1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 96 97 /* 98 * Allow direct access (from KVM or the CPU) without MMU notifier protection 99 * to unpinned pages. 100 */ 101 static bool allow_unsafe_mappings; 102 module_param(allow_unsafe_mappings, bool, 0444); 103 104 /* 105 * Ordering of locks: 106 * 107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 108 */ 109 110 DEFINE_MUTEX(kvm_lock); 111 LIST_HEAD(vm_list); 112 113 static struct kmem_cache *kvm_vcpu_cache; 114 115 static __read_mostly struct preempt_ops kvm_preempt_ops; 116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 117 118 static struct dentry *kvm_debugfs_dir; 119 120 static const struct file_operations stat_fops_per_vm; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int kvm_enable_virtualization(void); 147 static void kvm_disable_virtualization(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 #define KVM_EVENT_CREATE_VM 0 152 #define KVM_EVENT_DESTROY_VM 1 153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 154 static unsigned long long kvm_createvm_count; 155 static unsigned long long kvm_active_vms; 156 157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 158 159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 160 { 161 } 162 163 /* 164 * Switches to specified vcpu, until a matching vcpu_put() 165 */ 166 void vcpu_load(struct kvm_vcpu *vcpu) 167 { 168 int cpu = get_cpu(); 169 170 __this_cpu_write(kvm_running_vcpu, vcpu); 171 preempt_notifier_register(&vcpu->preempt_notifier); 172 kvm_arch_vcpu_load(vcpu, cpu); 173 put_cpu(); 174 } 175 EXPORT_SYMBOL_GPL(vcpu_load); 176 177 void vcpu_put(struct kvm_vcpu *vcpu) 178 { 179 preempt_disable(); 180 kvm_arch_vcpu_put(vcpu); 181 preempt_notifier_unregister(&vcpu->preempt_notifier); 182 __this_cpu_write(kvm_running_vcpu, NULL); 183 preempt_enable(); 184 } 185 EXPORT_SYMBOL_GPL(vcpu_put); 186 187 /* TODO: merge with kvm_arch_vcpu_should_kick */ 188 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 189 { 190 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 191 192 /* 193 * We need to wait for the VCPU to reenable interrupts and get out of 194 * READING_SHADOW_PAGE_TABLES mode. 195 */ 196 if (req & KVM_REQUEST_WAIT) 197 return mode != OUTSIDE_GUEST_MODE; 198 199 /* 200 * Need to kick a running VCPU, but otherwise there is nothing to do. 201 */ 202 return mode == IN_GUEST_MODE; 203 } 204 205 static void ack_kick(void *_completed) 206 { 207 } 208 209 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 210 { 211 if (cpumask_empty(cpus)) 212 return false; 213 214 smp_call_function_many(cpus, ack_kick, NULL, wait); 215 return true; 216 } 217 218 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 219 struct cpumask *tmp, int current_cpu) 220 { 221 int cpu; 222 223 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 224 __kvm_make_request(req, vcpu); 225 226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 227 return; 228 229 /* 230 * Note, the vCPU could get migrated to a different pCPU at any point 231 * after kvm_request_needs_ipi(), which could result in sending an IPI 232 * to the previous pCPU. But, that's OK because the purpose of the IPI 233 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 234 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 235 * after this point is also OK, as the requirement is only that KVM wait 236 * for vCPUs that were reading SPTEs _before_ any changes were 237 * finalized. See kvm_vcpu_kick() for more details on handling requests. 238 */ 239 if (kvm_request_needs_ipi(vcpu, req)) { 240 cpu = READ_ONCE(vcpu->cpu); 241 if (cpu != -1 && cpu != current_cpu) 242 __cpumask_set_cpu(cpu, tmp); 243 } 244 } 245 246 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 247 unsigned long *vcpu_bitmap) 248 { 249 struct kvm_vcpu *vcpu; 250 struct cpumask *cpus; 251 int i, me; 252 bool called; 253 254 me = get_cpu(); 255 256 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 257 cpumask_clear(cpus); 258 259 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 260 vcpu = kvm_get_vcpu(kvm, i); 261 if (!vcpu) 262 continue; 263 kvm_make_vcpu_request(vcpu, req, cpus, me); 264 } 265 266 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 267 put_cpu(); 268 269 return called; 270 } 271 272 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 273 { 274 struct kvm_vcpu *vcpu; 275 struct cpumask *cpus; 276 unsigned long i; 277 bool called; 278 int me; 279 280 me = get_cpu(); 281 282 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 283 cpumask_clear(cpus); 284 285 kvm_for_each_vcpu(i, vcpu, kvm) 286 kvm_make_vcpu_request(vcpu, req, cpus, me); 287 288 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 289 put_cpu(); 290 291 return called; 292 } 293 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 294 295 void kvm_flush_remote_tlbs(struct kvm *kvm) 296 { 297 ++kvm->stat.generic.remote_tlb_flush_requests; 298 299 /* 300 * We want to publish modifications to the page tables before reading 301 * mode. Pairs with a memory barrier in arch-specific code. 302 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 303 * and smp_mb in walk_shadow_page_lockless_begin/end. 304 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 305 * 306 * There is already an smp_mb__after_atomic() before 307 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 308 * barrier here. 309 */ 310 if (!kvm_arch_flush_remote_tlbs(kvm) 311 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 312 ++kvm->stat.generic.remote_tlb_flush; 313 } 314 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 315 316 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 317 { 318 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 319 return; 320 321 /* 322 * Fall back to a flushing entire TLBs if the architecture range-based 323 * TLB invalidation is unsupported or can't be performed for whatever 324 * reason. 325 */ 326 kvm_flush_remote_tlbs(kvm); 327 } 328 329 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 330 const struct kvm_memory_slot *memslot) 331 { 332 /* 333 * All current use cases for flushing the TLBs for a specific memslot 334 * are related to dirty logging, and many do the TLB flush out of 335 * mmu_lock. The interaction between the various operations on memslot 336 * must be serialized by slots_locks to ensure the TLB flush from one 337 * operation is observed by any other operation on the same memslot. 338 */ 339 lockdep_assert_held(&kvm->slots_lock); 340 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 341 } 342 343 static void kvm_flush_shadow_all(struct kvm *kvm) 344 { 345 kvm_arch_flush_shadow_all(kvm); 346 kvm_arch_guest_memory_reclaimed(kvm); 347 } 348 349 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 350 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 351 gfp_t gfp_flags) 352 { 353 void *page; 354 355 gfp_flags |= mc->gfp_zero; 356 357 if (mc->kmem_cache) 358 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 359 360 page = (void *)__get_free_page(gfp_flags); 361 if (page && mc->init_value) 362 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 363 return page; 364 } 365 366 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 367 { 368 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 369 void *obj; 370 371 if (mc->nobjs >= min) 372 return 0; 373 374 if (unlikely(!mc->objects)) { 375 if (WARN_ON_ONCE(!capacity)) 376 return -EIO; 377 378 /* 379 * Custom init values can be used only for page allocations, 380 * and obviously conflict with __GFP_ZERO. 381 */ 382 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 383 return -EIO; 384 385 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 386 if (!mc->objects) 387 return -ENOMEM; 388 389 mc->capacity = capacity; 390 } 391 392 /* It is illegal to request a different capacity across topups. */ 393 if (WARN_ON_ONCE(mc->capacity != capacity)) 394 return -EIO; 395 396 while (mc->nobjs < mc->capacity) { 397 obj = mmu_memory_cache_alloc_obj(mc, gfp); 398 if (!obj) 399 return mc->nobjs >= min ? 0 : -ENOMEM; 400 mc->objects[mc->nobjs++] = obj; 401 } 402 return 0; 403 } 404 405 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 406 { 407 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 408 } 409 410 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 411 { 412 return mc->nobjs; 413 } 414 415 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 416 { 417 while (mc->nobjs) { 418 if (mc->kmem_cache) 419 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 420 else 421 free_page((unsigned long)mc->objects[--mc->nobjs]); 422 } 423 424 kvfree(mc->objects); 425 426 mc->objects = NULL; 427 mc->capacity = 0; 428 } 429 430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 431 { 432 void *p; 433 434 if (WARN_ON(!mc->nobjs)) 435 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 436 else 437 p = mc->objects[--mc->nobjs]; 438 BUG_ON(!p); 439 return p; 440 } 441 #endif 442 443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 444 { 445 mutex_init(&vcpu->mutex); 446 vcpu->cpu = -1; 447 vcpu->kvm = kvm; 448 vcpu->vcpu_id = id; 449 vcpu->pid = NULL; 450 rwlock_init(&vcpu->pid_lock); 451 #ifndef __KVM_HAVE_ARCH_WQP 452 rcuwait_init(&vcpu->wait); 453 #endif 454 kvm_async_pf_vcpu_init(vcpu); 455 456 kvm_vcpu_set_in_spin_loop(vcpu, false); 457 kvm_vcpu_set_dy_eligible(vcpu, false); 458 vcpu->preempted = false; 459 vcpu->ready = false; 460 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 461 vcpu->last_used_slot = NULL; 462 463 /* Fill the stats id string for the vcpu */ 464 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 465 task_pid_nr(current), id); 466 } 467 468 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 469 { 470 kvm_arch_vcpu_destroy(vcpu); 471 kvm_dirty_ring_free(&vcpu->dirty_ring); 472 473 /* 474 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 475 * the vcpu->pid pointer, and at destruction time all file descriptors 476 * are already gone. 477 */ 478 put_pid(vcpu->pid); 479 480 free_page((unsigned long)vcpu->run); 481 kmem_cache_free(kvm_vcpu_cache, vcpu); 482 } 483 484 void kvm_destroy_vcpus(struct kvm *kvm) 485 { 486 unsigned long i; 487 struct kvm_vcpu *vcpu; 488 489 kvm_for_each_vcpu(i, vcpu, kvm) { 490 kvm_vcpu_destroy(vcpu); 491 xa_erase(&kvm->vcpu_array, i); 492 } 493 494 atomic_set(&kvm->online_vcpus, 0); 495 } 496 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 497 498 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 499 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 500 { 501 return container_of(mn, struct kvm, mmu_notifier); 502 } 503 504 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 505 506 typedef void (*on_lock_fn_t)(struct kvm *kvm); 507 508 struct kvm_mmu_notifier_range { 509 /* 510 * 64-bit addresses, as KVM notifiers can operate on host virtual 511 * addresses (unsigned long) and guest physical addresses (64-bit). 512 */ 513 u64 start; 514 u64 end; 515 union kvm_mmu_notifier_arg arg; 516 gfn_handler_t handler; 517 on_lock_fn_t on_lock; 518 bool flush_on_ret; 519 bool may_block; 520 }; 521 522 /* 523 * The inner-most helper returns a tuple containing the return value from the 524 * arch- and action-specific handler, plus a flag indicating whether or not at 525 * least one memslot was found, i.e. if the handler found guest memory. 526 * 527 * Note, most notifiers are averse to booleans, so even though KVM tracks the 528 * return from arch code as a bool, outer helpers will cast it to an int. :-( 529 */ 530 typedef struct kvm_mmu_notifier_return { 531 bool ret; 532 bool found_memslot; 533 } kvm_mn_ret_t; 534 535 /* 536 * Use a dedicated stub instead of NULL to indicate that there is no callback 537 * function/handler. The compiler technically can't guarantee that a real 538 * function will have a non-zero address, and so it will generate code to 539 * check for !NULL, whereas comparing against a stub will be elided at compile 540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 541 */ 542 static void kvm_null_fn(void) 543 { 544 545 } 546 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 547 548 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 549 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 550 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 551 node; \ 552 node = interval_tree_iter_next(node, start, last)) \ 553 554 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 555 const struct kvm_mmu_notifier_range *range) 556 { 557 struct kvm_mmu_notifier_return r = { 558 .ret = false, 559 .found_memslot = false, 560 }; 561 struct kvm_gfn_range gfn_range; 562 struct kvm_memory_slot *slot; 563 struct kvm_memslots *slots; 564 int i, idx; 565 566 if (WARN_ON_ONCE(range->end <= range->start)) 567 return r; 568 569 /* A null handler is allowed if and only if on_lock() is provided. */ 570 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 571 IS_KVM_NULL_FN(range->handler))) 572 return r; 573 574 idx = srcu_read_lock(&kvm->srcu); 575 576 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 577 struct interval_tree_node *node; 578 579 slots = __kvm_memslots(kvm, i); 580 kvm_for_each_memslot_in_hva_range(node, slots, 581 range->start, range->end - 1) { 582 unsigned long hva_start, hva_end; 583 584 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 585 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 586 hva_end = min_t(unsigned long, range->end, 587 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 588 589 /* 590 * To optimize for the likely case where the address 591 * range is covered by zero or one memslots, don't 592 * bother making these conditional (to avoid writes on 593 * the second or later invocation of the handler). 594 */ 595 gfn_range.arg = range->arg; 596 gfn_range.may_block = range->may_block; 597 /* 598 * HVA-based notifications aren't relevant to private 599 * mappings as they don't have a userspace mapping. 600 */ 601 gfn_range.attr_filter = KVM_FILTER_SHARED; 602 603 /* 604 * {gfn(page) | page intersects with [hva_start, hva_end)} = 605 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 606 */ 607 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 608 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 609 gfn_range.slot = slot; 610 611 if (!r.found_memslot) { 612 r.found_memslot = true; 613 KVM_MMU_LOCK(kvm); 614 if (!IS_KVM_NULL_FN(range->on_lock)) 615 range->on_lock(kvm); 616 617 if (IS_KVM_NULL_FN(range->handler)) 618 goto mmu_unlock; 619 } 620 r.ret |= range->handler(kvm, &gfn_range); 621 } 622 } 623 624 if (range->flush_on_ret && r.ret) 625 kvm_flush_remote_tlbs(kvm); 626 627 mmu_unlock: 628 if (r.found_memslot) 629 KVM_MMU_UNLOCK(kvm); 630 631 srcu_read_unlock(&kvm->srcu, idx); 632 633 return r; 634 } 635 636 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 637 unsigned long start, 638 unsigned long end, 639 gfn_handler_t handler, 640 bool flush_on_ret) 641 { 642 struct kvm *kvm = mmu_notifier_to_kvm(mn); 643 const struct kvm_mmu_notifier_range range = { 644 .start = start, 645 .end = end, 646 .handler = handler, 647 .on_lock = (void *)kvm_null_fn, 648 .flush_on_ret = flush_on_ret, 649 .may_block = false, 650 }; 651 652 return __kvm_handle_hva_range(kvm, &range).ret; 653 } 654 655 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 656 unsigned long start, 657 unsigned long end, 658 gfn_handler_t handler) 659 { 660 return kvm_handle_hva_range(mn, start, end, handler, false); 661 } 662 663 void kvm_mmu_invalidate_begin(struct kvm *kvm) 664 { 665 lockdep_assert_held_write(&kvm->mmu_lock); 666 /* 667 * The count increase must become visible at unlock time as no 668 * spte can be established without taking the mmu_lock and 669 * count is also read inside the mmu_lock critical section. 670 */ 671 kvm->mmu_invalidate_in_progress++; 672 673 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 674 kvm->mmu_invalidate_range_start = INVALID_GPA; 675 kvm->mmu_invalidate_range_end = INVALID_GPA; 676 } 677 } 678 679 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 680 { 681 lockdep_assert_held_write(&kvm->mmu_lock); 682 683 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 684 685 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 686 kvm->mmu_invalidate_range_start = start; 687 kvm->mmu_invalidate_range_end = end; 688 } else { 689 /* 690 * Fully tracking multiple concurrent ranges has diminishing 691 * returns. Keep things simple and just find the minimal range 692 * which includes the current and new ranges. As there won't be 693 * enough information to subtract a range after its invalidate 694 * completes, any ranges invalidated concurrently will 695 * accumulate and persist until all outstanding invalidates 696 * complete. 697 */ 698 kvm->mmu_invalidate_range_start = 699 min(kvm->mmu_invalidate_range_start, start); 700 kvm->mmu_invalidate_range_end = 701 max(kvm->mmu_invalidate_range_end, end); 702 } 703 } 704 705 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 706 { 707 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 708 return kvm_unmap_gfn_range(kvm, range); 709 } 710 711 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 712 const struct mmu_notifier_range *range) 713 { 714 struct kvm *kvm = mmu_notifier_to_kvm(mn); 715 const struct kvm_mmu_notifier_range hva_range = { 716 .start = range->start, 717 .end = range->end, 718 .handler = kvm_mmu_unmap_gfn_range, 719 .on_lock = kvm_mmu_invalidate_begin, 720 .flush_on_ret = true, 721 .may_block = mmu_notifier_range_blockable(range), 722 }; 723 724 trace_kvm_unmap_hva_range(range->start, range->end); 725 726 /* 727 * Prevent memslot modification between range_start() and range_end() 728 * so that conditionally locking provides the same result in both 729 * functions. Without that guarantee, the mmu_invalidate_in_progress 730 * adjustments will be imbalanced. 731 * 732 * Pairs with the decrement in range_end(). 733 */ 734 spin_lock(&kvm->mn_invalidate_lock); 735 kvm->mn_active_invalidate_count++; 736 spin_unlock(&kvm->mn_invalidate_lock); 737 738 /* 739 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 740 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 741 * each cache's lock. There are relatively few caches in existence at 742 * any given time, and the caches themselves can check for hva overlap, 743 * i.e. don't need to rely on memslot overlap checks for performance. 744 * Because this runs without holding mmu_lock, the pfn caches must use 745 * mn_active_invalidate_count (see above) instead of 746 * mmu_invalidate_in_progress. 747 */ 748 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 749 750 /* 751 * If one or more memslots were found and thus zapped, notify arch code 752 * that guest memory has been reclaimed. This needs to be done *after* 753 * dropping mmu_lock, as x86's reclaim path is slooooow. 754 */ 755 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 756 kvm_arch_guest_memory_reclaimed(kvm); 757 758 return 0; 759 } 760 761 void kvm_mmu_invalidate_end(struct kvm *kvm) 762 { 763 lockdep_assert_held_write(&kvm->mmu_lock); 764 765 /* 766 * This sequence increase will notify the kvm page fault that 767 * the page that is going to be mapped in the spte could have 768 * been freed. 769 */ 770 kvm->mmu_invalidate_seq++; 771 smp_wmb(); 772 /* 773 * The above sequence increase must be visible before the 774 * below count decrease, which is ensured by the smp_wmb above 775 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 776 */ 777 kvm->mmu_invalidate_in_progress--; 778 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 779 780 /* 781 * Assert that at least one range was added between start() and end(). 782 * Not adding a range isn't fatal, but it is a KVM bug. 783 */ 784 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 785 } 786 787 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 788 const struct mmu_notifier_range *range) 789 { 790 struct kvm *kvm = mmu_notifier_to_kvm(mn); 791 const struct kvm_mmu_notifier_range hva_range = { 792 .start = range->start, 793 .end = range->end, 794 .handler = (void *)kvm_null_fn, 795 .on_lock = kvm_mmu_invalidate_end, 796 .flush_on_ret = false, 797 .may_block = mmu_notifier_range_blockable(range), 798 }; 799 bool wake; 800 801 __kvm_handle_hva_range(kvm, &hva_range); 802 803 /* Pairs with the increment in range_start(). */ 804 spin_lock(&kvm->mn_invalidate_lock); 805 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 806 --kvm->mn_active_invalidate_count; 807 wake = !kvm->mn_active_invalidate_count; 808 spin_unlock(&kvm->mn_invalidate_lock); 809 810 /* 811 * There can only be one waiter, since the wait happens under 812 * slots_lock. 813 */ 814 if (wake) 815 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 816 } 817 818 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 819 struct mm_struct *mm, 820 unsigned long start, 821 unsigned long end) 822 { 823 trace_kvm_age_hva(start, end); 824 825 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn, 826 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); 827 } 828 829 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 830 struct mm_struct *mm, 831 unsigned long start, 832 unsigned long end) 833 { 834 trace_kvm_age_hva(start, end); 835 836 /* 837 * Even though we do not flush TLB, this will still adversely 838 * affect performance on pre-Haswell Intel EPT, where there is 839 * no EPT Access Bit to clear so that we have to tear down EPT 840 * tables instead. If we find this unacceptable, we can always 841 * add a parameter to kvm_age_hva so that it effectively doesn't 842 * do anything on clear_young. 843 * 844 * Also note that currently we never issue secondary TLB flushes 845 * from clear_young, leaving this job up to the regular system 846 * cadence. If we find this inaccurate, we might come up with a 847 * more sophisticated heuristic later. 