1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_page(struct page *page) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (WARN_ON_ONCE(!page_count(page))) 180 return false; 181 182 return is_zone_device_page(page); 183 } 184 185 /* 186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 188 * is likely incomplete, it has been compiled purely through people wanting to 189 * back guest with a certain type of memory and encountering issues. 190 */ 191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 192 { 193 struct page *page; 194 195 if (!pfn_valid(pfn)) 196 return NULL; 197 198 page = pfn_to_page(pfn); 199 if (!PageReserved(page)) 200 return page; 201 202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 203 if (is_zero_pfn(pfn)) 204 return page; 205 206 /* 207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 208 * perspective they are "normal" pages, albeit with slightly different 209 * usage rules. 210 */ 211 if (kvm_is_zone_device_page(page)) 212 return page; 213 214 return NULL; 215 } 216 217 /* 218 * Switches to specified vcpu, until a matching vcpu_put() 219 */ 220 void vcpu_load(struct kvm_vcpu *vcpu) 221 { 222 int cpu = get_cpu(); 223 224 __this_cpu_write(kvm_running_vcpu, vcpu); 225 preempt_notifier_register(&vcpu->preempt_notifier); 226 kvm_arch_vcpu_load(vcpu, cpu); 227 put_cpu(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_load); 230 231 void vcpu_put(struct kvm_vcpu *vcpu) 232 { 233 preempt_disable(); 234 kvm_arch_vcpu_put(vcpu); 235 preempt_notifier_unregister(&vcpu->preempt_notifier); 236 __this_cpu_write(kvm_running_vcpu, NULL); 237 preempt_enable(); 238 } 239 EXPORT_SYMBOL_GPL(vcpu_put); 240 241 /* TODO: merge with kvm_arch_vcpu_should_kick */ 242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 243 { 244 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 245 246 /* 247 * We need to wait for the VCPU to reenable interrupts and get out of 248 * READING_SHADOW_PAGE_TABLES mode. 249 */ 250 if (req & KVM_REQUEST_WAIT) 251 return mode != OUTSIDE_GUEST_MODE; 252 253 /* 254 * Need to kick a running VCPU, but otherwise there is nothing to do. 255 */ 256 return mode == IN_GUEST_MODE; 257 } 258 259 static void ack_kick(void *_completed) 260 { 261 } 262 263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 264 { 265 if (cpumask_empty(cpus)) 266 return false; 267 268 smp_call_function_many(cpus, ack_kick, NULL, wait); 269 return true; 270 } 271 272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 273 struct cpumask *tmp, int current_cpu) 274 { 275 int cpu; 276 277 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 278 __kvm_make_request(req, vcpu); 279 280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 281 return; 282 283 /* 284 * Note, the vCPU could get migrated to a different pCPU at any point 285 * after kvm_request_needs_ipi(), which could result in sending an IPI 286 * to the previous pCPU. But, that's OK because the purpose of the IPI 287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 289 * after this point is also OK, as the requirement is only that KVM wait 290 * for vCPUs that were reading SPTEs _before_ any changes were 291 * finalized. See kvm_vcpu_kick() for more details on handling requests. 292 */ 293 if (kvm_request_needs_ipi(vcpu, req)) { 294 cpu = READ_ONCE(vcpu->cpu); 295 if (cpu != -1 && cpu != current_cpu) 296 __cpumask_set_cpu(cpu, tmp); 297 } 298 } 299 300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 301 unsigned long *vcpu_bitmap) 302 { 303 struct kvm_vcpu *vcpu; 304 struct cpumask *cpus; 305 int i, me; 306 bool called; 307 308 me = get_cpu(); 309 310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 311 cpumask_clear(cpus); 312 313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 314 vcpu = kvm_get_vcpu(kvm, i); 315 if (!vcpu) 316 continue; 317 kvm_make_vcpu_request(vcpu, req, cpus, me); 318 } 319 320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 321 put_cpu(); 322 323 return called; 324 } 325 326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 327 struct kvm_vcpu *except) 328 { 329 struct kvm_vcpu *vcpu; 330 struct cpumask *cpus; 331 unsigned long i; 332 bool called; 333 int me; 334 335 me = get_cpu(); 336 337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 338 cpumask_clear(cpus); 339 340 kvm_for_each_vcpu(i, vcpu, kvm) { 341 if (vcpu == except) 342 continue; 343 kvm_make_vcpu_request(vcpu, req, cpus, me); 344 } 345 346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 347 put_cpu(); 348 349 return called; 350 } 351 352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 353 { 354 return kvm_make_all_cpus_request_except(kvm, req, NULL); 355 } 356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 357 358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 359 void kvm_flush_remote_tlbs(struct kvm *kvm) 360 { 361 ++kvm->stat.generic.remote_tlb_flush_requests; 362 363 /* 364 * We want to publish modifications to the page tables before reading 365 * mode. Pairs with a memory barrier in arch-specific code. 366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 367 * and smp_mb in walk_shadow_page_lockless_begin/end. 368 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 369 * 370 * There is already an smp_mb__after_atomic() before 371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 372 * barrier here. 373 */ 374 if (!kvm_arch_flush_remote_tlb(kvm) 375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 376 ++kvm->stat.generic.remote_tlb_flush; 377 } 378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 379 #endif 380 381 static void kvm_flush_shadow_all(struct kvm *kvm) 382 { 383 kvm_arch_flush_shadow_all(kvm); 384 kvm_arch_guest_memory_reclaimed(kvm); 385 } 386 387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 389 gfp_t gfp_flags) 390 { 391 gfp_flags |= mc->gfp_zero; 392 393 if (mc->kmem_cache) 394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 395 else 396 return (void *)__get_free_page(gfp_flags); 397 } 398 399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 400 { 401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 402 void *obj; 403 404 if (mc->nobjs >= min) 405 return 0; 406 407 if (unlikely(!mc->objects)) { 408 if (WARN_ON_ONCE(!capacity)) 409 return -EIO; 410 411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 412 if (!mc->objects) 413 return -ENOMEM; 414 415 mc->capacity = capacity; 416 } 417 418 /* It is illegal to request a different capacity across topups. */ 419 if (WARN_ON_ONCE(mc->capacity != capacity)) 420 return -EIO; 421 422 while (mc->nobjs < mc->capacity) { 423 obj = mmu_memory_cache_alloc_obj(mc, gfp); 424 if (!obj) 425 return mc->nobjs >= min ? 0 : -ENOMEM; 426 mc->objects[mc->nobjs++] = obj; 427 } 428 return 0; 429 } 430 431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 432 { 433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 434 } 435 436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 437 { 438 return mc->nobjs; 439 } 440 441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 442 { 443 while (mc->nobjs) { 444 if (mc->kmem_cache) 445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 446 else 447 free_page((unsigned long)mc->objects[--mc->nobjs]); 448 } 449 450 kvfree(mc->objects); 451 452 mc->objects = NULL; 453 mc->capacity = 0; 454 } 455 456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 457 { 458 void *p; 459 460 if (WARN_ON(!mc->nobjs)) 461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 462 else 463 p = mc->objects[--mc->nobjs]; 464 BUG_ON(!p); 465 return p; 466 } 467 #endif 468 469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 470 { 471 mutex_init(&vcpu->mutex); 472 vcpu->cpu = -1; 473 vcpu->kvm = kvm; 474 vcpu->vcpu_id = id; 475 vcpu->pid = NULL; 476 #ifndef __KVM_HAVE_ARCH_WQP 477 rcuwait_init(&vcpu->wait); 478 #endif 479 kvm_async_pf_vcpu_init(vcpu); 480 481 kvm_vcpu_set_in_spin_loop(vcpu, false); 482 kvm_vcpu_set_dy_eligible(vcpu, false); 483 vcpu->preempted = false; 484 vcpu->ready = false; 485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 486 vcpu->last_used_slot = NULL; 487 488 /* Fill the stats id string for the vcpu */ 489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 490 task_pid_nr(current), id); 491 } 492 493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 494 { 495 kvm_arch_vcpu_destroy(vcpu); 496 kvm_dirty_ring_free(&vcpu->dirty_ring); 497 498 /* 499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 500 * the vcpu->pid pointer, and at destruction time all file descriptors 501 * are already gone. 502 */ 503 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 504 505 free_page((unsigned long)vcpu->run); 506 kmem_cache_free(kvm_vcpu_cache, vcpu); 507 } 508 509 void kvm_destroy_vcpus(struct kvm *kvm) 510 { 511 unsigned long i; 512 struct kvm_vcpu *vcpu; 513 514 kvm_for_each_vcpu(i, vcpu, kvm) { 515 kvm_vcpu_destroy(vcpu); 516 xa_erase(&kvm->vcpu_array, i); 517 } 518 519 atomic_set(&kvm->online_vcpus, 0); 520 } 521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 522 523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 525 { 526 return container_of(mn, struct kvm, mmu_notifier); 527 } 528 529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 530 struct mm_struct *mm, 531 unsigned long start, unsigned long end) 532 { 533 struct kvm *kvm = mmu_notifier_to_kvm(mn); 534 int idx; 535 536 idx = srcu_read_lock(&kvm->srcu); 537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 538 srcu_read_unlock(&kvm->srcu, idx); 539 } 540 541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 542 543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 544 unsigned long end); 545 546 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 547 548 struct kvm_hva_range { 549 unsigned long start; 550 unsigned long end; 551 pte_t pte; 552 hva_handler_t handler; 553 on_lock_fn_t on_lock; 554 on_unlock_fn_t on_unlock; 555 bool flush_on_ret; 556 bool may_block; 557 }; 558 559 /* 560 * Use a dedicated stub instead of NULL to indicate that there is no callback 561 * function/handler. The compiler technically can't guarantee that a real 562 * function will have a non-zero address, and so it will generate code to 563 * check for !NULL, whereas comparing against a stub will be elided at compile 564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 565 */ 566 static void kvm_null_fn(void) 567 { 568 569 } 570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 571 572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 575 node; \ 576 node = interval_tree_iter_next(node, start, last)) \ 577 578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 579 const struct kvm_hva_range *range) 580 { 581 bool ret = false, locked = false; 582 struct kvm_gfn_range gfn_range; 583 struct kvm_memory_slot *slot; 584 struct kvm_memslots *slots; 585 int i, idx; 586 587 if (WARN_ON_ONCE(range->end <= range->start)) 588 return 0; 589 590 /* A null handler is allowed if and only if on_lock() is provided. */ 591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 592 IS_KVM_NULL_FN(range->handler))) 593 return 0; 594 595 idx = srcu_read_lock(&kvm->srcu); 596 597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 598 struct interval_tree_node *node; 599 600 slots = __kvm_memslots(kvm, i); 601 kvm_for_each_memslot_in_hva_range(node, slots, 602 range->start, range->end - 1) { 603 unsigned long hva_start, hva_end; 604 605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 606 hva_start = max(range->start, slot->userspace_addr); 607 hva_end = min(range->end, slot->userspace_addr + 608 (slot->npages << PAGE_SHIFT)); 609 610 /* 611 * To optimize for the likely case where the address 612 * range is covered by zero or one memslots, don't 613 * bother making these conditional (to avoid writes on 614 * the second or later invocation of the handler). 615 */ 616 gfn_range.pte = range->pte; 617 gfn_range.may_block = range->may_block; 618 619 /* 620 * {gfn(page) | page intersects with [hva_start, hva_end)} = 621 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 622 */ 623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 625 gfn_range.slot = slot; 626 627 if (!locked) { 628 locked = true; 629 KVM_MMU_LOCK(kvm); 630 if (!IS_KVM_NULL_FN(range->on_lock)) 631 range->on_lock(kvm, range->start, range->end); 632 if (IS_KVM_NULL_FN(range->handler)) 633 break; 634 } 635 ret |= range->handler(kvm, &gfn_range); 636 } 637 } 638 639 if (range->flush_on_ret && ret) 640 kvm_flush_remote_tlbs(kvm); 641 642 if (locked) { 643 KVM_MMU_UNLOCK(kvm); 644 if (!IS_KVM_NULL_FN(range->on_unlock)) 645 range->on_unlock(kvm); 646 } 647 648 srcu_read_unlock(&kvm->srcu, idx); 649 650 /* The notifiers are averse to booleans. :-( */ 651 return (int)ret; 652 } 653 654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 655 unsigned long start, 656 unsigned long end, 657 pte_t pte, 658 hva_handler_t handler) 659 { 660 struct kvm *kvm = mmu_notifier_to_kvm(mn); 661 const struct kvm_hva_range range = { 662 .start = start, 663 .end = end, 664 .pte = pte, 665 .handler = handler, 666 .on_lock = (void *)kvm_null_fn, 667 .on_unlock = (void *)kvm_null_fn, 668 .flush_on_ret = true, 669 .may_block = false, 670 }; 671 672 return __kvm_handle_hva_range(kvm, &range); 673 } 674 675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 676 unsigned long start, 677 unsigned long end, 678 hva_handler_t handler) 679 { 680 struct kvm *kvm = mmu_notifier_to_kvm(mn); 681 const struct kvm_hva_range range = { 682 .start = start, 683 .end = end, 684 .pte = __pte(0), 685 .handler = handler, 686 .on_lock = (void *)kvm_null_fn, 687 .on_unlock = (void *)kvm_null_fn, 688 .flush_on_ret = false, 689 .may_block = false, 690 }; 691 692 return __kvm_handle_hva_range(kvm, &range); 693 } 694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 695 struct mm_struct *mm, 696 unsigned long address, 697 pte_t pte) 698 { 699 struct kvm *kvm = mmu_notifier_to_kvm(mn); 700 701 trace_kvm_set_spte_hva(address); 702 703 /* 704 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 705 * If mmu_invalidate_in_progress is zero, then no in-progress 706 * invalidations, including this one, found a relevant memslot at 707 * start(); rechecking memslots here is unnecessary. Note, a false 708 * positive (count elevated by a different invalidation) is sub-optimal 709 * but functionally ok. 710 */ 711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 712 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 713 return; 714 715 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 716 } 717 718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 719 unsigned long end) 720 { 721 /* 722 * The count increase must become visible at unlock time as no 723 * spte can be established without taking the mmu_lock and 724 * count is also read inside the mmu_lock critical section. 725 */ 726 kvm->mmu_invalidate_in_progress++; 727 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 748 const struct mmu_notifier_range *range) 749 { 750 struct kvm *kvm = mmu_notifier_to_kvm(mn); 751 const struct kvm_hva_range hva_range = { 752 .start = range->start, 753 .end = range->end, 754 .pte = __pte(0), 755 .handler = kvm_unmap_gfn_range, 756 .on_lock = kvm_mmu_invalidate_begin, 757 .on_unlock = kvm_arch_guest_memory_reclaimed, 758 .flush_on_ret = true, 759 .may_block = mmu_notifier_range_blockable(range), 760 }; 761 762 trace_kvm_unmap_hva_range(range->start, range->end); 763 764 /* 765 * Prevent memslot modification between range_start() and range_end() 766 * so that conditionally locking provides the same result in both 767 * functions. Without that guarantee, the mmu_invalidate_in_progress 768 * adjustments will be imbalanced. 769 * 770 * Pairs with the decrement in range_end(). 771 */ 772 spin_lock(&kvm->mn_invalidate_lock); 773 kvm->mn_active_invalidate_count++; 774 spin_unlock(&kvm->mn_invalidate_lock); 775 776 /* 777 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 778 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 779 * each cache's lock. There are relatively few caches in existence at 780 * any given time, and the caches themselves can check for hva overlap, 781 * i.e. don't need to rely on memslot overlap checks for performance. 782 * Because this runs without holding mmu_lock, the pfn caches must use 783 * mn_active_invalidate_count (see above) instead of 784 * mmu_invalidate_in_progress. 785 */ 786 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 787 hva_range.may_block); 788 789 __kvm_handle_hva_range(kvm, &hva_range); 790 791 return 0; 792 } 793 794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 795 unsigned long end) 796 { 797 /* 798 * This sequence increase will notify the kvm page fault that 799 * the page that is going to be mapped in the spte could have 800 * been freed. 801 */ 802 kvm->mmu_invalidate_seq++; 803 smp_wmb(); 804 /* 805 * The above sequence increase must be visible before the 806 * below count decrease, which is ensured by the smp_wmb above 807 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 808 */ 809 kvm->mmu_invalidate_in_progress--; 810 } 811 812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 813 const struct mmu_notifier_range *range) 814 { 815 struct kvm *kvm = mmu_notifier_to_kvm(mn); 816 const struct kvm_hva_range hva_range = { 817 .start = range->start, 818 .end = range->end, 819 .pte = __pte(0), 820 .handler = (void *)kvm_null_fn, 821 .on_lock = kvm_mmu_invalidate_end, 822 .on_unlock = (void *)kvm_null_fn, 823 .flush_on_ret = false, 824 .may_block = mmu_notifier_range_blockable(range), 825 }; 826 bool wake; 827 828 __kvm_handle_hva_range(kvm, &hva_range); 829 830 /* Pairs with the increment in range_start(). */ 831 spin_lock(&kvm->mn_invalidate_lock); 832 wake = (--kvm->mn_active_invalidate_count == 0); 833 spin_unlock(&kvm->mn_invalidate_lock); 834 835 /* 836 * There can only be one waiter, since the wait happens under 837 * slots_lock. 838 */ 839 if (wake) 840 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 841 842 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 843 } 844 845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 846 struct mm_struct *mm, 847 unsigned long start, 848 unsigned long end) 849 { 850 trace_kvm_age_hva(start, end); 851 852 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 853 } 854 855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 856 struct mm_struct *mm, 857 unsigned long start, 858 unsigned long end) 859 { 860 trace_kvm_age_hva(start, end); 861 862 /* 863 * Even though we do not flush TLB, this will still adversely 864 * affect performance on pre-Haswell Intel EPT, where there is 865 * no EPT Access Bit to clear so that we have to tear down EPT 866 * tables instead. If we find this unacceptable, we can always 867 * add a parameter to kvm_age_hva so that it effectively doesn't 868 * do anything on clear_young. 869 * 870 * Also note that currently we never issue secondary TLB flushes 871 * from clear_young, leaving this job up to the regular system 872 * cadence. If we find this inaccurate, we might come up with a 873 * more sophisticated heuristic later. 