1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 587 588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 591 node; \ 592 node = interval_tree_iter_next(node, start, last)) \ 593 594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 595 const struct kvm_mmu_notifier_range *range) 596 { 597 struct kvm_mmu_notifier_return r = { 598 .ret = false, 599 .found_memslot = false, 600 }; 601 struct kvm_gfn_range gfn_range; 602 struct kvm_memory_slot *slot; 603 struct kvm_memslots *slots; 604 int i, idx; 605 606 if (WARN_ON_ONCE(range->end <= range->start)) 607 return r; 608 609 /* A null handler is allowed if and only if on_lock() is provided. */ 610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 611 IS_KVM_NULL_FN(range->handler))) 612 return r; 613 614 idx = srcu_read_lock(&kvm->srcu); 615 616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 617 struct interval_tree_node *node; 618 619 slots = __kvm_memslots(kvm, i); 620 kvm_for_each_memslot_in_hva_range(node, slots, 621 range->start, range->end - 1) { 622 unsigned long hva_start, hva_end; 623 624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 626 hva_end = min_t(unsigned long, range->end, 627 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 628 629 /* 630 * To optimize for the likely case where the address 631 * range is covered by zero or one memslots, don't 632 * bother making these conditional (to avoid writes on 633 * the second or later invocation of the handler). 634 */ 635 gfn_range.arg = range->arg; 636 gfn_range.may_block = range->may_block; 637 638 /* 639 * {gfn(page) | page intersects with [hva_start, hva_end)} = 640 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 641 */ 642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 644 gfn_range.slot = slot; 645 646 if (!r.found_memslot) { 647 r.found_memslot = true; 648 KVM_MMU_LOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_lock)) 650 range->on_lock(kvm); 651 652 if (IS_KVM_NULL_FN(range->handler)) 653 break; 654 } 655 r.ret |= range->handler(kvm, &gfn_range); 656 } 657 } 658 659 if (range->flush_on_ret && r.ret) 660 kvm_flush_remote_tlbs(kvm); 661 662 if (r.found_memslot) 663 KVM_MMU_UNLOCK(kvm); 664 665 srcu_read_unlock(&kvm->srcu, idx); 666 667 return r; 668 } 669 670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 union kvm_mmu_notifier_arg arg, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .arg = arg, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 709 { 710 /* 711 * Skipping invalid memslots is correct if and only change_pte() is 712 * surrounded by invalidate_range_{start,end}(), which is currently 713 * guaranteed by the primary MMU. If that ever changes, KVM needs to 714 * unmap the memslot instead of skipping the memslot to ensure that KVM 715 * doesn't hold references to the old PFN. 716 */ 717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 718 719 if (range->slot->flags & KVM_MEMSLOT_INVALID) 720 return false; 721 722 return kvm_set_spte_gfn(kvm, range); 723 } 724 725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 726 struct mm_struct *mm, 727 unsigned long address, 728 pte_t pte) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 732 733 trace_kvm_set_spte_hva(address); 734 735 /* 736 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 737 * If mmu_invalidate_in_progress is zero, then no in-progress 738 * invalidations, including this one, found a relevant memslot at 739 * start(); rechecking memslots here is unnecessary. Note, a false 740 * positive (count elevated by a different invalidation) is sub-optimal 741 * but functionally ok. 742 */ 743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 745 return; 746 747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 748 } 749 750 void kvm_mmu_invalidate_begin(struct kvm *kvm) 751 { 752 lockdep_assert_held_write(&kvm->mmu_lock); 753 /* 754 * The count increase must become visible at unlock time as no 755 * spte can be established without taking the mmu_lock and 756 * count is also read inside the mmu_lock critical section. 757 */ 758 kvm->mmu_invalidate_in_progress++; 759 760 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 761 kvm->mmu_invalidate_range_start = INVALID_GPA; 762 kvm->mmu_invalidate_range_end = INVALID_GPA; 763 } 764 } 765 766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 767 { 768 lockdep_assert_held_write(&kvm->mmu_lock); 769 770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 771 772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 773 kvm->mmu_invalidate_range_start = start; 774 kvm->mmu_invalidate_range_end = end; 775 } else { 776 /* 777 * Fully tracking multiple concurrent ranges has diminishing 778 * returns. Keep things simple and just find the minimal range 779 * which includes the current and new ranges. As there won't be 780 * enough information to subtract a range after its invalidate 781 * completes, any ranges invalidated concurrently will 782 * accumulate and persist until all outstanding invalidates 783 * complete. 784 */ 785 kvm->mmu_invalidate_range_start = 786 min(kvm->mmu_invalidate_range_start, start); 787 kvm->mmu_invalidate_range_end = 788 max(kvm->mmu_invalidate_range_end, end); 789 } 790 } 791 792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 793 { 794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 795 return kvm_unmap_gfn_range(kvm, range); 796 } 797 798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 799 const struct mmu_notifier_range *range) 800 { 801 struct kvm *kvm = mmu_notifier_to_kvm(mn); 802 const struct kvm_mmu_notifier_range hva_range = { 803 .start = range->start, 804 .end = range->end, 805 .handler = kvm_mmu_unmap_gfn_range, 806 .on_lock = kvm_mmu_invalidate_begin, 807 .flush_on_ret = true, 808 .may_block = mmu_notifier_range_blockable(range), 809 }; 810 811 trace_kvm_unmap_hva_range(range->start, range->end); 812 813 /* 814 * Prevent memslot modification between range_start() and range_end() 815 * so that conditionally locking provides the same result in both 816 * functions. Without that guarantee, the mmu_invalidate_in_progress 817 * adjustments will be imbalanced. 818 * 819 * Pairs with the decrement in range_end(). 820 */ 821 spin_lock(&kvm->mn_invalidate_lock); 822 kvm->mn_active_invalidate_count++; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 828 * each cache's lock. There are relatively few caches in existence at 829 * any given time, and the caches themselves can check for hva overlap, 830 * i.e. don't need to rely on memslot overlap checks for performance. 831 * Because this runs without holding mmu_lock, the pfn caches must use 832 * mn_active_invalidate_count (see above) instead of 833 * mmu_invalidate_in_progress. 834 */ 835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 836 hva_range.may_block); 837 838 /* 839 * If one or more memslots were found and thus zapped, notify arch code 840 * that guest memory has been reclaimed. This needs to be done *after* 841 * dropping mmu_lock, as x86's reclaim path is slooooow. 842 */ 843 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 844 kvm_arch_guest_memory_reclaimed(kvm); 845 846 return 0; 847 } 848 849 void kvm_mmu_invalidate_end(struct kvm *kvm) 850 { 851 lockdep_assert_held_write(&kvm->mmu_lock); 852 853 /* 854 * This sequence increase will notify the kvm page fault that 855 * the page that is going to be mapped in the spte could have 856 * been freed. 857 */ 858 kvm->mmu_invalidate_seq++; 859 smp_wmb(); 860 /* 861 * The above sequence increase must be visible before the 862 * below count decrease, which is ensured by the smp_wmb above 863 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 864 */ 865 kvm->mmu_invalidate_in_progress--; 866 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 867 868 /* 869 * Assert that at least one range was added between start() and end(). 870 * Not adding a range isn't fatal, but it is a KVM bug. 871 */ 872 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 873 } 874 875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 876 const struct mmu_notifier_range *range) 877 { 878 struct kvm *kvm = mmu_notifier_to_kvm(mn); 879 const struct kvm_mmu_notifier_range hva_range = { 880 .start = range->start, 881 .end = range->end, 882 .handler = (void *)kvm_null_fn, 883 .on_lock = kvm_mmu_invalidate_end, 884 .flush_on_ret = false, 885 .may_block = mmu_notifier_range_blockable(range), 886 }; 887 bool wake; 888 889 __kvm_handle_hva_range(kvm, &hva_range); 890 891 /* Pairs with the increment in range_start(). */ 892 spin_lock(&kvm->mn_invalidate_lock); 893 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 894 --kvm->mn_active_invalidate_count; 895 wake = !kvm->mn_active_invalidate_count; 896 spin_unlock(&kvm->mn_invalidate_lock); 897 898 /* 899 * There can only be one waiter, since the wait happens under 900 * slots_lock. 901 */ 902 if (wake) 903 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 904 } 905 906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 907 struct mm_struct *mm, 908 unsigned long start, 909 unsigned long end) 910 { 911 trace_kvm_age_hva(start, end); 912 913 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 914 kvm_age_gfn); 915 } 916 917 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 918 struct mm_struct *mm, 919 unsigned long start, 920 unsigned long end) 921 { 922 trace_kvm_age_hva(start, end); 923 924 /* 925 * Even though we do not flush TLB, this will still adversely 926 * affect performance on pre-Haswell Intel EPT, where there is 927 * no EPT Access Bit to clear so that we have to tear down EPT 928 * tables instead. If we find this unacceptable, we can always 929 * add a parameter to kvm_age_hva so that it effectively doesn't 930 * do anything on clear_young. 931 * 932 * Also note that currently we never issue secondary TLB flushes 933 * from clear_young, leaving this job up to the regular system 934 * cadence. If we find this inaccurate, we might come up with a 935 * more sophisticated heuristic later. 936 */ 937 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 938 } 939 940 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 941 struct mm_struct *mm, 942 unsigned long address) 943 { 944 trace_kvm_test_age_hva(address); 945 946 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 947 kvm_test_age_gfn); 948 } 949 950 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 951 struct mm_struct *mm) 952 { 953 struct kvm *kvm = mmu_notifier_to_kvm(mn); 954 int idx; 955 956 idx = srcu_read_lock(&kvm->srcu); 957 kvm_flush_shadow_all(kvm); 958 srcu_read_unlock(&kvm->srcu, idx); 959 } 960 961 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 962 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 963 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 964 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 965 .clear_young = kvm_mmu_notifier_clear_young, 966 .test_young = kvm_mmu_notifier_test_young, 967 .change_pte = kvm_mmu_notifier_change_pte, 968 .release = kvm_mmu_notifier_release, 969 }; 970 971 static int kvm_init_mmu_notifier(struct kvm *kvm) 972 { 973 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 974 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 975 } 976 977 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 978 979 static int kvm_init_mmu_notifier(struct kvm *kvm) 980 { 981 return 0; 982 } 983 984 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 985 986 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 987 static int kvm_pm_notifier_call(struct notifier_block *bl, 988 unsigned long state, 989 void *unused) 990 { 991 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 992 993 return kvm_arch_pm_notifier(kvm, state); 994 } 995 996 static void kvm_init_pm_notifier(struct kvm *kvm) 997 { 998 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 999 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 1000 kvm->pm_notifier.priority = INT_MAX; 1001 register_pm_notifier(&kvm->pm_notifier); 1002 } 1003 1004 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1005 { 1006 unregister_pm_notifier(&kvm->pm_notifier); 1007 } 1008 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 1009 static void kvm_init_pm_notifier(struct kvm *kvm) 1010 { 1011 } 1012 1013 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1014 { 1015 } 1016 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 1017 1018 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 1019 { 1020 if (!memslot->dirty_bitmap) 1021 return; 1022 1023 kvfree(memslot->dirty_bitmap); 1024 memslot->dirty_bitmap = NULL; 1025 } 1026 1027 /* This does not remove the slot from struct kvm_memslots data structures */ 1028 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1029 { 1030 if (slot->flags & KVM_MEM_GUEST_MEMFD) 1031 kvm_gmem_unbind(slot); 1032 1033 kvm_destroy_dirty_bitmap(slot); 1034 1035 kvm_arch_free_memslot(kvm, slot); 1036 1037 kfree(slot); 1038 } 1039 1040 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1041 { 1042 struct hlist_node *idnode; 1043 struct kvm_memory_slot *memslot; 1044 int bkt; 1045 1046 /* 1047 * The same memslot objects live in both active and inactive sets, 1048 * arbitrarily free using index '1' so the second invocation of this 1049 * function isn't operating over a structure with dangling pointers 1050 * (even though this function isn't actually touching them). 1051 */ 1052 if (!slots->node_idx) 1053 return; 1054 1055 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1056 kvm_free_memslot(kvm, memslot); 1057 } 1058 1059 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1060 { 1061 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1062 case KVM_STATS_TYPE_INSTANT: 1063 return 0444; 1064 case KVM_STATS_TYPE_CUMULATIVE: 1065 case KVM_STATS_TYPE_PEAK: 1066 default: 1067 return 0644; 1068 } 1069 } 1070 1071 1072 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1073 { 1074 int i; 1075 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1076 kvm_vcpu_stats_header.num_desc; 1077 1078 if (IS_ERR(kvm->debugfs_dentry)) 1079 return; 1080 1081 debugfs_remove_recursive(kvm->debugfs_dentry); 1082 1083 if (kvm->debugfs_stat_data) { 1084 for (i = 0; i < kvm_debugfs_num_entries; i++) 1085 kfree(kvm->debugfs_stat_data[i]); 1086 kfree(kvm->debugfs_stat_data); 1087 } 1088 } 1089 1090 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1091 { 1092 static DEFINE_MUTEX(kvm_debugfs_lock); 1093 struct dentry *dent; 1094 char dir_name[ITOA_MAX_LEN * 2]; 1095 struct kvm_stat_data *stat_data; 1096 const struct _kvm_stats_desc *pdesc; 1097 int i, ret = -ENOMEM; 1098 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1099 kvm_vcpu_stats_header.num_desc; 1100 1101 if (!debugfs_initialized()) 1102 return 0; 1103 1104 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1105 mutex_lock(&kvm_debugfs_lock); 1106 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1107 if (dent) { 1108 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1109 dput(dent); 1110 mutex_unlock(&kvm_debugfs_lock); 1111 return 0; 1112 } 1113 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1114 mutex_unlock(&kvm_debugfs_lock); 1115 if (IS_ERR(dent)) 1116 return 0; 1117 1118 kvm->debugfs_dentry = dent; 1119 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1120 sizeof(*kvm->debugfs_stat_data), 1121 GFP_KERNEL_ACCOUNT); 1122 if (!kvm->debugfs_stat_data) 1123 goto out_err; 1124 1125 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1126 pdesc = &kvm_vm_stats_desc[i]; 1127 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1128 if (!stat_data) 1129 goto out_err; 1130 1131 stat_data->kvm = kvm; 1132 stat_data->desc = pdesc; 1133 stat_data->kind = KVM_STAT_VM; 1134 kvm->debugfs_stat_data[i] = stat_data; 1135 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1136 kvm->debugfs_dentry, stat_data, 1137 &stat_fops_per_vm); 1138 } 1139 1140 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1141 pdesc = &kvm_vcpu_stats_desc[i]; 1142 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1143 if (!stat_data) 1144 goto out_err; 1145 1146 stat_data->kvm = kvm; 1147 stat_data->desc = pdesc; 1148 stat_data->kind = KVM_STAT_VCPU; 1149 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1150 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1151 kvm->debugfs_dentry, stat_data, 1152 &stat_fops_per_vm); 1153 } 1154 1155 kvm_arch_create_vm_debugfs(kvm); 1156 return 0; 1157 out_err: 1158 kvm_destroy_vm_debugfs(kvm); 1159 return ret; 1160 } 1161 1162 /* 1163 * Called after the VM is otherwise initialized, but just before adding it to 1164 * the vm_list. 1165 */ 1166 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1167 { 1168 return 0; 1169 } 1170 1171 /* 1172 * Called just after removing the VM from the vm_list, but before doing any 1173 * other destruction. 1174 */ 1175 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1176 { 1177 } 1178 1179 /* 1180 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1181 * be setup already, so we can create arch-specific debugfs entries under it. 1182 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1183 * a per-arch destroy interface is not needed. 1184 */ 1185 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1186 { 1187 } 1188 1189 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1190 { 1191 struct kvm *kvm = kvm_arch_alloc_vm(); 1192 struct kvm_memslots *slots; 1193 int r = -ENOMEM; 1194 int i, j; 1195 1196 if (!kvm) 1197 return ERR_PTR(-ENOMEM); 1198 1199 KVM_MMU_LOCK_INIT(kvm); 1200 mmgrab(current->mm); 1201 kvm->mm = current->mm; 1202 kvm_eventfd_init(kvm); 1203 mutex_init(&kvm->lock); 1204 mutex_init(&kvm->irq_lock); 1205 mutex_init(&kvm->slots_lock); 1206 mutex_init(&kvm->slots_arch_lock); 1207 spin_lock_init(&kvm->mn_invalidate_lock); 1208 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1209 xa_init(&kvm->vcpu_array); 1210 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1211 xa_init(&kvm->mem_attr_array); 1212 #endif 1213 1214 INIT_LIST_HEAD(&kvm->gpc_list); 1215 spin_lock_init(&kvm->gpc_lock); 1216 1217 INIT_LIST_HEAD(&kvm->devices); 1218 kvm->max_vcpus = KVM_MAX_VCPUS; 1219 1220 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1221 1222 /* 1223 * Force subsequent debugfs file creations to fail if the VM directory 1224 * is not created (by kvm_create_vm_debugfs()). 1225 */ 1226 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1227 1228 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1229 task_pid_nr(current)); 1230 1231 if (init_srcu_struct(&kvm->srcu)) 1232 goto out_err_no_srcu; 1233 if (init_srcu_struct(&kvm->irq_srcu)) 1234 goto out_err_no_irq_srcu; 1235 1236 refcount_set(&kvm->users_count, 1); 1237 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1238 for (j = 0; j < 2; j++) { 1239 slots = &kvm->__memslots[i][j]; 1240 1241 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1242 slots->hva_tree = RB_ROOT_CACHED; 1243 slots->gfn_tree = RB_ROOT; 1244 hash_init(slots->id_hash); 1245 slots->node_idx = j; 1246 1247 /* Generations must be different for each address space. */ 1248 slots->generation = i; 1249 } 1250 1251 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1252 } 1253 1254 for (i = 0; i < KVM_NR_BUSES; i++) { 1255 rcu_assign_pointer(kvm->buses[i], 1256 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1257 if (!kvm->buses[i]) 1258 goto out_err_no_arch_destroy_vm; 1259 } 1260 1261 r = kvm_arch_init_vm(kvm, type); 1262 if (r) 1263 goto out_err_no_arch_destroy_vm; 1264 1265 r = hardware_enable_all(); 1266 if (r) 1267 goto out_err_no_disable; 1268 1269 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1270 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1271 #endif 1272 1273 r = kvm_init_mmu_notifier(kvm); 1274 if (r) 1275 goto out_err_no_mmu_notifier; 1276 1277 r = kvm_coalesced_mmio_init(kvm); 1278 if (r < 0) 1279 goto out_no_coalesced_mmio; 1280 1281 r = kvm_create_vm_debugfs(kvm, fdname); 1282 if (r) 1283 goto out_err_no_debugfs; 1284 1285 r = kvm_arch_post_init_vm(kvm); 1286 if (r) 1287 goto out_err; 1288 1289 mutex_lock(&kvm_lock); 1290 list_add(&kvm->vm_list, &vm_list); 1291 mutex_unlock(&kvm_lock); 1292 1293 preempt_notifier_inc(); 1294 kvm_init_pm_notifier(kvm); 1295 1296 return kvm; 1297 1298 out_err: 1299 kvm_destroy_vm_debugfs(kvm); 1300 out_err_no_debugfs: 1301 kvm_coalesced_mmio_free(kvm); 1302 out_no_coalesced_mmio: 1303 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1304 if (kvm->mmu_notifier.ops) 1305 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1306 #endif 1307 out_err_no_mmu_notifier: 1308 hardware_disable_all(); 1309 out_err_no_disable: 1310 kvm_arch_destroy_vm(kvm); 1311 out_err_no_arch_destroy_vm: 1312 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1313 for (i = 0; i < KVM_NR_BUSES; i++) 1314 kfree(kvm_get_bus(kvm, i)); 1315 cleanup_srcu_struct(&kvm->irq_srcu); 1316 out_err_no_irq_srcu: 1317 cleanup_srcu_struct(&kvm->srcu); 1318 out_err_no_srcu: 1319 kvm_arch_free_vm(kvm); 1320 mmdrop(current->mm); 1321 return ERR_PTR(r); 1322 } 1323 1324 static void kvm_destroy_devices(struct kvm *kvm) 1325 { 1326 struct kvm_device *dev, *tmp; 1327 1328 /* 1329 * We do not need to take the kvm->lock here, because nobody else 1330 * has a reference to the struct kvm at this point and therefore 1331 * cannot access the devices list anyhow. 