xref: /linux/virt/kvm/kvm_main.c (revision 8540bd1b990bad7f7e95b5bf1adf30bfaf2e38c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 	/*
162 	 * The metadata used by is_zone_device_page() to determine whether or
163 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165 	 * page_count() is zero to help detect bad usage of this helper.
166 	 */
167 	if (WARN_ON_ONCE(!page_count(page)))
168 		return false;
169 
170 	return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 	struct page *page;
182 
183 	if (!pfn_valid(pfn))
184 		return NULL;
185 
186 	page = pfn_to_page(pfn);
187 	if (!PageReserved(page))
188 		return page;
189 
190 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 	if (is_zero_pfn(pfn))
192 		return page;
193 
194 	/*
195 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 	 * perspective they are "normal" pages, albeit with slightly different
197 	 * usage rules.
198 	 */
199 	if (kvm_is_zone_device_page(page))
200 		return page;
201 
202 	return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_kick, NULL, wait);
257 	return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 				  struct cpumask *tmp, int current_cpu)
262 {
263 	int cpu;
264 
265 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 		__kvm_make_request(req, vcpu);
267 
268 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 		return;
270 
271 	/*
272 	 * Note, the vCPU could get migrated to a different pCPU at any point
273 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 	 * after this point is also OK, as the requirement is only that KVM wait
278 	 * for vCPUs that were reading SPTEs _before_ any changes were
279 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 	 */
281 	if (kvm_request_needs_ipi(vcpu, req)) {
282 		cpu = READ_ONCE(vcpu->cpu);
283 		if (cpu != -1 && cpu != current_cpu)
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 				 unsigned long *vcpu_bitmap)
290 {
291 	struct kvm_vcpu *vcpu;
292 	struct cpumask *cpus;
293 	int i, me;
294 	bool called;
295 
296 	me = get_cpu();
297 
298 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 	cpumask_clear(cpus);
300 
301 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 		vcpu = kvm_get_vcpu(kvm, i);
303 		if (!vcpu)
304 			continue;
305 		kvm_make_vcpu_request(vcpu, req, cpus, me);
306 	}
307 
308 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 	put_cpu();
310 
311 	return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 				      struct kvm_vcpu *except)
316 {
317 	struct kvm_vcpu *vcpu;
318 	struct cpumask *cpus;
319 	unsigned long i;
320 	bool called;
321 	int me;
322 
323 	me = get_cpu();
324 
325 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 	cpumask_clear(cpus);
327 
328 	kvm_for_each_vcpu(i, vcpu, kvm) {
329 		if (vcpu == except)
330 			continue;
331 		kvm_make_vcpu_request(vcpu, req, cpus, me);
332 	}
333 
334 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 	put_cpu();
336 
337 	return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 	++kvm->stat.generic.remote_tlb_flush_requests;
349 
350 	/*
351 	 * We want to publish modifications to the page tables before reading
352 	 * mode. Pairs with a memory barrier in arch-specific code.
353 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 	 *
357 	 * There is already an smp_mb__after_atomic() before
358 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 	 * barrier here.
360 	 */
361 	if (!kvm_arch_flush_remote_tlbs(kvm)
362 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 		++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 		return;
371 
372 	/*
373 	 * Fall back to a flushing entire TLBs if the architecture range-based
374 	 * TLB invalidation is unsupported or can't be performed for whatever
375 	 * reason.
376 	 */
377 	kvm_flush_remote_tlbs(kvm);
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 				   const struct kvm_memory_slot *memslot)
382 {
383 	/*
384 	 * All current use cases for flushing the TLBs for a specific memslot
385 	 * are related to dirty logging, and many do the TLB flush out of
386 	 * mmu_lock. The interaction between the various operations on memslot
387 	 * must be serialized by slots_locks to ensure the TLB flush from one
388 	 * operation is observed by any other operation on the same memslot.
389 	 */
390 	lockdep_assert_held(&kvm->slots_lock);
391 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 	kvm_arch_flush_shadow_all(kvm);
397 	kvm_arch_guest_memory_reclaimed(kvm);
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 					       gfp_t gfp_flags)
403 {
404 	gfp_flags |= mc->gfp_zero;
405 
406 	if (mc->kmem_cache)
407 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 	else
409 		return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 	void *obj;
416 
417 	if (mc->nobjs >= min)
418 		return 0;
419 
420 	if (unlikely(!mc->objects)) {
421 		if (WARN_ON_ONCE(!capacity))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
590 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 	     node;							     \
592 	     node = interval_tree_iter_next(node, start, last))	     \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 							   const struct kvm_mmu_notifier_range *range)
596 {
597 	struct kvm_mmu_notifier_return r = {
598 		.ret = false,
599 		.found_memslot = false,
600 	};
601 	struct kvm_gfn_range gfn_range;
602 	struct kvm_memory_slot *slot;
603 	struct kvm_memslots *slots;
604 	int i, idx;
605 
606 	if (WARN_ON_ONCE(range->end <= range->start))
607 		return r;
608 
609 	/* A null handler is allowed if and only if on_lock() is provided. */
610 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 			 IS_KVM_NULL_FN(range->handler)))
612 		return r;
613 
614 	idx = srcu_read_lock(&kvm->srcu);
615 
616 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 		struct interval_tree_node *node;
618 
619 		slots = __kvm_memslots(kvm, i);
620 		kvm_for_each_memslot_in_hva_range(node, slots,
621 						  range->start, range->end - 1) {
622 			unsigned long hva_start, hva_end;
623 
624 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 			hva_end = min_t(unsigned long, range->end,
627 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629 			/*
630 			 * To optimize for the likely case where the address
631 			 * range is covered by zero or one memslots, don't
632 			 * bother making these conditional (to avoid writes on
633 			 * the second or later invocation of the handler).
634 			 */
635 			gfn_range.arg = range->arg;
636 			gfn_range.may_block = range->may_block;
637 
638 			/*
639 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 			 */
642 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 			gfn_range.slot = slot;
645 
646 			if (!r.found_memslot) {
647 				r.found_memslot = true;
648 				KVM_MMU_LOCK(kvm);
649 				if (!IS_KVM_NULL_FN(range->on_lock))
650 					range->on_lock(kvm);
651 
652 				if (IS_KVM_NULL_FN(range->handler))
653 					break;
654 			}
655 			r.ret |= range->handler(kvm, &gfn_range);
656 		}
657 	}
658 
659 	if (range->flush_on_ret && r.ret)
660 		kvm_flush_remote_tlbs(kvm);
661 
662 	if (r.found_memslot)
663 		KVM_MMU_UNLOCK(kvm);
664 
665 	srcu_read_unlock(&kvm->srcu, idx);
666 
667 	return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 						unsigned long start,
672 						unsigned long end,
673 						union kvm_mmu_notifier_arg arg,
674 						gfn_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_mmu_notifier_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.arg		= arg,
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= true,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 							 unsigned long start,
692 							 unsigned long end,
693 							 gfn_handler_t handler)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 	const struct kvm_mmu_notifier_range range = {
697 		.start		= start,
698 		.end		= end,
699 		.handler	= handler,
700 		.on_lock	= (void *)kvm_null_fn,
701 		.flush_on_ret	= false,
702 		.may_block	= false,
703 	};
704 
705 	return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710 	/*
711 	 * Skipping invalid memslots is correct if and only change_pte() is
712 	 * surrounded by invalidate_range_{start,end}(), which is currently
713 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 	 * doesn't hold references to the old PFN.
716 	 */
717 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 		return false;
721 
722 	return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 					struct mm_struct *mm,
727 					unsigned long address,
728 					pte_t pte)
729 {
730 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 	const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733 	trace_kvm_set_spte_hva(address);
734 
735 	/*
736 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 	 * If mmu_invalidate_in_progress is zero, then no in-progress
738 	 * invalidations, including this one, found a relevant memslot at
739 	 * start(); rechecking memslots here is unnecessary.  Note, a false
740 	 * positive (count elevated by a different invalidation) is sub-optimal
741 	 * but functionally ok.
742 	 */
743 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 		return;
746 
747 	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752 	lockdep_assert_held_write(&kvm->mmu_lock);
753 	/*
754 	 * The count increase must become visible at unlock time as no
755 	 * spte can be established without taking the mmu_lock and
756 	 * count is also read inside the mmu_lock critical section.
757 	 */
758 	kvm->mmu_invalidate_in_progress++;
759 
760 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 		kvm->mmu_invalidate_range_start = INVALID_GPA;
762 		kvm->mmu_invalidate_range_end = INVALID_GPA;
763 	}
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 		kvm->mmu_invalidate_range_start = start;
774 		kvm->mmu_invalidate_range_end = end;
775 	} else {
776 		/*
777 		 * Fully tracking multiple concurrent ranges has diminishing
778 		 * returns. Keep things simple and just find the minimal range
779 		 * which includes the current and new ranges. As there won't be
780 		 * enough information to subtract a range after its invalidate
781 		 * completes, any ranges invalidated concurrently will
782 		 * accumulate and persist until all outstanding invalidates
783 		 * complete.
784 		 */
785 		kvm->mmu_invalidate_range_start =
786 			min(kvm->mmu_invalidate_range_start, start);
787 		kvm->mmu_invalidate_range_end =
788 			max(kvm->mmu_invalidate_range_end, end);
789 	}
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 	return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 					const struct mmu_notifier_range *range)
800 {
801 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 	const struct kvm_mmu_notifier_range hva_range = {
803 		.start		= range->start,
804 		.end		= range->end,
805 		.handler	= kvm_mmu_unmap_gfn_range,
806 		.on_lock	= kvm_mmu_invalidate_begin,
807 		.flush_on_ret	= true,
808 		.may_block	= mmu_notifier_range_blockable(range),
809 	};
810 
811 	trace_kvm_unmap_hva_range(range->start, range->end);
812 
813 	/*
814 	 * Prevent memslot modification between range_start() and range_end()
815 	 * so that conditionally locking provides the same result in both
816 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
817 	 * adjustments will be imbalanced.
818 	 *
819 	 * Pairs with the decrement in range_end().
820 	 */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	kvm->mn_active_invalidate_count++;
823 	spin_unlock(&kvm->mn_invalidate_lock);
824 
825 	/*
826 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 	 * each cache's lock.  There are relatively few caches in existence at
829 	 * any given time, and the caches themselves can check for hva overlap,
830 	 * i.e. don't need to rely on memslot overlap checks for performance.
831 	 * Because this runs without holding mmu_lock, the pfn caches must use
832 	 * mn_active_invalidate_count (see above) instead of
833 	 * mmu_invalidate_in_progress.
834 	 */
835 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836 					  hva_range.may_block);
837 
838 	/*
839 	 * If one or more memslots were found and thus zapped, notify arch code
840 	 * that guest memory has been reclaimed.  This needs to be done *after*
841 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 	 */
843 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844 		kvm_arch_guest_memory_reclaimed(kvm);
845 
846 	return 0;
847 }
848 
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851 	lockdep_assert_held_write(&kvm->mmu_lock);
852 
853 	/*
854 	 * This sequence increase will notify the kvm page fault that
855 	 * the page that is going to be mapped in the spte could have
856 	 * been freed.
857 	 */
858 	kvm->mmu_invalidate_seq++;
859 	smp_wmb();
860 	/*
861 	 * The above sequence increase must be visible before the
862 	 * below count decrease, which is ensured by the smp_wmb above
863 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 	 */
865 	kvm->mmu_invalidate_in_progress--;
866 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867 
868 	/*
869 	 * Assert that at least one range was added between start() and end().
870 	 * Not adding a range isn't fatal, but it is a KVM bug.
871 	 */
872 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874 
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876 					const struct mmu_notifier_range *range)
877 {
878 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
879 	const struct kvm_mmu_notifier_range hva_range = {
880 		.start		= range->start,
881 		.end		= range->end,
882 		.handler	= (void *)kvm_null_fn,
883 		.on_lock	= kvm_mmu_invalidate_end,
884 		.flush_on_ret	= false,
885 		.may_block	= mmu_notifier_range_blockable(range),
886 	};
887 	bool wake;
888 
889 	__kvm_handle_hva_range(kvm, &hva_range);
890 
891 	/* Pairs with the increment in range_start(). */
892 	spin_lock(&kvm->mn_invalidate_lock);
893 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
894 		--kvm->mn_active_invalidate_count;
895 	wake = !kvm->mn_active_invalidate_count;
896 	spin_unlock(&kvm->mn_invalidate_lock);
897 
898 	/*
899 	 * There can only be one waiter, since the wait happens under
900 	 * slots_lock.
901 	 */
902 	if (wake)
903 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
904 }
905 
906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
907 					      struct mm_struct *mm,
908 					      unsigned long start,
909 					      unsigned long end)
910 {
911 	trace_kvm_age_hva(start, end);
912 
913 	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
914 				    kvm_age_gfn);
915 }
916 
917 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
918 					struct mm_struct *mm,
919 					unsigned long start,
920 					unsigned long end)
921 {
922 	trace_kvm_age_hva(start, end);
923 
924 	/*
925 	 * Even though we do not flush TLB, this will still adversely
926 	 * affect performance on pre-Haswell Intel EPT, where there is
927 	 * no EPT Access Bit to clear so that we have to tear down EPT
928 	 * tables instead. If we find this unacceptable, we can always
929 	 * add a parameter to kvm_age_hva so that it effectively doesn't
930 	 * do anything on clear_young.
931 	 *
932 	 * Also note that currently we never issue secondary TLB flushes
933 	 * from clear_young, leaving this job up to the regular system
934 	 * cadence. If we find this inaccurate, we might come up with a
935 	 * more sophisticated heuristic later.
936 	 */
937 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
938 }
939 
940 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
941 				       struct mm_struct *mm,
942 				       unsigned long address)
943 {
944 	trace_kvm_test_age_hva(address);
945 
946 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
947 					     kvm_test_age_gfn);
948 }
949 
950 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
951 				     struct mm_struct *mm)
952 {
953 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
954 	int idx;
955 
956 	idx = srcu_read_lock(&kvm->srcu);
957 	kvm_flush_shadow_all(kvm);
958 	srcu_read_unlock(&kvm->srcu, idx);
959 }
960 
961 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
962 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
963 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
964 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
965 	.clear_young		= kvm_mmu_notifier_clear_young,
966 	.test_young		= kvm_mmu_notifier_test_young,
967 	.change_pte		= kvm_mmu_notifier_change_pte,
968 	.release		= kvm_mmu_notifier_release,
969 };
970 
971 static int kvm_init_mmu_notifier(struct kvm *kvm)
972 {
973 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
974 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
975 }
976 
977 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
978 
979 static int kvm_init_mmu_notifier(struct kvm *kvm)
980 {
981 	return 0;
982 }
983 
984 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
985 
986 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
987 static int kvm_pm_notifier_call(struct notifier_block *bl,
988 				unsigned long state,
989 				void *unused)
990 {
991 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
992 
993 	return kvm_arch_pm_notifier(kvm, state);
994 }
995 
996 static void kvm_init_pm_notifier(struct kvm *kvm)
997 {
998 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
999 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
1000 	kvm->pm_notifier.priority = INT_MAX;
1001 	register_pm_notifier(&kvm->pm_notifier);
1002 }
1003 
1004 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1005 {
1006 	unregister_pm_notifier(&kvm->pm_notifier);
1007 }
1008 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1009 static void kvm_init_pm_notifier(struct kvm *kvm)
1010 {
1011 }
1012 
1013 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1014 {
1015 }
1016 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1017 
1018 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1019 {
1020 	if (!memslot->dirty_bitmap)
1021 		return;
1022 
1023 	kvfree(memslot->dirty_bitmap);
1024 	memslot->dirty_bitmap = NULL;
1025 }
1026 
1027 /* This does not remove the slot from struct kvm_memslots data structures */
1028 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1029 {
1030 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
1031 		kvm_gmem_unbind(slot);
1032 
1033 	kvm_destroy_dirty_bitmap(slot);
1034 
1035 	kvm_arch_free_memslot(kvm, slot);
1036 
1037 	kfree(slot);
1038 }
1039 
1040 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1041 {
1042 	struct hlist_node *idnode;
1043 	struct kvm_memory_slot *memslot;
1044 	int bkt;
1045 
1046 	/*
1047 	 * The same memslot objects live in both active and inactive sets,
1048 	 * arbitrarily free using index '1' so the second invocation of this
1049 	 * function isn't operating over a structure with dangling pointers
1050 	 * (even though this function isn't actually touching them).
