1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "mmu_lock.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 159 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end) 162 { 163 } 164 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 166 { 167 /* 168 * The metadata used by is_zone_device_page() to determine whether or 169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 170 * the device has been pinned, e.g. by get_user_pages(). WARN if the 171 * page_count() is zero to help detect bad usage of this helper. 172 */ 173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 174 return false; 175 176 return is_zone_device_page(pfn_to_page(pfn)); 177 } 178 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 180 { 181 /* 182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 183 * perspective they are "normal" pages, albeit with slightly different 184 * usage rules. 185 */ 186 if (pfn_valid(pfn)) 187 return PageReserved(pfn_to_page(pfn)) && 188 !is_zero_pfn(pfn) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 201 __this_cpu_write(kvm_running_vcpu, vcpu); 202 preempt_notifier_register(&vcpu->preempt_notifier); 203 kvm_arch_vcpu_load(vcpu, cpu); 204 put_cpu(); 205 } 206 EXPORT_SYMBOL_GPL(vcpu_load); 207 208 void vcpu_put(struct kvm_vcpu *vcpu) 209 { 210 preempt_disable(); 211 kvm_arch_vcpu_put(vcpu); 212 preempt_notifier_unregister(&vcpu->preempt_notifier); 213 __this_cpu_write(kvm_running_vcpu, NULL); 214 preempt_enable(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_put); 217 218 /* TODO: merge with kvm_arch_vcpu_should_kick */ 219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 220 { 221 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 222 223 /* 224 * We need to wait for the VCPU to reenable interrupts and get out of 225 * READING_SHADOW_PAGE_TABLES mode. 226 */ 227 if (req & KVM_REQUEST_WAIT) 228 return mode != OUTSIDE_GUEST_MODE; 229 230 /* 231 * Need to kick a running VCPU, but otherwise there is nothing to do. 232 */ 233 return mode == IN_GUEST_MODE; 234 } 235 236 static void ack_flush(void *_completed) 237 { 238 } 239 240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 241 { 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu, 250 unsigned int req, struct cpumask *tmp, 251 int current_cpu) 252 { 253 int cpu; 254 255 kvm_make_request(req, vcpu); 256 257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 258 return; 259 260 /* 261 * Note, the vCPU could get migrated to a different pCPU at any point 262 * after kvm_request_needs_ipi(), which could result in sending an IPI 263 * to the previous pCPU. But, that's OK because the purpose of the IPI 264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 266 * after this point is also OK, as the requirement is only that KVM wait 267 * for vCPUs that were reading SPTEs _before_ any changes were 268 * finalized. See kvm_vcpu_kick() for more details on handling requests. 269 */ 270 if (kvm_request_needs_ipi(vcpu, req)) { 271 cpu = READ_ONCE(vcpu->cpu); 272 if (cpu != -1 && cpu != current_cpu) 273 __cpumask_set_cpu(cpu, tmp); 274 } 275 } 276 277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 278 unsigned long *vcpu_bitmap) 279 { 280 struct kvm_vcpu *vcpu; 281 struct cpumask *cpus; 282 int i, me; 283 bool called; 284 285 me = get_cpu(); 286 287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 288 cpumask_clear(cpus); 289 290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 291 vcpu = kvm_get_vcpu(kvm, i); 292 if (!vcpu) 293 continue; 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 295 } 296 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 298 put_cpu(); 299 300 return called; 301 } 302 303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 304 struct kvm_vcpu *except) 305 { 306 struct kvm_vcpu *vcpu; 307 struct cpumask *cpus; 308 bool called; 309 int i, me; 310 311 me = get_cpu(); 312 313 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 314 cpumask_clear(cpus); 315 316 kvm_for_each_vcpu(i, vcpu, kvm) { 317 if (vcpu == except) 318 continue; 319 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 320 } 321 322 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 323 put_cpu(); 324 325 return called; 326 } 327 328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 329 { 330 return kvm_make_all_cpus_request_except(kvm, req, NULL); 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 335 void kvm_flush_remote_tlbs(struct kvm *kvm) 336 { 337 ++kvm->stat.generic.remote_tlb_flush_requests; 338 339 /* 340 * We want to publish modifications to the page tables before reading 341 * mode. Pairs with a memory barrier in arch-specific code. 342 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 343 * and smp_mb in walk_shadow_page_lockless_begin/end. 344 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 345 * 346 * There is already an smp_mb__after_atomic() before 347 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 348 * barrier here. 349 */ 350 if (!kvm_arch_flush_remote_tlb(kvm) 351 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 352 ++kvm->stat.generic.remote_tlb_flush; 353 } 354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 355 #endif 356 357 void kvm_reload_remote_mmus(struct kvm *kvm) 358 { 359 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 360 } 361 362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 364 gfp_t gfp_flags) 365 { 366 gfp_flags |= mc->gfp_zero; 367 368 if (mc->kmem_cache) 369 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 370 else 371 return (void *)__get_free_page(gfp_flags); 372 } 373 374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 375 { 376 void *obj; 377 378 if (mc->nobjs >= min) 379 return 0; 380 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 381 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 382 if (!obj) 383 return mc->nobjs >= min ? 0 : -ENOMEM; 384 mc->objects[mc->nobjs++] = obj; 385 } 386 return 0; 387 } 388 389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 390 { 391 return mc->nobjs; 392 } 393 394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 395 { 396 while (mc->nobjs) { 397 if (mc->kmem_cache) 398 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 399 else 400 free_page((unsigned long)mc->objects[--mc->nobjs]); 401 } 402 } 403 404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 405 { 406 void *p; 407 408 if (WARN_ON(!mc->nobjs)) 409 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 410 else 411 p = mc->objects[--mc->nobjs]; 412 BUG_ON(!p); 413 return p; 414 } 415 #endif 416 417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 418 { 419 mutex_init(&vcpu->mutex); 420 vcpu->cpu = -1; 421 vcpu->kvm = kvm; 422 vcpu->vcpu_id = id; 423 vcpu->pid = NULL; 424 rcuwait_init(&vcpu->wait); 425 kvm_async_pf_vcpu_init(vcpu); 426 427 vcpu->pre_pcpu = -1; 428 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 429 430 kvm_vcpu_set_in_spin_loop(vcpu, false); 431 kvm_vcpu_set_dy_eligible(vcpu, false); 432 vcpu->preempted = false; 433 vcpu->ready = false; 434 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 435 vcpu->last_used_slot = 0; 436 } 437 438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 439 { 440 kvm_dirty_ring_free(&vcpu->dirty_ring); 441 kvm_arch_vcpu_destroy(vcpu); 442 443 /* 444 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 445 * the vcpu->pid pointer, and at destruction time all file descriptors 446 * are already gone. 447 */ 448 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 449 450 free_page((unsigned long)vcpu->run); 451 kmem_cache_free(kvm_vcpu_cache, vcpu); 452 } 453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 454 455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 457 { 458 return container_of(mn, struct kvm, mmu_notifier); 459 } 460 461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 462 struct mm_struct *mm, 463 unsigned long start, unsigned long end) 464 { 465 struct kvm *kvm = mmu_notifier_to_kvm(mn); 466 int idx; 467 468 idx = srcu_read_lock(&kvm->srcu); 469 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 470 srcu_read_unlock(&kvm->srcu, idx); 471 } 472 473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 474 475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 476 unsigned long end); 477 478 struct kvm_hva_range { 479 unsigned long start; 480 unsigned long end; 481 pte_t pte; 482 hva_handler_t handler; 483 on_lock_fn_t on_lock; 484 bool flush_on_ret; 485 bool may_block; 486 }; 487 488 /* 489 * Use a dedicated stub instead of NULL to indicate that there is no callback 490 * function/handler. The compiler technically can't guarantee that a real 491 * function will have a non-zero address, and so it will generate code to 492 * check for !NULL, whereas comparing against a stub will be elided at compile 493 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 494 */ 495 static void kvm_null_fn(void) 496 { 497 498 } 499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 500 501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 502 const struct kvm_hva_range *range) 503 { 504 bool ret = false, locked = false; 505 struct kvm_gfn_range gfn_range; 506 struct kvm_memory_slot *slot; 507 struct kvm_memslots *slots; 508 int i, idx; 509 510 /* A null handler is allowed if and only if on_lock() is provided. */ 511 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 512 IS_KVM_NULL_FN(range->handler))) 513 return 0; 514 515 idx = srcu_read_lock(&kvm->srcu); 516 517 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 518 slots = __kvm_memslots(kvm, i); 519 kvm_for_each_memslot(slot, slots) { 520 unsigned long hva_start, hva_end; 521 522 hva_start = max(range->start, slot->userspace_addr); 523 hva_end = min(range->end, slot->userspace_addr + 524 (slot->npages << PAGE_SHIFT)); 525 if (hva_start >= hva_end) 526 continue; 527 528 /* 529 * To optimize for the likely case where the address 530 * range is covered by zero or one memslots, don't 531 * bother making these conditional (to avoid writes on 532 * the second or later invocation of the handler). 533 */ 534 gfn_range.pte = range->pte; 535 gfn_range.may_block = range->may_block; 536 537 /* 538 * {gfn(page) | page intersects with [hva_start, hva_end)} = 539 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 540 */ 541 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 542 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 543 gfn_range.slot = slot; 544 545 if (!locked) { 546 locked = true; 547 KVM_MMU_LOCK(kvm); 548 if (!IS_KVM_NULL_FN(range->on_lock)) 549 range->on_lock(kvm, range->start, range->end); 550 if (IS_KVM_NULL_FN(range->handler)) 551 break; 552 } 553 ret |= range->handler(kvm, &gfn_range); 554 } 555 } 556 557 if (range->flush_on_ret && ret) 558 kvm_flush_remote_tlbs(kvm); 559 560 if (locked) 561 KVM_MMU_UNLOCK(kvm); 562 563 srcu_read_unlock(&kvm->srcu, idx); 564 565 /* The notifiers are averse to booleans. :-( */ 566 return (int)ret; 567 } 568 569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 570 unsigned long start, 571 unsigned long end, 572 pte_t pte, 573 hva_handler_t handler) 574 { 575 struct kvm *kvm = mmu_notifier_to_kvm(mn); 576 const struct kvm_hva_range range = { 577 .start = start, 578 .end = end, 579 .pte = pte, 580 .handler = handler, 581 .on_lock = (void *)kvm_null_fn, 582 .flush_on_ret = true, 583 .may_block = false, 584 }; 585 586 return __kvm_handle_hva_range(kvm, &range); 587 } 588 589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 590 unsigned long start, 591 unsigned long end, 592 hva_handler_t handler) 593 { 594 struct kvm *kvm = mmu_notifier_to_kvm(mn); 595 const struct kvm_hva_range range = { 596 .start = start, 597 .end = end, 598 .pte = __pte(0), 599 .handler = handler, 600 .on_lock = (void *)kvm_null_fn, 601 .flush_on_ret = false, 602 .may_block = false, 603 }; 604 605 return __kvm_handle_hva_range(kvm, &range); 606 } 607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 608 struct mm_struct *mm, 609 unsigned long address, 610 pte_t pte) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 614 trace_kvm_set_spte_hva(address); 615 616 /* 617 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 618 * If mmu_notifier_count is zero, then no in-progress invalidations, 619 * including this one, found a relevant memslot at start(); rechecking 620 * memslots here is unnecessary. Note, a false positive (count elevated 621 * by a different invalidation) is sub-optimal but functionally ok. 622 */ 623 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 624 if (!READ_ONCE(kvm->mmu_notifier_count)) 625 return; 626 627 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 628 } 629 630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 631 unsigned long end) 632 { 633 /* 634 * The count increase must become visible at unlock time as no 635 * spte can be established without taking the mmu_lock and 636 * count is also read inside the mmu_lock critical section. 637 */ 638 kvm->mmu_notifier_count++; 639 if (likely(kvm->mmu_notifier_count == 1)) { 640 kvm->mmu_notifier_range_start = start; 641 kvm->mmu_notifier_range_end = end; 642 } else { 643 /* 644 * Fully tracking multiple concurrent ranges has dimishing 645 * returns. Keep things simple and just find the minimal range 646 * which includes the current and new ranges. As there won't be 647 * enough information to subtract a range after its invalidate 648 * completes, any ranges invalidated concurrently will 649 * accumulate and persist until all outstanding invalidates 650 * complete. 651 */ 652 kvm->mmu_notifier_range_start = 653 min(kvm->mmu_notifier_range_start, start); 654 kvm->mmu_notifier_range_end = 655 max(kvm->mmu_notifier_range_end, end); 656 } 657 } 658 659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 660 const struct mmu_notifier_range *range) 661 { 662 struct kvm *kvm = mmu_notifier_to_kvm(mn); 663 const struct kvm_hva_range hva_range = { 664 .start = range->start, 665 .end = range->end, 666 .pte = __pte(0), 667 .handler = kvm_unmap_gfn_range, 668 .on_lock = kvm_inc_notifier_count, 669 .flush_on_ret = true, 670 .may_block = mmu_notifier_range_blockable(range), 671 }; 672 673 trace_kvm_unmap_hva_range(range->start, range->end); 674 675 /* 676 * Prevent memslot modification between range_start() and range_end() 677 * so that conditionally locking provides the same result in both 678 * functions. Without that guarantee, the mmu_notifier_count 679 * adjustments will be imbalanced. 680 * 681 * Pairs with the decrement in range_end(). 682 */ 683 spin_lock(&kvm->mn_invalidate_lock); 684 kvm->mn_active_invalidate_count++; 685 spin_unlock(&kvm->mn_invalidate_lock); 686 687 __kvm_handle_hva_range(kvm, &hva_range); 688 689 return 0; 690 } 691 692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 693 unsigned long end) 694 { 695 /* 696 * This sequence increase will notify the kvm page fault that 697 * the page that is going to be mapped in the spte could have 698 * been freed. 699 */ 700 kvm->mmu_notifier_seq++; 701 smp_wmb(); 702 /* 703 * The above sequence increase must be visible before the 704 * below count decrease, which is ensured by the smp_wmb above 705 * in conjunction with the smp_rmb in mmu_notifier_retry(). 706 */ 707 kvm->mmu_notifier_count--; 708 } 709 710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 711 const struct mmu_notifier_range *range) 712 { 713 struct kvm *kvm = mmu_notifier_to_kvm(mn); 714 const struct kvm_hva_range hva_range = { 715 .start = range->start, 716 .end = range->end, 717 .pte = __pte(0), 718 .handler = (void *)kvm_null_fn, 719 .on_lock = kvm_dec_notifier_count, 720 .flush_on_ret = false, 721 .may_block = mmu_notifier_range_blockable(range), 722 }; 723 bool wake; 724 725 __kvm_handle_hva_range(kvm, &hva_range); 726 727 /* Pairs with the increment in range_start(). */ 728 spin_lock(&kvm->mn_invalidate_lock); 729 wake = (--kvm->mn_active_invalidate_count == 0); 730 spin_unlock(&kvm->mn_invalidate_lock); 731 732 /* 733 * There can only be one waiter, since the wait happens under 734 * slots_lock. 735 */ 736 if (wake) 737 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 738 739 BUG_ON(kvm->mmu_notifier_count < 0); 740 } 741 742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 743 struct mm_struct *mm, 744 unsigned long start, 745 unsigned long end) 746 { 747 trace_kvm_age_hva(start, end); 748 749 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 750 } 751 752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 753 struct mm_struct *mm, 754 unsigned long start, 755 unsigned long end) 756 { 757 trace_kvm_age_hva(start, end); 758 759 /* 760 * Even though we do not flush TLB, this will still adversely 761 * affect performance on pre-Haswell Intel EPT, where there is 762 * no EPT Access Bit to clear so that we have to tear down EPT 763 * tables instead. If we find this unacceptable, we can always 764 * add a parameter to kvm_age_hva so that it effectively doesn't 765 * do anything on clear_young. 766 * 767 * Also note that currently we never issue secondary TLB flushes 768 * from clear_young, leaving this job up to the regular system 769 * cadence. If we find this inaccurate, we might come up with a 770 * more sophisticated heuristic later. 