can create arch-specific debugfs entries under it. 1047 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1048 * a per-arch destroy interface is not needed. 1049 */ 1050 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1051 { 1052 return 0; 1053 } 1054 1055 static struct kvm *kvm_create_vm(unsigned long type) 1056 { 1057 struct kvm *kvm = kvm_arch_alloc_vm(); 1058 struct kvm_memslots *slots; 1059 int r = -ENOMEM; 1060 int i, j; 1061 1062 if (!kvm) 1063 return ERR_PTR(-ENOMEM); 1064 1065 KVM_MMU_LOCK_INIT(kvm); 1066 mmgrab(current->mm); 1067 kvm->mm = current->mm; 1068 kvm_eventfd_init(kvm); 1069 mutex_init(&kvm->lock); 1070 mutex_init(&kvm->irq_lock); 1071 mutex_init(&kvm->slots_lock); 1072 mutex_init(&kvm->slots_arch_lock); 1073 spin_lock_init(&kvm->mn_invalidate_lock); 1074 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1075 xa_init(&kvm->vcpu_array); 1076 1077 INIT_LIST_HEAD(&kvm->gpc_list); 1078 spin_lock_init(&kvm->gpc_lock); 1079 1080 INIT_LIST_HEAD(&kvm->devices); 1081 1082 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1083 1084 if (init_srcu_struct(&kvm->srcu)) 1085 goto out_err_no_srcu; 1086 if (init_srcu_struct(&kvm->irq_srcu)) 1087 goto out_err_no_irq_srcu; 1088 1089 refcount_set(&kvm->users_count, 1); 1090 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1091 for (j = 0; j < 2; j++) { 1092 slots = &kvm->__memslots[i][j]; 1093 1094 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1095 slots->hva_tree = RB_ROOT_CACHED; 1096 slots->gfn_tree = RB_ROOT; 1097 hash_init(slots->id_hash); 1098 slots->node_idx = j; 1099 1100 /* Generations must be different for each address space. */ 1101 slots->generation = i; 1102 } 1103 1104 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1105 } 1106 1107 for (i = 0; i < KVM_NR_BUSES; i++) { 1108 rcu_assign_pointer(kvm->buses[i], 1109 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1110 if (!kvm->buses[i]) 1111 goto out_err_no_arch_destroy_vm; 1112 } 1113 1114 kvm->max_halt_poll_ns = halt_poll_ns; 1115 1116 r = kvm_arch_init_vm(kvm, type); 1117 if (r) 1118 goto out_err_no_arch_destroy_vm; 1119 1120 r = hardware_enable_all(); 1121 if (r) 1122 goto out_err_no_disable; 1123 1124 #ifdef CONFIG_HAVE_KVM_IRQFD 1125 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1126 #endif 1127 1128 r = kvm_init_mmu_notifier(kvm); 1129 if (r) 1130 goto out_err_no_mmu_notifier; 1131 1132 r = kvm_arch_post_init_vm(kvm); 1133 if (r) 1134 goto out_err; 1135 1136 mutex_lock(&kvm_lock); 1137 list_add(&kvm->vm_list, &vm_list); 1138 mutex_unlock(&kvm_lock); 1139 1140 preempt_notifier_inc(); 1141 kvm_init_pm_notifier(kvm); 1142 1143 /* 1144 * When the fd passed to this ioctl() is opened it pins the module, 1145 * but try_module_get() also prevents getting a reference if the module 1146 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait"). 1147 */ 1148 if (!try_module_get(kvm_chardev_ops.owner)) { 1149 r = -ENODEV; 1150 goto out_err; 1151 } 1152 1153 return kvm; 1154 1155 out_err: 1156 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1157 if (kvm->mmu_notifier.ops) 1158 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1159 #endif 1160 out_err_no_mmu_notifier: 1161 hardware_disable_all(); 1162 out_err_no_disable: 1163 kvm_arch_destroy_vm(kvm); 1164 out_err_no_arch_destroy_vm: 1165 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1166 for (i = 0; i < KVM_NR_BUSES; i++) 1167 kfree(kvm_get_bus(kvm, i)); 1168 cleanup_srcu_struct(&kvm->irq_srcu); 1169 out_err_no_irq_srcu: 1170 cleanup_srcu_struct(&kvm->srcu); 1171 out_err_no_srcu: 1172 kvm_arch_free_vm(kvm); 1173 mmdrop(current->mm); 1174 return ERR_PTR(r); 1175 } 1176 1177 static void kvm_destroy_devices(struct kvm *kvm) 1178 { 1179 struct kvm_device *dev, *tmp; 1180 1181 /* 1182 * We do not need to take the kvm->lock here, because nobody else 1183 * has a reference to the struct kvm at this point and therefore 1184 * cannot access the devices list anyhow. 1185 */ 1186 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1187 list_del(&dev->vm_node); 1188 dev->ops->destroy(dev); 1189 } 1190 } 1191 1192 static void kvm_destroy_vm(struct kvm *kvm) 1193 { 1194 int i; 1195 struct mm_struct *mm = kvm->mm; 1196 1197 kvm_destroy_pm_notifier(kvm); 1198 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1199 kvm_destroy_vm_debugfs(kvm); 1200 kvm_arch_sync_events(kvm); 1201 mutex_lock(&kvm_lock); 1202 list_del(&kvm->vm_list); 1203 mutex_unlock(&kvm_lock); 1204 kvm_arch_pre_destroy_vm(kvm); 1205 1206 kvm_free_irq_routing(kvm); 1207 for (i = 0; i < KVM_NR_BUSES; i++) { 1208 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1209 1210 if (bus) 1211 kvm_io_bus_destroy(bus); 1212 kvm->buses[i] = NULL; 1213 } 1214 kvm_coalesced_mmio_free(kvm); 1215 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1216 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1217 /* 1218 * At this point, pending calls to invalidate_range_start() 1219 * have completed but no more MMU notifiers will run, so 1220 * mn_active_invalidate_count may remain unbalanced. 1221 * No threads can be waiting in install_new_memslots as the 1222 * last reference on KVM has been dropped, but freeing 1223 * memslots would deadlock without this manual intervention. 1224 */ 1225 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1226 kvm->mn_active_invalidate_count = 0; 1227 #else 1228 kvm_arch_flush_shadow_all(kvm); 1229 #endif 1230 kvm_arch_destroy_vm(kvm); 1231 kvm_destroy_devices(kvm); 1232 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1233 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1234 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1235 } 1236 cleanup_srcu_struct(&kvm->irq_srcu); 1237 cleanup_srcu_struct(&kvm->srcu); 1238 kvm_arch_free_vm(kvm); 1239 preempt_notifier_dec(); 1240 hardware_disable_all(); 1241 mmdrop(mm); 1242 module_put(kvm_chardev_ops.owner); 1243 } 1244 1245 void kvm_get_kvm(struct kvm *kvm) 1246 { 1247 refcount_inc(&kvm->users_count); 1248 } 1249 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1250 1251 /* 1252 * Make sure the vm is not during destruction, which is a safe version of 1253 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1254 */ 1255 bool kvm_get_kvm_safe(struct kvm *kvm) 1256 { 1257 return refcount_inc_not_zero(&kvm->users_count); 1258 } 1259 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1260 1261 void kvm_put_kvm(struct kvm *kvm) 1262 { 1263 if (refcount_dec_and_test(&kvm->users_count)) 1264 kvm_destroy_vm(kvm); 1265 } 1266 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1267 1268 /* 1269 * Used to put a reference that was taken on behalf of an object associated 1270 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1271 * of the new file descriptor fails and the reference cannot be transferred to 1272 * its final owner. In such cases, the caller is still actively using @kvm and 1273 * will fail miserably if the refcount unexpectedly hits zero. 1274 */ 1275 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1276 { 1277 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1278 } 1279 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1280 1281 static int kvm_vm_release(struct inode *inode, struct file *filp) 1282 { 1283 struct kvm *kvm = filp->private_data; 1284 1285 kvm_irqfd_release(kvm); 1286 1287 kvm_put_kvm(kvm); 1288 return 0; 1289 } 1290 1291 /* 1292 * Allocation size is twice as large as the actual dirty bitmap size. 1293 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1294 */ 1295 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1296 { 1297 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1298 1299 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1300 if (!memslot->dirty_bitmap) 1301 return -ENOMEM; 1302 1303 return 0; 1304 } 1305 1306 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1307 { 1308 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1309 int node_idx_inactive = active->node_idx ^ 1; 1310 1311 return &kvm->__memslots[as_id][node_idx_inactive]; 1312 } 1313 1314 /* 1315 * Helper to get the address space ID when one of memslot pointers may be NULL. 1316 * This also serves as a sanity that at least one of the pointers is non-NULL, 1317 * and that their address space IDs don't diverge. 1318 */ 1319 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1320 struct kvm_memory_slot *b) 1321 { 1322 if (WARN_ON_ONCE(!a && !b)) 1323 return 0; 1324 1325 if (!a) 1326 return b->as_id; 1327 if (!b) 1328 return a->as_id; 1329 1330 WARN_ON_ONCE(a->as_id != b->as_id); 1331 return a->as_id; 1332 } 1333 1334 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1335 struct kvm_memory_slot *slot) 1336 { 1337 struct rb_root *gfn_tree = &slots->gfn_tree; 1338 struct rb_node **node, *parent; 1339 int idx = slots->node_idx; 1340 1341 parent = NULL; 1342 for (node = &gfn_tree->rb_node; *node; ) { 1343 struct kvm_memory_slot *tmp; 1344 1345 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1346 parent = *node; 1347 if (slot->base_gfn < tmp->base_gfn) 1348 node = &(*node)->rb_left; 1349 else if (slot->base_gfn > tmp->base_gfn) 1350 node = &(*node)->rb_right; 1351 else 1352 BUG(); 1353 } 1354 1355 rb_link_node(&slot->gfn_node[idx], parent, node); 1356 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1357 } 1358 1359 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1360 struct kvm_memory_slot *slot) 1361 { 1362 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1363 } 1364 1365 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1366 struct kvm_memory_slot *old, 1367 struct kvm_memory_slot *new) 1368 { 1369 int idx = slots->node_idx; 1370 1371 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1372 1373 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1374 &slots->gfn_tree); 1375 } 1376 1377 /* 1378 * Replace @old with @new in the inactive memslots. 1379 * 1380 * With NULL @old this simply adds @new. 1381 * With NULL @new this simply removes @old. 1382 * 1383 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1384 * appropriately. 1385 */ 1386 static void kvm_replace_memslot(struct kvm *kvm, 1387 struct kvm_memory_slot *old, 1388 struct kvm_memory_slot *new) 1389 { 1390 int as_id = kvm_memslots_get_as_id(old, new); 1391 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1392 int idx = slots->node_idx; 1393 1394 if (old) { 1395 hash_del(&old->id_node[idx]); 1396 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1397 1398 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1399 atomic_long_set(&slots->last_used_slot, (long)new); 1400 1401 if (!new) { 1402 kvm_erase_gfn_node(slots, old); 1403 return; 1404 } 1405 } 1406 1407 /* 1408 * Initialize @new's hva range. Do this even when replacing an @old 1409 * slot, kvm_copy_memslot() deliberately does not touch node data. 1410 */ 1411 new->hva_node[idx].start = new->userspace_addr; 1412 new->hva_node[idx].last = new->userspace_addr + 1413 (new->npages << PAGE_SHIFT) - 1; 1414 1415 /* 1416 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1417 * hva_node needs to be swapped with remove+insert even though hva can't 1418 * change when replacing an existing slot. 1419 */ 1420 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1421 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1422 1423 /* 1424 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1425 * switch the node in the gfn tree instead of removing the old and 1426 * inserting the new as two separate operations. Replacement is a 1427 * single O(1) operation versus two O(log(n)) operations for 1428 * remove+insert. 1429 */ 1430 if (old && old->base_gfn == new->base_gfn) { 1431 kvm_replace_gfn_node(slots, old, new); 1432 } else { 1433 if (old) 1434 kvm_erase_gfn_node(slots, old); 1435 kvm_insert_gfn_node(slots, new); 1436 } 1437 } 1438 1439 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1440 { 1441 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1442 1443 #ifdef __KVM_HAVE_READONLY_MEM 1444 valid_flags |= KVM_MEM_READONLY; 1445 #endif 1446 1447 if (mem->flags & ~valid_flags) 1448 return -EINVAL; 1449 1450 return 0; 1451 } 1452 1453 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1454 { 1455 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1456 1457 /* Grab the generation from the activate memslots. */ 1458 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1459 1460 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1461 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1462 1463 /* 1464 * Do not store the new memslots while there are invalidations in 1465 * progress, otherwise the locking in invalidate_range_start and 1466 * invalidate_range_end will be unbalanced. 1467 */ 1468 spin_lock(&kvm->mn_invalidate_lock); 1469 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1470 while (kvm->mn_active_invalidate_count) { 1471 set_current_state(TASK_UNINTERRUPTIBLE); 1472 spin_unlock(&kvm->mn_invalidate_lock); 1473 schedule(); 1474 spin_lock(&kvm->mn_invalidate_lock); 1475 } 1476 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1477 rcu_assign_pointer(kvm->memslots[as_id], slots); 1478 spin_unlock(&kvm->mn_invalidate_lock); 1479 1480 /* 1481 * Acquired in kvm_set_memslot. Must be released before synchronize 1482 * SRCU below in order to avoid deadlock with another thread 1483 * acquiring the slots_arch_lock in an srcu critical section. 1484 */ 1485 mutex_unlock(&kvm->slots_arch_lock); 1486 1487 synchronize_srcu_expedited(&kvm->srcu); 1488 1489 /* 1490 * Increment the new memslot generation a second time, dropping the 1491 * update in-progress flag and incrementing the generation based on 1492 * the number of address spaces. This provides a unique and easily 1493 * identifiable generation number while the memslots are in flux. 1494 */ 1495 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1496 1497 /* 1498 * Generations must be unique even across address spaces. We do not need 1499 * a global counter for that, instead the generation space is evenly split 1500 * across address spaces. For example, with two address spaces, address 1501 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1502 * use generations 1, 3, 5, ... 1503 */ 1504 gen += KVM_ADDRESS_SPACE_NUM; 1505 1506 kvm_arch_memslots_updated(kvm, gen); 1507 1508 slots->generation = gen; 1509 } 1510 1511 static int kvm_prepare_memory_region(struct kvm *kvm, 1512 const struct kvm_memory_slot *old, 1513 struct kvm_memory_slot *new, 1514 enum kvm_mr_change change) 1515 { 1516 int r; 1517 1518 /* 1519 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1520 * will be freed on "commit". If logging is enabled in both old and 1521 * new, reuse the existing bitmap. If logging is enabled only in the 1522 * new and KVM isn't using a ring buffer, allocate and initialize a 1523 * new bitmap. 1524 */ 1525 if (change != KVM_MR_DELETE) { 1526 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1527 new->dirty_bitmap = NULL; 1528 else if (old && old->dirty_bitmap) 1529 new->dirty_bitmap = old->dirty_bitmap; 1530 else if (!kvm->dirty_ring_size) { 1531 r = kvm_alloc_dirty_bitmap(new); 1532 if (r) 1533 return r; 1534 1535 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1536 bitmap_set(new->dirty_bitmap, 0, new->npages); 1537 } 1538 } 1539 1540 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1541 1542 /* Free the bitmap on failure if it was allocated above. */ 1543 if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap) 1544 kvm_destroy_dirty_bitmap(new); 1545 1546 return r; 1547 } 1548 1549 static void kvm_commit_memory_region(struct kvm *kvm, 1550 struct kvm_memory_slot *old, 1551 const struct kvm_memory_slot *new, 1552 enum kvm_mr_change change) 1553 { 1554 /* 1555 * Update the total number of memslot pages before calling the arch 1556 * hook so that architectures can consume the result directly. 1557 */ 1558 if (change == KVM_MR_DELETE) 1559 kvm->nr_memslot_pages -= old->npages; 1560 else if (change == KVM_MR_CREATE) 1561 kvm->nr_memslot_pages += new->npages; 1562 1563 kvm_arch_commit_memory_region(kvm, old, new, change); 1564 1565 switch (change) { 1566 case KVM_MR_CREATE: 1567 /* Nothing more to do. */ 1568 break; 1569 case KVM_MR_DELETE: 1570 /* Free the old memslot and all its metadata. */ 1571 kvm_free_memslot(kvm, old); 1572 break; 1573 case KVM_MR_MOVE: 1574 case KVM_MR_FLAGS_ONLY: 1575 /* 1576 * Free the dirty bitmap as needed; the below check encompasses 1577 * both the flags and whether a ring buffer is being used) 1578 */ 1579 if (old->dirty_bitmap && !new->dirty_bitmap) 1580 kvm_destroy_dirty_bitmap(old); 1581 1582 /* 1583 * The final quirk. Free the detached, old slot, but only its 1584 * memory, not any metadata. Metadata, including arch specific 1585 * data, may be reused by @new. 1586 */ 1587 kfree(old); 1588 break; 1589 default: 1590 BUG(); 1591 } 1592 } 1593 1594 /* 1595 * Activate @new, which must be installed in the inactive slots by the caller, 1596 * by swapping the active slots and then propagating @new to @old once @old is 1597 * unreachable and can be safely modified. 