xref: /linux/virt/kvm/kvm_main.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
545 			     unsigned long end);
546 
547 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
548 
549 struct kvm_hva_range {
550 	unsigned long start;
551 	unsigned long end;
552 	union kvm_mmu_notifier_arg arg;
553 	hva_handler_t handler;
554 	on_lock_fn_t on_lock;
555 	on_unlock_fn_t on_unlock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * Use a dedicated stub instead of NULL to indicate that there is no callback
562  * function/handler.  The compiler technically can't guarantee that a real
563  * function will have a non-zero address, and so it will generate code to
564  * check for !NULL, whereas comparing against a stub will be elided at compile
565  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
566  */
567 static void kvm_null_fn(void)
568 {
569 
570 }
571 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
572 
573 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
574 
575 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
576 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
577 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
578 	     node;							     \
579 	     node = interval_tree_iter_next(node, start, last))	     \
580 
581 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
582 						  const struct kvm_hva_range *range)
583 {
584 	bool ret = false, locked = false;
585 	struct kvm_gfn_range gfn_range;
586 	struct kvm_memory_slot *slot;
587 	struct kvm_memslots *slots;
588 	int i, idx;
589 
590 	if (WARN_ON_ONCE(range->end <= range->start))
591 		return 0;
592 
593 	/* A null handler is allowed if and only if on_lock() is provided. */
594 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
595 			 IS_KVM_NULL_FN(range->handler)))
596 		return 0;
597 
598 	idx = srcu_read_lock(&kvm->srcu);
599 
600 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
601 		struct interval_tree_node *node;
602 
603 		slots = __kvm_memslots(kvm, i);
604 		kvm_for_each_memslot_in_hva_range(node, slots,
605 						  range->start, range->end - 1) {
606 			unsigned long hva_start, hva_end;
607 
608 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
609 			hva_start = max(range->start, slot->userspace_addr);
610 			hva_end = min(range->end, slot->userspace_addr +
611 						  (slot->npages << PAGE_SHIFT));
612 
613 			/*
614 			 * To optimize for the likely case where the address
615 			 * range is covered by zero or one memslots, don't
616 			 * bother making these conditional (to avoid writes on
617 			 * the second or later invocation of the handler).
618 			 */
619 			gfn_range.arg = range->arg;
620 			gfn_range.may_block = range->may_block;
621 
622 			/*
623 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
624 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
625 			 */
626 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
627 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
628 			gfn_range.slot = slot;
629 
630 			if (!locked) {
631 				locked = true;
632 				KVM_MMU_LOCK(kvm);
633 				if (!IS_KVM_NULL_FN(range->on_lock))
634 					range->on_lock(kvm, range->start, range->end);
635 				if (IS_KVM_NULL_FN(range->handler))
636 					break;
637 			}
638 			ret |= range->handler(kvm, &gfn_range);
639 		}
640 	}
641 
642 	if (range->flush_on_ret && ret)
643 		kvm_flush_remote_tlbs(kvm);
644 
645 	if (locked) {
646 		KVM_MMU_UNLOCK(kvm);
647 		if (!IS_KVM_NULL_FN(range->on_unlock))
648 			range->on_unlock(kvm);
649 	}
650 
651 	srcu_read_unlock(&kvm->srcu, idx);
652 
653 	/* The notifiers are averse to booleans. :-( */
654 	return (int)ret;
655 }
656 
657 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
658 						unsigned long start,
659 						unsigned long end,
660 						union kvm_mmu_notifier_arg arg,
661 						hva_handler_t handler)
662 {
663 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
664 	const struct kvm_hva_range range = {
665 		.start		= start,
666 		.end		= end,
667 		.arg		= arg,
668 		.handler	= handler,
669 		.on_lock	= (void *)kvm_null_fn,
670 		.on_unlock	= (void *)kvm_null_fn,
671 		.flush_on_ret	= true,
672 		.may_block	= false,
673 	};
674 
675 	return __kvm_handle_hva_range(kvm, &range);
676 }
677 
678 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
679 							 unsigned long start,
680 							 unsigned long end,
681 							 hva_handler_t handler)
682 {
683 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
684 	const struct kvm_hva_range range = {
685 		.start		= start,
686 		.end		= end,
687 		.handler	= handler,
688 		.on_lock	= (void *)kvm_null_fn,
689 		.on_unlock	= (void *)kvm_null_fn,
690 		.flush_on_ret	= false,
691 		.may_block	= false,
692 	};
693 
694 	return __kvm_handle_hva_range(kvm, &range);
695 }
696 
697 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
698 {
699 	/*
700 	 * Skipping invalid memslots is correct if and only change_pte() is
701 	 * surrounded by invalidate_range_{start,end}(), which is currently
702 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
703 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
704 	 * doesn't hold references to the old PFN.
705 	 */
706 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707 
708 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
709 		return false;
710 
711 	return kvm_set_spte_gfn(kvm, range);
712 }
713 
714 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
715 					struct mm_struct *mm,
716 					unsigned long address,
717 					pte_t pte)
718 {
719 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
720 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
721 
722 	trace_kvm_set_spte_hva(address);
723 
724 	/*
725 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
726 	 * If mmu_invalidate_in_progress is zero, then no in-progress
727 	 * invalidations, including this one, found a relevant memslot at
728 	 * start(); rechecking memslots here is unnecessary.  Note, a false
729 	 * positive (count elevated by a different invalidation) is sub-optimal
730 	 * but functionally ok.
731 	 */
732 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
733 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
734 		return;
735 
736 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
737 }
738 
739 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
740 			      unsigned long end)
741 {
742 	/*
743 	 * The count increase must become visible at unlock time as no
744 	 * spte can be established without taking the mmu_lock and
745 	 * count is also read inside the mmu_lock critical section.
746 	 */
747 	kvm->mmu_invalidate_in_progress++;
748 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
749 		kvm->mmu_invalidate_range_start = start;
750 		kvm->mmu_invalidate_range_end = end;
751 	} else {
752 		/*
753 		 * Fully tracking multiple concurrent ranges has diminishing
754 		 * returns. Keep things simple and just find the minimal range
755 		 * which includes the current and new ranges. As there won't be
756 		 * enough information to subtract a range after its invalidate
757 		 * completes, any ranges invalidated concurrently will
758 		 * accumulate and persist until all outstanding invalidates
759 		 * complete.
760 		 */
761 		kvm->mmu_invalidate_range_start =
762 			min(kvm->mmu_invalidate_range_start, start);
763 		kvm->mmu_invalidate_range_end =
764 			max(kvm->mmu_invalidate_range_end, end);
765 	}
766 }
767 
768 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
769 					const struct mmu_notifier_range *range)
770 {
771 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
772 	const struct kvm_hva_range hva_range = {
773 		.start		= range->start,
774 		.end		= range->end,
775 		.handler	= kvm_unmap_gfn_range,
776 		.on_lock	= kvm_mmu_invalidate_begin,
777 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
778 		.flush_on_ret	= true,
779 		.may_block	= mmu_notifier_range_blockable(range),
780 	};
781 
782 	trace_kvm_unmap_hva_range(range->start, range->end);
783 
784 	/*
785 	 * Prevent memslot modification between range_start() and range_end()
786 	 * so that conditionally locking provides the same result in both
787 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
788 	 * adjustments will be imbalanced.
789 	 *
790 	 * Pairs with the decrement in range_end().
791 	 */
792 	spin_lock(&kvm->mn_invalidate_lock);
793 	kvm->mn_active_invalidate_count++;
794 	spin_unlock(&kvm->mn_invalidate_lock);
795 
796 	/*
797 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
798 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
799 	 * each cache's lock.  There are relatively few caches in existence at
800 	 * any given time, and the caches themselves can check for hva overlap,
801 	 * i.e. don't need to rely on memslot overlap checks for performance.
802 	 * Because this runs without holding mmu_lock, the pfn caches must use
803 	 * mn_active_invalidate_count (see above) instead of
804 	 * mmu_invalidate_in_progress.
805 	 */
806 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
807 					  hva_range.may_block);
808 
809 	__kvm_handle_hva_range(kvm, &hva_range);
810 
811 	return 0;
812 }
813 
814 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
815 			    unsigned long end)
816 {
817 	/*
818 	 * This sequence increase will notify the kvm page fault that
819 	 * the page that is going to be mapped in the spte could have
820 	 * been freed.
821 	 */
822 	kvm->mmu_invalidate_seq++;
823 	smp_wmb();
824 	/*
825 	 * The above sequence increase must be visible before the
826 	 * below count decrease, which is ensured by the smp_wmb above
827 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
828 	 */
829 	kvm->mmu_invalidate_in_progress--;
830 }
831 
832 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
833 					const struct mmu_notifier_range *range)
834 {
835 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
836 	const struct kvm_hva_range hva_range = {
837 		.start		= range->start,
838 		.end		= range->end,
839 		.handler	= (void *)kvm_null_fn,
840 		.on_lock	= kvm_mmu_invalidate_end,
841 		.on_unlock	= (void *)kvm_null_fn,
842 		.flush_on_ret	= false,
843 		.may_block	= mmu_notifier_range_blockable(range),
844 	};
845 	bool wake;
846 
847 	__kvm_handle_hva_range(kvm, &hva_range);
848 
849 	/* Pairs with the increment in range_start(). */
850 	spin_lock(&kvm->mn_invalidate_lock);
851 	wake = (--kvm->mn_active_invalidate_count == 0);
852 	spin_unlock(&kvm->mn_invalidate_lock);
853 
854 	/*
855 	 * There can only be one waiter, since the wait happens under
856 	 * slots_lock.
857 	 */
858 	if (wake)
859 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
860 
861 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
862 }
863 
864 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
865 					      struct mm_struct *mm,
866 					      unsigned long start,
867 					      unsigned long end)
868 {
869 	trace_kvm_age_hva(start, end);
870 
871 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
872 				    kvm_age_gfn);
873 }
874 
875 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
876 					struct mm_struct *mm,
877 					unsigned long start,
878 					unsigned long end)
879 {
880 	trace_kvm_age_hva(start, end);
881 
882 	/*
883 	 * Even though we do not flush TLB, this will still adversely
884 	 * affect performance on pre-Haswell Intel EPT, where there is
885 	 * no EPT Access Bit to clear so that we have to tear down EPT
886 	 * tables instead. If we find this unacceptable, we can always
887 	 * add a parameter to kvm_age_hva so that it effectively doesn't
888 	 * do anything on clear_young.
889 	 *
890 	 * Also note that currently we never issue secondary TLB flushes
891 	 * from clear_young, leaving this job up to the regular system
892 	 * cadence. If we find this inaccurate, we might come up with a
893 	 * more sophisticated heuristic later.
894 	 */
895 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
896 }
897 
898 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
899 				       struct mm_struct *mm,
900 				       unsigned long address)
901 {
902 	trace_kvm_test_age_hva(address);
903 
904 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
905 					     kvm_test_age_gfn);
906 }
907 
908 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
909 				     struct mm_struct *mm)
910 {
911 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
912 	int idx;
913 
914 	idx = srcu_read_lock(&kvm->srcu);
915 	kvm_flush_shadow_all(kvm);
916 	srcu_read_unlock(&kvm->srcu, idx);
917 }
918 
919 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
920 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
921 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
922 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
923 	.clear_young		= kvm_mmu_notifier_clear_young,
924 	.test_young		= kvm_mmu_notifier_test_young,
925 	.change_pte		= kvm_mmu_notifier_change_pte,
926 	.release		= kvm_mmu_notifier_release,
927 };
928 
929 static int kvm_init_mmu_notifier(struct kvm *kvm)
930 {
931 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
932 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
933 }
934 
935 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
936 
937 static int kvm_init_mmu_notifier(struct kvm *kvm)
938 {
939 	return 0;
940 }
941 
942 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
943 
944 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
945 static int kvm_pm_notifier_call(struct notifier_block *bl,
946 				unsigned long state,
947 				void *unused)
948 {
949 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
950 
951 	return kvm_arch_pm_notifier(kvm, state);
952 }
953 
954 static void kvm_init_pm_notifier(struct kvm *kvm)
955 {
956 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
957 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
958 	kvm->pm_notifier.priority = INT_MAX;
959 	register_pm_notifier(&kvm->pm_notifier);
960 }
961 
962 static void kvm_destroy_pm_notifier(struct kvm *kvm)
963 {
964 	unregister_pm_notifier(&kvm->pm_notifier);
965 }
966 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
967 static void kvm_init_pm_notifier(struct kvm *kvm)
968 {
969 }
970 
971 static void kvm_destroy_pm_notifier(struct kvm *kvm)
972 {
973 }
974 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
975 
976 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
977 {
978 	if (!memslot->dirty_bitmap)
979 		return;
980 
981 	kvfree(memslot->dirty_bitmap);
982 	memslot->dirty_bitmap = NULL;
983 }
984 
985 /* This does not remove the slot from struct kvm_memslots data structures */
986 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
987 {
988 	kvm_destroy_dirty_bitmap(slot);
989 
990 	kvm_arch_free_memslot(kvm, slot);
991 
992 	kfree(slot);
993 }
994 
995 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
996 {
997 	struct hlist_node *idnode;
998 	struct kvm_memory_slot *memslot;
999 	int bkt;
1000 
1001 	/*
1002 	 * The same memslot objects live in both active and inactive sets,
1003 	 * arbitrarily free using index '1' so the second invocation of this
1004 	 * function isn't operating over a structure with dangling pointers
1005 	 * (even though this function isn't actually touching them).
1006 	 */
1007 	if (!slots->node_idx)
1008 		return;
1009 
1010 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1011 		kvm_free_memslot(kvm, memslot);
1012 }
1013 
1014 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1015 {
1016 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1017 	case KVM_STATS_TYPE_INSTANT:
1018 		return 0444;
1019 	case KVM_STATS_TYPE_CUMULATIVE:
1020 	case KVM_STATS_TYPE_PEAK:
1021 	default:
1022 		return 0644;
1023 	}
1024 }
1025 
1026 
1027 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1028 {
1029 	int i;
1030 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1031 				      kvm_vcpu_stats_header.num_desc;
1032 
1033 	if (IS_ERR(kvm->debugfs_dentry))
1034 		return;
1035 
1036 	debugfs_remove_recursive(kvm->debugfs_dentry);
1037 
1038 	if (kvm->debugfs_stat_data) {
1039 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1040 			kfree(kvm->debugfs_stat_data[i]);
1041 		kfree(kvm->debugfs_stat_data);
1042 	}
1043 }
1044 
1045 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1046 {
1047 	static DEFINE_MUTEX(kvm_debugfs_lock);
1048 	struct dentry *dent;
1049 	char dir_name[ITOA_MAX_LEN * 2];
1050 	struct kvm_stat_data *stat_data;
1051 	const struct _kvm_stats_desc *pdesc;
1052 	int i, ret = -ENOMEM;
1053 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1054 				      kvm_vcpu_stats_header.num_desc;
1055 
1056 	if (!debugfs_initialized())
1057 		return 0;
1058 
1059 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1060 	mutex_lock(&kvm_debugfs_lock);
1061 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1062 	if (dent) {
1063 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1064 		dput(dent);
1065 		mutex_unlock(&kvm_debugfs_lock);
1066 		return 0;
1067 	}
1068 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1069 	mutex_unlock(&kvm_debugfs_lock);
1070 	if (IS_ERR(dent))
1071 		return 0;
1072 
1073 	kvm->debugfs_dentry = dent;
1074 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1075 					 sizeof(*kvm->debugfs_stat_data),
1076 					 GFP_KERNEL_ACCOUNT);
1077 	if (!kvm->debugfs_stat_data)
1078 		goto out_err;
1079 
1080 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1081 		pdesc = &kvm_vm_stats_desc[i];
1082 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1083 		if (!stat_data)
1084 			goto out_err;
1085 
1086 		stat_data->kvm = kvm;
1087 		stat_data->desc = pdesc;
1088 		stat_data->kind = KVM_STAT_VM;
1089 		kvm->debugfs_stat_data[i] = stat_data;
1090 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1091 				    kvm->debugfs_dentry, stat_data,
1092 				    &stat_fops_per_vm);
1093 	}
1094 
1095 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1096 		pdesc = &kvm_vcpu_stats_desc[i];
1097 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1098 		if (!stat_data)
1099 			goto out_err;
1100 
1101 		stat_data->kvm = kvm;
1102 		stat_data->desc = pdesc;
1103 		stat_data->kind = KVM_STAT_VCPU;
1104 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1105 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1106 				    kvm->debugfs_dentry, stat_data,
1107 				    &stat_fops_per_vm);
1108 	}
1109 
1110 	ret = kvm_arch_create_vm_debugfs(kvm);
1111 	if (ret)
1112 		goto out_err;
1113 
1114 	return 0;
1115 out_err:
1116 	kvm_destroy_vm_debugfs(kvm);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * Called after the VM is otherwise initialized, but just before adding it to
1122  * the vm_list.
1123  */
1124 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1125 {
1126 	return 0;
1127 }
1128 
1129 /*
1130  * Called just after removing the VM from the vm_list, but before doing any
1131  * other destruction.
1132  */
1133 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1134 {
1135 }
1136 
1137 /*
1138  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1139  * be setup already, so we can create arch-specific debugfs entries under it.
1140  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1141  * a per-arch destroy interface is not needed.
1142  */
1143 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1144 {
1145 	return 0;
1146 }
1147 
1148 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1149 {
1150 	struct kvm *kvm = kvm_arch_alloc_vm();
1151 	struct kvm_memslots *slots;
1152 	int r = -ENOMEM;
1153 	int i, j;
1154 
1155 	if (!kvm)
1156 		return ERR_PTR(-ENOMEM);
1157 
1158 	KVM_MMU_LOCK_INIT(kvm);
1159 	mmgrab(current->mm);
1160 	kvm->mm = current->mm;
1161 	kvm_eventfd_init(kvm);
1162 	mutex_init(&kvm->lock);
1163 	mutex_init(&kvm->irq_lock);
1164 	mutex_init(&kvm->slots_lock);
1165 	mutex_init(&kvm->slots_arch_lock);
1166 	spin_lock_init(&kvm->mn_invalidate_lock);
1167 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1168 	xa_init(&kvm->vcpu_array);
1169 
1170 	INIT_LIST_HEAD(&kvm->gpc_list);
1171 	spin_lock_init(&kvm->gpc_lock);
1172 
1173 	INIT_LIST_HEAD(&kvm->devices);
1174 	kvm->max_vcpus = KVM_MAX_VCPUS;
1175 
1176 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1177 
1178 	/*
1179 	 * Force subsequent debugfs file creations to fail if the VM directory
1180 	 * is not created (by kvm_create_vm_debugfs()).