771 */ 772 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 773 } 774 775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 776 struct mm_struct *mm, 777 unsigned long address) 778 { 779 trace_kvm_test_age_hva(address); 780 781 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 782 kvm_test_age_gfn); 783 } 784 785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 786 struct mm_struct *mm) 787 { 788 struct kvm *kvm = mmu_notifier_to_kvm(mn); 789 int idx; 790 791 idx = srcu_read_lock(&kvm->srcu); 792 kvm_arch_flush_shadow_all(kvm); 793 srcu_read_unlock(&kvm->srcu, idx); 794 } 795 796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 797 .invalidate_range = kvm_mmu_notifier_invalidate_range, 798 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 799 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 800 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 801 .clear_young = kvm_mmu_notifier_clear_young, 802 .test_young = kvm_mmu_notifier_test_young, 803 .change_pte = kvm_mmu_notifier_change_pte, 804 .release = kvm_mmu_notifier_release, 805 }; 806 807 static int kvm_init_mmu_notifier(struct kvm *kvm) 808 { 809 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 810 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 811 } 812 813 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 814 815 static int kvm_init_mmu_notifier(struct kvm *kvm) 816 { 817 return 0; 818 } 819 820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 821 822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 823 static int kvm_pm_notifier_call(struct notifier_block *bl, 824 unsigned long state, 825 void *unused) 826 { 827 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 828 829 return kvm_arch_pm_notifier(kvm, state); 830 } 831 832 static void kvm_init_pm_notifier(struct kvm *kvm) 833 { 834 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 835 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 836 kvm->pm_notifier.priority = INT_MAX; 837 register_pm_notifier(&kvm->pm_notifier); 838 } 839 840 static void kvm_destroy_pm_notifier(struct kvm *kvm) 841 { 842 unregister_pm_notifier(&kvm->pm_notifier); 843 } 844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 845 static void kvm_init_pm_notifier(struct kvm *kvm) 846 { 847 } 848 849 static void kvm_destroy_pm_notifier(struct kvm *kvm) 850 { 851 } 852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 853 854 static struct kvm_memslots *kvm_alloc_memslots(void) 855 { 856 int i; 857 struct kvm_memslots *slots; 858 859 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 860 if (!slots) 861 return NULL; 862 863 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 864 slots->id_to_index[i] = -1; 865 866 return slots; 867 } 868 869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 870 { 871 if (!memslot->dirty_bitmap) 872 return; 873 874 kvfree(memslot->dirty_bitmap); 875 memslot->dirty_bitmap = NULL; 876 } 877 878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 879 { 880 kvm_destroy_dirty_bitmap(slot); 881 882 kvm_arch_free_memslot(kvm, slot); 883 884 slot->flags = 0; 885 slot->npages = 0; 886 } 887 888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 889 { 890 struct kvm_memory_slot *memslot; 891 892 if (!slots) 893 return; 894 895 kvm_for_each_memslot(memslot, slots) 896 kvm_free_memslot(kvm, memslot); 897 898 kvfree(slots); 899 } 900 901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 902 { 903 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 904 case KVM_STATS_TYPE_INSTANT: 905 return 0444; 906 case KVM_STATS_TYPE_CUMULATIVE: 907 case KVM_STATS_TYPE_PEAK: 908 default: 909 return 0644; 910 } 911 } 912 913 914 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 915 { 916 int i; 917 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 918 kvm_vcpu_stats_header.num_desc; 919 920 if (!kvm->debugfs_dentry) 921 return; 922 923 debugfs_remove_recursive(kvm->debugfs_dentry); 924 925 if (kvm->debugfs_stat_data) { 926 for (i = 0; i < kvm_debugfs_num_entries; i++) 927 kfree(kvm->debugfs_stat_data[i]); 928 kfree(kvm->debugfs_stat_data); 929 } 930 } 931 932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 933 { 934 static DEFINE_MUTEX(kvm_debugfs_lock); 935 struct dentry *dent; 936 char dir_name[ITOA_MAX_LEN * 2]; 937 struct kvm_stat_data *stat_data; 938 const struct _kvm_stats_desc *pdesc; 939 int i, ret; 940 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 941 kvm_vcpu_stats_header.num_desc; 942 943 if (!debugfs_initialized()) 944 return 0; 945 946 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 947 mutex_lock(&kvm_debugfs_lock); 948 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 949 if (dent) { 950 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 951 dput(dent); 952 mutex_unlock(&kvm_debugfs_lock); 953 return 0; 954 } 955 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 956 mutex_unlock(&kvm_debugfs_lock); 957 if (IS_ERR(dent)) 958 return 0; 959 960 kvm->debugfs_dentry = dent; 961 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 962 sizeof(*kvm->debugfs_stat_data), 963 GFP_KERNEL_ACCOUNT); 964 if (!kvm->debugfs_stat_data) 965 return -ENOMEM; 966 967 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 968 pdesc = &kvm_vm_stats_desc[i]; 969 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 970 if (!stat_data) 971 return -ENOMEM; 972 973 stat_data->kvm = kvm; 974 stat_data->desc = pdesc; 975 stat_data->kind = KVM_STAT_VM; 976 kvm->debugfs_stat_data[i] = stat_data; 977 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 978 kvm->debugfs_dentry, stat_data, 979 &stat_fops_per_vm); 980 } 981 982 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 983 pdesc = &kvm_vcpu_stats_desc[i]; 984 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 985 if (!stat_data) 986 return -ENOMEM; 987 988 stat_data->kvm = kvm; 989 stat_data->desc = pdesc; 990 stat_data->kind = KVM_STAT_VCPU; 991 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 992 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 993 kvm->debugfs_dentry, stat_data, 994 &stat_fops_per_vm); 995 } 996 997 ret = kvm_arch_create_vm_debugfs(kvm); 998 if (ret) { 999 kvm_destroy_vm_debugfs(kvm); 1000 return i; 1001 } 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Called after the VM is otherwise initialized, but just before adding it to 1008 * the vm_list. 1009 */ 1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1011 { 1012 return 0; 1013 } 1014 1015 /* 1016 * Called just after removing the VM from the vm_list, but before doing any 1017 * other destruction. 1018 */ 1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1020 { 1021 } 1022 1023 /* 1024 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1025 * be setup already, so we can create arch-specific debugfs entries under it. 1026 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1027 * a per-arch destroy interface is not needed. 1028 */ 1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1030 { 1031 return 0; 1032 } 1033 1034 static struct kvm *kvm_create_vm(unsigned long type) 1035 { 1036 struct kvm *kvm = kvm_arch_alloc_vm(); 1037 int r = -ENOMEM; 1038 int i; 1039 1040 if (!kvm) 1041 return ERR_PTR(-ENOMEM); 1042 1043 KVM_MMU_LOCK_INIT(kvm); 1044 mmgrab(current->mm); 1045 kvm->mm = current->mm; 1046 kvm_eventfd_init(kvm); 1047 mutex_init(&kvm->lock); 1048 mutex_init(&kvm->irq_lock); 1049 mutex_init(&kvm->slots_lock); 1050 mutex_init(&kvm->slots_arch_lock); 1051 spin_lock_init(&kvm->mn_invalidate_lock); 1052 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1053 1054 INIT_LIST_HEAD(&kvm->devices); 1055 1056 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1057 1058 if (init_srcu_struct(&kvm->srcu)) 1059 goto out_err_no_srcu; 1060 if (init_srcu_struct(&kvm->irq_srcu)) 1061 goto out_err_no_irq_srcu; 1062 1063 refcount_set(&kvm->users_count, 1); 1064 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1065 struct kvm_memslots *slots = kvm_alloc_memslots(); 1066 1067 if (!slots) 1068 goto out_err_no_arch_destroy_vm; 1069 /* Generations must be different for each address space. */ 1070 slots->generation = i; 1071 rcu_assign_pointer(kvm->memslots[i], slots); 1072 } 1073 1074 for (i = 0; i < KVM_NR_BUSES; i++) { 1075 rcu_assign_pointer(kvm->buses[i], 1076 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1077 if (!kvm->buses[i]) 1078 goto out_err_no_arch_destroy_vm; 1079 } 1080 1081 kvm->max_halt_poll_ns = halt_poll_ns; 1082 1083 r = kvm_arch_init_vm(kvm, type); 1084 if (r) 1085 goto out_err_no_arch_destroy_vm; 1086 1087 r = hardware_enable_all(); 1088 if (r) 1089 goto out_err_no_disable; 1090 1091 #ifdef CONFIG_HAVE_KVM_IRQFD 1092 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1093 #endif 1094 1095 r = kvm_init_mmu_notifier(kvm); 1096 if (r) 1097 goto out_err_no_mmu_notifier; 1098 1099 r = kvm_arch_post_init_vm(kvm); 1100 if (r) 1101 goto out_err; 1102 1103 mutex_lock(&kvm_lock); 1104 list_add(&kvm->vm_list, &vm_list); 1105 mutex_unlock(&kvm_lock); 1106 1107 preempt_notifier_inc(); 1108 kvm_init_pm_notifier(kvm); 1109 1110 return kvm; 1111 1112 out_err: 1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1114 if (kvm->mmu_notifier.ops) 1115 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1116 #endif 1117 out_err_no_mmu_notifier: 1118 hardware_disable_all(); 1119 out_err_no_disable: 1120 kvm_arch_destroy_vm(kvm); 1121 out_err_no_arch_destroy_vm: 1122 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1123 for (i = 0; i < KVM_NR_BUSES; i++) 1124 kfree(kvm_get_bus(kvm, i)); 1125 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1126 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1127 cleanup_srcu_struct(&kvm->irq_srcu); 1128 out_err_no_irq_srcu: 1129 cleanup_srcu_struct(&kvm->srcu); 1130 out_err_no_srcu: 1131 kvm_arch_free_vm(kvm); 1132 mmdrop(current->mm); 1133 return ERR_PTR(r); 1134 } 1135 1136 static void kvm_destroy_devices(struct kvm *kvm) 1137 { 1138 struct kvm_device *dev, *tmp; 1139 1140 /* 1141 * We do not need to take the kvm->lock here, because nobody else 1142 * has a reference to the struct kvm at this point and therefore 1143 * cannot access the devices list anyhow. 1144 */ 1145 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1146 list_del(&dev->vm_node); 1147 dev->ops->destroy(dev); 1148 } 1149 } 1150 1151 static void kvm_destroy_vm(struct kvm *kvm) 1152 { 1153 int i; 1154 struct mm_struct *mm = kvm->mm; 1155 1156 kvm_destroy_pm_notifier(kvm); 1157 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1158 kvm_destroy_vm_debugfs(kvm); 1159 kvm_arch_sync_events(kvm); 1160 mutex_lock(&kvm_lock); 1161 list_del(&kvm->vm_list); 1162 mutex_unlock(&kvm_lock); 1163 kvm_arch_pre_destroy_vm(kvm); 1164 1165 kvm_free_irq_routing(kvm); 1166 for (i = 0; i < KVM_NR_BUSES; i++) { 1167 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1168 1169 if (bus) 1170 kvm_io_bus_destroy(bus); 1171 kvm->buses[i] = NULL; 1172 } 1173 kvm_coalesced_mmio_free(kvm); 1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1175 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1176 /* 1177 * At this point, pending calls to invalidate_range_start() 1178 * have completed but no more MMU notifiers will run, so 1179 * mn_active_invalidate_count may remain unbalanced. 1180 * No threads can be waiting in install_new_memslots as the 1181 * last reference on KVM has been dropped, but freeing 1182 * memslots would deadlock without this manual intervention. 1183 */ 1184 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1185 kvm->mn_active_invalidate_count = 0; 1186 #else 1187 kvm_arch_flush_shadow_all(kvm); 1188 #endif 1189 kvm_arch_destroy_vm(kvm); 1190 kvm_destroy_devices(kvm); 1191 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1192 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1193 cleanup_srcu_struct(&kvm->irq_srcu); 1194 cleanup_srcu_struct(&kvm->srcu); 1195 kvm_arch_free_vm(kvm); 1196 preempt_notifier_dec(); 1197 hardware_disable_all(); 1198 mmdrop(mm); 1199 } 1200 1201 void kvm_get_kvm(struct kvm *kvm) 1202 { 1203 refcount_inc(&kvm->users_count); 1204 } 1205 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1206 1207 /* 1208 * Make sure the vm is not during destruction, which is a safe version of 1209 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1210 */ 1211 bool kvm_get_kvm_safe(struct kvm *kvm) 1212 { 1213 return refcount_inc_not_zero(&kvm->users_count); 1214 } 1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1216 1217 void kvm_put_kvm(struct kvm *kvm) 1218 { 1219 if (refcount_dec_and_test(&kvm->users_count)) 1220 kvm_destroy_vm(kvm); 1221 } 1222 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1223 1224 /* 1225 * Used to put a reference that was taken on behalf of an object associated 1226 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1227 * of the new file descriptor fails and the reference cannot be transferred to 1228 * its final owner. In such cases, the caller is still actively using @kvm and 1229 * will fail miserably if the refcount unexpectedly hits zero. 1230 */ 1231 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1232 { 1233 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1234 } 1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1236 1237 static int kvm_vm_release(struct inode *inode, struct file *filp) 1238 { 1239 struct kvm *kvm = filp->private_data; 1240 1241 kvm_irqfd_release(kvm); 1242 1243 kvm_put_kvm(kvm); 1244 return 0; 1245 } 1246 1247 /* 1248 * Allocation size is twice as large as the actual dirty bitmap size. 1249 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1250 */ 1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1252 { 1253 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1254 1255 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1256 if (!memslot->dirty_bitmap) 1257 return -ENOMEM; 1258 1259 return 0; 1260 } 1261 1262 /* 1263 * Delete a memslot by decrementing the number of used slots and shifting all 1264 * other entries in the array forward one spot. 1265 */ 1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 1267 struct kvm_memory_slot *memslot) 1268 { 1269 struct kvm_memory_slot *mslots = slots->memslots; 1270 int i; 1271 1272 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 1273 return; 1274 1275 slots->used_slots--; 1276 1277 if (atomic_read(&slots->last_used_slot) >= slots->used_slots) 1278 atomic_set(&slots->last_used_slot, 0); 1279 1280 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 1281 mslots[i] = mslots[i + 1]; 1282 slots->id_to_index[mslots[i].id] = i; 1283 } 1284 mslots[i] = *memslot; 1285 slots->id_to_index[memslot->id] = -1; 1286 } 1287 1288 /* 1289 * "Insert" a new memslot by incrementing the number of used slots. Returns 1290 * the new slot's initial index into the memslots array. 1291 */ 1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 1293 { 1294 return slots->used_slots++; 1295 } 1296 1297 /* 1298 * Move a changed memslot backwards in the array by shifting existing slots 1299 * with a higher GFN toward the front of the array. Note, the changed memslot 1300 * itself is not preserved in the array, i.e. not swapped at this time, only 1301 * its new index into the array is tracked. Returns the changed memslot's 1302 * current index into the memslots array. 1303 */ 1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 1305 struct kvm_memory_slot *memslot) 1306 { 1307 struct kvm_memory_slot *mslots = slots->memslots; 1308 int i; 1309 1310 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 1311 WARN_ON_ONCE(!slots->used_slots)) 1312 return -1; 1313 1314 /* 1315 * Move the target memslot backward in the array by shifting existing 1316 * memslots with a higher GFN (than the target memslot) towards the 1317 * front of the array. 1318 */ 1319 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 1320 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1321 break; 1322 1323 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1324 1325 /* Shift the next memslot forward one and update its index. */ 1326 mslots[i] = mslots[i + 1]; 1327 slots->id_to_index[mslots[i].id] = i; 1328 } 1329 return i; 1330 } 1331 1332 /* 1333 * Move a changed memslot forwards in the array by shifting existing slots with 1334 * a lower GFN toward the back of the array. Note, the changed memslot itself 1335 * is not preserved in the array, i.e. not swapped at this time, only its new 1336 * index into the array is tracked. Returns the changed memslot's final index 1337 * into the memslots array. 1338 */ 1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1340 struct kvm_memory_slot *memslot, 1341 int start) 1342 { 1343 struct kvm_memory_slot *mslots = slots->memslots; 1344 int i; 1345 1346 for (i = start; i > 0; i--) { 1347 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1348 break; 1349 1350 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1351 1352 /* Shift the next memslot back one and update its index. */ 1353 mslots[i] = mslots[i - 1]; 1354 slots->id_to_index[mslots[i].id] = i; 1355 } 1356 return i; 1357 } 1358 1359 /* 1360 * Re-sort memslots based on their GFN to account for an added, deleted, or 1361 * moved memslot. Sorting memslots by GFN allows using a binary search during 1362 * memslot lookup. 1363 * 1364 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1365 * at memslots[0] has the highest GFN. 1366 * 1367 * The sorting algorithm takes advantage of having initially sorted memslots 1368 * and knowing the position of the changed memslot. Sorting is also optimized 1369 * by not swapping the updated memslot and instead only shifting other memslots 1370 * and tracking the new index for the update memslot. Only once its final 1371 * index is known is the updated memslot copied into its position in the array. 1372 * 1373 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1374 * the end of the array. 1375 * 1376 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1377 * end of the array and then it forward to its correct location. 1378 * 1379 * - When moving a memslot, the algorithm first moves the updated memslot 1380 * backward to handle the scenario where the memslot's GFN was changed to a 1381 * lower value. update_memslots() then falls through and runs the same flow 1382 * as creating a memslot to move the memslot forward to handle the scenario 1383 * where its GFN was changed to a higher value. 1384 * 1385 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1386 * historical reasons. Originally, invalid memslots where denoted by having 1387 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1388 * to the end of the array. The current algorithm uses dedicated logic to 1389 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1390 * 1391 * The other historical motiviation for highest->lowest was to improve the 1392 * performance of memslot lookup. KVM originally used a linear search starting 1393 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1394 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1395 * single memslot above the 4gb boundary. As the largest memslot is also the 1396 * most likely to be referenced, sorting it to the front of the array was 1397 * advantageous. The current binary search starts from the middle of the array 1398 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1399 */ 1400 static void update_memslots(struct kvm_memslots *slots, 1401 struct kvm_memory_slot *memslot, 1402 enum kvm_mr_change change) 1403 { 1404 int i; 1405 1406 if (change == KVM_MR_DELETE) { 1407 kvm_memslot_delete(slots, memslot); 1408 } else { 1409 if (change == KVM_MR_CREATE) 1410 i = kvm_memslot_insert_back(slots); 1411 else 1412 i = kvm_memslot_move_backward(slots, memslot); 1413 i = kvm_memslot_move_forward(slots, memslot, i); 1414 1415 /* 1416 * Copy the memslot to its new position in memslots and update 1417 * its index accordingly. 1418 */ 1419 slots->memslots[i] = *memslot; 1420 slots->id_to_index[memslot->id] = i; 1421 } 1422 } 1423 1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1425 { 1426 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1427 1428 #ifdef __KVM_HAVE_READONLY_MEM 1429 valid_flags |= KVM_MEM_READONLY; 1430 #endif 1431 1432 if (mem->flags & ~valid_flags) 1433 return -EINVAL; 1434 1435 return 0; 1436 } 1437 1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1439 int as_id, struct kvm_memslots *slots) 1440 { 1441 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1442 u64 gen = old_memslots->generation; 1443 1444 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1445 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1446 1447 /* 1448 * Do not store the new memslots while there are invalidations in 1449 * progress, otherwise the locking in invalidate_range_start and 1450 * invalidate_range_end will be unbalanced. 