874 */ 875 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 876 } 877 878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 879 struct mm_struct *mm, 880 unsigned long address) 881 { 882 trace_kvm_test_age_hva(address); 883 884 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 885 kvm_test_age_gfn); 886 } 887 888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 889 struct mm_struct *mm) 890 { 891 struct kvm *kvm = mmu_notifier_to_kvm(mn); 892 int idx; 893 894 idx = srcu_read_lock(&kvm->srcu); 895 kvm_flush_shadow_all(kvm); 896 srcu_read_unlock(&kvm->srcu, idx); 897 } 898 899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 900 .invalidate_range = kvm_mmu_notifier_invalidate_range, 901 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 902 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 903 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 904 .clear_young = kvm_mmu_notifier_clear_young, 905 .test_young = kvm_mmu_notifier_test_young, 906 .change_pte = kvm_mmu_notifier_change_pte, 907 .release = kvm_mmu_notifier_release, 908 }; 909 910 static int kvm_init_mmu_notifier(struct kvm *kvm) 911 { 912 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 913 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 914 } 915 916 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 917 918 static int kvm_init_mmu_notifier(struct kvm *kvm) 919 { 920 return 0; 921 } 922 923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 924 925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 926 static int kvm_pm_notifier_call(struct notifier_block *bl, 927 unsigned long state, 928 void *unused) 929 { 930 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 931 932 return kvm_arch_pm_notifier(kvm, state); 933 } 934 935 static void kvm_init_pm_notifier(struct kvm *kvm) 936 { 937 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 938 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 939 kvm->pm_notifier.priority = INT_MAX; 940 register_pm_notifier(&kvm->pm_notifier); 941 } 942 943 static void kvm_destroy_pm_notifier(struct kvm *kvm) 944 { 945 unregister_pm_notifier(&kvm->pm_notifier); 946 } 947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 } 951 952 static void kvm_destroy_pm_notifier(struct kvm *kvm) 953 { 954 } 955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 956 957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 958 { 959 if (!memslot->dirty_bitmap) 960 return; 961 962 kvfree(memslot->dirty_bitmap); 963 memslot->dirty_bitmap = NULL; 964 } 965 966 /* This does not remove the slot from struct kvm_memslots data structures */ 967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 968 { 969 kvm_destroy_dirty_bitmap(slot); 970 971 kvm_arch_free_memslot(kvm, slot); 972 973 kfree(slot); 974 } 975 976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 977 { 978 struct hlist_node *idnode; 979 struct kvm_memory_slot *memslot; 980 int bkt; 981 982 /* 983 * The same memslot objects live in both active and inactive sets, 984 * arbitrarily free using index '1' so the second invocation of this 985 * function isn't operating over a structure with dangling pointers 986 * (even though this function isn't actually touching them). 987 */ 988 if (!slots->node_idx) 989 return; 990 991 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 992 kvm_free_memslot(kvm, memslot); 993 } 994 995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 996 { 997 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 998 case KVM_STATS_TYPE_INSTANT: 999 return 0444; 1000 case KVM_STATS_TYPE_CUMULATIVE: 1001 case KVM_STATS_TYPE_PEAK: 1002 default: 1003 return 0644; 1004 } 1005 } 1006 1007 1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1009 { 1010 int i; 1011 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1012 kvm_vcpu_stats_header.num_desc; 1013 1014 if (IS_ERR(kvm->debugfs_dentry)) 1015 return; 1016 1017 debugfs_remove_recursive(kvm->debugfs_dentry); 1018 1019 if (kvm->debugfs_stat_data) { 1020 for (i = 0; i < kvm_debugfs_num_entries; i++) 1021 kfree(kvm->debugfs_stat_data[i]); 1022 kfree(kvm->debugfs_stat_data); 1023 } 1024 } 1025 1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1027 { 1028 static DEFINE_MUTEX(kvm_debugfs_lock); 1029 struct dentry *dent; 1030 char dir_name[ITOA_MAX_LEN * 2]; 1031 struct kvm_stat_data *stat_data; 1032 const struct _kvm_stats_desc *pdesc; 1033 int i, ret = -ENOMEM; 1034 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1035 kvm_vcpu_stats_header.num_desc; 1036 1037 if (!debugfs_initialized()) 1038 return 0; 1039 1040 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1041 mutex_lock(&kvm_debugfs_lock); 1042 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1043 if (dent) { 1044 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1045 dput(dent); 1046 mutex_unlock(&kvm_debugfs_lock); 1047 return 0; 1048 } 1049 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1050 mutex_unlock(&kvm_debugfs_lock); 1051 if (IS_ERR(dent)) 1052 return 0; 1053 1054 kvm->debugfs_dentry = dent; 1055 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1056 sizeof(*kvm->debugfs_stat_data), 1057 GFP_KERNEL_ACCOUNT); 1058 if (!kvm->debugfs_stat_data) 1059 goto out_err; 1060 1061 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1062 pdesc = &kvm_vm_stats_desc[i]; 1063 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1064 if (!stat_data) 1065 goto out_err; 1066 1067 stat_data->kvm = kvm; 1068 stat_data->desc = pdesc; 1069 stat_data->kind = KVM_STAT_VM; 1070 kvm->debugfs_stat_data[i] = stat_data; 1071 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1072 kvm->debugfs_dentry, stat_data, 1073 &stat_fops_per_vm); 1074 } 1075 1076 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1077 pdesc = &kvm_vcpu_stats_desc[i]; 1078 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1079 if (!stat_data) 1080 goto out_err; 1081 1082 stat_data->kvm = kvm; 1083 stat_data->desc = pdesc; 1084 stat_data->kind = KVM_STAT_VCPU; 1085 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1086 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1087 kvm->debugfs_dentry, stat_data, 1088 &stat_fops_per_vm); 1089 } 1090 1091 ret = kvm_arch_create_vm_debugfs(kvm); 1092 if (ret) 1093 goto out_err; 1094 1095 return 0; 1096 out_err: 1097 kvm_destroy_vm_debugfs(kvm); 1098 return ret; 1099 } 1100 1101 /* 1102 * Called after the VM is otherwise initialized, but just before adding it to 1103 * the vm_list. 1104 */ 1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1106 { 1107 return 0; 1108 } 1109 1110 /* 1111 * Called just after removing the VM from the vm_list, but before doing any 1112 * other destruction. 1113 */ 1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1115 { 1116 } 1117 1118 /* 1119 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1120 * be setup already, so we can create arch-specific debugfs entries under it. 1121 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1122 * a per-arch destroy interface is not needed. 1123 */ 1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1125 { 1126 return 0; 1127 } 1128 1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1130 { 1131 struct kvm *kvm = kvm_arch_alloc_vm(); 1132 struct kvm_memslots *slots; 1133 int r = -ENOMEM; 1134 int i, j; 1135 1136 if (!kvm) 1137 return ERR_PTR(-ENOMEM); 1138 1139 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1140 __module_get(kvm_chardev_ops.owner); 1141 1142 KVM_MMU_LOCK_INIT(kvm); 1143 mmgrab(current->mm); 1144 kvm->mm = current->mm; 1145 kvm_eventfd_init(kvm); 1146 mutex_init(&kvm->lock); 1147 mutex_init(&kvm->irq_lock); 1148 mutex_init(&kvm->slots_lock); 1149 mutex_init(&kvm->slots_arch_lock); 1150 spin_lock_init(&kvm->mn_invalidate_lock); 1151 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1152 xa_init(&kvm->vcpu_array); 1153 1154 INIT_LIST_HEAD(&kvm->gpc_list); 1155 spin_lock_init(&kvm->gpc_lock); 1156 1157 INIT_LIST_HEAD(&kvm->devices); 1158 kvm->max_vcpus = KVM_MAX_VCPUS; 1159 1160 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1161 1162 /* 1163 * Force subsequent debugfs file creations to fail if the VM directory 1164 * is not created (by kvm_create_vm_debugfs()). 1165 */ 1166 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1167 1168 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1169 task_pid_nr(current)); 1170 1171 if (init_srcu_struct(&kvm->srcu)) 1172 goto out_err_no_srcu; 1173 if (init_srcu_struct(&kvm->irq_srcu)) 1174 goto out_err_no_irq_srcu; 1175 1176 refcount_set(&kvm->users_count, 1); 1177 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1178 for (j = 0; j < 2; j++) { 1179 slots = &kvm->__memslots[i][j]; 1180 1181 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1182 slots->hva_tree = RB_ROOT_CACHED; 1183 slots->gfn_tree = RB_ROOT; 1184 hash_init(slots->id_hash); 1185 slots->node_idx = j; 1186 1187 /* Generations must be different for each address space. */ 1188 slots->generation = i; 1189 } 1190 1191 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1192 } 1193 1194 for (i = 0; i < KVM_NR_BUSES; i++) { 1195 rcu_assign_pointer(kvm->buses[i], 1196 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1197 if (!kvm->buses[i]) 1198 goto out_err_no_arch_destroy_vm; 1199 } 1200 1201 r = kvm_arch_init_vm(kvm, type); 1202 if (r) 1203 goto out_err_no_arch_destroy_vm; 1204 1205 r = hardware_enable_all(); 1206 if (r) 1207 goto out_err_no_disable; 1208 1209 #ifdef CONFIG_HAVE_KVM_IRQFD 1210 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1211 #endif 1212 1213 r = kvm_init_mmu_notifier(kvm); 1214 if (r) 1215 goto out_err_no_mmu_notifier; 1216 1217 r = kvm_coalesced_mmio_init(kvm); 1218 if (r < 0) 1219 goto out_no_coalesced_mmio; 1220 1221 r = kvm_create_vm_debugfs(kvm, fdname); 1222 if (r) 1223 goto out_err_no_debugfs; 1224 1225 r = kvm_arch_post_init_vm(kvm); 1226 if (r) 1227 goto out_err; 1228 1229 mutex_lock(&kvm_lock); 1230 list_add(&kvm->vm_list, &vm_list); 1231 mutex_unlock(&kvm_lock); 1232 1233 preempt_notifier_inc(); 1234 kvm_init_pm_notifier(kvm); 1235 1236 return kvm; 1237 1238 out_err: 1239 kvm_destroy_vm_debugfs(kvm); 1240 out_err_no_debugfs: 1241 kvm_coalesced_mmio_free(kvm); 1242 out_no_coalesced_mmio: 1243 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1244 if (kvm->mmu_notifier.ops) 1245 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1246 #endif 1247 out_err_no_mmu_notifier: 1248 hardware_disable_all(); 1249 out_err_no_disable: 1250 kvm_arch_destroy_vm(kvm); 1251 out_err_no_arch_destroy_vm: 1252 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1253 for (i = 0; i < KVM_NR_BUSES; i++) 1254 kfree(kvm_get_bus(kvm, i)); 1255 cleanup_srcu_struct(&kvm->irq_srcu); 1256 out_err_no_irq_srcu: 1257 cleanup_srcu_struct(&kvm->srcu); 1258 out_err_no_srcu: 1259 kvm_arch_free_vm(kvm); 1260 mmdrop(current->mm); 1261 module_put(kvm_chardev_ops.owner); 1262 return ERR_PTR(r); 1263 } 1264 1265 static void kvm_destroy_devices(struct kvm *kvm) 1266 { 1267 struct kvm_device *dev, *tmp; 1268 1269 /* 1270 * We do not need to take the kvm->lock here, because nobody else 1271 * has a reference to the struct kvm at this point and therefore 1272 * cannot access the devices list anyhow. 1273 */ 1274 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1275 list_del(&dev->vm_node); 1276 dev->ops->destroy(dev); 1277 } 1278 } 1279 1280 static void kvm_destroy_vm(struct kvm *kvm) 1281 { 1282 int i; 1283 struct mm_struct *mm = kvm->mm; 1284 1285 kvm_destroy_pm_notifier(kvm); 1286 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1287 kvm_destroy_vm_debugfs(kvm); 1288 kvm_arch_sync_events(kvm); 1289 mutex_lock(&kvm_lock); 1290 list_del(&kvm->vm_list); 1291 mutex_unlock(&kvm_lock); 1292 kvm_arch_pre_destroy_vm(kvm); 1293 1294 kvm_free_irq_routing(kvm); 1295 for (i = 0; i < KVM_NR_BUSES; i++) { 1296 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1297 1298 if (bus) 1299 kvm_io_bus_destroy(bus); 1300 kvm->buses[i] = NULL; 1301 } 1302 kvm_coalesced_mmio_free(kvm); 1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1304 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1305 /* 1306 * At this point, pending calls to invalidate_range_start() 1307 * have completed but no more MMU notifiers will run, so 1308 * mn_active_invalidate_count may remain unbalanced. 1309 * No threads can be waiting in install_new_memslots as the 1310 * last reference on KVM has been dropped, but freeing 1311 * memslots would deadlock without this manual intervention. 1312 */ 1313 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1314 kvm->mn_active_invalidate_count = 0; 1315 #else 1316 kvm_flush_shadow_all(kvm); 1317 #endif 1318 kvm_arch_destroy_vm(kvm); 1319 kvm_destroy_devices(kvm); 1320 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1321 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1322 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1323 } 1324 cleanup_srcu_struct(&kvm->irq_srcu); 1325 cleanup_srcu_struct(&kvm->srcu); 1326 kvm_arch_free_vm(kvm); 1327 preempt_notifier_dec(); 1328 hardware_disable_all(); 1329 mmdrop(mm); 1330 module_put(kvm_chardev_ops.owner); 1331 } 1332 1333 void kvm_get_kvm(struct kvm *kvm) 1334 { 1335 refcount_inc(&kvm->users_count); 1336 } 1337 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1338 1339 /* 1340 * Make sure the vm is not during destruction, which is a safe version of 1341 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1342 */ 1343 bool kvm_get_kvm_safe(struct kvm *kvm) 1344 { 1345 return refcount_inc_not_zero(&kvm->users_count); 1346 } 1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1348 1349 void kvm_put_kvm(struct kvm *kvm) 1350 { 1351 if (refcount_dec_and_test(&kvm->users_count)) 1352 kvm_destroy_vm(kvm); 1353 } 1354 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1355 1356 /* 1357 * Used to put a reference that was taken on behalf of an object associated 1358 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1359 * of the new file descriptor fails and the reference cannot be transferred to 1360 * its final owner. In such cases, the caller is still actively using @kvm and 1361 * will fail miserably if the refcount unexpectedly hits zero. 1362 */ 1363 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1364 { 1365 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1366 } 1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1368 1369 static int kvm_vm_release(struct inode *inode, struct file *filp) 1370 { 1371 struct kvm *kvm = filp->private_data; 1372 1373 kvm_irqfd_release(kvm); 1374 1375 kvm_put_kvm(kvm); 1376 return 0; 1377 } 1378 1379 /* 1380 * Allocation size is twice as large as the actual dirty bitmap size. 1381 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1382 */ 1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1384 { 1385 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1386 1387 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1388 if (!memslot->dirty_bitmap) 1389 return -ENOMEM; 1390 1391 return 0; 1392 } 1393 1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1395 { 1396 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1397 int node_idx_inactive = active->node_idx ^ 1; 1398 1399 return &kvm->__memslots[as_id][node_idx_inactive]; 1400 } 1401 1402 /* 1403 * Helper to get the address space ID when one of memslot pointers may be NULL. 1404 * This also serves as a sanity that at least one of the pointers is non-NULL, 1405 * and that their address space IDs don't diverge. 1406 */ 1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1408 struct kvm_memory_slot *b) 1409 { 1410 if (WARN_ON_ONCE(!a && !b)) 1411 return 0; 1412 1413 if (!a) 1414 return b->as_id; 1415 if (!b) 1416 return a->as_id; 1417 1418 WARN_ON_ONCE(a->as_id != b->as_id); 1419 return a->as_id; 1420 } 1421 1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1423 struct kvm_memory_slot *slot) 1424 { 1425 struct rb_root *gfn_tree = &slots->gfn_tree; 1426 struct rb_node **node, *parent; 1427 int idx = slots->node_idx; 1428 1429 parent = NULL; 1430 for (node = &gfn_tree->rb_node; *node; ) { 1431 struct kvm_memory_slot *tmp; 1432 1433 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1434 parent = *node; 1435 if (slot->base_gfn < tmp->base_gfn) 1436 node = &(*node)->rb_left; 1437 else if (slot->base_gfn > tmp->base_gfn) 1438 node = &(*node)->rb_right; 1439 else 1440 BUG(); 1441 } 1442 1443 rb_link_node(&slot->gfn_node[idx], parent, node); 1444 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1445 } 1446 1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1448 struct kvm_memory_slot *slot) 1449 { 1450 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1451 } 1452 1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1454 struct kvm_memory_slot *old, 1455 struct kvm_memory_slot *new) 1456 { 1457 int idx = slots->node_idx; 1458 1459 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1460 1461 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1462 &slots->gfn_tree); 1463 } 1464 1465 /* 1466 * Replace @old with @new in the inactive memslots. 1467 * 1468 * With NULL @old this simply adds @new. 1469 * With NULL @new this simply removes @old. 1470 * 1471 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1472 * appropriately. 1473 */ 1474 static void kvm_replace_memslot(struct kvm *kvm, 1475 struct kvm_memory_slot *old, 1476 struct kvm_memory_slot *new) 1477 { 1478 int as_id = kvm_memslots_get_as_id(old, new); 1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1480 int idx = slots->node_idx; 1481 1482 if (old) { 1483 hash_del(&old->id_node[idx]); 1484 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1485 1486 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1487 atomic_long_set(&slots->last_used_slot, (long)new); 1488 1489 if (!new) { 1490 kvm_erase_gfn_node(slots, old); 1491 return; 1492 } 1493 } 1494 1495 /* 1496 * Initialize @new's hva range. Do this even when replacing an @old 1497 * slot, kvm_copy_memslot() deliberately does not touch node data. 1498 */ 1499 new->hva_node[idx].start = new->userspace_addr; 1500 new->hva_node[idx].last = new->userspace_addr + 1501 (new->npages << PAGE_SHIFT) - 1; 1502 1503 /* 1504 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1505 * hva_node needs to be swapped with remove+insert even though hva can't 1506 * change when replacing an existing slot. 1507 */ 1508 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1509 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1510 1511 /* 1512 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1513 * switch the node in the gfn tree instead of removing the old and 1514 * inserting the new as two separate operations. Replacement is a 1515 * single O(1) operation versus two O(log(n)) operations for 1516 * remove+insert. 1517 */ 1518 if (old && old->base_gfn == new->base_gfn) { 1519 kvm_replace_gfn_node(slots, old, new); 1520 } else { 1521 if (old) 1522 kvm_erase_gfn_node(slots, old); 1523 kvm_insert_gfn_node(slots, new); 1524 } 1525 } 1526 1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1528 { 1529 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1530 1531 #ifdef __KVM_HAVE_READONLY_MEM 1532 valid_flags |= KVM_MEM_READONLY; 1533 #endif 1534 1535 if (mem->flags & ~valid_flags) 1536 return -EINVAL; 1537 1538 return 0; 1539 } 1540 1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1542 { 1543 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1544 1545 /* Grab the generation from the activate memslots. */ 1546 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1547 1548 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1549 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1550 1551 /* 1552 * Do not store the new memslots while there are invalidations in 1553 * progress, otherwise the locking in invalidate_range_start and 1554 * invalidate_range_end will be unbalanced. 1555 */ 1556 spin_lock(&kvm->mn_invalidate_lock); 1557 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1558 while (kvm->mn_active_invalidate_count) { 1559 set_current_state(TASK_UNINTERRUPTIBLE); 1560 spin_unlock(&kvm->mn_invalidate_lock); 1561 schedule(); 1562 spin_lock(&kvm->mn_invalidate_lock); 1563 } 1564 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1565 rcu_assign_pointer(kvm->memslots[as_id], slots); 1566 spin_unlock(&kvm->mn_invalidate_lock); 1567 1568 /* 1569 * Acquired in kvm_set_memslot. Must be released before synchronize 1570 * SRCU below in order to avoid deadlock with another thread 1571 * acquiring the slots_arch_lock in an srcu critical section. 1572 */ 1573 mutex_unlock(&kvm->slots_arch_lock); 1574 1575 synchronize_srcu_expedited(&kvm->srcu); 1576 1577 /* 1578 * Increment the new memslot generation a second time, dropping the 1579 * update in-progress flag and incrementing the generation based on 1580 * the number of address spaces. This provides a unique and easily 1581 * identifiable generation number while the memslots are in flux. 1582 */ 1583 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1584 1585 /* 1586 * Generations must be unique even across address spaces. We do not need 1587 * a global counter for that, instead the generation space is evenly split 1588 * across address spaces. For example, with two address spaces, address 1589 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1590 * use generations 1, 3, 5, ... 1591 */ 1592 gen += KVM_ADDRESS_SPACE_NUM; 1593 1594 kvm_arch_memslots_updated(kvm, gen); 1595 1596 slots->generation = gen; 1597 } 1598 1599 static int kvm_prepare_memory_region(struct kvm *kvm, 1600 const struct kvm_memory_slot *old, 1601 struct kvm_memory_slot *new, 1602 enum kvm_mr_change change) 1603 { 1604 int r; 1605 1606 /* 1607 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1608 * will be freed on "commit". If logging is enabled in both old and 1609 * new, reuse the existing bitmap. If logging is enabled only in the 1610 * new and KVM isn't using a ring buffer, allocate and initialize a 1611 * new bitmap. 