1598 * 1599 * With NULL @old this simply adds @new to @active (while swapping the sets). 1600 * With NULL @new this simply removes @old from @active and frees it 1601 * (while also swapping the sets). 1602 */ 1603 static void kvm_activate_memslot(struct kvm *kvm, 1604 struct kvm_memory_slot *old, 1605 struct kvm_memory_slot *new) 1606 { 1607 int as_id = kvm_memslots_get_as_id(old, new); 1608 1609 kvm_swap_active_memslots(kvm, as_id); 1610 1611 /* Propagate the new memslot to the now inactive memslots. */ 1612 kvm_replace_memslot(kvm, old, new); 1613 } 1614 1615 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1616 const struct kvm_memory_slot *src) 1617 { 1618 dest->base_gfn = src->base_gfn; 1619 dest->npages = src->npages; 1620 dest->dirty_bitmap = src->dirty_bitmap; 1621 dest->arch = src->arch; 1622 dest->userspace_addr = src->userspace_addr; 1623 dest->flags = src->flags; 1624 dest->id = src->id; 1625 dest->as_id = src->as_id; 1626 } 1627 1628 static void kvm_invalidate_memslot(struct kvm *kvm, 1629 struct kvm_memory_slot *old, 1630 struct kvm_memory_slot *invalid_slot) 1631 { 1632 /* 1633 * Mark the current slot INVALID. As with all memslot modifications, 1634 * this must be done on an unreachable slot to avoid modifying the 1635 * current slot in the active tree. 1636 */ 1637 kvm_copy_memslot(invalid_slot, old); 1638 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1639 kvm_replace_memslot(kvm, old, invalid_slot); 1640 1641 /* 1642 * Activate the slot that is now marked INVALID, but don't propagate 1643 * the slot to the now inactive slots. The slot is either going to be 1644 * deleted or recreated as a new slot. 1645 */ 1646 kvm_swap_active_memslots(kvm, old->as_id); 1647 1648 /* 1649 * From this point no new shadow pages pointing to a deleted, or moved, 1650 * memslot will be created. Validation of sp->gfn happens in: 1651 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1652 * - kvm_is_visible_gfn (mmu_check_root) 1653 */ 1654 kvm_arch_flush_shadow_memslot(kvm, old); 1655 1656 /* Was released by kvm_swap_active_memslots, reacquire. */ 1657 mutex_lock(&kvm->slots_arch_lock); 1658 1659 /* 1660 * Copy the arch-specific field of the newly-installed slot back to the 1661 * old slot as the arch data could have changed between releasing 1662 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1663 * above. Writers are required to retrieve memslots *after* acquiring 1664 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1665 */ 1666 old->arch = invalid_slot->arch; 1667 } 1668 1669 static void kvm_create_memslot(struct kvm *kvm, 1670 struct kvm_memory_slot *new) 1671 { 1672 /* Add the new memslot to the inactive set and activate. */ 1673 kvm_replace_memslot(kvm, NULL, new); 1674 kvm_activate_memslot(kvm, NULL, new); 1675 } 1676 1677 static void kvm_delete_memslot(struct kvm *kvm, 1678 struct kvm_memory_slot *old, 1679 struct kvm_memory_slot *invalid_slot) 1680 { 1681 /* 1682 * Remove the old memslot (in the inactive memslots) by passing NULL as 1683 * the "new" slot, and for the invalid version in the active slots. 1684 */ 1685 kvm_replace_memslot(kvm, old, NULL); 1686 kvm_activate_memslot(kvm, invalid_slot, NULL); 1687 } 1688 1689 static void kvm_move_memslot(struct kvm *kvm, 1690 struct kvm_memory_slot *old, 1691 struct kvm_memory_slot *new, 1692 struct kvm_memory_slot *invalid_slot) 1693 { 1694 /* 1695 * Replace the old memslot in the inactive slots, and then swap slots 1696 * and replace the current INVALID with the new as well. 1697 */ 1698 kvm_replace_memslot(kvm, old, new); 1699 kvm_activate_memslot(kvm, invalid_slot, new); 1700 } 1701 1702 static void kvm_update_flags_memslot(struct kvm *kvm, 1703 struct kvm_memory_slot *old, 1704 struct kvm_memory_slot *new) 1705 { 1706 /* 1707 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1708 * an intermediate step. Instead, the old memslot is simply replaced 1709 * with a new, updated copy in both memslot sets. 1710 */ 1711 kvm_replace_memslot(kvm, old, new); 1712 kvm_activate_memslot(kvm, old, new); 1713 } 1714 1715 static int kvm_set_memslot(struct kvm *kvm, 1716 struct kvm_memory_slot *old, 1717 struct kvm_memory_slot *new, 1718 enum kvm_mr_change change) 1719 { 1720 struct kvm_memory_slot *invalid_slot; 1721 int r; 1722 1723 /* 1724 * Released in kvm_swap_active_memslots. 1725 * 1726 * Must be held from before the current memslots are copied until 1727 * after the new memslots are installed with rcu_assign_pointer, 1728 * then released before the synchronize srcu in kvm_swap_active_memslots. 1729 * 1730 * When modifying memslots outside of the slots_lock, must be held 1731 * before reading the pointer to the current memslots until after all 1732 * changes to those memslots are complete. 1733 * 1734 * These rules ensure that installing new memslots does not lose 1735 * changes made to the previous memslots. 1736 */ 1737 mutex_lock(&kvm->slots_arch_lock); 1738 1739 /* 1740 * Invalidate the old slot if it's being deleted or moved. This is 1741 * done prior to actually deleting/moving the memslot to allow vCPUs to 1742 * continue running by ensuring there are no mappings or shadow pages 1743 * for the memslot when it is deleted/moved. Without pre-invalidation 1744 * (and without a lock), a window would exist between effecting the 1745 * delete/move and committing the changes in arch code where KVM or a 1746 * guest could access a non-existent memslot. 1747 * 1748 * Modifications are done on a temporary, unreachable slot. The old 1749 * slot needs to be preserved in case a later step fails and the 1750 * invalidation needs to be reverted. 1751 */ 1752 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1753 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1754 if (!invalid_slot) { 1755 mutex_unlock(&kvm->slots_arch_lock); 1756 return -ENOMEM; 1757 } 1758 kvm_invalidate_memslot(kvm, old, invalid_slot); 1759 } 1760 1761 r = kvm_prepare_memory_region(kvm, old, new, change); 1762 if (r) { 1763 /* 1764 * For DELETE/MOVE, revert the above INVALID change. No 1765 * modifications required since the original slot was preserved 1766 * in the inactive slots. Changing the active memslots also 1767 * release slots_arch_lock. 1768 */ 1769 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1770 kvm_activate_memslot(kvm, invalid_slot, old); 1771 kfree(invalid_slot); 1772 } else { 1773 mutex_unlock(&kvm->slots_arch_lock); 1774 } 1775 return r; 1776 } 1777 1778 /* 1779 * For DELETE and MOVE, the working slot is now active as the INVALID 1780 * version of the old slot. MOVE is particularly special as it reuses 1781 * the old slot and returns a copy of the old slot (in working_slot). 1782 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1783 * old slot is detached but otherwise preserved. 1784 */ 1785 if (change == KVM_MR_CREATE) 1786 kvm_create_memslot(kvm, new); 1787 else if (change == KVM_MR_DELETE) 1788 kvm_delete_memslot(kvm, old, invalid_slot); 1789 else if (change == KVM_MR_MOVE) 1790 kvm_move_memslot(kvm, old, new, invalid_slot); 1791 else if (change == KVM_MR_FLAGS_ONLY) 1792 kvm_update_flags_memslot(kvm, old, new); 1793 else 1794 BUG(); 1795 1796 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1797 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1798 kfree(invalid_slot); 1799 1800 /* 1801 * No need to refresh new->arch, changes after dropping slots_arch_lock 1802 * will directly hit the final, active memsot. Architectures are 1803 * responsible for knowing that new->arch may be stale. 1804 */ 1805 kvm_commit_memory_region(kvm, old, new, change); 1806 1807 return 0; 1808 } 1809 1810 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1811 gfn_t start, gfn_t end) 1812 { 1813 struct kvm_memslot_iter iter; 1814 1815 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1816 if (iter.slot->id != id) 1817 return true; 1818 } 1819 1820 return false; 1821 } 1822 1823 /* 1824 * Allocate some memory and give it an address in the guest physical address 1825 * space. 1826 * 1827 * Discontiguous memory is allowed, mostly for framebuffers. 1828 * 1829 * Must be called holding kvm->slots_lock for write. 1830 */ 1831 int __kvm_set_memory_region(struct kvm *kvm, 1832 const struct kvm_userspace_memory_region *mem) 1833 { 1834 struct kvm_memory_slot *old, *new; 1835 struct kvm_memslots *slots; 1836 enum kvm_mr_change change; 1837 unsigned long npages; 1838 gfn_t base_gfn; 1839 int as_id, id; 1840 int r; 1841 1842 r = check_memory_region_flags(mem); 1843 if (r) 1844 return r; 1845 1846 as_id = mem->slot >> 16; 1847 id = (u16)mem->slot; 1848 1849 /* General sanity checks */ 1850 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1851 (mem->memory_size != (unsigned long)mem->memory_size)) 1852 return -EINVAL; 1853 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1854 return -EINVAL; 1855 /* We can read the guest memory with __xxx_user() later on. */ 1856 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1857 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1858 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1859 mem->memory_size)) 1860 return -EINVAL; 1861 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1862 return -EINVAL; 1863 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1864 return -EINVAL; 1865 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1866 return -EINVAL; 1867 1868 slots = __kvm_memslots(kvm, as_id); 1869 1870 /* 1871 * Note, the old memslot (and the pointer itself!) may be invalidated 1872 * and/or destroyed by kvm_set_memslot(). 1873 */ 1874 old = id_to_memslot(slots, id); 1875 1876 if (!mem->memory_size) { 1877 if (!old || !old->npages) 1878 return -EINVAL; 1879 1880 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1881 return -EIO; 1882 1883 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1884 } 1885 1886 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1887 npages = (mem->memory_size >> PAGE_SHIFT); 1888 1889 if (!old || !old->npages) { 1890 change = KVM_MR_CREATE; 1891 1892 /* 1893 * To simplify KVM internals, the total number of pages across 1894 * all memslots must fit in an unsigned long. 1895 */ 1896 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1897 return -EINVAL; 1898 } else { /* Modify an existing slot. */ 1899 if ((mem->userspace_addr != old->userspace_addr) || 1900 (npages != old->npages) || 1901 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1902 return -EINVAL; 1903 1904 if (base_gfn != old->base_gfn) 1905 change = KVM_MR_MOVE; 1906 else if (mem->flags != old->flags) 1907 change = KVM_MR_FLAGS_ONLY; 1908 else /* Nothing to change. */ 1909 return 0; 1910 } 1911 1912 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1913 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1914 return -EEXIST; 1915 1916 /* Allocate a slot that will persist in the memslot. */ 1917 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1918 if (!new) 1919 return -ENOMEM; 1920 1921 new->as_id = as_id; 1922 new->id = id; 1923 new->base_gfn = base_gfn; 1924 new->npages = npages; 1925 new->flags = mem->flags; 1926 new->userspace_addr = mem->userspace_addr; 1927 1928 r = kvm_set_memslot(kvm, old, new, change); 1929 if (r) 1930 kfree(new); 1931 return r; 1932 } 1933 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1934 1935 int kvm_set_memory_region(struct kvm *kvm, 1936 const struct kvm_userspace_memory_region *mem) 1937 { 1938 int r; 1939 1940 mutex_lock(&kvm->slots_lock); 1941 r = __kvm_set_memory_region(kvm, mem); 1942 mutex_unlock(&kvm->slots_lock); 1943 return r; 1944 } 1945 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1946 1947 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1948 struct kvm_userspace_memory_region *mem) 1949 { 1950 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1951 return -EINVAL; 1952 1953 return kvm_set_memory_region(kvm, mem); 1954 } 1955 1956 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1957 /** 1958 * kvm_get_dirty_log - get a snapshot of dirty pages 1959 * @kvm: pointer to kvm instance 1960 * @log: slot id and address to which we copy the log 1961 * @is_dirty: set to '1' if any dirty pages were found 1962 * @memslot: set to the associated memslot, always valid on success 1963 */ 1964 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1965 int *is_dirty, struct kvm_memory_slot **memslot) 1966 { 1967 struct kvm_memslots *slots; 1968 int i, as_id, id; 1969 unsigned long n; 1970 unsigned long any = 0; 1971 1972 /* Dirty ring tracking is exclusive to dirty log tracking */ 1973 if (kvm->dirty_ring_size) 1974 return -ENXIO; 1975 1976 *memslot = NULL; 1977 *is_dirty = 0; 1978 1979 as_id = log->slot >> 16; 1980 id = (u16)log->slot; 1981 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1982 return -EINVAL; 1983 1984 slots = __kvm_memslots(kvm, as_id); 1985 *memslot = id_to_memslot(slots, id); 1986 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1987 return -ENOENT; 1988 1989 kvm_arch_sync_dirty_log(kvm, *memslot); 1990 1991 n = kvm_dirty_bitmap_bytes(*memslot); 1992 1993 for (i = 0; !any && i < n/sizeof(long); ++i) 1994 any = (*memslot)->dirty_bitmap[i]; 1995 1996 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1997 return -EFAULT; 1998 1999 if (any) 2000 *is_dirty = 1; 2001 return 0; 2002 } 2003 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2004 2005 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2006 /** 2007 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2008 * and reenable dirty page tracking for the corresponding pages. 2009 * @kvm: pointer to kvm instance 2010 * @log: slot id and address to which we copy the log 2011 * 2012 * We need to keep it in mind that VCPU threads can write to the bitmap 2013 * concurrently. So, to avoid losing track of dirty pages we keep the 2014 * following order: 2015 * 2016 * 1. Take a snapshot of the bit and clear it if needed. 2017 * 2. Write protect the corresponding page. 2018 * 3. Copy the snapshot to the userspace. 2019 * 4. Upon return caller flushes TLB's if needed. 2020 * 2021 * Between 2 and 4, the guest may write to the page using the remaining TLB 2022 * entry. This is not a problem because the page is reported dirty using 2023 * the snapshot taken before and step 4 ensures that writes done after 2024 * exiting to userspace will be logged for the next call. 2025 * 2026 */ 2027 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2028 { 2029 struct kvm_memslots *slots; 2030 struct kvm_memory_slot *memslot; 2031 int i, as_id, id; 2032 unsigned long n; 2033 unsigned long *dirty_bitmap; 2034 unsigned long *dirty_bitmap_buffer; 2035 bool flush; 2036 2037 /* Dirty ring tracking is exclusive to dirty log tracking */ 2038 if (kvm->dirty_ring_size) 2039 return -ENXIO; 2040 2041 as_id = log->slot >> 16; 2042 id = (u16)log->slot; 2043 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2044 return -EINVAL; 2045 2046 slots = __kvm_memslots(kvm, as_id); 2047 memslot = id_to_memslot(slots, id); 2048 if (!memslot || !memslot->dirty_bitmap) 2049 return -ENOENT; 2050 2051 dirty_bitmap = memslot->dirty_bitmap; 2052 2053 kvm_arch_sync_dirty_log(kvm, memslot); 2054 2055 n = kvm_dirty_bitmap_bytes(memslot); 2056 flush = false; 2057 if (kvm->manual_dirty_log_protect) { 2058 /* 2059 * Unlike kvm_get_dirty_log, we always return false in *flush, 2060 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2061 * is some code duplication between this function and 2062 * kvm_get_dirty_log, but hopefully all architecture 2063 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2064 * can be eliminated. 2065 */ 2066 dirty_bitmap_buffer = dirty_bitmap; 2067 } else { 2068 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2069 memset(dirty_bitmap_buffer, 0, n); 2070 2071 KVM_MMU_LOCK(kvm); 2072 for (i = 0; i < n / sizeof(long); i++) { 2073 unsigned long mask; 2074 gfn_t offset; 2075 2076 if (!dirty_bitmap[i]) 2077 continue; 2078 2079 flush = true; 2080 mask = xchg(&dirty_bitmap[i], 0); 2081 dirty_bitmap_buffer[i] = mask; 2082 2083 offset = i * BITS_PER_LONG; 2084 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2085 offset, mask); 2086 } 2087 KVM_MMU_UNLOCK(kvm); 2088 } 2089 2090 if (flush) 2091 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2092 2093 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2094 return -EFAULT; 2095 return 0; 2096 } 2097 2098 2099 /** 2100 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2101 * @kvm: kvm instance 2102 * @log: slot id and address to which we copy the log 2103 * 2104 * Steps 1-4 below provide general overview of dirty page logging. See 2105 * kvm_get_dirty_log_protect() function description for additional details. 2106 * 2107 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2108 * always flush the TLB (step 4) even if previous step failed and the dirty 2109 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2110 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2111 * writes will be marked dirty for next log read. 2112 * 2113 * 1. Take a snapshot of the bit and clear it if needed. 