1181 	 */
1182 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1183 
1184 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1185 		 task_pid_nr(current));
1186 
1187 	if (init_srcu_struct(&kvm->srcu))
1188 		goto out_err_no_srcu;
1189 	if (init_srcu_struct(&kvm->irq_srcu))
1190 		goto out_err_no_irq_srcu;
1191 
1192 	refcount_set(&kvm->users_count, 1);
1193 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1194 		for (j = 0; j < 2; j++) {
1195 			slots = &kvm->__memslots[i][j];
1196 
1197 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1198 			slots->hva_tree = RB_ROOT_CACHED;
1199 			slots->gfn_tree = RB_ROOT;
1200 			hash_init(slots->id_hash);
1201 			slots->node_idx = j;
1202 
1203 			/* Generations must be different for each address space. */
1204 			slots->generation = i;
1205 		}
1206 
1207 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1208 	}
1209 
1210 	for (i = 0; i < KVM_NR_BUSES; i++) {
1211 		rcu_assign_pointer(kvm->buses[i],
1212 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1213 		if (!kvm->buses[i])
1214 			goto out_err_no_arch_destroy_vm;
1215 	}
1216 
1217 	r = kvm_arch_init_vm(kvm, type);
1218 	if (r)
1219 		goto out_err_no_arch_destroy_vm;
1220 
1221 	r = hardware_enable_all();
1222 	if (r)
1223 		goto out_err_no_disable;
1224 
1225 #ifdef CONFIG_HAVE_KVM_IRQFD
1226 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1227 #endif
1228 
1229 	r = kvm_init_mmu_notifier(kvm);
1230 	if (r)
1231 		goto out_err_no_mmu_notifier;
1232 
1233 	r = kvm_coalesced_mmio_init(kvm);
1234 	if (r < 0)
1235 		goto out_no_coalesced_mmio;
1236 
1237 	r = kvm_create_vm_debugfs(kvm, fdname);
1238 	if (r)
1239 		goto out_err_no_debugfs;
1240 
1241 	r = kvm_arch_post_init_vm(kvm);
1242 	if (r)
1243 		goto out_err;
1244 
1245 	mutex_lock(&kvm_lock);
1246 	list_add(&kvm->vm_list, &vm_list);
1247 	mutex_unlock(&kvm_lock);
1248 
1249 	preempt_notifier_inc();
1250 	kvm_init_pm_notifier(kvm);
1251 
1252 	return kvm;
1253 
1254 out_err:
1255 	kvm_destroy_vm_debugfs(kvm);
1256 out_err_no_debugfs:
1257 	kvm_coalesced_mmio_free(kvm);
1258 out_no_coalesced_mmio:
1259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1260 	if (kvm->mmu_notifier.ops)
1261 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1262 #endif
1263 out_err_no_mmu_notifier:
1264 	hardware_disable_all();
1265 out_err_no_disable:
1266 	kvm_arch_destroy_vm(kvm);
1267 out_err_no_arch_destroy_vm:
1268 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1269 	for (i = 0; i < KVM_NR_BUSES; i++)
1270 		kfree(kvm_get_bus(kvm, i));
1271 	cleanup_srcu_struct(&kvm->irq_srcu);
1272 out_err_no_irq_srcu:
1273 	cleanup_srcu_struct(&kvm->srcu);
1274 out_err_no_srcu:
1275 	kvm_arch_free_vm(kvm);
1276 	mmdrop(current->mm);
1277 	return ERR_PTR(r);
1278 }
1279 
1280 static void kvm_destroy_devices(struct kvm *kvm)
1281 {
1282 	struct kvm_device *dev, *tmp;
1283 
1284 	/*
1285 	 * We do not need to take the kvm->lock here, because nobody else
1286 	 * has a reference to the struct kvm at this point and therefore
1287 	 * cannot access the devices list anyhow.
1288 	 */
1289 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1290 		list_del(&dev->vm_node);
1291 		dev->ops->destroy(dev);
1292 	}
1293 }
1294 
1295 static void kvm_destroy_vm(struct kvm *kvm)
1296 {
1297 	int i;
1298 	struct mm_struct *mm = kvm->mm;
1299 
1300 	kvm_destroy_pm_notifier(kvm);
1301 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1302 	kvm_destroy_vm_debugfs(kvm);
1303 	kvm_arch_sync_events(kvm);
1304 	mutex_lock(&kvm_lock);
1305 	list_del(&kvm->vm_list);
1306 	mutex_unlock(&kvm_lock);
1307 	kvm_arch_pre_destroy_vm(kvm);
1308 
1309 	kvm_free_irq_routing(kvm);
1310 	for (i = 0; i < KVM_NR_BUSES; i++) {
1311 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1312 
1313 		if (bus)
1314 			kvm_io_bus_destroy(bus);
1315 		kvm->buses[i] = NULL;
1316 	}
1317 	kvm_coalesced_mmio_free(kvm);
1318 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1319 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1320 	/*
1321 	 * At this point, pending calls to invalidate_range_start()
1322 	 * have completed but no more MMU notifiers will run, so
1323 	 * mn_active_invalidate_count may remain unbalanced.
1324 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1325 	 * last reference on KVM has been dropped, but freeing
1326 	 * memslots would deadlock without this manual intervention.
1327 	 */
1328 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1329 	kvm->mn_active_invalidate_count = 0;
1330 #else
1331 	kvm_flush_shadow_all(kvm);
1332 #endif
1333 	kvm_arch_destroy_vm(kvm);
1334 	kvm_destroy_devices(kvm);
1335 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1336 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1337 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1338 	}
1339 	cleanup_srcu_struct(&kvm->irq_srcu);
1340 	cleanup_srcu_struct(&kvm->srcu);
1341 	kvm_arch_free_vm(kvm);
1342 	preempt_notifier_dec();
1343 	hardware_disable_all();
1344 	mmdrop(mm);
1345 }
1346 
1347 void kvm_get_kvm(struct kvm *kvm)
1348 {
1349 	refcount_inc(&kvm->users_count);
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1352 
1353 /*
1354  * Make sure the vm is not during destruction, which is a safe version of
1355  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1356  */
1357 bool kvm_get_kvm_safe(struct kvm *kvm)
1358 {
1359 	return refcount_inc_not_zero(&kvm->users_count);
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1362 
1363 void kvm_put_kvm(struct kvm *kvm)
1364 {
1365 	if (refcount_dec_and_test(&kvm->users_count))
1366 		kvm_destroy_vm(kvm);
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1369 
1370 /*
1371  * Used to put a reference that was taken on behalf of an object associated
1372  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1373  * of the new file descriptor fails and the reference cannot be transferred to
1374  * its final owner.  In such cases, the caller is still actively using @kvm and
1375  * will fail miserably if the refcount unexpectedly hits zero.
1376  */
1377 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1378 {
1379 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1382 
1383 static int kvm_vm_release(struct inode *inode, struct file *filp)
1384 {
1385 	struct kvm *kvm = filp->private_data;
1386 
1387 	kvm_irqfd_release(kvm);
1388 
1389 	kvm_put_kvm(kvm);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Allocation size is twice as large as the actual dirty bitmap size.
1395  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1396  */
1397 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1398 {
1399 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1400 
1401 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1402 	if (!memslot->dirty_bitmap)
1403 		return -ENOMEM;
1404 
1405 	return 0;
1406 }
1407 
1408 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1409 {
1410 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1411 	int node_idx_inactive = active->node_idx ^ 1;
1412 
1413 	return &kvm->__memslots[as_id][node_idx_inactive];
1414 }
1415 
1416 /*
1417  * Helper to get the address space ID when one of memslot pointers may be NULL.
1418  * This also serves as a sanity that at least one of the pointers is non-NULL,
1419  * and that their address space IDs don't diverge.
1420  */
1421 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1422 				  struct kvm_memory_slot *b)
1423 {
1424 	if (WARN_ON_ONCE(!a && !b))
1425 		return 0;
1426 
1427 	if (!a)
1428 		return b->as_id;
1429 	if (!b)
1430 		return a->as_id;
1431 
1432 	WARN_ON_ONCE(a->as_id != b->as_id);
1433 	return a->as_id;
1434 }
1435 
1436 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1437 				struct kvm_memory_slot *slot)
1438 {
1439 	struct rb_root *gfn_tree = &slots->gfn_tree;
1440 	struct rb_node **node, *parent;
1441 	int idx = slots->node_idx;
1442 
1443 	parent = NULL;
1444 	for (node = &gfn_tree->rb_node; *node; ) {
1445 		struct kvm_memory_slot *tmp;
1446 
1447 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1448 		parent = *node;
1449 		if (slot->base_gfn < tmp->base_gfn)
1450 			node = &(*node)->rb_left;
1451 		else if (slot->base_gfn > tmp->base_gfn)
1452 			node = &(*node)->rb_right;
1453 		else
1454 			BUG();
1455 	}
1456 
1457 	rb_link_node(&slot->gfn_node[idx], parent, node);
1458 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1459 }
1460 
1461 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1462 			       struct kvm_memory_slot *slot)
1463 {
1464 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1465 }
1466 
1467 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1468 				 struct kvm_memory_slot *old,
1469 				 struct kvm_memory_slot *new)
1470 {
1471 	int idx = slots->node_idx;
1472 
1473 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1474 
1475 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1476 			&slots->gfn_tree);
1477 }
1478 
1479 /*
1480  * Replace @old with @new in the inactive memslots.
1481  *
1482  * With NULL @old this simply adds @new.
1483  * With NULL @new this simply removes @old.
1484  *
1485  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1486  * appropriately.
1487  */
1488 static void kvm_replace_memslot(struct kvm *kvm,
1489 				struct kvm_memory_slot *old,
1490 				struct kvm_memory_slot *new)
1491 {
1492 	int as_id = kvm_memslots_get_as_id(old, new);
1493 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1494 	int idx = slots->node_idx;
1495 
1496 	if (old) {
1497 		hash_del(&old->id_node[idx]);
1498 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1499 
1500 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1501 			atomic_long_set(&slots->last_used_slot, (long)new);
1502 
1503 		if (!new) {
1504 			kvm_erase_gfn_node(slots, old);
1505 			return;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Initialize @new's hva range.  Do this even when replacing an @old
1511 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1512 	 */
1513 	new->hva_node[idx].start = new->userspace_addr;
1514 	new->hva_node[idx].last = new->userspace_addr +
1515 				  (new->npages << PAGE_SHIFT) - 1;
1516 
1517 	/*
1518 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1519 	 * hva_node needs to be swapped with remove+insert even though hva can't
1520 	 * change when replacing an existing slot.
1521 	 */
1522 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1523 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1524 
1525 	/*
1526 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1527 	 * switch the node in the gfn tree instead of removing the old and
1528 	 * inserting the new as two separate operations. Replacement is a
1529 	 * single O(1) operation versus two O(log(n)) operations for
1530 	 * remove+insert.
1531 	 */
1532 	if (old && old->base_gfn == new->base_gfn) {
1533 		kvm_replace_gfn_node(slots, old, new);
1534 	} else {
1535 		if (old)
1536 			kvm_erase_gfn_node(slots, old);
1537 		kvm_insert_gfn_node(slots, new);
1538 	}
1539 }
1540 
1541 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1542 {
1543 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1544 
1545 #ifdef __KVM_HAVE_READONLY_MEM
1546 	valid_flags |= KVM_MEM_READONLY;
1547 #endif
1548 
1549 	if (mem->flags & ~valid_flags)
1550 		return -EINVAL;
1551 
1552 	return 0;
1553 }
1554 
1555 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1556 {
1557 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1558 
1559 	/* Grab the generation from the activate memslots. */
1560 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1561 
1562 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1563 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1564 
1565 	/*
1566 	 * Do not store the new memslots while there are invalidations in
1567 	 * progress, otherwise the locking in invalidate_range_start and
1568 	 * invalidate_range_end will be unbalanced.
1569 	 */
1570 	spin_lock(&kvm->mn_invalidate_lock);
1571 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1572 	while (kvm->mn_active_invalidate_count) {
1573 		set_current_state(TASK_UNINTERRUPTIBLE);
1574 		spin_unlock(&kvm->mn_invalidate_lock);
1575 		schedule();
1576 		spin_lock(&kvm->mn_invalidate_lock);
1577 	}
1578 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1579 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1580 	spin_unlock(&kvm->mn_invalidate_lock);
1581 
1582 	/*
1583 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1584 	 * SRCU below in order to avoid deadlock with another thread
1585 	 * acquiring the slots_arch_lock in an srcu critical section.
1586 	 */
1587 	mutex_unlock(&kvm->slots_arch_lock);
1588 
1589 	synchronize_srcu_expedited(&kvm->srcu);
1590 
1591 	/*
1592 	 * Increment the new memslot generation a second time, dropping the
1593 	 * update in-progress flag and incrementing the generation based on
1594 	 * the number of address spaces.  This provides a unique and easily
1595 	 * identifiable generation number while the memslots are in flux.
1596 	 */
1597 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1598 
1599 	/*
1600 	 * Generations must be unique even across address spaces.  We do not need
1601 	 * a global counter for that, instead the generation space is evenly split
1602 	 * across address spaces.  For example, with two address spaces, address
1603 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1604 	 * use generations 1, 3, 5, ...
1605 	 */
1606 	gen += KVM_ADDRESS_SPACE_NUM;
1607 
1608 	kvm_arch_memslots_updated(kvm, gen);
1609 
1610 	slots->generation = gen;
1611 }
1612 
1613 static int kvm_prepare_memory_region(struct kvm *kvm,
1614 				     const struct kvm_memory_slot *old,
1615 				     struct kvm_memory_slot *new,
1616 				     enum kvm_mr_change change)
1617 {
1618 	int r;
1619 
1620 	/*
1621 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1622 	 * will be freed on "commit".  If logging is enabled in both old and
1623 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1624 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1625 	 * new bitmap.
1626 	 */
1627 	if (change != KVM_MR_DELETE) {
1628 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1629 			new->dirty_bitmap = NULL;
1630 		else if (old && old->dirty_bitmap)
1631 			new->dirty_bitmap = old->dirty_bitmap;
1632 		else if (kvm_use_dirty_bitmap(kvm)) {
1633 			r = kvm_alloc_dirty_bitmap(new);
1634 			if (r)
1635 				return r;
1636 
1637 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1638 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1639 		}
1640 	}
1641 
1642 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1643 
1644 	/* Free the bitmap on failure if it was allocated above. */
1645 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1646 		kvm_destroy_dirty_bitmap(new);
1647 
1648 	return r;
1649 }
1650 
1651 static void kvm_commit_memory_region(struct kvm *kvm,
1652 				     struct kvm_memory_slot *old,
1653 				     const struct kvm_memory_slot *new,
1654 				     enum kvm_mr_change change)
1655 {
1656 	int old_flags = old ? old->flags : 0;
1657 	int new_flags = new ? new->flags : 0;
1658 	/*
1659 	 * Update the total number of memslot pages before calling the arch
1660 	 * hook so that architectures can consume the result directly.
1661 	 */
1662 	if (change == KVM_MR_DELETE)
1663 		kvm->nr_memslot_pages -= old->npages;
1664 	else if (change == KVM_MR_CREATE)
1665 		kvm->nr_memslot_pages += new->npages;
1666 
1667 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1668 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1669 		atomic_set(&kvm->nr_memslots_dirty_logging,
1670 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1671 	}
1672 
1673 	kvm_arch_commit_memory_region(kvm, old, new, change);
1674 
1675 	switch (change) {
1676 	case KVM_MR_CREATE:
1677 		/* Nothing more to do. */
1678 		break;
1679 	case KVM_MR_DELETE:
1680 		/* Free the old memslot and all its metadata. */
1681 		kvm_free_memslot(kvm, old);
1682 		break;
1683 	case KVM_MR_MOVE:
1684 	case KVM_MR_FLAGS_ONLY:
1685 		/*
1686 		 * Free the dirty bitmap as needed; the below check encompasses
1687 		 * both the flags and whether a ring buffer is being used)
1688 		 */
1689 		if (old->dirty_bitmap && !new->dirty_bitmap)
1690 			kvm_destroy_dirty_bitmap(old);
1691 
1692 		/*
1693 		 * The final quirk.  Free the detached, old slot, but only its
1694 		 * memory, not any metadata.  Metadata, including arch specific
1695 		 * data, may be reused by @new.
1696 		 */
1697 		kfree(old);
1698 		break;
1699 	default:
1700 		BUG();
1701 	}
1702 }
1703 
1704 /*
1705  * Activate @new, which must be installed in the inactive slots by the caller,
1706  * by swapping the active slots and then propagating @new to @old once @old is
1707  * unreachable and can be safely modified.
1708  *
1709  * With NULL @old this simply adds @new to @active (while swapping the sets).
1710  * With NULL @new this simply removes @old from @active and frees it
1711  * (while also swapping the sets).
1712  */
1713 static void kvm_activate_memslot(struct kvm *kvm,
1714 				 struct kvm_memory_slot *old,
1715 				 struct kvm_memory_slot *new)
1716 {
1717 	int as_id = kvm_memslots_get_as_id(old, new);
1718 
1719 	kvm_swap_active_memslots(kvm, as_id);
1720 
1721 	/* Propagate the new memslot to the now inactive memslots. */
1722 	kvm_replace_memslot(kvm, old, new);
1723 }
1724 
1725 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1726 			     const struct kvm_memory_slot *src)
1727 {
1728 	dest->base_gfn = src->base_gfn;
1729 	dest->npages = src->npages;
1730 	dest->dirty_bitmap = src->dirty_bitmap;
1731 	dest->arch = src->arch;
1732 	dest->userspace_addr = src->userspace_addr;
1733 	dest->flags = src->flags;
1734 	dest->id = src->id;
1735 	dest->as_id = src->as_id;
1736 }
1737 
1738 static void kvm_invalidate_memslot(struct kvm *kvm,
1739 				   struct kvm_memory_slot *old,
1740 				   struct kvm_memory_slot *invalid_slot)
1741 {
1742 	/*
1743 	 * Mark the current slot INVALID.  As with all memslot modifications,
1744 	 * this must be done on an unreachable slot to avoid modifying the
1745 	 * current slot in the active tree.
1746 	 */
1747 	kvm_copy_memslot(invalid_slot, old);
1748 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1749 	kvm_replace_memslot(kvm, old, invalid_slot);
1750 
1751 	/*
1752 	 * Activate the slot that is now marked INVALID, but don't propagate
1753 	 * the slot to the now inactive slots. The slot is either going to be
1754 	 * deleted or recreated as a new slot.
1755 	 */
1756 	kvm_swap_active_memslots(kvm, old->as_id);
1757 
1758 	/*
1759 	 * From this point no new shadow pages pointing to a deleted, or moved,
1760 	 * memslot will be created.  Validation of sp->gfn happens in:
1761 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1762 	 *	- kvm_is_visible_gfn (mmu_check_root)
1763 	 */
1764 	kvm_arch_flush_shadow_memslot(kvm, old);
1765 	kvm_arch_guest_memory_reclaimed(kvm);
1766 
1767 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1768 	mutex_lock(&kvm->slots_arch_lock);
1769 
1770 	/*
1771 	 * Copy the arch-specific field of the newly-installed slot back to the
1772 	 * old slot as the arch data could have changed between releasing
1773 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1774 	 * above.  Writers are required to retrieve memslots *after* acquiring
1775 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1776 	 */
1777 	old->arch = invalid_slot->arch;
1778 }
1779 
1780 static void kvm_create_memslot(struct kvm *kvm,
1781 			       struct kvm_memory_slot *new)
1782 {
1783 	/* Add the new memslot to the inactive set and activate. */
1784 	kvm_replace_memslot(kvm, NULL, new);
1785 	kvm_activate_memslot(kvm, NULL, new);
1786 }
1787 
1788 static void kvm_delete_memslot(struct kvm *kvm,
1789 			       struct kvm_memory_slot *old,
1790 			       struct kvm_memory_slot *invalid_slot)
1791 {
1792 	/*
1793 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1794 	 * the "new" slot, and for the invalid version in the active slots.
1795 	 */
1796 	kvm_replace_memslot(kvm, old, NULL);
1797 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1798 }
1799 
1800 static void kvm_move_memslot(struct kvm *kvm,
1801 			     struct kvm_memory_slot *old,
1802 			     struct kvm_memory_slot *new,
1803 			     struct kvm_memory_slot *invalid_slot)
1804 {
1805 	/*
1806 	 * Replace the old memslot in the inactive slots, and then swap slots
1807 	 * and replace the current INVALID with the new as well.
1808 	 */
1809 	kvm_replace_memslot(kvm, old, new);
1810 	kvm_activate_memslot(kvm, invalid_slot, new);
1811 }
1812 
1813 static void kvm_update_flags_memslot(struct kvm *kvm,
1814 				     struct kvm_memory_slot *old,
1815 				     struct kvm_memory_slot *new)
1816 {
1817 	/*
1818 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1819 	 * an intermediate step. Instead, the old memslot is simply replaced
1820 	 * with a new, updated copy in both memslot sets.
1821 	 */
1822 	kvm_replace_memslot(kvm, old, new);
1823 	kvm_activate_memslot(kvm, old, new);
1824 }
1825 
1826 static int kvm_set_memslot(struct kvm *kvm,
1827 			   struct kvm_memory_slot *old,
1828 			   struct kvm_memory_slot *new,
1829 			   enum kvm_mr_change change)
1830 {
1831 	struct kvm_memory_slot *invalid_slot;
1832 	int r;
1833 
1834 	/*
1835 	 * Released in kvm_swap_active_memslots().
1836 	 *
1837 	 * Must be held from before the current memslots are copied until after
1838 	 * the new memslots are installed with rcu_assign_pointer, then
1839 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1840 	 *
1841 	 * When modifying memslots outside of the slots_lock, must be held
1842 	 * before reading the pointer to the current memslots until after all
1843 	 * changes to those memslots are complete.
1844 	 *
1845 	 * These rules ensure that installing new memslots does not lose
1846 	 * changes made to the previous memslots.
1847 	 */
1848 	mutex_lock(&kvm->slots_arch_lock);
1849 
1850 	/*
1851 	 * Invalidate the old slot if it's being deleted or moved.  This is
1852 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1853 	 * continue running by ensuring there are no mappings or shadow pages
1854 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1855 	 * (and without a lock), a window would exist between effecting the
1856 	 * delete/move and committing the changes in arch code where KVM or a
1857 	 * guest could access a non-existent memslot.