1612 */ 1613 if (change != KVM_MR_DELETE) { 1614 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1615 new->dirty_bitmap = NULL; 1616 else if (old && old->dirty_bitmap) 1617 new->dirty_bitmap = old->dirty_bitmap; 1618 else if (!kvm->dirty_ring_size) { 1619 r = kvm_alloc_dirty_bitmap(new); 1620 if (r) 1621 return r; 1622 1623 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1624 bitmap_set(new->dirty_bitmap, 0, new->npages); 1625 } 1626 } 1627 1628 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1629 1630 /* Free the bitmap on failure if it was allocated above. */ 1631 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1632 kvm_destroy_dirty_bitmap(new); 1633 1634 return r; 1635 } 1636 1637 static void kvm_commit_memory_region(struct kvm *kvm, 1638 struct kvm_memory_slot *old, 1639 const struct kvm_memory_slot *new, 1640 enum kvm_mr_change change) 1641 { 1642 /* 1643 * Update the total number of memslot pages before calling the arch 1644 * hook so that architectures can consume the result directly. 1645 */ 1646 if (change == KVM_MR_DELETE) 1647 kvm->nr_memslot_pages -= old->npages; 1648 else if (change == KVM_MR_CREATE) 1649 kvm->nr_memslot_pages += new->npages; 1650 1651 kvm_arch_commit_memory_region(kvm, old, new, change); 1652 1653 switch (change) { 1654 case KVM_MR_CREATE: 1655 /* Nothing more to do. */ 1656 break; 1657 case KVM_MR_DELETE: 1658 /* Free the old memslot and all its metadata. */ 1659 kvm_free_memslot(kvm, old); 1660 break; 1661 case KVM_MR_MOVE: 1662 case KVM_MR_FLAGS_ONLY: 1663 /* 1664 * Free the dirty bitmap as needed; the below check encompasses 1665 * both the flags and whether a ring buffer is being used) 1666 */ 1667 if (old->dirty_bitmap && !new->dirty_bitmap) 1668 kvm_destroy_dirty_bitmap(old); 1669 1670 /* 1671 * The final quirk. Free the detached, old slot, but only its 1672 * memory, not any metadata. Metadata, including arch specific 1673 * data, may be reused by @new. 1674 */ 1675 kfree(old); 1676 break; 1677 default: 1678 BUG(); 1679 } 1680 } 1681 1682 /* 1683 * Activate @new, which must be installed in the inactive slots by the caller, 1684 * by swapping the active slots and then propagating @new to @old once @old is 1685 * unreachable and can be safely modified. 1686 * 1687 * With NULL @old this simply adds @new to @active (while swapping the sets). 1688 * With NULL @new this simply removes @old from @active and frees it 1689 * (while also swapping the sets). 1690 */ 1691 static void kvm_activate_memslot(struct kvm *kvm, 1692 struct kvm_memory_slot *old, 1693 struct kvm_memory_slot *new) 1694 { 1695 int as_id = kvm_memslots_get_as_id(old, new); 1696 1697 kvm_swap_active_memslots(kvm, as_id); 1698 1699 /* Propagate the new memslot to the now inactive memslots. */ 1700 kvm_replace_memslot(kvm, old, new); 1701 } 1702 1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1704 const struct kvm_memory_slot *src) 1705 { 1706 dest->base_gfn = src->base_gfn; 1707 dest->npages = src->npages; 1708 dest->dirty_bitmap = src->dirty_bitmap; 1709 dest->arch = src->arch; 1710 dest->userspace_addr = src->userspace_addr; 1711 dest->flags = src->flags; 1712 dest->id = src->id; 1713 dest->as_id = src->as_id; 1714 } 1715 1716 static void kvm_invalidate_memslot(struct kvm *kvm, 1717 struct kvm_memory_slot *old, 1718 struct kvm_memory_slot *invalid_slot) 1719 { 1720 /* 1721 * Mark the current slot INVALID. As with all memslot modifications, 1722 * this must be done on an unreachable slot to avoid modifying the 1723 * current slot in the active tree. 1724 */ 1725 kvm_copy_memslot(invalid_slot, old); 1726 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1727 kvm_replace_memslot(kvm, old, invalid_slot); 1728 1729 /* 1730 * Activate the slot that is now marked INVALID, but don't propagate 1731 * the slot to the now inactive slots. The slot is either going to be 1732 * deleted or recreated as a new slot. 1733 */ 1734 kvm_swap_active_memslots(kvm, old->as_id); 1735 1736 /* 1737 * From this point no new shadow pages pointing to a deleted, or moved, 1738 * memslot will be created. Validation of sp->gfn happens in: 1739 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1740 * - kvm_is_visible_gfn (mmu_check_root) 1741 */ 1742 kvm_arch_flush_shadow_memslot(kvm, old); 1743 kvm_arch_guest_memory_reclaimed(kvm); 1744 1745 /* Was released by kvm_swap_active_memslots, reacquire. */ 1746 mutex_lock(&kvm->slots_arch_lock); 1747 1748 /* 1749 * Copy the arch-specific field of the newly-installed slot back to the 1750 * old slot as the arch data could have changed between releasing 1751 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1752 * above. Writers are required to retrieve memslots *after* acquiring 1753 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1754 */ 1755 old->arch = invalid_slot->arch; 1756 } 1757 1758 static void kvm_create_memslot(struct kvm *kvm, 1759 struct kvm_memory_slot *new) 1760 { 1761 /* Add the new memslot to the inactive set and activate. */ 1762 kvm_replace_memslot(kvm, NULL, new); 1763 kvm_activate_memslot(kvm, NULL, new); 1764 } 1765 1766 static void kvm_delete_memslot(struct kvm *kvm, 1767 struct kvm_memory_slot *old, 1768 struct kvm_memory_slot *invalid_slot) 1769 { 1770 /* 1771 * Remove the old memslot (in the inactive memslots) by passing NULL as 1772 * the "new" slot, and for the invalid version in the active slots. 1773 */ 1774 kvm_replace_memslot(kvm, old, NULL); 1775 kvm_activate_memslot(kvm, invalid_slot, NULL); 1776 } 1777 1778 static void kvm_move_memslot(struct kvm *kvm, 1779 struct kvm_memory_slot *old, 1780 struct kvm_memory_slot *new, 1781 struct kvm_memory_slot *invalid_slot) 1782 { 1783 /* 1784 * Replace the old memslot in the inactive slots, and then swap slots 1785 * and replace the current INVALID with the new as well. 1786 */ 1787 kvm_replace_memslot(kvm, old, new); 1788 kvm_activate_memslot(kvm, invalid_slot, new); 1789 } 1790 1791 static void kvm_update_flags_memslot(struct kvm *kvm, 1792 struct kvm_memory_slot *old, 1793 struct kvm_memory_slot *new) 1794 { 1795 /* 1796 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1797 * an intermediate step. Instead, the old memslot is simply replaced 1798 * with a new, updated copy in both memslot sets. 1799 */ 1800 kvm_replace_memslot(kvm, old, new); 1801 kvm_activate_memslot(kvm, old, new); 1802 } 1803 1804 static int kvm_set_memslot(struct kvm *kvm, 1805 struct kvm_memory_slot *old, 1806 struct kvm_memory_slot *new, 1807 enum kvm_mr_change change) 1808 { 1809 struct kvm_memory_slot *invalid_slot; 1810 int r; 1811 1812 /* 1813 * Released in kvm_swap_active_memslots. 1814 * 1815 * Must be held from before the current memslots are copied until 1816 * after the new memslots are installed with rcu_assign_pointer, 1817 * then released before the synchronize srcu in kvm_swap_active_memslots. 1818 * 1819 * When modifying memslots outside of the slots_lock, must be held 1820 * before reading the pointer to the current memslots until after all 1821 * changes to those memslots are complete. 1822 * 1823 * These rules ensure that installing new memslots does not lose 1824 * changes made to the previous memslots. 1825 */ 1826 mutex_lock(&kvm->slots_arch_lock); 1827 1828 /* 1829 * Invalidate the old slot if it's being deleted or moved. This is 1830 * done prior to actually deleting/moving the memslot to allow vCPUs to 1831 * continue running by ensuring there are no mappings or shadow pages 1832 * for the memslot when it is deleted/moved. Without pre-invalidation 1833 * (and without a lock), a window would exist between effecting the 1834 * delete/move and committing the changes in arch code where KVM or a 1835 * guest could access a non-existent memslot. 1836 * 1837 * Modifications are done on a temporary, unreachable slot. The old 1838 * slot needs to be preserved in case a later step fails and the 1839 * invalidation needs to be reverted. 1840 */ 1841 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1842 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1843 if (!invalid_slot) { 1844 mutex_unlock(&kvm->slots_arch_lock); 1845 return -ENOMEM; 1846 } 1847 kvm_invalidate_memslot(kvm, old, invalid_slot); 1848 } 1849 1850 r = kvm_prepare_memory_region(kvm, old, new, change); 1851 if (r) { 1852 /* 1853 * For DELETE/MOVE, revert the above INVALID change. No 1854 * modifications required since the original slot was preserved 1855 * in the inactive slots. Changing the active memslots also 1856 * release slots_arch_lock. 1857 */ 1858 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1859 kvm_activate_memslot(kvm, invalid_slot, old); 1860 kfree(invalid_slot); 1861 } else { 1862 mutex_unlock(&kvm->slots_arch_lock); 1863 } 1864 return r; 1865 } 1866 1867 /* 1868 * For DELETE and MOVE, the working slot is now active as the INVALID 1869 * version of the old slot. MOVE is particularly special as it reuses 1870 * the old slot and returns a copy of the old slot (in working_slot). 1871 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1872 * old slot is detached but otherwise preserved. 1873 */ 1874 if (change == KVM_MR_CREATE) 1875 kvm_create_memslot(kvm, new); 1876 else if (change == KVM_MR_DELETE) 1877 kvm_delete_memslot(kvm, old, invalid_slot); 1878 else if (change == KVM_MR_MOVE) 1879 kvm_move_memslot(kvm, old, new, invalid_slot); 1880 else if (change == KVM_MR_FLAGS_ONLY) 1881 kvm_update_flags_memslot(kvm, old, new); 1882 else 1883 BUG(); 1884 1885 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1886 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1887 kfree(invalid_slot); 1888 1889 /* 1890 * No need to refresh new->arch, changes after dropping slots_arch_lock 1891 * will directly hit the final, active memslot. Architectures are 1892 * responsible for knowing that new->arch may be stale. 1893 */ 1894 kvm_commit_memory_region(kvm, old, new, change); 1895 1896 return 0; 1897 } 1898 1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1900 gfn_t start, gfn_t end) 1901 { 1902 struct kvm_memslot_iter iter; 1903 1904 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1905 if (iter.slot->id != id) 1906 return true; 1907 } 1908 1909 return false; 1910 } 1911 1912 /* 1913 * Allocate some memory and give it an address in the guest physical address 1914 * space. 1915 * 1916 * Discontiguous memory is allowed, mostly for framebuffers. 1917 * 1918 * Must be called holding kvm->slots_lock for write. 1919 */ 1920 int __kvm_set_memory_region(struct kvm *kvm, 1921 const struct kvm_userspace_memory_region *mem) 1922 { 1923 struct kvm_memory_slot *old, *new; 1924 struct kvm_memslots *slots; 1925 enum kvm_mr_change change; 1926 unsigned long npages; 1927 gfn_t base_gfn; 1928 int as_id, id; 1929 int r; 1930 1931 r = check_memory_region_flags(mem); 1932 if (r) 1933 return r; 1934 1935 as_id = mem->slot >> 16; 1936 id = (u16)mem->slot; 1937 1938 /* General sanity checks */ 1939 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1940 (mem->memory_size != (unsigned long)mem->memory_size)) 1941 return -EINVAL; 1942 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1943 return -EINVAL; 1944 /* We can read the guest memory with __xxx_user() later on. */ 1945 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1946 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1947 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1948 mem->memory_size)) 1949 return -EINVAL; 1950 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1951 return -EINVAL; 1952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1953 return -EINVAL; 1954 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1955 return -EINVAL; 1956 1957 slots = __kvm_memslots(kvm, as_id); 1958 1959 /* 1960 * Note, the old memslot (and the pointer itself!) may be invalidated 1961 * and/or destroyed by kvm_set_memslot(). 1962 */ 1963 old = id_to_memslot(slots, id); 1964 1965 if (!mem->memory_size) { 1966 if (!old || !old->npages) 1967 return -EINVAL; 1968 1969 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1970 return -EIO; 1971 1972 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1973 } 1974 1975 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1976 npages = (mem->memory_size >> PAGE_SHIFT); 1977 1978 if (!old || !old->npages) { 1979 change = KVM_MR_CREATE; 1980 1981 /* 1982 * To simplify KVM internals, the total number of pages across 1983 * all memslots must fit in an unsigned long. 1984 */ 1985 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1986 return -EINVAL; 1987 } else { /* Modify an existing slot. */ 1988 if ((mem->userspace_addr != old->userspace_addr) || 1989 (npages != old->npages) || 1990 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1991 return -EINVAL; 1992 1993 if (base_gfn != old->base_gfn) 1994 change = KVM_MR_MOVE; 1995 else if (mem->flags != old->flags) 1996 change = KVM_MR_FLAGS_ONLY; 1997 else /* Nothing to change. */ 1998 return 0; 1999 } 2000 2001 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2002 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2003 return -EEXIST; 2004 2005 /* Allocate a slot that will persist in the memslot. */ 2006 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2007 if (!new) 2008 return -ENOMEM; 2009 2010 new->as_id = as_id; 2011 new->id = id; 2012 new->base_gfn = base_gfn; 2013 new->npages = npages; 2014 new->flags = mem->flags; 2015 new->userspace_addr = mem->userspace_addr; 2016 2017 r = kvm_set_memslot(kvm, old, new, change); 2018 if (r) 2019 kfree(new); 2020 return r; 2021 } 2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2023 2024 int kvm_set_memory_region(struct kvm *kvm, 2025 const struct kvm_userspace_memory_region *mem) 2026 { 2027 int r; 2028 2029 mutex_lock(&kvm->slots_lock); 2030 r = __kvm_set_memory_region(kvm, mem); 2031 mutex_unlock(&kvm->slots_lock); 2032 return r; 2033 } 2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2035 2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2037 struct kvm_userspace_memory_region *mem) 2038 { 2039 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2040 return -EINVAL; 2041 2042 return kvm_set_memory_region(kvm, mem); 2043 } 2044 2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2046 /** 2047 * kvm_get_dirty_log - get a snapshot of dirty pages 2048 * @kvm: pointer to kvm instance 2049 * @log: slot id and address to which we copy the log 2050 * @is_dirty: set to '1' if any dirty pages were found 2051 * @memslot: set to the associated memslot, always valid on success 2052 */ 2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2054 int *is_dirty, struct kvm_memory_slot **memslot) 2055 { 2056 struct kvm_memslots *slots; 2057 int i, as_id, id; 2058 unsigned long n; 2059 unsigned long any = 0; 2060 2061 /* Dirty ring tracking is exclusive to dirty log tracking */ 2062 if (kvm->dirty_ring_size) 2063 return -ENXIO; 2064 2065 *memslot = NULL; 2066 *is_dirty = 0; 2067 2068 as_id = log->slot >> 16; 2069 id = (u16)log->slot; 2070 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2071 return -EINVAL; 2072 2073 slots = __kvm_memslots(kvm, as_id); 2074 *memslot = id_to_memslot(slots, id); 2075 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2076 return -ENOENT; 2077 2078 kvm_arch_sync_dirty_log(kvm, *memslot); 2079 2080 n = kvm_dirty_bitmap_bytes(*memslot); 2081 2082 for (i = 0; !any && i < n/sizeof(long); ++i) 2083 any = (*memslot)->dirty_bitmap[i]; 2084 2085 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2086 return -EFAULT; 2087 2088 if (any) 2089 *is_dirty = 1; 2090 return 0; 2091 } 2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2093 2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2095 /** 2096 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2097 * and reenable dirty page tracking for the corresponding pages. 2098 * @kvm: pointer to kvm instance 2099 * @log: slot id and address to which we copy the log 2100 * 2101 * We need to keep it in mind that VCPU threads can write to the bitmap 2102 * concurrently. So, to avoid losing track of dirty pages we keep the 2103 * following order: 2104 * 2105 * 1. Take a snapshot of the bit and clear it if needed. 2106 * 2. Write protect the corresponding page. 2107 * 3. Copy the snapshot to the userspace. 2108 * 4. Upon return caller flushes TLB's if needed. 2109 * 2110 * Between 2 and 4, the guest may write to the page using the remaining TLB 2111 * entry. This is not a problem because the page is reported dirty using 2112 * the snapshot taken before and step 4 ensures that writes done after 2113 * exiting to userspace will be logged for the next call. 2114 * 2115 */ 2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2117 { 2118 struct kvm_memslots *slots; 2119 struct kvm_memory_slot *memslot; 2120 int i, as_id, id; 2121 unsigned long n; 2122 unsigned long *dirty_bitmap; 2123 unsigned long *dirty_bitmap_buffer; 2124 bool flush; 2125 2126 /* Dirty ring tracking is exclusive to dirty log tracking */ 2127 if (kvm->dirty_ring_size) 2128 return -ENXIO; 2129 2130 as_id = log->slot >> 16; 2131 id = (u16)log->slot; 2132 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2133 return -EINVAL; 2134 2135 slots = __kvm_memslots(kvm, as_id); 2136 memslot = id_to_memslot(slots, id); 2137 if (!memslot || !memslot->dirty_bitmap) 2138 return -ENOENT; 2139 2140 dirty_bitmap = memslot->dirty_bitmap; 2141 2142 kvm_arch_sync_dirty_log(kvm, memslot); 2143 2144 n = kvm_dirty_bitmap_bytes(memslot); 2145 flush = false; 2146 if (kvm->manual_dirty_log_protect) { 2147 /* 2148 * Unlike kvm_get_dirty_log, we always return false in *flush, 2149 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2150 * is some code duplication between this function and 2151 * kvm_get_dirty_log, but hopefully all architecture 2152 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2153 * can be eliminated. 2154 */ 2155 dirty_bitmap_buffer = dirty_bitmap; 2156 } else { 2157 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2158 memset(dirty_bitmap_buffer, 0, n); 2159 2160 KVM_MMU_LOCK(kvm); 2161 for (i = 0; i < n / sizeof(long); i++) { 2162 unsigned long mask; 2163 gfn_t offset; 2164 2165 if (!dirty_bitmap[i]) 2166 continue; 2167 2168 flush = true; 2169 mask = xchg(&dirty_bitmap[i], 0); 2170 dirty_bitmap_buffer[i] = mask; 2171 2172 offset = i * BITS_PER_LONG; 2173 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2174 offset, mask); 2175 } 2176 KVM_MMU_UNLOCK(kvm); 2177 } 2178 2179 if (flush) 2180 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2181 2182 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2183 return -EFAULT; 2184 return 0; 2185 } 2186 2187 2188 /** 2189 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2190 * @kvm: kvm instance 2191 * @log: slot id and address to which we copy the log 2192 * 2193 * Steps 1-4 below provide general overview of dirty page logging. See 2194 * kvm_get_dirty_log_protect() function description for additional details. 2195 * 2196 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2197 * always flush the TLB (step 4) even if previous step failed and the dirty 2198 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2199 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2200 * writes will be marked dirty for next log read. 2201 * 2202 * 1. Take a snapshot of the bit and clear it if needed. 2203 * 2. Write protect the corresponding page. 2204 * 3. Copy the snapshot to the userspace. 2205 * 4. Flush TLB's if needed. 2206 */ 2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2208 struct kvm_dirty_log *log) 2209 { 2210 int r; 2211 2212 mutex_lock(&kvm->slots_lock); 2213 2214 r = kvm_get_dirty_log_protect(kvm, log); 2215 2216 mutex_unlock(&kvm->slots_lock); 2217 return r; 2218 } 2219 2220 /** 2221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2222 * and reenable dirty page tracking for the corresponding pages. 