2114 * 2. Write protect the corresponding page. 2115 * 3. Copy the snapshot to the userspace. 2116 * 4. Flush TLB's if needed. 2117 */ 2118 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2119 struct kvm_dirty_log *log) 2120 { 2121 int r; 2122 2123 mutex_lock(&kvm->slots_lock); 2124 2125 r = kvm_get_dirty_log_protect(kvm, log); 2126 2127 mutex_unlock(&kvm->slots_lock); 2128 return r; 2129 } 2130 2131 /** 2132 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2133 * and reenable dirty page tracking for the corresponding pages. 2134 * @kvm: pointer to kvm instance 2135 * @log: slot id and address from which to fetch the bitmap of dirty pages 2136 */ 2137 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2138 struct kvm_clear_dirty_log *log) 2139 { 2140 struct kvm_memslots *slots; 2141 struct kvm_memory_slot *memslot; 2142 int as_id, id; 2143 gfn_t offset; 2144 unsigned long i, n; 2145 unsigned long *dirty_bitmap; 2146 unsigned long *dirty_bitmap_buffer; 2147 bool flush; 2148 2149 /* Dirty ring tracking is exclusive to dirty log tracking */ 2150 if (kvm->dirty_ring_size) 2151 return -ENXIO; 2152 2153 as_id = log->slot >> 16; 2154 id = (u16)log->slot; 2155 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2156 return -EINVAL; 2157 2158 if (log->first_page & 63) 2159 return -EINVAL; 2160 2161 slots = __kvm_memslots(kvm, as_id); 2162 memslot = id_to_memslot(slots, id); 2163 if (!memslot || !memslot->dirty_bitmap) 2164 return -ENOENT; 2165 2166 dirty_bitmap = memslot->dirty_bitmap; 2167 2168 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2169 2170 if (log->first_page > memslot->npages || 2171 log->num_pages > memslot->npages - log->first_page || 2172 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2173 return -EINVAL; 2174 2175 kvm_arch_sync_dirty_log(kvm, memslot); 2176 2177 flush = false; 2178 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2179 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2180 return -EFAULT; 2181 2182 KVM_MMU_LOCK(kvm); 2183 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2184 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2185 i++, offset += BITS_PER_LONG) { 2186 unsigned long mask = *dirty_bitmap_buffer++; 2187 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2188 if (!mask) 2189 continue; 2190 2191 mask &= atomic_long_fetch_andnot(mask, p); 2192 2193 /* 2194 * mask contains the bits that really have been cleared. This 2195 * never includes any bits beyond the length of the memslot (if 2196 * the length is not aligned to 64 pages), therefore it is not 2197 * a problem if userspace sets them in log->dirty_bitmap. 2198 */ 2199 if (mask) { 2200 flush = true; 2201 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2202 offset, mask); 2203 } 2204 } 2205 KVM_MMU_UNLOCK(kvm); 2206 2207 if (flush) 2208 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2209 2210 return 0; 2211 } 2212 2213 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2214 struct kvm_clear_dirty_log *log) 2215 { 2216 int r; 2217 2218 mutex_lock(&kvm->slots_lock); 2219 2220 r = kvm_clear_dirty_log_protect(kvm, log); 2221 2222 mutex_unlock(&kvm->slots_lock); 2223 return r; 2224 } 2225 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2226 2227 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2228 { 2229 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2230 } 2231 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2232 2233 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2234 { 2235 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2236 u64 gen = slots->generation; 2237 struct kvm_memory_slot *slot; 2238 2239 /* 2240 * This also protects against using a memslot from a different address space, 2241 * since different address spaces have different generation numbers. 2242 */ 2243 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2244 vcpu->last_used_slot = NULL; 2245 vcpu->last_used_slot_gen = gen; 2246 } 2247 2248 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2249 if (slot) 2250 return slot; 2251 2252 /* 2253 * Fall back to searching all memslots. We purposely use 2254 * search_memslots() instead of __gfn_to_memslot() to avoid 2255 * thrashing the VM-wide last_used_slot in kvm_memslots. 2256 */ 2257 slot = search_memslots(slots, gfn, false); 2258 if (slot) { 2259 vcpu->last_used_slot = slot; 2260 return slot; 2261 } 2262 2263 return NULL; 2264 } 2265 2266 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2267 { 2268 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2269 2270 return kvm_is_visible_memslot(memslot); 2271 } 2272 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2273 2274 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2275 { 2276 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2277 2278 return kvm_is_visible_memslot(memslot); 2279 } 2280 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2281 2282 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2283 { 2284 struct vm_area_struct *vma; 2285 unsigned long addr, size; 2286 2287 size = PAGE_SIZE; 2288 2289 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2290 if (kvm_is_error_hva(addr)) 2291 return PAGE_SIZE; 2292 2293 mmap_read_lock(current->mm); 2294 vma = find_vma(current->mm, addr); 2295 if (!vma) 2296 goto out; 2297 2298 size = vma_kernel_pagesize(vma); 2299 2300 out: 2301 mmap_read_unlock(current->mm); 2302 2303 return size; 2304 } 2305 2306 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2307 { 2308 return slot->flags & KVM_MEM_READONLY; 2309 } 2310 2311 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2312 gfn_t *nr_pages, bool write) 2313 { 2314 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2315 return KVM_HVA_ERR_BAD; 2316 2317 if (memslot_is_readonly(slot) && write) 2318 return KVM_HVA_ERR_RO_BAD; 2319 2320 if (nr_pages) 2321 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2322 2323 return __gfn_to_hva_memslot(slot, gfn); 2324 } 2325 2326 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2327 gfn_t *nr_pages) 2328 { 2329 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2330 } 2331 2332 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2333 gfn_t gfn) 2334 { 2335 return gfn_to_hva_many(slot, gfn, NULL); 2336 } 2337 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2338 2339 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2340 { 2341 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2342 } 2343 EXPORT_SYMBOL_GPL(gfn_to_hva); 2344 2345 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2346 { 2347 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2348 } 2349 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2350 2351 /* 2352 * Return the hva of a @gfn and the R/W attribute if possible. 2353 * 2354 * @slot: the kvm_memory_slot which contains @gfn 2355 * @gfn: the gfn to be translated 2356 * @writable: used to return the read/write attribute of the @slot if the hva 2357 * is valid and @writable is not NULL 2358 */ 2359 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2360 gfn_t gfn, bool *writable) 2361 { 2362 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2363 2364 if (!kvm_is_error_hva(hva) && writable) 2365 *writable = !memslot_is_readonly(slot); 2366 2367 return hva; 2368 } 2369 2370 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2371 { 2372 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2373 2374 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2375 } 2376 2377 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2378 { 2379 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2380 2381 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2382 } 2383 2384 static inline int check_user_page_hwpoison(unsigned long addr) 2385 { 2386 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2387 2388 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2389 return rc == -EHWPOISON; 2390 } 2391 2392 /* 2393 * The fast path to get the writable pfn which will be stored in @pfn, 2394 * true indicates success, otherwise false is returned. It's also the 2395 * only part that runs if we can in atomic context. 2396 */ 2397 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2398 bool *writable, kvm_pfn_t *pfn) 2399 { 2400 struct page *page[1]; 2401 2402 /* 2403 * Fast pin a writable pfn only if it is a write fault request 2404 * or the caller allows to map a writable pfn for a read fault 2405 * request. 2406 */ 2407 if (!(write_fault || writable)) 2408 return false; 2409 2410 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2411 *pfn = page_to_pfn(page[0]); 2412 2413 if (writable) 2414 *writable = true; 2415 return true; 2416 } 2417 2418 return false; 2419 } 2420 2421 /* 2422 * The slow path to get the pfn of the specified host virtual address, 2423 * 1 indicates success, -errno is returned if error is detected. 2424 */ 2425 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2426 bool *writable, kvm_pfn_t *pfn) 2427 { 2428 unsigned int flags = FOLL_HWPOISON; 2429 struct page *page; 2430 int npages = 0; 2431 2432 might_sleep(); 2433 2434 if (writable) 2435 *writable = write_fault; 2436 2437 if (write_fault) 2438 flags |= FOLL_WRITE; 2439 if (async) 2440 flags |= FOLL_NOWAIT; 2441 2442 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2443 if (npages != 1) 2444 return npages; 2445 2446 /* map read fault as writable if possible */ 2447 if (unlikely(!write_fault) && writable) { 2448 struct page *wpage; 2449 2450 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2451 *writable = true; 2452 put_page(page); 2453 page = wpage; 2454 } 2455 } 2456 *pfn = page_to_pfn(page); 2457 return npages; 2458 } 2459 2460 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2461 { 2462 if (unlikely(!(vma->vm_flags & VM_READ))) 2463 return false; 2464 2465 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2466 return false; 2467 2468 return true; 2469 } 2470 2471 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2472 { 2473 if (kvm_is_reserved_pfn(pfn)) 2474 return 1; 2475 return get_page_unless_zero(pfn_to_page(pfn)); 2476 } 2477 2478 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2479 unsigned long addr, bool write_fault, 2480 bool *writable, kvm_pfn_t *p_pfn) 2481 { 2482 kvm_pfn_t pfn; 2483 pte_t *ptep; 2484 spinlock_t *ptl; 2485 int r; 2486 2487 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2488 if (r) { 2489 /* 2490 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2491 * not call the fault handler, so do it here. 2492 */ 2493 bool unlocked = false; 2494 r = fixup_user_fault(current->mm, addr, 2495 (write_fault ? FAULT_FLAG_WRITE : 0), 2496 &unlocked); 2497 if (unlocked) 2498 return -EAGAIN; 2499 if (r) 2500 return r; 2501 2502 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2503 if (r) 2504 return r; 2505 } 2506 2507 if (write_fault && !pte_write(*ptep)) { 2508 pfn = KVM_PFN_ERR_RO_FAULT; 2509 goto out; 2510 } 2511 2512 if (writable) 2513 *writable = pte_write(*ptep); 2514 pfn = pte_pfn(*ptep); 2515 2516 /* 2517 * Get a reference here because callers of *hva_to_pfn* and 2518 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2519 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2520 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2521 * simply do nothing for reserved pfns. 2522 * 2523 * Whoever called remap_pfn_range is also going to call e.g. 2524 * unmap_mapping_range before the underlying pages are freed, 2525 * causing a call to our MMU notifier. 2526 * 2527 * Certain IO or PFNMAP mappings can be backed with valid 2528 * struct pages, but be allocated without refcounting e.g., 2529 * tail pages of non-compound higher order allocations, which 2530 * would then underflow the refcount when the caller does the 2531 * required put_page. Don't allow those pages here. 2532 */ 2533 if (!kvm_try_get_pfn(pfn)) 2534 r = -EFAULT; 2535 2536 out: 2537 pte_unmap_unlock(ptep, ptl); 2538 *p_pfn = pfn; 2539 2540 return r; 2541 } 2542 2543 /* 2544 * Pin guest page in memory and return its pfn. 2545 * @addr: host virtual address which maps memory to the guest 2546 * @atomic: whether this function can sleep 2547 * @async: whether this function need to wait IO complete if the 2548 * host page is not in the memory 2549 * @write_fault: whether we should get a writable host page 2550 * @writable: whether it allows to map a writable host page for !@write_fault 2551 * 2552 * The function will map a writable host page for these two cases: 2553 * 1): @write_fault = true 2554 * 2): @write_fault = false && @writable, @writable will tell the caller 2555 * whether the mapping is writable. 2556 */ 2557 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2558 bool write_fault, bool *writable) 2559 { 2560 struct vm_area_struct *vma; 2561 kvm_pfn_t pfn = 0; 2562 int npages, r; 2563 2564 /* we can do it either atomically or asynchronously, not both */ 2565 BUG_ON(atomic && async); 2566 2567 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2568 return pfn; 2569 2570 if (atomic) 2571 return KVM_PFN_ERR_FAULT; 2572 2573 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2574 if (npages == 1) 2575 return pfn; 2576 2577 mmap_read_lock(current->mm); 2578 if (npages == -EHWPOISON || 2579 (!async && check_user_page_hwpoison(addr))) { 2580 pfn = KVM_PFN_ERR_HWPOISON; 2581 goto exit; 2582 } 2583 2584 retry: 2585 vma = vma_lookup(current->mm, addr); 2586 2587 if (vma == NULL) 2588 pfn = KVM_PFN_ERR_FAULT; 2589 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2590 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2591 if (r == -EAGAIN) 2592 goto retry; 2593 if (r < 0) 2594 pfn = KVM_PFN_ERR_FAULT; 2595 } else { 2596 if (async && vma_is_valid(vma, write_fault)) 2597 *async = true; 2598 pfn = KVM_PFN_ERR_FAULT; 2599 } 2600 exit: 2601 mmap_read_unlock(current->mm); 2602 return pfn; 2603 } 2604 2605 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2606 bool atomic, bool *async, bool write_fault, 2607 bool *writable, hva_t *hva) 2608 { 2609 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2610 2611 if (hva) 2612 *hva = addr; 2613 2614 if (addr == KVM_HVA_ERR_RO_BAD) { 2615 if (writable) 2616 *writable = false; 2617 return KVM_PFN_ERR_RO_FAULT; 2618 } 2619 2620 if (kvm_is_error_hva(addr)) { 2621 if (writable) 2622 *writable = false; 2623 return KVM_PFN_NOSLOT; 2624 } 2625 2626 /* Do not map writable pfn in the readonly memslot. */ 2627 if (writable && memslot_is_readonly(slot)) { 2628 *writable = false; 2629 writable = NULL; 2630 } 2631 2632 return hva_to_pfn(addr, atomic, async, write_fault, 2633 writable); 2634 } 2635 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2636 2637 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2638 bool *writable) 2639 { 2640 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2641 write_fault, writable, NULL); 2642 } 2643 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2644 2645 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2646 { 2647 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2648 } 2649 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2650 2651 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2652 { 2653 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2654 } 2655 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2656 2657 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2658 { 2659 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2660 } 2661 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2662 2663 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2664 { 2665 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2666 } 2667 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2668 2669 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2670 { 2671 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2672 } 2673 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2674 2675 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2676 struct page **pages, int nr_pages) 2677 { 2678 unsigned long addr; 2679 gfn_t entry = 0; 2680 2681 addr = gfn_to_hva_many(slot, gfn, &entry); 2682 if (kvm_is_error_hva(addr)) 2683 return -1; 2684 2685 if (entry < nr_pages) 2686 return 0; 2687 2688 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2689 } 2690 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2691 2692 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2693 { 2694 if (is_error_noslot_pfn(pfn)) 2695 return KVM_ERR_PTR_BAD_PAGE; 2696 2697 if (kvm_is_reserved_pfn(pfn)) { 2698 WARN_ON(1); 2699 return KVM_ERR_PTR_BAD_PAGE; 2700 } 2701 2702 return pfn_to_page(pfn); 2703 } 2704 2705 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2706 { 2707 kvm_pfn_t pfn; 2708 2709 pfn = gfn_to_pfn(kvm, gfn); 2710 2711 return kvm_pfn_to_page(pfn); 2712 } 2713 EXPORT_SYMBOL_GPL(gfn_to_page); 2714 2715 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2716 { 2717 if (pfn == 0) 2718 return; 2719 2720 if (dirty) 2721 kvm_release_pfn_dirty(pfn); 2722 else 2723 kvm_release_pfn_clean(pfn); 