xref: /linux/virt/kvm/kvm_main.c (revision 8a8d6bbe1d3bc7137c777ba06246d7e9c08dde4d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159 
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 						   unsigned long start, unsigned long end)
162 {
163 }
164 
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167 	/*
168 	 * The metadata used by is_zone_device_page() to determine whether or
169 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
171 	 * page_count() is zero to help detect bad usage of this helper.
172 	 */
173 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 		return false;
175 
176 	return is_zone_device_page(pfn_to_page(pfn));
177 }
178 
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181 	/*
182 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 	 * perspective they are "normal" pages, albeit with slightly different
184 	 * usage rules.
185 	 */
186 	if (pfn_valid(pfn))
187 		return PageReserved(pfn_to_page(pfn)) &&
188 		       !is_zero_pfn(pfn) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 
201 	__this_cpu_write(kvm_running_vcpu, vcpu);
202 	preempt_notifier_register(&vcpu->preempt_notifier);
203 	kvm_arch_vcpu_load(vcpu, cpu);
204 	put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207 
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210 	preempt_disable();
211 	kvm_arch_vcpu_put(vcpu);
212 	preempt_notifier_unregister(&vcpu->preempt_notifier);
213 	__this_cpu_write(kvm_running_vcpu, NULL);
214 	preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217 
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222 
223 	/*
224 	 * We need to wait for the VCPU to reenable interrupts and get out of
225 	 * READING_SHADOW_PAGE_TABLES mode.
226 	 */
227 	if (req & KVM_REQUEST_WAIT)
228 		return mode != OUTSIDE_GUEST_MODE;
229 
230 	/*
231 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 	 */
233 	return mode == IN_GUEST_MODE;
234 }
235 
236 static void ack_flush(void *_completed)
237 {
238 }
239 
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250 				  unsigned int req, struct cpumask *tmp,
251 				  int current_cpu)
252 {
253 	int cpu;
254 
255 	kvm_make_request(req, vcpu);
256 
257 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 		return;
259 
260 	/*
261 	 * Note, the vCPU could get migrated to a different pCPU at any point
262 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
264 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 	 * after this point is also OK, as the requirement is only that KVM wait
267 	 * for vCPUs that were reading SPTEs _before_ any changes were
268 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 	 */
270 	if (kvm_request_needs_ipi(vcpu, req)) {
271 		cpu = READ_ONCE(vcpu->cpu);
272 		if (cpu != -1 && cpu != current_cpu)
273 			__cpumask_set_cpu(cpu, tmp);
274 	}
275 }
276 
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278 				 unsigned long *vcpu_bitmap)
279 {
280 	struct kvm_vcpu *vcpu;
281 	struct cpumask *cpus;
282 	int i, me;
283 	bool called;
284 
285 	me = get_cpu();
286 
287 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 	cpumask_clear(cpus);
289 
290 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 		vcpu = kvm_get_vcpu(kvm, i);
292 		if (!vcpu)
293 			continue;
294 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295 	}
296 
297 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298 	put_cpu();
299 
300 	return called;
301 }
302 
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 				      struct kvm_vcpu *except)
305 {
306 	struct kvm_vcpu *vcpu;
307 	struct cpumask *cpus;
308 	bool called;
309 	int i, me;
310 
311 	me = get_cpu();
312 
313 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314 	cpumask_clear(cpus);
315 
316 	kvm_for_each_vcpu(i, vcpu, kvm) {
317 		if (vcpu == except)
318 			continue;
319 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320 	}
321 
322 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323 	put_cpu();
324 
325 	return called;
326 }
327 
328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329 {
330 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
335 void kvm_flush_remote_tlbs(struct kvm *kvm)
336 {
337 	++kvm->stat.generic.remote_tlb_flush_requests;
338 
339 	/*
340 	 * We want to publish modifications to the page tables before reading
341 	 * mode. Pairs with a memory barrier in arch-specific code.
342 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
344 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345 	 *
346 	 * There is already an smp_mb__after_atomic() before
347 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348 	 * barrier here.
349 	 */
350 	if (!kvm_arch_flush_remote_tlb(kvm)
351 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
352 		++kvm->stat.generic.remote_tlb_flush;
353 }
354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
355 #endif
356 
357 void kvm_reload_remote_mmus(struct kvm *kvm)
358 {
359 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
360 }
361 
362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364 					       gfp_t gfp_flags)
365 {
366 	gfp_flags |= mc->gfp_zero;
367 
368 	if (mc->kmem_cache)
369 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370 	else
371 		return (void *)__get_free_page(gfp_flags);
372 }
373 
374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375 {
376 	void *obj;
377 
378 	if (mc->nobjs >= min)
379 		return 0;
380 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382 		if (!obj)
383 			return mc->nobjs >= min ? 0 : -ENOMEM;
384 		mc->objects[mc->nobjs++] = obj;
385 	}
386 	return 0;
387 }
388 
389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390 {
391 	return mc->nobjs;
392 }
393 
394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395 {
396 	while (mc->nobjs) {
397 		if (mc->kmem_cache)
398 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399 		else
400 			free_page((unsigned long)mc->objects[--mc->nobjs]);
401 	}
402 }
403 
404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405 {
406 	void *p;
407 
408 	if (WARN_ON(!mc->nobjs))
409 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410 	else
411 		p = mc->objects[--mc->nobjs];
412 	BUG_ON(!p);
413 	return p;
414 }
415 #endif
416 
417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
418 {
419 	mutex_init(&vcpu->mutex);
420 	vcpu->cpu = -1;
421 	vcpu->kvm = kvm;
422 	vcpu->vcpu_id = id;
423 	vcpu->pid = NULL;
424 	rcuwait_init(&vcpu->wait);
425 	kvm_async_pf_vcpu_init(vcpu);
426 
427 	vcpu->pre_pcpu = -1;
428 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429 
430 	kvm_vcpu_set_in_spin_loop(vcpu, false);
431 	kvm_vcpu_set_dy_eligible(vcpu, false);
432 	vcpu->preempted = false;
433 	vcpu->ready = false;
434 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435 	vcpu->last_used_slot = 0;
436 }
437 
438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440 	kvm_dirty_ring_free(&vcpu->dirty_ring);
441 	kvm_arch_vcpu_destroy(vcpu);
442 
443 	/*
444 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445 	 * the vcpu->pid pointer, and at destruction time all file descriptors
446 	 * are already gone.
447 	 */
448 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
449 
450 	free_page((unsigned long)vcpu->run);
451 	kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
454 
455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
457 {
458 	return container_of(mn, struct kvm, mmu_notifier);
459 }
460 
461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
462 					      struct mm_struct *mm,
463 					      unsigned long start, unsigned long end)
464 {
465 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
466 	int idx;
467 
468 	idx = srcu_read_lock(&kvm->srcu);
469 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
470 	srcu_read_unlock(&kvm->srcu, idx);
471 }
472 
473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
474 
475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
476 			     unsigned long end);
477 
478 struct kvm_hva_range {
479 	unsigned long start;
480 	unsigned long end;
481 	pte_t pte;
482 	hva_handler_t handler;
483 	on_lock_fn_t on_lock;
484 	bool flush_on_ret;
485 	bool may_block;
486 };
487 
488 /*
489  * Use a dedicated stub instead of NULL to indicate that there is no callback
490  * function/handler.  The compiler technically can't guarantee that a real
491  * function will have a non-zero address, and so it will generate code to
492  * check for !NULL, whereas comparing against a stub will be elided at compile
493  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
494  */
495 static void kvm_null_fn(void)
496 {
497 
498 }
499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
500 
501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
502 						  const struct kvm_hva_range *range)
503 {
504 	bool ret = false, locked = false;
505 	struct kvm_gfn_range gfn_range;
506 	struct kvm_memory_slot *slot;
507 	struct kvm_memslots *slots;
508 	int i, idx;
509 
510 	/* A null handler is allowed if and only if on_lock() is provided. */
511 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
512 			 IS_KVM_NULL_FN(range->handler)))
513 		return 0;
514 
515 	idx = srcu_read_lock(&kvm->srcu);
516 
517 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
518 		slots = __kvm_memslots(kvm, i);
519 		kvm_for_each_memslot(slot, slots) {
520 			unsigned long hva_start, hva_end;
521 
522 			hva_start = max(range->start, slot->userspace_addr);
523 			hva_end = min(range->end, slot->userspace_addr +
524 						  (slot->npages << PAGE_SHIFT));
525 			if (hva_start >= hva_end)
526 				continue;
527 
528 			/*
529 			 * To optimize for the likely case where the address
530 			 * range is covered by zero or one memslots, don't
531 			 * bother making these conditional (to avoid writes on
532 			 * the second or later invocation of the handler).
533 			 */
534 			gfn_range.pte = range->pte;
535 			gfn_range.may_block = range->may_block;
536 
537 			/*
538 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
539 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
540 			 */
541 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
542 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
543 			gfn_range.slot = slot;
544 
545 			if (!locked) {
546 				locked = true;
547 				KVM_MMU_LOCK(kvm);
548 				if (!IS_KVM_NULL_FN(range->on_lock))
549 					range->on_lock(kvm, range->start, range->end);
550 				if (IS_KVM_NULL_FN(range->handler))
551 					break;
552 			}
553 			ret |= range->handler(kvm, &gfn_range);
554 		}
555 	}
556 
557 	if (range->flush_on_ret && ret)
558 		kvm_flush_remote_tlbs(kvm);
559 
560 	if (locked)
561 		KVM_MMU_UNLOCK(kvm);
562 
563 	srcu_read_unlock(&kvm->srcu, idx);
564 
565 	/* The notifiers are averse to booleans. :-( */
566 	return (int)ret;
567 }
568 
569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
570 						unsigned long start,
571 						unsigned long end,
572 						pte_t pte,
573 						hva_handler_t handler)
574 {
575 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
576 	const struct kvm_hva_range range = {
577 		.start		= start,
578 		.end		= end,
579 		.pte		= pte,
580 		.handler	= handler,
581 		.on_lock	= (void *)kvm_null_fn,
582 		.flush_on_ret	= true,
583 		.may_block	= false,
584 	};
585 
586 	return __kvm_handle_hva_range(kvm, &range);
587 }
588 
589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
590 							 unsigned long start,
591 							 unsigned long end,
592 							 hva_handler_t handler)
593 {
594 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
595 	const struct kvm_hva_range range = {
596 		.start		= start,
597 		.end		= end,
598 		.pte		= __pte(0),
599 		.handler	= handler,
600 		.on_lock	= (void *)kvm_null_fn,
601 		.flush_on_ret	= false,
602 		.may_block	= false,
603 	};
604 
605 	return __kvm_handle_hva_range(kvm, &range);
606 }
607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
608 					struct mm_struct *mm,
609 					unsigned long address,
610 					pte_t pte)
611 {
612 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
613 
614 	trace_kvm_set_spte_hva(address);
615 
616 	/*
617 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
618 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
619 	 * including this one, found a relevant memslot at start(); rechecking
620 	 * memslots here is unnecessary.  Note, a false positive (count elevated
621 	 * by a different invalidation) is sub-optimal but functionally ok.
622 	 */
623 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
624 	if (!READ_ONCE(kvm->mmu_notifier_count))
625 		return;
626 
627 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
628 }
629 
630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
631 				   unsigned long end)
632 {
633 	/*
634 	 * The count increase must become visible at unlock time as no
635 	 * spte can be established without taking the mmu_lock and
636 	 * count is also read inside the mmu_lock critical section.
637 	 */
638 	kvm->mmu_notifier_count++;
639 	if (likely(kvm->mmu_notifier_count == 1)) {
640 		kvm->mmu_notifier_range_start = start;
641 		kvm->mmu_notifier_range_end = end;
642 	} else {
643 		/*
644 		 * Fully tracking multiple concurrent ranges has dimishing
645 		 * returns. Keep things simple and just find the minimal range
646 		 * which includes the current and new ranges. As there won't be
647 		 * enough information to subtract a range after its invalidate
648 		 * completes, any ranges invalidated concurrently will
649 		 * accumulate and persist until all outstanding invalidates
650 		 * complete.
651 		 */
652 		kvm->mmu_notifier_range_start =
653 			min(kvm->mmu_notifier_range_start, start);
654 		kvm->mmu_notifier_range_end =
655 			max(kvm->mmu_notifier_range_end, end);
656 	}
657 }
658 
659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
660 					const struct mmu_notifier_range *range)
661 {
662 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
663 	const struct kvm_hva_range hva_range = {
664 		.start		= range->start,
665 		.end		= range->end,
666 		.pte		= __pte(0),
667 		.handler	= kvm_unmap_gfn_range,
668 		.on_lock	= kvm_inc_notifier_count,
669 		.flush_on_ret	= true,
670 		.may_block	= mmu_notifier_range_blockable(range),
671 	};
672 
673 	trace_kvm_unmap_hva_range(range->start, range->end);
674 
675 	/*
676 	 * Prevent memslot modification between range_start() and range_end()
677 	 * so that conditionally locking provides the same result in both
678 	 * functions.  Without that guarantee, the mmu_notifier_count
679 	 * adjustments will be imbalanced.
680 	 *
681 	 * Pairs with the decrement in range_end().
682 	 */
683 	spin_lock(&kvm->mn_invalidate_lock);
684 	kvm->mn_active_invalidate_count++;
685 	spin_unlock(&kvm->mn_invalidate_lock);
686 
687 	__kvm_handle_hva_range(kvm, &hva_range);
688 
689 	return 0;
690 }
691 
692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
693 				   unsigned long end)
694 {
695 	/*
696 	 * This sequence increase will notify the kvm page fault that
697 	 * the page that is going to be mapped in the spte could have
698 	 * been freed.
699 	 */
700 	kvm->mmu_notifier_seq++;
701 	smp_wmb();
702 	/*
703 	 * The above sequence increase must be visible before the
704 	 * below count decrease, which is ensured by the smp_wmb above
705 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
706 	 */
707 	kvm->mmu_notifier_count--;
708 }
709 
710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
711 					const struct mmu_notifier_range *range)
712 {
713 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
714 	const struct kvm_hva_range hva_range = {
715 		.start		= range->start,
716 		.end		= range->end,
717 		.pte		= __pte(0),
718 		.handler	= (void *)kvm_null_fn,
719 		.on_lock	= kvm_dec_notifier_count,
720 		.flush_on_ret	= false,
721 		.may_block	= mmu_notifier_range_blockable(range),
722 	};
723 	bool wake;
724 
725 	__kvm_handle_hva_range(kvm, &hva_range);
726 
727 	/* Pairs with the increment in range_start(). */
728 	spin_lock(&kvm->mn_invalidate_lock);
729 	wake = (--kvm->mn_active_invalidate_count == 0);
730 	spin_unlock(&kvm->mn_invalidate_lock);
731 
732 	/*
733 	 * There can only be one waiter, since the wait happens under
734 	 * slots_lock.
735 	 */
736 	if (wake)
737 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
738 
739 	BUG_ON(kvm->mmu_notifier_count < 0);
740 }
741 
742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
743 					      struct mm_struct *mm,
744 					      unsigned long start,
745 					      unsigned long end)
746 {
747 	trace_kvm_age_hva(start, end);
748 
749 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
750 }
751 
752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
753 					struct mm_struct *mm,
754 					unsigned long start,
755 					unsigned long end)
756 {
757 	trace_kvm_age_hva(start, end);
758 
759 	/*
760 	 * Even though we do not flush TLB, this will still adversely
761 	 * affect performance on pre-Haswell Intel EPT, where there is
762 	 * no EPT Access Bit to clear so that we have to tear down EPT
763 	 * tables instead. If we find this unacceptable, we can always
764 	 * add a parameter to kvm_age_hva so that it effectively doesn't
765 	 * do anything on clear_young.
766 	 *
767 	 * Also note that currently we never issue secondary TLB flushes
768 	 * from clear_young, leaving this job up to the regular system
769 	 * cadence. If we find this inaccurate, we might come up with a
770 	 * more sophisticated heuristic later.
771 	 */
772 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
773 }
774 
775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
776 				       struct mm_struct *mm,
777 				       unsigned long address)
778 {
779 	trace_kvm_test_age_hva(address);
780 
781 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
782 					     kvm_test_age_gfn);
783 }
784 
785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
786 				     struct mm_struct *mm)
787 {
788 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
789 	int idx;
790 
791 	idx = srcu_read_lock(&kvm->srcu);
792 	kvm_arch_flush_shadow_all(kvm);
793 	srcu_read_unlock(&kvm->srcu, idx);
794 }
795 
796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
797 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
798 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
799 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
800 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
801 	.clear_young		= kvm_mmu_notifier_clear_young,
802 	.test_young		= kvm_mmu_notifier_test_young,
803 	.change_pte		= kvm_mmu_notifier_change_pte,
804 	.release		= kvm_mmu_notifier_release,
805 };
806 
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
810 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
811 }
812 
813 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
814 
815 static int kvm_init_mmu_notifier(struct kvm *kvm)
816 {
817 	return 0;
818 }
819 
820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821 
822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
823 static int kvm_pm_notifier_call(struct notifier_block *bl,
824 				unsigned long state,
825 				void *unused)
826 {
827 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
828 
829 	return kvm_arch_pm_notifier(kvm, state);
830 }
831 
832 static void kvm_init_pm_notifier(struct kvm *kvm)
833 {
834 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
835 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
836 	kvm->pm_notifier.priority = INT_MAX;
837 	register_pm_notifier(&kvm->pm_notifier);
838 }
839 
840 static void kvm_destroy_pm_notifier(struct kvm *kvm)
841 {
842 	unregister_pm_notifier(&kvm->pm_notifier);
843 }
844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
845 static void kvm_init_pm_notifier(struct kvm *kvm)
846 {
847 }
848 
849 static void kvm_destroy_pm_notifier(struct kvm *kvm)
850 {
851 }
852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
853 
854 static struct kvm_memslots *kvm_alloc_memslots(void)
855 {
856 	int i;
857 	struct kvm_memslots *slots;
858 
859 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
860 	if (!slots)
861 		return NULL;
862 
863 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
864 		slots->id_to_index[i] = -1;
865 
866 	return slots;
867 }
868 
869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871 	if (!memslot->dirty_bitmap)
872 		return;
873 
874 	kvfree(memslot->dirty_bitmap);
875 	memslot->dirty_bitmap = NULL;
876 }
877 
878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
879 {
880 	kvm_destroy_dirty_bitmap(slot);
881 
882 	kvm_arch_free_memslot(kvm, slot);
883 
884 	slot->flags = 0;
885 	slot->npages = 0;
886 }
887 
888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
889 {
890 	struct kvm_memory_slot *memslot;
891 
892 	if (!slots)
893 		return;
894 
895 	kvm_for_each_memslot(memslot, slots)
896 		kvm_free_memslot(kvm, memslot);
897 
898 	kvfree(slots);
899 }
900 
901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
902 {
903 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
904 	case KVM_STATS_TYPE_INSTANT:
905 		return 0444;
906 	case KVM_STATS_TYPE_CUMULATIVE:
907 	case KVM_STATS_TYPE_PEAK:
908 	default:
909 		return 0644;
910 	}
911 }
912 
913 
914 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
915 {
916 	int i;
917 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
918 				      kvm_vcpu_stats_header.num_desc;
919 
920 	if (!kvm->debugfs_dentry)
921 		return;
922 
923 	debugfs_remove_recursive(kvm->debugfs_dentry);
924 
925 	if (kvm->debugfs_stat_data) {
926 		for (i = 0; i < kvm_debugfs_num_entries; i++)
927 			kfree(kvm->debugfs_stat_data[i]);
928 		kfree(kvm->debugfs_stat_data);
929 	}
930 }
931 
932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
933 {
934 	static DEFINE_MUTEX(kvm_debugfs_lock);
935 	struct dentry *dent;
936 	char dir_name[ITOA_MAX_LEN * 2];
937 	struct kvm_stat_data *stat_data;
938 	const struct _kvm_stats_desc *pdesc;
939 	int i, ret;
940 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
941 				      kvm_vcpu_stats_header.num_desc;
942 
943 	if (!debugfs_initialized())
944 		return 0;
945 
946 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
947 	mutex_lock(&kvm_debugfs_lock);
948 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
949 	if (dent) {
950 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
951 		dput(dent);
952 		mutex_unlock(&kvm_debugfs_lock);
953 		return 0;
954 	}
955 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
956 	mutex_unlock(&kvm_debugfs_lock);
957 	if (IS_ERR(dent))
958 		return 0;
959 
960 	kvm->debugfs_dentry = dent;
961 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
962 					 sizeof(*kvm->debugfs_stat_data),
963 					 GFP_KERNEL_ACCOUNT);
964 	if (!kvm->debugfs_stat_data)
965 		return -ENOMEM;
966 
967 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
968 		pdesc = &kvm_vm_stats_desc[i];
969 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
970 		if (!stat_data)
971 			return -ENOMEM;
972 
973 		stat_data->kvm = kvm;
974 		stat_data->desc = pdesc;
975 		stat_data->kind = KVM_STAT_VM;
976 		kvm->debugfs_stat_data[i] = stat_data;
977 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
978 				    kvm->debugfs_dentry, stat_data,
979 				    &stat_fops_per_vm);
980 	}
981 
982 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
983 		pdesc = &kvm_vcpu_stats_desc[i];
984 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
985 		if (!stat_data)
986 			return -ENOMEM;
987 
988 		stat_data->kvm = kvm;
989 		stat_data->desc = pdesc;
990 		stat_data->kind = KVM_STAT_VCPU;
991 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
992 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
993 				    kvm->debugfs_dentry, stat_data,
994 				    &stat_fops_per_vm);
995 	}
996 
997 	ret = kvm_arch_create_vm_debugfs(kvm);
998 	if (ret) {
999 		kvm_destroy_vm_debugfs(kvm);
1000 		return i;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Called after the VM is otherwise initialized, but just before adding it to
1008  * the vm_list.