2223 * @kvm: pointer to kvm instance 2224 * @log: slot id and address from which to fetch the bitmap of dirty pages 2225 */ 2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2227 struct kvm_clear_dirty_log *log) 2228 { 2229 struct kvm_memslots *slots; 2230 struct kvm_memory_slot *memslot; 2231 int as_id, id; 2232 gfn_t offset; 2233 unsigned long i, n; 2234 unsigned long *dirty_bitmap; 2235 unsigned long *dirty_bitmap_buffer; 2236 bool flush; 2237 2238 /* Dirty ring tracking is exclusive to dirty log tracking */ 2239 if (kvm->dirty_ring_size) 2240 return -ENXIO; 2241 2242 as_id = log->slot >> 16; 2243 id = (u16)log->slot; 2244 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2245 return -EINVAL; 2246 2247 if (log->first_page & 63) 2248 return -EINVAL; 2249 2250 slots = __kvm_memslots(kvm, as_id); 2251 memslot = id_to_memslot(slots, id); 2252 if (!memslot || !memslot->dirty_bitmap) 2253 return -ENOENT; 2254 2255 dirty_bitmap = memslot->dirty_bitmap; 2256 2257 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2258 2259 if (log->first_page > memslot->npages || 2260 log->num_pages > memslot->npages - log->first_page || 2261 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2262 return -EINVAL; 2263 2264 kvm_arch_sync_dirty_log(kvm, memslot); 2265 2266 flush = false; 2267 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2268 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2269 return -EFAULT; 2270 2271 KVM_MMU_LOCK(kvm); 2272 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2273 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2274 i++, offset += BITS_PER_LONG) { 2275 unsigned long mask = *dirty_bitmap_buffer++; 2276 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2277 if (!mask) 2278 continue; 2279 2280 mask &= atomic_long_fetch_andnot(mask, p); 2281 2282 /* 2283 * mask contains the bits that really have been cleared. This 2284 * never includes any bits beyond the length of the memslot (if 2285 * the length is not aligned to 64 pages), therefore it is not 2286 * a problem if userspace sets them in log->dirty_bitmap. 2287 */ 2288 if (mask) { 2289 flush = true; 2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2291 offset, mask); 2292 } 2293 } 2294 KVM_MMU_UNLOCK(kvm); 2295 2296 if (flush) 2297 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2298 2299 return 0; 2300 } 2301 2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2303 struct kvm_clear_dirty_log *log) 2304 { 2305 int r; 2306 2307 mutex_lock(&kvm->slots_lock); 2308 2309 r = kvm_clear_dirty_log_protect(kvm, log); 2310 2311 mutex_unlock(&kvm->slots_lock); 2312 return r; 2313 } 2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2315 2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2317 { 2318 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2319 } 2320 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2321 2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2323 { 2324 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2325 u64 gen = slots->generation; 2326 struct kvm_memory_slot *slot; 2327 2328 /* 2329 * This also protects against using a memslot from a different address space, 2330 * since different address spaces have different generation numbers. 2331 */ 2332 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2333 vcpu->last_used_slot = NULL; 2334 vcpu->last_used_slot_gen = gen; 2335 } 2336 2337 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2338 if (slot) 2339 return slot; 2340 2341 /* 2342 * Fall back to searching all memslots. We purposely use 2343 * search_memslots() instead of __gfn_to_memslot() to avoid 2344 * thrashing the VM-wide last_used_slot in kvm_memslots. 2345 */ 2346 slot = search_memslots(slots, gfn, false); 2347 if (slot) { 2348 vcpu->last_used_slot = slot; 2349 return slot; 2350 } 2351 2352 return NULL; 2353 } 2354 2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2356 { 2357 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2358 2359 return kvm_is_visible_memslot(memslot); 2360 } 2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2362 2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2364 { 2365 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2366 2367 return kvm_is_visible_memslot(memslot); 2368 } 2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2370 2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2372 { 2373 struct vm_area_struct *vma; 2374 unsigned long addr, size; 2375 2376 size = PAGE_SIZE; 2377 2378 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2379 if (kvm_is_error_hva(addr)) 2380 return PAGE_SIZE; 2381 2382 mmap_read_lock(current->mm); 2383 vma = find_vma(current->mm, addr); 2384 if (!vma) 2385 goto out; 2386 2387 size = vma_kernel_pagesize(vma); 2388 2389 out: 2390 mmap_read_unlock(current->mm); 2391 2392 return size; 2393 } 2394 2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2396 { 2397 return slot->flags & KVM_MEM_READONLY; 2398 } 2399 2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2401 gfn_t *nr_pages, bool write) 2402 { 2403 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2404 return KVM_HVA_ERR_BAD; 2405 2406 if (memslot_is_readonly(slot) && write) 2407 return KVM_HVA_ERR_RO_BAD; 2408 2409 if (nr_pages) 2410 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2411 2412 return __gfn_to_hva_memslot(slot, gfn); 2413 } 2414 2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2416 gfn_t *nr_pages) 2417 { 2418 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2419 } 2420 2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2422 gfn_t gfn) 2423 { 2424 return gfn_to_hva_many(slot, gfn, NULL); 2425 } 2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2427 2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2429 { 2430 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2431 } 2432 EXPORT_SYMBOL_GPL(gfn_to_hva); 2433 2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2435 { 2436 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2437 } 2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2439 2440 /* 2441 * Return the hva of a @gfn and the R/W attribute if possible. 2442 * 2443 * @slot: the kvm_memory_slot which contains @gfn 2444 * @gfn: the gfn to be translated 2445 * @writable: used to return the read/write attribute of the @slot if the hva 2446 * is valid and @writable is not NULL 2447 */ 2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2449 gfn_t gfn, bool *writable) 2450 { 2451 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2452 2453 if (!kvm_is_error_hva(hva) && writable) 2454 *writable = !memslot_is_readonly(slot); 2455 2456 return hva; 2457 } 2458 2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2460 { 2461 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2462 2463 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2464 } 2465 2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2467 { 2468 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2469 2470 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2471 } 2472 2473 static inline int check_user_page_hwpoison(unsigned long addr) 2474 { 2475 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2476 2477 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2478 return rc == -EHWPOISON; 2479 } 2480 2481 /* 2482 * The fast path to get the writable pfn which will be stored in @pfn, 2483 * true indicates success, otherwise false is returned. It's also the 2484 * only part that runs if we can in atomic context. 2485 */ 2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2487 bool *writable, kvm_pfn_t *pfn) 2488 { 2489 struct page *page[1]; 2490 2491 /* 2492 * Fast pin a writable pfn only if it is a write fault request 2493 * or the caller allows to map a writable pfn for a read fault 2494 * request. 2495 */ 2496 if (!(write_fault || writable)) 2497 return false; 2498 2499 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2500 *pfn = page_to_pfn(page[0]); 2501 2502 if (writable) 2503 *writable = true; 2504 return true; 2505 } 2506 2507 return false; 2508 } 2509 2510 /* 2511 * The slow path to get the pfn of the specified host virtual address, 2512 * 1 indicates success, -errno is returned if error is detected. 2513 */ 2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2515 bool *writable, kvm_pfn_t *pfn) 2516 { 2517 unsigned int flags = FOLL_HWPOISON; 2518 struct page *page; 2519 int npages; 2520 2521 might_sleep(); 2522 2523 if (writable) 2524 *writable = write_fault; 2525 2526 if (write_fault) 2527 flags |= FOLL_WRITE; 2528 if (async) 2529 flags |= FOLL_NOWAIT; 2530 2531 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2532 if (npages != 1) 2533 return npages; 2534 2535 /* map read fault as writable if possible */ 2536 if (unlikely(!write_fault) && writable) { 2537 struct page *wpage; 2538 2539 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2540 *writable = true; 2541 put_page(page); 2542 page = wpage; 2543 } 2544 } 2545 *pfn = page_to_pfn(page); 2546 return npages; 2547 } 2548 2549 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2550 { 2551 if (unlikely(!(vma->vm_flags & VM_READ))) 2552 return false; 2553 2554 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2555 return false; 2556 2557 return true; 2558 } 2559 2560 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2561 { 2562 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2563 2564 if (!page) 2565 return 1; 2566 2567 return get_page_unless_zero(page); 2568 } 2569 2570 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2571 unsigned long addr, bool write_fault, 2572 bool *writable, kvm_pfn_t *p_pfn) 2573 { 2574 kvm_pfn_t pfn; 2575 pte_t *ptep; 2576 spinlock_t *ptl; 2577 int r; 2578 2579 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2580 if (r) { 2581 /* 2582 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2583 * not call the fault handler, so do it here. 2584 */ 2585 bool unlocked = false; 2586 r = fixup_user_fault(current->mm, addr, 2587 (write_fault ? FAULT_FLAG_WRITE : 0), 2588 &unlocked); 2589 if (unlocked) 2590 return -EAGAIN; 2591 if (r) 2592 return r; 2593 2594 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2595 if (r) 2596 return r; 2597 } 2598 2599 if (write_fault && !pte_write(*ptep)) { 2600 pfn = KVM_PFN_ERR_RO_FAULT; 2601 goto out; 2602 } 2603 2604 if (writable) 2605 *writable = pte_write(*ptep); 2606 pfn = pte_pfn(*ptep); 2607 2608 /* 2609 * Get a reference here because callers of *hva_to_pfn* and 2610 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2611 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2612 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2613 * simply do nothing for reserved pfns. 2614 * 2615 * Whoever called remap_pfn_range is also going to call e.g. 2616 * unmap_mapping_range before the underlying pages are freed, 2617 * causing a call to our MMU notifier. 2618 * 2619 * Certain IO or PFNMAP mappings can be backed with valid 2620 * struct pages, but be allocated without refcounting e.g., 2621 * tail pages of non-compound higher order allocations, which 2622 * would then underflow the refcount when the caller does the 2623 * required put_page. Don't allow those pages here. 2624 */ 2625 if (!kvm_try_get_pfn(pfn)) 2626 r = -EFAULT; 2627 2628 out: 2629 pte_unmap_unlock(ptep, ptl); 2630 *p_pfn = pfn; 2631 2632 return r; 2633 } 2634 2635 /* 2636 * Pin guest page in memory and return its pfn. 2637 * @addr: host virtual address which maps memory to the guest 2638 * @atomic: whether this function can sleep 2639 * @async: whether this function need to wait IO complete if the 2640 * host page is not in the memory 2641 * @write_fault: whether we should get a writable host page 2642 * @writable: whether it allows to map a writable host page for !@write_fault 2643 * 2644 * The function will map a writable host page for these two cases: 2645 * 1): @write_fault = true 2646 * 2): @write_fault = false && @writable, @writable will tell the caller 2647 * whether the mapping is writable. 2648 */ 2649 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2650 bool write_fault, bool *writable) 2651 { 2652 struct vm_area_struct *vma; 2653 kvm_pfn_t pfn; 2654 int npages, r; 2655 2656 /* we can do it either atomically or asynchronously, not both */ 2657 BUG_ON(atomic && async); 2658 2659 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2660 return pfn; 2661 2662 if (atomic) 2663 return KVM_PFN_ERR_FAULT; 2664 2665 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2666 if (npages == 1) 2667 return pfn; 2668 2669 mmap_read_lock(current->mm); 2670 if (npages == -EHWPOISON || 2671 (!async && check_user_page_hwpoison(addr))) { 2672 pfn = KVM_PFN_ERR_HWPOISON; 2673 goto exit; 2674 } 2675 2676 retry: 2677 vma = vma_lookup(current->mm, addr); 2678 2679 if (vma == NULL) 2680 pfn = KVM_PFN_ERR_FAULT; 2681 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2682 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2683 if (r == -EAGAIN) 2684 goto retry; 2685 if (r < 0) 2686 pfn = KVM_PFN_ERR_FAULT; 2687 } else { 2688 if (async && vma_is_valid(vma, write_fault)) 2689 *async = true; 2690 pfn = KVM_PFN_ERR_FAULT; 2691 } 2692 exit: 2693 mmap_read_unlock(current->mm); 2694 return pfn; 2695 } 2696 2697 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2698 bool atomic, bool *async, bool write_fault, 2699 bool *writable, hva_t *hva) 2700 { 2701 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2702 2703 if (hva) 2704 *hva = addr; 2705 2706 if (addr == KVM_HVA_ERR_RO_BAD) { 2707 if (writable) 2708 *writable = false; 2709 return KVM_PFN_ERR_RO_FAULT; 2710 } 2711 2712 if (kvm_is_error_hva(addr)) { 2713 if (writable) 2714 *writable = false; 2715 return KVM_PFN_NOSLOT; 2716 } 2717 2718 /* Do not map writable pfn in the readonly memslot. */ 2719 if (writable && memslot_is_readonly(slot)) { 2720 *writable = false; 2721 writable = NULL; 2722 } 2723 2724 return hva_to_pfn(addr, atomic, async, write_fault, 2725 writable); 2726 } 2727 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2728 2729 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2730 bool *writable) 2731 { 2732 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2733 write_fault, writable, NULL); 2734 } 2735 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2736 2737 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2738 { 2739 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2740 } 2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2742 2743 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2744 { 2745 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2746 } 2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2748 2749 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2750 { 2751 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2752 } 2753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2754 2755 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2756 { 2757 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2758 } 2759 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2760 2761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2762 { 2763 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2764 } 2765 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2766 2767 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2768 struct page **pages, int nr_pages) 2769 { 2770 unsigned long addr; 2771 gfn_t entry = 0; 2772 2773 addr = gfn_to_hva_many(slot, gfn, &entry); 2774 if (kvm_is_error_hva(addr)) 2775 return -1; 2776 2777 if (entry < nr_pages) 2778 return 0; 2779 2780 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2781 } 2782 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2783 2784 /* 2785 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2786 * backed by 'struct page'. A valid example is if the backing memslot is 2787 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2788 * been elevated by gfn_to_pfn(). 2789 */ 2790 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2791 { 2792 struct page *page; 2793 kvm_pfn_t pfn; 2794 2795 pfn = gfn_to_pfn(kvm, gfn); 2796 2797 if (is_error_noslot_pfn(pfn)) 2798 return KVM_ERR_PTR_BAD_PAGE; 2799 2800 page = kvm_pfn_to_refcounted_page(pfn); 2801 if (!page) 2802 return KVM_ERR_PTR_BAD_PAGE; 2803 2804 return page; 2805 } 2806 EXPORT_SYMBOL_GPL(gfn_to_page); 2807 2808 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2809 { 2810 if (dirty) 2811 kvm_release_pfn_dirty(pfn); 2812 else 2813 kvm_release_pfn_clean(pfn); 2814 } 2815 2816 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2817 { 2818 kvm_pfn_t pfn; 2819 void *hva = NULL; 2820 struct page *page = KVM_UNMAPPED_PAGE; 2821 2822 if (!map) 2823 return -EINVAL; 2824 2825 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2826 if (is_error_noslot_pfn(pfn)) 2827 return -EINVAL; 2828 2829 if (pfn_valid(pfn)) { 2830 page = pfn_to_page(pfn); 2831 hva = kmap(page); 2832 #ifdef CONFIG_HAS_IOMEM 2833 } else { 2834 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2835 #endif 2836 } 2837 2838 if (!hva) 2839 return -EFAULT; 2840 2841 map->page = page; 2842 map->hva = hva; 2843 map->pfn = pfn; 2844 map->gfn = gfn; 2845 2846 return 0; 2847 } 2848 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2849 2850 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2851 { 2852 if (!map) 2853 return; 2854 2855 if (!map->hva) 2856 return; 2857 2858 if (map->page != KVM_UNMAPPED_PAGE) 2859 kunmap(map->page); 2860 #ifdef CONFIG_HAS_IOMEM 2861 else 2862 memunmap(map->hva); 2863 #endif 2864 2865 if (dirty) 2866 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2867 2868 kvm_release_pfn(map->pfn, dirty); 2869 2870 map->hva = NULL; 2871 map->page = NULL; 2872 } 2873 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2874 2875 static bool kvm_is_ad_tracked_page(struct page *page) 2876 { 2877 /* 2878 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2879 * touched (e.g. set dirty) except by its owner". 2880 */ 2881 return !PageReserved(page); 2882 } 2883 2884 static void kvm_set_page_dirty(struct page *page) 2885 { 2886 if (kvm_is_ad_tracked_page(page)) 2887 SetPageDirty(page); 2888 } 2889 2890 static void kvm_set_page_accessed(struct page *page) 2891 { 2892 if (kvm_is_ad_tracked_page(page)) 2893 mark_page_accessed(page); 2894 } 2895 2896 void kvm_release_page_clean(struct page *page) 2897 { 2898 WARN_ON(is_error_page(page)); 2899 2900 kvm_set_page_accessed(page); 2901 put_page(page); 2902 } 2903 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2904 2905 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2906 { 2907 struct page *page; 2908 2909 if (is_error_noslot_pfn(pfn)) 2910 return; 2911 2912 page = kvm_pfn_to_refcounted_page(pfn); 2913 if (!page) 2914 return; 2915 2916 kvm_release_page_clean(page); 2917 } 2918 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2919 2920 void kvm_release_page_dirty(struct page *page) 2921 { 2922 WARN_ON(is_error_page(page)); 2923 2924 kvm_set_page_dirty(page); 2925 kvm_release_page_clean(page); 2926 } 2927 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2928 2929 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2930 { 2931 struct page *page; 2932 2933 if (is_error_noslot_pfn(pfn)) 2934 return; 2935 2936 page = kvm_pfn_to_refcounted_page(pfn); 2937 if (!page) 2938 return; 2939 2940 kvm_release_page_dirty(page); 2941 } 2942 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2943 2944 /* 2945 * Note, checking for an error/noslot pfn is the caller's responsibility when 2946 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2947 * "set" helpers are not to be used when the pfn might point at garbage. 