1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 #include <asm/pgtable.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "vfio.h" 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 /* Worst case buffer size needed for holding an integer. */ 68 #define ITOA_MAX_LEN 12 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 /* Architectures should define their poll value according to the halt latency */ 74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 75 module_param(halt_poll_ns, uint, 0644); 76 EXPORT_SYMBOL_GPL(halt_poll_ns); 77 78 /* Default doubles per-vcpu halt_poll_ns. */ 79 unsigned int halt_poll_ns_grow = 2; 80 module_param(halt_poll_ns_grow, uint, 0644); 81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 82 83 /* The start value to grow halt_poll_ns from */ 84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 85 module_param(halt_poll_ns_grow_start, uint, 0644); 86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 87 88 /* Default resets per-vcpu halt_poll_ns . */ 89 unsigned int halt_poll_ns_shrink; 90 module_param(halt_poll_ns_shrink, uint, 0644); 91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 92 93 /* 94 * Ordering of locks: 95 * 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 97 */ 98 99 DEFINE_MUTEX(kvm_lock); 100 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 101 LIST_HEAD(vm_list); 102 103 static cpumask_var_t cpus_hardware_enabled; 104 static int kvm_usage_count; 105 static atomic_t hardware_enable_failed; 106 107 struct kmem_cache *kvm_vcpu_cache; 108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 112 struct dentry *kvm_debugfs_dir; 113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 114 115 static int kvm_debugfs_num_entries; 116 static const struct file_operations *stat_fops_per_vm[]; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 static bool largepages_enabled = true; 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end, bool blockable) 162 { 163 return 0; 164 } 165 166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 167 { 168 /* 169 * The metadata used by is_zone_device_page() to determine whether or 170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 171 * the device has been pinned, e.g. by get_user_pages(). WARN if the 172 * page_count() is zero to help detect bad usage of this helper. 173 */ 174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 175 return false; 176 177 return is_zone_device_page(pfn_to_page(pfn)); 178 } 179 180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 181 { 182 /* 183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 184 * perspective they are "normal" pages, albeit with slightly different 185 * usage rules. 186 */ 187 if (pfn_valid(pfn)) 188 return PageReserved(pfn_to_page(pfn)) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 preempt_notifier_register(&vcpu->preempt_notifier); 201 kvm_arch_vcpu_load(vcpu, cpu); 202 put_cpu(); 203 } 204 EXPORT_SYMBOL_GPL(vcpu_load); 205 206 void vcpu_put(struct kvm_vcpu *vcpu) 207 { 208 preempt_disable(); 209 kvm_arch_vcpu_put(vcpu); 210 preempt_notifier_unregister(&vcpu->preempt_notifier); 211 preempt_enable(); 212 } 213 EXPORT_SYMBOL_GPL(vcpu_put); 214 215 /* TODO: merge with kvm_arch_vcpu_should_kick */ 216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 217 { 218 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 219 220 /* 221 * We need to wait for the VCPU to reenable interrupts and get out of 222 * READING_SHADOW_PAGE_TABLES mode. 223 */ 224 if (req & KVM_REQUEST_WAIT) 225 return mode != OUTSIDE_GUEST_MODE; 226 227 /* 228 * Need to kick a running VCPU, but otherwise there is nothing to do. 229 */ 230 return mode == IN_GUEST_MODE; 231 } 232 233 static void ack_flush(void *_completed) 234 { 235 } 236 237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 238 { 239 if (unlikely(!cpus)) 240 cpus = cpu_online_mask; 241 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 250 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 251 { 252 int i, cpu, me; 253 struct kvm_vcpu *vcpu; 254 bool called; 255 256 me = get_cpu(); 257 258 kvm_for_each_vcpu(i, vcpu, kvm) { 259 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 260 continue; 261 262 kvm_make_request(req, vcpu); 263 cpu = vcpu->cpu; 264 265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 266 continue; 267 268 if (tmp != NULL && cpu != -1 && cpu != me && 269 kvm_request_needs_ipi(vcpu, req)) 270 __cpumask_set_cpu(cpu, tmp); 271 } 272 273 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 274 put_cpu(); 275 276 return called; 277 } 278 279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 280 { 281 cpumask_var_t cpus; 282 bool called; 283 284 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 285 286 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 287 288 free_cpumask_var(cpus); 289 return called; 290 } 291 292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 293 void kvm_flush_remote_tlbs(struct kvm *kvm) 294 { 295 /* 296 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 297 * kvm_make_all_cpus_request. 298 */ 299 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 300 301 /* 302 * We want to publish modifications to the page tables before reading 303 * mode. Pairs with a memory barrier in arch-specific code. 304 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 305 * and smp_mb in walk_shadow_page_lockless_begin/end. 306 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 307 * 308 * There is already an smp_mb__after_atomic() before 309 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 310 * barrier here. 311 */ 312 if (!kvm_arch_flush_remote_tlb(kvm) 313 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 314 ++kvm->stat.remote_tlb_flush; 315 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 316 } 317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 318 #endif 319 320 void kvm_reload_remote_mmus(struct kvm *kvm) 321 { 322 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 323 } 324 325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 326 { 327 struct page *page; 328 int r; 329 330 mutex_init(&vcpu->mutex); 331 vcpu->cpu = -1; 332 vcpu->kvm = kvm; 333 vcpu->vcpu_id = id; 334 vcpu->pid = NULL; 335 init_swait_queue_head(&vcpu->wq); 336 kvm_async_pf_vcpu_init(vcpu); 337 338 vcpu->pre_pcpu = -1; 339 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 340 341 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 342 if (!page) { 343 r = -ENOMEM; 344 goto fail; 345 } 346 vcpu->run = page_address(page); 347 348 kvm_vcpu_set_in_spin_loop(vcpu, false); 349 kvm_vcpu_set_dy_eligible(vcpu, false); 350 vcpu->preempted = false; 351 vcpu->ready = false; 352 353 r = kvm_arch_vcpu_init(vcpu); 354 if (r < 0) 355 goto fail_free_run; 356 return 0; 357 358 fail_free_run: 359 free_page((unsigned long)vcpu->run); 360 fail: 361 return r; 362 } 363 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 364 365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 366 { 367 /* 368 * no need for rcu_read_lock as VCPU_RUN is the only place that 369 * will change the vcpu->pid pointer and on uninit all file 370 * descriptors are already gone. 371 */ 372 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 373 kvm_arch_vcpu_uninit(vcpu); 374 free_page((unsigned long)vcpu->run); 375 } 376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 377 378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 380 { 381 return container_of(mn, struct kvm, mmu_notifier); 382 } 383 384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 385 struct mm_struct *mm, 386 unsigned long address, 387 pte_t pte) 388 { 389 struct kvm *kvm = mmu_notifier_to_kvm(mn); 390 int idx; 391 392 idx = srcu_read_lock(&kvm->srcu); 393 spin_lock(&kvm->mmu_lock); 394 kvm->mmu_notifier_seq++; 395 396 if (kvm_set_spte_hva(kvm, address, pte)) 397 kvm_flush_remote_tlbs(kvm); 398 399 spin_unlock(&kvm->mmu_lock); 400 srcu_read_unlock(&kvm->srcu, idx); 401 } 402 403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 404 const struct mmu_notifier_range *range) 405 { 406 struct kvm *kvm = mmu_notifier_to_kvm(mn); 407 int need_tlb_flush = 0, idx; 408 int ret; 409 410 idx = srcu_read_lock(&kvm->srcu); 411 spin_lock(&kvm->mmu_lock); 412 /* 413 * The count increase must become visible at unlock time as no 414 * spte can be established without taking the mmu_lock and 415 * count is also read inside the mmu_lock critical section. 416 */ 417 kvm->mmu_notifier_count++; 418 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 419 need_tlb_flush |= kvm->tlbs_dirty; 420 /* we've to flush the tlb before the pages can be freed */ 421 if (need_tlb_flush) 422 kvm_flush_remote_tlbs(kvm); 423 424 spin_unlock(&kvm->mmu_lock); 425 426 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 427 range->end, 428 mmu_notifier_range_blockable(range)); 429 430 srcu_read_unlock(&kvm->srcu, idx); 431 432 return ret; 433 } 434 435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 436 const struct mmu_notifier_range *range) 437 { 438 struct kvm *kvm = mmu_notifier_to_kvm(mn); 439 440 spin_lock(&kvm->mmu_lock); 441 /* 442 * This sequence increase will notify the kvm page fault that 443 * the page that is going to be mapped in the spte could have 444 * been freed. 445 */ 446 kvm->mmu_notifier_seq++; 447 smp_wmb(); 448 /* 449 * The above sequence increase must be visible before the 450 * below count decrease, which is ensured by the smp_wmb above 451 * in conjunction with the smp_rmb in mmu_notifier_retry(). 452 */ 453 kvm->mmu_notifier_count--; 454 spin_unlock(&kvm->mmu_lock); 455 456 BUG_ON(kvm->mmu_notifier_count < 0); 457 } 458 459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 460 struct mm_struct *mm, 461 unsigned long start, 462 unsigned long end) 463 { 464 struct kvm *kvm = mmu_notifier_to_kvm(mn); 465 int young, idx; 466 467 idx = srcu_read_lock(&kvm->srcu); 468 spin_lock(&kvm->mmu_lock); 469 470 young = kvm_age_hva(kvm, start, end); 471 if (young) 472 kvm_flush_remote_tlbs(kvm); 473 474 spin_unlock(&kvm->mmu_lock); 475 srcu_read_unlock(&kvm->srcu, idx); 476 477 return young; 478 } 479 480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 481 struct mm_struct *mm, 482 unsigned long start, 483 unsigned long end) 484 { 485 struct kvm *kvm = mmu_notifier_to_kvm(mn); 486 int young, idx; 487 488 idx = srcu_read_lock(&kvm->srcu); 489 spin_lock(&kvm->mmu_lock); 490 /* 491 * Even though we do not flush TLB, this will still adversely 492 * affect performance on pre-Haswell Intel EPT, where there is 493 * no EPT Access Bit to clear so that we have to tear down EPT 494 * tables instead. If we find this unacceptable, we can always 495 * add a parameter to kvm_age_hva so that it effectively doesn't 496 * do anything on clear_young. 497 * 498 * Also note that currently we never issue secondary TLB flushes 499 * from clear_young, leaving this job up to the regular system 500 * cadence. If we find this inaccurate, we might come up with a 501 * more sophisticated heuristic later. 502 */ 503 young = kvm_age_hva(kvm, start, end); 504 spin_unlock(&kvm->mmu_lock); 505 srcu_read_unlock(&kvm->srcu, idx); 506 507 return young; 508 } 509 510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 511 struct mm_struct *mm, 512 unsigned long address) 513 { 514 struct kvm *kvm = mmu_notifier_to_kvm(mn); 515 int young, idx; 516 517 idx = srcu_read_lock(&kvm->srcu); 518 spin_lock(&kvm->mmu_lock); 519 young = kvm_test_age_hva(kvm, address); 520 spin_unlock(&kvm->mmu_lock); 521 srcu_read_unlock(&kvm->srcu, idx); 522 523 return young; 524 } 525 526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 527 struct mm_struct *mm) 528 { 529 struct kvm *kvm = mmu_notifier_to_kvm(mn); 530 int idx; 531 532 idx = srcu_read_lock(&kvm->srcu); 533 kvm_arch_flush_shadow_all(kvm); 534 srcu_read_unlock(&kvm->srcu, idx); 535 } 536 537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 538 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 539 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 540 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 541 .clear_young = kvm_mmu_notifier_clear_young, 542 .test_young = kvm_mmu_notifier_test_young, 543 .change_pte = kvm_mmu_notifier_change_pte, 544 .release = kvm_mmu_notifier_release, 545 }; 546 547 static int kvm_init_mmu_notifier(struct kvm *kvm) 548 { 549 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 550 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 551 } 552 553 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 554 555 static int kvm_init_mmu_notifier(struct kvm *kvm) 556 { 557 return 0; 558 } 559 560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 561 562 static struct kvm_memslots *kvm_alloc_memslots(void) 563 { 564 int i; 565 struct kvm_memslots *slots; 566 567 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 568 if (!slots) 569 return NULL; 570 571 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 572 slots->id_to_index[i] = slots->memslots[i].id = i; 573 574 return slots; 575 } 576 577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 578 { 579 if (!memslot->dirty_bitmap) 580 return; 581 582 kvfree(memslot->dirty_bitmap); 583 memslot->dirty_bitmap = NULL; 584 } 585 586 /* 587 * Free any memory in @free but not in @dont. 588 */ 589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 590 struct kvm_memory_slot *dont) 591 { 592 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 593 kvm_destroy_dirty_bitmap(free); 594 595 kvm_arch_free_memslot(kvm, free, dont); 596 597 free->npages = 0; 598 } 599 600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 601 { 602 struct kvm_memory_slot *memslot; 603 604 if (!slots) 605 return; 606 607 kvm_for_each_memslot(memslot, slots) 608 kvm_free_memslot(kvm, memslot, NULL); 609 610 kvfree(slots); 611 } 612 613 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 614 { 615 int i; 616 617 if (!kvm->debugfs_dentry) 618 return; 619 620 debugfs_remove_recursive(kvm->debugfs_dentry); 621 622 if (kvm->debugfs_stat_data) { 623 for (i = 0; i < kvm_debugfs_num_entries; i++) 624 kfree(kvm->debugfs_stat_data[i]); 625 kfree(kvm->debugfs_stat_data); 626 } 627 } 628 629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 630 { 631 char dir_name[ITOA_MAX_LEN * 2]; 632 struct kvm_stat_data *stat_data; 633 struct kvm_stats_debugfs_item *p; 634 635 if (!debugfs_initialized()) 636 return 0; 637 638 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 639 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 640 641 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 642 sizeof(*kvm->debugfs_stat_data), 643 GFP_KERNEL_ACCOUNT); 644 if (!kvm->debugfs_stat_data) 645 return -ENOMEM; 646 647 for (p = debugfs_entries; p->name; p++) { 648 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 649 if (!stat_data) 650 return -ENOMEM; 651 652 stat_data->kvm = kvm; 653 stat_data->offset = p->offset; 654 stat_data->mode = p->mode ? p->mode : 0644; 655 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 656 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry, 657 stat_data, stat_fops_per_vm[p->kind]); 658 } 659 return 0; 660 } 661 662 /* 663 * Called after the VM is otherwise initialized, but just before adding it to 664 * the vm_list. 665 */ 666 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 667 { 668 return 0; 669 } 670 671 /* 672 * Called just after removing the VM from the vm_list, but before doing any 673 * other destruction. 