1009  */
1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1011 {
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Called just after removing the VM from the vm_list, but before doing any
1017  * other destruction.
1018  */
1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1020 {
1021 }
1022 
1023 /*
1024  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1025  * be setup already, so we can create arch-specific debugfs entries under it.
1026  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1027  * a per-arch destroy interface is not needed.
1028  */
1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1030 {
1031 	return 0;
1032 }
1033 
1034 static struct kvm *kvm_create_vm(unsigned long type)
1035 {
1036 	struct kvm *kvm = kvm_arch_alloc_vm();
1037 	int r = -ENOMEM;
1038 	int i;
1039 
1040 	if (!kvm)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	KVM_MMU_LOCK_INIT(kvm);
1044 	mmgrab(current->mm);
1045 	kvm->mm = current->mm;
1046 	kvm_eventfd_init(kvm);
1047 	mutex_init(&kvm->lock);
1048 	mutex_init(&kvm->irq_lock);
1049 	mutex_init(&kvm->slots_lock);
1050 	mutex_init(&kvm->slots_arch_lock);
1051 	spin_lock_init(&kvm->mn_invalidate_lock);
1052 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1053 
1054 	INIT_LIST_HEAD(&kvm->devices);
1055 
1056 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1057 
1058 	if (init_srcu_struct(&kvm->srcu))
1059 		goto out_err_no_srcu;
1060 	if (init_srcu_struct(&kvm->irq_srcu))
1061 		goto out_err_no_irq_srcu;
1062 
1063 	refcount_set(&kvm->users_count, 1);
1064 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1065 		struct kvm_memslots *slots = kvm_alloc_memslots();
1066 
1067 		if (!slots)
1068 			goto out_err_no_arch_destroy_vm;
1069 		/* Generations must be different for each address space. */
1070 		slots->generation = i;
1071 		rcu_assign_pointer(kvm->memslots[i], slots);
1072 	}
1073 
1074 	for (i = 0; i < KVM_NR_BUSES; i++) {
1075 		rcu_assign_pointer(kvm->buses[i],
1076 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1077 		if (!kvm->buses[i])
1078 			goto out_err_no_arch_destroy_vm;
1079 	}
1080 
1081 	kvm->max_halt_poll_ns = halt_poll_ns;
1082 
1083 	r = kvm_arch_init_vm(kvm, type);
1084 	if (r)
1085 		goto out_err_no_arch_destroy_vm;
1086 
1087 	r = hardware_enable_all();
1088 	if (r)
1089 		goto out_err_no_disable;
1090 
1091 #ifdef CONFIG_HAVE_KVM_IRQFD
1092 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1093 #endif
1094 
1095 	r = kvm_init_mmu_notifier(kvm);
1096 	if (r)
1097 		goto out_err_no_mmu_notifier;
1098 
1099 	r = kvm_arch_post_init_vm(kvm);
1100 	if (r)
1101 		goto out_err;
1102 
1103 	mutex_lock(&kvm_lock);
1104 	list_add(&kvm->vm_list, &vm_list);
1105 	mutex_unlock(&kvm_lock);
1106 
1107 	preempt_notifier_inc();
1108 	kvm_init_pm_notifier(kvm);
1109 
1110 	return kvm;
1111 
1112 out_err:
1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1114 	if (kvm->mmu_notifier.ops)
1115 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1116 #endif
1117 out_err_no_mmu_notifier:
1118 	hardware_disable_all();
1119 out_err_no_disable:
1120 	kvm_arch_destroy_vm(kvm);
1121 out_err_no_arch_destroy_vm:
1122 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1123 	for (i = 0; i < KVM_NR_BUSES; i++)
1124 		kfree(kvm_get_bus(kvm, i));
1125 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1126 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1127 	cleanup_srcu_struct(&kvm->irq_srcu);
1128 out_err_no_irq_srcu:
1129 	cleanup_srcu_struct(&kvm->srcu);
1130 out_err_no_srcu:
1131 	kvm_arch_free_vm(kvm);
1132 	mmdrop(current->mm);
1133 	return ERR_PTR(r);
1134 }
1135 
1136 static void kvm_destroy_devices(struct kvm *kvm)
1137 {
1138 	struct kvm_device *dev, *tmp;
1139 
1140 	/*
1141 	 * We do not need to take the kvm->lock here, because nobody else
1142 	 * has a reference to the struct kvm at this point and therefore
1143 	 * cannot access the devices list anyhow.
1144 	 */
1145 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1146 		list_del(&dev->vm_node);
1147 		dev->ops->destroy(dev);
1148 	}
1149 }
1150 
1151 static void kvm_destroy_vm(struct kvm *kvm)
1152 {
1153 	int i;
1154 	struct mm_struct *mm = kvm->mm;
1155 
1156 	kvm_destroy_pm_notifier(kvm);
1157 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1158 	kvm_destroy_vm_debugfs(kvm);
1159 	kvm_arch_sync_events(kvm);
1160 	mutex_lock(&kvm_lock);
1161 	list_del(&kvm->vm_list);
1162 	mutex_unlock(&kvm_lock);
1163 	kvm_arch_pre_destroy_vm(kvm);
1164 
1165 	kvm_free_irq_routing(kvm);
1166 	for (i = 0; i < KVM_NR_BUSES; i++) {
1167 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1168 
1169 		if (bus)
1170 			kvm_io_bus_destroy(bus);
1171 		kvm->buses[i] = NULL;
1172 	}
1173 	kvm_coalesced_mmio_free(kvm);
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1176 	/*
1177 	 * At this point, pending calls to invalidate_range_start()
1178 	 * have completed but no more MMU notifiers will run, so
1179 	 * mn_active_invalidate_count may remain unbalanced.
1180 	 * No threads can be waiting in install_new_memslots as the
1181 	 * last reference on KVM has been dropped, but freeing
1182 	 * memslots would deadlock without this manual intervention.
1183 	 */
1184 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1185 	kvm->mn_active_invalidate_count = 0;
1186 #else
1187 	kvm_arch_flush_shadow_all(kvm);
1188 #endif
1189 	kvm_arch_destroy_vm(kvm);
1190 	kvm_destroy_devices(kvm);
1191 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1192 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1193 	cleanup_srcu_struct(&kvm->irq_srcu);
1194 	cleanup_srcu_struct(&kvm->srcu);
1195 	kvm_arch_free_vm(kvm);
1196 	preempt_notifier_dec();
1197 	hardware_disable_all();
1198 	mmdrop(mm);
1199 }
1200 
1201 void kvm_get_kvm(struct kvm *kvm)
1202 {
1203 	refcount_inc(&kvm->users_count);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1206 
1207 /*
1208  * Make sure the vm is not during destruction, which is a safe version of
1209  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1210  */
1211 bool kvm_get_kvm_safe(struct kvm *kvm)
1212 {
1213 	return refcount_inc_not_zero(&kvm->users_count);
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1216 
1217 void kvm_put_kvm(struct kvm *kvm)
1218 {
1219 	if (refcount_dec_and_test(&kvm->users_count))
1220 		kvm_destroy_vm(kvm);
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1223 
1224 /*
1225  * Used to put a reference that was taken on behalf of an object associated
1226  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1227  * of the new file descriptor fails and the reference cannot be transferred to
1228  * its final owner.  In such cases, the caller is still actively using @kvm and
1229  * will fail miserably if the refcount unexpectedly hits zero.
1230  */
1231 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1232 {
1233 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1236 
1237 static int kvm_vm_release(struct inode *inode, struct file *filp)
1238 {
1239 	struct kvm *kvm = filp->private_data;
1240 
1241 	kvm_irqfd_release(kvm);
1242 
1243 	kvm_put_kvm(kvm);
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Allocation size is twice as large as the actual dirty bitmap size.
1249  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1250  */
1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1252 {
1253 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1254 
1255 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1256 	if (!memslot->dirty_bitmap)
1257 		return -ENOMEM;
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Delete a memslot by decrementing the number of used slots and shifting all
1264  * other entries in the array forward one spot.
1265  */
1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1267 				      struct kvm_memory_slot *memslot)
1268 {
1269 	struct kvm_memory_slot *mslots = slots->memslots;
1270 	int i;
1271 
1272 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1273 		return;
1274 
1275 	slots->used_slots--;
1276 
1277 	if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1278 		atomic_set(&slots->last_used_slot, 0);
1279 
1280 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1281 		mslots[i] = mslots[i + 1];
1282 		slots->id_to_index[mslots[i].id] = i;
1283 	}
1284 	mslots[i] = *memslot;
1285 	slots->id_to_index[memslot->id] = -1;
1286 }
1287 
1288 /*
1289  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1290  * the new slot's initial index into the memslots array.
1291  */
1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1293 {
1294 	return slots->used_slots++;
1295 }
1296 
1297 /*
1298  * Move a changed memslot backwards in the array by shifting existing slots
1299  * with a higher GFN toward the front of the array.  Note, the changed memslot
1300  * itself is not preserved in the array, i.e. not swapped at this time, only
1301  * its new index into the array is tracked.  Returns the changed memslot's
1302  * current index into the memslots array.
1303  */
1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1305 					    struct kvm_memory_slot *memslot)
1306 {
1307 	struct kvm_memory_slot *mslots = slots->memslots;
1308 	int i;
1309 
1310 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1311 	    WARN_ON_ONCE(!slots->used_slots))
1312 		return -1;
1313 
1314 	/*
1315 	 * Move the target memslot backward in the array by shifting existing
1316 	 * memslots with a higher GFN (than the target memslot) towards the
1317 	 * front of the array.
1318 	 */
1319 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1320 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1321 			break;
1322 
1323 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1324 
1325 		/* Shift the next memslot forward one and update its index. */
1326 		mslots[i] = mslots[i + 1];
1327 		slots->id_to_index[mslots[i].id] = i;
1328 	}
1329 	return i;
1330 }
1331 
1332 /*
1333  * Move a changed memslot forwards in the array by shifting existing slots with
1334  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1335  * is not preserved in the array, i.e. not swapped at this time, only its new
1336  * index into the array is tracked.  Returns the changed memslot's final index
1337  * into the memslots array.
1338  */
1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1340 					   struct kvm_memory_slot *memslot,
1341 					   int start)
1342 {
1343 	struct kvm_memory_slot *mslots = slots->memslots;
1344 	int i;
1345 
1346 	for (i = start; i > 0; i--) {
1347 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1348 			break;
1349 
1350 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1351 
1352 		/* Shift the next memslot back one and update its index. */
1353 		mslots[i] = mslots[i - 1];
1354 		slots->id_to_index[mslots[i].id] = i;
1355 	}
1356 	return i;
1357 }
1358 
1359 /*
1360  * Re-sort memslots based on their GFN to account for an added, deleted, or
1361  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1362  * memslot lookup.
1363  *
1364  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1365  * at memslots[0] has the highest GFN.
1366  *
1367  * The sorting algorithm takes advantage of having initially sorted memslots
1368  * and knowing the position of the changed memslot.  Sorting is also optimized
1369  * by not swapping the updated memslot and instead only shifting other memslots
1370  * and tracking the new index for the update memslot.  Only once its final
1371  * index is known is the updated memslot copied into its position in the array.
1372  *
1373  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1374  *    the end of the array.
1375  *
1376  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1377  *    end of the array and then it forward to its correct location.
1378  *
1379  *  - When moving a memslot, the algorithm first moves the updated memslot
1380  *    backward to handle the scenario where the memslot's GFN was changed to a
1381  *    lower value.  update_memslots() then falls through and runs the same flow
1382  *    as creating a memslot to move the memslot forward to handle the scenario
1383  *    where its GFN was changed to a higher value.
1384  *
1385  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1386  * historical reasons.  Originally, invalid memslots where denoted by having
1387  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1388  * to the end of the array.  The current algorithm uses dedicated logic to
1389  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1390  *
1391  * The other historical motiviation for highest->lowest was to improve the
1392  * performance of memslot lookup.  KVM originally used a linear search starting
1393  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1394  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1395  * single memslot above the 4gb boundary.  As the largest memslot is also the
1396  * most likely to be referenced, sorting it to the front of the array was
1397  * advantageous.  The current binary search starts from the middle of the array
1398  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1399  */
1400 static void update_memslots(struct kvm_memslots *slots,
1401 			    struct kvm_memory_slot *memslot,
1402 			    enum kvm_mr_change change)
1403 {
1404 	int i;
1405 
1406 	if (change == KVM_MR_DELETE) {
1407 		kvm_memslot_delete(slots, memslot);
1408 	} else {
1409 		if (change == KVM_MR_CREATE)
1410 			i = kvm_memslot_insert_back(slots);
1411 		else
1412 			i = kvm_memslot_move_backward(slots, memslot);
1413 		i = kvm_memslot_move_forward(slots, memslot, i);
1414 
1415 		/*
1416 		 * Copy the memslot to its new position in memslots and update
1417 		 * its index accordingly.
1418 		 */
1419 		slots->memslots[i] = *memslot;
1420 		slots->id_to_index[memslot->id] = i;
1421 	}
1422 }
1423 
1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1425 {
1426 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1427 
1428 #ifdef __KVM_HAVE_READONLY_MEM
1429 	valid_flags |= KVM_MEM_READONLY;
1430 #endif
1431 
1432 	if (mem->flags & ~valid_flags)
1433 		return -EINVAL;
1434 
1435 	return 0;
1436 }
1437 
1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1439 		int as_id, struct kvm_memslots *slots)
1440 {
1441 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1442 	u64 gen = old_memslots->generation;
1443 
1444 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1445 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1446 
1447 	/*
1448 	 * Do not store the new memslots while there are invalidations in
1449 	 * progress, otherwise the locking in invalidate_range_start and
1450 	 * invalidate_range_end will be unbalanced.
1451 	 */
1452 	spin_lock(&kvm->mn_invalidate_lock);
1453 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1454 	while (kvm->mn_active_invalidate_count) {
1455 		set_current_state(TASK_UNINTERRUPTIBLE);
1456 		spin_unlock(&kvm->mn_invalidate_lock);
1457 		schedule();
1458 		spin_lock(&kvm->mn_invalidate_lock);
1459 	}
1460 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1461 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1462 	spin_unlock(&kvm->mn_invalidate_lock);
1463 
1464 	/*
1465 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1466 	 * SRCU below in order to avoid deadlock with another thread
1467 	 * acquiring the slots_arch_lock in an srcu critical section.
1468 	 */
1469 	mutex_unlock(&kvm->slots_arch_lock);
1470 
1471 	synchronize_srcu_expedited(&kvm->srcu);
1472 
1473 	/*
1474 	 * Increment the new memslot generation a second time, dropping the
1475 	 * update in-progress flag and incrementing the generation based on
1476 	 * the number of address spaces.  This provides a unique and easily
1477 	 * identifiable generation number while the memslots are in flux.
1478 	 */
1479 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1480 
1481 	/*
1482 	 * Generations must be unique even across address spaces.  We do not need
1483 	 * a global counter for that, instead the generation space is evenly split
1484 	 * across address spaces.  For example, with two address spaces, address
1485 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1486 	 * use generations 1, 3, 5, ...
1487 	 */
1488 	gen += KVM_ADDRESS_SPACE_NUM;
1489 
1490 	kvm_arch_memslots_updated(kvm, gen);
1491 
1492 	slots->generation = gen;
1493 
1494 	return old_memslots;
1495 }
1496 
1497 static size_t kvm_memslots_size(int slots)
1498 {
1499 	return sizeof(struct kvm_memslots) +
1500 	       (sizeof(struct kvm_memory_slot) * slots);
1501 }
1502 
1503 static void kvm_copy_memslots(struct kvm_memslots *to,
1504 			      struct kvm_memslots *from)
1505 {
1506 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1507 }
1508 
1509 /*
1510  * Note, at a minimum, the current number of used slots must be allocated, even
1511  * when deleting a memslot, as we need a complete duplicate of the memslots for
1512  * use when invalidating a memslot prior to deleting/moving the memslot.
1513  */
1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1515 					     enum kvm_mr_change change)
1516 {
1517 	struct kvm_memslots *slots;
1518 	size_t new_size;
1519 
1520 	if (change == KVM_MR_CREATE)
1521 		new_size = kvm_memslots_size(old->used_slots + 1);
1522 	else
1523 		new_size = kvm_memslots_size(old->used_slots);
1524 
1525 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1526 	if (likely(slots))
1527 		kvm_copy_memslots(slots, old);
1528 
1529 	return slots;
1530 }
1531 
1532 static int kvm_set_memslot(struct kvm *kvm,
1533 			   const struct kvm_userspace_memory_region *mem,
1534 			   struct kvm_memory_slot *old,
1535 			   struct kvm_memory_slot *new, int as_id,
1536 			   enum kvm_mr_change change)
1537 {
1538 	struct kvm_memory_slot *slot;
1539 	struct kvm_memslots *slots;
1540 	int r;
1541 
1542 	/*
1543 	 * Released in install_new_memslots.
