1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 #define KVM_EVENT_CREATE_VM 0 148 #define KVM_EVENT_DESTROY_VM 1 149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 150 static unsigned long long kvm_createvm_count; 151 static unsigned long long kvm_active_vms; 152 153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 154 155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 156 { 157 } 158 159 bool kvm_is_zone_device_page(struct page *page) 160 { 161 /* 162 * The metadata used by is_zone_device_page() to determine whether or 163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 164 * the device has been pinned, e.g. by get_user_pages(). WARN if the 165 * page_count() is zero to help detect bad usage of this helper. 166 */ 167 if (WARN_ON_ONCE(!page_count(page))) 168 return false; 169 170 return is_zone_device_page(page); 171 } 172 173 /* 174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 176 * is likely incomplete, it has been compiled purely through people wanting to 177 * back guest with a certain type of memory and encountering issues. 178 */ 179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 180 { 181 struct page *page; 182 183 if (!pfn_valid(pfn)) 184 return NULL; 185 186 page = pfn_to_page(pfn); 187 if (!PageReserved(page)) 188 return page; 189 190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 191 if (is_zero_pfn(pfn)) 192 return page; 193 194 /* 195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 196 * perspective they are "normal" pages, albeit with slightly different 197 * usage rules. 198 */ 199 if (kvm_is_zone_device_page(page)) 200 return page; 201 202 return NULL; 203 } 204 205 /* 206 * Switches to specified vcpu, until a matching vcpu_put() 207 */ 208 void vcpu_load(struct kvm_vcpu *vcpu) 209 { 210 int cpu = get_cpu(); 211 212 __this_cpu_write(kvm_running_vcpu, vcpu); 213 preempt_notifier_register(&vcpu->preempt_notifier); 214 kvm_arch_vcpu_load(vcpu, cpu); 215 put_cpu(); 216 } 217 EXPORT_SYMBOL_GPL(vcpu_load); 218 219 void vcpu_put(struct kvm_vcpu *vcpu) 220 { 221 preempt_disable(); 222 kvm_arch_vcpu_put(vcpu); 223 preempt_notifier_unregister(&vcpu->preempt_notifier); 224 __this_cpu_write(kvm_running_vcpu, NULL); 225 preempt_enable(); 226 } 227 EXPORT_SYMBOL_GPL(vcpu_put); 228 229 /* TODO: merge with kvm_arch_vcpu_should_kick */ 230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 231 { 232 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 233 234 /* 235 * We need to wait for the VCPU to reenable interrupts and get out of 236 * READING_SHADOW_PAGE_TABLES mode. 237 */ 238 if (req & KVM_REQUEST_WAIT) 239 return mode != OUTSIDE_GUEST_MODE; 240 241 /* 242 * Need to kick a running VCPU, but otherwise there is nothing to do. 243 */ 244 return mode == IN_GUEST_MODE; 245 } 246 247 static void ack_kick(void *_completed) 248 { 249 } 250 251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 252 { 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_kick, NULL, wait); 257 return true; 258 } 259 260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 261 struct cpumask *tmp, int current_cpu) 262 { 263 int cpu; 264 265 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 266 __kvm_make_request(req, vcpu); 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 return; 270 271 /* 272 * Note, the vCPU could get migrated to a different pCPU at any point 273 * after kvm_request_needs_ipi(), which could result in sending an IPI 274 * to the previous pCPU. But, that's OK because the purpose of the IPI 275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 277 * after this point is also OK, as the requirement is only that KVM wait 278 * for vCPUs that were reading SPTEs _before_ any changes were 279 * finalized. See kvm_vcpu_kick() for more details on handling requests. 280 */ 281 if (kvm_request_needs_ipi(vcpu, req)) { 282 cpu = READ_ONCE(vcpu->cpu); 283 if (cpu != -1 && cpu != current_cpu) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 } 287 288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 289 unsigned long *vcpu_bitmap) 290 { 291 struct kvm_vcpu *vcpu; 292 struct cpumask *cpus; 293 int i, me; 294 bool called; 295 296 me = get_cpu(); 297 298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 299 cpumask_clear(cpus); 300 301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 302 vcpu = kvm_get_vcpu(kvm, i); 303 if (!vcpu) 304 continue; 305 kvm_make_vcpu_request(vcpu, req, cpus, me); 306 } 307 308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 309 put_cpu(); 310 311 return called; 312 } 313 314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 315 struct kvm_vcpu *except) 316 { 317 struct kvm_vcpu *vcpu; 318 struct cpumask *cpus; 319 unsigned long i; 320 bool called; 321 int me; 322 323 me = get_cpu(); 324 325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 326 cpumask_clear(cpus); 327 328 kvm_for_each_vcpu(i, vcpu, kvm) { 329 if (vcpu == except) 330 continue; 331 kvm_make_vcpu_request(vcpu, req, cpus, me); 332 } 333 334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 335 put_cpu(); 336 337 return called; 338 } 339 340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 341 { 342 return kvm_make_all_cpus_request_except(kvm, req, NULL); 343 } 344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 345 346 void kvm_flush_remote_tlbs(struct kvm *kvm) 347 { 348 ++kvm->stat.generic.remote_tlb_flush_requests; 349 350 /* 351 * We want to publish modifications to the page tables before reading 352 * mode. Pairs with a memory barrier in arch-specific code. 353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 354 * and smp_mb in walk_shadow_page_lockless_begin/end. 355 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 356 * 357 * There is already an smp_mb__after_atomic() before 358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 359 * barrier here. 360 */ 361 if (!kvm_arch_flush_remote_tlbs(kvm) 362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 363 ++kvm->stat.generic.remote_tlb_flush; 364 } 365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 366 367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 368 { 369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 370 return; 371 372 /* 373 * Fall back to a flushing entire TLBs if the architecture range-based 374 * TLB invalidation is unsupported or can't be performed for whatever 375 * reason. 376 */ 377 kvm_flush_remote_tlbs(kvm); 378 } 379 380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 381 const struct kvm_memory_slot *memslot) 382 { 383 /* 384 * All current use cases for flushing the TLBs for a specific memslot 385 * are related to dirty logging, and many do the TLB flush out of 386 * mmu_lock. The interaction between the various operations on memslot 387 * must be serialized by slots_locks to ensure the TLB flush from one 388 * operation is observed by any other operation on the same memslot. 389 */ 390 lockdep_assert_held(&kvm->slots_lock); 391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 392 } 393 394 static void kvm_flush_shadow_all(struct kvm *kvm) 395 { 396 kvm_arch_flush_shadow_all(kvm); 397 kvm_arch_guest_memory_reclaimed(kvm); 398 } 399 400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 402 gfp_t gfp_flags) 403 { 404 gfp_flags |= mc->gfp_zero; 405 406 if (mc->kmem_cache) 407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 408 else 409 return (void *)__get_free_page(gfp_flags); 410 } 411 412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 413 { 414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 415 void *obj; 416 417 if (mc->nobjs >= min) 418 return 0; 419 420 if (unlikely(!mc->objects)) { 421 if (WARN_ON_ONCE(!capacity)) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 587 588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 591 node; \ 592 node = interval_tree_iter_next(node, start, last)) \ 593 594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 595 const struct kvm_mmu_notifier_range *range) 596 { 597 struct kvm_mmu_notifier_return r = { 598 .ret = false, 599 .found_memslot = false, 600 }; 601 struct kvm_gfn_range gfn_range; 602 struct kvm_memory_slot *slot; 603 struct kvm_memslots *slots; 604 int i, idx; 605 606 if (WARN_ON_ONCE(range->end <= range->start)) 607 return r; 608 609 /* A null handler is allowed if and only if on_lock() is provided. */ 610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 611 IS_KVM_NULL_FN(range->handler))) 612 return r; 613 614 idx = srcu_read_lock(&kvm->srcu); 615 616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 617 struct interval_tree_node *node; 618 619 slots = __kvm_memslots(kvm, i); 620 kvm_for_each_memslot_in_hva_range(node, slots, 621 range->start, range->end - 1) { 622 unsigned long hva_start, hva_end; 623 624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 626 hva_end = min_t(unsigned long, range->end, 627 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 628 629 /* 630 * To optimize for the likely case where the address 631 * range is covered by zero or one memslots, don't 632 * bother making these conditional (to avoid writes on 633 * the second or later invocation of the handler). 634 */ 635 gfn_range.arg = range->arg; 636 gfn_range.may_block = range->may_block; 637 638 /* 639 * {gfn(page) | page intersects with [hva_start, hva_end)} = 640 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 641 */ 642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 644 gfn_range.slot = slot; 645 646 if (!r.found_memslot) { 647 r.found_memslot = true; 648 KVM_MMU_LOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_lock)) 650 range->on_lock(kvm); 651 652 if (IS_KVM_NULL_FN(range->handler)) 653 break; 654 } 655 r.ret |= range->handler(kvm, &gfn_range); 656 } 657 } 658 659 if (range->flush_on_ret && r.ret) 660 kvm_flush_remote_tlbs(kvm); 661 662 if (r.found_memslot) 663 KVM_MMU_UNLOCK(kvm); 664 665 srcu_read_unlock(&kvm->srcu, idx); 666 667 return r; 668 } 669 670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 union kvm_mmu_notifier_arg arg, 674 gfn_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_mmu_notifier_range range = { 678 .start = start, 679 .end = end, 680 .arg = arg, 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .flush_on_ret = true, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range).ret; 688 } 689 690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 691 unsigned long start, 692 unsigned long end, 693 gfn_handler_t handler) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 const struct kvm_mmu_notifier_range range = { 697 .start = start, 698 .end = end, 699 .handler = handler, 700 .on_lock = (void *)kvm_null_fn, 701 .flush_on_ret = false, 702 .may_block = false, 703 }; 704 705 return __kvm_handle_hva_range(kvm, &range).ret; 706 } 707 708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 709 { 710 /* 711 * Skipping invalid memslots is correct if and only change_pte() is 712 * surrounded by invalidate_range_{start,end}(), which is currently 713 * guaranteed by the primary MMU. If that ever changes, KVM needs to 714 * unmap the memslot instead of skipping the memslot to ensure that KVM 715 * doesn't hold references to the old PFN. 716 */ 717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 718 719 if (range->slot->flags & KVM_MEMSLOT_INVALID) 720 return false; 721 722 return kvm_set_spte_gfn(kvm, range); 723 } 724 725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 726 struct mm_struct *mm, 727 unsigned long address, 728 pte_t pte) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 732 733 trace_kvm_set_spte_hva(address); 734 735 /* 736 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 737 * If mmu_invalidate_in_progress is zero, then no in-progress 738 * invalidations, including this one, found a relevant memslot at 739 * start(); rechecking memslots here is unnecessary. Note, a false 740 * positive (count elevated by a different invalidation) is sub-optimal 741 * but functionally ok. 742 */ 743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 745 return; 746 747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 748 } 749 750 void kvm_mmu_invalidate_begin(struct kvm *kvm) 751 { 752 lockdep_assert_held_write(&kvm->mmu_lock); 753 /* 754 * The count increase must become visible at unlock time as no 755 * spte can be established without taking the mmu_lock and 756 * count is also read inside the mmu_lock critical section. 757 */ 758 kvm->mmu_invalidate_in_progress++; 759 760 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 761 kvm->mmu_invalidate_range_start = INVALID_GPA; 762 kvm->mmu_invalidate_range_end = INVALID_GPA; 763 } 764 } 765 766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 767 { 768 lockdep_assert_held_write(&kvm->mmu_lock); 769 770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 771 772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 773 kvm->mmu_invalidate_range_start = start; 774 kvm->mmu_invalidate_range_end = end; 775 } else { 776 /* 777 * Fully tracking multiple concurrent ranges has diminishing 778 * returns. Keep things simple and just find the minimal range 779 * which includes the current and new ranges. As there won't be 780 * enough information to subtract a range after its invalidate 781 * completes, any ranges invalidated concurrently will 782 * accumulate and persist until all outstanding invalidates 783 * complete. 784 */ 785 kvm->mmu_invalidate_range_start = 786 min(kvm->mmu_invalidate_range_start, start); 787 kvm->mmu_invalidate_range_end = 788 max(kvm->mmu_invalidate_range_end, end); 789 } 790 } 791 792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 793 { 794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 795 return kvm_unmap_gfn_range(kvm, range); 796 } 797 798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 799 const struct mmu_notifier_range *range) 800 { 801 struct kvm *kvm = mmu_notifier_to_kvm(mn); 802 const struct kvm_mmu_notifier_range hva_range = { 803 .start = range->start, 804 .end = range->end, 805 .handler = kvm_mmu_unmap_gfn_range, 806 .on_lock = kvm_mmu_invalidate_begin, 807 .flush_on_ret = true, 808 .may_block = mmu_notifier_range_blockable(range), 809 }; 810 811 trace_kvm_unmap_hva_range(range->start, range->end); 812 813 /* 814 * Prevent memslot modification between range_start() and range_end() 815 * so that conditionally locking provides the same result in both 816 * functions. Without that guarantee, the mmu_invalidate_in_progress 817 * adjustments will be imbalanced. 818 * 819 * Pairs with the decrement in range_end(). 820 */ 821 spin_lock(&kvm->mn_invalidate_lock); 822 kvm->mn_active_invalidate_count++; 823 spin_unlock(&kvm->mn_invalidate_lock); 824 825 /* 826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 828 * each cache's lock. There are relatively few caches in existence at 829 * any given time, and the caches themselves can check for hva overlap, 830 * i.e. don't need to rely on memslot overlap checks for performance. 831 * Because this runs without holding mmu_lock, the pfn caches must use 832 * mn_active_invalidate_count (see above) instead of 833 * mmu_invalidate_in_progress. 834 */ 835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 836 hva_range.may_block); 837 838 /* 839 * If one or more memslots were found and thus zapped, notify arch code 840 * that guest memory has been reclaimed. This needs to be done *after* 841 * dropping mmu_lock, as x86's reclaim path is slooooow. 842 */ 843 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 844 kvm_arch_guest_memory_reclaimed(kvm); 845 846 return 0; 847 } 848 849 void kvm_mmu_invalidate_end(struct kvm *kvm) 850 { 851 lockdep_assert_held_write(&kvm->mmu_lock); 852 853 /* 854 * This sequence increase will notify the kvm page fault that 855 * the page that is going to be mapped in the spte could have 856 * been freed. 857 */ 858 kvm->mmu_invalidate_seq++; 859 smp_wmb(); 860 /* 861 * The above sequence increase must be visible before the 862 * below count decrease, which is ensured by the smp_wmb above 863 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 864 */ 865 kvm->mmu_invalidate_in_progress--; 866 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 867 868 /* 869 * Assert that at least one range was added between start() and end(). 870 * Not adding a range isn't fatal, but it is a KVM bug. 871 */ 872 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 873 } 874 875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 876 const struct mmu_notifier_range *range) 877 { 878 struct kvm *kvm = mmu_notifier_to_kvm(mn); 879 const struct kvm_mmu_notifier_range hva_range = { 880 .start = range->start, 881 .end = range->end, 882 .handler = (void *)kvm_null_fn, 883 .on_lock = kvm_mmu_invalidate_end, 884 .flush_on_ret = false, 885 .may_block = mmu_notifier_range_blockable(range), 886 }; 887 bool wake; 888 889 __kvm_handle_hva_range(kvm, &hva_range); 890 891 /* Pairs with the increment in range_start(). */ 892 spin_lock(&kvm->mn_invalidate_lock); 893 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 894 --kvm->mn_active_invalidate_count; 895 wake = !kvm->mn_active_invalidate_count; 896 spin_unlock(&kvm->mn_invalidate_lock); 897 898 /* 899 * There can only be one waiter, since the wait happens under 900 * slots_lock. 901 */ 902 if (wake) 903 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 904 } 905 906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 907 struct mm_struct *mm, 908 unsigned long start, 909 unsigned long end) 910 { 911 trace_kvm_age_hva(start, end); 912 913 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 914 kvm_age_gfn); 915 } 916 917 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 918 struct mm_struct *mm, 919 unsigned long start, 920 unsigned long end) 921 { 922 trace_kvm_age_hva(start, end); 923 924 /* 925 * Even though we do not flush TLB, this will still adversely 926 * affect performance on pre-Haswell Intel EPT, where there is 927 * no EPT Access Bit to clear so that we have to tear down EPT 928 * tables instead. If we find this unacceptable, we can always 929 * add a parameter to kvm_age_hva so that it effectively doesn't 930 * do anything on clear_young. 931 * 932 * Also note that currently we never issue secondary TLB flushes 933 * from clear_young, leaving this job up to the regular system 934 * cadence. If we find this inaccurate, we might come up with a 935 * more sophisticated heuristic later. 936 */ 937 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 938 } 939 940 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 941 struct mm_struct *mm, 942 unsigned long address) 943 { 944 trace_kvm_test_age_hva(address); 945 946 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 947 kvm_test_age_gfn); 948 } 949 950 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 951 struct mm_struct *mm) 952 { 953 struct kvm *kvm = mmu_notifier_to_kvm(mn); 954 int idx; 955 956 idx = srcu_read_lock(&kvm->srcu); 957 kvm_flush_shadow_all(kvm); 958 srcu_read_unlock(&kvm->srcu, idx); 959 } 960 961 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 962 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 963 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 964 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 965 .clear_young = kvm_mmu_notifier_clear_young, 966 .test_young = kvm_mmu_notifier_test_young, 967 .change_pte = kvm_mmu_notifier_change_pte, 968 .release = kvm_mmu_notifier_release, 969 }; 970 971 static int kvm_init_mmu_notifier(struct kvm *kvm) 972 { 973 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 974 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 975 } 976 977 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 978 979 static int kvm_init_mmu_notifier(struct kvm *kvm) 980 { 981 return 0; 982 } 983 984 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 985 986 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 987 static int kvm_pm_notifier_call(struct notifier_block *bl, 988 unsigned long state, 989 void *unused) 990 { 991 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 992 993 return kvm_arch_pm_notifier(kvm, state); 994 } 995 996 static void kvm_init_pm_notifier(struct kvm *kvm) 997 { 998 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 999 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 1000 kvm->pm_notifier.priority = INT_MAX; 1001 register_pm_notifier(&kvm->pm_notifier); 1002 } 1003 1004 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1005 { 1006 unregister_pm_notifier(&kvm->pm_notifier); 1007 } 1008 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 1009 static void kvm_init_pm_notifier(struct kvm *kvm) 1010 { 1011 } 1012 1013 static void kvm_destroy_pm_notifier(struct kvm *kvm) 1014 { 1015 } 1016 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 1017 1018 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 1019 { 1020 if (!memslot->dirty_bitmap) 1021 return; 1022 1023 kvfree(memslot->dirty_bitmap); 1024 memslot->dirty_bitmap = NULL; 1025 } 1026 1027 /* This does not remove the slot from struct kvm_memslots data structures */ 1028 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1029 { 1030 if (slot->flags & KVM_MEM_GUEST_MEMFD) 1031 kvm_gmem_unbind(slot); 1032 1033 kvm_destroy_dirty_bitmap(slot); 1034 1035 kvm_arch_free_memslot(kvm, slot); 1036 1037 kfree(slot); 1038 } 1039 1040 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 1041 { 1042 struct hlist_node *idnode; 1043 struct kvm_memory_slot *memslot; 1044 int bkt; 1045 1046 /* 1047 * The same memslot objects live in both active and inactive sets, 1048 * arbitrarily free using index '1' so the second invocation of this 1049 * function isn't operating over a structure with dangling pointers 1050 * (even though this function isn't actually touching them). 