674 */ 675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 676 { 677 } 678 679 static struct kvm *kvm_create_vm(unsigned long type) 680 { 681 struct kvm *kvm = kvm_arch_alloc_vm(); 682 int r = -ENOMEM; 683 int i; 684 685 if (!kvm) 686 return ERR_PTR(-ENOMEM); 687 688 spin_lock_init(&kvm->mmu_lock); 689 mmgrab(current->mm); 690 kvm->mm = current->mm; 691 kvm_eventfd_init(kvm); 692 mutex_init(&kvm->lock); 693 mutex_init(&kvm->irq_lock); 694 mutex_init(&kvm->slots_lock); 695 INIT_LIST_HEAD(&kvm->devices); 696 697 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 698 699 if (init_srcu_struct(&kvm->srcu)) 700 goto out_err_no_srcu; 701 if (init_srcu_struct(&kvm->irq_srcu)) 702 goto out_err_no_irq_srcu; 703 704 refcount_set(&kvm->users_count, 1); 705 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 706 struct kvm_memslots *slots = kvm_alloc_memslots(); 707 708 if (!slots) 709 goto out_err_no_arch_destroy_vm; 710 /* Generations must be different for each address space. */ 711 slots->generation = i; 712 rcu_assign_pointer(kvm->memslots[i], slots); 713 } 714 715 for (i = 0; i < KVM_NR_BUSES; i++) { 716 rcu_assign_pointer(kvm->buses[i], 717 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 718 if (!kvm->buses[i]) 719 goto out_err_no_arch_destroy_vm; 720 } 721 722 r = kvm_arch_init_vm(kvm, type); 723 if (r) 724 goto out_err_no_arch_destroy_vm; 725 726 r = hardware_enable_all(); 727 if (r) 728 goto out_err_no_disable; 729 730 #ifdef CONFIG_HAVE_KVM_IRQFD 731 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 732 #endif 733 734 r = kvm_init_mmu_notifier(kvm); 735 if (r) 736 goto out_err_no_mmu_notifier; 737 738 r = kvm_arch_post_init_vm(kvm); 739 if (r) 740 goto out_err; 741 742 mutex_lock(&kvm_lock); 743 list_add(&kvm->vm_list, &vm_list); 744 mutex_unlock(&kvm_lock); 745 746 preempt_notifier_inc(); 747 748 return kvm; 749 750 out_err: 751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 752 if (kvm->mmu_notifier.ops) 753 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 754 #endif 755 out_err_no_mmu_notifier: 756 hardware_disable_all(); 757 out_err_no_disable: 758 kvm_arch_destroy_vm(kvm); 759 out_err_no_arch_destroy_vm: 760 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 761 for (i = 0; i < KVM_NR_BUSES; i++) 762 kfree(kvm_get_bus(kvm, i)); 763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 764 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 765 cleanup_srcu_struct(&kvm->irq_srcu); 766 out_err_no_irq_srcu: 767 cleanup_srcu_struct(&kvm->srcu); 768 out_err_no_srcu: 769 kvm_arch_free_vm(kvm); 770 mmdrop(current->mm); 771 return ERR_PTR(r); 772 } 773 774 static void kvm_destroy_devices(struct kvm *kvm) 775 { 776 struct kvm_device *dev, *tmp; 777 778 /* 779 * We do not need to take the kvm->lock here, because nobody else 780 * has a reference to the struct kvm at this point and therefore 781 * cannot access the devices list anyhow. 782 */ 783 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 784 list_del(&dev->vm_node); 785 dev->ops->destroy(dev); 786 } 787 } 788 789 static void kvm_destroy_vm(struct kvm *kvm) 790 { 791 int i; 792 struct mm_struct *mm = kvm->mm; 793 794 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 795 kvm_destroy_vm_debugfs(kvm); 796 kvm_arch_sync_events(kvm); 797 mutex_lock(&kvm_lock); 798 list_del(&kvm->vm_list); 799 mutex_unlock(&kvm_lock); 800 kvm_arch_pre_destroy_vm(kvm); 801 802 kvm_free_irq_routing(kvm); 803 for (i = 0; i < KVM_NR_BUSES; i++) { 804 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 805 806 if (bus) 807 kvm_io_bus_destroy(bus); 808 kvm->buses[i] = NULL; 809 } 810 kvm_coalesced_mmio_free(kvm); 811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 812 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 813 #else 814 kvm_arch_flush_shadow_all(kvm); 815 #endif 816 kvm_arch_destroy_vm(kvm); 817 kvm_destroy_devices(kvm); 818 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 819 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 820 cleanup_srcu_struct(&kvm->irq_srcu); 821 cleanup_srcu_struct(&kvm->srcu); 822 kvm_arch_free_vm(kvm); 823 preempt_notifier_dec(); 824 hardware_disable_all(); 825 mmdrop(mm); 826 } 827 828 void kvm_get_kvm(struct kvm *kvm) 829 { 830 refcount_inc(&kvm->users_count); 831 } 832 EXPORT_SYMBOL_GPL(kvm_get_kvm); 833 834 void kvm_put_kvm(struct kvm *kvm) 835 { 836 if (refcount_dec_and_test(&kvm->users_count)) 837 kvm_destroy_vm(kvm); 838 } 839 EXPORT_SYMBOL_GPL(kvm_put_kvm); 840 841 /* 842 * Used to put a reference that was taken on behalf of an object associated 843 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 844 * of the new file descriptor fails and the reference cannot be transferred to 845 * its final owner. In such cases, the caller is still actively using @kvm and 846 * will fail miserably if the refcount unexpectedly hits zero. 847 */ 848 void kvm_put_kvm_no_destroy(struct kvm *kvm) 849 { 850 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 851 } 852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 853 854 static int kvm_vm_release(struct inode *inode, struct file *filp) 855 { 856 struct kvm *kvm = filp->private_data; 857 858 kvm_irqfd_release(kvm); 859 860 kvm_put_kvm(kvm); 861 return 0; 862 } 863 864 /* 865 * Allocation size is twice as large as the actual dirty bitmap size. 866 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 867 */ 868 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 869 { 870 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 871 872 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 873 if (!memslot->dirty_bitmap) 874 return -ENOMEM; 875 876 return 0; 877 } 878 879 /* 880 * Insert memslot and re-sort memslots based on their GFN, 881 * so binary search could be used to lookup GFN. 882 * Sorting algorithm takes advantage of having initially 883 * sorted array and known changed memslot position. 884 */ 885 static void update_memslots(struct kvm_memslots *slots, 886 struct kvm_memory_slot *new, 887 enum kvm_mr_change change) 888 { 889 int id = new->id; 890 int i = slots->id_to_index[id]; 891 struct kvm_memory_slot *mslots = slots->memslots; 892 893 WARN_ON(mslots[i].id != id); 894 switch (change) { 895 case KVM_MR_CREATE: 896 slots->used_slots++; 897 WARN_ON(mslots[i].npages || !new->npages); 898 break; 899 case KVM_MR_DELETE: 900 slots->used_slots--; 901 WARN_ON(new->npages || !mslots[i].npages); 902 break; 903 default: 904 break; 905 } 906 907 while (i < KVM_MEM_SLOTS_NUM - 1 && 908 new->base_gfn <= mslots[i + 1].base_gfn) { 909 if (!mslots[i + 1].npages) 910 break; 911 mslots[i] = mslots[i + 1]; 912 slots->id_to_index[mslots[i].id] = i; 913 i++; 914 } 915 916 /* 917 * The ">=" is needed when creating a slot with base_gfn == 0, 918 * so that it moves before all those with base_gfn == npages == 0. 919 * 920 * On the other hand, if new->npages is zero, the above loop has 921 * already left i pointing to the beginning of the empty part of 922 * mslots, and the ">=" would move the hole backwards in this 923 * case---which is wrong. So skip the loop when deleting a slot. 924 */ 925 if (new->npages) { 926 while (i > 0 && 927 new->base_gfn >= mslots[i - 1].base_gfn) { 928 mslots[i] = mslots[i - 1]; 929 slots->id_to_index[mslots[i].id] = i; 930 i--; 931 } 932 } else 933 WARN_ON_ONCE(i != slots->used_slots); 934 935 mslots[i] = *new; 936 slots->id_to_index[mslots[i].id] = i; 937 } 938 939 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 940 { 941 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 942 943 #ifdef __KVM_HAVE_READONLY_MEM 944 valid_flags |= KVM_MEM_READONLY; 945 #endif 946 947 if (mem->flags & ~valid_flags) 948 return -EINVAL; 949 950 return 0; 951 } 952 953 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 954 int as_id, struct kvm_memslots *slots) 955 { 956 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 957 u64 gen = old_memslots->generation; 958 959 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 960 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 961 962 rcu_assign_pointer(kvm->memslots[as_id], slots); 963 synchronize_srcu_expedited(&kvm->srcu); 964 965 /* 966 * Increment the new memslot generation a second time, dropping the 967 * update in-progress flag and incrementing then generation based on 968 * the number of address spaces. This provides a unique and easily 969 * identifiable generation number while the memslots are in flux. 970 */ 971 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 972 973 /* 974 * Generations must be unique even across address spaces. We do not need 975 * a global counter for that, instead the generation space is evenly split 976 * across address spaces. For example, with two address spaces, address 977 * space 0 will use generations 0, 2, 4, ... while address space 1 will 978 * use generations 1, 3, 5, ... 979 */ 980 gen += KVM_ADDRESS_SPACE_NUM; 981 982 kvm_arch_memslots_updated(kvm, gen); 983 984 slots->generation = gen; 985 986 return old_memslots; 987 } 988 989 /* 990 * Allocate some memory and give it an address in the guest physical address 991 * space. 992 * 993 * Discontiguous memory is allowed, mostly for framebuffers. 994 * 995 * Must be called holding kvm->slots_lock for write. 996 */ 997 int __kvm_set_memory_region(struct kvm *kvm, 998 const struct kvm_userspace_memory_region *mem) 999 { 1000 int r; 1001 gfn_t base_gfn; 1002 unsigned long npages; 1003 struct kvm_memory_slot *slot; 1004 struct kvm_memory_slot old, new; 1005 struct kvm_memslots *slots = NULL, *old_memslots; 1006 int as_id, id; 1007 enum kvm_mr_change change; 1008 1009 r = check_memory_region_flags(mem); 1010 if (r) 1011 goto out; 1012 1013 r = -EINVAL; 1014 as_id = mem->slot >> 16; 1015 id = (u16)mem->slot; 1016 1017 /* General sanity checks */ 1018 if (mem->memory_size & (PAGE_SIZE - 1)) 1019 goto out; 1020 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1021 goto out; 1022 /* We can read the guest memory with __xxx_user() later on. */ 1023 if ((id < KVM_USER_MEM_SLOTS) && 1024 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1025 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1026 mem->memory_size))) 1027 goto out; 1028 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1029 goto out; 1030 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1031 goto out; 1032 1033 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1034 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1035 npages = mem->memory_size >> PAGE_SHIFT; 1036 1037 if (npages > KVM_MEM_MAX_NR_PAGES) 1038 goto out; 1039 1040 new = old = *slot; 1041 1042 new.id = id; 1043 new.base_gfn = base_gfn; 1044 new.npages = npages; 1045 new.flags = mem->flags; 1046 1047 if (npages) { 1048 if (!old.npages) 1049 change = KVM_MR_CREATE; 1050 else { /* Modify an existing slot. */ 1051 if ((mem->userspace_addr != old.userspace_addr) || 1052 (npages != old.npages) || 1053 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1054 goto out; 1055 1056 if (base_gfn != old.base_gfn) 1057 change = KVM_MR_MOVE; 1058 else if (new.flags != old.flags) 1059 change = KVM_MR_FLAGS_ONLY; 1060 else { /* Nothing to change. */ 1061 r = 0; 1062 goto out; 1063 } 1064 } 1065 } else { 1066 if (!old.npages) 1067 goto out; 1068 1069 change = KVM_MR_DELETE; 1070 new.base_gfn = 0; 1071 new.flags = 0; 1072 } 1073 1074 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1075 /* Check for overlaps */ 1076 r = -EEXIST; 1077 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1078 if (slot->id == id) 1079 continue; 1080 if (!((base_gfn + npages <= slot->base_gfn) || 1081 (base_gfn >= slot->base_gfn + slot->npages))) 1082 goto out; 1083 } 1084 } 1085 1086 /* Free page dirty bitmap if unneeded */ 1087 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1088 new.dirty_bitmap = NULL; 1089 1090 r = -ENOMEM; 1091 if (change == KVM_MR_CREATE) { 1092 new.userspace_addr = mem->userspace_addr; 1093 1094 if (kvm_arch_create_memslot(kvm, &new, npages)) 1095 goto out_free; 1096 } 1097 1098 /* Allocate page dirty bitmap if needed */ 1099 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1100 if (kvm_create_dirty_bitmap(&new) < 0) 1101 goto out_free; 1102 } 1103 1104 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1105 if (!slots) 1106 goto out_free; 1107 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1108 1109 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1110 slot = id_to_memslot(slots, id); 1111 slot->flags |= KVM_MEMSLOT_INVALID; 1112 1113 old_memslots = install_new_memslots(kvm, as_id, slots); 1114 1115 /* From this point no new shadow pages pointing to a deleted, 1116 * or moved, memslot will be created. 1117 * 1118 * validation of sp->gfn happens in: 1119 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1120 * - kvm_is_visible_gfn (mmu_check_roots) 1121 */ 1122 kvm_arch_flush_shadow_memslot(kvm, slot); 1123 1124 /* 1125 * We can re-use the old_memslots from above, the only difference 1126 * from the currently installed memslots is the invalid flag. This 1127 * will get overwritten by update_memslots anyway. 1128 */ 1129 slots = old_memslots; 1130 } 1131 1132 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1133 if (r) 1134 goto out_slots; 1135 1136 /* actual memory is freed via old in kvm_free_memslot below */ 1137 if (change == KVM_MR_DELETE) { 1138 new.dirty_bitmap = NULL; 1139 memset(&new.arch, 0, sizeof(new.arch)); 1140 } 1141 1142 update_memslots(slots, &new, change); 1143 old_memslots = install_new_memslots(kvm, as_id, slots); 1144 1145 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1146 1147 kvm_free_memslot(kvm, &old, &new); 1148 kvfree(old_memslots); 1149 return 0; 1150 1151 out_slots: 1152 kvfree(slots); 1153 out_free: 1154 kvm_free_memslot(kvm, &new, &old); 1155 out: 1156 return r; 1157 } 1158 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1159 1160 int kvm_set_memory_region(struct kvm *kvm, 1161 const struct kvm_userspace_memory_region *mem) 1162 { 1163 int r; 1164 1165 mutex_lock(&kvm->slots_lock); 1166 r = __kvm_set_memory_region(kvm, mem); 1167 mutex_unlock(&kvm->slots_lock); 1168 return r; 1169 } 1170 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1171 1172 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1173 struct kvm_userspace_memory_region *mem) 1174 { 1175 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1176 return -EINVAL; 1177 1178 return kvm_set_memory_region(kvm, mem); 1179 } 1180 1181 int kvm_get_dirty_log(struct kvm *kvm, 1182 struct kvm_dirty_log *log, int *is_dirty) 1183 { 1184 struct kvm_memslots *slots; 1185 struct kvm_memory_slot *memslot; 1186 int i, as_id, id; 1187 unsigned long n; 1188 unsigned long any = 0; 1189 1190 as_id = log->slot >> 16; 1191 id = (u16)log->slot; 1192 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1193 return -EINVAL; 1194 1195 slots = __kvm_memslots(kvm, as_id); 1196 memslot = id_to_memslot(slots, id); 1197 if (!memslot->dirty_bitmap) 1198 return -ENOENT; 1199 1200 n = kvm_dirty_bitmap_bytes(memslot); 1201 1202 for (i = 0; !any && i < n/sizeof(long); ++i) 1203 any = memslot->dirty_bitmap[i]; 1204 1205 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1206 return -EFAULT; 1207 1208 if (any) 1209 *is_dirty = 1; 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1213 1214 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1215 /** 1216 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1217 * and reenable dirty page tracking for the corresponding pages. 