1544 	 *
1545 	 * Must be held from before the current memslots are copied until
1546 	 * after the new memslots are installed with rcu_assign_pointer,
1547 	 * then released before the synchronize srcu in install_new_memslots.
1548 	 *
1549 	 * When modifying memslots outside of the slots_lock, must be held
1550 	 * before reading the pointer to the current memslots until after all
1551 	 * changes to those memslots are complete.
1552 	 *
1553 	 * These rules ensure that installing new memslots does not lose
1554 	 * changes made to the previous memslots.
1555 	 */
1556 	mutex_lock(&kvm->slots_arch_lock);
1557 
1558 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1559 	if (!slots) {
1560 		mutex_unlock(&kvm->slots_arch_lock);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1565 		/*
1566 		 * Note, the INVALID flag needs to be in the appropriate entry
1567 		 * in the freshly allocated memslots, not in @old or @new.
1568 		 */
1569 		slot = id_to_memslot(slots, old->id);
1570 		slot->flags |= KVM_MEMSLOT_INVALID;
1571 
1572 		/*
1573 		 * We can re-use the memory from the old memslots.
1574 		 * It will be overwritten with a copy of the new memslots
1575 		 * after reacquiring the slots_arch_lock below.
1576 		 */
1577 		slots = install_new_memslots(kvm, as_id, slots);
1578 
1579 		/* From this point no new shadow pages pointing to a deleted,
1580 		 * or moved, memslot will be created.
1581 		 *
1582 		 * validation of sp->gfn happens in:
1583 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1584 		 *	- kvm_is_visible_gfn (mmu_check_root)
1585 		 */
1586 		kvm_arch_flush_shadow_memslot(kvm, slot);
1587 
1588 		/* Released in install_new_memslots. */
1589 		mutex_lock(&kvm->slots_arch_lock);
1590 
1591 		/*
1592 		 * The arch-specific fields of the memslots could have changed
1593 		 * between releasing the slots_arch_lock in
1594 		 * install_new_memslots and here, so get a fresh copy of the
1595 		 * slots.
1596 		 */
1597 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1598 	}
1599 
1600 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1601 	if (r)
1602 		goto out_slots;
1603 
1604 	update_memslots(slots, new, change);
1605 	slots = install_new_memslots(kvm, as_id, slots);
1606 
1607 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1608 
1609 	kvfree(slots);
1610 	return 0;
1611 
1612 out_slots:
1613 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1614 		slot = id_to_memslot(slots, old->id);
1615 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1616 		slots = install_new_memslots(kvm, as_id, slots);
1617 	} else {
1618 		mutex_unlock(&kvm->slots_arch_lock);
1619 	}
1620 	kvfree(slots);
1621 	return r;
1622 }
1623 
1624 static int kvm_delete_memslot(struct kvm *kvm,
1625 			      const struct kvm_userspace_memory_region *mem,
1626 			      struct kvm_memory_slot *old, int as_id)
1627 {
1628 	struct kvm_memory_slot new;
1629 	int r;
1630 
1631 	if (!old->npages)
1632 		return -EINVAL;
1633 
1634 	memset(&new, 0, sizeof(new));
1635 	new.id = old->id;
1636 	/*
1637 	 * This is only for debugging purpose; it should never be referenced
1638 	 * for a removed memslot.
1639 	 */
1640 	new.as_id = as_id;
1641 
1642 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1643 	if (r)
1644 		return r;
1645 
1646 	kvm_free_memslot(kvm, old);
1647 	return 0;
1648 }
1649 
1650 /*
1651  * Allocate some memory and give it an address in the guest physical address
1652  * space.
1653  *
1654  * Discontiguous memory is allowed, mostly for framebuffers.
1655  *
1656  * Must be called holding kvm->slots_lock for write.
1657  */
1658 int __kvm_set_memory_region(struct kvm *kvm,
1659 			    const struct kvm_userspace_memory_region *mem)
1660 {
1661 	struct kvm_memory_slot old, new;
1662 	struct kvm_memory_slot *tmp;
1663 	enum kvm_mr_change change;
1664 	int as_id, id;
1665 	int r;
1666 
1667 	r = check_memory_region_flags(mem);
1668 	if (r)
1669 		return r;
1670 
1671 	as_id = mem->slot >> 16;
1672 	id = (u16)mem->slot;
1673 
1674 	/* General sanity checks */
1675 	if (mem->memory_size & (PAGE_SIZE - 1))
1676 		return -EINVAL;
1677 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1678 		return -EINVAL;
1679 	/* We can read the guest memory with __xxx_user() later on. */
1680 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1681 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1682 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1683 			mem->memory_size))
1684 		return -EINVAL;
1685 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1686 		return -EINVAL;
1687 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1688 		return -EINVAL;
1689 
1690 	/*
1691 	 * Make a full copy of the old memslot, the pointer will become stale
1692 	 * when the memslots are re-sorted by update_memslots(), and the old
1693 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1694 	 * to free its resources and for arch specific behavior.
1695 	 */
1696 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1697 	if (tmp) {
1698 		old = *tmp;
1699 		tmp = NULL;
1700 	} else {
1701 		memset(&old, 0, sizeof(old));
1702 		old.id = id;
1703 	}
1704 
1705 	if (!mem->memory_size)
1706 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1707 
1708 	new.as_id = as_id;
1709 	new.id = id;
1710 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1711 	new.npages = mem->memory_size >> PAGE_SHIFT;
1712 	new.flags = mem->flags;
1713 	new.userspace_addr = mem->userspace_addr;
1714 
1715 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1716 		return -EINVAL;
1717 
1718 	if (!old.npages) {
1719 		change = KVM_MR_CREATE;
1720 		new.dirty_bitmap = NULL;
1721 		memset(&new.arch, 0, sizeof(new.arch));
1722 	} else { /* Modify an existing slot. */
1723 		if ((new.userspace_addr != old.userspace_addr) ||
1724 		    (new.npages != old.npages) ||
1725 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1726 			return -EINVAL;
1727 
1728 		if (new.base_gfn != old.base_gfn)
1729 			change = KVM_MR_MOVE;
1730 		else if (new.flags != old.flags)
1731 			change = KVM_MR_FLAGS_ONLY;
1732 		else /* Nothing to change. */
1733 			return 0;
1734 
1735 		/* Copy dirty_bitmap and arch from the current memslot. */
1736 		new.dirty_bitmap = old.dirty_bitmap;
1737 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1738 	}
1739 
1740 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1741 		/* Check for overlaps */
1742 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1743 			if (tmp->id == id)
1744 				continue;
1745 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1746 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1747 				return -EEXIST;
1748 		}
1749 	}
1750 
1751 	/* Allocate/free page dirty bitmap as needed */
1752 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1753 		new.dirty_bitmap = NULL;
1754 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1755 		r = kvm_alloc_dirty_bitmap(&new);
1756 		if (r)
1757 			return r;
1758 
1759 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1760 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1761 	}
1762 
1763 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1764 	if (r)
1765 		goto out_bitmap;
1766 
1767 	if (old.dirty_bitmap && !new.dirty_bitmap)
1768 		kvm_destroy_dirty_bitmap(&old);
1769 	return 0;
1770 
1771 out_bitmap:
1772 	if (new.dirty_bitmap && !old.dirty_bitmap)
1773 		kvm_destroy_dirty_bitmap(&new);
1774 	return r;
1775 }
1776 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1777 
1778 int kvm_set_memory_region(struct kvm *kvm,
1779 			  const struct kvm_userspace_memory_region *mem)
1780 {
1781 	int r;
1782 
1783 	mutex_lock(&kvm->slots_lock);
1784 	r = __kvm_set_memory_region(kvm, mem);
1785 	mutex_unlock(&kvm->slots_lock);
1786 	return r;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1789 
1790 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1791 					  struct kvm_userspace_memory_region *mem)
1792 {
1793 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1794 		return -EINVAL;
1795 
1796 	return kvm_set_memory_region(kvm, mem);
1797 }
1798 
1799 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1800 /**
1801  * kvm_get_dirty_log - get a snapshot of dirty pages
1802  * @kvm:	pointer to kvm instance
1803  * @log:	slot id and address to which we copy the log
1804  * @is_dirty:	set to '1' if any dirty pages were found
1805  * @memslot:	set to the associated memslot, always valid on success
1806  */
1807 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1808 		      int *is_dirty, struct kvm_memory_slot **memslot)
1809 {
1810 	struct kvm_memslots *slots;
1811 	int i, as_id, id;
1812 	unsigned long n;
1813 	unsigned long any = 0;
1814 
1815 	/* Dirty ring tracking is exclusive to dirty log tracking */
1816 	if (kvm->dirty_ring_size)
1817 		return -ENXIO;
1818 
1819 	*memslot = NULL;
1820 	*is_dirty = 0;
1821 
1822 	as_id = log->slot >> 16;
1823 	id = (u16)log->slot;
1824 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1825 		return -EINVAL;
1826 
1827 	slots = __kvm_memslots(kvm, as_id);
1828 	*memslot = id_to_memslot(slots, id);
1829 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1830 		return -ENOENT;
1831 
1832 	kvm_arch_sync_dirty_log(kvm, *memslot);
1833 
1834 	n = kvm_dirty_bitmap_bytes(*memslot);
1835 
1836 	for (i = 0; !any && i < n/sizeof(long); ++i)
1837 		any = (*memslot)->dirty_bitmap[i];
1838 
1839 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1840 		return -EFAULT;
1841 
1842 	if (any)
1843 		*is_dirty = 1;
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1847 
1848 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1849 /**
1850  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1851  *	and reenable dirty page tracking for the corresponding pages.
1852  * @kvm:	pointer to kvm instance
1853  * @log:	slot id and address to which we copy the log
1854  *
1855  * We need to keep it in mind that VCPU threads can write to the bitmap
1856  * concurrently. So, to avoid losing track of dirty pages we keep the
1857  * following order:
1858  *
1859  *    1. Take a snapshot of the bit and clear it if needed.
1860  *    2. Write protect the corresponding page.
1861  *    3. Copy the snapshot to the userspace.
1862  *    4. Upon return caller flushes TLB's if needed.
1863  *
1864  * Between 2 and 4, the guest may write to the page using the remaining TLB
1865  * entry.  This is not a problem because the page is reported dirty using
1866  * the snapshot taken before and step 4 ensures that writes done after
1867  * exiting to userspace will be logged for the next call.
1868  *
1869  */
1870 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1871 {
1872 	struct kvm_memslots *slots;
1873 	struct kvm_memory_slot *memslot;
1874 	int i, as_id, id;
1875 	unsigned long n;
1876 	unsigned long *dirty_bitmap;
1877 	unsigned long *dirty_bitmap_buffer;
1878 	bool flush;
1879 
1880 	/* Dirty ring tracking is exclusive to dirty log tracking */
1881 	if (kvm->dirty_ring_size)
1882 		return -ENXIO;
1883 
1884 	as_id = log->slot >> 16;
1885 	id = (u16)log->slot;
1886 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1887 		return -EINVAL;
1888 
1889 	slots = __kvm_memslots(kvm, as_id);
1890 	memslot = id_to_memslot(slots, id);
1891 	if (!memslot || !memslot->dirty_bitmap)
1892 		return -ENOENT;
1893 
1894 	dirty_bitmap = memslot->dirty_bitmap;
1895 
1896 	kvm_arch_sync_dirty_log(kvm, memslot);
1897 
1898 	n = kvm_dirty_bitmap_bytes(memslot);
1899 	flush = false;
1900 	if (kvm->manual_dirty_log_protect) {
1901 		/*
1902 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1903 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1904 		 * is some code duplication between this function and
1905 		 * kvm_get_dirty_log, but hopefully all architecture
1906 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1907 		 * can be eliminated.
1908 		 */
1909 		dirty_bitmap_buffer = dirty_bitmap;
1910 	} else {
1911 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1912 		memset(dirty_bitmap_buffer, 0, n);
1913 
1914 		KVM_MMU_LOCK(kvm);
1915 		for (i = 0; i < n / sizeof(long); i++) {
1916 			unsigned long mask;
1917 			gfn_t offset;
1918 
1919 			if (!dirty_bitmap[i])
1920 				continue;
1921 
1922 			flush = true;
1923 			mask = xchg(&dirty_bitmap[i], 0);
1924 			dirty_bitmap_buffer[i] = mask;
1925 
1926 			offset = i * BITS_PER_LONG;
1927 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1928 								offset, mask);
1929 		}
1930 		KVM_MMU_UNLOCK(kvm);
1931 	}
1932 
1933 	if (flush)
1934 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1935 
1936 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1937 		return -EFAULT;
1938 	return 0;
1939 }
1940 
1941 
1942 /**
1943  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1944  * @kvm: kvm instance
1945  * @log: slot id and address to which we copy the log
1946  *
1947  * Steps 1-4 below provide general overview of dirty page logging. See
1948  * kvm_get_dirty_log_protect() function description for additional details.
1949  *
1950  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1951  * always flush the TLB (step 4) even if previous step failed  and the dirty
1952  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1953  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1954  * writes will be marked dirty for next log read.
1955  *
1956  *   1. Take a snapshot of the bit and clear it if needed.
1957  *   2. Write protect the corresponding page.
1958  *   3. Copy the snapshot to the userspace.
1959  *   4. Flush TLB's if needed.
1960  */
1961 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1962 				      struct kvm_dirty_log *log)
1963 {
1964 	int r;
1965 
1966 	mutex_lock(&kvm->slots_lock);
1967 
1968 	r = kvm_get_dirty_log_protect(kvm, log);
1969 
1970 	mutex_unlock(&kvm->slots_lock);
1971 	return r;
1972 }
1973 
1974 /**
1975  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1976  *	and reenable dirty page tracking for the corresponding pages.
1977  * @kvm:	pointer to kvm instance
1978  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1979  */
1980 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1981 				       struct kvm_clear_dirty_log *log)
1982 {
1983 	struct kvm_memslots *slots;
1984 	struct kvm_memory_slot *memslot;
1985 	int as_id, id;
1986 	gfn_t offset;
1987 	unsigned long i, n;
1988 	unsigned long *dirty_bitmap;
1989 	unsigned long *dirty_bitmap_buffer;
1990 	bool flush;
1991 
1992 	/* Dirty ring tracking is exclusive to dirty log tracking */
1993 	if (kvm->dirty_ring_size)
1994 		return -ENXIO;
1995 
1996 	as_id = log->slot >> 16;
1997 	id = (u16)log->slot;
1998 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1999 		return -EINVAL;
2000 
2001 	if (log->first_page & 63)
2002 		return -EINVAL;
2003 
2004 	slots = __kvm_memslots(kvm, as_id);
2005 	memslot = id_to_memslot(slots, id);
2006 	if (!memslot || !memslot->dirty_bitmap)
2007 		return -ENOENT;
2008 
2009 	dirty_bitmap = memslot->dirty_bitmap;
2010 
2011 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2012 
2013 	if (log->first_page > memslot->npages ||
2014 	    log->num_pages > memslot->npages - log->first_page ||
2015 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2016 	    return -EINVAL;
2017 
2018 	kvm_arch_sync_dirty_log(kvm, memslot);
2019 
2020 	flush = false;
2021 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2022 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2023 		return -EFAULT;
2024 
2025 	KVM_MMU_LOCK(kvm);
2026 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2027 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2028 	     i++, offset += BITS_PER_LONG) {
2029 		unsigned long mask = *dirty_bitmap_buffer++;
2030 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2031 		if (!mask)
2032 			continue;
2033 
2034 		mask &= atomic_long_fetch_andnot(mask, p);
2035 
2036 		/*
2037 		 * mask contains the bits that really have been cleared.  This
2038 		 * never includes any bits beyond the length of the memslot (if
2039 		 * the length is not aligned to 64 pages), therefore it is not
2040 		 * a problem if userspace sets them in log->dirty_bitmap.
2041 		*/
2042 		if (mask) {
2043 			flush = true;
2044 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2045 								offset, mask);
2046 		}
2047 	}
2048 	KVM_MMU_UNLOCK(kvm);
2049 
2050 	if (flush)
2051 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2052 
2053 	return 0;
2054 }
2055 
2056 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2057 					struct kvm_clear_dirty_log *log)
2058 {
2059 	int r;
2060 
2061 	mutex_lock(&kvm->slots_lock);
2062 
2063 	r = kvm_clear_dirty_log_protect(kvm, log);
2064 
2065 	mutex_unlock(&kvm->slots_lock);
2066 	return r;
2067 }
2068 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2069 
2070 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2071 {
2072 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2075 
2076 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2077 {
2078 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2079 	struct kvm_memory_slot *slot;
2080 	int slot_index;
2081 
2082 	slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2083 	if (slot)
2084 		return slot;
2085 
2086 	/*
2087 	 * Fall back to searching all memslots. We purposely use
2088 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2089 	 * thrashing the VM-wide last_used_index in kvm_memslots.
2090 	 */
2091 	slot = search_memslots(slots, gfn, &slot_index);
2092 	if (slot) {
2093 		vcpu->last_used_slot = slot_index;
2094 		return slot;
2095 	}
2096 
2097 	return NULL;
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2100 
2101 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2102 {
2103 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2104 
2105 	return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2108 
2109 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2112 
2113 	return kvm_is_visible_memslot(memslot);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2116 
2117 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2118 {
2119 	struct vm_area_struct *vma;
2120 	unsigned long addr, size;
2121 
2122 	size = PAGE_SIZE;
2123 
2124 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2125 	if (kvm_is_error_hva(addr))
2126 		return PAGE_SIZE;
2127 
2128 	mmap_read_lock(current->mm);
2129 	vma = find_vma(current->mm, addr);
2130 	if (!vma)
2131 		goto out;
2132 
2133 	size = vma_kernel_pagesize(vma);
2134 
2135 out:
2136 	mmap_read_unlock(current->mm);
2137 
2138 	return size;
2139 }
2140 
2141 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2142 {
2143 	return slot->flags & KVM_MEM_READONLY;
2144 }
2145 
2146 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2147 				       gfn_t *nr_pages, bool write)
2148 {
2149 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2150 		return KVM_HVA_ERR_BAD;
2151 
2152 	if (memslot_is_readonly(slot) && write)
2153 		return KVM_HVA_ERR_RO_BAD;
2154 
2155 	if (nr_pages)
2156 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2157 
2158 	return __gfn_to_hva_memslot(slot, gfn);
2159 }
2160 
2161 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2162 				     gfn_t *nr_pages)
2163 {
2164 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2165 }
2166 
2167 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2168 					gfn_t gfn)
2169 {
2170 	return gfn_to_hva_many(slot, gfn, NULL);
2171 }
2172 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2173 
2174 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2175 {
2176 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2177 }
2178 EXPORT_SYMBOL_GPL(gfn_to_hva);
2179 
2180 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2185 
2186 /*
2187  * Return the hva of a @gfn and the R/W attribute if possible.