1858 	 *
1859 	 * Modifications are done on a temporary, unreachable slot.  The old
1860 	 * slot needs to be preserved in case a later step fails and the
1861 	 * invalidation needs to be reverted.
1862 	 */
1863 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1864 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1865 		if (!invalid_slot) {
1866 			mutex_unlock(&kvm->slots_arch_lock);
1867 			return -ENOMEM;
1868 		}
1869 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1870 	}
1871 
1872 	r = kvm_prepare_memory_region(kvm, old, new, change);
1873 	if (r) {
1874 		/*
1875 		 * For DELETE/MOVE, revert the above INVALID change.  No
1876 		 * modifications required since the original slot was preserved
1877 		 * in the inactive slots.  Changing the active memslots also
1878 		 * release slots_arch_lock.
1879 		 */
1880 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1881 			kvm_activate_memslot(kvm, invalid_slot, old);
1882 			kfree(invalid_slot);
1883 		} else {
1884 			mutex_unlock(&kvm->slots_arch_lock);
1885 		}
1886 		return r;
1887 	}
1888 
1889 	/*
1890 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1891 	 * version of the old slot.  MOVE is particularly special as it reuses
1892 	 * the old slot and returns a copy of the old slot (in working_slot).
1893 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1894 	 * old slot is detached but otherwise preserved.
1895 	 */
1896 	if (change == KVM_MR_CREATE)
1897 		kvm_create_memslot(kvm, new);
1898 	else if (change == KVM_MR_DELETE)
1899 		kvm_delete_memslot(kvm, old, invalid_slot);
1900 	else if (change == KVM_MR_MOVE)
1901 		kvm_move_memslot(kvm, old, new, invalid_slot);
1902 	else if (change == KVM_MR_FLAGS_ONLY)
1903 		kvm_update_flags_memslot(kvm, old, new);
1904 	else
1905 		BUG();
1906 
1907 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1908 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1909 		kfree(invalid_slot);
1910 
1911 	/*
1912 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1913 	 * will directly hit the final, active memslot.  Architectures are
1914 	 * responsible for knowing that new->arch may be stale.
1915 	 */
1916 	kvm_commit_memory_region(kvm, old, new, change);
1917 
1918 	return 0;
1919 }
1920 
1921 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1922 				      gfn_t start, gfn_t end)
1923 {
1924 	struct kvm_memslot_iter iter;
1925 
1926 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1927 		if (iter.slot->id != id)
1928 			return true;
1929 	}
1930 
1931 	return false;
1932 }
1933 
1934 /*
1935  * Allocate some memory and give it an address in the guest physical address
1936  * space.
1937  *
1938  * Discontiguous memory is allowed, mostly for framebuffers.
1939  *
1940  * Must be called holding kvm->slots_lock for write.
1941  */
1942 int __kvm_set_memory_region(struct kvm *kvm,
1943 			    const struct kvm_userspace_memory_region *mem)
1944 {
1945 	struct kvm_memory_slot *old, *new;
1946 	struct kvm_memslots *slots;
1947 	enum kvm_mr_change change;
1948 	unsigned long npages;
1949 	gfn_t base_gfn;
1950 	int as_id, id;
1951 	int r;
1952 
1953 	r = check_memory_region_flags(mem);
1954 	if (r)
1955 		return r;
1956 
1957 	as_id = mem->slot >> 16;
1958 	id = (u16)mem->slot;
1959 
1960 	/* General sanity checks */
1961 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1962 	    (mem->memory_size != (unsigned long)mem->memory_size))
1963 		return -EINVAL;
1964 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1965 		return -EINVAL;
1966 	/* We can read the guest memory with __xxx_user() later on. */
1967 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1968 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1969 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1970 			mem->memory_size))
1971 		return -EINVAL;
1972 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1973 		return -EINVAL;
1974 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1975 		return -EINVAL;
1976 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1977 		return -EINVAL;
1978 
1979 	slots = __kvm_memslots(kvm, as_id);
1980 
1981 	/*
1982 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1983 	 * and/or destroyed by kvm_set_memslot().
1984 	 */
1985 	old = id_to_memslot(slots, id);
1986 
1987 	if (!mem->memory_size) {
1988 		if (!old || !old->npages)
1989 			return -EINVAL;
1990 
1991 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1992 			return -EIO;
1993 
1994 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1995 	}
1996 
1997 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1998 	npages = (mem->memory_size >> PAGE_SHIFT);
1999 
2000 	if (!old || !old->npages) {
2001 		change = KVM_MR_CREATE;
2002 
2003 		/*
2004 		 * To simplify KVM internals, the total number of pages across
2005 		 * all memslots must fit in an unsigned long.
2006 		 */
2007 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2008 			return -EINVAL;
2009 	} else { /* Modify an existing slot. */
2010 		if ((mem->userspace_addr != old->userspace_addr) ||
2011 		    (npages != old->npages) ||
2012 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2013 			return -EINVAL;
2014 
2015 		if (base_gfn != old->base_gfn)
2016 			change = KVM_MR_MOVE;
2017 		else if (mem->flags != old->flags)
2018 			change = KVM_MR_FLAGS_ONLY;
2019 		else /* Nothing to change. */
2020 			return 0;
2021 	}
2022 
2023 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2024 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2025 		return -EEXIST;
2026 
2027 	/* Allocate a slot that will persist in the memslot. */
2028 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2029 	if (!new)
2030 		return -ENOMEM;
2031 
2032 	new->as_id = as_id;
2033 	new->id = id;
2034 	new->base_gfn = base_gfn;
2035 	new->npages = npages;
2036 	new->flags = mem->flags;
2037 	new->userspace_addr = mem->userspace_addr;
2038 
2039 	r = kvm_set_memslot(kvm, old, new, change);
2040 	if (r)
2041 		kfree(new);
2042 	return r;
2043 }
2044 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2045 
2046 int kvm_set_memory_region(struct kvm *kvm,
2047 			  const struct kvm_userspace_memory_region *mem)
2048 {
2049 	int r;
2050 
2051 	mutex_lock(&kvm->slots_lock);
2052 	r = __kvm_set_memory_region(kvm, mem);
2053 	mutex_unlock(&kvm->slots_lock);
2054 	return r;
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2057 
2058 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2059 					  struct kvm_userspace_memory_region *mem)
2060 {
2061 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2062 		return -EINVAL;
2063 
2064 	return kvm_set_memory_region(kvm, mem);
2065 }
2066 
2067 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2068 /**
2069  * kvm_get_dirty_log - get a snapshot of dirty pages
2070  * @kvm:	pointer to kvm instance
2071  * @log:	slot id and address to which we copy the log
2072  * @is_dirty:	set to '1' if any dirty pages were found
2073  * @memslot:	set to the associated memslot, always valid on success
2074  */
2075 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2076 		      int *is_dirty, struct kvm_memory_slot **memslot)
2077 {
2078 	struct kvm_memslots *slots;
2079 	int i, as_id, id;
2080 	unsigned long n;
2081 	unsigned long any = 0;
2082 
2083 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2084 	if (!kvm_use_dirty_bitmap(kvm))
2085 		return -ENXIO;
2086 
2087 	*memslot = NULL;
2088 	*is_dirty = 0;
2089 
2090 	as_id = log->slot >> 16;
2091 	id = (u16)log->slot;
2092 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2093 		return -EINVAL;
2094 
2095 	slots = __kvm_memslots(kvm, as_id);
2096 	*memslot = id_to_memslot(slots, id);
2097 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2098 		return -ENOENT;
2099 
2100 	kvm_arch_sync_dirty_log(kvm, *memslot);
2101 
2102 	n = kvm_dirty_bitmap_bytes(*memslot);
2103 
2104 	for (i = 0; !any && i < n/sizeof(long); ++i)
2105 		any = (*memslot)->dirty_bitmap[i];
2106 
2107 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2108 		return -EFAULT;
2109 
2110 	if (any)
2111 		*is_dirty = 1;
2112 	return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2115 
2116 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2117 /**
2118  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2119  *	and reenable dirty page tracking for the corresponding pages.
2120  * @kvm:	pointer to kvm instance
2121  * @log:	slot id and address to which we copy the log
2122  *
2123  * We need to keep it in mind that VCPU threads can write to the bitmap
2124  * concurrently. So, to avoid losing track of dirty pages we keep the
2125  * following order:
2126  *
2127  *    1. Take a snapshot of the bit and clear it if needed.
2128  *    2. Write protect the corresponding page.
2129  *    3. Copy the snapshot to the userspace.
2130  *    4. Upon return caller flushes TLB's if needed.
2131  *
2132  * Between 2 and 4, the guest may write to the page using the remaining TLB
2133  * entry.  This is not a problem because the page is reported dirty using
2134  * the snapshot taken before and step 4 ensures that writes done after
2135  * exiting to userspace will be logged for the next call.
2136  *
2137  */
2138 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2139 {
2140 	struct kvm_memslots *slots;
2141 	struct kvm_memory_slot *memslot;
2142 	int i, as_id, id;
2143 	unsigned long n;
2144 	unsigned long *dirty_bitmap;
2145 	unsigned long *dirty_bitmap_buffer;
2146 	bool flush;
2147 
2148 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2149 	if (!kvm_use_dirty_bitmap(kvm))
2150 		return -ENXIO;
2151 
2152 	as_id = log->slot >> 16;
2153 	id = (u16)log->slot;
2154 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2155 		return -EINVAL;
2156 
2157 	slots = __kvm_memslots(kvm, as_id);
2158 	memslot = id_to_memslot(slots, id);
2159 	if (!memslot || !memslot->dirty_bitmap)
2160 		return -ENOENT;
2161 
2162 	dirty_bitmap = memslot->dirty_bitmap;
2163 
2164 	kvm_arch_sync_dirty_log(kvm, memslot);
2165 
2166 	n = kvm_dirty_bitmap_bytes(memslot);
2167 	flush = false;
2168 	if (kvm->manual_dirty_log_protect) {
2169 		/*
2170 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2171 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2172 		 * is some code duplication between this function and
2173 		 * kvm_get_dirty_log, but hopefully all architecture
2174 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2175 		 * can be eliminated.
2176 		 */
2177 		dirty_bitmap_buffer = dirty_bitmap;
2178 	} else {
2179 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2180 		memset(dirty_bitmap_buffer, 0, n);
2181 
2182 		KVM_MMU_LOCK(kvm);
2183 		for (i = 0; i < n / sizeof(long); i++) {
2184 			unsigned long mask;
2185 			gfn_t offset;
2186 
2187 			if (!dirty_bitmap[i])
2188 				continue;
2189 
2190 			flush = true;
2191 			mask = xchg(&dirty_bitmap[i], 0);
2192 			dirty_bitmap_buffer[i] = mask;
2193 
2194 			offset = i * BITS_PER_LONG;
2195 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2196 								offset, mask);
2197 		}
2198 		KVM_MMU_UNLOCK(kvm);
2199 	}
2200 
2201 	if (flush)
2202 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2203 
2204 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2205 		return -EFAULT;
2206 	return 0;
2207 }
2208 
2209 
2210 /**
2211  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2212  * @kvm: kvm instance
2213  * @log: slot id and address to which we copy the log
2214  *
2215  * Steps 1-4 below provide general overview of dirty page logging. See
2216  * kvm_get_dirty_log_protect() function description for additional details.
2217  *
2218  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2219  * always flush the TLB (step 4) even if previous step failed  and the dirty
2220  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2221  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2222  * writes will be marked dirty for next log read.
2223  *
2224  *   1. Take a snapshot of the bit and clear it if needed.
2225  *   2. Write protect the corresponding page.
2226  *   3. Copy the snapshot to the userspace.
2227  *   4. Flush TLB's if needed.
2228  */
2229 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2230 				      struct kvm_dirty_log *log)
2231 {
2232 	int r;
2233 
2234 	mutex_lock(&kvm->slots_lock);
2235 
2236 	r = kvm_get_dirty_log_protect(kvm, log);
2237 
2238 	mutex_unlock(&kvm->slots_lock);
2239 	return r;
2240 }
2241 
2242 /**
2243  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2244  *	and reenable dirty page tracking for the corresponding pages.
2245  * @kvm:	pointer to kvm instance
2246  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2247  */
2248 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2249 				       struct kvm_clear_dirty_log *log)
2250 {
2251 	struct kvm_memslots *slots;
2252 	struct kvm_memory_slot *memslot;
2253 	int as_id, id;
2254 	gfn_t offset;
2255 	unsigned long i, n;
2256 	unsigned long *dirty_bitmap;
2257 	unsigned long *dirty_bitmap_buffer;
2258 	bool flush;
2259 
2260 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2261 	if (!kvm_use_dirty_bitmap(kvm))
2262 		return -ENXIO;
2263 
2264 	as_id = log->slot >> 16;
2265 	id = (u16)log->slot;
2266 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2267 		return -EINVAL;
2268 
2269 	if (log->first_page & 63)
2270 		return -EINVAL;
2271 
2272 	slots = __kvm_memslots(kvm, as_id);
2273 	memslot = id_to_memslot(slots, id);
2274 	if (!memslot || !memslot->dirty_bitmap)
2275 		return -ENOENT;
2276 
2277 	dirty_bitmap = memslot->dirty_bitmap;
2278 
2279 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2280 
2281 	if (log->first_page > memslot->npages ||
2282 	    log->num_pages > memslot->npages - log->first_page ||
2283 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2284 	    return -EINVAL;
2285 
2286 	kvm_arch_sync_dirty_log(kvm, memslot);
2287 
2288 	flush = false;
2289 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2290 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2291 		return -EFAULT;
2292 
2293 	KVM_MMU_LOCK(kvm);
2294 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2295 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2296 	     i++, offset += BITS_PER_LONG) {
2297 		unsigned long mask = *dirty_bitmap_buffer++;
2298 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2299 		if (!mask)
2300 			continue;
2301 
2302 		mask &= atomic_long_fetch_andnot(mask, p);
2303 
2304 		/*
2305 		 * mask contains the bits that really have been cleared.  This
2306 		 * never includes any bits beyond the length of the memslot (if
2307 		 * the length is not aligned to 64 pages), therefore it is not
2308 		 * a problem if userspace sets them in log->dirty_bitmap.
2309 		*/
2310 		if (mask) {
2311 			flush = true;
2312 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2313 								offset, mask);
2314 		}
2315 	}
2316 	KVM_MMU_UNLOCK(kvm);
2317 
2318 	if (flush)
2319 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2320 
2321 	return 0;
2322 }
2323 
2324 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2325 					struct kvm_clear_dirty_log *log)
2326 {
2327 	int r;
2328 
2329 	mutex_lock(&kvm->slots_lock);
2330 
2331 	r = kvm_clear_dirty_log_protect(kvm, log);
2332 
2333 	mutex_unlock(&kvm->slots_lock);
2334 	return r;
2335 }
2336 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2337 
2338 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2339 {
2340 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2341 }
2342 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2343 
2344 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2345 {
2346 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2347 	u64 gen = slots->generation;
2348 	struct kvm_memory_slot *slot;
2349 
2350 	/*
2351 	 * This also protects against using a memslot from a different address space,
2352 	 * since different address spaces have different generation numbers.
2353 	 */
2354 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2355 		vcpu->last_used_slot = NULL;
2356 		vcpu->last_used_slot_gen = gen;
2357 	}
2358 
2359 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2360 	if (slot)
2361 		return slot;
2362 
2363 	/*
2364 	 * Fall back to searching all memslots. We purposely use
2365 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2366 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2367 	 */
2368 	slot = search_memslots(slots, gfn, false);
2369 	if (slot) {
2370 		vcpu->last_used_slot = slot;
2371 		return slot;
2372 	}
2373 
2374 	return NULL;
2375 }
2376 
2377 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2378 {
2379 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2380 
2381 	return kvm_is_visible_memslot(memslot);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2384 
2385 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2386 {
2387 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2388 
2389 	return kvm_is_visible_memslot(memslot);
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2392 
2393 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2394 {
2395 	struct vm_area_struct *vma;
2396 	unsigned long addr, size;
2397 
2398 	size = PAGE_SIZE;
2399 
2400 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2401 	if (kvm_is_error_hva(addr))
2402 		return PAGE_SIZE;
2403 
2404 	mmap_read_lock(current->mm);
2405 	vma = find_vma(current->mm, addr);
2406 	if (!vma)
2407 		goto out;
2408 
2409 	size = vma_kernel_pagesize(vma);
2410 
2411 out:
2412 	mmap_read_unlock(current->mm);
2413 
2414 	return size;
2415 }
2416 
2417 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2418 {
2419 	return slot->flags & KVM_MEM_READONLY;
2420 }
2421 
2422 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2423 				       gfn_t *nr_pages, bool write)
2424 {
2425 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2426 		return KVM_HVA_ERR_BAD;
2427 
2428 	if (memslot_is_readonly(slot) && write)
2429 		return KVM_HVA_ERR_RO_BAD;
2430 
2431 	if (nr_pages)
2432 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2433 
2434 	return __gfn_to_hva_memslot(slot, gfn);
2435 }
2436 
2437 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2438 				     gfn_t *nr_pages)
2439 {
2440 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2441 }
2442 
2443 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2444 					gfn_t gfn)
2445 {
2446 	return gfn_to_hva_many(slot, gfn, NULL);
2447 }
2448 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2449 
2450 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2451 {
2452 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2453 }
2454 EXPORT_SYMBOL_GPL(gfn_to_hva);
2455 
2456 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2457 {
2458 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2461 
2462 /*
2463  * Return the hva of a @gfn and the R/W attribute if possible.
2464  *
2465  * @slot: the kvm_memory_slot which contains @gfn
2466  * @gfn: the gfn to be translated
2467  * @writable: used to return the read/write attribute of the @slot if the hva
2468  * is valid and @writable is not NULL
2469  */
2470 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2471 				      gfn_t gfn, bool *writable)
2472 {
2473 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2474 
2475 	if (!kvm_is_error_hva(hva) && writable)
2476 		*writable = !memslot_is_readonly(slot);
2477 
2478 	return hva;
2479 }
2480 
2481 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2482 {
2483 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2484 
2485 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2486 }
2487 
2488 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2489 {
2490 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2491 
2492 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2493 }
2494 
2495 static inline int check_user_page_hwpoison(unsigned long addr)
2496 {
2497 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2498 
2499 	rc = get_user_pages(addr, 1, flags, NULL);
2500 	return rc == -EHWPOISON;
2501 }
2502 
2503 /*
2504  * The fast path to get the writable pfn which will be stored in @pfn,
2505  * true indicates success, otherwise false is returned.  It's also the
2506  * only part that runs if we can in atomic context.
2507  */
2508 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2509 			    bool *writable, kvm_pfn_t *pfn)
2510 {
2511 	struct page *page[1];
2512 
2513 	/*
2514 	 * Fast pin a writable pfn only if it is a write fault request
2515 	 * or the caller allows to map a writable pfn for a read fault
2516 	 * request.
2517 	 */
2518 	if (!(write_fault || writable))
2519 		return false;
2520 
2521 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2522 		*pfn = page_to_pfn(page[0]);
2523 
2524 		if (writable)
2525 			*writable = true;
2526 		return true;
2527 	}
2528 
2529 	return false;
2530 }
2531 
2532 /*
2533  * The slow path to get the pfn of the specified host virtual address,
2534  * 1 indicates success, -errno is returned if error is detected.
2535  */
2536 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2537 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2538 {
2539 	/*
2540 	 * When a VCPU accesses a page that is not mapped into the secondary
2541 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2542 	 * make progress. We always want to honor NUMA hinting faults in that
2543 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2544 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2545 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2546 	 *
2547 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2548 	 * implicitly honor NUMA hinting faults and don't need this flag.