1332 */ 1333 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1334 list_del(&dev->vm_node); 1335 dev->ops->destroy(dev); 1336 } 1337 } 1338 1339 static void kvm_destroy_vm(struct kvm *kvm) 1340 { 1341 int i; 1342 struct mm_struct *mm = kvm->mm; 1343 1344 kvm_destroy_pm_notifier(kvm); 1345 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1346 kvm_destroy_vm_debugfs(kvm); 1347 kvm_arch_sync_events(kvm); 1348 mutex_lock(&kvm_lock); 1349 list_del(&kvm->vm_list); 1350 mutex_unlock(&kvm_lock); 1351 kvm_arch_pre_destroy_vm(kvm); 1352 1353 kvm_free_irq_routing(kvm); 1354 for (i = 0; i < KVM_NR_BUSES; i++) { 1355 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1356 1357 if (bus) 1358 kvm_io_bus_destroy(bus); 1359 kvm->buses[i] = NULL; 1360 } 1361 kvm_coalesced_mmio_free(kvm); 1362 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1363 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1364 /* 1365 * At this point, pending calls to invalidate_range_start() 1366 * have completed but no more MMU notifiers will run, so 1367 * mn_active_invalidate_count may remain unbalanced. 1368 * No threads can be waiting in kvm_swap_active_memslots() as the 1369 * last reference on KVM has been dropped, but freeing 1370 * memslots would deadlock without this manual intervention. 1371 * 1372 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1373 * notifier between a start() and end(), then there shouldn't be any 1374 * in-progress invalidations. 1375 */ 1376 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1377 if (kvm->mn_active_invalidate_count) 1378 kvm->mn_active_invalidate_count = 0; 1379 else 1380 WARN_ON(kvm->mmu_invalidate_in_progress); 1381 #else 1382 kvm_flush_shadow_all(kvm); 1383 #endif 1384 kvm_arch_destroy_vm(kvm); 1385 kvm_destroy_devices(kvm); 1386 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1387 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1388 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1389 } 1390 cleanup_srcu_struct(&kvm->irq_srcu); 1391 cleanup_srcu_struct(&kvm->srcu); 1392 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1393 xa_destroy(&kvm->mem_attr_array); 1394 #endif 1395 kvm_arch_free_vm(kvm); 1396 preempt_notifier_dec(); 1397 hardware_disable_all(); 1398 mmdrop(mm); 1399 } 1400 1401 void kvm_get_kvm(struct kvm *kvm) 1402 { 1403 refcount_inc(&kvm->users_count); 1404 } 1405 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1406 1407 /* 1408 * Make sure the vm is not during destruction, which is a safe version of 1409 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1410 */ 1411 bool kvm_get_kvm_safe(struct kvm *kvm) 1412 { 1413 return refcount_inc_not_zero(&kvm->users_count); 1414 } 1415 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1416 1417 void kvm_put_kvm(struct kvm *kvm) 1418 { 1419 if (refcount_dec_and_test(&kvm->users_count)) 1420 kvm_destroy_vm(kvm); 1421 } 1422 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1423 1424 /* 1425 * Used to put a reference that was taken on behalf of an object associated 1426 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1427 * of the new file descriptor fails and the reference cannot be transferred to 1428 * its final owner. In such cases, the caller is still actively using @kvm and 1429 * will fail miserably if the refcount unexpectedly hits zero. 1430 */ 1431 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1432 { 1433 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1434 } 1435 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1436 1437 static int kvm_vm_release(struct inode *inode, struct file *filp) 1438 { 1439 struct kvm *kvm = filp->private_data; 1440 1441 kvm_irqfd_release(kvm); 1442 1443 kvm_put_kvm(kvm); 1444 return 0; 1445 } 1446 1447 /* 1448 * Allocation size is twice as large as the actual dirty bitmap size. 1449 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1450 */ 1451 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1452 { 1453 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1454 1455 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1456 if (!memslot->dirty_bitmap) 1457 return -ENOMEM; 1458 1459 return 0; 1460 } 1461 1462 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1463 { 1464 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1465 int node_idx_inactive = active->node_idx ^ 1; 1466 1467 return &kvm->__memslots[as_id][node_idx_inactive]; 1468 } 1469 1470 /* 1471 * Helper to get the address space ID when one of memslot pointers may be NULL. 1472 * This also serves as a sanity that at least one of the pointers is non-NULL, 1473 * and that their address space IDs don't diverge. 1474 */ 1475 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1476 struct kvm_memory_slot *b) 1477 { 1478 if (WARN_ON_ONCE(!a && !b)) 1479 return 0; 1480 1481 if (!a) 1482 return b->as_id; 1483 if (!b) 1484 return a->as_id; 1485 1486 WARN_ON_ONCE(a->as_id != b->as_id); 1487 return a->as_id; 1488 } 1489 1490 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1491 struct kvm_memory_slot *slot) 1492 { 1493 struct rb_root *gfn_tree = &slots->gfn_tree; 1494 struct rb_node **node, *parent; 1495 int idx = slots->node_idx; 1496 1497 parent = NULL; 1498 for (node = &gfn_tree->rb_node; *node; ) { 1499 struct kvm_memory_slot *tmp; 1500 1501 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1502 parent = *node; 1503 if (slot->base_gfn < tmp->base_gfn) 1504 node = &(*node)->rb_left; 1505 else if (slot->base_gfn > tmp->base_gfn) 1506 node = &(*node)->rb_right; 1507 else 1508 BUG(); 1509 } 1510 1511 rb_link_node(&slot->gfn_node[idx], parent, node); 1512 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1513 } 1514 1515 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1516 struct kvm_memory_slot *slot) 1517 { 1518 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1519 } 1520 1521 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1522 struct kvm_memory_slot *old, 1523 struct kvm_memory_slot *new) 1524 { 1525 int idx = slots->node_idx; 1526 1527 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1528 1529 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1530 &slots->gfn_tree); 1531 } 1532 1533 /* 1534 * Replace @old with @new in the inactive memslots. 1535 * 1536 * With NULL @old this simply adds @new. 1537 * With NULL @new this simply removes @old. 1538 * 1539 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1540 * appropriately. 1541 */ 1542 static void kvm_replace_memslot(struct kvm *kvm, 1543 struct kvm_memory_slot *old, 1544 struct kvm_memory_slot *new) 1545 { 1546 int as_id = kvm_memslots_get_as_id(old, new); 1547 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1548 int idx = slots->node_idx; 1549 1550 if (old) { 1551 hash_del(&old->id_node[idx]); 1552 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1553 1554 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1555 atomic_long_set(&slots->last_used_slot, (long)new); 1556 1557 if (!new) { 1558 kvm_erase_gfn_node(slots, old); 1559 return; 1560 } 1561 } 1562 1563 /* 1564 * Initialize @new's hva range. Do this even when replacing an @old 1565 * slot, kvm_copy_memslot() deliberately does not touch node data. 1566 */ 1567 new->hva_node[idx].start = new->userspace_addr; 1568 new->hva_node[idx].last = new->userspace_addr + 1569 (new->npages << PAGE_SHIFT) - 1; 1570 1571 /* 1572 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1573 * hva_node needs to be swapped with remove+insert even though hva can't 1574 * change when replacing an existing slot. 1575 */ 1576 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1577 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1578 1579 /* 1580 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1581 * switch the node in the gfn tree instead of removing the old and 1582 * inserting the new as two separate operations. Replacement is a 1583 * single O(1) operation versus two O(log(n)) operations for 1584 * remove+insert. 1585 */ 1586 if (old && old->base_gfn == new->base_gfn) { 1587 kvm_replace_gfn_node(slots, old, new); 1588 } else { 1589 if (old) 1590 kvm_erase_gfn_node(slots, old); 1591 kvm_insert_gfn_node(slots, new); 1592 } 1593 } 1594 1595 /* 1596 * Flags that do not access any of the extra space of struct 1597 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1598 * only allows these. 1599 */ 1600 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1601 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1602 1603 static int check_memory_region_flags(struct kvm *kvm, 1604 const struct kvm_userspace_memory_region2 *mem) 1605 { 1606 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1607 1608 if (kvm_arch_has_private_mem(kvm)) 1609 valid_flags |= KVM_MEM_GUEST_MEMFD; 1610 1611 /* Dirty logging private memory is not currently supported. */ 1612 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1613 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1614 1615 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1616 /* 1617 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1618 * read-only memslots have emulated MMIO, not page fault, semantics, 1619 * and KVM doesn't allow emulated MMIO for private memory. 1620 */ 1621 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1622 valid_flags |= KVM_MEM_READONLY; 1623 #endif 1624 1625 if (mem->flags & ~valid_flags) 1626 return -EINVAL; 1627 1628 return 0; 1629 } 1630 1631 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1632 { 1633 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1634 1635 /* Grab the generation from the activate memslots. */ 1636 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1637 1638 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1639 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1640 1641 /* 1642 * Do not store the new memslots while there are invalidations in 1643 * progress, otherwise the locking in invalidate_range_start and 1644 * invalidate_range_end will be unbalanced. 1645 */ 1646 spin_lock(&kvm->mn_invalidate_lock); 1647 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1648 while (kvm->mn_active_invalidate_count) { 1649 set_current_state(TASK_UNINTERRUPTIBLE); 1650 spin_unlock(&kvm->mn_invalidate_lock); 1651 schedule(); 1652 spin_lock(&kvm->mn_invalidate_lock); 1653 } 1654 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1655 rcu_assign_pointer(kvm->memslots[as_id], slots); 1656 spin_unlock(&kvm->mn_invalidate_lock); 1657 1658 /* 1659 * Acquired in kvm_set_memslot. Must be released before synchronize 1660 * SRCU below in order to avoid deadlock with another thread 1661 * acquiring the slots_arch_lock in an srcu critical section. 1662 */ 1663 mutex_unlock(&kvm->slots_arch_lock); 1664 1665 synchronize_srcu_expedited(&kvm->srcu); 1666 1667 /* 1668 * Increment the new memslot generation a second time, dropping the 1669 * update in-progress flag and incrementing the generation based on 1670 * the number of address spaces. This provides a unique and easily 1671 * identifiable generation number while the memslots are in flux. 1672 */ 1673 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1674 1675 /* 1676 * Generations must be unique even across address spaces. We do not need 1677 * a global counter for that, instead the generation space is evenly split 1678 * across address spaces. For example, with two address spaces, address 1679 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1680 * use generations 1, 3, 5, ... 1681 */ 1682 gen += kvm_arch_nr_memslot_as_ids(kvm); 1683 1684 kvm_arch_memslots_updated(kvm, gen); 1685 1686 slots->generation = gen; 1687 } 1688 1689 static int kvm_prepare_memory_region(struct kvm *kvm, 1690 const struct kvm_memory_slot *old, 1691 struct kvm_memory_slot *new, 1692 enum kvm_mr_change change) 1693 { 1694 int r; 1695 1696 /* 1697 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1698 * will be freed on "commit". If logging is enabled in both old and 1699 * new, reuse the existing bitmap. If logging is enabled only in the 1700 * new and KVM isn't using a ring buffer, allocate and initialize a 1701 * new bitmap. 1702 */ 1703 if (change != KVM_MR_DELETE) { 1704 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1705 new->dirty_bitmap = NULL; 1706 else if (old && old->dirty_bitmap) 1707 new->dirty_bitmap = old->dirty_bitmap; 1708 else if (kvm_use_dirty_bitmap(kvm)) { 1709 r = kvm_alloc_dirty_bitmap(new); 1710 if (r) 1711 return r; 1712 1713 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1714 bitmap_set(new->dirty_bitmap, 0, new->npages); 1715 } 1716 } 1717 1718 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1719 1720 /* Free the bitmap on failure if it was allocated above. */ 1721 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1722 kvm_destroy_dirty_bitmap(new); 1723 1724 return r; 1725 } 1726 1727 static void kvm_commit_memory_region(struct kvm *kvm, 1728 struct kvm_memory_slot *old, 1729 const struct kvm_memory_slot *new, 1730 enum kvm_mr_change change) 1731 { 1732 int old_flags = old ? old->flags : 0; 1733 int new_flags = new ? new->flags : 0; 1734 /* 1735 * Update the total number of memslot pages before calling the arch 1736 * hook so that architectures can consume the result directly. 1737 */ 1738 if (change == KVM_MR_DELETE) 1739 kvm->nr_memslot_pages -= old->npages; 1740 else if (change == KVM_MR_CREATE) 1741 kvm->nr_memslot_pages += new->npages; 1742 1743 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1744 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1745 atomic_set(&kvm->nr_memslots_dirty_logging, 1746 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1747 } 1748 1749 kvm_arch_commit_memory_region(kvm, old, new, change); 1750 1751 switch (change) { 1752 case KVM_MR_CREATE: 1753 /* Nothing more to do. */ 1754 break; 1755 case KVM_MR_DELETE: 1756 /* Free the old memslot and all its metadata. */ 1757 kvm_free_memslot(kvm, old); 1758 break; 1759 case KVM_MR_MOVE: 1760 case KVM_MR_FLAGS_ONLY: 1761 /* 1762 * Free the dirty bitmap as needed; the below check encompasses 1763 * both the flags and whether a ring buffer is being used) 1764 */ 1765 if (old->dirty_bitmap && !new->dirty_bitmap) 1766 kvm_destroy_dirty_bitmap(old); 1767 1768 /* 1769 * The final quirk. Free the detached, old slot, but only its 1770 * memory, not any metadata. Metadata, including arch specific 1771 * data, may be reused by @new. 1772 */ 1773 kfree(old); 1774 break; 1775 default: 1776 BUG(); 1777 } 1778 } 1779 1780 /* 1781 * Activate @new, which must be installed in the inactive slots by the caller, 1782 * by swapping the active slots and then propagating @new to @old once @old is 1783 * unreachable and can be safely modified. 1784 * 1785 * With NULL @old this simply adds @new to @active (while swapping the sets). 1786 * With NULL @new this simply removes @old from @active and frees it 1787 * (while also swapping the sets). 1788 */ 1789 static void kvm_activate_memslot(struct kvm *kvm, 1790 struct kvm_memory_slot *old, 1791 struct kvm_memory_slot *new) 1792 { 1793 int as_id = kvm_memslots_get_as_id(old, new); 1794 1795 kvm_swap_active_memslots(kvm, as_id); 1796 1797 /* Propagate the new memslot to the now inactive memslots. */ 1798 kvm_replace_memslot(kvm, old, new); 1799 } 1800 1801 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1802 const struct kvm_memory_slot *src) 1803 { 1804 dest->base_gfn = src->base_gfn; 1805 dest->npages = src->npages; 1806 dest->dirty_bitmap = src->dirty_bitmap; 1807 dest->arch = src->arch; 1808 dest->userspace_addr = src->userspace_addr; 1809 dest->flags = src->flags; 1810 dest->id = src->id; 1811 dest->as_id = src->as_id; 1812 } 1813 1814 static void kvm_invalidate_memslot(struct kvm *kvm, 1815 struct kvm_memory_slot *old, 1816 struct kvm_memory_slot *invalid_slot) 1817 { 1818 /* 1819 * Mark the current slot INVALID. As with all memslot modifications, 1820 * this must be done on an unreachable slot to avoid modifying the 1821 * current slot in the active tree. 1822 */ 1823 kvm_copy_memslot(invalid_slot, old); 1824 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1825 kvm_replace_memslot(kvm, old, invalid_slot); 1826 1827 /* 1828 * Activate the slot that is now marked INVALID, but don't propagate 1829 * the slot to the now inactive slots. The slot is either going to be 1830 * deleted or recreated as a new slot. 1831 */ 1832 kvm_swap_active_memslots(kvm, old->as_id); 1833 1834 /* 1835 * From this point no new shadow pages pointing to a deleted, or moved, 1836 * memslot will be created. Validation of sp->gfn happens in: 1837 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1838 * - kvm_is_visible_gfn (mmu_check_root) 1839 */ 1840 kvm_arch_flush_shadow_memslot(kvm, old); 1841 kvm_arch_guest_memory_reclaimed(kvm); 1842 1843 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1844 mutex_lock(&kvm->slots_arch_lock); 1845 1846 /* 1847 * Copy the arch-specific field of the newly-installed slot back to the 1848 * old slot as the arch data could have changed between releasing 1849 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1850 * above. Writers are required to retrieve memslots *after* acquiring 1851 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1852 */ 1853 old->arch = invalid_slot->arch; 1854 } 1855 1856 static void kvm_create_memslot(struct kvm *kvm, 1857 struct kvm_memory_slot *new) 1858 { 1859 /* Add the new memslot to the inactive set and activate. */ 1860 kvm_replace_memslot(kvm, NULL, new); 1861 kvm_activate_memslot(kvm, NULL, new); 1862 } 1863 1864 static void kvm_delete_memslot(struct kvm *kvm, 1865 struct kvm_memory_slot *old, 1866 struct kvm_memory_slot *invalid_slot) 1867 { 1868 /* 1869 * Remove the old memslot (in the inactive memslots) by passing NULL as 1870 * the "new" slot, and for the invalid version in the active slots. 1871 */ 1872 kvm_replace_memslot(kvm, old, NULL); 1873 kvm_activate_memslot(kvm, invalid_slot, NULL); 1874 } 1875 1876 static void kvm_move_memslot(struct kvm *kvm, 1877 struct kvm_memory_slot *old, 1878 struct kvm_memory_slot *new, 1879 struct kvm_memory_slot *invalid_slot) 1880 { 1881 /* 1882 * Replace the old memslot in the inactive slots, and then swap slots 1883 * and replace the current INVALID with the new as well. 1884 */ 1885 kvm_replace_memslot(kvm, old, new); 1886 kvm_activate_memslot(kvm, invalid_slot, new); 1887 } 1888 1889 static void kvm_update_flags_memslot(struct kvm *kvm, 1890 struct kvm_memory_slot *old, 1891 struct kvm_memory_slot *new) 1892 { 1893 /* 1894 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1895 * an intermediate step. Instead, the old memslot is simply replaced 1896 * with a new, updated copy in both memslot sets. 1897 */ 1898 kvm_replace_memslot(kvm, old, new); 1899 kvm_activate_memslot(kvm, old, new); 1900 } 1901 1902 static int kvm_set_memslot(struct kvm *kvm, 1903 struct kvm_memory_slot *old, 1904 struct kvm_memory_slot *new, 1905 enum kvm_mr_change change) 1906 { 1907 struct kvm_memory_slot *invalid_slot; 1908 int r; 1909 1910 /* 1911 * Released in kvm_swap_active_memslots(). 1912 * 1913 * Must be held from before the current memslots are copied until after 1914 * the new memslots are installed with rcu_assign_pointer, then 1915 * released before the synchronize srcu in kvm_swap_active_memslots(). 1916 * 1917 * When modifying memslots outside of the slots_lock, must be held 1918 * before reading the pointer to the current memslots until after all 1919 * changes to those memslots are complete. 1920 * 1921 * These rules ensure that installing new memslots does not lose 1922 * changes made to the previous memslots. 1923 */ 1924 mutex_lock(&kvm->slots_arch_lock); 1925 1926 /* 1927 * Invalidate the old slot if it's being deleted or moved. This is 1928 * done prior to actually deleting/moving the memslot to allow vCPUs to 1929 * continue running by ensuring there are no mappings or shadow pages 1930 * for the memslot when it is deleted/moved. Without pre-invalidation 1931 * (and without a lock), a window would exist between effecting the 1932 * delete/move and committing the changes in arch code where KVM or a 1933 * guest could access a non-existent memslot. 1934 * 1935 * Modifications are done on a temporary, unreachable slot. The old 1936 * slot needs to be preserved in case a later step fails and the 1937 * invalidation needs to be reverted. 1938 */ 1939 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1940 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1941 if (!invalid_slot) { 1942 mutex_unlock(&kvm->slots_arch_lock); 1943 return -ENOMEM; 1944 } 1945 kvm_invalidate_memslot(kvm, old, invalid_slot); 1946 } 1947 1948 r = kvm_prepare_memory_region(kvm, old, new, change); 1949 if (r) { 1950 /* 1951 * For DELETE/MOVE, revert the above INVALID change. No 1952 * modifications required since the original slot was preserved 1953 * in the inactive slots. Changing the active memslots also 1954 * release slots_arch_lock. 1955 */ 1956 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1957 kvm_activate_memslot(kvm, invalid_slot, old); 1958 kfree(invalid_slot); 1959 } else { 1960 mutex_unlock(&kvm->slots_arch_lock); 1961 } 1962 return r; 1963 } 1964 1965 /* 1966 * For DELETE and MOVE, the working slot is now active as the INVALID 1967 * version of the old slot. MOVE is particularly special as it reuses 1968 * the old slot and returns a copy of the old slot (in working_slot). 1969 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1970 * old slot is detached but otherwise preserved. 