2948 */ 2949 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2950 { 2951 if (WARN_ON(is_error_noslot_pfn(pfn))) 2952 return; 2953 2954 if (pfn_valid(pfn)) 2955 kvm_set_page_dirty(pfn_to_page(pfn)); 2956 } 2957 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2958 2959 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2960 { 2961 if (WARN_ON(is_error_noslot_pfn(pfn))) 2962 return; 2963 2964 if (pfn_valid(pfn)) 2965 kvm_set_page_accessed(pfn_to_page(pfn)); 2966 } 2967 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2968 2969 static int next_segment(unsigned long len, int offset) 2970 { 2971 if (len > PAGE_SIZE - offset) 2972 return PAGE_SIZE - offset; 2973 else 2974 return len; 2975 } 2976 2977 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2978 void *data, int offset, int len) 2979 { 2980 int r; 2981 unsigned long addr; 2982 2983 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2984 if (kvm_is_error_hva(addr)) 2985 return -EFAULT; 2986 r = __copy_from_user(data, (void __user *)addr + offset, len); 2987 if (r) 2988 return -EFAULT; 2989 return 0; 2990 } 2991 2992 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2993 int len) 2994 { 2995 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2996 2997 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2998 } 2999 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3000 3001 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3002 int offset, int len) 3003 { 3004 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3005 3006 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3007 } 3008 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3009 3010 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3011 { 3012 gfn_t gfn = gpa >> PAGE_SHIFT; 3013 int seg; 3014 int offset = offset_in_page(gpa); 3015 int ret; 3016 3017 while ((seg = next_segment(len, offset)) != 0) { 3018 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3019 if (ret < 0) 3020 return ret; 3021 offset = 0; 3022 len -= seg; 3023 data += seg; 3024 ++gfn; 3025 } 3026 return 0; 3027 } 3028 EXPORT_SYMBOL_GPL(kvm_read_guest); 3029 3030 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3031 { 3032 gfn_t gfn = gpa >> PAGE_SHIFT; 3033 int seg; 3034 int offset = offset_in_page(gpa); 3035 int ret; 3036 3037 while ((seg = next_segment(len, offset)) != 0) { 3038 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3039 if (ret < 0) 3040 return ret; 3041 offset = 0; 3042 len -= seg; 3043 data += seg; 3044 ++gfn; 3045 } 3046 return 0; 3047 } 3048 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3049 3050 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3051 void *data, int offset, unsigned long len) 3052 { 3053 int r; 3054 unsigned long addr; 3055 3056 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3057 if (kvm_is_error_hva(addr)) 3058 return -EFAULT; 3059 pagefault_disable(); 3060 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3061 pagefault_enable(); 3062 if (r) 3063 return -EFAULT; 3064 return 0; 3065 } 3066 3067 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3068 void *data, unsigned long len) 3069 { 3070 gfn_t gfn = gpa >> PAGE_SHIFT; 3071 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3072 int offset = offset_in_page(gpa); 3073 3074 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3075 } 3076 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3077 3078 static int __kvm_write_guest_page(struct kvm *kvm, 3079 struct kvm_memory_slot *memslot, gfn_t gfn, 3080 const void *data, int offset, int len) 3081 { 3082 int r; 3083 unsigned long addr; 3084 3085 addr = gfn_to_hva_memslot(memslot, gfn); 3086 if (kvm_is_error_hva(addr)) 3087 return -EFAULT; 3088 r = __copy_to_user((void __user *)addr + offset, data, len); 3089 if (r) 3090 return -EFAULT; 3091 mark_page_dirty_in_slot(kvm, memslot, gfn); 3092 return 0; 3093 } 3094 3095 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3096 const void *data, int offset, int len) 3097 { 3098 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3099 3100 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3101 } 3102 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3103 3104 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3105 const void *data, int offset, int len) 3106 { 3107 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3108 3109 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3110 } 3111 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3112 3113 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3114 unsigned long len) 3115 { 3116 gfn_t gfn = gpa >> PAGE_SHIFT; 3117 int seg; 3118 int offset = offset_in_page(gpa); 3119 int ret; 3120 3121 while ((seg = next_segment(len, offset)) != 0) { 3122 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3123 if (ret < 0) 3124 return ret; 3125 offset = 0; 3126 len -= seg; 3127 data += seg; 3128 ++gfn; 3129 } 3130 return 0; 3131 } 3132 EXPORT_SYMBOL_GPL(kvm_write_guest); 3133 3134 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3135 unsigned long len) 3136 { 3137 gfn_t gfn = gpa >> PAGE_SHIFT; 3138 int seg; 3139 int offset = offset_in_page(gpa); 3140 int ret; 3141 3142 while ((seg = next_segment(len, offset)) != 0) { 3143 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3144 if (ret < 0) 3145 return ret; 3146 offset = 0; 3147 len -= seg; 3148 data += seg; 3149 ++gfn; 3150 } 3151 return 0; 3152 } 3153 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3154 3155 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3156 struct gfn_to_hva_cache *ghc, 3157 gpa_t gpa, unsigned long len) 3158 { 3159 int offset = offset_in_page(gpa); 3160 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3161 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3162 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3163 gfn_t nr_pages_avail; 3164 3165 /* Update ghc->generation before performing any error checks. */ 3166 ghc->generation = slots->generation; 3167 3168 if (start_gfn > end_gfn) { 3169 ghc->hva = KVM_HVA_ERR_BAD; 3170 return -EINVAL; 3171 } 3172 3173 /* 3174 * If the requested region crosses two memslots, we still 3175 * verify that the entire region is valid here. 3176 */ 3177 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3178 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3179 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3180 &nr_pages_avail); 3181 if (kvm_is_error_hva(ghc->hva)) 3182 return -EFAULT; 3183 } 3184 3185 /* Use the slow path for cross page reads and writes. */ 3186 if (nr_pages_needed == 1) 3187 ghc->hva += offset; 3188 else 3189 ghc->memslot = NULL; 3190 3191 ghc->gpa = gpa; 3192 ghc->len = len; 3193 return 0; 3194 } 3195 3196 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3197 gpa_t gpa, unsigned long len) 3198 { 3199 struct kvm_memslots *slots = kvm_memslots(kvm); 3200 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3201 } 3202 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3203 3204 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3205 void *data, unsigned int offset, 3206 unsigned long len) 3207 { 3208 struct kvm_memslots *slots = kvm_memslots(kvm); 3209 int r; 3210 gpa_t gpa = ghc->gpa + offset; 3211 3212 if (WARN_ON_ONCE(len + offset > ghc->len)) 3213 return -EINVAL; 3214 3215 if (slots->generation != ghc->generation) { 3216 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3217 return -EFAULT; 3218 } 3219 3220 if (kvm_is_error_hva(ghc->hva)) 3221 return -EFAULT; 3222 3223 if (unlikely(!ghc->memslot)) 3224 return kvm_write_guest(kvm, gpa, data, len); 3225 3226 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3227 if (r) 3228 return -EFAULT; 3229 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3230 3231 return 0; 3232 } 3233 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3234 3235 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3236 void *data, unsigned long len) 3237 { 3238 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3239 } 3240 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3241 3242 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3243 void *data, unsigned int offset, 3244 unsigned long len) 3245 { 3246 struct kvm_memslots *slots = kvm_memslots(kvm); 3247 int r; 3248 gpa_t gpa = ghc->gpa + offset; 3249 3250 if (WARN_ON_ONCE(len + offset > ghc->len)) 3251 return -EINVAL; 3252 3253 if (slots->generation != ghc->generation) { 3254 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3255 return -EFAULT; 3256 } 3257 3258 if (kvm_is_error_hva(ghc->hva)) 3259 return -EFAULT; 3260 3261 if (unlikely(!ghc->memslot)) 3262 return kvm_read_guest(kvm, gpa, data, len); 3263 3264 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3265 if (r) 3266 return -EFAULT; 3267 3268 return 0; 3269 } 3270 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3271 3272 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3273 void *data, unsigned long len) 3274 { 3275 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3276 } 3277 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3278 3279 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3280 { 3281 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3282 gfn_t gfn = gpa >> PAGE_SHIFT; 3283 int seg; 3284 int offset = offset_in_page(gpa); 3285 int ret; 3286 3287 while ((seg = next_segment(len, offset)) != 0) { 3288 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3289 if (ret < 0) 3290 return ret; 3291 offset = 0; 3292 len -= seg; 3293 ++gfn; 3294 } 3295 return 0; 3296 } 3297 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3298 3299 void mark_page_dirty_in_slot(struct kvm *kvm, 3300 const struct kvm_memory_slot *memslot, 3301 gfn_t gfn) 3302 { 3303 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3304 3305 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3306 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3307 return; 3308 #endif 3309 3310 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3311 unsigned long rel_gfn = gfn - memslot->base_gfn; 3312 u32 slot = (memslot->as_id << 16) | memslot->id; 3313 3314 if (kvm->dirty_ring_size) 3315 kvm_dirty_ring_push(&vcpu->dirty_ring, 3316 slot, rel_gfn); 3317 else 3318 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3319 } 3320 } 3321 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3322 3323 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3324 { 3325 struct kvm_memory_slot *memslot; 3326 3327 memslot = gfn_to_memslot(kvm, gfn); 3328 mark_page_dirty_in_slot(kvm, memslot, gfn); 3329 } 3330 EXPORT_SYMBOL_GPL(mark_page_dirty); 3331 3332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3333 { 3334 struct kvm_memory_slot *memslot; 3335 3336 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3337 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3338 } 3339 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3340 3341 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3342 { 3343 if (!vcpu->sigset_active) 3344 return; 3345 3346 /* 3347 * This does a lockless modification of ->real_blocked, which is fine 3348 * because, only current can change ->real_blocked and all readers of 3349 * ->real_blocked don't care as long ->real_blocked is always a subset 3350 * of ->blocked. 3351 */ 3352 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3353 } 3354 3355 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3356 { 3357 if (!vcpu->sigset_active) 3358 return; 3359 3360 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3361 sigemptyset(¤t->real_blocked); 3362 } 3363 3364 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3365 { 3366 unsigned int old, val, grow, grow_start; 3367 3368 old = val = vcpu->halt_poll_ns; 3369 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3370 grow = READ_ONCE(halt_poll_ns_grow); 3371 if (!grow) 3372 goto out; 3373 3374 val *= grow; 3375 if (val < grow_start) 3376 val = grow_start; 3377 3378 vcpu->halt_poll_ns = val; 3379 out: 3380 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3381 } 3382 3383 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3384 { 3385 unsigned int old, val, shrink, grow_start; 3386 3387 old = val = vcpu->halt_poll_ns; 3388 shrink = READ_ONCE(halt_poll_ns_shrink); 3389 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3390 if (shrink == 0) 3391 val = 0; 3392 else 3393 val /= shrink; 3394 3395 if (val < grow_start) 3396 val = 0; 3397 3398 vcpu->halt_poll_ns = val; 3399 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3400 } 3401 3402 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3403 { 3404 int ret = -EINTR; 3405 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3406 3407 if (kvm_arch_vcpu_runnable(vcpu)) 3408 goto out; 3409 if (kvm_cpu_has_pending_timer(vcpu)) 3410 goto out; 3411 if (signal_pending(current)) 3412 goto out; 3413 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3414 goto out; 3415 3416 ret = 0; 3417 out: 3418 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3419 return ret; 3420 } 3421 3422 /* 3423 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3424 * pending. This is mostly used when halting a vCPU, but may also be used 3425 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3426 */ 3427 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3428 { 3429 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3430 bool waited = false; 3431 3432 vcpu->stat.generic.blocking = 1; 3433 3434 preempt_disable(); 3435 kvm_arch_vcpu_blocking(vcpu); 3436 prepare_to_rcuwait(wait); 3437 preempt_enable(); 3438 3439 for (;;) { 3440 set_current_state(TASK_INTERRUPTIBLE); 3441 3442 if (kvm_vcpu_check_block(vcpu) < 0) 3443 break; 3444 3445 waited = true; 3446 schedule(); 3447 } 3448 3449 preempt_disable(); 3450 finish_rcuwait(wait); 3451 kvm_arch_vcpu_unblocking(vcpu); 3452 preempt_enable(); 3453 3454 vcpu->stat.generic.blocking = 0; 3455 3456 return waited; 3457 } 3458 3459 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3460 ktime_t end, bool success) 3461 { 3462 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3463 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3464 3465 ++vcpu->stat.generic.halt_attempted_poll; 3466 3467 if (success) { 3468 ++vcpu->stat.generic.halt_successful_poll; 3469 3470 if (!vcpu_valid_wakeup(vcpu)) 3471 ++vcpu->stat.generic.halt_poll_invalid; 3472 3473 stats->halt_poll_success_ns += poll_ns; 3474 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3475 } else { 3476 stats->halt_poll_fail_ns += poll_ns; 3477 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3478 } 3479 } 3480 3481 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3482 { 3483 struct kvm *kvm = vcpu->kvm; 3484 3485 if (kvm->override_halt_poll_ns) { 3486 /* 3487 * Ensure kvm->max_halt_poll_ns is not read before 3488 * kvm->override_halt_poll_ns. 3489 * 3490 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3491 */ 3492 smp_rmb(); 3493 return READ_ONCE(kvm->max_halt_poll_ns); 3494 } 3495 3496 return READ_ONCE(halt_poll_ns); 3497 } 3498 3499 /* 3500 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3501 * polling is enabled, busy wait for a short time before blocking to avoid the 3502 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3503 * is halted. 3504 */ 3505 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3506 { 3507 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3508 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3509 ktime_t start, cur, poll_end; 3510 bool waited = false; 3511 bool do_halt_poll; 3512 u64 halt_ns; 3513 3514 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3515 vcpu->halt_poll_ns = max_halt_poll_ns; 3516 3517 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3518 3519 start = cur = poll_end = ktime_get(); 3520 if (do_halt_poll) { 3521 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3522 3523 do { 3524 /* 3525 * This sets KVM_REQ_UNHALT if an interrupt 3526 * arrives. 3527 */ 3528 if (kvm_vcpu_check_block(vcpu) < 0) 3529 goto out; 3530 cpu_relax(); 3531 poll_end = cur = ktime_get(); 3532 } while (kvm_vcpu_can_poll(cur, stop)); 3533 } 3534 3535 waited = kvm_vcpu_block(vcpu); 3536 3537 cur = ktime_get(); 3538 if (waited) { 3539 vcpu->stat.generic.halt_wait_ns += 3540 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3541 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3542 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3543 } 3544 out: 3545 /* The total time the vCPU was "halted", including polling time. */ 3546 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3547 3548 /* 3549 * Note, halt-polling is considered successful so long as the vCPU was 3550 * never actually scheduled out, i.e. even if the wake event arrived 3551 * after of the halt-polling loop itself, but before the full wait. 3552 */ 3553 if (do_halt_poll) 3554 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3555 3556 if (halt_poll_allowed) { 3557 /* Recompute the max halt poll time in case it changed. */ 3558 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3559 3560 if (!vcpu_valid_wakeup(vcpu)) { 3561 shrink_halt_poll_ns(vcpu); 3562 } else if (max_halt_poll_ns) { 3563 if (halt_ns <= vcpu->halt_poll_ns) 3564 ; 3565 /* we had a long block, shrink polling */ 3566 else if (vcpu->halt_poll_ns && 3567 halt_ns > max_halt_poll_ns) 3568 shrink_halt_poll_ns(vcpu); 3569 /* we had a short halt and our poll time is too small */ 3570 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3571 halt_ns < max_halt_poll_ns) 3572 grow_halt_poll_ns(vcpu); 3573 } else { 3574 vcpu->halt_poll_ns = 0; 3575 } 3576 } 3577 3578 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3579 } 3580 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3581 3582 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3583 { 3584 if (__kvm_vcpu_wake_up(vcpu)) { 3585 WRITE_ONCE(vcpu->ready, true); 3586 ++vcpu->stat.generic.halt_wakeup; 3587 return true; 3588 } 3589 3590 return false; 3591 } 3592 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3593 3594 #ifndef CONFIG_S390 3595 /* 3596 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3597 */ 3598 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3599 { 3600 int me, cpu; 3601 3602 if (kvm_vcpu_wake_up(vcpu)) 3603 return; 3604 3605 me = get_cpu(); 3606 /* 3607 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3608 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3609 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3610 * within the vCPU thread itself. 3611 */ 3612 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3613 if (vcpu->mode == IN_GUEST_MODE) 3614 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3615 goto out; 3616 } 3617 3618 /* 3619 * Note, the vCPU could get migrated to a different pCPU at any point 3620 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3621 * IPI to the previous pCPU. But, that's ok because the purpose of the 3622 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3623 * vCPU also requires it to leave IN_GUEST_MODE. 3624 */ 3625 if (kvm_arch_vcpu_should_kick(vcpu)) { 3626 cpu = READ_ONCE(vcpu->cpu); 3627 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3628 smp_send_reschedule(cpu); 3629 } 3630 out: 3631 put_cpu(); 3632 } 3633 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3634 #endif /* !CONFIG_S390 */ 3635 3636 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3637 { 3638 struct pid *pid; 3639 struct task_struct *task = NULL; 3640 int ret = 0; 3641 3642 rcu_read_lock(); 3643 pid = rcu_dereference(target->pid); 3644 if (pid) 3645 task = get_pid_task(pid, PIDTYPE_PID); 3646 rcu_read_unlock(); 3647 if (!task) 3648 return ret; 3649 ret = yield_to(task, 1); 3650 put_task_struct(task); 3651 3652 return ret; 3653 } 3654 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3655 3656 /* 3657 * Helper that checks whether a VCPU is eligible for directed yield. 3658 * Most eligible candidate to yield is decided by following heuristics: 3659 * 3660 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3661 * (preempted lock holder), indicated by @in_spin_loop. 3662 * Set at the beginning and cleared at the end of interception/PLE handler. 3663 * 3664 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3665 * chance last time (mostly it has become eligible now since we have probably 3666 * yielded to lockholder in last iteration. This is done by toggling 3667 * @dy_eligible each time a VCPU checked for eligibility.) 3668 * 3669 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3670 * to preempted lock-holder could result in wrong VCPU selection and CPU 3671 * burning. Giving priority for a potential lock-holder increases lock 3672 * progress. 