1218 * @kvm: pointer to kvm instance 1219 * @log: slot id and address to which we copy the log 1220 * @flush: true if TLB flush is needed by caller 1221 * 1222 * We need to keep it in mind that VCPU threads can write to the bitmap 1223 * concurrently. So, to avoid losing track of dirty pages we keep the 1224 * following order: 1225 * 1226 * 1. Take a snapshot of the bit and clear it if needed. 1227 * 2. Write protect the corresponding page. 1228 * 3. Copy the snapshot to the userspace. 1229 * 4. Upon return caller flushes TLB's if needed. 1230 * 1231 * Between 2 and 4, the guest may write to the page using the remaining TLB 1232 * entry. This is not a problem because the page is reported dirty using 1233 * the snapshot taken before and step 4 ensures that writes done after 1234 * exiting to userspace will be logged for the next call. 1235 * 1236 */ 1237 int kvm_get_dirty_log_protect(struct kvm *kvm, 1238 struct kvm_dirty_log *log, bool *flush) 1239 { 1240 struct kvm_memslots *slots; 1241 struct kvm_memory_slot *memslot; 1242 int i, as_id, id; 1243 unsigned long n; 1244 unsigned long *dirty_bitmap; 1245 unsigned long *dirty_bitmap_buffer; 1246 1247 as_id = log->slot >> 16; 1248 id = (u16)log->slot; 1249 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1250 return -EINVAL; 1251 1252 slots = __kvm_memslots(kvm, as_id); 1253 memslot = id_to_memslot(slots, id); 1254 1255 dirty_bitmap = memslot->dirty_bitmap; 1256 if (!dirty_bitmap) 1257 return -ENOENT; 1258 1259 n = kvm_dirty_bitmap_bytes(memslot); 1260 *flush = false; 1261 if (kvm->manual_dirty_log_protect) { 1262 /* 1263 * Unlike kvm_get_dirty_log, we always return false in *flush, 1264 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1265 * is some code duplication between this function and 1266 * kvm_get_dirty_log, but hopefully all architecture 1267 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1268 * can be eliminated. 1269 */ 1270 dirty_bitmap_buffer = dirty_bitmap; 1271 } else { 1272 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1273 memset(dirty_bitmap_buffer, 0, n); 1274 1275 spin_lock(&kvm->mmu_lock); 1276 for (i = 0; i < n / sizeof(long); i++) { 1277 unsigned long mask; 1278 gfn_t offset; 1279 1280 if (!dirty_bitmap[i]) 1281 continue; 1282 1283 *flush = true; 1284 mask = xchg(&dirty_bitmap[i], 0); 1285 dirty_bitmap_buffer[i] = mask; 1286 1287 offset = i * BITS_PER_LONG; 1288 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1289 offset, mask); 1290 } 1291 spin_unlock(&kvm->mmu_lock); 1292 } 1293 1294 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1295 return -EFAULT; 1296 return 0; 1297 } 1298 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1299 1300 /** 1301 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1302 * and reenable dirty page tracking for the corresponding pages. 1303 * @kvm: pointer to kvm instance 1304 * @log: slot id and address from which to fetch the bitmap of dirty pages 1305 * @flush: true if TLB flush is needed by caller 1306 */ 1307 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1308 struct kvm_clear_dirty_log *log, bool *flush) 1309 { 1310 struct kvm_memslots *slots; 1311 struct kvm_memory_slot *memslot; 1312 int as_id, id; 1313 gfn_t offset; 1314 unsigned long i, n; 1315 unsigned long *dirty_bitmap; 1316 unsigned long *dirty_bitmap_buffer; 1317 1318 as_id = log->slot >> 16; 1319 id = (u16)log->slot; 1320 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1321 return -EINVAL; 1322 1323 if (log->first_page & 63) 1324 return -EINVAL; 1325 1326 slots = __kvm_memslots(kvm, as_id); 1327 memslot = id_to_memslot(slots, id); 1328 1329 dirty_bitmap = memslot->dirty_bitmap; 1330 if (!dirty_bitmap) 1331 return -ENOENT; 1332 1333 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1334 1335 if (log->first_page > memslot->npages || 1336 log->num_pages > memslot->npages - log->first_page || 1337 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1338 return -EINVAL; 1339 1340 *flush = false; 1341 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1342 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1343 return -EFAULT; 1344 1345 spin_lock(&kvm->mmu_lock); 1346 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1347 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1348 i++, offset += BITS_PER_LONG) { 1349 unsigned long mask = *dirty_bitmap_buffer++; 1350 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1351 if (!mask) 1352 continue; 1353 1354 mask &= atomic_long_fetch_andnot(mask, p); 1355 1356 /* 1357 * mask contains the bits that really have been cleared. This 1358 * never includes any bits beyond the length of the memslot (if 1359 * the length is not aligned to 64 pages), therefore it is not 1360 * a problem if userspace sets them in log->dirty_bitmap. 1361 */ 1362 if (mask) { 1363 *flush = true; 1364 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1365 offset, mask); 1366 } 1367 } 1368 spin_unlock(&kvm->mmu_lock); 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1373 #endif 1374 1375 bool kvm_largepages_enabled(void) 1376 { 1377 return largepages_enabled; 1378 } 1379 1380 void kvm_disable_largepages(void) 1381 { 1382 largepages_enabled = false; 1383 } 1384 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1385 1386 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1387 { 1388 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1389 } 1390 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1391 1392 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1393 { 1394 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1395 } 1396 1397 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1398 { 1399 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1400 1401 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1402 memslot->flags & KVM_MEMSLOT_INVALID) 1403 return false; 1404 1405 return true; 1406 } 1407 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1408 1409 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1410 { 1411 struct vm_area_struct *vma; 1412 unsigned long addr, size; 1413 1414 size = PAGE_SIZE; 1415 1416 addr = gfn_to_hva(kvm, gfn); 1417 if (kvm_is_error_hva(addr)) 1418 return PAGE_SIZE; 1419 1420 down_read(¤t->mm->mmap_sem); 1421 vma = find_vma(current->mm, addr); 1422 if (!vma) 1423 goto out; 1424 1425 size = vma_kernel_pagesize(vma); 1426 1427 out: 1428 up_read(¤t->mm->mmap_sem); 1429 1430 return size; 1431 } 1432 1433 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1434 { 1435 return slot->flags & KVM_MEM_READONLY; 1436 } 1437 1438 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1439 gfn_t *nr_pages, bool write) 1440 { 1441 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1442 return KVM_HVA_ERR_BAD; 1443 1444 if (memslot_is_readonly(slot) && write) 1445 return KVM_HVA_ERR_RO_BAD; 1446 1447 if (nr_pages) 1448 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1449 1450 return __gfn_to_hva_memslot(slot, gfn); 1451 } 1452 1453 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1454 gfn_t *nr_pages) 1455 { 1456 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1457 } 1458 1459 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1460 gfn_t gfn) 1461 { 1462 return gfn_to_hva_many(slot, gfn, NULL); 1463 } 1464 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1465 1466 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1467 { 1468 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1469 } 1470 EXPORT_SYMBOL_GPL(gfn_to_hva); 1471 1472 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1473 { 1474 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1475 } 1476 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1477 1478 /* 1479 * Return the hva of a @gfn and the R/W attribute if possible. 1480 * 1481 * @slot: the kvm_memory_slot which contains @gfn 1482 * @gfn: the gfn to be translated 1483 * @writable: used to return the read/write attribute of the @slot if the hva 1484 * is valid and @writable is not NULL 1485 */ 1486 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1487 gfn_t gfn, bool *writable) 1488 { 1489 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1490 1491 if (!kvm_is_error_hva(hva) && writable) 1492 *writable = !memslot_is_readonly(slot); 1493 1494 return hva; 1495 } 1496 1497 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1498 { 1499 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1500 1501 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1502 } 1503 1504 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1505 { 1506 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1507 1508 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1509 } 1510 1511 static inline int check_user_page_hwpoison(unsigned long addr) 1512 { 1513 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1514 1515 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1516 return rc == -EHWPOISON; 1517 } 1518 1519 /* 1520 * The fast path to get the writable pfn which will be stored in @pfn, 1521 * true indicates success, otherwise false is returned. It's also the 1522 * only part that runs if we can are in atomic context. 1523 */ 1524 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1525 bool *writable, kvm_pfn_t *pfn) 1526 { 1527 struct page *page[1]; 1528 int npages; 1529 1530 /* 1531 * Fast pin a writable pfn only if it is a write fault request 1532 * or the caller allows to map a writable pfn for a read fault 1533 * request. 1534 */ 1535 if (!(write_fault || writable)) 1536 return false; 1537 1538 npages = __get_user_pages_fast(addr, 1, 1, page); 1539 if (npages == 1) { 1540 *pfn = page_to_pfn(page[0]); 1541 1542 if (writable) 1543 *writable = true; 1544 return true; 1545 } 1546 1547 return false; 1548 } 1549 1550 /* 1551 * The slow path to get the pfn of the specified host virtual address, 1552 * 1 indicates success, -errno is returned if error is detected. 1553 */ 1554 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1555 bool *writable, kvm_pfn_t *pfn) 1556 { 1557 unsigned int flags = FOLL_HWPOISON; 1558 struct page *page; 1559 int npages = 0; 1560 1561 might_sleep(); 1562 1563 if (writable) 1564 *writable = write_fault; 1565 1566 if (write_fault) 1567 flags |= FOLL_WRITE; 1568 if (async) 1569 flags |= FOLL_NOWAIT; 1570 1571 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1572 if (npages != 1) 1573 return npages; 1574 1575 /* map read fault as writable if possible */ 1576 if (unlikely(!write_fault) && writable) { 1577 struct page *wpage; 1578 1579 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1580 *writable = true; 1581 put_page(page); 1582 page = wpage; 1583 } 1584 } 1585 *pfn = page_to_pfn(page); 1586 return npages; 1587 } 1588 1589 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1590 { 1591 if (unlikely(!(vma->vm_flags & VM_READ))) 1592 return false; 1593 1594 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1595 return false; 1596 1597 return true; 1598 } 1599 1600 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1601 unsigned long addr, bool *async, 1602 bool write_fault, bool *writable, 1603 kvm_pfn_t *p_pfn) 1604 { 1605 unsigned long pfn; 1606 int r; 1607 1608 r = follow_pfn(vma, addr, &pfn); 1609 if (r) { 1610 /* 1611 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1612 * not call the fault handler, so do it here. 1613 */ 1614 bool unlocked = false; 1615 r = fixup_user_fault(current, current->mm, addr, 1616 (write_fault ? FAULT_FLAG_WRITE : 0), 1617 &unlocked); 1618 if (unlocked) 1619 return -EAGAIN; 1620 if (r) 1621 return r; 1622 1623 r = follow_pfn(vma, addr, &pfn); 1624 if (r) 1625 return r; 1626 1627 } 1628 1629 if (writable) 1630 *writable = true; 1631 1632 /* 1633 * Get a reference here because callers of *hva_to_pfn* and 1634 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1635 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1636 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1637 * simply do nothing for reserved pfns. 1638 * 1639 * Whoever called remap_pfn_range is also going to call e.g. 1640 * unmap_mapping_range before the underlying pages are freed, 1641 * causing a call to our MMU notifier. 1642 */ 1643 kvm_get_pfn(pfn); 1644 1645 *p_pfn = pfn; 1646 return 0; 1647 } 1648 1649 /* 1650 * Pin guest page in memory and return its pfn. 1651 * @addr: host virtual address which maps memory to the guest 1652 * @atomic: whether this function can sleep 1653 * @async: whether this function need to wait IO complete if the 1654 * host page is not in the memory 1655 * @write_fault: whether we should get a writable host page 1656 * @writable: whether it allows to map a writable host page for !@write_fault 1657 * 1658 * The function will map a writable host page for these two cases: 1659 * 1): @write_fault = true 1660 * 2): @write_fault = false && @writable, @writable will tell the caller 1661 * whether the mapping is writable. 