2549 	 */
2550 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2551 	struct page *page;
2552 	int npages;
2553 
2554 	might_sleep();
2555 
2556 	if (writable)
2557 		*writable = write_fault;
2558 
2559 	if (write_fault)
2560 		flags |= FOLL_WRITE;
2561 	if (async)
2562 		flags |= FOLL_NOWAIT;
2563 	if (interruptible)
2564 		flags |= FOLL_INTERRUPTIBLE;
2565 
2566 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2567 	if (npages != 1)
2568 		return npages;
2569 
2570 	/* map read fault as writable if possible */
2571 	if (unlikely(!write_fault) && writable) {
2572 		struct page *wpage;
2573 
2574 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2575 			*writable = true;
2576 			put_page(page);
2577 			page = wpage;
2578 		}
2579 	}
2580 	*pfn = page_to_pfn(page);
2581 	return npages;
2582 }
2583 
2584 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2585 {
2586 	if (unlikely(!(vma->vm_flags & VM_READ)))
2587 		return false;
2588 
2589 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2590 		return false;
2591 
2592 	return true;
2593 }
2594 
2595 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2596 {
2597 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2598 
2599 	if (!page)
2600 		return 1;
2601 
2602 	return get_page_unless_zero(page);
2603 }
2604 
2605 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2606 			       unsigned long addr, bool write_fault,
2607 			       bool *writable, kvm_pfn_t *p_pfn)
2608 {
2609 	kvm_pfn_t pfn;
2610 	pte_t *ptep;
2611 	pte_t pte;
2612 	spinlock_t *ptl;
2613 	int r;
2614 
2615 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2616 	if (r) {
2617 		/*
2618 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2619 		 * not call the fault handler, so do it here.
2620 		 */
2621 		bool unlocked = false;
2622 		r = fixup_user_fault(current->mm, addr,
2623 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2624 				     &unlocked);
2625 		if (unlocked)
2626 			return -EAGAIN;
2627 		if (r)
2628 			return r;
2629 
2630 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2631 		if (r)
2632 			return r;
2633 	}
2634 
2635 	pte = ptep_get(ptep);
2636 
2637 	if (write_fault && !pte_write(pte)) {
2638 		pfn = KVM_PFN_ERR_RO_FAULT;
2639 		goto out;
2640 	}
2641 
2642 	if (writable)
2643 		*writable = pte_write(pte);
2644 	pfn = pte_pfn(pte);
2645 
2646 	/*
2647 	 * Get a reference here because callers of *hva_to_pfn* and
2648 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2649 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2650 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2651 	 * simply do nothing for reserved pfns.
2652 	 *
2653 	 * Whoever called remap_pfn_range is also going to call e.g.
2654 	 * unmap_mapping_range before the underlying pages are freed,
2655 	 * causing a call to our MMU notifier.
2656 	 *
2657 	 * Certain IO or PFNMAP mappings can be backed with valid
2658 	 * struct pages, but be allocated without refcounting e.g.,
2659 	 * tail pages of non-compound higher order allocations, which
2660 	 * would then underflow the refcount when the caller does the
2661 	 * required put_page. Don't allow those pages here.
2662 	 */
2663 	if (!kvm_try_get_pfn(pfn))
2664 		r = -EFAULT;
2665 
2666 out:
2667 	pte_unmap_unlock(ptep, ptl);
2668 	*p_pfn = pfn;
2669 
2670 	return r;
2671 }
2672 
2673 /*
2674  * Pin guest page in memory and return its pfn.
2675  * @addr: host virtual address which maps memory to the guest
2676  * @atomic: whether this function can sleep
2677  * @interruptible: whether the process can be interrupted by non-fatal signals
2678  * @async: whether this function need to wait IO complete if the
2679  *         host page is not in the memory
2680  * @write_fault: whether we should get a writable host page
2681  * @writable: whether it allows to map a writable host page for !@write_fault
2682  *
2683  * The function will map a writable host page for these two cases:
2684  * 1): @write_fault = true
2685  * 2): @write_fault = false && @writable, @writable will tell the caller
2686  *     whether the mapping is writable.
2687  */
2688 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2689 		     bool *async, bool write_fault, bool *writable)
2690 {
2691 	struct vm_area_struct *vma;
2692 	kvm_pfn_t pfn;
2693 	int npages, r;
2694 
2695 	/* we can do it either atomically or asynchronously, not both */
2696 	BUG_ON(atomic && async);
2697 
2698 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2699 		return pfn;
2700 
2701 	if (atomic)
2702 		return KVM_PFN_ERR_FAULT;
2703 
2704 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2705 				 writable, &pfn);
2706 	if (npages == 1)
2707 		return pfn;
2708 	if (npages == -EINTR)
2709 		return KVM_PFN_ERR_SIGPENDING;
2710 
2711 	mmap_read_lock(current->mm);
2712 	if (npages == -EHWPOISON ||
2713 	      (!async && check_user_page_hwpoison(addr))) {
2714 		pfn = KVM_PFN_ERR_HWPOISON;
2715 		goto exit;
2716 	}
2717 
2718 retry:
2719 	vma = vma_lookup(current->mm, addr);
2720 
2721 	if (vma == NULL)
2722 		pfn = KVM_PFN_ERR_FAULT;
2723 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2724 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2725 		if (r == -EAGAIN)
2726 			goto retry;
2727 		if (r < 0)
2728 			pfn = KVM_PFN_ERR_FAULT;
2729 	} else {
2730 		if (async && vma_is_valid(vma, write_fault))
2731 			*async = true;
2732 		pfn = KVM_PFN_ERR_FAULT;
2733 	}
2734 exit:
2735 	mmap_read_unlock(current->mm);
2736 	return pfn;
2737 }
2738 
2739 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2740 			       bool atomic, bool interruptible, bool *async,
2741 			       bool write_fault, bool *writable, hva_t *hva)
2742 {
2743 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2744 
2745 	if (hva)
2746 		*hva = addr;
2747 
2748 	if (addr == KVM_HVA_ERR_RO_BAD) {
2749 		if (writable)
2750 			*writable = false;
2751 		return KVM_PFN_ERR_RO_FAULT;
2752 	}
2753 
2754 	if (kvm_is_error_hva(addr)) {
2755 		if (writable)
2756 			*writable = false;
2757 		return KVM_PFN_NOSLOT;
2758 	}
2759 
2760 	/* Do not map writable pfn in the readonly memslot. */
2761 	if (writable && memslot_is_readonly(slot)) {
2762 		*writable = false;
2763 		writable = NULL;
2764 	}
2765 
2766 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2767 			  writable);
2768 }
2769 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2770 
2771 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2772 		      bool *writable)
2773 {
2774 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2775 				    NULL, write_fault, writable, NULL);
2776 }
2777 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2778 
2779 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2780 {
2781 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2782 				    NULL, NULL);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2785 
2786 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2787 {
2788 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2789 				    NULL, NULL);
2790 }
2791 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2792 
2793 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2794 {
2795 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2798 
2799 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2800 {
2801 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2802 }
2803 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2804 
2805 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2806 {
2807 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2810 
2811 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2812 			    struct page **pages, int nr_pages)
2813 {
2814 	unsigned long addr;
2815 	gfn_t entry = 0;
2816 
2817 	addr = gfn_to_hva_many(slot, gfn, &entry);
2818 	if (kvm_is_error_hva(addr))
2819 		return -1;
2820 
2821 	if (entry < nr_pages)
2822 		return 0;
2823 
2824 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2825 }
2826 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2827 
2828 /*
2829  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2830  * backed by 'struct page'.  A valid example is if the backing memslot is
2831  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2832  * been elevated by gfn_to_pfn().
2833  */
2834 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2835 {
2836 	struct page *page;
2837 	kvm_pfn_t pfn;
2838 
2839 	pfn = gfn_to_pfn(kvm, gfn);
2840 
2841 	if (is_error_noslot_pfn(pfn))
2842 		return KVM_ERR_PTR_BAD_PAGE;
2843 
2844 	page = kvm_pfn_to_refcounted_page(pfn);
2845 	if (!page)
2846 		return KVM_ERR_PTR_BAD_PAGE;
2847 
2848 	return page;
2849 }
2850 EXPORT_SYMBOL_GPL(gfn_to_page);
2851 
2852 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2853 {
2854 	if (dirty)
2855 		kvm_release_pfn_dirty(pfn);
2856 	else
2857 		kvm_release_pfn_clean(pfn);
2858 }
2859 
2860 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2861 {
2862 	kvm_pfn_t pfn;
2863 	void *hva = NULL;
2864 	struct page *page = KVM_UNMAPPED_PAGE;
2865 
2866 	if (!map)
2867 		return -EINVAL;
2868 
2869 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2870 	if (is_error_noslot_pfn(pfn))
2871 		return -EINVAL;
2872 
2873 	if (pfn_valid(pfn)) {
2874 		page = pfn_to_page(pfn);
2875 		hva = kmap(page);
2876 #ifdef CONFIG_HAS_IOMEM
2877 	} else {
2878 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2879 #endif
2880 	}
2881 
2882 	if (!hva)
2883 		return -EFAULT;
2884 
2885 	map->page = page;
2886 	map->hva = hva;
2887 	map->pfn = pfn;
2888 	map->gfn = gfn;
2889 
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2893 
2894 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2895 {
2896 	if (!map)
2897 		return;
2898 
2899 	if (!map->hva)
2900 		return;
2901 
2902 	if (map->page != KVM_UNMAPPED_PAGE)
2903 		kunmap(map->page);
2904 #ifdef CONFIG_HAS_IOMEM
2905 	else
2906 		memunmap(map->hva);
2907 #endif
2908 
2909 	if (dirty)
2910 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2911 
2912 	kvm_release_pfn(map->pfn, dirty);
2913 
2914 	map->hva = NULL;
2915 	map->page = NULL;
2916 }
2917 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2918 
2919 static bool kvm_is_ad_tracked_page(struct page *page)
2920 {
2921 	/*
2922 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2923 	 * touched (e.g. set dirty) except by its owner".
2924 	 */
2925 	return !PageReserved(page);
2926 }
2927 
2928 static void kvm_set_page_dirty(struct page *page)
2929 {
2930 	if (kvm_is_ad_tracked_page(page))
2931 		SetPageDirty(page);
2932 }
2933 
2934 static void kvm_set_page_accessed(struct page *page)
2935 {
2936 	if (kvm_is_ad_tracked_page(page))
2937 		mark_page_accessed(page);
2938 }
2939 
2940 void kvm_release_page_clean(struct page *page)
2941 {
2942 	WARN_ON(is_error_page(page));
2943 
2944 	kvm_set_page_accessed(page);
2945 	put_page(page);
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2948 
2949 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2950 {
2951 	struct page *page;
2952 
2953 	if (is_error_noslot_pfn(pfn))
2954 		return;
2955 
2956 	page = kvm_pfn_to_refcounted_page(pfn);
2957 	if (!page)
2958 		return;
2959 
2960 	kvm_release_page_clean(page);
2961 }
2962 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2963 
2964 void kvm_release_page_dirty(struct page *page)
2965 {
2966 	WARN_ON(is_error_page(page));
2967 
2968 	kvm_set_page_dirty(page);
2969 	kvm_release_page_clean(page);
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2972 
2973 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2974 {
2975 	struct page *page;
2976 
2977 	if (is_error_noslot_pfn(pfn))
2978 		return;
2979 
2980 	page = kvm_pfn_to_refcounted_page(pfn);
2981 	if (!page)
2982 		return;
2983 
2984 	kvm_release_page_dirty(page);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2987 
2988 /*
2989  * Note, checking for an error/noslot pfn is the caller's responsibility when
2990  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2991  * "set" helpers are not to be used when the pfn might point at garbage.
2992  */
2993 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2994 {
2995 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2996 		return;
2997 
2998 	if (pfn_valid(pfn))
2999 		kvm_set_page_dirty(pfn_to_page(pfn));
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3002 
3003 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3004 {
3005 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3006 		return;
3007 
3008 	if (pfn_valid(pfn))
3009 		kvm_set_page_accessed(pfn_to_page(pfn));
3010 }
3011 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3012 
3013 static int next_segment(unsigned long len, int offset)
3014 {
3015 	if (len > PAGE_SIZE - offset)
3016 		return PAGE_SIZE - offset;
3017 	else
3018 		return len;
3019 }
3020 
3021 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3022 				 void *data, int offset, int len)
3023 {
3024 	int r;
3025 	unsigned long addr;
3026 
3027 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3028 	if (kvm_is_error_hva(addr))
3029 		return -EFAULT;
3030 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3031 	if (r)
3032 		return -EFAULT;
3033 	return 0;
3034 }
3035 
3036 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3037 			int len)
3038 {
3039 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3040 
3041 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3042 }
3043 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3044 
3045 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3046 			     int offset, int len)
3047 {
3048 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3049 
3050 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3053 
3054 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3055 {
3056 	gfn_t gfn = gpa >> PAGE_SHIFT;
3057 	int seg;
3058 	int offset = offset_in_page(gpa);
3059 	int ret;
3060 
3061 	while ((seg = next_segment(len, offset)) != 0) {
3062 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3063 		if (ret < 0)
3064 			return ret;
3065 		offset = 0;
3066 		len -= seg;
3067 		data += seg;
3068 		++gfn;
3069 	}
3070 	return 0;
3071 }
3072 EXPORT_SYMBOL_GPL(kvm_read_guest);
3073 
3074 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3075 {
3076 	gfn_t gfn = gpa >> PAGE_SHIFT;
3077 	int seg;
3078 	int offset = offset_in_page(gpa);
3079 	int ret;
3080 
3081 	while ((seg = next_segment(len, offset)) != 0) {
3082 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3083 		if (ret < 0)
3084 			return ret;
3085 		offset = 0;
3086 		len -= seg;
3087 		data += seg;
3088 		++gfn;
3089 	}
3090 	return 0;
3091 }
3092 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3093 
3094 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3095 			           void *data, int offset, unsigned long len)
3096 {
3097 	int r;
3098 	unsigned long addr;
3099 
3100 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3101 	if (kvm_is_error_hva(addr))
3102 		return -EFAULT;
3103 	pagefault_disable();
3104 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3105 	pagefault_enable();
3106 	if (r)
3107 		return -EFAULT;
3108 	return 0;
3109 }
3110 
3111 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3112 			       void *data, unsigned long len)
3113 {
3114 	gfn_t gfn = gpa >> PAGE_SHIFT;
3115 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3116 	int offset = offset_in_page(gpa);
3117 
3118 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3119 }
3120 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3121 
3122 static int __kvm_write_guest_page(struct kvm *kvm,
3123 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3124 			          const void *data, int offset, int len)
3125 {
3126 	int r;
3127 	unsigned long addr;
3128 
3129 	addr = gfn_to_hva_memslot(memslot, gfn);
3130 	if (kvm_is_error_hva(addr))
3131 		return -EFAULT;
3132 	r = __copy_to_user((void __user *)addr + offset, data, len);
3133 	if (r)
3134 		return -EFAULT;
3135 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3136 	return 0;
3137 }
3138 
3139 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3140 			 const void *data, int offset, int len)
3141 {
3142 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3143 
3144 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3147 
3148 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3149 			      const void *data, int offset, int len)
3150 {
3151 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3152 
3153 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3156 
3157 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3158 		    unsigned long len)
3159 {
3160 	gfn_t gfn = gpa >> PAGE_SHIFT;
3161 	int seg;
3162 	int offset = offset_in_page(gpa);
3163 	int ret;
3164 
3165 	while ((seg = next_segment(len, offset)) != 0) {
3166 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3167 		if (ret < 0)
3168 			return ret;
3169 		offset = 0;
3170 		len -= seg;
3171 		data += seg;
3172 		++gfn;
3173 	}
3174 	return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(kvm_write_guest);
3177 
3178 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3179 		         unsigned long len)
3180 {
3181 	gfn_t gfn = gpa >> PAGE_SHIFT;
3182 	int seg;
3183 	int offset = offset_in_page(gpa);
3184 	int ret;
3185 
3186 	while ((seg = next_segment(len, offset)) != 0) {
3187 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3188 		if (ret < 0)
3189 			return ret;
3190 		offset = 0;
3191 		len -= seg;
3192 		data += seg;
3193 		++gfn;
3194 	}
3195 	return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3198 
3199 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3200 				       struct gfn_to_hva_cache *ghc,
3201 				       gpa_t gpa, unsigned long len)
3202 {
3203 	int offset = offset_in_page(gpa);
3204 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3205 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3206 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3207 	gfn_t nr_pages_avail;
3208 
3209 	/* Update ghc->generation before performing any error checks. */
3210 	ghc->generation = slots->generation;
3211 
3212 	if (start_gfn > end_gfn) {
3213 		ghc->hva = KVM_HVA_ERR_BAD;
3214 		return -EINVAL;
3215 	}
3216 
3217 	/*
3218 	 * If the requested region crosses two memslots, we still
3219 	 * verify that the entire region is valid here.
3220 	 */
3221 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3222 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3223 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3224 					   &nr_pages_avail);
3225 		if (kvm_is_error_hva(ghc->hva))
3226 			return -EFAULT;
3227 	}
3228 
3229 	/* Use the slow path for cross page reads and writes. */
3230 	if (nr_pages_needed == 1)
3231 		ghc->hva += offset;
3232 	else
3233 		ghc->memslot = NULL;
3234 
3235 	ghc->gpa = gpa;
3236 	ghc->len = len;
3237 	return 0;
3238 }
3239 
3240 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3241 			      gpa_t gpa, unsigned long len)
3242 {
3243 	struct kvm_memslots *slots = kvm_memslots(kvm);
3244 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3247 
3248 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3249 				  void *data, unsigned int offset,
3250 				  unsigned long len)
3251 {
3252 	struct kvm_memslots *slots = kvm_memslots(kvm);
3253 	int r;
3254 	gpa_t gpa = ghc->gpa + offset;
3255 
3256 	if (WARN_ON_ONCE(len + offset > ghc->len))
3257 		return -EINVAL;
3258 
3259 	if (slots->generation != ghc->generation) {
3260 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3261 			return -EFAULT;
3262 	}
3263 
3264 	if (kvm_is_error_hva(ghc->hva))
3265 		return -EFAULT;
3266 
3267 	if (unlikely(!ghc->memslot))
3268 		return kvm_write_guest(kvm, gpa, data, len);
3269 
3270 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3271 	if (r)
3272 		return -EFAULT;
3273 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3274 
3275 	return 0;
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3278 
3279 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3280 			   void *data, unsigned long len)
3281 {
3282 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3285 
3286 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287 				 void *data, unsigned int offset,
3288 				 unsigned long len)
3289 {
3290 	struct kvm_memslots *slots = kvm_memslots(kvm);
3291 	int r;
3292 	gpa_t gpa = ghc->gpa + offset;
3293 
3294 	if (WARN_ON_ONCE(len + offset > ghc->len))
3295 		return -EINVAL;
3296 
3297 	if (slots->generation != ghc->generation) {
3298 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3299 			return -EFAULT;
3300 	}
3301 
3302 	if (kvm_is_error_hva(ghc->hva))
3303 		return -EFAULT;
3304 
3305 	if (unlikely(!ghc->memslot))
3306 		return kvm_read_guest(kvm, gpa, data, len);
3307 
3308 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3309 	if (r)
3310 		return -EFAULT;
3311 
3312 	return 0;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3315 
3316 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3317 			  void *data, unsigned long len)
3318 {
3319 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3322 
3323 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3324 {
3325 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3326 	gfn_t gfn = gpa >> PAGE_SHIFT;
3327 	int seg;
3328 	int offset = offset_in_page(gpa);
3329 	int ret;
3330 
3331 	while ((seg = next_segment(len, offset)) != 0) {
3332 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3333 		if (ret < 0)
3334 			return ret;
3335 		offset = 0;
3336 		len -= seg;
3337 		++gfn;
3338 	}
3339 	return 0;
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3342 
3343 void mark_page_dirty_in_slot(struct kvm *kvm,
3344 			     const struct kvm_memory_slot *memslot,
3345 		 	     gfn_t gfn)
3346 {
3347 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3348 
3349 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3350 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3351 		return;
3352 
3353 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3354 #endif
3355 
3356 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3357 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3358 		u32 slot = (memslot->as_id << 16) | memslot->id;
3359 
3360 		if (kvm->dirty_ring_size && vcpu)
3361 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3362 		else if (memslot->dirty_bitmap)
3363 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3364 	}
3365 }
3366 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3367 
3368 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3369 {
3370 	struct kvm_memory_slot *memslot;
3371 
3372 	memslot = gfn_to_memslot(kvm, gfn);
3373 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3374 }
3375 EXPORT_SYMBOL_GPL(mark_page_dirty);
3376 
3377 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3378 {
3379 	struct kvm_memory_slot *memslot;
3380 
3381 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3382 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3385 
3386 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3387 {
3388 	if (!vcpu->sigset_active)
3389 		return;
3390 
3391 	/*
3392 	 * This does a lockless modification of ->real_blocked, which is fine
3393 	 * because, only current can change ->real_blocked and all readers of
3394 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3395 	 * of ->blocked.