1051 	 */
1052 	if (!slots->node_idx)
1053 		return;
1054 
1055 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1056 		kvm_free_memslot(kvm, memslot);
1057 }
1058 
1059 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1060 {
1061 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1062 	case KVM_STATS_TYPE_INSTANT:
1063 		return 0444;
1064 	case KVM_STATS_TYPE_CUMULATIVE:
1065 	case KVM_STATS_TYPE_PEAK:
1066 	default:
1067 		return 0644;
1068 	}
1069 }
1070 
1071 
1072 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1073 {
1074 	int i;
1075 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1076 				      kvm_vcpu_stats_header.num_desc;
1077 
1078 	if (IS_ERR(kvm->debugfs_dentry))
1079 		return;
1080 
1081 	debugfs_remove_recursive(kvm->debugfs_dentry);
1082 
1083 	if (kvm->debugfs_stat_data) {
1084 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1085 			kfree(kvm->debugfs_stat_data[i]);
1086 		kfree(kvm->debugfs_stat_data);
1087 	}
1088 }
1089 
1090 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1091 {
1092 	static DEFINE_MUTEX(kvm_debugfs_lock);
1093 	struct dentry *dent;
1094 	char dir_name[ITOA_MAX_LEN * 2];
1095 	struct kvm_stat_data *stat_data;
1096 	const struct _kvm_stats_desc *pdesc;
1097 	int i, ret = -ENOMEM;
1098 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1099 				      kvm_vcpu_stats_header.num_desc;
1100 
1101 	if (!debugfs_initialized())
1102 		return 0;
1103 
1104 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1105 	mutex_lock(&kvm_debugfs_lock);
1106 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1107 	if (dent) {
1108 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1109 		dput(dent);
1110 		mutex_unlock(&kvm_debugfs_lock);
1111 		return 0;
1112 	}
1113 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1114 	mutex_unlock(&kvm_debugfs_lock);
1115 	if (IS_ERR(dent))
1116 		return 0;
1117 
1118 	kvm->debugfs_dentry = dent;
1119 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1120 					 sizeof(*kvm->debugfs_stat_data),
1121 					 GFP_KERNEL_ACCOUNT);
1122 	if (!kvm->debugfs_stat_data)
1123 		goto out_err;
1124 
1125 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1126 		pdesc = &kvm_vm_stats_desc[i];
1127 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1128 		if (!stat_data)
1129 			goto out_err;
1130 
1131 		stat_data->kvm = kvm;
1132 		stat_data->desc = pdesc;
1133 		stat_data->kind = KVM_STAT_VM;
1134 		kvm->debugfs_stat_data[i] = stat_data;
1135 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1136 				    kvm->debugfs_dentry, stat_data,
1137 				    &stat_fops_per_vm);
1138 	}
1139 
1140 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1141 		pdesc = &kvm_vcpu_stats_desc[i];
1142 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1143 		if (!stat_data)
1144 			goto out_err;
1145 
1146 		stat_data->kvm = kvm;
1147 		stat_data->desc = pdesc;
1148 		stat_data->kind = KVM_STAT_VCPU;
1149 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1150 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1151 				    kvm->debugfs_dentry, stat_data,
1152 				    &stat_fops_per_vm);
1153 	}
1154 
1155 	kvm_arch_create_vm_debugfs(kvm);
1156 	return 0;
1157 out_err:
1158 	kvm_destroy_vm_debugfs(kvm);
1159 	return ret;
1160 }
1161 
1162 /*
1163  * Called after the VM is otherwise initialized, but just before adding it to
1164  * the vm_list.
1165  */
1166 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1167 {
1168 	return 0;
1169 }
1170 
1171 /*
1172  * Called just after removing the VM from the vm_list, but before doing any
1173  * other destruction.
1174  */
1175 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1176 {
1177 }
1178 
1179 /*
1180  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1181  * be setup already, so we can create arch-specific debugfs entries under it.
1182  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1183  * a per-arch destroy interface is not needed.
1184  */
1185 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1186 {
1187 }
1188 
1189 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1190 {
1191 	struct kvm *kvm = kvm_arch_alloc_vm();
1192 	struct kvm_memslots *slots;
1193 	int r = -ENOMEM;
1194 	int i, j;
1195 
1196 	if (!kvm)
1197 		return ERR_PTR(-ENOMEM);
1198 
1199 	KVM_MMU_LOCK_INIT(kvm);
1200 	mmgrab(current->mm);
1201 	kvm->mm = current->mm;
1202 	kvm_eventfd_init(kvm);
1203 	mutex_init(&kvm->lock);
1204 	mutex_init(&kvm->irq_lock);
1205 	mutex_init(&kvm->slots_lock);
1206 	mutex_init(&kvm->slots_arch_lock);
1207 	spin_lock_init(&kvm->mn_invalidate_lock);
1208 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1209 	xa_init(&kvm->vcpu_array);
1210 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1211 	xa_init(&kvm->mem_attr_array);
1212 #endif
1213 
1214 	INIT_LIST_HEAD(&kvm->gpc_list);
1215 	spin_lock_init(&kvm->gpc_lock);
1216 
1217 	INIT_LIST_HEAD(&kvm->devices);
1218 	kvm->max_vcpus = KVM_MAX_VCPUS;
1219 
1220 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1221 
1222 	/*
1223 	 * Force subsequent debugfs file creations to fail if the VM directory
1224 	 * is not created (by kvm_create_vm_debugfs()).
1225 	 */
1226 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1227 
1228 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1229 		 task_pid_nr(current));
1230 
1231 	if (init_srcu_struct(&kvm->srcu))
1232 		goto out_err_no_srcu;
1233 	if (init_srcu_struct(&kvm->irq_srcu))
1234 		goto out_err_no_irq_srcu;
1235 
1236 	refcount_set(&kvm->users_count, 1);
1237 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1238 		for (j = 0; j < 2; j++) {
1239 			slots = &kvm->__memslots[i][j];
1240 
1241 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1242 			slots->hva_tree = RB_ROOT_CACHED;
1243 			slots->gfn_tree = RB_ROOT;
1244 			hash_init(slots->id_hash);
1245 			slots->node_idx = j;
1246 
1247 			/* Generations must be different for each address space. */
1248 			slots->generation = i;
1249 		}
1250 
1251 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1252 	}
1253 
1254 	for (i = 0; i < KVM_NR_BUSES; i++) {
1255 		rcu_assign_pointer(kvm->buses[i],
1256 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1257 		if (!kvm->buses[i])
1258 			goto out_err_no_arch_destroy_vm;
1259 	}
1260 
1261 	r = kvm_arch_init_vm(kvm, type);
1262 	if (r)
1263 		goto out_err_no_arch_destroy_vm;
1264 
1265 	r = hardware_enable_all();
1266 	if (r)
1267 		goto out_err_no_disable;
1268 
1269 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1270 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1271 #endif
1272 
1273 	r = kvm_init_mmu_notifier(kvm);
1274 	if (r)
1275 		goto out_err_no_mmu_notifier;
1276 
1277 	r = kvm_coalesced_mmio_init(kvm);
1278 	if (r < 0)
1279 		goto out_no_coalesced_mmio;
1280 
1281 	r = kvm_create_vm_debugfs(kvm, fdname);
1282 	if (r)
1283 		goto out_err_no_debugfs;
1284 
1285 	r = kvm_arch_post_init_vm(kvm);
1286 	if (r)
1287 		goto out_err;
1288 
1289 	mutex_lock(&kvm_lock);
1290 	list_add(&kvm->vm_list, &vm_list);
1291 	mutex_unlock(&kvm_lock);
1292 
1293 	preempt_notifier_inc();
1294 	kvm_init_pm_notifier(kvm);
1295 
1296 	return kvm;
1297 
1298 out_err:
1299 	kvm_destroy_vm_debugfs(kvm);
1300 out_err_no_debugfs:
1301 	kvm_coalesced_mmio_free(kvm);
1302 out_no_coalesced_mmio:
1303 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1304 	if (kvm->mmu_notifier.ops)
1305 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1306 #endif
1307 out_err_no_mmu_notifier:
1308 	hardware_disable_all();
1309 out_err_no_disable:
1310 	kvm_arch_destroy_vm(kvm);
1311 out_err_no_arch_destroy_vm:
1312 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1313 	for (i = 0; i < KVM_NR_BUSES; i++)
1314 		kfree(kvm_get_bus(kvm, i));
1315 	cleanup_srcu_struct(&kvm->irq_srcu);
1316 out_err_no_irq_srcu:
1317 	cleanup_srcu_struct(&kvm->srcu);
1318 out_err_no_srcu:
1319 	kvm_arch_free_vm(kvm);
1320 	mmdrop(current->mm);
1321 	return ERR_PTR(r);
1322 }
1323 
1324 static void kvm_destroy_devices(struct kvm *kvm)
1325 {
1326 	struct kvm_device *dev, *tmp;
1327 
1328 	/*
1329 	 * We do not need to take the kvm->lock here, because nobody else
1330 	 * has a reference to the struct kvm at this point and therefore
1331 	 * cannot access the devices list anyhow.
1332 	 *
1333 	 * The device list is generally managed as an rculist, but list_del()
1334 	 * is used intentionally here. If a bug in KVM introduced a reader that
1335 	 * was not backed by a reference on the kvm struct, the hope is that
1336 	 * it'd consume the poisoned forward pointer instead of suffering a
1337 	 * use-after-free, even though this cannot be guaranteed.
1338 	 */
1339 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1340 		list_del(&dev->vm_node);
1341 		dev->ops->destroy(dev);
1342 	}
1343 }
1344 
1345 static void kvm_destroy_vm(struct kvm *kvm)
1346 {
1347 	int i;
1348 	struct mm_struct *mm = kvm->mm;
1349 
1350 	kvm_destroy_pm_notifier(kvm);
1351 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1352 	kvm_destroy_vm_debugfs(kvm);
1353 	kvm_arch_sync_events(kvm);
1354 	mutex_lock(&kvm_lock);
1355 	list_del(&kvm->vm_list);
1356 	mutex_unlock(&kvm_lock);
1357 	kvm_arch_pre_destroy_vm(kvm);
1358 
1359 	kvm_free_irq_routing(kvm);
1360 	for (i = 0; i < KVM_NR_BUSES; i++) {
1361 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1362 
1363 		if (bus)
1364 			kvm_io_bus_destroy(bus);
1365 		kvm->buses[i] = NULL;
1366 	}
1367 	kvm_coalesced_mmio_free(kvm);
1368 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1369 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1370 	/*
1371 	 * At this point, pending calls to invalidate_range_start()
1372 	 * have completed but no more MMU notifiers will run, so
1373 	 * mn_active_invalidate_count may remain unbalanced.
1374 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1375 	 * last reference on KVM has been dropped, but freeing
1376 	 * memslots would deadlock without this manual intervention.
1377 	 *
1378 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1379 	 * notifier between a start() and end(), then there shouldn't be any
1380 	 * in-progress invalidations.
1381 	 */
1382 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1383 	if (kvm->mn_active_invalidate_count)
1384 		kvm->mn_active_invalidate_count = 0;
1385 	else
1386 		WARN_ON(kvm->mmu_invalidate_in_progress);
1387 #else
1388 	kvm_flush_shadow_all(kvm);
1389 #endif
1390 	kvm_arch_destroy_vm(kvm);
1391 	kvm_destroy_devices(kvm);
1392 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1393 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1394 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1395 	}
1396 	cleanup_srcu_struct(&kvm->irq_srcu);
1397 	cleanup_srcu_struct(&kvm->srcu);
1398 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1399 	xa_destroy(&kvm->mem_attr_array);
1400 #endif
1401 	kvm_arch_free_vm(kvm);
1402 	preempt_notifier_dec();
1403 	hardware_disable_all();
1404 	mmdrop(mm);
1405 }
1406 
1407 void kvm_get_kvm(struct kvm *kvm)
1408 {
1409 	refcount_inc(&kvm->users_count);
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1412 
1413 /*
1414  * Make sure the vm is not during destruction, which is a safe version of
1415  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1416  */
1417 bool kvm_get_kvm_safe(struct kvm *kvm)
1418 {
1419 	return refcount_inc_not_zero(&kvm->users_count);
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1422 
1423 void kvm_put_kvm(struct kvm *kvm)
1424 {
1425 	if (refcount_dec_and_test(&kvm->users_count))
1426 		kvm_destroy_vm(kvm);
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1429 
1430 /*
1431  * Used to put a reference that was taken on behalf of an object associated
1432  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1433  * of the new file descriptor fails and the reference cannot be transferred to
1434  * its final owner.  In such cases, the caller is still actively using @kvm and
1435  * will fail miserably if the refcount unexpectedly hits zero.
1436  */
1437 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1438 {
1439 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1440 }
1441 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1442 
1443 static int kvm_vm_release(struct inode *inode, struct file *filp)
1444 {
1445 	struct kvm *kvm = filp->private_data;
1446 
1447 	kvm_irqfd_release(kvm);
1448 
1449 	kvm_put_kvm(kvm);
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Allocation size is twice as large as the actual dirty bitmap size.
1455  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1456  */
1457 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1458 {
1459 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1460 
1461 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1462 	if (!memslot->dirty_bitmap)
1463 		return -ENOMEM;
1464 
1465 	return 0;
1466 }
1467 
1468 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1469 {
1470 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1471 	int node_idx_inactive = active->node_idx ^ 1;
1472 
1473 	return &kvm->__memslots[as_id][node_idx_inactive];
1474 }
1475 
1476 /*
1477  * Helper to get the address space ID when one of memslot pointers may be NULL.
1478  * This also serves as a sanity that at least one of the pointers is non-NULL,
1479  * and that their address space IDs don't diverge.
1480  */
1481 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1482 				  struct kvm_memory_slot *b)
1483 {
1484 	if (WARN_ON_ONCE(!a && !b))
1485 		return 0;
1486 
1487 	if (!a)
1488 		return b->as_id;
1489 	if (!b)
1490 		return a->as_id;
1491 
1492 	WARN_ON_ONCE(a->as_id != b->as_id);
1493 	return a->as_id;
1494 }
1495 
1496 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1497 				struct kvm_memory_slot *slot)
1498 {
1499 	struct rb_root *gfn_tree = &slots->gfn_tree;
1500 	struct rb_node **node, *parent;
1501 	int idx = slots->node_idx;
1502 
1503 	parent = NULL;
1504 	for (node = &gfn_tree->rb_node; *node; ) {
1505 		struct kvm_memory_slot *tmp;
1506 
1507 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1508 		parent = *node;
1509 		if (slot->base_gfn < tmp->base_gfn)
1510 			node = &(*node)->rb_left;
1511 		else if (slot->base_gfn > tmp->base_gfn)
1512 			node = &(*node)->rb_right;
1513 		else
1514 			BUG();
1515 	}
1516 
1517 	rb_link_node(&slot->gfn_node[idx], parent, node);
1518 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1519 }
1520 
1521 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1522 			       struct kvm_memory_slot *slot)
1523 {
1524 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1525 }
1526 
1527 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1528 				 struct kvm_memory_slot *old,
1529 				 struct kvm_memory_slot *new)
1530 {
1531 	int idx = slots->node_idx;
1532 
1533 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1534 
1535 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1536 			&slots->gfn_tree);
1537 }
1538 
1539 /*
1540  * Replace @old with @new in the inactive memslots.