1051 */ 1052 if (!slots->node_idx) 1053 return; 1054 1055 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1056 kvm_free_memslot(kvm, memslot); 1057 } 1058 1059 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1060 { 1061 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1062 case KVM_STATS_TYPE_INSTANT: 1063 return 0444; 1064 case KVM_STATS_TYPE_CUMULATIVE: 1065 case KVM_STATS_TYPE_PEAK: 1066 default: 1067 return 0644; 1068 } 1069 } 1070 1071 1072 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1073 { 1074 int i; 1075 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1076 kvm_vcpu_stats_header.num_desc; 1077 1078 if (IS_ERR(kvm->debugfs_dentry)) 1079 return; 1080 1081 debugfs_remove_recursive(kvm->debugfs_dentry); 1082 1083 if (kvm->debugfs_stat_data) { 1084 for (i = 0; i < kvm_debugfs_num_entries; i++) 1085 kfree(kvm->debugfs_stat_data[i]); 1086 kfree(kvm->debugfs_stat_data); 1087 } 1088 } 1089 1090 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1091 { 1092 static DEFINE_MUTEX(kvm_debugfs_lock); 1093 struct dentry *dent; 1094 char dir_name[ITOA_MAX_LEN * 2]; 1095 struct kvm_stat_data *stat_data; 1096 const struct _kvm_stats_desc *pdesc; 1097 int i, ret = -ENOMEM; 1098 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1099 kvm_vcpu_stats_header.num_desc; 1100 1101 if (!debugfs_initialized()) 1102 return 0; 1103 1104 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1105 mutex_lock(&kvm_debugfs_lock); 1106 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1107 if (dent) { 1108 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1109 dput(dent); 1110 mutex_unlock(&kvm_debugfs_lock); 1111 return 0; 1112 } 1113 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1114 mutex_unlock(&kvm_debugfs_lock); 1115 if (IS_ERR(dent)) 1116 return 0; 1117 1118 kvm->debugfs_dentry = dent; 1119 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1120 sizeof(*kvm->debugfs_stat_data), 1121 GFP_KERNEL_ACCOUNT); 1122 if (!kvm->debugfs_stat_data) 1123 goto out_err; 1124 1125 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1126 pdesc = &kvm_vm_stats_desc[i]; 1127 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1128 if (!stat_data) 1129 goto out_err; 1130 1131 stat_data->kvm = kvm; 1132 stat_data->desc = pdesc; 1133 stat_data->kind = KVM_STAT_VM; 1134 kvm->debugfs_stat_data[i] = stat_data; 1135 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1136 kvm->debugfs_dentry, stat_data, 1137 &stat_fops_per_vm); 1138 } 1139 1140 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1141 pdesc = &kvm_vcpu_stats_desc[i]; 1142 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1143 if (!stat_data) 1144 goto out_err; 1145 1146 stat_data->kvm = kvm; 1147 stat_data->desc = pdesc; 1148 stat_data->kind = KVM_STAT_VCPU; 1149 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1150 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1151 kvm->debugfs_dentry, stat_data, 1152 &stat_fops_per_vm); 1153 } 1154 1155 kvm_arch_create_vm_debugfs(kvm); 1156 return 0; 1157 out_err: 1158 kvm_destroy_vm_debugfs(kvm); 1159 return ret; 1160 } 1161 1162 /* 1163 * Called after the VM is otherwise initialized, but just before adding it to 1164 * the vm_list. 1165 */ 1166 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1167 { 1168 return 0; 1169 } 1170 1171 /* 1172 * Called just after removing the VM from the vm_list, but before doing any 1173 * other destruction. 1174 */ 1175 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1176 { 1177 } 1178 1179 /* 1180 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1181 * be setup already, so we can create arch-specific debugfs entries under it. 1182 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1183 * a per-arch destroy interface is not needed. 1184 */ 1185 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1186 { 1187 } 1188 1189 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1190 { 1191 struct kvm *kvm = kvm_arch_alloc_vm(); 1192 struct kvm_memslots *slots; 1193 int r = -ENOMEM; 1194 int i, j; 1195 1196 if (!kvm) 1197 return ERR_PTR(-ENOMEM); 1198 1199 KVM_MMU_LOCK_INIT(kvm); 1200 mmgrab(current->mm); 1201 kvm->mm = current->mm; 1202 kvm_eventfd_init(kvm); 1203 mutex_init(&kvm->lock); 1204 mutex_init(&kvm->irq_lock); 1205 mutex_init(&kvm->slots_lock); 1206 mutex_init(&kvm->slots_arch_lock); 1207 spin_lock_init(&kvm->mn_invalidate_lock); 1208 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1209 xa_init(&kvm->vcpu_array); 1210 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1211 xa_init(&kvm->mem_attr_array); 1212 #endif 1213 1214 INIT_LIST_HEAD(&kvm->gpc_list); 1215 spin_lock_init(&kvm->gpc_lock); 1216 1217 INIT_LIST_HEAD(&kvm->devices); 1218 kvm->max_vcpus = KVM_MAX_VCPUS; 1219 1220 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1221 1222 /* 1223 * Force subsequent debugfs file creations to fail if the VM directory 1224 * is not created (by kvm_create_vm_debugfs()). 1225 */ 1226 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1227 1228 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1229 task_pid_nr(current)); 1230 1231 if (init_srcu_struct(&kvm->srcu)) 1232 goto out_err_no_srcu; 1233 if (init_srcu_struct(&kvm->irq_srcu)) 1234 goto out_err_no_irq_srcu; 1235 1236 refcount_set(&kvm->users_count, 1); 1237 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1238 for (j = 0; j < 2; j++) { 1239 slots = &kvm->__memslots[i][j]; 1240 1241 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1242 slots->hva_tree = RB_ROOT_CACHED; 1243 slots->gfn_tree = RB_ROOT; 1244 hash_init(slots->id_hash); 1245 slots->node_idx = j; 1246 1247 /* Generations must be different for each address space. */ 1248 slots->generation = i; 1249 } 1250 1251 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1252 } 1253 1254 for (i = 0; i < KVM_NR_BUSES; i++) { 1255 rcu_assign_pointer(kvm->buses[i], 1256 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1257 if (!kvm->buses[i]) 1258 goto out_err_no_arch_destroy_vm; 1259 } 1260 1261 r = kvm_arch_init_vm(kvm, type); 1262 if (r) 1263 goto out_err_no_arch_destroy_vm; 1264 1265 r = hardware_enable_all(); 1266 if (r) 1267 goto out_err_no_disable; 1268 1269 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1270 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1271 #endif 1272 1273 r = kvm_init_mmu_notifier(kvm); 1274 if (r) 1275 goto out_err_no_mmu_notifier; 1276 1277 r = kvm_coalesced_mmio_init(kvm); 1278 if (r < 0) 1279 goto out_no_coalesced_mmio; 1280 1281 r = kvm_create_vm_debugfs(kvm, fdname); 1282 if (r) 1283 goto out_err_no_debugfs; 1284 1285 r = kvm_arch_post_init_vm(kvm); 1286 if (r) 1287 goto out_err; 1288 1289 mutex_lock(&kvm_lock); 1290 list_add(&kvm->vm_list, &vm_list); 1291 mutex_unlock(&kvm_lock); 1292 1293 preempt_notifier_inc(); 1294 kvm_init_pm_notifier(kvm); 1295 1296 return kvm; 1297 1298 out_err: 1299 kvm_destroy_vm_debugfs(kvm); 1300 out_err_no_debugfs: 1301 kvm_coalesced_mmio_free(kvm); 1302 out_no_coalesced_mmio: 1303 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1304 if (kvm->mmu_notifier.ops) 1305 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1306 #endif 1307 out_err_no_mmu_notifier: 1308 hardware_disable_all(); 1309 out_err_no_disable: 1310 kvm_arch_destroy_vm(kvm); 1311 out_err_no_arch_destroy_vm: 1312 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1313 for (i = 0; i < KVM_NR_BUSES; i++) 1314 kfree(kvm_get_bus(kvm, i)); 1315 cleanup_srcu_struct(&kvm->irq_srcu); 1316 out_err_no_irq_srcu: 1317 cleanup_srcu_struct(&kvm->srcu); 1318 out_err_no_srcu: 1319 kvm_arch_free_vm(kvm); 1320 mmdrop(current->mm); 1321 return ERR_PTR(r); 1322 } 1323 1324 static void kvm_destroy_devices(struct kvm *kvm) 1325 { 1326 struct kvm_device *dev, *tmp; 1327 1328 /* 1329 * We do not need to take the kvm->lock here, because nobody else 1330 * has a reference to the struct kvm at this point and therefore 1331 * cannot access the devices list anyhow. 1332 * 1333 * The device list is generally managed as an rculist, but list_del() 1334 * is used intentionally here. If a bug in KVM introduced a reader that 1335 * was not backed by a reference on the kvm struct, the hope is that 1336 * it'd consume the poisoned forward pointer instead of suffering a 1337 * use-after-free, even though this cannot be guaranteed. 1338 */ 1339 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1340 list_del(&dev->vm_node); 1341 dev->ops->destroy(dev); 1342 } 1343 } 1344 1345 static void kvm_destroy_vm(struct kvm *kvm) 1346 { 1347 int i; 1348 struct mm_struct *mm = kvm->mm; 1349 1350 kvm_destroy_pm_notifier(kvm); 1351 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1352 kvm_destroy_vm_debugfs(kvm); 1353 kvm_arch_sync_events(kvm); 1354 mutex_lock(&kvm_lock); 1355 list_del(&kvm->vm_list); 1356 mutex_unlock(&kvm_lock); 1357 kvm_arch_pre_destroy_vm(kvm); 1358 1359 kvm_free_irq_routing(kvm); 1360 for (i = 0; i < KVM_NR_BUSES; i++) { 1361 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1362 1363 if (bus) 1364 kvm_io_bus_destroy(bus); 1365 kvm->buses[i] = NULL; 1366 } 1367 kvm_coalesced_mmio_free(kvm); 1368 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1369 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1370 /* 1371 * At this point, pending calls to invalidate_range_start() 1372 * have completed but no more MMU notifiers will run, so 1373 * mn_active_invalidate_count may remain unbalanced. 1374 * No threads can be waiting in kvm_swap_active_memslots() as the 1375 * last reference on KVM has been dropped, but freeing 1376 * memslots would deadlock without this manual intervention. 1377 * 1378 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1379 * notifier between a start() and end(), then there shouldn't be any 1380 * in-progress invalidations. 1381 */ 1382 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1383 if (kvm->mn_active_invalidate_count) 1384 kvm->mn_active_invalidate_count = 0; 1385 else 1386 WARN_ON(kvm->mmu_invalidate_in_progress); 1387 #else 1388 kvm_flush_shadow_all(kvm); 1389 #endif 1390 kvm_arch_destroy_vm(kvm); 1391 kvm_destroy_devices(kvm); 1392 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1393 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1394 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1395 } 1396 cleanup_srcu_struct(&kvm->irq_srcu); 1397 cleanup_srcu_struct(&kvm->srcu); 1398 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1399 xa_destroy(&kvm->mem_attr_array); 1400 #endif 1401 kvm_arch_free_vm(kvm); 1402 preempt_notifier_dec(); 1403 hardware_disable_all(); 1404 mmdrop(mm); 1405 } 1406 1407 void kvm_get_kvm(struct kvm *kvm) 1408 { 1409 refcount_inc(&kvm->users_count); 1410 } 1411 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1412 1413 /* 1414 * Make sure the vm is not during destruction, which is a safe version of 1415 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1416 */ 1417 bool kvm_get_kvm_safe(struct kvm *kvm) 1418 { 1419 return refcount_inc_not_zero(&kvm->users_count); 1420 } 1421 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1422 1423 void kvm_put_kvm(struct kvm *kvm) 1424 { 1425 if (refcount_dec_and_test(&kvm->users_count)) 1426 kvm_destroy_vm(kvm); 1427 } 1428 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1429 1430 /* 1431 * Used to put a reference that was taken on behalf of an object associated 1432 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1433 * of the new file descriptor fails and the reference cannot be transferred to 1434 * its final owner. In such cases, the caller is still actively using @kvm and 1435 * will fail miserably if the refcount unexpectedly hits zero. 1436 */ 1437 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1438 { 1439 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1440 } 1441 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1442 1443 static int kvm_vm_release(struct inode *inode, struct file *filp) 1444 { 1445 struct kvm *kvm = filp->private_data; 1446 1447 kvm_irqfd_release(kvm); 1448 1449 kvm_put_kvm(kvm); 1450 return 0; 1451 } 1452 1453 /* 1454 * Allocation size is twice as large as the actual dirty bitmap size. 1455 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1456 */ 1457 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1458 { 1459 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1460 1461 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1462 if (!memslot->dirty_bitmap) 1463 return -ENOMEM; 1464 1465 return 0; 1466 } 1467 1468 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1469 { 1470 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1471 int node_idx_inactive = active->node_idx ^ 1; 1472 1473 return &kvm->__memslots[as_id][node_idx_inactive]; 1474 } 1475 1476 /* 1477 * Helper to get the address space ID when one of memslot pointers may be NULL. 1478 * This also serves as a sanity that at least one of the pointers is non-NULL, 1479 * and that their address space IDs don't diverge. 1480 */ 1481 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1482 struct kvm_memory_slot *b) 1483 { 1484 if (WARN_ON_ONCE(!a && !b)) 1485 return 0; 1486 1487 if (!a) 1488 return b->as_id; 1489 if (!b) 1490 return a->as_id; 1491 1492 WARN_ON_ONCE(a->as_id != b->as_id); 1493 return a->as_id; 1494 } 1495 1496 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1497 struct kvm_memory_slot *slot) 1498 { 1499 struct rb_root *gfn_tree = &slots->gfn_tree; 1500 struct rb_node **node, *parent; 1501 int idx = slots->node_idx; 1502 1503 parent = NULL; 1504 for (node = &gfn_tree->rb_node; *node; ) { 1505 struct kvm_memory_slot *tmp; 1506 1507 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1508 parent = *node; 1509 if (slot->base_gfn < tmp->base_gfn) 1510 node = &(*node)->rb_left; 1511 else if (slot->base_gfn > tmp->base_gfn) 1512 node = &(*node)->rb_right; 1513 else 1514 BUG(); 1515 } 1516 1517 rb_link_node(&slot->gfn_node[idx], parent, node); 1518 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1519 } 1520 1521 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1522 struct kvm_memory_slot *slot) 1523 { 1524 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1525 } 1526 1527 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1528 struct kvm_memory_slot *old, 1529 struct kvm_memory_slot *new) 1530 { 1531 int idx = slots->node_idx; 1532 1533 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1534 1535 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1536 &slots->gfn_tree); 1537 } 1538 1539 /* 1540 * Replace @old with @new in the inactive memslots. 1541 * 1542 * With NULL @old this simply adds @new. 1543 * With NULL @new this simply removes @old. 1544 * 1545 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1546 * appropriately. 1547 */ 1548 static void kvm_replace_memslot(struct kvm *kvm, 1549 struct kvm_memory_slot *old, 1550 struct kvm_memory_slot *new) 1551 { 1552 int as_id = kvm_memslots_get_as_id(old, new); 1553 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1554 int idx = slots->node_idx; 1555 1556 if (old) { 1557 hash_del(&old->id_node[idx]); 1558 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1559 1560 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1561 atomic_long_set(&slots->last_used_slot, (long)new); 1562 1563 if (!new) { 1564 kvm_erase_gfn_node(slots, old); 1565 return; 1566 } 1567 } 1568 1569 /* 1570 * Initialize @new's hva range. Do this even when replacing an @old 1571 * slot, kvm_copy_memslot() deliberately does not touch node data. 1572 */ 1573 new->hva_node[idx].start = new->userspace_addr; 1574 new->hva_node[idx].last = new->userspace_addr + 1575 (new->npages << PAGE_SHIFT) - 1; 1576 1577 /* 1578 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1579 * hva_node needs to be swapped with remove+insert even though hva can't 1580 * change when replacing an existing slot. 1581 */ 1582 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1583 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1584 1585 /* 1586 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1587 * switch the node in the gfn tree instead of removing the old and 1588 * inserting the new as two separate operations. Replacement is a 1589 * single O(1) operation versus two O(log(n)) operations for 1590 * remove+insert. 1591 */ 1592 if (old && old->base_gfn == new->base_gfn) { 1593 kvm_replace_gfn_node(slots, old, new); 1594 } else { 1595 if (old) 1596 kvm_erase_gfn_node(slots, old); 1597 kvm_insert_gfn_node(slots, new); 1598 } 1599 } 1600 1601 /* 1602 * Flags that do not access any of the extra space of struct 1603 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1604 * only allows these. 1605 */ 1606 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1607 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1608 1609 static int check_memory_region_flags(struct kvm *kvm, 1610 const struct kvm_userspace_memory_region2 *mem) 1611 { 1612 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1613 1614 if (kvm_arch_has_private_mem(kvm)) 1615 valid_flags |= KVM_MEM_GUEST_MEMFD; 1616 1617 /* Dirty logging private memory is not currently supported. */ 1618 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1619 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1620 1621 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1622 /* 1623 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1624 * read-only memslots have emulated MMIO, not page fault, semantics, 1625 * and KVM doesn't allow emulated MMIO for private memory. 1626 */ 1627 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1628 valid_flags |= KVM_MEM_READONLY; 1629 #endif 1630 1631 if (mem->flags & ~valid_flags) 1632 return -EINVAL; 1633 1634 return 0; 1635 } 1636 1637 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1638 { 1639 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1640 1641 /* Grab the generation from the activate memslots. */ 1642 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1643 1644 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1645 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1646 1647 /* 1648 * Do not store the new memslots while there are invalidations in 1649 * progress, otherwise the locking in invalidate_range_start and 1650 * invalidate_range_end will be unbalanced. 1651 */ 1652 spin_lock(&kvm->mn_invalidate_lock); 1653 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1654 while (kvm->mn_active_invalidate_count) { 1655 set_current_state(TASK_UNINTERRUPTIBLE); 1656 spin_unlock(&kvm->mn_invalidate_lock); 1657 schedule(); 1658 spin_lock(&kvm->mn_invalidate_lock); 1659 } 1660 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1661 rcu_assign_pointer(kvm->memslots[as_id], slots); 1662 spin_unlock(&kvm->mn_invalidate_lock); 1663 1664 /* 1665 * Acquired in kvm_set_memslot. Must be released before synchronize 1666 * SRCU below in order to avoid deadlock with another thread 1667 * acquiring the slots_arch_lock in an srcu critical section. 1668 */ 1669 mutex_unlock(&kvm->slots_arch_lock); 1670 1671 synchronize_srcu_expedited(&kvm->srcu); 1672 1673 /* 1674 * Increment the new memslot generation a second time, dropping the 1675 * update in-progress flag and incrementing the generation based on 1676 * the number of address spaces. This provides a unique and easily 1677 * identifiable generation number while the memslots are in flux. 1678 */ 1679 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1680 1681 /* 1682 * Generations must be unique even across address spaces. We do not need 1683 * a global counter for that, instead the generation space is evenly split 1684 * across address spaces. For example, with two address spaces, address 1685 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1686 * use generations 1, 3, 5, ... 1687 */ 1688 gen += kvm_arch_nr_memslot_as_ids(kvm); 1689 1690 kvm_arch_memslots_updated(kvm, gen); 1691 1692 slots->generation = gen; 1693 } 1694 1695 static int kvm_prepare_memory_region(struct kvm *kvm, 1696 const struct kvm_memory_slot *old, 1697 struct kvm_memory_slot *new, 1698 enum kvm_mr_change change) 1699 { 1700 int r; 1701 1702 /* 1703 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1704 * will be freed on "commit". If logging is enabled in both old and 1705 * new, reuse the existing bitmap. If logging is enabled only in the 1706 * new and KVM isn't using a ring buffer, allocate and initialize a 1707 * new bitmap. 1708 */ 1709 if (change != KVM_MR_DELETE) { 1710 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1711 new->dirty_bitmap = NULL; 1712 else if (old && old->dirty_bitmap) 1713 new->dirty_bitmap = old->dirty_bitmap; 1714 else if (kvm_use_dirty_bitmap(kvm)) { 1715 r = kvm_alloc_dirty_bitmap(new); 1716 if (r) 1717 return r; 1718 1719 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1720 bitmap_set(new->dirty_bitmap, 0, new->npages); 1721 } 1722 } 1723 1724 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1725 1726 /* Free the bitmap on failure if it was allocated above. */ 1727 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1728 kvm_destroy_dirty_bitmap(new); 1729 1730 return r; 1731 } 1732 1733 static void kvm_commit_memory_region(struct kvm *kvm, 1734 struct kvm_memory_slot *old, 1735 const struct kvm_memory_slot *new, 1736 enum kvm_mr_change change) 1737 { 1738 int old_flags = old ? old->flags : 0; 1739 int new_flags = new ? new->flags : 0; 1740 /* 1741 * Update the total number of memslot pages before calling the arch 1742 * hook so that architectures can consume the result directly. 1743 */ 1744 if (change == KVM_MR_DELETE) 1745 kvm->nr_memslot_pages -= old->npages; 1746 else if (change == KVM_MR_CREATE) 1747 kvm->nr_memslot_pages += new->npages; 1748 1749 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1750 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1751 atomic_set(&kvm->nr_memslots_dirty_logging, 1752 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1753 } 1754 1755 kvm_arch_commit_memory_region(kvm, old, new, change); 1756 1757 switch (change) { 1758 case KVM_MR_CREATE: 1759 /* Nothing more to do. */ 1760 break; 1761 case KVM_MR_DELETE: 1762 /* Free the old memslot and all its metadata. */ 1763 kvm_free_memslot(kvm, old); 1764 break; 1765 case KVM_MR_MOVE: 1766 case KVM_MR_FLAGS_ONLY: 1767 /* 1768 * Free the dirty bitmap as needed; the below check encompasses 1769 * both the flags and whether a ring buffer is being used) 1770 */ 1771 if (old->dirty_bitmap && !new->dirty_bitmap) 1772 kvm_destroy_dirty_bitmap(old); 1773 1774 /* 1775 * The final quirk. Free the detached, old slot, but only its 1776 * memory, not any metadata. Metadata, including arch specific 1777 * data, may be reused by @new. 1778 */ 1779 kfree(old); 1780 break; 1781 default: 1782 BUG(); 1783 } 1784 } 1785 1786 /* 1787 * Activate @new, which must be installed in the inactive slots by the caller, 1788 * by swapping the active slots and then propagating @new to @old once @old is 1789 * unreachable and can be safely modified. 1790 * 1791 * With NULL @old this simply adds @new to @active (while swapping the sets). 1792 * With NULL @new this simply removes @old from @active and frees it 1793 * (while also swapping the sets). 