2724 } 2725 2726 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2727 { 2728 kvm_pfn_t pfn; 2729 void *hva = NULL; 2730 struct page *page = KVM_UNMAPPED_PAGE; 2731 2732 if (!map) 2733 return -EINVAL; 2734 2735 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2736 if (is_error_noslot_pfn(pfn)) 2737 return -EINVAL; 2738 2739 if (pfn_valid(pfn)) { 2740 page = pfn_to_page(pfn); 2741 hva = kmap(page); 2742 #ifdef CONFIG_HAS_IOMEM 2743 } else { 2744 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2745 #endif 2746 } 2747 2748 if (!hva) 2749 return -EFAULT; 2750 2751 map->page = page; 2752 map->hva = hva; 2753 map->pfn = pfn; 2754 map->gfn = gfn; 2755 2756 return 0; 2757 } 2758 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2759 2760 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2761 { 2762 if (!map) 2763 return; 2764 2765 if (!map->hva) 2766 return; 2767 2768 if (map->page != KVM_UNMAPPED_PAGE) 2769 kunmap(map->page); 2770 #ifdef CONFIG_HAS_IOMEM 2771 else 2772 memunmap(map->hva); 2773 #endif 2774 2775 if (dirty) 2776 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2777 2778 kvm_release_pfn(map->pfn, dirty); 2779 2780 map->hva = NULL; 2781 map->page = NULL; 2782 } 2783 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2784 2785 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2786 { 2787 kvm_pfn_t pfn; 2788 2789 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2790 2791 return kvm_pfn_to_page(pfn); 2792 } 2793 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2794 2795 void kvm_release_page_clean(struct page *page) 2796 { 2797 WARN_ON(is_error_page(page)); 2798 2799 kvm_release_pfn_clean(page_to_pfn(page)); 2800 } 2801 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2802 2803 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2804 { 2805 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2806 put_page(pfn_to_page(pfn)); 2807 } 2808 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2809 2810 void kvm_release_page_dirty(struct page *page) 2811 { 2812 WARN_ON(is_error_page(page)); 2813 2814 kvm_release_pfn_dirty(page_to_pfn(page)); 2815 } 2816 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2817 2818 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2819 { 2820 kvm_set_pfn_dirty(pfn); 2821 kvm_release_pfn_clean(pfn); 2822 } 2823 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2824 2825 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2826 { 2827 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2828 SetPageDirty(pfn_to_page(pfn)); 2829 } 2830 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2831 2832 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2833 { 2834 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2835 mark_page_accessed(pfn_to_page(pfn)); 2836 } 2837 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2838 2839 static int next_segment(unsigned long len, int offset) 2840 { 2841 if (len > PAGE_SIZE - offset) 2842 return PAGE_SIZE - offset; 2843 else 2844 return len; 2845 } 2846 2847 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2848 void *data, int offset, int len) 2849 { 2850 int r; 2851 unsigned long addr; 2852 2853 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2854 if (kvm_is_error_hva(addr)) 2855 return -EFAULT; 2856 r = __copy_from_user(data, (void __user *)addr + offset, len); 2857 if (r) 2858 return -EFAULT; 2859 return 0; 2860 } 2861 2862 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2863 int len) 2864 { 2865 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2866 2867 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2868 } 2869 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2870 2871 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2872 int offset, int len) 2873 { 2874 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2875 2876 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2877 } 2878 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2879 2880 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2881 { 2882 gfn_t gfn = gpa >> PAGE_SHIFT; 2883 int seg; 2884 int offset = offset_in_page(gpa); 2885 int ret; 2886 2887 while ((seg = next_segment(len, offset)) != 0) { 2888 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2889 if (ret < 0) 2890 return ret; 2891 offset = 0; 2892 len -= seg; 2893 data += seg; 2894 ++gfn; 2895 } 2896 return 0; 2897 } 2898 EXPORT_SYMBOL_GPL(kvm_read_guest); 2899 2900 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2901 { 2902 gfn_t gfn = gpa >> PAGE_SHIFT; 2903 int seg; 2904 int offset = offset_in_page(gpa); 2905 int ret; 2906 2907 while ((seg = next_segment(len, offset)) != 0) { 2908 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2909 if (ret < 0) 2910 return ret; 2911 offset = 0; 2912 len -= seg; 2913 data += seg; 2914 ++gfn; 2915 } 2916 return 0; 2917 } 2918 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2919 2920 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2921 void *data, int offset, unsigned long len) 2922 { 2923 int r; 2924 unsigned long addr; 2925 2926 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2927 if (kvm_is_error_hva(addr)) 2928 return -EFAULT; 2929 pagefault_disable(); 2930 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2931 pagefault_enable(); 2932 if (r) 2933 return -EFAULT; 2934 return 0; 2935 } 2936 2937 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2938 void *data, unsigned long len) 2939 { 2940 gfn_t gfn = gpa >> PAGE_SHIFT; 2941 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2942 int offset = offset_in_page(gpa); 2943 2944 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2945 } 2946 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2947 2948 static int __kvm_write_guest_page(struct kvm *kvm, 2949 struct kvm_memory_slot *memslot, gfn_t gfn, 2950 const void *data, int offset, int len) 2951 { 2952 int r; 2953 unsigned long addr; 2954 2955 addr = gfn_to_hva_memslot(memslot, gfn); 2956 if (kvm_is_error_hva(addr)) 2957 return -EFAULT; 2958 r = __copy_to_user((void __user *)addr + offset, data, len); 2959 if (r) 2960 return -EFAULT; 2961 mark_page_dirty_in_slot(kvm, memslot, gfn); 2962 return 0; 2963 } 2964 2965 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2966 const void *data, int offset, int len) 2967 { 2968 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2969 2970 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2971 } 2972 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2973 2974 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2975 const void *data, int offset, int len) 2976 { 2977 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2978 2979 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2980 } 2981 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2982 2983 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2984 unsigned long len) 2985 { 2986 gfn_t gfn = gpa >> PAGE_SHIFT; 2987 int seg; 2988 int offset = offset_in_page(gpa); 2989 int ret; 2990 2991 while ((seg = next_segment(len, offset)) != 0) { 2992 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2993 if (ret < 0) 2994 return ret; 2995 offset = 0; 2996 len -= seg; 2997 data += seg; 2998 ++gfn; 2999 } 3000 return 0; 3001 } 3002 EXPORT_SYMBOL_GPL(kvm_write_guest); 3003 3004 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3005 unsigned long len) 3006 { 3007 gfn_t gfn = gpa >> PAGE_SHIFT; 3008 int seg; 3009 int offset = offset_in_page(gpa); 3010 int ret; 3011 3012 while ((seg = next_segment(len, offset)) != 0) { 3013 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3014 if (ret < 0) 3015 return ret; 3016 offset = 0; 3017 len -= seg; 3018 data += seg; 3019 ++gfn; 3020 } 3021 return 0; 3022 } 3023 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3024 3025 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3026 struct gfn_to_hva_cache *ghc, 3027 gpa_t gpa, unsigned long len) 3028 { 3029 int offset = offset_in_page(gpa); 3030 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3031 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3032 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3033 gfn_t nr_pages_avail; 3034 3035 /* Update ghc->generation before performing any error checks. */ 3036 ghc->generation = slots->generation; 3037 3038 if (start_gfn > end_gfn) { 3039 ghc->hva = KVM_HVA_ERR_BAD; 3040 return -EINVAL; 3041 } 3042 3043 /* 3044 * If the requested region crosses two memslots, we still 3045 * verify that the entire region is valid here. 3046 */ 3047 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3048 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3049 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3050 &nr_pages_avail); 3051 if (kvm_is_error_hva(ghc->hva)) 3052 return -EFAULT; 3053 } 3054 3055 /* Use the slow path for cross page reads and writes. */ 3056 if (nr_pages_needed == 1) 3057 ghc->hva += offset; 3058 else 3059 ghc->memslot = NULL; 3060 3061 ghc->gpa = gpa; 3062 ghc->len = len; 3063 return 0; 3064 } 3065 3066 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3067 gpa_t gpa, unsigned long len) 3068 { 3069 struct kvm_memslots *slots = kvm_memslots(kvm); 3070 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3071 } 3072 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3073 3074 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3075 void *data, unsigned int offset, 3076 unsigned long len) 3077 { 3078 struct kvm_memslots *slots = kvm_memslots(kvm); 3079 int r; 3080 gpa_t gpa = ghc->gpa + offset; 3081 3082 if (WARN_ON_ONCE(len + offset > ghc->len)) 3083 return -EINVAL; 3084 3085 if (slots->generation != ghc->generation) { 3086 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3087 return -EFAULT; 3088 } 3089 3090 if (kvm_is_error_hva(ghc->hva)) 3091 return -EFAULT; 3092 3093 if (unlikely(!ghc->memslot)) 3094 return kvm_write_guest(kvm, gpa, data, len); 3095 3096 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3097 if (r) 3098 return -EFAULT; 3099 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3100 3101 return 0; 3102 } 3103 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3104 3105 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3106 void *data, unsigned long len) 3107 { 3108 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3109 } 3110 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3111 3112 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3113 void *data, unsigned int offset, 3114 unsigned long len) 3115 { 3116 struct kvm_memslots *slots = kvm_memslots(kvm); 3117 int r; 3118 gpa_t gpa = ghc->gpa + offset; 3119 3120 if (WARN_ON_ONCE(len + offset > ghc->len)) 3121 return -EINVAL; 3122 3123 if (slots->generation != ghc->generation) { 3124 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3125 return -EFAULT; 3126 } 3127 3128 if (kvm_is_error_hva(ghc->hva)) 3129 return -EFAULT; 3130 3131 if (unlikely(!ghc->memslot)) 3132 return kvm_read_guest(kvm, gpa, data, len); 3133 3134 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3135 if (r) 3136 return -EFAULT; 3137 3138 return 0; 3139 } 3140 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3141 3142 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3143 void *data, unsigned long len) 3144 { 3145 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3146 } 3147 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3148 3149 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3150 { 3151 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3152 gfn_t gfn = gpa >> PAGE_SHIFT; 3153 int seg; 3154 int offset = offset_in_page(gpa); 3155 int ret; 3156 3157 while ((seg = next_segment(len, offset)) != 0) { 3158 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3159 if (ret < 0) 3160 return ret; 3161 offset = 0; 3162 len -= seg; 3163 ++gfn; 3164 } 3165 return 0; 3166 } 3167 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3168 3169 void mark_page_dirty_in_slot(struct kvm *kvm, 3170 const struct kvm_memory_slot *memslot, 3171 gfn_t gfn) 3172 { 3173 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3174 3175 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3176 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3177 return; 3178 #endif 3179 3180 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3181 unsigned long rel_gfn = gfn - memslot->base_gfn; 3182 u32 slot = (memslot->as_id << 16) | memslot->id; 3183 3184 if (kvm->dirty_ring_size) 3185 kvm_dirty_ring_push(&vcpu->dirty_ring, 3186 slot, rel_gfn); 3187 else 3188 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3189 } 3190 } 3191 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3192 3193 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3194 { 3195 struct kvm_memory_slot *memslot; 3196 3197 memslot = gfn_to_memslot(kvm, gfn); 3198 mark_page_dirty_in_slot(kvm, memslot, gfn); 3199 } 3200 EXPORT_SYMBOL_GPL(mark_page_dirty); 3201 3202 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3203 { 3204 struct kvm_memory_slot *memslot; 3205 3206 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3207 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3208 } 3209 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3210 3211 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3212 { 3213 if (!vcpu->sigset_active) 3214 return; 3215 3216 /* 3217 * This does a lockless modification of ->real_blocked, which is fine 3218 * because, only current can change ->real_blocked and all readers of 3219 * ->real_blocked don't care as long ->real_blocked is always a subset 3220 * of ->blocked. 3221 */ 3222 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3223 } 3224 3225 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3226 { 3227 if (!vcpu->sigset_active) 3228 return; 3229 3230 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3231 sigemptyset(¤t->real_blocked); 3232 } 3233 3234 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3235 { 3236 unsigned int old, val, grow, grow_start; 3237 3238 old = val = vcpu->halt_poll_ns; 3239 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3240 grow = READ_ONCE(halt_poll_ns_grow); 3241 if (!grow) 3242 goto out; 3243 3244 val *= grow; 3245 if (val < grow_start) 3246 val = grow_start; 3247 3248 if (val > vcpu->kvm->max_halt_poll_ns) 3249 val = vcpu->kvm->max_halt_poll_ns; 3250 3251 vcpu->halt_poll_ns = val; 3252 out: 3253 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3254 } 3255 3256 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3257 { 3258 unsigned int old, val, shrink, grow_start; 3259 3260 old = val = vcpu->halt_poll_ns; 3261 shrink = READ_ONCE(halt_poll_ns_shrink); 3262 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3263 if (shrink == 0) 3264 val = 0; 3265 else 3266 val /= shrink; 3267 3268 if (val < grow_start) 3269 val = 0; 3270 3271 vcpu->halt_poll_ns = val; 3272 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3273 } 3274 3275 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3276 { 3277 int ret = -EINTR; 3278 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3279 3280 if (kvm_arch_vcpu_runnable(vcpu)) { 3281 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3282 goto out; 3283 } 3284 if (kvm_cpu_has_pending_timer(vcpu)) 3285 goto out; 3286 if (signal_pending(current)) 3287 goto out; 3288 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3289 goto out; 3290 3291 ret = 0; 3292 out: 3293 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3294 return ret; 3295 } 3296 3297 /* 3298 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3299 * pending. This is mostly used when halting a vCPU, but may also be used 3300 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3301 */ 3302 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3303 { 3304 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3305 bool waited = false; 3306 3307 vcpu->stat.generic.blocking = 1; 3308 3309 kvm_arch_vcpu_blocking(vcpu); 3310 3311 prepare_to_rcuwait(wait); 3312 for (;;) { 3313 set_current_state(TASK_INTERRUPTIBLE); 3314 3315 if (kvm_vcpu_check_block(vcpu) < 0) 3316 break; 3317 3318 waited = true; 3319 schedule(); 3320 } 3321 finish_rcuwait(wait); 3322 3323 kvm_arch_vcpu_unblocking(vcpu); 3324 3325 vcpu->stat.generic.blocking = 0; 3326 3327 return waited; 3328 } 3329 3330 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3331 ktime_t end, bool success) 3332 { 3333 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3334 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3335 3336 ++vcpu->stat.generic.halt_attempted_poll; 3337 3338 if (success) { 3339 ++vcpu->stat.generic.halt_successful_poll; 3340 3341 if (!vcpu_valid_wakeup(vcpu)) 3342 ++vcpu->stat.generic.halt_poll_invalid; 3343 3344 stats->halt_poll_success_ns += poll_ns; 3345 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3346 } else { 3347 stats->halt_poll_fail_ns += poll_ns; 3348 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3349 } 3350 } 3351 3352 /* 3353 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3354 * polling is enabled, busy wait for a short time before blocking to avoid the 3355 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3356 * is halted. 