1541  *
1542  * With NULL @old this simply adds @new.
1543  * With NULL @new this simply removes @old.
1544  *
1545  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1546  * appropriately.
1547  */
1548 static void kvm_replace_memslot(struct kvm *kvm,
1549 				struct kvm_memory_slot *old,
1550 				struct kvm_memory_slot *new)
1551 {
1552 	int as_id = kvm_memslots_get_as_id(old, new);
1553 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1554 	int idx = slots->node_idx;
1555 
1556 	if (old) {
1557 		hash_del(&old->id_node[idx]);
1558 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1559 
1560 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1561 			atomic_long_set(&slots->last_used_slot, (long)new);
1562 
1563 		if (!new) {
1564 			kvm_erase_gfn_node(slots, old);
1565 			return;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Initialize @new's hva range.  Do this even when replacing an @old
1571 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1572 	 */
1573 	new->hva_node[idx].start = new->userspace_addr;
1574 	new->hva_node[idx].last = new->userspace_addr +
1575 				  (new->npages << PAGE_SHIFT) - 1;
1576 
1577 	/*
1578 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1579 	 * hva_node needs to be swapped with remove+insert even though hva can't
1580 	 * change when replacing an existing slot.
1581 	 */
1582 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1583 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1584 
1585 	/*
1586 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1587 	 * switch the node in the gfn tree instead of removing the old and
1588 	 * inserting the new as two separate operations. Replacement is a
1589 	 * single O(1) operation versus two O(log(n)) operations for
1590 	 * remove+insert.
1591 	 */
1592 	if (old && old->base_gfn == new->base_gfn) {
1593 		kvm_replace_gfn_node(slots, old, new);
1594 	} else {
1595 		if (old)
1596 			kvm_erase_gfn_node(slots, old);
1597 		kvm_insert_gfn_node(slots, new);
1598 	}
1599 }
1600 
1601 /*
1602  * Flags that do not access any of the extra space of struct
1603  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1604  * only allows these.
1605  */
1606 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1607 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1608 
1609 static int check_memory_region_flags(struct kvm *kvm,
1610 				     const struct kvm_userspace_memory_region2 *mem)
1611 {
1612 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1613 
1614 	if (kvm_arch_has_private_mem(kvm))
1615 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1616 
1617 	/* Dirty logging private memory is not currently supported. */
1618 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1619 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1620 
1621 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1622 	/*
1623 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1624 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1625 	 * and KVM doesn't allow emulated MMIO for private memory.
1626 	 */
1627 	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1628 		valid_flags |= KVM_MEM_READONLY;
1629 #endif
1630 
1631 	if (mem->flags & ~valid_flags)
1632 		return -EINVAL;
1633 
1634 	return 0;
1635 }
1636 
1637 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1638 {
1639 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1640 
1641 	/* Grab the generation from the activate memslots. */
1642 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1643 
1644 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1645 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1646 
1647 	/*
1648 	 * Do not store the new memslots while there are invalidations in
1649 	 * progress, otherwise the locking in invalidate_range_start and
1650 	 * invalidate_range_end will be unbalanced.
1651 	 */
1652 	spin_lock(&kvm->mn_invalidate_lock);
1653 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1654 	while (kvm->mn_active_invalidate_count) {
1655 		set_current_state(TASK_UNINTERRUPTIBLE);
1656 		spin_unlock(&kvm->mn_invalidate_lock);
1657 		schedule();
1658 		spin_lock(&kvm->mn_invalidate_lock);
1659 	}
1660 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1661 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1662 	spin_unlock(&kvm->mn_invalidate_lock);
1663 
1664 	/*
1665 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1666 	 * SRCU below in order to avoid deadlock with another thread
1667 	 * acquiring the slots_arch_lock in an srcu critical section.
1668 	 */
1669 	mutex_unlock(&kvm->slots_arch_lock);
1670 
1671 	synchronize_srcu_expedited(&kvm->srcu);
1672 
1673 	/*
1674 	 * Increment the new memslot generation a second time, dropping the
1675 	 * update in-progress flag and incrementing the generation based on
1676 	 * the number of address spaces.  This provides a unique and easily
1677 	 * identifiable generation number while the memslots are in flux.
1678 	 */
1679 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1680 
1681 	/*
1682 	 * Generations must be unique even across address spaces.  We do not need
1683 	 * a global counter for that, instead the generation space is evenly split
1684 	 * across address spaces.  For example, with two address spaces, address
1685 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1686 	 * use generations 1, 3, 5, ...
1687 	 */
1688 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1689 
1690 	kvm_arch_memslots_updated(kvm, gen);
1691 
1692 	slots->generation = gen;
1693 }
1694 
1695 static int kvm_prepare_memory_region(struct kvm *kvm,
1696 				     const struct kvm_memory_slot *old,
1697 				     struct kvm_memory_slot *new,
1698 				     enum kvm_mr_change change)
1699 {
1700 	int r;
1701 
1702 	/*
1703 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1704 	 * will be freed on "commit".  If logging is enabled in both old and
1705 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1706 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1707 	 * new bitmap.
1708 	 */
1709 	if (change != KVM_MR_DELETE) {
1710 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1711 			new->dirty_bitmap = NULL;
1712 		else if (old && old->dirty_bitmap)
1713 			new->dirty_bitmap = old->dirty_bitmap;
1714 		else if (kvm_use_dirty_bitmap(kvm)) {
1715 			r = kvm_alloc_dirty_bitmap(new);
1716 			if (r)
1717 				return r;
1718 
1719 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1720 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1721 		}
1722 	}
1723 
1724 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1725 
1726 	/* Free the bitmap on failure if it was allocated above. */
1727 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1728 		kvm_destroy_dirty_bitmap(new);
1729 
1730 	return r;
1731 }
1732 
1733 static void kvm_commit_memory_region(struct kvm *kvm,
1734 				     struct kvm_memory_slot *old,
1735 				     const struct kvm_memory_slot *new,
1736 				     enum kvm_mr_change change)
1737 {
1738 	int old_flags = old ? old->flags : 0;
1739 	int new_flags = new ? new->flags : 0;
1740 	/*
1741 	 * Update the total number of memslot pages before calling the arch
1742 	 * hook so that architectures can consume the result directly.
1743 	 */
1744 	if (change == KVM_MR_DELETE)
1745 		kvm->nr_memslot_pages -= old->npages;
1746 	else if (change == KVM_MR_CREATE)
1747 		kvm->nr_memslot_pages += new->npages;
1748 
1749 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1750 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1751 		atomic_set(&kvm->nr_memslots_dirty_logging,
1752 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1753 	}
1754 
1755 	kvm_arch_commit_memory_region(kvm, old, new, change);
1756 
1757 	switch (change) {
1758 	case KVM_MR_CREATE:
1759 		/* Nothing more to do. */
1760 		break;
1761 	case KVM_MR_DELETE:
1762 		/* Free the old memslot and all its metadata. */
1763 		kvm_free_memslot(kvm, old);
1764 		break;
1765 	case KVM_MR_MOVE:
1766 	case KVM_MR_FLAGS_ONLY:
1767 		/*
1768 		 * Free the dirty bitmap as needed; the below check encompasses
1769 		 * both the flags and whether a ring buffer is being used)
1770 		 */
1771 		if (old->dirty_bitmap && !new->dirty_bitmap)
1772 			kvm_destroy_dirty_bitmap(old);
1773 
1774 		/*
1775 		 * The final quirk.  Free the detached, old slot, but only its
1776 		 * memory, not any metadata.  Metadata, including arch specific
1777 		 * data, may be reused by @new.
1778 		 */
1779 		kfree(old);
1780 		break;
1781 	default:
1782 		BUG();
1783 	}
1784 }
1785 
1786 /*
1787  * Activate @new, which must be installed in the inactive slots by the caller,
1788  * by swapping the active slots and then propagating @new to @old once @old is
1789  * unreachable and can be safely modified.
1790  *
1791  * With NULL @old this simply adds @new to @active (while swapping the sets).
1792  * With NULL @new this simply removes @old from @active and frees it
1793  * (while also swapping the sets).
1794  */
1795 static void kvm_activate_memslot(struct kvm *kvm,
1796 				 struct kvm_memory_slot *old,
1797 				 struct kvm_memory_slot *new)
1798 {
1799 	int as_id = kvm_memslots_get_as_id(old, new);
1800 
1801 	kvm_swap_active_memslots(kvm, as_id);
1802 
1803 	/* Propagate the new memslot to the now inactive memslots. */
1804 	kvm_replace_memslot(kvm, old, new);
1805 }
1806 
1807 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1808 			     const struct kvm_memory_slot *src)
1809 {
1810 	dest->base_gfn = src->base_gfn;
1811 	dest->npages = src->npages;
1812 	dest->dirty_bitmap = src->dirty_bitmap;
1813 	dest->arch = src->arch;
1814 	dest->userspace_addr = src->userspace_addr;
1815 	dest->flags = src->flags;
1816 	dest->id = src->id;
1817 	dest->as_id = src->as_id;
1818 }
1819 
1820 static void kvm_invalidate_memslot(struct kvm *kvm,
1821 				   struct kvm_memory_slot *old,
1822 				   struct kvm_memory_slot *invalid_slot)
1823 {
1824 	/*
1825 	 * Mark the current slot INVALID.  As with all memslot modifications,
1826 	 * this must be done on an unreachable slot to avoid modifying the
1827 	 * current slot in the active tree.
1828 	 */
1829 	kvm_copy_memslot(invalid_slot, old);
1830 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1831 	kvm_replace_memslot(kvm, old, invalid_slot);
1832 
1833 	/*
1834 	 * Activate the slot that is now marked INVALID, but don't propagate
1835 	 * the slot to the now inactive slots. The slot is either going to be
1836 	 * deleted or recreated as a new slot.
1837 	 */
1838 	kvm_swap_active_memslots(kvm, old->as_id);
1839 
1840 	/*
1841 	 * From this point no new shadow pages pointing to a deleted, or moved,
1842 	 * memslot will be created.  Validation of sp->gfn happens in:
1843 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1844 	 *	- kvm_is_visible_gfn (mmu_check_root)
1845 	 */
1846 	kvm_arch_flush_shadow_memslot(kvm, old);
1847 	kvm_arch_guest_memory_reclaimed(kvm);
1848 
1849 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1850 	mutex_lock(&kvm->slots_arch_lock);
1851 
1852 	/*
1853 	 * Copy the arch-specific field of the newly-installed slot back to the
1854 	 * old slot as the arch data could have changed between releasing
1855 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1856 	 * above.  Writers are required to retrieve memslots *after* acquiring
1857 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1858 	 */
1859 	old->arch = invalid_slot->arch;
1860 }
1861 
1862 static void kvm_create_memslot(struct kvm *kvm,
1863 			       struct kvm_memory_slot *new)
1864 {
1865 	/* Add the new memslot to the inactive set and activate. */
1866 	kvm_replace_memslot(kvm, NULL, new);
1867 	kvm_activate_memslot(kvm, NULL, new);
1868 }
1869 
1870 static void kvm_delete_memslot(struct kvm *kvm,
1871 			       struct kvm_memory_slot *old,
1872 			       struct kvm_memory_slot *invalid_slot)
1873 {
1874 	/*
1875 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1876 	 * the "new" slot, and for the invalid version in the active slots.
1877 	 */
1878 	kvm_replace_memslot(kvm, old, NULL);
1879 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1880 }
1881 
1882 static void kvm_move_memslot(struct kvm *kvm,
1883 			     struct kvm_memory_slot *old,
1884 			     struct kvm_memory_slot *new,
1885 			     struct kvm_memory_slot *invalid_slot)
1886 {
1887 	/*
1888 	 * Replace the old memslot in the inactive slots, and then swap slots
1889 	 * and replace the current INVALID with the new as well.
1890 	 */
1891 	kvm_replace_memslot(kvm, old, new);
1892 	kvm_activate_memslot(kvm, invalid_slot, new);
1893 }
1894 
1895 static void kvm_update_flags_memslot(struct kvm *kvm,
1896 				     struct kvm_memory_slot *old,
1897 				     struct kvm_memory_slot *new)
1898 {
1899 	/*
1900 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1901 	 * an intermediate step. Instead, the old memslot is simply replaced
1902 	 * with a new, updated copy in both memslot sets.
1903 	 */
1904 	kvm_replace_memslot(kvm, old, new);
1905 	kvm_activate_memslot(kvm, old, new);
1906 }
1907 
1908 static int kvm_set_memslot(struct kvm *kvm,
1909 			   struct kvm_memory_slot *old,
1910 			   struct kvm_memory_slot *new,
1911 			   enum kvm_mr_change change)
1912 {
1913 	struct kvm_memory_slot *invalid_slot;
1914 	int r;
1915 
1916 	/*
1917 	 * Released in kvm_swap_active_memslots().
1918 	 *
1919 	 * Must be held from before the current memslots are copied until after
1920 	 * the new memslots are installed with rcu_assign_pointer, then
1921 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1922 	 *
1923 	 * When modifying memslots outside of the slots_lock, must be held
1924 	 * before reading the pointer to the current memslots until after all
1925 	 * changes to those memslots are complete.
1926 	 *
1927 	 * These rules ensure that installing new memslots does not lose
1928 	 * changes made to the previous memslots.
1929 	 */
1930 	mutex_lock(&kvm->slots_arch_lock);
1931 
1932 	/*
1933 	 * Invalidate the old slot if it's being deleted or moved.  This is
1934 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1935 	 * continue running by ensuring there are no mappings or shadow pages
1936 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1937 	 * (and without a lock), a window would exist between effecting the
1938 	 * delete/move and committing the changes in arch code where KVM or a
1939 	 * guest could access a non-existent memslot.
1940 	 *
1941 	 * Modifications are done on a temporary, unreachable slot.  The old
1942 	 * slot needs to be preserved in case a later step fails and the
1943 	 * invalidation needs to be reverted.
1944 	 */
1945 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1946 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1947 		if (!invalid_slot) {
1948 			mutex_unlock(&kvm->slots_arch_lock);
1949 			return -ENOMEM;
1950 		}
1951 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1952 	}
1953 
1954 	r = kvm_prepare_memory_region(kvm, old, new, change);
1955 	if (r) {
1956 		/*
1957 		 * For DELETE/MOVE, revert the above INVALID change.  No
1958 		 * modifications required since the original slot was preserved
1959 		 * in the inactive slots.  Changing the active memslots also
1960 		 * release slots_arch_lock.
1961 		 */
1962 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1963 			kvm_activate_memslot(kvm, invalid_slot, old);
1964 			kfree(invalid_slot);
1965 		} else {
1966 			mutex_unlock(&kvm->slots_arch_lock);
1967 		}
1968 		return r;
1969 	}
1970 
1971 	/*
1972 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1973 	 * version of the old slot.  MOVE is particularly special as it reuses
1974 	 * the old slot and returns a copy of the old slot (in working_slot).
1975 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1976 	 * old slot is detached but otherwise preserved.
1977 	 */
1978 	if (change == KVM_MR_CREATE)
1979 		kvm_create_memslot(kvm, new);
1980 	else if (change == KVM_MR_DELETE)
1981 		kvm_delete_memslot(kvm, old, invalid_slot);
1982 	else if (change == KVM_MR_MOVE)
1983 		kvm_move_memslot(kvm, old, new, invalid_slot);
1984 	else if (change == KVM_MR_FLAGS_ONLY)
1985 		kvm_update_flags_memslot(kvm, old, new);
1986 	else
1987 		BUG();
1988 
1989 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1990 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1991 		kfree(invalid_slot);
1992 
1993 	/*
1994 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1995 	 * will directly hit the final, active memslot.  Architectures are
1996 	 * responsible for knowing that new->arch may be stale.