1451 */ 1452 spin_lock(&kvm->mn_invalidate_lock); 1453 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1454 while (kvm->mn_active_invalidate_count) { 1455 set_current_state(TASK_UNINTERRUPTIBLE); 1456 spin_unlock(&kvm->mn_invalidate_lock); 1457 schedule(); 1458 spin_lock(&kvm->mn_invalidate_lock); 1459 } 1460 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1461 rcu_assign_pointer(kvm->memslots[as_id], slots); 1462 spin_unlock(&kvm->mn_invalidate_lock); 1463 1464 /* 1465 * Acquired in kvm_set_memslot. Must be released before synchronize 1466 * SRCU below in order to avoid deadlock with another thread 1467 * acquiring the slots_arch_lock in an srcu critical section. 1468 */ 1469 mutex_unlock(&kvm->slots_arch_lock); 1470 1471 synchronize_srcu_expedited(&kvm->srcu); 1472 1473 /* 1474 * Increment the new memslot generation a second time, dropping the 1475 * update in-progress flag and incrementing the generation based on 1476 * the number of address spaces. This provides a unique and easily 1477 * identifiable generation number while the memslots are in flux. 1478 */ 1479 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1480 1481 /* 1482 * Generations must be unique even across address spaces. We do not need 1483 * a global counter for that, instead the generation space is evenly split 1484 * across address spaces. For example, with two address spaces, address 1485 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1486 * use generations 1, 3, 5, ... 1487 */ 1488 gen += KVM_ADDRESS_SPACE_NUM; 1489 1490 kvm_arch_memslots_updated(kvm, gen); 1491 1492 slots->generation = gen; 1493 1494 return old_memslots; 1495 } 1496 1497 static size_t kvm_memslots_size(int slots) 1498 { 1499 return sizeof(struct kvm_memslots) + 1500 (sizeof(struct kvm_memory_slot) * slots); 1501 } 1502 1503 static void kvm_copy_memslots(struct kvm_memslots *to, 1504 struct kvm_memslots *from) 1505 { 1506 memcpy(to, from, kvm_memslots_size(from->used_slots)); 1507 } 1508 1509 /* 1510 * Note, at a minimum, the current number of used slots must be allocated, even 1511 * when deleting a memslot, as we need a complete duplicate of the memslots for 1512 * use when invalidating a memslot prior to deleting/moving the memslot. 1513 */ 1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1515 enum kvm_mr_change change) 1516 { 1517 struct kvm_memslots *slots; 1518 size_t new_size; 1519 1520 if (change == KVM_MR_CREATE) 1521 new_size = kvm_memslots_size(old->used_slots + 1); 1522 else 1523 new_size = kvm_memslots_size(old->used_slots); 1524 1525 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1526 if (likely(slots)) 1527 kvm_copy_memslots(slots, old); 1528 1529 return slots; 1530 } 1531 1532 static int kvm_set_memslot(struct kvm *kvm, 1533 const struct kvm_userspace_memory_region *mem, 1534 struct kvm_memory_slot *old, 1535 struct kvm_memory_slot *new, int as_id, 1536 enum kvm_mr_change change) 1537 { 1538 struct kvm_memory_slot *slot; 1539 struct kvm_memslots *slots; 1540 int r; 1541 1542 /* 1543 * Released in install_new_memslots. 1544 * 1545 * Must be held from before the current memslots are copied until 1546 * after the new memslots are installed with rcu_assign_pointer, 1547 * then released before the synchronize srcu in install_new_memslots. 1548 * 1549 * When modifying memslots outside of the slots_lock, must be held 1550 * before reading the pointer to the current memslots until after all 1551 * changes to those memslots are complete. 1552 * 1553 * These rules ensure that installing new memslots does not lose 1554 * changes made to the previous memslots. 1555 */ 1556 mutex_lock(&kvm->slots_arch_lock); 1557 1558 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1559 if (!slots) { 1560 mutex_unlock(&kvm->slots_arch_lock); 1561 return -ENOMEM; 1562 } 1563 1564 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1565 /* 1566 * Note, the INVALID flag needs to be in the appropriate entry 1567 * in the freshly allocated memslots, not in @old or @new. 1568 */ 1569 slot = id_to_memslot(slots, old->id); 1570 slot->flags |= KVM_MEMSLOT_INVALID; 1571 1572 /* 1573 * We can re-use the memory from the old memslots. 1574 * It will be overwritten with a copy of the new memslots 1575 * after reacquiring the slots_arch_lock below. 1576 */ 1577 slots = install_new_memslots(kvm, as_id, slots); 1578 1579 /* From this point no new shadow pages pointing to a deleted, 1580 * or moved, memslot will be created. 1581 * 1582 * validation of sp->gfn happens in: 1583 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1584 * - kvm_is_visible_gfn (mmu_check_root) 1585 */ 1586 kvm_arch_flush_shadow_memslot(kvm, slot); 1587 1588 /* Released in install_new_memslots. */ 1589 mutex_lock(&kvm->slots_arch_lock); 1590 1591 /* 1592 * The arch-specific fields of the memslots could have changed 1593 * between releasing the slots_arch_lock in 1594 * install_new_memslots and here, so get a fresh copy of the 1595 * slots. 1596 */ 1597 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id)); 1598 } 1599 1600 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1601 if (r) 1602 goto out_slots; 1603 1604 update_memslots(slots, new, change); 1605 slots = install_new_memslots(kvm, as_id, slots); 1606 1607 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1608 1609 kvfree(slots); 1610 return 0; 1611 1612 out_slots: 1613 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1614 slot = id_to_memslot(slots, old->id); 1615 slot->flags &= ~KVM_MEMSLOT_INVALID; 1616 slots = install_new_memslots(kvm, as_id, slots); 1617 } else { 1618 mutex_unlock(&kvm->slots_arch_lock); 1619 } 1620 kvfree(slots); 1621 return r; 1622 } 1623 1624 static int kvm_delete_memslot(struct kvm *kvm, 1625 const struct kvm_userspace_memory_region *mem, 1626 struct kvm_memory_slot *old, int as_id) 1627 { 1628 struct kvm_memory_slot new; 1629 int r; 1630 1631 if (!old->npages) 1632 return -EINVAL; 1633 1634 memset(&new, 0, sizeof(new)); 1635 new.id = old->id; 1636 /* 1637 * This is only for debugging purpose; it should never be referenced 1638 * for a removed memslot. 1639 */ 1640 new.as_id = as_id; 1641 1642 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1643 if (r) 1644 return r; 1645 1646 kvm_free_memslot(kvm, old); 1647 return 0; 1648 } 1649 1650 /* 1651 * Allocate some memory and give it an address in the guest physical address 1652 * space. 1653 * 1654 * Discontiguous memory is allowed, mostly for framebuffers. 1655 * 1656 * Must be called holding kvm->slots_lock for write. 1657 */ 1658 int __kvm_set_memory_region(struct kvm *kvm, 1659 const struct kvm_userspace_memory_region *mem) 1660 { 1661 struct kvm_memory_slot old, new; 1662 struct kvm_memory_slot *tmp; 1663 enum kvm_mr_change change; 1664 int as_id, id; 1665 int r; 1666 1667 r = check_memory_region_flags(mem); 1668 if (r) 1669 return r; 1670 1671 as_id = mem->slot >> 16; 1672 id = (u16)mem->slot; 1673 1674 /* General sanity checks */ 1675 if (mem->memory_size & (PAGE_SIZE - 1)) 1676 return -EINVAL; 1677 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1678 return -EINVAL; 1679 /* We can read the guest memory with __xxx_user() later on. */ 1680 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1681 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1682 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1683 mem->memory_size)) 1684 return -EINVAL; 1685 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1686 return -EINVAL; 1687 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1688 return -EINVAL; 1689 1690 /* 1691 * Make a full copy of the old memslot, the pointer will become stale 1692 * when the memslots are re-sorted by update_memslots(), and the old 1693 * memslot needs to be referenced after calling update_memslots(), e.g. 1694 * to free its resources and for arch specific behavior. 1695 */ 1696 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1697 if (tmp) { 1698 old = *tmp; 1699 tmp = NULL; 1700 } else { 1701 memset(&old, 0, sizeof(old)); 1702 old.id = id; 1703 } 1704 1705 if (!mem->memory_size) 1706 return kvm_delete_memslot(kvm, mem, &old, as_id); 1707 1708 new.as_id = as_id; 1709 new.id = id; 1710 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1711 new.npages = mem->memory_size >> PAGE_SHIFT; 1712 new.flags = mem->flags; 1713 new.userspace_addr = mem->userspace_addr; 1714 1715 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1716 return -EINVAL; 1717 1718 if (!old.npages) { 1719 change = KVM_MR_CREATE; 1720 new.dirty_bitmap = NULL; 1721 memset(&new.arch, 0, sizeof(new.arch)); 1722 } else { /* Modify an existing slot. */ 1723 if ((new.userspace_addr != old.userspace_addr) || 1724 (new.npages != old.npages) || 1725 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1726 return -EINVAL; 1727 1728 if (new.base_gfn != old.base_gfn) 1729 change = KVM_MR_MOVE; 1730 else if (new.flags != old.flags) 1731 change = KVM_MR_FLAGS_ONLY; 1732 else /* Nothing to change. */ 1733 return 0; 1734 1735 /* Copy dirty_bitmap and arch from the current memslot. */ 1736 new.dirty_bitmap = old.dirty_bitmap; 1737 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1738 } 1739 1740 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1741 /* Check for overlaps */ 1742 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1743 if (tmp->id == id) 1744 continue; 1745 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1746 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1747 return -EEXIST; 1748 } 1749 } 1750 1751 /* Allocate/free page dirty bitmap as needed */ 1752 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1753 new.dirty_bitmap = NULL; 1754 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) { 1755 r = kvm_alloc_dirty_bitmap(&new); 1756 if (r) 1757 return r; 1758 1759 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1760 bitmap_set(new.dirty_bitmap, 0, new.npages); 1761 } 1762 1763 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1764 if (r) 1765 goto out_bitmap; 1766 1767 if (old.dirty_bitmap && !new.dirty_bitmap) 1768 kvm_destroy_dirty_bitmap(&old); 1769 return 0; 1770 1771 out_bitmap: 1772 if (new.dirty_bitmap && !old.dirty_bitmap) 1773 kvm_destroy_dirty_bitmap(&new); 1774 return r; 1775 } 1776 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1777 1778 int kvm_set_memory_region(struct kvm *kvm, 1779 const struct kvm_userspace_memory_region *mem) 1780 { 1781 int r; 1782 1783 mutex_lock(&kvm->slots_lock); 1784 r = __kvm_set_memory_region(kvm, mem); 1785 mutex_unlock(&kvm->slots_lock); 1786 return r; 1787 } 1788 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1789 1790 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1791 struct kvm_userspace_memory_region *mem) 1792 { 1793 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1794 return -EINVAL; 1795 1796 return kvm_set_memory_region(kvm, mem); 1797 } 1798 1799 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1800 /** 1801 * kvm_get_dirty_log - get a snapshot of dirty pages 1802 * @kvm: pointer to kvm instance 1803 * @log: slot id and address to which we copy the log 1804 * @is_dirty: set to '1' if any dirty pages were found 1805 * @memslot: set to the associated memslot, always valid on success 1806 */ 1807 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1808 int *is_dirty, struct kvm_memory_slot **memslot) 1809 { 1810 struct kvm_memslots *slots; 1811 int i, as_id, id; 1812 unsigned long n; 1813 unsigned long any = 0; 1814 1815 /* Dirty ring tracking is exclusive to dirty log tracking */ 1816 if (kvm->dirty_ring_size) 1817 return -ENXIO; 1818 1819 *memslot = NULL; 1820 *is_dirty = 0; 1821 1822 as_id = log->slot >> 16; 1823 id = (u16)log->slot; 1824 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1825 return -EINVAL; 1826 1827 slots = __kvm_memslots(kvm, as_id); 1828 *memslot = id_to_memslot(slots, id); 1829 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1830 return -ENOENT; 1831 1832 kvm_arch_sync_dirty_log(kvm, *memslot); 1833 1834 n = kvm_dirty_bitmap_bytes(*memslot); 1835 1836 for (i = 0; !any && i < n/sizeof(long); ++i) 1837 any = (*memslot)->dirty_bitmap[i]; 1838 1839 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1840 return -EFAULT; 1841 1842 if (any) 1843 *is_dirty = 1; 1844 return 0; 1845 } 1846 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1847 1848 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1849 /** 1850 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1851 * and reenable dirty page tracking for the corresponding pages. 1852 * @kvm: pointer to kvm instance 1853 * @log: slot id and address to which we copy the log 1854 * 1855 * We need to keep it in mind that VCPU threads can write to the bitmap 1856 * concurrently. So, to avoid losing track of dirty pages we keep the 1857 * following order: 1858 * 1859 * 1. Take a snapshot of the bit and clear it if needed. 1860 * 2. Write protect the corresponding page. 1861 * 3. Copy the snapshot to the userspace. 1862 * 4. Upon return caller flushes TLB's if needed. 1863 * 1864 * Between 2 and 4, the guest may write to the page using the remaining TLB 1865 * entry. This is not a problem because the page is reported dirty using 1866 * the snapshot taken before and step 4 ensures that writes done after 1867 * exiting to userspace will be logged for the next call. 1868 * 1869 */ 1870 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1871 { 1872 struct kvm_memslots *slots; 1873 struct kvm_memory_slot *memslot; 1874 int i, as_id, id; 1875 unsigned long n; 1876 unsigned long *dirty_bitmap; 1877 unsigned long *dirty_bitmap_buffer; 1878 bool flush; 1879 1880 /* Dirty ring tracking is exclusive to dirty log tracking */ 1881 if (kvm->dirty_ring_size) 1882 return -ENXIO; 1883 1884 as_id = log->slot >> 16; 1885 id = (u16)log->slot; 1886 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1887 return -EINVAL; 1888 1889 slots = __kvm_memslots(kvm, as_id); 1890 memslot = id_to_memslot(slots, id); 1891 if (!memslot || !memslot->dirty_bitmap) 1892 return -ENOENT; 1893 1894 dirty_bitmap = memslot->dirty_bitmap; 1895 1896 kvm_arch_sync_dirty_log(kvm, memslot); 1897 1898 n = kvm_dirty_bitmap_bytes(memslot); 1899 flush = false; 1900 if (kvm->manual_dirty_log_protect) { 1901 /* 1902 * Unlike kvm_get_dirty_log, we always return false in *flush, 1903 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1904 * is some code duplication between this function and 1905 * kvm_get_dirty_log, but hopefully all architecture 1906 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1907 * can be eliminated. 1908 */ 1909 dirty_bitmap_buffer = dirty_bitmap; 1910 } else { 1911 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1912 memset(dirty_bitmap_buffer, 0, n); 1913 1914 KVM_MMU_LOCK(kvm); 1915 for (i = 0; i < n / sizeof(long); i++) { 1916 unsigned long mask; 1917 gfn_t offset; 1918 1919 if (!dirty_bitmap[i]) 1920 continue; 1921 1922 flush = true; 1923 mask = xchg(&dirty_bitmap[i], 0); 1924 dirty_bitmap_buffer[i] = mask; 1925 1926 offset = i * BITS_PER_LONG; 1927 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1928 offset, mask); 1929 } 1930 KVM_MMU_UNLOCK(kvm); 1931 } 1932 1933 if (flush) 1934 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1935 1936 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1937 return -EFAULT; 1938 return 0; 1939 } 1940 1941 1942 /** 1943 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1944 * @kvm: kvm instance 1945 * @log: slot id and address to which we copy the log 1946 * 1947 * Steps 1-4 below provide general overview of dirty page logging. See 1948 * kvm_get_dirty_log_protect() function description for additional details. 1949 * 1950 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1951 * always flush the TLB (step 4) even if previous step failed and the dirty 1952 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1953 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1954 * writes will be marked dirty for next log read. 1955 * 1956 * 1. Take a snapshot of the bit and clear it if needed. 1957 * 2. Write protect the corresponding page. 1958 * 3. Copy the snapshot to the userspace. 1959 * 4. Flush TLB's if needed. 1960 */ 1961 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1962 struct kvm_dirty_log *log) 1963 { 1964 int r; 1965 1966 mutex_lock(&kvm->slots_lock); 1967 1968 r = kvm_get_dirty_log_protect(kvm, log); 1969 1970 mutex_unlock(&kvm->slots_lock); 1971 return r; 1972 } 1973 1974 /** 1975 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1976 * and reenable dirty page tracking for the corresponding pages. 1977 * @kvm: pointer to kvm instance 1978 * @log: slot id and address from which to fetch the bitmap of dirty pages 1979 */ 1980 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1981 struct kvm_clear_dirty_log *log) 1982 { 1983 struct kvm_memslots *slots; 1984 struct kvm_memory_slot *memslot; 1985 int as_id, id; 1986 gfn_t offset; 1987 unsigned long i, n; 1988 unsigned long *dirty_bitmap; 1989 unsigned long *dirty_bitmap_buffer; 1990 bool flush; 1991 1992 /* Dirty ring tracking is exclusive to dirty log tracking */ 1993 if (kvm->dirty_ring_size) 1994 return -ENXIO; 1995 1996 as_id = log->slot >> 16; 1997 id = (u16)log->slot; 1998 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1999 return -EINVAL; 2000 2001 if (log->first_page & 63) 2002 return -EINVAL; 2003 2004 slots = __kvm_memslots(kvm, as_id); 2005 memslot = id_to_memslot(slots, id); 2006 if (!memslot || !memslot->dirty_bitmap) 2007 return -ENOENT; 2008 2009 dirty_bitmap = memslot->dirty_bitmap; 2010 2011 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2012 2013 if (log->first_page > memslot->npages || 2014 log->num_pages > memslot->npages - log->first_page || 2015 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2016 return -EINVAL; 2017 2018 kvm_arch_sync_dirty_log(kvm, memslot); 2019 2020 flush = false; 2021 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2022 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2023 return -EFAULT; 2024 2025 KVM_MMU_LOCK(kvm); 2026 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2027 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2028 i++, offset += BITS_PER_LONG) { 2029 unsigned long mask = *dirty_bitmap_buffer++; 2030 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2031 if (!mask) 2032 continue; 2033 2034 mask &= atomic_long_fetch_andnot(mask, p); 2035 2036 /* 2037 * mask contains the bits that really have been cleared. This 2038 * never includes any bits beyond the length of the memslot (if 2039 * the length is not aligned to 64 pages), therefore it is not 2040 * a problem if userspace sets them in log->dirty_bitmap. 