3396 	 */
3397 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3398 }
3399 
3400 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3401 {
3402 	if (!vcpu->sigset_active)
3403 		return;
3404 
3405 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3406 	sigemptyset(&current->real_blocked);
3407 }
3408 
3409 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3410 {
3411 	unsigned int old, val, grow, grow_start;
3412 
3413 	old = val = vcpu->halt_poll_ns;
3414 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3415 	grow = READ_ONCE(halt_poll_ns_grow);
3416 	if (!grow)
3417 		goto out;
3418 
3419 	val *= grow;
3420 	if (val < grow_start)
3421 		val = grow_start;
3422 
3423 	vcpu->halt_poll_ns = val;
3424 out:
3425 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3426 }
3427 
3428 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3429 {
3430 	unsigned int old, val, shrink, grow_start;
3431 
3432 	old = val = vcpu->halt_poll_ns;
3433 	shrink = READ_ONCE(halt_poll_ns_shrink);
3434 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3435 	if (shrink == 0)
3436 		val = 0;
3437 	else
3438 		val /= shrink;
3439 
3440 	if (val < grow_start)
3441 		val = 0;
3442 
3443 	vcpu->halt_poll_ns = val;
3444 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3445 }
3446 
3447 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3448 {
3449 	int ret = -EINTR;
3450 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3451 
3452 	if (kvm_arch_vcpu_runnable(vcpu))
3453 		goto out;
3454 	if (kvm_cpu_has_pending_timer(vcpu))
3455 		goto out;
3456 	if (signal_pending(current))
3457 		goto out;
3458 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3459 		goto out;
3460 
3461 	ret = 0;
3462 out:
3463 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3464 	return ret;
3465 }
3466 
3467 /*
3468  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3469  * pending.  This is mostly used when halting a vCPU, but may also be used
3470  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3471  */
3472 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3473 {
3474 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3475 	bool waited = false;
3476 
3477 	vcpu->stat.generic.blocking = 1;
3478 
3479 	preempt_disable();
3480 	kvm_arch_vcpu_blocking(vcpu);
3481 	prepare_to_rcuwait(wait);
3482 	preempt_enable();
3483 
3484 	for (;;) {
3485 		set_current_state(TASK_INTERRUPTIBLE);
3486 
3487 		if (kvm_vcpu_check_block(vcpu) < 0)
3488 			break;
3489 
3490 		waited = true;
3491 		schedule();
3492 	}
3493 
3494 	preempt_disable();
3495 	finish_rcuwait(wait);
3496 	kvm_arch_vcpu_unblocking(vcpu);
3497 	preempt_enable();
3498 
3499 	vcpu->stat.generic.blocking = 0;
3500 
3501 	return waited;
3502 }
3503 
3504 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3505 					  ktime_t end, bool success)
3506 {
3507 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3508 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3509 
3510 	++vcpu->stat.generic.halt_attempted_poll;
3511 
3512 	if (success) {
3513 		++vcpu->stat.generic.halt_successful_poll;
3514 
3515 		if (!vcpu_valid_wakeup(vcpu))
3516 			++vcpu->stat.generic.halt_poll_invalid;
3517 
3518 		stats->halt_poll_success_ns += poll_ns;
3519 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3520 	} else {
3521 		stats->halt_poll_fail_ns += poll_ns;
3522 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3523 	}
3524 }
3525 
3526 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3527 {
3528 	struct kvm *kvm = vcpu->kvm;
3529 
3530 	if (kvm->override_halt_poll_ns) {
3531 		/*
3532 		 * Ensure kvm->max_halt_poll_ns is not read before
3533 		 * kvm->override_halt_poll_ns.
3534 		 *
3535 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3536 		 */
3537 		smp_rmb();
3538 		return READ_ONCE(kvm->max_halt_poll_ns);
3539 	}
3540 
3541 	return READ_ONCE(halt_poll_ns);
3542 }
3543 
3544 /*
3545  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3546  * polling is enabled, busy wait for a short time before blocking to avoid the
3547  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3548  * is halted.
3549  */
3550 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3551 {
3552 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3553 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3554 	ktime_t start, cur, poll_end;
3555 	bool waited = false;
3556 	bool do_halt_poll;
3557 	u64 halt_ns;
3558 
3559 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3560 		vcpu->halt_poll_ns = max_halt_poll_ns;
3561 
3562 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3563 
3564 	start = cur = poll_end = ktime_get();
3565 	if (do_halt_poll) {
3566 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3567 
3568 		do {
3569 			if (kvm_vcpu_check_block(vcpu) < 0)
3570 				goto out;
3571 			cpu_relax();
3572 			poll_end = cur = ktime_get();
3573 		} while (kvm_vcpu_can_poll(cur, stop));
3574 	}
3575 
3576 	waited = kvm_vcpu_block(vcpu);
3577 
3578 	cur = ktime_get();
3579 	if (waited) {
3580 		vcpu->stat.generic.halt_wait_ns +=
3581 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3582 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3583 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3584 	}
3585 out:
3586 	/* The total time the vCPU was "halted", including polling time. */
3587 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3588 
3589 	/*
3590 	 * Note, halt-polling is considered successful so long as the vCPU was
3591 	 * never actually scheduled out, i.e. even if the wake event arrived
3592 	 * after of the halt-polling loop itself, but before the full wait.
3593 	 */
3594 	if (do_halt_poll)
3595 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3596 
3597 	if (halt_poll_allowed) {
3598 		/* Recompute the max halt poll time in case it changed. */
3599 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3600 
3601 		if (!vcpu_valid_wakeup(vcpu)) {
3602 			shrink_halt_poll_ns(vcpu);
3603 		} else if (max_halt_poll_ns) {
3604 			if (halt_ns <= vcpu->halt_poll_ns)
3605 				;
3606 			/* we had a long block, shrink polling */
3607 			else if (vcpu->halt_poll_ns &&
3608 				 halt_ns > max_halt_poll_ns)
3609 				shrink_halt_poll_ns(vcpu);
3610 			/* we had a short halt and our poll time is too small */
3611 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3612 				 halt_ns < max_halt_poll_ns)
3613 				grow_halt_poll_ns(vcpu);
3614 		} else {
3615 			vcpu->halt_poll_ns = 0;
3616 		}
3617 	}
3618 
3619 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3622 
3623 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3624 {
3625 	if (__kvm_vcpu_wake_up(vcpu)) {
3626 		WRITE_ONCE(vcpu->ready, true);
3627 		++vcpu->stat.generic.halt_wakeup;
3628 		return true;
3629 	}
3630 
3631 	return false;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3634 
3635 #ifndef CONFIG_S390
3636 /*
3637  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3638  */
3639 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3640 {
3641 	int me, cpu;
3642 
3643 	if (kvm_vcpu_wake_up(vcpu))
3644 		return;
3645 
3646 	me = get_cpu();
3647 	/*
3648 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3649 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3650 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3651 	 * within the vCPU thread itself.
3652 	 */
3653 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3654 		if (vcpu->mode == IN_GUEST_MODE)
3655 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3656 		goto out;
3657 	}
3658 
3659 	/*
3660 	 * Note, the vCPU could get migrated to a different pCPU at any point
3661 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3662 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3663 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3664 	 * vCPU also requires it to leave IN_GUEST_MODE.
3665 	 */
3666 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3667 		cpu = READ_ONCE(vcpu->cpu);
3668 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3669 			smp_send_reschedule(cpu);
3670 	}
3671 out:
3672 	put_cpu();
3673 }
3674 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3675 #endif /* !CONFIG_S390 */
3676 
3677 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3678 {
3679 	struct pid *pid;
3680 	struct task_struct *task = NULL;
3681 	int ret = 0;
3682 
3683 	rcu_read_lock();
3684 	pid = rcu_dereference(target->pid);
3685 	if (pid)
3686 		task = get_pid_task(pid, PIDTYPE_PID);
3687 	rcu_read_unlock();
3688 	if (!task)
3689 		return ret;
3690 	ret = yield_to(task, 1);
3691 	put_task_struct(task);
3692 
3693 	return ret;
3694 }
3695 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3696 
3697 /*
3698  * Helper that checks whether a VCPU is eligible for directed yield.
3699  * Most eligible candidate to yield is decided by following heuristics:
3700  *
3701  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3702  *  (preempted lock holder), indicated by @in_spin_loop.
3703  *  Set at the beginning and cleared at the end of interception/PLE handler.
3704  *
3705  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3706  *  chance last time (mostly it has become eligible now since we have probably
3707  *  yielded to lockholder in last iteration. This is done by toggling
3708  *  @dy_eligible each time a VCPU checked for eligibility.)
3709  *
3710  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3711  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3712  *  burning. Giving priority for a potential lock-holder increases lock
3713  *  progress.
3714  *
3715  *  Since algorithm is based on heuristics, accessing another VCPU data without
3716  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3717  *  and continue with next VCPU and so on.
3718  */
3719 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3720 {
3721 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3722 	bool eligible;
3723 
3724 	eligible = !vcpu->spin_loop.in_spin_loop ||
3725 		    vcpu->spin_loop.dy_eligible;
3726 
3727 	if (vcpu->spin_loop.in_spin_loop)
3728 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3729 
3730 	return eligible;
3731 #else
3732 	return true;
3733 #endif
3734 }
3735 
3736 /*
3737  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3738  * a vcpu_load/vcpu_put pair.  However, for most architectures
3739  * kvm_arch_vcpu_runnable does not require vcpu_load.
3740  */
3741 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3742 {
3743 	return kvm_arch_vcpu_runnable(vcpu);
3744 }
3745 
3746 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3747 {
3748 	if (kvm_arch_dy_runnable(vcpu))
3749 		return true;
3750 
3751 #ifdef CONFIG_KVM_ASYNC_PF
3752 	if (!list_empty_careful(&vcpu->async_pf.done))
3753 		return true;
3754 #endif
3755 
3756 	return false;
3757 }
3758 
3759 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3760 {
3761 	return false;
3762 }
3763 
3764 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3765 {
3766 	struct kvm *kvm = me->kvm;
3767 	struct kvm_vcpu *vcpu;
3768 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3769 	unsigned long i;
3770 	int yielded = 0;
3771 	int try = 3;
3772 	int pass;
3773 
3774 	kvm_vcpu_set_in_spin_loop(me, true);
3775 	/*
3776 	 * We boost the priority of a VCPU that is runnable but not
3777 	 * currently running, because it got preempted by something
3778 	 * else and called schedule in __vcpu_run.  Hopefully that
3779 	 * VCPU is holding the lock that we need and will release it.
3780 	 * We approximate round-robin by starting at the last boosted VCPU.
3781 	 */
3782 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3783 		kvm_for_each_vcpu(i, vcpu, kvm) {
3784 			if (!pass && i <= last_boosted_vcpu) {
3785 				i = last_boosted_vcpu;
3786 				continue;
3787 			} else if (pass && i > last_boosted_vcpu)
3788 				break;
3789 			if (!READ_ONCE(vcpu->ready))
3790 				continue;
3791 			if (vcpu == me)
3792 				continue;
3793 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3794 				continue;
3795 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3796 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3797 			    !kvm_arch_vcpu_in_kernel(vcpu))
3798 				continue;
3799 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3800 				continue;
3801 
3802 			yielded = kvm_vcpu_yield_to(vcpu);
3803 			if (yielded > 0) {
3804 				kvm->last_boosted_vcpu = i;
3805 				break;
3806 			} else if (yielded < 0) {
3807 				try--;
3808 				if (!try)
3809 					break;
3810 			}
3811 		}
3812 	}
3813 	kvm_vcpu_set_in_spin_loop(me, false);
3814 
3815 	/* Ensure vcpu is not eligible during next spinloop */
3816 	kvm_vcpu_set_dy_eligible(me, false);
3817 }
3818 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3819 
3820 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3821 {
3822 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3823 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3824 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3825 	     kvm->dirty_ring_size / PAGE_SIZE);
3826 #else
3827 	return false;
3828 #endif
3829 }
3830 
3831 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3832 {
3833 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3834 	struct page *page;
3835 
3836 	if (vmf->pgoff == 0)
3837 		page = virt_to_page(vcpu->run);
3838 #ifdef CONFIG_X86
3839 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3840 		page = virt_to_page(vcpu->arch.pio_data);
3841 #endif
3842 #ifdef CONFIG_KVM_MMIO
3843 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3844 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3845 #endif
3846 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3847 		page = kvm_dirty_ring_get_page(
3848 		    &vcpu->dirty_ring,
3849 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3850 	else
3851 		return kvm_arch_vcpu_fault(vcpu, vmf);
3852 	get_page(page);
3853 	vmf->page = page;
3854 	return 0;
3855 }
3856 
3857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3858 	.fault = kvm_vcpu_fault,
3859 };
3860 
3861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3862 {
3863 	struct kvm_vcpu *vcpu = file->private_data;
3864 	unsigned long pages = vma_pages(vma);
3865 
3866 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3867 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3868 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3869 		return -EINVAL;
3870 
3871 	vma->vm_ops = &kvm_vcpu_vm_ops;
3872 	return 0;
3873 }
3874 
3875 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3876 {
3877 	struct kvm_vcpu *vcpu = filp->private_data;
3878 
3879 	kvm_put_kvm(vcpu->kvm);
3880 	return 0;
3881 }
3882 
3883 static struct file_operations kvm_vcpu_fops = {
3884 	.release        = kvm_vcpu_release,
3885 	.unlocked_ioctl = kvm_vcpu_ioctl,
3886 	.mmap           = kvm_vcpu_mmap,
3887 	.llseek		= noop_llseek,
3888 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3889 };
3890 
3891 /*
3892  * Allocates an inode for the vcpu.
3893  */
3894 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3895 {
3896 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3897 
3898 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3899 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3900 }
3901 
3902 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3903 static int vcpu_get_pid(void *data, u64 *val)
3904 {
3905 	struct kvm_vcpu *vcpu = data;
3906 
3907 	rcu_read_lock();
3908 	*val = pid_nr(rcu_dereference(vcpu->pid));
3909 	rcu_read_unlock();
3910 	return 0;
3911 }
3912 
3913 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3914 
3915 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3916 {
3917 	struct dentry *debugfs_dentry;
3918 	char dir_name[ITOA_MAX_LEN * 2];
3919 
3920 	if (!debugfs_initialized())
3921 		return;
3922 
3923 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3924 	debugfs_dentry = debugfs_create_dir(dir_name,
3925 					    vcpu->kvm->debugfs_dentry);
3926 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3927 			    &vcpu_get_pid_fops);
3928 
3929 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3930 }
3931 #endif
3932 
3933 /*
3934  * Creates some virtual cpus.  Good luck creating more than one.
3935  */
3936 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3937 {
3938 	int r;
3939 	struct kvm_vcpu *vcpu;
3940 	struct page *page;
3941 
3942 	if (id >= KVM_MAX_VCPU_IDS)
3943 		return -EINVAL;
3944 
3945 	mutex_lock(&kvm->lock);
3946 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3947 		mutex_unlock(&kvm->lock);
3948 		return -EINVAL;
3949 	}
3950 
3951 	r = kvm_arch_vcpu_precreate(kvm, id);
3952 	if (r) {
3953 		mutex_unlock(&kvm->lock);
3954 		return r;
3955 	}
3956 
3957 	kvm->created_vcpus++;
3958 	mutex_unlock(&kvm->lock);
3959 
3960 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3961 	if (!vcpu) {
3962 		r = -ENOMEM;
3963 		goto vcpu_decrement;
3964 	}
3965 
3966 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3967 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3968 	if (!page) {
3969 		r = -ENOMEM;
3970 		goto vcpu_free;
3971 	}
3972 	vcpu->run = page_address(page);
3973 
3974 	kvm_vcpu_init(vcpu, kvm, id);
3975 
3976 	r = kvm_arch_vcpu_create(vcpu);
3977 	if (r)
3978 		goto vcpu_free_run_page;
3979 
3980 	if (kvm->dirty_ring_size) {
3981 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3982 					 id, kvm->dirty_ring_size);
3983 		if (r)
3984 			goto arch_vcpu_destroy;
3985 	}
3986 
3987 	mutex_lock(&kvm->lock);
3988 
3989 #ifdef CONFIG_LOCKDEP
3990 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3991 	mutex_lock(&vcpu->mutex);
3992 	mutex_unlock(&vcpu->mutex);
3993 #endif
3994 
3995 	if (kvm_get_vcpu_by_id(kvm, id)) {
3996 		r = -EEXIST;
3997 		goto unlock_vcpu_destroy;
3998 	}
3999 
4000 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4001 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4002 	if (r)
4003 		goto unlock_vcpu_destroy;
4004 
4005 	/* Now it's all set up, let userspace reach it */
4006 	kvm_get_kvm(kvm);
4007 	r = create_vcpu_fd(vcpu);
4008 	if (r < 0)
4009 		goto kvm_put_xa_release;
4010 
4011 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4012 		r = -EINVAL;
4013 		goto kvm_put_xa_release;
4014 	}
4015 
4016 	/*
4017 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4018 	 * pointer before kvm->online_vcpu's incremented value.
4019 	 */
4020 	smp_wmb();
4021 	atomic_inc(&kvm->online_vcpus);
4022 
4023 	mutex_unlock(&kvm->lock);
4024 	kvm_arch_vcpu_postcreate(vcpu);
4025 	kvm_create_vcpu_debugfs(vcpu);
4026 	return r;
4027 
4028 kvm_put_xa_release:
4029 	kvm_put_kvm_no_destroy(kvm);
4030 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4031 unlock_vcpu_destroy:
4032 	mutex_unlock(&kvm->lock);
4033 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4034 arch_vcpu_destroy:
4035 	kvm_arch_vcpu_destroy(vcpu);
4036 vcpu_free_run_page:
4037 	free_page((unsigned long)vcpu->run);
4038 vcpu_free:
4039 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4040 vcpu_decrement:
4041 	mutex_lock(&kvm->lock);
4042 	kvm->created_vcpus--;
4043 	mutex_unlock(&kvm->lock);
4044 	return r;
4045 }
4046 
4047 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4048 {
4049 	if (sigset) {
4050 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4051 		vcpu->sigset_active = 1;
4052 		vcpu->sigset = *sigset;
4053 	} else
4054 		vcpu->sigset_active = 0;
4055 	return 0;
4056 }
4057 
4058 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4059 			      size_t size, loff_t *offset)
4060 {
4061 	struct kvm_vcpu *vcpu = file->private_data;
4062 
4063 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4064 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4065 			sizeof(vcpu->stat), user_buffer, size, offset);
4066 }
4067 
4068 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4069 {
4070 	struct kvm_vcpu *vcpu = file->private_data;
4071 
4072 	kvm_put_kvm(vcpu->kvm);
4073 	return 0;
4074 }
4075 
4076 static const struct file_operations kvm_vcpu_stats_fops = {
4077 	.owner = THIS_MODULE,
4078 	.read = kvm_vcpu_stats_read,
4079 	.release = kvm_vcpu_stats_release,
4080 	.llseek = noop_llseek,
4081 };
4082 
4083 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4084 {
4085 	int fd;
4086 	struct file *file;
4087 	char name[15 + ITOA_MAX_LEN + 1];
4088 
4089 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4090 
4091 	fd = get_unused_fd_flags(O_CLOEXEC);
4092 	if (fd < 0)
4093 		return fd;
4094 
4095 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4096 	if (IS_ERR(file)) {
4097 		put_unused_fd(fd);
4098 		return PTR_ERR(file);
4099 	}
4100 
4101 	kvm_get_kvm(vcpu->kvm);
4102 
4103 	file->f_mode |= FMODE_PREAD;
4104 	fd_install(fd, file);
4105 
4106 	return fd;
4107 }
4108 
4109 static long kvm_vcpu_ioctl(struct file *filp,
4110 			   unsigned int ioctl, unsigned long arg)
4111 {
4112 	struct kvm_vcpu *vcpu = filp->private_data;
4113 	void __user *argp = (void __user *)arg;
4114 	int r;
4115 	struct kvm_fpu *fpu = NULL;
4116 	struct kvm_sregs *kvm_sregs = NULL;
4117 
4118 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4119 		return -EIO;
4120 
4121 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4122 		return -EINVAL;
4123 
4124 	/*
4125 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4126 	 * execution; mutex_lock() would break them.