1997 	 */
1998 	kvm_commit_memory_region(kvm, old, new, change);
1999 
2000 	return 0;
2001 }
2002 
2003 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2004 				      gfn_t start, gfn_t end)
2005 {
2006 	struct kvm_memslot_iter iter;
2007 
2008 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2009 		if (iter.slot->id != id)
2010 			return true;
2011 	}
2012 
2013 	return false;
2014 }
2015 
2016 /*
2017  * Allocate some memory and give it an address in the guest physical address
2018  * space.
2019  *
2020  * Discontiguous memory is allowed, mostly for framebuffers.
2021  *
2022  * Must be called holding kvm->slots_lock for write.
2023  */
2024 int __kvm_set_memory_region(struct kvm *kvm,
2025 			    const struct kvm_userspace_memory_region2 *mem)
2026 {
2027 	struct kvm_memory_slot *old, *new;
2028 	struct kvm_memslots *slots;
2029 	enum kvm_mr_change change;
2030 	unsigned long npages;
2031 	gfn_t base_gfn;
2032 	int as_id, id;
2033 	int r;
2034 
2035 	r = check_memory_region_flags(kvm, mem);
2036 	if (r)
2037 		return r;
2038 
2039 	as_id = mem->slot >> 16;
2040 	id = (u16)mem->slot;
2041 
2042 	/* General sanity checks */
2043 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2044 	    (mem->memory_size != (unsigned long)mem->memory_size))
2045 		return -EINVAL;
2046 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2047 		return -EINVAL;
2048 	/* We can read the guest memory with __xxx_user() later on. */
2049 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2050 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2051 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2052 			mem->memory_size))
2053 		return -EINVAL;
2054 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2055 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2056 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2057 		return -EINVAL;
2058 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2059 		return -EINVAL;
2060 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2061 		return -EINVAL;
2062 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2063 		return -EINVAL;
2064 
2065 	slots = __kvm_memslots(kvm, as_id);
2066 
2067 	/*
2068 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2069 	 * and/or destroyed by kvm_set_memslot().
2070 	 */
2071 	old = id_to_memslot(slots, id);
2072 
2073 	if (!mem->memory_size) {
2074 		if (!old || !old->npages)
2075 			return -EINVAL;
2076 
2077 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2078 			return -EIO;
2079 
2080 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2081 	}
2082 
2083 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2084 	npages = (mem->memory_size >> PAGE_SHIFT);
2085 
2086 	if (!old || !old->npages) {
2087 		change = KVM_MR_CREATE;
2088 
2089 		/*
2090 		 * To simplify KVM internals, the total number of pages across
2091 		 * all memslots must fit in an unsigned long.
2092 		 */
2093 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2094 			return -EINVAL;
2095 	} else { /* Modify an existing slot. */
2096 		/* Private memslots are immutable, they can only be deleted. */
2097 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2098 			return -EINVAL;
2099 		if ((mem->userspace_addr != old->userspace_addr) ||
2100 		    (npages != old->npages) ||
2101 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2102 			return -EINVAL;
2103 
2104 		if (base_gfn != old->base_gfn)
2105 			change = KVM_MR_MOVE;
2106 		else if (mem->flags != old->flags)
2107 			change = KVM_MR_FLAGS_ONLY;
2108 		else /* Nothing to change. */
2109 			return 0;
2110 	}
2111 
2112 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2113 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2114 		return -EEXIST;
2115 
2116 	/* Allocate a slot that will persist in the memslot. */
2117 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2118 	if (!new)
2119 		return -ENOMEM;
2120 
2121 	new->as_id = as_id;
2122 	new->id = id;
2123 	new->base_gfn = base_gfn;
2124 	new->npages = npages;
2125 	new->flags = mem->flags;
2126 	new->userspace_addr = mem->userspace_addr;
2127 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2128 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2129 		if (r)
2130 			goto out;
2131 	}
2132 
2133 	r = kvm_set_memslot(kvm, old, new, change);
2134 	if (r)
2135 		goto out_unbind;
2136 
2137 	return 0;
2138 
2139 out_unbind:
2140 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2141 		kvm_gmem_unbind(new);
2142 out:
2143 	kfree(new);
2144 	return r;
2145 }
2146 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2147 
2148 int kvm_set_memory_region(struct kvm *kvm,
2149 			  const struct kvm_userspace_memory_region2 *mem)
2150 {
2151 	int r;
2152 
2153 	mutex_lock(&kvm->slots_lock);
2154 	r = __kvm_set_memory_region(kvm, mem);
2155 	mutex_unlock(&kvm->slots_lock);
2156 	return r;
2157 }
2158 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2159 
2160 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2161 					  struct kvm_userspace_memory_region2 *mem)
2162 {
2163 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2164 		return -EINVAL;
2165 
2166 	return kvm_set_memory_region(kvm, mem);
2167 }
2168 
2169 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2170 /**
2171  * kvm_get_dirty_log - get a snapshot of dirty pages
2172  * @kvm:	pointer to kvm instance
2173  * @log:	slot id and address to which we copy the log
2174  * @is_dirty:	set to '1' if any dirty pages were found
2175  * @memslot:	set to the associated memslot, always valid on success
2176  */
2177 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2178 		      int *is_dirty, struct kvm_memory_slot **memslot)
2179 {
2180 	struct kvm_memslots *slots;
2181 	int i, as_id, id;
2182 	unsigned long n;
2183 	unsigned long any = 0;
2184 
2185 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2186 	if (!kvm_use_dirty_bitmap(kvm))
2187 		return -ENXIO;
2188 
2189 	*memslot = NULL;
2190 	*is_dirty = 0;
2191 
2192 	as_id = log->slot >> 16;
2193 	id = (u16)log->slot;
2194 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2195 		return -EINVAL;
2196 
2197 	slots = __kvm_memslots(kvm, as_id);
2198 	*memslot = id_to_memslot(slots, id);
2199 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2200 		return -ENOENT;
2201 
2202 	kvm_arch_sync_dirty_log(kvm, *memslot);
2203 
2204 	n = kvm_dirty_bitmap_bytes(*memslot);
2205 
2206 	for (i = 0; !any && i < n/sizeof(long); ++i)
2207 		any = (*memslot)->dirty_bitmap[i];
2208 
2209 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2210 		return -EFAULT;
2211 
2212 	if (any)
2213 		*is_dirty = 1;
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2217 
2218 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2219 /**
2220  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2221  *	and reenable dirty page tracking for the corresponding pages.
2222  * @kvm:	pointer to kvm instance
2223  * @log:	slot id and address to which we copy the log
2224  *
2225  * We need to keep it in mind that VCPU threads can write to the bitmap
2226  * concurrently. So, to avoid losing track of dirty pages we keep the
2227  * following order:
2228  *
2229  *    1. Take a snapshot of the bit and clear it if needed.
2230  *    2. Write protect the corresponding page.
2231  *    3. Copy the snapshot to the userspace.
2232  *    4. Upon return caller flushes TLB's if needed.
2233  *
2234  * Between 2 and 4, the guest may write to the page using the remaining TLB
2235  * entry.  This is not a problem because the page is reported dirty using
2236  * the snapshot taken before and step 4 ensures that writes done after
2237  * exiting to userspace will be logged for the next call.
2238  *
2239  */
2240 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2241 {
2242 	struct kvm_memslots *slots;
2243 	struct kvm_memory_slot *memslot;
2244 	int i, as_id, id;
2245 	unsigned long n;
2246 	unsigned long *dirty_bitmap;
2247 	unsigned long *dirty_bitmap_buffer;
2248 	bool flush;
2249 
2250 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2251 	if (!kvm_use_dirty_bitmap(kvm))
2252 		return -ENXIO;
2253 
2254 	as_id = log->slot >> 16;
2255 	id = (u16)log->slot;
2256 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2257 		return -EINVAL;
2258 
2259 	slots = __kvm_memslots(kvm, as_id);
2260 	memslot = id_to_memslot(slots, id);
2261 	if (!memslot || !memslot->dirty_bitmap)
2262 		return -ENOENT;
2263 
2264 	dirty_bitmap = memslot->dirty_bitmap;
2265 
2266 	kvm_arch_sync_dirty_log(kvm, memslot);
2267 
2268 	n = kvm_dirty_bitmap_bytes(memslot);
2269 	flush = false;
2270 	if (kvm->manual_dirty_log_protect) {
2271 		/*
2272 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2273 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2274 		 * is some code duplication between this function and
2275 		 * kvm_get_dirty_log, but hopefully all architecture
2276 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2277 		 * can be eliminated.
2278 		 */
2279 		dirty_bitmap_buffer = dirty_bitmap;
2280 	} else {
2281 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2282 		memset(dirty_bitmap_buffer, 0, n);
2283 
2284 		KVM_MMU_LOCK(kvm);
2285 		for (i = 0; i < n / sizeof(long); i++) {
2286 			unsigned long mask;
2287 			gfn_t offset;
2288 
2289 			if (!dirty_bitmap[i])
2290 				continue;
2291 
2292 			flush = true;
2293 			mask = xchg(&dirty_bitmap[i], 0);
2294 			dirty_bitmap_buffer[i] = mask;
2295 
2296 			offset = i * BITS_PER_LONG;
2297 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2298 								offset, mask);
2299 		}
2300 		KVM_MMU_UNLOCK(kvm);
2301 	}
2302 
2303 	if (flush)
2304 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2305 
2306 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2307 		return -EFAULT;
2308 	return 0;
2309 }
2310 
2311 
2312 /**
2313  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2314  * @kvm: kvm instance
2315  * @log: slot id and address to which we copy the log
2316  *
2317  * Steps 1-4 below provide general overview of dirty page logging. See
2318  * kvm_get_dirty_log_protect() function description for additional details.
2319  *
2320  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2321  * always flush the TLB (step 4) even if previous step failed  and the dirty
2322  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2323  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2324  * writes will be marked dirty for next log read.
2325  *
2326  *   1. Take a snapshot of the bit and clear it if needed.
2327  *   2. Write protect the corresponding page.
2328  *   3. Copy the snapshot to the userspace.
2329  *   4. Flush TLB's if needed.
2330  */
2331 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2332 				      struct kvm_dirty_log *log)
2333 {
2334 	int r;
2335 
2336 	mutex_lock(&kvm->slots_lock);
2337 
2338 	r = kvm_get_dirty_log_protect(kvm, log);
2339 
2340 	mutex_unlock(&kvm->slots_lock);
2341 	return r;
2342 }
2343 
2344 /**
2345  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2346  *	and reenable dirty page tracking for the corresponding pages.
2347  * @kvm:	pointer to kvm instance
2348  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2349  */
2350 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2351 				       struct kvm_clear_dirty_log *log)
2352 {
2353 	struct kvm_memslots *slots;
2354 	struct kvm_memory_slot *memslot;
2355 	int as_id, id;
2356 	gfn_t offset;
2357 	unsigned long i, n;
2358 	unsigned long *dirty_bitmap;
2359 	unsigned long *dirty_bitmap_buffer;
2360 	bool flush;
2361 
2362 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2363 	if (!kvm_use_dirty_bitmap(kvm))
2364 		return -ENXIO;
2365 
2366 	as_id = log->slot >> 16;
2367 	id = (u16)log->slot;
2368 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2369 		return -EINVAL;
2370 
2371 	if (log->first_page & 63)
2372 		return -EINVAL;
2373 
2374 	slots = __kvm_memslots(kvm, as_id);
2375 	memslot = id_to_memslot(slots, id);
2376 	if (!memslot || !memslot->dirty_bitmap)
2377 		return -ENOENT;
2378 
2379 	dirty_bitmap = memslot->dirty_bitmap;
2380 
2381 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2382 
2383 	if (log->first_page > memslot->npages ||
2384 	    log->num_pages > memslot->npages - log->first_page ||
2385 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2386 	    return -EINVAL;
2387 
2388 	kvm_arch_sync_dirty_log(kvm, memslot);
2389 
2390 	flush = false;
2391 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2392 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2393 		return -EFAULT;
2394 
2395 	KVM_MMU_LOCK(kvm);
2396 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2397 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2398 	     i++, offset += BITS_PER_LONG) {
2399 		unsigned long mask = *dirty_bitmap_buffer++;
2400 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2401 		if (!mask)
2402 			continue;
2403 
2404 		mask &= atomic_long_fetch_andnot(mask, p);
2405 
2406 		/*
2407 		 * mask contains the bits that really have been cleared.  This
2408 		 * never includes any bits beyond the length of the memslot (if
2409 		 * the length is not aligned to 64 pages), therefore it is not
2410 		 * a problem if userspace sets them in log->dirty_bitmap.
2411 		*/
2412 		if (mask) {
2413 			flush = true;
2414 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2415 								offset, mask);
2416 		}
2417 	}
2418 	KVM_MMU_UNLOCK(kvm);
2419 
2420 	if (flush)
2421 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2422 
2423 	return 0;
2424 }
2425 
2426 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2427 					struct kvm_clear_dirty_log *log)
2428 {
2429 	int r;
2430 
2431 	mutex_lock(&kvm->slots_lock);
2432 
2433 	r = kvm_clear_dirty_log_protect(kvm, log);
2434 
2435 	mutex_unlock(&kvm->slots_lock);
2436 	return r;
2437 }
2438 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2439 
2440 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2441 /*
2442  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2443  * matching @attrs.
2444  */
2445 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2446 				     unsigned long attrs)
2447 {
2448 	XA_STATE(xas, &kvm->mem_attr_array, start);
2449 	unsigned long index;
2450 	bool has_attrs;
2451 	void *entry;
2452 
2453 	rcu_read_lock();
2454 
2455 	if (!attrs) {
2456 		has_attrs = !xas_find(&xas, end - 1);
2457 		goto out;
2458 	}
2459 
2460 	has_attrs = true;
2461 	for (index = start; index < end; index++) {
2462 		do {
2463 			entry = xas_next(&xas);
2464 		} while (xas_retry(&xas, entry));
2465 
2466 		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2467 			has_attrs = false;
2468 			break;
2469 		}
2470 	}
2471 
2472 out:
2473 	rcu_read_unlock();
2474 	return has_attrs;
2475 }
2476 
2477 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2478 {
2479 	if (!kvm || kvm_arch_has_private_mem(kvm))
2480 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2481 
2482 	return 0;
2483 }
2484 
2485 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2486 						 struct kvm_mmu_notifier_range *range)
2487 {
2488 	struct kvm_gfn_range gfn_range;
2489 	struct kvm_memory_slot *slot;
2490 	struct kvm_memslots *slots;
2491 	struct kvm_memslot_iter iter;
2492 	bool found_memslot = false;
2493 	bool ret = false;
2494 	int i;
2495 
2496 	gfn_range.arg = range->arg;
2497 	gfn_range.may_block = range->may_block;
2498 
2499 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2500 		slots = __kvm_memslots(kvm, i);
2501 
2502 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2503 			slot = iter.slot;
2504 			gfn_range.slot = slot;
2505 
2506 			gfn_range.start = max(range->start, slot->base_gfn);
2507 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2508 			if (gfn_range.start >= gfn_range.end)
2509 				continue;
2510 
2511 			if (!found_memslot) {
2512 				found_memslot = true;
2513 				KVM_MMU_LOCK(kvm);
2514 				if (!IS_KVM_NULL_FN(range->on_lock))
2515 					range->on_lock(kvm);
2516 			}
2517 
2518 			ret |= range->handler(kvm, &gfn_range);
2519 		}
2520 	}
2521 
2522 	if (range->flush_on_ret && ret)
2523 		kvm_flush_remote_tlbs(kvm);
2524 
2525 	if (found_memslot)
2526 		KVM_MMU_UNLOCK(kvm);
2527 }
2528 
2529 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2530 					  struct kvm_gfn_range *range)
2531 {
2532 	/*
2533 	 * Unconditionally add the range to the invalidation set, regardless of
2534 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2535 	 * if KVM supports RWX attributes in the future and the attributes are
2536 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2537 	 * adding the range allows KVM to require that MMU invalidations add at
2538 	 * least one range between begin() and end(), e.g. allows KVM to detect
2539 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2540 	 * but it's not obvious that allowing new mappings while the attributes
2541 	 * are in flux is desirable or worth the complexity.