2041 */ 2042 if (mask) { 2043 flush = true; 2044 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2045 offset, mask); 2046 } 2047 } 2048 KVM_MMU_UNLOCK(kvm); 2049 2050 if (flush) 2051 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2052 2053 return 0; 2054 } 2055 2056 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2057 struct kvm_clear_dirty_log *log) 2058 { 2059 int r; 2060 2061 mutex_lock(&kvm->slots_lock); 2062 2063 r = kvm_clear_dirty_log_protect(kvm, log); 2064 2065 mutex_unlock(&kvm->slots_lock); 2066 return r; 2067 } 2068 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2069 2070 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2071 { 2072 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2073 } 2074 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2075 2076 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2077 { 2078 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2079 struct kvm_memory_slot *slot; 2080 int slot_index; 2081 2082 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn); 2083 if (slot) 2084 return slot; 2085 2086 /* 2087 * Fall back to searching all memslots. We purposely use 2088 * search_memslots() instead of __gfn_to_memslot() to avoid 2089 * thrashing the VM-wide last_used_index in kvm_memslots. 2090 */ 2091 slot = search_memslots(slots, gfn, &slot_index); 2092 if (slot) { 2093 vcpu->last_used_slot = slot_index; 2094 return slot; 2095 } 2096 2097 return NULL; 2098 } 2099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 2100 2101 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2102 { 2103 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2104 2105 return kvm_is_visible_memslot(memslot); 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2108 2109 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2110 { 2111 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2112 2113 return kvm_is_visible_memslot(memslot); 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2116 2117 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2118 { 2119 struct vm_area_struct *vma; 2120 unsigned long addr, size; 2121 2122 size = PAGE_SIZE; 2123 2124 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2125 if (kvm_is_error_hva(addr)) 2126 return PAGE_SIZE; 2127 2128 mmap_read_lock(current->mm); 2129 vma = find_vma(current->mm, addr); 2130 if (!vma) 2131 goto out; 2132 2133 size = vma_kernel_pagesize(vma); 2134 2135 out: 2136 mmap_read_unlock(current->mm); 2137 2138 return size; 2139 } 2140 2141 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 2142 { 2143 return slot->flags & KVM_MEM_READONLY; 2144 } 2145 2146 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2147 gfn_t *nr_pages, bool write) 2148 { 2149 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2150 return KVM_HVA_ERR_BAD; 2151 2152 if (memslot_is_readonly(slot) && write) 2153 return KVM_HVA_ERR_RO_BAD; 2154 2155 if (nr_pages) 2156 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2157 2158 return __gfn_to_hva_memslot(slot, gfn); 2159 } 2160 2161 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2162 gfn_t *nr_pages) 2163 { 2164 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2165 } 2166 2167 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2168 gfn_t gfn) 2169 { 2170 return gfn_to_hva_many(slot, gfn, NULL); 2171 } 2172 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2173 2174 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2175 { 2176 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2177 } 2178 EXPORT_SYMBOL_GPL(gfn_to_hva); 2179 2180 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2181 { 2182 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2183 } 2184 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2185 2186 /* 2187 * Return the hva of a @gfn and the R/W attribute if possible. 2188 * 2189 * @slot: the kvm_memory_slot which contains @gfn 2190 * @gfn: the gfn to be translated 2191 * @writable: used to return the read/write attribute of the @slot if the hva 2192 * is valid and @writable is not NULL 2193 */ 2194 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2195 gfn_t gfn, bool *writable) 2196 { 2197 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2198 2199 if (!kvm_is_error_hva(hva) && writable) 2200 *writable = !memslot_is_readonly(slot); 2201 2202 return hva; 2203 } 2204 2205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2206 { 2207 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2208 2209 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2210 } 2211 2212 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2213 { 2214 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2215 2216 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2217 } 2218 2219 static inline int check_user_page_hwpoison(unsigned long addr) 2220 { 2221 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2222 2223 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2224 return rc == -EHWPOISON; 2225 } 2226 2227 /* 2228 * The fast path to get the writable pfn which will be stored in @pfn, 2229 * true indicates success, otherwise false is returned. It's also the 2230 * only part that runs if we can in atomic context. 2231 */ 2232 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2233 bool *writable, kvm_pfn_t *pfn) 2234 { 2235 struct page *page[1]; 2236 2237 /* 2238 * Fast pin a writable pfn only if it is a write fault request 2239 * or the caller allows to map a writable pfn for a read fault 2240 * request. 2241 */ 2242 if (!(write_fault || writable)) 2243 return false; 2244 2245 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2246 *pfn = page_to_pfn(page[0]); 2247 2248 if (writable) 2249 *writable = true; 2250 return true; 2251 } 2252 2253 return false; 2254 } 2255 2256 /* 2257 * The slow path to get the pfn of the specified host virtual address, 2258 * 1 indicates success, -errno is returned if error is detected. 2259 */ 2260 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2261 bool *writable, kvm_pfn_t *pfn) 2262 { 2263 unsigned int flags = FOLL_HWPOISON; 2264 struct page *page; 2265 int npages = 0; 2266 2267 might_sleep(); 2268 2269 if (writable) 2270 *writable = write_fault; 2271 2272 if (write_fault) 2273 flags |= FOLL_WRITE; 2274 if (async) 2275 flags |= FOLL_NOWAIT; 2276 2277 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2278 if (npages != 1) 2279 return npages; 2280 2281 /* map read fault as writable if possible */ 2282 if (unlikely(!write_fault) && writable) { 2283 struct page *wpage; 2284 2285 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2286 *writable = true; 2287 put_page(page); 2288 page = wpage; 2289 } 2290 } 2291 *pfn = page_to_pfn(page); 2292 return npages; 2293 } 2294 2295 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2296 { 2297 if (unlikely(!(vma->vm_flags & VM_READ))) 2298 return false; 2299 2300 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2301 return false; 2302 2303 return true; 2304 } 2305 2306 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2307 { 2308 if (kvm_is_reserved_pfn(pfn)) 2309 return 1; 2310 return get_page_unless_zero(pfn_to_page(pfn)); 2311 } 2312 2313 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2314 unsigned long addr, bool *async, 2315 bool write_fault, bool *writable, 2316 kvm_pfn_t *p_pfn) 2317 { 2318 kvm_pfn_t pfn; 2319 pte_t *ptep; 2320 spinlock_t *ptl; 2321 int r; 2322 2323 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2324 if (r) { 2325 /* 2326 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2327 * not call the fault handler, so do it here. 2328 */ 2329 bool unlocked = false; 2330 r = fixup_user_fault(current->mm, addr, 2331 (write_fault ? FAULT_FLAG_WRITE : 0), 2332 &unlocked); 2333 if (unlocked) 2334 return -EAGAIN; 2335 if (r) 2336 return r; 2337 2338 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2339 if (r) 2340 return r; 2341 } 2342 2343 if (write_fault && !pte_write(*ptep)) { 2344 pfn = KVM_PFN_ERR_RO_FAULT; 2345 goto out; 2346 } 2347 2348 if (writable) 2349 *writable = pte_write(*ptep); 2350 pfn = pte_pfn(*ptep); 2351 2352 /* 2353 * Get a reference here because callers of *hva_to_pfn* and 2354 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2355 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2356 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2357 * simply do nothing for reserved pfns. 2358 * 2359 * Whoever called remap_pfn_range is also going to call e.g. 2360 * unmap_mapping_range before the underlying pages are freed, 2361 * causing a call to our MMU notifier. 2362 * 2363 * Certain IO or PFNMAP mappings can be backed with valid 2364 * struct pages, but be allocated without refcounting e.g., 2365 * tail pages of non-compound higher order allocations, which 2366 * would then underflow the refcount when the caller does the 2367 * required put_page. Don't allow those pages here. 2368 */ 2369 if (!kvm_try_get_pfn(pfn)) 2370 r = -EFAULT; 2371 2372 out: 2373 pte_unmap_unlock(ptep, ptl); 2374 *p_pfn = pfn; 2375 2376 return r; 2377 } 2378 2379 /* 2380 * Pin guest page in memory and return its pfn. 2381 * @addr: host virtual address which maps memory to the guest 2382 * @atomic: whether this function can sleep 2383 * @async: whether this function need to wait IO complete if the 2384 * host page is not in the memory 2385 * @write_fault: whether we should get a writable host page 2386 * @writable: whether it allows to map a writable host page for !@write_fault 2387 * 2388 * The function will map a writable host page for these two cases: 2389 * 1): @write_fault = true 2390 * 2): @write_fault = false && @writable, @writable will tell the caller 2391 * whether the mapping is writable. 2392 */ 2393 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2394 bool write_fault, bool *writable) 2395 { 2396 struct vm_area_struct *vma; 2397 kvm_pfn_t pfn = 0; 2398 int npages, r; 2399 2400 /* we can do it either atomically or asynchronously, not both */ 2401 BUG_ON(atomic && async); 2402 2403 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2404 return pfn; 2405 2406 if (atomic) 2407 return KVM_PFN_ERR_FAULT; 2408 2409 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2410 if (npages == 1) 2411 return pfn; 2412 2413 mmap_read_lock(current->mm); 2414 if (npages == -EHWPOISON || 2415 (!async && check_user_page_hwpoison(addr))) { 2416 pfn = KVM_PFN_ERR_HWPOISON; 2417 goto exit; 2418 } 2419 2420 retry: 2421 vma = vma_lookup(current->mm, addr); 2422 2423 if (vma == NULL) 2424 pfn = KVM_PFN_ERR_FAULT; 2425 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2426 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2427 if (r == -EAGAIN) 2428 goto retry; 2429 if (r < 0) 2430 pfn = KVM_PFN_ERR_FAULT; 2431 } else { 2432 if (async && vma_is_valid(vma, write_fault)) 2433 *async = true; 2434 pfn = KVM_PFN_ERR_FAULT; 2435 } 2436 exit: 2437 mmap_read_unlock(current->mm); 2438 return pfn; 2439 } 2440 2441 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 2442 bool atomic, bool *async, bool write_fault, 2443 bool *writable, hva_t *hva) 2444 { 2445 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2446 2447 if (hva) 2448 *hva = addr; 2449 2450 if (addr == KVM_HVA_ERR_RO_BAD) { 2451 if (writable) 2452 *writable = false; 2453 return KVM_PFN_ERR_RO_FAULT; 2454 } 2455 2456 if (kvm_is_error_hva(addr)) { 2457 if (writable) 2458 *writable = false; 2459 return KVM_PFN_NOSLOT; 2460 } 2461 2462 /* Do not map writable pfn in the readonly memslot. */ 2463 if (writable && memslot_is_readonly(slot)) { 2464 *writable = false; 2465 writable = NULL; 2466 } 2467 2468 return hva_to_pfn(addr, atomic, async, write_fault, 2469 writable); 2470 } 2471 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2472 2473 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2474 bool *writable) 2475 { 2476 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2477 write_fault, writable, NULL); 2478 } 2479 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2480 2481 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2482 { 2483 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2484 } 2485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2486 2487 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2488 { 2489 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2490 } 2491 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2492 2493 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2494 { 2495 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2496 } 2497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2498 2499 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2500 { 2501 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2502 } 2503 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2504 2505 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2506 { 2507 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2508 } 2509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2510 2511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2512 struct page **pages, int nr_pages) 2513 { 2514 unsigned long addr; 2515 gfn_t entry = 0; 2516 2517 addr = gfn_to_hva_many(slot, gfn, &entry); 2518 if (kvm_is_error_hva(addr)) 2519 return -1; 2520 2521 if (entry < nr_pages) 2522 return 0; 2523 2524 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2525 } 2526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2527 2528 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2529 { 2530 if (is_error_noslot_pfn(pfn)) 2531 return KVM_ERR_PTR_BAD_PAGE; 2532 2533 if (kvm_is_reserved_pfn(pfn)) { 2534 WARN_ON(1); 2535 return KVM_ERR_PTR_BAD_PAGE; 2536 } 2537 2538 return pfn_to_page(pfn); 2539 } 2540 2541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2542 { 2543 kvm_pfn_t pfn; 2544 2545 pfn = gfn_to_pfn(kvm, gfn); 2546 2547 return kvm_pfn_to_page(pfn); 2548 } 2549 EXPORT_SYMBOL_GPL(gfn_to_page); 2550 2551 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2552 { 2553 if (pfn == 0) 2554 return; 2555 2556 if (dirty) 2557 kvm_release_pfn_dirty(pfn); 2558 else 2559 kvm_release_pfn_clean(pfn); 2560 } 2561 2562 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2563 { 2564 kvm_pfn_t pfn; 2565 void *hva = NULL; 2566 struct page *page = KVM_UNMAPPED_PAGE; 2567 2568 if (!map) 2569 return -EINVAL; 2570 2571 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2572 if (is_error_noslot_pfn(pfn)) 2573 return -EINVAL; 2574 2575 if (pfn_valid(pfn)) { 2576 page = pfn_to_page(pfn); 2577 hva = kmap(page); 2578 #ifdef CONFIG_HAS_IOMEM 2579 } else { 2580 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2581 #endif 2582 } 2583 2584 if (!hva) 2585 return -EFAULT; 2586 2587 map->page = page; 2588 map->hva = hva; 2589 map->pfn = pfn; 2590 map->gfn = gfn; 2591 2592 return 0; 2593 } 2594 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2595 2596 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2597 { 2598 if (!map) 2599 return; 2600 2601 if (!map->hva) 2602 return; 2603 2604 if (map->page != KVM_UNMAPPED_PAGE) 2605 kunmap(map->page); 2606 #ifdef CONFIG_HAS_IOMEM 2607 else 2608 memunmap(map->hva); 2609 #endif 2610 2611 if (dirty) 2612 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2613 2614 kvm_release_pfn(map->pfn, dirty); 2615 2616 map->hva = NULL; 2617 map->page = NULL; 2618 } 2619 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2620 2621 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2622 { 2623 kvm_pfn_t pfn; 2624 2625 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2626 2627 return kvm_pfn_to_page(pfn); 2628 } 2629 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2630 2631 void kvm_release_page_clean(struct page *page) 2632 { 2633 WARN_ON(is_error_page(page)); 2634 2635 kvm_release_pfn_clean(page_to_pfn(page)); 2636 } 2637 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2638 2639 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2640 { 2641 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2642 put_page(pfn_to_page(pfn)); 2643 } 2644 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2645 2646 void kvm_release_page_dirty(struct page *page) 2647 { 2648 WARN_ON(is_error_page(page)); 2649 2650 kvm_release_pfn_dirty(page_to_pfn(page)); 2651 } 2652 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2653 2654 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2655 { 2656 kvm_set_pfn_dirty(pfn); 2657 kvm_release_pfn_clean(pfn); 2658 } 2659 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2660 2661 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2662 { 2663 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2664 SetPageDirty(pfn_to_page(pfn)); 2665 } 2666 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2667 2668 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2669 { 2670 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2671 mark_page_accessed(pfn_to_page(pfn)); 2672 } 2673 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2674 2675 static int next_segment(unsigned long len, int offset) 2676 { 2677 if (len > PAGE_SIZE - offset) 2678 return PAGE_SIZE - offset; 2679 else 2680 return len; 2681 } 2682 2683 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2684 void *data, int offset, int len) 2685 { 2686 int r; 2687 unsigned long addr; 2688 2689 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2690 if (kvm_is_error_hva(addr)) 2691 return -EFAULT; 2692 r = __copy_from_user(data, (void __user *)addr + offset, len); 2693 if (r) 2694 return -EFAULT; 2695 return 0; 2696 } 2697 2698 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2699 int len) 2700 { 2701 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2702 2703 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2704 } 2705 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2706 2707 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2708 int offset, int len) 2709 { 2710 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2711 2712 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2713 } 2714 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2715 2716 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2717 { 2718 gfn_t gfn = gpa >> PAGE_SHIFT; 2719 int seg; 2720 int offset = offset_in_page(gpa); 2721 int ret; 2722 2723 while ((seg = next_segment(len, offset)) != 0) { 2724 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2725 if (ret < 0) 2726 return ret; 2727 offset = 0; 2728 len -= seg; 2729 data += seg; 2730 ++gfn; 2731 } 2732 return 0; 2733 } 2734 EXPORT_SYMBOL_GPL(kvm_read_guest); 2735 2736 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2737 { 2738 gfn_t gfn = gpa >> PAGE_SHIFT; 2739 int seg; 2740 int offset = offset_in_page(gpa); 2741 int ret; 2742 2743 while ((seg = next_segment(len, offset)) != 0) { 2744 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2745 if (ret < 0) 2746 return ret; 2747 offset = 0; 2748 len -= seg; 2749 data += seg; 2750 ++gfn; 2751 } 2752 return 0; 2753 } 2754 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2755 2756 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2757 void *data, int offset, unsigned long len) 2758 { 2759 int r; 2760 unsigned long addr; 2761 2762 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2763 if (kvm_is_error_hva(addr)) 2764 return -EFAULT; 2765 pagefault_disable(); 2766 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2767 pagefault_enable(); 2768 if (r) 2769 return -EFAULT; 2770 return 0; 2771 } 2772 