1662 */ 1663 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1664 bool write_fault, bool *writable) 1665 { 1666 struct vm_area_struct *vma; 1667 kvm_pfn_t pfn = 0; 1668 int npages, r; 1669 1670 /* we can do it either atomically or asynchronously, not both */ 1671 BUG_ON(atomic && async); 1672 1673 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1674 return pfn; 1675 1676 if (atomic) 1677 return KVM_PFN_ERR_FAULT; 1678 1679 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1680 if (npages == 1) 1681 return pfn; 1682 1683 down_read(¤t->mm->mmap_sem); 1684 if (npages == -EHWPOISON || 1685 (!async && check_user_page_hwpoison(addr))) { 1686 pfn = KVM_PFN_ERR_HWPOISON; 1687 goto exit; 1688 } 1689 1690 retry: 1691 vma = find_vma_intersection(current->mm, addr, addr + 1); 1692 1693 if (vma == NULL) 1694 pfn = KVM_PFN_ERR_FAULT; 1695 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1696 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1697 if (r == -EAGAIN) 1698 goto retry; 1699 if (r < 0) 1700 pfn = KVM_PFN_ERR_FAULT; 1701 } else { 1702 if (async && vma_is_valid(vma, write_fault)) 1703 *async = true; 1704 pfn = KVM_PFN_ERR_FAULT; 1705 } 1706 exit: 1707 up_read(¤t->mm->mmap_sem); 1708 return pfn; 1709 } 1710 1711 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1712 bool atomic, bool *async, bool write_fault, 1713 bool *writable) 1714 { 1715 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1716 1717 if (addr == KVM_HVA_ERR_RO_BAD) { 1718 if (writable) 1719 *writable = false; 1720 return KVM_PFN_ERR_RO_FAULT; 1721 } 1722 1723 if (kvm_is_error_hva(addr)) { 1724 if (writable) 1725 *writable = false; 1726 return KVM_PFN_NOSLOT; 1727 } 1728 1729 /* Do not map writable pfn in the readonly memslot. */ 1730 if (writable && memslot_is_readonly(slot)) { 1731 *writable = false; 1732 writable = NULL; 1733 } 1734 1735 return hva_to_pfn(addr, atomic, async, write_fault, 1736 writable); 1737 } 1738 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1739 1740 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1741 bool *writable) 1742 { 1743 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1744 write_fault, writable); 1745 } 1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1747 1748 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1749 { 1750 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1751 } 1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1753 1754 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1755 { 1756 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1757 } 1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1759 1760 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1761 { 1762 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1763 } 1764 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1765 1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1767 { 1768 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1769 } 1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1771 1772 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1773 { 1774 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1775 } 1776 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1777 1778 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1779 { 1780 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1781 } 1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1783 1784 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1785 struct page **pages, int nr_pages) 1786 { 1787 unsigned long addr; 1788 gfn_t entry = 0; 1789 1790 addr = gfn_to_hva_many(slot, gfn, &entry); 1791 if (kvm_is_error_hva(addr)) 1792 return -1; 1793 1794 if (entry < nr_pages) 1795 return 0; 1796 1797 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1798 } 1799 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1800 1801 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1802 { 1803 if (is_error_noslot_pfn(pfn)) 1804 return KVM_ERR_PTR_BAD_PAGE; 1805 1806 if (kvm_is_reserved_pfn(pfn)) { 1807 WARN_ON(1); 1808 return KVM_ERR_PTR_BAD_PAGE; 1809 } 1810 1811 return pfn_to_page(pfn); 1812 } 1813 1814 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1815 { 1816 kvm_pfn_t pfn; 1817 1818 pfn = gfn_to_pfn(kvm, gfn); 1819 1820 return kvm_pfn_to_page(pfn); 1821 } 1822 EXPORT_SYMBOL_GPL(gfn_to_page); 1823 1824 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1825 struct kvm_host_map *map) 1826 { 1827 kvm_pfn_t pfn; 1828 void *hva = NULL; 1829 struct page *page = KVM_UNMAPPED_PAGE; 1830 1831 if (!map) 1832 return -EINVAL; 1833 1834 pfn = gfn_to_pfn_memslot(slot, gfn); 1835 if (is_error_noslot_pfn(pfn)) 1836 return -EINVAL; 1837 1838 if (pfn_valid(pfn)) { 1839 page = pfn_to_page(pfn); 1840 hva = kmap(page); 1841 #ifdef CONFIG_HAS_IOMEM 1842 } else { 1843 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1844 #endif 1845 } 1846 1847 if (!hva) 1848 return -EFAULT; 1849 1850 map->page = page; 1851 map->hva = hva; 1852 map->pfn = pfn; 1853 map->gfn = gfn; 1854 1855 return 0; 1856 } 1857 1858 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1859 { 1860 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1861 } 1862 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1863 1864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1865 bool dirty) 1866 { 1867 if (!map) 1868 return; 1869 1870 if (!map->hva) 1871 return; 1872 1873 if (map->page != KVM_UNMAPPED_PAGE) 1874 kunmap(map->page); 1875 #ifdef CONFIG_HAS_IOMEM 1876 else 1877 memunmap(map->hva); 1878 #endif 1879 1880 if (dirty) { 1881 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1882 kvm_release_pfn_dirty(map->pfn); 1883 } else { 1884 kvm_release_pfn_clean(map->pfn); 1885 } 1886 1887 map->hva = NULL; 1888 map->page = NULL; 1889 } 1890 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1891 1892 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1893 { 1894 kvm_pfn_t pfn; 1895 1896 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1897 1898 return kvm_pfn_to_page(pfn); 1899 } 1900 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1901 1902 void kvm_release_page_clean(struct page *page) 1903 { 1904 WARN_ON(is_error_page(page)); 1905 1906 kvm_release_pfn_clean(page_to_pfn(page)); 1907 } 1908 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1909 1910 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1911 { 1912 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1913 put_page(pfn_to_page(pfn)); 1914 } 1915 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1916 1917 void kvm_release_page_dirty(struct page *page) 1918 { 1919 WARN_ON(is_error_page(page)); 1920 1921 kvm_release_pfn_dirty(page_to_pfn(page)); 1922 } 1923 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1924 1925 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1926 { 1927 kvm_set_pfn_dirty(pfn); 1928 kvm_release_pfn_clean(pfn); 1929 } 1930 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1931 1932 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1933 { 1934 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) { 1935 struct page *page = pfn_to_page(pfn); 1936 1937 SetPageDirty(page); 1938 } 1939 } 1940 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1941 1942 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1943 { 1944 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 1945 mark_page_accessed(pfn_to_page(pfn)); 1946 } 1947 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1948 1949 void kvm_get_pfn(kvm_pfn_t pfn) 1950 { 1951 if (!kvm_is_reserved_pfn(pfn)) 1952 get_page(pfn_to_page(pfn)); 1953 } 1954 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1955 1956 static int next_segment(unsigned long len, int offset) 1957 { 1958 if (len > PAGE_SIZE - offset) 1959 return PAGE_SIZE - offset; 1960 else 1961 return len; 1962 } 1963 1964 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1965 void *data, int offset, int len) 1966 { 1967 int r; 1968 unsigned long addr; 1969 1970 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1971 if (kvm_is_error_hva(addr)) 1972 return -EFAULT; 1973 r = __copy_from_user(data, (void __user *)addr + offset, len); 1974 if (r) 1975 return -EFAULT; 1976 return 0; 1977 } 1978 1979 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1980 int len) 1981 { 1982 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1983 1984 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1987 1988 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1989 int offset, int len) 1990 { 1991 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1992 1993 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1994 } 1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1996 1997 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1998 { 1999 gfn_t gfn = gpa >> PAGE_SHIFT; 2000 int seg; 2001 int offset = offset_in_page(gpa); 2002 int ret; 2003 2004 while ((seg = next_segment(len, offset)) != 0) { 2005 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2006 if (ret < 0) 2007 return ret; 2008 offset = 0; 2009 len -= seg; 2010 data += seg; 2011 ++gfn; 2012 } 2013 return 0; 2014 } 2015 EXPORT_SYMBOL_GPL(kvm_read_guest); 2016 2017 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2018 { 2019 gfn_t gfn = gpa >> PAGE_SHIFT; 2020 int seg; 2021 int offset = offset_in_page(gpa); 2022 int ret; 2023 2024 while ((seg = next_segment(len, offset)) != 0) { 2025 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2026 if (ret < 0) 2027 return ret; 2028 offset = 0; 2029 len -= seg; 2030 data += seg; 2031 ++gfn; 2032 } 2033 return 0; 2034 } 2035 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2036 2037 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2038 void *data, int offset, unsigned long len) 2039 { 2040 int r; 2041 unsigned long addr; 2042 2043 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2044 if (kvm_is_error_hva(addr)) 2045 return -EFAULT; 2046 pagefault_disable(); 2047 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2048 pagefault_enable(); 2049 if (r) 2050 return -EFAULT; 2051 return 0; 2052 } 2053 2054 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 2055 unsigned long len) 2056 { 2057 gfn_t gfn = gpa >> PAGE_SHIFT; 2058 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2059 int offset = offset_in_page(gpa); 2060 2061 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 2064 2065 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2066 void *data, unsigned long len) 2067 { 2068 gfn_t gfn = gpa >> PAGE_SHIFT; 2069 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2070 int offset = offset_in_page(gpa); 2071 2072 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2073 } 2074 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2075 2076 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2077 const void *data, int offset, int len) 2078 { 2079 int r; 2080 unsigned long addr; 2081 2082 addr = gfn_to_hva_memslot(memslot, gfn); 2083 if (kvm_is_error_hva(addr)) 2084 return -EFAULT; 2085 r = __copy_to_user((void __user *)addr + offset, data, len); 2086 if (r) 2087 return -EFAULT; 2088 mark_page_dirty_in_slot(memslot, gfn); 2089 return 0; 2090 } 2091 2092 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2093 const void *data, int offset, int len) 2094 { 2095 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2096 2097 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2098 } 2099 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2100 2101 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2102 const void *data, int offset, int len) 2103 { 2104 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2105 2106 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2109 2110 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2111 unsigned long len) 2112 { 2113 gfn_t gfn = gpa >> PAGE_SHIFT; 2114 int seg; 2115 int offset = offset_in_page(gpa); 2116 int ret; 2117 2118 while ((seg = next_segment(len, offset)) != 0) { 2119 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2120 if (ret < 0) 2121 return ret; 2122 offset = 0; 2123 len -= seg; 2124 data += seg; 2125 ++gfn; 2126 } 2127 return 0; 2128 } 2129 EXPORT_SYMBOL_GPL(kvm_write_guest); 2130 2131 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2132 unsigned long len) 2133 { 2134 gfn_t gfn = gpa >> PAGE_SHIFT; 2135 int seg; 2136 int offset = offset_in_page(gpa); 2137 int ret; 2138 2139 while ((seg = next_segment(len, offset)) != 0) { 2140 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2141 if (ret < 0) 2142 return ret; 2143 offset = 0; 2144 len -= seg; 2145 data += seg; 2146 ++gfn; 2147 } 2148 return 0; 2149 } 2150 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2151 2152 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2153 struct gfn_to_hva_cache *ghc, 2154 gpa_t gpa, unsigned long len) 2155 { 2156 int offset = offset_in_page(gpa); 2157 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2158 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2159 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2160 gfn_t nr_pages_avail; 2161 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2162 2163 ghc->gpa = gpa; 2164 ghc->generation = slots->generation; 2165 ghc->len = len; 2166 ghc->hva = KVM_HVA_ERR_BAD; 2167 2168 /* 2169 * If the requested region crosses two memslots, we still 2170 * verify that the entire region is valid here. 2171 */ 2172 while (!r && start_gfn <= end_gfn) { 2173 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2174 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2175 &nr_pages_avail); 2176 if (kvm_is_error_hva(ghc->hva)) 2177 r = -EFAULT; 2178 start_gfn += nr_pages_avail; 2179 } 2180 2181 /* Use the slow path for cross page reads and writes. */ 2182 if (!r && nr_pages_needed == 1) 2183 ghc->hva += offset; 2184 else 2185 ghc->memslot = NULL; 2186 2187 return r; 2188 } 2189 2190 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2191 gpa_t gpa, unsigned long len) 2192 { 2193 struct kvm_memslots *slots = kvm_memslots(kvm); 2194 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2195 } 2196 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2197 2198 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2199 void *data, unsigned int offset, 2200 unsigned long len) 2201 { 2202 struct kvm_memslots *slots = kvm_memslots(kvm); 2203 int r; 2204 gpa_t gpa = ghc->gpa + offset; 2205 2206 BUG_ON(len + offset > ghc->len); 2207 2208 if (slots->generation != ghc->generation) 2209 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2210 2211 if (unlikely(!ghc->memslot)) 2212 return kvm_write_guest(kvm, gpa, data, len); 2213 2214 if (kvm_is_error_hva(ghc->hva)) 2215 return -EFAULT; 2216 2217 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2218 if (r) 2219 return -EFAULT; 2220 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2221 2222 return 0; 2223 } 2224 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2225 2226 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2227 void *data, unsigned long len) 2228 { 2229 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2230 } 2231 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2232 2233 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2234 void *data, unsigned long len) 2235 { 2236 struct kvm_memslots *slots = kvm_memslots(kvm); 2237 int r; 2238 2239 BUG_ON(len > ghc->len); 2240 2241 if (slots->generation != ghc->generation) 2242 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2243 2244 if (unlikely(!ghc->memslot)) 2245 return kvm_read_guest(kvm, ghc->gpa, data, len); 2246 2247 if (kvm_is_error_hva(ghc->hva)) 2248 return -EFAULT; 2249 2250 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2251 if (r) 2252 return -EFAULT; 2253 2254 return 0; 2255 } 2256 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2257 2258 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2259 { 2260 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2261 2262 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2263 } 2264 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2265 2266 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2267 { 2268 gfn_t gfn = gpa >> PAGE_SHIFT; 2269 int seg; 2270 int offset = offset_in_page(gpa); 2271 int ret; 2272 2273 while ((seg = next_segment(len, offset)) != 0) { 2274 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2275 if (ret < 0) 2276 return ret; 2277 offset = 0; 2278 len -= seg; 2279 ++gfn; 2280 } 2281 return 0; 2282 } 2283 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2284 2285 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2286 gfn_t gfn) 2287 { 2288 if (memslot && memslot->dirty_bitmap) { 2289 unsigned long rel_gfn = gfn - memslot->base_gfn; 2290 2291 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2292 } 2293 } 2294 2295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2296 { 2297 struct kvm_memory_slot *memslot; 2298 2299 memslot = gfn_to_memslot(kvm, gfn); 2300 mark_page_dirty_in_slot(memslot, gfn); 2301 } 2302 EXPORT_SYMBOL_GPL(mark_page_dirty); 2303 2304 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2305 { 2306 struct kvm_memory_slot *memslot; 2307 2308 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2309 mark_page_dirty_in_slot(memslot, gfn); 2310 } 2311 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2312 2313 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2314 { 2315 if (!vcpu->sigset_active) 2316 return; 2317 2318 /* 2319 * This does a lockless modification of ->real_blocked, which is fine 2320 * because, only current can change ->real_blocked and all readers of 2321 * ->real_blocked don't care as long ->real_blocked is always a subset 2322 * of ->blocked. 