2542 	 */
2543 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2544 
2545 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2546 }
2547 
2548 /* Set @attributes for the gfn range [@start, @end). */
2549 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2550 				     unsigned long attributes)
2551 {
2552 	struct kvm_mmu_notifier_range pre_set_range = {
2553 		.start = start,
2554 		.end = end,
2555 		.handler = kvm_pre_set_memory_attributes,
2556 		.on_lock = kvm_mmu_invalidate_begin,
2557 		.flush_on_ret = true,
2558 		.may_block = true,
2559 	};
2560 	struct kvm_mmu_notifier_range post_set_range = {
2561 		.start = start,
2562 		.end = end,
2563 		.arg.attributes = attributes,
2564 		.handler = kvm_arch_post_set_memory_attributes,
2565 		.on_lock = kvm_mmu_invalidate_end,
2566 		.may_block = true,
2567 	};
2568 	unsigned long i;
2569 	void *entry;
2570 	int r = 0;
2571 
2572 	entry = attributes ? xa_mk_value(attributes) : NULL;
2573 
2574 	mutex_lock(&kvm->slots_lock);
2575 
2576 	/* Nothing to do if the entire range as the desired attributes. */
2577 	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2578 		goto out_unlock;
2579 
2580 	/*
2581 	 * Reserve memory ahead of time to avoid having to deal with failures
2582 	 * partway through setting the new attributes.
2583 	 */
2584 	for (i = start; i < end; i++) {
2585 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2586 		if (r)
2587 			goto out_unlock;
2588 	}
2589 
2590 	kvm_handle_gfn_range(kvm, &pre_set_range);
2591 
2592 	for (i = start; i < end; i++) {
2593 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2594 				    GFP_KERNEL_ACCOUNT));
2595 		KVM_BUG_ON(r, kvm);
2596 	}
2597 
2598 	kvm_handle_gfn_range(kvm, &post_set_range);
2599 
2600 out_unlock:
2601 	mutex_unlock(&kvm->slots_lock);
2602 
2603 	return r;
2604 }
2605 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2606 					   struct kvm_memory_attributes *attrs)
2607 {
2608 	gfn_t start, end;
2609 
2610 	/* flags is currently not used. */
2611 	if (attrs->flags)
2612 		return -EINVAL;
2613 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2614 		return -EINVAL;
2615 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2616 		return -EINVAL;
2617 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2618 		return -EINVAL;
2619 
2620 	start = attrs->address >> PAGE_SHIFT;
2621 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2622 
2623 	/*
2624 	 * xarray tracks data using "unsigned long", and as a result so does
2625 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2626 	 * architectures.
2627 	 */
2628 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2629 
2630 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2631 }
2632 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2633 
2634 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2635 {
2636 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2637 }
2638 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2639 
2640 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2641 {
2642 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2643 	u64 gen = slots->generation;
2644 	struct kvm_memory_slot *slot;
2645 
2646 	/*
2647 	 * This also protects against using a memslot from a different address space,
2648 	 * since different address spaces have different generation numbers.
2649 	 */
2650 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2651 		vcpu->last_used_slot = NULL;
2652 		vcpu->last_used_slot_gen = gen;
2653 	}
2654 
2655 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2656 	if (slot)
2657 		return slot;
2658 
2659 	/*
2660 	 * Fall back to searching all memslots. We purposely use
2661 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2662 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2663 	 */
2664 	slot = search_memslots(slots, gfn, false);
2665 	if (slot) {
2666 		vcpu->last_used_slot = slot;
2667 		return slot;
2668 	}
2669 
2670 	return NULL;
2671 }
2672 
2673 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2674 {
2675 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2676 
2677 	return kvm_is_visible_memslot(memslot);
2678 }
2679 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2680 
2681 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2682 {
2683 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2684 
2685 	return kvm_is_visible_memslot(memslot);
2686 }
2687 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2688 
2689 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2690 {
2691 	struct vm_area_struct *vma;
2692 	unsigned long addr, size;
2693 
2694 	size = PAGE_SIZE;
2695 
2696 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2697 	if (kvm_is_error_hva(addr))
2698 		return PAGE_SIZE;
2699 
2700 	mmap_read_lock(current->mm);
2701 	vma = find_vma(current->mm, addr);
2702 	if (!vma)
2703 		goto out;
2704 
2705 	size = vma_kernel_pagesize(vma);
2706 
2707 out:
2708 	mmap_read_unlock(current->mm);
2709 
2710 	return size;
2711 }
2712 
2713 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2714 {
2715 	return slot->flags & KVM_MEM_READONLY;
2716 }
2717 
2718 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2719 				       gfn_t *nr_pages, bool write)
2720 {
2721 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2722 		return KVM_HVA_ERR_BAD;
2723 
2724 	if (memslot_is_readonly(slot) && write)
2725 		return KVM_HVA_ERR_RO_BAD;
2726 
2727 	if (nr_pages)
2728 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2729 
2730 	return __gfn_to_hva_memslot(slot, gfn);
2731 }
2732 
2733 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2734 				     gfn_t *nr_pages)
2735 {
2736 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2737 }
2738 
2739 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2740 					gfn_t gfn)
2741 {
2742 	return gfn_to_hva_many(slot, gfn, NULL);
2743 }
2744 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2745 
2746 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2747 {
2748 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2749 }
2750 EXPORT_SYMBOL_GPL(gfn_to_hva);
2751 
2752 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2753 {
2754 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2755 }
2756 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2757 
2758 /*
2759  * Return the hva of a @gfn and the R/W attribute if possible.
2760  *
2761  * @slot: the kvm_memory_slot which contains @gfn
2762  * @gfn: the gfn to be translated
2763  * @writable: used to return the read/write attribute of the @slot if the hva
2764  * is valid and @writable is not NULL
2765  */
2766 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2767 				      gfn_t gfn, bool *writable)
2768 {
2769 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2770 
2771 	if (!kvm_is_error_hva(hva) && writable)
2772 		*writable = !memslot_is_readonly(slot);
2773 
2774 	return hva;
2775 }
2776 
2777 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2778 {
2779 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2780 
2781 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2782 }
2783 
2784 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2785 {
2786 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2787 
2788 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2789 }
2790 
2791 static inline int check_user_page_hwpoison(unsigned long addr)
2792 {
2793 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2794 
2795 	rc = get_user_pages(addr, 1, flags, NULL);
2796 	return rc == -EHWPOISON;
2797 }
2798 
2799 /*
2800  * The fast path to get the writable pfn which will be stored in @pfn,
2801  * true indicates success, otherwise false is returned.  It's also the
2802  * only part that runs if we can in atomic context.
2803  */
2804 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2805 			    bool *writable, kvm_pfn_t *pfn)
2806 {
2807 	struct page *page[1];
2808 
2809 	/*
2810 	 * Fast pin a writable pfn only if it is a write fault request
2811 	 * or the caller allows to map a writable pfn for a read fault
2812 	 * request.
2813 	 */
2814 	if (!(write_fault || writable))
2815 		return false;
2816 
2817 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2818 		*pfn = page_to_pfn(page[0]);
2819 
2820 		if (writable)
2821 			*writable = true;
2822 		return true;
2823 	}
2824 
2825 	return false;
2826 }
2827 
2828 /*
2829  * The slow path to get the pfn of the specified host virtual address,
2830  * 1 indicates success, -errno is returned if error is detected.
2831  */
2832 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2833 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2834 {
2835 	/*
2836 	 * When a VCPU accesses a page that is not mapped into the secondary
2837 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2838 	 * make progress. We always want to honor NUMA hinting faults in that
2839 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2840 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2841 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2842 	 *
2843 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2844 	 * implicitly honor NUMA hinting faults and don't need this flag.
2845 	 */
2846 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2847 	struct page *page;
2848 	int npages;
2849 
2850 	might_sleep();
2851 
2852 	if (writable)
2853 		*writable = write_fault;
2854 
2855 	if (write_fault)
2856 		flags |= FOLL_WRITE;
2857 	if (async)
2858 		flags |= FOLL_NOWAIT;
2859 	if (interruptible)
2860 		flags |= FOLL_INTERRUPTIBLE;
2861 
2862 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2863 	if (npages != 1)
2864 		return npages;
2865 
2866 	/* map read fault as writable if possible */
2867 	if (unlikely(!write_fault) && writable) {
2868 		struct page *wpage;
2869 
2870 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2871 			*writable = true;
2872 			put_page(page);
2873 			page = wpage;
2874 		}
2875 	}
2876 	*pfn = page_to_pfn(page);
2877 	return npages;
2878 }
2879 
2880 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2881 {
2882 	if (unlikely(!(vma->vm_flags & VM_READ)))
2883 		return false;
2884 
2885 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2886 		return false;
2887 
2888 	return true;
2889 }
2890 
2891 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2892 {
2893 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2894 
2895 	if (!page)
2896 		return 1;
2897 
2898 	return get_page_unless_zero(page);
2899 }
2900 
2901 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2902 			       unsigned long addr, bool write_fault,
2903 			       bool *writable, kvm_pfn_t *p_pfn)
2904 {
2905 	kvm_pfn_t pfn;
2906 	pte_t *ptep;
2907 	pte_t pte;
2908 	spinlock_t *ptl;
2909 	int r;
2910 
2911 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2912 	if (r) {
2913 		/*
2914 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2915 		 * not call the fault handler, so do it here.
2916 		 */
2917 		bool unlocked = false;
2918 		r = fixup_user_fault(current->mm, addr,
2919 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2920 				     &unlocked);
2921 		if (unlocked)
2922 			return -EAGAIN;
2923 		if (r)
2924 			return r;
2925 
2926 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2927 		if (r)
2928 			return r;
2929 	}
2930 
2931 	pte = ptep_get(ptep);
2932 
2933 	if (write_fault && !pte_write(pte)) {
2934 		pfn = KVM_PFN_ERR_RO_FAULT;
2935 		goto out;
2936 	}
2937 
2938 	if (writable)
2939 		*writable = pte_write(pte);
2940 	pfn = pte_pfn(pte);
2941 
2942 	/*
2943 	 * Get a reference here because callers of *hva_to_pfn* and
2944 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2945 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2946 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2947 	 * simply do nothing for reserved pfns.
2948 	 *
2949 	 * Whoever called remap_pfn_range is also going to call e.g.
2950 	 * unmap_mapping_range before the underlying pages are freed,
2951 	 * causing a call to our MMU notifier.
2952 	 *
2953 	 * Certain IO or PFNMAP mappings can be backed with valid
2954 	 * struct pages, but be allocated without refcounting e.g.,
2955 	 * tail pages of non-compound higher order allocations, which
2956 	 * would then underflow the refcount when the caller does the
2957 	 * required put_page. Don't allow those pages here.
2958 	 */
2959 	if (!kvm_try_get_pfn(pfn))
2960 		r = -EFAULT;
2961 
2962 out:
2963 	pte_unmap_unlock(ptep, ptl);
2964 	*p_pfn = pfn;
2965 
2966 	return r;
2967 }
2968 
2969 /*
2970  * Pin guest page in memory and return its pfn.
2971  * @addr: host virtual address which maps memory to the guest
2972  * @atomic: whether this function can sleep
2973  * @interruptible: whether the process can be interrupted by non-fatal signals
2974  * @async: whether this function need to wait IO complete if the
2975  *         host page is not in the memory
2976  * @write_fault: whether we should get a writable host page
2977  * @writable: whether it allows to map a writable host page for !@write_fault
2978  *
2979  * The function will map a writable host page for these two cases:
2980  * 1): @write_fault = true
2981  * 2): @write_fault = false && @writable, @writable will tell the caller
2982  *     whether the mapping is writable.
2983  */
2984 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2985 		     bool *async, bool write_fault, bool *writable)
2986 {
2987 	struct vm_area_struct *vma;
2988 	kvm_pfn_t pfn;
2989 	int npages, r;
2990 
2991 	/* we can do it either atomically or asynchronously, not both */
2992 	BUG_ON(atomic && async);
2993 
2994 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2995 		return pfn;
2996 
2997 	if (atomic)
2998 		return KVM_PFN_ERR_FAULT;
2999 
3000 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
3001 				 writable, &pfn);
3002 	if (npages == 1)
3003 		return pfn;
3004 	if (npages == -EINTR)
3005 		return KVM_PFN_ERR_SIGPENDING;
3006 
3007 	mmap_read_lock(current->mm);
3008 	if (npages == -EHWPOISON ||
3009 	      (!async && check_user_page_hwpoison(addr))) {
3010 		pfn = KVM_PFN_ERR_HWPOISON;
3011 		goto exit;
3012 	}
3013 
3014 retry:
3015 	vma = vma_lookup(current->mm, addr);
3016 
3017 	if (vma == NULL)
3018 		pfn = KVM_PFN_ERR_FAULT;
3019 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3020 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3021 		if (r == -EAGAIN)
3022 			goto retry;
3023 		if (r < 0)
3024 			pfn = KVM_PFN_ERR_FAULT;
3025 	} else {
3026 		if (async && vma_is_valid(vma, write_fault))
3027 			*async = true;
3028 		pfn = KVM_PFN_ERR_FAULT;
3029 	}
3030 exit:
3031 	mmap_read_unlock(current->mm);
3032 	return pfn;
3033 }
3034 
3035 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3036 			       bool atomic, bool interruptible, bool *async,
3037 			       bool write_fault, bool *writable, hva_t *hva)
3038 {
3039 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3040 
3041 	if (hva)
3042 		*hva = addr;
3043 
3044 	if (addr == KVM_HVA_ERR_RO_BAD) {
3045 		if (writable)
3046 			*writable = false;
3047 		return KVM_PFN_ERR_RO_FAULT;
3048 	}
3049 
3050 	if (kvm_is_error_hva(addr)) {
3051 		if (writable)
3052 			*writable = false;
3053 		return KVM_PFN_NOSLOT;
3054 	}
3055 
3056 	/* Do not map writable pfn in the readonly memslot. */
3057 	if (writable && memslot_is_readonly(slot)) {
3058 		*writable = false;
3059 		writable = NULL;
3060 	}
3061 
3062 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3063 			  writable);
3064 }
3065 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3066 
3067 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3068 		      bool *writable)
3069 {
3070 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3071 				    NULL, write_fault, writable, NULL);
3072 }
3073 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3074 
3075 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3076 {
3077 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3078 				    NULL, NULL);
3079 }
3080 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3081 
3082 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3083 {
3084 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3085 				    NULL, NULL);
3086 }
3087 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3088 
3089 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3090 {
3091 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3092 }
3093 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3094 
3095 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3096 {
3097 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3098 }
3099 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3100 
3101 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3102 {
3103 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3104 }
3105 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3106 
3107 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3108 			    struct page **pages, int nr_pages)
3109 {
3110 	unsigned long addr;
3111 	gfn_t entry = 0;
3112 
3113 	addr = gfn_to_hva_many(slot, gfn, &entry);
3114 	if (kvm_is_error_hva(addr))
3115 		return -1;
3116 
3117 	if (entry < nr_pages)
3118 		return 0;
3119 
3120 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3121 }
3122 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3123 
3124 /*
3125  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3126  * backed by 'struct page'.  A valid example is if the backing memslot is
3127  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3128  * been elevated by gfn_to_pfn().