1794 */ 1795 static void kvm_activate_memslot(struct kvm *kvm, 1796 struct kvm_memory_slot *old, 1797 struct kvm_memory_slot *new) 1798 { 1799 int as_id = kvm_memslots_get_as_id(old, new); 1800 1801 kvm_swap_active_memslots(kvm, as_id); 1802 1803 /* Propagate the new memslot to the now inactive memslots. */ 1804 kvm_replace_memslot(kvm, old, new); 1805 } 1806 1807 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1808 const struct kvm_memory_slot *src) 1809 { 1810 dest->base_gfn = src->base_gfn; 1811 dest->npages = src->npages; 1812 dest->dirty_bitmap = src->dirty_bitmap; 1813 dest->arch = src->arch; 1814 dest->userspace_addr = src->userspace_addr; 1815 dest->flags = src->flags; 1816 dest->id = src->id; 1817 dest->as_id = src->as_id; 1818 } 1819 1820 static void kvm_invalidate_memslot(struct kvm *kvm, 1821 struct kvm_memory_slot *old, 1822 struct kvm_memory_slot *invalid_slot) 1823 { 1824 /* 1825 * Mark the current slot INVALID. As with all memslot modifications, 1826 * this must be done on an unreachable slot to avoid modifying the 1827 * current slot in the active tree. 1828 */ 1829 kvm_copy_memslot(invalid_slot, old); 1830 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1831 kvm_replace_memslot(kvm, old, invalid_slot); 1832 1833 /* 1834 * Activate the slot that is now marked INVALID, but don't propagate 1835 * the slot to the now inactive slots. The slot is either going to be 1836 * deleted or recreated as a new slot. 1837 */ 1838 kvm_swap_active_memslots(kvm, old->as_id); 1839 1840 /* 1841 * From this point no new shadow pages pointing to a deleted, or moved, 1842 * memslot will be created. Validation of sp->gfn happens in: 1843 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1844 * - kvm_is_visible_gfn (mmu_check_root) 1845 */ 1846 kvm_arch_flush_shadow_memslot(kvm, old); 1847 kvm_arch_guest_memory_reclaimed(kvm); 1848 1849 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1850 mutex_lock(&kvm->slots_arch_lock); 1851 1852 /* 1853 * Copy the arch-specific field of the newly-installed slot back to the 1854 * old slot as the arch data could have changed between releasing 1855 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1856 * above. Writers are required to retrieve memslots *after* acquiring 1857 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1858 */ 1859 old->arch = invalid_slot->arch; 1860 } 1861 1862 static void kvm_create_memslot(struct kvm *kvm, 1863 struct kvm_memory_slot *new) 1864 { 1865 /* Add the new memslot to the inactive set and activate. */ 1866 kvm_replace_memslot(kvm, NULL, new); 1867 kvm_activate_memslot(kvm, NULL, new); 1868 } 1869 1870 static void kvm_delete_memslot(struct kvm *kvm, 1871 struct kvm_memory_slot *old, 1872 struct kvm_memory_slot *invalid_slot) 1873 { 1874 /* 1875 * Remove the old memslot (in the inactive memslots) by passing NULL as 1876 * the "new" slot, and for the invalid version in the active slots. 1877 */ 1878 kvm_replace_memslot(kvm, old, NULL); 1879 kvm_activate_memslot(kvm, invalid_slot, NULL); 1880 } 1881 1882 static void kvm_move_memslot(struct kvm *kvm, 1883 struct kvm_memory_slot *old, 1884 struct kvm_memory_slot *new, 1885 struct kvm_memory_slot *invalid_slot) 1886 { 1887 /* 1888 * Replace the old memslot in the inactive slots, and then swap slots 1889 * and replace the current INVALID with the new as well. 1890 */ 1891 kvm_replace_memslot(kvm, old, new); 1892 kvm_activate_memslot(kvm, invalid_slot, new); 1893 } 1894 1895 static void kvm_update_flags_memslot(struct kvm *kvm, 1896 struct kvm_memory_slot *old, 1897 struct kvm_memory_slot *new) 1898 { 1899 /* 1900 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1901 * an intermediate step. Instead, the old memslot is simply replaced 1902 * with a new, updated copy in both memslot sets. 1903 */ 1904 kvm_replace_memslot(kvm, old, new); 1905 kvm_activate_memslot(kvm, old, new); 1906 } 1907 1908 static int kvm_set_memslot(struct kvm *kvm, 1909 struct kvm_memory_slot *old, 1910 struct kvm_memory_slot *new, 1911 enum kvm_mr_change change) 1912 { 1913 struct kvm_memory_slot *invalid_slot; 1914 int r; 1915 1916 /* 1917 * Released in kvm_swap_active_memslots(). 1918 * 1919 * Must be held from before the current memslots are copied until after 1920 * the new memslots are installed with rcu_assign_pointer, then 1921 * released before the synchronize srcu in kvm_swap_active_memslots(). 1922 * 1923 * When modifying memslots outside of the slots_lock, must be held 1924 * before reading the pointer to the current memslots until after all 1925 * changes to those memslots are complete. 1926 * 1927 * These rules ensure that installing new memslots does not lose 1928 * changes made to the previous memslots. 1929 */ 1930 mutex_lock(&kvm->slots_arch_lock); 1931 1932 /* 1933 * Invalidate the old slot if it's being deleted or moved. This is 1934 * done prior to actually deleting/moving the memslot to allow vCPUs to 1935 * continue running by ensuring there are no mappings or shadow pages 1936 * for the memslot when it is deleted/moved. Without pre-invalidation 1937 * (and without a lock), a window would exist between effecting the 1938 * delete/move and committing the changes in arch code where KVM or a 1939 * guest could access a non-existent memslot. 1940 * 1941 * Modifications are done on a temporary, unreachable slot. The old 1942 * slot needs to be preserved in case a later step fails and the 1943 * invalidation needs to be reverted. 1944 */ 1945 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1946 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1947 if (!invalid_slot) { 1948 mutex_unlock(&kvm->slots_arch_lock); 1949 return -ENOMEM; 1950 } 1951 kvm_invalidate_memslot(kvm, old, invalid_slot); 1952 } 1953 1954 r = kvm_prepare_memory_region(kvm, old, new, change); 1955 if (r) { 1956 /* 1957 * For DELETE/MOVE, revert the above INVALID change. No 1958 * modifications required since the original slot was preserved 1959 * in the inactive slots. Changing the active memslots also 1960 * release slots_arch_lock. 1961 */ 1962 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1963 kvm_activate_memslot(kvm, invalid_slot, old); 1964 kfree(invalid_slot); 1965 } else { 1966 mutex_unlock(&kvm->slots_arch_lock); 1967 } 1968 return r; 1969 } 1970 1971 /* 1972 * For DELETE and MOVE, the working slot is now active as the INVALID 1973 * version of the old slot. MOVE is particularly special as it reuses 1974 * the old slot and returns a copy of the old slot (in working_slot). 1975 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1976 * old slot is detached but otherwise preserved. 1977 */ 1978 if (change == KVM_MR_CREATE) 1979 kvm_create_memslot(kvm, new); 1980 else if (change == KVM_MR_DELETE) 1981 kvm_delete_memslot(kvm, old, invalid_slot); 1982 else if (change == KVM_MR_MOVE) 1983 kvm_move_memslot(kvm, old, new, invalid_slot); 1984 else if (change == KVM_MR_FLAGS_ONLY) 1985 kvm_update_flags_memslot(kvm, old, new); 1986 else 1987 BUG(); 1988 1989 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1990 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1991 kfree(invalid_slot); 1992 1993 /* 1994 * No need to refresh new->arch, changes after dropping slots_arch_lock 1995 * will directly hit the final, active memslot. Architectures are 1996 * responsible for knowing that new->arch may be stale. 1997 */ 1998 kvm_commit_memory_region(kvm, old, new, change); 1999 2000 return 0; 2001 } 2002 2003 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 2004 gfn_t start, gfn_t end) 2005 { 2006 struct kvm_memslot_iter iter; 2007 2008 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 2009 if (iter.slot->id != id) 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 /* 2017 * Allocate some memory and give it an address in the guest physical address 2018 * space. 2019 * 2020 * Discontiguous memory is allowed, mostly for framebuffers. 2021 * 2022 * Must be called holding kvm->slots_lock for write. 2023 */ 2024 int __kvm_set_memory_region(struct kvm *kvm, 2025 const struct kvm_userspace_memory_region2 *mem) 2026 { 2027 struct kvm_memory_slot *old, *new; 2028 struct kvm_memslots *slots; 2029 enum kvm_mr_change change; 2030 unsigned long npages; 2031 gfn_t base_gfn; 2032 int as_id, id; 2033 int r; 2034 2035 r = check_memory_region_flags(kvm, mem); 2036 if (r) 2037 return r; 2038 2039 as_id = mem->slot >> 16; 2040 id = (u16)mem->slot; 2041 2042 /* General sanity checks */ 2043 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2044 (mem->memory_size != (unsigned long)mem->memory_size)) 2045 return -EINVAL; 2046 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2047 return -EINVAL; 2048 /* We can read the guest memory with __xxx_user() later on. */ 2049 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2050 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2051 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2052 mem->memory_size)) 2053 return -EINVAL; 2054 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2055 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2056 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2057 return -EINVAL; 2058 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2059 return -EINVAL; 2060 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2061 return -EINVAL; 2062 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2063 return -EINVAL; 2064 2065 slots = __kvm_memslots(kvm, as_id); 2066 2067 /* 2068 * Note, the old memslot (and the pointer itself!) may be invalidated 2069 * and/or destroyed by kvm_set_memslot(). 2070 */ 2071 old = id_to_memslot(slots, id); 2072 2073 if (!mem->memory_size) { 2074 if (!old || !old->npages) 2075 return -EINVAL; 2076 2077 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2078 return -EIO; 2079 2080 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2081 } 2082 2083 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2084 npages = (mem->memory_size >> PAGE_SHIFT); 2085 2086 if (!old || !old->npages) { 2087 change = KVM_MR_CREATE; 2088 2089 /* 2090 * To simplify KVM internals, the total number of pages across 2091 * all memslots must fit in an unsigned long. 2092 */ 2093 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2094 return -EINVAL; 2095 } else { /* Modify an existing slot. */ 2096 /* Private memslots are immutable, they can only be deleted. */ 2097 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2098 return -EINVAL; 2099 if ((mem->userspace_addr != old->userspace_addr) || 2100 (npages != old->npages) || 2101 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2102 return -EINVAL; 2103 2104 if (base_gfn != old->base_gfn) 2105 change = KVM_MR_MOVE; 2106 else if (mem->flags != old->flags) 2107 change = KVM_MR_FLAGS_ONLY; 2108 else /* Nothing to change. */ 2109 return 0; 2110 } 2111 2112 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2113 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2114 return -EEXIST; 2115 2116 /* Allocate a slot that will persist in the memslot. */ 2117 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2118 if (!new) 2119 return -ENOMEM; 2120 2121 new->as_id = as_id; 2122 new->id = id; 2123 new->base_gfn = base_gfn; 2124 new->npages = npages; 2125 new->flags = mem->flags; 2126 new->userspace_addr = mem->userspace_addr; 2127 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2128 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2129 if (r) 2130 goto out; 2131 } 2132 2133 r = kvm_set_memslot(kvm, old, new, change); 2134 if (r) 2135 goto out_unbind; 2136 2137 return 0; 2138 2139 out_unbind: 2140 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2141 kvm_gmem_unbind(new); 2142 out: 2143 kfree(new); 2144 return r; 2145 } 2146 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2147 2148 int kvm_set_memory_region(struct kvm *kvm, 2149 const struct kvm_userspace_memory_region2 *mem) 2150 { 2151 int r; 2152 2153 mutex_lock(&kvm->slots_lock); 2154 r = __kvm_set_memory_region(kvm, mem); 2155 mutex_unlock(&kvm->slots_lock); 2156 return r; 2157 } 2158 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2159 2160 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2161 struct kvm_userspace_memory_region2 *mem) 2162 { 2163 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2164 return -EINVAL; 2165 2166 return kvm_set_memory_region(kvm, mem); 2167 } 2168 2169 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2170 /** 2171 * kvm_get_dirty_log - get a snapshot of dirty pages 2172 * @kvm: pointer to kvm instance 2173 * @log: slot id and address to which we copy the log 2174 * @is_dirty: set to '1' if any dirty pages were found 2175 * @memslot: set to the associated memslot, always valid on success 2176 */ 2177 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2178 int *is_dirty, struct kvm_memory_slot **memslot) 2179 { 2180 struct kvm_memslots *slots; 2181 int i, as_id, id; 2182 unsigned long n; 2183 unsigned long any = 0; 2184 2185 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2186 if (!kvm_use_dirty_bitmap(kvm)) 2187 return -ENXIO; 2188 2189 *memslot = NULL; 2190 *is_dirty = 0; 2191 2192 as_id = log->slot >> 16; 2193 id = (u16)log->slot; 2194 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2195 return -EINVAL; 2196 2197 slots = __kvm_memslots(kvm, as_id); 2198 *memslot = id_to_memslot(slots, id); 2199 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2200 return -ENOENT; 2201 2202 kvm_arch_sync_dirty_log(kvm, *memslot); 2203 2204 n = kvm_dirty_bitmap_bytes(*memslot); 2205 2206 for (i = 0; !any && i < n/sizeof(long); ++i) 2207 any = (*memslot)->dirty_bitmap[i]; 2208 2209 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2210 return -EFAULT; 2211 2212 if (any) 2213 *is_dirty = 1; 2214 return 0; 2215 } 2216 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2217 2218 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2219 /** 2220 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2221 * and reenable dirty page tracking for the corresponding pages. 2222 * @kvm: pointer to kvm instance 2223 * @log: slot id and address to which we copy the log 2224 * 2225 * We need to keep it in mind that VCPU threads can write to the bitmap 2226 * concurrently. So, to avoid losing track of dirty pages we keep the 2227 * following order: 2228 * 2229 * 1. Take a snapshot of the bit and clear it if needed. 2230 * 2. Write protect the corresponding page. 2231 * 3. Copy the snapshot to the userspace. 2232 * 4. Upon return caller flushes TLB's if needed. 2233 * 2234 * Between 2 and 4, the guest may write to the page using the remaining TLB 2235 * entry. This is not a problem because the page is reported dirty using 2236 * the snapshot taken before and step 4 ensures that writes done after 2237 * exiting to userspace will be logged for the next call. 2238 * 2239 */ 2240 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2241 { 2242 struct kvm_memslots *slots; 2243 struct kvm_memory_slot *memslot; 2244 int i, as_id, id; 2245 unsigned long n; 2246 unsigned long *dirty_bitmap; 2247 unsigned long *dirty_bitmap_buffer; 2248 bool flush; 2249 2250 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2251 if (!kvm_use_dirty_bitmap(kvm)) 2252 return -ENXIO; 2253 2254 as_id = log->slot >> 16; 2255 id = (u16)log->slot; 2256 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2257 return -EINVAL; 2258 2259 slots = __kvm_memslots(kvm, as_id); 2260 memslot = id_to_memslot(slots, id); 2261 if (!memslot || !memslot->dirty_bitmap) 2262 return -ENOENT; 2263 2264 dirty_bitmap = memslot->dirty_bitmap; 2265 2266 kvm_arch_sync_dirty_log(kvm, memslot); 2267 2268 n = kvm_dirty_bitmap_bytes(memslot); 2269 flush = false; 2270 if (kvm->manual_dirty_log_protect) { 2271 /* 2272 * Unlike kvm_get_dirty_log, we always return false in *flush, 2273 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2274 * is some code duplication between this function and 2275 * kvm_get_dirty_log, but hopefully all architecture 2276 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2277 * can be eliminated. 2278 */ 2279 dirty_bitmap_buffer = dirty_bitmap; 2280 } else { 2281 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2282 memset(dirty_bitmap_buffer, 0, n); 2283 2284 KVM_MMU_LOCK(kvm); 2285 for (i = 0; i < n / sizeof(long); i++) { 2286 unsigned long mask; 2287 gfn_t offset; 2288 2289 if (!dirty_bitmap[i]) 2290 continue; 2291 2292 flush = true; 2293 mask = xchg(&dirty_bitmap[i], 0); 2294 dirty_bitmap_buffer[i] = mask; 2295 2296 offset = i * BITS_PER_LONG; 2297 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2298 offset, mask); 2299 } 2300 KVM_MMU_UNLOCK(kvm); 2301 } 2302 2303 if (flush) 2304 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2305 2306 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2307 return -EFAULT; 2308 return 0; 2309 } 2310 2311 2312 /** 2313 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2314 * @kvm: kvm instance 2315 * @log: slot id and address to which we copy the log 2316 * 2317 * Steps 1-4 below provide general overview of dirty page logging. See 2318 * kvm_get_dirty_log_protect() function description for additional details. 2319 * 2320 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2321 * always flush the TLB (step 4) even if previous step failed and the dirty 2322 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2323 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2324 * writes will be marked dirty for next log read. 2325 * 2326 * 1. Take a snapshot of the bit and clear it if needed. 2327 * 2. Write protect the corresponding page. 2328 * 3. Copy the snapshot to the userspace. 2329 * 4. Flush TLB's if needed. 2330 */ 2331 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2332 struct kvm_dirty_log *log) 2333 { 2334 int r; 2335 2336 mutex_lock(&kvm->slots_lock); 2337 2338 r = kvm_get_dirty_log_protect(kvm, log); 2339 2340 mutex_unlock(&kvm->slots_lock); 2341 return r; 2342 } 2343 2344 /** 2345 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2346 * and reenable dirty page tracking for the corresponding pages. 2347 * @kvm: pointer to kvm instance 2348 * @log: slot id and address from which to fetch the bitmap of dirty pages 2349 */ 2350 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2351 struct kvm_clear_dirty_log *log) 2352 { 2353 struct kvm_memslots *slots; 2354 struct kvm_memory_slot *memslot; 2355 int as_id, id; 2356 gfn_t offset; 2357 unsigned long i, n; 2358 unsigned long *dirty_bitmap; 2359 unsigned long *dirty_bitmap_buffer; 2360 bool flush; 2361 2362 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2363 if (!kvm_use_dirty_bitmap(kvm)) 2364 return -ENXIO; 2365 2366 as_id = log->slot >> 16; 2367 id = (u16)log->slot; 2368 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2369 return -EINVAL; 2370 2371 if (log->first_page & 63) 2372 return -EINVAL; 2373 2374 slots = __kvm_memslots(kvm, as_id); 2375 memslot = id_to_memslot(slots, id); 2376 if (!memslot || !memslot->dirty_bitmap) 2377 return -ENOENT; 2378 2379 dirty_bitmap = memslot->dirty_bitmap; 2380 2381 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2382 2383 if (log->first_page > memslot->npages || 2384 log->num_pages > memslot->npages - log->first_page || 2385 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2386 return -EINVAL; 2387 2388 kvm_arch_sync_dirty_log(kvm, memslot); 2389 2390 flush = false; 2391 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2392 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2393 return -EFAULT; 2394 2395 KVM_MMU_LOCK(kvm); 2396 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2397 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2398 i++, offset += BITS_PER_LONG) { 2399 unsigned long mask = *dirty_bitmap_buffer++; 2400 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2401 if (!mask) 2402 continue; 2403 2404 mask &= atomic_long_fetch_andnot(mask, p); 2405 2406 /* 2407 * mask contains the bits that really have been cleared. This 2408 * never includes any bits beyond the length of the memslot (if 2409 * the length is not aligned to 64 pages), therefore it is not 2410 * a problem if userspace sets them in log->dirty_bitmap. 2411 */ 2412 if (mask) { 2413 flush = true; 2414 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2415 offset, mask); 2416 } 2417 } 2418 KVM_MMU_UNLOCK(kvm); 2419 2420 if (flush) 2421 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2422 2423 return 0; 2424 } 2425 2426 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2427 struct kvm_clear_dirty_log *log) 2428 { 2429 int r; 2430 2431 mutex_lock(&kvm->slots_lock); 2432 2433 r = kvm_clear_dirty_log_protect(kvm, log); 2434 2435 mutex_unlock(&kvm->slots_lock); 2436 return r; 2437 } 2438 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2439 2440 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2441 /* 2442 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2443 * matching @attrs. 2444 */ 2445 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2446 unsigned long attrs) 2447 { 2448 XA_STATE(xas, &kvm->mem_attr_array, start); 2449 unsigned long index; 2450 bool has_attrs; 2451 void *entry; 2452 2453 rcu_read_lock(); 2454 2455 if (!attrs) { 2456 has_attrs = !xas_find(&xas, end - 1); 2457 goto out; 2458 } 2459 2460 has_attrs = true; 2461 for (index = start; index < end; index++) { 2462 do { 2463 entry = xas_next(&xas); 2464 } while (xas_retry(&xas, entry)); 2465 2466 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2467 has_attrs = false; 2468 break; 2469 } 2470 } 2471 2472 out: 2473 rcu_read_unlock(); 2474 return has_attrs; 2475 } 2476 2477 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2478 { 2479 if (!kvm || kvm_arch_has_private_mem(kvm)) 2480 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2481 2482 return 0; 2483 } 2484 2485 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2486 struct kvm_mmu_notifier_range *range) 2487 { 2488 struct kvm_gfn_range gfn_range; 2489 struct kvm_memory_slot *slot; 2490 struct kvm_memslots *slots; 2491 struct kvm_memslot_iter iter; 2492 bool found_memslot = false; 2493 bool ret = false; 2494 int i; 2495 2496 gfn_range.arg = range->arg; 2497 gfn_range.may_block = range->may_block; 2498 2499 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2500 slots = __kvm_memslots(kvm, i); 2501 2502 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2503 slot = iter.slot; 2504 gfn_range.slot = slot; 2505 2506 gfn_range.start = max(range->start, slot->base_gfn); 2507 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2508 if (gfn_range.start >= gfn_range.end) 2509 continue; 2510 2511 if (!found_memslot) { 2512 found_memslot = true; 2513 KVM_MMU_LOCK(kvm); 2514 if (!IS_KVM_NULL_FN(range->on_lock)) 2515 range->on_lock(kvm); 2516 } 2517 2518 ret |= range->handler(kvm, &gfn_range); 2519 } 2520 } 2521 2522 if (range->flush_on_ret && ret) 2523 kvm_flush_remote_tlbs(kvm); 2524 2525 if (found_memslot) 2526 KVM_MMU_UNLOCK(kvm); 2527 } 2528 2529 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2530 struct kvm_gfn_range *range) 2531 { 2532 /* 2533 * Unconditionally add the range to the invalidation set, regardless of 2534 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2535 * if KVM supports RWX attributes in the future and the attributes are 2536 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2537 * adding the range allows KVM to require that MMU invalidations add at 2538 * least one range between begin() and end(), e.g. allows KVM to detect 2539 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2540 * but it's not obvious that allowing new mappings while the attributes 2541 * are in flux is desirable or worth the complexity. 