2323 */ 2324 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2325 } 2326 2327 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2328 { 2329 if (!vcpu->sigset_active) 2330 return; 2331 2332 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2333 sigemptyset(¤t->real_blocked); 2334 } 2335 2336 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2337 { 2338 unsigned int old, val, grow, grow_start; 2339 2340 old = val = vcpu->halt_poll_ns; 2341 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2342 grow = READ_ONCE(halt_poll_ns_grow); 2343 if (!grow) 2344 goto out; 2345 2346 val *= grow; 2347 if (val < grow_start) 2348 val = grow_start; 2349 2350 if (val > halt_poll_ns) 2351 val = halt_poll_ns; 2352 2353 vcpu->halt_poll_ns = val; 2354 out: 2355 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2356 } 2357 2358 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2359 { 2360 unsigned int old, val, shrink; 2361 2362 old = val = vcpu->halt_poll_ns; 2363 shrink = READ_ONCE(halt_poll_ns_shrink); 2364 if (shrink == 0) 2365 val = 0; 2366 else 2367 val /= shrink; 2368 2369 vcpu->halt_poll_ns = val; 2370 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2371 } 2372 2373 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2374 { 2375 int ret = -EINTR; 2376 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2377 2378 if (kvm_arch_vcpu_runnable(vcpu)) { 2379 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2380 goto out; 2381 } 2382 if (kvm_cpu_has_pending_timer(vcpu)) 2383 goto out; 2384 if (signal_pending(current)) 2385 goto out; 2386 2387 ret = 0; 2388 out: 2389 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2390 return ret; 2391 } 2392 2393 /* 2394 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2395 */ 2396 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2397 { 2398 ktime_t start, cur; 2399 DECLARE_SWAITQUEUE(wait); 2400 bool waited = false; 2401 u64 block_ns; 2402 2403 kvm_arch_vcpu_blocking(vcpu); 2404 2405 start = cur = ktime_get(); 2406 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2407 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2408 2409 ++vcpu->stat.halt_attempted_poll; 2410 do { 2411 /* 2412 * This sets KVM_REQ_UNHALT if an interrupt 2413 * arrives. 2414 */ 2415 if (kvm_vcpu_check_block(vcpu) < 0) { 2416 ++vcpu->stat.halt_successful_poll; 2417 if (!vcpu_valid_wakeup(vcpu)) 2418 ++vcpu->stat.halt_poll_invalid; 2419 goto out; 2420 } 2421 cur = ktime_get(); 2422 } while (single_task_running() && ktime_before(cur, stop)); 2423 } 2424 2425 for (;;) { 2426 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2427 2428 if (kvm_vcpu_check_block(vcpu) < 0) 2429 break; 2430 2431 waited = true; 2432 schedule(); 2433 } 2434 2435 finish_swait(&vcpu->wq, &wait); 2436 cur = ktime_get(); 2437 out: 2438 kvm_arch_vcpu_unblocking(vcpu); 2439 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2440 2441 if (!kvm_arch_no_poll(vcpu)) { 2442 if (!vcpu_valid_wakeup(vcpu)) { 2443 shrink_halt_poll_ns(vcpu); 2444 } else if (halt_poll_ns) { 2445 if (block_ns <= vcpu->halt_poll_ns) 2446 ; 2447 /* we had a long block, shrink polling */ 2448 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2449 shrink_halt_poll_ns(vcpu); 2450 /* we had a short halt and our poll time is too small */ 2451 else if (vcpu->halt_poll_ns < halt_poll_ns && 2452 block_ns < halt_poll_ns) 2453 grow_halt_poll_ns(vcpu); 2454 } else { 2455 vcpu->halt_poll_ns = 0; 2456 } 2457 } 2458 2459 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2460 kvm_arch_vcpu_block_finish(vcpu); 2461 } 2462 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2463 2464 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2465 { 2466 struct swait_queue_head *wqp; 2467 2468 wqp = kvm_arch_vcpu_wq(vcpu); 2469 if (swq_has_sleeper(wqp)) { 2470 swake_up_one(wqp); 2471 WRITE_ONCE(vcpu->ready, true); 2472 ++vcpu->stat.halt_wakeup; 2473 return true; 2474 } 2475 2476 return false; 2477 } 2478 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2479 2480 #ifndef CONFIG_S390 2481 /* 2482 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2483 */ 2484 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2485 { 2486 int me; 2487 int cpu = vcpu->cpu; 2488 2489 if (kvm_vcpu_wake_up(vcpu)) 2490 return; 2491 2492 me = get_cpu(); 2493 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2494 if (kvm_arch_vcpu_should_kick(vcpu)) 2495 smp_send_reschedule(cpu); 2496 put_cpu(); 2497 } 2498 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2499 #endif /* !CONFIG_S390 */ 2500 2501 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2502 { 2503 struct pid *pid; 2504 struct task_struct *task = NULL; 2505 int ret = 0; 2506 2507 rcu_read_lock(); 2508 pid = rcu_dereference(target->pid); 2509 if (pid) 2510 task = get_pid_task(pid, PIDTYPE_PID); 2511 rcu_read_unlock(); 2512 if (!task) 2513 return ret; 2514 ret = yield_to(task, 1); 2515 put_task_struct(task); 2516 2517 return ret; 2518 } 2519 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2520 2521 /* 2522 * Helper that checks whether a VCPU is eligible for directed yield. 2523 * Most eligible candidate to yield is decided by following heuristics: 2524 * 2525 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2526 * (preempted lock holder), indicated by @in_spin_loop. 2527 * Set at the beiginning and cleared at the end of interception/PLE handler. 2528 * 2529 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2530 * chance last time (mostly it has become eligible now since we have probably 2531 * yielded to lockholder in last iteration. This is done by toggling 2532 * @dy_eligible each time a VCPU checked for eligibility.) 2533 * 2534 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2535 * to preempted lock-holder could result in wrong VCPU selection and CPU 2536 * burning. Giving priority for a potential lock-holder increases lock 2537 * progress. 2538 * 2539 * Since algorithm is based on heuristics, accessing another VCPU data without 2540 * locking does not harm. It may result in trying to yield to same VCPU, fail 2541 * and continue with next VCPU and so on. 2542 */ 2543 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2544 { 2545 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2546 bool eligible; 2547 2548 eligible = !vcpu->spin_loop.in_spin_loop || 2549 vcpu->spin_loop.dy_eligible; 2550 2551 if (vcpu->spin_loop.in_spin_loop) 2552 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2553 2554 return eligible; 2555 #else 2556 return true; 2557 #endif 2558 } 2559 2560 /* 2561 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2562 * a vcpu_load/vcpu_put pair. However, for most architectures 2563 * kvm_arch_vcpu_runnable does not require vcpu_load. 2564 */ 2565 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2566 { 2567 return kvm_arch_vcpu_runnable(vcpu); 2568 } 2569 2570 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2571 { 2572 if (kvm_arch_dy_runnable(vcpu)) 2573 return true; 2574 2575 #ifdef CONFIG_KVM_ASYNC_PF 2576 if (!list_empty_careful(&vcpu->async_pf.done)) 2577 return true; 2578 #endif 2579 2580 return false; 2581 } 2582 2583 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2584 { 2585 struct kvm *kvm = me->kvm; 2586 struct kvm_vcpu *vcpu; 2587 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2588 int yielded = 0; 2589 int try = 3; 2590 int pass; 2591 int i; 2592 2593 kvm_vcpu_set_in_spin_loop(me, true); 2594 /* 2595 * We boost the priority of a VCPU that is runnable but not 2596 * currently running, because it got preempted by something 2597 * else and called schedule in __vcpu_run. Hopefully that 2598 * VCPU is holding the lock that we need and will release it. 2599 * We approximate round-robin by starting at the last boosted VCPU. 2600 */ 2601 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2602 kvm_for_each_vcpu(i, vcpu, kvm) { 2603 if (!pass && i <= last_boosted_vcpu) { 2604 i = last_boosted_vcpu; 2605 continue; 2606 } else if (pass && i > last_boosted_vcpu) 2607 break; 2608 if (!READ_ONCE(vcpu->ready)) 2609 continue; 2610 if (vcpu == me) 2611 continue; 2612 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu)) 2613 continue; 2614 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2615 !kvm_arch_vcpu_in_kernel(vcpu)) 2616 continue; 2617 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2618 continue; 2619 2620 yielded = kvm_vcpu_yield_to(vcpu); 2621 if (yielded > 0) { 2622 kvm->last_boosted_vcpu = i; 2623 break; 2624 } else if (yielded < 0) { 2625 try--; 2626 if (!try) 2627 break; 2628 } 2629 } 2630 } 2631 kvm_vcpu_set_in_spin_loop(me, false); 2632 2633 /* Ensure vcpu is not eligible during next spinloop */ 2634 kvm_vcpu_set_dy_eligible(me, false); 2635 } 2636 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2637 2638 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2639 { 2640 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2641 struct page *page; 2642 2643 if (vmf->pgoff == 0) 2644 page = virt_to_page(vcpu->run); 2645 #ifdef CONFIG_X86 2646 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2647 page = virt_to_page(vcpu->arch.pio_data); 2648 #endif 2649 #ifdef CONFIG_KVM_MMIO 2650 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2651 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2652 #endif 2653 else 2654 return kvm_arch_vcpu_fault(vcpu, vmf); 2655 get_page(page); 2656 vmf->page = page; 2657 return 0; 2658 } 2659 2660 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2661 .fault = kvm_vcpu_fault, 2662 }; 2663 2664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2665 { 2666 vma->vm_ops = &kvm_vcpu_vm_ops; 2667 return 0; 2668 } 2669 2670 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2671 { 2672 struct kvm_vcpu *vcpu = filp->private_data; 2673 2674 debugfs_remove_recursive(vcpu->debugfs_dentry); 2675 kvm_put_kvm(vcpu->kvm); 2676 return 0; 2677 } 2678 2679 static struct file_operations kvm_vcpu_fops = { 2680 .release = kvm_vcpu_release, 2681 .unlocked_ioctl = kvm_vcpu_ioctl, 2682 .mmap = kvm_vcpu_mmap, 2683 .llseek = noop_llseek, 2684 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2685 }; 2686 2687 /* 2688 * Allocates an inode for the vcpu. 2689 */ 2690 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2691 { 2692 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2693 2694 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2695 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2696 } 2697 2698 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2699 { 2700 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 2701 char dir_name[ITOA_MAX_LEN * 2]; 2702 2703 if (!debugfs_initialized()) 2704 return; 2705 2706 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2707 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2708 vcpu->kvm->debugfs_dentry); 2709 2710 kvm_arch_create_vcpu_debugfs(vcpu); 2711 #endif 2712 } 2713 2714 /* 2715 * Creates some virtual cpus. Good luck creating more than one. 2716 */ 2717 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2718 { 2719 int r; 2720 struct kvm_vcpu *vcpu; 2721 2722 if (id >= KVM_MAX_VCPU_ID) 2723 return -EINVAL; 2724 2725 mutex_lock(&kvm->lock); 2726 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2727 mutex_unlock(&kvm->lock); 2728 return -EINVAL; 2729 } 2730 2731 kvm->created_vcpus++; 2732 mutex_unlock(&kvm->lock); 2733 2734 vcpu = kvm_arch_vcpu_create(kvm, id); 2735 if (IS_ERR(vcpu)) { 2736 r = PTR_ERR(vcpu); 2737 goto vcpu_decrement; 2738 } 2739 2740 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2741 2742 r = kvm_arch_vcpu_setup(vcpu); 2743 if (r) 2744 goto vcpu_destroy; 2745 2746 kvm_create_vcpu_debugfs(vcpu); 2747 2748 mutex_lock(&kvm->lock); 2749 if (kvm_get_vcpu_by_id(kvm, id)) { 2750 r = -EEXIST; 2751 goto unlock_vcpu_destroy; 2752 } 2753 2754 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 2755 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 2756 2757 /* Now it's all set up, let userspace reach it */ 2758 kvm_get_kvm(kvm); 2759 r = create_vcpu_fd(vcpu); 2760 if (r < 0) { 2761 kvm_put_kvm_no_destroy(kvm); 2762 goto unlock_vcpu_destroy; 2763 } 2764 2765 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 2766 2767 /* 2768 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2769 * before kvm->online_vcpu's incremented value. 