848 */ 849 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 850 } 851 852 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 853 struct mm_struct *mm, 854 unsigned long address) 855 { 856 trace_kvm_test_age_hva(address); 857 858 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 859 kvm_test_age_gfn); 860 } 861 862 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 863 struct mm_struct *mm) 864 { 865 struct kvm *kvm = mmu_notifier_to_kvm(mn); 866 int idx; 867 868 idx = srcu_read_lock(&kvm->srcu); 869 kvm_flush_shadow_all(kvm); 870 srcu_read_unlock(&kvm->srcu, idx); 871 } 872 873 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 874 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 875 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 876 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 877 .clear_young = kvm_mmu_notifier_clear_young, 878 .test_young = kvm_mmu_notifier_test_young, 879 .release = kvm_mmu_notifier_release, 880 }; 881 882 static int kvm_init_mmu_notifier(struct kvm *kvm) 883 { 884 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 885 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 886 } 887 888 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 889 890 static int kvm_init_mmu_notifier(struct kvm *kvm) 891 { 892 return 0; 893 } 894 895 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 896 897 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 898 static int kvm_pm_notifier_call(struct notifier_block *bl, 899 unsigned long state, 900 void *unused) 901 { 902 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 903 904 return kvm_arch_pm_notifier(kvm, state); 905 } 906 907 static void kvm_init_pm_notifier(struct kvm *kvm) 908 { 909 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 910 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 911 kvm->pm_notifier.priority = INT_MAX; 912 register_pm_notifier(&kvm->pm_notifier); 913 } 914 915 static void kvm_destroy_pm_notifier(struct kvm *kvm) 916 { 917 unregister_pm_notifier(&kvm->pm_notifier); 918 } 919 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 920 static void kvm_init_pm_notifier(struct kvm *kvm) 921 { 922 } 923 924 static void kvm_destroy_pm_notifier(struct kvm *kvm) 925 { 926 } 927 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 928 929 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 930 { 931 if (!memslot->dirty_bitmap) 932 return; 933 934 vfree(memslot->dirty_bitmap); 935 memslot->dirty_bitmap = NULL; 936 } 937 938 /* This does not remove the slot from struct kvm_memslots data structures */ 939 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 940 { 941 if (slot->flags & KVM_MEM_GUEST_MEMFD) 942 kvm_gmem_unbind(slot); 943 944 kvm_destroy_dirty_bitmap(slot); 945 946 kvm_arch_free_memslot(kvm, slot); 947 948 kfree(slot); 949 } 950 951 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 952 { 953 struct hlist_node *idnode; 954 struct kvm_memory_slot *memslot; 955 int bkt; 956 957 /* 958 * The same memslot objects live in both active and inactive sets, 959 * arbitrarily free using index '1' so the second invocation of this 960 * function isn't operating over a structure with dangling pointers 961 * (even though this function isn't actually touching them). 962 */ 963 if (!slots->node_idx) 964 return; 965 966 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 967 kvm_free_memslot(kvm, memslot); 968 } 969 970 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 971 { 972 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 973 case KVM_STATS_TYPE_INSTANT: 974 return 0444; 975 case KVM_STATS_TYPE_CUMULATIVE: 976 case KVM_STATS_TYPE_PEAK: 977 default: 978 return 0644; 979 } 980 } 981 982 983 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 984 { 985 int i; 986 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 987 kvm_vcpu_stats_header.num_desc; 988 989 if (IS_ERR(kvm->debugfs_dentry)) 990 return; 991 992 debugfs_remove_recursive(kvm->debugfs_dentry); 993 994 if (kvm->debugfs_stat_data) { 995 for (i = 0; i < kvm_debugfs_num_entries; i++) 996 kfree(kvm->debugfs_stat_data[i]); 997 kfree(kvm->debugfs_stat_data); 998 } 999 } 1000 1001 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1002 { 1003 static DEFINE_MUTEX(kvm_debugfs_lock); 1004 struct dentry *dent; 1005 char dir_name[ITOA_MAX_LEN * 2]; 1006 struct kvm_stat_data *stat_data; 1007 const struct _kvm_stats_desc *pdesc; 1008 int i, ret = -ENOMEM; 1009 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1010 kvm_vcpu_stats_header.num_desc; 1011 1012 if (!debugfs_initialized()) 1013 return 0; 1014 1015 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1016 mutex_lock(&kvm_debugfs_lock); 1017 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1018 if (dent) { 1019 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1020 dput(dent); 1021 mutex_unlock(&kvm_debugfs_lock); 1022 return 0; 1023 } 1024 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1025 mutex_unlock(&kvm_debugfs_lock); 1026 if (IS_ERR(dent)) 1027 return 0; 1028 1029 kvm->debugfs_dentry = dent; 1030 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1031 sizeof(*kvm->debugfs_stat_data), 1032 GFP_KERNEL_ACCOUNT); 1033 if (!kvm->debugfs_stat_data) 1034 goto out_err; 1035 1036 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1037 pdesc = &kvm_vm_stats_desc[i]; 1038 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1039 if (!stat_data) 1040 goto out_err; 1041 1042 stat_data->kvm = kvm; 1043 stat_data->desc = pdesc; 1044 stat_data->kind = KVM_STAT_VM; 1045 kvm->debugfs_stat_data[i] = stat_data; 1046 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1047 kvm->debugfs_dentry, stat_data, 1048 &stat_fops_per_vm); 1049 } 1050 1051 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1052 pdesc = &kvm_vcpu_stats_desc[i]; 1053 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1054 if (!stat_data) 1055 goto out_err; 1056 1057 stat_data->kvm = kvm; 1058 stat_data->desc = pdesc; 1059 stat_data->kind = KVM_STAT_VCPU; 1060 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1061 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1062 kvm->debugfs_dentry, stat_data, 1063 &stat_fops_per_vm); 1064 } 1065 1066 kvm_arch_create_vm_debugfs(kvm); 1067 return 0; 1068 out_err: 1069 kvm_destroy_vm_debugfs(kvm); 1070 return ret; 1071 } 1072 1073 /* 1074 * Called after the VM is otherwise initialized, but just before adding it to 1075 * the vm_list. 1076 */ 1077 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1078 { 1079 return 0; 1080 } 1081 1082 /* 1083 * Called just after removing the VM from the vm_list, but before doing any 1084 * other destruction. 1085 */ 1086 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1087 { 1088 } 1089 1090 /* 1091 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1092 * be setup already, so we can create arch-specific debugfs entries under it. 1093 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1094 * a per-arch destroy interface is not needed. 1095 */ 1096 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1097 { 1098 } 1099 1100 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1101 { 1102 struct kvm *kvm = kvm_arch_alloc_vm(); 1103 struct kvm_memslots *slots; 1104 int r, i, j; 1105 1106 if (!kvm) 1107 return ERR_PTR(-ENOMEM); 1108 1109 KVM_MMU_LOCK_INIT(kvm); 1110 mmgrab(current->mm); 1111 kvm->mm = current->mm; 1112 kvm_eventfd_init(kvm); 1113 mutex_init(&kvm->lock); 1114 mutex_init(&kvm->irq_lock); 1115 mutex_init(&kvm->slots_lock); 1116 mutex_init(&kvm->slots_arch_lock); 1117 spin_lock_init(&kvm->mn_invalidate_lock); 1118 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1119 xa_init(&kvm->vcpu_array); 1120 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1121 xa_init(&kvm->mem_attr_array); 1122 #endif 1123 1124 INIT_LIST_HEAD(&kvm->gpc_list); 1125 spin_lock_init(&kvm->gpc_lock); 1126 1127 INIT_LIST_HEAD(&kvm->devices); 1128 kvm->max_vcpus = KVM_MAX_VCPUS; 1129 1130 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1131 1132 /* 1133 * Force subsequent debugfs file creations to fail if the VM directory 1134 * is not created (by kvm_create_vm_debugfs()). 1135 */ 1136 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1137 1138 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1139 task_pid_nr(current)); 1140 1141 r = -ENOMEM; 1142 if (init_srcu_struct(&kvm->srcu)) 1143 goto out_err_no_srcu; 1144 if (init_srcu_struct(&kvm->irq_srcu)) 1145 goto out_err_no_irq_srcu; 1146 1147 r = kvm_init_irq_routing(kvm); 1148 if (r) 1149 goto out_err_no_irq_routing; 1150 1151 refcount_set(&kvm->users_count, 1); 1152 1153 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1154 for (j = 0; j < 2; j++) { 1155 slots = &kvm->__memslots[i][j]; 1156 1157 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1158 slots->hva_tree = RB_ROOT_CACHED; 1159 slots->gfn_tree = RB_ROOT; 1160 hash_init(slots->id_hash); 1161 slots->node_idx = j; 1162 1163 /* Generations must be different for each address space. */ 1164 slots->generation = i; 1165 } 1166 1167 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1168 } 1169 1170 r = -ENOMEM; 1171 for (i = 0; i < KVM_NR_BUSES; i++) { 1172 rcu_assign_pointer(kvm->buses[i], 1173 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1174 if (!kvm->buses[i]) 1175 goto out_err_no_arch_destroy_vm; 1176 } 1177 1178 r = kvm_arch_init_vm(kvm, type); 1179 if (r) 1180 goto out_err_no_arch_destroy_vm; 1181 1182 r = kvm_enable_virtualization(); 1183 if (r) 1184 goto out_err_no_disable; 1185 1186 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1187 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1188 #endif 1189 1190 r = kvm_init_mmu_notifier(kvm); 1191 if (r) 1192 goto out_err_no_mmu_notifier; 1193 1194 r = kvm_coalesced_mmio_init(kvm); 1195 if (r < 0) 1196 goto out_no_coalesced_mmio; 1197 1198 r = kvm_create_vm_debugfs(kvm, fdname); 1199 if (r) 1200 goto out_err_no_debugfs; 1201 1202 r = kvm_arch_post_init_vm(kvm); 1203 if (r) 1204 goto out_err; 1205 1206 mutex_lock(&kvm_lock); 1207 list_add(&kvm->vm_list, &vm_list); 1208 mutex_unlock(&kvm_lock); 1209 1210 preempt_notifier_inc(); 1211 kvm_init_pm_notifier(kvm); 1212 1213 return kvm; 1214 1215 out_err: 1216 kvm_destroy_vm_debugfs(kvm); 1217 out_err_no_debugfs: 1218 kvm_coalesced_mmio_free(kvm); 1219 out_no_coalesced_mmio: 1220 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1221 if (kvm->mmu_notifier.ops) 1222 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1223 #endif 1224 out_err_no_mmu_notifier: 1225 kvm_disable_virtualization(); 1226 out_err_no_disable: 1227 kvm_arch_destroy_vm(kvm); 1228 out_err_no_arch_destroy_vm: 1229 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1230 for (i = 0; i < KVM_NR_BUSES; i++) 1231 kfree(kvm_get_bus(kvm, i)); 1232 kvm_free_irq_routing(kvm); 1233 out_err_no_irq_routing: 1234 cleanup_srcu_struct(&kvm->irq_srcu); 1235 out_err_no_irq_srcu: 1236 cleanup_srcu_struct(&kvm->srcu); 1237 out_err_no_srcu: 1238 kvm_arch_free_vm(kvm); 1239 mmdrop(current->mm); 1240 return ERR_PTR(r); 1241 } 1242 1243 static void kvm_destroy_devices(struct kvm *kvm) 1244 { 1245 struct kvm_device *dev, *tmp; 1246 1247 /* 1248 * We do not need to take the kvm->lock here, because nobody else 1249 * has a reference to the struct kvm at this point and therefore 1250 * cannot access the devices list anyhow. 1251 * 1252 * The device list is generally managed as an rculist, but list_del() 1253 * is used intentionally here. If a bug in KVM introduced a reader that 1254 * was not backed by a reference on the kvm struct, the hope is that 1255 * it'd consume the poisoned forward pointer instead of suffering a 1256 * use-after-free, even though this cannot be guaranteed. 1257 */ 1258 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1259 list_del(&dev->vm_node); 1260 dev->ops->destroy(dev); 1261 } 1262 } 1263 1264 static void kvm_destroy_vm(struct kvm *kvm) 1265 { 1266 int i; 1267 struct mm_struct *mm = kvm->mm; 1268 1269 kvm_destroy_pm_notifier(kvm); 1270 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1271 kvm_destroy_vm_debugfs(kvm); 1272 kvm_arch_sync_events(kvm); 1273 mutex_lock(&kvm_lock); 1274 list_del(&kvm->vm_list); 1275 mutex_unlock(&kvm_lock); 1276 kvm_arch_pre_destroy_vm(kvm); 1277 1278 kvm_free_irq_routing(kvm); 1279 for (i = 0; i < KVM_NR_BUSES; i++) { 1280 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1281 1282 if (bus) 1283 kvm_io_bus_destroy(bus); 1284 kvm->buses[i] = NULL; 1285 } 1286 kvm_coalesced_mmio_free(kvm); 1287 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1288 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1289 /* 1290 * At this point, pending calls to invalidate_range_start() 1291 * have completed but no more MMU notifiers will run, so 1292 * mn_active_invalidate_count may remain unbalanced. 1293 * No threads can be waiting in kvm_swap_active_memslots() as the 1294 * last reference on KVM has been dropped, but freeing 1295 * memslots would deadlock without this manual intervention. 1296 * 1297 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1298 * notifier between a start() and end(), then there shouldn't be any 1299 * in-progress invalidations. 1300 */ 1301 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1302 if (kvm->mn_active_invalidate_count) 1303 kvm->mn_active_invalidate_count = 0; 1304 else 1305 WARN_ON(kvm->mmu_invalidate_in_progress); 1306 #else 1307 kvm_flush_shadow_all(kvm); 1308 #endif 1309 kvm_arch_destroy_vm(kvm); 1310 kvm_destroy_devices(kvm); 1311 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1312 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1313 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1314 } 1315 cleanup_srcu_struct(&kvm->irq_srcu); 1316 cleanup_srcu_struct(&kvm->srcu); 1317 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1318 xa_destroy(&kvm->mem_attr_array); 1319 #endif 1320 kvm_arch_free_vm(kvm); 1321 preempt_notifier_dec(); 1322 kvm_disable_virtualization(); 1323 mmdrop(mm); 1324 } 1325 1326 void kvm_get_kvm(struct kvm *kvm) 1327 { 1328 refcount_inc(&kvm->users_count); 1329 } 1330 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1331 1332 /* 1333 * Make sure the vm is not during destruction, which is a safe version of 1334 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1335 */ 1336 bool kvm_get_kvm_safe(struct kvm *kvm) 1337 { 1338 return refcount_inc_not_zero(&kvm->users_count); 1339 } 1340 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1341 1342 void kvm_put_kvm(struct kvm *kvm) 1343 { 1344 if (refcount_dec_and_test(&kvm->users_count)) 1345 kvm_destroy_vm(kvm); 1346 } 1347 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1348 1349 /* 1350 * Used to put a reference that was taken on behalf of an object associated 1351 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1352 * of the new file descriptor fails and the reference cannot be transferred to 1353 * its final owner. In such cases, the caller is still actively using @kvm and 1354 * will fail miserably if the refcount unexpectedly hits zero. 1355 */ 1356 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1357 { 1358 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1359 } 1360 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1361 1362 static int kvm_vm_release(struct inode *inode, struct file *filp) 1363 { 1364 struct kvm *kvm = filp->private_data; 1365 1366 kvm_irqfd_release(kvm); 1367 1368 kvm_put_kvm(kvm); 1369 return 0; 1370 } 1371 1372 /* 1373 * Allocation size is twice as large as the actual dirty bitmap size. 1374 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1375 */ 1376 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1377 { 1378 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1379 1380 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1381 if (!memslot->dirty_bitmap) 1382 return -ENOMEM; 1383 1384 return 0; 1385 } 1386 1387 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1388 { 1389 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1390 int node_idx_inactive = active->node_idx ^ 1; 1391 1392 return &kvm->__memslots[as_id][node_idx_inactive]; 1393 } 1394 1395 /* 1396 * Helper to get the address space ID when one of memslot pointers may be NULL. 1397 * This also serves as a sanity that at least one of the pointers is non-NULL, 1398 * and that their address space IDs don't diverge. 1399 */ 1400 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1401 struct kvm_memory_slot *b) 1402 { 1403 if (WARN_ON_ONCE(!a && !b)) 1404 return 0; 1405 1406 if (!a) 1407 return b->as_id; 1408 if (!b) 1409 return a->as_id; 1410 1411 WARN_ON_ONCE(a->as_id != b->as_id); 1412 return a->as_id; 1413 } 1414 1415 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1416 struct kvm_memory_slot *slot) 1417 { 1418 struct rb_root *gfn_tree = &slots->gfn_tree; 1419 struct rb_node **node, *parent; 1420 int idx = slots->node_idx; 1421 1422 parent = NULL; 1423 for (node = &gfn_tree->rb_node; *node; ) { 1424 struct kvm_memory_slot *tmp; 1425 1426 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1427 parent = *node; 1428 if (slot->base_gfn < tmp->base_gfn) 1429 node = &(*node)->rb_left; 1430 else if (slot->base_gfn > tmp->base_gfn) 1431 node = &(*node)->rb_right; 1432 else 1433 BUG(); 1434 } 1435 1436 rb_link_node(&slot->gfn_node[idx], parent, node); 1437 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1438 } 1439 1440 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1441 struct kvm_memory_slot *slot) 1442 { 1443 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1444 } 1445 1446 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1447 struct kvm_memory_slot *old, 1448 struct kvm_memory_slot *new) 1449 { 1450 int idx = slots->node_idx; 1451 1452 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1453 1454 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1455 &slots->gfn_tree); 1456 } 1457 1458 /* 1459 * Replace @old with @new in the inactive memslots. 1460 * 1461 * With NULL @old this simply adds @new. 1462 * With NULL @new this simply removes @old. 1463 * 1464 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1465 * appropriately. 1466 */ 1467 static void kvm_replace_memslot(struct kvm *kvm, 1468 struct kvm_memory_slot *old, 1469 struct kvm_memory_slot *new) 1470 { 1471 int as_id = kvm_memslots_get_as_id(old, new); 1472 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1473 int idx = slots->node_idx; 1474 1475 if (old) { 1476 hash_del(&old->id_node[idx]); 1477 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1478 1479 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1480 atomic_long_set(&slots->last_used_slot, (long)new); 1481 1482 if (!new) { 1483 kvm_erase_gfn_node(slots, old); 1484 return; 1485 } 1486 } 1487 1488 /* 1489 * Initialize @new's hva range. Do this even when replacing an @old 1490 * slot, kvm_copy_memslot() deliberately does not touch node data. 1491 */ 1492 new->hva_node[idx].start = new->userspace_addr; 1493 new->hva_node[idx].last = new->userspace_addr + 1494 (new->npages << PAGE_SHIFT) - 1; 1495 1496 /* 1497 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1498 * hva_node needs to be swapped with remove+insert even though hva can't 1499 * change when replacing an existing slot. 1500 */ 1501 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1502 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1503 1504 /* 1505 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1506 * switch the node in the gfn tree instead of removing the old and 1507 * inserting the new as two separate operations. Replacement is a 1508 * single O(1) operation versus two O(log(n)) operations for 1509 * remove+insert. 1510 */ 1511 if (old && old->base_gfn == new->base_gfn) { 1512 kvm_replace_gfn_node(slots, old, new); 1513 } else { 1514 if (old) 1515 kvm_erase_gfn_node(slots, old); 1516 kvm_insert_gfn_node(slots, new); 1517 } 1518 } 1519 1520 /* 1521 * Flags that do not access any of the extra space of struct 1522 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1523 * only allows these. 1524 */ 1525 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1526 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1527 1528 static int check_memory_region_flags(struct kvm *kvm, 1529 const struct kvm_userspace_memory_region2 *mem) 1530 { 1531 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1532 1533 if (kvm_arch_has_private_mem(kvm)) 1534 valid_flags |= KVM_MEM_GUEST_MEMFD; 1535 1536 /* Dirty logging private memory is not currently supported. */ 1537 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1538 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1539 1540 /* 1541 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1542 * read-only memslots have emulated MMIO, not page fault, semantics, 1543 * and KVM doesn't allow emulated MMIO for private memory. 1544 */ 1545 if (kvm_arch_has_readonly_mem(kvm) && 1546 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1547 valid_flags |= KVM_MEM_READONLY; 1548 1549 if (mem->flags & ~valid_flags) 1550 return -EINVAL; 1551 1552 return 0; 1553 } 1554 1555 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1556 { 1557 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1558 1559 /* Grab the generation from the activate memslots. */ 1560 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1561 1562 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1563 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1564 1565 /* 1566 * Do not store the new memslots while there are invalidations in 1567 * progress, otherwise the locking in invalidate_range_start and 1568 * invalidate_range_end will be unbalanced. 1569 */ 1570 spin_lock(&kvm->mn_invalidate_lock); 1571 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1572 while (kvm->mn_active_invalidate_count) { 1573 set_current_state(TASK_UNINTERRUPTIBLE); 1574 spin_unlock(&kvm->mn_invalidate_lock); 1575 schedule(); 1576 spin_lock(&kvm->mn_invalidate_lock); 1577 } 1578 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1579 rcu_assign_pointer(kvm->memslots[as_id], slots); 1580 spin_unlock(&kvm->mn_invalidate_lock); 1581 1582 /* 1583 * Acquired in kvm_set_memslot. Must be released before synchronize 1584 * SRCU below in order to avoid deadlock with another thread 1585 * acquiring the slots_arch_lock in an srcu critical section. 1586 */ 1587 mutex_unlock(&kvm->slots_arch_lock); 1588 1589 synchronize_srcu_expedited(&kvm->srcu); 1590 1591 /* 1592 * Increment the new memslot generation a second time, dropping the 1593 * update in-progress flag and incrementing the generation based on 1594 * the number of address spaces. This provides a unique and easily 1595 * identifiable generation number while the memslots are in flux. 1596 */ 1597 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1598 1599 /* 1600 * Generations must be unique even across address spaces. We do not need 1601 * a global counter for that, instead the generation space is evenly split 1602 * across address spaces. For example, with two address spaces, address 1603 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1604 * use generations 1, 3, 5, ... 1605 */ 1606 gen += kvm_arch_nr_memslot_as_ids(kvm); 1607 1608 kvm_arch_memslots_updated(kvm, gen); 1609 1610 slots->generation = gen; 1611 } 1612 1613 static int kvm_prepare_memory_region(struct kvm *kvm, 1614 const struct kvm_memory_slot *old, 1615 struct kvm_memory_slot *new, 1616 enum kvm_mr_change change) 1617 { 1618 int r; 1619 1620 /* 1621 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1622 * will be freed on "commit". If logging is enabled in both old and 1623 * new, reuse the existing bitmap. If logging is enabled only in the 1624 * new and KVM isn't using a ring buffer, allocate and initialize a 1625 * new bitmap. 