2542 */ 2543 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2544 2545 return kvm_arch_pre_set_memory_attributes(kvm, range); 2546 } 2547 2548 /* Set @attributes for the gfn range [@start, @end). */ 2549 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2550 unsigned long attributes) 2551 { 2552 struct kvm_mmu_notifier_range pre_set_range = { 2553 .start = start, 2554 .end = end, 2555 .handler = kvm_pre_set_memory_attributes, 2556 .on_lock = kvm_mmu_invalidate_begin, 2557 .flush_on_ret = true, 2558 .may_block = true, 2559 }; 2560 struct kvm_mmu_notifier_range post_set_range = { 2561 .start = start, 2562 .end = end, 2563 .arg.attributes = attributes, 2564 .handler = kvm_arch_post_set_memory_attributes, 2565 .on_lock = kvm_mmu_invalidate_end, 2566 .may_block = true, 2567 }; 2568 unsigned long i; 2569 void *entry; 2570 int r = 0; 2571 2572 entry = attributes ? xa_mk_value(attributes) : NULL; 2573 2574 mutex_lock(&kvm->slots_lock); 2575 2576 /* Nothing to do if the entire range as the desired attributes. */ 2577 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2578 goto out_unlock; 2579 2580 /* 2581 * Reserve memory ahead of time to avoid having to deal with failures 2582 * partway through setting the new attributes. 2583 */ 2584 for (i = start; i < end; i++) { 2585 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2586 if (r) 2587 goto out_unlock; 2588 } 2589 2590 kvm_handle_gfn_range(kvm, &pre_set_range); 2591 2592 for (i = start; i < end; i++) { 2593 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2594 GFP_KERNEL_ACCOUNT)); 2595 KVM_BUG_ON(r, kvm); 2596 } 2597 2598 kvm_handle_gfn_range(kvm, &post_set_range); 2599 2600 out_unlock: 2601 mutex_unlock(&kvm->slots_lock); 2602 2603 return r; 2604 } 2605 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2606 struct kvm_memory_attributes *attrs) 2607 { 2608 gfn_t start, end; 2609 2610 /* flags is currently not used. */ 2611 if (attrs->flags) 2612 return -EINVAL; 2613 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2614 return -EINVAL; 2615 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2616 return -EINVAL; 2617 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2618 return -EINVAL; 2619 2620 start = attrs->address >> PAGE_SHIFT; 2621 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2622 2623 /* 2624 * xarray tracks data using "unsigned long", and as a result so does 2625 * KVM. For simplicity, supports generic attributes only on 64-bit 2626 * architectures. 2627 */ 2628 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2629 2630 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2631 } 2632 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2633 2634 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2635 { 2636 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2637 } 2638 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2639 2640 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2641 { 2642 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2643 u64 gen = slots->generation; 2644 struct kvm_memory_slot *slot; 2645 2646 /* 2647 * This also protects against using a memslot from a different address space, 2648 * since different address spaces have different generation numbers. 2649 */ 2650 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2651 vcpu->last_used_slot = NULL; 2652 vcpu->last_used_slot_gen = gen; 2653 } 2654 2655 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2656 if (slot) 2657 return slot; 2658 2659 /* 2660 * Fall back to searching all memslots. We purposely use 2661 * search_memslots() instead of __gfn_to_memslot() to avoid 2662 * thrashing the VM-wide last_used_slot in kvm_memslots. 2663 */ 2664 slot = search_memslots(slots, gfn, false); 2665 if (slot) { 2666 vcpu->last_used_slot = slot; 2667 return slot; 2668 } 2669 2670 return NULL; 2671 } 2672 2673 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2674 { 2675 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2676 2677 return kvm_is_visible_memslot(memslot); 2678 } 2679 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2680 2681 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2682 { 2683 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2684 2685 return kvm_is_visible_memslot(memslot); 2686 } 2687 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2688 2689 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2690 { 2691 struct vm_area_struct *vma; 2692 unsigned long addr, size; 2693 2694 size = PAGE_SIZE; 2695 2696 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2697 if (kvm_is_error_hva(addr)) 2698 return PAGE_SIZE; 2699 2700 mmap_read_lock(current->mm); 2701 vma = find_vma(current->mm, addr); 2702 if (!vma) 2703 goto out; 2704 2705 size = vma_kernel_pagesize(vma); 2706 2707 out: 2708 mmap_read_unlock(current->mm); 2709 2710 return size; 2711 } 2712 2713 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2714 { 2715 return slot->flags & KVM_MEM_READONLY; 2716 } 2717 2718 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2719 gfn_t *nr_pages, bool write) 2720 { 2721 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2722 return KVM_HVA_ERR_BAD; 2723 2724 if (memslot_is_readonly(slot) && write) 2725 return KVM_HVA_ERR_RO_BAD; 2726 2727 if (nr_pages) 2728 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2729 2730 return __gfn_to_hva_memslot(slot, gfn); 2731 } 2732 2733 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2734 gfn_t *nr_pages) 2735 { 2736 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2737 } 2738 2739 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2740 gfn_t gfn) 2741 { 2742 return gfn_to_hva_many(slot, gfn, NULL); 2743 } 2744 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2745 2746 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2747 { 2748 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2749 } 2750 EXPORT_SYMBOL_GPL(gfn_to_hva); 2751 2752 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2753 { 2754 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2755 } 2756 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2757 2758 /* 2759 * Return the hva of a @gfn and the R/W attribute if possible. 2760 * 2761 * @slot: the kvm_memory_slot which contains @gfn 2762 * @gfn: the gfn to be translated 2763 * @writable: used to return the read/write attribute of the @slot if the hva 2764 * is valid and @writable is not NULL 2765 */ 2766 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2767 gfn_t gfn, bool *writable) 2768 { 2769 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2770 2771 if (!kvm_is_error_hva(hva) && writable) 2772 *writable = !memslot_is_readonly(slot); 2773 2774 return hva; 2775 } 2776 2777 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2778 { 2779 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2780 2781 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2782 } 2783 2784 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2785 { 2786 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2787 2788 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2789 } 2790 2791 static inline int check_user_page_hwpoison(unsigned long addr) 2792 { 2793 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2794 2795 rc = get_user_pages(addr, 1, flags, NULL); 2796 return rc == -EHWPOISON; 2797 } 2798 2799 /* 2800 * The fast path to get the writable pfn which will be stored in @pfn, 2801 * true indicates success, otherwise false is returned. It's also the 2802 * only part that runs if we can in atomic context. 2803 */ 2804 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2805 bool *writable, kvm_pfn_t *pfn) 2806 { 2807 struct page *page[1]; 2808 2809 /* 2810 * Fast pin a writable pfn only if it is a write fault request 2811 * or the caller allows to map a writable pfn for a read fault 2812 * request. 2813 */ 2814 if (!(write_fault || writable)) 2815 return false; 2816 2817 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2818 *pfn = page_to_pfn(page[0]); 2819 2820 if (writable) 2821 *writable = true; 2822 return true; 2823 } 2824 2825 return false; 2826 } 2827 2828 /* 2829 * The slow path to get the pfn of the specified host virtual address, 2830 * 1 indicates success, -errno is returned if error is detected. 2831 */ 2832 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2833 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2834 { 2835 /* 2836 * When a VCPU accesses a page that is not mapped into the secondary 2837 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2838 * make progress. We always want to honor NUMA hinting faults in that 2839 * case, because GUP usage corresponds to memory accesses from the VCPU. 2840 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2841 * mapped into the secondary MMU and gets accessed by a VCPU. 2842 * 2843 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2844 * implicitly honor NUMA hinting faults and don't need this flag. 2845 */ 2846 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2847 struct page *page; 2848 int npages; 2849 2850 might_sleep(); 2851 2852 if (writable) 2853 *writable = write_fault; 2854 2855 if (write_fault) 2856 flags |= FOLL_WRITE; 2857 if (async) 2858 flags |= FOLL_NOWAIT; 2859 if (interruptible) 2860 flags |= FOLL_INTERRUPTIBLE; 2861 2862 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2863 if (npages != 1) 2864 return npages; 2865 2866 /* map read fault as writable if possible */ 2867 if (unlikely(!write_fault) && writable) { 2868 struct page *wpage; 2869 2870 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2871 *writable = true; 2872 put_page(page); 2873 page = wpage; 2874 } 2875 } 2876 *pfn = page_to_pfn(page); 2877 return npages; 2878 } 2879 2880 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2881 { 2882 if (unlikely(!(vma->vm_flags & VM_READ))) 2883 return false; 2884 2885 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2886 return false; 2887 2888 return true; 2889 } 2890 2891 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2892 { 2893 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2894 2895 if (!page) 2896 return 1; 2897 2898 return get_page_unless_zero(page); 2899 } 2900 2901 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2902 unsigned long addr, bool write_fault, 2903 bool *writable, kvm_pfn_t *p_pfn) 2904 { 2905 kvm_pfn_t pfn; 2906 pte_t *ptep; 2907 pte_t pte; 2908 spinlock_t *ptl; 2909 int r; 2910 2911 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2912 if (r) { 2913 /* 2914 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2915 * not call the fault handler, so do it here. 2916 */ 2917 bool unlocked = false; 2918 r = fixup_user_fault(current->mm, addr, 2919 (write_fault ? FAULT_FLAG_WRITE : 0), 2920 &unlocked); 2921 if (unlocked) 2922 return -EAGAIN; 2923 if (r) 2924 return r; 2925 2926 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2927 if (r) 2928 return r; 2929 } 2930 2931 pte = ptep_get(ptep); 2932 2933 if (write_fault && !pte_write(pte)) { 2934 pfn = KVM_PFN_ERR_RO_FAULT; 2935 goto out; 2936 } 2937 2938 if (writable) 2939 *writable = pte_write(pte); 2940 pfn = pte_pfn(pte); 2941 2942 /* 2943 * Get a reference here because callers of *hva_to_pfn* and 2944 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2945 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2946 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2947 * simply do nothing for reserved pfns. 2948 * 2949 * Whoever called remap_pfn_range is also going to call e.g. 2950 * unmap_mapping_range before the underlying pages are freed, 2951 * causing a call to our MMU notifier. 2952 * 2953 * Certain IO or PFNMAP mappings can be backed with valid 2954 * struct pages, but be allocated without refcounting e.g., 2955 * tail pages of non-compound higher order allocations, which 2956 * would then underflow the refcount when the caller does the 2957 * required put_page. Don't allow those pages here. 2958 */ 2959 if (!kvm_try_get_pfn(pfn)) 2960 r = -EFAULT; 2961 2962 out: 2963 pte_unmap_unlock(ptep, ptl); 2964 *p_pfn = pfn; 2965 2966 return r; 2967 } 2968 2969 /* 2970 * Pin guest page in memory and return its pfn. 2971 * @addr: host virtual address which maps memory to the guest 2972 * @atomic: whether this function can sleep 2973 * @interruptible: whether the process can be interrupted by non-fatal signals 2974 * @async: whether this function need to wait IO complete if the 2975 * host page is not in the memory 2976 * @write_fault: whether we should get a writable host page 2977 * @writable: whether it allows to map a writable host page for !@write_fault 2978 * 2979 * The function will map a writable host page for these two cases: 2980 * 1): @write_fault = true 2981 * 2): @write_fault = false && @writable, @writable will tell the caller 2982 * whether the mapping is writable. 2983 */ 2984 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2985 bool *async, bool write_fault, bool *writable) 2986 { 2987 struct vm_area_struct *vma; 2988 kvm_pfn_t pfn; 2989 int npages, r; 2990 2991 /* we can do it either atomically or asynchronously, not both */ 2992 BUG_ON(atomic && async); 2993 2994 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2995 return pfn; 2996 2997 if (atomic) 2998 return KVM_PFN_ERR_FAULT; 2999 3000 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 3001 writable, &pfn); 3002 if (npages == 1) 3003 return pfn; 3004 if (npages == -EINTR) 3005 return KVM_PFN_ERR_SIGPENDING; 3006 3007 mmap_read_lock(current->mm); 3008 if (npages == -EHWPOISON || 3009 (!async && check_user_page_hwpoison(addr))) { 3010 pfn = KVM_PFN_ERR_HWPOISON; 3011 goto exit; 3012 } 3013 3014 retry: 3015 vma = vma_lookup(current->mm, addr); 3016 3017 if (vma == NULL) 3018 pfn = KVM_PFN_ERR_FAULT; 3019 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3020 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 3021 if (r == -EAGAIN) 3022 goto retry; 3023 if (r < 0) 3024 pfn = KVM_PFN_ERR_FAULT; 3025 } else { 3026 if (async && vma_is_valid(vma, write_fault)) 3027 *async = true; 3028 pfn = KVM_PFN_ERR_FAULT; 3029 } 3030 exit: 3031 mmap_read_unlock(current->mm); 3032 return pfn; 3033 } 3034 3035 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 3036 bool atomic, bool interruptible, bool *async, 3037 bool write_fault, bool *writable, hva_t *hva) 3038 { 3039 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3040 3041 if (hva) 3042 *hva = addr; 3043 3044 if (addr == KVM_HVA_ERR_RO_BAD) { 3045 if (writable) 3046 *writable = false; 3047 return KVM_PFN_ERR_RO_FAULT; 3048 } 3049 3050 if (kvm_is_error_hva(addr)) { 3051 if (writable) 3052 *writable = false; 3053 return KVM_PFN_NOSLOT; 3054 } 3055 3056 /* Do not map writable pfn in the readonly memslot. */ 3057 if (writable && memslot_is_readonly(slot)) { 3058 *writable = false; 3059 writable = NULL; 3060 } 3061 3062 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3063 writable); 3064 } 3065 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3066 3067 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3068 bool *writable) 3069 { 3070 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3071 NULL, write_fault, writable, NULL); 3072 } 3073 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3074 3075 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3076 { 3077 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3078 NULL, NULL); 3079 } 3080 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3081 3082 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3083 { 3084 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3085 NULL, NULL); 3086 } 3087 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3088 3089 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3090 { 3091 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3092 } 3093 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3094 3095 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3096 { 3097 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3098 } 3099 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3100 3101 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3102 { 3103 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3104 } 3105 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3106 3107 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3108 struct page **pages, int nr_pages) 3109 { 3110 unsigned long addr; 3111 gfn_t entry = 0; 3112 3113 addr = gfn_to_hva_many(slot, gfn, &entry); 3114 if (kvm_is_error_hva(addr)) 3115 return -1; 3116 3117 if (entry < nr_pages) 3118 return 0; 3119 3120 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3121 } 3122 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3123 3124 /* 3125 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3126 * backed by 'struct page'. A valid example is if the backing memslot is 3127 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3128 * been elevated by gfn_to_pfn(). 3129 */ 3130 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3131 { 3132 struct page *page; 3133 kvm_pfn_t pfn; 3134 3135 pfn = gfn_to_pfn(kvm, gfn); 3136 3137 if (is_error_noslot_pfn(pfn)) 3138 return KVM_ERR_PTR_BAD_PAGE; 3139 3140 page = kvm_pfn_to_refcounted_page(pfn); 3141 if (!page) 3142 return KVM_ERR_PTR_BAD_PAGE; 3143 3144 return page; 3145 } 3146 EXPORT_SYMBOL_GPL(gfn_to_page); 3147 3148 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3149 { 3150 if (dirty) 3151 kvm_release_pfn_dirty(pfn); 3152 else 3153 kvm_release_pfn_clean(pfn); 3154 } 3155 3156 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3157 { 3158 kvm_pfn_t pfn; 3159 void *hva = NULL; 3160 struct page *page = KVM_UNMAPPED_PAGE; 3161 3162 if (!map) 3163 return -EINVAL; 3164 3165 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3166 if (is_error_noslot_pfn(pfn)) 3167 return -EINVAL; 3168 3169 if (pfn_valid(pfn)) { 3170 page = pfn_to_page(pfn); 3171 hva = kmap(page); 3172 #ifdef CONFIG_HAS_IOMEM 3173 } else { 3174 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3175 #endif 3176 } 3177 3178 if (!hva) 3179 return -EFAULT; 3180 3181 map->page = page; 3182 map->hva = hva; 3183 map->pfn = pfn; 3184 map->gfn = gfn; 3185 3186 return 0; 3187 } 3188 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3189 3190 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3191 { 3192 if (!map) 3193 return; 3194 3195 if (!map->hva) 3196 return; 3197 3198 if (map->page != KVM_UNMAPPED_PAGE) 3199 kunmap(map->page); 3200 #ifdef CONFIG_HAS_IOMEM 3201 else 3202 memunmap(map->hva); 3203 #endif 3204 3205 if (dirty) 3206 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3207 3208 kvm_release_pfn(map->pfn, dirty); 3209 3210 map->hva = NULL; 3211 map->page = NULL; 3212 } 3213 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3214 3215 static bool kvm_is_ad_tracked_page(struct page *page) 3216 { 3217 /* 3218 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3219 * touched (e.g. set dirty) except by its owner". 3220 */ 3221 return !PageReserved(page); 3222 } 3223 3224 static void kvm_set_page_dirty(struct page *page) 3225 { 3226 if (kvm_is_ad_tracked_page(page)) 3227 SetPageDirty(page); 3228 } 3229 3230 static void kvm_set_page_accessed(struct page *page) 3231 { 3232 if (kvm_is_ad_tracked_page(page)) 3233 mark_page_accessed(page); 3234 } 3235 3236 void kvm_release_page_clean(struct page *page) 3237 { 3238 WARN_ON(is_error_page(page)); 3239 3240 kvm_set_page_accessed(page); 3241 put_page(page); 3242 } 3243 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3244 3245 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3246 { 3247 struct page *page; 3248 3249 if (is_error_noslot_pfn(pfn)) 3250 return; 3251 3252 page = kvm_pfn_to_refcounted_page(pfn); 3253 if (!page) 3254 return; 3255 3256 kvm_release_page_clean(page); 3257 } 3258 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3259 3260 void kvm_release_page_dirty(struct page *page) 3261 { 3262 WARN_ON(is_error_page(page)); 3263 3264 kvm_set_page_dirty(page); 3265 kvm_release_page_clean(page); 3266 } 3267 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3268 3269 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3270 { 3271 struct page *page; 3272 3273 if (is_error_noslot_pfn(pfn)) 3274 return; 3275 3276 page = kvm_pfn_to_refcounted_page(pfn); 3277 if (!page) 3278 return; 3279 3280 kvm_release_page_dirty(page); 3281 } 3282 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3283 3284 /* 3285 * Note, checking for an error/noslot pfn is the caller's responsibility when 3286 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3287 * "set" helpers are not to be used when the pfn might point at garbage. 