2770 */ 2771 smp_wmb(); 2772 atomic_inc(&kvm->online_vcpus); 2773 2774 mutex_unlock(&kvm->lock); 2775 kvm_arch_vcpu_postcreate(vcpu); 2776 return r; 2777 2778 unlock_vcpu_destroy: 2779 mutex_unlock(&kvm->lock); 2780 debugfs_remove_recursive(vcpu->debugfs_dentry); 2781 vcpu_destroy: 2782 kvm_arch_vcpu_destroy(vcpu); 2783 vcpu_decrement: 2784 mutex_lock(&kvm->lock); 2785 kvm->created_vcpus--; 2786 mutex_unlock(&kvm->lock); 2787 return r; 2788 } 2789 2790 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2791 { 2792 if (sigset) { 2793 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2794 vcpu->sigset_active = 1; 2795 vcpu->sigset = *sigset; 2796 } else 2797 vcpu->sigset_active = 0; 2798 return 0; 2799 } 2800 2801 static long kvm_vcpu_ioctl(struct file *filp, 2802 unsigned int ioctl, unsigned long arg) 2803 { 2804 struct kvm_vcpu *vcpu = filp->private_data; 2805 void __user *argp = (void __user *)arg; 2806 int r; 2807 struct kvm_fpu *fpu = NULL; 2808 struct kvm_sregs *kvm_sregs = NULL; 2809 2810 if (vcpu->kvm->mm != current->mm) 2811 return -EIO; 2812 2813 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2814 return -EINVAL; 2815 2816 /* 2817 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2818 * execution; mutex_lock() would break them. 2819 */ 2820 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2821 if (r != -ENOIOCTLCMD) 2822 return r; 2823 2824 if (mutex_lock_killable(&vcpu->mutex)) 2825 return -EINTR; 2826 switch (ioctl) { 2827 case KVM_RUN: { 2828 struct pid *oldpid; 2829 r = -EINVAL; 2830 if (arg) 2831 goto out; 2832 oldpid = rcu_access_pointer(vcpu->pid); 2833 if (unlikely(oldpid != task_pid(current))) { 2834 /* The thread running this VCPU changed. */ 2835 struct pid *newpid; 2836 2837 r = kvm_arch_vcpu_run_pid_change(vcpu); 2838 if (r) 2839 break; 2840 2841 newpid = get_task_pid(current, PIDTYPE_PID); 2842 rcu_assign_pointer(vcpu->pid, newpid); 2843 if (oldpid) 2844 synchronize_rcu(); 2845 put_pid(oldpid); 2846 } 2847 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2848 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2849 break; 2850 } 2851 case KVM_GET_REGS: { 2852 struct kvm_regs *kvm_regs; 2853 2854 r = -ENOMEM; 2855 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2856 if (!kvm_regs) 2857 goto out; 2858 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2859 if (r) 2860 goto out_free1; 2861 r = -EFAULT; 2862 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2863 goto out_free1; 2864 r = 0; 2865 out_free1: 2866 kfree(kvm_regs); 2867 break; 2868 } 2869 case KVM_SET_REGS: { 2870 struct kvm_regs *kvm_regs; 2871 2872 r = -ENOMEM; 2873 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2874 if (IS_ERR(kvm_regs)) { 2875 r = PTR_ERR(kvm_regs); 2876 goto out; 2877 } 2878 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2879 kfree(kvm_regs); 2880 break; 2881 } 2882 case KVM_GET_SREGS: { 2883 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2884 GFP_KERNEL_ACCOUNT); 2885 r = -ENOMEM; 2886 if (!kvm_sregs) 2887 goto out; 2888 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2889 if (r) 2890 goto out; 2891 r = -EFAULT; 2892 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2893 goto out; 2894 r = 0; 2895 break; 2896 } 2897 case KVM_SET_SREGS: { 2898 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2899 if (IS_ERR(kvm_sregs)) { 2900 r = PTR_ERR(kvm_sregs); 2901 kvm_sregs = NULL; 2902 goto out; 2903 } 2904 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2905 break; 2906 } 2907 case KVM_GET_MP_STATE: { 2908 struct kvm_mp_state mp_state; 2909 2910 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2911 if (r) 2912 goto out; 2913 r = -EFAULT; 2914 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2915 goto out; 2916 r = 0; 2917 break; 2918 } 2919 case KVM_SET_MP_STATE: { 2920 struct kvm_mp_state mp_state; 2921 2922 r = -EFAULT; 2923 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2924 goto out; 2925 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2926 break; 2927 } 2928 case KVM_TRANSLATE: { 2929 struct kvm_translation tr; 2930 2931 r = -EFAULT; 2932 if (copy_from_user(&tr, argp, sizeof(tr))) 2933 goto out; 2934 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2935 if (r) 2936 goto out; 2937 r = -EFAULT; 2938 if (copy_to_user(argp, &tr, sizeof(tr))) 2939 goto out; 2940 r = 0; 2941 break; 2942 } 2943 case KVM_SET_GUEST_DEBUG: { 2944 struct kvm_guest_debug dbg; 2945 2946 r = -EFAULT; 2947 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2948 goto out; 2949 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2950 break; 2951 } 2952 case KVM_SET_SIGNAL_MASK: { 2953 struct kvm_signal_mask __user *sigmask_arg = argp; 2954 struct kvm_signal_mask kvm_sigmask; 2955 sigset_t sigset, *p; 2956 2957 p = NULL; 2958 if (argp) { 2959 r = -EFAULT; 2960 if (copy_from_user(&kvm_sigmask, argp, 2961 sizeof(kvm_sigmask))) 2962 goto out; 2963 r = -EINVAL; 2964 if (kvm_sigmask.len != sizeof(sigset)) 2965 goto out; 2966 r = -EFAULT; 2967 if (copy_from_user(&sigset, sigmask_arg->sigset, 2968 sizeof(sigset))) 2969 goto out; 2970 p = &sigset; 2971 } 2972 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2973 break; 2974 } 2975 case KVM_GET_FPU: { 2976 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2977 r = -ENOMEM; 2978 if (!fpu) 2979 goto out; 2980 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2981 if (r) 2982 goto out; 2983 r = -EFAULT; 2984 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2985 goto out; 2986 r = 0; 2987 break; 2988 } 2989 case KVM_SET_FPU: { 2990 fpu = memdup_user(argp, sizeof(*fpu)); 2991 if (IS_ERR(fpu)) { 2992 r = PTR_ERR(fpu); 2993 fpu = NULL; 2994 goto out; 2995 } 2996 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2997 break; 2998 } 2999 default: 3000 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3001 } 3002 out: 3003 mutex_unlock(&vcpu->mutex); 3004 kfree(fpu); 3005 kfree(kvm_sregs); 3006 return r; 3007 } 3008 3009 #ifdef CONFIG_KVM_COMPAT 3010 static long kvm_vcpu_compat_ioctl(struct file *filp, 3011 unsigned int ioctl, unsigned long arg) 3012 { 3013 struct kvm_vcpu *vcpu = filp->private_data; 3014 void __user *argp = compat_ptr(arg); 3015 int r; 3016 3017 if (vcpu->kvm->mm != current->mm) 3018 return -EIO; 3019 3020 switch (ioctl) { 3021 case KVM_SET_SIGNAL_MASK: { 3022 struct kvm_signal_mask __user *sigmask_arg = argp; 3023 struct kvm_signal_mask kvm_sigmask; 3024 sigset_t sigset; 3025 3026 if (argp) { 3027 r = -EFAULT; 3028 if (copy_from_user(&kvm_sigmask, argp, 3029 sizeof(kvm_sigmask))) 3030 goto out; 3031 r = -EINVAL; 3032 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3033 goto out; 3034 r = -EFAULT; 3035 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 3036 goto out; 3037 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3038 } else 3039 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3040 break; 3041 } 3042 default: 3043 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3044 } 3045 3046 out: 3047 return r; 3048 } 3049 #endif 3050 3051 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3052 { 3053 struct kvm_device *dev = filp->private_data; 3054 3055 if (dev->ops->mmap) 3056 return dev->ops->mmap(dev, vma); 3057 3058 return -ENODEV; 3059 } 3060 3061 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3062 int (*accessor)(struct kvm_device *dev, 3063 struct kvm_device_attr *attr), 3064 unsigned long arg) 3065 { 3066 struct kvm_device_attr attr; 3067 3068 if (!accessor) 3069 return -EPERM; 3070 3071 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3072 return -EFAULT; 3073 3074 return accessor(dev, &attr); 3075 } 3076 3077 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3078 unsigned long arg) 3079 { 3080 struct kvm_device *dev = filp->private_data; 3081 3082 if (dev->kvm->mm != current->mm) 3083 return -EIO; 3084 3085 switch (ioctl) { 3086 case KVM_SET_DEVICE_ATTR: 3087 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3088 case KVM_GET_DEVICE_ATTR: 3089 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3090 case KVM_HAS_DEVICE_ATTR: 3091 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3092 default: 3093 if (dev->ops->ioctl) 3094 return dev->ops->ioctl(dev, ioctl, arg); 3095 3096 return -ENOTTY; 3097 } 3098 } 3099 3100 static int kvm_device_release(struct inode *inode, struct file *filp) 3101 { 3102 struct kvm_device *dev = filp->private_data; 3103 struct kvm *kvm = dev->kvm; 3104 3105 if (dev->ops->release) { 3106 mutex_lock(&kvm->lock); 3107 list_del(&dev->vm_node); 3108 dev->ops->release(dev); 3109 mutex_unlock(&kvm->lock); 3110 } 3111 3112 kvm_put_kvm(kvm); 3113 return 0; 3114 } 3115 3116 static const struct file_operations kvm_device_fops = { 3117 .unlocked_ioctl = kvm_device_ioctl, 3118 .release = kvm_device_release, 3119 KVM_COMPAT(kvm_device_ioctl), 3120 .mmap = kvm_device_mmap, 3121 }; 3122 3123 struct kvm_device *kvm_device_from_filp(struct file *filp) 3124 { 3125 if (filp->f_op != &kvm_device_fops) 3126 return NULL; 3127 3128 return filp->private_data; 3129 } 3130 3131 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3132 #ifdef CONFIG_KVM_MPIC 3133 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3134 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3135 #endif 3136 }; 3137 3138 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3139 { 3140 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3141 return -ENOSPC; 3142 3143 if (kvm_device_ops_table[type] != NULL) 3144 return -EEXIST; 3145 3146 kvm_device_ops_table[type] = ops; 3147 return 0; 3148 } 3149 3150 void kvm_unregister_device_ops(u32 type) 3151 { 3152 if (kvm_device_ops_table[type] != NULL) 3153 kvm_device_ops_table[type] = NULL; 3154 } 3155 3156 static int kvm_ioctl_create_device(struct kvm *kvm, 3157 struct kvm_create_device *cd) 3158 { 3159 const struct kvm_device_ops *ops = NULL; 3160 struct kvm_device *dev; 3161 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3162 int type; 3163 int ret; 3164 3165 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3166 return -ENODEV; 3167 3168 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3169 ops = kvm_device_ops_table[type]; 3170 if (ops == NULL) 3171 return -ENODEV; 3172 3173 if (test) 3174 return 0; 3175 3176 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3177 if (!dev) 3178 return -ENOMEM; 3179 3180 dev->ops = ops; 3181 dev->kvm = kvm; 3182 3183 mutex_lock(&kvm->lock); 3184 ret = ops->create(dev, type); 3185 if (ret < 0) { 3186 mutex_unlock(&kvm->lock); 3187 kfree(dev); 3188 return ret; 3189 } 3190 list_add(&dev->vm_node, &kvm->devices); 3191 mutex_unlock(&kvm->lock); 3192 3193 if (ops->init) 3194 ops->init(dev); 3195 3196 kvm_get_kvm(kvm); 3197 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3198 if (ret < 0) { 3199 kvm_put_kvm_no_destroy(kvm); 3200 mutex_lock(&kvm->lock); 3201 list_del(&dev->vm_node); 3202 mutex_unlock(&kvm->lock); 3203 ops->destroy(dev); 3204 return ret; 3205 } 3206 3207 cd->fd = ret; 3208 return 0; 3209 } 3210 3211 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3212 { 3213 switch (arg) { 3214 case KVM_CAP_USER_MEMORY: 3215 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3216 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3217 case KVM_CAP_INTERNAL_ERROR_DATA: 3218 #ifdef CONFIG_HAVE_KVM_MSI 3219 case KVM_CAP_SIGNAL_MSI: 3220 #endif 3221 #ifdef CONFIG_HAVE_KVM_IRQFD 3222 case KVM_CAP_IRQFD: 3223 case KVM_CAP_IRQFD_RESAMPLE: 3224 #endif 3225 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3226 case KVM_CAP_CHECK_EXTENSION_VM: 3227 case KVM_CAP_ENABLE_CAP_VM: 3228 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3229 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3230 #endif 3231 return 1; 3232 #ifdef CONFIG_KVM_MMIO 3233 case KVM_CAP_COALESCED_MMIO: 3234 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3235 case KVM_CAP_COALESCED_PIO: 3236 return 1; 3237 #endif 3238 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3239 case KVM_CAP_IRQ_ROUTING: 3240 return KVM_MAX_IRQ_ROUTES; 3241 #endif 3242 #if KVM_ADDRESS_SPACE_NUM > 1 3243 case KVM_CAP_MULTI_ADDRESS_SPACE: 3244 return KVM_ADDRESS_SPACE_NUM; 3245 #endif 3246 case KVM_CAP_NR_MEMSLOTS: 3247 return KVM_USER_MEM_SLOTS; 3248 default: 3249 break; 3250 } 3251 return kvm_vm_ioctl_check_extension(kvm, arg); 3252 } 3253 3254 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3255 struct kvm_enable_cap *cap) 3256 { 3257 return -EINVAL; 3258 } 3259 3260 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3261 struct kvm_enable_cap *cap) 3262 { 3263 switch (cap->cap) { 3264 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3265 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3266 if (cap->flags || (cap->args[0] & ~1)) 3267 return -EINVAL; 3268 kvm->manual_dirty_log_protect = cap->args[0]; 3269 return 0; 3270 #endif 3271 default: 3272 return kvm_vm_ioctl_enable_cap(kvm, cap); 3273 } 3274 } 3275 3276 static long kvm_vm_ioctl(struct file *filp, 3277 unsigned int ioctl, unsigned long arg) 3278 { 3279 struct kvm *kvm = filp->private_data; 3280 void __user *argp = (void __user *)arg; 3281 int r; 3282 3283 if (kvm->mm != current->mm) 3284 return -EIO; 3285 switch (ioctl) { 3286 case KVM_CREATE_VCPU: 3287 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3288 break; 3289 case KVM_ENABLE_CAP: { 3290 struct kvm_enable_cap cap; 3291 3292 r = -EFAULT; 3293 if (copy_from_user(&cap, argp, sizeof(cap))) 3294 goto out; 3295 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3296 break; 3297 } 3298 case KVM_SET_USER_MEMORY_REGION: { 3299 struct kvm_userspace_memory_region kvm_userspace_mem; 3300 3301 r = -EFAULT; 3302 if (copy_from_user(&kvm_userspace_mem, argp, 3303 sizeof(kvm_userspace_mem))) 3304 goto out; 3305 3306 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3307 break; 3308 } 3309 case KVM_GET_DIRTY_LOG: { 3310 struct kvm_dirty_log log; 3311 3312 r = -EFAULT; 3313 if (copy_from_user(&log, argp, sizeof(log))) 3314 goto out; 3315 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3316 break; 3317 } 3318 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3319 case KVM_CLEAR_DIRTY_LOG: { 3320 struct kvm_clear_dirty_log log; 3321 3322 r = -EFAULT; 3323 if (copy_from_user(&log, argp, sizeof(log))) 3324 goto out; 3325 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3326 break; 3327 } 3328 #endif 3329 #ifdef CONFIG_KVM_MMIO 3330 case KVM_REGISTER_COALESCED_MMIO: { 3331 struct kvm_coalesced_mmio_zone zone; 3332 3333 r = -EFAULT; 3334 if (copy_from_user(&zone, argp, sizeof(zone))) 3335 goto out; 3336 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3337 break; 3338 } 3339 case KVM_UNREGISTER_COALESCED_MMIO: { 3340 struct kvm_coalesced_mmio_zone zone; 3341 3342 r = -EFAULT; 3343 if (copy_from_user(&zone, argp, sizeof(zone))) 3344 goto out; 3345 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3346 break; 3347 } 3348 #endif 3349 case KVM_IRQFD: { 3350 struct kvm_irqfd data; 3351 3352 r = -EFAULT; 3353 if (copy_from_user(&data, argp, sizeof(data))) 3354 goto out; 3355 r = kvm_irqfd(kvm, &data); 3356 break; 3357 } 3358 case KVM_IOEVENTFD: { 3359 struct kvm_ioeventfd data; 3360 3361 r = -EFAULT; 3362 if (copy_from_user(&data, argp, sizeof(data))) 3363 goto out; 3364 r = kvm_ioeventfd(kvm, &data); 3365 break; 3366 } 3367 #ifdef CONFIG_HAVE_KVM_MSI 3368 case KVM_SIGNAL_MSI: { 3369 struct kvm_msi msi; 3370 3371 r = -EFAULT; 3372 if (copy_from_user(&msi, argp, sizeof(msi))) 3373 goto out; 3374 r = kvm_send_userspace_msi(kvm, &msi); 3375 break; 3376 } 3377 #endif 3378 #ifdef __KVM_HAVE_IRQ_LINE 3379 case