1626 */ 1627 if (change != KVM_MR_DELETE) { 1628 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1629 new->dirty_bitmap = NULL; 1630 else if (old && old->dirty_bitmap) 1631 new->dirty_bitmap = old->dirty_bitmap; 1632 else if (kvm_use_dirty_bitmap(kvm)) { 1633 r = kvm_alloc_dirty_bitmap(new); 1634 if (r) 1635 return r; 1636 1637 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1638 bitmap_set(new->dirty_bitmap, 0, new->npages); 1639 } 1640 } 1641 1642 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1643 1644 /* Free the bitmap on failure if it was allocated above. */ 1645 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1646 kvm_destroy_dirty_bitmap(new); 1647 1648 return r; 1649 } 1650 1651 static void kvm_commit_memory_region(struct kvm *kvm, 1652 struct kvm_memory_slot *old, 1653 const struct kvm_memory_slot *new, 1654 enum kvm_mr_change change) 1655 { 1656 int old_flags = old ? old->flags : 0; 1657 int new_flags = new ? new->flags : 0; 1658 /* 1659 * Update the total number of memslot pages before calling the arch 1660 * hook so that architectures can consume the result directly. 1661 */ 1662 if (change == KVM_MR_DELETE) 1663 kvm->nr_memslot_pages -= old->npages; 1664 else if (change == KVM_MR_CREATE) 1665 kvm->nr_memslot_pages += new->npages; 1666 1667 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1668 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1669 atomic_set(&kvm->nr_memslots_dirty_logging, 1670 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1671 } 1672 1673 kvm_arch_commit_memory_region(kvm, old, new, change); 1674 1675 switch (change) { 1676 case KVM_MR_CREATE: 1677 /* Nothing more to do. */ 1678 break; 1679 case KVM_MR_DELETE: 1680 /* Free the old memslot and all its metadata. */ 1681 kvm_free_memslot(kvm, old); 1682 break; 1683 case KVM_MR_MOVE: 1684 case KVM_MR_FLAGS_ONLY: 1685 /* 1686 * Free the dirty bitmap as needed; the below check encompasses 1687 * both the flags and whether a ring buffer is being used) 1688 */ 1689 if (old->dirty_bitmap && !new->dirty_bitmap) 1690 kvm_destroy_dirty_bitmap(old); 1691 1692 /* 1693 * The final quirk. Free the detached, old slot, but only its 1694 * memory, not any metadata. Metadata, including arch specific 1695 * data, may be reused by @new. 1696 */ 1697 kfree(old); 1698 break; 1699 default: 1700 BUG(); 1701 } 1702 } 1703 1704 /* 1705 * Activate @new, which must be installed in the inactive slots by the caller, 1706 * by swapping the active slots and then propagating @new to @old once @old is 1707 * unreachable and can be safely modified. 1708 * 1709 * With NULL @old this simply adds @new to @active (while swapping the sets). 1710 * With NULL @new this simply removes @old from @active and frees it 1711 * (while also swapping the sets). 1712 */ 1713 static void kvm_activate_memslot(struct kvm *kvm, 1714 struct kvm_memory_slot *old, 1715 struct kvm_memory_slot *new) 1716 { 1717 int as_id = kvm_memslots_get_as_id(old, new); 1718 1719 kvm_swap_active_memslots(kvm, as_id); 1720 1721 /* Propagate the new memslot to the now inactive memslots. */ 1722 kvm_replace_memslot(kvm, old, new); 1723 } 1724 1725 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1726 const struct kvm_memory_slot *src) 1727 { 1728 dest->base_gfn = src->base_gfn; 1729 dest->npages = src->npages; 1730 dest->dirty_bitmap = src->dirty_bitmap; 1731 dest->arch = src->arch; 1732 dest->userspace_addr = src->userspace_addr; 1733 dest->flags = src->flags; 1734 dest->id = src->id; 1735 dest->as_id = src->as_id; 1736 } 1737 1738 static void kvm_invalidate_memslot(struct kvm *kvm, 1739 struct kvm_memory_slot *old, 1740 struct kvm_memory_slot *invalid_slot) 1741 { 1742 /* 1743 * Mark the current slot INVALID. As with all memslot modifications, 1744 * this must be done on an unreachable slot to avoid modifying the 1745 * current slot in the active tree. 1746 */ 1747 kvm_copy_memslot(invalid_slot, old); 1748 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1749 kvm_replace_memslot(kvm, old, invalid_slot); 1750 1751 /* 1752 * Activate the slot that is now marked INVALID, but don't propagate 1753 * the slot to the now inactive slots. The slot is either going to be 1754 * deleted or recreated as a new slot. 1755 */ 1756 kvm_swap_active_memslots(kvm, old->as_id); 1757 1758 /* 1759 * From this point no new shadow pages pointing to a deleted, or moved, 1760 * memslot will be created. Validation of sp->gfn happens in: 1761 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1762 * - kvm_is_visible_gfn (mmu_check_root) 1763 */ 1764 kvm_arch_flush_shadow_memslot(kvm, old); 1765 kvm_arch_guest_memory_reclaimed(kvm); 1766 1767 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1768 mutex_lock(&kvm->slots_arch_lock); 1769 1770 /* 1771 * Copy the arch-specific field of the newly-installed slot back to the 1772 * old slot as the arch data could have changed between releasing 1773 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1774 * above. Writers are required to retrieve memslots *after* acquiring 1775 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1776 */ 1777 old->arch = invalid_slot->arch; 1778 } 1779 1780 static void kvm_create_memslot(struct kvm *kvm, 1781 struct kvm_memory_slot *new) 1782 { 1783 /* Add the new memslot to the inactive set and activate. */ 1784 kvm_replace_memslot(kvm, NULL, new); 1785 kvm_activate_memslot(kvm, NULL, new); 1786 } 1787 1788 static void kvm_delete_memslot(struct kvm *kvm, 1789 struct kvm_memory_slot *old, 1790 struct kvm_memory_slot *invalid_slot) 1791 { 1792 /* 1793 * Remove the old memslot (in the inactive memslots) by passing NULL as 1794 * the "new" slot, and for the invalid version in the active slots. 1795 */ 1796 kvm_replace_memslot(kvm, old, NULL); 1797 kvm_activate_memslot(kvm, invalid_slot, NULL); 1798 } 1799 1800 static void kvm_move_memslot(struct kvm *kvm, 1801 struct kvm_memory_slot *old, 1802 struct kvm_memory_slot *new, 1803 struct kvm_memory_slot *invalid_slot) 1804 { 1805 /* 1806 * Replace the old memslot in the inactive slots, and then swap slots 1807 * and replace the current INVALID with the new as well. 1808 */ 1809 kvm_replace_memslot(kvm, old, new); 1810 kvm_activate_memslot(kvm, invalid_slot, new); 1811 } 1812 1813 static void kvm_update_flags_memslot(struct kvm *kvm, 1814 struct kvm_memory_slot *old, 1815 struct kvm_memory_slot *new) 1816 { 1817 /* 1818 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1819 * an intermediate step. Instead, the old memslot is simply replaced 1820 * with a new, updated copy in both memslot sets. 1821 */ 1822 kvm_replace_memslot(kvm, old, new); 1823 kvm_activate_memslot(kvm, old, new); 1824 } 1825 1826 static int kvm_set_memslot(struct kvm *kvm, 1827 struct kvm_memory_slot *old, 1828 struct kvm_memory_slot *new, 1829 enum kvm_mr_change change) 1830 { 1831 struct kvm_memory_slot *invalid_slot; 1832 int r; 1833 1834 /* 1835 * Released in kvm_swap_active_memslots(). 1836 * 1837 * Must be held from before the current memslots are copied until after 1838 * the new memslots are installed with rcu_assign_pointer, then 1839 * released before the synchronize srcu in kvm_swap_active_memslots(). 1840 * 1841 * When modifying memslots outside of the slots_lock, must be held 1842 * before reading the pointer to the current memslots until after all 1843 * changes to those memslots are complete. 1844 * 1845 * These rules ensure that installing new memslots does not lose 1846 * changes made to the previous memslots. 1847 */ 1848 mutex_lock(&kvm->slots_arch_lock); 1849 1850 /* 1851 * Invalidate the old slot if it's being deleted or moved. This is 1852 * done prior to actually deleting/moving the memslot to allow vCPUs to 1853 * continue running by ensuring there are no mappings or shadow pages 1854 * for the memslot when it is deleted/moved. Without pre-invalidation 1855 * (and without a lock), a window would exist between effecting the 1856 * delete/move and committing the changes in arch code where KVM or a 1857 * guest could access a non-existent memslot. 1858 * 1859 * Modifications are done on a temporary, unreachable slot. The old 1860 * slot needs to be preserved in case a later step fails and the 1861 * invalidation needs to be reverted. 1862 */ 1863 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1864 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1865 if (!invalid_slot) { 1866 mutex_unlock(&kvm->slots_arch_lock); 1867 return -ENOMEM; 1868 } 1869 kvm_invalidate_memslot(kvm, old, invalid_slot); 1870 } 1871 1872 r = kvm_prepare_memory_region(kvm, old, new, change); 1873 if (r) { 1874 /* 1875 * For DELETE/MOVE, revert the above INVALID change. No 1876 * modifications required since the original slot was preserved 1877 * in the inactive slots. Changing the active memslots also 1878 * release slots_arch_lock. 1879 */ 1880 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1881 kvm_activate_memslot(kvm, invalid_slot, old); 1882 kfree(invalid_slot); 1883 } else { 1884 mutex_unlock(&kvm->slots_arch_lock); 1885 } 1886 return r; 1887 } 1888 1889 /* 1890 * For DELETE and MOVE, the working slot is now active as the INVALID 1891 * version of the old slot. MOVE is particularly special as it reuses 1892 * the old slot and returns a copy of the old slot (in working_slot). 1893 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1894 * old slot is detached but otherwise preserved. 1895 */ 1896 if (change == KVM_MR_CREATE) 1897 kvm_create_memslot(kvm, new); 1898 else if (change == KVM_MR_DELETE) 1899 kvm_delete_memslot(kvm, old, invalid_slot); 1900 else if (change == KVM_MR_MOVE) 1901 kvm_move_memslot(kvm, old, new, invalid_slot); 1902 else if (change == KVM_MR_FLAGS_ONLY) 1903 kvm_update_flags_memslot(kvm, old, new); 1904 else 1905 BUG(); 1906 1907 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1908 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1909 kfree(invalid_slot); 1910 1911 /* 1912 * No need to refresh new->arch, changes after dropping slots_arch_lock 1913 * will directly hit the final, active memslot. Architectures are 1914 * responsible for knowing that new->arch may be stale. 1915 */ 1916 kvm_commit_memory_region(kvm, old, new, change); 1917 1918 return 0; 1919 } 1920 1921 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1922 gfn_t start, gfn_t end) 1923 { 1924 struct kvm_memslot_iter iter; 1925 1926 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1927 if (iter.slot->id != id) 1928 return true; 1929 } 1930 1931 return false; 1932 } 1933 1934 static int kvm_set_memory_region(struct kvm *kvm, 1935 const struct kvm_userspace_memory_region2 *mem) 1936 { 1937 struct kvm_memory_slot *old, *new; 1938 struct kvm_memslots *slots; 1939 enum kvm_mr_change change; 1940 unsigned long npages; 1941 gfn_t base_gfn; 1942 int as_id, id; 1943 int r; 1944 1945 lockdep_assert_held(&kvm->slots_lock); 1946 1947 r = check_memory_region_flags(kvm, mem); 1948 if (r) 1949 return r; 1950 1951 as_id = mem->slot >> 16; 1952 id = (u16)mem->slot; 1953 1954 /* General sanity checks */ 1955 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1956 (mem->memory_size != (unsigned long)mem->memory_size)) 1957 return -EINVAL; 1958 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1959 return -EINVAL; 1960 /* We can read the guest memory with __xxx_user() later on. */ 1961 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1962 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1963 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1964 mem->memory_size)) 1965 return -EINVAL; 1966 if (mem->flags & KVM_MEM_GUEST_MEMFD && 1967 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 1968 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 1969 return -EINVAL; 1970 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 1971 return -EINVAL; 1972 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1973 return -EINVAL; 1974 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1975 return -EINVAL; 1976 1977 slots = __kvm_memslots(kvm, as_id); 1978 1979 /* 1980 * Note, the old memslot (and the pointer itself!) may be invalidated 1981 * and/or destroyed by kvm_set_memslot(). 1982 */ 1983 old = id_to_memslot(slots, id); 1984 1985 if (!mem->memory_size) { 1986 if (!old || !old->npages) 1987 return -EINVAL; 1988 1989 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1990 return -EIO; 1991 1992 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1993 } 1994 1995 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1996 npages = (mem->memory_size >> PAGE_SHIFT); 1997 1998 if (!old || !old->npages) { 1999 change = KVM_MR_CREATE; 2000 2001 /* 2002 * To simplify KVM internals, the total number of pages across 2003 * all memslots must fit in an unsigned long. 2004 */ 2005 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2006 return -EINVAL; 2007 } else { /* Modify an existing slot. */ 2008 /* Private memslots are immutable, they can only be deleted. */ 2009 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2010 return -EINVAL; 2011 if ((mem->userspace_addr != old->userspace_addr) || 2012 (npages != old->npages) || 2013 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2014 return -EINVAL; 2015 2016 if (base_gfn != old->base_gfn) 2017 change = KVM_MR_MOVE; 2018 else if (mem->flags != old->flags) 2019 change = KVM_MR_FLAGS_ONLY; 2020 else /* Nothing to change. */ 2021 return 0; 2022 } 2023 2024 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2025 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2026 return -EEXIST; 2027 2028 /* Allocate a slot that will persist in the memslot. */ 2029 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2030 if (!new) 2031 return -ENOMEM; 2032 2033 new->as_id = as_id; 2034 new->id = id; 2035 new->base_gfn = base_gfn; 2036 new->npages = npages; 2037 new->flags = mem->flags; 2038 new->userspace_addr = mem->userspace_addr; 2039 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2040 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2041 if (r) 2042 goto out; 2043 } 2044 2045 r = kvm_set_memslot(kvm, old, new, change); 2046 if (r) 2047 goto out_unbind; 2048 2049 return 0; 2050 2051 out_unbind: 2052 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2053 kvm_gmem_unbind(new); 2054 out: 2055 kfree(new); 2056 return r; 2057 } 2058 2059 int kvm_set_internal_memslot(struct kvm *kvm, 2060 const struct kvm_userspace_memory_region2 *mem) 2061 { 2062 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS)) 2063 return -EINVAL; 2064 2065 if (WARN_ON_ONCE(mem->flags)) 2066 return -EINVAL; 2067 2068 return kvm_set_memory_region(kvm, mem); 2069 } 2070 EXPORT_SYMBOL_GPL(kvm_set_internal_memslot); 2071 2072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2073 struct kvm_userspace_memory_region2 *mem) 2074 { 2075 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2076 return -EINVAL; 2077 2078 guard(mutex)(&kvm->slots_lock); 2079 return kvm_set_memory_region(kvm, mem); 2080 } 2081 2082 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2083 /** 2084 * kvm_get_dirty_log - get a snapshot of dirty pages 2085 * @kvm: pointer to kvm instance 2086 * @log: slot id and address to which we copy the log 2087 * @is_dirty: set to '1' if any dirty pages were found 2088 * @memslot: set to the associated memslot, always valid on success 2089 */ 2090 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2091 int *is_dirty, struct kvm_memory_slot **memslot) 2092 { 2093 struct kvm_memslots *slots; 2094 int i, as_id, id; 2095 unsigned long n; 2096 unsigned long any = 0; 2097 2098 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2099 if (!kvm_use_dirty_bitmap(kvm)) 2100 return -ENXIO; 2101 2102 *memslot = NULL; 2103 *is_dirty = 0; 2104 2105 as_id = log->slot >> 16; 2106 id = (u16)log->slot; 2107 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2108 return -EINVAL; 2109 2110 slots = __kvm_memslots(kvm, as_id); 2111 *memslot = id_to_memslot(slots, id); 2112 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2113 return -ENOENT; 2114 2115 kvm_arch_sync_dirty_log(kvm, *memslot); 2116 2117 n = kvm_dirty_bitmap_bytes(*memslot); 2118 2119 for (i = 0; !any && i < n/sizeof(long); ++i) 2120 any = (*memslot)->dirty_bitmap[i]; 2121 2122 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2123 return -EFAULT; 2124 2125 if (any) 2126 *is_dirty = 1; 2127 return 0; 2128 } 2129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2130 2131 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2132 /** 2133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2134 * and reenable dirty page tracking for the corresponding pages. 2135 * @kvm: pointer to kvm instance 2136 * @log: slot id and address to which we copy the log 2137 * 2138 * We need to keep it in mind that VCPU threads can write to the bitmap 2139 * concurrently. So, to avoid losing track of dirty pages we keep the 2140 * following order: 2141 * 2142 * 1. Take a snapshot of the bit and clear it if needed. 2143 * 2. Write protect the corresponding page. 2144 * 3. Copy the snapshot to the userspace. 2145 * 4. Upon return caller flushes TLB's if needed. 2146 * 2147 * Between 2 and 4, the guest may write to the page using the remaining TLB 2148 * entry. This is not a problem because the page is reported dirty using 2149 * the snapshot taken before and step 4 ensures that writes done after 2150 * exiting to userspace will be logged for the next call. 2151 * 2152 */ 2153 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2154 { 2155 struct kvm_memslots *slots; 2156 struct kvm_memory_slot *memslot; 2157 int i, as_id, id; 2158 unsigned long n; 2159 unsigned long *dirty_bitmap; 2160 unsigned long *dirty_bitmap_buffer; 2161 bool flush; 2162 2163 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2164 if (!kvm_use_dirty_bitmap(kvm)) 2165 return -ENXIO; 2166 2167 as_id = log->slot >> 16; 2168 id = (u16)log->slot; 2169 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2170 return -EINVAL; 2171 2172 slots = __kvm_memslots(kvm, as_id); 2173 memslot = id_to_memslot(slots, id); 2174 if (!memslot || !memslot->dirty_bitmap) 2175 return -ENOENT; 2176 2177 dirty_bitmap = memslot->dirty_bitmap; 2178 2179 kvm_arch_sync_dirty_log(kvm, memslot); 2180 2181 n = kvm_dirty_bitmap_bytes(memslot); 2182 flush = false; 2183 if (kvm->manual_dirty_log_protect) { 2184 /* 2185 * Unlike kvm_get_dirty_log, we always return false in *flush, 2186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2187 * is some code duplication between this function and 2188 * kvm_get_dirty_log, but hopefully all architecture 2189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2190 * can be eliminated. 2191 */ 2192 dirty_bitmap_buffer = dirty_bitmap; 2193 } else { 2194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2195 memset(dirty_bitmap_buffer, 0, n); 2196 2197 KVM_MMU_LOCK(kvm); 2198 for (i = 0; i < n / sizeof(long); i++) { 2199 unsigned long mask; 2200 gfn_t offset; 2201 2202 if (!dirty_bitmap[i]) 2203 continue; 2204 2205 flush = true; 2206 mask = xchg(&dirty_bitmap[i], 0); 2207 dirty_bitmap_buffer[i] = mask; 2208 2209 offset = i * BITS_PER_LONG; 2210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2211 offset, mask); 2212 } 2213 KVM_MMU_UNLOCK(kvm); 2214 } 2215 2216 if (flush) 2217 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2218 2219 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2220 return -EFAULT; 2221 return 0; 2222 } 2223 2224 2225 /** 2226 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2227 * @kvm: kvm instance 2228 * @log: slot id and address to which we copy the log 2229 * 2230 * Steps 1-4 below provide general overview of dirty page logging. See 2231 * kvm_get_dirty_log_protect() function description for additional details. 2232 * 2233 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2234 * always flush the TLB (step 4) even if previous step failed and the dirty 2235 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2236 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2237 * writes will be marked dirty for next log read. 2238 * 2239 * 1. Take a snapshot of the bit and clear it if needed. 2240 * 2. Write protect the corresponding page. 2241 * 3. Copy the snapshot to the userspace. 2242 * 4. Flush TLB's if needed. 2243 */ 2244 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2245 struct kvm_dirty_log *log) 2246 { 2247 int r; 2248 2249 mutex_lock(&kvm->slots_lock); 2250 2251 r = kvm_get_dirty_log_protect(kvm, log); 2252 2253 mutex_unlock(&kvm->slots_lock); 2254 return r; 2255 } 2256 2257 /** 2258 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2259 * and reenable dirty page tracking for the corresponding pages. 2260 * @kvm: pointer to kvm instance 2261 * @log: slot id and address from which to fetch the bitmap of dirty pages 2262 */ 2263 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2264 struct kvm_clear_dirty_log *log) 2265 { 2266 struct kvm_memslots *slots; 2267 struct kvm_memory_slot *memslot; 2268 int as_id, id; 2269 gfn_t offset; 2270 unsigned long i, n; 2271 unsigned long *dirty_bitmap; 2272 unsigned long *dirty_bitmap_buffer; 2273 bool flush; 2274 2275 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2276 if (!kvm_use_dirty_bitmap(kvm)) 2277 return -ENXIO; 2278 2279 as_id = log->slot >> 16; 2280 id = (u16)log->slot; 2281 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2282 return -EINVAL; 2283 2284 if (log->first_page & 63) 2285 return -EINVAL; 2286 2287 slots = __kvm_memslots(kvm, as_id); 2288 memslot = id_to_memslot(slots, id); 2289 if (!memslot || !memslot->dirty_bitmap) 2290 return -ENOENT; 2291 2292 dirty_bitmap = memslot->dirty_bitmap; 2293 2294 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2295 2296 if (log->first_page > memslot->npages || 2297 log->num_pages > memslot->npages - log->first_page || 2298 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2299 return -EINVAL; 2300 2301 kvm_arch_sync_dirty_log(kvm, memslot); 2302 2303 flush = false; 2304 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2305 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2306 return -EFAULT; 2307 2308 KVM_MMU_LOCK(kvm); 2309 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2310 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2311 i++, offset += BITS_PER_LONG) { 2312 unsigned long mask = *dirty_bitmap_buffer++; 2313 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2314 if (!mask) 2315 continue; 2316 2317 mask &= atomic_long_fetch_andnot(mask, p); 2318 2319 /* 2320 * mask contains the bits that really have been cleared. This 2321 * never includes any bits beyond the length of the memslot (if 2322 * the length is not aligned to 64 pages), therefore it is not 2323 * a problem if userspace sets them in log->dirty_bitmap. 