3357 */ 3358 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3359 { 3360 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3361 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3362 ktime_t start, cur, poll_end; 3363 bool waited = false; 3364 u64 halt_ns; 3365 3366 start = cur = poll_end = ktime_get(); 3367 if (do_halt_poll) { 3368 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3369 3370 do { 3371 /* 3372 * This sets KVM_REQ_UNHALT if an interrupt 3373 * arrives. 3374 */ 3375 if (kvm_vcpu_check_block(vcpu) < 0) 3376 goto out; 3377 cpu_relax(); 3378 poll_end = cur = ktime_get(); 3379 } while (kvm_vcpu_can_poll(cur, stop)); 3380 } 3381 3382 waited = kvm_vcpu_block(vcpu); 3383 3384 cur = ktime_get(); 3385 if (waited) { 3386 vcpu->stat.generic.halt_wait_ns += 3387 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3388 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3389 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3390 } 3391 out: 3392 /* The total time the vCPU was "halted", including polling time. */ 3393 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3394 3395 /* 3396 * Note, halt-polling is considered successful so long as the vCPU was 3397 * never actually scheduled out, i.e. even if the wake event arrived 3398 * after of the halt-polling loop itself, but before the full wait. 3399 */ 3400 if (do_halt_poll) 3401 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3402 3403 if (halt_poll_allowed) { 3404 if (!vcpu_valid_wakeup(vcpu)) { 3405 shrink_halt_poll_ns(vcpu); 3406 } else if (vcpu->kvm->max_halt_poll_ns) { 3407 if (halt_ns <= vcpu->halt_poll_ns) 3408 ; 3409 /* we had a long block, shrink polling */ 3410 else if (vcpu->halt_poll_ns && 3411 halt_ns > vcpu->kvm->max_halt_poll_ns) 3412 shrink_halt_poll_ns(vcpu); 3413 /* we had a short halt and our poll time is too small */ 3414 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3415 halt_ns < vcpu->kvm->max_halt_poll_ns) 3416 grow_halt_poll_ns(vcpu); 3417 } else { 3418 vcpu->halt_poll_ns = 0; 3419 } 3420 } 3421 3422 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3423 } 3424 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3425 3426 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3427 { 3428 if (__kvm_vcpu_wake_up(vcpu)) { 3429 WRITE_ONCE(vcpu->ready, true); 3430 ++vcpu->stat.generic.halt_wakeup; 3431 return true; 3432 } 3433 3434 return false; 3435 } 3436 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3437 3438 #ifndef CONFIG_S390 3439 /* 3440 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3441 */ 3442 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3443 { 3444 int me, cpu; 3445 3446 if (kvm_vcpu_wake_up(vcpu)) 3447 return; 3448 3449 me = get_cpu(); 3450 /* 3451 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3452 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3453 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3454 * within the vCPU thread itself. 3455 */ 3456 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3457 if (vcpu->mode == IN_GUEST_MODE) 3458 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3459 goto out; 3460 } 3461 3462 /* 3463 * Note, the vCPU could get migrated to a different pCPU at any point 3464 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3465 * IPI to the previous pCPU. But, that's ok because the purpose of the 3466 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3467 * vCPU also requires it to leave IN_GUEST_MODE. 3468 */ 3469 if (kvm_arch_vcpu_should_kick(vcpu)) { 3470 cpu = READ_ONCE(vcpu->cpu); 3471 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3472 smp_send_reschedule(cpu); 3473 } 3474 out: 3475 put_cpu(); 3476 } 3477 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3478 #endif /* !CONFIG_S390 */ 3479 3480 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3481 { 3482 struct pid *pid; 3483 struct task_struct *task = NULL; 3484 int ret = 0; 3485 3486 rcu_read_lock(); 3487 pid = rcu_dereference(target->pid); 3488 if (pid) 3489 task = get_pid_task(pid, PIDTYPE_PID); 3490 rcu_read_unlock(); 3491 if (!task) 3492 return ret; 3493 ret = yield_to(task, 1); 3494 put_task_struct(task); 3495 3496 return ret; 3497 } 3498 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3499 3500 /* 3501 * Helper that checks whether a VCPU is eligible for directed yield. 3502 * Most eligible candidate to yield is decided by following heuristics: 3503 * 3504 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3505 * (preempted lock holder), indicated by @in_spin_loop. 3506 * Set at the beginning and cleared at the end of interception/PLE handler. 3507 * 3508 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3509 * chance last time (mostly it has become eligible now since we have probably 3510 * yielded to lockholder in last iteration. This is done by toggling 3511 * @dy_eligible each time a VCPU checked for eligibility.) 3512 * 3513 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3514 * to preempted lock-holder could result in wrong VCPU selection and CPU 3515 * burning. Giving priority for a potential lock-holder increases lock 3516 * progress. 3517 * 3518 * Since algorithm is based on heuristics, accessing another VCPU data without 3519 * locking does not harm. It may result in trying to yield to same VCPU, fail 3520 * and continue with next VCPU and so on. 3521 */ 3522 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3523 { 3524 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3525 bool eligible; 3526 3527 eligible = !vcpu->spin_loop.in_spin_loop || 3528 vcpu->spin_loop.dy_eligible; 3529 3530 if (vcpu->spin_loop.in_spin_loop) 3531 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3532 3533 return eligible; 3534 #else 3535 return true; 3536 #endif 3537 } 3538 3539 /* 3540 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3541 * a vcpu_load/vcpu_put pair. However, for most architectures 3542 * kvm_arch_vcpu_runnable does not require vcpu_load. 3543 */ 3544 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3545 { 3546 return kvm_arch_vcpu_runnable(vcpu); 3547 } 3548 3549 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3550 { 3551 if (kvm_arch_dy_runnable(vcpu)) 3552 return true; 3553 3554 #ifdef CONFIG_KVM_ASYNC_PF 3555 if (!list_empty_careful(&vcpu->async_pf.done)) 3556 return true; 3557 #endif 3558 3559 return false; 3560 } 3561 3562 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3563 { 3564 return false; 3565 } 3566 3567 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3568 { 3569 struct kvm *kvm = me->kvm; 3570 struct kvm_vcpu *vcpu; 3571 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3572 unsigned long i; 3573 int yielded = 0; 3574 int try = 3; 3575 int pass; 3576 3577 kvm_vcpu_set_in_spin_loop(me, true); 3578 /* 3579 * We boost the priority of a VCPU that is runnable but not 3580 * currently running, because it got preempted by something 3581 * else and called schedule in __vcpu_run. Hopefully that 3582 * VCPU is holding the lock that we need and will release it. 3583 * We approximate round-robin by starting at the last boosted VCPU. 3584 */ 3585 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3586 kvm_for_each_vcpu(i, vcpu, kvm) { 3587 if (!pass && i <= last_boosted_vcpu) { 3588 i = last_boosted_vcpu; 3589 continue; 3590 } else if (pass && i > last_boosted_vcpu) 3591 break; 3592 if (!READ_ONCE(vcpu->ready)) 3593 continue; 3594 if (vcpu == me) 3595 continue; 3596 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3597 continue; 3598 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3599 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3600 !kvm_arch_vcpu_in_kernel(vcpu)) 3601 continue; 3602 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3603 continue; 3604 3605 yielded = kvm_vcpu_yield_to(vcpu); 3606 if (yielded > 0) { 3607 kvm->last_boosted_vcpu = i; 3608 break; 3609 } else if (yielded < 0) { 3610 try--; 3611 if (!try) 3612 break; 3613 } 3614 } 3615 } 3616 kvm_vcpu_set_in_spin_loop(me, false); 3617 3618 /* Ensure vcpu is not eligible during next spinloop */ 3619 kvm_vcpu_set_dy_eligible(me, false); 3620 } 3621 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3622 3623 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3624 { 3625 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3626 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3627 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3628 kvm->dirty_ring_size / PAGE_SIZE); 3629 #else 3630 return false; 3631 #endif 3632 } 3633 3634 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3635 { 3636 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3637 struct page *page; 3638 3639 if (vmf->pgoff == 0) 3640 page = virt_to_page(vcpu->run); 3641 #ifdef CONFIG_X86 3642 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3643 page = virt_to_page(vcpu->arch.pio_data); 3644 #endif 3645 #ifdef CONFIG_KVM_MMIO 3646 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3647 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3648 #endif 3649 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3650 page = kvm_dirty_ring_get_page( 3651 &vcpu->dirty_ring, 3652 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3653 else 3654 return kvm_arch_vcpu_fault(vcpu, vmf); 3655 get_page(page); 3656 vmf->page = page; 3657 return 0; 3658 } 3659 3660 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3661 .fault = kvm_vcpu_fault, 3662 }; 3663 3664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3665 { 3666 struct kvm_vcpu *vcpu = file->private_data; 3667 unsigned long pages = vma_pages(vma); 3668 3669 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3670 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3671 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3672 return -EINVAL; 3673 3674 vma->vm_ops = &kvm_vcpu_vm_ops; 3675 return 0; 3676 } 3677 3678 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3679 { 3680 struct kvm_vcpu *vcpu = filp->private_data; 3681 3682 kvm_put_kvm(vcpu->kvm); 3683 return 0; 3684 } 3685 3686 static const struct file_operations kvm_vcpu_fops = { 3687 .release = kvm_vcpu_release, 3688 .unlocked_ioctl = kvm_vcpu_ioctl, 3689 .mmap = kvm_vcpu_mmap, 3690 .llseek = noop_llseek, 3691 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3692 }; 3693 3694 /* 3695 * Allocates an inode for the vcpu. 3696 */ 3697 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3698 { 3699 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3700 3701 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3702 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3703 } 3704 3705 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3706 { 3707 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3708 struct dentry *debugfs_dentry; 3709 char dir_name[ITOA_MAX_LEN * 2]; 3710 3711 if (!debugfs_initialized()) 3712 return; 3713 3714 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3715 debugfs_dentry = debugfs_create_dir(dir_name, 3716 vcpu->kvm->debugfs_dentry); 3717 3718 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3719 #endif 3720 } 3721 3722 /* 3723 * Creates some virtual cpus. Good luck creating more than one. 3724 */ 3725 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3726 { 3727 int r; 3728 struct kvm_vcpu *vcpu; 3729 struct page *page; 3730 3731 if (id >= KVM_MAX_VCPU_IDS) 3732 return -EINVAL; 3733 3734 mutex_lock(&kvm->lock); 3735 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3736 mutex_unlock(&kvm->lock); 3737 return -EINVAL; 3738 } 3739 3740 kvm->created_vcpus++; 3741 mutex_unlock(&kvm->lock); 3742 3743 r = kvm_arch_vcpu_precreate(kvm, id); 3744 if (r) 3745 goto vcpu_decrement; 3746 3747 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3748 if (!vcpu) { 3749 r = -ENOMEM; 3750 goto vcpu_decrement; 3751 } 3752 3753 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3754 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3755 if (!page) { 3756 r = -ENOMEM; 3757 goto vcpu_free; 3758 } 3759 vcpu->run = page_address(page); 3760 3761 kvm_vcpu_init(vcpu, kvm, id); 3762 3763 r = kvm_arch_vcpu_create(vcpu); 3764 if (r) 3765 goto vcpu_free_run_page; 3766 3767 if (kvm->dirty_ring_size) { 3768 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3769 id, kvm->dirty_ring_size); 3770 if (r) 3771 goto arch_vcpu_destroy; 3772 } 3773 3774 mutex_lock(&kvm->lock); 3775 if (kvm_get_vcpu_by_id(kvm, id)) { 3776 r = -EEXIST; 3777 goto unlock_vcpu_destroy; 3778 } 3779 3780 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3781 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3782 BUG_ON(r == -EBUSY); 3783 if (r) 3784 goto unlock_vcpu_destroy; 3785 3786 /* Fill the stats id string for the vcpu */ 3787 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3788 task_pid_nr(current), id); 3789 3790 /* Now it's all set up, let userspace reach it */ 3791 kvm_get_kvm(kvm); 3792 r = create_vcpu_fd(vcpu); 3793 if (r < 0) { 3794 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3795 kvm_put_kvm_no_destroy(kvm); 3796 goto unlock_vcpu_destroy; 3797 } 3798 3799 /* 3800 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3801 * pointer before kvm->online_vcpu's incremented value. 3802 */ 3803 smp_wmb(); 3804 atomic_inc(&kvm->online_vcpus); 3805 3806 mutex_unlock(&kvm->lock); 3807 kvm_arch_vcpu_postcreate(vcpu); 3808 kvm_create_vcpu_debugfs(vcpu); 3809 return r; 3810 3811 unlock_vcpu_destroy: 3812 mutex_unlock(&kvm->lock); 3813 kvm_dirty_ring_free(&vcpu->dirty_ring); 3814 arch_vcpu_destroy: 3815 kvm_arch_vcpu_destroy(vcpu); 3816 vcpu_free_run_page: 3817 free_page((unsigned long)vcpu->run); 3818 vcpu_free: 3819 kmem_cache_free(kvm_vcpu_cache, vcpu); 3820 vcpu_decrement: 3821 mutex_lock(&kvm->lock); 3822 kvm->created_vcpus--; 3823 mutex_unlock(&kvm->lock); 3824 return r; 3825 } 3826 3827 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3828 { 3829 if (sigset) { 3830 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3831 vcpu->sigset_active = 1; 3832 vcpu->sigset = *sigset; 3833 } else 3834 vcpu->sigset_active = 0; 3835 return 0; 3836 } 3837 3838 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3839 size_t size, loff_t *offset) 3840 { 3841 struct kvm_vcpu *vcpu = file->private_data; 3842 3843 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3844 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3845 sizeof(vcpu->stat), user_buffer, size, offset); 3846 } 3847 3848 static const struct file_operations kvm_vcpu_stats_fops = { 3849 .read = kvm_vcpu_stats_read, 3850 .llseek = noop_llseek, 3851 }; 3852 3853 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3854 { 3855 int fd; 3856 struct file *file; 3857 char name[15 + ITOA_MAX_LEN + 1]; 3858 3859 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3860 3861 fd = get_unused_fd_flags(O_CLOEXEC); 3862 if (fd < 0) 3863 return fd; 3864 3865 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3866 if (IS_ERR(file)) { 3867 put_unused_fd(fd); 3868 return PTR_ERR(file); 3869 } 3870 file->f_mode |= FMODE_PREAD; 3871 fd_install(fd, file); 3872 3873 return fd; 3874 } 3875 3876 static long kvm_vcpu_ioctl(struct file *filp, 3877 unsigned int ioctl, unsigned long arg) 3878 { 3879 struct kvm_vcpu *vcpu = filp->private_data; 3880 void __user *argp = (void __user *)arg; 3881 int r; 3882 struct kvm_fpu *fpu = NULL; 3883 struct kvm_sregs *kvm_sregs = NULL; 3884 3885 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3886 return -EIO; 3887 3888 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3889 return -EINVAL; 3890 3891 /* 3892 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3893 * execution; mutex_lock() would break them. 3894 */ 3895 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3896 if (r != -ENOIOCTLCMD) 3897 return r; 3898 3899 if (mutex_lock_killable(&vcpu->mutex)) 3900 return -EINTR; 3901 switch (ioctl) { 3902 case KVM_RUN: { 3903 struct pid *oldpid; 3904 r = -EINVAL; 3905 if (arg) 3906 goto out; 3907 oldpid = rcu_access_pointer(vcpu->pid); 3908 if (unlikely(oldpid != task_pid(current))) { 3909 /* The thread running this VCPU changed. */ 3910 struct pid *newpid; 3911 3912 r = kvm_arch_vcpu_run_pid_change(vcpu); 3913 if (r) 3914 break; 3915 3916 newpid = get_task_pid(current, PIDTYPE_PID); 3917 rcu_assign_pointer(vcpu->pid, newpid); 3918 if (oldpid) 3919 synchronize_rcu(); 3920 put_pid(oldpid); 3921 } 3922 r = kvm_arch_vcpu_ioctl_run(vcpu); 3923 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3924 break; 3925 } 3926 case KVM_GET_REGS: { 3927 struct kvm_regs *kvm_regs; 3928 3929 r = -ENOMEM; 3930 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3931 if (!kvm_regs) 3932 goto out; 3933 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3934 if (r) 3935 goto out_free1; 3936 r = -EFAULT; 3937 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3938 goto out_free1; 3939 r = 0; 3940 out_free1: 3941 kfree(kvm_regs); 3942 break; 3943 } 