2773 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2774 void *data, unsigned long len) 2775 { 2776 gfn_t gfn = gpa >> PAGE_SHIFT; 2777 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2778 int offset = offset_in_page(gpa); 2779 2780 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2781 } 2782 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2783 2784 static int __kvm_write_guest_page(struct kvm *kvm, 2785 struct kvm_memory_slot *memslot, gfn_t gfn, 2786 const void *data, int offset, int len) 2787 { 2788 int r; 2789 unsigned long addr; 2790 2791 addr = gfn_to_hva_memslot(memslot, gfn); 2792 if (kvm_is_error_hva(addr)) 2793 return -EFAULT; 2794 r = __copy_to_user((void __user *)addr + offset, data, len); 2795 if (r) 2796 return -EFAULT; 2797 mark_page_dirty_in_slot(kvm, memslot, gfn); 2798 return 0; 2799 } 2800 2801 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2802 const void *data, int offset, int len) 2803 { 2804 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2805 2806 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2807 } 2808 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2809 2810 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2811 const void *data, int offset, int len) 2812 { 2813 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2814 2815 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2816 } 2817 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2818 2819 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2820 unsigned long len) 2821 { 2822 gfn_t gfn = gpa >> PAGE_SHIFT; 2823 int seg; 2824 int offset = offset_in_page(gpa); 2825 int ret; 2826 2827 while ((seg = next_segment(len, offset)) != 0) { 2828 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2829 if (ret < 0) 2830 return ret; 2831 offset = 0; 2832 len -= seg; 2833 data += seg; 2834 ++gfn; 2835 } 2836 return 0; 2837 } 2838 EXPORT_SYMBOL_GPL(kvm_write_guest); 2839 2840 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2841 unsigned long len) 2842 { 2843 gfn_t gfn = gpa >> PAGE_SHIFT; 2844 int seg; 2845 int offset = offset_in_page(gpa); 2846 int ret; 2847 2848 while ((seg = next_segment(len, offset)) != 0) { 2849 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2850 if (ret < 0) 2851 return ret; 2852 offset = 0; 2853 len -= seg; 2854 data += seg; 2855 ++gfn; 2856 } 2857 return 0; 2858 } 2859 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2860 2861 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2862 struct gfn_to_hva_cache *ghc, 2863 gpa_t gpa, unsigned long len) 2864 { 2865 int offset = offset_in_page(gpa); 2866 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2867 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2868 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2869 gfn_t nr_pages_avail; 2870 2871 /* Update ghc->generation before performing any error checks. */ 2872 ghc->generation = slots->generation; 2873 2874 if (start_gfn > end_gfn) { 2875 ghc->hva = KVM_HVA_ERR_BAD; 2876 return -EINVAL; 2877 } 2878 2879 /* 2880 * If the requested region crosses two memslots, we still 2881 * verify that the entire region is valid here. 2882 */ 2883 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2884 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2885 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2886 &nr_pages_avail); 2887 if (kvm_is_error_hva(ghc->hva)) 2888 return -EFAULT; 2889 } 2890 2891 /* Use the slow path for cross page reads and writes. */ 2892 if (nr_pages_needed == 1) 2893 ghc->hva += offset; 2894 else 2895 ghc->memslot = NULL; 2896 2897 ghc->gpa = gpa; 2898 ghc->len = len; 2899 return 0; 2900 } 2901 2902 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2903 gpa_t gpa, unsigned long len) 2904 { 2905 struct kvm_memslots *slots = kvm_memslots(kvm); 2906 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2907 } 2908 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2909 2910 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2911 void *data, unsigned int offset, 2912 unsigned long len) 2913 { 2914 struct kvm_memslots *slots = kvm_memslots(kvm); 2915 int r; 2916 gpa_t gpa = ghc->gpa + offset; 2917 2918 BUG_ON(len + offset > ghc->len); 2919 2920 if (slots->generation != ghc->generation) { 2921 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2922 return -EFAULT; 2923 } 2924 2925 if (kvm_is_error_hva(ghc->hva)) 2926 return -EFAULT; 2927 2928 if (unlikely(!ghc->memslot)) 2929 return kvm_write_guest(kvm, gpa, data, len); 2930 2931 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2932 if (r) 2933 return -EFAULT; 2934 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 2935 2936 return 0; 2937 } 2938 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2939 2940 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2941 void *data, unsigned long len) 2942 { 2943 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2944 } 2945 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2946 2947 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2948 void *data, unsigned int offset, 2949 unsigned long len) 2950 { 2951 struct kvm_memslots *slots = kvm_memslots(kvm); 2952 int r; 2953 gpa_t gpa = ghc->gpa + offset; 2954 2955 BUG_ON(len + offset > ghc->len); 2956 2957 if (slots->generation != ghc->generation) { 2958 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2959 return -EFAULT; 2960 } 2961 2962 if (kvm_is_error_hva(ghc->hva)) 2963 return -EFAULT; 2964 2965 if (unlikely(!ghc->memslot)) 2966 return kvm_read_guest(kvm, gpa, data, len); 2967 2968 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2969 if (r) 2970 return -EFAULT; 2971 2972 return 0; 2973 } 2974 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2975 2976 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2977 void *data, unsigned long len) 2978 { 2979 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2980 } 2981 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2982 2983 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2984 { 2985 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2986 gfn_t gfn = gpa >> PAGE_SHIFT; 2987 int seg; 2988 int offset = offset_in_page(gpa); 2989 int ret; 2990 2991 while ((seg = next_segment(len, offset)) != 0) { 2992 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2993 if (ret < 0) 2994 return ret; 2995 offset = 0; 2996 len -= seg; 2997 ++gfn; 2998 } 2999 return 0; 3000 } 3001 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3002 3003 void mark_page_dirty_in_slot(struct kvm *kvm, 3004 struct kvm_memory_slot *memslot, 3005 gfn_t gfn) 3006 { 3007 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3008 unsigned long rel_gfn = gfn - memslot->base_gfn; 3009 u32 slot = (memslot->as_id << 16) | memslot->id; 3010 3011 if (kvm->dirty_ring_size) 3012 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm), 3013 slot, rel_gfn); 3014 else 3015 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3016 } 3017 } 3018 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3019 3020 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3021 { 3022 struct kvm_memory_slot *memslot; 3023 3024 memslot = gfn_to_memslot(kvm, gfn); 3025 mark_page_dirty_in_slot(kvm, memslot, gfn); 3026 } 3027 EXPORT_SYMBOL_GPL(mark_page_dirty); 3028 3029 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3030 { 3031 struct kvm_memory_slot *memslot; 3032 3033 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3034 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3035 } 3036 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3037 3038 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3039 { 3040 if (!vcpu->sigset_active) 3041 return; 3042 3043 /* 3044 * This does a lockless modification of ->real_blocked, which is fine 3045 * because, only current can change ->real_blocked and all readers of 3046 * ->real_blocked don't care as long ->real_blocked is always a subset 3047 * of ->blocked. 3048 */ 3049 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3050 } 3051 3052 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3053 { 3054 if (!vcpu->sigset_active) 3055 return; 3056 3057 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3058 sigemptyset(¤t->real_blocked); 3059 } 3060 3061 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3062 { 3063 unsigned int old, val, grow, grow_start; 3064 3065 old = val = vcpu->halt_poll_ns; 3066 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3067 grow = READ_ONCE(halt_poll_ns_grow); 3068 if (!grow) 3069 goto out; 3070 3071 val *= grow; 3072 if (val < grow_start) 3073 val = grow_start; 3074 3075 if (val > vcpu->kvm->max_halt_poll_ns) 3076 val = vcpu->kvm->max_halt_poll_ns; 3077 3078 vcpu->halt_poll_ns = val; 3079 out: 3080 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3081 } 3082 3083 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3084 { 3085 unsigned int old, val, shrink, grow_start; 3086 3087 old = val = vcpu->halt_poll_ns; 3088 shrink = READ_ONCE(halt_poll_ns_shrink); 3089 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3090 if (shrink == 0) 3091 val = 0; 3092 else 3093 val /= shrink; 3094 3095 if (val < grow_start) 3096 val = 0; 3097 3098 vcpu->halt_poll_ns = val; 3099 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3100 } 3101 3102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3103 { 3104 int ret = -EINTR; 3105 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3106 3107 if (kvm_arch_vcpu_runnable(vcpu)) { 3108 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3109 goto out; 3110 } 3111 if (kvm_cpu_has_pending_timer(vcpu)) 3112 goto out; 3113 if (signal_pending(current)) 3114 goto out; 3115 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3116 goto out; 3117 3118 ret = 0; 3119 out: 3120 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3121 return ret; 3122 } 3123 3124 static inline void 3125 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 3126 { 3127 if (waited) 3128 vcpu->stat.generic.halt_poll_fail_ns += poll_ns; 3129 else 3130 vcpu->stat.generic.halt_poll_success_ns += poll_ns; 3131 } 3132 3133 /* 3134 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 3135 */ 3136 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 3137 { 3138 ktime_t start, cur, poll_end; 3139 bool waited = false; 3140 u64 block_ns; 3141 3142 kvm_arch_vcpu_blocking(vcpu); 3143 3144 start = cur = poll_end = ktime_get(); 3145 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 3146 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 3147 3148 ++vcpu->stat.generic.halt_attempted_poll; 3149 do { 3150 /* 3151 * This sets KVM_REQ_UNHALT if an interrupt 3152 * arrives. 3153 */ 3154 if (kvm_vcpu_check_block(vcpu) < 0) { 3155 ++vcpu->stat.generic.halt_successful_poll; 3156 if (!vcpu_valid_wakeup(vcpu)) 3157 ++vcpu->stat.generic.halt_poll_invalid; 3158 3159 KVM_STATS_LOG_HIST_UPDATE( 3160 vcpu->stat.generic.halt_poll_success_hist, 3161 ktime_to_ns(ktime_get()) - 3162 ktime_to_ns(start)); 3163 goto out; 3164 } 3165 cpu_relax(); 3166 poll_end = cur = ktime_get(); 3167 } while (kvm_vcpu_can_poll(cur, stop)); 3168 3169 KVM_STATS_LOG_HIST_UPDATE( 3170 vcpu->stat.generic.halt_poll_fail_hist, 3171 ktime_to_ns(ktime_get()) - ktime_to_ns(start)); 3172 } 3173 3174 3175 prepare_to_rcuwait(&vcpu->wait); 3176 for (;;) { 3177 set_current_state(TASK_INTERRUPTIBLE); 3178 3179 if (kvm_vcpu_check_block(vcpu) < 0) 3180 break; 3181 3182 waited = true; 3183 schedule(); 3184 } 3185 finish_rcuwait(&vcpu->wait); 3186 cur = ktime_get(); 3187 if (waited) { 3188 vcpu->stat.generic.halt_wait_ns += 3189 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3190 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3191 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3192 } 3193 out: 3194 kvm_arch_vcpu_unblocking(vcpu); 3195 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3196 3197 update_halt_poll_stats( 3198 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 3199 3200 if (!kvm_arch_no_poll(vcpu)) { 3201 if (!vcpu_valid_wakeup(vcpu)) { 3202 shrink_halt_poll_ns(vcpu); 3203 } else if (vcpu->kvm->max_halt_poll_ns) { 3204 if (block_ns <= vcpu->halt_poll_ns) 3205 ; 3206 /* we had a long block, shrink polling */ 3207 else if (vcpu->halt_poll_ns && 3208 block_ns > vcpu->kvm->max_halt_poll_ns) 3209 shrink_halt_poll_ns(vcpu); 3210 /* we had a short halt and our poll time is too small */ 3211 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3212 block_ns < vcpu->kvm->max_halt_poll_ns) 3213 grow_halt_poll_ns(vcpu); 3214 } else { 3215 vcpu->halt_poll_ns = 0; 3216 } 3217 } 3218 3219 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 3220 kvm_arch_vcpu_block_finish(vcpu); 3221 } 3222 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 3223 3224 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3225 { 3226 struct rcuwait *waitp; 3227 3228 waitp = kvm_arch_vcpu_get_wait(vcpu); 3229 if (rcuwait_wake_up(waitp)) { 3230 WRITE_ONCE(vcpu->ready, true); 3231 ++vcpu->stat.generic.halt_wakeup; 3232 return true; 3233 } 3234 3235 return false; 3236 } 3237 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3238 3239 #ifndef CONFIG_S390 3240 /* 3241 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3242 */ 3243 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3244 { 3245 int me, cpu; 3246 3247 if (kvm_vcpu_wake_up(vcpu)) 3248 return; 3249 3250 /* 3251 * Note, the vCPU could get migrated to a different pCPU at any point 3252 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3253 * IPI to the previous pCPU. But, that's ok because the purpose of the 3254 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3255 * vCPU also requires it to leave IN_GUEST_MODE. 3256 */ 3257 me = get_cpu(); 3258 if (kvm_arch_vcpu_should_kick(vcpu)) { 3259 cpu = READ_ONCE(vcpu->cpu); 3260 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3261 smp_send_reschedule(cpu); 3262 } 3263 put_cpu(); 3264 } 3265 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3266 #endif /* !CONFIG_S390 */ 3267 3268 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3269 { 3270 struct pid *pid; 3271 struct task_struct *task = NULL; 3272 int ret = 0; 3273 3274 rcu_read_lock(); 3275 pid = rcu_dereference(target->pid); 3276 if (pid) 3277 task = get_pid_task(pid, PIDTYPE_PID); 3278 rcu_read_unlock(); 3279 if (!task) 3280 return ret; 3281 ret = yield_to(task, 1); 3282 put_task_struct(task); 3283 3284 return ret; 3285 } 3286 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3287 3288 /* 3289 * Helper that checks whether a VCPU is eligible for directed yield. 3290 * Most eligible candidate to yield is decided by following heuristics: 3291 * 3292 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3293 * (preempted lock holder), indicated by @in_spin_loop. 3294 * Set at the beginning and cleared at the end of interception/PLE handler. 3295 * 3296 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3297 * chance last time (mostly it has become eligible now since we have probably 3298 * yielded to lockholder in last iteration. This is done by toggling 3299 * @dy_eligible each time a VCPU checked for eligibility.) 3300 * 3301 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3302 * to preempted lock-holder could result in wrong VCPU selection and CPU 3303 * burning. Giving priority for a potential lock-holder increases lock 3304 * progress. 3305 * 3306 * Since algorithm is based on heuristics, accessing another VCPU data without 3307 * locking does not harm. It may result in trying to yield to same VCPU, fail 3308 * and continue with next VCPU and so on. 3309 */ 3310 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3311 { 3312 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3313 bool eligible; 3314 3315 eligible = !vcpu->spin_loop.in_spin_loop || 3316 vcpu->spin_loop.dy_eligible; 3317 3318 if (vcpu->spin_loop.in_spin_loop) 3319 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3320 3321 return eligible; 3322 #else 3323 return true; 3324 #endif 3325 } 3326 3327 /* 3328 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3329 * a vcpu_load/vcpu_put pair. However, for most architectures 3330 * kvm_arch_vcpu_runnable does not require vcpu_load. 3331 */ 3332 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3333 { 3334 return kvm_arch_vcpu_runnable(vcpu); 3335 } 3336 3337 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3338 { 3339 if (kvm_arch_dy_runnable(vcpu)) 3340 return true; 3341 3342 #ifdef CONFIG_KVM_ASYNC_PF 3343 if (!list_empty_careful(&vcpu->async_pf.done)) 3344 return true; 3345 #endif 3346 3347 return false; 3348 } 3349 3350 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3351 { 3352 return false; 3353 } 3354 3355 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3356 { 3357 struct kvm *kvm = me->kvm; 3358 struct kvm_vcpu *vcpu; 3359 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3360 int yielded = 0; 3361 int try = 3; 3362 int pass; 3363 int i; 3364 3365 kvm_vcpu_set_in_spin_loop(me, true); 3366 /* 3367 * We boost the priority of a VCPU that is runnable but not 3368 * currently running, because it got preempted by something 3369 * else and called schedule in __vcpu_run. Hopefully that 3370 * VCPU is holding the lock that we need and will release it. 3371 * We approximate round-robin by starting at the last boosted VCPU. 3372 */ 3373 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3374 kvm_for_each_vcpu(i, vcpu, kvm) { 3375 if (!pass && i <= last_boosted_vcpu) { 3376 i = last_boosted_vcpu; 3377 continue; 3378 } else if (pass && i > last_boosted_vcpu) 3379 break; 3380 if (!READ_ONCE(vcpu->ready)) 3381 continue; 3382 if (vcpu == me) 3383 continue; 3384 if (rcuwait_active(&vcpu->wait) && 3385 !vcpu_dy_runnable(vcpu)) 3386 continue; 3387 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3388 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3389 !kvm_arch_vcpu_in_kernel(vcpu)) 3390 continue; 3391 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3392 continue; 3393 3394 yielded = kvm_vcpu_yield_to(vcpu); 3395 if (yielded > 0) { 3396 kvm->last_boosted_vcpu = i; 3397 break; 3398 } else if (yielded < 0) { 3399 try--; 3400 if (!try) 3401 break; 3402 } 3403 } 3404 } 3405 kvm_vcpu_set_in_spin_loop(me, false); 3406 3407 /* Ensure vcpu is not eligible during next spinloop */ 3408 kvm_vcpu_set_dy_eligible(me, false); 3409 } 3410 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3411 3412 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3413 { 3414 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 3415 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3416 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3417 kvm->dirty_ring_size / PAGE_SIZE); 3418 #else 3419 return false; 3420 #endif 3421 } 3422 3423 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3424 { 3425 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3426 struct page *page; 3427 3428 if (vmf->pgoff == 0) 3429 page = virt_to_page(vcpu->run); 3430 #ifdef CONFIG_X86 3431 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3432 