3129  */
3130 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3131 {
3132 	struct page *page;
3133 	kvm_pfn_t pfn;
3134 
3135 	pfn = gfn_to_pfn(kvm, gfn);
3136 
3137 	if (is_error_noslot_pfn(pfn))
3138 		return KVM_ERR_PTR_BAD_PAGE;
3139 
3140 	page = kvm_pfn_to_refcounted_page(pfn);
3141 	if (!page)
3142 		return KVM_ERR_PTR_BAD_PAGE;
3143 
3144 	return page;
3145 }
3146 EXPORT_SYMBOL_GPL(gfn_to_page);
3147 
3148 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3149 {
3150 	if (dirty)
3151 		kvm_release_pfn_dirty(pfn);
3152 	else
3153 		kvm_release_pfn_clean(pfn);
3154 }
3155 
3156 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3157 {
3158 	kvm_pfn_t pfn;
3159 	void *hva = NULL;
3160 	struct page *page = KVM_UNMAPPED_PAGE;
3161 
3162 	if (!map)
3163 		return -EINVAL;
3164 
3165 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3166 	if (is_error_noslot_pfn(pfn))
3167 		return -EINVAL;
3168 
3169 	if (pfn_valid(pfn)) {
3170 		page = pfn_to_page(pfn);
3171 		hva = kmap(page);
3172 #ifdef CONFIG_HAS_IOMEM
3173 	} else {
3174 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3175 #endif
3176 	}
3177 
3178 	if (!hva)
3179 		return -EFAULT;
3180 
3181 	map->page = page;
3182 	map->hva = hva;
3183 	map->pfn = pfn;
3184 	map->gfn = gfn;
3185 
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3189 
3190 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3191 {
3192 	if (!map)
3193 		return;
3194 
3195 	if (!map->hva)
3196 		return;
3197 
3198 	if (map->page != KVM_UNMAPPED_PAGE)
3199 		kunmap(map->page);
3200 #ifdef CONFIG_HAS_IOMEM
3201 	else
3202 		memunmap(map->hva);
3203 #endif
3204 
3205 	if (dirty)
3206 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3207 
3208 	kvm_release_pfn(map->pfn, dirty);
3209 
3210 	map->hva = NULL;
3211 	map->page = NULL;
3212 }
3213 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3214 
3215 static bool kvm_is_ad_tracked_page(struct page *page)
3216 {
3217 	/*
3218 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3219 	 * touched (e.g. set dirty) except by its owner".
3220 	 */
3221 	return !PageReserved(page);
3222 }
3223 
3224 static void kvm_set_page_dirty(struct page *page)
3225 {
3226 	if (kvm_is_ad_tracked_page(page))
3227 		SetPageDirty(page);
3228 }
3229 
3230 static void kvm_set_page_accessed(struct page *page)
3231 {
3232 	if (kvm_is_ad_tracked_page(page))
3233 		mark_page_accessed(page);
3234 }
3235 
3236 void kvm_release_page_clean(struct page *page)
3237 {
3238 	WARN_ON(is_error_page(page));
3239 
3240 	kvm_set_page_accessed(page);
3241 	put_page(page);
3242 }
3243 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3244 
3245 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3246 {
3247 	struct page *page;
3248 
3249 	if (is_error_noslot_pfn(pfn))
3250 		return;
3251 
3252 	page = kvm_pfn_to_refcounted_page(pfn);
3253 	if (!page)
3254 		return;
3255 
3256 	kvm_release_page_clean(page);
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3259 
3260 void kvm_release_page_dirty(struct page *page)
3261 {
3262 	WARN_ON(is_error_page(page));
3263 
3264 	kvm_set_page_dirty(page);
3265 	kvm_release_page_clean(page);
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3268 
3269 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3270 {
3271 	struct page *page;
3272 
3273 	if (is_error_noslot_pfn(pfn))
3274 		return;
3275 
3276 	page = kvm_pfn_to_refcounted_page(pfn);
3277 	if (!page)
3278 		return;
3279 
3280 	kvm_release_page_dirty(page);
3281 }
3282 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3283 
3284 /*
3285  * Note, checking for an error/noslot pfn is the caller's responsibility when
3286  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3287  * "set" helpers are not to be used when the pfn might point at garbage.
3288  */
3289 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3290 {
3291 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3292 		return;
3293 
3294 	if (pfn_valid(pfn))
3295 		kvm_set_page_dirty(pfn_to_page(pfn));
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3298 
3299 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3300 {
3301 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3302 		return;
3303 
3304 	if (pfn_valid(pfn))
3305 		kvm_set_page_accessed(pfn_to_page(pfn));
3306 }
3307 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3308 
3309 static int next_segment(unsigned long len, int offset)
3310 {
3311 	if (len > PAGE_SIZE - offset)
3312 		return PAGE_SIZE - offset;
3313 	else
3314 		return len;
3315 }
3316 
3317 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3318 				 void *data, int offset, int len)
3319 {
3320 	int r;
3321 	unsigned long addr;
3322 
3323 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3324 	if (kvm_is_error_hva(addr))
3325 		return -EFAULT;
3326 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3327 	if (r)
3328 		return -EFAULT;
3329 	return 0;
3330 }
3331 
3332 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3333 			int len)
3334 {
3335 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3336 
3337 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3340 
3341 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3342 			     int offset, int len)
3343 {
3344 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3345 
3346 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3347 }
3348 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3349 
3350 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3351 {
3352 	gfn_t gfn = gpa >> PAGE_SHIFT;
3353 	int seg;
3354 	int offset = offset_in_page(gpa);
3355 	int ret;
3356 
3357 	while ((seg = next_segment(len, offset)) != 0) {
3358 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3359 		if (ret < 0)
3360 			return ret;
3361 		offset = 0;
3362 		len -= seg;
3363 		data += seg;
3364 		++gfn;
3365 	}
3366 	return 0;
3367 }
3368 EXPORT_SYMBOL_GPL(kvm_read_guest);
3369 
3370 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3371 {
3372 	gfn_t gfn = gpa >> PAGE_SHIFT;
3373 	int seg;
3374 	int offset = offset_in_page(gpa);
3375 	int ret;
3376 
3377 	while ((seg = next_segment(len, offset)) != 0) {
3378 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3379 		if (ret < 0)
3380 			return ret;
3381 		offset = 0;
3382 		len -= seg;
3383 		data += seg;
3384 		++gfn;
3385 	}
3386 	return 0;
3387 }
3388 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3389 
3390 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3391 			           void *data, int offset, unsigned long len)
3392 {
3393 	int r;
3394 	unsigned long addr;
3395 
3396 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3397 	if (kvm_is_error_hva(addr))
3398 		return -EFAULT;
3399 	pagefault_disable();
3400 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3401 	pagefault_enable();
3402 	if (r)
3403 		return -EFAULT;
3404 	return 0;
3405 }
3406 
3407 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3408 			       void *data, unsigned long len)
3409 {
3410 	gfn_t gfn = gpa >> PAGE_SHIFT;
3411 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3412 	int offset = offset_in_page(gpa);
3413 
3414 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3415 }
3416 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3417 
3418 static int __kvm_write_guest_page(struct kvm *kvm,
3419 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3420 			          const void *data, int offset, int len)
3421 {
3422 	int r;
3423 	unsigned long addr;
3424 
3425 	addr = gfn_to_hva_memslot(memslot, gfn);
3426 	if (kvm_is_error_hva(addr))
3427 		return -EFAULT;
3428 	r = __copy_to_user((void __user *)addr + offset, data, len);
3429 	if (r)
3430 		return -EFAULT;
3431 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3432 	return 0;
3433 }
3434 
3435 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3436 			 const void *data, int offset, int len)
3437 {
3438 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3439 
3440 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3441 }
3442 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3443 
3444 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3445 			      const void *data, int offset, int len)
3446 {
3447 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3448 
3449 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3450 }
3451 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3452 
3453 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3454 		    unsigned long len)
3455 {
3456 	gfn_t gfn = gpa >> PAGE_SHIFT;
3457 	int seg;
3458 	int offset = offset_in_page(gpa);
3459 	int ret;
3460 
3461 	while ((seg = next_segment(len, offset)) != 0) {
3462 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3463 		if (ret < 0)
3464 			return ret;
3465 		offset = 0;
3466 		len -= seg;
3467 		data += seg;
3468 		++gfn;
3469 	}
3470 	return 0;
3471 }
3472 EXPORT_SYMBOL_GPL(kvm_write_guest);
3473 
3474 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3475 		         unsigned long len)
3476 {
3477 	gfn_t gfn = gpa >> PAGE_SHIFT;
3478 	int seg;
3479 	int offset = offset_in_page(gpa);
3480 	int ret;
3481 
3482 	while ((seg = next_segment(len, offset)) != 0) {
3483 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3484 		if (ret < 0)
3485 			return ret;
3486 		offset = 0;
3487 		len -= seg;
3488 		data += seg;
3489 		++gfn;
3490 	}
3491 	return 0;
3492 }
3493 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3494 
3495 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3496 				       struct gfn_to_hva_cache *ghc,
3497 				       gpa_t gpa, unsigned long len)
3498 {
3499 	int offset = offset_in_page(gpa);
3500 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3501 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3502 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3503 	gfn_t nr_pages_avail;
3504 
3505 	/* Update ghc->generation before performing any error checks. */
3506 	ghc->generation = slots->generation;
3507 
3508 	if (start_gfn > end_gfn) {
3509 		ghc->hva = KVM_HVA_ERR_BAD;
3510 		return -EINVAL;
3511 	}
3512 
3513 	/*
3514 	 * If the requested region crosses two memslots, we still
3515 	 * verify that the entire region is valid here.
3516 	 */
3517 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3518 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3519 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3520 					   &nr_pages_avail);
3521 		if (kvm_is_error_hva(ghc->hva))
3522 			return -EFAULT;
3523 	}
3524 
3525 	/* Use the slow path for cross page reads and writes. */
3526 	if (nr_pages_needed == 1)
3527 		ghc->hva += offset;
3528 	else
3529 		ghc->memslot = NULL;
3530 
3531 	ghc->gpa = gpa;
3532 	ghc->len = len;
3533 	return 0;
3534 }
3535 
3536 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3537 			      gpa_t gpa, unsigned long len)
3538 {
3539 	struct kvm_memslots *slots = kvm_memslots(kvm);
3540 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3541 }
3542 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3543 
3544 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3545 				  void *data, unsigned int offset,
3546 				  unsigned long len)
3547 {
3548 	struct kvm_memslots *slots = kvm_memslots(kvm);
3549 	int r;
3550 	gpa_t gpa = ghc->gpa + offset;
3551 
3552 	if (WARN_ON_ONCE(len + offset > ghc->len))
3553 		return -EINVAL;
3554 
3555 	if (slots->generation != ghc->generation) {
3556 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3557 			return -EFAULT;
3558 	}
3559 
3560 	if (kvm_is_error_hva(ghc->hva))
3561 		return -EFAULT;
3562 
3563 	if (unlikely(!ghc->memslot))
3564 		return kvm_write_guest(kvm, gpa, data, len);
3565 
3566 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3567 	if (r)
3568 		return -EFAULT;
3569 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3570 
3571 	return 0;
3572 }
3573 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3574 
3575 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3576 			   void *data, unsigned long len)
3577 {
3578 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3579 }
3580 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3581 
3582 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3583 				 void *data, unsigned int offset,
3584 				 unsigned long len)
3585 {
3586 	struct kvm_memslots *slots = kvm_memslots(kvm);
3587 	int r;
3588 	gpa_t gpa = ghc->gpa + offset;
3589 
3590 	if (WARN_ON_ONCE(len + offset > ghc->len))
3591 		return -EINVAL;
3592 
3593 	if (slots->generation != ghc->generation) {
3594 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3595 			return -EFAULT;
3596 	}
3597 
3598 	if (kvm_is_error_hva(ghc->hva))
3599 		return -EFAULT;
3600 
3601 	if (unlikely(!ghc->memslot))
3602 		return kvm_read_guest(kvm, gpa, data, len);
3603 
3604 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3605 	if (r)
3606 		return -EFAULT;
3607 
3608 	return 0;
3609 }
3610 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3611 
3612 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3613 			  void *data, unsigned long len)
3614 {
3615 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3616 }
3617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3618 
3619 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3620 {
3621 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3622 	gfn_t gfn = gpa >> PAGE_SHIFT;
3623 	int seg;
3624 	int offset = offset_in_page(gpa);
3625 	int ret;
3626 
3627 	while ((seg = next_segment(len, offset)) != 0) {
3628 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3629 		if (ret < 0)
3630 			return ret;
3631 		offset = 0;
3632 		len -= seg;
3633 		++gfn;
3634 	}
3635 	return 0;
3636 }
3637 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3638 
3639 void mark_page_dirty_in_slot(struct kvm *kvm,
3640 			     const struct kvm_memory_slot *memslot,
3641 		 	     gfn_t gfn)
3642 {
3643 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3644 
3645 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3646 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3647 		return;
3648 
3649 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3650 #endif
3651 
3652 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3653 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3654 		u32 slot = (memslot->as_id << 16) | memslot->id;
3655 
3656 		if (kvm->dirty_ring_size && vcpu)
3657 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3658 		else if (memslot->dirty_bitmap)
3659 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3660 	}
3661 }
3662 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3663 
3664 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3665 {
3666 	struct kvm_memory_slot *memslot;
3667 
3668 	memslot = gfn_to_memslot(kvm, gfn);
3669 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3670 }
3671 EXPORT_SYMBOL_GPL(mark_page_dirty);
3672 
3673 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3674 {
3675 	struct kvm_memory_slot *memslot;
3676 
3677 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3678 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3679 }
3680 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3681 
3682 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3683 {
3684 	if (!vcpu->sigset_active)
3685 		return;
3686 
3687 	/*
3688 	 * This does a lockless modification of ->real_blocked, which is fine
3689 	 * because, only current can change ->real_blocked and all readers of
3690 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3691 	 * of ->blocked.
3692 	 */
3693 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3694 }
3695 
3696 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3697 {
3698 	if (!vcpu->sigset_active)
3699 		return;
3700 
3701 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3702 	sigemptyset(&current->real_blocked);
3703 }
3704 
3705 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3706 {
3707 	unsigned int old, val, grow, grow_start;
3708 
3709 	old = val = vcpu->halt_poll_ns;
3710 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3711 	grow = READ_ONCE(halt_poll_ns_grow);
3712 	if (!grow)
3713 		goto out;
3714 
3715 	val *= grow;
3716 	if (val < grow_start)
3717 		val = grow_start;
3718 
3719 	vcpu->halt_poll_ns = val;
3720 out:
3721 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3722 }
3723 
3724 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3725 {
3726 	unsigned int old, val, shrink, grow_start;
3727 
3728 	old = val = vcpu->halt_poll_ns;
3729 	shrink = READ_ONCE(halt_poll_ns_shrink);
3730 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3731 	if (shrink == 0)
3732 		val = 0;
3733 	else
3734 		val /= shrink;
3735 
3736 	if (val < grow_start)
3737 		val = 0;
3738 
3739 	vcpu->halt_poll_ns = val;
3740 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3741 }
3742 
3743 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3744 {
3745 	int ret = -EINTR;
3746 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3747 
3748 	if (kvm_arch_vcpu_runnable(vcpu))
3749 		goto out;
3750 	if (kvm_cpu_has_pending_timer(vcpu))
3751 		goto out;
3752 	if (signal_pending(current))
3753 		goto out;
3754 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3755 		goto out;
3756 
3757 	ret = 0;
3758 out:
3759 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3760 	return ret;
3761 }
3762 
3763 /*
3764  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3765  * pending.  This is mostly used when halting a vCPU, but may also be used
3766  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3767  */
3768 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3769 {
3770 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3771 	bool waited = false;
3772 
3773 	vcpu->stat.generic.blocking = 1;
3774 
3775 	preempt_disable();
3776 	kvm_arch_vcpu_blocking(vcpu);
3777 	prepare_to_rcuwait(wait);
3778 	preempt_enable();
3779 
3780 	for (;;) {
3781 		set_current_state(TASK_INTERRUPTIBLE);
3782 
3783 		if (kvm_vcpu_check_block(vcpu) < 0)
3784 			break;
3785 
3786 		waited = true;
3787 		schedule();
3788 	}
3789 
3790 	preempt_disable();
3791 	finish_rcuwait(wait);
3792 	kvm_arch_vcpu_unblocking(vcpu);
3793 	preempt_enable();
3794 
3795 	vcpu->stat.generic.blocking = 0;
3796 
3797 	return waited;
3798 }
3799 
3800 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3801 					  ktime_t end, bool success)
3802 {
3803 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3804 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3805 
3806 	++vcpu->stat.generic.halt_attempted_poll;
3807 
3808 	if (success) {
3809 		++vcpu->stat.generic.halt_successful_poll;
3810 
3811 		if (!vcpu_valid_wakeup(vcpu))
3812 			++vcpu->stat.generic.halt_poll_invalid;
3813 
3814 		stats->halt_poll_success_ns += poll_ns;
3815 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3816 	} else {
3817 		stats->halt_poll_fail_ns += poll_ns;
3818 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3819 	}
3820 }
3821 
3822 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3823 {
3824 	struct kvm *kvm = vcpu->kvm;
3825 
3826 	if (kvm->override_halt_poll_ns) {
3827 		/*
3828 		 * Ensure kvm->max_halt_poll_ns is not read before
3829 		 * kvm->override_halt_poll_ns.