2324 */ 2325 if (mask) { 2326 flush = true; 2327 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2328 offset, mask); 2329 } 2330 } 2331 KVM_MMU_UNLOCK(kvm); 2332 2333 if (flush) 2334 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2335 2336 return 0; 2337 } 2338 2339 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2340 struct kvm_clear_dirty_log *log) 2341 { 2342 int r; 2343 2344 mutex_lock(&kvm->slots_lock); 2345 2346 r = kvm_clear_dirty_log_protect(kvm, log); 2347 2348 mutex_unlock(&kvm->slots_lock); 2349 return r; 2350 } 2351 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2352 2353 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2354 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2355 { 2356 if (!kvm || kvm_arch_has_private_mem(kvm)) 2357 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2358 2359 return 0; 2360 } 2361 2362 /* 2363 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2364 * such that the bits in @mask match @attrs. 2365 */ 2366 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2367 unsigned long mask, unsigned long attrs) 2368 { 2369 XA_STATE(xas, &kvm->mem_attr_array, start); 2370 unsigned long index; 2371 void *entry; 2372 2373 mask &= kvm_supported_mem_attributes(kvm); 2374 if (attrs & ~mask) 2375 return false; 2376 2377 if (end == start + 1) 2378 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2379 2380 guard(rcu)(); 2381 if (!attrs) 2382 return !xas_find(&xas, end - 1); 2383 2384 for (index = start; index < end; index++) { 2385 do { 2386 entry = xas_next(&xas); 2387 } while (xas_retry(&xas, entry)); 2388 2389 if (xas.xa_index != index || 2390 (xa_to_value(entry) & mask) != attrs) 2391 return false; 2392 } 2393 2394 return true; 2395 } 2396 2397 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2398 struct kvm_mmu_notifier_range *range) 2399 { 2400 struct kvm_gfn_range gfn_range; 2401 struct kvm_memory_slot *slot; 2402 struct kvm_memslots *slots; 2403 struct kvm_memslot_iter iter; 2404 bool found_memslot = false; 2405 bool ret = false; 2406 int i; 2407 2408 gfn_range.arg = range->arg; 2409 gfn_range.may_block = range->may_block; 2410 2411 /* 2412 * If/when KVM supports more attributes beyond private .vs shared, this 2413 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target 2414 * range already has the desired private vs. shared state (it's unclear 2415 * if that is a net win). For now, KVM reaches this point if and only 2416 * if the private flag is being toggled, i.e. all mappings are in play. 2417 */ 2418 2419 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2420 slots = __kvm_memslots(kvm, i); 2421 2422 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2423 slot = iter.slot; 2424 gfn_range.slot = slot; 2425 2426 gfn_range.start = max(range->start, slot->base_gfn); 2427 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2428 if (gfn_range.start >= gfn_range.end) 2429 continue; 2430 2431 if (!found_memslot) { 2432 found_memslot = true; 2433 KVM_MMU_LOCK(kvm); 2434 if (!IS_KVM_NULL_FN(range->on_lock)) 2435 range->on_lock(kvm); 2436 } 2437 2438 ret |= range->handler(kvm, &gfn_range); 2439 } 2440 } 2441 2442 if (range->flush_on_ret && ret) 2443 kvm_flush_remote_tlbs(kvm); 2444 2445 if (found_memslot) 2446 KVM_MMU_UNLOCK(kvm); 2447 } 2448 2449 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2450 struct kvm_gfn_range *range) 2451 { 2452 /* 2453 * Unconditionally add the range to the invalidation set, regardless of 2454 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2455 * if KVM supports RWX attributes in the future and the attributes are 2456 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2457 * adding the range allows KVM to require that MMU invalidations add at 2458 * least one range between begin() and end(), e.g. allows KVM to detect 2459 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2460 * but it's not obvious that allowing new mappings while the attributes 2461 * are in flux is desirable or worth the complexity. 2462 */ 2463 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2464 2465 return kvm_arch_pre_set_memory_attributes(kvm, range); 2466 } 2467 2468 /* Set @attributes for the gfn range [@start, @end). */ 2469 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2470 unsigned long attributes) 2471 { 2472 struct kvm_mmu_notifier_range pre_set_range = { 2473 .start = start, 2474 .end = end, 2475 .arg.attributes = attributes, 2476 .handler = kvm_pre_set_memory_attributes, 2477 .on_lock = kvm_mmu_invalidate_begin, 2478 .flush_on_ret = true, 2479 .may_block = true, 2480 }; 2481 struct kvm_mmu_notifier_range post_set_range = { 2482 .start = start, 2483 .end = end, 2484 .arg.attributes = attributes, 2485 .handler = kvm_arch_post_set_memory_attributes, 2486 .on_lock = kvm_mmu_invalidate_end, 2487 .may_block = true, 2488 }; 2489 unsigned long i; 2490 void *entry; 2491 int r = 0; 2492 2493 entry = attributes ? xa_mk_value(attributes) : NULL; 2494 2495 mutex_lock(&kvm->slots_lock); 2496 2497 /* Nothing to do if the entire range as the desired attributes. */ 2498 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2499 goto out_unlock; 2500 2501 /* 2502 * Reserve memory ahead of time to avoid having to deal with failures 2503 * partway through setting the new attributes. 2504 */ 2505 for (i = start; i < end; i++) { 2506 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2507 if (r) 2508 goto out_unlock; 2509 } 2510 2511 kvm_handle_gfn_range(kvm, &pre_set_range); 2512 2513 for (i = start; i < end; i++) { 2514 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2515 GFP_KERNEL_ACCOUNT)); 2516 KVM_BUG_ON(r, kvm); 2517 } 2518 2519 kvm_handle_gfn_range(kvm, &post_set_range); 2520 2521 out_unlock: 2522 mutex_unlock(&kvm->slots_lock); 2523 2524 return r; 2525 } 2526 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2527 struct kvm_memory_attributes *attrs) 2528 { 2529 gfn_t start, end; 2530 2531 /* flags is currently not used. */ 2532 if (attrs->flags) 2533 return -EINVAL; 2534 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2535 return -EINVAL; 2536 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2537 return -EINVAL; 2538 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2539 return -EINVAL; 2540 2541 start = attrs->address >> PAGE_SHIFT; 2542 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2543 2544 /* 2545 * xarray tracks data using "unsigned long", and as a result so does 2546 * KVM. For simplicity, supports generic attributes only on 64-bit 2547 * architectures. 2548 */ 2549 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2550 2551 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2552 } 2553 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2554 2555 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2556 { 2557 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2558 } 2559 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2560 2561 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2562 { 2563 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2564 u64 gen = slots->generation; 2565 struct kvm_memory_slot *slot; 2566 2567 /* 2568 * This also protects against using a memslot from a different address space, 2569 * since different address spaces have different generation numbers. 2570 */ 2571 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2572 vcpu->last_used_slot = NULL; 2573 vcpu->last_used_slot_gen = gen; 2574 } 2575 2576 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2577 if (slot) 2578 return slot; 2579 2580 /* 2581 * Fall back to searching all memslots. We purposely use 2582 * search_memslots() instead of __gfn_to_memslot() to avoid 2583 * thrashing the VM-wide last_used_slot in kvm_memslots. 2584 */ 2585 slot = search_memslots(slots, gfn, false); 2586 if (slot) { 2587 vcpu->last_used_slot = slot; 2588 return slot; 2589 } 2590 2591 return NULL; 2592 } 2593 2594 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2595 { 2596 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2597 2598 return kvm_is_visible_memslot(memslot); 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2601 2602 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2603 { 2604 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2605 2606 return kvm_is_visible_memslot(memslot); 2607 } 2608 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2609 2610 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2611 { 2612 struct vm_area_struct *vma; 2613 unsigned long addr, size; 2614 2615 size = PAGE_SIZE; 2616 2617 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2618 if (kvm_is_error_hva(addr)) 2619 return PAGE_SIZE; 2620 2621 mmap_read_lock(current->mm); 2622 vma = find_vma(current->mm, addr); 2623 if (!vma) 2624 goto out; 2625 2626 size = vma_kernel_pagesize(vma); 2627 2628 out: 2629 mmap_read_unlock(current->mm); 2630 2631 return size; 2632 } 2633 2634 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2635 { 2636 return slot->flags & KVM_MEM_READONLY; 2637 } 2638 2639 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2640 gfn_t *nr_pages, bool write) 2641 { 2642 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2643 return KVM_HVA_ERR_BAD; 2644 2645 if (memslot_is_readonly(slot) && write) 2646 return KVM_HVA_ERR_RO_BAD; 2647 2648 if (nr_pages) 2649 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2650 2651 return __gfn_to_hva_memslot(slot, gfn); 2652 } 2653 2654 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2655 gfn_t *nr_pages) 2656 { 2657 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2658 } 2659 2660 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2661 gfn_t gfn) 2662 { 2663 return gfn_to_hva_many(slot, gfn, NULL); 2664 } 2665 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2666 2667 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2668 { 2669 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2670 } 2671 EXPORT_SYMBOL_GPL(gfn_to_hva); 2672 2673 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2674 { 2675 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2676 } 2677 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2678 2679 /* 2680 * Return the hva of a @gfn and the R/W attribute if possible. 2681 * 2682 * @slot: the kvm_memory_slot which contains @gfn 2683 * @gfn: the gfn to be translated 2684 * @writable: used to return the read/write attribute of the @slot if the hva 2685 * is valid and @writable is not NULL 2686 */ 2687 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2688 gfn_t gfn, bool *writable) 2689 { 2690 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2691 2692 if (!kvm_is_error_hva(hva) && writable) 2693 *writable = !memslot_is_readonly(slot); 2694 2695 return hva; 2696 } 2697 2698 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2699 { 2700 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2701 2702 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2703 } 2704 2705 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2706 { 2707 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2708 2709 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2710 } 2711 2712 static bool kvm_is_ad_tracked_page(struct page *page) 2713 { 2714 /* 2715 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2716 * touched (e.g. set dirty) except by its owner". 2717 */ 2718 return !PageReserved(page); 2719 } 2720 2721 static void kvm_set_page_dirty(struct page *page) 2722 { 2723 if (kvm_is_ad_tracked_page(page)) 2724 SetPageDirty(page); 2725 } 2726 2727 static void kvm_set_page_accessed(struct page *page) 2728 { 2729 if (kvm_is_ad_tracked_page(page)) 2730 mark_page_accessed(page); 2731 } 2732 2733 void kvm_release_page_clean(struct page *page) 2734 { 2735 if (!page) 2736 return; 2737 2738 kvm_set_page_accessed(page); 2739 put_page(page); 2740 } 2741 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2742 2743 void kvm_release_page_dirty(struct page *page) 2744 { 2745 if (!page) 2746 return; 2747 2748 kvm_set_page_dirty(page); 2749 kvm_release_page_clean(page); 2750 } 2751 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2752 2753 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, 2754 struct follow_pfnmap_args *map, bool writable) 2755 { 2756 kvm_pfn_t pfn; 2757 2758 WARN_ON_ONCE(!!page == !!map); 2759 2760 if (kfp->map_writable) 2761 *kfp->map_writable = writable; 2762 2763 if (map) 2764 pfn = map->pfn; 2765 else 2766 pfn = page_to_pfn(page); 2767 2768 *kfp->refcounted_page = page; 2769 2770 return pfn; 2771 } 2772 2773 /* 2774 * The fast path to get the writable pfn which will be stored in @pfn, 2775 * true indicates success, otherwise false is returned. 2776 */ 2777 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2778 { 2779 struct page *page; 2780 bool r; 2781 2782 /* 2783 * Try the fast-only path when the caller wants to pin/get the page for 2784 * writing. If the caller only wants to read the page, KVM must go 2785 * down the full, slow path in order to avoid racing an operation that 2786 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing 2787 * at the old, read-only page while mm/ points at a new, writable page. 2788 */ 2789 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) 2790 return false; 2791 2792 if (kfp->pin) 2793 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; 2794 else 2795 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); 2796 2797 if (r) { 2798 *pfn = kvm_resolve_pfn(kfp, page, NULL, true); 2799 return true; 2800 } 2801 2802 return false; 2803 } 2804 2805 /* 2806 * The slow path to get the pfn of the specified host virtual address, 2807 * 1 indicates success, -errno is returned if error is detected. 2808 */ 2809 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2810 { 2811 /* 2812 * When a VCPU accesses a page that is not mapped into the secondary 2813 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2814 * make progress. We always want to honor NUMA hinting faults in that 2815 * case, because GUP usage corresponds to memory accesses from the VCPU. 2816 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2817 * mapped into the secondary MMU and gets accessed by a VCPU. 2818 * 2819 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2820 * implicitly honor NUMA hinting faults and don't need this flag. 2821 */ 2822 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; 2823 struct page *page, *wpage; 2824 int npages; 2825 2826 if (kfp->pin) 2827 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); 2828 else 2829 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); 2830 if (npages != 1) 2831 return npages; 2832 2833 /* 2834 * Pinning is mutually exclusive with opportunistically mapping a read 2835 * fault as writable, as KVM should never pin pages when mapping memory 2836 * into the guest (pinning is only for direct accesses from KVM). 2837 */ 2838 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) 2839 goto out; 2840 2841 /* map read fault as writable if possible */ 2842 if (!(flags & FOLL_WRITE) && kfp->map_writable && 2843 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { 2844 put_page(page); 2845 page = wpage; 2846 flags |= FOLL_WRITE; 2847 } 2848 2849 out: 2850 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); 2851 return npages; 2852 } 2853 2854 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2855 { 2856 if (unlikely(!(vma->vm_flags & VM_READ))) 2857 return false; 2858 2859 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2860 return false; 2861 2862 return true; 2863 } 2864 2865 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2866 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) 2867 { 2868 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; 2869 bool write_fault = kfp->flags & FOLL_WRITE; 2870 int r; 2871 2872 /* 2873 * Remapped memory cannot be pinned in any meaningful sense. Bail if 2874 * the caller wants to pin the page, i.e. access the page outside of 2875 * MMU notifier protection, and unsafe umappings are disallowed. 2876 */ 2877 if (kfp->pin && !allow_unsafe_mappings) 2878 return -EINVAL; 2879 2880 r = follow_pfnmap_start(&args); 2881 if (r) { 2882 /* 2883 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2884 * not call the fault handler, so do it here. 2885 */ 2886 bool unlocked = false; 2887 r = fixup_user_fault(current->mm, kfp->hva, 2888 (write_fault ? FAULT_FLAG_WRITE : 0), 2889 &unlocked); 2890 if (unlocked) 2891 return -EAGAIN; 2892 if (r) 2893 return r; 2894 2895 r = follow_pfnmap_start(&args); 2896 if (r) 2897 return r; 2898 } 2899 2900 if (write_fault && !args.writable) { 2901 *p_pfn = KVM_PFN_ERR_RO_FAULT; 2902 goto out; 2903 } 2904 2905 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); 2906 out: 2907 follow_pfnmap_end(&args); 2908 return r; 2909 } 2910 2911 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) 2912 { 2913 struct vm_area_struct *vma; 2914 kvm_pfn_t pfn; 2915 int npages, r; 2916 2917 might_sleep(); 2918 2919 if (WARN_ON_ONCE(!kfp->refcounted_page)) 2920 return KVM_PFN_ERR_FAULT; 2921 2922 if (hva_to_pfn_fast(kfp, &pfn)) 2923 return pfn; 2924 2925 npages = hva_to_pfn_slow(kfp, &pfn); 2926 if (npages == 1) 2927 return pfn; 2928 if (npages == -EINTR || npages == -EAGAIN) 2929 return KVM_PFN_ERR_SIGPENDING; 2930 if (npages == -EHWPOISON) 2931 return KVM_PFN_ERR_HWPOISON; 2932 2933 mmap_read_lock(current->mm); 2934 retry: 2935 vma = vma_lookup(current->mm, kfp->hva); 2936 2937 if (vma == NULL) 2938 pfn = KVM_PFN_ERR_FAULT; 2939 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2940 r = hva_to_pfn_remapped(vma, kfp, &pfn); 2941 if (r == -EAGAIN) 2942 goto retry; 2943 if (r < 0) 2944 pfn = KVM_PFN_ERR_FAULT; 2945 } else { 2946 if ((kfp->flags & FOLL_NOWAIT) && 2947 vma_is_valid(vma, kfp->flags & FOLL_WRITE)) 2948 pfn = KVM_PFN_ERR_NEEDS_IO; 2949 else 2950 pfn = KVM_PFN_ERR_FAULT; 2951 } 2952 mmap_read_unlock(current->mm); 2953 return pfn; 2954 } 2955 2956 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) 2957 { 2958 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, 2959 kfp->flags & FOLL_WRITE); 2960 2961 if (kfp->hva == KVM_HVA_ERR_RO_BAD) 2962 return KVM_PFN_ERR_RO_FAULT; 2963 2964 if (kvm_is_error_hva(kfp->hva)) 2965 return KVM_PFN_NOSLOT; 2966 2967 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { 2968 *kfp->map_writable = false; 2969 kfp->map_writable = NULL; 2970 } 2971 2972 return hva_to_pfn(kfp); 2973 } 2974 2975 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 2976 unsigned int foll, bool *writable, 2977 struct page **refcounted_page) 2978 { 2979 struct kvm_follow_pfn kfp = { 2980 .slot = slot, 2981 .gfn = gfn, 2982 .flags = foll, 2983 .map_writable = writable, 2984 .refcounted_page = refcounted_page, 2985 }; 2986 2987 if (WARN_ON_ONCE(!writable || !refcounted_page)) 2988 return KVM_PFN_ERR_FAULT; 2989 2990 *writable = false; 2991 *refcounted_page = NULL; 2992 2993 return kvm_follow_pfn(&kfp); 2994 } 2995 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn); 2996 2997 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 2998 struct page **pages, int nr_pages) 2999 { 3000 unsigned long addr; 3001 gfn_t entry = 0; 3002 3003 addr = gfn_to_hva_many(slot, gfn, &entry); 3004 if (kvm_is_error_hva(addr)) 3005 return -1; 3006 3007 if (entry < nr_pages) 3008 return 0; 3009 3010 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3011 } 3012 EXPORT_SYMBOL_GPL(kvm_prefetch_pages); 3013 3014 /* 3015 * Don't use this API unless you are absolutely, positively certain that KVM 3016 * needs to get a struct page, e.g. to pin the page for firmware DMA. 3017 * 3018 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate 3019 * its refcount. 3020 */ 3021 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) 3022 { 3023 struct page *refcounted_page = NULL; 3024 struct kvm_follow_pfn kfp = { 3025 .slot = gfn_to_memslot(kvm, gfn), 3026 .gfn = gfn, 3027 .flags = write ? FOLL_WRITE : 0, 3028 .refcounted_page = &refcounted_page, 3029 }; 3030 3031 (void)kvm_follow_pfn(&kfp); 3032 return refcounted_page; 3033 } 3034 EXPORT_SYMBOL_GPL(__gfn_to_page); 3035 3036 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 3037 bool writable) 3038 { 3039 struct kvm_follow_pfn kfp = { 3040 .slot = gfn_to_memslot(vcpu->kvm, gfn), 3041 .gfn = gfn, 3042 .flags = writable ? FOLL_WRITE : 0, 3043 .refcounted_page = &map->pinned_page, 3044 .pin = true, 3045 }; 3046 3047 map->pinned_page = NULL; 3048 map->page = NULL; 3049 map->hva = NULL; 3050 map->gfn = gfn; 3051 map->writable = writable; 3052 3053 map->pfn = kvm_follow_pfn(&kfp); 3054 if (is_error_noslot_pfn(map->pfn)) 3055 return -EINVAL; 3056 3057 if (pfn_valid(map->pfn)) { 3058 map->page = pfn_to_page(map->pfn); 3059 map->hva = kmap(map->page); 3060 #ifdef CONFIG_HAS_IOMEM 3061 } else { 3062 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); 3063 #endif 3064 } 3065 3066 return map->hva ? 