page = virt_to_page(vcpu->arch.pio_data); 3433 #endif 3434 #ifdef CONFIG_KVM_MMIO 3435 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3436 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3437 #endif 3438 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3439 page = kvm_dirty_ring_get_page( 3440 &vcpu->dirty_ring, 3441 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3442 else 3443 return kvm_arch_vcpu_fault(vcpu, vmf); 3444 get_page(page); 3445 vmf->page = page; 3446 return 0; 3447 } 3448 3449 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3450 .fault = kvm_vcpu_fault, 3451 }; 3452 3453 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3454 { 3455 struct kvm_vcpu *vcpu = file->private_data; 3456 unsigned long pages = vma_pages(vma); 3457 3458 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3459 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3460 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3461 return -EINVAL; 3462 3463 vma->vm_ops = &kvm_vcpu_vm_ops; 3464 return 0; 3465 } 3466 3467 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3468 { 3469 struct kvm_vcpu *vcpu = filp->private_data; 3470 3471 kvm_put_kvm(vcpu->kvm); 3472 return 0; 3473 } 3474 3475 static struct file_operations kvm_vcpu_fops = { 3476 .release = kvm_vcpu_release, 3477 .unlocked_ioctl = kvm_vcpu_ioctl, 3478 .mmap = kvm_vcpu_mmap, 3479 .llseek = noop_llseek, 3480 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3481 }; 3482 3483 /* 3484 * Allocates an inode for the vcpu. 3485 */ 3486 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3487 { 3488 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3489 3490 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3491 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3492 } 3493 3494 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3495 { 3496 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3497 struct dentry *debugfs_dentry; 3498 char dir_name[ITOA_MAX_LEN * 2]; 3499 3500 if (!debugfs_initialized()) 3501 return; 3502 3503 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3504 debugfs_dentry = debugfs_create_dir(dir_name, 3505 vcpu->kvm->debugfs_dentry); 3506 3507 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3508 #endif 3509 } 3510 3511 /* 3512 * Creates some virtual cpus. Good luck creating more than one. 3513 */ 3514 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3515 { 3516 int r; 3517 struct kvm_vcpu *vcpu; 3518 struct page *page; 3519 3520 if (id >= KVM_MAX_VCPU_IDS) 3521 return -EINVAL; 3522 3523 mutex_lock(&kvm->lock); 3524 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3525 mutex_unlock(&kvm->lock); 3526 return -EINVAL; 3527 } 3528 3529 kvm->created_vcpus++; 3530 mutex_unlock(&kvm->lock); 3531 3532 r = kvm_arch_vcpu_precreate(kvm, id); 3533 if (r) 3534 goto vcpu_decrement; 3535 3536 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3537 if (!vcpu) { 3538 r = -ENOMEM; 3539 goto vcpu_decrement; 3540 } 3541 3542 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3543 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3544 if (!page) { 3545 r = -ENOMEM; 3546 goto vcpu_free; 3547 } 3548 vcpu->run = page_address(page); 3549 3550 kvm_vcpu_init(vcpu, kvm, id); 3551 3552 r = kvm_arch_vcpu_create(vcpu); 3553 if (r) 3554 goto vcpu_free_run_page; 3555 3556 if (kvm->dirty_ring_size) { 3557 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3558 id, kvm->dirty_ring_size); 3559 if (r) 3560 goto arch_vcpu_destroy; 3561 } 3562 3563 mutex_lock(&kvm->lock); 3564 if (kvm_get_vcpu_by_id(kvm, id)) { 3565 r = -EEXIST; 3566 goto unlock_vcpu_destroy; 3567 } 3568 3569 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3570 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3571 3572 /* Fill the stats id string for the vcpu */ 3573 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3574 task_pid_nr(current), id); 3575 3576 /* Now it's all set up, let userspace reach it */ 3577 kvm_get_kvm(kvm); 3578 r = create_vcpu_fd(vcpu); 3579 if (r < 0) { 3580 kvm_put_kvm_no_destroy(kvm); 3581 goto unlock_vcpu_destroy; 3582 } 3583 3584 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3585 3586 /* 3587 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3588 * before kvm->online_vcpu's incremented value. 3589 */ 3590 smp_wmb(); 3591 atomic_inc(&kvm->online_vcpus); 3592 3593 mutex_unlock(&kvm->lock); 3594 kvm_arch_vcpu_postcreate(vcpu); 3595 kvm_create_vcpu_debugfs(vcpu); 3596 return r; 3597 3598 unlock_vcpu_destroy: 3599 mutex_unlock(&kvm->lock); 3600 kvm_dirty_ring_free(&vcpu->dirty_ring); 3601 arch_vcpu_destroy: 3602 kvm_arch_vcpu_destroy(vcpu); 3603 vcpu_free_run_page: 3604 free_page((unsigned long)vcpu->run); 3605 vcpu_free: 3606 kmem_cache_free(kvm_vcpu_cache, vcpu); 3607 vcpu_decrement: 3608 mutex_lock(&kvm->lock); 3609 kvm->created_vcpus--; 3610 mutex_unlock(&kvm->lock); 3611 return r; 3612 } 3613 3614 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3615 { 3616 if (sigset) { 3617 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3618 vcpu->sigset_active = 1; 3619 vcpu->sigset = *sigset; 3620 } else 3621 vcpu->sigset_active = 0; 3622 return 0; 3623 } 3624 3625 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3626 size_t size, loff_t *offset) 3627 { 3628 struct kvm_vcpu *vcpu = file->private_data; 3629 3630 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3631 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3632 sizeof(vcpu->stat), user_buffer, size, offset); 3633 } 3634 3635 static const struct file_operations kvm_vcpu_stats_fops = { 3636 .read = kvm_vcpu_stats_read, 3637 .llseek = noop_llseek, 3638 }; 3639 3640 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3641 { 3642 int fd; 3643 struct file *file; 3644 char name[15 + ITOA_MAX_LEN + 1]; 3645 3646 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3647 3648 fd = get_unused_fd_flags(O_CLOEXEC); 3649 if (fd < 0) 3650 return fd; 3651 3652 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3653 if (IS_ERR(file)) { 3654 put_unused_fd(fd); 3655 return PTR_ERR(file); 3656 } 3657 file->f_mode |= FMODE_PREAD; 3658 fd_install(fd, file); 3659 3660 return fd; 3661 } 3662 3663 static long kvm_vcpu_ioctl(struct file *filp, 3664 unsigned int ioctl, unsigned long arg) 3665 { 3666 struct kvm_vcpu *vcpu = filp->private_data; 3667 void __user *argp = (void __user *)arg; 3668 int r; 3669 struct kvm_fpu *fpu = NULL; 3670 struct kvm_sregs *kvm_sregs = NULL; 3671 3672 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3673 return -EIO; 3674 3675 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3676 return -EINVAL; 3677 3678 /* 3679 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3680 * execution; mutex_lock() would break them. 3681 */ 3682 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3683 if (r != -ENOIOCTLCMD) 3684 return r; 3685 3686 if (mutex_lock_killable(&vcpu->mutex)) 3687 return -EINTR; 3688 switch (ioctl) { 3689 case KVM_RUN: { 3690 struct pid *oldpid; 3691 r = -EINVAL; 3692 if (arg) 3693 goto out; 3694 oldpid = rcu_access_pointer(vcpu->pid); 3695 if (unlikely(oldpid != task_pid(current))) { 3696 /* The thread running this VCPU changed. */ 3697 struct pid *newpid; 3698 3699 r = kvm_arch_vcpu_run_pid_change(vcpu); 3700 if (r) 3701 break; 3702 3703 newpid = get_task_pid(current, PIDTYPE_PID); 3704 rcu_assign_pointer(vcpu->pid, newpid); 3705 if (oldpid) 3706 synchronize_rcu(); 3707 put_pid(oldpid); 3708 } 3709 r = kvm_arch_vcpu_ioctl_run(vcpu); 3710 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3711 break; 3712 } 3713 case KVM_GET_REGS: { 3714 struct kvm_regs *kvm_regs; 3715 3716 r = -ENOMEM; 3717 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3718 if (!kvm_regs) 3719 goto out; 3720 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3721 if (r) 3722 goto out_free1; 3723 r = -EFAULT; 3724 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3725 goto out_free1; 3726 r = 0; 3727 out_free1: 3728 kfree(kvm_regs); 3729 break; 3730 } 3731 case KVM_SET_REGS: { 3732 struct kvm_regs *kvm_regs; 3733 3734 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3735 if (IS_ERR(kvm_regs)) { 3736 r = PTR_ERR(kvm_regs); 3737 goto out; 3738 } 3739 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3740 kfree(kvm_regs); 3741 break; 3742 } 3743 case KVM_GET_SREGS: { 3744 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3745 GFP_KERNEL_ACCOUNT); 3746 r = -ENOMEM; 3747 if (!kvm_sregs) 3748 goto out; 3749 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3750 if (r) 3751 goto out; 3752 r = -EFAULT; 3753 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3754 goto out; 3755 r = 0; 3756 break; 3757 } 3758 case KVM_SET_SREGS: { 3759 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3760 if (IS_ERR(kvm_sregs)) { 3761 r = PTR_ERR(kvm_sregs); 3762 kvm_sregs = NULL; 3763 goto out; 3764 } 3765 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3766 break; 3767 } 3768 case KVM_GET_MP_STATE: { 3769 struct kvm_mp_state mp_state; 3770 3771 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3772 if (r) 3773 goto out; 3774 r = -EFAULT; 3775 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3776 goto out; 3777 r = 0; 3778 break; 3779 } 3780 case KVM_SET_MP_STATE: { 3781 struct kvm_mp_state mp_state; 3782 3783 r = -EFAULT; 3784 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3785 goto out; 3786 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3787 break; 3788 } 3789 case KVM_TRANSLATE: { 3790 struct kvm_translation tr; 3791 3792 r = -EFAULT; 3793 if (copy_from_user(&tr, argp, sizeof(tr))) 3794 goto out; 3795 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3796 if (r) 3797 goto out; 3798 r = -EFAULT; 3799 if (copy_to_user(argp, &tr, sizeof(tr))) 3800 goto out; 3801 r = 0; 3802 break; 3803 } 3804 case KVM_SET_GUEST_DEBUG: { 3805 struct kvm_guest_debug dbg; 3806 3807 r = -EFAULT; 3808 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3809 goto out; 3810 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3811 break; 3812 } 3813 case KVM_SET_SIGNAL_MASK: { 3814 struct kvm_signal_mask __user *sigmask_arg = argp; 3815 struct kvm_signal_mask kvm_sigmask; 3816 sigset_t sigset, *p; 3817 3818 p = NULL; 3819 if (argp) { 3820 r = -EFAULT; 3821 if (copy_from_user(&kvm_sigmask, argp, 3822 sizeof(kvm_sigmask))) 3823 goto out; 3824 r = -EINVAL; 3825 if (kvm_sigmask.len != sizeof(sigset)) 3826 goto out; 3827 r = -EFAULT; 3828 if (copy_from_user(&sigset, sigmask_arg->sigset, 3829 sizeof(sigset))) 3830 goto out; 3831 p = &sigset; 3832 } 3833 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3834 break; 3835 } 3836 case KVM_GET_FPU: { 3837 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3838 r = -ENOMEM; 3839 if (!fpu) 3840 goto out; 3841 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3842 if (r) 3843 goto out; 3844 r = -EFAULT; 3845 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3846 goto out; 3847 r = 0; 3848 break; 3849 } 3850 case KVM_SET_FPU: { 3851 fpu = memdup_user(argp, sizeof(*fpu)); 3852 if (IS_ERR(fpu)) { 3853 r = PTR_ERR(fpu); 3854 fpu = NULL; 3855 goto out; 3856 } 3857 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3858 break; 3859 } 3860 case KVM_GET_STATS_FD: { 3861 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 3862 break; 3863 } 3864 default: 3865 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3866 } 3867 out: 3868 mutex_unlock(&vcpu->mutex); 3869 kfree(fpu); 3870 kfree(kvm_sregs); 3871 return r; 3872 } 3873 3874 #ifdef CONFIG_KVM_COMPAT 3875 static long kvm_vcpu_compat_ioctl(struct file *filp, 3876 unsigned int ioctl, unsigned long arg) 3877 { 3878 struct kvm_vcpu *vcpu = filp->private_data; 3879 void __user *argp = compat_ptr(arg); 3880 int r; 3881 3882 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3883 return -EIO; 3884 3885 switch (ioctl) { 3886 case KVM_SET_SIGNAL_MASK: { 3887 struct kvm_signal_mask __user *sigmask_arg = argp; 3888 struct kvm_signal_mask kvm_sigmask; 3889 sigset_t sigset; 3890 3891 if (argp) { 3892 r = -EFAULT; 3893 if (copy_from_user(&kvm_sigmask, argp, 3894 sizeof(kvm_sigmask))) 3895 goto out; 3896 r = -EINVAL; 3897 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3898 goto out; 3899 r = -EFAULT; 3900 if (get_compat_sigset(&sigset, 3901 (compat_sigset_t __user *)sigmask_arg->sigset)) 3902 goto out; 3903 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3904 } else 3905 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3906 break; 3907 } 3908 default: 3909 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3910 } 3911 3912 out: 3913 return r; 3914 } 3915 #endif 3916 3917 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3918 { 3919 struct kvm_device *dev = filp->private_data; 3920 3921 if (dev->ops->mmap) 3922 return dev->ops->mmap(dev, vma); 3923 3924 return -ENODEV; 3925 } 3926 3927 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3928 int (*accessor)(struct kvm_device *dev, 3929 struct kvm_device_attr *attr), 3930 unsigned long arg) 3931 { 3932 struct kvm_device_attr attr; 3933 3934 if (!accessor) 3935 return -EPERM; 3936 3937 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3938 return -EFAULT; 3939 3940 return accessor(dev, &attr); 3941 } 3942 3943 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3944 unsigned long arg) 3945 { 3946 struct kvm_device *dev = filp->private_data; 3947 3948 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 3949 return -EIO; 3950 3951 switch (ioctl) { 3952 case KVM_SET_DEVICE_ATTR: 3953 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3954 case KVM_GET_DEVICE_ATTR: 3955 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3956 case KVM_HAS_DEVICE_ATTR: 3957 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3958 default: 3959 if (dev->ops->ioctl) 3960 return dev->ops->ioctl(dev, ioctl, arg); 3961 3962 return -ENOTTY; 3963 } 3964 } 3965 3966 static int kvm_device_release(struct inode *inode, struct file *filp) 3967 { 3968 struct kvm_device *dev = filp->private_data; 3969 struct kvm *kvm = dev->kvm; 3970 3971 if (dev->ops->release) { 3972 mutex_lock(&kvm->lock); 3973 list_del(&dev->vm_node); 3974 dev->ops->release(dev); 3975 mutex_unlock(&kvm->lock); 3976 } 3977 3978 kvm_put_kvm(kvm); 3979 return 0; 3980 } 3981 3982 static const struct file_operations kvm_device_fops = { 3983 .unlocked_ioctl = kvm_device_ioctl, 3984 .release = kvm_device_release, 3985 KVM_COMPAT(kvm_device_ioctl), 3986 .mmap = kvm_device_mmap, 3987 }; 3988 3989 struct kvm_device *kvm_device_from_filp(struct file *filp) 3990 { 3991 if (filp->f_op != &kvm_device_fops) 3992 return NULL; 3993 3994 return filp->private_data; 3995 } 3996 3997 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3998 #ifdef CONFIG_KVM_MPIC 3999 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4000 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4001 #endif 4002 }; 4003 4004 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4005 { 4006 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4007 return -ENOSPC; 4008 4009 if (kvm_device_ops_table[type] != NULL) 4010 return -EEXIST; 4011 4012 kvm_device_ops_table[type] = ops; 4013 return 0; 4014 } 4015 4016 void kvm_unregister_device_ops(u32 type) 4017 { 4018 if (kvm_device_ops_table[type] != NULL) 4019 kvm_device_ops_table[type] = NULL; 4020 } 4021 4022 static int kvm_ioctl_create_device(struct kvm *kvm, 4023 struct kvm_create_device *cd) 4024 { 4025 const struct kvm_device_ops *ops = NULL; 4026 struct kvm_device *dev; 4027 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4028 int type; 4029 int ret; 4030 4031 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4032 return -ENODEV; 4033 4034 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4035 ops = kvm_device_ops_table[type]; 4036 if (ops == NULL) 4037 return -ENODEV; 4038 4039 if (test) 4040 return 0; 4041 4042 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4043 if (!dev) 4044 return -ENOMEM; 4045 4046 dev->ops = ops; 4047 dev->kvm = kvm; 4048 4049 mutex_lock(&kvm->lock); 4050 ret = ops->create(dev, type); 4051 if (ret < 0) { 4052 mutex_unlock(&kvm->lock); 4053 kfree(dev); 4054 return ret; 4055 } 4056 list_add(&dev->vm_node, &kvm->devices); 4057 mutex_unlock(&kvm->lock); 4058 4059 if (ops->init) 4060 ops->init(dev); 4061 4062 kvm_get_kvm(kvm); 4063 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4064 if (ret < 0) { 4065 kvm_put_kvm_no_destroy(kvm); 4066 mutex_lock(&kvm->lock); 4067 list_del(&dev->vm_node); 4068 mutex_unlock(&kvm->lock); 4069 ops->destroy(dev); 4070 return ret; 4071 } 4072 4073 cd->fd = ret; 4074 return 0; 4075 } 4076 4077 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4078 { 4079 switch (arg) { 4080 case KVM_CAP_USER_MEMORY: 4081 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4082 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4083 case KVM_CAP_INTERNAL_ERROR_DATA: 4084 #ifdef CONFIG_HAVE_KVM_MSI 4085 case KVM_CAP_SIGNAL_MSI: 4086 #endif 4087 #ifdef CONFIG_HAVE_KVM_IRQFD 4088 case KVM_CAP_IRQFD: 4089 case KVM_CAP_IRQFD_RESAMPLE: 4090 #endif 4091 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4092 case KVM_CAP_CHECK_EXTENSION_VM: 4093 case KVM_CAP_ENABLE_CAP_VM: 4094 case KVM_CAP_HALT_POLL: 4095 return 1; 4096 #ifdef CONFIG_KVM_MMIO 4097 case KVM_CAP_COALESCED_MMIO: 4098 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4099 case KVM_CAP_COALESCED_PIO: 4100 return 1; 4101 #endif 4102 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4103 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4104 return KVM_DIRTY_LOG_MANUAL_CAPS; 4105 #endif 4106 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4107 case KVM_CAP_IRQ_ROUTING: 4108 return KVM_MAX_IRQ_ROUTES; 4109 #endif 4110 #if KVM_ADDRESS_SPACE_NUM > 1 4111 case KVM_CAP_MULTI_ADDRESS_SPACE: 4112 return KVM_ADDRESS_SPACE_NUM; 4113 #endif 4114 case KVM_CAP_NR_MEMSLOTS: 4115 return KVM_USER_MEM_SLOTS; 4116 case KVM_CAP_DIRTY_LOG_RING: 4117 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 4118 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4119 #else 4120 return 0; 4121 #endif 4122 case KVM_CAP_BINARY_STATS_FD: 4123 return 1; 4124 default: 4125 break; 4126 } 4127 return kvm_vm_ioctl_check_extension(kvm, arg); 4128 } 4129 4130 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4131 { 4132 int r; 4133 4134 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4135 return -EINVAL; 4136 4137 /* the size should be power of 2 */ 4138 if (!size || (size & (size - 1))) 4139 return -EINVAL; 4140 4141 /* Should be bigger to keep the reserved entries, or a page */ 4142 if (size < kvm_dirty_ring_get_rsvd_entries() * 4143 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4144 return -EINVAL; 4145 4146 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4147 sizeof(struct kvm_dirty_gfn)) 4148 return -E2BIG; 4149 4150 /* We only allow it to set once */ 4151 if (kvm->dirty_ring_size) 4152 return -EINVAL; 4153 4154 mutex_lock(&kvm->lock); 4155 4156 if (kvm->created_vcpus) { 4157 /* We don't allow to change this