3830 		 *
3831 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3832 		 */
3833 		smp_rmb();
3834 		return READ_ONCE(kvm->max_halt_poll_ns);
3835 	}
3836 
3837 	return READ_ONCE(halt_poll_ns);
3838 }
3839 
3840 /*
3841  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3842  * polling is enabled, busy wait for a short time before blocking to avoid the
3843  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3844  * is halted.
3845  */
3846 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3847 {
3848 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3849 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3850 	ktime_t start, cur, poll_end;
3851 	bool waited = false;
3852 	bool do_halt_poll;
3853 	u64 halt_ns;
3854 
3855 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3856 		vcpu->halt_poll_ns = max_halt_poll_ns;
3857 
3858 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3859 
3860 	start = cur = poll_end = ktime_get();
3861 	if (do_halt_poll) {
3862 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3863 
3864 		do {
3865 			if (kvm_vcpu_check_block(vcpu) < 0)
3866 				goto out;
3867 			cpu_relax();
3868 			poll_end = cur = ktime_get();
3869 		} while (kvm_vcpu_can_poll(cur, stop));
3870 	}
3871 
3872 	waited = kvm_vcpu_block(vcpu);
3873 
3874 	cur = ktime_get();
3875 	if (waited) {
3876 		vcpu->stat.generic.halt_wait_ns +=
3877 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3878 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3879 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3880 	}
3881 out:
3882 	/* The total time the vCPU was "halted", including polling time. */
3883 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3884 
3885 	/*
3886 	 * Note, halt-polling is considered successful so long as the vCPU was
3887 	 * never actually scheduled out, i.e. even if the wake event arrived
3888 	 * after of the halt-polling loop itself, but before the full wait.
3889 	 */
3890 	if (do_halt_poll)
3891 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3892 
3893 	if (halt_poll_allowed) {
3894 		/* Recompute the max halt poll time in case it changed. */
3895 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3896 
3897 		if (!vcpu_valid_wakeup(vcpu)) {
3898 			shrink_halt_poll_ns(vcpu);
3899 		} else if (max_halt_poll_ns) {
3900 			if (halt_ns <= vcpu->halt_poll_ns)
3901 				;
3902 			/* we had a long block, shrink polling */
3903 			else if (vcpu->halt_poll_ns &&
3904 				 halt_ns > max_halt_poll_ns)
3905 				shrink_halt_poll_ns(vcpu);
3906 			/* we had a short halt and our poll time is too small */
3907 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3908 				 halt_ns < max_halt_poll_ns)
3909 				grow_halt_poll_ns(vcpu);
3910 		} else {
3911 			vcpu->halt_poll_ns = 0;
3912 		}
3913 	}
3914 
3915 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3918 
3919 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3920 {
3921 	if (__kvm_vcpu_wake_up(vcpu)) {
3922 		WRITE_ONCE(vcpu->ready, true);
3923 		++vcpu->stat.generic.halt_wakeup;
3924 		return true;
3925 	}
3926 
3927 	return false;
3928 }
3929 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3930 
3931 #ifndef CONFIG_S390
3932 /*
3933  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3934  */
3935 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3936 {
3937 	int me, cpu;
3938 
3939 	if (kvm_vcpu_wake_up(vcpu))
3940 		return;
3941 
3942 	me = get_cpu();
3943 	/*
3944 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3945 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3946 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3947 	 * within the vCPU thread itself.
3948 	 */
3949 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3950 		if (vcpu->mode == IN_GUEST_MODE)
3951 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3952 		goto out;
3953 	}
3954 
3955 	/*
3956 	 * Note, the vCPU could get migrated to a different pCPU at any point
3957 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3958 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3959 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3960 	 * vCPU also requires it to leave IN_GUEST_MODE.
3961 	 */
3962 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3963 		cpu = READ_ONCE(vcpu->cpu);
3964 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3965 			smp_send_reschedule(cpu);
3966 	}
3967 out:
3968 	put_cpu();
3969 }
3970 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3971 #endif /* !CONFIG_S390 */
3972 
3973 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3974 {
3975 	struct pid *pid;
3976 	struct task_struct *task = NULL;
3977 	int ret = 0;
3978 
3979 	rcu_read_lock();
3980 	pid = rcu_dereference(target->pid);
3981 	if (pid)
3982 		task = get_pid_task(pid, PIDTYPE_PID);
3983 	rcu_read_unlock();
3984 	if (!task)
3985 		return ret;
3986 	ret = yield_to(task, 1);
3987 	put_task_struct(task);
3988 
3989 	return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3992 
3993 /*
3994  * Helper that checks whether a VCPU is eligible for directed yield.
3995  * Most eligible candidate to yield is decided by following heuristics:
3996  *
3997  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3998  *  (preempted lock holder), indicated by @in_spin_loop.
3999  *  Set at the beginning and cleared at the end of interception/PLE handler.
4000  *
4001  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
4002  *  chance last time (mostly it has become eligible now since we have probably
4003  *  yielded to lockholder in last iteration. This is done by toggling
4004  *  @dy_eligible each time a VCPU checked for eligibility.)
4005  *
4006  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4007  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4008  *  burning. Giving priority for a potential lock-holder increases lock
4009  *  progress.
4010  *
4011  *  Since algorithm is based on heuristics, accessing another VCPU data without
4012  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4013  *  and continue with next VCPU and so on.
4014  */
4015 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4016 {
4017 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4018 	bool eligible;
4019 
4020 	eligible = !vcpu->spin_loop.in_spin_loop ||
4021 		    vcpu->spin_loop.dy_eligible;
4022 
4023 	if (vcpu->spin_loop.in_spin_loop)
4024 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4025 
4026 	return eligible;
4027 #else
4028 	return true;
4029 #endif
4030 }
4031 
4032 /*
4033  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4034  * a vcpu_load/vcpu_put pair.  However, for most architectures
4035  * kvm_arch_vcpu_runnable does not require vcpu_load.
4036  */
4037 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4038 {
4039 	return kvm_arch_vcpu_runnable(vcpu);
4040 }
4041 
4042 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4043 {
4044 	if (kvm_arch_dy_runnable(vcpu))
4045 		return true;
4046 
4047 #ifdef CONFIG_KVM_ASYNC_PF
4048 	if (!list_empty_careful(&vcpu->async_pf.done))
4049 		return true;
4050 #endif
4051 
4052 	return false;
4053 }
4054 
4055 /*
4056  * By default, simply query the target vCPU's current mode when checking if a
4057  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4058  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4059  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4060  * directly for cross-vCPU checks is functionally correct and accurate.
4061  */
4062 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4063 {
4064 	return kvm_arch_vcpu_in_kernel(vcpu);
4065 }
4066 
4067 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4068 {
4069 	return false;
4070 }
4071 
4072 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4073 {
4074 	struct kvm *kvm = me->kvm;
4075 	struct kvm_vcpu *vcpu;
4076 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4077 	unsigned long i;
4078 	int yielded = 0;
4079 	int try = 3;
4080 	int pass;
4081 
4082 	kvm_vcpu_set_in_spin_loop(me, true);
4083 	/*
4084 	 * We boost the priority of a VCPU that is runnable but not
4085 	 * currently running, because it got preempted by something
4086 	 * else and called schedule in __vcpu_run.  Hopefully that
4087 	 * VCPU is holding the lock that we need and will release it.
4088 	 * We approximate round-robin by starting at the last boosted VCPU.
4089 	 */
4090 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4091 		kvm_for_each_vcpu(i, vcpu, kvm) {
4092 			if (!pass && i <= last_boosted_vcpu) {
4093 				i = last_boosted_vcpu;
4094 				continue;
4095 			} else if (pass && i > last_boosted_vcpu)
4096 				break;
4097 			if (!READ_ONCE(vcpu->ready))
4098 				continue;
4099 			if (vcpu == me)
4100 				continue;
4101 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4102 				continue;
4103 
4104 			/*
4105 			 * Treat the target vCPU as being in-kernel if it has a
4106 			 * pending interrupt, as the vCPU trying to yield may
4107 			 * be spinning waiting on IPI delivery, i.e. the target
4108 			 * vCPU is in-kernel for the purposes of directed yield.
4109 			 */
4110 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4111 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4112 			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4113 				continue;
4114 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4115 				continue;
4116 
4117 			yielded = kvm_vcpu_yield_to(vcpu);
4118 			if (yielded > 0) {
4119 				kvm->last_boosted_vcpu = i;
4120 				break;
4121 			} else if (yielded < 0) {
4122 				try--;
4123 				if (!try)
4124 					break;
4125 			}
4126 		}
4127 	}
4128 	kvm_vcpu_set_in_spin_loop(me, false);
4129 
4130 	/* Ensure vcpu is not eligible during next spinloop */
4131 	kvm_vcpu_set_dy_eligible(me, false);
4132 }
4133 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4134 
4135 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4136 {
4137 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4138 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4139 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4140 	     kvm->dirty_ring_size / PAGE_SIZE);
4141 #else
4142 	return false;
4143 #endif
4144 }
4145 
4146 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4147 {
4148 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4149 	struct page *page;
4150 
4151 	if (vmf->pgoff == 0)
4152 		page = virt_to_page(vcpu->run);
4153 #ifdef CONFIG_X86
4154 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4155 		page = virt_to_page(vcpu->arch.pio_data);
4156 #endif
4157 #ifdef CONFIG_KVM_MMIO
4158 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4159 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4160 #endif
4161 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4162 		page = kvm_dirty_ring_get_page(
4163 		    &vcpu->dirty_ring,
4164 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4165 	else
4166 		return kvm_arch_vcpu_fault(vcpu, vmf);
4167 	get_page(page);
4168 	vmf->page = page;
4169 	return 0;
4170 }
4171 
4172 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4173 	.fault = kvm_vcpu_fault,
4174 };
4175 
4176 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4177 {
4178 	struct kvm_vcpu *vcpu = file->private_data;
4179 	unsigned long pages = vma_pages(vma);
4180 
4181 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4182 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4183 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4184 		return -EINVAL;
4185 
4186 	vma->vm_ops = &kvm_vcpu_vm_ops;
4187 	return 0;
4188 }
4189 
4190 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4191 {
4192 	struct kvm_vcpu *vcpu = filp->private_data;
4193 
4194 	kvm_put_kvm(vcpu->kvm);
4195 	return 0;
4196 }
4197 
4198 static struct file_operations kvm_vcpu_fops = {
4199 	.release        = kvm_vcpu_release,
4200 	.unlocked_ioctl = kvm_vcpu_ioctl,
4201 	.mmap           = kvm_vcpu_mmap,
4202 	.llseek		= noop_llseek,
4203 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4204 };
4205 
4206 /*
4207  * Allocates an inode for the vcpu.
4208  */
4209 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4210 {
4211 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4212 
4213 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4214 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4215 }
4216 
4217 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4218 static int vcpu_get_pid(void *data, u64 *val)
4219 {
4220 	struct kvm_vcpu *vcpu = data;
4221 
4222 	rcu_read_lock();
4223 	*val = pid_nr(rcu_dereference(vcpu->pid));
4224 	rcu_read_unlock();
4225 	return 0;
4226 }
4227 
4228 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4229 
4230 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4231 {
4232 	struct dentry *debugfs_dentry;
4233 	char dir_name[ITOA_MAX_LEN * 2];
4234 
4235 	if (!debugfs_initialized())
4236 		return;
4237 
4238 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4239 	debugfs_dentry = debugfs_create_dir(dir_name,
4240 					    vcpu->kvm->debugfs_dentry);
4241 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4242 			    &vcpu_get_pid_fops);
4243 
4244 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4245 }
4246 #endif
4247 
4248 /*
4249  * Creates some virtual cpus.  Good luck creating more than one.
4250  */
4251 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4252 {
4253 	int r;
4254 	struct kvm_vcpu *vcpu;
4255 	struct page *page;
4256 
4257 	if (id >= KVM_MAX_VCPU_IDS)
4258 		return -EINVAL;
4259 
4260 	mutex_lock(&kvm->lock);
4261 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4262 		mutex_unlock(&kvm->lock);
4263 		return -EINVAL;
4264 	}
4265 
4266 	r = kvm_arch_vcpu_precreate(kvm, id);
4267 	if (r) {
4268 		mutex_unlock(&kvm->lock);
4269 		return r;
4270 	}
4271 
4272 	kvm->created_vcpus++;
4273 	mutex_unlock(&kvm->lock);
4274 
4275 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4276 	if (!vcpu) {
4277 		r = -ENOMEM;
4278 		goto vcpu_decrement;
4279 	}
4280 
4281 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4282 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4283 	if (!page) {
4284 		r = -ENOMEM;
4285 		goto vcpu_free;
4286 	}
4287 	vcpu->run = page_address(page);
4288 
4289 	kvm_vcpu_init(vcpu, kvm, id);
4290 
4291 	r = kvm_arch_vcpu_create(vcpu);
4292 	if (r)
4293 		goto vcpu_free_run_page;
4294 
4295 	if (kvm->dirty_ring_size) {
4296 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4297 					 id, kvm->dirty_ring_size);
4298 		if (r)
4299 			goto arch_vcpu_destroy;
4300 	}
4301 
4302 	mutex_lock(&kvm->lock);
4303 
4304 #ifdef CONFIG_LOCKDEP
4305 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4306 	mutex_lock(&vcpu->mutex);
4307 	mutex_unlock(&vcpu->mutex);
4308 #endif
4309 
4310 	if (kvm_get_vcpu_by_id(kvm, id)) {
4311 		r = -EEXIST;
4312 		goto unlock_vcpu_destroy;
4313 	}
4314 
4315 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4316 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4317 	if (r)
4318 		goto unlock_vcpu_destroy;
4319 
4320 	/* Now it's all set up, let userspace reach it */
4321 	kvm_get_kvm(kvm);
4322 	r = create_vcpu_fd(vcpu);
4323 	if (r < 0)
4324 		goto kvm_put_xa_release;
4325 
4326 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4327 		r = -EINVAL;
4328 		goto kvm_put_xa_release;
4329 	}
4330 
4331 	/*
4332 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4333 	 * pointer before kvm->online_vcpu's incremented value.