0 : -EFAULT; 3067 } 3068 EXPORT_SYMBOL_GPL(__kvm_vcpu_map); 3069 3070 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) 3071 { 3072 if (!map->hva) 3073 return; 3074 3075 if (map->page) 3076 kunmap(map->page); 3077 #ifdef CONFIG_HAS_IOMEM 3078 else 3079 memunmap(map->hva); 3080 #endif 3081 3082 if (map->writable) 3083 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3084 3085 if (map->pinned_page) { 3086 if (map->writable) 3087 kvm_set_page_dirty(map->pinned_page); 3088 kvm_set_page_accessed(map->pinned_page); 3089 unpin_user_page(map->pinned_page); 3090 } 3091 3092 map->hva = NULL; 3093 map->page = NULL; 3094 map->pinned_page = NULL; 3095 } 3096 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3097 3098 static int next_segment(unsigned long len, int offset) 3099 { 3100 if (len > PAGE_SIZE - offset) 3101 return PAGE_SIZE - offset; 3102 else 3103 return len; 3104 } 3105 3106 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3107 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3108 void *data, int offset, int len) 3109 { 3110 int r; 3111 unsigned long addr; 3112 3113 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3114 return -EFAULT; 3115 3116 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3117 if (kvm_is_error_hva(addr)) 3118 return -EFAULT; 3119 r = __copy_from_user(data, (void __user *)addr + offset, len); 3120 if (r) 3121 return -EFAULT; 3122 return 0; 3123 } 3124 3125 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3126 int len) 3127 { 3128 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3129 3130 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3131 } 3132 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3133 3134 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3135 int offset, int len) 3136 { 3137 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3138 3139 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3140 } 3141 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3142 3143 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3144 { 3145 gfn_t gfn = gpa >> PAGE_SHIFT; 3146 int seg; 3147 int offset = offset_in_page(gpa); 3148 int ret; 3149 3150 while ((seg = next_segment(len, offset)) != 0) { 3151 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3152 if (ret < 0) 3153 return ret; 3154 offset = 0; 3155 len -= seg; 3156 data += seg; 3157 ++gfn; 3158 } 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(kvm_read_guest); 3162 3163 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3164 { 3165 gfn_t gfn = gpa >> PAGE_SHIFT; 3166 int seg; 3167 int offset = offset_in_page(gpa); 3168 int ret; 3169 3170 while ((seg = next_segment(len, offset)) != 0) { 3171 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3172 if (ret < 0) 3173 return ret; 3174 offset = 0; 3175 len -= seg; 3176 data += seg; 3177 ++gfn; 3178 } 3179 return 0; 3180 } 3181 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3182 3183 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3184 void *data, int offset, unsigned long len) 3185 { 3186 int r; 3187 unsigned long addr; 3188 3189 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3190 return -EFAULT; 3191 3192 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3193 if (kvm_is_error_hva(addr)) 3194 return -EFAULT; 3195 pagefault_disable(); 3196 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3197 pagefault_enable(); 3198 if (r) 3199 return -EFAULT; 3200 return 0; 3201 } 3202 3203 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3204 void *data, unsigned long len) 3205 { 3206 gfn_t gfn = gpa >> PAGE_SHIFT; 3207 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3208 int offset = offset_in_page(gpa); 3209 3210 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3211 } 3212 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3213 3214 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3215 static int __kvm_write_guest_page(struct kvm *kvm, 3216 struct kvm_memory_slot *memslot, gfn_t gfn, 3217 const void *data, int offset, int len) 3218 { 3219 int r; 3220 unsigned long addr; 3221 3222 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3223 return -EFAULT; 3224 3225 addr = gfn_to_hva_memslot(memslot, gfn); 3226 if (kvm_is_error_hva(addr)) 3227 return -EFAULT; 3228 r = __copy_to_user((void __user *)addr + offset, data, len); 3229 if (r) 3230 return -EFAULT; 3231 mark_page_dirty_in_slot(kvm, memslot, gfn); 3232 return 0; 3233 } 3234 3235 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3236 const void *data, int offset, int len) 3237 { 3238 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3239 3240 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3241 } 3242 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3243 3244 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3245 const void *data, int offset, int len) 3246 { 3247 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3248 3249 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3250 } 3251 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3252 3253 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3254 unsigned long len) 3255 { 3256 gfn_t gfn = gpa >> PAGE_SHIFT; 3257 int seg; 3258 int offset = offset_in_page(gpa); 3259 int ret; 3260 3261 while ((seg = next_segment(len, offset)) != 0) { 3262 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3263 if (ret < 0) 3264 return ret; 3265 offset = 0; 3266 len -= seg; 3267 data += seg; 3268 ++gfn; 3269 } 3270 return 0; 3271 } 3272 EXPORT_SYMBOL_GPL(kvm_write_guest); 3273 3274 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3275 unsigned long len) 3276 { 3277 gfn_t gfn = gpa >> PAGE_SHIFT; 3278 int seg; 3279 int offset = offset_in_page(gpa); 3280 int ret; 3281 3282 while ((seg = next_segment(len, offset)) != 0) { 3283 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3284 if (ret < 0) 3285 return ret; 3286 offset = 0; 3287 len -= seg; 3288 data += seg; 3289 ++gfn; 3290 } 3291 return 0; 3292 } 3293 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3294 3295 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3296 struct gfn_to_hva_cache *ghc, 3297 gpa_t gpa, unsigned long len) 3298 { 3299 int offset = offset_in_page(gpa); 3300 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3301 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3302 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3303 gfn_t nr_pages_avail; 3304 3305 /* Update ghc->generation before performing any error checks. */ 3306 ghc->generation = slots->generation; 3307 3308 if (start_gfn > end_gfn) { 3309 ghc->hva = KVM_HVA_ERR_BAD; 3310 return -EINVAL; 3311 } 3312 3313 /* 3314 * If the requested region crosses two memslots, we still 3315 * verify that the entire region is valid here. 3316 */ 3317 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3318 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3319 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3320 &nr_pages_avail); 3321 if (kvm_is_error_hva(ghc->hva)) 3322 return -EFAULT; 3323 } 3324 3325 /* Use the slow path for cross page reads and writes. */ 3326 if (nr_pages_needed == 1) 3327 ghc->hva += offset; 3328 else 3329 ghc->memslot = NULL; 3330 3331 ghc->gpa = gpa; 3332 ghc->len = len; 3333 return 0; 3334 } 3335 3336 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3337 gpa_t gpa, unsigned long len) 3338 { 3339 struct kvm_memslots *slots = kvm_memslots(kvm); 3340 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3341 } 3342 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3343 3344 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3345 void *data, unsigned int offset, 3346 unsigned long len) 3347 { 3348 struct kvm_memslots *slots = kvm_memslots(kvm); 3349 int r; 3350 gpa_t gpa = ghc->gpa + offset; 3351 3352 if (WARN_ON_ONCE(len + offset > ghc->len)) 3353 return -EINVAL; 3354 3355 if (slots->generation != ghc->generation) { 3356 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3357 return -EFAULT; 3358 } 3359 3360 if (kvm_is_error_hva(ghc->hva)) 3361 return -EFAULT; 3362 3363 if (unlikely(!ghc->memslot)) 3364 return kvm_write_guest(kvm, gpa, data, len); 3365 3366 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3367 if (r) 3368 return -EFAULT; 3369 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3370 3371 return 0; 3372 } 3373 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3374 3375 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3376 void *data, unsigned long len) 3377 { 3378 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3379 } 3380 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3381 3382 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3383 void *data, unsigned int offset, 3384 unsigned long len) 3385 { 3386 struct kvm_memslots *slots = kvm_memslots(kvm); 3387 int r; 3388 gpa_t gpa = ghc->gpa + offset; 3389 3390 if (WARN_ON_ONCE(len + offset > ghc->len)) 3391 return -EINVAL; 3392 3393 if (slots->generation != ghc->generation) { 3394 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3395 return -EFAULT; 3396 } 3397 3398 if (kvm_is_error_hva(ghc->hva)) 3399 return -EFAULT; 3400 3401 if (unlikely(!ghc->memslot)) 3402 return kvm_read_guest(kvm, gpa, data, len); 3403 3404 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3405 if (r) 3406 return -EFAULT; 3407 3408 return 0; 3409 } 3410 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3411 3412 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3413 void *data, unsigned long len) 3414 { 3415 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3416 } 3417 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3418 3419 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3420 { 3421 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3422 gfn_t gfn = gpa >> PAGE_SHIFT; 3423 int seg; 3424 int offset = offset_in_page(gpa); 3425 int ret; 3426 3427 while ((seg = next_segment(len, offset)) != 0) { 3428 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); 3429 if (ret < 0) 3430 return ret; 3431 offset = 0; 3432 len -= seg; 3433 ++gfn; 3434 } 3435 return 0; 3436 } 3437 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3438 3439 void mark_page_dirty_in_slot(struct kvm *kvm, 3440 const struct kvm_memory_slot *memslot, 3441 gfn_t gfn) 3442 { 3443 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3444 3445 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3446 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3447 return; 3448 3449 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3450 #endif 3451 3452 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3453 unsigned long rel_gfn = gfn - memslot->base_gfn; 3454 u32 slot = (memslot->as_id << 16) | memslot->id; 3455 3456 if (kvm->dirty_ring_size && vcpu) 3457 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3458 else if (memslot->dirty_bitmap) 3459 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3460 } 3461 } 3462 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3463 3464 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3465 { 3466 struct kvm_memory_slot *memslot; 3467 3468 memslot = gfn_to_memslot(kvm, gfn); 3469 mark_page_dirty_in_slot(kvm, memslot, gfn); 3470 } 3471 EXPORT_SYMBOL_GPL(mark_page_dirty); 3472 3473 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3474 { 3475 struct kvm_memory_slot *memslot; 3476 3477 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3478 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3479 } 3480 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3481 3482 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3483 { 3484 if (!vcpu->sigset_active) 3485 return; 3486 3487 /* 3488 * This does a lockless modification of ->real_blocked, which is fine 3489 * because, only current can change ->real_blocked and all readers of 3490 * ->real_blocked don't care as long ->real_blocked is always a subset 3491 * of ->blocked. 3492 */ 3493 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3494 } 3495 3496 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3497 { 3498 if (!vcpu->sigset_active) 3499 return; 3500 3501 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3502 sigemptyset(¤t->real_blocked); 3503 } 3504 3505 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3506 { 3507 unsigned int old, val, grow, grow_start; 3508 3509 old = val = vcpu->halt_poll_ns; 3510 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3511 grow = READ_ONCE(halt_poll_ns_grow); 3512 if (!grow) 3513 goto out; 3514 3515 val *= grow; 3516 if (val < grow_start) 3517 val = grow_start; 3518 3519 vcpu->halt_poll_ns = val; 3520 out: 3521 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3522 } 3523 3524 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3525 { 3526 unsigned int old, val, shrink, grow_start; 3527 3528 old = val = vcpu->halt_poll_ns; 3529 shrink = READ_ONCE(halt_poll_ns_shrink); 3530 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3531 if (shrink == 0) 3532 val = 0; 3533 else 3534 val /= shrink; 3535 3536 if (val < grow_start) 3537 val = 0; 3538 3539 vcpu->halt_poll_ns = val; 3540 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3541 } 3542 3543 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3544 { 3545 int ret = -EINTR; 3546 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3547 3548 if (kvm_arch_vcpu_runnable(vcpu)) 3549 goto out; 3550 if (kvm_cpu_has_pending_timer(vcpu)) 3551 goto out; 3552 if (signal_pending(current)) 3553 goto out; 3554 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3555 goto out; 3556 3557 ret = 0; 3558 out: 3559 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3560 return ret; 3561 } 3562 3563 /* 3564 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3565 * pending. This is mostly used when halting a vCPU, but may also be used 3566 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3567 */ 3568 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3569 { 3570 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3571 bool waited = false; 3572 3573 vcpu->stat.generic.blocking = 1; 3574 3575 preempt_disable(); 3576 kvm_arch_vcpu_blocking(vcpu); 3577 prepare_to_rcuwait(wait); 3578 preempt_enable(); 3579 3580 for (;;) { 3581 set_current_state(TASK_INTERRUPTIBLE); 3582 3583 if (kvm_vcpu_check_block(vcpu) < 0) 3584 break; 3585 3586 waited = true; 3587 schedule(); 3588 } 3589 3590 preempt_disable(); 3591 finish_rcuwait(wait); 3592 kvm_arch_vcpu_unblocking(vcpu); 3593 preempt_enable(); 3594 3595 vcpu->stat.generic.blocking = 0; 3596 3597 return waited; 3598 } 3599 3600 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3601 ktime_t end, bool success) 3602 { 3603 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3604 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3605 3606 ++vcpu->stat.generic.halt_attempted_poll; 3607 3608 if (success) { 3609 ++vcpu->stat.generic.halt_successful_poll; 3610 3611 if (!vcpu_valid_wakeup(vcpu)) 3612 ++vcpu->stat.generic.halt_poll_invalid; 3613 3614 stats->halt_poll_success_ns += poll_ns; 3615 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3616 } else { 3617 stats->halt_poll_fail_ns += poll_ns; 3618 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3619 } 3620 } 3621 3622 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3623 { 3624 struct kvm *kvm = vcpu->kvm; 3625 3626 if (kvm->override_halt_poll_ns) { 3627 /* 3628 * Ensure kvm->max_halt_poll_ns is not read before 3629 * kvm->override_halt_poll_ns. 3630 * 3631 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3632 */ 3633 smp_rmb(); 3634 return READ_ONCE(kvm->max_halt_poll_ns); 3635 } 3636 3637 return READ_ONCE(halt_poll_ns); 3638 } 3639 3640 /* 3641 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3642 * polling is enabled, busy wait for a short time before blocking to avoid the 3643 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3644 * is halted. 3645 */ 3646 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3647 { 3648 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3649 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3650 ktime_t start, cur, poll_end; 3651 bool waited = false; 3652 bool do_halt_poll; 3653 u64 halt_ns; 3654 3655 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3656 vcpu->halt_poll_ns = max_halt_poll_ns; 3657 3658 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3659 3660 start = cur = poll_end = ktime_get(); 3661 if (do_halt_poll) { 3662 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3663 3664 do { 3665 if (kvm_vcpu_check_block(vcpu) < 0) 3666 goto out; 3667 cpu_relax(); 3668 poll_end = cur = ktime_get(); 3669 } while (kvm_vcpu_can_poll(cur, stop)); 3670 } 3671 3672 waited = kvm_vcpu_block(vcpu); 3673 3674 cur = ktime_get(); 3675 if (waited) { 3676 vcpu->stat.generic.halt_wait_ns += 3677 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3678 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3679 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3680 } 3681 out: 3682 /* The total time the vCPU was "halted", including polling time. */ 3683 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3684 3685 /* 3686 * Note, halt-polling is considered successful so long as the vCPU was 3687 * never actually scheduled out, i.e. even if the wake event arrived 3688 * after of the halt-polling loop itself, but before the full wait. 3689 */ 3690 if (do_halt_poll) 3691 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3692 3693 if (halt_poll_allowed) { 3694 /* Recompute the max halt poll time in case it changed. */ 3695 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3696 3697 if (!vcpu_valid_wakeup(vcpu)) { 3698 shrink_halt_poll_ns(vcpu); 3699 } else if (max_halt_poll_ns) { 3700 if (halt_ns <= vcpu->halt_poll_ns) 3701 ; 3702 /* we had a long block, shrink polling */ 3703 else if (vcpu->halt_poll_ns && 3704 halt_ns > max_halt_poll_ns) 3705 shrink_halt_poll_ns(vcpu); 3706 /* we had a short halt and our poll time is too small */ 3707 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3708 halt_ns < max_halt_poll_ns) 3709 grow_halt_poll_ns(vcpu); 3710 } else { 3711 vcpu->halt_poll_ns = 0; 3712 } 3713 } 3714 3715 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3716 } 3717 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3718 3719 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3720 { 3721 if (__kvm_vcpu_wake_up(vcpu)) { 3722 WRITE_ONCE(vcpu->ready, true); 3723 ++vcpu->stat.generic.halt_wakeup; 3724 return true; 3725 } 3726 3727 return false; 3728 } 3729 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3730 3731 #ifndef CONFIG_S390 3732 /* 3733 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3734 */ 3735 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3736 { 3737 int me, cpu; 3738 3739 if (kvm_vcpu_wake_up(vcpu)) 3740 return; 3741 3742 me = get_cpu(); 3743 /* 3744 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3745 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3746 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3747 * within the vCPU thread itself. 3748 */ 3749 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3750 if (vcpu->mode == IN_GUEST_MODE) 3751 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3752 goto out; 3753 } 3754 3755 /* 3756 * Note, the vCPU could get migrated to a different pCPU at any point 3757 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3758 * IPI to the previous pCPU. But, that's ok because the purpose of the 3759 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3760 * vCPU also requires it to leave IN_GUEST_MODE. 3761 */ 3762 if (kvm_arch_vcpu_should_kick(vcpu)) { 3763 cpu = READ_ONCE(vcpu->cpu); 3764 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3765 smp_send_reschedule(cpu); 3766 } 3767 out: 3768 put_cpu(); 3769 } 3770 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3771 #endif /* !CONFIG_S390 */ 3772 3773 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3774 { 3775 struct task_struct *task = NULL; 3776 int ret; 3777 3778 if (!read_trylock(&target->pid_lock)) 3779 return 0; 3780 3781 if (target->pid) 3782 task = get_pid_task(target->pid, PIDTYPE_PID); 3783 3784 read_unlock(&target->pid_lock); 3785 3786 if (!task) 3787 return 0; 3788 ret = yield_to(task, 1); 3789 put_task_struct(task); 3790 3791 return ret; 3792 } 3793 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3794 3795 /* 3796 * Helper that checks whether a VCPU is eligible for directed yield. 3797 * Most eligible candidate to yield is decided by following heuristics: 3798 * 3799 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3800 * (preempted lock holder), indicated by @in_spin_loop. 3801 * Set at the beginning and cleared at the end of interception/PLE handler. 3802 * 3803 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3804 * chance last time (mostly it has become eligible now since we have probably 3805 * yielded to lockholder in last iteration. This is done by toggling 3806 * @dy_eligible each time a VCPU checked for eligibility.) 3807 * 3808 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3809 * to preempted lock-holder could result in wrong VCPU selection and CPU 3810 * burning. Giving priority for a potential lock-holder increases lock 3811 * progress. 3812 * 3813 * Since algorithm is based on heuristics, accessing another VCPU data without 3814 * locking does not harm. It may result in trying to yield to same VCPU, fail 3815 * and continue with next VCPU and so on. 3816 */ 3817 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3818 { 3819 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3820 bool eligible; 3821 3822 eligible = !vcpu->spin_loop.in_spin_loop || 3823 vcpu->spin_loop.dy_eligible; 3824 3825 if (vcpu->spin_loop.in_spin_loop) 3826 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3827 3828 return eligible; 3829 #else 3830 return true; 3831 #endif 3832 } 3833 3834 /* 3835 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3836 * a vcpu_load/vcpu_put pair. However, for most architectures 3837 * kvm_arch_vcpu_runnable does not require vcpu_load. 3838 */ 3839 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3840 { 3841 return kvm_arch_vcpu_runnable(vcpu); 3842 } 3843 3844 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3845 { 3846 if (kvm_arch_dy_runnable(vcpu)) 3847 return true; 3848 3849 #ifdef CONFIG_KVM_ASYNC_PF 3850 if (!list_empty_careful(&vcpu->async_pf.done)) 3851 return true; 3852 #endif 3853 3854 return false; 3855 } 3856 3857 /* 3858 * By default, simply query the target vCPU's current mode when checking if a 3859 * vCPU was preempted in kernel mode. All architectures except x86 (or more 3860 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 3861 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 3862 * directly for cross-vCPU checks is functionally correct and accurate. 3863 */ 3864 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 3865 { 3866 return kvm_arch_vcpu_in_kernel(vcpu); 3867 } 3868 3869 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3870 { 3871 return false; 3872 } 3873 3874 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3875 { 3876 int nr_vcpus, start, i, idx, yielded; 3877 struct kvm *kvm = me->kvm; 3878 struct kvm_vcpu *vcpu; 3879 int try = 3; 3880 3881 nr_vcpus = atomic_read(&kvm->online_vcpus); 3882 if (nr_vcpus < 2) 3883 return; 3884 3885 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ 3886 smp_rmb(); 3887 3888 kvm_vcpu_set_in_spin_loop(me, true); 3889 3890 /* 3891 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely 3892 * waiting for a resource to become available. Attempt to yield to a 3893 * vCPU that is runnable, but not currently running, e.g. because the 3894 * vCPU was preempted by a higher priority task. With luck, the vCPU 3895 * that was preempted is holding a lock or some other resource that the 3896 * current vCPU is waiting to acquire, and yielding to the other vCPU 3897 * will allow it to make forward progress and release the lock (or kick 3898 * the spinning vCPU, etc). 3899 * 3900 * Since KVM has no insight into what exactly the guest is doing, 3901 * approximate a round-robin selection by iterating over all vCPUs, 3902 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu, 3903 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. 3904 * 3905 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, 3906 * they may all try to yield to the same vCPU(s). But as above, this 3907 * is all best effort due to KVM's lack of visibility into the guest. 