KVM_IRQ_LINE_STATUS: 3380 case KVM_IRQ_LINE: { 3381 struct kvm_irq_level irq_event; 3382 3383 r = -EFAULT; 3384 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3385 goto out; 3386 3387 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3388 ioctl == KVM_IRQ_LINE_STATUS); 3389 if (r) 3390 goto out; 3391 3392 r = -EFAULT; 3393 if (ioctl == KVM_IRQ_LINE_STATUS) { 3394 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3395 goto out; 3396 } 3397 3398 r = 0; 3399 break; 3400 } 3401 #endif 3402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3403 case KVM_SET_GSI_ROUTING: { 3404 struct kvm_irq_routing routing; 3405 struct kvm_irq_routing __user *urouting; 3406 struct kvm_irq_routing_entry *entries = NULL; 3407 3408 r = -EFAULT; 3409 if (copy_from_user(&routing, argp, sizeof(routing))) 3410 goto out; 3411 r = -EINVAL; 3412 if (!kvm_arch_can_set_irq_routing(kvm)) 3413 goto out; 3414 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3415 goto out; 3416 if (routing.flags) 3417 goto out; 3418 if (routing.nr) { 3419 r = -ENOMEM; 3420 entries = vmalloc(array_size(sizeof(*entries), 3421 routing.nr)); 3422 if (!entries) 3423 goto out; 3424 r = -EFAULT; 3425 urouting = argp; 3426 if (copy_from_user(entries, urouting->entries, 3427 routing.nr * sizeof(*entries))) 3428 goto out_free_irq_routing; 3429 } 3430 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3431 routing.flags); 3432 out_free_irq_routing: 3433 vfree(entries); 3434 break; 3435 } 3436 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3437 case KVM_CREATE_DEVICE: { 3438 struct kvm_create_device cd; 3439 3440 r = -EFAULT; 3441 if (copy_from_user(&cd, argp, sizeof(cd))) 3442 goto out; 3443 3444 r = kvm_ioctl_create_device(kvm, &cd); 3445 if (r) 3446 goto out; 3447 3448 r = -EFAULT; 3449 if (copy_to_user(argp, &cd, sizeof(cd))) 3450 goto out; 3451 3452 r = 0; 3453 break; 3454 } 3455 case KVM_CHECK_EXTENSION: 3456 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3457 break; 3458 default: 3459 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3460 } 3461 out: 3462 return r; 3463 } 3464 3465 #ifdef CONFIG_KVM_COMPAT 3466 struct compat_kvm_dirty_log { 3467 __u32 slot; 3468 __u32 padding1; 3469 union { 3470 compat_uptr_t dirty_bitmap; /* one bit per page */ 3471 __u64 padding2; 3472 }; 3473 }; 3474 3475 static long kvm_vm_compat_ioctl(struct file *filp, 3476 unsigned int ioctl, unsigned long arg) 3477 { 3478 struct kvm *kvm = filp->private_data; 3479 int r; 3480 3481 if (kvm->mm != current->mm) 3482 return -EIO; 3483 switch (ioctl) { 3484 case KVM_GET_DIRTY_LOG: { 3485 struct compat_kvm_dirty_log compat_log; 3486 struct kvm_dirty_log log; 3487 3488 if (copy_from_user(&compat_log, (void __user *)arg, 3489 sizeof(compat_log))) 3490 return -EFAULT; 3491 log.slot = compat_log.slot; 3492 log.padding1 = compat_log.padding1; 3493 log.padding2 = compat_log.padding2; 3494 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3495 3496 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3497 break; 3498 } 3499 default: 3500 r = kvm_vm_ioctl(filp, ioctl, arg); 3501 } 3502 return r; 3503 } 3504 #endif 3505 3506 static struct file_operations kvm_vm_fops = { 3507 .release = kvm_vm_release, 3508 .unlocked_ioctl = kvm_vm_ioctl, 3509 .llseek = noop_llseek, 3510 KVM_COMPAT(kvm_vm_compat_ioctl), 3511 }; 3512 3513 static int kvm_dev_ioctl_create_vm(unsigned long type) 3514 { 3515 int r; 3516 struct kvm *kvm; 3517 struct file *file; 3518 3519 kvm = kvm_create_vm(type); 3520 if (IS_ERR(kvm)) 3521 return PTR_ERR(kvm); 3522 #ifdef CONFIG_KVM_MMIO 3523 r = kvm_coalesced_mmio_init(kvm); 3524 if (r < 0) 3525 goto put_kvm; 3526 #endif 3527 r = get_unused_fd_flags(O_CLOEXEC); 3528 if (r < 0) 3529 goto put_kvm; 3530 3531 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3532 if (IS_ERR(file)) { 3533 put_unused_fd(r); 3534 r = PTR_ERR(file); 3535 goto put_kvm; 3536 } 3537 3538 /* 3539 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3540 * already set, with ->release() being kvm_vm_release(). In error 3541 * cases it will be called by the final fput(file) and will take 3542 * care of doing kvm_put_kvm(kvm). 3543 */ 3544 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3545 put_unused_fd(r); 3546 fput(file); 3547 return -ENOMEM; 3548 } 3549 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3550 3551 fd_install(r, file); 3552 return r; 3553 3554 put_kvm: 3555 kvm_put_kvm(kvm); 3556 return r; 3557 } 3558 3559 static long kvm_dev_ioctl(struct file *filp, 3560 unsigned int ioctl, unsigned long arg) 3561 { 3562 long r = -EINVAL; 3563 3564 switch (ioctl) { 3565 case KVM_GET_API_VERSION: 3566 if (arg) 3567 goto out; 3568 r = KVM_API_VERSION; 3569 break; 3570 case KVM_CREATE_VM: 3571 r = kvm_dev_ioctl_create_vm(arg); 3572 break; 3573 case KVM_CHECK_EXTENSION: 3574 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3575 break; 3576 case KVM_GET_VCPU_MMAP_SIZE: 3577 if (arg) 3578 goto out; 3579 r = PAGE_SIZE; /* struct kvm_run */ 3580 #ifdef CONFIG_X86 3581 r += PAGE_SIZE; /* pio data page */ 3582 #endif 3583 #ifdef CONFIG_KVM_MMIO 3584 r += PAGE_SIZE; /* coalesced mmio ring page */ 3585 #endif 3586 break; 3587 case KVM_TRACE_ENABLE: 3588 case KVM_TRACE_PAUSE: 3589 case KVM_TRACE_DISABLE: 3590 r = -EOPNOTSUPP; 3591 break; 3592 default: 3593 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3594 } 3595 out: 3596 return r; 3597 } 3598 3599 static struct file_operations kvm_chardev_ops = { 3600 .unlocked_ioctl = kvm_dev_ioctl, 3601 .llseek = noop_llseek, 3602 KVM_COMPAT(kvm_dev_ioctl), 3603 }; 3604 3605 static struct miscdevice kvm_dev = { 3606 KVM_MINOR, 3607 "kvm", 3608 &kvm_chardev_ops, 3609 }; 3610 3611 static void hardware_enable_nolock(void *junk) 3612 { 3613 int cpu = raw_smp_processor_id(); 3614 int r; 3615 3616 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3617 return; 3618 3619 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3620 3621 r = kvm_arch_hardware_enable(); 3622 3623 if (r) { 3624 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3625 atomic_inc(&hardware_enable_failed); 3626 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3627 } 3628 } 3629 3630 static int kvm_starting_cpu(unsigned int cpu) 3631 { 3632 raw_spin_lock(&kvm_count_lock); 3633 if (kvm_usage_count) 3634 hardware_enable_nolock(NULL); 3635 raw_spin_unlock(&kvm_count_lock); 3636 return 0; 3637 } 3638 3639 static void hardware_disable_nolock(void *junk) 3640 { 3641 int cpu = raw_smp_processor_id(); 3642 3643 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3644 return; 3645 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3646 kvm_arch_hardware_disable(); 3647 } 3648 3649 static int kvm_dying_cpu(unsigned int cpu) 3650 { 3651 raw_spin_lock(&kvm_count_lock); 3652 if (kvm_usage_count) 3653 hardware_disable_nolock(NULL); 3654 raw_spin_unlock(&kvm_count_lock); 3655 return 0; 3656 } 3657 3658 static void hardware_disable_all_nolock(void) 3659 { 3660 BUG_ON(!kvm_usage_count); 3661 3662 kvm_usage_count--; 3663 if (!kvm_usage_count) 3664 on_each_cpu(hardware_disable_nolock, NULL, 1); 3665 } 3666 3667 static void hardware_disable_all(void) 3668 { 3669 raw_spin_lock(&kvm_count_lock); 3670 hardware_disable_all_nolock(); 3671 raw_spin_unlock(&kvm_count_lock); 3672 } 3673 3674 static int hardware_enable_all(void) 3675 { 3676 int r = 0; 3677 3678 raw_spin_lock(&kvm_count_lock); 3679 3680 kvm_usage_count++; 3681 if (kvm_usage_count == 1) { 3682 atomic_set(&hardware_enable_failed, 0); 3683 on_each_cpu(hardware_enable_nolock, NULL, 1); 3684 3685 if (atomic_read(&hardware_enable_failed)) { 3686 hardware_disable_all_nolock(); 3687 r = -EBUSY; 3688 } 3689 } 3690 3691 raw_spin_unlock(&kvm_count_lock); 3692 3693 return r; 3694 } 3695 3696 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3697 void *v) 3698 { 3699 /* 3700 * Some (well, at least mine) BIOSes hang on reboot if 3701 * in vmx root mode. 3702 * 3703 * And Intel TXT required VMX off for all cpu when system shutdown. 3704 */ 3705 pr_info("kvm: exiting hardware virtualization\n"); 3706 kvm_rebooting = true; 3707 on_each_cpu(hardware_disable_nolock, NULL, 1); 3708 return NOTIFY_OK; 3709 } 3710 3711 static struct notifier_block kvm_reboot_notifier = { 3712 .notifier_call = kvm_reboot, 3713 .priority = 0, 3714 }; 3715 3716 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3717 { 3718 int i; 3719 3720 for (i = 0; i < bus->dev_count; i++) { 3721 struct kvm_io_device *pos = bus->range[i].dev; 3722 3723 kvm_iodevice_destructor(pos); 3724 } 3725 kfree(bus); 3726 } 3727 3728 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3729 const struct kvm_io_range *r2) 3730 { 3731 gpa_t addr1 = r1->addr; 3732 gpa_t addr2 = r2->addr; 3733 3734 if (addr1 < addr2) 3735 return -1; 3736 3737 /* If r2->len == 0, match the exact address. If r2->len != 0, 3738 * accept any overlapping write. Any order is acceptable for 3739 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3740 * we process all of them. 3741 */ 3742 if (r2->len) { 3743 addr1 += r1->len; 3744 addr2 += r2->len; 3745 } 3746 3747 if (addr1 > addr2) 3748 return 1; 3749 3750 return 0; 3751 } 3752 3753 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3754 { 3755 return kvm_io_bus_cmp(p1, p2); 3756 } 3757 3758 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3759 gpa_t addr, int len) 3760 { 3761 struct kvm_io_range *range, key; 3762 int off; 3763 3764 key = (struct kvm_io_range) { 3765 .addr = addr, 3766 .len = len, 3767 }; 3768 3769 range = bsearch(&key, bus->range, bus->dev_count, 3770 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3771 if (range == NULL) 3772 return -ENOENT; 3773 3774 off = range - bus->range; 3775 3776 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3777 off--; 3778 3779 return off; 3780 } 3781 3782 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3783 struct kvm_io_range *range, const void *val) 3784 { 3785 int idx; 3786 3787 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3788 if (idx < 0) 3789 return -EOPNOTSUPP; 3790 3791 while (idx < bus->dev_count && 3792 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3793 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3794 range->len, val)) 3795 return idx; 3796 idx++; 3797 } 3798 3799 return -EOPNOTSUPP; 3800 } 3801 3802 /* kvm_io_bus_write - called under kvm->slots_lock */ 3803 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3804 int len, const void *val) 3805 { 3806 struct kvm_io_bus *bus; 3807 struct kvm_io_range range; 3808 int r; 3809 3810 range = (struct kvm_io_range) { 3811 .addr = addr, 3812 .len = len, 3813 }; 3814 3815 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3816 if (!bus) 3817 return -ENOMEM; 3818 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3819 return r < 0 ? r : 0; 3820 } 3821 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3822 3823 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3824 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3825 gpa_t addr, int len, const void *val, long cookie) 3826 { 3827 struct kvm_io_bus *bus; 3828 struct kvm_io_range range; 3829 3830 range = (struct kvm_io_range) { 3831 .addr = addr, 3832 .len = len, 3833 }; 3834 3835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3836 if (!bus) 3837 return -ENOMEM; 3838 3839 /* First try the device referenced by cookie. */ 3840 if ((cookie >= 0) && (cookie < bus->dev_count) && 3841 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3842 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3843 val)) 3844 return cookie; 3845 3846 /* 3847 * cookie contained garbage; fall back to search and return the 3848 * correct cookie value. 3849 */ 3850 return __kvm_io_bus_write(vcpu, bus, &range, val); 3851 } 3852 3853 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3854 struct kvm_io_range *range, void *val) 3855 { 3856 int idx; 3857 3858 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3859 if (idx < 0) 3860 return -EOPNOTSUPP; 3861 3862 while (idx < bus->dev_count && 3863 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3864 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3865 range->len, val)) 3866 return idx; 3867 idx++; 3868 } 3869 3870 return -EOPNOTSUPP; 3871 } 3872 3873 /* kvm_io_bus_read - called under kvm->slots_lock */ 3874 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3875 int len, void *val) 3876 { 3877 struct kvm_io_bus *bus; 3878 struct kvm_io_range range; 3879 int r; 3880 3881 range = (struct kvm_io_range) { 3882 .addr = addr, 3883 .len = len, 3884 }; 3885 3886 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3887 if (!bus) 3888 return -ENOMEM; 3889 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3890 return r < 0 ? r : 0; 3891 } 3892 3893 /* Caller must hold slots_lock. */ 3894 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3895 int len, struct kvm_io_device *dev) 3896 { 3897 int i; 3898 struct kvm_io_bus *new_bus, *bus; 3899 struct kvm_io_range range; 3900 3901 bus = kvm_get_bus(kvm, bus_idx); 3902 if (!bus) 3903 return -ENOMEM; 3904 3905 /* exclude ioeventfd which is limited by maximum fd */ 3906 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3907 return -ENOSPC; 3908 3909 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3910 GFP_KERNEL_ACCOUNT); 3911 if (!new_bus) 3912 return -ENOMEM; 3913 3914 range = (struct kvm_io_range) { 3915 .addr = addr, 3916 .len = len, 3917 .dev = dev, 3918 }; 3919 3920 for (i = 0; i < bus->dev_count; i++) 3921 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3922 break; 3923 3924 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3925 new_bus->dev_count++; 3926 new_bus->range[i] = range; 3927 memcpy(new_bus->range + i + 1, bus->range + i, 3928 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3929 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3930 synchronize_srcu_expedited(&kvm->srcu); 3931 kfree(bus); 3932 3933 return 0; 3934 } 3935 3936 /* Caller must hold slots_lock. */ 3937 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3938 struct kvm_io_device *dev) 3939 { 3940 int i; 3941 struct kvm_io_bus *new_bus, *bus; 3942 3943 bus = kvm_get_bus(kvm, bus_idx); 3944 if (!bus) 3945 return; 3946 3947 for (i = 0; i < bus->dev_count; i++) 3948 if (bus->range[i].dev == dev) { 3949 break; 3950 } 3951 3952 if (i == bus->dev_count) 3953 return; 3954 3955 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3956 GFP_KERNEL_ACCOUNT); 3957 if (!new_bus) { 3958 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3959 goto broken; 3960 } 3961 3962 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3963 new_bus->dev_count--; 3964 memcpy(new_bus->range + i, bus->range + i + 1, 3965 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3966 3967 broken: 3968 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3969 synchronize_srcu_expedited(&kvm->srcu); 3970 kfree(bus); 3971 return; 3972 } 3973 3974 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3975 gpa_t addr) 3976 { 3977 struct kvm_io_bus *bus; 3978 int dev_idx, srcu_idx; 3979 struct kvm_io_device *iodev = NULL; 3980 3981 srcu_idx = srcu_read_lock(&kvm->srcu); 3982 3983 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3984 if (!bus) 3985 goto out_unlock; 3986 3987 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3988 if (dev_idx < 0) 3989 goto out_unlock; 3990 3991 iodev = bus->range[dev_idx].dev; 3992 3993 out_unlock: 3994 srcu_read_unlock(&kvm->srcu, srcu_idx); 3995 3996 return iodev; 3997 } 3998 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3999 4000 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4001 int (*get)(void *, u64 *), int (*set)(void *, u64), 4002 const char *fmt) 4003 { 4004 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4005 inode->i_private; 4006 4007 /* The debugfs files are a reference to the kvm struct which 4008 * is still valid when kvm_destroy_vm is called. 