2188  *
2189  * @slot: the kvm_memory_slot which contains @gfn
2190  * @gfn: the gfn to be translated
2191  * @writable: used to return the read/write attribute of the @slot if the hva
2192  * is valid and @writable is not NULL
2193  */
2194 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2195 				      gfn_t gfn, bool *writable)
2196 {
2197 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2198 
2199 	if (!kvm_is_error_hva(hva) && writable)
2200 		*writable = !memslot_is_readonly(slot);
2201 
2202 	return hva;
2203 }
2204 
2205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2206 {
2207 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2208 
2209 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2210 }
2211 
2212 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2213 {
2214 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2215 
2216 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2217 }
2218 
2219 static inline int check_user_page_hwpoison(unsigned long addr)
2220 {
2221 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2222 
2223 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2224 	return rc == -EHWPOISON;
2225 }
2226 
2227 /*
2228  * The fast path to get the writable pfn which will be stored in @pfn,
2229  * true indicates success, otherwise false is returned.  It's also the
2230  * only part that runs if we can in atomic context.
2231  */
2232 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2233 			    bool *writable, kvm_pfn_t *pfn)
2234 {
2235 	struct page *page[1];
2236 
2237 	/*
2238 	 * Fast pin a writable pfn only if it is a write fault request
2239 	 * or the caller allows to map a writable pfn for a read fault
2240 	 * request.
2241 	 */
2242 	if (!(write_fault || writable))
2243 		return false;
2244 
2245 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2246 		*pfn = page_to_pfn(page[0]);
2247 
2248 		if (writable)
2249 			*writable = true;
2250 		return true;
2251 	}
2252 
2253 	return false;
2254 }
2255 
2256 /*
2257  * The slow path to get the pfn of the specified host virtual address,
2258  * 1 indicates success, -errno is returned if error is detected.
2259  */
2260 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2261 			   bool *writable, kvm_pfn_t *pfn)
2262 {
2263 	unsigned int flags = FOLL_HWPOISON;
2264 	struct page *page;
2265 	int npages = 0;
2266 
2267 	might_sleep();
2268 
2269 	if (writable)
2270 		*writable = write_fault;
2271 
2272 	if (write_fault)
2273 		flags |= FOLL_WRITE;
2274 	if (async)
2275 		flags |= FOLL_NOWAIT;
2276 
2277 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2278 	if (npages != 1)
2279 		return npages;
2280 
2281 	/* map read fault as writable if possible */
2282 	if (unlikely(!write_fault) && writable) {
2283 		struct page *wpage;
2284 
2285 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2286 			*writable = true;
2287 			put_page(page);
2288 			page = wpage;
2289 		}
2290 	}
2291 	*pfn = page_to_pfn(page);
2292 	return npages;
2293 }
2294 
2295 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2296 {
2297 	if (unlikely(!(vma->vm_flags & VM_READ)))
2298 		return false;
2299 
2300 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2301 		return false;
2302 
2303 	return true;
2304 }
2305 
2306 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2307 {
2308 	if (kvm_is_reserved_pfn(pfn))
2309 		return 1;
2310 	return get_page_unless_zero(pfn_to_page(pfn));
2311 }
2312 
2313 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2314 			       unsigned long addr, bool *async,
2315 			       bool write_fault, bool *writable,
2316 			       kvm_pfn_t *p_pfn)
2317 {
2318 	kvm_pfn_t pfn;
2319 	pte_t *ptep;
2320 	spinlock_t *ptl;
2321 	int r;
2322 
2323 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2324 	if (r) {
2325 		/*
2326 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2327 		 * not call the fault handler, so do it here.
2328 		 */
2329 		bool unlocked = false;
2330 		r = fixup_user_fault(current->mm, addr,
2331 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2332 				     &unlocked);
2333 		if (unlocked)
2334 			return -EAGAIN;
2335 		if (r)
2336 			return r;
2337 
2338 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2339 		if (r)
2340 			return r;
2341 	}
2342 
2343 	if (write_fault && !pte_write(*ptep)) {
2344 		pfn = KVM_PFN_ERR_RO_FAULT;
2345 		goto out;
2346 	}
2347 
2348 	if (writable)
2349 		*writable = pte_write(*ptep);
2350 	pfn = pte_pfn(*ptep);
2351 
2352 	/*
2353 	 * Get a reference here because callers of *hva_to_pfn* and
2354 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2355 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2356 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2357 	 * simply do nothing for reserved pfns.
2358 	 *
2359 	 * Whoever called remap_pfn_range is also going to call e.g.
2360 	 * unmap_mapping_range before the underlying pages are freed,
2361 	 * causing a call to our MMU notifier.
2362 	 *
2363 	 * Certain IO or PFNMAP mappings can be backed with valid
2364 	 * struct pages, but be allocated without refcounting e.g.,
2365 	 * tail pages of non-compound higher order allocations, which
2366 	 * would then underflow the refcount when the caller does the
2367 	 * required put_page. Don't allow those pages here.
2368 	 */
2369 	if (!kvm_try_get_pfn(pfn))
2370 		r = -EFAULT;
2371 
2372 out:
2373 	pte_unmap_unlock(ptep, ptl);
2374 	*p_pfn = pfn;
2375 
2376 	return r;
2377 }
2378 
2379 /*
2380  * Pin guest page in memory and return its pfn.
2381  * @addr: host virtual address which maps memory to the guest
2382  * @atomic: whether this function can sleep
2383  * @async: whether this function need to wait IO complete if the
2384  *         host page is not in the memory
2385  * @write_fault: whether we should get a writable host page
2386  * @writable: whether it allows to map a writable host page for !@write_fault
2387  *
2388  * The function will map a writable host page for these two cases:
2389  * 1): @write_fault = true
2390  * 2): @write_fault = false && @writable, @writable will tell the caller
2391  *     whether the mapping is writable.
2392  */
2393 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2394 			bool write_fault, bool *writable)
2395 {
2396 	struct vm_area_struct *vma;
2397 	kvm_pfn_t pfn = 0;
2398 	int npages, r;
2399 
2400 	/* we can do it either atomically or asynchronously, not both */
2401 	BUG_ON(atomic && async);
2402 
2403 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2404 		return pfn;
2405 
2406 	if (atomic)
2407 		return KVM_PFN_ERR_FAULT;
2408 
2409 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2410 	if (npages == 1)
2411 		return pfn;
2412 
2413 	mmap_read_lock(current->mm);
2414 	if (npages == -EHWPOISON ||
2415 	      (!async && check_user_page_hwpoison(addr))) {
2416 		pfn = KVM_PFN_ERR_HWPOISON;
2417 		goto exit;
2418 	}
2419 
2420 retry:
2421 	vma = vma_lookup(current->mm, addr);
2422 
2423 	if (vma == NULL)
2424 		pfn = KVM_PFN_ERR_FAULT;
2425 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2426 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2427 		if (r == -EAGAIN)
2428 			goto retry;
2429 		if (r < 0)
2430 			pfn = KVM_PFN_ERR_FAULT;
2431 	} else {
2432 		if (async && vma_is_valid(vma, write_fault))
2433 			*async = true;
2434 		pfn = KVM_PFN_ERR_FAULT;
2435 	}
2436 exit:
2437 	mmap_read_unlock(current->mm);
2438 	return pfn;
2439 }
2440 
2441 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2442 			       bool atomic, bool *async, bool write_fault,
2443 			       bool *writable, hva_t *hva)
2444 {
2445 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2446 
2447 	if (hva)
2448 		*hva = addr;
2449 
2450 	if (addr == KVM_HVA_ERR_RO_BAD) {
2451 		if (writable)
2452 			*writable = false;
2453 		return KVM_PFN_ERR_RO_FAULT;
2454 	}
2455 
2456 	if (kvm_is_error_hva(addr)) {
2457 		if (writable)
2458 			*writable = false;
2459 		return KVM_PFN_NOSLOT;
2460 	}
2461 
2462 	/* Do not map writable pfn in the readonly memslot. */
2463 	if (writable && memslot_is_readonly(slot)) {
2464 		*writable = false;
2465 		writable = NULL;
2466 	}
2467 
2468 	return hva_to_pfn(addr, atomic, async, write_fault,
2469 			  writable);
2470 }
2471 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2472 
2473 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2474 		      bool *writable)
2475 {
2476 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2477 				    write_fault, writable, NULL);
2478 }
2479 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2480 
2481 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2482 {
2483 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2484 }
2485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2486 
2487 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2488 {
2489 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2490 }
2491 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2492 
2493 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2494 {
2495 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2498 
2499 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2500 {
2501 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2502 }
2503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2504 
2505 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2506 {
2507 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2510 
2511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2512 			    struct page **pages, int nr_pages)
2513 {
2514 	unsigned long addr;
2515 	gfn_t entry = 0;
2516 
2517 	addr = gfn_to_hva_many(slot, gfn, &entry);
2518 	if (kvm_is_error_hva(addr))
2519 		return -1;
2520 
2521 	if (entry < nr_pages)
2522 		return 0;
2523 
2524 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2525 }
2526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2527 
2528 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2529 {
2530 	if (is_error_noslot_pfn(pfn))
2531 		return KVM_ERR_PTR_BAD_PAGE;
2532 
2533 	if (kvm_is_reserved_pfn(pfn)) {
2534 		WARN_ON(1);
2535 		return KVM_ERR_PTR_BAD_PAGE;
2536 	}
2537 
2538 	return pfn_to_page(pfn);
2539 }
2540 
2541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2542 {
2543 	kvm_pfn_t pfn;
2544 
2545 	pfn = gfn_to_pfn(kvm, gfn);
2546 
2547 	return kvm_pfn_to_page(pfn);
2548 }
2549 EXPORT_SYMBOL_GPL(gfn_to_page);
2550 
2551 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2552 {
2553 	if (pfn == 0)
2554 		return;
2555 
2556 	if (dirty)
2557 		kvm_release_pfn_dirty(pfn);
2558 	else
2559 		kvm_release_pfn_clean(pfn);
2560 }
2561 
2562 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2563 {
2564 	kvm_pfn_t pfn;
2565 	void *hva = NULL;
2566 	struct page *page = KVM_UNMAPPED_PAGE;
2567 
2568 	if (!map)
2569 		return -EINVAL;
2570 
2571 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2572 	if (is_error_noslot_pfn(pfn))
2573 		return -EINVAL;
2574 
2575 	if (pfn_valid(pfn)) {
2576 		page = pfn_to_page(pfn);
2577 		hva = kmap(page);
2578 #ifdef CONFIG_HAS_IOMEM
2579 	} else {
2580 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2581 #endif
2582 	}
2583 
2584 	if (!hva)
2585 		return -EFAULT;
2586 
2587 	map->page = page;
2588 	map->hva = hva;
2589 	map->pfn = pfn;
2590 	map->gfn = gfn;
2591 
2592 	return 0;
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2595 
2596 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2597 {
2598 	if (!map)
2599 		return;
2600 
2601 	if (!map->hva)
2602 		return;
2603 
2604 	if (map->page != KVM_UNMAPPED_PAGE)
2605 		kunmap(map->page);
2606 #ifdef CONFIG_HAS_IOMEM
2607 	else
2608 		memunmap(map->hva);
2609 #endif
2610 
2611 	if (dirty)
2612 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2613 
2614 	kvm_release_pfn(map->pfn, dirty);
2615 
2616 	map->hva = NULL;
2617 	map->page = NULL;
2618 }
2619 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2620 
2621 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2622 {
2623 	kvm_pfn_t pfn;
2624 
2625 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2626 
2627 	return kvm_pfn_to_page(pfn);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2630 
2631 void kvm_release_page_clean(struct page *page)
2632 {
2633 	WARN_ON(is_error_page(page));
2634 
2635 	kvm_release_pfn_clean(page_to_pfn(page));
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2638 
2639 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2640 {
2641 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2642 		put_page(pfn_to_page(pfn));
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2645 
2646 void kvm_release_page_dirty(struct page *page)
2647 {
2648 	WARN_ON(is_error_page(page));
2649 
2650 	kvm_release_pfn_dirty(page_to_pfn(page));
2651 }
2652 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2653 
2654 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2655 {
2656 	kvm_set_pfn_dirty(pfn);
2657 	kvm_release_pfn_clean(pfn);
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2660 
2661 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2662 {
2663 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2664 		SetPageDirty(pfn_to_page(pfn));
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2667 
2668 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2669 {
2670 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2671 		mark_page_accessed(pfn_to_page(pfn));
2672 }
2673 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2674 
2675 static int next_segment(unsigned long len, int offset)
2676 {
2677 	if (len > PAGE_SIZE - offset)
2678 		return PAGE_SIZE - offset;
2679 	else
2680 		return len;
2681 }
2682 
2683 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2684 				 void *data, int offset, int len)
2685 {
2686 	int r;
2687 	unsigned long addr;
2688 
2689 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2690 	if (kvm_is_error_hva(addr))
2691 		return -EFAULT;
2692 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2693 	if (r)
2694 		return -EFAULT;
2695 	return 0;
2696 }
2697 
2698 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2699 			int len)
2700 {
2701 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2702 
2703 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2706 
2707 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2708 			     int offset, int len)
2709 {
2710 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2711 
2712 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2715 
2716 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2717 {
2718 	gfn_t gfn = gpa >> PAGE_SHIFT;
2719 	int seg;
2720 	int offset = offset_in_page(gpa);
2721 	int ret;
2722 
2723 	while ((seg = next_segment(len, offset)) != 0) {
2724 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2725 		if (ret < 0)
2726 			return ret;
2727 		offset = 0;
2728 		len -= seg;
2729 		data += seg;
2730 		++gfn;
2731 	}
2732 	return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(kvm_read_guest);
2735 
2736 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2737 {
2738 	gfn_t gfn = gpa >> PAGE_SHIFT;
2739 	int seg;
2740 	int offset = offset_in_page(gpa);
2741 	int ret;
2742 
2743 	while ((seg = next_segment(len, offset)) != 0) {
2744 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2745 		if (ret < 0)
2746 			return ret;
2747 		offset = 0;
2748 		len -= seg;
2749 		data += seg;
2750 		++gfn;
2751 	}
2752 	return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2755 
2756 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2757 			           void *data, int offset, unsigned long len)
2758 {
2759 	int r;
2760 	unsigned long addr;
2761 
2762 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2763 	if (kvm_is_error_hva(addr))
2764 		return -EFAULT;
2765 	pagefault_disable();
2766 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2767 	pagefault_enable();
2768 	if (r)
2769 		return -EFAULT;
2770 	return 0;
2771 }
2772 
2773 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2774 			       void *data, unsigned long len)
2775 {
2776 	gfn_t gfn = gpa >> PAGE_SHIFT;
2777 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2778 	int offset = offset_in_page(gpa);
2779 
2780 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2783 
2784 static int __kvm_write_guest_page(struct kvm *kvm,
2785 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2786 			          const void *data, int offset, int len)
2787 {
2788 	int r;
2789 	unsigned long addr;
2790 
2791 	addr = gfn_to_hva_memslot(memslot, gfn);
2792 	if (kvm_is_error_hva(addr))
2793 		return -EFAULT;
2794 	r = __copy_to_user((void __user *)addr + offset, data, len);
2795 	if (r)
2796 		return -EFAULT;
2797 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2798 	return 0;
2799 }
2800 
2801 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2802 			 const void *data, int offset, int len)
2803 {
2804 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2805 
2806 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2809 
2810 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2811 			      const void *data, int offset, int len)
2812 {
2813 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2814 
2815 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2816 }
2817 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2818 
2819 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2820 		    unsigned long len)
2821 {
2822 	gfn_t gfn = gpa >> PAGE_SHIFT;
2823 	int seg;
2824 	int offset = offset_in_page(gpa);
2825 	int ret;
2826 
2827 	while ((seg = next_segment(len, offset)) != 0) {
2828 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2829 		if (ret < 0)
2830 			return ret;
2831 		offset = 0;
2832 		len -= seg;
2833 		data += seg;
2834 		++gfn;
2835 	}
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL_GPL(kvm_write_guest);
2839 
2840 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2841 		         unsigned long len)
2842 {
2843 	gfn_t gfn = gpa >> PAGE_SHIFT;
2844 	int seg;
2845 	int offset = offset_in_page(gpa);
2846 	int ret;
2847 
2848 	while ((seg = next_segment(len, offset)) != 0) {
2849 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2850 		if (ret < 0)
2851 			return ret;
2852 		offset = 0;
2853 		len -= seg;
2854 		data += seg;
2855 		++gfn;
2856 	}
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2860 
2861 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2862 				       struct gfn_to_hva_cache *ghc,
2863 				       gpa_t gpa, unsigned long len)
2864 {
2865 	int offset = offset_in_page(gpa);
2866 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2867 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2868 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2869 	gfn_t nr_pages_avail;
2870 
2871 	/* Update ghc->generation before performing any error checks. */
2872 	ghc->generation = slots->generation;
2873 
2874 	if (start_gfn > end_gfn) {
2875 		ghc->hva = KVM_HVA_ERR_BAD;
2876 		return -EINVAL;
2877 	}
2878 
2879 	/*
2880 	 * If the requested region crosses two memslots, we still
2881 	 * verify that the entire region is valid here.