3908 */ 3909 start = READ_ONCE(kvm->last_boosted_vcpu) + 1; 3910 for (i = 0; i < nr_vcpus; i++) { 3911 idx = (start + i) % nr_vcpus; 3912 if (idx == me->vcpu_idx) 3913 continue; 3914 3915 vcpu = xa_load(&kvm->vcpu_array, idx); 3916 if (!READ_ONCE(vcpu->ready)) 3917 continue; 3918 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3919 continue; 3920 3921 /* 3922 * Treat the target vCPU as being in-kernel if it has a pending 3923 * interrupt, as the vCPU trying to yield may be spinning 3924 * waiting on IPI delivery, i.e. the target vCPU is in-kernel 3925 * for the purposes of directed yield. 3926 */ 3927 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3928 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3929 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 3930 continue; 3931 3932 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3933 continue; 3934 3935 yielded = kvm_vcpu_yield_to(vcpu); 3936 if (yielded > 0) { 3937 WRITE_ONCE(kvm->last_boosted_vcpu, i); 3938 break; 3939 } else if (yielded < 0 && !--try) { 3940 break; 3941 } 3942 } 3943 kvm_vcpu_set_in_spin_loop(me, false); 3944 3945 /* Ensure vcpu is not eligible during next spinloop */ 3946 kvm_vcpu_set_dy_eligible(me, false); 3947 } 3948 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3949 3950 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3951 { 3952 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3953 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3954 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3955 kvm->dirty_ring_size / PAGE_SIZE); 3956 #else 3957 return false; 3958 #endif 3959 } 3960 3961 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3962 { 3963 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3964 struct page *page; 3965 3966 if (vmf->pgoff == 0) 3967 page = virt_to_page(vcpu->run); 3968 #ifdef CONFIG_X86 3969 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3970 page = virt_to_page(vcpu->arch.pio_data); 3971 #endif 3972 #ifdef CONFIG_KVM_MMIO 3973 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3974 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3975 #endif 3976 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3977 page = kvm_dirty_ring_get_page( 3978 &vcpu->dirty_ring, 3979 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3980 else 3981 return kvm_arch_vcpu_fault(vcpu, vmf); 3982 get_page(page); 3983 vmf->page = page; 3984 return 0; 3985 } 3986 3987 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3988 .fault = kvm_vcpu_fault, 3989 }; 3990 3991 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3992 { 3993 struct kvm_vcpu *vcpu = file->private_data; 3994 unsigned long pages = vma_pages(vma); 3995 3996 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3997 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3998 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3999 return -EINVAL; 4000 4001 vma->vm_ops = &kvm_vcpu_vm_ops; 4002 return 0; 4003 } 4004 4005 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4006 { 4007 struct kvm_vcpu *vcpu = filp->private_data; 4008 4009 kvm_put_kvm(vcpu->kvm); 4010 return 0; 4011 } 4012 4013 static struct file_operations kvm_vcpu_fops = { 4014 .release = kvm_vcpu_release, 4015 .unlocked_ioctl = kvm_vcpu_ioctl, 4016 .mmap = kvm_vcpu_mmap, 4017 .llseek = noop_llseek, 4018 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4019 }; 4020 4021 /* 4022 * Allocates an inode for the vcpu. 4023 */ 4024 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4025 { 4026 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4027 4028 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4029 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4030 } 4031 4032 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4033 static int vcpu_get_pid(void *data, u64 *val) 4034 { 4035 struct kvm_vcpu *vcpu = data; 4036 4037 read_lock(&vcpu->pid_lock); 4038 *val = pid_nr(vcpu->pid); 4039 read_unlock(&vcpu->pid_lock); 4040 return 0; 4041 } 4042 4043 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4044 4045 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4046 { 4047 struct dentry *debugfs_dentry; 4048 char dir_name[ITOA_MAX_LEN * 2]; 4049 4050 if (!debugfs_initialized()) 4051 return; 4052 4053 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4054 debugfs_dentry = debugfs_create_dir(dir_name, 4055 vcpu->kvm->debugfs_dentry); 4056 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4057 &vcpu_get_pid_fops); 4058 4059 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4060 } 4061 #endif 4062 4063 /* 4064 * Creates some virtual cpus. Good luck creating more than one. 4065 */ 4066 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4067 { 4068 int r; 4069 struct kvm_vcpu *vcpu; 4070 struct page *page; 4071 4072 /* 4073 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4074 * too-large values instead of silently truncating. 4075 * 4076 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4077 * changing the storage type (at the very least, IDs should be tracked 4078 * as unsigned ints). 4079 */ 4080 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4081 if (id >= KVM_MAX_VCPU_IDS) 4082 return -EINVAL; 4083 4084 mutex_lock(&kvm->lock); 4085 if (kvm->created_vcpus >= kvm->max_vcpus) { 4086 mutex_unlock(&kvm->lock); 4087 return -EINVAL; 4088 } 4089 4090 r = kvm_arch_vcpu_precreate(kvm, id); 4091 if (r) { 4092 mutex_unlock(&kvm->lock); 4093 return r; 4094 } 4095 4096 kvm->created_vcpus++; 4097 mutex_unlock(&kvm->lock); 4098 4099 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4100 if (!vcpu) { 4101 r = -ENOMEM; 4102 goto vcpu_decrement; 4103 } 4104 4105 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4106 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4107 if (!page) { 4108 r = -ENOMEM; 4109 goto vcpu_free; 4110 } 4111 vcpu->run = page_address(page); 4112 4113 kvm_vcpu_init(vcpu, kvm, id); 4114 4115 r = kvm_arch_vcpu_create(vcpu); 4116 if (r) 4117 goto vcpu_free_run_page; 4118 4119 if (kvm->dirty_ring_size) { 4120 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4121 id, kvm->dirty_ring_size); 4122 if (r) 4123 goto arch_vcpu_destroy; 4124 } 4125 4126 mutex_lock(&kvm->lock); 4127 4128 if (kvm_get_vcpu_by_id(kvm, id)) { 4129 r = -EEXIST; 4130 goto unlock_vcpu_destroy; 4131 } 4132 4133 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4134 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 4135 WARN_ON_ONCE(r == -EBUSY); 4136 if (r) 4137 goto unlock_vcpu_destroy; 4138 4139 /* 4140 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex 4141 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully 4142 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked 4143 * into a NULL-pointer dereference because KVM thinks the _current_ 4144 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep 4145 * knows it's taken *inside* kvm->lock. 4146 */ 4147 mutex_lock(&vcpu->mutex); 4148 kvm_get_kvm(kvm); 4149 r = create_vcpu_fd(vcpu); 4150 if (r < 0) 4151 goto kvm_put_xa_erase; 4152 4153 /* 4154 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4155 * pointer before kvm->online_vcpu's incremented value. 4156 */ 4157 smp_wmb(); 4158 atomic_inc(&kvm->online_vcpus); 4159 mutex_unlock(&vcpu->mutex); 4160 4161 mutex_unlock(&kvm->lock); 4162 kvm_arch_vcpu_postcreate(vcpu); 4163 kvm_create_vcpu_debugfs(vcpu); 4164 return r; 4165 4166 kvm_put_xa_erase: 4167 mutex_unlock(&vcpu->mutex); 4168 kvm_put_kvm_no_destroy(kvm); 4169 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 4170 unlock_vcpu_destroy: 4171 mutex_unlock(&kvm->lock); 4172 kvm_dirty_ring_free(&vcpu->dirty_ring); 4173 arch_vcpu_destroy: 4174 kvm_arch_vcpu_destroy(vcpu); 4175 vcpu_free_run_page: 4176 free_page((unsigned long)vcpu->run); 4177 vcpu_free: 4178 kmem_cache_free(kvm_vcpu_cache, vcpu); 4179 vcpu_decrement: 4180 mutex_lock(&kvm->lock); 4181 kvm->created_vcpus--; 4182 mutex_unlock(&kvm->lock); 4183 return r; 4184 } 4185 4186 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4187 { 4188 if (sigset) { 4189 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4190 vcpu->sigset_active = 1; 4191 vcpu->sigset = *sigset; 4192 } else 4193 vcpu->sigset_active = 0; 4194 return 0; 4195 } 4196 4197 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4198 size_t size, loff_t *offset) 4199 { 4200 struct kvm_vcpu *vcpu = file->private_data; 4201 4202 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4203 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4204 sizeof(vcpu->stat), user_buffer, size, offset); 4205 } 4206 4207 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4208 { 4209 struct kvm_vcpu *vcpu = file->private_data; 4210 4211 kvm_put_kvm(vcpu->kvm); 4212 return 0; 4213 } 4214 4215 static const struct file_operations kvm_vcpu_stats_fops = { 4216 .owner = THIS_MODULE, 4217 .read = kvm_vcpu_stats_read, 4218 .release = kvm_vcpu_stats_release, 4219 .llseek = noop_llseek, 4220 }; 4221 4222 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4223 { 4224 int fd; 4225 struct file *file; 4226 char name[15 + ITOA_MAX_LEN + 1]; 4227 4228 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4229 4230 fd = get_unused_fd_flags(O_CLOEXEC); 4231 if (fd < 0) 4232 return fd; 4233 4234 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4235 if (IS_ERR(file)) { 4236 put_unused_fd(fd); 4237 return PTR_ERR(file); 4238 } 4239 4240 kvm_get_kvm(vcpu->kvm); 4241 4242 file->f_mode |= FMODE_PREAD; 4243 fd_install(fd, file); 4244 4245 return fd; 4246 } 4247 4248 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4249 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4250 struct kvm_pre_fault_memory *range) 4251 { 4252 int idx; 4253 long r; 4254 u64 full_size; 4255 4256 if (range->flags) 4257 return -EINVAL; 4258 4259 if (!PAGE_ALIGNED(range->gpa) || 4260 !PAGE_ALIGNED(range->size) || 4261 range->gpa + range->size <= range->gpa) 4262 return -EINVAL; 4263 4264 vcpu_load(vcpu); 4265 idx = srcu_read_lock(&vcpu->kvm->srcu); 4266 4267 full_size = range->size; 4268 do { 4269 if (signal_pending(current)) { 4270 r = -EINTR; 4271 break; 4272 } 4273 4274 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4275 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4276 break; 4277 4278 if (r < 0) 4279 break; 4280 4281 range->size -= r; 4282 range->gpa += r; 4283 cond_resched(); 4284 } while (range->size); 4285 4286 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4287 vcpu_put(vcpu); 4288 4289 /* Return success if at least one page was mapped successfully. */ 4290 return full_size == range->size ? r : 0; 4291 } 4292 #endif 4293 4294 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu) 4295 { 4296 struct kvm *kvm = vcpu->kvm; 4297 4298 /* 4299 * In practice, this happy path will always be taken, as a well-behaved 4300 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns. 4301 */ 4302 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus))) 4303 return 0; 4304 4305 /* 4306 * Acquire and release the vCPU's mutex to wait for vCPU creation to 4307 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU 4308 * is fully online). 4309 */ 4310 if (mutex_lock_killable(&vcpu->mutex)) 4311 return -EINTR; 4312 4313 mutex_unlock(&vcpu->mutex); 4314 4315 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx))) 4316 return -EIO; 4317 4318 return 0; 4319 } 4320 4321 static long kvm_vcpu_ioctl(struct file *filp, 4322 unsigned int ioctl, unsigned long arg) 4323 { 4324 struct kvm_vcpu *vcpu = filp->private_data; 4325 void __user *argp = (void __user *)arg; 4326 int r; 4327 struct kvm_fpu *fpu = NULL; 4328 struct kvm_sregs *kvm_sregs = NULL; 4329 4330 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4331 return -EIO; 4332 4333 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4334 return -EINVAL; 4335 4336 /* 4337 * Wait for the vCPU to be online before handling the ioctl(), as KVM 4338 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference 4339 * a NULL pointer if userspace invokes an ioctl() before KVM is ready. 4340 */ 4341 r = kvm_wait_for_vcpu_online(vcpu); 4342 if (r) 4343 return r; 4344 4345 /* 4346 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4347 * execution; mutex_lock() would break them. 4348 */ 4349 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4350 if (r != -ENOIOCTLCMD) 4351 return r; 4352 4353 if (mutex_lock_killable(&vcpu->mutex)) 4354 return -EINTR; 4355 switch (ioctl) { 4356 case KVM_RUN: { 4357 struct pid *oldpid; 4358 r = -EINVAL; 4359 if (arg) 4360 goto out; 4361 4362 /* 4363 * Note, vcpu->pid is primarily protected by vcpu->mutex. The 4364 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to 4365 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield 4366 * directly to this vCPU 4367 */ 4368 oldpid = vcpu->pid; 4369 if (unlikely(oldpid != task_pid(current))) { 4370 /* The thread running this VCPU changed. */ 4371 struct pid *newpid; 4372 4373 r = kvm_arch_vcpu_run_pid_change(vcpu); 4374 if (r) 4375 break; 4376 4377 newpid = get_task_pid(current, PIDTYPE_PID); 4378 write_lock(&vcpu->pid_lock); 4379 vcpu->pid = newpid; 4380 write_unlock(&vcpu->pid_lock); 4381 4382 put_pid(oldpid); 4383 } 4384 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4385 r = kvm_arch_vcpu_ioctl_run(vcpu); 4386 vcpu->wants_to_run = false; 4387 4388 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4389 break; 4390 } 4391 case KVM_GET_REGS: { 4392 struct kvm_regs *kvm_regs; 4393 4394 r = -ENOMEM; 4395 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4396 if (!kvm_regs) 4397 goto out; 4398 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4399 if (r) 4400 goto out_free1; 4401 r = -EFAULT; 4402 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4403 goto out_free1; 4404 r = 0; 4405 out_free1: 4406 kfree(kvm_regs); 4407 break; 4408 } 4409 case KVM_SET_REGS: { 4410 struct kvm_regs *kvm_regs; 4411 4412 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4413 if (IS_ERR(kvm_regs)) { 4414 r = PTR_ERR(kvm_regs); 4415 goto out; 4416 } 4417 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4418 kfree(kvm_regs); 4419 break; 4420 } 4421 case KVM_GET_SREGS: { 4422 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4423 r = -ENOMEM; 4424 if (!kvm_sregs) 4425 goto out; 4426 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4427 if (r) 4428 goto out; 4429 r = -EFAULT; 4430 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4431 goto out; 4432 r = 0; 4433 break; 4434 } 4435 case KVM_SET_SREGS: { 4436 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4437 if (IS_ERR(kvm_sregs)) { 4438 r = PTR_ERR(kvm_sregs); 4439 kvm_sregs = NULL; 4440 goto out; 4441 } 4442 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4443 break; 4444 } 4445 case KVM_GET_MP_STATE: { 4446 struct kvm_mp_state mp_state; 4447 4448 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4449 if (r) 4450 goto out; 4451 r = -EFAULT; 4452 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4453 goto out; 4454 r = 0; 4455 break; 4456 } 4457 case KVM_SET_MP_STATE: { 4458 struct kvm_mp_state mp_state; 4459 4460 r = -EFAULT; 4461 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4462 goto out; 4463 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4464 break; 4465 } 4466 case KVM_TRANSLATE: { 4467 struct kvm_translation tr; 4468 4469 r = -EFAULT; 4470 if (copy_from_user(&tr, argp, sizeof(tr))) 4471 goto out; 4472 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4473 if (r) 4474 goto out; 4475 r = -EFAULT; 4476 if (copy_to_user(argp, &tr, sizeof(tr))) 4477 goto out; 4478 r = 0; 4479 break; 4480 } 4481 case KVM_SET_GUEST_DEBUG: { 4482 struct kvm_guest_debug dbg; 4483 4484 r = -EFAULT; 4485 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4486 goto out; 4487 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4488 break; 4489 } 4490 case KVM_SET_SIGNAL_MASK: { 4491 struct kvm_signal_mask __user *sigmask_arg = argp; 4492 struct kvm_signal_mask kvm_sigmask; 4493 sigset_t sigset, *p; 4494 4495 p = NULL; 4496 if (argp) { 4497 r = -EFAULT; 4498 if (copy_from_user(&kvm_sigmask, argp, 4499 sizeof(kvm_sigmask))) 4500 goto out; 4501 r = -EINVAL; 4502 if (kvm_sigmask.len != sizeof(sigset)) 4503 goto out; 4504 r = -EFAULT; 4505 if (copy_from_user(&sigset, sigmask_arg->sigset, 4506 sizeof(sigset))) 4507 goto out; 4508 p = &sigset; 4509 } 4510 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4511 break; 4512 } 4513 case KVM_GET_FPU: { 4514 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4515 r = -ENOMEM; 4516 if (!fpu) 4517 goto out; 4518 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4519 if (r) 4520 goto out; 4521 r = -EFAULT; 4522 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4523 goto out; 4524 r = 0; 4525 break; 4526 } 4527 case KVM_SET_FPU: { 4528 fpu = memdup_user(argp, sizeof(*fpu)); 4529 if (IS_ERR(fpu)) { 4530 r = PTR_ERR(fpu); 4531 fpu = NULL; 4532 goto out; 4533 } 4534 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4535 break; 4536 } 4537 case KVM_GET_STATS_FD: { 4538 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4539 break; 4540 } 4541 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4542 case KVM_PRE_FAULT_MEMORY: { 4543 struct kvm_pre_fault_memory range; 4544 4545 r = -EFAULT; 4546 if (copy_from_user(&range, argp, sizeof(range))) 4547 break; 4548 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4549 /* Pass back leftover range. */ 4550 if (copy_to_user(argp, &range, sizeof(range))) 4551 r = -EFAULT; 4552 break; 4553 } 4554 #endif 4555 default: 4556 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4557 } 4558 out: 4559 mutex_unlock(&vcpu->mutex); 4560 kfree(fpu); 4561 kfree(kvm_sregs); 4562 return r; 4563 } 4564 4565 #ifdef CONFIG_KVM_COMPAT 4566 static long kvm_vcpu_compat_ioctl(struct file *filp, 4567 unsigned int ioctl, unsigned long arg) 4568 { 4569 struct kvm_vcpu *vcpu = filp->private_data; 4570 void __user *argp = compat_ptr(arg); 4571 int r; 4572 4573 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4574 return -EIO; 4575 4576 switch (ioctl) { 4577 case KVM_SET_SIGNAL_MASK: { 4578 struct kvm_signal_mask __user *sigmask_arg = argp; 4579 struct kvm_signal_mask kvm_sigmask; 4580 sigset_t sigset; 4581 4582 if (argp) { 4583 r = -EFAULT; 4584 if (copy_from_user(&kvm_sigmask, argp, 4585 sizeof(kvm_sigmask))) 4586 goto out; 4587 r = -EINVAL; 4588 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4589 goto out; 4590 r = -EFAULT; 4591 if (get_compat_sigset(&sigset, 4592 (compat_sigset_t __user *)sigmask_arg->sigset)) 4593 goto out; 4594 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4595 } else 4596 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4597 break; 4598 } 4599 default: 4600 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4601 } 4602 4603 out: 4604 return r; 4605 } 4606 #endif 4607 4608 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4609 { 4610 struct kvm_device *dev = filp->private_data; 4611 4612 if (dev->ops->mmap) 4613 return dev->ops->mmap(dev, vma); 4614 4615 return -ENODEV; 4616 } 4617 4618 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4619 int (*accessor)(struct kvm_device *dev, 4620 struct kvm_device_attr *attr), 4621 unsigned long arg) 4622 { 4623 struct kvm_device_attr attr; 4624 4625 if (!accessor) 4626 return -EPERM; 4627 4628 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4629 return -EFAULT; 4630 4631 return accessor(dev, &attr); 4632 } 4633 4634 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4635 unsigned long arg) 4636 { 4637 struct kvm_device *dev = filp->private_data; 4638 4639 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4640 return -EIO; 4641 4642 switch (ioctl) { 4643 case KVM_SET_DEVICE_ATTR: 4644 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4645 case KVM_GET_DEVICE_ATTR: 4646 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4647 case KVM_HAS_DEVICE_ATTR: 4648 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4649 default: 4650 if (dev->ops->ioctl) 4651 return dev->ops->ioctl(dev, ioctl, arg); 4652 4653 return -ENOTTY; 4654 } 4655 } 4656 4657 static int kvm_device_release(struct inode *inode, struct file *filp) 4658 { 4659 struct kvm_device *dev = filp->private_data; 4660 struct kvm *kvm = dev->kvm; 4661 4662 if (dev->ops->release) { 4663 mutex_lock(&kvm->lock); 4664 list_del_rcu(&dev->vm_node); 4665 synchronize_rcu(); 4666 dev->ops->release(dev); 4667 mutex_unlock(&kvm->lock); 4668 } 4669 4670 kvm_put_kvm(kvm); 4671 return 0; 4672 } 4673 4674 static struct file_operations kvm_device_fops = { 4675 .unlocked_ioctl = kvm_device_ioctl, 4676 .release = kvm_device_release, 4677 KVM_COMPAT(kvm_device_ioctl), 4678 .mmap = kvm_device_mmap, 4679 }; 4680 4681 struct kvm_device *kvm_device_from_filp(struct file *filp) 4682 { 4683 if (filp->f_op != &kvm_device_fops) 4684 return NULL; 4685 4686 return filp->private_data; 4687 } 4688 4689 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4690 #ifdef CONFIG_KVM_MPIC 4691 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4692 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4693 #endif 4694 }; 4695 4696 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4697 { 4698 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4699 return -ENOSPC; 4700 4701 if (kvm_device_ops_table[type] != NULL) 4702 return -EEXIST; 4703 4704 kvm_device_ops_table[type] = ops; 4705 return 0; 4706 } 4707 4708 void kvm_unregister_device_ops(u32 type) 4709 { 4710 if (kvm_device_ops_table[type] != NULL) 4711 kvm_device_ops_table[type] = NULL; 4712 } 4713 4714 static int kvm_ioctl_create_device(struct kvm *kvm, 4715 struct kvm_create_device *cd) 4716 { 4717 const struct kvm_device_ops *ops; 4718 struct kvm_device *dev; 4719 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4720 int type; 4721 int ret; 4722 4723 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4724 return -ENODEV; 4725 4726 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4727 ops = kvm_device_ops_table[type]; 4728 if (ops == NULL) 4729 return -ENODEV; 4730 4731 if (test) 4732 return 0; 4733 4734 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4735 if (!dev) 4736 return -ENOMEM; 4737 4738 dev->ops = ops; 4739 dev->kvm = kvm; 4740 4741 mutex_lock(&kvm->lock); 4742 ret = ops->create(dev, type); 4743 if (ret < 0) { 4744 mutex_unlock(&kvm->lock); 4745 kfree(dev); 4746 return ret; 4747 } 4748 list_add_rcu(&dev->vm_node, &kvm->devices); 4749 mutex_unlock(&kvm->lock); 4750 4751 if (ops->init) 4752 ops->init(dev); 4753 4754 kvm_get_kvm(kvm); 4755 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4756 if (ret < 0) { 4757 kvm_put_kvm_no_destroy(kvm); 4758 mutex_lock(&kvm->lock); 4759 list_del_rcu(&dev->vm_node); 4760 synchronize_rcu(); 4761 if (ops->release) 