1971 */ 1972 if (change == KVM_MR_CREATE) 1973 kvm_create_memslot(kvm, new); 1974 else if (change == KVM_MR_DELETE) 1975 kvm_delete_memslot(kvm, old, invalid_slot); 1976 else if (change == KVM_MR_MOVE) 1977 kvm_move_memslot(kvm, old, new, invalid_slot); 1978 else if (change == KVM_MR_FLAGS_ONLY) 1979 kvm_update_flags_memslot(kvm, old, new); 1980 else 1981 BUG(); 1982 1983 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1984 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1985 kfree(invalid_slot); 1986 1987 /* 1988 * No need to refresh new->arch, changes after dropping slots_arch_lock 1989 * will directly hit the final, active memslot. Architectures are 1990 * responsible for knowing that new->arch may be stale. 1991 */ 1992 kvm_commit_memory_region(kvm, old, new, change); 1993 1994 return 0; 1995 } 1996 1997 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1998 gfn_t start, gfn_t end) 1999 { 2000 struct kvm_memslot_iter iter; 2001 2002 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 2003 if (iter.slot->id != id) 2004 return true; 2005 } 2006 2007 return false; 2008 } 2009 2010 /* 2011 * Allocate some memory and give it an address in the guest physical address 2012 * space. 2013 * 2014 * Discontiguous memory is allowed, mostly for framebuffers. 2015 * 2016 * Must be called holding kvm->slots_lock for write. 2017 */ 2018 int __kvm_set_memory_region(struct kvm *kvm, 2019 const struct kvm_userspace_memory_region2 *mem) 2020 { 2021 struct kvm_memory_slot *old, *new; 2022 struct kvm_memslots *slots; 2023 enum kvm_mr_change change; 2024 unsigned long npages; 2025 gfn_t base_gfn; 2026 int as_id, id; 2027 int r; 2028 2029 r = check_memory_region_flags(kvm, mem); 2030 if (r) 2031 return r; 2032 2033 as_id = mem->slot >> 16; 2034 id = (u16)mem->slot; 2035 2036 /* General sanity checks */ 2037 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2038 (mem->memory_size != (unsigned long)mem->memory_size)) 2039 return -EINVAL; 2040 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2041 return -EINVAL; 2042 /* We can read the guest memory with __xxx_user() later on. */ 2043 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2044 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2045 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2046 mem->memory_size)) 2047 return -EINVAL; 2048 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2049 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2050 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2051 return -EINVAL; 2052 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2053 return -EINVAL; 2054 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2055 return -EINVAL; 2056 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2057 return -EINVAL; 2058 2059 slots = __kvm_memslots(kvm, as_id); 2060 2061 /* 2062 * Note, the old memslot (and the pointer itself!) may be invalidated 2063 * and/or destroyed by kvm_set_memslot(). 2064 */ 2065 old = id_to_memslot(slots, id); 2066 2067 if (!mem->memory_size) { 2068 if (!old || !old->npages) 2069 return -EINVAL; 2070 2071 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2072 return -EIO; 2073 2074 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2075 } 2076 2077 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2078 npages = (mem->memory_size >> PAGE_SHIFT); 2079 2080 if (!old || !old->npages) { 2081 change = KVM_MR_CREATE; 2082 2083 /* 2084 * To simplify KVM internals, the total number of pages across 2085 * all memslots must fit in an unsigned long. 2086 */ 2087 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2088 return -EINVAL; 2089 } else { /* Modify an existing slot. */ 2090 /* Private memslots are immutable, they can only be deleted. */ 2091 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2092 return -EINVAL; 2093 if ((mem->userspace_addr != old->userspace_addr) || 2094 (npages != old->npages) || 2095 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2096 return -EINVAL; 2097 2098 if (base_gfn != old->base_gfn) 2099 change = KVM_MR_MOVE; 2100 else if (mem->flags != old->flags) 2101 change = KVM_MR_FLAGS_ONLY; 2102 else /* Nothing to change. */ 2103 return 0; 2104 } 2105 2106 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2107 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2108 return -EEXIST; 2109 2110 /* Allocate a slot that will persist in the memslot. */ 2111 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2112 if (!new) 2113 return -ENOMEM; 2114 2115 new->as_id = as_id; 2116 new->id = id; 2117 new->base_gfn = base_gfn; 2118 new->npages = npages; 2119 new->flags = mem->flags; 2120 new->userspace_addr = mem->userspace_addr; 2121 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2122 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2123 if (r) 2124 goto out; 2125 } 2126 2127 r = kvm_set_memslot(kvm, old, new, change); 2128 if (r) 2129 goto out_unbind; 2130 2131 return 0; 2132 2133 out_unbind: 2134 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2135 kvm_gmem_unbind(new); 2136 out: 2137 kfree(new); 2138 return r; 2139 } 2140 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2141 2142 int kvm_set_memory_region(struct kvm *kvm, 2143 const struct kvm_userspace_memory_region2 *mem) 2144 { 2145 int r; 2146 2147 mutex_lock(&kvm->slots_lock); 2148 r = __kvm_set_memory_region(kvm, mem); 2149 mutex_unlock(&kvm->slots_lock); 2150 return r; 2151 } 2152 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2153 2154 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2155 struct kvm_userspace_memory_region2 *mem) 2156 { 2157 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2158 return -EINVAL; 2159 2160 return kvm_set_memory_region(kvm, mem); 2161 } 2162 2163 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2164 /** 2165 * kvm_get_dirty_log - get a snapshot of dirty pages 2166 * @kvm: pointer to kvm instance 2167 * @log: slot id and address to which we copy the log 2168 * @is_dirty: set to '1' if any dirty pages were found 2169 * @memslot: set to the associated memslot, always valid on success 2170 */ 2171 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2172 int *is_dirty, struct kvm_memory_slot **memslot) 2173 { 2174 struct kvm_memslots *slots; 2175 int i, as_id, id; 2176 unsigned long n; 2177 unsigned long any = 0; 2178 2179 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2180 if (!kvm_use_dirty_bitmap(kvm)) 2181 return -ENXIO; 2182 2183 *memslot = NULL; 2184 *is_dirty = 0; 2185 2186 as_id = log->slot >> 16; 2187 id = (u16)log->slot; 2188 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2189 return -EINVAL; 2190 2191 slots = __kvm_memslots(kvm, as_id); 2192 *memslot = id_to_memslot(slots, id); 2193 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2194 return -ENOENT; 2195 2196 kvm_arch_sync_dirty_log(kvm, *memslot); 2197 2198 n = kvm_dirty_bitmap_bytes(*memslot); 2199 2200 for (i = 0; !any && i < n/sizeof(long); ++i) 2201 any = (*memslot)->dirty_bitmap[i]; 2202 2203 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2204 return -EFAULT; 2205 2206 if (any) 2207 *is_dirty = 1; 2208 return 0; 2209 } 2210 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2211 2212 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2213 /** 2214 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2215 * and reenable dirty page tracking for the corresponding pages. 2216 * @kvm: pointer to kvm instance 2217 * @log: slot id and address to which we copy the log 2218 * 2219 * We need to keep it in mind that VCPU threads can write to the bitmap 2220 * concurrently. So, to avoid losing track of dirty pages we keep the 2221 * following order: 2222 * 2223 * 1. Take a snapshot of the bit and clear it if needed. 2224 * 2. Write protect the corresponding page. 2225 * 3. Copy the snapshot to the userspace. 2226 * 4. Upon return caller flushes TLB's if needed. 2227 * 2228 * Between 2 and 4, the guest may write to the page using the remaining TLB 2229 * entry. This is not a problem because the page is reported dirty using 2230 * the snapshot taken before and step 4 ensures that writes done after 2231 * exiting to userspace will be logged for the next call. 2232 * 2233 */ 2234 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2235 { 2236 struct kvm_memslots *slots; 2237 struct kvm_memory_slot *memslot; 2238 int i, as_id, id; 2239 unsigned long n; 2240 unsigned long *dirty_bitmap; 2241 unsigned long *dirty_bitmap_buffer; 2242 bool flush; 2243 2244 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2245 if (!kvm_use_dirty_bitmap(kvm)) 2246 return -ENXIO; 2247 2248 as_id = log->slot >> 16; 2249 id = (u16)log->slot; 2250 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2251 return -EINVAL; 2252 2253 slots = __kvm_memslots(kvm, as_id); 2254 memslot = id_to_memslot(slots, id); 2255 if (!memslot || !memslot->dirty_bitmap) 2256 return -ENOENT; 2257 2258 dirty_bitmap = memslot->dirty_bitmap; 2259 2260 kvm_arch_sync_dirty_log(kvm, memslot); 2261 2262 n = kvm_dirty_bitmap_bytes(memslot); 2263 flush = false; 2264 if (kvm->manual_dirty_log_protect) { 2265 /* 2266 * Unlike kvm_get_dirty_log, we always return false in *flush, 2267 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2268 * is some code duplication between this function and 2269 * kvm_get_dirty_log, but hopefully all architecture 2270 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2271 * can be eliminated. 2272 */ 2273 dirty_bitmap_buffer = dirty_bitmap; 2274 } else { 2275 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2276 memset(dirty_bitmap_buffer, 0, n); 2277 2278 KVM_MMU_LOCK(kvm); 2279 for (i = 0; i < n / sizeof(long); i++) { 2280 unsigned long mask; 2281 gfn_t offset; 2282 2283 if (!dirty_bitmap[i]) 2284 continue; 2285 2286 flush = true; 2287 mask = xchg(&dirty_bitmap[i], 0); 2288 dirty_bitmap_buffer[i] = mask; 2289 2290 offset = i * BITS_PER_LONG; 2291 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2292 offset, mask); 2293 } 2294 KVM_MMU_UNLOCK(kvm); 2295 } 2296 2297 if (flush) 2298 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2299 2300 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2301 return -EFAULT; 2302 return 0; 2303 } 2304 2305 2306 /** 2307 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2308 * @kvm: kvm instance 2309 * @log: slot id and address to which we copy the log 2310 * 2311 * Steps 1-4 below provide general overview of dirty page logging. See 2312 * kvm_get_dirty_log_protect() function description for additional details. 2313 * 2314 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2315 * always flush the TLB (step 4) even if previous step failed and the dirty 2316 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2317 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2318 * writes will be marked dirty for next log read. 2319 * 2320 * 1. Take a snapshot of the bit and clear it if needed. 2321 * 2. Write protect the corresponding page. 2322 * 3. Copy the snapshot to the userspace. 2323 * 4. Flush TLB's if needed. 2324 */ 2325 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2326 struct kvm_dirty_log *log) 2327 { 2328 int r; 2329 2330 mutex_lock(&kvm->slots_lock); 2331 2332 r = kvm_get_dirty_log_protect(kvm, log); 2333 2334 mutex_unlock(&kvm->slots_lock); 2335 return r; 2336 } 2337 2338 /** 2339 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2340 * and reenable dirty page tracking for the corresponding pages. 2341 * @kvm: pointer to kvm instance 2342 * @log: slot id and address from which to fetch the bitmap of dirty pages 2343 */ 2344 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2345 struct kvm_clear_dirty_log *log) 2346 { 2347 struct kvm_memslots *slots; 2348 struct kvm_memory_slot *memslot; 2349 int as_id, id; 2350 gfn_t offset; 2351 unsigned long i, n; 2352 unsigned long *dirty_bitmap; 2353 unsigned long *dirty_bitmap_buffer; 2354 bool flush; 2355 2356 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2357 if (!kvm_use_dirty_bitmap(kvm)) 2358 return -ENXIO; 2359 2360 as_id = log->slot >> 16; 2361 id = (u16)log->slot; 2362 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2363 return -EINVAL; 2364 2365 if (log->first_page & 63) 2366 return -EINVAL; 2367 2368 slots = __kvm_memslots(kvm, as_id); 2369 memslot = id_to_memslot(slots, id); 2370 if (!memslot || !memslot->dirty_bitmap) 2371 return -ENOENT; 2372 2373 dirty_bitmap = memslot->dirty_bitmap; 2374 2375 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2376 2377 if (log->first_page > memslot->npages || 2378 log->num_pages > memslot->npages - log->first_page || 2379 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2380 return -EINVAL; 2381 2382 kvm_arch_sync_dirty_log(kvm, memslot); 2383 2384 flush = false; 2385 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2386 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2387 return -EFAULT; 2388 2389 KVM_MMU_LOCK(kvm); 2390 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2391 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2392 i++, offset += BITS_PER_LONG) { 2393 unsigned long mask = *dirty_bitmap_buffer++; 2394 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2395 if (!mask) 2396 continue; 2397 2398 mask &= atomic_long_fetch_andnot(mask, p); 2399 2400 /* 2401 * mask contains the bits that really have been cleared. This 2402 * never includes any bits beyond the length of the memslot (if 2403 * the length is not aligned to 64 pages), therefore it is not 2404 * a problem if userspace sets them in log->dirty_bitmap. 2405 */ 2406 if (mask) { 2407 flush = true; 2408 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2409 offset, mask); 2410 } 2411 } 2412 KVM_MMU_UNLOCK(kvm); 2413 2414 if (flush) 2415 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2416 2417 return 0; 2418 } 2419 2420 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2421 struct kvm_clear_dirty_log *log) 2422 { 2423 int r; 2424 2425 mutex_lock(&kvm->slots_lock); 2426 2427 r = kvm_clear_dirty_log_protect(kvm, log); 2428 2429 mutex_unlock(&kvm->slots_lock); 2430 return r; 2431 } 2432 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2433 2434 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2435 /* 2436 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2437 * matching @attrs. 2438 */ 2439 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2440 unsigned long attrs) 2441 { 2442 XA_STATE(xas, &kvm->mem_attr_array, start); 2443 unsigned long index; 2444 bool has_attrs; 2445 void *entry; 2446 2447 rcu_read_lock(); 2448 2449 if (!attrs) { 2450 has_attrs = !xas_find(&xas, end - 1); 2451 goto out; 2452 } 2453 2454 has_attrs = true; 2455 for (index = start; index < end; index++) { 2456 do { 2457 entry = xas_next(&xas); 2458 } while (xas_retry(&xas, entry)); 2459 2460 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2461 has_attrs = false; 2462 break; 2463 } 2464 } 2465 2466 out: 2467 rcu_read_unlock(); 2468 return has_attrs; 2469 } 2470 2471 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2472 { 2473 if (!kvm || kvm_arch_has_private_mem(kvm)) 2474 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2475 2476 return 0; 2477 } 2478 2479 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2480 struct kvm_mmu_notifier_range *range) 2481 { 2482 struct kvm_gfn_range gfn_range; 2483 struct kvm_memory_slot *slot; 2484 struct kvm_memslots *slots; 2485 struct kvm_memslot_iter iter; 2486 bool found_memslot = false; 2487 bool ret = false; 2488 int i; 2489 2490 gfn_range.arg = range->arg; 2491 gfn_range.may_block = range->may_block; 2492 2493 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2494 slots = __kvm_memslots(kvm, i); 2495 2496 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2497 slot = iter.slot; 2498 gfn_range.slot = slot; 2499 2500 gfn_range.start = max(range->start, slot->base_gfn); 2501 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2502 if (gfn_range.start >= gfn_range.end) 2503 continue; 2504 2505 if (!found_memslot) { 2506 found_memslot = true; 2507 KVM_MMU_LOCK(kvm); 2508 if (!IS_KVM_NULL_FN(range->on_lock)) 2509 range->on_lock(kvm); 2510 } 2511 2512 ret |= range->handler(kvm, &gfn_range); 2513 } 2514 } 2515 2516 if (range->flush_on_ret && ret) 2517 kvm_flush_remote_tlbs(kvm); 2518 2519 if (found_memslot) 2520 KVM_MMU_UNLOCK(kvm); 2521 } 2522 2523 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2524 struct kvm_gfn_range *range) 2525 { 2526 /* 2527 * Unconditionally add the range to the invalidation set, regardless of 2528 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2529 * if KVM supports RWX attributes in the future and the attributes are 2530 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2531 * adding the range allows KVM to require that MMU invalidations add at 2532 * least one range between begin() and end(), e.g. allows KVM to detect 2533 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2534 * but it's not obvious that allowing new mappings while the attributes 2535 * are in flux is desirable or worth the complexity. 2536 */ 2537 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2538 2539 return kvm_arch_pre_set_memory_attributes(kvm, range); 2540 } 2541 2542 /* Set @attributes for the gfn range [@start, @end). */ 2543 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2544 unsigned long attributes) 2545 { 2546 struct kvm_mmu_notifier_range pre_set_range = { 2547 .start = start, 2548 .end = end, 2549 .handler = kvm_pre_set_memory_attributes, 2550 .on_lock = kvm_mmu_invalidate_begin, 2551 .flush_on_ret = true, 2552 .may_block = true, 2553 }; 2554 struct kvm_mmu_notifier_range post_set_range = { 2555 .start = start, 2556 .end = end, 2557 .arg.attributes = attributes, 2558 .handler = kvm_arch_post_set_memory_attributes, 2559 .on_lock = kvm_mmu_invalidate_end, 2560 .may_block = true, 2561 }; 2562 unsigned long i; 2563 void *entry; 2564 int r = 0; 2565 2566 entry = attributes ? xa_mk_value(attributes) : NULL; 2567 2568 mutex_lock(&kvm->slots_lock); 2569 2570 /* Nothing to do if the entire range as the desired attributes. */ 2571 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2572 goto out_unlock; 2573 2574 /* 2575 * Reserve memory ahead of time to avoid having to deal with failures 2576 * partway through setting the new attributes. 2577 */ 2578 for (i = start; i < end; i++) { 2579 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2580 if (r) 2581 goto out_unlock; 2582 } 2583 2584 kvm_handle_gfn_range(kvm, &pre_set_range); 2585 2586 for (i = start; i < end; i++) { 2587 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2588 GFP_KERNEL_ACCOUNT)); 2589 KVM_BUG_ON(r, kvm); 2590 } 2591 2592 kvm_handle_gfn_range(kvm, &post_set_range); 2593 2594 out_unlock: 2595 mutex_unlock(&kvm->slots_lock); 2596 2597 return r; 2598 } 2599 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2600 struct kvm_memory_attributes *attrs) 2601 { 2602 gfn_t start, end; 2603 2604 /* flags is currently not used. */ 2605 if (attrs->flags) 2606 return -EINVAL; 2607 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2608 return -EINVAL; 2609 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2610 return -EINVAL; 2611 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2612 return -EINVAL; 2613 2614 start = attrs->address >> PAGE_SHIFT; 2615 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2616 2617 /* 2618 * xarray tracks data using "unsigned long", and as a result so does 2619 * KVM. For simplicity, supports generic attributes only on 64-bit 2620 * architectures. 2621 */ 2622 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2623 2624 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2625 } 2626 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2627 2628 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2629 { 2630 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2631 } 2632 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2633 2634 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2635 { 2636 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2637 u64 gen = slots->generation; 2638 struct kvm_memory_slot *slot; 2639 2640 /* 2641 * This also protects against using a memslot from a different address space, 2642 * since different address spaces have different generation numbers. 2643 */ 2644 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2645 vcpu->last_used_slot = NULL; 2646 vcpu->last_used_slot_gen = gen; 2647 } 2648 2649 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2650 if (slot) 2651 return slot; 2652 2653 /* 2654 * Fall back to searching all memslots. We purposely use 2655 * search_memslots() instead of __gfn_to_memslot() to avoid 2656 * thrashing the VM-wide last_used_slot in kvm_memslots. 