4009 * To avoid the race between open and the removal of the debugfs 4010 * directory we test against the users count. 4011 */ 4012 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4013 return -ENOENT; 4014 4015 if (simple_attr_open(inode, file, get, 4016 stat_data->mode & S_IWUGO ? set : NULL, 4017 fmt)) { 4018 kvm_put_kvm(stat_data->kvm); 4019 return -ENOMEM; 4020 } 4021 4022 return 0; 4023 } 4024 4025 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4026 { 4027 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4028 inode->i_private; 4029 4030 simple_attr_release(inode, file); 4031 kvm_put_kvm(stat_data->kvm); 4032 4033 return 0; 4034 } 4035 4036 static int vm_stat_get_per_vm(void *data, u64 *val) 4037 { 4038 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4039 4040 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 4041 4042 return 0; 4043 } 4044 4045 static int vm_stat_clear_per_vm(void *data, u64 val) 4046 { 4047 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4048 4049 if (val) 4050 return -EINVAL; 4051 4052 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 4053 4054 return 0; 4055 } 4056 4057 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 4058 { 4059 __simple_attr_check_format("%llu\n", 0ull); 4060 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 4061 vm_stat_clear_per_vm, "%llu\n"); 4062 } 4063 4064 static const struct file_operations vm_stat_get_per_vm_fops = { 4065 .owner = THIS_MODULE, 4066 .open = vm_stat_get_per_vm_open, 4067 .release = kvm_debugfs_release, 4068 .read = simple_attr_read, 4069 .write = simple_attr_write, 4070 .llseek = no_llseek, 4071 }; 4072 4073 static int vcpu_stat_get_per_vm(void *data, u64 *val) 4074 { 4075 int i; 4076 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4077 struct kvm_vcpu *vcpu; 4078 4079 *val = 0; 4080 4081 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4082 *val += *(u64 *)((void *)vcpu + stat_data->offset); 4083 4084 return 0; 4085 } 4086 4087 static int vcpu_stat_clear_per_vm(void *data, u64 val) 4088 { 4089 int i; 4090 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4091 struct kvm_vcpu *vcpu; 4092 4093 if (val) 4094 return -EINVAL; 4095 4096 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4097 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4098 4099 return 0; 4100 } 4101 4102 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4103 { 4104 __simple_attr_check_format("%llu\n", 0ull); 4105 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4106 vcpu_stat_clear_per_vm, "%llu\n"); 4107 } 4108 4109 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4110 .owner = THIS_MODULE, 4111 .open = vcpu_stat_get_per_vm_open, 4112 .release = kvm_debugfs_release, 4113 .read = simple_attr_read, 4114 .write = simple_attr_write, 4115 .llseek = no_llseek, 4116 }; 4117 4118 static const struct file_operations *stat_fops_per_vm[] = { 4119 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4120 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4121 }; 4122 4123 static int vm_stat_get(void *_offset, u64 *val) 4124 { 4125 unsigned offset = (long)_offset; 4126 struct kvm *kvm; 4127 struct kvm_stat_data stat_tmp = {.offset = offset}; 4128 u64 tmp_val; 4129 4130 *val = 0; 4131 mutex_lock(&kvm_lock); 4132 list_for_each_entry(kvm, &vm_list, vm_list) { 4133 stat_tmp.kvm = kvm; 4134 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4135 *val += tmp_val; 4136 } 4137 mutex_unlock(&kvm_lock); 4138 return 0; 4139 } 4140 4141 static int vm_stat_clear(void *_offset, u64 val) 4142 { 4143 unsigned offset = (long)_offset; 4144 struct kvm *kvm; 4145 struct kvm_stat_data stat_tmp = {.offset = offset}; 4146 4147 if (val) 4148 return -EINVAL; 4149 4150 mutex_lock(&kvm_lock); 4151 list_for_each_entry(kvm, &vm_list, vm_list) { 4152 stat_tmp.kvm = kvm; 4153 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4154 } 4155 mutex_unlock(&kvm_lock); 4156 4157 return 0; 4158 } 4159 4160 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4161 4162 static int vcpu_stat_get(void *_offset, u64 *val) 4163 { 4164 unsigned offset = (long)_offset; 4165 struct kvm *kvm; 4166 struct kvm_stat_data stat_tmp = {.offset = offset}; 4167 u64 tmp_val; 4168 4169 *val = 0; 4170 mutex_lock(&kvm_lock); 4171 list_for_each_entry(kvm, &vm_list, vm_list) { 4172 stat_tmp.kvm = kvm; 4173 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4174 *val += tmp_val; 4175 } 4176 mutex_unlock(&kvm_lock); 4177 return 0; 4178 } 4179 4180 static int vcpu_stat_clear(void *_offset, u64 val) 4181 { 4182 unsigned offset = (long)_offset; 4183 struct kvm *kvm; 4184 struct kvm_stat_data stat_tmp = {.offset = offset}; 4185 4186 if (val) 4187 return -EINVAL; 4188 4189 mutex_lock(&kvm_lock); 4190 list_for_each_entry(kvm, &vm_list, vm_list) { 4191 stat_tmp.kvm = kvm; 4192 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4193 } 4194 mutex_unlock(&kvm_lock); 4195 4196 return 0; 4197 } 4198 4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4200 "%llu\n"); 4201 4202 static const struct file_operations *stat_fops[] = { 4203 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4204 [KVM_STAT_VM] = &vm_stat_fops, 4205 }; 4206 4207 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4208 { 4209 struct kobj_uevent_env *env; 4210 unsigned long long created, active; 4211 4212 if (!kvm_dev.this_device || !kvm) 4213 return; 4214 4215 mutex_lock(&kvm_lock); 4216 if (type == KVM_EVENT_CREATE_VM) { 4217 kvm_createvm_count++; 4218 kvm_active_vms++; 4219 } else if (type == KVM_EVENT_DESTROY_VM) { 4220 kvm_active_vms--; 4221 } 4222 created = kvm_createvm_count; 4223 active = kvm_active_vms; 4224 mutex_unlock(&kvm_lock); 4225 4226 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4227 if (!env) 4228 return; 4229 4230 add_uevent_var(env, "CREATED=%llu", created); 4231 add_uevent_var(env, "COUNT=%llu", active); 4232 4233 if (type == KVM_EVENT_CREATE_VM) { 4234 add_uevent_var(env, "EVENT=create"); 4235 kvm->userspace_pid = task_pid_nr(current); 4236 } else if (type == KVM_EVENT_DESTROY_VM) { 4237 add_uevent_var(env, "EVENT=destroy"); 4238 } 4239 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4240 4241 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4242 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4243 4244 if (p) { 4245 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4246 if (!IS_ERR(tmp)) 4247 add_uevent_var(env, "STATS_PATH=%s", tmp); 4248 kfree(p); 4249 } 4250 } 4251 /* no need for checks, since we are adding at most only 5 keys */ 4252 env->envp[env->envp_idx++] = NULL; 4253 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4254 kfree(env); 4255 } 4256 4257 static void kvm_init_debug(void) 4258 { 4259 struct kvm_stats_debugfs_item *p; 4260 4261 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4262 4263 kvm_debugfs_num_entries = 0; 4264 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4265 int mode = p->mode ? p->mode : 0644; 4266 debugfs_create_file(p->name, mode, kvm_debugfs_dir, 4267 (void *)(long)p->offset, 4268 stat_fops[p->kind]); 4269 } 4270 } 4271 4272 static int kvm_suspend(void) 4273 { 4274 if (kvm_usage_count) 4275 hardware_disable_nolock(NULL); 4276 return 0; 4277 } 4278 4279 static void kvm_resume(void) 4280 { 4281 if (kvm_usage_count) { 4282 #ifdef CONFIG_LOCKDEP 4283 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4284 #endif 4285 hardware_enable_nolock(NULL); 4286 } 4287 } 4288 4289 static struct syscore_ops kvm_syscore_ops = { 4290 .suspend = kvm_suspend, 4291 .resume = kvm_resume, 4292 }; 4293 4294 static inline 4295 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4296 { 4297 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4298 } 4299 4300 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4301 { 4302 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4303 4304 WRITE_ONCE(vcpu->preempted, false); 4305 WRITE_ONCE(vcpu->ready, false); 4306 4307 kvm_arch_sched_in(vcpu, cpu); 4308 4309 kvm_arch_vcpu_load(vcpu, cpu); 4310 } 4311 4312 static void kvm_sched_out(struct preempt_notifier *pn, 4313 struct task_struct *next) 4314 { 4315 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4316 4317 if (current->state == TASK_RUNNING) { 4318 WRITE_ONCE(vcpu->preempted, true); 4319 WRITE_ONCE(vcpu->ready, true); 4320 } 4321 kvm_arch_vcpu_put(vcpu); 4322 } 4323 4324 static void check_processor_compat(void *rtn) 4325 { 4326 *(int *)rtn = kvm_arch_check_processor_compat(); 4327 } 4328 4329 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4330 struct module *module) 4331 { 4332 int r; 4333 int cpu; 4334 4335 r = kvm_arch_init(opaque); 4336 if (r) 4337 goto out_fail; 4338 4339 /* 4340 * kvm_arch_init makes sure there's at most one caller 4341 * for architectures that support multiple implementations, 4342 * like intel and amd on x86. 4343 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4344 * conflicts in case kvm is already setup for another implementation. 4345 */ 4346 r = kvm_irqfd_init(); 4347 if (r) 4348 goto out_irqfd; 4349 4350 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4351 r = -ENOMEM; 4352 goto out_free_0; 4353 } 4354 4355 r = kvm_arch_hardware_setup(); 4356 if (r < 0) 4357 goto out_free_1; 4358 4359 for_each_online_cpu(cpu) { 4360 smp_call_function_single(cpu, check_processor_compat, &r, 1); 4361 if (r < 0) 4362 goto out_free_2; 4363 } 4364 4365 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4366 kvm_starting_cpu, kvm_dying_cpu); 4367 if (r) 4368 goto out_free_2; 4369 register_reboot_notifier(&kvm_reboot_notifier); 4370 4371 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4372 if (!vcpu_align) 4373 vcpu_align = __alignof__(struct kvm_vcpu); 4374 kvm_vcpu_cache = 4375 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4376 SLAB_ACCOUNT, 4377 offsetof(struct kvm_vcpu, arch), 4378 sizeof_field(struct kvm_vcpu, arch), 4379 NULL); 4380 if (!kvm_vcpu_cache) { 4381 r = -ENOMEM; 4382 goto out_free_3; 4383 } 4384 4385 r = kvm_async_pf_init(); 4386 if (r) 4387 goto out_free; 4388 4389 kvm_chardev_ops.owner = module; 4390 kvm_vm_fops.owner = module; 4391 kvm_vcpu_fops.owner = module; 4392 4393 r = misc_register(&kvm_dev); 4394 if (r) { 4395 pr_err("kvm: misc device register failed\n"); 4396 goto out_unreg; 4397 } 4398 4399 register_syscore_ops(&kvm_syscore_ops); 4400 4401 kvm_preempt_ops.sched_in = kvm_sched_in; 4402 kvm_preempt_ops.sched_out = kvm_sched_out; 4403 4404 kvm_init_debug(); 4405 4406 r = kvm_vfio_ops_init(); 4407 WARN_ON(r); 4408 4409 return 0; 4410 4411 out_unreg: 4412 kvm_async_pf_deinit(); 4413 out_free: 4414 kmem_cache_destroy(kvm_vcpu_cache); 4415 out_free_3: 4416 unregister_reboot_notifier(&kvm_reboot_notifier); 4417 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4418 out_free_2: 4419 kvm_arch_hardware_unsetup(); 4420 out_free_1: 4421 free_cpumask_var(cpus_hardware_enabled); 4422 out_free_0: 4423 kvm_irqfd_exit(); 4424 out_irqfd: 4425 kvm_arch_exit(); 4426 out_fail: 4427 return r; 4428 } 4429 EXPORT_SYMBOL_GPL(kvm_init); 4430 4431 void kvm_exit(void) 4432 { 4433 debugfs_remove_recursive(kvm_debugfs_dir); 4434 misc_deregister(&kvm_dev); 4435 kmem_cache_destroy(kvm_vcpu_cache); 4436 kvm_async_pf_deinit(); 4437 unregister_syscore_ops(&kvm_syscore_ops); 4438 unregister_reboot_notifier(&kvm_reboot_notifier); 4439 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4440 on_each_cpu(hardware_disable_nolock, NULL, 1); 4441 kvm_arch_hardware_unsetup(); 4442 kvm_arch_exit(); 4443 kvm_irqfd_exit(); 4444 free_cpumask_var(cpus_hardware_enabled); 4445 kvm_vfio_ops_exit(); 4446 } 4447 EXPORT_SYMBOL_GPL(kvm_exit); 4448 4449 struct kvm_vm_worker_thread_context { 4450 struct kvm *kvm; 4451 struct task_struct *parent; 4452 struct completion init_done; 4453 kvm_vm_thread_fn_t thread_fn; 4454 uintptr_t data; 4455 int err; 4456 }; 4457 4458 static int kvm_vm_worker_thread(void *context) 4459 { 4460 /* 4461 * The init_context is allocated on the stack of the parent thread, so 4462 * we have to locally copy anything that is needed beyond initialization 4463 */ 4464 struct kvm_vm_worker_thread_context *init_context = context; 4465 struct kvm *kvm = init_context->kvm; 4466 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4467 uintptr_t data = init_context->data; 4468 int err; 4469 4470 err = kthread_park(current); 4471 /* kthread_park(current) is never supposed to return an error */ 4472 WARN_ON(err != 0); 4473 if (err) 4474 goto init_complete; 4475 4476 err = cgroup_attach_task_all(init_context->parent, current); 4477 if (err) { 4478 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4479 __func__, err); 4480 goto init_complete; 4481 } 4482 4483 set_user_nice(current, task_nice(init_context->parent)); 4484 4485 init_complete: 4486 init_context->err = err; 4487 complete(&init_context->init_done); 4488 init_context = NULL; 4489 4490 if (err) 4491 return err; 4492 4493 /* Wait to be woken up by the spawner before proceeding. */ 4494 kthread_parkme(); 4495 4496 if (!kthread_should_stop()) 4497 err = thread_fn(kvm, data); 4498 4499 return err; 4500 } 4501 4502 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4503 uintptr_t data, const char *name, 4504 struct task_struct **thread_ptr) 4505 { 4506 struct kvm_vm_worker_thread_context init_context = {}; 4507 struct task_struct *thread; 4508 4509 *thread_ptr = NULL; 4510 init_context.kvm = kvm; 4511 init_context.parent = current; 4512 init_context.thread_fn = thread_fn; 4513 init_context.data = data; 4514 init_completion(&init_context.init_done); 4515 4516 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4517 "%s-%d", name, task_pid_nr(current)); 4518 if (IS_ERR(thread)) 4519 return PTR_ERR(thread); 4520 4521 /* kthread_run is never supposed to return NULL */ 4522 WARN_ON(thread == NULL); 4523 4524 wait_for_completion(&init_context.init_done); 4525 4526 if (!init_context.err) 4527 *thread_ptr = thread; 4528 4529 return init_context.err; 4530 } 4531