3288 */ 3289 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3290 { 3291 if (WARN_ON(is_error_noslot_pfn(pfn))) 3292 return; 3293 3294 if (pfn_valid(pfn)) 3295 kvm_set_page_dirty(pfn_to_page(pfn)); 3296 } 3297 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3298 3299 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3300 { 3301 if (WARN_ON(is_error_noslot_pfn(pfn))) 3302 return; 3303 3304 if (pfn_valid(pfn)) 3305 kvm_set_page_accessed(pfn_to_page(pfn)); 3306 } 3307 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3308 3309 static int next_segment(unsigned long len, int offset) 3310 { 3311 if (len > PAGE_SIZE - offset) 3312 return PAGE_SIZE - offset; 3313 else 3314 return len; 3315 } 3316 3317 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3318 void *data, int offset, int len) 3319 { 3320 int r; 3321 unsigned long addr; 3322 3323 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3324 if (kvm_is_error_hva(addr)) 3325 return -EFAULT; 3326 r = __copy_from_user(data, (void __user *)addr + offset, len); 3327 if (r) 3328 return -EFAULT; 3329 return 0; 3330 } 3331 3332 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3333 int len) 3334 { 3335 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3336 3337 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3338 } 3339 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3340 3341 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3342 int offset, int len) 3343 { 3344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3345 3346 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3347 } 3348 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3349 3350 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3351 { 3352 gfn_t gfn = gpa >> PAGE_SHIFT; 3353 int seg; 3354 int offset = offset_in_page(gpa); 3355 int ret; 3356 3357 while ((seg = next_segment(len, offset)) != 0) { 3358 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3359 if (ret < 0) 3360 return ret; 3361 offset = 0; 3362 len -= seg; 3363 data += seg; 3364 ++gfn; 3365 } 3366 return 0; 3367 } 3368 EXPORT_SYMBOL_GPL(kvm_read_guest); 3369 3370 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3371 { 3372 gfn_t gfn = gpa >> PAGE_SHIFT; 3373 int seg; 3374 int offset = offset_in_page(gpa); 3375 int ret; 3376 3377 while ((seg = next_segment(len, offset)) != 0) { 3378 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3379 if (ret < 0) 3380 return ret; 3381 offset = 0; 3382 len -= seg; 3383 data += seg; 3384 ++gfn; 3385 } 3386 return 0; 3387 } 3388 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3389 3390 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3391 void *data, int offset, unsigned long len) 3392 { 3393 int r; 3394 unsigned long addr; 3395 3396 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3397 if (kvm_is_error_hva(addr)) 3398 return -EFAULT; 3399 pagefault_disable(); 3400 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3401 pagefault_enable(); 3402 if (r) 3403 return -EFAULT; 3404 return 0; 3405 } 3406 3407 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3408 void *data, unsigned long len) 3409 { 3410 gfn_t gfn = gpa >> PAGE_SHIFT; 3411 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3412 int offset = offset_in_page(gpa); 3413 3414 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3415 } 3416 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3417 3418 static int __kvm_write_guest_page(struct kvm *kvm, 3419 struct kvm_memory_slot *memslot, gfn_t gfn, 3420 const void *data, int offset, int len) 3421 { 3422 int r; 3423 unsigned long addr; 3424 3425 addr = gfn_to_hva_memslot(memslot, gfn); 3426 if (kvm_is_error_hva(addr)) 3427 return -EFAULT; 3428 r = __copy_to_user((void __user *)addr + offset, data, len); 3429 if (r) 3430 return -EFAULT; 3431 mark_page_dirty_in_slot(kvm, memslot, gfn); 3432 return 0; 3433 } 3434 3435 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3436 const void *data, int offset, int len) 3437 { 3438 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3439 3440 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3441 } 3442 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3443 3444 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3445 const void *data, int offset, int len) 3446 { 3447 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3448 3449 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3450 } 3451 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3452 3453 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3454 unsigned long len) 3455 { 3456 gfn_t gfn = gpa >> PAGE_SHIFT; 3457 int seg; 3458 int offset = offset_in_page(gpa); 3459 int ret; 3460 3461 while ((seg = next_segment(len, offset)) != 0) { 3462 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3463 if (ret < 0) 3464 return ret; 3465 offset = 0; 3466 len -= seg; 3467 data += seg; 3468 ++gfn; 3469 } 3470 return 0; 3471 } 3472 EXPORT_SYMBOL_GPL(kvm_write_guest); 3473 3474 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3475 unsigned long len) 3476 { 3477 gfn_t gfn = gpa >> PAGE_SHIFT; 3478 int seg; 3479 int offset = offset_in_page(gpa); 3480 int ret; 3481 3482 while ((seg = next_segment(len, offset)) != 0) { 3483 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3484 if (ret < 0) 3485 return ret; 3486 offset = 0; 3487 len -= seg; 3488 data += seg; 3489 ++gfn; 3490 } 3491 return 0; 3492 } 3493 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3494 3495 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3496 struct gfn_to_hva_cache *ghc, 3497 gpa_t gpa, unsigned long len) 3498 { 3499 int offset = offset_in_page(gpa); 3500 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3501 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3502 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3503 gfn_t nr_pages_avail; 3504 3505 /* Update ghc->generation before performing any error checks. */ 3506 ghc->generation = slots->generation; 3507 3508 if (start_gfn > end_gfn) { 3509 ghc->hva = KVM_HVA_ERR_BAD; 3510 return -EINVAL; 3511 } 3512 3513 /* 3514 * If the requested region crosses two memslots, we still 3515 * verify that the entire region is valid here. 3516 */ 3517 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3518 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3519 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3520 &nr_pages_avail); 3521 if (kvm_is_error_hva(ghc->hva)) 3522 return -EFAULT; 3523 } 3524 3525 /* Use the slow path for cross page reads and writes. */ 3526 if (nr_pages_needed == 1) 3527 ghc->hva += offset; 3528 else 3529 ghc->memslot = NULL; 3530 3531 ghc->gpa = gpa; 3532 ghc->len = len; 3533 return 0; 3534 } 3535 3536 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3537 gpa_t gpa, unsigned long len) 3538 { 3539 struct kvm_memslots *slots = kvm_memslots(kvm); 3540 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3541 } 3542 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3543 3544 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3545 void *data, unsigned int offset, 3546 unsigned long len) 3547 { 3548 struct kvm_memslots *slots = kvm_memslots(kvm); 3549 int r; 3550 gpa_t gpa = ghc->gpa + offset; 3551 3552 if (WARN_ON_ONCE(len + offset > ghc->len)) 3553 return -EINVAL; 3554 3555 if (slots->generation != ghc->generation) { 3556 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3557 return -EFAULT; 3558 } 3559 3560 if (kvm_is_error_hva(ghc->hva)) 3561 return -EFAULT; 3562 3563 if (unlikely(!ghc->memslot)) 3564 return kvm_write_guest(kvm, gpa, data, len); 3565 3566 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3567 if (r) 3568 return -EFAULT; 3569 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3570 3571 return 0; 3572 } 3573 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3574 3575 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3576 void *data, unsigned long len) 3577 { 3578 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3579 } 3580 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3581 3582 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3583 void *data, unsigned int offset, 3584 unsigned long len) 3585 { 3586 struct kvm_memslots *slots = kvm_memslots(kvm); 3587 int r; 3588 gpa_t gpa = ghc->gpa + offset; 3589 3590 if (WARN_ON_ONCE(len + offset > ghc->len)) 3591 return -EINVAL; 3592 3593 if (slots->generation != ghc->generation) { 3594 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3595 return -EFAULT; 3596 } 3597 3598 if (kvm_is_error_hva(ghc->hva)) 3599 return -EFAULT; 3600 3601 if (unlikely(!ghc->memslot)) 3602 return kvm_read_guest(kvm, gpa, data, len); 3603 3604 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3605 if (r) 3606 return -EFAULT; 3607 3608 return 0; 3609 } 3610 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3611 3612 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3613 void *data, unsigned long len) 3614 { 3615 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3616 } 3617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3618 3619 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3620 { 3621 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3622 gfn_t gfn = gpa >> PAGE_SHIFT; 3623 int seg; 3624 int offset = offset_in_page(gpa); 3625 int ret; 3626 3627 while ((seg = next_segment(len, offset)) != 0) { 3628 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3629 if (ret < 0) 3630 return ret; 3631 offset = 0; 3632 len -= seg; 3633 ++gfn; 3634 } 3635 return 0; 3636 } 3637 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3638 3639 void mark_page_dirty_in_slot(struct kvm *kvm, 3640 const struct kvm_memory_slot *memslot, 3641 gfn_t gfn) 3642 { 3643 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3644 3645 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3646 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3647 return; 3648 3649 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3650 #endif 3651 3652 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3653 unsigned long rel_gfn = gfn - memslot->base_gfn; 3654 u32 slot = (memslot->as_id << 16) | memslot->id; 3655 3656 if (kvm->dirty_ring_size && vcpu) 3657 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3658 else if (memslot->dirty_bitmap) 3659 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3660 } 3661 } 3662 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3663 3664 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3665 { 3666 struct kvm_memory_slot *memslot; 3667 3668 memslot = gfn_to_memslot(kvm, gfn); 3669 mark_page_dirty_in_slot(kvm, memslot, gfn); 3670 } 3671 EXPORT_SYMBOL_GPL(mark_page_dirty); 3672 3673 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3674 { 3675 struct kvm_memory_slot *memslot; 3676 3677 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3678 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3679 } 3680 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3681 3682 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3683 { 3684 if (!vcpu->sigset_active) 3685 return; 3686 3687 /* 3688 * This does a lockless modification of ->real_blocked, which is fine 3689 * because, only current can change ->real_blocked and all readers of 3690 * ->real_blocked don't care as long ->real_blocked is always a subset 3691 * of ->blocked. 3692 */ 3693 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3694 } 3695 3696 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3697 { 3698 if (!vcpu->sigset_active) 3699 return; 3700 3701 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3702 sigemptyset(¤t->real_blocked); 3703 } 3704 3705 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3706 { 3707 unsigned int old, val, grow, grow_start; 3708 3709 old = val = vcpu->halt_poll_ns; 3710 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3711 grow = READ_ONCE(halt_poll_ns_grow); 3712 if (!grow) 3713 goto out; 3714 3715 val *= grow; 3716 if (val < grow_start) 3717 val = grow_start; 3718 3719 vcpu->halt_poll_ns = val; 3720 out: 3721 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3722 } 3723 3724 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3725 { 3726 unsigned int old, val, shrink, grow_start; 3727 3728 old = val = vcpu->halt_poll_ns; 3729 shrink = READ_ONCE(halt_poll_ns_shrink); 3730 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3731 if (shrink == 0) 3732 val = 0; 3733 else 3734 val /= shrink; 3735 3736 if (val < grow_start) 3737 val = 0; 3738 3739 vcpu->halt_poll_ns = val; 3740 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3741 } 3742 3743 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3744 { 3745 int ret = -EINTR; 3746 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3747 3748 if (kvm_arch_vcpu_runnable(vcpu)) 3749 goto out; 3750 if (kvm_cpu_has_pending_timer(vcpu)) 3751 goto out; 3752 if (signal_pending(current)) 3753 goto out; 3754 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3755 goto out; 3756 3757 ret = 0; 3758 out: 3759 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3760 return ret; 3761 } 3762 3763 /* 3764 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3765 * pending. This is mostly used when halting a vCPU, but may also be used 3766 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3767 */ 3768 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3769 { 3770 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3771 bool waited = false; 3772 3773 vcpu->stat.generic.blocking = 1; 3774 3775 preempt_disable(); 3776 kvm_arch_vcpu_blocking(vcpu); 3777 prepare_to_rcuwait(wait); 3778 preempt_enable(); 3779 3780 for (;;) { 3781 set_current_state(TASK_INTERRUPTIBLE); 3782 3783 if (kvm_vcpu_check_block(vcpu) < 0) 3784 break; 3785 3786 waited = true; 3787 schedule(); 3788 } 3789 3790 preempt_disable(); 3791 finish_rcuwait(wait); 3792 kvm_arch_vcpu_unblocking(vcpu); 3793 preempt_enable(); 3794 3795 vcpu->stat.generic.blocking = 0; 3796 3797 return waited; 3798 } 3799 3800 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3801 ktime_t end, bool success) 3802 { 3803 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3804 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3805 3806 ++vcpu->stat.generic.halt_attempted_poll; 3807 3808 if (success) { 3809 ++vcpu->stat.generic.halt_successful_poll; 3810 3811 if (!vcpu_valid_wakeup(vcpu)) 3812 ++vcpu->stat.generic.halt_poll_invalid; 3813 3814 stats->halt_poll_success_ns += poll_ns; 3815 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3816 } else { 3817 stats->halt_poll_fail_ns += poll_ns; 3818 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3819 } 3820 } 3821 3822 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3823 { 3824 struct kvm *kvm = vcpu->kvm; 3825 3826 if (kvm->override_halt_poll_ns) { 3827 /* 3828 * Ensure kvm->max_halt_poll_ns is not read before 3829 * kvm->override_halt_poll_ns. 3830 * 3831 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3832 */ 3833 smp_rmb(); 3834 return READ_ONCE(kvm->max_halt_poll_ns); 3835 } 3836 3837 return READ_ONCE(halt_poll_ns); 3838 } 3839 3840 /* 3841 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3842 * polling is enabled, busy wait for a short time before blocking to avoid the 3843 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3844 * is halted. 3845 */ 3846 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3847 { 3848 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3849 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3850 ktime_t start, cur, poll_end; 3851 bool waited = false; 3852 bool do_halt_poll; 3853 u64 halt_ns; 3854 3855 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3856 vcpu->halt_poll_ns = max_halt_poll_ns; 3857 3858 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3859 3860 start = cur = poll_end = ktime_get(); 3861 if (do_halt_poll) { 3862 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3863 3864 do { 3865 if (kvm_vcpu_check_block(vcpu) < 0) 3866 goto out; 3867 cpu_relax(); 3868 poll_end = cur = ktime_get(); 3869 } while (kvm_vcpu_can_poll(cur, stop)); 3870 } 3871 3872 waited = kvm_vcpu_block(vcpu); 3873 3874 cur = ktime_get(); 3875 if (waited) { 3876 vcpu->stat.generic.halt_wait_ns += 3877 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3878 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3879 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3880 } 3881 out: 3882 /* The total time the vCPU was "halted", including polling time. */ 3883 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3884 3885 /* 3886 * Note, halt-polling is considered successful so long as the vCPU was 3887 * never actually scheduled out, i.e. even if the wake event arrived 3888 * after of the halt-polling loop itself, but before the full wait. 3889 */ 3890 if (do_halt_poll) 3891 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3892 3893 if (halt_poll_allowed) { 3894 /* Recompute the max halt poll time in case it changed. */ 3895 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3896 3897 if (!vcpu_valid_wakeup(vcpu)) { 3898 shrink_halt_poll_ns(vcpu); 3899 } else if (max_halt_poll_ns) { 3900 if (halt_ns <= vcpu->halt_poll_ns) 3901 ; 3902 /* we had a long block, shrink polling */ 3903 else if (vcpu->halt_poll_ns && 3904 halt_ns > max_halt_poll_ns) 3905 shrink_halt_poll_ns(vcpu); 3906 /* we had a short halt and our poll time is too small */ 3907 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3908 halt_ns < max_halt_poll_ns) 3909 grow_halt_poll_ns(vcpu); 3910 } else { 3911 vcpu->halt_poll_ns = 0; 3912 } 3913 } 3914 3915 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3916 } 3917 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3918 3919 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3920 { 3921 if (__kvm_vcpu_wake_up(vcpu)) { 3922 WRITE_ONCE(vcpu->ready, true); 3923 ++vcpu->stat.generic.halt_wakeup; 3924 return true; 3925 } 3926 3927 return false; 3928 } 3929 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3930 3931 #ifndef CONFIG_S390 3932 /* 3933 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3934 */ 3935 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3936 { 3937 int me, cpu; 3938 3939 if (kvm_vcpu_wake_up(vcpu)) 3940 return; 3941 3942 me = get_cpu(); 3943 /* 3944 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3945 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3946 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3947 * within the vCPU thread itself. 3948 */ 3949 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3950 if (vcpu->mode == IN_GUEST_MODE) 3951 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3952 goto out; 3953 } 3954 3955 /* 3956 * Note, the vCPU could get migrated to a different pCPU at any point 3957 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3958 * IPI to the previous pCPU. But, that's ok because the purpose of the 3959 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3960 * vCPU also requires it to leave IN_GUEST_MODE. 3961 */ 3962 if (kvm_arch_vcpu_should_kick(vcpu)) { 3963 cpu = READ_ONCE(vcpu->cpu); 3964 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3965 smp_send_reschedule(cpu); 3966 } 3967 out: 3968 put_cpu(); 3969 } 3970 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3971 #endif /* !CONFIG_S390 */ 3972 3973 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3974 { 3975 struct pid *pid; 3976 struct task_struct *task = NULL; 3977 int ret = 0; 3978 3979 rcu_read_lock(); 3980 pid = rcu_dereference(target->pid); 3981 if (pid) 3982 task = get_pid_task(pid, PIDTYPE_PID); 3983 rcu_read_unlock(); 3984 if (!task) 3985 return ret; 3986 ret = yield_to(task, 1); 3987 put_task_struct(task); 3988 3989 return ret; 3990 } 3991 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3992 3993 /* 3994 * Helper that checks whether a VCPU is eligible for directed yield. 3995 * Most eligible candidate to yield is decided by following heuristics: 3996 * 3997 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3998 * (preempted lock holder), indicated by @in_spin_loop. 3999 * Set at the beginning and cleared at the end of interception/PLE handler. 4000 * 4001 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 4002 * chance last time (mostly it has become eligible now since we have probably 4003 * yielded to lockholder in last iteration. This is done by toggling 4004 * @dy_eligible each time a VCPU checked for eligibility.) 4005 * 4006 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 4007 * to preempted lock-holder could result in wrong VCPU selection and CPU 4008 * burning. Giving priority for a potential lock-holder increases lock 4009 * progress. 4010 * 4011 * Since algorithm is based on heuristics, accessing another VCPU data without 4012 * locking does not harm. It may result in trying to yield to same VCPU, fail 4013 * and continue with next VCPU and so on. 4014 */ 4015 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 4016 { 4017 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 4018 bool eligible; 4019 4020 eligible = !vcpu->spin_loop.in_spin_loop || 4021 vcpu->spin_loop.dy_eligible; 4022 4023 if (vcpu->spin_loop.in_spin_loop) 4024 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 4025 4026 return eligible; 4027 #else 4028 return true; 4029 #endif 4030 } 4031 4032 /* 4033 * Unlike kvm_arch_vcpu_runnable, this function is called outside 4034 * a vcpu_load/vcpu_put pair. However, for most architectures 4035 * kvm_arch_vcpu_runnable does not require vcpu_load. 4036 */ 4037 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 4038 { 4039 return kvm_arch_vcpu_runnable(vcpu); 4040 } 4041 4042 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4043 { 4044 if (kvm_arch_dy_runnable(vcpu)) 4045 return true; 4046 4047 #ifdef CONFIG_KVM_ASYNC_PF 4048 if (!list_empty_careful(&vcpu->async_pf.done)) 4049 return true; 4050 #endif 4051 4052 return false; 4053 } 4054 4055 /* 4056 * By default, simply query the target vCPU's current mode when checking if a 4057 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4058 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4059 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4060 * directly for cross-vCPU checks is functionally correct and accurate. 4061 */ 4062 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4063 { 4064 return kvm_arch_vcpu_in_kernel(vcpu); 4065 } 4066 4067 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4068 { 4069 return false; 4070 } 4071 4072 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4073 { 4074 struct kvm *kvm = me->kvm; 4075 struct kvm_vcpu *vcpu; 4076 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 4077 unsigned long i; 4078 int yielded = 0; 4079 int try = 3; 4080 int pass; 4081 4082 kvm_vcpu_set_in_spin_loop(me, true); 4083 /* 4084 * We boost the priority of a VCPU that is runnable but not 4085 * currently running, because it got preempted by something 4086 * else and called schedule in __vcpu_run. Hopefully that 4087 * VCPU is holding the lock that we need and will release it. 4088 * We approximate round-robin by starting at the last boosted VCPU. 4089 */ 4090 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4091 kvm_for_each_vcpu(i, vcpu, kvm) { 4092 if (!pass && i <= last_boosted_vcpu) { 4093 i = last_boosted_vcpu; 4094 continue; 4095 } else if (pass && i > last_boosted_vcpu) 4096 break; 4097 if (!READ_ONCE(vcpu->ready)) 4098 continue; 4099 if (vcpu == me) 4100 continue; 4101 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4102 continue; 4103 4104 /* 4105 * Treat the target vCPU as being in-kernel if it has a 4106 * pending interrupt, as the vCPU trying to yield may 4107 * be spinning waiting on IPI delivery, i.e. the target 4108 * vCPU is in-kernel for the purposes of directed yield. 