4127 	 */
4128 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4129 	if (r != -ENOIOCTLCMD)
4130 		return r;
4131 
4132 	if (mutex_lock_killable(&vcpu->mutex))
4133 		return -EINTR;
4134 	switch (ioctl) {
4135 	case KVM_RUN: {
4136 		struct pid *oldpid;
4137 		r = -EINVAL;
4138 		if (arg)
4139 			goto out;
4140 		oldpid = rcu_access_pointer(vcpu->pid);
4141 		if (unlikely(oldpid != task_pid(current))) {
4142 			/* The thread running this VCPU changed. */
4143 			struct pid *newpid;
4144 
4145 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4146 			if (r)
4147 				break;
4148 
4149 			newpid = get_task_pid(current, PIDTYPE_PID);
4150 			rcu_assign_pointer(vcpu->pid, newpid);
4151 			if (oldpid)
4152 				synchronize_rcu();
4153 			put_pid(oldpid);
4154 		}
4155 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4156 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4157 		break;
4158 	}
4159 	case KVM_GET_REGS: {
4160 		struct kvm_regs *kvm_regs;
4161 
4162 		r = -ENOMEM;
4163 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4164 		if (!kvm_regs)
4165 			goto out;
4166 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4167 		if (r)
4168 			goto out_free1;
4169 		r = -EFAULT;
4170 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4171 			goto out_free1;
4172 		r = 0;
4173 out_free1:
4174 		kfree(kvm_regs);
4175 		break;
4176 	}
4177 	case KVM_SET_REGS: {
4178 		struct kvm_regs *kvm_regs;
4179 
4180 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4181 		if (IS_ERR(kvm_regs)) {
4182 			r = PTR_ERR(kvm_regs);
4183 			goto out;
4184 		}
4185 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4186 		kfree(kvm_regs);
4187 		break;
4188 	}
4189 	case KVM_GET_SREGS: {
4190 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4191 				    GFP_KERNEL_ACCOUNT);
4192 		r = -ENOMEM;
4193 		if (!kvm_sregs)
4194 			goto out;
4195 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4196 		if (r)
4197 			goto out;
4198 		r = -EFAULT;
4199 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4200 			goto out;
4201 		r = 0;
4202 		break;
4203 	}
4204 	case KVM_SET_SREGS: {
4205 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4206 		if (IS_ERR(kvm_sregs)) {
4207 			r = PTR_ERR(kvm_sregs);
4208 			kvm_sregs = NULL;
4209 			goto out;
4210 		}
4211 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4212 		break;
4213 	}
4214 	case KVM_GET_MP_STATE: {
4215 		struct kvm_mp_state mp_state;
4216 
4217 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4218 		if (r)
4219 			goto out;
4220 		r = -EFAULT;
4221 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4222 			goto out;
4223 		r = 0;
4224 		break;
4225 	}
4226 	case KVM_SET_MP_STATE: {
4227 		struct kvm_mp_state mp_state;
4228 
4229 		r = -EFAULT;
4230 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4231 			goto out;
4232 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4233 		break;
4234 	}
4235 	case KVM_TRANSLATE: {
4236 		struct kvm_translation tr;
4237 
4238 		r = -EFAULT;
4239 		if (copy_from_user(&tr, argp, sizeof(tr)))
4240 			goto out;
4241 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4242 		if (r)
4243 			goto out;
4244 		r = -EFAULT;
4245 		if (copy_to_user(argp, &tr, sizeof(tr)))
4246 			goto out;
4247 		r = 0;
4248 		break;
4249 	}
4250 	case KVM_SET_GUEST_DEBUG: {
4251 		struct kvm_guest_debug dbg;
4252 
4253 		r = -EFAULT;
4254 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4255 			goto out;
4256 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4257 		break;
4258 	}
4259 	case KVM_SET_SIGNAL_MASK: {
4260 		struct kvm_signal_mask __user *sigmask_arg = argp;
4261 		struct kvm_signal_mask kvm_sigmask;
4262 		sigset_t sigset, *p;
4263 
4264 		p = NULL;
4265 		if (argp) {
4266 			r = -EFAULT;
4267 			if (copy_from_user(&kvm_sigmask, argp,
4268 					   sizeof(kvm_sigmask)))
4269 				goto out;
4270 			r = -EINVAL;
4271 			if (kvm_sigmask.len != sizeof(sigset))
4272 				goto out;
4273 			r = -EFAULT;
4274 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4275 					   sizeof(sigset)))
4276 				goto out;
4277 			p = &sigset;
4278 		}
4279 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4280 		break;
4281 	}
4282 	case KVM_GET_FPU: {
4283 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4284 		r = -ENOMEM;
4285 		if (!fpu)
4286 			goto out;
4287 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4288 		if (r)
4289 			goto out;
4290 		r = -EFAULT;
4291 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4292 			goto out;
4293 		r = 0;
4294 		break;
4295 	}
4296 	case KVM_SET_FPU: {
4297 		fpu = memdup_user(argp, sizeof(*fpu));
4298 		if (IS_ERR(fpu)) {
4299 			r = PTR_ERR(fpu);
4300 			fpu = NULL;
4301 			goto out;
4302 		}
4303 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4304 		break;
4305 	}
4306 	case KVM_GET_STATS_FD: {
4307 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4308 		break;
4309 	}
4310 	default:
4311 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4312 	}
4313 out:
4314 	mutex_unlock(&vcpu->mutex);
4315 	kfree(fpu);
4316 	kfree(kvm_sregs);
4317 	return r;
4318 }
4319 
4320 #ifdef CONFIG_KVM_COMPAT
4321 static long kvm_vcpu_compat_ioctl(struct file *filp,
4322 				  unsigned int ioctl, unsigned long arg)
4323 {
4324 	struct kvm_vcpu *vcpu = filp->private_data;
4325 	void __user *argp = compat_ptr(arg);
4326 	int r;
4327 
4328 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4329 		return -EIO;
4330 
4331 	switch (ioctl) {
4332 	case KVM_SET_SIGNAL_MASK: {
4333 		struct kvm_signal_mask __user *sigmask_arg = argp;
4334 		struct kvm_signal_mask kvm_sigmask;
4335 		sigset_t sigset;
4336 
4337 		if (argp) {
4338 			r = -EFAULT;
4339 			if (copy_from_user(&kvm_sigmask, argp,
4340 					   sizeof(kvm_sigmask)))
4341 				goto out;
4342 			r = -EINVAL;
4343 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4344 				goto out;
4345 			r = -EFAULT;
4346 			if (get_compat_sigset(&sigset,
4347 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4348 				goto out;
4349 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4350 		} else
4351 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4352 		break;
4353 	}
4354 	default:
4355 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4356 	}
4357 
4358 out:
4359 	return r;
4360 }
4361 #endif
4362 
4363 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4364 {
4365 	struct kvm_device *dev = filp->private_data;
4366 
4367 	if (dev->ops->mmap)
4368 		return dev->ops->mmap(dev, vma);
4369 
4370 	return -ENODEV;
4371 }
4372 
4373 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4374 				 int (*accessor)(struct kvm_device *dev,
4375 						 struct kvm_device_attr *attr),
4376 				 unsigned long arg)
4377 {
4378 	struct kvm_device_attr attr;
4379 
4380 	if (!accessor)
4381 		return -EPERM;
4382 
4383 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4384 		return -EFAULT;
4385 
4386 	return accessor(dev, &attr);
4387 }
4388 
4389 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4390 			     unsigned long arg)
4391 {
4392 	struct kvm_device *dev = filp->private_data;
4393 
4394 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4395 		return -EIO;
4396 
4397 	switch (ioctl) {
4398 	case KVM_SET_DEVICE_ATTR:
4399 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4400 	case KVM_GET_DEVICE_ATTR:
4401 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4402 	case KVM_HAS_DEVICE_ATTR:
4403 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4404 	default:
4405 		if (dev->ops->ioctl)
4406 			return dev->ops->ioctl(dev, ioctl, arg);
4407 
4408 		return -ENOTTY;
4409 	}
4410 }
4411 
4412 static int kvm_device_release(struct inode *inode, struct file *filp)
4413 {
4414 	struct kvm_device *dev = filp->private_data;
4415 	struct kvm *kvm = dev->kvm;
4416 
4417 	if (dev->ops->release) {
4418 		mutex_lock(&kvm->lock);
4419 		list_del(&dev->vm_node);
4420 		dev->ops->release(dev);
4421 		mutex_unlock(&kvm->lock);
4422 	}
4423 
4424 	kvm_put_kvm(kvm);
4425 	return 0;
4426 }
4427 
4428 static struct file_operations kvm_device_fops = {
4429 	.unlocked_ioctl = kvm_device_ioctl,
4430 	.release = kvm_device_release,
4431 	KVM_COMPAT(kvm_device_ioctl),
4432 	.mmap = kvm_device_mmap,
4433 };
4434 
4435 struct kvm_device *kvm_device_from_filp(struct file *filp)
4436 {
4437 	if (filp->f_op != &kvm_device_fops)
4438 		return NULL;
4439 
4440 	return filp->private_data;
4441 }
4442 
4443 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4444 #ifdef CONFIG_KVM_MPIC
4445 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4446 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4447 #endif
4448 };
4449 
4450 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4451 {
4452 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4453 		return -ENOSPC;
4454 
4455 	if (kvm_device_ops_table[type] != NULL)
4456 		return -EEXIST;
4457 
4458 	kvm_device_ops_table[type] = ops;
4459 	return 0;
4460 }
4461 
4462 void kvm_unregister_device_ops(u32 type)
4463 {
4464 	if (kvm_device_ops_table[type] != NULL)
4465 		kvm_device_ops_table[type] = NULL;
4466 }
4467 
4468 static int kvm_ioctl_create_device(struct kvm *kvm,
4469 				   struct kvm_create_device *cd)
4470 {
4471 	const struct kvm_device_ops *ops;
4472 	struct kvm_device *dev;
4473 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4474 	int type;
4475 	int ret;
4476 
4477 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4478 		return -ENODEV;
4479 
4480 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4481 	ops = kvm_device_ops_table[type];
4482 	if (ops == NULL)
4483 		return -ENODEV;
4484 
4485 	if (test)
4486 		return 0;
4487 
4488 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4489 	if (!dev)
4490 		return -ENOMEM;
4491 
4492 	dev->ops = ops;
4493 	dev->kvm = kvm;
4494 
4495 	mutex_lock(&kvm->lock);
4496 	ret = ops->create(dev, type);
4497 	if (ret < 0) {
4498 		mutex_unlock(&kvm->lock);
4499 		kfree(dev);
4500 		return ret;
4501 	}
4502 	list_add(&dev->vm_node, &kvm->devices);
4503 	mutex_unlock(&kvm->lock);
4504 
4505 	if (ops->init)
4506 		ops->init(dev);
4507 
4508 	kvm_get_kvm(kvm);
4509 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4510 	if (ret < 0) {
4511 		kvm_put_kvm_no_destroy(kvm);
4512 		mutex_lock(&kvm->lock);
4513 		list_del(&dev->vm_node);
4514 		if (ops->release)
4515 			ops->release(dev);
4516 		mutex_unlock(&kvm->lock);
4517 		if (ops->destroy)
4518 			ops->destroy(dev);
4519 		return ret;
4520 	}
4521 
4522 	cd->fd = ret;
4523 	return 0;
4524 }
4525 
4526 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4527 {
4528 	switch (arg) {
4529 	case KVM_CAP_USER_MEMORY:
4530 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4531 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4532 	case KVM_CAP_INTERNAL_ERROR_DATA:
4533 #ifdef CONFIG_HAVE_KVM_MSI
4534 	case KVM_CAP_SIGNAL_MSI:
4535 #endif
4536 #ifdef CONFIG_HAVE_KVM_IRQFD
4537 	case KVM_CAP_IRQFD:
4538 #endif
4539 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4540 	case KVM_CAP_CHECK_EXTENSION_VM:
4541 	case KVM_CAP_ENABLE_CAP_VM:
4542 	case KVM_CAP_HALT_POLL:
4543 		return 1;
4544 #ifdef CONFIG_KVM_MMIO
4545 	case KVM_CAP_COALESCED_MMIO:
4546 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4547 	case KVM_CAP_COALESCED_PIO:
4548 		return 1;
4549 #endif
4550 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4551 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4552 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4553 #endif
4554 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4555 	case KVM_CAP_IRQ_ROUTING:
4556 		return KVM_MAX_IRQ_ROUTES;
4557 #endif
4558 #if KVM_ADDRESS_SPACE_NUM > 1
4559 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4560 		return KVM_ADDRESS_SPACE_NUM;
4561 #endif
4562 	case KVM_CAP_NR_MEMSLOTS:
4563 		return KVM_USER_MEM_SLOTS;
4564 	case KVM_CAP_DIRTY_LOG_RING:
4565 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4566 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4567 #else
4568 		return 0;
4569 #endif
4570 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4571 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4572 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4573 #else
4574 		return 0;
4575 #endif
4576 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4577 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4578 #endif
4579 	case KVM_CAP_BINARY_STATS_FD:
4580 	case KVM_CAP_SYSTEM_EVENT_DATA:
4581 		return 1;
4582 	default:
4583 		break;
4584 	}
4585 	return kvm_vm_ioctl_check_extension(kvm, arg);
4586 }
4587 
4588 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4589 {
4590 	int r;
4591 
4592 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4593 		return -EINVAL;
4594 
4595 	/* the size should be power of 2 */
4596 	if (!size || (size & (size - 1)))
4597 		return -EINVAL;
4598 
4599 	/* Should be bigger to keep the reserved entries, or a page */
4600 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4601 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4602 		return -EINVAL;
4603 
4604 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4605 	    sizeof(struct kvm_dirty_gfn))
4606 		return -E2BIG;
4607 
4608 	/* We only allow it to set once */
4609 	if (kvm->dirty_ring_size)
4610 		return -EINVAL;
4611 
4612 	mutex_lock(&kvm->lock);
4613 
4614 	if (kvm->created_vcpus) {
4615 		/* We don't allow to change this value after vcpu created */
4616 		r = -EINVAL;
4617 	} else {
4618 		kvm->dirty_ring_size = size;
4619 		r = 0;
4620 	}
4621 
4622 	mutex_unlock(&kvm->lock);
4623 	return r;
4624 }
4625 
4626 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4627 {
4628 	unsigned long i;
4629 	struct kvm_vcpu *vcpu;
4630 	int cleared = 0;
4631 
4632 	if (!kvm->dirty_ring_size)
4633 		return -EINVAL;
4634 
4635 	mutex_lock(&kvm->slots_lock);
4636 
4637 	kvm_for_each_vcpu(i, vcpu, kvm)
4638 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4639 
4640 	mutex_unlock(&kvm->slots_lock);
4641 
4642 	if (cleared)
4643 		kvm_flush_remote_tlbs(kvm);
4644 
4645 	return cleared;
4646 }
4647 
4648 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4649 						  struct kvm_enable_cap *cap)
4650 {
4651 	return -EINVAL;
4652 }
4653 
4654 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4655 {
4656 	int i;
4657 
4658 	lockdep_assert_held(&kvm->slots_lock);
4659 
4660 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4661 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4662 			return false;
4663 	}
4664 
4665 	return true;
4666 }
4667 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4668 
4669 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4670 					   struct kvm_enable_cap *cap)
4671 {
4672 	switch (cap->cap) {
4673 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4674 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4675 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4676 
4677 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4678 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4679 
4680 		if (cap->flags || (cap->args[0] & ~allowed_options))
4681 			return -EINVAL;
4682 		kvm->manual_dirty_log_protect = cap->args[0];
4683 		return 0;
4684 	}
4685 #endif
4686 	case KVM_CAP_HALT_POLL: {
4687 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4688 			return -EINVAL;
4689 
4690 		kvm->max_halt_poll_ns = cap->args[0];
4691 
4692 		/*
4693 		 * Ensure kvm->override_halt_poll_ns does not become visible
4694 		 * before kvm->max_halt_poll_ns.
4695 		 *
4696 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4697 		 */
4698 		smp_wmb();
4699 		kvm->override_halt_poll_ns = true;
4700 
4701 		return 0;
4702 	}
4703 	case KVM_CAP_DIRTY_LOG_RING:
4704 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4705 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4706 			return -EINVAL;
4707 
4708 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4709 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4710 		int r = -EINVAL;
4711 
4712 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4713 		    !kvm->dirty_ring_size || cap->flags)
4714 			return r;
4715 
4716 		mutex_lock(&kvm->slots_lock);
4717 
4718 		/*
4719 		 * For simplicity, allow enabling ring+bitmap if and only if
4720 		 * there are no memslots, e.g. to ensure all memslots allocate
4721 		 * a bitmap after the capability is enabled.