3673 * 3674 * Since algorithm is based on heuristics, accessing another VCPU data without 3675 * locking does not harm. It may result in trying to yield to same VCPU, fail 3676 * and continue with next VCPU and so on. 3677 */ 3678 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3679 { 3680 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3681 bool eligible; 3682 3683 eligible = !vcpu->spin_loop.in_spin_loop || 3684 vcpu->spin_loop.dy_eligible; 3685 3686 if (vcpu->spin_loop.in_spin_loop) 3687 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3688 3689 return eligible; 3690 #else 3691 return true; 3692 #endif 3693 } 3694 3695 /* 3696 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3697 * a vcpu_load/vcpu_put pair. However, for most architectures 3698 * kvm_arch_vcpu_runnable does not require vcpu_load. 3699 */ 3700 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3701 { 3702 return kvm_arch_vcpu_runnable(vcpu); 3703 } 3704 3705 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3706 { 3707 if (kvm_arch_dy_runnable(vcpu)) 3708 return true; 3709 3710 #ifdef CONFIG_KVM_ASYNC_PF 3711 if (!list_empty_careful(&vcpu->async_pf.done)) 3712 return true; 3713 #endif 3714 3715 return false; 3716 } 3717 3718 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3719 { 3720 return false; 3721 } 3722 3723 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3724 { 3725 struct kvm *kvm = me->kvm; 3726 struct kvm_vcpu *vcpu; 3727 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3728 unsigned long i; 3729 int yielded = 0; 3730 int try = 3; 3731 int pass; 3732 3733 kvm_vcpu_set_in_spin_loop(me, true); 3734 /* 3735 * We boost the priority of a VCPU that is runnable but not 3736 * currently running, because it got preempted by something 3737 * else and called schedule in __vcpu_run. Hopefully that 3738 * VCPU is holding the lock that we need and will release it. 3739 * We approximate round-robin by starting at the last boosted VCPU. 3740 */ 3741 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3742 kvm_for_each_vcpu(i, vcpu, kvm) { 3743 if (!pass && i <= last_boosted_vcpu) { 3744 i = last_boosted_vcpu; 3745 continue; 3746 } else if (pass && i > last_boosted_vcpu) 3747 break; 3748 if (!READ_ONCE(vcpu->ready)) 3749 continue; 3750 if (vcpu == me) 3751 continue; 3752 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3753 continue; 3754 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3755 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3756 !kvm_arch_vcpu_in_kernel(vcpu)) 3757 continue; 3758 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3759 continue; 3760 3761 yielded = kvm_vcpu_yield_to(vcpu); 3762 if (yielded > 0) { 3763 kvm->last_boosted_vcpu = i; 3764 break; 3765 } else if (yielded < 0) { 3766 try--; 3767 if (!try) 3768 break; 3769 } 3770 } 3771 } 3772 kvm_vcpu_set_in_spin_loop(me, false); 3773 3774 /* Ensure vcpu is not eligible during next spinloop */ 3775 kvm_vcpu_set_dy_eligible(me, false); 3776 } 3777 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3778 3779 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3780 { 3781 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3782 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3783 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3784 kvm->dirty_ring_size / PAGE_SIZE); 3785 #else 3786 return false; 3787 #endif 3788 } 3789 3790 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3791 { 3792 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3793 struct page *page; 3794 3795 if (vmf->pgoff == 0) 3796 page = virt_to_page(vcpu->run); 3797 #ifdef CONFIG_X86 3798 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3799 page = virt_to_page(vcpu->arch.pio_data); 3800 #endif 3801 #ifdef CONFIG_KVM_MMIO 3802 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3803 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3804 #endif 3805 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3806 page = kvm_dirty_ring_get_page( 3807 &vcpu->dirty_ring, 3808 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3809 else 3810 return kvm_arch_vcpu_fault(vcpu, vmf); 3811 get_page(page); 3812 vmf->page = page; 3813 return 0; 3814 } 3815 3816 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3817 .fault = kvm_vcpu_fault, 3818 }; 3819 3820 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3821 { 3822 struct kvm_vcpu *vcpu = file->private_data; 3823 unsigned long pages = vma_pages(vma); 3824 3825 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3826 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3827 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3828 return -EINVAL; 3829 3830 vma->vm_ops = &kvm_vcpu_vm_ops; 3831 return 0; 3832 } 3833 3834 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3835 { 3836 struct kvm_vcpu *vcpu = filp->private_data; 3837 3838 kvm_put_kvm(vcpu->kvm); 3839 return 0; 3840 } 3841 3842 static const struct file_operations kvm_vcpu_fops = { 3843 .release = kvm_vcpu_release, 3844 .unlocked_ioctl = kvm_vcpu_ioctl, 3845 .mmap = kvm_vcpu_mmap, 3846 .llseek = noop_llseek, 3847 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3848 }; 3849 3850 /* 3851 * Allocates an inode for the vcpu. 3852 */ 3853 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3854 { 3855 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3856 3857 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3858 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3859 } 3860 3861 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3862 static int vcpu_get_pid(void *data, u64 *val) 3863 { 3864 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data; 3865 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3866 return 0; 3867 } 3868 3869 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3870 3871 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3872 { 3873 struct dentry *debugfs_dentry; 3874 char dir_name[ITOA_MAX_LEN * 2]; 3875 3876 if (!debugfs_initialized()) 3877 return; 3878 3879 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3880 debugfs_dentry = debugfs_create_dir(dir_name, 3881 vcpu->kvm->debugfs_dentry); 3882 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3883 &vcpu_get_pid_fops); 3884 3885 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3886 } 3887 #endif 3888 3889 /* 3890 * Creates some virtual cpus. Good luck creating more than one. 3891 */ 3892 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3893 { 3894 int r; 3895 struct kvm_vcpu *vcpu; 3896 struct page *page; 3897 3898 if (id >= KVM_MAX_VCPU_IDS) 3899 return -EINVAL; 3900 3901 mutex_lock(&kvm->lock); 3902 if (kvm->created_vcpus >= kvm->max_vcpus) { 3903 mutex_unlock(&kvm->lock); 3904 return -EINVAL; 3905 } 3906 3907 r = kvm_arch_vcpu_precreate(kvm, id); 3908 if (r) { 3909 mutex_unlock(&kvm->lock); 3910 return r; 3911 } 3912 3913 kvm->created_vcpus++; 3914 mutex_unlock(&kvm->lock); 3915 3916 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3917 if (!vcpu) { 3918 r = -ENOMEM; 3919 goto vcpu_decrement; 3920 } 3921 3922 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3923 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3924 if (!page) { 3925 r = -ENOMEM; 3926 goto vcpu_free; 3927 } 3928 vcpu->run = page_address(page); 3929 3930 kvm_vcpu_init(vcpu, kvm, id); 3931 3932 r = kvm_arch_vcpu_create(vcpu); 3933 if (r) 3934 goto vcpu_free_run_page; 3935 3936 if (kvm->dirty_ring_size) { 3937 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3938 id, kvm->dirty_ring_size); 3939 if (r) 3940 goto arch_vcpu_destroy; 3941 } 3942 3943 mutex_lock(&kvm->lock); 3944 if (kvm_get_vcpu_by_id(kvm, id)) { 3945 r = -EEXIST; 3946 goto unlock_vcpu_destroy; 3947 } 3948 3949 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3950 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3951 BUG_ON(r == -EBUSY); 3952 if (r) 3953 goto unlock_vcpu_destroy; 3954 3955 /* Now it's all set up, let userspace reach it */ 3956 kvm_get_kvm(kvm); 3957 r = create_vcpu_fd(vcpu); 3958 if (r < 0) { 3959 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3960 kvm_put_kvm_no_destroy(kvm); 3961 goto unlock_vcpu_destroy; 3962 } 3963 3964 /* 3965 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3966 * pointer before kvm->online_vcpu's incremented value. 3967 */ 3968 smp_wmb(); 3969 atomic_inc(&kvm->online_vcpus); 3970 3971 mutex_unlock(&kvm->lock); 3972 kvm_arch_vcpu_postcreate(vcpu); 3973 kvm_create_vcpu_debugfs(vcpu); 3974 return r; 3975 3976 unlock_vcpu_destroy: 3977 mutex_unlock(&kvm->lock); 3978 kvm_dirty_ring_free(&vcpu->dirty_ring); 3979 arch_vcpu_destroy: 3980 kvm_arch_vcpu_destroy(vcpu); 3981 vcpu_free_run_page: 3982 free_page((unsigned long)vcpu->run); 3983 vcpu_free: 3984 kmem_cache_free(kvm_vcpu_cache, vcpu); 3985 vcpu_decrement: 3986 mutex_lock(&kvm->lock); 3987 kvm->created_vcpus--; 3988 mutex_unlock(&kvm->lock); 3989 return r; 3990 } 3991 3992 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3993 { 3994 if (sigset) { 3995 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3996 vcpu->sigset_active = 1; 3997 vcpu->sigset = *sigset; 3998 } else 3999 vcpu->sigset_active = 0; 4000 return 0; 4001 } 4002 4003 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4004 size_t size, loff_t *offset) 4005 { 4006 struct kvm_vcpu *vcpu = file->private_data; 4007 4008 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4009 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4010 sizeof(vcpu->stat), user_buffer, size, offset); 4011 } 4012 4013 static const struct file_operations kvm_vcpu_stats_fops = { 4014 .read = kvm_vcpu_stats_read, 4015 .llseek = noop_llseek, 4016 }; 4017 4018 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4019 { 4020 int fd; 4021 struct file *file; 4022 char name[15 + ITOA_MAX_LEN + 1]; 4023 4024 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4025 4026 fd = get_unused_fd_flags(O_CLOEXEC); 4027 if (fd < 0) 4028 return fd; 4029 4030 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4031 if (IS_ERR(file)) { 4032 put_unused_fd(fd); 4033 return PTR_ERR(file); 4034 } 4035 file->f_mode |= FMODE_PREAD; 4036 fd_install(fd, file); 4037 4038 return fd; 4039 } 4040 4041 static long kvm_vcpu_ioctl(struct file *filp, 4042 unsigned int ioctl, unsigned long arg) 4043 { 4044 struct kvm_vcpu *vcpu = filp->private_data; 4045 void __user *argp = (void __user *)arg; 4046 int r; 4047 struct kvm_fpu *fpu = NULL; 4048 struct kvm_sregs *kvm_sregs = NULL; 4049 4050 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4051 return -EIO; 4052 4053 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4054 return -EINVAL; 4055 4056 /* 4057 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4058 * execution; mutex_lock() would break them. 4059 */ 4060 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4061 if (r != -ENOIOCTLCMD) 4062 return r; 4063 4064 if (mutex_lock_killable(&vcpu->mutex)) 4065 return -EINTR; 4066 switch (ioctl) { 4067 case KVM_RUN: { 4068 struct pid *oldpid; 4069 r = -EINVAL; 4070 if (arg) 4071 goto out; 4072 oldpid = rcu_access_pointer(vcpu->pid); 4073 if (unlikely(oldpid != task_pid(current))) { 4074 /* The thread running this VCPU changed. */ 4075 struct pid *newpid; 4076 4077 r = kvm_arch_vcpu_run_pid_change(vcpu); 4078 if (r) 4079 break; 4080 4081 newpid = get_task_pid(current, PIDTYPE_PID); 4082 rcu_assign_pointer(vcpu->pid, newpid); 4083 if (oldpid) 4084 synchronize_rcu(); 4085 put_pid(oldpid); 4086 } 4087 r = kvm_arch_vcpu_ioctl_run(vcpu); 4088 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4089 break; 4090 } 4091 case KVM_GET_REGS: { 4092 struct kvm_regs *kvm_regs; 4093 4094 r = -ENOMEM; 4095 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4096 if (!kvm_regs) 4097 goto out; 4098 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4099 if (r) 4100 goto out_free1; 4101 r = -EFAULT; 4102 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4103 goto out_free1; 4104 r = 0; 4105 out_free1: 4106 kfree(kvm_regs); 4107 break; 4108 } 4109 case KVM_SET_REGS: { 4110 struct kvm_regs *kvm_regs; 4111 4112 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4113 if (IS_ERR(kvm_regs)) { 4114 r = PTR_ERR(kvm_regs); 4115 goto out; 4116 } 4117 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4118 kfree(kvm_regs); 4119 break; 4120 } 4121 case KVM_GET_SREGS: { 4122 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4123 GFP_KERNEL_ACCOUNT); 4124 r = -ENOMEM; 4125 if (!kvm_sregs) 4126 goto out; 4127 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4128 if (r) 4129 goto out; 4130 r = -EFAULT; 4131 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4132 goto out; 4133 r = 0; 4134 break; 4135 } 4136 case KVM_SET_SREGS: { 4137 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4138 if (IS_ERR(kvm_sregs)) { 4139 r = PTR_ERR(kvm_sregs); 4140 kvm_sregs = NULL; 4141 goto out; 4142 } 4143 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4144 break; 4145 } 4146 case KVM_GET_MP_STATE: { 4147 struct kvm_mp_state mp_state; 4148 4149 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4150 if (r) 4151 goto out; 4152 r = -EFAULT; 4153 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4154 goto out; 4155 r = 0; 4156 break; 4157 } 4158 case KVM_SET_MP_STATE: { 4159 struct kvm_mp_state mp_state; 4160 4161 r = -EFAULT; 4162 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4163 goto out; 4164 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4165 break; 4166 } 4167 case KVM_TRANSLATE: { 4168 struct kvm_translation tr; 4169 4170 r = -EFAULT; 4171 if (copy_from_user(&tr, argp, sizeof(tr))) 4172 goto out; 4173 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4174 if (r) 4175 goto out; 4176 r = -EFAULT; 4177 if (copy_to_user(argp, &tr, sizeof(tr))) 4178 goto out; 4179 r = 0; 4180 break; 4181 } 4182 case KVM_SET_GUEST_DEBUG: { 4183 struct kvm_guest_debug dbg; 4184 4185 r = -EFAULT; 4186 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4187 goto out; 4188 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4189 break; 4190 } 4191 case KVM_SET_SIGNAL_MASK: { 4192 struct kvm_signal_mask __user *sigmask_arg = argp; 4193 struct kvm_signal_mask kvm_sigmask; 4194 sigset_t sigset, *p; 4195 4196 p = NULL; 4197 if (argp) { 4198 r = -EFAULT; 4199 if (copy_from_user(&kvm_sigmask, argp, 4200 sizeof(kvm_sigmask))) 4201 goto out; 4202 r = -EINVAL; 4203 if (kvm_sigmask.len != sizeof(sigset)) 4204 goto out; 4205 r = -EFAULT; 4206 if (copy_from_user(&sigset, sigmask_arg->sigset, 4207 sizeof(sigset))) 4208 goto out; 4209 p = &sigset; 4210 } 4211 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4212 break; 4213 } 4214 case KVM_GET_FPU: { 4215 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4216 r = -ENOMEM; 4217 if (!fpu) 4218 goto out; 4219 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4220 if (r) 4221 goto out; 4222 r = -EFAULT; 4223 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4224 goto out; 4225 r = 0; 4226 break; 4227 } 4228 case KVM_SET_FPU: { 4229 fpu = memdup_user(argp, sizeof(*fpu)); 4230 if (IS_ERR(fpu)) { 4231 r = PTR_ERR(fpu); 4232 fpu = NULL; 4233 goto out; 4234 } 4235 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4236 break; 4237 } 4238 case KVM_GET_STATS_FD: { 4239 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4240 break; 4241 } 4242 default: 4243 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4244 } 4245 out: 4246 mutex_unlock(&vcpu->mutex); 4247 kfree(fpu); 4248 kfree(kvm_sregs); 4249 return r; 4250 } 4251 4252 #ifdef CONFIG_KVM_COMPAT 4253 static long kvm_vcpu_compat_ioctl(struct file *filp, 4254 unsigned int ioctl, unsigned long arg) 4255 { 4256 struct kvm_vcpu *vcpu = filp->private_data; 4257 void __user *argp = compat_ptr(arg); 4258 int r; 4259 4260 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4261 return -EIO; 4262 4263 switch (ioctl) { 4264 case KVM_SET_SIGNAL_MASK: { 4265 struct kvm_signal_mask __user *sigmask_arg = argp; 4266 struct kvm_signal_mask kvm_sigmask; 4267 sigset_t sigset; 4268 4269 if (argp) { 4270 r = -EFAULT; 4271 if (copy_from_user(&kvm_sigmask, argp, 4272 sizeof(kvm_sigmask))) 4273 goto out; 4274 r = -EINVAL; 4275 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4276 goto out; 4277 r = -EFAULT; 4278 if (get_compat_sigset(&sigset, 4279 (compat_sigset_t __user *)sigmask_arg->sigset)) 4280 goto out; 4281 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4282 } else 4283 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4284 break; 4285 } 4286 default: 4287 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4288 } 4289 4290 out: 4291 return r; 4292 } 4293 #endif 4294 4295 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4296 { 4297 struct kvm_device *dev = filp->private_data; 4298 4299 if (dev->ops->mmap) 4300 return dev->ops->mmap(dev, vma); 4301 4302 return -ENODEV; 4303 } 4304 4305 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4306 int (*accessor)(struct kvm_device *dev, 4307 struct kvm_device_attr *attr), 4308 unsigned long arg) 4309 { 4310 struct kvm_device_attr attr; 4311 4312 if (!accessor) 4313 return -EPERM; 4314 4315 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4316 return -EFAULT; 4317 4318 return accessor(dev, &attr); 4319 } 4320 4321 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4322 unsigned long arg) 4323 { 4324 struct kvm_device *dev = filp->private_data; 4325 4326 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4327 return -EIO; 4328 4329 switch (ioctl) { 4330 case KVM_SET_DEVICE_ATTR: 4331 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4332 case KVM_GET_DEVICE_ATTR: 4333 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4334 case KVM_HAS_DEVICE_ATTR: 4335 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4336 default: 4337 if (dev->ops->ioctl) 4338 return dev->ops->ioctl(dev, ioctl, arg); 4339 4340 return -ENOTTY; 4341 } 4342 } 4343 4344 static int kvm_device_release(struct inode *inode, struct file *filp) 4345 { 4346 struct kvm_device *dev = filp->private_data; 4347 struct kvm *kvm = dev->kvm; 4348 4349 if (dev->ops->release) { 4350 mutex_lock(&kvm->lock); 4351 list_del(&dev->vm_node); 4352 dev->ops->release(dev); 4353 mutex_unlock(&kvm->lock); 4354 } 4355 4356 kvm_put_kvm(kvm); 4357 return 0; 4358 } 4359 4360 static const struct file_operations kvm_device_fops = { 4361 .unlocked_ioctl = kvm_device_ioctl, 4362 .release = kvm_device_release, 4363 KVM_COMPAT(kvm_device_ioctl), 4364 .mmap = kvm_device_mmap, 4365 }; 4366 4367 struct kvm_device *kvm_device_from_filp(struct file *filp) 4368 { 4369 if (filp->f_op != &kvm_device_fops) 4370 return NULL; 4371 4372 return filp->private_data; 4373 } 4374 4375 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4376 #ifdef CONFIG_KVM_MPIC 4377 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4378 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4379 #endif 4380 }; 4381 4382 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4383 { 4384 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4385 return -ENOSPC; 4386 4387 if (kvm_device_ops_table[type] != NULL) 4388 return -EEXIST; 4389 4390 kvm_device_ops_table[type] = ops; 4391 return 0; 4392 } 4393 4394 void kvm_unregister_device_ops(u32 type) 4395 { 4396 if (kvm_device_ops_table[type] != NULL) 4397 kvm_device_ops_table[type] = NULL; 4398 } 4399 4400 static int kvm_ioctl_create_device(struct kvm *kvm, 4401 struct kvm_create_device *cd) 4402 { 4403 const struct kvm_device_ops *ops; 4404 struct kvm_device *dev; 4405 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4406 int type; 4407 int ret; 4408 4409 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4410 return -ENODEV; 4411 4412 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4413 ops = kvm_device_ops_table[type]; 4414 if (ops == NULL) 4415 return -ENODEV; 4416 4417 if (test) 4418 return 0; 4419 4420 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4421 if (!dev) 4422 return -ENOMEM; 4423 4424 dev->ops = ops; 4425 dev->kvm = kvm; 4426 4427 mutex_lock(&kvm->lock); 4428 ret = ops->create(dev, type); 4429 if (ret < 0) { 4430 mutex_unlock(&kvm->lock); 4431 kfree(dev); 4432 return ret; 4433 } 4434 list_add(&dev->vm_node, &kvm->devices); 4435 mutex_unlock(&kvm->lock); 4436 4437 if (ops->init) 4438 ops->init(dev); 4439 4440 kvm_get_kvm(kvm); 4441 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4442 if (ret < 0) { 4443 kvm_put_kvm_no_destroy(kvm); 4444 mutex_lock(&kvm->lock); 4445 list_del(&dev->vm_node); 4446 if (ops->release) 4447 ops->release(dev); 4448 mutex_unlock(&kvm->lock); 4449 if (ops->destroy) 4450 ops->destroy(dev); 4451 return ret; 4452 } 4453 4454 cd->fd = ret; 4455 return 0; 4456 } 4457 4458 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4459 { 4460 switch (arg) { 4461 case KVM_CAP_USER_MEMORY: 4462 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4463 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4464 case KVM_CAP_INTERNAL_ERROR_DATA: 4465 #ifdef CONFIG_HAVE_KVM_MSI 4466 case KVM_CAP_SIGNAL_MSI: 4467 #endif 4468 #ifdef CONFIG_HAVE_KVM_IRQFD 4469 case KVM_CAP_IRQFD: 4470 case KVM_CAP_IRQFD_RESAMPLE: 4471 #endif 4472 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4473 case KVM_CAP_CHECK_EXTENSION_VM: 4474 case KVM_CAP_ENABLE_CAP_VM: 4475 case KVM_CAP_HALT_POLL: 4476 return 1; 4477 #ifdef CONFIG_KVM_MMIO 4478 case KVM_CAP_COALESCED_MMIO: 4479 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4480 case KVM_CAP_COALESCED_PIO: 4481 return 1; 4482 #endif 4483 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4484 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4485 return KVM_DIRTY_LOG_MANUAL_CAPS; 4486 #endif 4487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4488 case KVM_CAP_IRQ_ROUTING: 4489 return KVM_MAX_IRQ_ROUTES; 4490 #endif 4491 #if KVM_ADDRESS_SPACE_NUM > 1 4492 case KVM_CAP_MULTI_ADDRESS_SPACE: 4493 return KVM_ADDRESS_SPACE_NUM; 4494 #endif 4495 case KVM_CAP_NR_MEMSLOTS: 4496 return KVM_USER_MEM_SLOTS; 4497 case KVM_CAP_DIRTY_LOG_RING: 4498 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4499 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4500 #else 4501 return 0; 4502 #endif 4503 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4504 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4505 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4506 #else 4507 return 0; 4508 #endif 4509 case KVM_CAP_BINARY_STATS_FD: 4510 case KVM_CAP_SYSTEM_EVENT_DATA: 4511 return 1; 4512 default: 4513 break; 4514 } 4515 