4109 */ 4110 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4111 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4112 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4113 continue; 4114 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4115 continue; 4116 4117 yielded = kvm_vcpu_yield_to(vcpu); 4118 if (yielded > 0) { 4119 kvm->last_boosted_vcpu = i; 4120 break; 4121 } else if (yielded < 0) { 4122 try--; 4123 if (!try) 4124 break; 4125 } 4126 } 4127 } 4128 kvm_vcpu_set_in_spin_loop(me, false); 4129 4130 /* Ensure vcpu is not eligible during next spinloop */ 4131 kvm_vcpu_set_dy_eligible(me, false); 4132 } 4133 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4134 4135 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4136 { 4137 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4138 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4139 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4140 kvm->dirty_ring_size / PAGE_SIZE); 4141 #else 4142 return false; 4143 #endif 4144 } 4145 4146 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4147 { 4148 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4149 struct page *page; 4150 4151 if (vmf->pgoff == 0) 4152 page = virt_to_page(vcpu->run); 4153 #ifdef CONFIG_X86 4154 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4155 page = virt_to_page(vcpu->arch.pio_data); 4156 #endif 4157 #ifdef CONFIG_KVM_MMIO 4158 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4159 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4160 #endif 4161 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4162 page = kvm_dirty_ring_get_page( 4163 &vcpu->dirty_ring, 4164 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4165 else 4166 return kvm_arch_vcpu_fault(vcpu, vmf); 4167 get_page(page); 4168 vmf->page = page; 4169 return 0; 4170 } 4171 4172 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4173 .fault = kvm_vcpu_fault, 4174 }; 4175 4176 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4177 { 4178 struct kvm_vcpu *vcpu = file->private_data; 4179 unsigned long pages = vma_pages(vma); 4180 4181 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4182 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4183 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4184 return -EINVAL; 4185 4186 vma->vm_ops = &kvm_vcpu_vm_ops; 4187 return 0; 4188 } 4189 4190 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4191 { 4192 struct kvm_vcpu *vcpu = filp->private_data; 4193 4194 kvm_put_kvm(vcpu->kvm); 4195 return 0; 4196 } 4197 4198 static struct file_operations kvm_vcpu_fops = { 4199 .release = kvm_vcpu_release, 4200 .unlocked_ioctl = kvm_vcpu_ioctl, 4201 .mmap = kvm_vcpu_mmap, 4202 .llseek = noop_llseek, 4203 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4204 }; 4205 4206 /* 4207 * Allocates an inode for the vcpu. 4208 */ 4209 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4210 { 4211 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4212 4213 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4214 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4215 } 4216 4217 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4218 static int vcpu_get_pid(void *data, u64 *val) 4219 { 4220 struct kvm_vcpu *vcpu = data; 4221 4222 rcu_read_lock(); 4223 *val = pid_nr(rcu_dereference(vcpu->pid)); 4224 rcu_read_unlock(); 4225 return 0; 4226 } 4227 4228 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4229 4230 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4231 { 4232 struct dentry *debugfs_dentry; 4233 char dir_name[ITOA_MAX_LEN * 2]; 4234 4235 if (!debugfs_initialized()) 4236 return; 4237 4238 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4239 debugfs_dentry = debugfs_create_dir(dir_name, 4240 vcpu->kvm->debugfs_dentry); 4241 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4242 &vcpu_get_pid_fops); 4243 4244 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4245 } 4246 #endif 4247 4248 /* 4249 * Creates some virtual cpus. Good luck creating more than one. 4250 */ 4251 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 4252 { 4253 int r; 4254 struct kvm_vcpu *vcpu; 4255 struct page *page; 4256 4257 if (id >= KVM_MAX_VCPU_IDS) 4258 return -EINVAL; 4259 4260 mutex_lock(&kvm->lock); 4261 if (kvm->created_vcpus >= kvm->max_vcpus) { 4262 mutex_unlock(&kvm->lock); 4263 return -EINVAL; 4264 } 4265 4266 r = kvm_arch_vcpu_precreate(kvm, id); 4267 if (r) { 4268 mutex_unlock(&kvm->lock); 4269 return r; 4270 } 4271 4272 kvm->created_vcpus++; 4273 mutex_unlock(&kvm->lock); 4274 4275 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4276 if (!vcpu) { 4277 r = -ENOMEM; 4278 goto vcpu_decrement; 4279 } 4280 4281 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4282 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4283 if (!page) { 4284 r = -ENOMEM; 4285 goto vcpu_free; 4286 } 4287 vcpu->run = page_address(page); 4288 4289 kvm_vcpu_init(vcpu, kvm, id); 4290 4291 r = kvm_arch_vcpu_create(vcpu); 4292 if (r) 4293 goto vcpu_free_run_page; 4294 4295 if (kvm->dirty_ring_size) { 4296 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4297 id, kvm->dirty_ring_size); 4298 if (r) 4299 goto arch_vcpu_destroy; 4300 } 4301 4302 mutex_lock(&kvm->lock); 4303 4304 #ifdef CONFIG_LOCKDEP 4305 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4306 mutex_lock(&vcpu->mutex); 4307 mutex_unlock(&vcpu->mutex); 4308 #endif 4309 4310 if (kvm_get_vcpu_by_id(kvm, id)) { 4311 r = -EEXIST; 4312 goto unlock_vcpu_destroy; 4313 } 4314 4315 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4316 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4317 if (r) 4318 goto unlock_vcpu_destroy; 4319 4320 /* Now it's all set up, let userspace reach it */ 4321 kvm_get_kvm(kvm); 4322 r = create_vcpu_fd(vcpu); 4323 if (r < 0) 4324 goto kvm_put_xa_release; 4325 4326 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4327 r = -EINVAL; 4328 goto kvm_put_xa_release; 4329 } 4330 4331 /* 4332 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4333 * pointer before kvm->online_vcpu's incremented value. 4334 */ 4335 smp_wmb(); 4336 atomic_inc(&kvm->online_vcpus); 4337 4338 mutex_unlock(&kvm->lock); 4339 kvm_arch_vcpu_postcreate(vcpu); 4340 kvm_create_vcpu_debugfs(vcpu); 4341 return r; 4342 4343 kvm_put_xa_release: 4344 kvm_put_kvm_no_destroy(kvm); 4345 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4346 unlock_vcpu_destroy: 4347 mutex_unlock(&kvm->lock); 4348 kvm_dirty_ring_free(&vcpu->dirty_ring); 4349 arch_vcpu_destroy: 4350 kvm_arch_vcpu_destroy(vcpu); 4351 vcpu_free_run_page: 4352 free_page((unsigned long)vcpu->run); 4353 vcpu_free: 4354 kmem_cache_free(kvm_vcpu_cache, vcpu); 4355 vcpu_decrement: 4356 mutex_lock(&kvm->lock); 4357 kvm->created_vcpus--; 4358 mutex_unlock(&kvm->lock); 4359 return r; 4360 } 4361 4362 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4363 { 4364 if (sigset) { 4365 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4366 vcpu->sigset_active = 1; 4367 vcpu->sigset = *sigset; 4368 } else 4369 vcpu->sigset_active = 0; 4370 return 0; 4371 } 4372 4373 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4374 size_t size, loff_t *offset) 4375 { 4376 struct kvm_vcpu *vcpu = file->private_data; 4377 4378 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4379 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4380 sizeof(vcpu->stat), user_buffer, size, offset); 4381 } 4382 4383 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4384 { 4385 struct kvm_vcpu *vcpu = file->private_data; 4386 4387 kvm_put_kvm(vcpu->kvm); 4388 return 0; 4389 } 4390 4391 static const struct file_operations kvm_vcpu_stats_fops = { 4392 .owner = THIS_MODULE, 4393 .read = kvm_vcpu_stats_read, 4394 .release = kvm_vcpu_stats_release, 4395 .llseek = noop_llseek, 4396 }; 4397 4398 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4399 { 4400 int fd; 4401 struct file *file; 4402 char name[15 + ITOA_MAX_LEN + 1]; 4403 4404 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4405 4406 fd = get_unused_fd_flags(O_CLOEXEC); 4407 if (fd < 0) 4408 return fd; 4409 4410 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4411 if (IS_ERR(file)) { 4412 put_unused_fd(fd); 4413 return PTR_ERR(file); 4414 } 4415 4416 kvm_get_kvm(vcpu->kvm); 4417 4418 file->f_mode |= FMODE_PREAD; 4419 fd_install(fd, file); 4420 4421 return fd; 4422 } 4423 4424 static long kvm_vcpu_ioctl(struct file *filp, 4425 unsigned int ioctl, unsigned long arg) 4426 { 4427 struct kvm_vcpu *vcpu = filp->private_data; 4428 void __user *argp = (void __user *)arg; 4429 int r; 4430 struct kvm_fpu *fpu = NULL; 4431 struct kvm_sregs *kvm_sregs = NULL; 4432 4433 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4434 return -EIO; 4435 4436 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4437 return -EINVAL; 4438 4439 /* 4440 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4441 * execution; mutex_lock() would break them. 4442 */ 4443 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4444 if (r != -ENOIOCTLCMD) 4445 return r; 4446 4447 if (mutex_lock_killable(&vcpu->mutex)) 4448 return -EINTR; 4449 switch (ioctl) { 4450 case KVM_RUN: { 4451 struct pid *oldpid; 4452 r = -EINVAL; 4453 if (arg) 4454 goto out; 4455 oldpid = rcu_access_pointer(vcpu->pid); 4456 if (unlikely(oldpid != task_pid(current))) { 4457 /* The thread running this VCPU changed. */ 4458 struct pid *newpid; 4459 4460 r = kvm_arch_vcpu_run_pid_change(vcpu); 4461 if (r) 4462 break; 4463 4464 newpid = get_task_pid(current, PIDTYPE_PID); 4465 rcu_assign_pointer(vcpu->pid, newpid); 4466 if (oldpid) 4467 synchronize_rcu(); 4468 put_pid(oldpid); 4469 } 4470 r = kvm_arch_vcpu_ioctl_run(vcpu); 4471 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4472 break; 4473 } 4474 case KVM_GET_REGS: { 4475 struct kvm_regs *kvm_regs; 4476 4477 r = -ENOMEM; 4478 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4479 if (!kvm_regs) 4480 goto out; 4481 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4482 if (r) 4483 goto out_free1; 4484 r = -EFAULT; 4485 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4486 goto out_free1; 4487 r = 0; 4488 out_free1: 4489 kfree(kvm_regs); 4490 break; 4491 } 4492 case KVM_SET_REGS: { 4493 struct kvm_regs *kvm_regs; 4494 4495 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4496 if (IS_ERR(kvm_regs)) { 4497 r = PTR_ERR(kvm_regs); 4498 goto out; 4499 } 4500 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4501 kfree(kvm_regs); 4502 break; 4503 } 4504 case KVM_GET_SREGS: { 4505 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4506 GFP_KERNEL_ACCOUNT); 4507 r = -ENOMEM; 4508 if (!kvm_sregs) 4509 goto out; 4510 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4511 if (r) 4512 goto out; 4513 r = -EFAULT; 4514 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4515 goto out; 4516 r = 0; 4517 break; 4518 } 4519 case KVM_SET_SREGS: { 4520 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4521 if (IS_ERR(kvm_sregs)) { 4522 r = PTR_ERR(kvm_sregs); 4523 kvm_sregs = NULL; 4524 goto out; 4525 } 4526 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4527 break; 4528 } 4529 case KVM_GET_MP_STATE: { 4530 struct kvm_mp_state mp_state; 4531 4532 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4533 if (r) 4534 goto out; 4535 r = -EFAULT; 4536 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4537 goto out; 4538 r = 0; 4539 break; 4540 } 4541 case KVM_SET_MP_STATE: { 4542 struct kvm_mp_state mp_state; 4543 4544 r = -EFAULT; 4545 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4546 goto out; 4547 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4548 break; 4549 } 4550 case KVM_TRANSLATE: { 4551 struct kvm_translation tr; 4552 4553 r = -EFAULT; 4554 if (copy_from_user(&tr, argp, sizeof(tr))) 4555 goto out; 4556 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4557 if (r) 4558 goto out; 4559 r = -EFAULT; 4560 if (copy_to_user(argp, &tr, sizeof(tr))) 4561 goto out; 4562 r = 0; 4563 break; 4564 } 4565 case KVM_SET_GUEST_DEBUG: { 4566 struct kvm_guest_debug dbg; 4567 4568 r = -EFAULT; 4569 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4570 goto out; 4571 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4572 break; 4573 } 4574 case KVM_SET_SIGNAL_MASK: { 4575 struct kvm_signal_mask __user *sigmask_arg = argp; 4576 struct kvm_signal_mask kvm_sigmask; 4577 sigset_t sigset, *p; 4578 4579 p = NULL; 4580 if (argp) { 4581 r = -EFAULT; 4582 if (copy_from_user(&kvm_sigmask, argp, 4583 sizeof(kvm_sigmask))) 4584 goto out; 4585 r = -EINVAL; 4586 if (kvm_sigmask.len != sizeof(sigset)) 4587 goto out; 4588 r = -EFAULT; 4589 if (copy_from_user(&sigset, sigmask_arg->sigset, 4590 sizeof(sigset))) 4591 goto out; 4592 p = &sigset; 4593 } 4594 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4595 break; 4596 } 4597 case KVM_GET_FPU: { 4598 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4599 r = -ENOMEM; 4600 if (!fpu) 4601 goto out; 4602 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4603 if (r) 4604 goto out; 4605 r = -EFAULT; 4606 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4607 goto out; 4608 r = 0; 4609 break; 4610 } 4611 case KVM_SET_FPU: { 4612 fpu = memdup_user(argp, sizeof(*fpu)); 4613 if (IS_ERR(fpu)) { 4614 r = PTR_ERR(fpu); 4615 fpu = NULL; 4616 goto out; 4617 } 4618 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4619 break; 4620 } 4621 case KVM_GET_STATS_FD: { 4622 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4623 break; 4624 } 4625 default: 4626 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4627 } 4628 out: 4629 mutex_unlock(&vcpu->mutex); 4630 kfree(fpu); 4631 kfree(kvm_sregs); 4632 return r; 4633 } 4634 4635 #ifdef CONFIG_KVM_COMPAT 4636 static long kvm_vcpu_compat_ioctl(struct file *filp, 4637 unsigned int ioctl, unsigned long arg) 4638 { 4639 struct kvm_vcpu *vcpu = filp->private_data; 4640 void __user *argp = compat_ptr(arg); 4641 int r; 4642 4643 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4644 return -EIO; 4645 4646 switch (ioctl) { 4647 case KVM_SET_SIGNAL_MASK: { 4648 struct kvm_signal_mask __user *sigmask_arg = argp; 4649 struct kvm_signal_mask kvm_sigmask; 4650 sigset_t sigset; 4651 4652 if (argp) { 4653 r = -EFAULT; 4654 if (copy_from_user(&kvm_sigmask, argp, 4655 sizeof(kvm_sigmask))) 4656 goto out; 4657 r = -EINVAL; 4658 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4659 goto out; 4660 r = -EFAULT; 4661 if (get_compat_sigset(&sigset, 4662 (compat_sigset_t __user *)sigmask_arg->sigset)) 4663 goto out; 4664 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4665 } else 4666 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4667 break; 4668 } 4669 default: 4670 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4671 } 4672 4673 out: 4674 return r; 4675 } 4676 #endif 4677 4678 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4679 { 4680 struct kvm_device *dev = filp->private_data; 4681 4682 if (dev->ops->mmap) 4683 return dev->ops->mmap(dev, vma); 4684 4685 return -ENODEV; 4686 } 4687 4688 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4689 int (*accessor)(struct kvm_device *dev, 4690 struct kvm_device_attr *attr), 4691 unsigned long arg) 4692 { 4693 struct kvm_device_attr attr; 4694 4695 if (!accessor) 4696 return -EPERM; 4697 4698 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4699 return -EFAULT; 4700 4701 return accessor(dev, &attr); 4702 } 4703 4704 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4705 unsigned long arg) 4706 { 4707 struct kvm_device *dev = filp->private_data; 4708 4709 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4710 return -EIO; 4711 4712 switch (ioctl) { 4713 case KVM_SET_DEVICE_ATTR: 4714 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4715 case KVM_GET_DEVICE_ATTR: 4716 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4717 case KVM_HAS_DEVICE_ATTR: 4718 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4719 default: 4720 if (dev->ops->ioctl) 4721 return dev->ops->ioctl(dev, ioctl, arg); 4722 4723 return -ENOTTY; 4724 } 4725 } 4726 4727 static int kvm_device_release(struct inode *inode, struct file *filp) 4728 { 4729 struct kvm_device *dev = filp->private_data; 4730 struct kvm *kvm = dev->kvm; 4731 4732 if (dev->ops->release) { 4733 mutex_lock(&kvm->lock); 4734 list_del_rcu(&dev->vm_node); 4735 synchronize_rcu(); 4736 dev->ops->release(dev); 4737 mutex_unlock(&kvm->lock); 4738 } 4739 4740 kvm_put_kvm(kvm); 4741 return 0; 4742 } 4743 4744 static struct file_operations kvm_device_fops = { 4745 .unlocked_ioctl = kvm_device_ioctl, 4746 .release = kvm_device_release, 4747 KVM_COMPAT(kvm_device_ioctl), 4748 .mmap = kvm_device_mmap, 4749 }; 4750 4751 struct kvm_device *kvm_device_from_filp(struct file *filp) 4752 { 4753 if (filp->f_op != &kvm_device_fops) 4754 return NULL; 4755 4756 return filp->private_data; 4757 } 4758 4759 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4760 #ifdef CONFIG_KVM_MPIC 4761 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4762 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4763 #endif 4764 }; 4765 4766 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4767 { 4768 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4769 return -ENOSPC; 4770 4771 if (kvm_device_ops_table[type] != NULL) 4772 return -EEXIST; 4773 4774 kvm_device_ops_table[type] = ops; 4775 return 0; 4776 } 4777 4778 void kvm_unregister_device_ops(u32 type) 4779 { 4780 if (kvm_device_ops_table[type] != NULL) 4781 kvm_device_ops_table[type] = NULL; 4782 } 4783 4784 static int kvm_ioctl_create_device(struct kvm *kvm, 4785 struct kvm_create_device *cd) 4786 { 4787 const struct kvm_device_ops *ops; 4788 struct kvm_device *dev; 4789 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4790 int type; 4791 int ret; 4792 4793 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4794 return -ENODEV; 4795 4796 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4797 ops = kvm_device_ops_table[type]; 4798 if (ops == NULL) 4799 return -ENODEV; 4800 4801 if (test) 4802 return 0; 4803 4804 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4805 if (!dev) 4806 return -ENOMEM; 4807 4808 dev->ops = ops; 4809 dev->kvm = kvm; 4810 4811 mutex_lock(&kvm->lock); 4812 ret = ops->create(dev, type); 4813 if (ret < 0) { 4814 mutex_unlock(&kvm->lock); 4815 kfree(dev); 4816 return ret; 4817 } 4818 list_add_rcu(&dev->vm_node, &kvm->devices); 4819 mutex_unlock(&kvm->lock); 4820 4821 if (ops->init) 4822 ops->init(dev); 4823 4824 kvm_get_kvm(kvm); 4825 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4826 if (ret < 0) { 4827 kvm_put_kvm_no_destroy(kvm); 4828 mutex_lock(&kvm->lock); 4829 list_del_rcu(&dev->vm_node); 4830 synchronize_rcu(); 4831 if (ops->release) 4832 ops->release(dev); 4833 mutex_unlock(&kvm->lock); 4834 if (ops->destroy) 4835 ops->destroy(dev); 4836 return ret; 4837 } 4838 4839 cd->fd = ret; 4840 return 0; 4841 } 4842 4843 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4844 { 4845 switch (arg) { 4846 case KVM_CAP_USER_MEMORY: 4847 case KVM_CAP_USER_MEMORY2: 4848 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4849 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4850 case KVM_CAP_INTERNAL_ERROR_DATA: 4851 #ifdef CONFIG_HAVE_KVM_MSI 4852 case KVM_CAP_SIGNAL_MSI: 4853 #endif 4854 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4855 case KVM_CAP_IRQFD: 4856 #endif 4857 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4858 case KVM_CAP_CHECK_EXTENSION_VM: 4859 case KVM_CAP_ENABLE_CAP_VM: 4860 case KVM_CAP_HALT_POLL: 4861 return 1; 4862 #ifdef CONFIG_KVM_MMIO 4863 case KVM_CAP_COALESCED_MMIO: 4864 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4865 case KVM_CAP_COALESCED_PIO: 4866 return 1; 4867 #endif 4868 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4869 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4870 return KVM_DIRTY_LOG_MANUAL_CAPS; 4871 #endif 4872 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4873 case KVM_CAP_IRQ_ROUTING: 4874 return KVM_MAX_IRQ_ROUTES; 4875 #endif 4876 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4877 case KVM_CAP_MULTI_ADDRESS_SPACE: 4878 if (kvm) 4879 return kvm_arch_nr_memslot_as_ids(kvm); 4880 return KVM_MAX_NR_ADDRESS_SPACES; 4881 #endif 4882 case KVM_CAP_NR_MEMSLOTS: 4883 return KVM_USER_MEM_SLOTS; 4884 case KVM_CAP_DIRTY_LOG_RING: 4885 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4886 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4887 #else 4888 return 0; 4889 #endif 4890 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4891 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4892 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4893 #else 4894 return 0; 4895 #endif 4896 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4897 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4898 #endif 4899 case KVM_CAP_BINARY_STATS_FD: 4900 case KVM_CAP_SYSTEM_EVENT_DATA: 4901 case KVM_CAP_DEVICE_CTRL: 4902 return 1; 4903 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4904 case KVM_CAP_MEMORY_ATTRIBUTES: 4905 return kvm_supported_mem_attributes(kvm); 4906 #endif 4907 #ifdef CONFIG_KVM_PRIVATE_MEM 4908 case KVM_CAP_GUEST_MEMFD: 4909 return !kvm || kvm_arch_has_private_mem(kvm); 4910 #endif 4911 default: 4912 break; 4913 } 4914 return kvm_vm_ioctl_check_extension(kvm, arg); 4915 } 4916 4917 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4918 { 4919 int r; 4920 4921 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4922 return -EINVAL; 4923 4924 /* the size should be power of 2 */ 4925 if (!size || (size & (size - 1))) 4926 return -EINVAL; 4927 4928 /* Should be bigger to keep the reserved entries, or a page */ 4929 if (size < kvm_dirty_ring_get_rsvd_entries() * 4930 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4931 return -EINVAL; 4932 4933 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4934 sizeof(struct kvm_dirty_gfn)) 4935 return -E2BIG; 4936 4937 /* We only allow it to set once */ 4938 if (kvm->dirty_ring_size) 4939 return -EINVAL; 4940 4941 mutex_lock(&kvm->lock); 4942 4943 if (kvm->created_vcpus) { 4944 /* We don't allow to change this value after vcpu created */ 4945 r = -EINVAL; 4946 } else { 4947 kvm->dirty_ring_size = size; 4948 r = 0; 4949 } 4950 4951 mutex_unlock(&kvm->lock); 4952 return r; 4953 } 4954 4955 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4956 { 4957 unsigned long i; 4958 struct kvm_vcpu *vcpu; 4959 int cleared = 0; 4960 4961 if (!kvm->dirty_ring_size) 4962 return -EINVAL; 4963 4964 mutex_lock(&kvm->slots_lock); 4965 4966 kvm_for_each_vcpu(i, vcpu, kvm) 4967 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4968 4969 mutex_unlock(&kvm->slots_lock); 4970 4971 if (cleared) 4972 kvm_flush_remote_tlbs(kvm); 4973 4974 return cleared; 4975 } 4976 4977 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4978 struct kvm_enable_cap *cap) 4979 { 4980 return -EINVAL; 4981 } 4982 4983 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4984 { 4985 int i; 4986 4987 lockdep_assert_held(&kvm->slots_lock); 4988 4989 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4990 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4991 return false; 4992 } 4993 4994 return true; 4995 } 4996 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4997 4998 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4999 struct kvm_enable_cap *cap) 5000 { 5001 switch (cap->cap) { 5002 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5003 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5004 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5005 5006 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5007 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5008 5009 if (cap->flags || (cap->args[0] & ~allowed_options)) 5010 return -EINVAL; 5011 kvm->manual_dirty_log_protect = cap->args[0]; 5012 return 0; 5013 } 5014 #endif 5015 case KVM_CAP_HALT_POLL: { 5016 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5017 return -EINVAL; 5018 5019 kvm->max_halt_poll_ns = cap->args[0]; 5020 5021 /* 5022 * Ensure kvm->override_halt_poll_ns does not become visible 5023 * before kvm->max_halt_poll_ns. 5024 * 5025 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5026 */ 5027 smp_wmb(); 5028 kvm->override_halt_poll_ns = true; 5029 5030 return 0; 5031 } 5032 case KVM_CAP_DIRTY_LOG_RING: 5033 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5034 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5035 return -EINVAL; 5036 5037 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5038 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5039 int r = -EINVAL; 5040 5041 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5042 !kvm->dirty_ring_size || cap->flags) 5043 return r; 5044 5045 mutex_lock(&kvm->slots_lock); 5046 5047 /* 5048 * For simplicity, allow enabling ring+bitmap if and only if 5049 * there are no memslots, e.g. to ensure all memslots allocate 5050 * a bitmap after the capability is enabled. 