4722 		 */
4723 		if (kvm_are_all_memslots_empty(kvm)) {
4724 			kvm->dirty_ring_with_bitmap = true;
4725 			r = 0;
4726 		}
4727 
4728 		mutex_unlock(&kvm->slots_lock);
4729 
4730 		return r;
4731 	}
4732 	default:
4733 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4734 	}
4735 }
4736 
4737 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4738 			      size_t size, loff_t *offset)
4739 {
4740 	struct kvm *kvm = file->private_data;
4741 
4742 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4743 				&kvm_vm_stats_desc[0], &kvm->stat,
4744 				sizeof(kvm->stat), user_buffer, size, offset);
4745 }
4746 
4747 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4748 {
4749 	struct kvm *kvm = file->private_data;
4750 
4751 	kvm_put_kvm(kvm);
4752 	return 0;
4753 }
4754 
4755 static const struct file_operations kvm_vm_stats_fops = {
4756 	.owner = THIS_MODULE,
4757 	.read = kvm_vm_stats_read,
4758 	.release = kvm_vm_stats_release,
4759 	.llseek = noop_llseek,
4760 };
4761 
4762 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4763 {
4764 	int fd;
4765 	struct file *file;
4766 
4767 	fd = get_unused_fd_flags(O_CLOEXEC);
4768 	if (fd < 0)
4769 		return fd;
4770 
4771 	file = anon_inode_getfile("kvm-vm-stats",
4772 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4773 	if (IS_ERR(file)) {
4774 		put_unused_fd(fd);
4775 		return PTR_ERR(file);
4776 	}
4777 
4778 	kvm_get_kvm(kvm);
4779 
4780 	file->f_mode |= FMODE_PREAD;
4781 	fd_install(fd, file);
4782 
4783 	return fd;
4784 }
4785 
4786 static long kvm_vm_ioctl(struct file *filp,
4787 			   unsigned int ioctl, unsigned long arg)
4788 {
4789 	struct kvm *kvm = filp->private_data;
4790 	void __user *argp = (void __user *)arg;
4791 	int r;
4792 
4793 	if (kvm->mm != current->mm || kvm->vm_dead)
4794 		return -EIO;
4795 	switch (ioctl) {
4796 	case KVM_CREATE_VCPU:
4797 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4798 		break;
4799 	case KVM_ENABLE_CAP: {
4800 		struct kvm_enable_cap cap;
4801 
4802 		r = -EFAULT;
4803 		if (copy_from_user(&cap, argp, sizeof(cap)))
4804 			goto out;
4805 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4806 		break;
4807 	}
4808 	case KVM_SET_USER_MEMORY_REGION: {
4809 		struct kvm_userspace_memory_region kvm_userspace_mem;
4810 
4811 		r = -EFAULT;
4812 		if (copy_from_user(&kvm_userspace_mem, argp,
4813 						sizeof(kvm_userspace_mem)))
4814 			goto out;
4815 
4816 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4817 		break;
4818 	}
4819 	case KVM_GET_DIRTY_LOG: {
4820 		struct kvm_dirty_log log;
4821 
4822 		r = -EFAULT;
4823 		if (copy_from_user(&log, argp, sizeof(log)))
4824 			goto out;
4825 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4826 		break;
4827 	}
4828 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4829 	case KVM_CLEAR_DIRTY_LOG: {
4830 		struct kvm_clear_dirty_log log;
4831 
4832 		r = -EFAULT;
4833 		if (copy_from_user(&log, argp, sizeof(log)))
4834 			goto out;
4835 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4836 		break;
4837 	}
4838 #endif
4839 #ifdef CONFIG_KVM_MMIO
4840 	case KVM_REGISTER_COALESCED_MMIO: {
4841 		struct kvm_coalesced_mmio_zone zone;
4842 
4843 		r = -EFAULT;
4844 		if (copy_from_user(&zone, argp, sizeof(zone)))
4845 			goto out;
4846 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4847 		break;
4848 	}
4849 	case KVM_UNREGISTER_COALESCED_MMIO: {
4850 		struct kvm_coalesced_mmio_zone zone;
4851 
4852 		r = -EFAULT;
4853 		if (copy_from_user(&zone, argp, sizeof(zone)))
4854 			goto out;
4855 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4856 		break;
4857 	}
4858 #endif
4859 	case KVM_IRQFD: {
4860 		struct kvm_irqfd data;
4861 
4862 		r = -EFAULT;
4863 		if (copy_from_user(&data, argp, sizeof(data)))
4864 			goto out;
4865 		r = kvm_irqfd(kvm, &data);
4866 		break;
4867 	}
4868 	case KVM_IOEVENTFD: {
4869 		struct kvm_ioeventfd data;
4870 
4871 		r = -EFAULT;
4872 		if (copy_from_user(&data, argp, sizeof(data)))
4873 			goto out;
4874 		r = kvm_ioeventfd(kvm, &data);
4875 		break;
4876 	}
4877 #ifdef CONFIG_HAVE_KVM_MSI
4878 	case KVM_SIGNAL_MSI: {
4879 		struct kvm_msi msi;
4880 
4881 		r = -EFAULT;
4882 		if (copy_from_user(&msi, argp, sizeof(msi)))
4883 			goto out;
4884 		r = kvm_send_userspace_msi(kvm, &msi);
4885 		break;
4886 	}
4887 #endif
4888 #ifdef __KVM_HAVE_IRQ_LINE
4889 	case KVM_IRQ_LINE_STATUS:
4890 	case KVM_IRQ_LINE: {
4891 		struct kvm_irq_level irq_event;
4892 
4893 		r = -EFAULT;
4894 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4895 			goto out;
4896 
4897 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4898 					ioctl == KVM_IRQ_LINE_STATUS);
4899 		if (r)
4900 			goto out;
4901 
4902 		r = -EFAULT;
4903 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4904 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4905 				goto out;
4906 		}
4907 
4908 		r = 0;
4909 		break;
4910 	}
4911 #endif
4912 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4913 	case KVM_SET_GSI_ROUTING: {
4914 		struct kvm_irq_routing routing;
4915 		struct kvm_irq_routing __user *urouting;
4916 		struct kvm_irq_routing_entry *entries = NULL;
4917 
4918 		r = -EFAULT;
4919 		if (copy_from_user(&routing, argp, sizeof(routing)))
4920 			goto out;
4921 		r = -EINVAL;
4922 		if (!kvm_arch_can_set_irq_routing(kvm))
4923 			goto out;
4924 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4925 			goto out;
4926 		if (routing.flags)
4927 			goto out;
4928 		if (routing.nr) {
4929 			urouting = argp;
4930 			entries = vmemdup_user(urouting->entries,
4931 					       array_size(sizeof(*entries),
4932 							  routing.nr));
4933 			if (IS_ERR(entries)) {
4934 				r = PTR_ERR(entries);
4935 				goto out;
4936 			}
4937 		}
4938 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4939 					routing.flags);
4940 		kvfree(entries);
4941 		break;
4942 	}
4943 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4944 	case KVM_CREATE_DEVICE: {
4945 		struct kvm_create_device cd;
4946 
4947 		r = -EFAULT;
4948 		if (copy_from_user(&cd, argp, sizeof(cd)))
4949 			goto out;
4950 
4951 		r = kvm_ioctl_create_device(kvm, &cd);
4952 		if (r)
4953 			goto out;
4954 
4955 		r = -EFAULT;
4956 		if (copy_to_user(argp, &cd, sizeof(cd)))
4957 			goto out;
4958 
4959 		r = 0;
4960 		break;
4961 	}
4962 	case KVM_CHECK_EXTENSION:
4963 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4964 		break;
4965 	case KVM_RESET_DIRTY_RINGS:
4966 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4967 		break;
4968 	case KVM_GET_STATS_FD:
4969 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4970 		break;
4971 	default:
4972 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4973 	}
4974 out:
4975 	return r;
4976 }
4977 
4978 #ifdef CONFIG_KVM_COMPAT
4979 struct compat_kvm_dirty_log {
4980 	__u32 slot;
4981 	__u32 padding1;
4982 	union {
4983 		compat_uptr_t dirty_bitmap; /* one bit per page */
4984 		__u64 padding2;
4985 	};
4986 };
4987 
4988 struct compat_kvm_clear_dirty_log {
4989 	__u32 slot;
4990 	__u32 num_pages;
4991 	__u64 first_page;
4992 	union {
4993 		compat_uptr_t dirty_bitmap; /* one bit per page */
4994 		__u64 padding2;
4995 	};
4996 };
4997 
4998 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4999 				     unsigned long arg)
5000 {
5001 	return -ENOTTY;
5002 }
5003 
5004 static long kvm_vm_compat_ioctl(struct file *filp,
5005 			   unsigned int ioctl, unsigned long arg)
5006 {
5007 	struct kvm *kvm = filp->private_data;
5008 	int r;
5009 
5010 	if (kvm->mm != current->mm || kvm->vm_dead)
5011 		return -EIO;
5012 
5013 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5014 	if (r != -ENOTTY)
5015 		return r;
5016 
5017 	switch (ioctl) {
5018 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5019 	case KVM_CLEAR_DIRTY_LOG: {
5020 		struct compat_kvm_clear_dirty_log compat_log;
5021 		struct kvm_clear_dirty_log log;
5022 
5023 		if (copy_from_user(&compat_log, (void __user *)arg,
5024 				   sizeof(compat_log)))
5025 			return -EFAULT;
5026 		log.slot	 = compat_log.slot;
5027 		log.num_pages	 = compat_log.num_pages;
5028 		log.first_page	 = compat_log.first_page;
5029 		log.padding2	 = compat_log.padding2;
5030 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5031 
5032 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5033 		break;
5034 	}
5035 #endif
5036 	case KVM_GET_DIRTY_LOG: {
5037 		struct compat_kvm_dirty_log compat_log;
5038 		struct kvm_dirty_log log;
5039 
5040 		if (copy_from_user(&compat_log, (void __user *)arg,
5041 				   sizeof(compat_log)))
5042 			return -EFAULT;
5043 		log.slot	 = compat_log.slot;
5044 		log.padding1	 = compat_log.padding1;
5045 		log.padding2	 = compat_log.padding2;
5046 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5047 
5048 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5049 		break;
5050 	}
5051 	default:
5052 		r = kvm_vm_ioctl(filp, ioctl, arg);
5053 	}
5054 	return r;
5055 }
5056 #endif
5057 
5058 static struct file_operations kvm_vm_fops = {
5059 	.release        = kvm_vm_release,
5060 	.unlocked_ioctl = kvm_vm_ioctl,
5061 	.llseek		= noop_llseek,
5062 	KVM_COMPAT(kvm_vm_compat_ioctl),
5063 };
5064 
5065 bool file_is_kvm(struct file *file)
5066 {
5067 	return file && file->f_op == &kvm_vm_fops;
5068 }
5069 EXPORT_SYMBOL_GPL(file_is_kvm);
5070 
5071 static int kvm_dev_ioctl_create_vm(unsigned long type)
5072 {
5073 	char fdname[ITOA_MAX_LEN + 1];
5074 	int r, fd;
5075 	struct kvm *kvm;
5076 	struct file *file;
5077 
5078 	fd = get_unused_fd_flags(O_CLOEXEC);
5079 	if (fd < 0)
5080 		return fd;
5081 
5082 	snprintf(fdname, sizeof(fdname), "%d", fd);
5083 
5084 	kvm = kvm_create_vm(type, fdname);
5085 	if (IS_ERR(kvm)) {
5086 		r = PTR_ERR(kvm);
5087 		goto put_fd;
5088 	}
5089 
5090 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5091 	if (IS_ERR(file)) {
5092 		r = PTR_ERR(file);
5093 		goto put_kvm;
5094 	}
5095 
5096 	/*
5097 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5098 	 * already set, with ->release() being kvm_vm_release().  In error
5099 	 * cases it will be called by the final fput(file) and will take
5100 	 * care of doing kvm_put_kvm(kvm).
5101 	 */
5102 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5103 
5104 	fd_install(fd, file);
5105 	return fd;
5106 
5107 put_kvm:
5108 	kvm_put_kvm(kvm);
5109 put_fd:
5110 	put_unused_fd(fd);
5111 	return r;
5112 }
5113 
5114 static long kvm_dev_ioctl(struct file *filp,
5115 			  unsigned int ioctl, unsigned long arg)
5116 {
5117 	int r = -EINVAL;
5118 
5119 	switch (ioctl) {
5120 	case KVM_GET_API_VERSION:
5121 		if (arg)
5122 			goto out;
5123 		r = KVM_API_VERSION;
5124 		break;
5125 	case KVM_CREATE_VM:
5126 		r = kvm_dev_ioctl_create_vm(arg);
5127 		break;
5128 	case KVM_CHECK_EXTENSION:
5129 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5130 		break;
5131 	case KVM_GET_VCPU_MMAP_SIZE:
5132 		if (arg)
5133 			goto out;
5134 		r = PAGE_SIZE;     /* struct kvm_run */
5135 #ifdef CONFIG_X86
5136 		r += PAGE_SIZE;    /* pio data page */
5137 #endif
5138 #ifdef CONFIG_KVM_MMIO
5139 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5140 #endif
5141 		break;
5142 	case KVM_TRACE_ENABLE:
5143 	case KVM_TRACE_PAUSE:
5144 	case KVM_TRACE_DISABLE:
5145 		r = -EOPNOTSUPP;
5146 		break;
5147 	default:
5148 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5149 	}
5150 out:
5151 	return r;
5152 }
5153 
5154 static struct file_operations kvm_chardev_ops = {
5155 	.unlocked_ioctl = kvm_dev_ioctl,
5156 	.llseek		= noop_llseek,
5157 	KVM_COMPAT(kvm_dev_ioctl),
5158 };
5159 
5160 static struct miscdevice kvm_dev = {
5161 	KVM_MINOR,
5162 	"kvm",
5163 	&kvm_chardev_ops,
5164 };
5165 
5166 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5167 __visible bool kvm_rebooting;
5168 EXPORT_SYMBOL_GPL(kvm_rebooting);
5169 
5170 static DEFINE_PER_CPU(bool, hardware_enabled);
5171 static int kvm_usage_count;
5172 
5173 static int __hardware_enable_nolock(void)
5174 {
5175 	if (__this_cpu_read(hardware_enabled))
5176 		return 0;
5177 
5178 	if (kvm_arch_hardware_enable()) {
5179 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5180 			raw_smp_processor_id());
5181 		return -EIO;
5182 	}
5183 
5184 	__this_cpu_write(hardware_enabled, true);
5185 	return 0;
5186 }
5187 
5188 static void hardware_enable_nolock(void *failed)
5189 {
5190 	if (__hardware_enable_nolock())
5191 		atomic_inc(failed);
5192 }
5193 
5194 static int kvm_online_cpu(unsigned int cpu)
5195 {
5196 	int ret = 0;
5197 
5198 	/*
5199 	 * Abort the CPU online process if hardware virtualization cannot
5200 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5201 	 * errors when scheduled to this CPU.
5202 	 */
5203 	mutex_lock(&kvm_lock);
5204 	if (kvm_usage_count)
5205 		ret = __hardware_enable_nolock();
5206 	mutex_unlock(&kvm_lock);
5207 	return ret;
5208 }
5209 
5210 static void hardware_disable_nolock(void *junk)
5211 {
5212 	/*
5213 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5214 	 * hardware, not just CPUs that successfully enabled hardware!
5215 	 */
5216 	if (!__this_cpu_read(hardware_enabled))
5217 		return;
5218 
5219 	kvm_arch_hardware_disable();
5220 
5221 	__this_cpu_write(hardware_enabled, false);
5222 }
5223 
5224 static int kvm_offline_cpu(unsigned int cpu)
5225 {
5226 	mutex_lock(&kvm_lock);
5227 	if (kvm_usage_count)
5228 		hardware_disable_nolock(NULL);
5229 	mutex_unlock(&kvm_lock);
5230 	return 0;
5231 }
5232 
5233 static void hardware_disable_all_nolock(void)
5234 {
5235 	BUG_ON(!kvm_usage_count);
5236 
5237 	kvm_usage_count--;
5238 	if (!kvm_usage_count)
5239 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5240 }
5241 
5242 static void hardware_disable_all(void)
5243 {
5244 	cpus_read_lock();
5245 	mutex_lock(&kvm_lock);
5246 	hardware_disable_all_nolock();
5247 	mutex_unlock(&kvm_lock);
5248 	cpus_read_unlock();
5249 }
5250 
5251 static int hardware_enable_all(void)
5252 {
5253 	atomic_t failed = ATOMIC_INIT(0);
5254 	int r;
5255 
5256 	/*
5257 	 * Do not enable hardware virtualization if the system is going down.
5258 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5259 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5260 	 * after kvm_reboot() is called.  Note, this relies on system_state
5261 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5262 	 * hook instead of registering a dedicated reboot notifier (the latter
5263 	 * runs before system_state is updated).
5264 	 */
5265 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5266 	    system_state == SYSTEM_RESTART)
5267 		return -EBUSY;
5268 
5269 	/*
5270 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5271 	 * is called, and so on_each_cpu() between them includes the CPU that
5272 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5273 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5274 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5275 	 * enable hardware multiple times.
5276 	 */
5277 	cpus_read_lock();
5278 	mutex_lock(&kvm_lock);
5279 
5280 	r = 0;
5281 
5282 	kvm_usage_count++;
5283 	if (kvm_usage_count == 1) {
5284 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5285 
5286 		if (atomic_read(&failed)) {
5287 			hardware_disable_all_nolock();
5288 			r = -EBUSY;
5289 		}
5290 	}
5291 
5292 	mutex_unlock(&kvm_lock);
5293 	cpus_read_unlock();
5294 
5295 	return r;
5296 }
5297 
5298 static void kvm_shutdown(void)
5299 {
5300 	/*
5301 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5302 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5303 	 * that relevant errors and exceptions aren't entirely unexpected.
5304 	 * Some flavors of hardware virtualization need to be disabled before
5305 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5306 	 * on x86, virtualization can block INIT interrupts, which are used by
5307 	 * firmware to pull APs back under firmware control.  Note, this path
5308 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5309 	 * 100% comprehensive.
5310 	 */
5311 	pr_info("kvm: exiting hardware virtualization\n");
5312 	kvm_rebooting = true;
5313 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5314 }
5315 
5316 static int kvm_suspend(void)
5317 {
5318 	/*
5319 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5320 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5321 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5322 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5323 	 * can be preempted, but the task cannot be frozen until it has dropped
5324 	 * all locks (userspace tasks are frozen via a fake signal).
5325 	 */
5326 	lockdep_assert_not_held(&kvm_lock);
5327 	lockdep_assert_irqs_disabled();
5328 
5329 	if (kvm_usage_count)
5330 		hardware_disable_nolock(NULL);
5331 	return 0;
5332 }
5333 
5334 static void kvm_resume(void)
5335 {
5336 	lockdep_assert_not_held(&kvm_lock);
5337 	lockdep_assert_irqs_disabled();
5338 
5339 	if (kvm_usage_count)
5340 		WARN_ON_ONCE(__hardware_enable_nolock());
5341 }
5342 
5343 static struct syscore_ops kvm_syscore_ops = {
5344 	.suspend = kvm_suspend,
5345 	.resume = kvm_resume,
5346 	.shutdown = kvm_shutdown,
5347 };
5348 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5349 static int hardware_enable_all(void)
5350 {
5351 	return 0;
5352 }
5353 
5354 static void hardware_disable_all(void)
5355 {
5356 
5357 }
5358 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5359 
5360 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5361 {
5362 	if (dev->ops->destructor)
5363 		dev->ops->destructor(dev);
5364 }
5365 
5366 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5367 {
5368 	int i;
5369 
5370 	for (i = 0; i < bus->dev_count; i++) {
5371 		struct kvm_io_device *pos = bus->range[i].dev;
5372 
5373 		kvm_iodevice_destructor(pos);
5374 	}
5375 	kfree(bus);
5376 }
5377 
5378 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5379 				 const struct kvm_io_range *r2)
5380 {
5381 	gpa_t addr1 = r1->addr;
5382 	gpa_t addr2 = r2->addr;
5383 
5384 	if (addr1 < addr2)
5385 		return -1;
5386 
5387 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5388 	 * accept any overlapping write.  Any order is acceptable for
5389 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5390 	 * we process all of them.
5391 	 */
5392 	if (r2->len) {
5393 		addr1 += r1->len;
5394 		addr2 += r2->len;
5395 	}
5396 
5397 	if (addr1 > addr2)
5398 		return 1;
5399 
5400 	return 0;
5401 }
5402 
5403 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5404 {
5405 	return kvm_io_bus_cmp(p1, p2);
5406 }
5407 
5408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5409 			     gpa_t addr, int len)
5410 {
5411 	struct kvm_io_range *range, key;
5412 	int off;
5413 
5414 	key = (struct kvm_io_range) {
5415 		.addr = addr,
5416 		.len = len,
5417 	};
5418 
5419 	range = bsearch(&key, bus->range, bus->dev_count,
5420 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5421 	if (range == NULL)
5422 		return -ENOENT;
5423 
5424 	off = range - bus->range;
5425 
5426 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5427 		off--;
5428 
5429 	return off;
5430 }
5431 
5432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5433 			      struct kvm_io_range *range, const void *val)
5434 {
5435 	int idx;
5436 
5437 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5438 	if (idx < 0)
5439 		return -EOPNOTSUPP;
5440 
5441 	while (idx < bus->dev_count &&
5442 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5443 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5444 					range->len, val))
5445 			return idx;
5446 		idx++;
5447 	}
5448 
5449 	return -EOPNOTSUPP;
5450 }
5451 
5452 /* kvm_io_bus_write - called under kvm->slots_lock */
5453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5454 		     int len, const void *val)
5455 {
5456 	struct kvm_io_bus *bus;
5457 	struct kvm_io_range range;
5458 	int r;
5459 
5460 	range = (struct kvm_io_range) {
5461 		.addr = addr,
5462 		.len = len,
5463 	};
5464 
5465 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5466 	if (!bus)
5467 		return -ENOMEM;
5468 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5469 	return r < 0 ? r : 0;
5470 }
5471 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5472 
5473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5475 			    gpa_t addr, int len, const void *val, long cookie)
5476 {
5477 	struct kvm_io_bus *bus;
5478 	struct kvm_io_range range;
5479 
5480 	range = (struct kvm_io_range) {
5481 		.addr = addr,
5482 		.len = len,
5483 	};
5484 
5485 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5486 	if (!bus)
5487 		return -ENOMEM;
5488 
5489 	/* First try the device referenced by cookie. */
5490 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5491 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5492 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5493 					val))
5494 			return cookie;
5495 
5496 	/*
5497 	 * cookie contained garbage; fall back to search and return the
5498 	 * correct cookie value.