2657 */ 2658 slot = search_memslots(slots, gfn, false); 2659 if (slot) { 2660 vcpu->last_used_slot = slot; 2661 return slot; 2662 } 2663 2664 return NULL; 2665 } 2666 2667 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2668 { 2669 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2670 2671 return kvm_is_visible_memslot(memslot); 2672 } 2673 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2674 2675 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2676 { 2677 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2678 2679 return kvm_is_visible_memslot(memslot); 2680 } 2681 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2682 2683 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2684 { 2685 struct vm_area_struct *vma; 2686 unsigned long addr, size; 2687 2688 size = PAGE_SIZE; 2689 2690 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2691 if (kvm_is_error_hva(addr)) 2692 return PAGE_SIZE; 2693 2694 mmap_read_lock(current->mm); 2695 vma = find_vma(current->mm, addr); 2696 if (!vma) 2697 goto out; 2698 2699 size = vma_kernel_pagesize(vma); 2700 2701 out: 2702 mmap_read_unlock(current->mm); 2703 2704 return size; 2705 } 2706 2707 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2708 { 2709 return slot->flags & KVM_MEM_READONLY; 2710 } 2711 2712 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2713 gfn_t *nr_pages, bool write) 2714 { 2715 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2716 return KVM_HVA_ERR_BAD; 2717 2718 if (memslot_is_readonly(slot) && write) 2719 return KVM_HVA_ERR_RO_BAD; 2720 2721 if (nr_pages) 2722 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2723 2724 return __gfn_to_hva_memslot(slot, gfn); 2725 } 2726 2727 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2728 gfn_t *nr_pages) 2729 { 2730 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2731 } 2732 2733 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2734 gfn_t gfn) 2735 { 2736 return gfn_to_hva_many(slot, gfn, NULL); 2737 } 2738 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2739 2740 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2741 { 2742 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2743 } 2744 EXPORT_SYMBOL_GPL(gfn_to_hva); 2745 2746 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2747 { 2748 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2749 } 2750 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2751 2752 /* 2753 * Return the hva of a @gfn and the R/W attribute if possible. 2754 * 2755 * @slot: the kvm_memory_slot which contains @gfn 2756 * @gfn: the gfn to be translated 2757 * @writable: used to return the read/write attribute of the @slot if the hva 2758 * is valid and @writable is not NULL 2759 */ 2760 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2761 gfn_t gfn, bool *writable) 2762 { 2763 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2764 2765 if (!kvm_is_error_hva(hva) && writable) 2766 *writable = !memslot_is_readonly(slot); 2767 2768 return hva; 2769 } 2770 2771 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2772 { 2773 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2774 2775 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2776 } 2777 2778 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2779 { 2780 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2781 2782 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2783 } 2784 2785 static inline int check_user_page_hwpoison(unsigned long addr) 2786 { 2787 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2788 2789 rc = get_user_pages(addr, 1, flags, NULL); 2790 return rc == -EHWPOISON; 2791 } 2792 2793 /* 2794 * The fast path to get the writable pfn which will be stored in @pfn, 2795 * true indicates success, otherwise false is returned. It's also the 2796 * only part that runs if we can in atomic context. 2797 */ 2798 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2799 bool *writable, kvm_pfn_t *pfn) 2800 { 2801 struct page *page[1]; 2802 2803 /* 2804 * Fast pin a writable pfn only if it is a write fault request 2805 * or the caller allows to map a writable pfn for a read fault 2806 * request. 2807 */ 2808 if (!(write_fault || writable)) 2809 return false; 2810 2811 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2812 *pfn = page_to_pfn(page[0]); 2813 2814 if (writable) 2815 *writable = true; 2816 return true; 2817 } 2818 2819 return false; 2820 } 2821 2822 /* 2823 * The slow path to get the pfn of the specified host virtual address, 2824 * 1 indicates success, -errno is returned if error is detected. 2825 */ 2826 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2827 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2828 { 2829 /* 2830 * When a VCPU accesses a page that is not mapped into the secondary 2831 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2832 * make progress. We always want to honor NUMA hinting faults in that 2833 * case, because GUP usage corresponds to memory accesses from the VCPU. 2834 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2835 * mapped into the secondary MMU and gets accessed by a VCPU. 2836 * 2837 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2838 * implicitly honor NUMA hinting faults and don't need this flag. 2839 */ 2840 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2841 struct page *page; 2842 int npages; 2843 2844 might_sleep(); 2845 2846 if (writable) 2847 *writable = write_fault; 2848 2849 if (write_fault) 2850 flags |= FOLL_WRITE; 2851 if (async) 2852 flags |= FOLL_NOWAIT; 2853 if (interruptible) 2854 flags |= FOLL_INTERRUPTIBLE; 2855 2856 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2857 if (npages != 1) 2858 return npages; 2859 2860 /* map read fault as writable if possible */ 2861 if (unlikely(!write_fault) && writable) { 2862 struct page *wpage; 2863 2864 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2865 *writable = true; 2866 put_page(page); 2867 page = wpage; 2868 } 2869 } 2870 *pfn = page_to_pfn(page); 2871 return npages; 2872 } 2873 2874 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2875 { 2876 if (unlikely(!(vma->vm_flags & VM_READ))) 2877 return false; 2878 2879 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2880 return false; 2881 2882 return true; 2883 } 2884 2885 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2886 { 2887 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2888 2889 if (!page) 2890 return 1; 2891 2892 return get_page_unless_zero(page); 2893 } 2894 2895 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2896 unsigned long addr, bool write_fault, 2897 bool *writable, kvm_pfn_t *p_pfn) 2898 { 2899 kvm_pfn_t pfn; 2900 pte_t *ptep; 2901 pte_t pte; 2902 spinlock_t *ptl; 2903 int r; 2904 2905 r = follow_pte(vma, addr, &ptep, &ptl); 2906 if (r) { 2907 /* 2908 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2909 * not call the fault handler, so do it here. 2910 */ 2911 bool unlocked = false; 2912 r = fixup_user_fault(current->mm, addr, 2913 (write_fault ? FAULT_FLAG_WRITE : 0), 2914 &unlocked); 2915 if (unlocked) 2916 return -EAGAIN; 2917 if (r) 2918 return r; 2919 2920 r = follow_pte(vma, addr, &ptep, &ptl); 2921 if (r) 2922 return r; 2923 } 2924 2925 pte = ptep_get(ptep); 2926 2927 if (write_fault && !pte_write(pte)) { 2928 pfn = KVM_PFN_ERR_RO_FAULT; 2929 goto out; 2930 } 2931 2932 if (writable) 2933 *writable = pte_write(pte); 2934 pfn = pte_pfn(pte); 2935 2936 /* 2937 * Get a reference here because callers of *hva_to_pfn* and 2938 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2939 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2940 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2941 * simply do nothing for reserved pfns. 2942 * 2943 * Whoever called remap_pfn_range is also going to call e.g. 2944 * unmap_mapping_range before the underlying pages are freed, 2945 * causing a call to our MMU notifier. 2946 * 2947 * Certain IO or PFNMAP mappings can be backed with valid 2948 * struct pages, but be allocated without refcounting e.g., 2949 * tail pages of non-compound higher order allocations, which 2950 * would then underflow the refcount when the caller does the 2951 * required put_page. Don't allow those pages here. 2952 */ 2953 if (!kvm_try_get_pfn(pfn)) 2954 r = -EFAULT; 2955 2956 out: 2957 pte_unmap_unlock(ptep, ptl); 2958 *p_pfn = pfn; 2959 2960 return r; 2961 } 2962 2963 /* 2964 * Pin guest page in memory and return its pfn. 2965 * @addr: host virtual address which maps memory to the guest 2966 * @atomic: whether this function can sleep 2967 * @interruptible: whether the process can be interrupted by non-fatal signals 2968 * @async: whether this function need to wait IO complete if the 2969 * host page is not in the memory 2970 * @write_fault: whether we should get a writable host page 2971 * @writable: whether it allows to map a writable host page for !@write_fault 2972 * 2973 * The function will map a writable host page for these two cases: 2974 * 1): @write_fault = true 2975 * 2): @write_fault = false && @writable, @writable will tell the caller 2976 * whether the mapping is writable. 2977 */ 2978 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2979 bool *async, bool write_fault, bool *writable) 2980 { 2981 struct vm_area_struct *vma; 2982 kvm_pfn_t pfn; 2983 int npages, r; 2984 2985 /* we can do it either atomically or asynchronously, not both */ 2986 BUG_ON(atomic && async); 2987 2988 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2989 return pfn; 2990 2991 if (atomic) 2992 return KVM_PFN_ERR_FAULT; 2993 2994 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2995 writable, &pfn); 2996 if (npages == 1) 2997 return pfn; 2998 if (npages == -EINTR) 2999 return KVM_PFN_ERR_SIGPENDING; 3000 3001 mmap_read_lock(current->mm); 3002 if (npages == -EHWPOISON || 3003 (!async && check_user_page_hwpoison(addr))) { 3004 pfn = KVM_PFN_ERR_HWPOISON; 3005 goto exit; 3006 } 3007 3008 retry: 3009 vma = vma_lookup(current->mm, addr); 3010 3011 if (vma == NULL) 3012 pfn = KVM_PFN_ERR_FAULT; 3013 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3014 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 3015 if (r == -EAGAIN) 3016 goto retry; 3017 if (r < 0) 3018 pfn = KVM_PFN_ERR_FAULT; 3019 } else { 3020 if (async && vma_is_valid(vma, write_fault)) 3021 *async = true; 3022 pfn = KVM_PFN_ERR_FAULT; 3023 } 3024 exit: 3025 mmap_read_unlock(current->mm); 3026 return pfn; 3027 } 3028 3029 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 3030 bool atomic, bool interruptible, bool *async, 3031 bool write_fault, bool *writable, hva_t *hva) 3032 { 3033 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3034 3035 if (hva) 3036 *hva = addr; 3037 3038 if (addr == KVM_HVA_ERR_RO_BAD) { 3039 if (writable) 3040 *writable = false; 3041 return KVM_PFN_ERR_RO_FAULT; 3042 } 3043 3044 if (kvm_is_error_hva(addr)) { 3045 if (writable) 3046 *writable = false; 3047 return KVM_PFN_NOSLOT; 3048 } 3049 3050 /* Do not map writable pfn in the readonly memslot. */ 3051 if (writable && memslot_is_readonly(slot)) { 3052 *writable = false; 3053 writable = NULL; 3054 } 3055 3056 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3057 writable); 3058 } 3059 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3060 3061 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3062 bool *writable) 3063 { 3064 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3065 NULL, write_fault, writable, NULL); 3066 } 3067 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3068 3069 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3070 { 3071 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3072 NULL, NULL); 3073 } 3074 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3075 3076 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3077 { 3078 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3079 NULL, NULL); 3080 } 3081 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3082 3083 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3084 { 3085 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3086 } 3087 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3088 3089 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3090 { 3091 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3092 } 3093 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3094 3095 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3096 { 3097 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3098 } 3099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3100 3101 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3102 struct page **pages, int nr_pages) 3103 { 3104 unsigned long addr; 3105 gfn_t entry = 0; 3106 3107 addr = gfn_to_hva_many(slot, gfn, &entry); 3108 if (kvm_is_error_hva(addr)) 3109 return -1; 3110 3111 if (entry < nr_pages) 3112 return 0; 3113 3114 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3115 } 3116 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3117 3118 /* 3119 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3120 * backed by 'struct page'. A valid example is if the backing memslot is 3121 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3122 * been elevated by gfn_to_pfn(). 3123 */ 3124 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3125 { 3126 struct page *page; 3127 kvm_pfn_t pfn; 3128 3129 pfn = gfn_to_pfn(kvm, gfn); 3130 3131 if (is_error_noslot_pfn(pfn)) 3132 return KVM_ERR_PTR_BAD_PAGE; 3133 3134 page = kvm_pfn_to_refcounted_page(pfn); 3135 if (!page) 3136 return KVM_ERR_PTR_BAD_PAGE; 3137 3138 return page; 3139 } 3140 EXPORT_SYMBOL_GPL(gfn_to_page); 3141 3142 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3143 { 3144 if (dirty) 3145 kvm_release_pfn_dirty(pfn); 3146 else 3147 kvm_release_pfn_clean(pfn); 3148 } 3149 3150 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3151 { 3152 kvm_pfn_t pfn; 3153 void *hva = NULL; 3154 struct page *page = KVM_UNMAPPED_PAGE; 3155 3156 if (!map) 3157 return -EINVAL; 3158 3159 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3160 if (is_error_noslot_pfn(pfn)) 3161 return -EINVAL; 3162 3163 if (pfn_valid(pfn)) { 3164 page = pfn_to_page(pfn); 3165 hva = kmap(page); 3166 #ifdef CONFIG_HAS_IOMEM 3167 } else { 3168 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3169 #endif 3170 } 3171 3172 if (!hva) 3173 return -EFAULT; 3174 3175 map->page = page; 3176 map->hva = hva; 3177 map->pfn = pfn; 3178 map->gfn = gfn; 3179 3180 return 0; 3181 } 3182 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3183 3184 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3185 { 3186 if (!map) 3187 return; 3188 3189 if (!map->hva) 3190 return; 3191 3192 if (map->page != KVM_UNMAPPED_PAGE) 3193 kunmap(map->page); 3194 #ifdef CONFIG_HAS_IOMEM 3195 else 3196 memunmap(map->hva); 3197 #endif 3198 3199 if (dirty) 3200 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3201 3202 kvm_release_pfn(map->pfn, dirty); 3203 3204 map->hva = NULL; 3205 map->page = NULL; 3206 } 3207 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3208 3209 static bool kvm_is_ad_tracked_page(struct page *page) 3210 { 3211 /* 3212 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3213 * touched (e.g. set dirty) except by its owner". 3214 */ 3215 return !PageReserved(page); 3216 } 3217 3218 static void kvm_set_page_dirty(struct page *page) 3219 { 3220 if (kvm_is_ad_tracked_page(page)) 3221 SetPageDirty(page); 3222 } 3223 3224 static void kvm_set_page_accessed(struct page *page) 3225 { 3226 if (kvm_is_ad_tracked_page(page)) 3227 mark_page_accessed(page); 3228 } 3229 3230 void kvm_release_page_clean(struct page *page) 3231 { 3232 WARN_ON(is_error_page(page)); 3233 3234 kvm_set_page_accessed(page); 3235 put_page(page); 3236 } 3237 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3238 3239 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3240 { 3241 struct page *page; 3242 3243 if (is_error_noslot_pfn(pfn)) 3244 return; 3245 3246 page = kvm_pfn_to_refcounted_page(pfn); 3247 if (!page) 3248 return; 3249 3250 kvm_release_page_clean(page); 3251 } 3252 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3253 3254 void kvm_release_page_dirty(struct page *page) 3255 { 3256 WARN_ON(is_error_page(page)); 3257 3258 kvm_set_page_dirty(page); 3259 kvm_release_page_clean(page); 3260 } 3261 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3262 3263 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3264 { 3265 struct page *page; 3266 3267 if (is_error_noslot_pfn(pfn)) 3268 return; 3269 3270 page = kvm_pfn_to_refcounted_page(pfn); 3271 if (!page) 3272 return; 3273 3274 kvm_release_page_dirty(page); 3275 } 3276 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3277 3278 /* 3279 * Note, checking for an error/noslot pfn is the caller's responsibility when 3280 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3281 * "set" helpers are not to be used when the pfn might point at garbage. 3282 */ 3283 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3284 { 3285 if (WARN_ON(is_error_noslot_pfn(pfn))) 3286 return; 3287 3288 if (pfn_valid(pfn)) 3289 kvm_set_page_dirty(pfn_to_page(pfn)); 3290 } 3291 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3292 3293 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3294 { 3295 if (WARN_ON(is_error_noslot_pfn(pfn))) 3296 return; 3297 3298 if (pfn_valid(pfn)) 3299 kvm_set_page_accessed(pfn_to_page(pfn)); 3300 } 3301 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3302 3303 static int next_segment(unsigned long len, int offset) 3304 { 3305 if (len > PAGE_SIZE - offset) 3306 return PAGE_SIZE - offset; 3307 else 3308 return len; 3309 } 3310 3311 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3312 void *data, int offset, int len) 3313 { 3314 int r; 3315 unsigned long addr; 3316 3317 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3318 if (kvm_is_error_hva(addr)) 3319 return -EFAULT; 3320 r = __copy_from_user(data, (void __user *)addr + offset, len); 3321 if (r) 3322 return -EFAULT; 3323 return 0; 3324 } 3325 3326 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3327 int len) 3328 { 3329 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3330 3331 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3332 } 3333 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3334 3335 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3336 int offset, int len) 3337 { 3338 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3339 3340 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3341 } 3342 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3343 3344 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3345 { 3346 gfn_t gfn = gpa >> PAGE_SHIFT; 3347 int seg; 3348 int offset = offset_in_page(gpa); 3349 int ret; 3350 3351 while ((seg = next_segment(len, offset)) != 0) { 3352 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3353 if (ret < 0) 3354 return ret; 3355 offset = 0; 3356 len -= seg; 3357 data += seg; 3358 ++gfn; 3359 } 3360 return 0; 3361 } 3362 EXPORT_SYMBOL_GPL(kvm_read_guest); 3363 3364 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3365 { 3366 gfn_t gfn = gpa >> PAGE_SHIFT; 3367 int seg; 3368 int offset = offset_in_page(gpa); 3369 int ret; 3370 3371 while ((seg = next_segment(len, offset)) != 0) { 3372 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3373 if (ret < 0) 3374 return ret; 3375 offset = 0; 3376 len -= seg; 3377 data += seg; 3378 ++gfn; 3379 } 3380 return 0; 3381 } 3382 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3383 3384 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3385 void *data, int offset, unsigned long len) 3386 { 3387 int r; 3388 unsigned long addr; 3389 3390 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3391 if (kvm_is_error_hva(addr)) 3392 return -EFAULT; 3393 pagefault_disable(); 3394 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3395 pagefault_enable(); 3396 if (r) 3397 return -EFAULT; 3398 return 0; 3399 } 3400 3401 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3402 void *data, unsigned long len) 3403 { 3404 gfn_t gfn = gpa >> PAGE_SHIFT; 3405 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3406 int offset = offset_in_page(gpa); 3407 3408 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3409 } 3410 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3411 3412 static int __kvm_write_guest_page(struct kvm *kvm, 3413 struct kvm_memory_slot *memslot, gfn_t gfn, 3414 const void *data, int offset, int len) 3415 { 3416 int r; 3417 unsigned long addr; 3418 3419 addr = gfn_to_hva_memslot(memslot, gfn); 3420 if (kvm_is_error_hva(addr)) 3421 return -EFAULT; 3422 r = __copy_to_user((void __user *)addr + offset, data, len); 3423 if (r) 3424 return -EFAULT; 3425 mark_page_dirty_in_slot(kvm, memslot, gfn); 3426 return 0; 3427 } 3428 3429 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3430 const void *data, int offset, int len) 3431 { 3432 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3433 3434 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3435 } 3436 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3437 3438 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3439 const void *data, int offset, int len) 3440 { 3441 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3442 3443 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3444 } 3445 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3446 3447 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3448 unsigned long len) 3449 { 3450 gfn_t gfn = gpa >> PAGE_SHIFT; 3451 int seg; 3452 int offset = offset_in_page(gpa); 3453 int ret; 3454 3455 while ((seg = next_segment(len, offset)) != 0) { 3456 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3457 if (ret < 0) 3458 return ret; 3459 offset = 0; 3460 len -= seg; 3461 data += seg; 3462 ++gfn; 3463 } 3464 return 0; 3465 } 3466 EXPORT_SYMBOL_GPL(kvm_write_guest); 3467 3468 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3469 unsigned long len) 3470 { 3471 gfn_t gfn = gpa >> PAGE_SHIFT; 3472 int seg; 3473 int offset = offset_in_page(gpa); 3474 int ret; 3475 3476 while ((seg = next_segment(len, offset)) != 0) { 3477 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3478 if (ret < 0) 3479 return ret; 3480 offset = 0; 3481 len -= seg; 3482 data += seg; 3483 ++gfn; 3484 } 