5051 */ 5052 if (kvm_are_all_memslots_empty(kvm)) { 5053 kvm->dirty_ring_with_bitmap = true; 5054 r = 0; 5055 } 5056 5057 mutex_unlock(&kvm->slots_lock); 5058 5059 return r; 5060 } 5061 default: 5062 return kvm_vm_ioctl_enable_cap(kvm, cap); 5063 } 5064 } 5065 5066 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5067 size_t size, loff_t *offset) 5068 { 5069 struct kvm *kvm = file->private_data; 5070 5071 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5072 &kvm_vm_stats_desc[0], &kvm->stat, 5073 sizeof(kvm->stat), user_buffer, size, offset); 5074 } 5075 5076 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5077 { 5078 struct kvm *kvm = file->private_data; 5079 5080 kvm_put_kvm(kvm); 5081 return 0; 5082 } 5083 5084 static const struct file_operations kvm_vm_stats_fops = { 5085 .owner = THIS_MODULE, 5086 .read = kvm_vm_stats_read, 5087 .release = kvm_vm_stats_release, 5088 .llseek = noop_llseek, 5089 }; 5090 5091 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5092 { 5093 int fd; 5094 struct file *file; 5095 5096 fd = get_unused_fd_flags(O_CLOEXEC); 5097 if (fd < 0) 5098 return fd; 5099 5100 file = anon_inode_getfile("kvm-vm-stats", 5101 &kvm_vm_stats_fops, kvm, O_RDONLY); 5102 if (IS_ERR(file)) { 5103 put_unused_fd(fd); 5104 return PTR_ERR(file); 5105 } 5106 5107 kvm_get_kvm(kvm); 5108 5109 file->f_mode |= FMODE_PREAD; 5110 fd_install(fd, file); 5111 5112 return fd; 5113 } 5114 5115 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5116 do { \ 5117 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5118 offsetof(struct kvm_userspace_memory_region2, field)); \ 5119 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5120 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5121 } while (0) 5122 5123 static long kvm_vm_ioctl(struct file *filp, 5124 unsigned int ioctl, unsigned long arg) 5125 { 5126 struct kvm *kvm = filp->private_data; 5127 void __user *argp = (void __user *)arg; 5128 int r; 5129 5130 if (kvm->mm != current->mm || kvm->vm_dead) 5131 return -EIO; 5132 switch (ioctl) { 5133 case KVM_CREATE_VCPU: 5134 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5135 break; 5136 case KVM_ENABLE_CAP: { 5137 struct kvm_enable_cap cap; 5138 5139 r = -EFAULT; 5140 if (copy_from_user(&cap, argp, sizeof(cap))) 5141 goto out; 5142 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5143 break; 5144 } 5145 case KVM_SET_USER_MEMORY_REGION2: 5146 case KVM_SET_USER_MEMORY_REGION: { 5147 struct kvm_userspace_memory_region2 mem; 5148 unsigned long size; 5149 5150 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5151 /* 5152 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5153 * accessed, but avoid leaking kernel memory in case of a bug. 5154 */ 5155 memset(&mem, 0, sizeof(mem)); 5156 size = sizeof(struct kvm_userspace_memory_region); 5157 } else { 5158 size = sizeof(struct kvm_userspace_memory_region2); 5159 } 5160 5161 /* Ensure the common parts of the two structs are identical. */ 5162 SANITY_CHECK_MEM_REGION_FIELD(slot); 5163 SANITY_CHECK_MEM_REGION_FIELD(flags); 5164 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5165 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5166 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5167 5168 r = -EFAULT; 5169 if (copy_from_user(&mem, argp, size)) 5170 goto out; 5171 5172 r = -EINVAL; 5173 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5174 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5175 goto out; 5176 5177 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5178 break; 5179 } 5180 case KVM_GET_DIRTY_LOG: { 5181 struct kvm_dirty_log log; 5182 5183 r = -EFAULT; 5184 if (copy_from_user(&log, argp, sizeof(log))) 5185 goto out; 5186 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5187 break; 5188 } 5189 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5190 case KVM_CLEAR_DIRTY_LOG: { 5191 struct kvm_clear_dirty_log log; 5192 5193 r = -EFAULT; 5194 if (copy_from_user(&log, argp, sizeof(log))) 5195 goto out; 5196 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5197 break; 5198 } 5199 #endif 5200 #ifdef CONFIG_KVM_MMIO 5201 case KVM_REGISTER_COALESCED_MMIO: { 5202 struct kvm_coalesced_mmio_zone zone; 5203 5204 r = -EFAULT; 5205 if (copy_from_user(&zone, argp, sizeof(zone))) 5206 goto out; 5207 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5208 break; 5209 } 5210 case KVM_UNREGISTER_COALESCED_MMIO: { 5211 struct kvm_coalesced_mmio_zone zone; 5212 5213 r = -EFAULT; 5214 if (copy_from_user(&zone, argp, sizeof(zone))) 5215 goto out; 5216 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5217 break; 5218 } 5219 #endif 5220 case KVM_IRQFD: { 5221 struct kvm_irqfd data; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&data, argp, sizeof(data))) 5225 goto out; 5226 r = kvm_irqfd(kvm, &data); 5227 break; 5228 } 5229 case KVM_IOEVENTFD: { 5230 struct kvm_ioeventfd data; 5231 5232 r = -EFAULT; 5233 if (copy_from_user(&data, argp, sizeof(data))) 5234 goto out; 5235 r = kvm_ioeventfd(kvm, &data); 5236 break; 5237 } 5238 #ifdef CONFIG_HAVE_KVM_MSI 5239 case KVM_SIGNAL_MSI: { 5240 struct kvm_msi msi; 5241 5242 r = -EFAULT; 5243 if (copy_from_user(&msi, argp, sizeof(msi))) 5244 goto out; 5245 r = kvm_send_userspace_msi(kvm, &msi); 5246 break; 5247 } 5248 #endif 5249 #ifdef __KVM_HAVE_IRQ_LINE 5250 case KVM_IRQ_LINE_STATUS: 5251 case KVM_IRQ_LINE: { 5252 struct kvm_irq_level irq_event; 5253 5254 r = -EFAULT; 5255 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5256 goto out; 5257 5258 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5259 ioctl == KVM_IRQ_LINE_STATUS); 5260 if (r) 5261 goto out; 5262 5263 r = -EFAULT; 5264 if (ioctl == KVM_IRQ_LINE_STATUS) { 5265 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5266 goto out; 5267 } 5268 5269 r = 0; 5270 break; 5271 } 5272 #endif 5273 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5274 case KVM_SET_GSI_ROUTING: { 5275 struct kvm_irq_routing routing; 5276 struct kvm_irq_routing __user *urouting; 5277 struct kvm_irq_routing_entry *entries = NULL; 5278 5279 r = -EFAULT; 5280 if (copy_from_user(&routing, argp, sizeof(routing))) 5281 goto out; 5282 r = -EINVAL; 5283 if (!kvm_arch_can_set_irq_routing(kvm)) 5284 goto out; 5285 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5286 goto out; 5287 if (routing.flags) 5288 goto out; 5289 if (routing.nr) { 5290 urouting = argp; 5291 entries = vmemdup_array_user(urouting->entries, 5292 routing.nr, sizeof(*entries)); 5293 if (IS_ERR(entries)) { 5294 r = PTR_ERR(entries); 5295 goto out; 5296 } 5297 } 5298 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5299 routing.flags); 5300 kvfree(entries); 5301 break; 5302 } 5303 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5304 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5305 case KVM_SET_MEMORY_ATTRIBUTES: { 5306 struct kvm_memory_attributes attrs; 5307 5308 r = -EFAULT; 5309 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5310 goto out; 5311 5312 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5313 break; 5314 } 5315 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5316 case KVM_CREATE_DEVICE: { 5317 struct kvm_create_device cd; 5318 5319 r = -EFAULT; 5320 if (copy_from_user(&cd, argp, sizeof(cd))) 5321 goto out; 5322 5323 r = kvm_ioctl_create_device(kvm, &cd); 5324 if (r) 5325 goto out; 5326 5327 r = -EFAULT; 5328 if (copy_to_user(argp, &cd, sizeof(cd))) 5329 goto out; 5330 5331 r = 0; 5332 break; 5333 } 5334 case KVM_CHECK_EXTENSION: 5335 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5336 break; 5337 case KVM_RESET_DIRTY_RINGS: 5338 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5339 break; 5340 case KVM_GET_STATS_FD: 5341 r = kvm_vm_ioctl_get_stats_fd(kvm); 5342 break; 5343 #ifdef CONFIG_KVM_PRIVATE_MEM 5344 case KVM_CREATE_GUEST_MEMFD: { 5345 struct kvm_create_guest_memfd guest_memfd; 5346 5347 r = -EFAULT; 5348 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5349 goto out; 5350 5351 r = kvm_gmem_create(kvm, &guest_memfd); 5352 break; 5353 } 5354 #endif 5355 default: 5356 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5357 } 5358 out: 5359 return r; 5360 } 5361 5362 #ifdef CONFIG_KVM_COMPAT 5363 struct compat_kvm_dirty_log { 5364 __u32 slot; 5365 __u32 padding1; 5366 union { 5367 compat_uptr_t dirty_bitmap; /* one bit per page */ 5368 __u64 padding2; 5369 }; 5370 }; 5371 5372 struct compat_kvm_clear_dirty_log { 5373 __u32 slot; 5374 __u32 num_pages; 5375 __u64 first_page; 5376 union { 5377 compat_uptr_t dirty_bitmap; /* one bit per page */ 5378 __u64 padding2; 5379 }; 5380 }; 5381 5382 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5383 unsigned long arg) 5384 { 5385 return -ENOTTY; 5386 } 5387 5388 static long kvm_vm_compat_ioctl(struct file *filp, 5389 unsigned int ioctl, unsigned long arg) 5390 { 5391 struct kvm *kvm = filp->private_data; 5392 int r; 5393 5394 if (kvm->mm != current->mm || kvm->vm_dead) 5395 return -EIO; 5396 5397 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5398 if (r != -ENOTTY) 5399 return r; 5400 5401 switch (ioctl) { 5402 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5403 case KVM_CLEAR_DIRTY_LOG: { 5404 struct compat_kvm_clear_dirty_log compat_log; 5405 struct kvm_clear_dirty_log log; 5406 5407 if (copy_from_user(&compat_log, (void __user *)arg, 5408 sizeof(compat_log))) 5409 return -EFAULT; 5410 log.slot = compat_log.slot; 5411 log.num_pages = compat_log.num_pages; 5412 log.first_page = compat_log.first_page; 5413 log.padding2 = compat_log.padding2; 5414 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5415 5416 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5417 break; 5418 } 5419 #endif 5420 case KVM_GET_DIRTY_LOG: { 5421 struct compat_kvm_dirty_log compat_log; 5422 struct kvm_dirty_log log; 5423 5424 if (copy_from_user(&compat_log, (void __user *)arg, 5425 sizeof(compat_log))) 5426 return -EFAULT; 5427 log.slot = compat_log.slot; 5428 log.padding1 = compat_log.padding1; 5429 log.padding2 = compat_log.padding2; 5430 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5431 5432 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5433 break; 5434 } 5435 default: 5436 r = kvm_vm_ioctl(filp, ioctl, arg); 5437 } 5438 return r; 5439 } 5440 #endif 5441 5442 static struct file_operations kvm_vm_fops = { 5443 .release = kvm_vm_release, 5444 .unlocked_ioctl = kvm_vm_ioctl, 5445 .llseek = noop_llseek, 5446 KVM_COMPAT(kvm_vm_compat_ioctl), 5447 }; 5448 5449 bool file_is_kvm(struct file *file) 5450 { 5451 return file && file->f_op == &kvm_vm_fops; 5452 } 5453 EXPORT_SYMBOL_GPL(file_is_kvm); 5454 5455 static int kvm_dev_ioctl_create_vm(unsigned long type) 5456 { 5457 char fdname[ITOA_MAX_LEN + 1]; 5458 int r, fd; 5459 struct kvm *kvm; 5460 struct file *file; 5461 5462 fd = get_unused_fd_flags(O_CLOEXEC); 5463 if (fd < 0) 5464 return fd; 5465 5466 snprintf(fdname, sizeof(fdname), "%d", fd); 5467 5468 kvm = kvm_create_vm(type, fdname); 5469 if (IS_ERR(kvm)) { 5470 r = PTR_ERR(kvm); 5471 goto put_fd; 5472 } 5473 5474 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5475 if (IS_ERR(file)) { 5476 r = PTR_ERR(file); 5477 goto put_kvm; 5478 } 5479 5480 /* 5481 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5482 * already set, with ->release() being kvm_vm_release(). In error 5483 * cases it will be called by the final fput(file) and will take 5484 * care of doing kvm_put_kvm(kvm). 5485 */ 5486 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5487 5488 fd_install(fd, file); 5489 return fd; 5490 5491 put_kvm: 5492 kvm_put_kvm(kvm); 5493 put_fd: 5494 put_unused_fd(fd); 5495 return r; 5496 } 5497 5498 static long kvm_dev_ioctl(struct file *filp, 5499 unsigned int ioctl, unsigned long arg) 5500 { 5501 int r = -EINVAL; 5502 5503 switch (ioctl) { 5504 case KVM_GET_API_VERSION: 5505 if (arg) 5506 goto out; 5507 r = KVM_API_VERSION; 5508 break; 5509 case KVM_CREATE_VM: 5510 r = kvm_dev_ioctl_create_vm(arg); 5511 break; 5512 case KVM_CHECK_EXTENSION: 5513 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5514 break; 5515 case KVM_GET_VCPU_MMAP_SIZE: 5516 if (arg) 5517 goto out; 5518 r = PAGE_SIZE; /* struct kvm_run */ 5519 #ifdef CONFIG_X86 5520 r += PAGE_SIZE; /* pio data page */ 5521 #endif 5522 #ifdef CONFIG_KVM_MMIO 5523 r += PAGE_SIZE; /* coalesced mmio ring page */ 5524 #endif 5525 break; 5526 default: 5527 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5528 } 5529 out: 5530 return r; 5531 } 5532 5533 static struct file_operations kvm_chardev_ops = { 5534 .unlocked_ioctl = kvm_dev_ioctl, 5535 .llseek = noop_llseek, 5536 KVM_COMPAT(kvm_dev_ioctl), 5537 }; 5538 5539 static struct miscdevice kvm_dev = { 5540 KVM_MINOR, 5541 "kvm", 5542 &kvm_chardev_ops, 5543 }; 5544 5545 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5546 __visible bool kvm_rebooting; 5547 EXPORT_SYMBOL_GPL(kvm_rebooting); 5548 5549 static DEFINE_PER_CPU(bool, hardware_enabled); 5550 static int kvm_usage_count; 5551 5552 static int __hardware_enable_nolock(void) 5553 { 5554 if (__this_cpu_read(hardware_enabled)) 5555 return 0; 5556 5557 if (kvm_arch_hardware_enable()) { 5558 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5559 raw_smp_processor_id()); 5560 return -EIO; 5561 } 5562 5563 __this_cpu_write(hardware_enabled, true); 5564 return 0; 5565 } 5566 5567 static void hardware_enable_nolock(void *failed) 5568 { 5569 if (__hardware_enable_nolock()) 5570 atomic_inc(failed); 5571 } 5572 5573 static int kvm_online_cpu(unsigned int cpu) 5574 { 5575 int ret = 0; 5576 5577 /* 5578 * Abort the CPU online process if hardware virtualization cannot 5579 * be enabled. Otherwise running VMs would encounter unrecoverable 5580 * errors when scheduled to this CPU. 5581 */ 5582 mutex_lock(&kvm_lock); 5583 if (kvm_usage_count) 5584 ret = __hardware_enable_nolock(); 5585 mutex_unlock(&kvm_lock); 5586 return ret; 5587 } 5588 5589 static void hardware_disable_nolock(void *junk) 5590 { 5591 /* 5592 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5593 * hardware, not just CPUs that successfully enabled hardware! 5594 */ 5595 if (!__this_cpu_read(hardware_enabled)) 5596 return; 5597 5598 kvm_arch_hardware_disable(); 5599 5600 __this_cpu_write(hardware_enabled, false); 5601 } 5602 5603 static int kvm_offline_cpu(unsigned int cpu) 5604 { 5605 mutex_lock(&kvm_lock); 5606 if (kvm_usage_count) 5607 hardware_disable_nolock(NULL); 5608 mutex_unlock(&kvm_lock); 5609 return 0; 5610 } 5611 5612 static void hardware_disable_all_nolock(void) 5613 { 5614 BUG_ON(!kvm_usage_count); 5615 5616 kvm_usage_count--; 5617 if (!kvm_usage_count) 5618 on_each_cpu(hardware_disable_nolock, NULL, 1); 5619 } 5620 5621 static void hardware_disable_all(void) 5622 { 5623 cpus_read_lock(); 5624 mutex_lock(&kvm_lock); 5625 hardware_disable_all_nolock(); 5626 mutex_unlock(&kvm_lock); 5627 cpus_read_unlock(); 5628 } 5629 5630 static int hardware_enable_all(void) 5631 { 5632 atomic_t failed = ATOMIC_INIT(0); 5633 int r; 5634 5635 /* 5636 * Do not enable hardware virtualization if the system is going down. 5637 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5638 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5639 * after kvm_reboot() is called. Note, this relies on system_state 5640 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5641 * hook instead of registering a dedicated reboot notifier (the latter 5642 * runs before system_state is updated). 5643 */ 5644 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5645 system_state == SYSTEM_RESTART) 5646 return -EBUSY; 5647 5648 /* 5649 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5650 * is called, and so on_each_cpu() between them includes the CPU that 5651 * is being onlined. As a result, hardware_enable_nolock() may get 5652 * invoked before kvm_online_cpu(), which also enables hardware if the 5653 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5654 * enable hardware multiple times. 5655 */ 5656 cpus_read_lock(); 5657 mutex_lock(&kvm_lock); 5658 5659 r = 0; 5660 5661 kvm_usage_count++; 5662 if (kvm_usage_count == 1) { 5663 on_each_cpu(hardware_enable_nolock, &failed, 1); 5664 5665 if (atomic_read(&failed)) { 5666 hardware_disable_all_nolock(); 5667 r = -EBUSY; 5668 } 5669 } 5670 5671 mutex_unlock(&kvm_lock); 5672 cpus_read_unlock(); 5673 5674 return r; 5675 } 5676 5677 static void kvm_shutdown(void) 5678 { 5679 /* 5680 * Disable hardware virtualization and set kvm_rebooting to indicate 5681 * that KVM has asynchronously disabled hardware virtualization, i.e. 5682 * that relevant errors and exceptions aren't entirely unexpected. 5683 * Some flavors of hardware virtualization need to be disabled before 5684 * transferring control to firmware (to perform shutdown/reboot), e.g. 5685 * on x86, virtualization can block INIT interrupts, which are used by 5686 * firmware to pull APs back under firmware control. Note, this path 5687 * is used for both shutdown and reboot scenarios, i.e. neither name is 5688 * 100% comprehensive. 5689 */ 5690 pr_info("kvm: exiting hardware virtualization\n"); 5691 kvm_rebooting = true; 5692 on_each_cpu(hardware_disable_nolock, NULL, 1); 5693 } 5694 5695 static int kvm_suspend(void) 5696 { 5697 /* 5698 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5699 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5700 * is stable. Assert that kvm_lock is not held to ensure the system 5701 * isn't suspended while KVM is enabling hardware. Hardware enabling 5702 * can be preempted, but the task cannot be frozen until it has dropped 5703 * all locks (userspace tasks are frozen via a fake signal). 5704 */ 5705 lockdep_assert_not_held(&kvm_lock); 5706 lockdep_assert_irqs_disabled(); 5707 5708 if (kvm_usage_count) 5709 hardware_disable_nolock(NULL); 5710 return 0; 5711 } 5712 5713 static void kvm_resume(void) 5714 { 5715 lockdep_assert_not_held(&kvm_lock); 5716 lockdep_assert_irqs_disabled(); 5717 5718 if (kvm_usage_count) 5719 WARN_ON_ONCE(__hardware_enable_nolock()); 5720 } 5721 5722 static struct syscore_ops kvm_syscore_ops = { 5723 .suspend = kvm_suspend, 5724 .resume = kvm_resume, 5725 .shutdown = kvm_shutdown, 5726 }; 5727 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5728 static int hardware_enable_all(void) 5729 { 5730 return 0; 5731 } 5732 5733 static void hardware_disable_all(void) 5734 { 5735 5736 } 5737 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5738 5739 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5740 { 5741 if (dev->ops->destructor) 5742 dev->ops->destructor(dev); 5743 } 5744 5745 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5746 { 5747 int i; 5748 5749 for (i = 0; i < bus->dev_count; i++) { 5750 struct kvm_io_device *pos = bus->range[i].dev; 5751 5752 kvm_iodevice_destructor(pos); 5753 } 5754 kfree(bus); 5755 } 5756 5757 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5758 const struct kvm_io_range *r2) 5759 { 5760 gpa_t addr1 = r1->addr; 5761 gpa_t addr2 = r2->addr; 5762 5763 if (addr1 < addr2) 5764 return -1; 5765 5766 /* If r2->len == 0, match the exact address. If r2->len != 0, 5767 * accept any overlapping write. Any order is acceptable for 5768 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5769 * we process all of them. 5770 */ 5771 if (r2->len) { 5772 addr1 += r1->len; 5773 addr2 += r2->len; 5774 } 5775 5776 if (addr1 > addr2) 5777 return 1; 5778 5779 return 0; 5780 } 5781 5782 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5783 { 5784 return kvm_io_bus_cmp(p1, p2); 5785 } 5786 5787 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5788 gpa_t addr, int len) 5789 { 5790 struct kvm_io_range *range, key; 5791 int off; 5792 5793 key = (struct kvm_io_range) { 5794 .addr = addr, 5795 .len = len, 5796 }; 5797 5798 range = bsearch(&key, bus->range, bus->dev_count, 5799 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5800 if (range == NULL) 5801 return -ENOENT; 5802 5803 off = range - bus->range; 5804 5805 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5806 off--; 5807 5808 return off; 5809 } 5810 5811 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5812 struct kvm_io_range *range, const void *val) 5813 { 5814 int idx; 5815 5816 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5817 if (idx < 0) 5818 return -EOPNOTSUPP; 5819 5820 while (idx < bus->dev_count && 5821 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5822 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5823 range->len, val)) 5824 return idx; 5825 idx++; 5826 } 5827 5828 return -EOPNOTSUPP; 5829 } 5830 5831 /* kvm_io_bus_write - called under kvm->slots_lock */ 5832 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5833 int len, const void *val) 5834 { 5835 struct kvm_io_bus *bus; 5836 struct kvm_io_range range; 5837 int r; 5838 5839 range = (struct kvm_io_range) { 5840 .addr = addr, 5841 .len = len, 5842 }; 5843 5844 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5845 if (!bus) 5846 return -ENOMEM; 5847 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5848 return r < 0 ? r : 0; 5849 } 5850 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5851 5852 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5853 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5854 gpa_t addr, int len, const void *val, long cookie) 5855 { 5856 struct kvm_io_bus *bus; 5857 struct kvm_io_range range; 5858 5859 range = (struct kvm_io_range) { 5860 .addr = addr, 5861 .len = len, 5862 }; 5863 5864 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5865 if (!bus) 5866 return -ENOMEM; 5867 5868 /* First try the device referenced by cookie. */ 5869 if ((cookie >= 0) && (cookie < bus->dev_count) && 5870 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5871 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5872 val)) 5873 return cookie; 5874 5875 /* 5876 * cookie contained garbage; fall back to search and return the 5877 * correct cookie value. 