4762 ops->release(dev); 4763 mutex_unlock(&kvm->lock); 4764 if (ops->destroy) 4765 ops->destroy(dev); 4766 return ret; 4767 } 4768 4769 cd->fd = ret; 4770 return 0; 4771 } 4772 4773 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4774 { 4775 switch (arg) { 4776 case KVM_CAP_USER_MEMORY: 4777 case KVM_CAP_USER_MEMORY2: 4778 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4779 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4780 case KVM_CAP_INTERNAL_ERROR_DATA: 4781 #ifdef CONFIG_HAVE_KVM_MSI 4782 case KVM_CAP_SIGNAL_MSI: 4783 #endif 4784 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4785 case KVM_CAP_IRQFD: 4786 #endif 4787 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4788 case KVM_CAP_CHECK_EXTENSION_VM: 4789 case KVM_CAP_ENABLE_CAP_VM: 4790 case KVM_CAP_HALT_POLL: 4791 return 1; 4792 #ifdef CONFIG_KVM_MMIO 4793 case KVM_CAP_COALESCED_MMIO: 4794 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4795 case KVM_CAP_COALESCED_PIO: 4796 return 1; 4797 #endif 4798 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4799 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4800 return KVM_DIRTY_LOG_MANUAL_CAPS; 4801 #endif 4802 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4803 case KVM_CAP_IRQ_ROUTING: 4804 return KVM_MAX_IRQ_ROUTES; 4805 #endif 4806 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4807 case KVM_CAP_MULTI_ADDRESS_SPACE: 4808 if (kvm) 4809 return kvm_arch_nr_memslot_as_ids(kvm); 4810 return KVM_MAX_NR_ADDRESS_SPACES; 4811 #endif 4812 case KVM_CAP_NR_MEMSLOTS: 4813 return KVM_USER_MEM_SLOTS; 4814 case KVM_CAP_DIRTY_LOG_RING: 4815 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4816 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4817 #else 4818 return 0; 4819 #endif 4820 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4821 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4822 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4823 #else 4824 return 0; 4825 #endif 4826 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4827 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4828 #endif 4829 case KVM_CAP_BINARY_STATS_FD: 4830 case KVM_CAP_SYSTEM_EVENT_DATA: 4831 case KVM_CAP_DEVICE_CTRL: 4832 return 1; 4833 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4834 case KVM_CAP_MEMORY_ATTRIBUTES: 4835 return kvm_supported_mem_attributes(kvm); 4836 #endif 4837 #ifdef CONFIG_KVM_PRIVATE_MEM 4838 case KVM_CAP_GUEST_MEMFD: 4839 return !kvm || kvm_arch_has_private_mem(kvm); 4840 #endif 4841 default: 4842 break; 4843 } 4844 return kvm_vm_ioctl_check_extension(kvm, arg); 4845 } 4846 4847 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4848 { 4849 int r; 4850 4851 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4852 return -EINVAL; 4853 4854 /* the size should be power of 2 */ 4855 if (!size || (size & (size - 1))) 4856 return -EINVAL; 4857 4858 /* Should be bigger to keep the reserved entries, or a page */ 4859 if (size < kvm_dirty_ring_get_rsvd_entries() * 4860 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4861 return -EINVAL; 4862 4863 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4864 sizeof(struct kvm_dirty_gfn)) 4865 return -E2BIG; 4866 4867 /* We only allow it to set once */ 4868 if (kvm->dirty_ring_size) 4869 return -EINVAL; 4870 4871 mutex_lock(&kvm->lock); 4872 4873 if (kvm->created_vcpus) { 4874 /* We don't allow to change this value after vcpu created */ 4875 r = -EINVAL; 4876 } else { 4877 kvm->dirty_ring_size = size; 4878 r = 0; 4879 } 4880 4881 mutex_unlock(&kvm->lock); 4882 return r; 4883 } 4884 4885 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4886 { 4887 unsigned long i; 4888 struct kvm_vcpu *vcpu; 4889 int cleared = 0; 4890 4891 if (!kvm->dirty_ring_size) 4892 return -EINVAL; 4893 4894 mutex_lock(&kvm->slots_lock); 4895 4896 kvm_for_each_vcpu(i, vcpu, kvm) 4897 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4898 4899 mutex_unlock(&kvm->slots_lock); 4900 4901 if (cleared) 4902 kvm_flush_remote_tlbs(kvm); 4903 4904 return cleared; 4905 } 4906 4907 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4908 struct kvm_enable_cap *cap) 4909 { 4910 return -EINVAL; 4911 } 4912 4913 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4914 { 4915 int i; 4916 4917 lockdep_assert_held(&kvm->slots_lock); 4918 4919 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4920 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4921 return false; 4922 } 4923 4924 return true; 4925 } 4926 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4927 4928 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4929 struct kvm_enable_cap *cap) 4930 { 4931 switch (cap->cap) { 4932 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4933 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4934 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4935 4936 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4937 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4938 4939 if (cap->flags || (cap->args[0] & ~allowed_options)) 4940 return -EINVAL; 4941 kvm->manual_dirty_log_protect = cap->args[0]; 4942 return 0; 4943 } 4944 #endif 4945 case KVM_CAP_HALT_POLL: { 4946 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4947 return -EINVAL; 4948 4949 kvm->max_halt_poll_ns = cap->args[0]; 4950 4951 /* 4952 * Ensure kvm->override_halt_poll_ns does not become visible 4953 * before kvm->max_halt_poll_ns. 4954 * 4955 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4956 */ 4957 smp_wmb(); 4958 kvm->override_halt_poll_ns = true; 4959 4960 return 0; 4961 } 4962 case KVM_CAP_DIRTY_LOG_RING: 4963 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4964 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4965 return -EINVAL; 4966 4967 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4968 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4969 int r = -EINVAL; 4970 4971 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4972 !kvm->dirty_ring_size || cap->flags) 4973 return r; 4974 4975 mutex_lock(&kvm->slots_lock); 4976 4977 /* 4978 * For simplicity, allow enabling ring+bitmap if and only if 4979 * there are no memslots, e.g. to ensure all memslots allocate 4980 * a bitmap after the capability is enabled. 4981 */ 4982 if (kvm_are_all_memslots_empty(kvm)) { 4983 kvm->dirty_ring_with_bitmap = true; 4984 r = 0; 4985 } 4986 4987 mutex_unlock(&kvm->slots_lock); 4988 4989 return r; 4990 } 4991 default: 4992 return kvm_vm_ioctl_enable_cap(kvm, cap); 4993 } 4994 } 4995 4996 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4997 size_t size, loff_t *offset) 4998 { 4999 struct kvm *kvm = file->private_data; 5000 5001 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5002 &kvm_vm_stats_desc[0], &kvm->stat, 5003 sizeof(kvm->stat), user_buffer, size, offset); 5004 } 5005 5006 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5007 { 5008 struct kvm *kvm = file->private_data; 5009 5010 kvm_put_kvm(kvm); 5011 return 0; 5012 } 5013 5014 static const struct file_operations kvm_vm_stats_fops = { 5015 .owner = THIS_MODULE, 5016 .read = kvm_vm_stats_read, 5017 .release = kvm_vm_stats_release, 5018 .llseek = noop_llseek, 5019 }; 5020 5021 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5022 { 5023 int fd; 5024 struct file *file; 5025 5026 fd = get_unused_fd_flags(O_CLOEXEC); 5027 if (fd < 0) 5028 return fd; 5029 5030 file = anon_inode_getfile("kvm-vm-stats", 5031 &kvm_vm_stats_fops, kvm, O_RDONLY); 5032 if (IS_ERR(file)) { 5033 put_unused_fd(fd); 5034 return PTR_ERR(file); 5035 } 5036 5037 kvm_get_kvm(kvm); 5038 5039 file->f_mode |= FMODE_PREAD; 5040 fd_install(fd, file); 5041 5042 return fd; 5043 } 5044 5045 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5046 do { \ 5047 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5048 offsetof(struct kvm_userspace_memory_region2, field)); \ 5049 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5050 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5051 } while (0) 5052 5053 static long kvm_vm_ioctl(struct file *filp, 5054 unsigned int ioctl, unsigned long arg) 5055 { 5056 struct kvm *kvm = filp->private_data; 5057 void __user *argp = (void __user *)arg; 5058 int r; 5059 5060 if (kvm->mm != current->mm || kvm->vm_dead) 5061 return -EIO; 5062 switch (ioctl) { 5063 case KVM_CREATE_VCPU: 5064 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5065 break; 5066 case KVM_ENABLE_CAP: { 5067 struct kvm_enable_cap cap; 5068 5069 r = -EFAULT; 5070 if (copy_from_user(&cap, argp, sizeof(cap))) 5071 goto out; 5072 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5073 break; 5074 } 5075 case KVM_SET_USER_MEMORY_REGION2: 5076 case KVM_SET_USER_MEMORY_REGION: { 5077 struct kvm_userspace_memory_region2 mem; 5078 unsigned long size; 5079 5080 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5081 /* 5082 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5083 * accessed, but avoid leaking kernel memory in case of a bug. 5084 */ 5085 memset(&mem, 0, sizeof(mem)); 5086 size = sizeof(struct kvm_userspace_memory_region); 5087 } else { 5088 size = sizeof(struct kvm_userspace_memory_region2); 5089 } 5090 5091 /* Ensure the common parts of the two structs are identical. */ 5092 SANITY_CHECK_MEM_REGION_FIELD(slot); 5093 SANITY_CHECK_MEM_REGION_FIELD(flags); 5094 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5095 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5096 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5097 5098 r = -EFAULT; 5099 if (copy_from_user(&mem, argp, size)) 5100 goto out; 5101 5102 r = -EINVAL; 5103 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5104 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5105 goto out; 5106 5107 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5108 break; 5109 } 5110 case KVM_GET_DIRTY_LOG: { 5111 struct kvm_dirty_log log; 5112 5113 r = -EFAULT; 5114 if (copy_from_user(&log, argp, sizeof(log))) 5115 goto out; 5116 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5117 break; 5118 } 5119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5120 case KVM_CLEAR_DIRTY_LOG: { 5121 struct kvm_clear_dirty_log log; 5122 5123 r = -EFAULT; 5124 if (copy_from_user(&log, argp, sizeof(log))) 5125 goto out; 5126 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5127 break; 5128 } 5129 #endif 5130 #ifdef CONFIG_KVM_MMIO 5131 case KVM_REGISTER_COALESCED_MMIO: { 5132 struct kvm_coalesced_mmio_zone zone; 5133 5134 r = -EFAULT; 5135 if (copy_from_user(&zone, argp, sizeof(zone))) 5136 goto out; 5137 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5138 break; 5139 } 5140 case KVM_UNREGISTER_COALESCED_MMIO: { 5141 struct kvm_coalesced_mmio_zone zone; 5142 5143 r = -EFAULT; 5144 if (copy_from_user(&zone, argp, sizeof(zone))) 5145 goto out; 5146 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5147 break; 5148 } 5149 #endif 5150 case KVM_IRQFD: { 5151 struct kvm_irqfd data; 5152 5153 r = -EFAULT; 5154 if (copy_from_user(&data, argp, sizeof(data))) 5155 goto out; 5156 r = kvm_irqfd(kvm, &data); 5157 break; 5158 } 5159 case KVM_IOEVENTFD: { 5160 struct kvm_ioeventfd data; 5161 5162 r = -EFAULT; 5163 if (copy_from_user(&data, argp, sizeof(data))) 5164 goto out; 5165 r = kvm_ioeventfd(kvm, &data); 5166 break; 5167 } 5168 #ifdef CONFIG_HAVE_KVM_MSI 5169 case KVM_SIGNAL_MSI: { 5170 struct kvm_msi msi; 5171 5172 r = -EFAULT; 5173 if (copy_from_user(&msi, argp, sizeof(msi))) 5174 goto out; 5175 r = kvm_send_userspace_msi(kvm, &msi); 5176 break; 5177 } 5178 #endif 5179 #ifdef __KVM_HAVE_IRQ_LINE 5180 case KVM_IRQ_LINE_STATUS: 5181 case KVM_IRQ_LINE: { 5182 struct kvm_irq_level irq_event; 5183 5184 r = -EFAULT; 5185 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5186 goto out; 5187 5188 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5189 ioctl == KVM_IRQ_LINE_STATUS); 5190 if (r) 5191 goto out; 5192 5193 r = -EFAULT; 5194 if (ioctl == KVM_IRQ_LINE_STATUS) { 5195 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5196 goto out; 5197 } 5198 5199 r = 0; 5200 break; 5201 } 5202 #endif 5203 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5204 case KVM_SET_GSI_ROUTING: { 5205 struct kvm_irq_routing routing; 5206 struct kvm_irq_routing __user *urouting; 5207 struct kvm_irq_routing_entry *entries = NULL; 5208 5209 r = -EFAULT; 5210 if (copy_from_user(&routing, argp, sizeof(routing))) 5211 goto out; 5212 r = -EINVAL; 5213 if (!kvm_arch_can_set_irq_routing(kvm)) 5214 goto out; 5215 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5216 goto out; 5217 if (routing.flags) 5218 goto out; 5219 if (routing.nr) { 5220 urouting = argp; 5221 entries = vmemdup_array_user(urouting->entries, 5222 routing.nr, sizeof(*entries)); 5223 if (IS_ERR(entries)) { 5224 r = PTR_ERR(entries); 5225 goto out; 5226 } 5227 } 5228 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5229 routing.flags); 5230 kvfree(entries); 5231 break; 5232 } 5233 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5234 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5235 case KVM_SET_MEMORY_ATTRIBUTES: { 5236 struct kvm_memory_attributes attrs; 5237 5238 r = -EFAULT; 5239 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5240 goto out; 5241 5242 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5243 break; 5244 } 5245 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5246 case KVM_CREATE_DEVICE: { 5247 struct kvm_create_device cd; 5248 5249 r = -EFAULT; 5250 if (copy_from_user(&cd, argp, sizeof(cd))) 5251 goto out; 5252 5253 r = kvm_ioctl_create_device(kvm, &cd); 5254 if (r) 5255 goto out; 5256 5257 r = -EFAULT; 5258 if (copy_to_user(argp, &cd, sizeof(cd))) 5259 goto out; 5260 5261 r = 0; 5262 break; 5263 } 5264 case KVM_CHECK_EXTENSION: 5265 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5266 break; 5267 case KVM_RESET_DIRTY_RINGS: 5268 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5269 break; 5270 case KVM_GET_STATS_FD: 5271 r = kvm_vm_ioctl_get_stats_fd(kvm); 5272 break; 5273 #ifdef CONFIG_KVM_PRIVATE_MEM 5274 case KVM_CREATE_GUEST_MEMFD: { 5275 struct kvm_create_guest_memfd guest_memfd; 5276 5277 r = -EFAULT; 5278 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5279 goto out; 5280 5281 r = kvm_gmem_create(kvm, &guest_memfd); 5282 break; 5283 } 5284 #endif 5285 default: 5286 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5287 } 5288 out: 5289 return r; 5290 } 5291 5292 #ifdef CONFIG_KVM_COMPAT 5293 struct compat_kvm_dirty_log { 5294 __u32 slot; 5295 __u32 padding1; 5296 union { 5297 compat_uptr_t dirty_bitmap; /* one bit per page */ 5298 __u64 padding2; 5299 }; 5300 }; 5301 5302 struct compat_kvm_clear_dirty_log { 5303 __u32 slot; 5304 __u32 num_pages; 5305 __u64 first_page; 5306 union { 5307 compat_uptr_t dirty_bitmap; /* one bit per page */ 5308 __u64 padding2; 5309 }; 5310 }; 5311 5312 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5313 unsigned long arg) 5314 { 5315 return -ENOTTY; 5316 } 5317 5318 static long kvm_vm_compat_ioctl(struct file *filp, 5319 unsigned int ioctl, unsigned long arg) 5320 { 5321 struct kvm *kvm = filp->private_data; 5322 int r; 5323 5324 if (kvm->mm != current->mm || kvm->vm_dead) 5325 return -EIO; 5326 5327 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5328 if (r != -ENOTTY) 5329 return r; 5330 5331 switch (ioctl) { 5332 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5333 case KVM_CLEAR_DIRTY_LOG: { 5334 struct compat_kvm_clear_dirty_log compat_log; 5335 struct kvm_clear_dirty_log log; 5336 5337 if (copy_from_user(&compat_log, (void __user *)arg, 5338 sizeof(compat_log))) 5339 return -EFAULT; 5340 log.slot = compat_log.slot; 5341 log.num_pages = compat_log.num_pages; 5342 log.first_page = compat_log.first_page; 5343 log.padding2 = compat_log.padding2; 5344 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5345 5346 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5347 break; 5348 } 5349 #endif 5350 case KVM_GET_DIRTY_LOG: { 5351 struct compat_kvm_dirty_log compat_log; 5352 struct kvm_dirty_log log; 5353 5354 if (copy_from_user(&compat_log, (void __user *)arg, 5355 sizeof(compat_log))) 5356 return -EFAULT; 5357 log.slot = compat_log.slot; 5358 log.padding1 = compat_log.padding1; 5359 log.padding2 = compat_log.padding2; 5360 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5361 5362 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5363 break; 5364 } 5365 default: 5366 r = kvm_vm_ioctl(filp, ioctl, arg); 5367 } 5368 return r; 5369 } 5370 #endif 5371 5372 static struct file_operations kvm_vm_fops = { 5373 .release = kvm_vm_release, 5374 .unlocked_ioctl = kvm_vm_ioctl, 5375 .llseek = noop_llseek, 5376 KVM_COMPAT(kvm_vm_compat_ioctl), 5377 }; 5378 5379 bool file_is_kvm(struct file *file) 5380 { 5381 return file && file->f_op == &kvm_vm_fops; 5382 } 5383 EXPORT_SYMBOL_GPL(file_is_kvm); 5384 5385 static int kvm_dev_ioctl_create_vm(unsigned long type) 5386 { 5387 char fdname[ITOA_MAX_LEN + 1]; 5388 int r, fd; 5389 struct kvm *kvm; 5390 struct file *file; 5391 5392 fd = get_unused_fd_flags(O_CLOEXEC); 5393 if (fd < 0) 5394 return fd; 5395 5396 snprintf(fdname, sizeof(fdname), "%d", fd); 5397 5398 kvm = kvm_create_vm(type, fdname); 5399 if (IS_ERR(kvm)) { 5400 r = PTR_ERR(kvm); 5401 goto put_fd; 5402 } 5403 5404 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5405 if (IS_ERR(file)) { 5406 r = PTR_ERR(file); 5407 goto put_kvm; 5408 } 5409 5410 /* 5411 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5412 * already set, with ->release() being kvm_vm_release(). In error 5413 * cases it will be called by the final fput(file) and will take 5414 * care of doing kvm_put_kvm(kvm). 5415 */ 5416 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5417 5418 fd_install(fd, file); 5419 return fd; 5420 5421 put_kvm: 5422 kvm_put_kvm(kvm); 5423 put_fd: 5424 put_unused_fd(fd); 5425 return r; 5426 } 5427 5428 static long kvm_dev_ioctl(struct file *filp, 5429 unsigned int ioctl, unsigned long arg) 5430 { 5431 int r = -EINVAL; 5432 5433 switch (ioctl) { 5434 case KVM_GET_API_VERSION: 5435 if (arg) 5436 goto out; 5437 r = KVM_API_VERSION; 5438 break; 5439 case KVM_CREATE_VM: 5440 r = kvm_dev_ioctl_create_vm(arg); 5441 break; 5442 case KVM_CHECK_EXTENSION: 5443 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5444 break; 5445 case KVM_GET_VCPU_MMAP_SIZE: 5446 if (arg) 5447 goto out; 5448 r = PAGE_SIZE; /* struct kvm_run */ 5449 #ifdef CONFIG_X86 5450 r += PAGE_SIZE; /* pio data page */ 5451 #endif 5452 #ifdef CONFIG_KVM_MMIO 5453 r += PAGE_SIZE; /* coalesced mmio ring page */ 5454 #endif 5455 break; 5456 default: 5457 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5458 } 5459 out: 5460 return r; 5461 } 5462 5463 static struct file_operations kvm_chardev_ops = { 5464 .unlocked_ioctl = kvm_dev_ioctl, 5465 .llseek = noop_llseek, 5466 KVM_COMPAT(kvm_dev_ioctl), 5467 }; 5468 5469 static struct miscdevice kvm_dev = { 5470 KVM_MINOR, 5471 "kvm", 5472 &kvm_chardev_ops, 5473 }; 5474 5475 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5476 static bool enable_virt_at_load = true; 5477 module_param(enable_virt_at_load, bool, 0444); 5478 5479 __visible bool kvm_rebooting; 5480 EXPORT_SYMBOL_GPL(kvm_rebooting); 5481 5482 static DEFINE_PER_CPU(bool, virtualization_enabled); 5483 static DEFINE_MUTEX(kvm_usage_lock); 5484 static int kvm_usage_count; 5485 5486 __weak void kvm_arch_enable_virtualization(void) 5487 { 5488 5489 } 5490 5491 __weak void kvm_arch_disable_virtualization(void) 5492 { 5493 5494 } 5495 5496 static int kvm_enable_virtualization_cpu(void) 5497 { 5498 if (__this_cpu_read(virtualization_enabled)) 5499 return 0; 5500 5501 if (kvm_arch_enable_virtualization_cpu()) { 5502 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5503 raw_smp_processor_id()); 5504 return -EIO; 5505 } 5506 5507 __this_cpu_write(virtualization_enabled, true); 5508 return 0; 5509 } 5510 5511 static int kvm_online_cpu(unsigned int cpu) 5512 { 5513 /* 5514 * Abort the CPU online process if hardware virtualization cannot 5515 * be enabled. Otherwise running VMs would encounter unrecoverable 5516 * errors when scheduled to this CPU. 5517 */ 5518 return kvm_enable_virtualization_cpu(); 5519 } 5520 5521 static void kvm_disable_virtualization_cpu(void *ign) 5522 { 5523 if (!__this_cpu_read(virtualization_enabled)) 5524 return; 5525 5526 kvm_arch_disable_virtualization_cpu(); 5527 5528 __this_cpu_write(virtualization_enabled, false); 5529 } 5530 5531 static int kvm_offline_cpu(unsigned int cpu) 5532 { 5533 kvm_disable_virtualization_cpu(NULL); 5534 return 0; 5535 } 5536 5537 static void kvm_shutdown(void) 5538 { 5539 /* 5540 * Disable hardware virtualization and set kvm_rebooting to indicate 5541 * that KVM has asynchronously disabled hardware virtualization, i.e. 5542 * that relevant errors and exceptions aren't entirely unexpected. 5543 * Some flavors of hardware virtualization need to be disabled before 5544 * transferring control to firmware (to perform shutdown/reboot), e.g. 5545 * on x86, virtualization can block INIT interrupts, which are used by 5546 * firmware to pull APs back under firmware control. Note, this path 5547 * is used for both shutdown and reboot scenarios, i.e. neither name is 5548 * 100% comprehensive. 5549 */ 5550 pr_info("kvm: exiting hardware virtualization\n"); 5551 kvm_rebooting = true; 5552 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); 5553 } 5554 5555 static int kvm_suspend(void) 5556 { 5557 /* 5558 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5559 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5560 * count is stable. Assert that kvm_usage_lock is not held to ensure 5561 * the system isn't suspended while KVM is enabling hardware. Hardware 5562 * enabling can be preempted, but the task cannot be frozen until it has 5563 * dropped all locks (userspace tasks are frozen via a fake signal). 5564 */ 5565 lockdep_assert_not_held(&kvm_usage_lock); 5566 lockdep_assert_irqs_disabled(); 5567 5568 kvm_disable_virtualization_cpu(NULL); 5569 return 0; 5570 } 5571 5572 static void kvm_resume(void) 5573 { 5574 lockdep_assert_not_held(&kvm_usage_lock); 5575 lockdep_assert_irqs_disabled(); 5576 5577 WARN_ON_ONCE(kvm_enable_virtualization_cpu()); 5578 } 5579 5580 static struct syscore_ops kvm_syscore_ops = { 5581 .suspend = kvm_suspend, 5582 .resume = kvm_resume, 5583 .shutdown = kvm_shutdown, 5584 }; 5585 5586 static int kvm_enable_virtualization(void) 5587 { 5588 int r; 5589 5590 guard(mutex)(&kvm_usage_lock); 5591 5592 if (kvm_usage_count++) 5593 return 0; 5594 5595 kvm_arch_enable_virtualization(); 5596 5597 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5598 kvm_online_cpu, kvm_offline_cpu); 5599 if (r) 5600 goto err_cpuhp; 5601 5602 register_syscore_ops(&kvm_syscore_ops); 5603 5604 /* 5605 * Undo virtualization enabling and bail if the system is going down. 5606 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5607 * possible for an in-flight operation to enable virtualization after 5608 * syscore_shutdown() is called, i.e. without kvm_shutdown() being 5609 * invoked. Note, this relies on system_state being set _before_ 5610 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked 5611 * or this CPU observes the impending shutdown. Which is why KVM uses 5612 * a syscore ops hook instead of registering a dedicated reboot 5613 * notifier (the latter runs before system_state is updated). 