3485 return 0; 3486 } 3487 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3488 3489 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3490 struct gfn_to_hva_cache *ghc, 3491 gpa_t gpa, unsigned long len) 3492 { 3493 int offset = offset_in_page(gpa); 3494 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3495 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3496 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3497 gfn_t nr_pages_avail; 3498 3499 /* Update ghc->generation before performing any error checks. */ 3500 ghc->generation = slots->generation; 3501 3502 if (start_gfn > end_gfn) { 3503 ghc->hva = KVM_HVA_ERR_BAD; 3504 return -EINVAL; 3505 } 3506 3507 /* 3508 * If the requested region crosses two memslots, we still 3509 * verify that the entire region is valid here. 3510 */ 3511 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3512 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3513 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3514 &nr_pages_avail); 3515 if (kvm_is_error_hva(ghc->hva)) 3516 return -EFAULT; 3517 } 3518 3519 /* Use the slow path for cross page reads and writes. */ 3520 if (nr_pages_needed == 1) 3521 ghc->hva += offset; 3522 else 3523 ghc->memslot = NULL; 3524 3525 ghc->gpa = gpa; 3526 ghc->len = len; 3527 return 0; 3528 } 3529 3530 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3531 gpa_t gpa, unsigned long len) 3532 { 3533 struct kvm_memslots *slots = kvm_memslots(kvm); 3534 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3535 } 3536 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3537 3538 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3539 void *data, unsigned int offset, 3540 unsigned long len) 3541 { 3542 struct kvm_memslots *slots = kvm_memslots(kvm); 3543 int r; 3544 gpa_t gpa = ghc->gpa + offset; 3545 3546 if (WARN_ON_ONCE(len + offset > ghc->len)) 3547 return -EINVAL; 3548 3549 if (slots->generation != ghc->generation) { 3550 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3551 return -EFAULT; 3552 } 3553 3554 if (kvm_is_error_hva(ghc->hva)) 3555 return -EFAULT; 3556 3557 if (unlikely(!ghc->memslot)) 3558 return kvm_write_guest(kvm, gpa, data, len); 3559 3560 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3561 if (r) 3562 return -EFAULT; 3563 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3564 3565 return 0; 3566 } 3567 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3568 3569 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3570 void *data, unsigned long len) 3571 { 3572 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3573 } 3574 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3575 3576 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3577 void *data, unsigned int offset, 3578 unsigned long len) 3579 { 3580 struct kvm_memslots *slots = kvm_memslots(kvm); 3581 int r; 3582 gpa_t gpa = ghc->gpa + offset; 3583 3584 if (WARN_ON_ONCE(len + offset > ghc->len)) 3585 return -EINVAL; 3586 3587 if (slots->generation != ghc->generation) { 3588 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3589 return -EFAULT; 3590 } 3591 3592 if (kvm_is_error_hva(ghc->hva)) 3593 return -EFAULT; 3594 3595 if (unlikely(!ghc->memslot)) 3596 return kvm_read_guest(kvm, gpa, data, len); 3597 3598 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3599 if (r) 3600 return -EFAULT; 3601 3602 return 0; 3603 } 3604 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3605 3606 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3607 void *data, unsigned long len) 3608 { 3609 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3610 } 3611 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3612 3613 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3614 { 3615 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3616 gfn_t gfn = gpa >> PAGE_SHIFT; 3617 int seg; 3618 int offset = offset_in_page(gpa); 3619 int ret; 3620 3621 while ((seg = next_segment(len, offset)) != 0) { 3622 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3623 if (ret < 0) 3624 return ret; 3625 offset = 0; 3626 len -= seg; 3627 ++gfn; 3628 } 3629 return 0; 3630 } 3631 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3632 3633 void mark_page_dirty_in_slot(struct kvm *kvm, 3634 const struct kvm_memory_slot *memslot, 3635 gfn_t gfn) 3636 { 3637 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3638 3639 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3640 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3641 return; 3642 3643 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3644 #endif 3645 3646 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3647 unsigned long rel_gfn = gfn - memslot->base_gfn; 3648 u32 slot = (memslot->as_id << 16) | memslot->id; 3649 3650 if (kvm->dirty_ring_size && vcpu) 3651 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3652 else if (memslot->dirty_bitmap) 3653 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3654 } 3655 } 3656 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3657 3658 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3659 { 3660 struct kvm_memory_slot *memslot; 3661 3662 memslot = gfn_to_memslot(kvm, gfn); 3663 mark_page_dirty_in_slot(kvm, memslot, gfn); 3664 } 3665 EXPORT_SYMBOL_GPL(mark_page_dirty); 3666 3667 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3668 { 3669 struct kvm_memory_slot *memslot; 3670 3671 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3672 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3673 } 3674 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3675 3676 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3677 { 3678 if (!vcpu->sigset_active) 3679 return; 3680 3681 /* 3682 * This does a lockless modification of ->real_blocked, which is fine 3683 * because, only current can change ->real_blocked and all readers of 3684 * ->real_blocked don't care as long ->real_blocked is always a subset 3685 * of ->blocked. 3686 */ 3687 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3688 } 3689 3690 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3691 { 3692 if (!vcpu->sigset_active) 3693 return; 3694 3695 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3696 sigemptyset(¤t->real_blocked); 3697 } 3698 3699 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3700 { 3701 unsigned int old, val, grow, grow_start; 3702 3703 old = val = vcpu->halt_poll_ns; 3704 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3705 grow = READ_ONCE(halt_poll_ns_grow); 3706 if (!grow) 3707 goto out; 3708 3709 val *= grow; 3710 if (val < grow_start) 3711 val = grow_start; 3712 3713 vcpu->halt_poll_ns = val; 3714 out: 3715 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3716 } 3717 3718 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3719 { 3720 unsigned int old, val, shrink, grow_start; 3721 3722 old = val = vcpu->halt_poll_ns; 3723 shrink = READ_ONCE(halt_poll_ns_shrink); 3724 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3725 if (shrink == 0) 3726 val = 0; 3727 else 3728 val /= shrink; 3729 3730 if (val < grow_start) 3731 val = 0; 3732 3733 vcpu->halt_poll_ns = val; 3734 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3735 } 3736 3737 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3738 { 3739 int ret = -EINTR; 3740 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3741 3742 if (kvm_arch_vcpu_runnable(vcpu)) 3743 goto out; 3744 if (kvm_cpu_has_pending_timer(vcpu)) 3745 goto out; 3746 if (signal_pending(current)) 3747 goto out; 3748 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3749 goto out; 3750 3751 ret = 0; 3752 out: 3753 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3754 return ret; 3755 } 3756 3757 /* 3758 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3759 * pending. This is mostly used when halting a vCPU, but may also be used 3760 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3761 */ 3762 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3763 { 3764 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3765 bool waited = false; 3766 3767 vcpu->stat.generic.blocking = 1; 3768 3769 preempt_disable(); 3770 kvm_arch_vcpu_blocking(vcpu); 3771 prepare_to_rcuwait(wait); 3772 preempt_enable(); 3773 3774 for (;;) { 3775 set_current_state(TASK_INTERRUPTIBLE); 3776 3777 if (kvm_vcpu_check_block(vcpu) < 0) 3778 break; 3779 3780 waited = true; 3781 schedule(); 3782 } 3783 3784 preempt_disable(); 3785 finish_rcuwait(wait); 3786 kvm_arch_vcpu_unblocking(vcpu); 3787 preempt_enable(); 3788 3789 vcpu->stat.generic.blocking = 0; 3790 3791 return waited; 3792 } 3793 3794 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3795 ktime_t end, bool success) 3796 { 3797 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3798 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3799 3800 ++vcpu->stat.generic.halt_attempted_poll; 3801 3802 if (success) { 3803 ++vcpu->stat.generic.halt_successful_poll; 3804 3805 if (!vcpu_valid_wakeup(vcpu)) 3806 ++vcpu->stat.generic.halt_poll_invalid; 3807 3808 stats->halt_poll_success_ns += poll_ns; 3809 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3810 } else { 3811 stats->halt_poll_fail_ns += poll_ns; 3812 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3813 } 3814 } 3815 3816 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3817 { 3818 struct kvm *kvm = vcpu->kvm; 3819 3820 if (kvm->override_halt_poll_ns) { 3821 /* 3822 * Ensure kvm->max_halt_poll_ns is not read before 3823 * kvm->override_halt_poll_ns. 3824 * 3825 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3826 */ 3827 smp_rmb(); 3828 return READ_ONCE(kvm->max_halt_poll_ns); 3829 } 3830 3831 return READ_ONCE(halt_poll_ns); 3832 } 3833 3834 /* 3835 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3836 * polling is enabled, busy wait for a short time before blocking to avoid the 3837 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3838 * is halted. 3839 */ 3840 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3841 { 3842 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3843 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3844 ktime_t start, cur, poll_end; 3845 bool waited = false; 3846 bool do_halt_poll; 3847 u64 halt_ns; 3848 3849 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3850 vcpu->halt_poll_ns = max_halt_poll_ns; 3851 3852 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3853 3854 start = cur = poll_end = ktime_get(); 3855 if (do_halt_poll) { 3856 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3857 3858 do { 3859 if (kvm_vcpu_check_block(vcpu) < 0) 3860 goto out; 3861 cpu_relax(); 3862 poll_end = cur = ktime_get(); 3863 } while (kvm_vcpu_can_poll(cur, stop)); 3864 } 3865 3866 waited = kvm_vcpu_block(vcpu); 3867 3868 cur = ktime_get(); 3869 if (waited) { 3870 vcpu->stat.generic.halt_wait_ns += 3871 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3872 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3873 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3874 } 3875 out: 3876 /* The total time the vCPU was "halted", including polling time. */ 3877 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3878 3879 /* 3880 * Note, halt-polling is considered successful so long as the vCPU was 3881 * never actually scheduled out, i.e. even if the wake event arrived 3882 * after of the halt-polling loop itself, but before the full wait. 3883 */ 3884 if (do_halt_poll) 3885 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3886 3887 if (halt_poll_allowed) { 3888 /* Recompute the max halt poll time in case it changed. */ 3889 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3890 3891 if (!vcpu_valid_wakeup(vcpu)) { 3892 shrink_halt_poll_ns(vcpu); 3893 } else if (max_halt_poll_ns) { 3894 if (halt_ns <= vcpu->halt_poll_ns) 3895 ; 3896 /* we had a long block, shrink polling */ 3897 else if (vcpu->halt_poll_ns && 3898 halt_ns > max_halt_poll_ns) 3899 shrink_halt_poll_ns(vcpu); 3900 /* we had a short halt and our poll time is too small */ 3901 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3902 halt_ns < max_halt_poll_ns) 3903 grow_halt_poll_ns(vcpu); 3904 } else { 3905 vcpu->halt_poll_ns = 0; 3906 } 3907 } 3908 3909 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3910 } 3911 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3912 3913 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3914 { 3915 if (__kvm_vcpu_wake_up(vcpu)) { 3916 WRITE_ONCE(vcpu->ready, true); 3917 ++vcpu->stat.generic.halt_wakeup; 3918 return true; 3919 } 3920 3921 return false; 3922 } 3923 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3924 3925 #ifndef CONFIG_S390 3926 /* 3927 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3928 */ 3929 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3930 { 3931 int me, cpu; 3932 3933 if (kvm_vcpu_wake_up(vcpu)) 3934 return; 3935 3936 me = get_cpu(); 3937 /* 3938 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3939 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3940 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3941 * within the vCPU thread itself. 3942 */ 3943 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3944 if (vcpu->mode == IN_GUEST_MODE) 3945 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3946 goto out; 3947 } 3948 3949 /* 3950 * Note, the vCPU could get migrated to a different pCPU at any point 3951 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3952 * IPI to the previous pCPU. But, that's ok because the purpose of the 3953 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3954 * vCPU also requires it to leave IN_GUEST_MODE. 3955 */ 3956 if (kvm_arch_vcpu_should_kick(vcpu)) { 3957 cpu = READ_ONCE(vcpu->cpu); 3958 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3959 smp_send_reschedule(cpu); 3960 } 3961 out: 3962 put_cpu(); 3963 } 3964 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3965 #endif /* !CONFIG_S390 */ 3966 3967 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3968 { 3969 struct pid *pid; 3970 struct task_struct *task = NULL; 3971 int ret = 0; 3972 3973 rcu_read_lock(); 3974 pid = rcu_dereference(target->pid); 3975 if (pid) 3976 task = get_pid_task(pid, PIDTYPE_PID); 3977 rcu_read_unlock(); 3978 if (!task) 3979 return ret; 3980 ret = yield_to(task, 1); 3981 put_task_struct(task); 3982 3983 return ret; 3984 } 3985 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3986 3987 /* 3988 * Helper that checks whether a VCPU is eligible for directed yield. 3989 * Most eligible candidate to yield is decided by following heuristics: 3990 * 3991 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3992 * (preempted lock holder), indicated by @in_spin_loop. 3993 * Set at the beginning and cleared at the end of interception/PLE handler. 3994 * 3995 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3996 * chance last time (mostly it has become eligible now since we have probably 3997 * yielded to lockholder in last iteration. This is done by toggling 3998 * @dy_eligible each time a VCPU checked for eligibility.) 3999 * 4000 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 4001 * to preempted lock-holder could result in wrong VCPU selection and CPU 4002 * burning. Giving priority for a potential lock-holder increases lock 4003 * progress. 4004 * 4005 * Since algorithm is based on heuristics, accessing another VCPU data without 4006 * locking does not harm. It may result in trying to yield to same VCPU, fail 4007 * and continue with next VCPU and so on. 4008 */ 4009 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 4010 { 4011 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 4012 bool eligible; 4013 4014 eligible = !vcpu->spin_loop.in_spin_loop || 4015 vcpu->spin_loop.dy_eligible; 4016 4017 if (vcpu->spin_loop.in_spin_loop) 4018 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 4019 4020 return eligible; 4021 #else 4022 return true; 4023 #endif 4024 } 4025 4026 /* 4027 * Unlike kvm_arch_vcpu_runnable, this function is called outside 4028 * a vcpu_load/vcpu_put pair. However, for most architectures 4029 * kvm_arch_vcpu_runnable does not require vcpu_load. 4030 */ 4031 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 4032 { 4033 return kvm_arch_vcpu_runnable(vcpu); 4034 } 4035 4036 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4037 { 4038 if (kvm_arch_dy_runnable(vcpu)) 4039 return true; 4040 4041 #ifdef CONFIG_KVM_ASYNC_PF 4042 if (!list_empty_careful(&vcpu->async_pf.done)) 4043 return true; 4044 #endif 4045 4046 return false; 4047 } 4048 4049 /* 4050 * By default, simply query the target vCPU's current mode when checking if a 4051 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4052 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4053 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4054 * directly for cross-vCPU checks is functionally correct and accurate. 4055 */ 4056 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4057 { 4058 return kvm_arch_vcpu_in_kernel(vcpu); 4059 } 4060 4061 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4062 { 4063 return false; 4064 } 4065 4066 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4067 { 4068 struct kvm *kvm = me->kvm; 4069 struct kvm_vcpu *vcpu; 4070 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4071 unsigned long i; 4072 int yielded = 0; 4073 int try = 3; 4074 int pass; 4075 4076 kvm_vcpu_set_in_spin_loop(me, true); 4077 /* 4078 * We boost the priority of a VCPU that is runnable but not 4079 * currently running, because it got preempted by something 4080 * else and called schedule in __vcpu_run. Hopefully that 4081 * VCPU is holding the lock that we need and will release it. 4082 * We approximate round-robin by starting at the last boosted VCPU. 4083 */ 4084 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4085 kvm_for_each_vcpu(i, vcpu, kvm) { 4086 if (!pass && i <= last_boosted_vcpu) { 4087 i = last_boosted_vcpu; 4088 continue; 4089 } else if (pass && i > last_boosted_vcpu) 4090 break; 4091 if (!READ_ONCE(vcpu->ready)) 4092 continue; 4093 if (vcpu == me) 4094 continue; 4095 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4096 continue; 4097 4098 /* 4099 * Treat the target vCPU as being in-kernel if it has a 4100 * pending interrupt, as the vCPU trying to yield may 4101 * be spinning waiting on IPI delivery, i.e. the target 4102 * vCPU is in-kernel for the purposes of directed yield. 4103 */ 4104 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4105 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4106 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4107 continue; 4108 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4109 continue; 4110 4111 yielded = kvm_vcpu_yield_to(vcpu); 4112 if (yielded > 0) { 4113 kvm->last_boosted_vcpu = i; 4114 break; 4115 } else if (yielded < 0) { 4116 try--; 4117 if (!try) 4118 break; 4119 } 4120 } 4121 } 4122 kvm_vcpu_set_in_spin_loop(me, false); 4123 4124 /* Ensure vcpu is not eligible during next spinloop */ 4125 kvm_vcpu_set_dy_eligible(me, false); 4126 } 4127 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4128 4129 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4130 { 4131 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4132 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4133 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4134 kvm->dirty_ring_size / PAGE_SIZE); 4135 #else 4136 return false; 4137 #endif 4138 } 4139 4140 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4141 { 4142 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4143 struct page *page; 4144 4145 if (vmf->pgoff == 0) 4146 page = virt_to_page(vcpu->run); 4147 #ifdef CONFIG_X86 4148 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4149 page = virt_to_page(vcpu->arch.pio_data); 4150 #endif 4151 #ifdef CONFIG_KVM_MMIO 4152 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4153 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4154 #endif 4155 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4156 page = kvm_dirty_ring_get_page( 4157 &vcpu->dirty_ring, 4158 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4159 else 4160 return kvm_arch_vcpu_fault(vcpu, vmf); 4161 get_page(page); 4162 vmf->page = page; 4163 return 0; 4164 } 4165 4166 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4167 .fault = kvm_vcpu_fault, 4168 }; 4169 4170 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4171 { 4172 struct kvm_vcpu *vcpu = file->private_data; 4173 unsigned long pages = vma_pages(vma); 4174 4175 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4176 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4177 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4178 return -EINVAL; 4179 4180 vma->vm_ops = &kvm_vcpu_vm_ops; 4181 return 0; 4182 } 4183 4184 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4185 { 4186 struct kvm_vcpu *vcpu = filp->private_data; 4187 4188 kvm_put_kvm(vcpu->kvm); 4189 return 0; 4190 } 4191 4192 static struct file_operations kvm_vcpu_fops = { 4193 .release = kvm_vcpu_release, 4194 .unlocked_ioctl = kvm_vcpu_ioctl, 4195 .mmap = kvm_vcpu_mmap, 4196 .llseek = noop_llseek, 4197 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4198 }; 4199 4200 /* 4201 * Allocates an inode for the vcpu. 4202 */ 4203 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4204 { 4205 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4206 4207 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4208 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4209 } 4210 4211 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4212 static int vcpu_get_pid(void *data, u64 *val) 4213 { 4214 struct kvm_vcpu *vcpu = data; 4215 4216 rcu_read_lock(); 4217 *val = pid_nr(rcu_dereference(vcpu->pid)); 4218 rcu_read_unlock(); 4219 return 0; 4220 } 4221 4222 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4223 4224 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4225 { 4226 struct dentry *debugfs_dentry; 4227 char dir_name[ITOA_MAX_LEN * 2]; 4228 4229 if (!debugfs_initialized()) 4230 return; 4231 4232 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4233 debugfs_dentry = debugfs_create_dir(dir_name, 4234 vcpu->kvm->debugfs_dentry); 4235 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4236 &vcpu_get_pid_fops); 4237 4238 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4239 } 4240 #endif 4241 4242 /* 4243 * Creates some virtual cpus. Good luck creating more than one. 4244 */ 4245 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4246 { 4247 int r; 4248 struct kvm_vcpu *vcpu; 4249 struct page *page; 4250 4251 if (id >= KVM_MAX_VCPU_IDS) 4252 return -EINVAL; 4253 4254 mutex_lock(&kvm->lock); 4255 if (kvm->created_vcpus >= kvm->max_vcpus) { 4256 mutex_unlock(&kvm->lock); 4257 return -EINVAL; 4258 } 4259 4260 r = kvm_arch_vcpu_precreate(kvm, id); 4261 if (r) { 4262 mutex_unlock(&kvm->lock); 4263 return r; 4264 } 4265 4266 kvm->created_vcpus++; 4267 mutex_unlock(&kvm->lock); 4268 4269 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4270 if (!vcpu) { 4271 r = -ENOMEM; 4272 goto vcpu_decrement; 4273 } 4274 4275 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4276 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4277 if (!page) { 4278 r = -ENOMEM; 4279 goto vcpu_free; 4280 } 4281 vcpu->run = page_address(page); 4282 4283 kvm_vcpu_init(vcpu, kvm, id); 4284 4285 r = kvm_arch_vcpu_create(vcpu); 4286 if (r) 4287 goto vcpu_free_run_page; 4288 4289 if (kvm->dirty_ring_size) { 4290 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4291 id, kvm->dirty_ring_size); 4292 if (r) 4293 goto arch_vcpu_destroy; 4294 } 4295 4296 mutex_lock(&kvm->lock); 4297 4298 #ifdef CONFIG_LOCKDEP 4299 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4300 mutex_lock(&vcpu->mutex); 4301 mutex_unlock(&vcpu->mutex); 4302 #endif 4303 4304 if (kvm_get_vcpu_by_id(kvm, id)) { 4305 r = -EEXIST; 4306 goto unlock_vcpu_destroy; 4307 } 4308 4309 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4310 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4311 if (r) 4312 goto unlock_vcpu_destroy; 4313 4314 /* Now it's all set up, let userspace reach it */ 4315 kvm_get_kvm(kvm); 4316 r = create_vcpu_fd(vcpu); 4317 if (r < 0) 4318 goto kvm_put_xa_release; 4319 4320 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4321 r = -EINVAL; 4322 goto kvm_put_xa_release; 4323 } 4324 4325 /* 4326 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4327 * pointer before kvm->online_vcpu's incremented value. 