return kvm_vm_ioctl_check_extension(kvm, arg); 4516 } 4517 4518 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4519 { 4520 int r; 4521 4522 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4523 return -EINVAL; 4524 4525 /* the size should be power of 2 */ 4526 if (!size || (size & (size - 1))) 4527 return -EINVAL; 4528 4529 /* Should be bigger to keep the reserved entries, or a page */ 4530 if (size < kvm_dirty_ring_get_rsvd_entries() * 4531 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4532 return -EINVAL; 4533 4534 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4535 sizeof(struct kvm_dirty_gfn)) 4536 return -E2BIG; 4537 4538 /* We only allow it to set once */ 4539 if (kvm->dirty_ring_size) 4540 return -EINVAL; 4541 4542 mutex_lock(&kvm->lock); 4543 4544 if (kvm->created_vcpus) { 4545 /* We don't allow to change this value after vcpu created */ 4546 r = -EINVAL; 4547 } else { 4548 kvm->dirty_ring_size = size; 4549 r = 0; 4550 } 4551 4552 mutex_unlock(&kvm->lock); 4553 return r; 4554 } 4555 4556 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4557 { 4558 unsigned long i; 4559 struct kvm_vcpu *vcpu; 4560 int cleared = 0; 4561 4562 if (!kvm->dirty_ring_size) 4563 return -EINVAL; 4564 4565 mutex_lock(&kvm->slots_lock); 4566 4567 kvm_for_each_vcpu(i, vcpu, kvm) 4568 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4569 4570 mutex_unlock(&kvm->slots_lock); 4571 4572 if (cleared) 4573 kvm_flush_remote_tlbs(kvm); 4574 4575 return cleared; 4576 } 4577 4578 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4579 struct kvm_enable_cap *cap) 4580 { 4581 return -EINVAL; 4582 } 4583 4584 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4585 struct kvm_enable_cap *cap) 4586 { 4587 switch (cap->cap) { 4588 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4589 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4590 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4591 4592 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4593 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4594 4595 if (cap->flags || (cap->args[0] & ~allowed_options)) 4596 return -EINVAL; 4597 kvm->manual_dirty_log_protect = cap->args[0]; 4598 return 0; 4599 } 4600 #endif 4601 case KVM_CAP_HALT_POLL: { 4602 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4603 return -EINVAL; 4604 4605 kvm->max_halt_poll_ns = cap->args[0]; 4606 4607 /* 4608 * Ensure kvm->override_halt_poll_ns does not become visible 4609 * before kvm->max_halt_poll_ns. 4610 * 4611 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4612 */ 4613 smp_wmb(); 4614 kvm->override_halt_poll_ns = true; 4615 4616 return 0; 4617 } 4618 case KVM_CAP_DIRTY_LOG_RING: 4619 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4620 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4621 return -EINVAL; 4622 4623 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4624 default: 4625 return kvm_vm_ioctl_enable_cap(kvm, cap); 4626 } 4627 } 4628 4629 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4630 size_t size, loff_t *offset) 4631 { 4632 struct kvm *kvm = file->private_data; 4633 4634 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4635 &kvm_vm_stats_desc[0], &kvm->stat, 4636 sizeof(kvm->stat), user_buffer, size, offset); 4637 } 4638 4639 static const struct file_operations kvm_vm_stats_fops = { 4640 .read = kvm_vm_stats_read, 4641 .llseek = noop_llseek, 4642 }; 4643 4644 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4645 { 4646 int fd; 4647 struct file *file; 4648 4649 fd = get_unused_fd_flags(O_CLOEXEC); 4650 if (fd < 0) 4651 return fd; 4652 4653 file = anon_inode_getfile("kvm-vm-stats", 4654 &kvm_vm_stats_fops, kvm, O_RDONLY); 4655 if (IS_ERR(file)) { 4656 put_unused_fd(fd); 4657 return PTR_ERR(file); 4658 } 4659 file->f_mode |= FMODE_PREAD; 4660 fd_install(fd, file); 4661 4662 return fd; 4663 } 4664 4665 static long kvm_vm_ioctl(struct file *filp, 4666 unsigned int ioctl, unsigned long arg) 4667 { 4668 struct kvm *kvm = filp->private_data; 4669 void __user *argp = (void __user *)arg; 4670 int r; 4671 4672 if (kvm->mm != current->mm || kvm->vm_dead) 4673 return -EIO; 4674 switch (ioctl) { 4675 case KVM_CREATE_VCPU: 4676 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4677 break; 4678 case KVM_ENABLE_CAP: { 4679 struct kvm_enable_cap cap; 4680 4681 r = -EFAULT; 4682 if (copy_from_user(&cap, argp, sizeof(cap))) 4683 goto out; 4684 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4685 break; 4686 } 4687 case KVM_SET_USER_MEMORY_REGION: { 4688 struct kvm_userspace_memory_region kvm_userspace_mem; 4689 4690 r = -EFAULT; 4691 if (copy_from_user(&kvm_userspace_mem, argp, 4692 sizeof(kvm_userspace_mem))) 4693 goto out; 4694 4695 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4696 break; 4697 } 4698 case KVM_GET_DIRTY_LOG: { 4699 struct kvm_dirty_log log; 4700 4701 r = -EFAULT; 4702 if (copy_from_user(&log, argp, sizeof(log))) 4703 goto out; 4704 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4705 break; 4706 } 4707 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4708 case KVM_CLEAR_DIRTY_LOG: { 4709 struct kvm_clear_dirty_log log; 4710 4711 r = -EFAULT; 4712 if (copy_from_user(&log, argp, sizeof(log))) 4713 goto out; 4714 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4715 break; 4716 } 4717 #endif 4718 #ifdef CONFIG_KVM_MMIO 4719 case KVM_REGISTER_COALESCED_MMIO: { 4720 struct kvm_coalesced_mmio_zone zone; 4721 4722 r = -EFAULT; 4723 if (copy_from_user(&zone, argp, sizeof(zone))) 4724 goto out; 4725 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4726 break; 4727 } 4728 case KVM_UNREGISTER_COALESCED_MMIO: { 4729 struct kvm_coalesced_mmio_zone zone; 4730 4731 r = -EFAULT; 4732 if (copy_from_user(&zone, argp, sizeof(zone))) 4733 goto out; 4734 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4735 break; 4736 } 4737 #endif 4738 case KVM_IRQFD: { 4739 struct kvm_irqfd data; 4740 4741 r = -EFAULT; 4742 if (copy_from_user(&data, argp, sizeof(data))) 4743 goto out; 4744 r = kvm_irqfd(kvm, &data); 4745 break; 4746 } 4747 case KVM_IOEVENTFD: { 4748 struct kvm_ioeventfd data; 4749 4750 r = -EFAULT; 4751 if (copy_from_user(&data, argp, sizeof(data))) 4752 goto out; 4753 r = kvm_ioeventfd(kvm, &data); 4754 break; 4755 } 4756 #ifdef CONFIG_HAVE_KVM_MSI 4757 case KVM_SIGNAL_MSI: { 4758 struct kvm_msi msi; 4759 4760 r = -EFAULT; 4761 if (copy_from_user(&msi, argp, sizeof(msi))) 4762 goto out; 4763 r = kvm_send_userspace_msi(kvm, &msi); 4764 break; 4765 } 4766 #endif 4767 #ifdef __KVM_HAVE_IRQ_LINE 4768 case KVM_IRQ_LINE_STATUS: 4769 case KVM_IRQ_LINE: { 4770 struct kvm_irq_level irq_event; 4771 4772 r = -EFAULT; 4773 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4774 goto out; 4775 4776 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4777 ioctl == KVM_IRQ_LINE_STATUS); 4778 if (r) 4779 goto out; 4780 4781 r = -EFAULT; 4782 if (ioctl == KVM_IRQ_LINE_STATUS) { 4783 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4784 goto out; 4785 } 4786 4787 r = 0; 4788 break; 4789 } 4790 #endif 4791 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4792 case KVM_SET_GSI_ROUTING: { 4793 struct kvm_irq_routing routing; 4794 struct kvm_irq_routing __user *urouting; 4795 struct kvm_irq_routing_entry *entries = NULL; 4796 4797 r = -EFAULT; 4798 if (copy_from_user(&routing, argp, sizeof(routing))) 4799 goto out; 4800 r = -EINVAL; 4801 if (!kvm_arch_can_set_irq_routing(kvm)) 4802 goto out; 4803 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4804 goto out; 4805 if (routing.flags) 4806 goto out; 4807 if (routing.nr) { 4808 urouting = argp; 4809 entries = vmemdup_user(urouting->entries, 4810 array_size(sizeof(*entries), 4811 routing.nr)); 4812 if (IS_ERR(entries)) { 4813 r = PTR_ERR(entries); 4814 goto out; 4815 } 4816 } 4817 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4818 routing.flags); 4819 kvfree(entries); 4820 break; 4821 } 4822 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4823 case KVM_CREATE_DEVICE: { 4824 struct kvm_create_device cd; 4825 4826 r = -EFAULT; 4827 if (copy_from_user(&cd, argp, sizeof(cd))) 4828 goto out; 4829 4830 r = kvm_ioctl_create_device(kvm, &cd); 4831 if (r) 4832 goto out; 4833 4834 r = -EFAULT; 4835 if (copy_to_user(argp, &cd, sizeof(cd))) 4836 goto out; 4837 4838 r = 0; 4839 break; 4840 } 4841 case KVM_CHECK_EXTENSION: 4842 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4843 break; 4844 case KVM_RESET_DIRTY_RINGS: 4845 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4846 break; 4847 case KVM_GET_STATS_FD: 4848 r = kvm_vm_ioctl_get_stats_fd(kvm); 4849 break; 4850 default: 4851 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4852 } 4853 out: 4854 return r; 4855 } 4856 4857 #ifdef CONFIG_KVM_COMPAT 4858 struct compat_kvm_dirty_log { 4859 __u32 slot; 4860 __u32 padding1; 4861 union { 4862 compat_uptr_t dirty_bitmap; /* one bit per page */ 4863 __u64 padding2; 4864 }; 4865 }; 4866 4867 struct compat_kvm_clear_dirty_log { 4868 __u32 slot; 4869 __u32 num_pages; 4870 __u64 first_page; 4871 union { 4872 compat_uptr_t dirty_bitmap; /* one bit per page */ 4873 __u64 padding2; 4874 }; 4875 }; 4876 4877 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 4878 unsigned long arg) 4879 { 4880 return -ENOTTY; 4881 } 4882 4883 static long kvm_vm_compat_ioctl(struct file *filp, 4884 unsigned int ioctl, unsigned long arg) 4885 { 4886 struct kvm *kvm = filp->private_data; 4887 int r; 4888 4889 if (kvm->mm != current->mm || kvm->vm_dead) 4890 return -EIO; 4891 4892 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 4893 if (r != -ENOTTY) 4894 return r; 4895 4896 switch (ioctl) { 4897 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4898 case KVM_CLEAR_DIRTY_LOG: { 4899 struct compat_kvm_clear_dirty_log compat_log; 4900 struct kvm_clear_dirty_log log; 4901 4902 if (copy_from_user(&compat_log, (void __user *)arg, 4903 sizeof(compat_log))) 4904 return -EFAULT; 4905 log.slot = compat_log.slot; 4906 log.num_pages = compat_log.num_pages; 4907 log.first_page = compat_log.first_page; 4908 log.padding2 = compat_log.padding2; 4909 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4910 4911 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4912 break; 4913 } 4914 #endif 4915 case KVM_GET_DIRTY_LOG: { 4916 struct compat_kvm_dirty_log compat_log; 4917 struct kvm_dirty_log log; 4918 4919 if (copy_from_user(&compat_log, (void __user *)arg, 4920 sizeof(compat_log))) 4921 return -EFAULT; 4922 log.slot = compat_log.slot; 4923 log.padding1 = compat_log.padding1; 4924 log.padding2 = compat_log.padding2; 4925 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4926 4927 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4928 break; 4929 } 4930 default: 4931 r = kvm_vm_ioctl(filp, ioctl, arg); 4932 } 4933 return r; 4934 } 4935 #endif 4936 4937 static const struct file_operations kvm_vm_fops = { 4938 .release = kvm_vm_release, 4939 .unlocked_ioctl = kvm_vm_ioctl, 4940 .llseek = noop_llseek, 4941 KVM_COMPAT(kvm_vm_compat_ioctl), 4942 }; 4943 4944 bool file_is_kvm(struct file *file) 4945 { 4946 return file && file->f_op == &kvm_vm_fops; 4947 } 4948 EXPORT_SYMBOL_GPL(file_is_kvm); 4949 4950 static int kvm_dev_ioctl_create_vm(unsigned long type) 4951 { 4952 char fdname[ITOA_MAX_LEN + 1]; 4953 int r, fd; 4954 struct kvm *kvm; 4955 struct file *file; 4956 4957 fd = get_unused_fd_flags(O_CLOEXEC); 4958 if (fd < 0) 4959 return fd; 4960 4961 snprintf(fdname, sizeof(fdname), "%d", fd); 4962 4963 kvm = kvm_create_vm(type, fdname); 4964 if (IS_ERR(kvm)) { 4965 r = PTR_ERR(kvm); 4966 goto put_fd; 4967 } 4968 4969 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4970 if (IS_ERR(file)) { 4971 r = PTR_ERR(file); 4972 goto put_kvm; 4973 } 4974 4975 /* 4976 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4977 * already set, with ->release() being kvm_vm_release(). In error 4978 * cases it will be called by the final fput(file) and will take 4979 * care of doing kvm_put_kvm(kvm). 4980 */ 4981 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4982 4983 fd_install(fd, file); 4984 return fd; 4985 4986 put_kvm: 4987 kvm_put_kvm(kvm); 4988 put_fd: 4989 put_unused_fd(fd); 4990 return r; 4991 } 4992 4993 static long kvm_dev_ioctl(struct file *filp, 4994 unsigned int ioctl, unsigned long arg) 4995 { 4996 long r = -EINVAL; 4997 4998 switch (ioctl) { 4999 case KVM_GET_API_VERSION: 5000 if (arg) 5001 goto out; 5002 r = KVM_API_VERSION; 5003 break; 5004 case KVM_CREATE_VM: 5005 r = kvm_dev_ioctl_create_vm(arg); 5006 break; 5007 case KVM_CHECK_EXTENSION: 5008 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5009 break; 5010 case KVM_GET_VCPU_MMAP_SIZE: 5011 if (arg) 5012 goto out; 5013 r = PAGE_SIZE; /* struct kvm_run */ 5014 #ifdef CONFIG_X86 5015 r += PAGE_SIZE; /* pio data page */ 5016 #endif 5017 #ifdef CONFIG_KVM_MMIO 5018 r += PAGE_SIZE; /* coalesced mmio ring page */ 5019 #endif 5020 break; 5021 case KVM_TRACE_ENABLE: 5022 case KVM_TRACE_PAUSE: 5023 case KVM_TRACE_DISABLE: 5024 r = -EOPNOTSUPP; 5025 break; 5026 default: 5027 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5028 } 5029 out: 5030 return r; 5031 } 5032 5033 static struct file_operations kvm_chardev_ops = { 5034 .unlocked_ioctl = kvm_dev_ioctl, 5035 .llseek = noop_llseek, 5036 KVM_COMPAT(kvm_dev_ioctl), 5037 }; 5038 5039 static struct miscdevice kvm_dev = { 5040 KVM_MINOR, 5041 "kvm", 5042 &kvm_chardev_ops, 5043 }; 5044 5045 static void hardware_enable_nolock(void *junk) 5046 { 5047 int cpu = raw_smp_processor_id(); 5048 int r; 5049 5050 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5051 return; 5052 5053 cpumask_set_cpu(cpu, cpus_hardware_enabled); 5054 5055 r = kvm_arch_hardware_enable(); 5056 5057 if (r) { 5058 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5059 atomic_inc(&hardware_enable_failed); 5060 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 5061 } 5062 } 5063 5064 static int kvm_starting_cpu(unsigned int cpu) 5065 { 5066 raw_spin_lock(&kvm_count_lock); 5067 if (kvm_usage_count) 5068 hardware_enable_nolock(NULL); 5069 raw_spin_unlock(&kvm_count_lock); 5070 return 0; 5071 } 5072 5073 static void hardware_disable_nolock(void *junk) 5074 { 5075 int cpu = raw_smp_processor_id(); 5076 5077 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5078 return; 5079 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5080 kvm_arch_hardware_disable(); 5081 } 5082 5083 static int kvm_dying_cpu(unsigned int cpu) 5084 { 5085 raw_spin_lock(&kvm_count_lock); 5086 if (kvm_usage_count) 5087 hardware_disable_nolock(NULL); 5088 raw_spin_unlock(&kvm_count_lock); 5089 return 0; 5090 } 5091 5092 static void hardware_disable_all_nolock(void) 5093 { 5094 BUG_ON(!kvm_usage_count); 5095 5096 kvm_usage_count--; 5097 if (!kvm_usage_count) 5098 on_each_cpu(hardware_disable_nolock, NULL, 1); 5099 } 5100 5101 static void hardware_disable_all(void) 5102 { 5103 raw_spin_lock(&kvm_count_lock); 5104 hardware_disable_all_nolock(); 5105 raw_spin_unlock(&kvm_count_lock); 5106 } 5107 5108 static int hardware_enable_all(void) 5109 { 5110 int r = 0; 5111 5112 raw_spin_lock(&kvm_count_lock); 5113 5114 kvm_usage_count++; 5115 if (kvm_usage_count == 1) { 5116 atomic_set(&hardware_enable_failed, 0); 5117 on_each_cpu(hardware_enable_nolock, NULL, 1); 5118 5119 if (atomic_read(&hardware_enable_failed)) { 5120 hardware_disable_all_nolock(); 5121 r = -EBUSY; 5122 } 5123 } 5124 5125 raw_spin_unlock(&kvm_count_lock); 5126 5127 return r; 5128 } 5129 5130 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 5131 void *v) 5132 { 5133 /* 5134 * Some (well, at least mine) BIOSes hang on reboot if 5135 * in vmx root mode. 5136 * 5137 * And Intel TXT required VMX off for all cpu when system shutdown. 5138 */ 5139 pr_info("kvm: exiting hardware virtualization\n"); 5140 kvm_rebooting = true; 5141 on_each_cpu(hardware_disable_nolock, NULL, 1); 5142 return NOTIFY_OK; 5143 } 5144 5145 static struct notifier_block kvm_reboot_notifier = { 5146 .notifier_call = kvm_reboot, 5147 .priority = 0, 5148 }; 5149 5150 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5151 { 5152 int i; 5153 5154 for (i = 0; i < bus->dev_count; i++) { 5155 struct kvm_io_device *pos = bus->range[i].dev; 5156 5157 kvm_iodevice_destructor(pos); 5158 } 5159 kfree(bus); 5160 } 5161 5162 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5163 const struct kvm_io_range *r2) 5164 { 5165 gpa_t addr1 = r1->addr; 5166 gpa_t addr2 = r2->addr; 5167 5168 if (addr1 < addr2) 5169 return -1; 5170 5171 /* If r2->len == 0, match the exact address. If r2->len != 0, 5172 * accept any overlapping write. Any order is acceptable for 5173 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5174 * we process all of them. 5175 */ 5176 if (r2->len) { 5177 addr1 += r1->len; 5178 addr2 += r2->len; 5179 } 5180 5181 if (addr1 > addr2) 5182 return 1; 5183 5184 return 0; 5185 } 5186 5187 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5188 { 5189 return kvm_io_bus_cmp(p1, p2); 5190 } 5191 5192 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5193 gpa_t addr, int len) 5194 { 5195 struct kvm_io_range *range, key; 5196 int off; 5197 5198 key = (struct kvm_io_range) { 5199 .addr = addr, 5200 .len = len, 5201 }; 5202 5203 range = bsearch(&key, bus->range, bus->dev_count, 5204 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5205 if (range == NULL) 5206 return -ENOENT; 5207 5208 off = range - bus->range; 5209 5210 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5211 off--; 5212 5213 return off; 5214 } 5215 5216 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5217 struct kvm_io_range *range, const void *val) 5218 { 5219 int idx; 5220 5221 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5222 if (idx < 0) 5223 return -EOPNOTSUPP; 5224 5225 while (idx < bus->dev_count && 5226 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5227 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5228 range->len, val)) 5229 return idx; 5230 idx++; 5231 } 5232 5233 return -EOPNOTSUPP; 5234 } 5235 5236 /* kvm_io_bus_write - called under kvm->slots_lock */ 5237 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5238 int len, const void *val) 5239 { 5240 struct kvm_io_bus *bus; 5241 struct kvm_io_range range; 5242 int r; 5243 5244 range = (struct kvm_io_range) { 5245 .addr = addr, 5246 .len = len, 5247 }; 5248 5249 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5250 if (!bus) 5251 return -ENOMEM; 5252 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5253 return r < 0 ? r : 0; 5254 } 5255 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5256 5257 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5258 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5259 gpa_t addr, int len, const void *val, long cookie) 5260 { 5261 struct kvm_io_bus *bus; 5262 struct kvm_io_range range; 5263 5264 range = (struct kvm_io_range) { 5265 .addr = addr, 5266 .len = len, 5267 }; 5268 5269 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5270 if (!bus) 5271 return -ENOMEM; 5272 5273 /* First try the device referenced by cookie. */ 5274 if ((cookie >= 0) && (cookie < bus->dev_count) && 5275 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5276 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5277 val)) 5278 return cookie; 5279 5280 /* 5281 * cookie contained garbage; fall back to search and return the 5282 * correct cookie value. 