2882 	 */
2883 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2884 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2885 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2886 					   &nr_pages_avail);
2887 		if (kvm_is_error_hva(ghc->hva))
2888 			return -EFAULT;
2889 	}
2890 
2891 	/* Use the slow path for cross page reads and writes. */
2892 	if (nr_pages_needed == 1)
2893 		ghc->hva += offset;
2894 	else
2895 		ghc->memslot = NULL;
2896 
2897 	ghc->gpa = gpa;
2898 	ghc->len = len;
2899 	return 0;
2900 }
2901 
2902 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2903 			      gpa_t gpa, unsigned long len)
2904 {
2905 	struct kvm_memslots *slots = kvm_memslots(kvm);
2906 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2909 
2910 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2911 				  void *data, unsigned int offset,
2912 				  unsigned long len)
2913 {
2914 	struct kvm_memslots *slots = kvm_memslots(kvm);
2915 	int r;
2916 	gpa_t gpa = ghc->gpa + offset;
2917 
2918 	BUG_ON(len + offset > ghc->len);
2919 
2920 	if (slots->generation != ghc->generation) {
2921 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2922 			return -EFAULT;
2923 	}
2924 
2925 	if (kvm_is_error_hva(ghc->hva))
2926 		return -EFAULT;
2927 
2928 	if (unlikely(!ghc->memslot))
2929 		return kvm_write_guest(kvm, gpa, data, len);
2930 
2931 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2932 	if (r)
2933 		return -EFAULT;
2934 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2935 
2936 	return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2939 
2940 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2941 			   void *data, unsigned long len)
2942 {
2943 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2946 
2947 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2948 				 void *data, unsigned int offset,
2949 				 unsigned long len)
2950 {
2951 	struct kvm_memslots *slots = kvm_memslots(kvm);
2952 	int r;
2953 	gpa_t gpa = ghc->gpa + offset;
2954 
2955 	BUG_ON(len + offset > ghc->len);
2956 
2957 	if (slots->generation != ghc->generation) {
2958 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2959 			return -EFAULT;
2960 	}
2961 
2962 	if (kvm_is_error_hva(ghc->hva))
2963 		return -EFAULT;
2964 
2965 	if (unlikely(!ghc->memslot))
2966 		return kvm_read_guest(kvm, gpa, data, len);
2967 
2968 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2969 	if (r)
2970 		return -EFAULT;
2971 
2972 	return 0;
2973 }
2974 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2975 
2976 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2977 			  void *data, unsigned long len)
2978 {
2979 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2980 }
2981 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2982 
2983 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2984 {
2985 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2986 	gfn_t gfn = gpa >> PAGE_SHIFT;
2987 	int seg;
2988 	int offset = offset_in_page(gpa);
2989 	int ret;
2990 
2991 	while ((seg = next_segment(len, offset)) != 0) {
2992 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2993 		if (ret < 0)
2994 			return ret;
2995 		offset = 0;
2996 		len -= seg;
2997 		++gfn;
2998 	}
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3002 
3003 void mark_page_dirty_in_slot(struct kvm *kvm,
3004 			     struct kvm_memory_slot *memslot,
3005 		 	     gfn_t gfn)
3006 {
3007 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3008 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3009 		u32 slot = (memslot->as_id << 16) | memslot->id;
3010 
3011 		if (kvm->dirty_ring_size)
3012 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3013 					    slot, rel_gfn);
3014 		else
3015 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3016 	}
3017 }
3018 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3019 
3020 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3021 {
3022 	struct kvm_memory_slot *memslot;
3023 
3024 	memslot = gfn_to_memslot(kvm, gfn);
3025 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3026 }
3027 EXPORT_SYMBOL_GPL(mark_page_dirty);
3028 
3029 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3030 {
3031 	struct kvm_memory_slot *memslot;
3032 
3033 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3034 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3037 
3038 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3039 {
3040 	if (!vcpu->sigset_active)
3041 		return;
3042 
3043 	/*
3044 	 * This does a lockless modification of ->real_blocked, which is fine
3045 	 * because, only current can change ->real_blocked and all readers of
3046 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3047 	 * of ->blocked.
3048 	 */
3049 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3050 }
3051 
3052 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3053 {
3054 	if (!vcpu->sigset_active)
3055 		return;
3056 
3057 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3058 	sigemptyset(&current->real_blocked);
3059 }
3060 
3061 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3062 {
3063 	unsigned int old, val, grow, grow_start;
3064 
3065 	old = val = vcpu->halt_poll_ns;
3066 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3067 	grow = READ_ONCE(halt_poll_ns_grow);
3068 	if (!grow)
3069 		goto out;
3070 
3071 	val *= grow;
3072 	if (val < grow_start)
3073 		val = grow_start;
3074 
3075 	if (val > vcpu->kvm->max_halt_poll_ns)
3076 		val = vcpu->kvm->max_halt_poll_ns;
3077 
3078 	vcpu->halt_poll_ns = val;
3079 out:
3080 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3081 }
3082 
3083 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3084 {
3085 	unsigned int old, val, shrink, grow_start;
3086 
3087 	old = val = vcpu->halt_poll_ns;
3088 	shrink = READ_ONCE(halt_poll_ns_shrink);
3089 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3090 	if (shrink == 0)
3091 		val = 0;
3092 	else
3093 		val /= shrink;
3094 
3095 	if (val < grow_start)
3096 		val = 0;
3097 
3098 	vcpu->halt_poll_ns = val;
3099 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3100 }
3101 
3102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3103 {
3104 	int ret = -EINTR;
3105 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3106 
3107 	if (kvm_arch_vcpu_runnable(vcpu)) {
3108 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3109 		goto out;
3110 	}
3111 	if (kvm_cpu_has_pending_timer(vcpu))
3112 		goto out;
3113 	if (signal_pending(current))
3114 		goto out;
3115 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3116 		goto out;
3117 
3118 	ret = 0;
3119 out:
3120 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3121 	return ret;
3122 }
3123 
3124 static inline void
3125 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3126 {
3127 	if (waited)
3128 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3129 	else
3130 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3131 }
3132 
3133 /*
3134  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3135  */
3136 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3137 {
3138 	ktime_t start, cur, poll_end;
3139 	bool waited = false;
3140 	u64 block_ns;
3141 
3142 	kvm_arch_vcpu_blocking(vcpu);
3143 
3144 	start = cur = poll_end = ktime_get();
3145 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3146 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3147 
3148 		++vcpu->stat.generic.halt_attempted_poll;
3149 		do {
3150 			/*
3151 			 * This sets KVM_REQ_UNHALT if an interrupt
3152 			 * arrives.
3153 			 */
3154 			if (kvm_vcpu_check_block(vcpu) < 0) {
3155 				++vcpu->stat.generic.halt_successful_poll;
3156 				if (!vcpu_valid_wakeup(vcpu))
3157 					++vcpu->stat.generic.halt_poll_invalid;
3158 
3159 				KVM_STATS_LOG_HIST_UPDATE(
3160 				      vcpu->stat.generic.halt_poll_success_hist,
3161 				      ktime_to_ns(ktime_get()) -
3162 				      ktime_to_ns(start));
3163 				goto out;
3164 			}
3165 			cpu_relax();
3166 			poll_end = cur = ktime_get();
3167 		} while (kvm_vcpu_can_poll(cur, stop));
3168 
3169 		KVM_STATS_LOG_HIST_UPDATE(
3170 				vcpu->stat.generic.halt_poll_fail_hist,
3171 				ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3172 	}
3173 
3174 
3175 	prepare_to_rcuwait(&vcpu->wait);
3176 	for (;;) {
3177 		set_current_state(TASK_INTERRUPTIBLE);
3178 
3179 		if (kvm_vcpu_check_block(vcpu) < 0)
3180 			break;
3181 
3182 		waited = true;
3183 		schedule();
3184 	}
3185 	finish_rcuwait(&vcpu->wait);
3186 	cur = ktime_get();
3187 	if (waited) {
3188 		vcpu->stat.generic.halt_wait_ns +=
3189 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3190 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3191 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3192 	}
3193 out:
3194 	kvm_arch_vcpu_unblocking(vcpu);
3195 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3196 
3197 	update_halt_poll_stats(
3198 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3199 
3200 	if (!kvm_arch_no_poll(vcpu)) {
3201 		if (!vcpu_valid_wakeup(vcpu)) {
3202 			shrink_halt_poll_ns(vcpu);
3203 		} else if (vcpu->kvm->max_halt_poll_ns) {
3204 			if (block_ns <= vcpu->halt_poll_ns)
3205 				;
3206 			/* we had a long block, shrink polling */
3207 			else if (vcpu->halt_poll_ns &&
3208 					block_ns > vcpu->kvm->max_halt_poll_ns)
3209 				shrink_halt_poll_ns(vcpu);
3210 			/* we had a short halt and our poll time is too small */
3211 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3212 					block_ns < vcpu->kvm->max_halt_poll_ns)
3213 				grow_halt_poll_ns(vcpu);
3214 		} else {
3215 			vcpu->halt_poll_ns = 0;
3216 		}
3217 	}
3218 
3219 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3220 	kvm_arch_vcpu_block_finish(vcpu);
3221 }
3222 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3223 
3224 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3225 {
3226 	struct rcuwait *waitp;
3227 
3228 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3229 	if (rcuwait_wake_up(waitp)) {
3230 		WRITE_ONCE(vcpu->ready, true);
3231 		++vcpu->stat.generic.halt_wakeup;
3232 		return true;
3233 	}
3234 
3235 	return false;
3236 }
3237 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3238 
3239 #ifndef CONFIG_S390
3240 /*
3241  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3242  */
3243 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3244 {
3245 	int me, cpu;
3246 
3247 	if (kvm_vcpu_wake_up(vcpu))
3248 		return;
3249 
3250 	/*
3251 	 * Note, the vCPU could get migrated to a different pCPU at any point
3252 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3253 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3254 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3255 	 * vCPU also requires it to leave IN_GUEST_MODE.
3256 	 */
3257 	me = get_cpu();
3258 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3259 		cpu = READ_ONCE(vcpu->cpu);
3260 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3261 			smp_send_reschedule(cpu);
3262 	}
3263 	put_cpu();
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3266 #endif /* !CONFIG_S390 */
3267 
3268 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3269 {
3270 	struct pid *pid;
3271 	struct task_struct *task = NULL;
3272 	int ret = 0;
3273 
3274 	rcu_read_lock();
3275 	pid = rcu_dereference(target->pid);
3276 	if (pid)
3277 		task = get_pid_task(pid, PIDTYPE_PID);
3278 	rcu_read_unlock();
3279 	if (!task)
3280 		return ret;
3281 	ret = yield_to(task, 1);
3282 	put_task_struct(task);
3283 
3284 	return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3287 
3288 /*
3289  * Helper that checks whether a VCPU is eligible for directed yield.
3290  * Most eligible candidate to yield is decided by following heuristics:
3291  *
3292  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3293  *  (preempted lock holder), indicated by @in_spin_loop.
3294  *  Set at the beginning and cleared at the end of interception/PLE handler.
3295  *
3296  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3297  *  chance last time (mostly it has become eligible now since we have probably
3298  *  yielded to lockholder in last iteration. This is done by toggling
3299  *  @dy_eligible each time a VCPU checked for eligibility.)
3300  *
3301  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3302  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3303  *  burning. Giving priority for a potential lock-holder increases lock
3304  *  progress.
3305  *
3306  *  Since algorithm is based on heuristics, accessing another VCPU data without
3307  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3308  *  and continue with next VCPU and so on.
3309  */
3310 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3311 {
3312 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3313 	bool eligible;
3314 
3315 	eligible = !vcpu->spin_loop.in_spin_loop ||
3316 		    vcpu->spin_loop.dy_eligible;
3317 
3318 	if (vcpu->spin_loop.in_spin_loop)
3319 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3320 
3321 	return eligible;
3322 #else
3323 	return true;
3324 #endif
3325 }
3326 
3327 /*
3328  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3329  * a vcpu_load/vcpu_put pair.  However, for most architectures
3330  * kvm_arch_vcpu_runnable does not require vcpu_load.
3331  */
3332 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3333 {
3334 	return kvm_arch_vcpu_runnable(vcpu);
3335 }
3336 
3337 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3338 {
3339 	if (kvm_arch_dy_runnable(vcpu))
3340 		return true;
3341 
3342 #ifdef CONFIG_KVM_ASYNC_PF
3343 	if (!list_empty_careful(&vcpu->async_pf.done))
3344 		return true;
3345 #endif
3346 
3347 	return false;
3348 }
3349 
3350 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3351 {
3352 	return false;
3353 }
3354 
3355 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3356 {
3357 	struct kvm *kvm = me->kvm;
3358 	struct kvm_vcpu *vcpu;
3359 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3360 	int yielded = 0;
3361 	int try = 3;
3362 	int pass;
3363 	int i;
3364 
3365 	kvm_vcpu_set_in_spin_loop(me, true);
3366 	/*
3367 	 * We boost the priority of a VCPU that is runnable but not
3368 	 * currently running, because it got preempted by something
3369 	 * else and called schedule in __vcpu_run.  Hopefully that
3370 	 * VCPU is holding the lock that we need and will release it.
3371 	 * We approximate round-robin by starting at the last boosted VCPU.
3372 	 */
3373 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3374 		kvm_for_each_vcpu(i, vcpu, kvm) {
3375 			if (!pass && i <= last_boosted_vcpu) {
3376 				i = last_boosted_vcpu;
3377 				continue;
3378 			} else if (pass && i > last_boosted_vcpu)
3379 				break;
3380 			if (!READ_ONCE(vcpu->ready))
3381 				continue;
3382 			if (vcpu == me)
3383 				continue;
3384 			if (rcuwait_active(&vcpu->wait) &&
3385 			    !vcpu_dy_runnable(vcpu))
3386 				continue;
3387 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3388 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3389 			    !kvm_arch_vcpu_in_kernel(vcpu))
3390 				continue;
3391 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3392 				continue;
3393 
3394 			yielded = kvm_vcpu_yield_to(vcpu);
3395 			if (yielded > 0) {
3396 				kvm->last_boosted_vcpu = i;
3397 				break;
3398 			} else if (yielded < 0) {
3399 				try--;
3400 				if (!try)
3401 					break;
3402 			}
3403 		}
3404 	}
3405 	kvm_vcpu_set_in_spin_loop(me, false);
3406 
3407 	/* Ensure vcpu is not eligible during next spinloop */
3408 	kvm_vcpu_set_dy_eligible(me, false);
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3411 
3412 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3413 {
3414 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3415 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3416 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3417 	     kvm->dirty_ring_size / PAGE_SIZE);
3418 #else
3419 	return false;
3420 #endif
3421 }
3422 
3423 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3424 {
3425 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3426 	struct page *page;
3427 
3428 	if (vmf->pgoff == 0)
3429 		page = virt_to_page(vcpu->run);
3430 #ifdef CONFIG_X86
3431 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3432 		page = virt_to_page(vcpu->arch.pio_data);
3433 #endif
3434 #ifdef CONFIG_KVM_MMIO
3435 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3436 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3437 #endif
3438 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3439 		page = kvm_dirty_ring_get_page(
3440 		    &vcpu->dirty_ring,
3441 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3442 	else
3443 		return kvm_arch_vcpu_fault(vcpu, vmf);
3444 	get_page(page);
3445 	vmf->page = page;
3446 	return 0;
3447 }
3448 
3449 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3450 	.fault = kvm_vcpu_fault,
3451 };
3452 
3453 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3454 {
3455 	struct kvm_vcpu *vcpu = file->private_data;
3456 	unsigned long pages = vma_pages(vma);
3457 
3458 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3459 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3460 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3461 		return -EINVAL;
3462 
3463 	vma->vm_ops = &kvm_vcpu_vm_ops;
3464 	return 0;
3465 }
3466 
3467 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3468 {
3469 	struct kvm_vcpu *vcpu = filp->private_data;
3470 
3471 	kvm_put_kvm(vcpu->kvm);
3472 	return 0;
3473 }
3474 
3475 static struct file_operations kvm_vcpu_fops = {
3476 	.release        = kvm_vcpu_release,
3477 	.unlocked_ioctl = kvm_vcpu_ioctl,
3478 	.mmap           = kvm_vcpu_mmap,
3479 	.llseek		= noop_llseek,
3480 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3481 };
3482 
3483 /*
3484  * Allocates an inode for the vcpu.
3485  */
3486 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3487 {
3488 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3489 
3490 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3491 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3492 }
3493 
3494 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3495 {
3496 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3497 	struct dentry *debugfs_dentry;
3498 	char dir_name[ITOA_MAX_LEN * 2];
3499 
3500 	if (!debugfs_initialized())
3501 		return;
3502 
3503 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3504 	debugfs_dentry = debugfs_create_dir(dir_name,
3505 					    vcpu->kvm->debugfs_dentry);
3506 
3507 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3508 #endif
3509 }
3510 
3511 /*
3512  * Creates some virtual cpus.  Good luck creating more than one.
3513  */
3514 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3515 {
3516 	int r;
3517 	struct kvm_vcpu *vcpu;
3518 	struct page *page;
3519 
3520 	if (id >= KVM_MAX_VCPU_IDS)
3521 		return -EINVAL;
3522 
3523 	mutex_lock(&kvm->lock);
3524 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3525 		mutex_unlock(&kvm->lock);
3526 		return -EINVAL;
3527 	}
3528 
3529 	kvm->created_vcpus++;
3530 	mutex_unlock(&kvm->lock);
3531 
3532 	r = kvm_arch_vcpu_precreate(kvm, id);
3533 	if (r)
3534 		goto vcpu_decrement;
3535 
3536 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3537 	if (!vcpu) {
3538 		r = -ENOMEM;
3539 		goto vcpu_decrement;
3540 	}
3541 
3542 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3543 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3544 	if (!page) {
3545 		r = -ENOMEM;
3546 		goto vcpu_free;
3547 	}
3548 	vcpu->run = page_address(page);
3549 
3550 	kvm_vcpu_init(vcpu, kvm, id);
3551 
3552 	r = kvm_arch_vcpu_create(vcpu);
3553 	if (r)
3554 		goto vcpu_free_run_page;
3555 
3556 	if (kvm->dirty_ring_size) {
3557 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3558 					 id, kvm->dirty_ring_size);
3559 		if (r)
3560 			goto arch_vcpu_destroy;
3561 	}
3562 
3563 	mutex_lock(&kvm->lock);
3564 	if (kvm_get_vcpu_by_id(kvm, id)) {
3565 		r = -EEXIST;
3566 		goto unlock_vcpu_destroy;
3567 	}
3568 
3569 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3570 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3571 
3572 	/* Fill the stats id string for the vcpu */
3573 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3574 		 task_pid_nr(current), id);
3575 
3576 	/* Now it's all set up, let userspace reach it */
3577 	kvm_get_kvm(kvm);
3578 	r = create_vcpu_fd(vcpu);
3579 	if (r < 0) {
3580 		kvm_put_kvm_no_destroy(kvm);
3581 		goto unlock_vcpu_destroy;
3582 	}
3583 
3584 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3585 
3586 	/*
3587 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3588 	 * before kvm->online_vcpu's incremented value.
3589 	 */
3590 	smp_wmb();
3591 	atomic_inc(&kvm->online_vcpus);
3592 
3593 	mutex_unlock(&kvm->lock);
3594 	kvm_arch_vcpu_postcreate(vcpu);
3595 	kvm_create_vcpu_debugfs(vcpu);
3596 	return r;
3597 
3598 unlock_vcpu_destroy:
3599 	mutex_unlock(&kvm->lock);
3600 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3601 arch_vcpu_destroy:
3602 	kvm_arch_vcpu_destroy(vcpu);
3603 vcpu_free_run_page:
3604 	free_page((unsigned long)vcpu->run);
3605 vcpu_free:
3606 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3607 vcpu_decrement:
3608 	mutex_lock(&kvm->lock);
3609 	kvm->created_vcpus--;
3610 	mutex_unlock(&kvm->lock);
3611 	return r;
3612 }
3613 
3614 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3615 {
3616 	if (sigset) {
3617 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3618 		vcpu->sigset_active = 1;
3619 		vcpu->sigset = *sigset;
3620 	} else
3621 		vcpu->sigset_active = 0;
3622 	return 0;
3623 }
3624 
3625 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3626 			      size_t size, loff_t *offset)
3627 {
3628 	struct kvm_vcpu *vcpu = file->private_data;
3629 
3630 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3631 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3632 			sizeof(vcpu->stat), user_buffer, size, offset);
3633 }
3634 
3635 static const struct file_operations kvm_vcpu_stats_fops = {
3636 	.read = kvm_vcpu_stats_read,
3637 	.llseek = noop_llseek,
3638 };
3639 
3640 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3641 {
3642 	int fd;
3643 	struct file *file;
3644 	char name[15 + ITOA_MAX_LEN + 1];
3645 
3646 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3647 
3648 	fd = get_unused_fd_flags(O_CLOEXEC);
3649 	if (fd < 0)
3650 		return fd;
3651 
3652 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3653 	if (IS_ERR(file)) {
3654 		put_unused_fd(fd);
3655 		return PTR_ERR(file);
3656 	}
3657 	file->f_mode |= FMODE_PREAD;
3658 	fd_install(fd, file);
3659 
3660 	return fd;
3661 }
3662 
3663 static long kvm_vcpu_ioctl(struct file *filp,
3664 			   unsigned int ioctl, unsigned long arg)
3665 {
3666 	struct kvm_vcpu *vcpu = filp->private_data;
3667 	void __user *argp = (void __user *)arg;
3668 	int r;
3669 	struct kvm_fpu *fpu = NULL;
3670 	struct kvm_sregs *kvm_sregs = NULL;
3671 
3672 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3673 		return -EIO;
3674 
3675 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3676 		return -EINVAL;
3677 
3678 	/*
3679 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3680 	 * execution; mutex_lock() would break them.