4328 */ 4329 smp_wmb(); 4330 atomic_inc(&kvm->online_vcpus); 4331 4332 mutex_unlock(&kvm->lock); 4333 kvm_arch_vcpu_postcreate(vcpu); 4334 kvm_create_vcpu_debugfs(vcpu); 4335 return r; 4336 4337 kvm_put_xa_release: 4338 kvm_put_kvm_no_destroy(kvm); 4339 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4340 unlock_vcpu_destroy: 4341 mutex_unlock(&kvm->lock); 4342 kvm_dirty_ring_free(&vcpu->dirty_ring); 4343 arch_vcpu_destroy: 4344 kvm_arch_vcpu_destroy(vcpu); 4345 vcpu_free_run_page: 4346 free_page((unsigned long)vcpu->run); 4347 vcpu_free: 4348 kmem_cache_free(kvm_vcpu_cache, vcpu); 4349 vcpu_decrement: 4350 mutex_lock(&kvm->lock); 4351 kvm->created_vcpus--; 4352 mutex_unlock(&kvm->lock); 4353 return r; 4354 } 4355 4356 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4357 { 4358 if (sigset) { 4359 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4360 vcpu->sigset_active = 1; 4361 vcpu->sigset = *sigset; 4362 } else 4363 vcpu->sigset_active = 0; 4364 return 0; 4365 } 4366 4367 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4368 size_t size, loff_t *offset) 4369 { 4370 struct kvm_vcpu *vcpu = file->private_data; 4371 4372 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4373 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4374 sizeof(vcpu->stat), user_buffer, size, offset); 4375 } 4376 4377 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4378 { 4379 struct kvm_vcpu *vcpu = file->private_data; 4380 4381 kvm_put_kvm(vcpu->kvm); 4382 return 0; 4383 } 4384 4385 static const struct file_operations kvm_vcpu_stats_fops = { 4386 .owner = THIS_MODULE, 4387 .read = kvm_vcpu_stats_read, 4388 .release = kvm_vcpu_stats_release, 4389 .llseek = noop_llseek, 4390 }; 4391 4392 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4393 { 4394 int fd; 4395 struct file *file; 4396 char name[15 + ITOA_MAX_LEN + 1]; 4397 4398 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4399 4400 fd = get_unused_fd_flags(O_CLOEXEC); 4401 if (fd < 0) 4402 return fd; 4403 4404 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4405 if (IS_ERR(file)) { 4406 put_unused_fd(fd); 4407 return PTR_ERR(file); 4408 } 4409 4410 kvm_get_kvm(vcpu->kvm); 4411 4412 file->f_mode |= FMODE_PREAD; 4413 fd_install(fd, file); 4414 4415 return fd; 4416 } 4417 4418 static long kvm_vcpu_ioctl(struct file *filp, 4419 unsigned int ioctl, unsigned long arg) 4420 { 4421 struct kvm_vcpu *vcpu = filp->private_data; 4422 void __user *argp = (void __user *)arg; 4423 int r; 4424 struct kvm_fpu *fpu = NULL; 4425 struct kvm_sregs *kvm_sregs = NULL; 4426 4427 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4428 return -EIO; 4429 4430 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4431 return -EINVAL; 4432 4433 /* 4434 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4435 * execution; mutex_lock() would break them. 4436 */ 4437 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4438 if (r != -ENOIOCTLCMD) 4439 return r; 4440 4441 if (mutex_lock_killable(&vcpu->mutex)) 4442 return -EINTR; 4443 switch (ioctl) { 4444 case KVM_RUN: { 4445 struct pid *oldpid; 4446 r = -EINVAL; 4447 if (arg) 4448 goto out; 4449 oldpid = rcu_access_pointer(vcpu->pid); 4450 if (unlikely(oldpid != task_pid(current))) { 4451 /* The thread running this VCPU changed. */ 4452 struct pid *newpid; 4453 4454 r = kvm_arch_vcpu_run_pid_change(vcpu); 4455 if (r) 4456 break; 4457 4458 newpid = get_task_pid(current, PIDTYPE_PID); 4459 rcu_assign_pointer(vcpu->pid, newpid); 4460 if (oldpid) 4461 synchronize_rcu(); 4462 put_pid(oldpid); 4463 } 4464 r = kvm_arch_vcpu_ioctl_run(vcpu); 4465 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4466 break; 4467 } 4468 case KVM_GET_REGS: { 4469 struct kvm_regs *kvm_regs; 4470 4471 r = -ENOMEM; 4472 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4473 if (!kvm_regs) 4474 goto out; 4475 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4476 if (r) 4477 goto out_free1; 4478 r = -EFAULT; 4479 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4480 goto out_free1; 4481 r = 0; 4482 out_free1: 4483 kfree(kvm_regs); 4484 break; 4485 } 4486 case KVM_SET_REGS: { 4487 struct kvm_regs *kvm_regs; 4488 4489 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4490 if (IS_ERR(kvm_regs)) { 4491 r = PTR_ERR(kvm_regs); 4492 goto out; 4493 } 4494 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4495 kfree(kvm_regs); 4496 break; 4497 } 4498 case KVM_GET_SREGS: { 4499 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4500 GFP_KERNEL_ACCOUNT); 4501 r = -ENOMEM; 4502 if (!kvm_sregs) 4503 goto out; 4504 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4505 if (r) 4506 goto out; 4507 r = -EFAULT; 4508 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4509 goto out; 4510 r = 0; 4511 break; 4512 } 4513 case KVM_SET_SREGS: { 4514 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4515 if (IS_ERR(kvm_sregs)) { 4516 r = PTR_ERR(kvm_sregs); 4517 kvm_sregs = NULL; 4518 goto out; 4519 } 4520 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4521 break; 4522 } 4523 case KVM_GET_MP_STATE: { 4524 struct kvm_mp_state mp_state; 4525 4526 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4527 if (r) 4528 goto out; 4529 r = -EFAULT; 4530 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4531 goto out; 4532 r = 0; 4533 break; 4534 } 4535 case KVM_SET_MP_STATE: { 4536 struct kvm_mp_state mp_state; 4537 4538 r = -EFAULT; 4539 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4540 goto out; 4541 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4542 break; 4543 } 4544 case KVM_TRANSLATE: { 4545 struct kvm_translation tr; 4546 4547 r = -EFAULT; 4548 if (copy_from_user(&tr, argp, sizeof(tr))) 4549 goto out; 4550 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4551 if (r) 4552 goto out; 4553 r = -EFAULT; 4554 if (copy_to_user(argp, &tr, sizeof(tr))) 4555 goto out; 4556 r = 0; 4557 break; 4558 } 4559 case KVM_SET_GUEST_DEBUG: { 4560 struct kvm_guest_debug dbg; 4561 4562 r = -EFAULT; 4563 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4564 goto out; 4565 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4566 break; 4567 } 4568 case KVM_SET_SIGNAL_MASK: { 4569 struct kvm_signal_mask __user *sigmask_arg = argp; 4570 struct kvm_signal_mask kvm_sigmask; 4571 sigset_t sigset, *p; 4572 4573 p = NULL; 4574 if (argp) { 4575 r = -EFAULT; 4576 if (copy_from_user(&kvm_sigmask, argp, 4577 sizeof(kvm_sigmask))) 4578 goto out; 4579 r = -EINVAL; 4580 if (kvm_sigmask.len != sizeof(sigset)) 4581 goto out; 4582 r = -EFAULT; 4583 if (copy_from_user(&sigset, sigmask_arg->sigset, 4584 sizeof(sigset))) 4585 goto out; 4586 p = &sigset; 4587 } 4588 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4589 break; 4590 } 4591 case KVM_GET_FPU: { 4592 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4593 r = -ENOMEM; 4594 if (!fpu) 4595 goto out; 4596 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4597 if (r) 4598 goto out; 4599 r = -EFAULT; 4600 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4601 goto out; 4602 r = 0; 4603 break; 4604 } 4605 case KVM_SET_FPU: { 4606 fpu = memdup_user(argp, sizeof(*fpu)); 4607 if (IS_ERR(fpu)) { 4608 r = PTR_ERR(fpu); 4609 fpu = NULL; 4610 goto out; 4611 } 4612 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4613 break; 4614 } 4615 case KVM_GET_STATS_FD: { 4616 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4617 break; 4618 } 4619 default: 4620 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4621 } 4622 out: 4623 mutex_unlock(&vcpu->mutex); 4624 kfree(fpu); 4625 kfree(kvm_sregs); 4626 return r; 4627 } 4628 4629 #ifdef CONFIG_KVM_COMPAT 4630 static long kvm_vcpu_compat_ioctl(struct file *filp, 4631 unsigned int ioctl, unsigned long arg) 4632 { 4633 struct kvm_vcpu *vcpu = filp->private_data; 4634 void __user *argp = compat_ptr(arg); 4635 int r; 4636 4637 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4638 return -EIO; 4639 4640 switch (ioctl) { 4641 case KVM_SET_SIGNAL_MASK: { 4642 struct kvm_signal_mask __user *sigmask_arg = argp; 4643 struct kvm_signal_mask kvm_sigmask; 4644 sigset_t sigset; 4645 4646 if (argp) { 4647 r = -EFAULT; 4648 if (copy_from_user(&kvm_sigmask, argp, 4649 sizeof(kvm_sigmask))) 4650 goto out; 4651 r = -EINVAL; 4652 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4653 goto out; 4654 r = -EFAULT; 4655 if (get_compat_sigset(&sigset, 4656 (compat_sigset_t __user *)sigmask_arg->sigset)) 4657 goto out; 4658 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4659 } else 4660 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4661 break; 4662 } 4663 default: 4664 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4665 } 4666 4667 out: 4668 return r; 4669 } 4670 #endif 4671 4672 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4673 { 4674 struct kvm_device *dev = filp->private_data; 4675 4676 if (dev->ops->mmap) 4677 return dev->ops->mmap(dev, vma); 4678 4679 return -ENODEV; 4680 } 4681 4682 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4683 int (*accessor)(struct kvm_device *dev, 4684 struct kvm_device_attr *attr), 4685 unsigned long arg) 4686 { 4687 struct kvm_device_attr attr; 4688 4689 if (!accessor) 4690 return -EPERM; 4691 4692 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4693 return -EFAULT; 4694 4695 return accessor(dev, &attr); 4696 } 4697 4698 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4699 unsigned long arg) 4700 { 4701 struct kvm_device *dev = filp->private_data; 4702 4703 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4704 return -EIO; 4705 4706 switch (ioctl) { 4707 case KVM_SET_DEVICE_ATTR: 4708 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4709 case KVM_GET_DEVICE_ATTR: 4710 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4711 case KVM_HAS_DEVICE_ATTR: 4712 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4713 default: 4714 if (dev->ops->ioctl) 4715 return dev->ops->ioctl(dev, ioctl, arg); 4716 4717 return -ENOTTY; 4718 } 4719 } 4720 4721 static int kvm_device_release(struct inode *inode, struct file *filp) 4722 { 4723 struct kvm_device *dev = filp->private_data; 4724 struct kvm *kvm = dev->kvm; 4725 4726 if (dev->ops->release) { 4727 mutex_lock(&kvm->lock); 4728 list_del(&dev->vm_node); 4729 dev->ops->release(dev); 4730 mutex_unlock(&kvm->lock); 4731 } 4732 4733 kvm_put_kvm(kvm); 4734 return 0; 4735 } 4736 4737 static struct file_operations kvm_device_fops = { 4738 .unlocked_ioctl = kvm_device_ioctl, 4739 .release = kvm_device_release, 4740 KVM_COMPAT(kvm_device_ioctl), 4741 .mmap = kvm_device_mmap, 4742 }; 4743 4744 struct kvm_device *kvm_device_from_filp(struct file *filp) 4745 { 4746 if (filp->f_op != &kvm_device_fops) 4747 return NULL; 4748 4749 return filp->private_data; 4750 } 4751 4752 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4753 #ifdef CONFIG_KVM_MPIC 4754 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4755 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4756 #endif 4757 }; 4758 4759 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4760 { 4761 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4762 return -ENOSPC; 4763 4764 if (kvm_device_ops_table[type] != NULL) 4765 return -EEXIST; 4766 4767 kvm_device_ops_table[type] = ops; 4768 return 0; 4769 } 4770 4771 void kvm_unregister_device_ops(u32 type) 4772 { 4773 if (kvm_device_ops_table[type] != NULL) 4774 kvm_device_ops_table[type] = NULL; 4775 } 4776 4777 static int kvm_ioctl_create_device(struct kvm *kvm, 4778 struct kvm_create_device *cd) 4779 { 4780 const struct kvm_device_ops *ops; 4781 struct kvm_device *dev; 4782 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4783 int type; 4784 int ret; 4785 4786 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4787 return -ENODEV; 4788 4789 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4790 ops = kvm_device_ops_table[type]; 4791 if (ops == NULL) 4792 return -ENODEV; 4793 4794 if (test) 4795 return 0; 4796 4797 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4798 if (!dev) 4799 return -ENOMEM; 4800 4801 dev->ops = ops; 4802 dev->kvm = kvm; 4803 4804 mutex_lock(&kvm->lock); 4805 ret = ops->create(dev, type); 4806 if (ret < 0) { 4807 mutex_unlock(&kvm->lock); 4808 kfree(dev); 4809 return ret; 4810 } 4811 list_add(&dev->vm_node, &kvm->devices); 4812 mutex_unlock(&kvm->lock); 4813 4814 if (ops->init) 4815 ops->init(dev); 4816 4817 kvm_get_kvm(kvm); 4818 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4819 if (ret < 0) { 4820 kvm_put_kvm_no_destroy(kvm); 4821 mutex_lock(&kvm->lock); 4822 list_del(&dev->vm_node); 4823 if (ops->release) 4824 ops->release(dev); 4825 mutex_unlock(&kvm->lock); 4826 if (ops->destroy) 4827 ops->destroy(dev); 4828 return ret; 4829 } 4830 4831 cd->fd = ret; 4832 return 0; 4833 } 4834 4835 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4836 { 4837 switch (arg) { 4838 case KVM_CAP_USER_MEMORY: 4839 case KVM_CAP_USER_MEMORY2: 4840 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4841 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4842 case KVM_CAP_INTERNAL_ERROR_DATA: 4843 #ifdef CONFIG_HAVE_KVM_MSI 4844 case KVM_CAP_SIGNAL_MSI: 4845 #endif 4846 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4847 case KVM_CAP_IRQFD: 4848 #endif 4849 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4850 case KVM_CAP_CHECK_EXTENSION_VM: 4851 case KVM_CAP_ENABLE_CAP_VM: 4852 case KVM_CAP_HALT_POLL: 4853 return 1; 4854 #ifdef CONFIG_KVM_MMIO 4855 case KVM_CAP_COALESCED_MMIO: 4856 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4857 case KVM_CAP_COALESCED_PIO: 4858 return 1; 4859 #endif 4860 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4861 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4862 return KVM_DIRTY_LOG_MANUAL_CAPS; 4863 #endif 4864 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4865 case KVM_CAP_IRQ_ROUTING: 4866 return KVM_MAX_IRQ_ROUTES; 4867 #endif 4868 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4869 case KVM_CAP_MULTI_ADDRESS_SPACE: 4870 if (kvm) 4871 return kvm_arch_nr_memslot_as_ids(kvm); 4872 return KVM_MAX_NR_ADDRESS_SPACES; 4873 #endif 4874 case KVM_CAP_NR_MEMSLOTS: 4875 return KVM_USER_MEM_SLOTS; 4876 case KVM_CAP_DIRTY_LOG_RING: 4877 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4878 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4879 #else 4880 return 0; 4881 #endif 4882 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4883 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4884 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4885 #else 4886 return 0; 4887 #endif 4888 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4889 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4890 #endif 4891 case KVM_CAP_BINARY_STATS_FD: 4892 case KVM_CAP_SYSTEM_EVENT_DATA: 4893 case KVM_CAP_DEVICE_CTRL: 4894 return 1; 4895 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4896 case KVM_CAP_MEMORY_ATTRIBUTES: 4897 return kvm_supported_mem_attributes(kvm); 4898 #endif 4899 #ifdef CONFIG_KVM_PRIVATE_MEM 4900 case KVM_CAP_GUEST_MEMFD: 4901 return !kvm || kvm_arch_has_private_mem(kvm); 4902 #endif 4903 default: 4904 break; 4905 } 4906 return kvm_vm_ioctl_check_extension(kvm, arg); 4907 } 4908 4909 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4910 { 4911 int r; 4912 4913 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4914 return -EINVAL; 4915 4916 /* the size should be power of 2 */ 4917 if (!size || (size & (size - 1))) 4918 return -EINVAL; 4919 4920 /* Should be bigger to keep the reserved entries, or a page */ 4921 if (size < kvm_dirty_ring_get_rsvd_entries() * 4922 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4923 return -EINVAL; 4924 4925 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4926 sizeof(struct kvm_dirty_gfn)) 4927 return -E2BIG; 4928 4929 /* We only allow it to set once */ 4930 if (kvm->dirty_ring_size) 4931 return -EINVAL; 4932 4933 mutex_lock(&kvm->lock); 4934 4935 if (kvm->created_vcpus) { 4936 /* We don't allow to change this value after vcpu created */ 4937 r = -EINVAL; 4938 } else { 4939 kvm->dirty_ring_size = size; 4940 r = 0; 4941 } 4942 4943 mutex_unlock(&kvm->lock); 4944 return r; 4945 } 4946 4947 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4948 { 4949 unsigned long i; 4950 struct kvm_vcpu *vcpu; 4951 int cleared = 0; 4952 4953 if (!kvm->dirty_ring_size) 4954 return -EINVAL; 4955 4956 mutex_lock(&kvm->slots_lock); 4957 4958 kvm_for_each_vcpu(i, vcpu, kvm) 4959 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4960 4961 mutex_unlock(&kvm->slots_lock); 4962 4963 if (cleared) 4964 kvm_flush_remote_tlbs(kvm); 4965 4966 return cleared; 4967 } 4968 4969 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4970 struct kvm_enable_cap *cap) 4971 { 4972 return -EINVAL; 4973 } 4974 4975 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4976 { 4977 int i; 4978 4979 lockdep_assert_held(&kvm->slots_lock); 4980 4981 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4982 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4983 return false; 4984 } 4985 4986 return true; 4987 } 4988 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4989 4990 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4991 struct kvm_enable_cap *cap) 4992 { 4993 switch (cap->cap) { 4994 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4995 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4996 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4997 4998 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4999 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5000 5001 if (cap->flags || (cap->args[0] & ~allowed_options)) 5002 return -EINVAL; 5003 kvm->manual_dirty_log_protect = cap->args[0]; 5004 return 0; 5005 } 5006 #endif 5007 case KVM_CAP_HALT_POLL: { 5008 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5009 return -EINVAL; 5010 5011 kvm->max_halt_poll_ns = cap->args[0]; 5012 5013 /* 5014 * Ensure kvm->override_halt_poll_ns does not become visible 5015 * before kvm->max_halt_poll_ns. 5016 * 5017 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5018 */ 5019 smp_wmb(); 5020 kvm->override_halt_poll_ns = true; 5021 5022 return 0; 5023 } 5024 case KVM_CAP_DIRTY_LOG_RING: 5025 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5026 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5027 return -EINVAL; 5028 5029 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5030 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5031 int r = -EINVAL; 5032 5033 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5034 !kvm->dirty_ring_size || cap->flags) 5035 return r; 5036 5037 mutex_lock(&kvm->slots_lock); 5038 5039 /* 5040 * For simplicity, allow enabling ring+bitmap if and only if 5041 * there are no memslots, e.g. to ensure all memslots allocate 5042 * a bitmap after the capability is enabled. 