value after vcpu created */ 4158 r = -EINVAL; 4159 } else { 4160 kvm->dirty_ring_size = size; 4161 r = 0; 4162 } 4163 4164 mutex_unlock(&kvm->lock); 4165 return r; 4166 } 4167 4168 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4169 { 4170 int i; 4171 struct kvm_vcpu *vcpu; 4172 int cleared = 0; 4173 4174 if (!kvm->dirty_ring_size) 4175 return -EINVAL; 4176 4177 mutex_lock(&kvm->slots_lock); 4178 4179 kvm_for_each_vcpu(i, vcpu, kvm) 4180 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4181 4182 mutex_unlock(&kvm->slots_lock); 4183 4184 if (cleared) 4185 kvm_flush_remote_tlbs(kvm); 4186 4187 return cleared; 4188 } 4189 4190 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4191 struct kvm_enable_cap *cap) 4192 { 4193 return -EINVAL; 4194 } 4195 4196 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4197 struct kvm_enable_cap *cap) 4198 { 4199 switch (cap->cap) { 4200 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4201 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4202 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4203 4204 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4205 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4206 4207 if (cap->flags || (cap->args[0] & ~allowed_options)) 4208 return -EINVAL; 4209 kvm->manual_dirty_log_protect = cap->args[0]; 4210 return 0; 4211 } 4212 #endif 4213 case KVM_CAP_HALT_POLL: { 4214 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4215 return -EINVAL; 4216 4217 kvm->max_halt_poll_ns = cap->args[0]; 4218 return 0; 4219 } 4220 case KVM_CAP_DIRTY_LOG_RING: 4221 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4222 default: 4223 return kvm_vm_ioctl_enable_cap(kvm, cap); 4224 } 4225 } 4226 4227 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4228 size_t size, loff_t *offset) 4229 { 4230 struct kvm *kvm = file->private_data; 4231 4232 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4233 &kvm_vm_stats_desc[0], &kvm->stat, 4234 sizeof(kvm->stat), user_buffer, size, offset); 4235 } 4236 4237 static const struct file_operations kvm_vm_stats_fops = { 4238 .read = kvm_vm_stats_read, 4239 .llseek = noop_llseek, 4240 }; 4241 4242 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4243 { 4244 int fd; 4245 struct file *file; 4246 4247 fd = get_unused_fd_flags(O_CLOEXEC); 4248 if (fd < 0) 4249 return fd; 4250 4251 file = anon_inode_getfile("kvm-vm-stats", 4252 &kvm_vm_stats_fops, kvm, O_RDONLY); 4253 if (IS_ERR(file)) { 4254 put_unused_fd(fd); 4255 return PTR_ERR(file); 4256 } 4257 file->f_mode |= FMODE_PREAD; 4258 fd_install(fd, file); 4259 4260 return fd; 4261 } 4262 4263 static long kvm_vm_ioctl(struct file *filp, 4264 unsigned int ioctl, unsigned long arg) 4265 { 4266 struct kvm *kvm = filp->private_data; 4267 void __user *argp = (void __user *)arg; 4268 int r; 4269 4270 if (kvm->mm != current->mm || kvm->vm_dead) 4271 return -EIO; 4272 switch (ioctl) { 4273 case KVM_CREATE_VCPU: 4274 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4275 break; 4276 case KVM_ENABLE_CAP: { 4277 struct kvm_enable_cap cap; 4278 4279 r = -EFAULT; 4280 if (copy_from_user(&cap, argp, sizeof(cap))) 4281 goto out; 4282 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4283 break; 4284 } 4285 case KVM_SET_USER_MEMORY_REGION: { 4286 struct kvm_userspace_memory_region kvm_userspace_mem; 4287 4288 r = -EFAULT; 4289 if (copy_from_user(&kvm_userspace_mem, argp, 4290 sizeof(kvm_userspace_mem))) 4291 goto out; 4292 4293 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4294 break; 4295 } 4296 case KVM_GET_DIRTY_LOG: { 4297 struct kvm_dirty_log log; 4298 4299 r = -EFAULT; 4300 if (copy_from_user(&log, argp, sizeof(log))) 4301 goto out; 4302 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4303 break; 4304 } 4305 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4306 case KVM_CLEAR_DIRTY_LOG: { 4307 struct kvm_clear_dirty_log log; 4308 4309 r = -EFAULT; 4310 if (copy_from_user(&log, argp, sizeof(log))) 4311 goto out; 4312 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4313 break; 4314 } 4315 #endif 4316 #ifdef CONFIG_KVM_MMIO 4317 case KVM_REGISTER_COALESCED_MMIO: { 4318 struct kvm_coalesced_mmio_zone zone; 4319 4320 r = -EFAULT; 4321 if (copy_from_user(&zone, argp, sizeof(zone))) 4322 goto out; 4323 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4324 break; 4325 } 4326 case KVM_UNREGISTER_COALESCED_MMIO: { 4327 struct kvm_coalesced_mmio_zone zone; 4328 4329 r = -EFAULT; 4330 if (copy_from_user(&zone, argp, sizeof(zone))) 4331 goto out; 4332 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4333 break; 4334 } 4335 #endif 4336 case KVM_IRQFD: { 4337 struct kvm_irqfd data; 4338 4339 r = -EFAULT; 4340 if (copy_from_user(&data, argp, sizeof(data))) 4341 goto out; 4342 r = kvm_irqfd(kvm, &data); 4343 break; 4344 } 4345 case KVM_IOEVENTFD: { 4346 struct kvm_ioeventfd data; 4347 4348 r = -EFAULT; 4349 if (copy_from_user(&data, argp, sizeof(data))) 4350 goto out; 4351 r = kvm_ioeventfd(kvm, &data); 4352 break; 4353 } 4354 #ifdef CONFIG_HAVE_KVM_MSI 4355 case KVM_SIGNAL_MSI: { 4356 struct kvm_msi msi; 4357 4358 r = -EFAULT; 4359 if (copy_from_user(&msi, argp, sizeof(msi))) 4360 goto out; 4361 r = kvm_send_userspace_msi(kvm, &msi); 4362 break; 4363 } 4364 #endif 4365 #ifdef __KVM_HAVE_IRQ_LINE 4366 case KVM_IRQ_LINE_STATUS: 4367 case KVM_IRQ_LINE: { 4368 struct kvm_irq_level irq_event; 4369 4370 r = -EFAULT; 4371 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4372 goto out; 4373 4374 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4375 ioctl == KVM_IRQ_LINE_STATUS); 4376 if (r) 4377 goto out; 4378 4379 r = -EFAULT; 4380 if (ioctl == KVM_IRQ_LINE_STATUS) { 4381 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4382 goto out; 4383 } 4384 4385 r = 0; 4386 break; 4387 } 4388 #endif 4389 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4390 case KVM_SET_GSI_ROUTING: { 4391 struct kvm_irq_routing routing; 4392 struct kvm_irq_routing __user *urouting; 4393 struct kvm_irq_routing_entry *entries = NULL; 4394 4395 r = -EFAULT; 4396 if (copy_from_user(&routing, argp, sizeof(routing))) 4397 goto out; 4398 r = -EINVAL; 4399 if (!kvm_arch_can_set_irq_routing(kvm)) 4400 goto out; 4401 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4402 goto out; 4403 if (routing.flags) 4404 goto out; 4405 if (routing.nr) { 4406 urouting = argp; 4407 entries = vmemdup_user(urouting->entries, 4408 array_size(sizeof(*entries), 4409 routing.nr)); 4410 if (IS_ERR(entries)) { 4411 r = PTR_ERR(entries); 4412 goto out; 4413 } 4414 } 4415 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4416 routing.flags); 4417 kvfree(entries); 4418 break; 4419 } 4420 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4421 case KVM_CREATE_DEVICE: { 4422 struct kvm_create_device cd; 4423 4424 r = -EFAULT; 4425 if (copy_from_user(&cd, argp, sizeof(cd))) 4426 goto out; 4427 4428 r = kvm_ioctl_create_device(kvm, &cd); 4429 if (r) 4430 goto out; 4431 4432 r = -EFAULT; 4433 if (copy_to_user(argp, &cd, sizeof(cd))) 4434 goto out; 4435 4436 r = 0; 4437 break; 4438 } 4439 case KVM_CHECK_EXTENSION: 4440 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4441 break; 4442 case KVM_RESET_DIRTY_RINGS: 4443 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4444 break; 4445 case KVM_GET_STATS_FD: 4446 r = kvm_vm_ioctl_get_stats_fd(kvm); 4447 break; 4448 default: 4449 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4450 } 4451 out: 4452 return r; 4453 } 4454 4455 #ifdef CONFIG_KVM_COMPAT 4456 struct compat_kvm_dirty_log { 4457 __u32 slot; 4458 __u32 padding1; 4459 union { 4460 compat_uptr_t dirty_bitmap; /* one bit per page */ 4461 __u64 padding2; 4462 }; 4463 }; 4464 4465 struct compat_kvm_clear_dirty_log { 4466 __u32 slot; 4467 __u32 num_pages; 4468 __u64 first_page; 4469 union { 4470 compat_uptr_t dirty_bitmap; /* one bit per page */ 4471 __u64 padding2; 4472 }; 4473 }; 4474 4475 static long kvm_vm_compat_ioctl(struct file *filp, 4476 unsigned int ioctl, unsigned long arg) 4477 { 4478 struct kvm *kvm = filp->private_data; 4479 int r; 4480 4481 if (kvm->mm != current->mm || kvm->vm_dead) 4482 return -EIO; 4483 switch (ioctl) { 4484 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4485 case KVM_CLEAR_DIRTY_LOG: { 4486 struct compat_kvm_clear_dirty_log compat_log; 4487 struct kvm_clear_dirty_log log; 4488 4489 if (copy_from_user(&compat_log, (void __user *)arg, 4490 sizeof(compat_log))) 4491 return -EFAULT; 4492 log.slot = compat_log.slot; 4493 log.num_pages = compat_log.num_pages; 4494 log.first_page = compat_log.first_page; 4495 log.padding2 = compat_log.padding2; 4496 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4497 4498 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4499 break; 4500 } 4501 #endif 4502 case KVM_GET_DIRTY_LOG: { 4503 struct compat_kvm_dirty_log compat_log; 4504 struct kvm_dirty_log log; 4505 4506 if (copy_from_user(&compat_log, (void __user *)arg, 4507 sizeof(compat_log))) 4508 return -EFAULT; 4509 log.slot = compat_log.slot; 4510 log.padding1 = compat_log.padding1; 4511 log.padding2 = compat_log.padding2; 4512 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4513 4514 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4515 break; 4516 } 4517 default: 4518 r = kvm_vm_ioctl(filp, ioctl, arg); 4519 } 4520 return r; 4521 } 4522 #endif 4523 4524 static struct file_operations kvm_vm_fops = { 4525 .release = kvm_vm_release, 4526 .unlocked_ioctl = kvm_vm_ioctl, 4527 .llseek = noop_llseek, 4528 KVM_COMPAT(kvm_vm_compat_ioctl), 4529 }; 4530 4531 bool file_is_kvm(struct file *file) 4532 { 4533 return file && file->f_op == &kvm_vm_fops; 4534 } 4535 EXPORT_SYMBOL_GPL(file_is_kvm); 4536 4537 static int kvm_dev_ioctl_create_vm(unsigned long type) 4538 { 4539 int r; 4540 struct kvm *kvm; 4541 struct file *file; 4542 4543 kvm = kvm_create_vm(type); 4544 if (IS_ERR(kvm)) 4545 return PTR_ERR(kvm); 4546 #ifdef CONFIG_KVM_MMIO 4547 r = kvm_coalesced_mmio_init(kvm); 4548 if (r < 0) 4549 goto put_kvm; 4550 #endif 4551 r = get_unused_fd_flags(O_CLOEXEC); 4552 if (r < 0) 4553 goto put_kvm; 4554 4555 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4556 "kvm-%d", task_pid_nr(current)); 4557 4558 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4559 if (IS_ERR(file)) { 4560 put_unused_fd(r); 4561 r = PTR_ERR(file); 4562 goto put_kvm; 4563 } 4564 4565 /* 4566 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4567 * already set, with ->release() being kvm_vm_release(). In error 4568 * cases it will be called by the final fput(file) and will take 4569 * care of doing kvm_put_kvm(kvm). 4570 */ 4571 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4572 put_unused_fd(r); 4573 fput(file); 4574 return -ENOMEM; 4575 } 4576 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4577 4578 fd_install(r, file); 4579 return r; 4580 4581 put_kvm: 4582 kvm_put_kvm(kvm); 4583 return r; 4584 } 4585 4586 static long kvm_dev_ioctl(struct file *filp, 4587 unsigned int ioctl, unsigned long arg) 4588 { 4589 long r = -EINVAL; 4590 4591 switch (ioctl) { 4592 case KVM_GET_API_VERSION: 4593 if (arg) 4594 goto out; 4595 r = KVM_API_VERSION; 4596 break; 4597 case KVM_CREATE_VM: 4598 r = kvm_dev_ioctl_create_vm(arg); 4599 break; 4600 case KVM_CHECK_EXTENSION: 4601 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4602 break; 4603 case KVM_GET_VCPU_MMAP_SIZE: 4604 if (arg) 4605 goto out; 4606 r = PAGE_SIZE; /* struct kvm_run */ 4607 #ifdef CONFIG_X86 4608 r += PAGE_SIZE; /* pio data page */ 4609 #endif 4610 #ifdef CONFIG_KVM_MMIO 4611 r += PAGE_SIZE; /* coalesced mmio ring page */ 4612 #endif 4613 break; 4614 case KVM_TRACE_ENABLE: 4615 case KVM_TRACE_PAUSE: 4616 case KVM_TRACE_DISABLE: 4617 r = -EOPNOTSUPP; 4618 break; 4619 default: 4620 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4621 } 4622 out: 4623 return r; 4624 } 4625 4626 static struct file_operations kvm_chardev_ops = { 4627 .unlocked_ioctl = kvm_dev_ioctl, 4628 .llseek = noop_llseek, 4629 KVM_COMPAT(kvm_dev_ioctl), 4630 }; 4631 4632 static struct miscdevice kvm_dev = { 4633 KVM_MINOR, 4634 "kvm", 4635 &kvm_chardev_ops, 4636 }; 4637 4638 static void hardware_enable_nolock(void *junk) 4639 { 4640 int cpu = raw_smp_processor_id(); 4641 int r; 4642 4643 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4644 return; 4645 4646 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4647 4648 r = kvm_arch_hardware_enable(); 4649 4650 if (r) { 4651 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4652 atomic_inc(&hardware_enable_failed); 4653 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4654 } 4655 } 4656 4657 static int kvm_starting_cpu(unsigned int cpu) 4658 { 4659 raw_spin_lock(&kvm_count_lock); 4660 if (kvm_usage_count) 4661 hardware_enable_nolock(NULL); 4662 raw_spin_unlock(&kvm_count_lock); 4663 return 0; 4664 } 4665 4666 static void hardware_disable_nolock(void *junk) 4667 { 4668 int cpu = raw_smp_processor_id(); 4669 4670 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4671 return; 4672 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4673 kvm_arch_hardware_disable(); 4674 } 4675 4676 static int kvm_dying_cpu(unsigned int cpu) 4677 { 4678 raw_spin_lock(&kvm_count_lock); 4679 if (kvm_usage_count) 4680 hardware_disable_nolock(NULL); 4681 raw_spin_unlock(&kvm_count_lock); 4682 return 0; 4683 } 4684 4685 static void hardware_disable_all_nolock(void) 4686 { 4687 BUG_ON(!kvm_usage_count); 4688 4689 kvm_usage_count--; 4690 if (!kvm_usage_count) 4691 on_each_cpu(hardware_disable_nolock, NULL, 1); 4692 } 4693 4694 static void hardware_disable_all(void) 4695 { 4696 raw_spin_lock(&kvm_count_lock); 4697 hardware_disable_all_nolock(); 4698 raw_spin_unlock(&kvm_count_lock); 4699 } 4700 4701 static int hardware_enable_all(void) 4702 { 4703 int r = 0; 4704 4705 raw_spin_lock(&kvm_count_lock); 4706 4707 kvm_usage_count++; 4708 if (kvm_usage_count == 1) { 4709 atomic_set(&hardware_enable_failed, 0); 4710 on_each_cpu(hardware_enable_nolock, NULL, 1); 4711 4712 if (atomic_read(&hardware_enable_failed)) { 4713 hardware_disable_all_nolock(); 4714 r = -EBUSY; 4715 } 4716 } 4717 4718 raw_spin_unlock(&kvm_count_lock); 4719 4720 return r; 4721 } 4722 4723 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4724 void *v) 4725 { 4726 /* 4727 * Some (well, at least mine) BIOSes hang on reboot if 4728 * in vmx root mode. 4729 * 4730 * And Intel TXT required VMX off for all cpu when system shutdown. 4731 */ 4732 pr_info("kvm: exiting hardware virtualization\n"); 4733 kvm_rebooting = true; 4734 on_each_cpu(hardware_disable_nolock, NULL, 1); 4735 return NOTIFY_OK; 4736 } 4737 4738 static struct notifier_block kvm_reboot_notifier = { 4739 .notifier_call = kvm_reboot, 4740 .priority = 0, 4741 }; 4742 4743 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4744 { 4745 int i; 4746 4747 for (i = 0; i < bus->dev_count; i++) { 4748 struct kvm_io_device *pos = bus->range[i].dev; 4749 4750 kvm_iodevice_destructor(pos); 4751 } 4752 kfree(bus); 4753 } 4754 4755 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4756 const struct kvm_io_range *r2) 4757 { 4758 gpa_t addr1 = r1->addr; 4759 gpa_t addr2 = r2->addr; 4760 4761 if (addr1 < addr2) 4762 return -1; 4763 4764 /* If r2->len == 0, match the exact address. If r2->len != 0, 4765 * accept any overlapping write. Any order is acceptable for 4766 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4767 * we process all of them. 4768 */ 4769 if (r2->len) { 4770 addr1 += r1->len; 4771 addr2 += r2->len; 4772 } 4773 4774 if (addr1 > addr2) 4775 return 1; 4776 4777 return 0; 4778 } 4779 4780 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4781 { 4782 return kvm_io_bus_cmp(p1, p2); 4783 } 4784 4785 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4786 gpa_t addr, int len) 4787 { 4788 struct kvm_io_range *range, key; 4789 int off; 4790 4791 key = (struct kvm_io_range) { 4792 .addr = addr, 4793 .len = len, 4794 }; 4795 4796 range = bsearch(&key, bus->range, bus->dev_count, 4797 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4798 if (range == NULL) 4799 return -ENOENT; 4800 4801 off = range - bus->range; 4802 4803 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4804 off--; 4805 4806 return off; 4807 } 4808 4809 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4810 struct kvm_io_range *range, const void *val) 4811 { 4812 int idx; 4813 4814 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4815 if (idx < 0) 4816 return -EOPNOTSUPP; 4817 4818 while (idx < bus->dev_count && 4819 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4820 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4821 range->len, val)) 4822 return idx; 4823 idx++; 4824 } 4825 4826 return -EOPNOTSUPP; 4827 } 4828 4829 /* kvm_io_bus_write - called under kvm->slots_lock */ 4830 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4831 int len, const void *val) 4832 { 4833 struct kvm_io_bus *bus; 4834 struct kvm_io_range range; 4835 int r; 4836 4837 range = (struct kvm_io_range) { 4838 .addr = addr, 4839 .len = len, 4840 }; 4841 4842 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4843 if (!bus) 4844 return -ENOMEM; 4845 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4846 return r < 0 ? r : 0; 4847 } 4848 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4849 4850 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4851 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4852 gpa_t addr, int len, const void *val, long cookie) 4853 { 4854 struct kvm_io_bus *bus; 4855 struct kvm_io_range range; 4856 4857 range = (struct kvm_io_range) { 4858 .addr = addr, 4859 .len = len, 4860 }; 4861 4862 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4863 if (!bus) 4864 return -ENOMEM; 4865 4866 /* First try the device referenced by cookie. */ 4867 if ((cookie >= 0) && (cookie < bus->dev_count) && 4868 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4869 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4870 val)) 4871 return cookie; 4872 4873 /* 4874 * cookie contained garbage; fall back to search and return the 4875 * correct cookie value. 