3681 	 */
3682 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3683 	if (r != -ENOIOCTLCMD)
3684 		return r;
3685 
3686 	if (mutex_lock_killable(&vcpu->mutex))
3687 		return -EINTR;
3688 	switch (ioctl) {
3689 	case KVM_RUN: {
3690 		struct pid *oldpid;
3691 		r = -EINVAL;
3692 		if (arg)
3693 			goto out;
3694 		oldpid = rcu_access_pointer(vcpu->pid);
3695 		if (unlikely(oldpid != task_pid(current))) {
3696 			/* The thread running this VCPU changed. */
3697 			struct pid *newpid;
3698 
3699 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3700 			if (r)
3701 				break;
3702 
3703 			newpid = get_task_pid(current, PIDTYPE_PID);
3704 			rcu_assign_pointer(vcpu->pid, newpid);
3705 			if (oldpid)
3706 				synchronize_rcu();
3707 			put_pid(oldpid);
3708 		}
3709 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3710 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3711 		break;
3712 	}
3713 	case KVM_GET_REGS: {
3714 		struct kvm_regs *kvm_regs;
3715 
3716 		r = -ENOMEM;
3717 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3718 		if (!kvm_regs)
3719 			goto out;
3720 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3721 		if (r)
3722 			goto out_free1;
3723 		r = -EFAULT;
3724 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3725 			goto out_free1;
3726 		r = 0;
3727 out_free1:
3728 		kfree(kvm_regs);
3729 		break;
3730 	}
3731 	case KVM_SET_REGS: {
3732 		struct kvm_regs *kvm_regs;
3733 
3734 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3735 		if (IS_ERR(kvm_regs)) {
3736 			r = PTR_ERR(kvm_regs);
3737 			goto out;
3738 		}
3739 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3740 		kfree(kvm_regs);
3741 		break;
3742 	}
3743 	case KVM_GET_SREGS: {
3744 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3745 				    GFP_KERNEL_ACCOUNT);
3746 		r = -ENOMEM;
3747 		if (!kvm_sregs)
3748 			goto out;
3749 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3750 		if (r)
3751 			goto out;
3752 		r = -EFAULT;
3753 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3754 			goto out;
3755 		r = 0;
3756 		break;
3757 	}
3758 	case KVM_SET_SREGS: {
3759 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3760 		if (IS_ERR(kvm_sregs)) {
3761 			r = PTR_ERR(kvm_sregs);
3762 			kvm_sregs = NULL;
3763 			goto out;
3764 		}
3765 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3766 		break;
3767 	}
3768 	case KVM_GET_MP_STATE: {
3769 		struct kvm_mp_state mp_state;
3770 
3771 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3772 		if (r)
3773 			goto out;
3774 		r = -EFAULT;
3775 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3776 			goto out;
3777 		r = 0;
3778 		break;
3779 	}
3780 	case KVM_SET_MP_STATE: {
3781 		struct kvm_mp_state mp_state;
3782 
3783 		r = -EFAULT;
3784 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3785 			goto out;
3786 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3787 		break;
3788 	}
3789 	case KVM_TRANSLATE: {
3790 		struct kvm_translation tr;
3791 
3792 		r = -EFAULT;
3793 		if (copy_from_user(&tr, argp, sizeof(tr)))
3794 			goto out;
3795 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3796 		if (r)
3797 			goto out;
3798 		r = -EFAULT;
3799 		if (copy_to_user(argp, &tr, sizeof(tr)))
3800 			goto out;
3801 		r = 0;
3802 		break;
3803 	}
3804 	case KVM_SET_GUEST_DEBUG: {
3805 		struct kvm_guest_debug dbg;
3806 
3807 		r = -EFAULT;
3808 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3809 			goto out;
3810 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3811 		break;
3812 	}
3813 	case KVM_SET_SIGNAL_MASK: {
3814 		struct kvm_signal_mask __user *sigmask_arg = argp;
3815 		struct kvm_signal_mask kvm_sigmask;
3816 		sigset_t sigset, *p;
3817 
3818 		p = NULL;
3819 		if (argp) {
3820 			r = -EFAULT;
3821 			if (copy_from_user(&kvm_sigmask, argp,
3822 					   sizeof(kvm_sigmask)))
3823 				goto out;
3824 			r = -EINVAL;
3825 			if (kvm_sigmask.len != sizeof(sigset))
3826 				goto out;
3827 			r = -EFAULT;
3828 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3829 					   sizeof(sigset)))
3830 				goto out;
3831 			p = &sigset;
3832 		}
3833 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3834 		break;
3835 	}
3836 	case KVM_GET_FPU: {
3837 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3838 		r = -ENOMEM;
3839 		if (!fpu)
3840 			goto out;
3841 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3842 		if (r)
3843 			goto out;
3844 		r = -EFAULT;
3845 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3846 			goto out;
3847 		r = 0;
3848 		break;
3849 	}
3850 	case KVM_SET_FPU: {
3851 		fpu = memdup_user(argp, sizeof(*fpu));
3852 		if (IS_ERR(fpu)) {
3853 			r = PTR_ERR(fpu);
3854 			fpu = NULL;
3855 			goto out;
3856 		}
3857 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3858 		break;
3859 	}
3860 	case KVM_GET_STATS_FD: {
3861 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3862 		break;
3863 	}
3864 	default:
3865 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3866 	}
3867 out:
3868 	mutex_unlock(&vcpu->mutex);
3869 	kfree(fpu);
3870 	kfree(kvm_sregs);
3871 	return r;
3872 }
3873 
3874 #ifdef CONFIG_KVM_COMPAT
3875 static long kvm_vcpu_compat_ioctl(struct file *filp,
3876 				  unsigned int ioctl, unsigned long arg)
3877 {
3878 	struct kvm_vcpu *vcpu = filp->private_data;
3879 	void __user *argp = compat_ptr(arg);
3880 	int r;
3881 
3882 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3883 		return -EIO;
3884 
3885 	switch (ioctl) {
3886 	case KVM_SET_SIGNAL_MASK: {
3887 		struct kvm_signal_mask __user *sigmask_arg = argp;
3888 		struct kvm_signal_mask kvm_sigmask;
3889 		sigset_t sigset;
3890 
3891 		if (argp) {
3892 			r = -EFAULT;
3893 			if (copy_from_user(&kvm_sigmask, argp,
3894 					   sizeof(kvm_sigmask)))
3895 				goto out;
3896 			r = -EINVAL;
3897 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3898 				goto out;
3899 			r = -EFAULT;
3900 			if (get_compat_sigset(&sigset,
3901 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3902 				goto out;
3903 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3904 		} else
3905 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3906 		break;
3907 	}
3908 	default:
3909 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3910 	}
3911 
3912 out:
3913 	return r;
3914 }
3915 #endif
3916 
3917 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3918 {
3919 	struct kvm_device *dev = filp->private_data;
3920 
3921 	if (dev->ops->mmap)
3922 		return dev->ops->mmap(dev, vma);
3923 
3924 	return -ENODEV;
3925 }
3926 
3927 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3928 				 int (*accessor)(struct kvm_device *dev,
3929 						 struct kvm_device_attr *attr),
3930 				 unsigned long arg)
3931 {
3932 	struct kvm_device_attr attr;
3933 
3934 	if (!accessor)
3935 		return -EPERM;
3936 
3937 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3938 		return -EFAULT;
3939 
3940 	return accessor(dev, &attr);
3941 }
3942 
3943 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3944 			     unsigned long arg)
3945 {
3946 	struct kvm_device *dev = filp->private_data;
3947 
3948 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
3949 		return -EIO;
3950 
3951 	switch (ioctl) {
3952 	case KVM_SET_DEVICE_ATTR:
3953 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3954 	case KVM_GET_DEVICE_ATTR:
3955 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3956 	case KVM_HAS_DEVICE_ATTR:
3957 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3958 	default:
3959 		if (dev->ops->ioctl)
3960 			return dev->ops->ioctl(dev, ioctl, arg);
3961 
3962 		return -ENOTTY;
3963 	}
3964 }
3965 
3966 static int kvm_device_release(struct inode *inode, struct file *filp)
3967 {
3968 	struct kvm_device *dev = filp->private_data;
3969 	struct kvm *kvm = dev->kvm;
3970 
3971 	if (dev->ops->release) {
3972 		mutex_lock(&kvm->lock);
3973 		list_del(&dev->vm_node);
3974 		dev->ops->release(dev);
3975 		mutex_unlock(&kvm->lock);
3976 	}
3977 
3978 	kvm_put_kvm(kvm);
3979 	return 0;
3980 }
3981 
3982 static const struct file_operations kvm_device_fops = {
3983 	.unlocked_ioctl = kvm_device_ioctl,
3984 	.release = kvm_device_release,
3985 	KVM_COMPAT(kvm_device_ioctl),
3986 	.mmap = kvm_device_mmap,
3987 };
3988 
3989 struct kvm_device *kvm_device_from_filp(struct file *filp)
3990 {
3991 	if (filp->f_op != &kvm_device_fops)
3992 		return NULL;
3993 
3994 	return filp->private_data;
3995 }
3996 
3997 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3998 #ifdef CONFIG_KVM_MPIC
3999 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4000 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4001 #endif
4002 };
4003 
4004 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4005 {
4006 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4007 		return -ENOSPC;
4008 
4009 	if (kvm_device_ops_table[type] != NULL)
4010 		return -EEXIST;
4011 
4012 	kvm_device_ops_table[type] = ops;
4013 	return 0;
4014 }
4015 
4016 void kvm_unregister_device_ops(u32 type)
4017 {
4018 	if (kvm_device_ops_table[type] != NULL)
4019 		kvm_device_ops_table[type] = NULL;
4020 }
4021 
4022 static int kvm_ioctl_create_device(struct kvm *kvm,
4023 				   struct kvm_create_device *cd)
4024 {
4025 	const struct kvm_device_ops *ops = NULL;
4026 	struct kvm_device *dev;
4027 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4028 	int type;
4029 	int ret;
4030 
4031 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4032 		return -ENODEV;
4033 
4034 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4035 	ops = kvm_device_ops_table[type];
4036 	if (ops == NULL)
4037 		return -ENODEV;
4038 
4039 	if (test)
4040 		return 0;
4041 
4042 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4043 	if (!dev)
4044 		return -ENOMEM;
4045 
4046 	dev->ops = ops;
4047 	dev->kvm = kvm;
4048 
4049 	mutex_lock(&kvm->lock);
4050 	ret = ops->create(dev, type);
4051 	if (ret < 0) {
4052 		mutex_unlock(&kvm->lock);
4053 		kfree(dev);
4054 		return ret;
4055 	}
4056 	list_add(&dev->vm_node, &kvm->devices);
4057 	mutex_unlock(&kvm->lock);
4058 
4059 	if (ops->init)
4060 		ops->init(dev);
4061 
4062 	kvm_get_kvm(kvm);
4063 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4064 	if (ret < 0) {
4065 		kvm_put_kvm_no_destroy(kvm);
4066 		mutex_lock(&kvm->lock);
4067 		list_del(&dev->vm_node);
4068 		mutex_unlock(&kvm->lock);
4069 		ops->destroy(dev);
4070 		return ret;
4071 	}
4072 
4073 	cd->fd = ret;
4074 	return 0;
4075 }
4076 
4077 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4078 {
4079 	switch (arg) {
4080 	case KVM_CAP_USER_MEMORY:
4081 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4082 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4083 	case KVM_CAP_INTERNAL_ERROR_DATA:
4084 #ifdef CONFIG_HAVE_KVM_MSI
4085 	case KVM_CAP_SIGNAL_MSI:
4086 #endif
4087 #ifdef CONFIG_HAVE_KVM_IRQFD
4088 	case KVM_CAP_IRQFD:
4089 	case KVM_CAP_IRQFD_RESAMPLE:
4090 #endif
4091 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4092 	case KVM_CAP_CHECK_EXTENSION_VM:
4093 	case KVM_CAP_ENABLE_CAP_VM:
4094 	case KVM_CAP_HALT_POLL:
4095 		return 1;
4096 #ifdef CONFIG_KVM_MMIO
4097 	case KVM_CAP_COALESCED_MMIO:
4098 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4099 	case KVM_CAP_COALESCED_PIO:
4100 		return 1;
4101 #endif
4102 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4103 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4104 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4105 #endif
4106 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4107 	case KVM_CAP_IRQ_ROUTING:
4108 		return KVM_MAX_IRQ_ROUTES;
4109 #endif
4110 #if KVM_ADDRESS_SPACE_NUM > 1
4111 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4112 		return KVM_ADDRESS_SPACE_NUM;
4113 #endif
4114 	case KVM_CAP_NR_MEMSLOTS:
4115 		return KVM_USER_MEM_SLOTS;
4116 	case KVM_CAP_DIRTY_LOG_RING:
4117 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4118 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4119 #else
4120 		return 0;
4121 #endif
4122 	case KVM_CAP_BINARY_STATS_FD:
4123 		return 1;
4124 	default:
4125 		break;
4126 	}
4127 	return kvm_vm_ioctl_check_extension(kvm, arg);
4128 }
4129 
4130 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4131 {
4132 	int r;
4133 
4134 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4135 		return -EINVAL;
4136 
4137 	/* the size should be power of 2 */
4138 	if (!size || (size & (size - 1)))
4139 		return -EINVAL;
4140 
4141 	/* Should be bigger to keep the reserved entries, or a page */
4142 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4143 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4144 		return -EINVAL;
4145 
4146 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4147 	    sizeof(struct kvm_dirty_gfn))
4148 		return -E2BIG;
4149 
4150 	/* We only allow it to set once */
4151 	if (kvm->dirty_ring_size)
4152 		return -EINVAL;
4153 
4154 	mutex_lock(&kvm->lock);
4155 
4156 	if (kvm->created_vcpus) {
4157 		/* We don't allow to change this value after vcpu created */
4158 		r = -EINVAL;
4159 	} else {
4160 		kvm->dirty_ring_size = size;
4161 		r = 0;
4162 	}
4163 
4164 	mutex_unlock(&kvm->lock);
4165 	return r;
4166 }
4167 
4168 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4169 {
4170 	int i;
4171 	struct kvm_vcpu *vcpu;
4172 	int cleared = 0;
4173 
4174 	if (!kvm->dirty_ring_size)
4175 		return -EINVAL;
4176 
4177 	mutex_lock(&kvm->slots_lock);
4178 
4179 	kvm_for_each_vcpu(i, vcpu, kvm)
4180 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4181 
4182 	mutex_unlock(&kvm->slots_lock);
4183 
4184 	if (cleared)
4185 		kvm_flush_remote_tlbs(kvm);
4186 
4187 	return cleared;
4188 }
4189 
4190 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4191 						  struct kvm_enable_cap *cap)
4192 {
4193 	return -EINVAL;
4194 }
4195 
4196 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4197 					   struct kvm_enable_cap *cap)
4198 {
4199 	switch (cap->cap) {
4200 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4201 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4202 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4203 
4204 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4205 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4206 
4207 		if (cap->flags || (cap->args[0] & ~allowed_options))
4208 			return -EINVAL;
4209 		kvm->manual_dirty_log_protect = cap->args[0];
4210 		return 0;
4211 	}
4212 #endif
4213 	case KVM_CAP_HALT_POLL: {
4214 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4215 			return -EINVAL;
4216 
4217 		kvm->max_halt_poll_ns = cap->args[0];
4218 		return 0;
4219 	}
4220 	case KVM_CAP_DIRTY_LOG_RING:
4221 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4222 	default:
4223 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4224 	}
4225 }
4226 
4227 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4228 			      size_t size, loff_t *offset)
4229 {
4230 	struct kvm *kvm = file->private_data;
4231 
4232 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4233 				&kvm_vm_stats_desc[0], &kvm->stat,
4234 				sizeof(kvm->stat), user_buffer, size, offset);
4235 }
4236 
4237 static const struct file_operations kvm_vm_stats_fops = {
4238 	.read = kvm_vm_stats_read,
4239 	.llseek = noop_llseek,
4240 };
4241 
4242 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4243 {
4244 	int fd;
4245 	struct file *file;
4246 
4247 	fd = get_unused_fd_flags(O_CLOEXEC);
4248 	if (fd < 0)
4249 		return fd;
4250 
4251 	file = anon_inode_getfile("kvm-vm-stats",
4252 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4253 	if (IS_ERR(file)) {
4254 		put_unused_fd(fd);
4255 		return PTR_ERR(file);
4256 	}
4257 	file->f_mode |= FMODE_PREAD;
4258 	fd_install(fd, file);
4259 
4260 	return fd;
4261 }
4262 
4263 static long kvm_vm_ioctl(struct file *filp,
4264 			   unsigned int ioctl, unsigned long arg)
4265 {
4266 	struct kvm *kvm = filp->private_data;
4267 	void __user *argp = (void __user *)arg;
4268 	int r;
4269 
4270 	if (kvm->mm != current->mm || kvm->vm_dead)
4271 		return -EIO;
4272 	switch (ioctl) {
4273 	case KVM_CREATE_VCPU:
4274 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4275 		break;
4276 	case KVM_ENABLE_CAP: {
4277 		struct kvm_enable_cap cap;
4278 
4279 		r = -EFAULT;
4280 		if (copy_from_user(&cap, argp, sizeof(cap)))
4281 			goto out;
4282 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4283 		break;
4284 	}
4285 	case KVM_SET_USER_MEMORY_REGION: {
4286 		struct kvm_userspace_memory_region kvm_userspace_mem;
4287 
4288 		r = -EFAULT;
4289 		if (copy_from_user(&kvm_userspace_mem, argp,
4290 						sizeof(kvm_userspace_mem)))
4291 			goto out;
4292 
4293 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4294 		break;
4295 	}
4296 	case KVM_GET_DIRTY_LOG: {
4297 		struct kvm_dirty_log log;
4298 
4299 		r = -EFAULT;
4300 		if (copy_from_user(&log, argp, sizeof(log)))
4301 			goto out;
4302 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4303 		break;
4304 	}
4305 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4306 	case KVM_CLEAR_DIRTY_LOG: {
4307 		struct kvm_clear_dirty_log log;
4308 
4309 		r = -EFAULT;
4310 		if (copy_from_user(&log, argp, sizeof(log)))
4311 			goto out;
4312 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4313 		break;
4314 	}
4315 #endif
4316 #ifdef CONFIG_KVM_MMIO
4317 	case KVM_REGISTER_COALESCED_MMIO: {
4318 		struct kvm_coalesced_mmio_zone zone;
4319 
4320 		r = -EFAULT;
4321 		if (copy_from_user(&zone, argp, sizeof(zone)))
4322 			goto out;
4323 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4324 		break;
4325 	}
4326 	case KVM_UNREGISTER_COALESCED_MMIO: {
4327 		struct kvm_coalesced_mmio_zone zone;
4328 
4329 		r = -EFAULT;
4330 		if (copy_from_user(&zone, argp, sizeof(zone)))
4331 			goto out;
4332 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4333 		break;
4334 	}
4335 #endif
4336 	case KVM_IRQFD: {
4337 		struct kvm_irqfd data;
4338 
4339 		r = -EFAULT;
4340 		if (copy_from_user(&data, argp, sizeof(data)))
4341 			goto out;
4342 		r = kvm_irqfd(kvm, &data);
4343 		break;
4344 	}
4345 	case KVM_IOEVENTFD: {
4346 		struct kvm_ioeventfd data;
4347 
4348 		r = -EFAULT;
4349 		if (copy_from_user(&data, argp, sizeof(data)))
4350 			goto out;
4351 		r = kvm_ioeventfd(kvm, &data);
4352 		break;
4353 	}
4354 #ifdef CONFIG_HAVE_KVM_MSI
4355 	case KVM_SIGNAL_MSI: {
4356 		struct kvm_msi msi;
4357 
4358 		r = -EFAULT;
4359 		if (copy_from_user(&msi, argp, sizeof(msi)))