5043 */ 5044 if (kvm_are_all_memslots_empty(kvm)) { 5045 kvm->dirty_ring_with_bitmap = true; 5046 r = 0; 5047 } 5048 5049 mutex_unlock(&kvm->slots_lock); 5050 5051 return r; 5052 } 5053 default: 5054 return kvm_vm_ioctl_enable_cap(kvm, cap); 5055 } 5056 } 5057 5058 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5059 size_t size, loff_t *offset) 5060 { 5061 struct kvm *kvm = file->private_data; 5062 5063 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5064 &kvm_vm_stats_desc[0], &kvm->stat, 5065 sizeof(kvm->stat), user_buffer, size, offset); 5066 } 5067 5068 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5069 { 5070 struct kvm *kvm = file->private_data; 5071 5072 kvm_put_kvm(kvm); 5073 return 0; 5074 } 5075 5076 static const struct file_operations kvm_vm_stats_fops = { 5077 .owner = THIS_MODULE, 5078 .read = kvm_vm_stats_read, 5079 .release = kvm_vm_stats_release, 5080 .llseek = noop_llseek, 5081 }; 5082 5083 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5084 { 5085 int fd; 5086 struct file *file; 5087 5088 fd = get_unused_fd_flags(O_CLOEXEC); 5089 if (fd < 0) 5090 return fd; 5091 5092 file = anon_inode_getfile("kvm-vm-stats", 5093 &kvm_vm_stats_fops, kvm, O_RDONLY); 5094 if (IS_ERR(file)) { 5095 put_unused_fd(fd); 5096 return PTR_ERR(file); 5097 } 5098 5099 kvm_get_kvm(kvm); 5100 5101 file->f_mode |= FMODE_PREAD; 5102 fd_install(fd, file); 5103 5104 return fd; 5105 } 5106 5107 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5108 do { \ 5109 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5110 offsetof(struct kvm_userspace_memory_region2, field)); \ 5111 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5112 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5113 } while (0) 5114 5115 static long kvm_vm_ioctl(struct file *filp, 5116 unsigned int ioctl, unsigned long arg) 5117 { 5118 struct kvm *kvm = filp->private_data; 5119 void __user *argp = (void __user *)arg; 5120 int r; 5121 5122 if (kvm->mm != current->mm || kvm->vm_dead) 5123 return -EIO; 5124 switch (ioctl) { 5125 case KVM_CREATE_VCPU: 5126 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5127 break; 5128 case KVM_ENABLE_CAP: { 5129 struct kvm_enable_cap cap; 5130 5131 r = -EFAULT; 5132 if (copy_from_user(&cap, argp, sizeof(cap))) 5133 goto out; 5134 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5135 break; 5136 } 5137 case KVM_SET_USER_MEMORY_REGION2: 5138 case KVM_SET_USER_MEMORY_REGION: { 5139 struct kvm_userspace_memory_region2 mem; 5140 unsigned long size; 5141 5142 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5143 /* 5144 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5145 * accessed, but avoid leaking kernel memory in case of a bug. 5146 */ 5147 memset(&mem, 0, sizeof(mem)); 5148 size = sizeof(struct kvm_userspace_memory_region); 5149 } else { 5150 size = sizeof(struct kvm_userspace_memory_region2); 5151 } 5152 5153 /* Ensure the common parts of the two structs are identical. */ 5154 SANITY_CHECK_MEM_REGION_FIELD(slot); 5155 SANITY_CHECK_MEM_REGION_FIELD(flags); 5156 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5157 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5158 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5159 5160 r = -EFAULT; 5161 if (copy_from_user(&mem, argp, size)) 5162 goto out; 5163 5164 r = -EINVAL; 5165 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5166 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5167 goto out; 5168 5169 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5170 break; 5171 } 5172 case KVM_GET_DIRTY_LOG: { 5173 struct kvm_dirty_log log; 5174 5175 r = -EFAULT; 5176 if (copy_from_user(&log, argp, sizeof(log))) 5177 goto out; 5178 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5179 break; 5180 } 5181 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5182 case KVM_CLEAR_DIRTY_LOG: { 5183 struct kvm_clear_dirty_log log; 5184 5185 r = -EFAULT; 5186 if (copy_from_user(&log, argp, sizeof(log))) 5187 goto out; 5188 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5189 break; 5190 } 5191 #endif 5192 #ifdef CONFIG_KVM_MMIO 5193 case KVM_REGISTER_COALESCED_MMIO: { 5194 struct kvm_coalesced_mmio_zone zone; 5195 5196 r = -EFAULT; 5197 if (copy_from_user(&zone, argp, sizeof(zone))) 5198 goto out; 5199 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5200 break; 5201 } 5202 case KVM_UNREGISTER_COALESCED_MMIO: { 5203 struct kvm_coalesced_mmio_zone zone; 5204 5205 r = -EFAULT; 5206 if (copy_from_user(&zone, argp, sizeof(zone))) 5207 goto out; 5208 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5209 break; 5210 } 5211 #endif 5212 case KVM_IRQFD: { 5213 struct kvm_irqfd data; 5214 5215 r = -EFAULT; 5216 if (copy_from_user(&data, argp, sizeof(data))) 5217 goto out; 5218 r = kvm_irqfd(kvm, &data); 5219 break; 5220 } 5221 case KVM_IOEVENTFD: { 5222 struct kvm_ioeventfd data; 5223 5224 r = -EFAULT; 5225 if (copy_from_user(&data, argp, sizeof(data))) 5226 goto out; 5227 r = kvm_ioeventfd(kvm, &data); 5228 break; 5229 } 5230 #ifdef CONFIG_HAVE_KVM_MSI 5231 case KVM_SIGNAL_MSI: { 5232 struct kvm_msi msi; 5233 5234 r = -EFAULT; 5235 if (copy_from_user(&msi, argp, sizeof(msi))) 5236 goto out; 5237 r = kvm_send_userspace_msi(kvm, &msi); 5238 break; 5239 } 5240 #endif 5241 #ifdef __KVM_HAVE_IRQ_LINE 5242 case KVM_IRQ_LINE_STATUS: 5243 case KVM_IRQ_LINE: { 5244 struct kvm_irq_level irq_event; 5245 5246 r = -EFAULT; 5247 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5248 goto out; 5249 5250 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5251 ioctl == KVM_IRQ_LINE_STATUS); 5252 if (r) 5253 goto out; 5254 5255 r = -EFAULT; 5256 if (ioctl == KVM_IRQ_LINE_STATUS) { 5257 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5258 goto out; 5259 } 5260 5261 r = 0; 5262 break; 5263 } 5264 #endif 5265 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5266 case KVM_SET_GSI_ROUTING: { 5267 struct kvm_irq_routing routing; 5268 struct kvm_irq_routing __user *urouting; 5269 struct kvm_irq_routing_entry *entries = NULL; 5270 5271 r = -EFAULT; 5272 if (copy_from_user(&routing, argp, sizeof(routing))) 5273 goto out; 5274 r = -EINVAL; 5275 if (!kvm_arch_can_set_irq_routing(kvm)) 5276 goto out; 5277 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5278 goto out; 5279 if (routing.flags) 5280 goto out; 5281 if (routing.nr) { 5282 urouting = argp; 5283 entries = vmemdup_array_user(urouting->entries, 5284 routing.nr, sizeof(*entries)); 5285 if (IS_ERR(entries)) { 5286 r = PTR_ERR(entries); 5287 goto out; 5288 } 5289 } 5290 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5291 routing.flags); 5292 kvfree(entries); 5293 break; 5294 } 5295 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5296 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5297 case KVM_SET_MEMORY_ATTRIBUTES: { 5298 struct kvm_memory_attributes attrs; 5299 5300 r = -EFAULT; 5301 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5302 goto out; 5303 5304 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5305 break; 5306 } 5307 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5308 case KVM_CREATE_DEVICE: { 5309 struct kvm_create_device cd; 5310 5311 r = -EFAULT; 5312 if (copy_from_user(&cd, argp, sizeof(cd))) 5313 goto out; 5314 5315 r = kvm_ioctl_create_device(kvm, &cd); 5316 if (r) 5317 goto out; 5318 5319 r = -EFAULT; 5320 if (copy_to_user(argp, &cd, sizeof(cd))) 5321 goto out; 5322 5323 r = 0; 5324 break; 5325 } 5326 case KVM_CHECK_EXTENSION: 5327 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5328 break; 5329 case KVM_RESET_DIRTY_RINGS: 5330 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5331 break; 5332 case KVM_GET_STATS_FD: 5333 r = kvm_vm_ioctl_get_stats_fd(kvm); 5334 break; 5335 #ifdef CONFIG_KVM_PRIVATE_MEM 5336 case KVM_CREATE_GUEST_MEMFD: { 5337 struct kvm_create_guest_memfd guest_memfd; 5338 5339 r = -EFAULT; 5340 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5341 goto out; 5342 5343 r = kvm_gmem_create(kvm, &guest_memfd); 5344 break; 5345 } 5346 #endif 5347 default: 5348 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5349 } 5350 out: 5351 return r; 5352 } 5353 5354 #ifdef CONFIG_KVM_COMPAT 5355 struct compat_kvm_dirty_log { 5356 __u32 slot; 5357 __u32 padding1; 5358 union { 5359 compat_uptr_t dirty_bitmap; /* one bit per page */ 5360 __u64 padding2; 5361 }; 5362 }; 5363 5364 struct compat_kvm_clear_dirty_log { 5365 __u32 slot; 5366 __u32 num_pages; 5367 __u64 first_page; 5368 union { 5369 compat_uptr_t dirty_bitmap; /* one bit per page */ 5370 __u64 padding2; 5371 }; 5372 }; 5373 5374 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5375 unsigned long arg) 5376 { 5377 return -ENOTTY; 5378 } 5379 5380 static long kvm_vm_compat_ioctl(struct file *filp, 5381 unsigned int ioctl, unsigned long arg) 5382 { 5383 struct kvm *kvm = filp->private_data; 5384 int r; 5385 5386 if (kvm->mm != current->mm || kvm->vm_dead) 5387 return -EIO; 5388 5389 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5390 if (r != -ENOTTY) 5391 return r; 5392 5393 switch (ioctl) { 5394 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5395 case KVM_CLEAR_DIRTY_LOG: { 5396 struct compat_kvm_clear_dirty_log compat_log; 5397 struct kvm_clear_dirty_log log; 5398 5399 if (copy_from_user(&compat_log, (void __user *)arg, 5400 sizeof(compat_log))) 5401 return -EFAULT; 5402 log.slot = compat_log.slot; 5403 log.num_pages = compat_log.num_pages; 5404 log.first_page = compat_log.first_page; 5405 log.padding2 = compat_log.padding2; 5406 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5407 5408 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5409 break; 5410 } 5411 #endif 5412 case KVM_GET_DIRTY_LOG: { 5413 struct compat_kvm_dirty_log compat_log; 5414 struct kvm_dirty_log log; 5415 5416 if (copy_from_user(&compat_log, (void __user *)arg, 5417 sizeof(compat_log))) 5418 return -EFAULT; 5419 log.slot = compat_log.slot; 5420 log.padding1 = compat_log.padding1; 5421 log.padding2 = compat_log.padding2; 5422 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5423 5424 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5425 break; 5426 } 5427 default: 5428 r = kvm_vm_ioctl(filp, ioctl, arg); 5429 } 5430 return r; 5431 } 5432 #endif 5433 5434 static struct file_operations kvm_vm_fops = { 5435 .release = kvm_vm_release, 5436 .unlocked_ioctl = kvm_vm_ioctl, 5437 .llseek = noop_llseek, 5438 KVM_COMPAT(kvm_vm_compat_ioctl), 5439 }; 5440 5441 bool file_is_kvm(struct file *file) 5442 { 5443 return file && file->f_op == &kvm_vm_fops; 5444 } 5445 EXPORT_SYMBOL_GPL(file_is_kvm); 5446 5447 static int kvm_dev_ioctl_create_vm(unsigned long type) 5448 { 5449 char fdname[ITOA_MAX_LEN + 1]; 5450 int r, fd; 5451 struct kvm *kvm; 5452 struct file *file; 5453 5454 fd = get_unused_fd_flags(O_CLOEXEC); 5455 if (fd < 0) 5456 return fd; 5457 5458 snprintf(fdname, sizeof(fdname), "%d", fd); 5459 5460 kvm = kvm_create_vm(type, fdname); 5461 if (IS_ERR(kvm)) { 5462 r = PTR_ERR(kvm); 5463 goto put_fd; 5464 } 5465 5466 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5467 if (IS_ERR(file)) { 5468 r = PTR_ERR(file); 5469 goto put_kvm; 5470 } 5471 5472 /* 5473 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5474 * already set, with ->release() being kvm_vm_release(). In error 5475 * cases it will be called by the final fput(file) and will take 5476 * care of doing kvm_put_kvm(kvm). 5477 */ 5478 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5479 5480 fd_install(fd, file); 5481 return fd; 5482 5483 put_kvm: 5484 kvm_put_kvm(kvm); 5485 put_fd: 5486 put_unused_fd(fd); 5487 return r; 5488 } 5489 5490 static long kvm_dev_ioctl(struct file *filp, 5491 unsigned int ioctl, unsigned long arg) 5492 { 5493 int r = -EINVAL; 5494 5495 switch (ioctl) { 5496 case KVM_GET_API_VERSION: 5497 if (arg) 5498 goto out; 5499 r = KVM_API_VERSION; 5500 break; 5501 case KVM_CREATE_VM: 5502 r = kvm_dev_ioctl_create_vm(arg); 5503 break; 5504 case KVM_CHECK_EXTENSION: 5505 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5506 break; 5507 case KVM_GET_VCPU_MMAP_SIZE: 5508 if (arg) 5509 goto out; 5510 r = PAGE_SIZE; /* struct kvm_run */ 5511 #ifdef CONFIG_X86 5512 r += PAGE_SIZE; /* pio data page */ 5513 #endif 5514 #ifdef CONFIG_KVM_MMIO 5515 r += PAGE_SIZE; /* coalesced mmio ring page */ 5516 #endif 5517 break; 5518 default: 5519 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5520 } 5521 out: 5522 return r; 5523 } 5524 5525 static struct file_operations kvm_chardev_ops = { 5526 .unlocked_ioctl = kvm_dev_ioctl, 5527 .llseek = noop_llseek, 5528 KVM_COMPAT(kvm_dev_ioctl), 5529 }; 5530 5531 static struct miscdevice kvm_dev = { 5532 KVM_MINOR, 5533 "kvm", 5534 &kvm_chardev_ops, 5535 }; 5536 5537 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5538 __visible bool kvm_rebooting; 5539 EXPORT_SYMBOL_GPL(kvm_rebooting); 5540 5541 static DEFINE_PER_CPU(bool, hardware_enabled); 5542 static int kvm_usage_count; 5543 5544 static int __hardware_enable_nolock(void) 5545 { 5546 if (__this_cpu_read(hardware_enabled)) 5547 return 0; 5548 5549 if (kvm_arch_hardware_enable()) { 5550 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5551 raw_smp_processor_id()); 5552 return -EIO; 5553 } 5554 5555 __this_cpu_write(hardware_enabled, true); 5556 return 0; 5557 } 5558 5559 static void hardware_enable_nolock(void *failed) 5560 { 5561 if (__hardware_enable_nolock()) 5562 atomic_inc(failed); 5563 } 5564 5565 static int kvm_online_cpu(unsigned int cpu) 5566 { 5567 int ret = 0; 5568 5569 /* 5570 * Abort the CPU online process if hardware virtualization cannot 5571 * be enabled. Otherwise running VMs would encounter unrecoverable 5572 * errors when scheduled to this CPU. 5573 */ 5574 mutex_lock(&kvm_lock); 5575 if (kvm_usage_count) 5576 ret = __hardware_enable_nolock(); 5577 mutex_unlock(&kvm_lock); 5578 return ret; 5579 } 5580 5581 static void hardware_disable_nolock(void *junk) 5582 { 5583 /* 5584 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5585 * hardware, not just CPUs that successfully enabled hardware! 5586 */ 5587 if (!__this_cpu_read(hardware_enabled)) 5588 return; 5589 5590 kvm_arch_hardware_disable(); 5591 5592 __this_cpu_write(hardware_enabled, false); 5593 } 5594 5595 static int kvm_offline_cpu(unsigned int cpu) 5596 { 5597 mutex_lock(&kvm_lock); 5598 if (kvm_usage_count) 5599 hardware_disable_nolock(NULL); 5600 mutex_unlock(&kvm_lock); 5601 return 0; 5602 } 5603 5604 static void hardware_disable_all_nolock(void) 5605 { 5606 BUG_ON(!kvm_usage_count); 5607 5608 kvm_usage_count--; 5609 if (!kvm_usage_count) 5610 on_each_cpu(hardware_disable_nolock, NULL, 1); 5611 } 5612 5613 static void hardware_disable_all(void) 5614 { 5615 cpus_read_lock(); 5616 mutex_lock(&kvm_lock); 5617 hardware_disable_all_nolock(); 5618 mutex_unlock(&kvm_lock); 5619 cpus_read_unlock(); 5620 } 5621 5622 static int hardware_enable_all(void) 5623 { 5624 atomic_t failed = ATOMIC_INIT(0); 5625 int r; 5626 5627 /* 5628 * Do not enable hardware virtualization if the system is going down. 5629 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5630 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5631 * after kvm_reboot() is called. Note, this relies on system_state 5632 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5633 * hook instead of registering a dedicated reboot notifier (the latter 5634 * runs before system_state is updated). 5635 */ 5636 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5637 system_state == SYSTEM_RESTART) 5638 return -EBUSY; 5639 5640 /* 5641 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5642 * is called, and so on_each_cpu() between them includes the CPU that 5643 * is being onlined. As a result, hardware_enable_nolock() may get 5644 * invoked before kvm_online_cpu(), which also enables hardware if the 5645 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5646 * enable hardware multiple times. 5647 */ 5648 cpus_read_lock(); 5649 mutex_lock(&kvm_lock); 5650 5651 r = 0; 5652 5653 kvm_usage_count++; 5654 if (kvm_usage_count == 1) { 5655 on_each_cpu(hardware_enable_nolock, &failed, 1); 5656 5657 if (atomic_read(&failed)) { 5658 hardware_disable_all_nolock(); 5659 r = -EBUSY; 5660 } 5661 } 5662 5663 mutex_unlock(&kvm_lock); 5664 cpus_read_unlock(); 5665 5666 return r; 5667 } 5668 5669 static void kvm_shutdown(void) 5670 { 5671 /* 5672 * Disable hardware virtualization and set kvm_rebooting to indicate 5673 * that KVM has asynchronously disabled hardware virtualization, i.e. 5674 * that relevant errors and exceptions aren't entirely unexpected. 5675 * Some flavors of hardware virtualization need to be disabled before 5676 * transferring control to firmware (to perform shutdown/reboot), e.g. 5677 * on x86, virtualization can block INIT interrupts, which are used by 5678 * firmware to pull APs back under firmware control. Note, this path 5679 * is used for both shutdown and reboot scenarios, i.e. neither name is 5680 * 100% comprehensive. 5681 */ 5682 pr_info("kvm: exiting hardware virtualization\n"); 5683 kvm_rebooting = true; 5684 on_each_cpu(hardware_disable_nolock, NULL, 1); 5685 } 5686 5687 static int kvm_suspend(void) 5688 { 5689 /* 5690 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5691 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5692 * is stable. Assert that kvm_lock is not held to ensure the system 5693 * isn't suspended while KVM is enabling hardware. Hardware enabling 5694 * can be preempted, but the task cannot be frozen until it has dropped 5695 * all locks (userspace tasks are frozen via a fake signal). 5696 */ 5697 lockdep_assert_not_held(&kvm_lock); 5698 lockdep_assert_irqs_disabled(); 5699 5700 if (kvm_usage_count) 5701 hardware_disable_nolock(NULL); 5702 return 0; 5703 } 5704 5705 static void kvm_resume(void) 5706 { 5707 lockdep_assert_not_held(&kvm_lock); 5708 lockdep_assert_irqs_disabled(); 5709 5710 if (kvm_usage_count) 5711 WARN_ON_ONCE(__hardware_enable_nolock()); 5712 } 5713 5714 static struct syscore_ops kvm_syscore_ops = { 5715 .suspend = kvm_suspend, 5716 .resume = kvm_resume, 5717 .shutdown = kvm_shutdown, 5718 }; 5719 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5720 static int hardware_enable_all(void) 5721 { 5722 return 0; 5723 } 5724 5725 static void hardware_disable_all(void) 5726 { 5727 5728 } 5729 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5730 5731 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5732 { 5733 if (dev->ops->destructor) 5734 dev->ops->destructor(dev); 5735 } 5736 5737 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5738 { 5739 int i; 5740 5741 for (i = 0; i < bus->dev_count; i++) { 5742 struct kvm_io_device *pos = bus->range[i].dev; 5743 5744 kvm_iodevice_destructor(pos); 5745 } 5746 kfree(bus); 5747 } 5748 5749 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5750 const struct kvm_io_range *r2) 5751 { 5752 gpa_t addr1 = r1->addr; 5753 gpa_t addr2 = r2->addr; 5754 5755 if (addr1 < addr2) 5756 return -1; 5757 5758 /* If r2->len == 0, match the exact address. If r2->len != 0, 5759 * accept any overlapping write. Any order is acceptable for 5760 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5761 * we process all of them. 5762 */ 5763 if (r2->len) { 5764 addr1 += r1->len; 5765 addr2 += r2->len; 5766 } 5767 5768 if (addr1 > addr2) 5769 return 1; 5770 5771 return 0; 5772 } 5773 5774 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5775 { 5776 return kvm_io_bus_cmp(p1, p2); 5777 } 5778 5779 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5780 gpa_t addr, int len) 5781 { 5782 struct kvm_io_range *range, key; 5783 int off; 5784 5785 key = (struct kvm_io_range) { 5786 .addr = addr, 5787 .len = len, 5788 }; 5789 5790 range = bsearch(&key, bus->range, bus->dev_count, 5791 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5792 if (range == NULL) 5793 return -ENOENT; 5794 5795 off = range - bus->range; 5796 5797 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5798 off--; 5799 5800 return off; 5801 } 5802 5803 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5804 struct kvm_io_range *range, const void *val) 5805 { 5806 int idx; 5807 5808 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5809 if (idx < 0) 5810 return -EOPNOTSUPP; 5811 5812 while (idx < bus->dev_count && 5813 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5814 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5815 range->len, val)) 5816 return idx; 5817 idx++; 5818 } 5819 5820 return -EOPNOTSUPP; 5821 } 5822 5823 /* kvm_io_bus_write - called under kvm->slots_lock */ 5824 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5825 int len, const void *val) 5826 { 5827 struct kvm_io_bus *bus; 5828 struct kvm_io_range range; 5829 int r; 5830 5831 range = (struct kvm_io_range) { 5832 .addr = addr, 5833 .len = len, 5834 }; 5835 5836 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5837 if (!bus) 5838 return -ENOMEM; 5839 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5840 return r < 0 ? r : 0; 5841 } 5842 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5843 5844 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5845 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5846 gpa_t addr, int len, const void *val, long cookie) 5847 { 5848 struct kvm_io_bus *bus; 5849 struct kvm_io_range range; 5850 5851 range = (struct kvm_io_range) { 5852 .addr = addr, 5853 .len = len, 5854 }; 5855 5856 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5857 if (!bus) 5858 return -ENOMEM; 5859 5860 /* First try the device referenced by cookie. */ 5861 if ((cookie >= 0) && (cookie < bus->dev_count) && 5862 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5863 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5864 val)) 5865 return cookie; 5866 5867 /* 5868 * cookie contained garbage; fall back to search and return the 5869 * correct cookie value. 