5283 */ 5284 return __kvm_io_bus_write(vcpu, bus, &range, val); 5285 } 5286 5287 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5288 struct kvm_io_range *range, void *val) 5289 { 5290 int idx; 5291 5292 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5293 if (idx < 0) 5294 return -EOPNOTSUPP; 5295 5296 while (idx < bus->dev_count && 5297 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5298 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5299 range->len, val)) 5300 return idx; 5301 idx++; 5302 } 5303 5304 return -EOPNOTSUPP; 5305 } 5306 5307 /* kvm_io_bus_read - called under kvm->slots_lock */ 5308 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5309 int len, void *val) 5310 { 5311 struct kvm_io_bus *bus; 5312 struct kvm_io_range range; 5313 int r; 5314 5315 range = (struct kvm_io_range) { 5316 .addr = addr, 5317 .len = len, 5318 }; 5319 5320 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5321 if (!bus) 5322 return -ENOMEM; 5323 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5324 return r < 0 ? r : 0; 5325 } 5326 5327 /* Caller must hold slots_lock. */ 5328 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5329 int len, struct kvm_io_device *dev) 5330 { 5331 int i; 5332 struct kvm_io_bus *new_bus, *bus; 5333 struct kvm_io_range range; 5334 5335 bus = kvm_get_bus(kvm, bus_idx); 5336 if (!bus) 5337 return -ENOMEM; 5338 5339 /* exclude ioeventfd which is limited by maximum fd */ 5340 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5341 return -ENOSPC; 5342 5343 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5344 GFP_KERNEL_ACCOUNT); 5345 if (!new_bus) 5346 return -ENOMEM; 5347 5348 range = (struct kvm_io_range) { 5349 .addr = addr, 5350 .len = len, 5351 .dev = dev, 5352 }; 5353 5354 for (i = 0; i < bus->dev_count; i++) 5355 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5356 break; 5357 5358 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5359 new_bus->dev_count++; 5360 new_bus->range[i] = range; 5361 memcpy(new_bus->range + i + 1, bus->range + i, 5362 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5363 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5364 synchronize_srcu_expedited(&kvm->srcu); 5365 kfree(bus); 5366 5367 return 0; 5368 } 5369 5370 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5371 struct kvm_io_device *dev) 5372 { 5373 int i, j; 5374 struct kvm_io_bus *new_bus, *bus; 5375 5376 lockdep_assert_held(&kvm->slots_lock); 5377 5378 bus = kvm_get_bus(kvm, bus_idx); 5379 if (!bus) 5380 return 0; 5381 5382 for (i = 0; i < bus->dev_count; i++) { 5383 if (bus->range[i].dev == dev) { 5384 break; 5385 } 5386 } 5387 5388 if (i == bus->dev_count) 5389 return 0; 5390 5391 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5392 GFP_KERNEL_ACCOUNT); 5393 if (new_bus) { 5394 memcpy(new_bus, bus, struct_size(bus, range, i)); 5395 new_bus->dev_count--; 5396 memcpy(new_bus->range + i, bus->range + i + 1, 5397 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5398 } 5399 5400 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5401 synchronize_srcu_expedited(&kvm->srcu); 5402 5403 /* Destroy the old bus _after_ installing the (null) bus. */ 5404 if (!new_bus) { 5405 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5406 for (j = 0; j < bus->dev_count; j++) { 5407 if (j == i) 5408 continue; 5409 kvm_iodevice_destructor(bus->range[j].dev); 5410 } 5411 } 5412 5413 kfree(bus); 5414 return new_bus ? 0 : -ENOMEM; 5415 } 5416 5417 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5418 gpa_t addr) 5419 { 5420 struct kvm_io_bus *bus; 5421 int dev_idx, srcu_idx; 5422 struct kvm_io_device *iodev = NULL; 5423 5424 srcu_idx = srcu_read_lock(&kvm->srcu); 5425 5426 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5427 if (!bus) 5428 goto out_unlock; 5429 5430 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5431 if (dev_idx < 0) 5432 goto out_unlock; 5433 5434 iodev = bus->range[dev_idx].dev; 5435 5436 out_unlock: 5437 srcu_read_unlock(&kvm->srcu, srcu_idx); 5438 5439 return iodev; 5440 } 5441 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5442 5443 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5444 int (*get)(void *, u64 *), int (*set)(void *, u64), 5445 const char *fmt) 5446 { 5447 int ret; 5448 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5449 inode->i_private; 5450 5451 /* 5452 * The debugfs files are a reference to the kvm struct which 5453 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5454 * avoids the race between open and the removal of the debugfs directory. 5455 */ 5456 if (!kvm_get_kvm_safe(stat_data->kvm)) 5457 return -ENOENT; 5458 5459 ret = simple_attr_open(inode, file, get, 5460 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5461 ? set : NULL, fmt); 5462 if (ret) 5463 kvm_put_kvm(stat_data->kvm); 5464 5465 return ret; 5466 } 5467 5468 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5469 { 5470 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5471 inode->i_private; 5472 5473 simple_attr_release(inode, file); 5474 kvm_put_kvm(stat_data->kvm); 5475 5476 return 0; 5477 } 5478 5479 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5480 { 5481 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5482 5483 return 0; 5484 } 5485 5486 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5487 { 5488 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5489 5490 return 0; 5491 } 5492 5493 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5494 { 5495 unsigned long i; 5496 struct kvm_vcpu *vcpu; 5497 5498 *val = 0; 5499 5500 kvm_for_each_vcpu(i, vcpu, kvm) 5501 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5502 5503 return 0; 5504 } 5505 5506 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5507 { 5508 unsigned long i; 5509 struct kvm_vcpu *vcpu; 5510 5511 kvm_for_each_vcpu(i, vcpu, kvm) 5512 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5513 5514 return 0; 5515 } 5516 5517 static int kvm_stat_data_get(void *data, u64 *val) 5518 { 5519 int r = -EFAULT; 5520 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5521 5522 switch (stat_data->kind) { 5523 case KVM_STAT_VM: 5524 r = kvm_get_stat_per_vm(stat_data->kvm, 5525 stat_data->desc->desc.offset, val); 5526 break; 5527 case KVM_STAT_VCPU: 5528 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5529 stat_data->desc->desc.offset, val); 5530 break; 5531 } 5532 5533 return r; 5534 } 5535 5536 static int kvm_stat_data_clear(void *data, u64 val) 5537 { 5538 int r = -EFAULT; 5539 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5540 5541 if (val) 5542 return -EINVAL; 5543 5544 switch (stat_data->kind) { 5545 case KVM_STAT_VM: 5546 r = kvm_clear_stat_per_vm(stat_data->kvm, 5547 stat_data->desc->desc.offset); 5548 break; 5549 case KVM_STAT_VCPU: 5550 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5551 stat_data->desc->desc.offset); 5552 break; 5553 } 5554 5555 return r; 5556 } 5557 5558 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5559 { 5560 __simple_attr_check_format("%llu\n", 0ull); 5561 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5562 kvm_stat_data_clear, "%llu\n"); 5563 } 5564 5565 static const struct file_operations stat_fops_per_vm = { 5566 .owner = THIS_MODULE, 5567 .open = kvm_stat_data_open, 5568 .release = kvm_debugfs_release, 5569 .read = simple_attr_read, 5570 .write = simple_attr_write, 5571 .llseek = no_llseek, 5572 }; 5573 5574 static int vm_stat_get(void *_offset, u64 *val) 5575 { 5576 unsigned offset = (long)_offset; 5577 struct kvm *kvm; 5578 u64 tmp_val; 5579 5580 *val = 0; 5581 mutex_lock(&kvm_lock); 5582 list_for_each_entry(kvm, &vm_list, vm_list) { 5583 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5584 *val += tmp_val; 5585 } 5586 mutex_unlock(&kvm_lock); 5587 return 0; 5588 } 5589 5590 static int vm_stat_clear(void *_offset, u64 val) 5591 { 5592 unsigned offset = (long)_offset; 5593 struct kvm *kvm; 5594 5595 if (val) 5596 return -EINVAL; 5597 5598 mutex_lock(&kvm_lock); 5599 list_for_each_entry(kvm, &vm_list, vm_list) { 5600 kvm_clear_stat_per_vm(kvm, offset); 5601 } 5602 mutex_unlock(&kvm_lock); 5603 5604 return 0; 5605 } 5606 5607 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5609 5610 static int vcpu_stat_get(void *_offset, u64 *val) 5611 { 5612 unsigned offset = (long)_offset; 5613 struct kvm *kvm; 5614 u64 tmp_val; 5615 5616 *val = 0; 5617 mutex_lock(&kvm_lock); 5618 list_for_each_entry(kvm, &vm_list, vm_list) { 5619 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5620 *val += tmp_val; 5621 } 5622 mutex_unlock(&kvm_lock); 5623 return 0; 5624 } 5625 5626 static int vcpu_stat_clear(void *_offset, u64 val) 5627 { 5628 unsigned offset = (long)_offset; 5629 struct kvm *kvm; 5630 5631 if (val) 5632 return -EINVAL; 5633 5634 mutex_lock(&kvm_lock); 5635 list_for_each_entry(kvm, &vm_list, vm_list) { 5636 kvm_clear_stat_per_vcpu(kvm, offset); 5637 } 5638 mutex_unlock(&kvm_lock); 5639 5640 return 0; 5641 } 5642 5643 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5644 "%llu\n"); 5645 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5646 5647 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5648 { 5649 struct kobj_uevent_env *env; 5650 unsigned long long created, active; 5651 5652 if (!kvm_dev.this_device || !kvm) 5653 return; 5654 5655 mutex_lock(&kvm_lock); 5656 if (type == KVM_EVENT_CREATE_VM) { 5657 kvm_createvm_count++; 5658 kvm_active_vms++; 5659 } else if (type == KVM_EVENT_DESTROY_VM) { 5660 kvm_active_vms--; 5661 } 5662 created = kvm_createvm_count; 5663 active = kvm_active_vms; 5664 mutex_unlock(&kvm_lock); 5665 5666 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5667 if (!env) 5668 return; 5669 5670 add_uevent_var(env, "CREATED=%llu", created); 5671 add_uevent_var(env, "COUNT=%llu", active); 5672 5673 if (type == KVM_EVENT_CREATE_VM) { 5674 add_uevent_var(env, "EVENT=create"); 5675 kvm->userspace_pid = task_pid_nr(current); 5676 } else if (type == KVM_EVENT_DESTROY_VM) { 5677 add_uevent_var(env, "EVENT=destroy"); 5678 } 5679 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5680 5681 if (!IS_ERR(kvm->debugfs_dentry)) { 5682 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5683 5684 if (p) { 5685 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5686 if (!IS_ERR(tmp)) 5687 add_uevent_var(env, "STATS_PATH=%s", tmp); 5688 kfree(p); 5689 } 5690 } 5691 /* no need for checks, since we are adding at most only 5 keys */ 5692 env->envp[env->envp_idx++] = NULL; 5693 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5694 kfree(env); 5695 } 5696 5697 static void kvm_init_debug(void) 5698 { 5699 const struct file_operations *fops; 5700 const struct _kvm_stats_desc *pdesc; 5701 int i; 5702 5703 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5704 5705 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5706 pdesc = &kvm_vm_stats_desc[i]; 5707 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5708 fops = &vm_stat_fops; 5709 else 5710 fops = &vm_stat_readonly_fops; 5711 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5712 kvm_debugfs_dir, 5713 (void *)(long)pdesc->desc.offset, fops); 5714 } 5715 5716 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5717 pdesc = &kvm_vcpu_stats_desc[i]; 5718 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5719 fops = &vcpu_stat_fops; 5720 else 5721 fops = &vcpu_stat_readonly_fops; 5722 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5723 kvm_debugfs_dir, 5724 (void *)(long)pdesc->desc.offset, fops); 5725 } 5726 } 5727 5728 static int kvm_suspend(void) 5729 { 5730 if (kvm_usage_count) 5731 hardware_disable_nolock(NULL); 5732 return 0; 5733 } 5734 5735 static void kvm_resume(void) 5736 { 5737 if (kvm_usage_count) { 5738 lockdep_assert_not_held(&kvm_count_lock); 5739 hardware_enable_nolock(NULL); 5740 } 5741 } 5742 5743 static struct syscore_ops kvm_syscore_ops = { 5744 .suspend = kvm_suspend, 5745 .resume = kvm_resume, 5746 }; 5747 5748 static inline 5749 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5750 { 5751 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5752 } 5753 5754 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5755 { 5756 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5757 5758 WRITE_ONCE(vcpu->preempted, false); 5759 WRITE_ONCE(vcpu->ready, false); 5760 5761 __this_cpu_write(kvm_running_vcpu, vcpu); 5762 kvm_arch_sched_in(vcpu, cpu); 5763 kvm_arch_vcpu_load(vcpu, cpu); 5764 } 5765 5766 static void kvm_sched_out(struct preempt_notifier *pn, 5767 struct task_struct *next) 5768 { 5769 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5770 5771 if (current->on_rq) { 5772 WRITE_ONCE(vcpu->preempted, true); 5773 WRITE_ONCE(vcpu->ready, true); 5774 } 5775 kvm_arch_vcpu_put(vcpu); 5776 __this_cpu_write(kvm_running_vcpu, NULL); 5777 } 5778 5779 /** 5780 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5781 * 5782 * We can disable preemption locally around accessing the per-CPU variable, 5783 * and use the resolved vcpu pointer after enabling preemption again, 5784 * because even if the current thread is migrated to another CPU, reading 5785 * the per-CPU value later will give us the same value as we update the 5786 * per-CPU variable in the preempt notifier handlers. 5787 */ 5788 struct kvm_vcpu *kvm_get_running_vcpu(void) 5789 { 5790 struct kvm_vcpu *vcpu; 5791 5792 preempt_disable(); 5793 vcpu = __this_cpu_read(kvm_running_vcpu); 5794 preempt_enable(); 5795 5796 return vcpu; 5797 } 5798 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5799 5800 /** 5801 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5802 */ 5803 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5804 { 5805 return &kvm_running_vcpu; 5806 } 5807 5808 #ifdef CONFIG_GUEST_PERF_EVENTS 5809 static unsigned int kvm_guest_state(void) 5810 { 5811 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5812 unsigned int state; 5813 5814 if (!kvm_arch_pmi_in_guest(vcpu)) 5815 return 0; 5816 5817 state = PERF_GUEST_ACTIVE; 5818 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5819 state |= PERF_GUEST_USER; 5820 5821 return state; 5822 } 5823 5824 static unsigned long kvm_guest_get_ip(void) 5825 { 5826 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5827 5828 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5829 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5830 return 0; 5831 5832 return kvm_arch_vcpu_get_ip(vcpu); 5833 } 5834 5835 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5836 .state = kvm_guest_state, 5837 .get_ip = kvm_guest_get_ip, 5838 .handle_intel_pt_intr = NULL, 5839 }; 5840 5841 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5842 { 5843 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5844 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5845 } 5846 void kvm_unregister_perf_callbacks(void) 5847 { 5848 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5849 } 5850 #endif 5851 5852 struct kvm_cpu_compat_check { 5853 void *opaque; 5854 int *ret; 5855 }; 5856 5857 static void check_processor_compat(void *data) 5858 { 5859 struct kvm_cpu_compat_check *c = data; 5860 5861 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5862 } 5863 5864 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5865 struct module *module) 5866 { 5867 struct kvm_cpu_compat_check c; 5868 int r; 5869 int cpu; 5870 5871 r = kvm_arch_init(opaque); 5872 if (r) 5873 goto out_fail; 5874 5875 /* 5876 * kvm_arch_init makes sure there's at most one caller 5877 * for architectures that support multiple implementations, 5878 * like intel and amd on x86. 5879 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5880 * conflicts in case kvm is already setup for another implementation. 5881 */ 5882 r = kvm_irqfd_init(); 5883 if (r) 5884 goto out_irqfd; 5885 5886 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5887 r = -ENOMEM; 5888 goto out_free_0; 5889 } 5890 5891 r = kvm_arch_hardware_setup(opaque); 5892 if (r < 0) 5893 goto out_free_1; 5894 5895 c.ret = &r; 5896 c.opaque = opaque; 5897 for_each_online_cpu(cpu) { 5898 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5899 if (r < 0) 5900 goto out_free_2; 5901 } 5902 5903 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5904 kvm_starting_cpu, kvm_dying_cpu); 5905 if (r) 5906 goto out_free_2; 5907 register_reboot_notifier(&kvm_reboot_notifier); 5908 5909 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5910 if (!vcpu_align) 5911 vcpu_align = __alignof__(struct kvm_vcpu); 5912 kvm_vcpu_cache = 5913 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5914 SLAB_ACCOUNT, 5915 offsetof(struct kvm_vcpu, arch), 5916 offsetofend(struct kvm_vcpu, stats_id) 5917 - offsetof(struct kvm_vcpu, arch), 5918 NULL); 5919 if (!kvm_vcpu_cache) { 5920 r = -ENOMEM; 5921 goto out_free_3; 5922 } 5923 5924 for_each_possible_cpu(cpu) { 5925 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5926 GFP_KERNEL, cpu_to_node(cpu))) { 5927 r = -ENOMEM; 5928 goto out_free_4; 5929 } 5930 } 5931 5932 r = kvm_async_pf_init(); 5933 if (r) 5934 goto out_free_4; 5935 5936 kvm_chardev_ops.owner = module; 5937 5938 r = misc_register(&kvm_dev); 5939 if (r) { 5940 pr_err("kvm: misc device register failed\n"); 5941 goto out_unreg; 5942 } 5943 5944 register_syscore_ops(&kvm_syscore_ops); 5945 5946 kvm_preempt_ops.sched_in = kvm_sched_in; 5947 kvm_preempt_ops.sched_out = kvm_sched_out; 5948 5949 kvm_init_debug(); 5950 5951 r = kvm_vfio_ops_init(); 5952 WARN_ON(r); 5953 5954 return 0; 5955 5956 out_unreg: 5957 kvm_async_pf_deinit(); 5958 out_free_4: 5959 for_each_possible_cpu(cpu) 5960 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5961 kmem_cache_destroy(kvm_vcpu_cache); 5962 out_free_3: 5963 unregister_reboot_notifier(&kvm_reboot_notifier); 5964 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5965 out_free_2: 5966 kvm_arch_hardware_unsetup(); 5967 out_free_1: 5968 free_cpumask_var(cpus_hardware_enabled); 5969 out_free_0: 5970 kvm_irqfd_exit(); 5971 out_irqfd: 5972 kvm_arch_exit(); 5973 out_fail: 5974 return r; 5975 } 5976 EXPORT_SYMBOL_GPL(kvm_init); 5977 5978 void kvm_exit(void) 5979 { 5980 int cpu; 5981 5982 debugfs_remove_recursive(kvm_debugfs_dir); 5983 misc_deregister(&kvm_dev); 5984 for_each_possible_cpu(cpu) 5985 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5986 kmem_cache_destroy(kvm_vcpu_cache); 5987 kvm_async_pf_deinit(); 5988 unregister_syscore_ops(&kvm_syscore_ops); 5989 unregister_reboot_notifier(&kvm_reboot_notifier); 5990 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5991 on_each_cpu(hardware_disable_nolock, NULL, 1); 5992 kvm_arch_hardware_unsetup(); 5993 kvm_arch_exit(); 5994 kvm_irqfd_exit(); 5995 free_cpumask_var(cpus_hardware_enabled); 5996 kvm_vfio_ops_exit(); 5997 } 5998 EXPORT_SYMBOL_GPL(kvm_exit); 5999 6000 struct kvm_vm_worker_thread_context { 6001 struct kvm *kvm; 6002 struct task_struct *parent; 6003 struct completion init_done; 6004 kvm_vm_thread_fn_t thread_fn; 6005 uintptr_t data; 6006 int err; 6007 }; 6008 6009 static int kvm_vm_worker_thread(void *context) 6010 { 6011 /* 6012 * The init_context is allocated on the stack of the parent thread, so 6013 * we have to locally copy anything that is needed beyond initialization 6014 */ 6015 struct kvm_vm_worker_thread_context *init_context = context; 6016 struct task_struct *parent; 6017 struct kvm *kvm = init_context->kvm; 6018 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6019 uintptr_t data = init_context->data; 6020 int err; 6021 6022 err = kthread_park(current); 6023 /* kthread_park(current) is never supposed to return an error */ 6024 WARN_ON(err != 0); 6025 if (err) 6026 goto init_complete; 6027 6028 err = cgroup_attach_task_all(init_context->parent, current); 6029 if (err) { 6030 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6031 __func__, err); 6032 goto init_complete; 6033 } 6034 6035 set_user_nice(current, task_nice(init_context->parent)); 6036 6037 init_complete: 6038 init_context->err = err; 6039 complete(&init_context->init_done); 6040 init_context = NULL; 6041 6042 if (err) 6043 goto out; 6044 6045 /* Wait to be woken up by the spawner before proceeding. */ 6046 kthread_parkme(); 6047 6048 if (!kthread_should_stop()) 6049 err = thread_fn(kvm, data); 6050 6051 out: 6052 /* 6053 * Move kthread back to its original cgroup to prevent it lingering in 6054 * the cgroup of the VM process, after the latter finishes its 6055 * execution. 6056 * 6057 * kthread_stop() waits on the 'exited' completion condition which is 6058 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6059 * kthread is removed from the cgroup in the cgroup_exit() which is 6060 * called after the exit_mm(). This causes the kthread_stop() to return 6061 * before the kthread actually quits the cgroup. 6062 */ 6063 rcu_read_lock(); 6064 parent = rcu_dereference(current->real_parent); 6065 get_task_struct(parent); 6066 rcu_read_unlock(); 6067 cgroup_attach_task_all(parent, current); 6068 put_task_struct(parent); 6069 6070 return err; 6071 } 6072 6073 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6074 uintptr_t data, const char *name, 6075 struct task_struct **thread_ptr) 6076 { 6077 struct kvm_vm_worker_thread_context init_context = {}; 6078 struct task_struct *thread; 6079 6080 *thread_ptr = NULL; 6081 init_context.kvm = kvm; 6082 init_context.parent = current; 6083 init_context.thread_fn = thread_fn; 6084 init_context.data = data; 6085 init_completion(&init_context.init_done); 6086 6087 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6088 "%s-%d", name, task_pid_nr(current)); 6089 if (IS_ERR(thread)) 6090 return PTR_ERR(thread); 6091 6092 /* kthread_run is never supposed to return NULL */ 6093 WARN_ON(thread == NULL); 6094 6095 wait_for_completion(&init_context.init_done); 6096 6097 if (!init_context.err) 6098 *thread_ptr = thread; 6099 6100 return init_context.err; 6101 } 6102