4360 			goto out;
4361 		r = kvm_send_userspace_msi(kvm, &msi);
4362 		break;
4363 	}
4364 #endif
4365 #ifdef __KVM_HAVE_IRQ_LINE
4366 	case KVM_IRQ_LINE_STATUS:
4367 	case KVM_IRQ_LINE: {
4368 		struct kvm_irq_level irq_event;
4369 
4370 		r = -EFAULT;
4371 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4372 			goto out;
4373 
4374 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4375 					ioctl == KVM_IRQ_LINE_STATUS);
4376 		if (r)
4377 			goto out;
4378 
4379 		r = -EFAULT;
4380 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4381 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4382 				goto out;
4383 		}
4384 
4385 		r = 0;
4386 		break;
4387 	}
4388 #endif
4389 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4390 	case KVM_SET_GSI_ROUTING: {
4391 		struct kvm_irq_routing routing;
4392 		struct kvm_irq_routing __user *urouting;
4393 		struct kvm_irq_routing_entry *entries = NULL;
4394 
4395 		r = -EFAULT;
4396 		if (copy_from_user(&routing, argp, sizeof(routing)))
4397 			goto out;
4398 		r = -EINVAL;
4399 		if (!kvm_arch_can_set_irq_routing(kvm))
4400 			goto out;
4401 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4402 			goto out;
4403 		if (routing.flags)
4404 			goto out;
4405 		if (routing.nr) {
4406 			urouting = argp;
4407 			entries = vmemdup_user(urouting->entries,
4408 					       array_size(sizeof(*entries),
4409 							  routing.nr));
4410 			if (IS_ERR(entries)) {
4411 				r = PTR_ERR(entries);
4412 				goto out;
4413 			}
4414 		}
4415 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4416 					routing.flags);
4417 		kvfree(entries);
4418 		break;
4419 	}
4420 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4421 	case KVM_CREATE_DEVICE: {
4422 		struct kvm_create_device cd;
4423 
4424 		r = -EFAULT;
4425 		if (copy_from_user(&cd, argp, sizeof(cd)))
4426 			goto out;
4427 
4428 		r = kvm_ioctl_create_device(kvm, &cd);
4429 		if (r)
4430 			goto out;
4431 
4432 		r = -EFAULT;
4433 		if (copy_to_user(argp, &cd, sizeof(cd)))
4434 			goto out;
4435 
4436 		r = 0;
4437 		break;
4438 	}
4439 	case KVM_CHECK_EXTENSION:
4440 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4441 		break;
4442 	case KVM_RESET_DIRTY_RINGS:
4443 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4444 		break;
4445 	case KVM_GET_STATS_FD:
4446 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4447 		break;
4448 	default:
4449 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4450 	}
4451 out:
4452 	return r;
4453 }
4454 
4455 #ifdef CONFIG_KVM_COMPAT
4456 struct compat_kvm_dirty_log {
4457 	__u32 slot;
4458 	__u32 padding1;
4459 	union {
4460 		compat_uptr_t dirty_bitmap; /* one bit per page */
4461 		__u64 padding2;
4462 	};
4463 };
4464 
4465 struct compat_kvm_clear_dirty_log {
4466 	__u32 slot;
4467 	__u32 num_pages;
4468 	__u64 first_page;
4469 	union {
4470 		compat_uptr_t dirty_bitmap; /* one bit per page */
4471 		__u64 padding2;
4472 	};
4473 };
4474 
4475 static long kvm_vm_compat_ioctl(struct file *filp,
4476 			   unsigned int ioctl, unsigned long arg)
4477 {
4478 	struct kvm *kvm = filp->private_data;
4479 	int r;
4480 
4481 	if (kvm->mm != current->mm || kvm->vm_dead)
4482 		return -EIO;
4483 	switch (ioctl) {
4484 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4485 	case KVM_CLEAR_DIRTY_LOG: {
4486 		struct compat_kvm_clear_dirty_log compat_log;
4487 		struct kvm_clear_dirty_log log;
4488 
4489 		if (copy_from_user(&compat_log, (void __user *)arg,
4490 				   sizeof(compat_log)))
4491 			return -EFAULT;
4492 		log.slot	 = compat_log.slot;
4493 		log.num_pages	 = compat_log.num_pages;
4494 		log.first_page	 = compat_log.first_page;
4495 		log.padding2	 = compat_log.padding2;
4496 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4497 
4498 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4499 		break;
4500 	}
4501 #endif
4502 	case KVM_GET_DIRTY_LOG: {
4503 		struct compat_kvm_dirty_log compat_log;
4504 		struct kvm_dirty_log log;
4505 
4506 		if (copy_from_user(&compat_log, (void __user *)arg,
4507 				   sizeof(compat_log)))
4508 			return -EFAULT;
4509 		log.slot	 = compat_log.slot;
4510 		log.padding1	 = compat_log.padding1;
4511 		log.padding2	 = compat_log.padding2;
4512 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4513 
4514 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4515 		break;
4516 	}
4517 	default:
4518 		r = kvm_vm_ioctl(filp, ioctl, arg);
4519 	}
4520 	return r;
4521 }
4522 #endif
4523 
4524 static struct file_operations kvm_vm_fops = {
4525 	.release        = kvm_vm_release,
4526 	.unlocked_ioctl = kvm_vm_ioctl,
4527 	.llseek		= noop_llseek,
4528 	KVM_COMPAT(kvm_vm_compat_ioctl),
4529 };
4530 
4531 bool file_is_kvm(struct file *file)
4532 {
4533 	return file && file->f_op == &kvm_vm_fops;
4534 }
4535 EXPORT_SYMBOL_GPL(file_is_kvm);
4536 
4537 static int kvm_dev_ioctl_create_vm(unsigned long type)
4538 {
4539 	int r;
4540 	struct kvm *kvm;
4541 	struct file *file;
4542 
4543 	kvm = kvm_create_vm(type);
4544 	if (IS_ERR(kvm))
4545 		return PTR_ERR(kvm);
4546 #ifdef CONFIG_KVM_MMIO
4547 	r = kvm_coalesced_mmio_init(kvm);
4548 	if (r < 0)
4549 		goto put_kvm;
4550 #endif
4551 	r = get_unused_fd_flags(O_CLOEXEC);
4552 	if (r < 0)
4553 		goto put_kvm;
4554 
4555 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4556 			"kvm-%d", task_pid_nr(current));
4557 
4558 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4559 	if (IS_ERR(file)) {
4560 		put_unused_fd(r);
4561 		r = PTR_ERR(file);
4562 		goto put_kvm;
4563 	}
4564 
4565 	/*
4566 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4567 	 * already set, with ->release() being kvm_vm_release().  In error
4568 	 * cases it will be called by the final fput(file) and will take
4569 	 * care of doing kvm_put_kvm(kvm).
4570 	 */
4571 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4572 		put_unused_fd(r);
4573 		fput(file);
4574 		return -ENOMEM;
4575 	}
4576 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4577 
4578 	fd_install(r, file);
4579 	return r;
4580 
4581 put_kvm:
4582 	kvm_put_kvm(kvm);
4583 	return r;
4584 }
4585 
4586 static long kvm_dev_ioctl(struct file *filp,
4587 			  unsigned int ioctl, unsigned long arg)
4588 {
4589 	long r = -EINVAL;
4590 
4591 	switch (ioctl) {
4592 	case KVM_GET_API_VERSION:
4593 		if (arg)
4594 			goto out;
4595 		r = KVM_API_VERSION;
4596 		break;
4597 	case KVM_CREATE_VM:
4598 		r = kvm_dev_ioctl_create_vm(arg);
4599 		break;
4600 	case KVM_CHECK_EXTENSION:
4601 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4602 		break;
4603 	case KVM_GET_VCPU_MMAP_SIZE:
4604 		if (arg)
4605 			goto out;
4606 		r = PAGE_SIZE;     /* struct kvm_run */
4607 #ifdef CONFIG_X86
4608 		r += PAGE_SIZE;    /* pio data page */
4609 #endif
4610 #ifdef CONFIG_KVM_MMIO
4611 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4612 #endif
4613 		break;
4614 	case KVM_TRACE_ENABLE:
4615 	case KVM_TRACE_PAUSE:
4616 	case KVM_TRACE_DISABLE:
4617 		r = -EOPNOTSUPP;
4618 		break;
4619 	default:
4620 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4621 	}
4622 out:
4623 	return r;
4624 }
4625 
4626 static struct file_operations kvm_chardev_ops = {
4627 	.unlocked_ioctl = kvm_dev_ioctl,
4628 	.llseek		= noop_llseek,
4629 	KVM_COMPAT(kvm_dev_ioctl),
4630 };
4631 
4632 static struct miscdevice kvm_dev = {
4633 	KVM_MINOR,
4634 	"kvm",
4635 	&kvm_chardev_ops,
4636 };
4637 
4638 static void hardware_enable_nolock(void *junk)
4639 {
4640 	int cpu = raw_smp_processor_id();
4641 	int r;
4642 
4643 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4644 		return;
4645 
4646 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4647 
4648 	r = kvm_arch_hardware_enable();
4649 
4650 	if (r) {
4651 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4652 		atomic_inc(&hardware_enable_failed);
4653 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4654 	}
4655 }
4656 
4657 static int kvm_starting_cpu(unsigned int cpu)
4658 {
4659 	raw_spin_lock(&kvm_count_lock);
4660 	if (kvm_usage_count)
4661 		hardware_enable_nolock(NULL);
4662 	raw_spin_unlock(&kvm_count_lock);
4663 	return 0;
4664 }
4665 
4666 static void hardware_disable_nolock(void *junk)
4667 {
4668 	int cpu = raw_smp_processor_id();
4669 
4670 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4671 		return;
4672 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4673 	kvm_arch_hardware_disable();
4674 }
4675 
4676 static int kvm_dying_cpu(unsigned int cpu)
4677 {
4678 	raw_spin_lock(&kvm_count_lock);
4679 	if (kvm_usage_count)
4680 		hardware_disable_nolock(NULL);
4681 	raw_spin_unlock(&kvm_count_lock);
4682 	return 0;
4683 }
4684 
4685 static void hardware_disable_all_nolock(void)
4686 {
4687 	BUG_ON(!kvm_usage_count);
4688 
4689 	kvm_usage_count--;
4690 	if (!kvm_usage_count)
4691 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4692 }
4693 
4694 static void hardware_disable_all(void)
4695 {
4696 	raw_spin_lock(&kvm_count_lock);
4697 	hardware_disable_all_nolock();
4698 	raw_spin_unlock(&kvm_count_lock);
4699 }
4700 
4701 static int hardware_enable_all(void)
4702 {
4703 	int r = 0;
4704 
4705 	raw_spin_lock(&kvm_count_lock);
4706 
4707 	kvm_usage_count++;
4708 	if (kvm_usage_count == 1) {
4709 		atomic_set(&hardware_enable_failed, 0);
4710 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4711 
4712 		if (atomic_read(&hardware_enable_failed)) {
4713 			hardware_disable_all_nolock();
4714 			r = -EBUSY;
4715 		}
4716 	}
4717 
4718 	raw_spin_unlock(&kvm_count_lock);
4719 
4720 	return r;
4721 }
4722 
4723 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4724 		      void *v)
4725 {
4726 	/*
4727 	 * Some (well, at least mine) BIOSes hang on reboot if
4728 	 * in vmx root mode.
4729 	 *
4730 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4731 	 */
4732 	pr_info("kvm: exiting hardware virtualization\n");
4733 	kvm_rebooting = true;
4734 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4735 	return NOTIFY_OK;
4736 }
4737 
4738 static struct notifier_block kvm_reboot_notifier = {
4739 	.notifier_call = kvm_reboot,
4740 	.priority = 0,
4741 };
4742 
4743 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4744 {
4745 	int i;
4746 
4747 	for (i = 0; i < bus->dev_count; i++) {
4748 		struct kvm_io_device *pos = bus->range[i].dev;
4749 
4750 		kvm_iodevice_destructor(pos);
4751 	}
4752 	kfree(bus);
4753 }
4754 
4755 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4756 				 const struct kvm_io_range *r2)
4757 {
4758 	gpa_t addr1 = r1->addr;
4759 	gpa_t addr2 = r2->addr;
4760 
4761 	if (addr1 < addr2)
4762 		return -1;
4763 
4764 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4765 	 * accept any overlapping write.  Any order is acceptable for
4766 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4767 	 * we process all of them.
4768 	 */
4769 	if (r2->len) {
4770 		addr1 += r1->len;
4771 		addr2 += r2->len;
4772 	}
4773 
4774 	if (addr1 > addr2)
4775 		return 1;
4776 
4777 	return 0;
4778 }
4779 
4780 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4781 {
4782 	return kvm_io_bus_cmp(p1, p2);
4783 }
4784 
4785 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4786 			     gpa_t addr, int len)
4787 {
4788 	struct kvm_io_range *range, key;
4789 	int off;
4790 
4791 	key = (struct kvm_io_range) {
4792 		.addr = addr,
4793 		.len = len,
4794 	};
4795 
4796 	range = bsearch(&key, bus->range, bus->dev_count,
4797 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4798 	if (range == NULL)
4799 		return -ENOENT;
4800 
4801 	off = range - bus->range;
4802 
4803 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4804 		off--;
4805 
4806 	return off;
4807 }
4808 
4809 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4810 			      struct kvm_io_range *range, const void *val)
4811 {
4812 	int idx;
4813 
4814 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4815 	if (idx < 0)
4816 		return -EOPNOTSUPP;
4817 
4818 	while (idx < bus->dev_count &&
4819 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4820 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4821 					range->len, val))
4822 			return idx;
4823 		idx++;
4824 	}
4825 
4826 	return -EOPNOTSUPP;
4827 }
4828 
4829 /* kvm_io_bus_write - called under kvm->slots_lock */
4830 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4831 		     int len, const void *val)
4832 {
4833 	struct kvm_io_bus *bus;
4834 	struct kvm_io_range range;
4835 	int r;
4836 
4837 	range = (struct kvm_io_range) {
4838 		.addr = addr,
4839 		.len = len,
4840 	};
4841 
4842 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4843 	if (!bus)
4844 		return -ENOMEM;
4845 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4846 	return r < 0 ? r : 0;
4847 }
4848 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4849 
4850 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4851 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4852 			    gpa_t addr, int len, const void *val, long cookie)
4853 {
4854 	struct kvm_io_bus *bus;
4855 	struct kvm_io_range range;
4856 
4857 	range = (struct kvm_io_range) {
4858 		.addr = addr,
4859 		.len = len,
4860 	};
4861 
4862 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4863 	if (!bus)
4864 		return -ENOMEM;
4865 
4866 	/* First try the device referenced by cookie. */
4867 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4868 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4869 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4870 					val))
4871 			return cookie;
4872 
4873 	/*
4874 	 * cookie contained garbage; fall back to search and return the
4875 	 * correct cookie value.
4876 	 */
4877 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4878 }
4879 
4880 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4881 			     struct kvm_io_range *range, void *val)
4882 {
4883 	int idx;
4884 
4885 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4886 	if (idx < 0)
4887 		return -EOPNOTSUPP;
4888 
4889 	while (idx < bus->dev_count &&
4890 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4891 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4892 				       range->len, val))
4893 			return idx;
4894 		idx++;
4895 	}
4896 
4897 	return -EOPNOTSUPP;
4898 }
4899 
4900 /* kvm_io_bus_read - called under kvm->slots_lock */
4901 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4902 		    int len, void *val)
4903 {
4904 	struct kvm_io_bus *bus;
4905 	struct kvm_io_range range;
4906 	int r;
4907 
4908 	range = (struct kvm_io_range) {
4909 		.addr = addr,
4910 		.len = len,
4911 	};
4912 
4913 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4914 	if (!bus)
4915 		return -ENOMEM;
4916 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4917 	return r < 0 ? r : 0;
4918 }
4919 
4920 /* Caller must hold slots_lock. */
4921 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4922 			    int len, struct kvm_io_device *dev)
4923 {
4924 	int i;
4925 	struct kvm_io_bus *new_bus, *bus;
4926 	struct kvm_io_range range;
4927 
4928 	bus = kvm_get_bus(kvm, bus_idx);
4929 	if (!bus)
4930 		return -ENOMEM;
4931 
4932 	/* exclude ioeventfd which is limited by maximum fd */
4933 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4934 		return -ENOSPC;
4935 
4936 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4937 			  GFP_KERNEL_ACCOUNT);
4938 	if (!new_bus)
4939 		return -ENOMEM;
4940 
4941 	range = (struct kvm_io_range) {
4942 		.addr = addr,
4943 		.len = len,
4944 		.dev = dev,
4945 	};
4946 
4947 	for (i = 0; i < bus->dev_count; i++)
4948 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4949 			break;
4950 
4951 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4952 	new_bus->dev_count++;
4953 	new_bus->range[i] = range;
4954 	memcpy(new_bus->range + i + 1, bus->range + i,
4955 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4956 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4957 	synchronize_srcu_expedited(&kvm->srcu);
4958 	kfree(bus);
4959 
4960 	return 0;
4961 }
4962 
4963 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4964 			      struct kvm_io_device *dev)
4965 {
4966 	int i, j;
4967 	struct kvm_io_bus *new_bus, *bus;
4968 
4969 	lockdep_assert_held(&kvm->slots_lock);
4970 
4971 	bus = kvm_get_bus(kvm, bus_idx);
4972 	if (!bus)
4973 		return 0;
4974 
4975 	for (i = 0; i < bus->dev_count; i++) {
4976 		if (bus->range[i].dev == dev) {
4977 			break;
4978 		}
4979 	}
4980 
4981 	if (i == bus->dev_count)
4982 		return 0;
4983 
4984 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4985 			  GFP_KERNEL_ACCOUNT);
4986 	if (new_bus) {
4987 		memcpy(new_bus, bus, struct_size(bus, range, i));
4988 		new_bus->dev_count--;
4989 		memcpy(new_bus->range + i, bus->range + i + 1,
4990 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4991 	}
4992 
4993 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4994 	synchronize_srcu_expedited(&kvm->srcu);
4995 
4996 	/* Destroy the old bus _after_ installing the (null) bus. */
4997 	if (!new_bus) {
4998 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4999 		for (j = 0; j < bus->dev_count; j++) {
5000 			if (j == i)
5001 				continue;
5002 			kvm_iodevice_destructor(bus->range[j].dev);
5003 		}
5004 	}
5005 
5006 	kfree(bus);
5007 	return new_bus ? 0 : -ENOMEM;
5008 }
5009 
5010 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5011 					 gpa_t addr)
5012 {
5013 	struct kvm_io_bus *bus;
5014 	int dev_idx, srcu_idx;
5015 	struct kvm_io_device *iodev = NULL;
5016 
5017 	srcu_idx = srcu_read_lock(&kvm->srcu);
5018 
5019 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5020 	if (!bus)
5021 		goto out_unlock;
5022 
5023 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5024 	if (dev_idx < 0)
5025 		goto out_unlock;
5026 
5027 	iodev = bus->range[dev_idx].dev;
5028 
5029 out_unlock:
5030 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5031 
5032 	return iodev;
5033 }
5034 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5035 
5036 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5037 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5038 			   const char *fmt)
5039 {
5040 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5041 					  inode->i_private;
5042 
5043 	/*
5044 	 * The debugfs files are a reference to the kvm struct which
5045         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5046         * avoids the race between open and the removal of the debugfs directory.