5878 */ 5879 return __kvm_io_bus_write(vcpu, bus, &range, val); 5880 } 5881 5882 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5883 struct kvm_io_range *range, void *val) 5884 { 5885 int idx; 5886 5887 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5888 if (idx < 0) 5889 return -EOPNOTSUPP; 5890 5891 while (idx < bus->dev_count && 5892 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5893 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5894 range->len, val)) 5895 return idx; 5896 idx++; 5897 } 5898 5899 return -EOPNOTSUPP; 5900 } 5901 5902 /* kvm_io_bus_read - called under kvm->slots_lock */ 5903 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5904 int len, void *val) 5905 { 5906 struct kvm_io_bus *bus; 5907 struct kvm_io_range range; 5908 int r; 5909 5910 range = (struct kvm_io_range) { 5911 .addr = addr, 5912 .len = len, 5913 }; 5914 5915 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5916 if (!bus) 5917 return -ENOMEM; 5918 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5919 return r < 0 ? r : 0; 5920 } 5921 5922 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5923 int len, struct kvm_io_device *dev) 5924 { 5925 int i; 5926 struct kvm_io_bus *new_bus, *bus; 5927 struct kvm_io_range range; 5928 5929 lockdep_assert_held(&kvm->slots_lock); 5930 5931 bus = kvm_get_bus(kvm, bus_idx); 5932 if (!bus) 5933 return -ENOMEM; 5934 5935 /* exclude ioeventfd which is limited by maximum fd */ 5936 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5937 return -ENOSPC; 5938 5939 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5940 GFP_KERNEL_ACCOUNT); 5941 if (!new_bus) 5942 return -ENOMEM; 5943 5944 range = (struct kvm_io_range) { 5945 .addr = addr, 5946 .len = len, 5947 .dev = dev, 5948 }; 5949 5950 for (i = 0; i < bus->dev_count; i++) 5951 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5952 break; 5953 5954 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5955 new_bus->dev_count++; 5956 new_bus->range[i] = range; 5957 memcpy(new_bus->range + i + 1, bus->range + i, 5958 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5959 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5960 synchronize_srcu_expedited(&kvm->srcu); 5961 kfree(bus); 5962 5963 return 0; 5964 } 5965 5966 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5967 struct kvm_io_device *dev) 5968 { 5969 int i; 5970 struct kvm_io_bus *new_bus, *bus; 5971 5972 lockdep_assert_held(&kvm->slots_lock); 5973 5974 bus = kvm_get_bus(kvm, bus_idx); 5975 if (!bus) 5976 return 0; 5977 5978 for (i = 0; i < bus->dev_count; i++) { 5979 if (bus->range[i].dev == dev) { 5980 break; 5981 } 5982 } 5983 5984 if (i == bus->dev_count) 5985 return 0; 5986 5987 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5988 GFP_KERNEL_ACCOUNT); 5989 if (new_bus) { 5990 memcpy(new_bus, bus, struct_size(bus, range, i)); 5991 new_bus->dev_count--; 5992 memcpy(new_bus->range + i, bus->range + i + 1, 5993 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5994 } 5995 5996 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5997 synchronize_srcu_expedited(&kvm->srcu); 5998 5999 /* 6000 * If NULL bus is installed, destroy the old bus, including all the 6001 * attached devices. Otherwise, destroy the caller's device only. 6002 */ 6003 if (!new_bus) { 6004 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6005 kvm_io_bus_destroy(bus); 6006 return -ENOMEM; 6007 } 6008 6009 kvm_iodevice_destructor(dev); 6010 kfree(bus); 6011 return 0; 6012 } 6013 6014 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6015 gpa_t addr) 6016 { 6017 struct kvm_io_bus *bus; 6018 int dev_idx, srcu_idx; 6019 struct kvm_io_device *iodev = NULL; 6020 6021 srcu_idx = srcu_read_lock(&kvm->srcu); 6022 6023 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6024 if (!bus) 6025 goto out_unlock; 6026 6027 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6028 if (dev_idx < 0) 6029 goto out_unlock; 6030 6031 iodev = bus->range[dev_idx].dev; 6032 6033 out_unlock: 6034 srcu_read_unlock(&kvm->srcu, srcu_idx); 6035 6036 return iodev; 6037 } 6038 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6039 6040 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6041 int (*get)(void *, u64 *), int (*set)(void *, u64), 6042 const char *fmt) 6043 { 6044 int ret; 6045 struct kvm_stat_data *stat_data = inode->i_private; 6046 6047 /* 6048 * The debugfs files are a reference to the kvm struct which 6049 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6050 * avoids the race between open and the removal of the debugfs directory. 6051 */ 6052 if (!kvm_get_kvm_safe(stat_data->kvm)) 6053 return -ENOENT; 6054 6055 ret = simple_attr_open(inode, file, get, 6056 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6057 ? set : NULL, fmt); 6058 if (ret) 6059 kvm_put_kvm(stat_data->kvm); 6060 6061 return ret; 6062 } 6063 6064 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6065 { 6066 struct kvm_stat_data *stat_data = inode->i_private; 6067 6068 simple_attr_release(inode, file); 6069 kvm_put_kvm(stat_data->kvm); 6070 6071 return 0; 6072 } 6073 6074 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6075 { 6076 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6077 6078 return 0; 6079 } 6080 6081 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6082 { 6083 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6084 6085 return 0; 6086 } 6087 6088 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6089 { 6090 unsigned long i; 6091 struct kvm_vcpu *vcpu; 6092 6093 *val = 0; 6094 6095 kvm_for_each_vcpu(i, vcpu, kvm) 6096 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6097 6098 return 0; 6099 } 6100 6101 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6102 { 6103 unsigned long i; 6104 struct kvm_vcpu *vcpu; 6105 6106 kvm_for_each_vcpu(i, vcpu, kvm) 6107 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6108 6109 return 0; 6110 } 6111 6112 static int kvm_stat_data_get(void *data, u64 *val) 6113 { 6114 int r = -EFAULT; 6115 struct kvm_stat_data *stat_data = data; 6116 6117 switch (stat_data->kind) { 6118 case KVM_STAT_VM: 6119 r = kvm_get_stat_per_vm(stat_data->kvm, 6120 stat_data->desc->desc.offset, val); 6121 break; 6122 case KVM_STAT_VCPU: 6123 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6124 stat_data->desc->desc.offset, val); 6125 break; 6126 } 6127 6128 return r; 6129 } 6130 6131 static int kvm_stat_data_clear(void *data, u64 val) 6132 { 6133 int r = -EFAULT; 6134 struct kvm_stat_data *stat_data = data; 6135 6136 if (val) 6137 return -EINVAL; 6138 6139 switch (stat_data->kind) { 6140 case KVM_STAT_VM: 6141 r = kvm_clear_stat_per_vm(stat_data->kvm, 6142 stat_data->desc->desc.offset); 6143 break; 6144 case KVM_STAT_VCPU: 6145 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6146 stat_data->desc->desc.offset); 6147 break; 6148 } 6149 6150 return r; 6151 } 6152 6153 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6154 { 6155 __simple_attr_check_format("%llu\n", 0ull); 6156 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6157 kvm_stat_data_clear, "%llu\n"); 6158 } 6159 6160 static const struct file_operations stat_fops_per_vm = { 6161 .owner = THIS_MODULE, 6162 .open = kvm_stat_data_open, 6163 .release = kvm_debugfs_release, 6164 .read = simple_attr_read, 6165 .write = simple_attr_write, 6166 .llseek = no_llseek, 6167 }; 6168 6169 static int vm_stat_get(void *_offset, u64 *val) 6170 { 6171 unsigned offset = (long)_offset; 6172 struct kvm *kvm; 6173 u64 tmp_val; 6174 6175 *val = 0; 6176 mutex_lock(&kvm_lock); 6177 list_for_each_entry(kvm, &vm_list, vm_list) { 6178 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6179 *val += tmp_val; 6180 } 6181 mutex_unlock(&kvm_lock); 6182 return 0; 6183 } 6184 6185 static int vm_stat_clear(void *_offset, u64 val) 6186 { 6187 unsigned offset = (long)_offset; 6188 struct kvm *kvm; 6189 6190 if (val) 6191 return -EINVAL; 6192 6193 mutex_lock(&kvm_lock); 6194 list_for_each_entry(kvm, &vm_list, vm_list) { 6195 kvm_clear_stat_per_vm(kvm, offset); 6196 } 6197 mutex_unlock(&kvm_lock); 6198 6199 return 0; 6200 } 6201 6202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6203 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6204 6205 static int vcpu_stat_get(void *_offset, u64 *val) 6206 { 6207 unsigned offset = (long)_offset; 6208 struct kvm *kvm; 6209 u64 tmp_val; 6210 6211 *val = 0; 6212 mutex_lock(&kvm_lock); 6213 list_for_each_entry(kvm, &vm_list, vm_list) { 6214 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6215 *val += tmp_val; 6216 } 6217 mutex_unlock(&kvm_lock); 6218 return 0; 6219 } 6220 6221 static int vcpu_stat_clear(void *_offset, u64 val) 6222 { 6223 unsigned offset = (long)_offset; 6224 struct kvm *kvm; 6225 6226 if (val) 6227 return -EINVAL; 6228 6229 mutex_lock(&kvm_lock); 6230 list_for_each_entry(kvm, &vm_list, vm_list) { 6231 kvm_clear_stat_per_vcpu(kvm, offset); 6232 } 6233 mutex_unlock(&kvm_lock); 6234 6235 return 0; 6236 } 6237 6238 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6239 "%llu\n"); 6240 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6241 6242 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6243 { 6244 struct kobj_uevent_env *env; 6245 unsigned long long created, active; 6246 6247 if (!kvm_dev.this_device || !kvm) 6248 return; 6249 6250 mutex_lock(&kvm_lock); 6251 if (type == KVM_EVENT_CREATE_VM) { 6252 kvm_createvm_count++; 6253 kvm_active_vms++; 6254 } else if (type == KVM_EVENT_DESTROY_VM) { 6255 kvm_active_vms--; 6256 } 6257 created = kvm_createvm_count; 6258 active = kvm_active_vms; 6259 mutex_unlock(&kvm_lock); 6260 6261 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 6262 if (!env) 6263 return; 6264 6265 add_uevent_var(env, "CREATED=%llu", created); 6266 add_uevent_var(env, "COUNT=%llu", active); 6267 6268 if (type == KVM_EVENT_CREATE_VM) { 6269 add_uevent_var(env, "EVENT=create"); 6270 kvm->userspace_pid = task_pid_nr(current); 6271 } else if (type == KVM_EVENT_DESTROY_VM) { 6272 add_uevent_var(env, "EVENT=destroy"); 6273 } 6274 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6275 6276 if (!IS_ERR(kvm->debugfs_dentry)) { 6277 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 6278 6279 if (p) { 6280 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6281 if (!IS_ERR(tmp)) 6282 add_uevent_var(env, "STATS_PATH=%s", tmp); 6283 kfree(p); 6284 } 6285 } 6286 /* no need for checks, since we are adding at most only 5 keys */ 6287 env->envp[env->envp_idx++] = NULL; 6288 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6289 kfree(env); 6290 } 6291 6292 static void kvm_init_debug(void) 6293 { 6294 const struct file_operations *fops; 6295 const struct _kvm_stats_desc *pdesc; 6296 int i; 6297 6298 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6299 6300 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6301 pdesc = &kvm_vm_stats_desc[i]; 6302 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6303 fops = &vm_stat_fops; 6304 else 6305 fops = &vm_stat_readonly_fops; 6306 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6307 kvm_debugfs_dir, 6308 (void *)(long)pdesc->desc.offset, fops); 6309 } 6310 6311 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6312 pdesc = &kvm_vcpu_stats_desc[i]; 6313 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6314 fops = &vcpu_stat_fops; 6315 else 6316 fops = &vcpu_stat_readonly_fops; 6317 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6318 kvm_debugfs_dir, 6319 (void *)(long)pdesc->desc.offset, fops); 6320 } 6321 } 6322 6323 static inline 6324 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6325 { 6326 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6327 } 6328 6329 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6330 { 6331 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6332 6333 WRITE_ONCE(vcpu->preempted, false); 6334 WRITE_ONCE(vcpu->ready, false); 6335 6336 __this_cpu_write(kvm_running_vcpu, vcpu); 6337 kvm_arch_sched_in(vcpu, cpu); 6338 kvm_arch_vcpu_load(vcpu, cpu); 6339 } 6340 6341 static void kvm_sched_out(struct preempt_notifier *pn, 6342 struct task_struct *next) 6343 { 6344 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6345 6346 if (current->on_rq) { 6347 WRITE_ONCE(vcpu->preempted, true); 6348 WRITE_ONCE(vcpu->ready, true); 6349 } 6350 kvm_arch_vcpu_put(vcpu); 6351 __this_cpu_write(kvm_running_vcpu, NULL); 6352 } 6353 6354 /** 6355 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6356 * 6357 * We can disable preemption locally around accessing the per-CPU variable, 6358 * and use the resolved vcpu pointer after enabling preemption again, 6359 * because even if the current thread is migrated to another CPU, reading 6360 * the per-CPU value later will give us the same value as we update the 6361 * per-CPU variable in the preempt notifier handlers. 6362 */ 6363 struct kvm_vcpu *kvm_get_running_vcpu(void) 6364 { 6365 struct kvm_vcpu *vcpu; 6366 6367 preempt_disable(); 6368 vcpu = __this_cpu_read(kvm_running_vcpu); 6369 preempt_enable(); 6370 6371 return vcpu; 6372 } 6373 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6374 6375 /** 6376 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6377 */ 6378 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6379 { 6380 return &kvm_running_vcpu; 6381 } 6382 6383 #ifdef CONFIG_GUEST_PERF_EVENTS 6384 static unsigned int kvm_guest_state(void) 6385 { 6386 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6387 unsigned int state; 6388 6389 if (!kvm_arch_pmi_in_guest(vcpu)) 6390 return 0; 6391 6392 state = PERF_GUEST_ACTIVE; 6393 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6394 state |= PERF_GUEST_USER; 6395 6396 return state; 6397 } 6398 6399 static unsigned long kvm_guest_get_ip(void) 6400 { 6401 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6402 6403 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6404 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6405 return 0; 6406 6407 return kvm_arch_vcpu_get_ip(vcpu); 6408 } 6409 6410 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6411 .state = kvm_guest_state, 6412 .get_ip = kvm_guest_get_ip, 6413 .handle_intel_pt_intr = NULL, 6414 }; 6415 6416 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6417 { 6418 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6419 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6420 } 6421 void kvm_unregister_perf_callbacks(void) 6422 { 6423 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6424 } 6425 #endif 6426 6427 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6428 { 6429 int r; 6430 int cpu; 6431 6432 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6433 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6434 kvm_online_cpu, kvm_offline_cpu); 6435 if (r) 6436 return r; 6437 6438 register_syscore_ops(&kvm_syscore_ops); 6439 #endif 6440 6441 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6442 if (!vcpu_align) 6443 vcpu_align = __alignof__(struct kvm_vcpu); 6444 kvm_vcpu_cache = 6445 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6446 SLAB_ACCOUNT, 6447 offsetof(struct kvm_vcpu, arch), 6448 offsetofend(struct kvm_vcpu, stats_id) 6449 - offsetof(struct kvm_vcpu, arch), 6450 NULL); 6451 if (!kvm_vcpu_cache) { 6452 r = -ENOMEM; 6453 goto err_vcpu_cache; 6454 } 6455 6456 for_each_possible_cpu(cpu) { 6457 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6458 GFP_KERNEL, cpu_to_node(cpu))) { 6459 r = -ENOMEM; 6460 goto err_cpu_kick_mask; 6461 } 6462 } 6463 6464 r = kvm_irqfd_init(); 6465 if (r) 6466 goto err_irqfd; 6467 6468 r = kvm_async_pf_init(); 6469 if (r) 6470 goto err_async_pf; 6471 6472 kvm_chardev_ops.owner = module; 6473 kvm_vm_fops.owner = module; 6474 kvm_vcpu_fops.owner = module; 6475 kvm_device_fops.owner = module; 6476 6477 kvm_preempt_ops.sched_in = kvm_sched_in; 6478 kvm_preempt_ops.sched_out = kvm_sched_out; 6479 6480 kvm_init_debug(); 6481 6482 r = kvm_vfio_ops_init(); 6483 if (WARN_ON_ONCE(r)) 6484 goto err_vfio; 6485 6486 kvm_gmem_init(module); 6487 6488 /* 6489 * Registration _must_ be the very last thing done, as this exposes 6490 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6491 */ 6492 r = misc_register(&kvm_dev); 6493 if (r) { 6494 pr_err("kvm: misc device register failed\n"); 6495 goto err_register; 6496 } 6497 6498 return 0; 6499 6500 err_register: 6501 kvm_vfio_ops_exit(); 6502 err_vfio: 6503 kvm_async_pf_deinit(); 6504 err_async_pf: 6505 kvm_irqfd_exit(); 6506 err_irqfd: 6507 err_cpu_kick_mask: 6508 for_each_possible_cpu(cpu) 6509 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6510 kmem_cache_destroy(kvm_vcpu_cache); 6511 err_vcpu_cache: 6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6513 unregister_syscore_ops(&kvm_syscore_ops); 6514 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6515 #endif 6516 return r; 6517 } 6518 EXPORT_SYMBOL_GPL(kvm_init); 6519 6520 void kvm_exit(void) 6521 { 6522 int cpu; 6523 6524 /* 6525 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6526 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6527 * to KVM while the module is being stopped. 6528 */ 6529 misc_deregister(&kvm_dev); 6530 6531 debugfs_remove_recursive(kvm_debugfs_dir); 6532 for_each_possible_cpu(cpu) 6533 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6534 kmem_cache_destroy(kvm_vcpu_cache); 6535 kvm_vfio_ops_exit(); 6536 kvm_async_pf_deinit(); 6537 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6538 unregister_syscore_ops(&kvm_syscore_ops); 6539 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6540 #endif 6541 kvm_irqfd_exit(); 6542 } 6543 EXPORT_SYMBOL_GPL(kvm_exit); 6544 6545 struct kvm_vm_worker_thread_context { 6546 struct kvm *kvm; 6547 struct task_struct *parent; 6548 struct completion init_done; 6549 kvm_vm_thread_fn_t thread_fn; 6550 uintptr_t data; 6551 int err; 6552 }; 6553 6554 static int kvm_vm_worker_thread(void *context) 6555 { 6556 /* 6557 * The init_context is allocated on the stack of the parent thread, so 6558 * we have to locally copy anything that is needed beyond initialization 6559 */ 6560 struct kvm_vm_worker_thread_context *init_context = context; 6561 struct task_struct *parent; 6562 struct kvm *kvm = init_context->kvm; 6563 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6564 uintptr_t data = init_context->data; 6565 int err; 6566 6567 err = kthread_park(current); 6568 /* kthread_park(current) is never supposed to return an error */ 6569 WARN_ON(err != 0); 6570 if (err) 6571 goto init_complete; 6572 6573 err = cgroup_attach_task_all(init_context->parent, current); 6574 if (err) { 6575 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6576 __func__, err); 6577 goto init_complete; 6578 } 6579 6580 set_user_nice(current, task_nice(init_context->parent)); 6581 6582 init_complete: 6583 init_context->err = err; 6584 complete(&init_context->init_done); 6585 init_context = NULL; 6586 6587 if (err) 6588 goto out; 6589 6590 /* Wait to be woken up by the spawner before proceeding. */ 6591 kthread_parkme(); 6592 6593 if (!kthread_should_stop()) 6594 err = thread_fn(kvm, data); 6595 6596 out: 6597 /* 6598 * Move kthread back to its original cgroup to prevent it lingering in 6599 * the cgroup of the VM process, after the latter finishes its 6600 * execution. 6601 * 6602 * kthread_stop() waits on the 'exited' completion condition which is 6603 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6604 * kthread is removed from the cgroup in the cgroup_exit() which is 6605 * called after the exit_mm(). This causes the kthread_stop() to return 6606 * before the kthread actually quits the cgroup. 6607 */ 6608 rcu_read_lock(); 6609 parent = rcu_dereference(current->real_parent); 6610 get_task_struct(parent); 6611 rcu_read_unlock(); 6612 cgroup_attach_task_all(parent, current); 6613 put_task_struct(parent); 6614 6615 return err; 6616 } 6617 6618 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6619 uintptr_t data, const char *name, 6620 struct task_struct **thread_ptr) 6621 { 6622 struct kvm_vm_worker_thread_context init_context = {}; 6623 struct task_struct *thread; 6624 6625 *thread_ptr = NULL; 6626 init_context.kvm = kvm; 6627 init_context.parent = current; 6628 init_context.thread_fn = thread_fn; 6629 init_context.data = data; 6630 init_completion(&init_context.init_done); 6631 6632 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6633 "%s-%d", name, task_pid_nr(current)); 6634 if (IS_ERR(thread)) 6635 return PTR_ERR(thread); 6636 6637 /* kthread_run is never supposed to return NULL */ 6638 WARN_ON(thread == NULL); 6639 6640 wait_for_completion(&init_context.init_done); 6641 6642 if (!init_context.err) 6643 *thread_ptr = thread; 6644 6645 return init_context.err; 6646 } 6647