3944 case KVM_SET_REGS: { 3945 struct kvm_regs *kvm_regs; 3946 3947 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3948 if (IS_ERR(kvm_regs)) { 3949 r = PTR_ERR(kvm_regs); 3950 goto out; 3951 } 3952 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3953 kfree(kvm_regs); 3954 break; 3955 } 3956 case KVM_GET_SREGS: { 3957 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3958 GFP_KERNEL_ACCOUNT); 3959 r = -ENOMEM; 3960 if (!kvm_sregs) 3961 goto out; 3962 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3963 if (r) 3964 goto out; 3965 r = -EFAULT; 3966 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3967 goto out; 3968 r = 0; 3969 break; 3970 } 3971 case KVM_SET_SREGS: { 3972 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3973 if (IS_ERR(kvm_sregs)) { 3974 r = PTR_ERR(kvm_sregs); 3975 kvm_sregs = NULL; 3976 goto out; 3977 } 3978 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3979 break; 3980 } 3981 case KVM_GET_MP_STATE: { 3982 struct kvm_mp_state mp_state; 3983 3984 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3985 if (r) 3986 goto out; 3987 r = -EFAULT; 3988 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3989 goto out; 3990 r = 0; 3991 break; 3992 } 3993 case KVM_SET_MP_STATE: { 3994 struct kvm_mp_state mp_state; 3995 3996 r = -EFAULT; 3997 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3998 goto out; 3999 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4000 break; 4001 } 4002 case KVM_TRANSLATE: { 4003 struct kvm_translation tr; 4004 4005 r = -EFAULT; 4006 if (copy_from_user(&tr, argp, sizeof(tr))) 4007 goto out; 4008 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4009 if (r) 4010 goto out; 4011 r = -EFAULT; 4012 if (copy_to_user(argp, &tr, sizeof(tr))) 4013 goto out; 4014 r = 0; 4015 break; 4016 } 4017 case KVM_SET_GUEST_DEBUG: { 4018 struct kvm_guest_debug dbg; 4019 4020 r = -EFAULT; 4021 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4022 goto out; 4023 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4024 break; 4025 } 4026 case KVM_SET_SIGNAL_MASK: { 4027 struct kvm_signal_mask __user *sigmask_arg = argp; 4028 struct kvm_signal_mask kvm_sigmask; 4029 sigset_t sigset, *p; 4030 4031 p = NULL; 4032 if (argp) { 4033 r = -EFAULT; 4034 if (copy_from_user(&kvm_sigmask, argp, 4035 sizeof(kvm_sigmask))) 4036 goto out; 4037 r = -EINVAL; 4038 if (kvm_sigmask.len != sizeof(sigset)) 4039 goto out; 4040 r = -EFAULT; 4041 if (copy_from_user(&sigset, sigmask_arg->sigset, 4042 sizeof(sigset))) 4043 goto out; 4044 p = &sigset; 4045 } 4046 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4047 break; 4048 } 4049 case KVM_GET_FPU: { 4050 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4051 r = -ENOMEM; 4052 if (!fpu) 4053 goto out; 4054 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4055 if (r) 4056 goto out; 4057 r = -EFAULT; 4058 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4059 goto out; 4060 r = 0; 4061 break; 4062 } 4063 case KVM_SET_FPU: { 4064 fpu = memdup_user(argp, sizeof(*fpu)); 4065 if (IS_ERR(fpu)) { 4066 r = PTR_ERR(fpu); 4067 fpu = NULL; 4068 goto out; 4069 } 4070 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4071 break; 4072 } 4073 case KVM_GET_STATS_FD: { 4074 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4075 break; 4076 } 4077 default: 4078 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4079 } 4080 out: 4081 mutex_unlock(&vcpu->mutex); 4082 kfree(fpu); 4083 kfree(kvm_sregs); 4084 return r; 4085 } 4086 4087 #ifdef CONFIG_KVM_COMPAT 4088 static long kvm_vcpu_compat_ioctl(struct file *filp, 4089 unsigned int ioctl, unsigned long arg) 4090 { 4091 struct kvm_vcpu *vcpu = filp->private_data; 4092 void __user *argp = compat_ptr(arg); 4093 int r; 4094 4095 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4096 return -EIO; 4097 4098 switch (ioctl) { 4099 case KVM_SET_SIGNAL_MASK: { 4100 struct kvm_signal_mask __user *sigmask_arg = argp; 4101 struct kvm_signal_mask kvm_sigmask; 4102 sigset_t sigset; 4103 4104 if (argp) { 4105 r = -EFAULT; 4106 if (copy_from_user(&kvm_sigmask, argp, 4107 sizeof(kvm_sigmask))) 4108 goto out; 4109 r = -EINVAL; 4110 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4111 goto out; 4112 r = -EFAULT; 4113 if (get_compat_sigset(&sigset, 4114 (compat_sigset_t __user *)sigmask_arg->sigset)) 4115 goto out; 4116 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4117 } else 4118 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4119 break; 4120 } 4121 default: 4122 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4123 } 4124 4125 out: 4126 return r; 4127 } 4128 #endif 4129 4130 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4131 { 4132 struct kvm_device *dev = filp->private_data; 4133 4134 if (dev->ops->mmap) 4135 return dev->ops->mmap(dev, vma); 4136 4137 return -ENODEV; 4138 } 4139 4140 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4141 int (*accessor)(struct kvm_device *dev, 4142 struct kvm_device_attr *attr), 4143 unsigned long arg) 4144 { 4145 struct kvm_device_attr attr; 4146 4147 if (!accessor) 4148 return -EPERM; 4149 4150 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4151 return -EFAULT; 4152 4153 return accessor(dev, &attr); 4154 } 4155 4156 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4157 unsigned long arg) 4158 { 4159 struct kvm_device *dev = filp->private_data; 4160 4161 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4162 return -EIO; 4163 4164 switch (ioctl) { 4165 case KVM_SET_DEVICE_ATTR: 4166 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4167 case KVM_GET_DEVICE_ATTR: 4168 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4169 case KVM_HAS_DEVICE_ATTR: 4170 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4171 default: 4172 if (dev->ops->ioctl) 4173 return dev->ops->ioctl(dev, ioctl, arg); 4174 4175 return -ENOTTY; 4176 } 4177 } 4178 4179 static int kvm_device_release(struct inode *inode, struct file *filp) 4180 { 4181 struct kvm_device *dev = filp->private_data; 4182 struct kvm *kvm = dev->kvm; 4183 4184 if (dev->ops->release) { 4185 mutex_lock(&kvm->lock); 4186 list_del(&dev->vm_node); 4187 dev->ops->release(dev); 4188 mutex_unlock(&kvm->lock); 4189 } 4190 4191 kvm_put_kvm(kvm); 4192 return 0; 4193 } 4194 4195 static const struct file_operations kvm_device_fops = { 4196 .unlocked_ioctl = kvm_device_ioctl, 4197 .release = kvm_device_release, 4198 KVM_COMPAT(kvm_device_ioctl), 4199 .mmap = kvm_device_mmap, 4200 }; 4201 4202 struct kvm_device *kvm_device_from_filp(struct file *filp) 4203 { 4204 if (filp->f_op != &kvm_device_fops) 4205 return NULL; 4206 4207 return filp->private_data; 4208 } 4209 4210 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4211 #ifdef CONFIG_KVM_MPIC 4212 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4213 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4214 #endif 4215 }; 4216 4217 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4218 { 4219 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4220 return -ENOSPC; 4221 4222 if (kvm_device_ops_table[type] != NULL) 4223 return -EEXIST; 4224 4225 kvm_device_ops_table[type] = ops; 4226 return 0; 4227 } 4228 4229 void kvm_unregister_device_ops(u32 type) 4230 { 4231 if (kvm_device_ops_table[type] != NULL) 4232 kvm_device_ops_table[type] = NULL; 4233 } 4234 4235 static int kvm_ioctl_create_device(struct kvm *kvm, 4236 struct kvm_create_device *cd) 4237 { 4238 const struct kvm_device_ops *ops = NULL; 4239 struct kvm_device *dev; 4240 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4241 int type; 4242 int ret; 4243 4244 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4245 return -ENODEV; 4246 4247 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4248 ops = kvm_device_ops_table[type]; 4249 if (ops == NULL) 4250 return -ENODEV; 4251 4252 if (test) 4253 return 0; 4254 4255 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4256 if (!dev) 4257 return -ENOMEM; 4258 4259 dev->ops = ops; 4260 dev->kvm = kvm; 4261 4262 mutex_lock(&kvm->lock); 4263 ret = ops->create(dev, type); 4264 if (ret < 0) { 4265 mutex_unlock(&kvm->lock); 4266 kfree(dev); 4267 return ret; 4268 } 4269 list_add(&dev->vm_node, &kvm->devices); 4270 mutex_unlock(&kvm->lock); 4271 4272 if (ops->init) 4273 ops->init(dev); 4274 4275 kvm_get_kvm(kvm); 4276 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4277 if (ret < 0) { 4278 kvm_put_kvm_no_destroy(kvm); 4279 mutex_lock(&kvm->lock); 4280 list_del(&dev->vm_node); 4281 mutex_unlock(&kvm->lock); 4282 ops->destroy(dev); 4283 return ret; 4284 } 4285 4286 cd->fd = ret; 4287 return 0; 4288 } 4289 4290 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4291 { 4292 switch (arg) { 4293 case KVM_CAP_USER_MEMORY: 4294 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4295 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4296 case KVM_CAP_INTERNAL_ERROR_DATA: 4297 #ifdef CONFIG_HAVE_KVM_MSI 4298 case KVM_CAP_SIGNAL_MSI: 4299 #endif 4300 #ifdef CONFIG_HAVE_KVM_IRQFD 4301 case KVM_CAP_IRQFD: 4302 case KVM_CAP_IRQFD_RESAMPLE: 4303 #endif 4304 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4305 case KVM_CAP_CHECK_EXTENSION_VM: 4306 case KVM_CAP_ENABLE_CAP_VM: 4307 case KVM_CAP_HALT_POLL: 4308 return 1; 4309 #ifdef CONFIG_KVM_MMIO 4310 case KVM_CAP_COALESCED_MMIO: 4311 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4312 case KVM_CAP_COALESCED_PIO: 4313 return 1; 4314 #endif 4315 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4316 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4317 return KVM_DIRTY_LOG_MANUAL_CAPS; 4318 #endif 4319 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4320 case KVM_CAP_IRQ_ROUTING: 4321 return KVM_MAX_IRQ_ROUTES; 4322 #endif 4323 #if KVM_ADDRESS_SPACE_NUM > 1 4324 case KVM_CAP_MULTI_ADDRESS_SPACE: 4325 return KVM_ADDRESS_SPACE_NUM; 4326 #endif 4327 case KVM_CAP_NR_MEMSLOTS: 4328 return KVM_USER_MEM_SLOTS; 4329 case KVM_CAP_DIRTY_LOG_RING: 4330 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4331 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4332 #else 4333 return 0; 4334 #endif 4335 case KVM_CAP_BINARY_STATS_FD: 4336 return 1; 4337 default: 4338 break; 4339 } 4340 return kvm_vm_ioctl_check_extension(kvm, arg); 4341 } 4342 4343 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4344 { 4345 int r; 4346 4347 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4348 return -EINVAL; 4349 4350 /* the size should be power of 2 */ 4351 if (!size || (size & (size - 1))) 4352 return -EINVAL; 4353 4354 /* Should be bigger to keep the reserved entries, or a page */ 4355 if (size < kvm_dirty_ring_get_rsvd_entries() * 4356 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4357 return -EINVAL; 4358 4359 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4360 sizeof(struct kvm_dirty_gfn)) 4361 return -E2BIG; 4362 4363 /* We only allow it to set once */ 4364 if (kvm->dirty_ring_size) 4365 return -EINVAL; 4366 4367 mutex_lock(&kvm->lock); 4368 4369 if (kvm->created_vcpus) { 4370 /* We don't allow to change this value after vcpu created */ 4371 r = -EINVAL; 4372 } else { 4373 kvm->dirty_ring_size = size; 4374 r = 0; 4375 } 4376 4377 mutex_unlock(&kvm->lock); 4378 return r; 4379 } 4380 4381 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4382 { 4383 unsigned long i; 4384 struct kvm_vcpu *vcpu; 4385 int cleared = 0; 4386 4387 if (!kvm->dirty_ring_size) 4388 return -EINVAL; 4389 4390 mutex_lock(&kvm->slots_lock); 4391 4392 kvm_for_each_vcpu(i, vcpu, kvm) 4393 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4394 4395 mutex_unlock(&kvm->slots_lock); 4396 4397 if (cleared) 4398 kvm_flush_remote_tlbs(kvm); 4399 4400 return cleared; 4401 } 4402 4403 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4404 struct kvm_enable_cap *cap) 4405 { 4406 return -EINVAL; 4407 } 4408 4409 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4410 struct kvm_enable_cap *cap) 4411 { 4412 switch (cap->cap) { 4413 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4414 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4415 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4416 4417 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4418 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4419 4420 if (cap->flags || (cap->args[0] & ~allowed_options)) 4421 return -EINVAL; 4422 kvm->manual_dirty_log_protect = cap->args[0]; 4423 return 0; 4424 } 4425 #endif 4426 case KVM_CAP_HALT_POLL: { 4427 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4428 return -EINVAL; 4429 4430 kvm->max_halt_poll_ns = cap->args[0]; 4431 return 0; 4432 } 4433 case KVM_CAP_DIRTY_LOG_RING: 4434 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4435 default: 4436 return kvm_vm_ioctl_enable_cap(kvm, cap); 4437 } 4438 } 4439 4440 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4441 size_t size, loff_t *offset) 4442 { 4443 struct kvm *kvm = file->private_data; 4444 4445 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4446 &kvm_vm_stats_desc[0], &kvm->stat, 4447 sizeof(kvm->stat), user_buffer, size, offset); 4448 } 4449 4450 static const struct file_operations kvm_vm_stats_fops = { 4451 .read = kvm_vm_stats_read, 4452 .llseek = noop_llseek, 4453 }; 4454 4455 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4456 { 4457 int fd; 4458 struct file *file; 4459 4460 fd = get_unused_fd_flags(O_CLOEXEC); 4461 if (fd < 0) 4462 return fd; 4463 4464 file = anon_inode_getfile("kvm-vm-stats", 4465 &kvm_vm_stats_fops, kvm, O_RDONLY); 4466 if (IS_ERR(file)) { 4467 put_unused_fd(fd); 4468 return PTR_ERR(file); 4469 } 4470 file->f_mode |= FMODE_PREAD; 4471 fd_install(fd, file); 4472 4473 return fd; 4474 } 4475 4476 static long kvm_vm_ioctl(struct file *filp, 4477 unsigned int ioctl, unsigned long arg) 4478 { 4479 struct kvm *kvm = filp->private_data; 4480 void __user *argp = (void __user *)arg; 4481 int r; 4482 4483 if (kvm->mm != current->mm || kvm->vm_dead) 4484 return -EIO; 4485 switch (ioctl) { 4486 case KVM_CREATE_VCPU: 4487 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4488 break; 4489 case KVM_ENABLE_CAP: { 4490 struct kvm_enable_cap cap; 4491 4492 r = -EFAULT; 4493 if (copy_from_user(&cap, argp, sizeof(cap))) 4494 goto out; 4495 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4496 break; 4497 } 4498 case KVM_SET_USER_MEMORY_REGION: { 4499 struct kvm_userspace_memory_region kvm_userspace_mem; 4500 4501 r = -EFAULT; 4502 if (copy_from_user(&kvm_userspace_mem, argp, 4503 sizeof(kvm_userspace_mem))) 4504 goto out; 4505 4506 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4507 break; 4508 } 4509 case KVM_GET_DIRTY_LOG: { 4510 struct kvm_dirty_log log; 4511 4512 r = -EFAULT; 4513 if (copy_from_user(&log, argp, sizeof(log))) 4514 goto out; 4515 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4516 break; 4517 } 4518 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4519 case KVM_CLEAR_DIRTY_LOG: { 4520 struct kvm_clear_dirty_log log; 4521 4522 r = -EFAULT; 4523 if (copy_from_user(&log, argp, sizeof(log))) 4524 goto out; 4525 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4526 break; 4527 } 4528 #endif 4529 #ifdef CONFIG_KVM_MMIO 4530 case KVM_REGISTER_COALESCED_MMIO: { 4531 struct kvm_coalesced_mmio_zone zone; 4532 4533 r = -EFAULT; 4534 if (copy_from_user(&zone, argp, sizeof(zone))) 4535 goto out; 4536 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4537 break; 4538 } 4539 case KVM_UNREGISTER_COALESCED_MMIO: { 4540 struct kvm_coalesced_mmio_zone zone; 4541 4542 r = -EFAULT; 4543 if (copy_from_user(&zone, argp, sizeof(zone))) 4544 goto out; 4545 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4546 break; 4547 } 4548 #endif 4549 case KVM_IRQFD: { 4550 struct kvm_irqfd data; 4551 4552 r = -EFAULT; 4553 if (copy_from_user(&data, argp, sizeof(data))) 4554 goto out; 4555 r = kvm_irqfd(kvm, &data); 4556 break; 4557 } 4558 case KVM_IOEVENTFD: { 4559 struct kvm_ioeventfd data; 4560 4561 r = -EFAULT; 4562 if (copy_from_user(&data, argp, sizeof(data))) 4563 goto out; 4564 r = kvm_ioeventfd(kvm, &data); 4565 break; 4566 } 4567 #ifdef CONFIG_HAVE_KVM_MSI 4568 case KVM_SIGNAL_MSI: { 4569 struct kvm_msi msi; 4570 4571 r = -EFAULT; 4572 if (copy_from_user(&msi, argp, sizeof(msi))) 4573 goto out; 4574 r = kvm_send_userspace_msi(kvm, &msi); 4575 break; 4576 } 4577 #endif 4578 #ifdef __KVM_HAVE_IRQ_LINE 4579 case KVM_IRQ_LINE_STATUS: 4580 case KVM_IRQ_LINE: { 4581 struct kvm_irq_level irq_event; 4582 4583 r = -EFAULT; 4584 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4585 goto out; 4586 4587 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4588 ioctl == KVM_IRQ_LINE_STATUS); 4589 if (r) 4590 goto out; 4591 4592 r = -EFAULT; 4593 if (ioctl == KVM_IRQ_LINE_STATUS) { 4594 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4595 goto out; 4596 } 4597 4598 r = 0; 4599 break; 4600 } 4601 #endif 4602 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4603 case KVM_SET_GSI_ROUTING: { 4604 struct kvm_irq_routing routing; 4605 struct kvm_irq_routing __user *urouting; 4606 struct