5047 	 */
5048 	if (!kvm_get_kvm_safe(stat_data->kvm))
5049 		return -ENOENT;
5050 
5051 	if (simple_attr_open(inode, file, get,
5052 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5053 		    ? set : NULL,
5054 		    fmt)) {
5055 		kvm_put_kvm(stat_data->kvm);
5056 		return -ENOMEM;
5057 	}
5058 
5059 	return 0;
5060 }
5061 
5062 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5063 {
5064 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5065 					  inode->i_private;
5066 
5067 	simple_attr_release(inode, file);
5068 	kvm_put_kvm(stat_data->kvm);
5069 
5070 	return 0;
5071 }
5072 
5073 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5074 {
5075 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5076 
5077 	return 0;
5078 }
5079 
5080 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5081 {
5082 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5083 
5084 	return 0;
5085 }
5086 
5087 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5088 {
5089 	int i;
5090 	struct kvm_vcpu *vcpu;
5091 
5092 	*val = 0;
5093 
5094 	kvm_for_each_vcpu(i, vcpu, kvm)
5095 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5096 
5097 	return 0;
5098 }
5099 
5100 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5101 {
5102 	int i;
5103 	struct kvm_vcpu *vcpu;
5104 
5105 	kvm_for_each_vcpu(i, vcpu, kvm)
5106 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5107 
5108 	return 0;
5109 }
5110 
5111 static int kvm_stat_data_get(void *data, u64 *val)
5112 {
5113 	int r = -EFAULT;
5114 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5115 
5116 	switch (stat_data->kind) {
5117 	case KVM_STAT_VM:
5118 		r = kvm_get_stat_per_vm(stat_data->kvm,
5119 					stat_data->desc->desc.offset, val);
5120 		break;
5121 	case KVM_STAT_VCPU:
5122 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5123 					  stat_data->desc->desc.offset, val);
5124 		break;
5125 	}
5126 
5127 	return r;
5128 }
5129 
5130 static int kvm_stat_data_clear(void *data, u64 val)
5131 {
5132 	int r = -EFAULT;
5133 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5134 
5135 	if (val)
5136 		return -EINVAL;
5137 
5138 	switch (stat_data->kind) {
5139 	case KVM_STAT_VM:
5140 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5141 					  stat_data->desc->desc.offset);
5142 		break;
5143 	case KVM_STAT_VCPU:
5144 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5145 					    stat_data->desc->desc.offset);
5146 		break;
5147 	}
5148 
5149 	return r;
5150 }
5151 
5152 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5153 {
5154 	__simple_attr_check_format("%llu\n", 0ull);
5155 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5156 				kvm_stat_data_clear, "%llu\n");
5157 }
5158 
5159 static const struct file_operations stat_fops_per_vm = {
5160 	.owner = THIS_MODULE,
5161 	.open = kvm_stat_data_open,
5162 	.release = kvm_debugfs_release,
5163 	.read = simple_attr_read,
5164 	.write = simple_attr_write,
5165 	.llseek = no_llseek,
5166 };
5167 
5168 static int vm_stat_get(void *_offset, u64 *val)
5169 {
5170 	unsigned offset = (long)_offset;
5171 	struct kvm *kvm;
5172 	u64 tmp_val;
5173 
5174 	*val = 0;
5175 	mutex_lock(&kvm_lock);
5176 	list_for_each_entry(kvm, &vm_list, vm_list) {
5177 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5178 		*val += tmp_val;
5179 	}
5180 	mutex_unlock(&kvm_lock);
5181 	return 0;
5182 }
5183 
5184 static int vm_stat_clear(void *_offset, u64 val)
5185 {
5186 	unsigned offset = (long)_offset;
5187 	struct kvm *kvm;
5188 
5189 	if (val)
5190 		return -EINVAL;
5191 
5192 	mutex_lock(&kvm_lock);
5193 	list_for_each_entry(kvm, &vm_list, vm_list) {
5194 		kvm_clear_stat_per_vm(kvm, offset);
5195 	}
5196 	mutex_unlock(&kvm_lock);
5197 
5198 	return 0;
5199 }
5200 
5201 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5203 
5204 static int vcpu_stat_get(void *_offset, u64 *val)
5205 {
5206 	unsigned offset = (long)_offset;
5207 	struct kvm *kvm;
5208 	u64 tmp_val;
5209 
5210 	*val = 0;
5211 	mutex_lock(&kvm_lock);
5212 	list_for_each_entry(kvm, &vm_list, vm_list) {
5213 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5214 		*val += tmp_val;
5215 	}
5216 	mutex_unlock(&kvm_lock);
5217 	return 0;
5218 }
5219 
5220 static int vcpu_stat_clear(void *_offset, u64 val)
5221 {
5222 	unsigned offset = (long)_offset;
5223 	struct kvm *kvm;
5224 
5225 	if (val)
5226 		return -EINVAL;
5227 
5228 	mutex_lock(&kvm_lock);
5229 	list_for_each_entry(kvm, &vm_list, vm_list) {
5230 		kvm_clear_stat_per_vcpu(kvm, offset);
5231 	}
5232 	mutex_unlock(&kvm_lock);
5233 
5234 	return 0;
5235 }
5236 
5237 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5238 			"%llu\n");
5239 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5240 
5241 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5242 {
5243 	struct kobj_uevent_env *env;
5244 	unsigned long long created, active;
5245 
5246 	if (!kvm_dev.this_device || !kvm)
5247 		return;
5248 
5249 	mutex_lock(&kvm_lock);
5250 	if (type == KVM_EVENT_CREATE_VM) {
5251 		kvm_createvm_count++;
5252 		kvm_active_vms++;
5253 	} else if (type == KVM_EVENT_DESTROY_VM) {
5254 		kvm_active_vms--;
5255 	}
5256 	created = kvm_createvm_count;
5257 	active = kvm_active_vms;
5258 	mutex_unlock(&kvm_lock);
5259 
5260 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5261 	if (!env)
5262 		return;
5263 
5264 	add_uevent_var(env, "CREATED=%llu", created);
5265 	add_uevent_var(env, "COUNT=%llu", active);
5266 
5267 	if (type == KVM_EVENT_CREATE_VM) {
5268 		add_uevent_var(env, "EVENT=create");
5269 		kvm->userspace_pid = task_pid_nr(current);
5270 	} else if (type == KVM_EVENT_DESTROY_VM) {
5271 		add_uevent_var(env, "EVENT=destroy");
5272 	}
5273 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5274 
5275 	if (kvm->debugfs_dentry) {
5276 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5277 
5278 		if (p) {
5279 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5280 			if (!IS_ERR(tmp))
5281 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5282 			kfree(p);
5283 		}
5284 	}
5285 	/* no need for checks, since we are adding at most only 5 keys */
5286 	env->envp[env->envp_idx++] = NULL;
5287 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5288 	kfree(env);
5289 }
5290 
5291 static void kvm_init_debug(void)
5292 {
5293 	const struct file_operations *fops;
5294 	const struct _kvm_stats_desc *pdesc;
5295 	int i;
5296 
5297 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5298 
5299 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5300 		pdesc = &kvm_vm_stats_desc[i];
5301 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5302 			fops = &vm_stat_fops;
5303 		else
5304 			fops = &vm_stat_readonly_fops;
5305 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5306 				kvm_debugfs_dir,
5307 				(void *)(long)pdesc->desc.offset, fops);
5308 	}
5309 
5310 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5311 		pdesc = &kvm_vcpu_stats_desc[i];
5312 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5313 			fops = &vcpu_stat_fops;
5314 		else
5315 			fops = &vcpu_stat_readonly_fops;
5316 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5317 				kvm_debugfs_dir,
5318 				(void *)(long)pdesc->desc.offset, fops);
5319 	}
5320 }
5321 
5322 static int kvm_suspend(void)
5323 {
5324 	if (kvm_usage_count)
5325 		hardware_disable_nolock(NULL);
5326 	return 0;
5327 }
5328 
5329 static void kvm_resume(void)
5330 {
5331 	if (kvm_usage_count) {
5332 #ifdef CONFIG_LOCKDEP
5333 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5334 #endif
5335 		hardware_enable_nolock(NULL);
5336 	}
5337 }
5338 
5339 static struct syscore_ops kvm_syscore_ops = {
5340 	.suspend = kvm_suspend,
5341 	.resume = kvm_resume,
5342 };
5343 
5344 static inline
5345 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5346 {
5347 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5348 }
5349 
5350 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5351 {
5352 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5353 
5354 	WRITE_ONCE(vcpu->preempted, false);
5355 	WRITE_ONCE(vcpu->ready, false);
5356 
5357 	__this_cpu_write(kvm_running_vcpu, vcpu);
5358 	kvm_arch_sched_in(vcpu, cpu);
5359 	kvm_arch_vcpu_load(vcpu, cpu);
5360 }
5361 
5362 static void kvm_sched_out(struct preempt_notifier *pn,
5363 			  struct task_struct *next)
5364 {
5365 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5366 
5367 	if (current->on_rq) {
5368 		WRITE_ONCE(vcpu->preempted, true);
5369 		WRITE_ONCE(vcpu->ready, true);
5370 	}
5371 	kvm_arch_vcpu_put(vcpu);
5372 	__this_cpu_write(kvm_running_vcpu, NULL);
5373 }
5374 
5375 /**
5376  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5377  *
5378  * We can disable preemption locally around accessing the per-CPU variable,
5379  * and use the resolved vcpu pointer after enabling preemption again,
5380  * because even if the current thread is migrated to another CPU, reading
5381  * the per-CPU value later will give us the same value as we update the
5382  * per-CPU variable in the preempt notifier handlers.
5383  */
5384 struct kvm_vcpu *kvm_get_running_vcpu(void)
5385 {
5386 	struct kvm_vcpu *vcpu;
5387 
5388 	preempt_disable();
5389 	vcpu = __this_cpu_read(kvm_running_vcpu);
5390 	preempt_enable();
5391 
5392 	return vcpu;
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5395 
5396 /**
5397  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5398  */
5399 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5400 {
5401         return &kvm_running_vcpu;
5402 }
5403 
5404 struct kvm_cpu_compat_check {
5405 	void *opaque;
5406 	int *ret;
5407 };
5408 
5409 static void check_processor_compat(void *data)
5410 {
5411 	struct kvm_cpu_compat_check *c = data;
5412 
5413 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5414 }
5415 
5416 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5417 		  struct module *module)
5418 {
5419 	struct kvm_cpu_compat_check c;
5420 	int r;
5421 	int cpu;
5422 
5423 	r = kvm_arch_init(opaque);
5424 	if (r)
5425 		goto out_fail;
5426 
5427 	/*
5428 	 * kvm_arch_init makes sure there's at most one caller
5429 	 * for architectures that support multiple implementations,
5430 	 * like intel and amd on x86.
5431 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5432 	 * conflicts in case kvm is already setup for another implementation.
5433 	 */
5434 	r = kvm_irqfd_init();
5435 	if (r)
5436 		goto out_irqfd;
5437 
5438 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5439 		r = -ENOMEM;
5440 		goto out_free_0;
5441 	}
5442 
5443 	r = kvm_arch_hardware_setup(opaque);
5444 	if (r < 0)
5445 		goto out_free_1;
5446 
5447 	c.ret = &r;
5448 	c.opaque = opaque;
5449 	for_each_online_cpu(cpu) {
5450 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5451 		if (r < 0)
5452 			goto out_free_2;
5453 	}
5454 
5455 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5456 				      kvm_starting_cpu, kvm_dying_cpu);
5457 	if (r)
5458 		goto out_free_2;
5459 	register_reboot_notifier(&kvm_reboot_notifier);
5460 
5461 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5462 	if (!vcpu_align)
5463 		vcpu_align = __alignof__(struct kvm_vcpu);
5464 	kvm_vcpu_cache =
5465 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5466 					   SLAB_ACCOUNT,
5467 					   offsetof(struct kvm_vcpu, arch),
5468 					   offsetofend(struct kvm_vcpu, stats_id)
5469 					   - offsetof(struct kvm_vcpu, arch),
5470 					   NULL);
5471 	if (!kvm_vcpu_cache) {
5472 		r = -ENOMEM;
5473 		goto out_free_3;
5474 	}
5475 
5476 	for_each_possible_cpu(cpu) {
5477 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5478 					    GFP_KERNEL, cpu_to_node(cpu))) {
5479 			r = -ENOMEM;
5480 			goto out_free_4;
5481 		}
5482 	}
5483 
5484 	r = kvm_async_pf_init();
5485 	if (r)
5486 		goto out_free_5;
5487 
5488 	kvm_chardev_ops.owner = module;
5489 	kvm_vm_fops.owner = module;
5490 	kvm_vcpu_fops.owner = module;
5491 
5492 	r = misc_register(&kvm_dev);
5493 	if (r) {
5494 		pr_err("kvm: misc device register failed\n");
5495 		goto out_unreg;
5496 	}
5497 
5498 	register_syscore_ops(&kvm_syscore_ops);
5499 
5500 	kvm_preempt_ops.sched_in = kvm_sched_in;
5501 	kvm_preempt_ops.sched_out = kvm_sched_out;
5502 
5503 	kvm_init_debug();
5504 
5505 	r = kvm_vfio_ops_init();
5506 	WARN_ON(r);
5507 
5508 	return 0;
5509 
5510 out_unreg:
5511 	kvm_async_pf_deinit();
5512 out_free_5:
5513 	for_each_possible_cpu(cpu)
5514 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5515 out_free_4:
5516 	kmem_cache_destroy(kvm_vcpu_cache);
5517 out_free_3:
5518 	unregister_reboot_notifier(&kvm_reboot_notifier);
5519 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5520 out_free_2:
5521 	kvm_arch_hardware_unsetup();
5522 out_free_1:
5523 	free_cpumask_var(cpus_hardware_enabled);
5524 out_free_0:
5525 	kvm_irqfd_exit();
5526 out_irqfd:
5527 	kvm_arch_exit();
5528 out_fail:
5529 	return r;
5530 }
5531 EXPORT_SYMBOL_GPL(kvm_init);
5532 
5533 void kvm_exit(void)
5534 {
5535 	int cpu;
5536 
5537 	debugfs_remove_recursive(kvm_debugfs_dir);
5538 	misc_deregister(&kvm_dev);
5539 	for_each_possible_cpu(cpu)
5540 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5541 	kmem_cache_destroy(kvm_vcpu_cache);
5542 	kvm_async_pf_deinit();
5543 	unregister_syscore_ops(&kvm_syscore_ops);
5544 	unregister_reboot_notifier(&kvm_reboot_notifier);
5545 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5546 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5547 	kvm_arch_hardware_unsetup();
5548 	kvm_arch_exit();
5549 	kvm_irqfd_exit();
5550 	free_cpumask_var(cpus_hardware_enabled);
5551 	kvm_vfio_ops_exit();
5552 }
5553 EXPORT_SYMBOL_GPL(kvm_exit);
5554 
5555 struct kvm_vm_worker_thread_context {
5556 	struct kvm *kvm;
5557 	struct task_struct *parent;
5558 	struct completion init_done;
5559 	kvm_vm_thread_fn_t thread_fn;
5560 	uintptr_t data;
5561 	int err;
5562 };
5563 
5564 static int kvm_vm_worker_thread(void *context)
5565 {
5566 	/*
5567 	 * The init_context is allocated on the stack of the parent thread, so
5568 	 * we have to locally copy anything that is needed beyond initialization
5569 	 */
5570 	struct kvm_vm_worker_thread_context *init_context = context;
5571 	struct kvm *kvm = init_context->kvm;
5572 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5573 	uintptr_t data = init_context->data;
5574 	int err;
5575 
5576 	err = kthread_park(current);
5577 	/* kthread_park(current) is never supposed to return an error */
5578 	WARN_ON(err != 0);
5579 	if (err)
5580 		goto init_complete;
5581 
5582 	err = cgroup_attach_task_all(init_context->parent, current);
5583 	if (err) {
5584 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5585 			__func__, err);
5586 		goto init_complete;
5587 	}
5588 
5589 	set_user_nice(current, task_nice(init_context->parent));
5590 
5591 init_complete:
5592 	init_context->err = err;
5593 	complete(&init_context->init_done);
5594 	init_context = NULL;
5595 
5596 	if (err)
5597 		return err;
5598 
5599 	/* Wait to be woken up by the spawner before proceeding. */
5600 	kthread_parkme();
5601 
5602 	if (!kthread_should_stop())
5603 		err = thread_fn(kvm, data);
5604 
5605 	return err;
5606 }
5607 
5608 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5609 				uintptr_t data, const char *name,
5610 				struct task_struct **thread_ptr)
5611 {
5612 	struct kvm_vm_worker_thread_context init_context = {};
5613 	struct task_struct *thread;
5614 
5615 	*thread_ptr = NULL;
5616 	init_context.kvm = kvm;
5617 	init_context.parent = current;
5618 	init_context.thread_fn = thread_fn;
5619 	init_context.data = data;
5620 	init_completion(&init_context.init_done);
5621 
5622 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5623 			     "%s-%d", name, task_pid_nr(current));
5624 	if (IS_ERR(thread))
5625 		return PTR_ERR(thread);
5626 
5627 	/* kthread_run is never supposed to return NULL */
5628 	WARN_ON(thread == NULL);
5629 
5630 	wait_for_completion(&init_context.init_done);
5631 
5632 	if (!init_context.err)
5633 		*thread_ptr = thread;
5634 
5635 	return init_context.err;
5636 }
5637