5870 */ 5871 return __kvm_io_bus_write(vcpu, bus, &range, val); 5872 } 5873 5874 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5875 struct kvm_io_range *range, void *val) 5876 { 5877 int idx; 5878 5879 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5880 if (idx < 0) 5881 return -EOPNOTSUPP; 5882 5883 while (idx < bus->dev_count && 5884 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5885 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5886 range->len, val)) 5887 return idx; 5888 idx++; 5889 } 5890 5891 return -EOPNOTSUPP; 5892 } 5893 5894 /* kvm_io_bus_read - called under kvm->slots_lock */ 5895 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5896 int len, void *val) 5897 { 5898 struct kvm_io_bus *bus; 5899 struct kvm_io_range range; 5900 int r; 5901 5902 range = (struct kvm_io_range) { 5903 .addr = addr, 5904 .len = len, 5905 }; 5906 5907 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5908 if (!bus) 5909 return -ENOMEM; 5910 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5911 return r < 0 ? r : 0; 5912 } 5913 5914 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5915 int len, struct kvm_io_device *dev) 5916 { 5917 int i; 5918 struct kvm_io_bus *new_bus, *bus; 5919 struct kvm_io_range range; 5920 5921 lockdep_assert_held(&kvm->slots_lock); 5922 5923 bus = kvm_get_bus(kvm, bus_idx); 5924 if (!bus) 5925 return -ENOMEM; 5926 5927 /* exclude ioeventfd which is limited by maximum fd */ 5928 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5929 return -ENOSPC; 5930 5931 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5932 GFP_KERNEL_ACCOUNT); 5933 if (!new_bus) 5934 return -ENOMEM; 5935 5936 range = (struct kvm_io_range) { 5937 .addr = addr, 5938 .len = len, 5939 .dev = dev, 5940 }; 5941 5942 for (i = 0; i < bus->dev_count; i++) 5943 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5944 break; 5945 5946 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5947 new_bus->dev_count++; 5948 new_bus->range[i] = range; 5949 memcpy(new_bus->range + i + 1, bus->range + i, 5950 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5951 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5952 synchronize_srcu_expedited(&kvm->srcu); 5953 kfree(bus); 5954 5955 return 0; 5956 } 5957 5958 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5959 struct kvm_io_device *dev) 5960 { 5961 int i; 5962 struct kvm_io_bus *new_bus, *bus; 5963 5964 lockdep_assert_held(&kvm->slots_lock); 5965 5966 bus = kvm_get_bus(kvm, bus_idx); 5967 if (!bus) 5968 return 0; 5969 5970 for (i = 0; i < bus->dev_count; i++) { 5971 if (bus->range[i].dev == dev) { 5972 break; 5973 } 5974 } 5975 5976 if (i == bus->dev_count) 5977 return 0; 5978 5979 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5980 GFP_KERNEL_ACCOUNT); 5981 if (new_bus) { 5982 memcpy(new_bus, bus, struct_size(bus, range, i)); 5983 new_bus->dev_count--; 5984 memcpy(new_bus->range + i, bus->range + i + 1, 5985 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5986 } 5987 5988 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5989 synchronize_srcu_expedited(&kvm->srcu); 5990 5991 /* 5992 * If NULL bus is installed, destroy the old bus, including all the 5993 * attached devices. Otherwise, destroy the caller's device only. 5994 */ 5995 if (!new_bus) { 5996 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5997 kvm_io_bus_destroy(bus); 5998 return -ENOMEM; 5999 } 6000 6001 kvm_iodevice_destructor(dev); 6002 kfree(bus); 6003 return 0; 6004 } 6005 6006 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6007 gpa_t addr) 6008 { 6009 struct kvm_io_bus *bus; 6010 int dev_idx, srcu_idx; 6011 struct kvm_io_device *iodev = NULL; 6012 6013 srcu_idx = srcu_read_lock(&kvm->srcu); 6014 6015 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6016 if (!bus) 6017 goto out_unlock; 6018 6019 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6020 if (dev_idx < 0) 6021 goto out_unlock; 6022 6023 iodev = bus->range[dev_idx].dev; 6024 6025 out_unlock: 6026 srcu_read_unlock(&kvm->srcu, srcu_idx); 6027 6028 return iodev; 6029 } 6030 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6031 6032 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6033 int (*get)(void *, u64 *), int (*set)(void *, u64), 6034 const char *fmt) 6035 { 6036 int ret; 6037 struct kvm_stat_data *stat_data = inode->i_private; 6038 6039 /* 6040 * The debugfs files are a reference to the kvm struct which 6041 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6042 * avoids the race between open and the removal of the debugfs directory. 6043 */ 6044 if (!kvm_get_kvm_safe(stat_data->kvm)) 6045 return -ENOENT; 6046 6047 ret = simple_attr_open(inode, file, get, 6048 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6049 ? set : NULL, fmt); 6050 if (ret) 6051 kvm_put_kvm(stat_data->kvm); 6052 6053 return ret; 6054 } 6055 6056 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6057 { 6058 struct kvm_stat_data *stat_data = inode->i_private; 6059 6060 simple_attr_release(inode, file); 6061 kvm_put_kvm(stat_data->kvm); 6062 6063 return 0; 6064 } 6065 6066 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6067 { 6068 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6069 6070 return 0; 6071 } 6072 6073 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6074 { 6075 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6076 6077 return 0; 6078 } 6079 6080 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6081 { 6082 unsigned long i; 6083 struct kvm_vcpu *vcpu; 6084 6085 *val = 0; 6086 6087 kvm_for_each_vcpu(i, vcpu, kvm) 6088 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6089 6090 return 0; 6091 } 6092 6093 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6094 { 6095 unsigned long i; 6096 struct kvm_vcpu *vcpu; 6097 6098 kvm_for_each_vcpu(i, vcpu, kvm) 6099 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6100 6101 return 0; 6102 } 6103 6104 static int kvm_stat_data_get(void *data, u64 *val) 6105 { 6106 int r = -EFAULT; 6107 struct kvm_stat_data *stat_data = data; 6108 6109 switch (stat_data->kind) { 6110 case KVM_STAT_VM: 6111 r = kvm_get_stat_per_vm(stat_data->kvm, 6112 stat_data->desc->desc.offset, val); 6113 break; 6114 case KVM_STAT_VCPU: 6115 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6116 stat_data->desc->desc.offset, val); 6117 break; 6118 } 6119 6120 return r; 6121 } 6122 6123 static int kvm_stat_data_clear(void *data, u64 val) 6124 { 6125 int r = -EFAULT; 6126 struct kvm_stat_data *stat_data = data; 6127 6128 if (val) 6129 return -EINVAL; 6130 6131 switch (stat_data->kind) { 6132 case KVM_STAT_VM: 6133 r = kvm_clear_stat_per_vm(stat_data->kvm, 6134 stat_data->desc->desc.offset); 6135 break; 6136 case KVM_STAT_VCPU: 6137 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6138 stat_data->desc->desc.offset); 6139 break; 6140 } 6141 6142 return r; 6143 } 6144 6145 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6146 { 6147 __simple_attr_check_format("%llu\n", 0ull); 6148 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6149 kvm_stat_data_clear, "%llu\n"); 6150 } 6151 6152 static const struct file_operations stat_fops_per_vm = { 6153 .owner = THIS_MODULE, 6154 .open = kvm_stat_data_open, 6155 .release = kvm_debugfs_release, 6156 .read = simple_attr_read, 6157 .write = simple_attr_write, 6158 .llseek = no_llseek, 6159 }; 6160 6161 static int vm_stat_get(void *_offset, u64 *val) 6162 { 6163 unsigned offset = (long)_offset; 6164 struct kvm *kvm; 6165 u64 tmp_val; 6166 6167 *val = 0; 6168 mutex_lock(&kvm_lock); 6169 list_for_each_entry(kvm, &vm_list, vm_list) { 6170 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6171 *val += tmp_val; 6172 } 6173 mutex_unlock(&kvm_lock); 6174 return 0; 6175 } 6176 6177 static int vm_stat_clear(void *_offset, u64 val) 6178 { 6179 unsigned offset = (long)_offset; 6180 struct kvm *kvm; 6181 6182 if (val) 6183 return -EINVAL; 6184 6185 mutex_lock(&kvm_lock); 6186 list_for_each_entry(kvm, &vm_list, vm_list) { 6187 kvm_clear_stat_per_vm(kvm, offset); 6188 } 6189 mutex_unlock(&kvm_lock); 6190 6191 return 0; 6192 } 6193 6194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6195 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6196 6197 static int vcpu_stat_get(void *_offset, u64 *val) 6198 { 6199 unsigned offset = (long)_offset; 6200 struct kvm *kvm; 6201 u64 tmp_val; 6202 6203 *val = 0; 6204 mutex_lock(&kvm_lock); 6205 list_for_each_entry(kvm, &vm_list, vm_list) { 6206 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6207 *val += tmp_val; 6208 } 6209 mutex_unlock(&kvm_lock); 6210 return 0; 6211 } 6212 6213 static int vcpu_stat_clear(void *_offset, u64 val) 6214 { 6215 unsigned offset = (long)_offset; 6216 struct kvm *kvm; 6217 6218 if (val) 6219 return -EINVAL; 6220 6221 mutex_lock(&kvm_lock); 6222 list_for_each_entry(kvm, &vm_list, vm_list) { 6223 kvm_clear_stat_per_vcpu(kvm, offset); 6224 } 6225 mutex_unlock(&kvm_lock); 6226 6227 return 0; 6228 } 6229 6230 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6231 "%llu\n"); 6232 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6233 6234 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6235 { 6236 struct kobj_uevent_env *env; 6237 unsigned long long created, active; 6238 6239 if (!kvm_dev.this_device || !kvm) 6240 return; 6241 6242 mutex_lock(&kvm_lock); 6243 if (type == KVM_EVENT_CREATE_VM) { 6244 kvm_createvm_count++; 6245 kvm_active_vms++; 6246 } else if (type == KVM_EVENT_DESTROY_VM) { 6247 kvm_active_vms--; 6248 } 6249 created = kvm_createvm_count; 6250 active = kvm_active_vms; 6251 mutex_unlock(&kvm_lock); 6252 6253 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6254 if (!env) 6255 return; 6256 6257 add_uevent_var(env, "CREATED=%llu", created); 6258 add_uevent_var(env, "COUNT=%llu", active); 6259 6260 if (type == KVM_EVENT_CREATE_VM) { 6261 add_uevent_var(env, "EVENT=create"); 6262 kvm->userspace_pid = task_pid_nr(current); 6263 } else if (type == KVM_EVENT_DESTROY_VM) { 6264 add_uevent_var(env, "EVENT=destroy"); 6265 } 6266 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6267 6268 if (!IS_ERR(kvm->debugfs_dentry)) { 6269 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6270 6271 if (p) { 6272 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6273 if (!IS_ERR(tmp)) 6274 add_uevent_var(env, "STATS_PATH=%s", tmp); 6275 kfree(p); 6276 } 6277 } 6278 /* no need for checks, since we are adding at most only 5 keys */ 6279 env->envp[env->envp_idx++] = NULL; 6280 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6281 kfree(env); 6282 } 6283 6284 static void kvm_init_debug(void) 6285 { 6286 const struct file_operations *fops; 6287 const struct _kvm_stats_desc *pdesc; 6288 int i; 6289 6290 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6291 6292 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6293 pdesc = &kvm_vm_stats_desc[i]; 6294 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6295 fops = &vm_stat_fops; 6296 else 6297 fops = &vm_stat_readonly_fops; 6298 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6299 kvm_debugfs_dir, 6300 (void *)(long)pdesc->desc.offset, fops); 6301 } 6302 6303 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6304 pdesc = &kvm_vcpu_stats_desc[i]; 6305 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6306 fops = &vcpu_stat_fops; 6307 else 6308 fops = &vcpu_stat_readonly_fops; 6309 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6310 kvm_debugfs_dir, 6311 (void *)(long)pdesc->desc.offset, fops); 6312 } 6313 } 6314 6315 static inline 6316 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6317 { 6318 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6319 } 6320 6321 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6322 { 6323 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6324 6325 WRITE_ONCE(vcpu->preempted, false); 6326 WRITE_ONCE(vcpu->ready, false); 6327 6328 __this_cpu_write(kvm_running_vcpu, vcpu); 6329 kvm_arch_sched_in(vcpu, cpu); 6330 kvm_arch_vcpu_load(vcpu, cpu); 6331 } 6332 6333 static void kvm_sched_out(struct preempt_notifier *pn, 6334 struct task_struct *next) 6335 { 6336 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6337 6338 if (current->on_rq) { 6339 WRITE_ONCE(vcpu->preempted, true); 6340 WRITE_ONCE(vcpu->ready, true); 6341 } 6342 kvm_arch_vcpu_put(vcpu); 6343 __this_cpu_write(kvm_running_vcpu, NULL); 6344 } 6345 6346 /** 6347 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6348 * 6349 * We can disable preemption locally around accessing the per-CPU variable, 6350 * and use the resolved vcpu pointer after enabling preemption again, 6351 * because even if the current thread is migrated to another CPU, reading 6352 * the per-CPU value later will give us the same value as we update the 6353 * per-CPU variable in the preempt notifier handlers. 6354 */ 6355 struct kvm_vcpu *kvm_get_running_vcpu(void) 6356 { 6357 struct kvm_vcpu *vcpu; 6358 6359 preempt_disable(); 6360 vcpu = __this_cpu_read(kvm_running_vcpu); 6361 preempt_enable(); 6362 6363 return vcpu; 6364 } 6365 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6366 6367 /** 6368 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6369 */ 6370 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6371 { 6372 return &kvm_running_vcpu; 6373 } 6374 6375 #ifdef CONFIG_GUEST_PERF_EVENTS 6376 static unsigned int kvm_guest_state(void) 6377 { 6378 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6379 unsigned int state; 6380 6381 if (!kvm_arch_pmi_in_guest(vcpu)) 6382 return 0; 6383 6384 state = PERF_GUEST_ACTIVE; 6385 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6386 state |= PERF_GUEST_USER; 6387 6388 return state; 6389 } 6390 6391 static unsigned long kvm_guest_get_ip(void) 6392 { 6393 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6394 6395 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6396 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6397 return 0; 6398 6399 return kvm_arch_vcpu_get_ip(vcpu); 6400 } 6401 6402 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6403 .state = kvm_guest_state, 6404 .get_ip = kvm_guest_get_ip, 6405 .handle_intel_pt_intr = NULL, 6406 }; 6407 6408 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6409 { 6410 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6411 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6412 } 6413 void kvm_unregister_perf_callbacks(void) 6414 { 6415 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6416 } 6417 #endif 6418 6419 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6420 { 6421 int r; 6422 int cpu; 6423 6424 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6425 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6426 kvm_online_cpu, kvm_offline_cpu); 6427 if (r) 6428 return r; 6429 6430 register_syscore_ops(&kvm_syscore_ops); 6431 #endif 6432 6433 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6434 if (!vcpu_align) 6435 vcpu_align = __alignof__(struct kvm_vcpu); 6436 kvm_vcpu_cache = 6437 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6438 SLAB_ACCOUNT, 6439 offsetof(struct kvm_vcpu, arch), 6440 offsetofend(struct kvm_vcpu, stats_id) 6441 - offsetof(struct kvm_vcpu, arch), 6442 NULL); 6443 if (!kvm_vcpu_cache) { 6444 r = -ENOMEM; 6445 goto err_vcpu_cache; 6446 } 6447 6448 for_each_possible_cpu(cpu) { 6449 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6450 GFP_KERNEL, cpu_to_node(cpu))) { 6451 r = -ENOMEM; 6452 goto err_cpu_kick_mask; 6453 } 6454 } 6455 6456 r = kvm_irqfd_init(); 6457 if (r) 6458 goto err_irqfd; 6459 6460 r = kvm_async_pf_init(); 6461 if (r) 6462 goto err_async_pf; 6463 6464 kvm_chardev_ops.owner = module; 6465 kvm_vm_fops.owner = module; 6466 kvm_vcpu_fops.owner = module; 6467 kvm_device_fops.owner = module; 6468 6469 kvm_preempt_ops.sched_in = kvm_sched_in; 6470 kvm_preempt_ops.sched_out = kvm_sched_out; 6471 6472 kvm_init_debug(); 6473 6474 r = kvm_vfio_ops_init(); 6475 if (WARN_ON_ONCE(r)) 6476 goto err_vfio; 6477 6478 kvm_gmem_init(module); 6479 6480 /* 6481 * Registration _must_ be the very last thing done, as this exposes 6482 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6483 */ 6484 r = misc_register(&kvm_dev); 6485 if (r) { 6486 pr_err("kvm: misc device register failed\n"); 6487 goto err_register; 6488 } 6489 6490 return 0; 6491 6492 err_register: 6493 kvm_vfio_ops_exit(); 6494 err_vfio: 6495 kvm_async_pf_deinit(); 6496 err_async_pf: 6497 kvm_irqfd_exit(); 6498 err_irqfd: 6499 err_cpu_kick_mask: 6500 for_each_possible_cpu(cpu) 6501 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6502 kmem_cache_destroy(kvm_vcpu_cache); 6503 err_vcpu_cache: 6504 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6505 unregister_syscore_ops(&kvm_syscore_ops); 6506 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6507 #endif 6508 return r; 6509 } 6510 EXPORT_SYMBOL_GPL(kvm_init); 6511 6512 void kvm_exit(void) 6513 { 6514 int cpu; 6515 6516 /* 6517 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6518 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6519 * to KVM while the module is being stopped. 6520 */ 6521 misc_deregister(&kvm_dev); 6522 6523 debugfs_remove_recursive(kvm_debugfs_dir); 6524 for_each_possible_cpu(cpu) 6525 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6526 kmem_cache_destroy(kvm_vcpu_cache); 6527 kvm_vfio_ops_exit(); 6528 kvm_async_pf_deinit(); 6529 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6530 unregister_syscore_ops(&kvm_syscore_ops); 6531 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6532 #endif 6533 kvm_irqfd_exit(); 6534 } 6535 EXPORT_SYMBOL_GPL(kvm_exit); 6536 6537 struct kvm_vm_worker_thread_context { 6538 struct kvm *kvm; 6539 struct task_struct *parent; 6540 struct completion init_done; 6541 kvm_vm_thread_fn_t thread_fn; 6542 uintptr_t data; 6543 int err; 6544 }; 6545 6546 static int kvm_vm_worker_thread(void *context) 6547 { 6548 /* 6549 * The init_context is allocated on the stack of the parent thread, so 6550 * we have to locally copy anything that is needed beyond initialization 6551 */ 6552 struct kvm_vm_worker_thread_context *init_context = context; 6553 struct task_struct *parent; 6554 struct kvm *kvm = init_context->kvm; 6555 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6556 uintptr_t data = init_context->data; 6557 int err; 6558 6559 err = kthread_park(current); 6560 /* kthread_park(current) is never supposed to return an error */ 6561 WARN_ON(err != 0); 6562 if (err) 6563 goto init_complete; 6564 6565 err = cgroup_attach_task_all(init_context->parent, current); 6566 if (err) { 6567 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6568 __func__, err); 6569 goto init_complete; 6570 } 6571 6572 set_user_nice(current, task_nice(init_context->parent)); 6573 6574 init_complete: 6575 init_context->err = err; 6576 complete(&init_context->init_done); 6577 init_context = NULL; 6578 6579 if (err) 6580 goto out; 6581 6582 /* Wait to be woken up by the spawner before proceeding. */ 6583 kthread_parkme(); 6584 6585 if (!kthread_should_stop()) 6586 err = thread_fn(kvm, data); 6587 6588 out: 6589 /* 6590 * Move kthread back to its original cgroup to prevent it lingering in 6591 * the cgroup of the VM process, after the latter finishes its 6592 * execution. 6593 * 6594 * kthread_stop() waits on the 'exited' completion condition which is 6595 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6596 * kthread is removed from the cgroup in the cgroup_exit() which is 6597 * called after the exit_mm(). This causes the kthread_stop() to return 6598 * before the kthread actually quits the cgroup. 6599 */ 6600 rcu_read_lock(); 6601 parent = rcu_dereference(current->real_parent); 6602 get_task_struct(parent); 6603 rcu_read_unlock(); 6604 cgroup_attach_task_all(parent, current); 6605 put_task_struct(parent); 6606 6607 return err; 6608 } 6609 6610 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6611 uintptr_t data, const char *name, 6612 struct task_struct **thread_ptr) 6613 { 6614 struct kvm_vm_worker_thread_context init_context = {}; 6615 struct task_struct *thread; 6616 6617 *thread_ptr = NULL; 6618 init_context.kvm = kvm; 6619 init_context.parent = current; 6620 init_context.thread_fn = thread_fn; 6621 init_context.data = data; 6622 init_completion(&init_context.init_done); 6623 6624 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6625 "%s-%d", name, task_pid_nr(current)); 6626 if (IS_ERR(thread)) 6627 return PTR_ERR(thread); 6628 6629 /* kthread_run is never supposed to return NULL */ 6630 WARN_ON(thread == NULL); 6631 6632 wait_for_completion(&init_context.init_done); 6633 6634 if (!init_context.err) 6635 *thread_ptr = thread; 6636 6637 return init_context.err; 6638 } 6639