kvm_irq_routing_entry *entries = NULL; 4607 4608 r = -EFAULT; 4609 if (copy_from_user(&routing, argp, sizeof(routing))) 4610 goto out; 4611 r = -EINVAL; 4612 if (!kvm_arch_can_set_irq_routing(kvm)) 4613 goto out; 4614 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4615 goto out; 4616 if (routing.flags) 4617 goto out; 4618 if (routing.nr) { 4619 urouting = argp; 4620 entries = vmemdup_user(urouting->entries, 4621 array_size(sizeof(*entries), 4622 routing.nr)); 4623 if (IS_ERR(entries)) { 4624 r = PTR_ERR(entries); 4625 goto out; 4626 } 4627 } 4628 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4629 routing.flags); 4630 kvfree(entries); 4631 break; 4632 } 4633 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4634 case KVM_CREATE_DEVICE: { 4635 struct kvm_create_device cd; 4636 4637 r = -EFAULT; 4638 if (copy_from_user(&cd, argp, sizeof(cd))) 4639 goto out; 4640 4641 r = kvm_ioctl_create_device(kvm, &cd); 4642 if (r) 4643 goto out; 4644 4645 r = -EFAULT; 4646 if (copy_to_user(argp, &cd, sizeof(cd))) 4647 goto out; 4648 4649 r = 0; 4650 break; 4651 } 4652 case KVM_CHECK_EXTENSION: 4653 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4654 break; 4655 case KVM_RESET_DIRTY_RINGS: 4656 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4657 break; 4658 case KVM_GET_STATS_FD: 4659 r = kvm_vm_ioctl_get_stats_fd(kvm); 4660 break; 4661 default: 4662 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4663 } 4664 out: 4665 return r; 4666 } 4667 4668 #ifdef CONFIG_KVM_COMPAT 4669 struct compat_kvm_dirty_log { 4670 __u32 slot; 4671 __u32 padding1; 4672 union { 4673 compat_uptr_t dirty_bitmap; /* one bit per page */ 4674 __u64 padding2; 4675 }; 4676 }; 4677 4678 struct compat_kvm_clear_dirty_log { 4679 __u32 slot; 4680 __u32 num_pages; 4681 __u64 first_page; 4682 union { 4683 compat_uptr_t dirty_bitmap; /* one bit per page */ 4684 __u64 padding2; 4685 }; 4686 }; 4687 4688 static long kvm_vm_compat_ioctl(struct file *filp, 4689 unsigned int ioctl, unsigned long arg) 4690 { 4691 struct kvm *kvm = filp->private_data; 4692 int r; 4693 4694 if (kvm->mm != current->mm || kvm->vm_dead) 4695 return -EIO; 4696 switch (ioctl) { 4697 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4698 case KVM_CLEAR_DIRTY_LOG: { 4699 struct compat_kvm_clear_dirty_log compat_log; 4700 struct kvm_clear_dirty_log log; 4701 4702 if (copy_from_user(&compat_log, (void __user *)arg, 4703 sizeof(compat_log))) 4704 return -EFAULT; 4705 log.slot = compat_log.slot; 4706 log.num_pages = compat_log.num_pages; 4707 log.first_page = compat_log.first_page; 4708 log.padding2 = compat_log.padding2; 4709 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4710 4711 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4712 break; 4713 } 4714 #endif 4715 case KVM_GET_DIRTY_LOG: { 4716 struct compat_kvm_dirty_log compat_log; 4717 struct kvm_dirty_log log; 4718 4719 if (copy_from_user(&compat_log, (void __user *)arg, 4720 sizeof(compat_log))) 4721 return -EFAULT; 4722 log.slot = compat_log.slot; 4723 log.padding1 = compat_log.padding1; 4724 log.padding2 = compat_log.padding2; 4725 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4726 4727 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4728 break; 4729 } 4730 default: 4731 r = kvm_vm_ioctl(filp, ioctl, arg); 4732 } 4733 return r; 4734 } 4735 #endif 4736 4737 static const struct file_operations kvm_vm_fops = { 4738 .release = kvm_vm_release, 4739 .unlocked_ioctl = kvm_vm_ioctl, 4740 .llseek = noop_llseek, 4741 KVM_COMPAT(kvm_vm_compat_ioctl), 4742 }; 4743 4744 bool file_is_kvm(struct file *file) 4745 { 4746 return file && file->f_op == &kvm_vm_fops; 4747 } 4748 EXPORT_SYMBOL_GPL(file_is_kvm); 4749 4750 static int kvm_dev_ioctl_create_vm(unsigned long type) 4751 { 4752 int r; 4753 struct kvm *kvm; 4754 struct file *file; 4755 4756 kvm = kvm_create_vm(type); 4757 if (IS_ERR(kvm)) 4758 return PTR_ERR(kvm); 4759 #ifdef CONFIG_KVM_MMIO 4760 r = kvm_coalesced_mmio_init(kvm); 4761 if (r < 0) 4762 goto put_kvm; 4763 #endif 4764 r = get_unused_fd_flags(O_CLOEXEC); 4765 if (r < 0) 4766 goto put_kvm; 4767 4768 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4769 "kvm-%d", task_pid_nr(current)); 4770 4771 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4772 if (IS_ERR(file)) { 4773 put_unused_fd(r); 4774 r = PTR_ERR(file); 4775 goto put_kvm; 4776 } 4777 4778 /* 4779 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4780 * already set, with ->release() being kvm_vm_release(). In error 4781 * cases it will be called by the final fput(file) and will take 4782 * care of doing kvm_put_kvm(kvm). 4783 */ 4784 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4785 put_unused_fd(r); 4786 fput(file); 4787 return -ENOMEM; 4788 } 4789 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4790 4791 fd_install(r, file); 4792 return r; 4793 4794 put_kvm: 4795 kvm_put_kvm(kvm); 4796 return r; 4797 } 4798 4799 static long kvm_dev_ioctl(struct file *filp, 4800 unsigned int ioctl, unsigned long arg) 4801 { 4802 long r = -EINVAL; 4803 4804 switch (ioctl) { 4805 case KVM_GET_API_VERSION: 4806 if (arg) 4807 goto out; 4808 r = KVM_API_VERSION; 4809 break; 4810 case KVM_CREATE_VM: 4811 r = kvm_dev_ioctl_create_vm(arg); 4812 break; 4813 case KVM_CHECK_EXTENSION: 4814 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4815 break; 4816 case KVM_GET_VCPU_MMAP_SIZE: 4817 if (arg) 4818 goto out; 4819 r = PAGE_SIZE; /* struct kvm_run */ 4820 #ifdef CONFIG_X86 4821 r += PAGE_SIZE; /* pio data page */ 4822 #endif 4823 #ifdef CONFIG_KVM_MMIO 4824 r += PAGE_SIZE; /* coalesced mmio ring page */ 4825 #endif 4826 break; 4827 case KVM_TRACE_ENABLE: 4828 case KVM_TRACE_PAUSE: 4829 case KVM_TRACE_DISABLE: 4830 r = -EOPNOTSUPP; 4831 break; 4832 default: 4833 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4834 } 4835 out: 4836 return r; 4837 } 4838 4839 static struct file_operations kvm_chardev_ops = { 4840 .unlocked_ioctl = kvm_dev_ioctl, 4841 .llseek = noop_llseek, 4842 KVM_COMPAT(kvm_dev_ioctl), 4843 }; 4844 4845 static struct miscdevice kvm_dev = { 4846 KVM_MINOR, 4847 "kvm", 4848 &kvm_chardev_ops, 4849 }; 4850 4851 static void hardware_enable_nolock(void *junk) 4852 { 4853 int cpu = raw_smp_processor_id(); 4854 int r; 4855 4856 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4857 return; 4858 4859 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4860 4861 r = kvm_arch_hardware_enable(); 4862 4863 if (r) { 4864 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4865 atomic_inc(&hardware_enable_failed); 4866 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4867 } 4868 } 4869 4870 static int kvm_starting_cpu(unsigned int cpu) 4871 { 4872 raw_spin_lock(&kvm_count_lock); 4873 if (kvm_usage_count) 4874 hardware_enable_nolock(NULL); 4875 raw_spin_unlock(&kvm_count_lock); 4876 return 0; 4877 } 4878 4879 static void hardware_disable_nolock(void *junk) 4880 { 4881 int cpu = raw_smp_processor_id(); 4882 4883 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4884 return; 4885 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4886 kvm_arch_hardware_disable(); 4887 } 4888 4889 static int kvm_dying_cpu(unsigned int cpu) 4890 { 4891 raw_spin_lock(&kvm_count_lock); 4892 if (kvm_usage_count) 4893 hardware_disable_nolock(NULL); 4894 raw_spin_unlock(&kvm_count_lock); 4895 return 0; 4896 } 4897 4898 static void hardware_disable_all_nolock(void) 4899 { 4900 BUG_ON(!kvm_usage_count); 4901 4902 kvm_usage_count--; 4903 if (!kvm_usage_count) 4904 on_each_cpu(hardware_disable_nolock, NULL, 1); 4905 } 4906 4907 static void hardware_disable_all(void) 4908 { 4909 raw_spin_lock(&kvm_count_lock); 4910 hardware_disable_all_nolock(); 4911 raw_spin_unlock(&kvm_count_lock); 4912 } 4913 4914 static int hardware_enable_all(void) 4915 { 4916 int r = 0; 4917 4918 raw_spin_lock(&kvm_count_lock); 4919 4920 kvm_usage_count++; 4921 if (kvm_usage_count == 1) { 4922 atomic_set(&hardware_enable_failed, 0); 4923 on_each_cpu(hardware_enable_nolock, NULL, 1); 4924 4925 if (atomic_read(&hardware_enable_failed)) { 4926 hardware_disable_all_nolock(); 4927 r = -EBUSY; 4928 } 4929 } 4930 4931 raw_spin_unlock(&kvm_count_lock); 4932 4933 return r; 4934 } 4935 4936 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4937 void *v) 4938 { 4939 /* 4940 * Some (well, at least mine) BIOSes hang on reboot if 4941 * in vmx root mode. 4942 * 4943 * And Intel TXT required VMX off for all cpu when system shutdown. 4944 */ 4945 pr_info("kvm: exiting hardware virtualization\n"); 4946 kvm_rebooting = true; 4947 on_each_cpu(hardware_disable_nolock, NULL, 1); 4948 return NOTIFY_OK; 4949 } 4950 4951 static struct notifier_block kvm_reboot_notifier = { 4952 .notifier_call = kvm_reboot, 4953 .priority = 0, 4954 }; 4955 4956 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4957 { 4958 int i; 4959 4960 for (i = 0; i < bus->dev_count; i++) { 4961 struct kvm_io_device *pos = bus->range[i].dev; 4962 4963 kvm_iodevice_destructor(pos); 4964 } 4965 kfree(bus); 4966 } 4967 4968 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4969 const struct kvm_io_range *r2) 4970 { 4971 gpa_t addr1 = r1->addr; 4972 gpa_t addr2 = r2->addr; 4973 4974 if (addr1 < addr2) 4975 return -1; 4976 4977 /* If r2->len == 0, match the exact address. If r2->len != 0, 4978 * accept any overlapping write. Any order is acceptable for 4979 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4980 * we process all of them. 4981 */ 4982 if (r2->len) { 4983 addr1 += r1->len; 4984 addr2 += r2->len; 4985 } 4986 4987 if (addr1 > addr2) 4988 return 1; 4989 4990 return 0; 4991 } 4992 4993 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4994 { 4995 return kvm_io_bus_cmp(p1, p2); 4996 } 4997 4998 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4999 gpa_t addr, int len) 5000 { 5001 struct kvm_io_range *range, key; 5002 int off; 5003 5004 key = (struct kvm_io_range) { 5005 .addr = addr, 5006 .len = len, 5007 }; 5008 5009 range = bsearch(&key, bus->range, bus->dev_count, 5010 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5011 if (range == NULL) 5012 return -ENOENT; 5013 5014 off = range - bus->range; 5015 5016 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5017 off--; 5018 5019 return off; 5020 } 5021 5022 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5023 struct kvm_io_range *range, const void *val) 5024 { 5025 int idx; 5026 5027 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5028 if (idx < 0) 5029 return -EOPNOTSUPP; 5030 5031 while (idx < bus->dev_count && 5032 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5033 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5034 range->len, val)) 5035 return idx; 5036 idx++; 5037 } 5038 5039 return -EOPNOTSUPP; 5040 } 5041 5042 /* kvm_io_bus_write - called under kvm->slots_lock */ 5043 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5044 int len, const void *val) 5045 { 5046 struct kvm_io_bus *bus; 5047 struct kvm_io_range range; 5048 int r; 5049 5050 range = (struct kvm_io_range) { 5051 .addr = addr, 5052 .len = len, 5053 }; 5054 5055 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5056 if (!bus) 5057 return -ENOMEM; 5058 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5059 return r < 0 ? r : 0; 5060 } 5061 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5062 5063 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5064 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5065 gpa_t addr, int len, const void *val, long cookie) 5066 { 5067 struct kvm_io_bus *bus; 5068 struct kvm_io_range range; 5069 5070 range = (struct kvm_io_range) { 5071 .addr = addr, 5072 .len = len, 5073 }; 5074 5075 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5076 if (!bus) 5077 return -ENOMEM; 5078 5079 /* First try the device referenced by cookie. */ 5080 if ((cookie >= 0) && (cookie < bus->dev_count) && 5081 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5082 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5083 val)) 5084 return cookie; 5085 5086 /* 5087 * cookie contained garbage; fall back to search and return the 5088 * correct cookie value. 5089 */ 5090 return __kvm_io_bus_write(vcpu, bus, &range, val); 5091 } 5092 5093 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5094 struct kvm_io_range *range, void *val) 5095 { 5096 int idx; 5097 5098 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5099 if (idx < 0) 5100 return -EOPNOTSUPP; 5101 5102 while (idx < bus->dev_count && 5103 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5104 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5105 range->len, val)) 5106 return idx; 5107 idx++; 5108 } 5109 5110 return -EOPNOTSUPP; 5111 } 5112 5113 /* kvm_io_bus_read - called under kvm->slots_lock */ 5114 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5115 int len, void *val) 5116 { 5117 struct kvm_io_bus *bus; 5118 struct kvm_io_range range; 5119 int r; 5120 5121 range = (struct kvm_io_range) { 5122 .addr = addr, 5123 .len = len, 5124 }; 5125 5126 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5127 if (!bus) 5128 return -ENOMEM; 5129 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5130 return r < 0 ? r : 0; 5131 } 5132 5133 /* Caller must hold slots_lock. */ 5134 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5135 int len, struct kvm_io_device *dev) 5136 { 5137 int i; 5138 struct kvm_io_bus *new_bus, *bus; 5139 struct kvm_io_range range; 5140 5141 bus = kvm_get_bus(kvm, bus_idx); 5142 if (!bus) 5143 return -ENOMEM; 5144 5145 /* exclude ioeventfd which is limited by maximum fd */ 5146 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5147 return -ENOSPC; 5148 5149 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5150 GFP_KERNEL_ACCOUNT); 5151 if (!new_bus) 5152 return -ENOMEM; 5153 5154 range = (struct kvm_io_range) { 5155 .addr = addr, 5156 .len = len, 5157 .dev = dev, 5158 }; 5159 5160 for (i = 0; i < bus->dev_count; i++) 5161 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5162 break; 5163 5164 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5165 new_bus->dev_count++; 5166 new_bus->range[i] = range; 5167 memcpy(new_bus->range + i + 1, bus->range + i, 5168 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5169 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5170 synchronize_srcu_expedited(&kvm->srcu); 5171 kfree(bus); 5172 5173 return 0; 5174 } 5175 5176 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5177 struct kvm_io_device *dev) 5178 { 5179 int i, j; 5180 struct kvm_io_bus *new_bus, *bus; 5181 5182 lockdep_assert_held(&kvm->slots_lock); 5183 5184 bus = kvm_get_bus(kvm, bus_idx); 5185 if (!bus) 5186 return 0; 5187 5188 for (i = 0; i < bus->dev_count; i++) { 5189 if (bus->range[i].dev == dev) { 5190 break; 5191 } 5192 } 5193 5194 if (i == bus->dev_count) 5195 return 0; 5196 5197 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5198 GFP_KERNEL_ACCOUNT); 5199 if (new_bus) { 5200 memcpy(new_bus, bus, struct_size(bus, range, i)); 5201 new_bus->dev_count--; 5202 memcpy(new_bus->range + i, bus->range + i + 1, 5203 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5204 } 5205 5206 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5207 synchronize_srcu_expedited(&kvm->srcu); 5208 5209 /* Destroy the old bus _after_ installing the (null) bus. */ 5210 if (!new_bus) { 5211 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5212 for (j = 0; j < bus->dev_count; j++) { 5213 if (j == i) 5214 continue; 5215 kvm_iodevice_destructor(bus->range[j].dev); 5216 } 5217 } 5218 5219 kfree(bus); 5220 return new_bus ? 0 : -ENOMEM; 5221 } 5222 5223 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5224 gpa_t addr) 5225 { 5226 struct kvm_io_bus *bus; 5227 int dev_idx, srcu_idx; 5228 struct kvm_io_device *iodev = NULL; 5229 5230 srcu_idx = srcu_read_lock(&kvm->srcu); 5231 5232 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5233 if (!bus) 5234 goto out_unlock; 5235 5236 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5237 if (dev_idx < 0) 5238 goto out_unlock; 5239 5240 iodev = bus->range[dev_idx].dev; 5241 5242 out_unlock: 5243 srcu_read_unlock(&kvm->srcu, srcu_idx); 5244 5245 return iodev; 5246 } 5247 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5248 5249 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5250 int (*get)(void *, u64 *), int (*set)(void *, u64), 5251 const char *fmt) 5252 { 5253 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5254 inode->i_private; 5255 5256 /* 5257 * The debugfs files are a reference to the kvm struct which 5258 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5259 * avoids the race between open and the removal of the debugfs directory. 