5499 	 */
5500 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5501 }
5502 
5503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5504 			     struct kvm_io_range *range, void *val)
5505 {
5506 	int idx;
5507 
5508 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5509 	if (idx < 0)
5510 		return -EOPNOTSUPP;
5511 
5512 	while (idx < bus->dev_count &&
5513 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5514 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5515 				       range->len, val))
5516 			return idx;
5517 		idx++;
5518 	}
5519 
5520 	return -EOPNOTSUPP;
5521 }
5522 
5523 /* kvm_io_bus_read - called under kvm->slots_lock */
5524 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5525 		    int len, void *val)
5526 {
5527 	struct kvm_io_bus *bus;
5528 	struct kvm_io_range range;
5529 	int r;
5530 
5531 	range = (struct kvm_io_range) {
5532 		.addr = addr,
5533 		.len = len,
5534 	};
5535 
5536 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5537 	if (!bus)
5538 		return -ENOMEM;
5539 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5540 	return r < 0 ? r : 0;
5541 }
5542 
5543 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5544 			    int len, struct kvm_io_device *dev)
5545 {
5546 	int i;
5547 	struct kvm_io_bus *new_bus, *bus;
5548 	struct kvm_io_range range;
5549 
5550 	lockdep_assert_held(&kvm->slots_lock);
5551 
5552 	bus = kvm_get_bus(kvm, bus_idx);
5553 	if (!bus)
5554 		return -ENOMEM;
5555 
5556 	/* exclude ioeventfd which is limited by maximum fd */
5557 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5558 		return -ENOSPC;
5559 
5560 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5561 			  GFP_KERNEL_ACCOUNT);
5562 	if (!new_bus)
5563 		return -ENOMEM;
5564 
5565 	range = (struct kvm_io_range) {
5566 		.addr = addr,
5567 		.len = len,
5568 		.dev = dev,
5569 	};
5570 
5571 	for (i = 0; i < bus->dev_count; i++)
5572 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5573 			break;
5574 
5575 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5576 	new_bus->dev_count++;
5577 	new_bus->range[i] = range;
5578 	memcpy(new_bus->range + i + 1, bus->range + i,
5579 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5580 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5581 	synchronize_srcu_expedited(&kvm->srcu);
5582 	kfree(bus);
5583 
5584 	return 0;
5585 }
5586 
5587 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5588 			      struct kvm_io_device *dev)
5589 {
5590 	int i;
5591 	struct kvm_io_bus *new_bus, *bus;
5592 
5593 	lockdep_assert_held(&kvm->slots_lock);
5594 
5595 	bus = kvm_get_bus(kvm, bus_idx);
5596 	if (!bus)
5597 		return 0;
5598 
5599 	for (i = 0; i < bus->dev_count; i++) {
5600 		if (bus->range[i].dev == dev) {
5601 			break;
5602 		}
5603 	}
5604 
5605 	if (i == bus->dev_count)
5606 		return 0;
5607 
5608 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5609 			  GFP_KERNEL_ACCOUNT);
5610 	if (new_bus) {
5611 		memcpy(new_bus, bus, struct_size(bus, range, i));
5612 		new_bus->dev_count--;
5613 		memcpy(new_bus->range + i, bus->range + i + 1,
5614 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5615 	}
5616 
5617 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5618 	synchronize_srcu_expedited(&kvm->srcu);
5619 
5620 	/*
5621 	 * If NULL bus is installed, destroy the old bus, including all the
5622 	 * attached devices. Otherwise, destroy the caller's device only.
5623 	 */
5624 	if (!new_bus) {
5625 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5626 		kvm_io_bus_destroy(bus);
5627 		return -ENOMEM;
5628 	}
5629 
5630 	kvm_iodevice_destructor(dev);
5631 	kfree(bus);
5632 	return 0;
5633 }
5634 
5635 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5636 					 gpa_t addr)
5637 {
5638 	struct kvm_io_bus *bus;
5639 	int dev_idx, srcu_idx;
5640 	struct kvm_io_device *iodev = NULL;
5641 
5642 	srcu_idx = srcu_read_lock(&kvm->srcu);
5643 
5644 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5645 	if (!bus)
5646 		goto out_unlock;
5647 
5648 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5649 	if (dev_idx < 0)
5650 		goto out_unlock;
5651 
5652 	iodev = bus->range[dev_idx].dev;
5653 
5654 out_unlock:
5655 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5656 
5657 	return iodev;
5658 }
5659 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5660 
5661 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5662 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5663 			   const char *fmt)
5664 {
5665 	int ret;
5666 	struct kvm_stat_data *stat_data = inode->i_private;
5667 
5668 	/*
5669 	 * The debugfs files are a reference to the kvm struct which
5670         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5671         * avoids the race between open and the removal of the debugfs directory.
5672 	 */
5673 	if (!kvm_get_kvm_safe(stat_data->kvm))
5674 		return -ENOENT;
5675 
5676 	ret = simple_attr_open(inode, file, get,
5677 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5678 			       ? set : NULL, fmt);
5679 	if (ret)
5680 		kvm_put_kvm(stat_data->kvm);
5681 
5682 	return ret;
5683 }
5684 
5685 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5686 {
5687 	struct kvm_stat_data *stat_data = inode->i_private;
5688 
5689 	simple_attr_release(inode, file);
5690 	kvm_put_kvm(stat_data->kvm);
5691 
5692 	return 0;
5693 }
5694 
5695 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5696 {
5697 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5698 
5699 	return 0;
5700 }
5701 
5702 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5703 {
5704 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5705 
5706 	return 0;
5707 }
5708 
5709 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5710 {
5711 	unsigned long i;
5712 	struct kvm_vcpu *vcpu;
5713 
5714 	*val = 0;
5715 
5716 	kvm_for_each_vcpu(i, vcpu, kvm)
5717 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5718 
5719 	return 0;
5720 }
5721 
5722 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5723 {
5724 	unsigned long i;
5725 	struct kvm_vcpu *vcpu;
5726 
5727 	kvm_for_each_vcpu(i, vcpu, kvm)
5728 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5729 
5730 	return 0;
5731 }
5732 
5733 static int kvm_stat_data_get(void *data, u64 *val)
5734 {
5735 	int r = -EFAULT;
5736 	struct kvm_stat_data *stat_data = data;
5737 
5738 	switch (stat_data->kind) {
5739 	case KVM_STAT_VM:
5740 		r = kvm_get_stat_per_vm(stat_data->kvm,
5741 					stat_data->desc->desc.offset, val);
5742 		break;
5743 	case KVM_STAT_VCPU:
5744 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5745 					  stat_data->desc->desc.offset, val);
5746 		break;
5747 	}
5748 
5749 	return r;
5750 }
5751 
5752 static int kvm_stat_data_clear(void *data, u64 val)
5753 {
5754 	int r = -EFAULT;
5755 	struct kvm_stat_data *stat_data = data;
5756 
5757 	if (val)
5758 		return -EINVAL;
5759 
5760 	switch (stat_data->kind) {
5761 	case KVM_STAT_VM:
5762 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5763 					  stat_data->desc->desc.offset);
5764 		break;
5765 	case KVM_STAT_VCPU:
5766 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5767 					    stat_data->desc->desc.offset);
5768 		break;
5769 	}
5770 
5771 	return r;
5772 }
5773 
5774 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5775 {
5776 	__simple_attr_check_format("%llu\n", 0ull);
5777 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5778 				kvm_stat_data_clear, "%llu\n");
5779 }
5780 
5781 static const struct file_operations stat_fops_per_vm = {
5782 	.owner = THIS_MODULE,
5783 	.open = kvm_stat_data_open,
5784 	.release = kvm_debugfs_release,
5785 	.read = simple_attr_read,
5786 	.write = simple_attr_write,
5787 	.llseek = no_llseek,
5788 };
5789 
5790 static int vm_stat_get(void *_offset, u64 *val)
5791 {
5792 	unsigned offset = (long)_offset;
5793 	struct kvm *kvm;
5794 	u64 tmp_val;
5795 
5796 	*val = 0;
5797 	mutex_lock(&kvm_lock);
5798 	list_for_each_entry(kvm, &vm_list, vm_list) {
5799 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5800 		*val += tmp_val;
5801 	}
5802 	mutex_unlock(&kvm_lock);
5803 	return 0;
5804 }
5805 
5806 static int vm_stat_clear(void *_offset, u64 val)
5807 {
5808 	unsigned offset = (long)_offset;
5809 	struct kvm *kvm;
5810 
5811 	if (val)
5812 		return -EINVAL;
5813 
5814 	mutex_lock(&kvm_lock);
5815 	list_for_each_entry(kvm, &vm_list, vm_list) {
5816 		kvm_clear_stat_per_vm(kvm, offset);
5817 	}
5818 	mutex_unlock(&kvm_lock);
5819 
5820 	return 0;
5821 }
5822 
5823 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5824 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5825 
5826 static int vcpu_stat_get(void *_offset, u64 *val)
5827 {
5828 	unsigned offset = (long)_offset;
5829 	struct kvm *kvm;
5830 	u64 tmp_val;
5831 
5832 	*val = 0;
5833 	mutex_lock(&kvm_lock);
5834 	list_for_each_entry(kvm, &vm_list, vm_list) {
5835 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5836 		*val += tmp_val;
5837 	}
5838 	mutex_unlock(&kvm_lock);
5839 	return 0;
5840 }
5841 
5842 static int vcpu_stat_clear(void *_offset, u64 val)
5843 {
5844 	unsigned offset = (long)_offset;
5845 	struct kvm *kvm;
5846 
5847 	if (val)
5848 		return -EINVAL;
5849 
5850 	mutex_lock(&kvm_lock);
5851 	list_for_each_entry(kvm, &vm_list, vm_list) {
5852 		kvm_clear_stat_per_vcpu(kvm, offset);
5853 	}
5854 	mutex_unlock(&kvm_lock);
5855 
5856 	return 0;
5857 }
5858 
5859 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5860 			"%llu\n");
5861 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5862 
5863 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5864 {
5865 	struct kobj_uevent_env *env;
5866 	unsigned long long created, active;
5867 
5868 	if (!kvm_dev.this_device || !kvm)
5869 		return;
5870 
5871 	mutex_lock(&kvm_lock);
5872 	if (type == KVM_EVENT_CREATE_VM) {
5873 		kvm_createvm_count++;
5874 		kvm_active_vms++;
5875 	} else if (type == KVM_EVENT_DESTROY_VM) {
5876 		kvm_active_vms--;
5877 	}
5878 	created = kvm_createvm_count;
5879 	active = kvm_active_vms;
5880 	mutex_unlock(&kvm_lock);
5881 
5882 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5883 	if (!env)
5884 		return;
5885 
5886 	add_uevent_var(env, "CREATED=%llu", created);
5887 	add_uevent_var(env, "COUNT=%llu", active);
5888 
5889 	if (type == KVM_EVENT_CREATE_VM) {
5890 		add_uevent_var(env, "EVENT=create");
5891 		kvm->userspace_pid = task_pid_nr(current);
5892 	} else if (type == KVM_EVENT_DESTROY_VM) {
5893 		add_uevent_var(env, "EVENT=destroy");
5894 	}
5895 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5896 
5897 	if (!IS_ERR(kvm->debugfs_dentry)) {
5898 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5899 
5900 		if (p) {
5901 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5902 			if (!IS_ERR(tmp))
5903 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5904 			kfree(p);
5905 		}
5906 	}
5907 	/* no need for checks, since we are adding at most only 5 keys */
5908 	env->envp[env->envp_idx++] = NULL;
5909 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5910 	kfree(env);
5911 }
5912 
5913 static void kvm_init_debug(void)
5914 {
5915 	const struct file_operations *fops;
5916 	const struct _kvm_stats_desc *pdesc;
5917 	int i;
5918 
5919 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5920 
5921 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5922 		pdesc = &kvm_vm_stats_desc[i];
5923 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5924 			fops = &vm_stat_fops;
5925 		else
5926 			fops = &vm_stat_readonly_fops;
5927 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5928 				kvm_debugfs_dir,
5929 				(void *)(long)pdesc->desc.offset, fops);
5930 	}
5931 
5932 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5933 		pdesc = &kvm_vcpu_stats_desc[i];
5934 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5935 			fops = &vcpu_stat_fops;
5936 		else
5937 			fops = &vcpu_stat_readonly_fops;
5938 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5939 				kvm_debugfs_dir,
5940 				(void *)(long)pdesc->desc.offset, fops);
5941 	}
5942 }
5943 
5944 static inline
5945 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5946 {
5947 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5948 }
5949 
5950 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5951 {
5952 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5953 
5954 	WRITE_ONCE(vcpu->preempted, false);
5955 	WRITE_ONCE(vcpu->ready, false);
5956 
5957 	__this_cpu_write(kvm_running_vcpu, vcpu);
5958 	kvm_arch_sched_in(vcpu, cpu);
5959 	kvm_arch_vcpu_load(vcpu, cpu);
5960 }
5961 
5962 static void kvm_sched_out(struct preempt_notifier *pn,
5963 			  struct task_struct *next)
5964 {
5965 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5966 
5967 	if (current->on_rq) {
5968 		WRITE_ONCE(vcpu->preempted, true);
5969 		WRITE_ONCE(vcpu->ready, true);
5970 	}
5971 	kvm_arch_vcpu_put(vcpu);
5972 	__this_cpu_write(kvm_running_vcpu, NULL);
5973 }
5974 
5975 /**
5976  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5977  *
5978  * We can disable preemption locally around accessing the per-CPU variable,
5979  * and use the resolved vcpu pointer after enabling preemption again,
5980  * because even if the current thread is migrated to another CPU, reading
5981  * the per-CPU value later will give us the same value as we update the
5982  * per-CPU variable in the preempt notifier handlers.
5983  */
5984 struct kvm_vcpu *kvm_get_running_vcpu(void)
5985 {
5986 	struct kvm_vcpu *vcpu;
5987 
5988 	preempt_disable();
5989 	vcpu = __this_cpu_read(kvm_running_vcpu);
5990 	preempt_enable();
5991 
5992 	return vcpu;
5993 }
5994 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5995 
5996 /**
5997  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5998  */
5999 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6000 {
6001         return &kvm_running_vcpu;
6002 }
6003 
6004 #ifdef CONFIG_GUEST_PERF_EVENTS
6005 static unsigned int kvm_guest_state(void)
6006 {
6007 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6008 	unsigned int state;
6009 
6010 	if (!kvm_arch_pmi_in_guest(vcpu))
6011 		return 0;
6012 
6013 	state = PERF_GUEST_ACTIVE;
6014 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6015 		state |= PERF_GUEST_USER;
6016 
6017 	return state;
6018 }
6019 
6020 static unsigned long kvm_guest_get_ip(void)
6021 {
6022 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6023 
6024 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6025 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6026 		return 0;
6027 
6028 	return kvm_arch_vcpu_get_ip(vcpu);
6029 }
6030 
6031 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6032 	.state			= kvm_guest_state,
6033 	.get_ip			= kvm_guest_get_ip,
6034 	.handle_intel_pt_intr	= NULL,
6035 };
6036 
6037 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6038 {
6039 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6040 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6041 }
6042 void kvm_unregister_perf_callbacks(void)
6043 {
6044 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6045 }
6046 #endif
6047 
6048 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6049 {
6050 	int r;
6051 	int cpu;
6052 
6053 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6054 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6055 				      kvm_online_cpu, kvm_offline_cpu);
6056 	if (r)
6057 		return r;
6058 
6059 	register_syscore_ops(&kvm_syscore_ops);
6060 #endif
6061 
6062 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6063 	if (!vcpu_align)
6064 		vcpu_align = __alignof__(struct kvm_vcpu);
6065 	kvm_vcpu_cache =
6066 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6067 					   SLAB_ACCOUNT,
6068 					   offsetof(struct kvm_vcpu, arch),
6069 					   offsetofend(struct kvm_vcpu, stats_id)
6070 					   - offsetof(struct kvm_vcpu, arch),
6071 					   NULL);
6072 	if (!kvm_vcpu_cache) {
6073 		r = -ENOMEM;
6074 		goto err_vcpu_cache;
6075 	}
6076 
6077 	for_each_possible_cpu(cpu) {
6078 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6079 					    GFP_KERNEL, cpu_to_node(cpu))) {
6080 			r = -ENOMEM;
6081 			goto err_cpu_kick_mask;
6082 		}
6083 	}
6084 
6085 	r = kvm_irqfd_init();
6086 	if (r)
6087 		goto err_irqfd;
6088 
6089 	r = kvm_async_pf_init();
6090 	if (r)
6091 		goto err_async_pf;
6092 
6093 	kvm_chardev_ops.owner = module;
6094 	kvm_vm_fops.owner = module;
6095 	kvm_vcpu_fops.owner = module;
6096 	kvm_device_fops.owner = module;
6097 
6098 	kvm_preempt_ops.sched_in = kvm_sched_in;
6099 	kvm_preempt_ops.sched_out = kvm_sched_out;
6100 
6101 	kvm_init_debug();
6102 
6103 	r = kvm_vfio_ops_init();
6104 	if (WARN_ON_ONCE(r))
6105 		goto err_vfio;
6106 
6107 	/*
6108 	 * Registration _must_ be the very last thing done, as this exposes
6109 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6110 	 */
6111 	r = misc_register(&kvm_dev);
6112 	if (r) {
6113 		pr_err("kvm: misc device register failed\n");
6114 		goto err_register;
6115 	}
6116 
6117 	return 0;
6118 
6119 err_register:
6120 	kvm_vfio_ops_exit();
6121 err_vfio:
6122 	kvm_async_pf_deinit();
6123 err_async_pf:
6124 	kvm_irqfd_exit();
6125 err_irqfd:
6126 err_cpu_kick_mask:
6127 	for_each_possible_cpu(cpu)
6128 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6129 	kmem_cache_destroy(kvm_vcpu_cache);
6130 err_vcpu_cache:
6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6132 	unregister_syscore_ops(&kvm_syscore_ops);
6133 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6134 #endif
6135 	return r;
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_init);
6138 
6139 void kvm_exit(void)
6140 {
6141 	int cpu;
6142 
6143 	/*
6144 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6145 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6146 	 * to KVM while the module is being stopped.
6147 	 */
6148 	misc_deregister(&kvm_dev);
6149 
6150 	debugfs_remove_recursive(kvm_debugfs_dir);
6151 	for_each_possible_cpu(cpu)
6152 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6153 	kmem_cache_destroy(kvm_vcpu_cache);
6154 	kvm_vfio_ops_exit();
6155 	kvm_async_pf_deinit();
6156 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6157 	unregister_syscore_ops(&kvm_syscore_ops);
6158 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6159 #endif
6160 	kvm_irqfd_exit();
6161 }
6162 EXPORT_SYMBOL_GPL(kvm_exit);
6163 
6164 struct kvm_vm_worker_thread_context {
6165 	struct kvm *kvm;
6166 	struct task_struct *parent;
6167 	struct completion init_done;
6168 	kvm_vm_thread_fn_t thread_fn;
6169 	uintptr_t data;
6170 	int err;
6171 };
6172 
6173 static int kvm_vm_worker_thread(void *context)
6174 {
6175 	/*
6176 	 * The init_context is allocated on the stack of the parent thread, so
6177 	 * we have to locally copy anything that is needed beyond initialization
6178 	 */
6179 	struct kvm_vm_worker_thread_context *init_context = context;
6180 	struct task_struct *parent;
6181 	struct kvm *kvm = init_context->kvm;
6182 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6183 	uintptr_t data = init_context->data;
6184 	int err;
6185 
6186 	err = kthread_park(current);
6187 	/* kthread_park(current) is never supposed to return an error */
6188 	WARN_ON(err != 0);
6189 	if (err)
6190 		goto init_complete;
6191 
6192 	err = cgroup_attach_task_all(init_context->parent, current);
6193 	if (err) {
6194 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6195 			__func__, err);
6196 		goto init_complete;
6197 	}
6198 
6199 	set_user_nice(current, task_nice(init_context->parent));
6200 
6201 init_complete:
6202 	init_context->err = err;
6203 	complete(&init_context->init_done);
6204 	init_context = NULL;
6205 
6206 	if (err)
6207 		goto out;
6208 
6209 	/* Wait to be woken up by the spawner before proceeding. */
6210 	kthread_parkme();
6211 
6212 	if (!kthread_should_stop())
6213 		err = thread_fn(kvm, data);
6214 
6215 out:
6216 	/*
6217 	 * Move kthread back to its original cgroup to prevent it lingering in
6218 	 * the cgroup of the VM process, after the latter finishes its
6219 	 * execution.
6220 	 *
6221 	 * kthread_stop() waits on the 'exited' completion condition which is
6222 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6223 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6224 	 * called after the exit_mm(). This causes the kthread_stop() to return
6225 	 * before the kthread actually quits the cgroup.
6226 	 */
6227 	rcu_read_lock();
6228 	parent = rcu_dereference(current->real_parent);
6229 	get_task_struct(parent);
6230 	rcu_read_unlock();
6231 	cgroup_attach_task_all(parent, current);
6232 	put_task_struct(parent);
6233 
6234 	return err;
6235 }
6236 
6237 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6238 				uintptr_t data, const char *name,
6239 				struct task_struct **thread_ptr)
6240 {
6241 	struct kvm_vm_worker_thread_context init_context = {};
6242 	struct task_struct *thread;
6243 
6244 	*thread_ptr = NULL;
6245 	init_context.kvm = kvm;
6246 	init_context.parent = current;
6247 	init_context.thread_fn = thread_fn;
6248 	init_context.data = data;
6249 	init_completion(&init_context.init_done);
6250 
6251 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6252 			     "%s-%d", name, task_pid_nr(current));
6253 	if (IS_ERR(thread))
6254 		return PTR_ERR(thread);
6255 
6256 	/* kthread_run is never supposed to return NULL */
6257 	WARN_ON(thread == NULL);
6258 
6259 	wait_for_completion(&init_context.init_done);
6260 
6261 	if (!init_context.err)
6262 		*thread_ptr = thread;
6263 
6264 	return init_context.err;
6265 }
6266