4876 */ 4877 return __kvm_io_bus_write(vcpu, bus, &range, val); 4878 } 4879 4880 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4881 struct kvm_io_range *range, void *val) 4882 { 4883 int idx; 4884 4885 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4886 if (idx < 0) 4887 return -EOPNOTSUPP; 4888 4889 while (idx < bus->dev_count && 4890 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4891 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4892 range->len, val)) 4893 return idx; 4894 idx++; 4895 } 4896 4897 return -EOPNOTSUPP; 4898 } 4899 4900 /* kvm_io_bus_read - called under kvm->slots_lock */ 4901 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4902 int len, void *val) 4903 { 4904 struct kvm_io_bus *bus; 4905 struct kvm_io_range range; 4906 int r; 4907 4908 range = (struct kvm_io_range) { 4909 .addr = addr, 4910 .len = len, 4911 }; 4912 4913 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4914 if (!bus) 4915 return -ENOMEM; 4916 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4917 return r < 0 ? r : 0; 4918 } 4919 4920 /* Caller must hold slots_lock. */ 4921 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4922 int len, struct kvm_io_device *dev) 4923 { 4924 int i; 4925 struct kvm_io_bus *new_bus, *bus; 4926 struct kvm_io_range range; 4927 4928 bus = kvm_get_bus(kvm, bus_idx); 4929 if (!bus) 4930 return -ENOMEM; 4931 4932 /* exclude ioeventfd which is limited by maximum fd */ 4933 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4934 return -ENOSPC; 4935 4936 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4937 GFP_KERNEL_ACCOUNT); 4938 if (!new_bus) 4939 return -ENOMEM; 4940 4941 range = (struct kvm_io_range) { 4942 .addr = addr, 4943 .len = len, 4944 .dev = dev, 4945 }; 4946 4947 for (i = 0; i < bus->dev_count; i++) 4948 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4949 break; 4950 4951 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4952 new_bus->dev_count++; 4953 new_bus->range[i] = range; 4954 memcpy(new_bus->range + i + 1, bus->range + i, 4955 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4956 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4957 synchronize_srcu_expedited(&kvm->srcu); 4958 kfree(bus); 4959 4960 return 0; 4961 } 4962 4963 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4964 struct kvm_io_device *dev) 4965 { 4966 int i, j; 4967 struct kvm_io_bus *new_bus, *bus; 4968 4969 lockdep_assert_held(&kvm->slots_lock); 4970 4971 bus = kvm_get_bus(kvm, bus_idx); 4972 if (!bus) 4973 return 0; 4974 4975 for (i = 0; i < bus->dev_count; i++) { 4976 if (bus->range[i].dev == dev) { 4977 break; 4978 } 4979 } 4980 4981 if (i == bus->dev_count) 4982 return 0; 4983 4984 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4985 GFP_KERNEL_ACCOUNT); 4986 if (new_bus) { 4987 memcpy(new_bus, bus, struct_size(bus, range, i)); 4988 new_bus->dev_count--; 4989 memcpy(new_bus->range + i, bus->range + i + 1, 4990 flex_array_size(new_bus, range, new_bus->dev_count - i)); 4991 } 4992 4993 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4994 synchronize_srcu_expedited(&kvm->srcu); 4995 4996 /* Destroy the old bus _after_ installing the (null) bus. */ 4997 if (!new_bus) { 4998 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4999 for (j = 0; j < bus->dev_count; j++) { 5000 if (j == i) 5001 continue; 5002 kvm_iodevice_destructor(bus->range[j].dev); 5003 } 5004 } 5005 5006 kfree(bus); 5007 return new_bus ? 0 : -ENOMEM; 5008 } 5009 5010 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5011 gpa_t addr) 5012 { 5013 struct kvm_io_bus *bus; 5014 int dev_idx, srcu_idx; 5015 struct kvm_io_device *iodev = NULL; 5016 5017 srcu_idx = srcu_read_lock(&kvm->srcu); 5018 5019 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5020 if (!bus) 5021 goto out_unlock; 5022 5023 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5024 if (dev_idx < 0) 5025 goto out_unlock; 5026 5027 iodev = bus->range[dev_idx].dev; 5028 5029 out_unlock: 5030 srcu_read_unlock(&kvm->srcu, srcu_idx); 5031 5032 return iodev; 5033 } 5034 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5035 5036 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5037 int (*get)(void *, u64 *), int (*set)(void *, u64), 5038 const char *fmt) 5039 { 5040 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5041 inode->i_private; 5042 5043 /* 5044 * The debugfs files are a reference to the kvm struct which 5045 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5046 * avoids the race between open and the removal of the debugfs directory. 5047 */ 5048 if (!kvm_get_kvm_safe(stat_data->kvm)) 5049 return -ENOENT; 5050 5051 if (simple_attr_open(inode, file, get, 5052 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5053 ? set : NULL, 5054 fmt)) { 5055 kvm_put_kvm(stat_data->kvm); 5056 return -ENOMEM; 5057 } 5058 5059 return 0; 5060 } 5061 5062 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5063 { 5064 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5065 inode->i_private; 5066 5067 simple_attr_release(inode, file); 5068 kvm_put_kvm(stat_data->kvm); 5069 5070 return 0; 5071 } 5072 5073 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5074 { 5075 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5076 5077 return 0; 5078 } 5079 5080 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5081 { 5082 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5083 5084 return 0; 5085 } 5086 5087 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5088 { 5089 int i; 5090 struct kvm_vcpu *vcpu; 5091 5092 *val = 0; 5093 5094 kvm_for_each_vcpu(i, vcpu, kvm) 5095 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5096 5097 return 0; 5098 } 5099 5100 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5101 { 5102 int i; 5103 struct kvm_vcpu *vcpu; 5104 5105 kvm_for_each_vcpu(i, vcpu, kvm) 5106 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5107 5108 return 0; 5109 } 5110 5111 static int kvm_stat_data_get(void *data, u64 *val) 5112 { 5113 int r = -EFAULT; 5114 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5115 5116 switch (stat_data->kind) { 5117 case KVM_STAT_VM: 5118 r = kvm_get_stat_per_vm(stat_data->kvm, 5119 stat_data->desc->desc.offset, val); 5120 break; 5121 case KVM_STAT_VCPU: 5122 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5123 stat_data->desc->desc.offset, val); 5124 break; 5125 } 5126 5127 return r; 5128 } 5129 5130 static int kvm_stat_data_clear(void *data, u64 val) 5131 { 5132 int r = -EFAULT; 5133 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5134 5135 if (val) 5136 return -EINVAL; 5137 5138 switch (stat_data->kind) { 5139 case KVM_STAT_VM: 5140 r = kvm_clear_stat_per_vm(stat_data->kvm, 5141 stat_data->desc->desc.offset); 5142 break; 5143 case KVM_STAT_VCPU: 5144 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5145 stat_data->desc->desc.offset); 5146 break; 5147 } 5148 5149 return r; 5150 } 5151 5152 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5153 { 5154 __simple_attr_check_format("%llu\n", 0ull); 5155 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5156 kvm_stat_data_clear, "%llu\n"); 5157 } 5158 5159 static const struct file_operations stat_fops_per_vm = { 5160 .owner = THIS_MODULE, 5161 .open = kvm_stat_data_open, 5162 .release = kvm_debugfs_release, 5163 .read = simple_attr_read, 5164 .write = simple_attr_write, 5165 .llseek = no_llseek, 5166 }; 5167 5168 static int vm_stat_get(void *_offset, u64 *val) 5169 { 5170 unsigned offset = (long)_offset; 5171 struct kvm *kvm; 5172 u64 tmp_val; 5173 5174 *val = 0; 5175 mutex_lock(&kvm_lock); 5176 list_for_each_entry(kvm, &vm_list, vm_list) { 5177 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5178 *val += tmp_val; 5179 } 5180 mutex_unlock(&kvm_lock); 5181 return 0; 5182 } 5183 5184 static int vm_stat_clear(void *_offset, u64 val) 5185 { 5186 unsigned offset = (long)_offset; 5187 struct kvm *kvm; 5188 5189 if (val) 5190 return -EINVAL; 5191 5192 mutex_lock(&kvm_lock); 5193 list_for_each_entry(kvm, &vm_list, vm_list) { 5194 kvm_clear_stat_per_vm(kvm, offset); 5195 } 5196 mutex_unlock(&kvm_lock); 5197 5198 return 0; 5199 } 5200 5201 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5203 5204 static int vcpu_stat_get(void *_offset, u64 *val) 5205 { 5206 unsigned offset = (long)_offset; 5207 struct kvm *kvm; 5208 u64 tmp_val; 5209 5210 *val = 0; 5211 mutex_lock(&kvm_lock); 5212 list_for_each_entry(kvm, &vm_list, vm_list) { 5213 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5214 *val += tmp_val; 5215 } 5216 mutex_unlock(&kvm_lock); 5217 return 0; 5218 } 5219 5220 static int vcpu_stat_clear(void *_offset, u64 val) 5221 { 5222 unsigned offset = (long)_offset; 5223 struct kvm *kvm; 5224 5225 if (val) 5226 return -EINVAL; 5227 5228 mutex_lock(&kvm_lock); 5229 list_for_each_entry(kvm, &vm_list, vm_list) { 5230 kvm_clear_stat_per_vcpu(kvm, offset); 5231 } 5232 mutex_unlock(&kvm_lock); 5233 5234 return 0; 5235 } 5236 5237 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5238 "%llu\n"); 5239 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5240 5241 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5242 { 5243 struct kobj_uevent_env *env; 5244 unsigned long long created, active; 5245 5246 if (!kvm_dev.this_device || !kvm) 5247 return; 5248 5249 mutex_lock(&kvm_lock); 5250 if (type == KVM_EVENT_CREATE_VM) { 5251 kvm_createvm_count++; 5252 kvm_active_vms++; 5253 } else if (type == KVM_EVENT_DESTROY_VM) { 5254 kvm_active_vms--; 5255 } 5256 created = kvm_createvm_count; 5257 active = kvm_active_vms; 5258 mutex_unlock(&kvm_lock); 5259 5260 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5261 if (!env) 5262 return; 5263 5264 add_uevent_var(env, "CREATED=%llu", created); 5265 add_uevent_var(env, "COUNT=%llu", active); 5266 5267 if (type == KVM_EVENT_CREATE_VM) { 5268 add_uevent_var(env, "EVENT=create"); 5269 kvm->userspace_pid = task_pid_nr(current); 5270 } else if (type == KVM_EVENT_DESTROY_VM) { 5271 add_uevent_var(env, "EVENT=destroy"); 5272 } 5273 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5274 5275 if (kvm->debugfs_dentry) { 5276 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5277 5278 if (p) { 5279 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5280 if (!IS_ERR(tmp)) 5281 add_uevent_var(env, "STATS_PATH=%s", tmp); 5282 kfree(p); 5283 } 5284 } 5285 /* no need for checks, since we are adding at most only 5 keys */ 5286 env->envp[env->envp_idx++] = NULL; 5287 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5288 kfree(env); 5289 } 5290 5291 static void kvm_init_debug(void) 5292 { 5293 const struct file_operations *fops; 5294 const struct _kvm_stats_desc *pdesc; 5295 int i; 5296 5297 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5298 5299 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5300 pdesc = &kvm_vm_stats_desc[i]; 5301 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5302 fops = &vm_stat_fops; 5303 else 5304 fops = &vm_stat_readonly_fops; 5305 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5306 kvm_debugfs_dir, 5307 (void *)(long)pdesc->desc.offset, fops); 5308 } 5309 5310 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5311 pdesc = &kvm_vcpu_stats_desc[i]; 5312 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5313 fops = &vcpu_stat_fops; 5314 else 5315 fops = &vcpu_stat_readonly_fops; 5316 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5317 kvm_debugfs_dir, 5318 (void *)(long)pdesc->desc.offset, fops); 5319 } 5320 } 5321 5322 static int kvm_suspend(void) 5323 { 5324 if (kvm_usage_count) 5325 hardware_disable_nolock(NULL); 5326 return 0; 5327 } 5328 5329 static void kvm_resume(void) 5330 { 5331 if (kvm_usage_count) { 5332 #ifdef CONFIG_LOCKDEP 5333 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5334 #endif 5335 hardware_enable_nolock(NULL); 5336 } 5337 } 5338 5339 static struct syscore_ops kvm_syscore_ops = { 5340 .suspend = kvm_suspend, 5341 .resume = kvm_resume, 5342 }; 5343 5344 static inline 5345 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5346 { 5347 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5348 } 5349 5350 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5351 { 5352 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5353 5354 WRITE_ONCE(vcpu->preempted, false); 5355 WRITE_ONCE(vcpu->ready, false); 5356 5357 __this_cpu_write(kvm_running_vcpu, vcpu); 5358 kvm_arch_sched_in(vcpu, cpu); 5359 kvm_arch_vcpu_load(vcpu, cpu); 5360 } 5361 5362 static void kvm_sched_out(struct preempt_notifier *pn, 5363 struct task_struct *next) 5364 { 5365 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5366 5367 if (current->on_rq) { 5368 WRITE_ONCE(vcpu->preempted, true); 5369 WRITE_ONCE(vcpu->ready, true); 5370 } 5371 kvm_arch_vcpu_put(vcpu); 5372 __this_cpu_write(kvm_running_vcpu, NULL); 5373 } 5374 5375 /** 5376 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5377 * 5378 * We can disable preemption locally around accessing the per-CPU variable, 5379 * and use the resolved vcpu pointer after enabling preemption again, 5380 * because even if the current thread is migrated to another CPU, reading 5381 * the per-CPU value later will give us the same value as we update the 5382 * per-CPU variable in the preempt notifier handlers. 5383 */ 5384 struct kvm_vcpu *kvm_get_running_vcpu(void) 5385 { 5386 struct kvm_vcpu *vcpu; 5387 5388 preempt_disable(); 5389 vcpu = __this_cpu_read(kvm_running_vcpu); 5390 preempt_enable(); 5391 5392 return vcpu; 5393 } 5394 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5395 5396 /** 5397 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5398 */ 5399 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5400 { 5401 return &kvm_running_vcpu; 5402 } 5403 5404 struct kvm_cpu_compat_check { 5405 void *opaque; 5406 int *ret; 5407 }; 5408 5409 static void check_processor_compat(void *data) 5410 { 5411 struct kvm_cpu_compat_check *c = data; 5412 5413 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5414 } 5415 5416 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5417 struct module *module) 5418 { 5419 struct kvm_cpu_compat_check c; 5420 int r; 5421 int cpu; 5422 5423 r = kvm_arch_init(opaque); 5424 if (r) 5425 goto out_fail; 5426 5427 /* 5428 * kvm_arch_init makes sure there's at most one caller 5429 * for architectures that support multiple implementations, 5430 * like intel and amd on x86. 5431 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5432 * conflicts in case kvm is already setup for another implementation. 5433 */ 5434 r = kvm_irqfd_init(); 5435 if (r) 5436 goto out_irqfd; 5437 5438 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5439 r = -ENOMEM; 5440 goto out_free_0; 5441 } 5442 5443 r = kvm_arch_hardware_setup(opaque); 5444 if (r < 0) 5445 goto out_free_1; 5446 5447 c.ret = &r; 5448 c.opaque = opaque; 5449 for_each_online_cpu(cpu) { 5450 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5451 if (r < 0) 5452 goto out_free_2; 5453 } 5454 5455 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5456 kvm_starting_cpu, kvm_dying_cpu); 5457 if (r) 5458 goto out_free_2; 5459 register_reboot_notifier(&kvm_reboot_notifier); 5460 5461 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5462 if (!vcpu_align) 5463 vcpu_align = __alignof__(struct kvm_vcpu); 5464 kvm_vcpu_cache = 5465 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5466 SLAB_ACCOUNT, 5467 offsetof(struct kvm_vcpu, arch), 5468 offsetofend(struct kvm_vcpu, stats_id) 5469 - offsetof(struct kvm_vcpu, arch), 5470 NULL); 5471 if (!kvm_vcpu_cache) { 5472 r = -ENOMEM; 5473 goto out_free_3; 5474 } 5475 5476 for_each_possible_cpu(cpu) { 5477 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5478 GFP_KERNEL, cpu_to_node(cpu))) { 5479 r = -ENOMEM; 5480 goto out_free_4; 5481 } 5482 } 5483 5484 r = kvm_async_pf_init(); 5485 if (r) 5486 goto out_free_5; 5487 5488 kvm_chardev_ops.owner = module; 5489 kvm_vm_fops.owner = module; 5490 kvm_vcpu_fops.owner = module; 5491 5492 r = misc_register(&kvm_dev); 5493 if (r) { 5494 pr_err("kvm: misc device register failed\n"); 5495 goto out_unreg; 5496 } 5497 5498 register_syscore_ops(&kvm_syscore_ops); 5499 5500 kvm_preempt_ops.sched_in = kvm_sched_in; 5501 kvm_preempt_ops.sched_out = kvm_sched_out; 5502 5503 kvm_init_debug(); 5504 5505 r = kvm_vfio_ops_init(); 5506 WARN_ON(r); 5507 5508 return 0; 5509 5510 out_unreg: 5511 kvm_async_pf_deinit(); 5512 out_free_5: 5513 for_each_possible_cpu(cpu) 5514 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5515 out_free_4: 5516 kmem_cache_destroy(kvm_vcpu_cache); 5517 out_free_3: 5518 unregister_reboot_notifier(&kvm_reboot_notifier); 5519 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5520 out_free_2: 5521 kvm_arch_hardware_unsetup(); 5522 out_free_1: 5523 free_cpumask_var(cpus_hardware_enabled); 5524 out_free_0: 5525 kvm_irqfd_exit(); 5526 out_irqfd: 5527 kvm_arch_exit(); 5528 out_fail: 5529 return r; 5530 } 5531 EXPORT_SYMBOL_GPL(kvm_init); 5532 5533 void kvm_exit(void) 5534 { 5535 int cpu; 5536 5537 debugfs_remove_recursive(kvm_debugfs_dir); 5538 misc_deregister(&kvm_dev); 5539 for_each_possible_cpu(cpu) 5540 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5541 kmem_cache_destroy(kvm_vcpu_cache); 5542 kvm_async_pf_deinit(); 5543 unregister_syscore_ops(&kvm_syscore_ops); 5544 unregister_reboot_notifier(&kvm_reboot_notifier); 5545 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5546 on_each_cpu(hardware_disable_nolock, NULL, 1); 5547 kvm_arch_hardware_unsetup(); 5548 kvm_arch_exit(); 5549 kvm_irqfd_exit(); 5550 free_cpumask_var(cpus_hardware_enabled); 5551 kvm_vfio_ops_exit(); 5552 } 5553 EXPORT_SYMBOL_GPL(kvm_exit); 5554 5555 struct kvm_vm_worker_thread_context { 5556 struct kvm *kvm; 5557 struct task_struct *parent; 5558 struct completion init_done; 5559 kvm_vm_thread_fn_t thread_fn; 5560 uintptr_t data; 5561 int err; 5562 }; 5563 5564 static int kvm_vm_worker_thread(void *context) 5565 { 5566 /* 5567 * The init_context is allocated on the stack of the parent thread, so 5568 * we have to locally copy anything that is needed beyond initialization 5569 */ 5570 struct kvm_vm_worker_thread_context *init_context = context; 5571 struct kvm *kvm = init_context->kvm; 5572 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5573 uintptr_t data = init_context->data; 5574 int err; 5575 5576 err = kthread_park(current); 5577 /* kthread_park(current) is never supposed to return an error */ 5578 WARN_ON(err != 0); 5579 if (err) 5580 goto init_complete; 5581 5582 err = cgroup_attach_task_all(init_context->parent, current); 5583 if (err) { 5584 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5585 __func__, err); 5586 goto init_complete; 5587 } 5588 5589 set_user_nice(current, task_nice(init_context->parent)); 5590 5591 init_complete: 5592 init_context->err = err; 5593 complete(&init_context->init_done); 5594 init_context = NULL; 5595 5596 if (err) 5597 return err; 5598 5599 /* Wait to be woken up by the spawner before proceeding. */ 5600 kthread_parkme(); 5601 5602 if (!kthread_should_stop()) 5603 err = thread_fn(kvm, data); 5604 5605 return err; 5606 } 5607 5608 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5609 uintptr_t data, const char *name, 5610 struct task_struct **thread_ptr) 5611 { 5612 struct kvm_vm_worker_thread_context init_context = {}; 5613 struct task_struct *thread; 5614 5615 *thread_ptr = NULL; 5616 init_context.kvm = kvm; 5617 init_context.parent = current; 5618 init_context.thread_fn = thread_fn; 5619 init_context.data = data; 5620 init_completion(&init_context.init_done); 5621 5622 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5623 "%s-%d", name, task_pid_nr(current)); 5624 if (IS_ERR(thread)) 5625 return PTR_ERR(thread); 5626 5627 /* kthread_run is never supposed to return NULL */ 5628 WARN_ON(thread == NULL); 5629 5630 wait_for_completion(&init_context.init_done); 5631 5632 if (!init_context.err) 5633 *thread_ptr = thread; 5634 5635 return init_context.err; 5636 } 5637