5614 */ 5615 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5616 system_state == SYSTEM_RESTART) { 5617 r = -EBUSY; 5618 goto err_rebooting; 5619 } 5620 5621 return 0; 5622 5623 err_rebooting: 5624 unregister_syscore_ops(&kvm_syscore_ops); 5625 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5626 err_cpuhp: 5627 kvm_arch_disable_virtualization(); 5628 --kvm_usage_count; 5629 return r; 5630 } 5631 5632 static void kvm_disable_virtualization(void) 5633 { 5634 guard(mutex)(&kvm_usage_lock); 5635 5636 if (--kvm_usage_count) 5637 return; 5638 5639 unregister_syscore_ops(&kvm_syscore_ops); 5640 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5641 kvm_arch_disable_virtualization(); 5642 } 5643 5644 static int kvm_init_virtualization(void) 5645 { 5646 if (enable_virt_at_load) 5647 return kvm_enable_virtualization(); 5648 5649 return 0; 5650 } 5651 5652 static void kvm_uninit_virtualization(void) 5653 { 5654 if (enable_virt_at_load) 5655 kvm_disable_virtualization(); 5656 } 5657 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5658 static int kvm_enable_virtualization(void) 5659 { 5660 return 0; 5661 } 5662 5663 static int kvm_init_virtualization(void) 5664 { 5665 return 0; 5666 } 5667 5668 static void kvm_disable_virtualization(void) 5669 { 5670 5671 } 5672 5673 static void kvm_uninit_virtualization(void) 5674 { 5675 5676 } 5677 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5678 5679 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5680 { 5681 if (dev->ops->destructor) 5682 dev->ops->destructor(dev); 5683 } 5684 5685 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5686 { 5687 int i; 5688 5689 for (i = 0; i < bus->dev_count; i++) { 5690 struct kvm_io_device *pos = bus->range[i].dev; 5691 5692 kvm_iodevice_destructor(pos); 5693 } 5694 kfree(bus); 5695 } 5696 5697 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5698 const struct kvm_io_range *r2) 5699 { 5700 gpa_t addr1 = r1->addr; 5701 gpa_t addr2 = r2->addr; 5702 5703 if (addr1 < addr2) 5704 return -1; 5705 5706 /* If r2->len == 0, match the exact address. If r2->len != 0, 5707 * accept any overlapping write. Any order is acceptable for 5708 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5709 * we process all of them. 5710 */ 5711 if (r2->len) { 5712 addr1 += r1->len; 5713 addr2 += r2->len; 5714 } 5715 5716 if (addr1 > addr2) 5717 return 1; 5718 5719 return 0; 5720 } 5721 5722 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5723 { 5724 return kvm_io_bus_cmp(p1, p2); 5725 } 5726 5727 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5728 gpa_t addr, int len) 5729 { 5730 struct kvm_io_range *range, key; 5731 int off; 5732 5733 key = (struct kvm_io_range) { 5734 .addr = addr, 5735 .len = len, 5736 }; 5737 5738 range = bsearch(&key, bus->range, bus->dev_count, 5739 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5740 if (range == NULL) 5741 return -ENOENT; 5742 5743 off = range - bus->range; 5744 5745 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5746 off--; 5747 5748 return off; 5749 } 5750 5751 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5752 struct kvm_io_range *range, const void *val) 5753 { 5754 int idx; 5755 5756 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5757 if (idx < 0) 5758 return -EOPNOTSUPP; 5759 5760 while (idx < bus->dev_count && 5761 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5762 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5763 range->len, val)) 5764 return idx; 5765 idx++; 5766 } 5767 5768 return -EOPNOTSUPP; 5769 } 5770 5771 /* kvm_io_bus_write - called under kvm->slots_lock */ 5772 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5773 int len, const void *val) 5774 { 5775 struct kvm_io_bus *bus; 5776 struct kvm_io_range range; 5777 int r; 5778 5779 range = (struct kvm_io_range) { 5780 .addr = addr, 5781 .len = len, 5782 }; 5783 5784 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5785 if (!bus) 5786 return -ENOMEM; 5787 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5788 return r < 0 ? r : 0; 5789 } 5790 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5791 5792 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5793 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5794 gpa_t addr, int len, const void *val, long cookie) 5795 { 5796 struct kvm_io_bus *bus; 5797 struct kvm_io_range range; 5798 5799 range = (struct kvm_io_range) { 5800 .addr = addr, 5801 .len = len, 5802 }; 5803 5804 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5805 if (!bus) 5806 return -ENOMEM; 5807 5808 /* First try the device referenced by cookie. */ 5809 if ((cookie >= 0) && (cookie < bus->dev_count) && 5810 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5811 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5812 val)) 5813 return cookie; 5814 5815 /* 5816 * cookie contained garbage; fall back to search and return the 5817 * correct cookie value. 5818 */ 5819 return __kvm_io_bus_write(vcpu, bus, &range, val); 5820 } 5821 5822 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5823 struct kvm_io_range *range, void *val) 5824 { 5825 int idx; 5826 5827 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5828 if (idx < 0) 5829 return -EOPNOTSUPP; 5830 5831 while (idx < bus->dev_count && 5832 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5833 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5834 range->len, val)) 5835 return idx; 5836 idx++; 5837 } 5838 5839 return -EOPNOTSUPP; 5840 } 5841 5842 /* kvm_io_bus_read - called under kvm->slots_lock */ 5843 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5844 int len, void *val) 5845 { 5846 struct kvm_io_bus *bus; 5847 struct kvm_io_range range; 5848 int r; 5849 5850 range = (struct kvm_io_range) { 5851 .addr = addr, 5852 .len = len, 5853 }; 5854 5855 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5856 if (!bus) 5857 return -ENOMEM; 5858 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5859 return r < 0 ? r : 0; 5860 } 5861 5862 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5863 int len, struct kvm_io_device *dev) 5864 { 5865 int i; 5866 struct kvm_io_bus *new_bus, *bus; 5867 struct kvm_io_range range; 5868 5869 lockdep_assert_held(&kvm->slots_lock); 5870 5871 bus = kvm_get_bus(kvm, bus_idx); 5872 if (!bus) 5873 return -ENOMEM; 5874 5875 /* exclude ioeventfd which is limited by maximum fd */ 5876 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5877 return -ENOSPC; 5878 5879 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5880 GFP_KERNEL_ACCOUNT); 5881 if (!new_bus) 5882 return -ENOMEM; 5883 5884 range = (struct kvm_io_range) { 5885 .addr = addr, 5886 .len = len, 5887 .dev = dev, 5888 }; 5889 5890 for (i = 0; i < bus->dev_count; i++) 5891 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5892 break; 5893 5894 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5895 new_bus->dev_count++; 5896 new_bus->range[i] = range; 5897 memcpy(new_bus->range + i + 1, bus->range + i, 5898 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5899 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5900 synchronize_srcu_expedited(&kvm->srcu); 5901 kfree(bus); 5902 5903 return 0; 5904 } 5905 5906 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5907 struct kvm_io_device *dev) 5908 { 5909 int i; 5910 struct kvm_io_bus *new_bus, *bus; 5911 5912 lockdep_assert_held(&kvm->slots_lock); 5913 5914 bus = kvm_get_bus(kvm, bus_idx); 5915 if (!bus) 5916 return 0; 5917 5918 for (i = 0; i < bus->dev_count; i++) { 5919 if (bus->range[i].dev == dev) { 5920 break; 5921 } 5922 } 5923 5924 if (i == bus->dev_count) 5925 return 0; 5926 5927 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5928 GFP_KERNEL_ACCOUNT); 5929 if (new_bus) { 5930 memcpy(new_bus, bus, struct_size(bus, range, i)); 5931 new_bus->dev_count--; 5932 memcpy(new_bus->range + i, bus->range + i + 1, 5933 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5934 } 5935 5936 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5937 synchronize_srcu_expedited(&kvm->srcu); 5938 5939 /* 5940 * If NULL bus is installed, destroy the old bus, including all the 5941 * attached devices. Otherwise, destroy the caller's device only. 5942 */ 5943 if (!new_bus) { 5944 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5945 kvm_io_bus_destroy(bus); 5946 return -ENOMEM; 5947 } 5948 5949 kvm_iodevice_destructor(dev); 5950 kfree(bus); 5951 return 0; 5952 } 5953 5954 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5955 gpa_t addr) 5956 { 5957 struct kvm_io_bus *bus; 5958 int dev_idx, srcu_idx; 5959 struct kvm_io_device *iodev = NULL; 5960 5961 srcu_idx = srcu_read_lock(&kvm->srcu); 5962 5963 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5964 if (!bus) 5965 goto out_unlock; 5966 5967 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5968 if (dev_idx < 0) 5969 goto out_unlock; 5970 5971 iodev = bus->range[dev_idx].dev; 5972 5973 out_unlock: 5974 srcu_read_unlock(&kvm->srcu, srcu_idx); 5975 5976 return iodev; 5977 } 5978 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5979 5980 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5981 int (*get)(void *, u64 *), int (*set)(void *, u64), 5982 const char *fmt) 5983 { 5984 int ret; 5985 struct kvm_stat_data *stat_data = inode->i_private; 5986 5987 /* 5988 * The debugfs files are a reference to the kvm struct which 5989 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5990 * avoids the race between open and the removal of the debugfs directory. 5991 */ 5992 if (!kvm_get_kvm_safe(stat_data->kvm)) 5993 return -ENOENT; 5994 5995 ret = simple_attr_open(inode, file, get, 5996 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5997 ? set : NULL, fmt); 5998 if (ret) 5999 kvm_put_kvm(stat_data->kvm); 6000 6001 return ret; 6002 } 6003 6004 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6005 { 6006 struct kvm_stat_data *stat_data = inode->i_private; 6007 6008 simple_attr_release(inode, file); 6009 kvm_put_kvm(stat_data->kvm); 6010 6011 return 0; 6012 } 6013 6014 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6015 { 6016 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6017 6018 return 0; 6019 } 6020 6021 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6022 { 6023 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6024 6025 return 0; 6026 } 6027 6028 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6029 { 6030 unsigned long i; 6031 struct kvm_vcpu *vcpu; 6032 6033 *val = 0; 6034 6035 kvm_for_each_vcpu(i, vcpu, kvm) 6036 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6037 6038 return 0; 6039 } 6040 6041 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6042 { 6043 unsigned long i; 6044 struct kvm_vcpu *vcpu; 6045 6046 kvm_for_each_vcpu(i, vcpu, kvm) 6047 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6048 6049 return 0; 6050 } 6051 6052 static int kvm_stat_data_get(void *data, u64 *val) 6053 { 6054 int r = -EFAULT; 6055 struct kvm_stat_data *stat_data = data; 6056 6057 switch (stat_data->kind) { 6058 case KVM_STAT_VM: 6059 r = kvm_get_stat_per_vm(stat_data->kvm, 6060 stat_data->desc->desc.offset, val); 6061 break; 6062 case KVM_STAT_VCPU: 6063 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6064 stat_data->desc->desc.offset, val); 6065 break; 6066 } 6067 6068 return r; 6069 } 6070 6071 static int kvm_stat_data_clear(void *data, u64 val) 6072 { 6073 int r = -EFAULT; 6074 struct kvm_stat_data *stat_data = data; 6075 6076 if (val) 6077 return -EINVAL; 6078 6079 switch (stat_data->kind) { 6080 case KVM_STAT_VM: 6081 r = kvm_clear_stat_per_vm(stat_data->kvm, 6082 stat_data->desc->desc.offset); 6083 break; 6084 case KVM_STAT_VCPU: 6085 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6086 stat_data->desc->desc.offset); 6087 break; 6088 } 6089 6090 return r; 6091 } 6092 6093 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6094 { 6095 __simple_attr_check_format("%llu\n", 0ull); 6096 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6097 kvm_stat_data_clear, "%llu\n"); 6098 } 6099 6100 static const struct file_operations stat_fops_per_vm = { 6101 .owner = THIS_MODULE, 6102 .open = kvm_stat_data_open, 6103 .release = kvm_debugfs_release, 6104 .read = simple_attr_read, 6105 .write = simple_attr_write, 6106 }; 6107 6108 static int vm_stat_get(void *_offset, u64 *val) 6109 { 6110 unsigned offset = (long)_offset; 6111 struct kvm *kvm; 6112 u64 tmp_val; 6113 6114 *val = 0; 6115 mutex_lock(&kvm_lock); 6116 list_for_each_entry(kvm, &vm_list, vm_list) { 6117 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6118 *val += tmp_val; 6119 } 6120 mutex_unlock(&kvm_lock); 6121 return 0; 6122 } 6123 6124 static int vm_stat_clear(void *_offset, u64 val) 6125 { 6126 unsigned offset = (long)_offset; 6127 struct kvm *kvm; 6128 6129 if (val) 6130 return -EINVAL; 6131 6132 mutex_lock(&kvm_lock); 6133 list_for_each_entry(kvm, &vm_list, vm_list) { 6134 kvm_clear_stat_per_vm(kvm, offset); 6135 } 6136 mutex_unlock(&kvm_lock); 6137 6138 return 0; 6139 } 6140 6141 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6142 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6143 6144 static int vcpu_stat_get(void *_offset, u64 *val) 6145 { 6146 unsigned offset = (long)_offset; 6147 struct kvm *kvm; 6148 u64 tmp_val; 6149 6150 *val = 0; 6151 mutex_lock(&kvm_lock); 6152 list_for_each_entry(kvm, &vm_list, vm_list) { 6153 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6154 *val += tmp_val; 6155 } 6156 mutex_unlock(&kvm_lock); 6157 return 0; 6158 } 6159 6160 static int vcpu_stat_clear(void *_offset, u64 val) 6161 { 6162 unsigned offset = (long)_offset; 6163 struct kvm *kvm; 6164 6165 if (val) 6166 return -EINVAL; 6167 6168 mutex_lock(&kvm_lock); 6169 list_for_each_entry(kvm, &vm_list, vm_list) { 6170 kvm_clear_stat_per_vcpu(kvm, offset); 6171 } 6172 mutex_unlock(&kvm_lock); 6173 6174 return 0; 6175 } 6176 6177 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6178 "%llu\n"); 6179 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6180 6181 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6182 { 6183 struct kobj_uevent_env *env; 6184 unsigned long long created, active; 6185 6186 if (!kvm_dev.this_device || !kvm) 6187 return; 6188 6189 mutex_lock(&kvm_lock); 6190 if (type == KVM_EVENT_CREATE_VM) { 6191 kvm_createvm_count++; 6192 kvm_active_vms++; 6193 } else if (type == KVM_EVENT_DESTROY_VM) { 6194 kvm_active_vms--; 6195 } 6196 created = kvm_createvm_count; 6197 active = kvm_active_vms; 6198 mutex_unlock(&kvm_lock); 6199 6200 env = kzalloc(sizeof(*env), GFP_KERNEL); 6201 if (!env) 6202 return; 6203 6204 add_uevent_var(env, "CREATED=%llu", created); 6205 add_uevent_var(env, "COUNT=%llu", active); 6206 6207 if (type == KVM_EVENT_CREATE_VM) { 6208 add_uevent_var(env, "EVENT=create"); 6209 kvm->userspace_pid = task_pid_nr(current); 6210 } else if (type == KVM_EVENT_DESTROY_VM) { 6211 add_uevent_var(env, "EVENT=destroy"); 6212 } 6213 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6214 6215 if (!IS_ERR(kvm->debugfs_dentry)) { 6216 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6217 6218 if (p) { 6219 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6220 if (!IS_ERR(tmp)) 6221 add_uevent_var(env, "STATS_PATH=%s", tmp); 6222 kfree(p); 6223 } 6224 } 6225 /* no need for checks, since we are adding at most only 5 keys */ 6226 env->envp[env->envp_idx++] = NULL; 6227 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6228 kfree(env); 6229 } 6230 6231 static void kvm_init_debug(void) 6232 { 6233 const struct file_operations *fops; 6234 const struct _kvm_stats_desc *pdesc; 6235 int i; 6236 6237 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6238 6239 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6240 pdesc = &kvm_vm_stats_desc[i]; 6241 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6242 fops = &vm_stat_fops; 6243 else 6244 fops = &vm_stat_readonly_fops; 6245 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6246 kvm_debugfs_dir, 6247 (void *)(long)pdesc->desc.offset, fops); 6248 } 6249 6250 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6251 pdesc = &kvm_vcpu_stats_desc[i]; 6252 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6253 fops = &vcpu_stat_fops; 6254 else 6255 fops = &vcpu_stat_readonly_fops; 6256 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6257 kvm_debugfs_dir, 6258 (void *)(long)pdesc->desc.offset, fops); 6259 } 6260 } 6261 6262 static inline 6263 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6264 { 6265 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6266 } 6267 6268 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6269 { 6270 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6271 6272 WRITE_ONCE(vcpu->preempted, false); 6273 WRITE_ONCE(vcpu->ready, false); 6274 6275 __this_cpu_write(kvm_running_vcpu, vcpu); 6276 kvm_arch_vcpu_load(vcpu, cpu); 6277 6278 WRITE_ONCE(vcpu->scheduled_out, false); 6279 } 6280 6281 static void kvm_sched_out(struct preempt_notifier *pn, 6282 struct task_struct *next) 6283 { 6284 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6285 6286 WRITE_ONCE(vcpu->scheduled_out, true); 6287 6288 if (task_is_runnable(current) && vcpu->wants_to_run) { 6289 WRITE_ONCE(vcpu->preempted, true); 6290 WRITE_ONCE(vcpu->ready, true); 6291 } 6292 kvm_arch_vcpu_put(vcpu); 6293 __this_cpu_write(kvm_running_vcpu, NULL); 6294 } 6295 6296 /** 6297 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6298 * 6299 * We can disable preemption locally around accessing the per-CPU variable, 6300 * and use the resolved vcpu pointer after enabling preemption again, 6301 * because even if the current thread is migrated to another CPU, reading 6302 * the per-CPU value later will give us the same value as we update the 6303 * per-CPU variable in the preempt notifier handlers. 6304 */ 6305 struct kvm_vcpu *kvm_get_running_vcpu(void) 6306 { 6307 struct kvm_vcpu *vcpu; 6308 6309 preempt_disable(); 6310 vcpu = __this_cpu_read(kvm_running_vcpu); 6311 preempt_enable(); 6312 6313 return vcpu; 6314 } 6315 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6316 6317 /** 6318 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6319 */ 6320 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6321 { 6322 return &kvm_running_vcpu; 6323 } 6324 6325 #ifdef CONFIG_GUEST_PERF_EVENTS 6326 static unsigned int kvm_guest_state(void) 6327 { 6328 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6329 unsigned int state; 6330 6331 if (!kvm_arch_pmi_in_guest(vcpu)) 6332 return 0; 6333 6334 state = PERF_GUEST_ACTIVE; 6335 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6336 state |= PERF_GUEST_USER; 6337 6338 return state; 6339 } 6340 6341 static unsigned long kvm_guest_get_ip(void) 6342 { 6343 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6344 6345 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6346 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6347 return 0; 6348 6349 return kvm_arch_vcpu_get_ip(vcpu); 6350 } 6351 6352 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6353 .state = kvm_guest_state, 6354 .get_ip = kvm_guest_get_ip, 6355 .handle_intel_pt_intr = NULL, 6356 }; 6357 6358 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6359 { 6360 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6361 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6362 } 6363 void kvm_unregister_perf_callbacks(void) 6364 { 6365 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6366 } 6367 #endif 6368 6369 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6370 { 6371 int r; 6372 int cpu; 6373 6374 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6375 if (!vcpu_align) 6376 vcpu_align = __alignof__(struct kvm_vcpu); 6377 kvm_vcpu_cache = 6378 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6379 SLAB_ACCOUNT, 6380 offsetof(struct kvm_vcpu, arch), 6381 offsetofend(struct kvm_vcpu, stats_id) 6382 - offsetof(struct kvm_vcpu, arch), 6383 NULL); 6384 if (!kvm_vcpu_cache) 6385 return -ENOMEM; 6386 6387 for_each_possible_cpu(cpu) { 6388 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6389 GFP_KERNEL, cpu_to_node(cpu))) { 6390 r = -ENOMEM; 6391 goto err_cpu_kick_mask; 6392 } 6393 } 6394 6395 r = kvm_irqfd_init(); 6396 if (r) 6397 goto err_irqfd; 6398 6399 r = kvm_async_pf_init(); 6400 if (r) 6401 goto err_async_pf; 6402 6403 kvm_chardev_ops.owner = module; 6404 kvm_vm_fops.owner = module; 6405 kvm_vcpu_fops.owner = module; 6406 kvm_device_fops.owner = module; 6407 6408 kvm_preempt_ops.sched_in = kvm_sched_in; 6409 kvm_preempt_ops.sched_out = kvm_sched_out; 6410 6411 kvm_init_debug(); 6412 6413 r = kvm_vfio_ops_init(); 6414 if (WARN_ON_ONCE(r)) 6415 goto err_vfio; 6416 6417 kvm_gmem_init(module); 6418 6419 r = kvm_init_virtualization(); 6420 if (r) 6421 goto err_virt; 6422 6423 /* 6424 * Registration _must_ be the very last thing done, as this exposes 6425 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6426 */ 6427 r = misc_register(&kvm_dev); 6428 if (r) { 6429 pr_err("kvm: misc device register failed\n"); 6430 goto err_register; 6431 } 6432 6433 return 0; 6434 6435 err_register: 6436 kvm_uninit_virtualization(); 6437 err_virt: 6438 kvm_vfio_ops_exit(); 6439 err_vfio: 6440 kvm_async_pf_deinit(); 6441 err_async_pf: 6442 kvm_irqfd_exit(); 6443 err_irqfd: 6444 err_cpu_kick_mask: 6445 for_each_possible_cpu(cpu) 6446 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6447 kmem_cache_destroy(kvm_vcpu_cache); 6448 return r; 6449 } 6450 EXPORT_SYMBOL_GPL(kvm_init); 6451 6452 void kvm_exit(void) 6453 { 6454 int cpu; 6455 6456 /* 6457 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6458 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6459 * to KVM while the module is being stopped. 6460 */ 6461 misc_deregister(&kvm_dev); 6462 6463 kvm_uninit_virtualization(); 6464 6465 debugfs_remove_recursive(kvm_debugfs_dir); 6466 for_each_possible_cpu(cpu) 6467 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6468 kmem_cache_destroy(kvm_vcpu_cache); 6469 kvm_vfio_ops_exit(); 6470 kvm_async_pf_deinit(); 6471 kvm_irqfd_exit(); 6472 } 6473 EXPORT_SYMBOL_GPL(kvm_exit); 6474