5260 */ 5261 if (!kvm_get_kvm_safe(stat_data->kvm)) 5262 return -ENOENT; 5263 5264 if (simple_attr_open(inode, file, get, 5265 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5266 ? set : NULL, 5267 fmt)) { 5268 kvm_put_kvm(stat_data->kvm); 5269 return -ENOMEM; 5270 } 5271 5272 return 0; 5273 } 5274 5275 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5276 { 5277 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5278 inode->i_private; 5279 5280 simple_attr_release(inode, file); 5281 kvm_put_kvm(stat_data->kvm); 5282 5283 return 0; 5284 } 5285 5286 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5287 { 5288 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5289 5290 return 0; 5291 } 5292 5293 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5294 { 5295 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5296 5297 return 0; 5298 } 5299 5300 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5301 { 5302 unsigned long i; 5303 struct kvm_vcpu *vcpu; 5304 5305 *val = 0; 5306 5307 kvm_for_each_vcpu(i, vcpu, kvm) 5308 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5309 5310 return 0; 5311 } 5312 5313 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5314 { 5315 unsigned long i; 5316 struct kvm_vcpu *vcpu; 5317 5318 kvm_for_each_vcpu(i, vcpu, kvm) 5319 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5320 5321 return 0; 5322 } 5323 5324 static int kvm_stat_data_get(void *data, u64 *val) 5325 { 5326 int r = -EFAULT; 5327 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5328 5329 switch (stat_data->kind) { 5330 case KVM_STAT_VM: 5331 r = kvm_get_stat_per_vm(stat_data->kvm, 5332 stat_data->desc->desc.offset, val); 5333 break; 5334 case KVM_STAT_VCPU: 5335 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5336 stat_data->desc->desc.offset, val); 5337 break; 5338 } 5339 5340 return r; 5341 } 5342 5343 static int kvm_stat_data_clear(void *data, u64 val) 5344 { 5345 int r = -EFAULT; 5346 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5347 5348 if (val) 5349 return -EINVAL; 5350 5351 switch (stat_data->kind) { 5352 case KVM_STAT_VM: 5353 r = kvm_clear_stat_per_vm(stat_data->kvm, 5354 stat_data->desc->desc.offset); 5355 break; 5356 case KVM_STAT_VCPU: 5357 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5358 stat_data->desc->desc.offset); 5359 break; 5360 } 5361 5362 return r; 5363 } 5364 5365 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5366 { 5367 __simple_attr_check_format("%llu\n", 0ull); 5368 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5369 kvm_stat_data_clear, "%llu\n"); 5370 } 5371 5372 static const struct file_operations stat_fops_per_vm = { 5373 .owner = THIS_MODULE, 5374 .open = kvm_stat_data_open, 5375 .release = kvm_debugfs_release, 5376 .read = simple_attr_read, 5377 .write = simple_attr_write, 5378 .llseek = no_llseek, 5379 }; 5380 5381 static int vm_stat_get(void *_offset, u64 *val) 5382 { 5383 unsigned offset = (long)_offset; 5384 struct kvm *kvm; 5385 u64 tmp_val; 5386 5387 *val = 0; 5388 mutex_lock(&kvm_lock); 5389 list_for_each_entry(kvm, &vm_list, vm_list) { 5390 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5391 *val += tmp_val; 5392 } 5393 mutex_unlock(&kvm_lock); 5394 return 0; 5395 } 5396 5397 static int vm_stat_clear(void *_offset, u64 val) 5398 { 5399 unsigned offset = (long)_offset; 5400 struct kvm *kvm; 5401 5402 if (val) 5403 return -EINVAL; 5404 5405 mutex_lock(&kvm_lock); 5406 list_for_each_entry(kvm, &vm_list, vm_list) { 5407 kvm_clear_stat_per_vm(kvm, offset); 5408 } 5409 mutex_unlock(&kvm_lock); 5410 5411 return 0; 5412 } 5413 5414 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5415 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5416 5417 static int vcpu_stat_get(void *_offset, u64 *val) 5418 { 5419 unsigned offset = (long)_offset; 5420 struct kvm *kvm; 5421 u64 tmp_val; 5422 5423 *val = 0; 5424 mutex_lock(&kvm_lock); 5425 list_for_each_entry(kvm, &vm_list, vm_list) { 5426 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5427 *val += tmp_val; 5428 } 5429 mutex_unlock(&kvm_lock); 5430 return 0; 5431 } 5432 5433 static int vcpu_stat_clear(void *_offset, u64 val) 5434 { 5435 unsigned offset = (long)_offset; 5436 struct kvm *kvm; 5437 5438 if (val) 5439 return -EINVAL; 5440 5441 mutex_lock(&kvm_lock); 5442 list_for_each_entry(kvm, &vm_list, vm_list) { 5443 kvm_clear_stat_per_vcpu(kvm, offset); 5444 } 5445 mutex_unlock(&kvm_lock); 5446 5447 return 0; 5448 } 5449 5450 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5451 "%llu\n"); 5452 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5453 5454 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5455 { 5456 struct kobj_uevent_env *env; 5457 unsigned long long created, active; 5458 5459 if (!kvm_dev.this_device || !kvm) 5460 return; 5461 5462 mutex_lock(&kvm_lock); 5463 if (type == KVM_EVENT_CREATE_VM) { 5464 kvm_createvm_count++; 5465 kvm_active_vms++; 5466 } else if (type == KVM_EVENT_DESTROY_VM) { 5467 kvm_active_vms--; 5468 } 5469 created = kvm_createvm_count; 5470 active = kvm_active_vms; 5471 mutex_unlock(&kvm_lock); 5472 5473 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5474 if (!env) 5475 return; 5476 5477 add_uevent_var(env, "CREATED=%llu", created); 5478 add_uevent_var(env, "COUNT=%llu", active); 5479 5480 if (type == KVM_EVENT_CREATE_VM) { 5481 add_uevent_var(env, "EVENT=create"); 5482 kvm->userspace_pid = task_pid_nr(current); 5483 } else if (type == KVM_EVENT_DESTROY_VM) { 5484 add_uevent_var(env, "EVENT=destroy"); 5485 } 5486 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5487 5488 if (!IS_ERR(kvm->debugfs_dentry)) { 5489 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5490 5491 if (p) { 5492 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5493 if (!IS_ERR(tmp)) 5494 add_uevent_var(env, "STATS_PATH=%s", tmp); 5495 kfree(p); 5496 } 5497 } 5498 /* no need for checks, since we are adding at most only 5 keys */ 5499 env->envp[env->envp_idx++] = NULL; 5500 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5501 kfree(env); 5502 } 5503 5504 static void kvm_init_debug(void) 5505 { 5506 const struct file_operations *fops; 5507 const struct _kvm_stats_desc *pdesc; 5508 int i; 5509 5510 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5511 5512 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5513 pdesc = &kvm_vm_stats_desc[i]; 5514 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5515 fops = &vm_stat_fops; 5516 else 5517 fops = &vm_stat_readonly_fops; 5518 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5519 kvm_debugfs_dir, 5520 (void *)(long)pdesc->desc.offset, fops); 5521 } 5522 5523 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5524 pdesc = &kvm_vcpu_stats_desc[i]; 5525 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5526 fops = &vcpu_stat_fops; 5527 else 5528 fops = &vcpu_stat_readonly_fops; 5529 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5530 kvm_debugfs_dir, 5531 (void *)(long)pdesc->desc.offset, fops); 5532 } 5533 } 5534 5535 static int kvm_suspend(void) 5536 { 5537 if (kvm_usage_count) 5538 hardware_disable_nolock(NULL); 5539 return 0; 5540 } 5541 5542 static void kvm_resume(void) 5543 { 5544 if (kvm_usage_count) { 5545 lockdep_assert_not_held(&kvm_count_lock); 5546 hardware_enable_nolock(NULL); 5547 } 5548 } 5549 5550 static struct syscore_ops kvm_syscore_ops = { 5551 .suspend = kvm_suspend, 5552 .resume = kvm_resume, 5553 }; 5554 5555 static inline 5556 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5557 { 5558 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5559 } 5560 5561 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5562 { 5563 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5564 5565 WRITE_ONCE(vcpu->preempted, false); 5566 WRITE_ONCE(vcpu->ready, false); 5567 5568 __this_cpu_write(kvm_running_vcpu, vcpu); 5569 kvm_arch_sched_in(vcpu, cpu); 5570 kvm_arch_vcpu_load(vcpu, cpu); 5571 } 5572 5573 static void kvm_sched_out(struct preempt_notifier *pn, 5574 struct task_struct *next) 5575 { 5576 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5577 5578 if (current->on_rq) { 5579 WRITE_ONCE(vcpu->preempted, true); 5580 WRITE_ONCE(vcpu->ready, true); 5581 } 5582 kvm_arch_vcpu_put(vcpu); 5583 __this_cpu_write(kvm_running_vcpu, NULL); 5584 } 5585 5586 /** 5587 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5588 * 5589 * We can disable preemption locally around accessing the per-CPU variable, 5590 * and use the resolved vcpu pointer after enabling preemption again, 5591 * because even if the current thread is migrated to another CPU, reading 5592 * the per-CPU value later will give us the same value as we update the 5593 * per-CPU variable in the preempt notifier handlers. 5594 */ 5595 struct kvm_vcpu *kvm_get_running_vcpu(void) 5596 { 5597 struct kvm_vcpu *vcpu; 5598 5599 preempt_disable(); 5600 vcpu = __this_cpu_read(kvm_running_vcpu); 5601 preempt_enable(); 5602 5603 return vcpu; 5604 } 5605 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5606 5607 /** 5608 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5609 */ 5610 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5611 { 5612 return &kvm_running_vcpu; 5613 } 5614 5615 #ifdef CONFIG_GUEST_PERF_EVENTS 5616 static unsigned int kvm_guest_state(void) 5617 { 5618 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5619 unsigned int state; 5620 5621 if (!kvm_arch_pmi_in_guest(vcpu)) 5622 return 0; 5623 5624 state = PERF_GUEST_ACTIVE; 5625 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5626 state |= PERF_GUEST_USER; 5627 5628 return state; 5629 } 5630 5631 static unsigned long kvm_guest_get_ip(void) 5632 { 5633 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5634 5635 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5636 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5637 return 0; 5638 5639 return kvm_arch_vcpu_get_ip(vcpu); 5640 } 5641 5642 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5643 .state = kvm_guest_state, 5644 .get_ip = kvm_guest_get_ip, 5645 .handle_intel_pt_intr = NULL, 5646 }; 5647 5648 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5649 { 5650 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5651 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5652 } 5653 void kvm_unregister_perf_callbacks(void) 5654 { 5655 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5656 } 5657 #endif 5658 5659 struct kvm_cpu_compat_check { 5660 void *opaque; 5661 int *ret; 5662 }; 5663 5664 static void check_processor_compat(void *data) 5665 { 5666 struct kvm_cpu_compat_check *c = data; 5667 5668 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5669 } 5670 5671 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5672 struct module *module) 5673 { 5674 struct kvm_cpu_compat_check c; 5675 int r; 5676 int cpu; 5677 5678 r = kvm_arch_init(opaque); 5679 if (r) 5680 goto out_fail; 5681 5682 /* 5683 * kvm_arch_init makes sure there's at most one caller 5684 * for architectures that support multiple implementations, 5685 * like intel and amd on x86. 5686 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5687 * conflicts in case kvm is already setup for another implementation. 5688 */ 5689 r = kvm_irqfd_init(); 5690 if (r) 5691 goto out_irqfd; 5692 5693 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5694 r = -ENOMEM; 5695 goto out_free_0; 5696 } 5697 5698 r = kvm_arch_hardware_setup(opaque); 5699 if (r < 0) 5700 goto out_free_1; 5701 5702 c.ret = &r; 5703 c.opaque = opaque; 5704 for_each_online_cpu(cpu) { 5705 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5706 if (r < 0) 5707 goto out_free_2; 5708 } 5709 5710 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5711 kvm_starting_cpu, kvm_dying_cpu); 5712 if (r) 5713 goto out_free_2; 5714 register_reboot_notifier(&kvm_reboot_notifier); 5715 5716 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5717 if (!vcpu_align) 5718 vcpu_align = __alignof__(struct kvm_vcpu); 5719 kvm_vcpu_cache = 5720 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5721 SLAB_ACCOUNT, 5722 offsetof(struct kvm_vcpu, arch), 5723 offsetofend(struct kvm_vcpu, stats_id) 5724 - offsetof(struct kvm_vcpu, arch), 5725 NULL); 5726 if (!kvm_vcpu_cache) { 5727 r = -ENOMEM; 5728 goto out_free_3; 5729 } 5730 5731 for_each_possible_cpu(cpu) { 5732 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5733 GFP_KERNEL, cpu_to_node(cpu))) { 5734 r = -ENOMEM; 5735 goto out_free_4; 5736 } 5737 } 5738 5739 r = kvm_async_pf_init(); 5740 if (r) 5741 goto out_free_5; 5742 5743 kvm_chardev_ops.owner = module; 5744 5745 r = misc_register(&kvm_dev); 5746 if (r) { 5747 pr_err("kvm: misc device register failed\n"); 5748 goto out_unreg; 5749 } 5750 5751 register_syscore_ops(&kvm_syscore_ops); 5752 5753 kvm_preempt_ops.sched_in = kvm_sched_in; 5754 kvm_preempt_ops.sched_out = kvm_sched_out; 5755 5756 kvm_init_debug(); 5757 5758 r = kvm_vfio_ops_init(); 5759 WARN_ON(r); 5760 5761 return 0; 5762 5763 out_unreg: 5764 kvm_async_pf_deinit(); 5765 out_free_5: 5766 for_each_possible_cpu(cpu) 5767 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5768 out_free_4: 5769 kmem_cache_destroy(kvm_vcpu_cache); 5770 out_free_3: 5771 unregister_reboot_notifier(&kvm_reboot_notifier); 5772 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5773 out_free_2: 5774 kvm_arch_hardware_unsetup(); 5775 out_free_1: 5776 free_cpumask_var(cpus_hardware_enabled); 5777 out_free_0: 5778 kvm_irqfd_exit(); 5779 out_irqfd: 5780 kvm_arch_exit(); 5781 out_fail: 5782 return r; 5783 } 5784 EXPORT_SYMBOL_GPL(kvm_init); 5785 5786 void kvm_exit(void) 5787 { 5788 int cpu; 5789 5790 debugfs_remove_recursive(kvm_debugfs_dir); 5791 misc_deregister(&kvm_dev); 5792 for_each_possible_cpu(cpu) 5793 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5794 kmem_cache_destroy(kvm_vcpu_cache); 5795 kvm_async_pf_deinit(); 5796 unregister_syscore_ops(&kvm_syscore_ops); 5797 unregister_reboot_notifier(&kvm_reboot_notifier); 5798 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5799 on_each_cpu(hardware_disable_nolock, NULL, 1); 5800 kvm_arch_hardware_unsetup(); 5801 kvm_arch_exit(); 5802 kvm_irqfd_exit(); 5803 free_cpumask_var(cpus_hardware_enabled); 5804 kvm_vfio_ops_exit(); 5805 } 5806 EXPORT_SYMBOL_GPL(kvm_exit); 5807 5808 struct kvm_vm_worker_thread_context { 5809 struct kvm *kvm; 5810 struct task_struct *parent; 5811 struct completion init_done; 5812 kvm_vm_thread_fn_t thread_fn; 5813 uintptr_t data; 5814 int err; 5815 }; 5816 5817 static int kvm_vm_worker_thread(void *context) 5818 { 5819 /* 5820 * The init_context is allocated on the stack of the parent thread, so 5821 * we have to locally copy anything that is needed beyond initialization 5822 */ 5823 struct kvm_vm_worker_thread_context *init_context = context; 5824 struct task_struct *parent; 5825 struct kvm *kvm = init_context->kvm; 5826 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5827 uintptr_t data = init_context->data; 5828 int err; 5829 5830 err = kthread_park(current); 5831 /* kthread_park(current) is never supposed to return an error */ 5832 WARN_ON(err != 0); 5833 if (err) 5834 goto init_complete; 5835 5836 err = cgroup_attach_task_all(init_context->parent, current); 5837 if (err) { 5838 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5839 __func__, err); 5840 goto init_complete; 5841 } 5842 5843 set_user_nice(current, task_nice(init_context->parent)); 5844 5845 init_complete: 5846 init_context->err = err; 5847 complete(&init_context->init_done); 5848 init_context = NULL; 5849 5850 if (err) 5851 goto out; 5852 5853 /* Wait to be woken up by the spawner before proceeding. */ 5854 kthread_parkme(); 5855 5856 if (!kthread_should_stop()) 5857 err = thread_fn(kvm, data); 5858 5859 out: 5860 /* 5861 * Move kthread back to its original cgroup to prevent it lingering in 5862 * the cgroup of the VM process, after the latter finishes its 5863 * execution. 5864 * 5865 * kthread_stop() waits on the 'exited' completion condition which is 5866 * set in exit_mm(), via mm_release(), in do_exit(). However, the 5867 * kthread is removed from the cgroup in the cgroup_exit() which is 5868 * called after the exit_mm(). This causes the kthread_stop() to return 5869 * before the kthread actually quits the cgroup. 5870 */ 5871 rcu_read_lock(); 5872 parent = rcu_dereference(current->real_parent); 5873 get_task_struct(parent); 5874 rcu_read_unlock(); 5875 cgroup_attach_task_all(parent, current); 5876 put_task_struct(parent); 5877 5878 return err; 5879 } 5880 5881 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5882 uintptr_t data, const char *name, 5883 struct task_struct **thread_ptr) 5884 { 5885 struct kvm_vm_worker_thread_context init_context = {}; 5886 struct task_struct *thread; 5887 5888 *thread_ptr = NULL; 5889 init_context.kvm = kvm; 5890 init_context.parent = current; 5891 init_context.thread_fn = thread_fn; 5892 init_context.data = data; 5893 init_completion(&init_context.init_done); 5894 5895 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5896 "%s-%d", name, task_pid_nr(current)); 5897 if (IS_ERR(thread)) 5898 return PTR_ERR(thread); 5899 5900 /* kthread_run is never supposed to return NULL */ 5901 WARN_ON(thread == NULL); 5902 5903 wait_for_completion(&init_context.init_done); 5904 5905 if (!init_context.err) 5906 *thread_ptr = thread; 5907 5908 return init_context.err; 5909 } 5910