4334 	 */
4335 	smp_wmb();
4336 	atomic_inc(&kvm->online_vcpus);
4337 
4338 	mutex_unlock(&kvm->lock);
4339 	kvm_arch_vcpu_postcreate(vcpu);
4340 	kvm_create_vcpu_debugfs(vcpu);
4341 	return r;
4342 
4343 kvm_put_xa_release:
4344 	kvm_put_kvm_no_destroy(kvm);
4345 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4346 unlock_vcpu_destroy:
4347 	mutex_unlock(&kvm->lock);
4348 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4349 arch_vcpu_destroy:
4350 	kvm_arch_vcpu_destroy(vcpu);
4351 vcpu_free_run_page:
4352 	free_page((unsigned long)vcpu->run);
4353 vcpu_free:
4354 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4355 vcpu_decrement:
4356 	mutex_lock(&kvm->lock);
4357 	kvm->created_vcpus--;
4358 	mutex_unlock(&kvm->lock);
4359 	return r;
4360 }
4361 
4362 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4363 {
4364 	if (sigset) {
4365 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4366 		vcpu->sigset_active = 1;
4367 		vcpu->sigset = *sigset;
4368 	} else
4369 		vcpu->sigset_active = 0;
4370 	return 0;
4371 }
4372 
4373 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4374 			      size_t size, loff_t *offset)
4375 {
4376 	struct kvm_vcpu *vcpu = file->private_data;
4377 
4378 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4379 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4380 			sizeof(vcpu->stat), user_buffer, size, offset);
4381 }
4382 
4383 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4384 {
4385 	struct kvm_vcpu *vcpu = file->private_data;
4386 
4387 	kvm_put_kvm(vcpu->kvm);
4388 	return 0;
4389 }
4390 
4391 static const struct file_operations kvm_vcpu_stats_fops = {
4392 	.owner = THIS_MODULE,
4393 	.read = kvm_vcpu_stats_read,
4394 	.release = kvm_vcpu_stats_release,
4395 	.llseek = noop_llseek,
4396 };
4397 
4398 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4399 {
4400 	int fd;
4401 	struct file *file;
4402 	char name[15 + ITOA_MAX_LEN + 1];
4403 
4404 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4405 
4406 	fd = get_unused_fd_flags(O_CLOEXEC);
4407 	if (fd < 0)
4408 		return fd;
4409 
4410 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4411 	if (IS_ERR(file)) {
4412 		put_unused_fd(fd);
4413 		return PTR_ERR(file);
4414 	}
4415 
4416 	kvm_get_kvm(vcpu->kvm);
4417 
4418 	file->f_mode |= FMODE_PREAD;
4419 	fd_install(fd, file);
4420 
4421 	return fd;
4422 }
4423 
4424 static long kvm_vcpu_ioctl(struct file *filp,
4425 			   unsigned int ioctl, unsigned long arg)
4426 {
4427 	struct kvm_vcpu *vcpu = filp->private_data;
4428 	void __user *argp = (void __user *)arg;
4429 	int r;
4430 	struct kvm_fpu *fpu = NULL;
4431 	struct kvm_sregs *kvm_sregs = NULL;
4432 
4433 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4434 		return -EIO;
4435 
4436 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4437 		return -EINVAL;
4438 
4439 	/*
4440 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4441 	 * execution; mutex_lock() would break them.
4442 	 */
4443 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4444 	if (r != -ENOIOCTLCMD)
4445 		return r;
4446 
4447 	if (mutex_lock_killable(&vcpu->mutex))
4448 		return -EINTR;
4449 	switch (ioctl) {
4450 	case KVM_RUN: {
4451 		struct pid *oldpid;
4452 		r = -EINVAL;
4453 		if (arg)
4454 			goto out;
4455 		oldpid = rcu_access_pointer(vcpu->pid);
4456 		if (unlikely(oldpid != task_pid(current))) {
4457 			/* The thread running this VCPU changed. */
4458 			struct pid *newpid;
4459 
4460 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4461 			if (r)
4462 				break;
4463 
4464 			newpid = get_task_pid(current, PIDTYPE_PID);
4465 			rcu_assign_pointer(vcpu->pid, newpid);
4466 			if (oldpid)
4467 				synchronize_rcu();
4468 			put_pid(oldpid);
4469 		}
4470 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4471 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4472 		break;
4473 	}
4474 	case KVM_GET_REGS: {
4475 		struct kvm_regs *kvm_regs;
4476 
4477 		r = -ENOMEM;
4478 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4479 		if (!kvm_regs)
4480 			goto out;
4481 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4482 		if (r)
4483 			goto out_free1;
4484 		r = -EFAULT;
4485 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4486 			goto out_free1;
4487 		r = 0;
4488 out_free1:
4489 		kfree(kvm_regs);
4490 		break;
4491 	}
4492 	case KVM_SET_REGS: {
4493 		struct kvm_regs *kvm_regs;
4494 
4495 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4496 		if (IS_ERR(kvm_regs)) {
4497 			r = PTR_ERR(kvm_regs);
4498 			goto out;
4499 		}
4500 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4501 		kfree(kvm_regs);
4502 		break;
4503 	}
4504 	case KVM_GET_SREGS: {
4505 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4506 				    GFP_KERNEL_ACCOUNT);
4507 		r = -ENOMEM;
4508 		if (!kvm_sregs)
4509 			goto out;
4510 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4511 		if (r)
4512 			goto out;
4513 		r = -EFAULT;
4514 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4515 			goto out;
4516 		r = 0;
4517 		break;
4518 	}
4519 	case KVM_SET_SREGS: {
4520 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4521 		if (IS_ERR(kvm_sregs)) {
4522 			r = PTR_ERR(kvm_sregs);
4523 			kvm_sregs = NULL;
4524 			goto out;
4525 		}
4526 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4527 		break;
4528 	}
4529 	case KVM_GET_MP_STATE: {
4530 		struct kvm_mp_state mp_state;
4531 
4532 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4533 		if (r)
4534 			goto out;
4535 		r = -EFAULT;
4536 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4537 			goto out;
4538 		r = 0;
4539 		break;
4540 	}
4541 	case KVM_SET_MP_STATE: {
4542 		struct kvm_mp_state mp_state;
4543 
4544 		r = -EFAULT;
4545 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4546 			goto out;
4547 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4548 		break;
4549 	}
4550 	case KVM_TRANSLATE: {
4551 		struct kvm_translation tr;
4552 
4553 		r = -EFAULT;
4554 		if (copy_from_user(&tr, argp, sizeof(tr)))
4555 			goto out;
4556 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4557 		if (r)
4558 			goto out;
4559 		r = -EFAULT;
4560 		if (copy_to_user(argp, &tr, sizeof(tr)))
4561 			goto out;
4562 		r = 0;
4563 		break;
4564 	}
4565 	case KVM_SET_GUEST_DEBUG: {
4566 		struct kvm_guest_debug dbg;
4567 
4568 		r = -EFAULT;
4569 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4570 			goto out;
4571 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4572 		break;
4573 	}
4574 	case KVM_SET_SIGNAL_MASK: {
4575 		struct kvm_signal_mask __user *sigmask_arg = argp;
4576 		struct kvm_signal_mask kvm_sigmask;
4577 		sigset_t sigset, *p;
4578 
4579 		p = NULL;
4580 		if (argp) {
4581 			r = -EFAULT;
4582 			if (copy_from_user(&kvm_sigmask, argp,
4583 					   sizeof(kvm_sigmask)))
4584 				goto out;
4585 			r = -EINVAL;
4586 			if (kvm_sigmask.len != sizeof(sigset))
4587 				goto out;
4588 			r = -EFAULT;
4589 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4590 					   sizeof(sigset)))
4591 				goto out;
4592 			p = &sigset;
4593 		}
4594 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4595 		break;
4596 	}
4597 	case KVM_GET_FPU: {
4598 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4599 		r = -ENOMEM;
4600 		if (!fpu)
4601 			goto out;
4602 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4603 		if (r)
4604 			goto out;
4605 		r = -EFAULT;
4606 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4607 			goto out;
4608 		r = 0;
4609 		break;
4610 	}
4611 	case KVM_SET_FPU: {
4612 		fpu = memdup_user(argp, sizeof(*fpu));
4613 		if (IS_ERR(fpu)) {
4614 			r = PTR_ERR(fpu);
4615 			fpu = NULL;
4616 			goto out;
4617 		}
4618 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4619 		break;
4620 	}
4621 	case KVM_GET_STATS_FD: {
4622 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4623 		break;
4624 	}
4625 	default:
4626 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4627 	}
4628 out:
4629 	mutex_unlock(&vcpu->mutex);
4630 	kfree(fpu);
4631 	kfree(kvm_sregs);
4632 	return r;
4633 }
4634 
4635 #ifdef CONFIG_KVM_COMPAT
4636 static long kvm_vcpu_compat_ioctl(struct file *filp,
4637 				  unsigned int ioctl, unsigned long arg)
4638 {
4639 	struct kvm_vcpu *vcpu = filp->private_data;
4640 	void __user *argp = compat_ptr(arg);
4641 	int r;
4642 
4643 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4644 		return -EIO;
4645 
4646 	switch (ioctl) {
4647 	case KVM_SET_SIGNAL_MASK: {
4648 		struct kvm_signal_mask __user *sigmask_arg = argp;
4649 		struct kvm_signal_mask kvm_sigmask;
4650 		sigset_t sigset;
4651 
4652 		if (argp) {
4653 			r = -EFAULT;
4654 			if (copy_from_user(&kvm_sigmask, argp,
4655 					   sizeof(kvm_sigmask)))
4656 				goto out;
4657 			r = -EINVAL;
4658 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4659 				goto out;
4660 			r = -EFAULT;
4661 			if (get_compat_sigset(&sigset,
4662 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4663 				goto out;
4664 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4665 		} else
4666 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4667 		break;
4668 	}
4669 	default:
4670 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4671 	}
4672 
4673 out:
4674 	return r;
4675 }
4676 #endif
4677 
4678 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4679 {
4680 	struct kvm_device *dev = filp->private_data;
4681 
4682 	if (dev->ops->mmap)
4683 		return dev->ops->mmap(dev, vma);
4684 
4685 	return -ENODEV;
4686 }
4687 
4688 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4689 				 int (*accessor)(struct kvm_device *dev,
4690 						 struct kvm_device_attr *attr),
4691 				 unsigned long arg)
4692 {
4693 	struct kvm_device_attr attr;
4694 
4695 	if (!accessor)
4696 		return -EPERM;
4697 
4698 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4699 		return -EFAULT;
4700 
4701 	return accessor(dev, &attr);
4702 }
4703 
4704 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4705 			     unsigned long arg)
4706 {
4707 	struct kvm_device *dev = filp->private_data;
4708 
4709 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4710 		return -EIO;
4711 
4712 	switch (ioctl) {
4713 	case KVM_SET_DEVICE_ATTR:
4714 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4715 	case KVM_GET_DEVICE_ATTR:
4716 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4717 	case KVM_HAS_DEVICE_ATTR:
4718 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4719 	default:
4720 		if (dev->ops->ioctl)
4721 			return dev->ops->ioctl(dev, ioctl, arg);
4722 
4723 		return -ENOTTY;
4724 	}
4725 }
4726 
4727 static int kvm_device_release(struct inode *inode, struct file *filp)
4728 {
4729 	struct kvm_device *dev = filp->private_data;
4730 	struct kvm *kvm = dev->kvm;
4731 
4732 	if (dev->ops->release) {
4733 		mutex_lock(&kvm->lock);
4734 		list_del_rcu(&dev->vm_node);
4735 		synchronize_rcu();
4736 		dev->ops->release(dev);
4737 		mutex_unlock(&kvm->lock);
4738 	}
4739 
4740 	kvm_put_kvm(kvm);
4741 	return 0;
4742 }
4743 
4744 static struct file_operations kvm_device_fops = {
4745 	.unlocked_ioctl = kvm_device_ioctl,
4746 	.release = kvm_device_release,
4747 	KVM_COMPAT(kvm_device_ioctl),
4748 	.mmap = kvm_device_mmap,
4749 };
4750 
4751 struct kvm_device *kvm_device_from_filp(struct file *filp)
4752 {
4753 	if (filp->f_op != &kvm_device_fops)
4754 		return NULL;
4755 
4756 	return filp->private_data;
4757 }
4758 
4759 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4760 #ifdef CONFIG_KVM_MPIC
4761 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4762 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4763 #endif
4764 };
4765 
4766 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4767 {
4768 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4769 		return -ENOSPC;
4770 
4771 	if (kvm_device_ops_table[type] != NULL)
4772 		return -EEXIST;
4773 
4774 	kvm_device_ops_table[type] = ops;
4775 	return 0;
4776 }
4777 
4778 void kvm_unregister_device_ops(u32 type)
4779 {
4780 	if (kvm_device_ops_table[type] != NULL)
4781 		kvm_device_ops_table[type] = NULL;
4782 }
4783 
4784 static int kvm_ioctl_create_device(struct kvm *kvm,
4785 				   struct kvm_create_device *cd)
4786 {
4787 	const struct kvm_device_ops *ops;
4788 	struct kvm_device *dev;
4789 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4790 	int type;
4791 	int ret;
4792 
4793 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4794 		return -ENODEV;
4795 
4796 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4797 	ops = kvm_device_ops_table[type];
4798 	if (ops == NULL)
4799 		return -ENODEV;
4800 
4801 	if (test)
4802 		return 0;
4803 
4804 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4805 	if (!dev)
4806 		return -ENOMEM;
4807 
4808 	dev->ops = ops;
4809 	dev->kvm = kvm;
4810 
4811 	mutex_lock(&kvm->lock);
4812 	ret = ops->create(dev, type);
4813 	if (ret < 0) {
4814 		mutex_unlock(&kvm->lock);
4815 		kfree(dev);
4816 		return ret;
4817 	}
4818 	list_add_rcu(&dev->vm_node, &kvm->devices);
4819 	mutex_unlock(&kvm->lock);
4820 
4821 	if (ops->init)
4822 		ops->init(dev);
4823 
4824 	kvm_get_kvm(kvm);
4825 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4826 	if (ret < 0) {
4827 		kvm_put_kvm_no_destroy(kvm);
4828 		mutex_lock(&kvm->lock);
4829 		list_del_rcu(&dev->vm_node);
4830 		synchronize_rcu();
4831 		if (ops->release)
4832 			ops->release(dev);
4833 		mutex_unlock(&kvm->lock);
4834 		if (ops->destroy)
4835 			ops->destroy(dev);
4836 		return ret;
4837 	}
4838 
4839 	cd->fd = ret;
4840 	return 0;
4841 }
4842 
4843 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4844 {
4845 	switch (arg) {
4846 	case KVM_CAP_USER_MEMORY:
4847 	case KVM_CAP_USER_MEMORY2:
4848 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4849 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4850 	case KVM_CAP_INTERNAL_ERROR_DATA:
4851 #ifdef CONFIG_HAVE_KVM_MSI
4852 	case KVM_CAP_SIGNAL_MSI:
4853 #endif
4854 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4855 	case KVM_CAP_IRQFD:
4856 #endif
4857 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4858 	case KVM_CAP_CHECK_EXTENSION_VM:
4859 	case KVM_CAP_ENABLE_CAP_VM:
4860 	case KVM_CAP_HALT_POLL:
4861 		return 1;
4862 #ifdef CONFIG_KVM_MMIO
4863 	case KVM_CAP_COALESCED_MMIO:
4864 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4865 	case KVM_CAP_COALESCED_PIO:
4866 		return 1;
4867 #endif
4868 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4869 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4870 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4871 #endif
4872 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4873 	case KVM_CAP_IRQ_ROUTING:
4874 		return KVM_MAX_IRQ_ROUTES;
4875 #endif
4876 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4877 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4878 		if (kvm)
4879 			return kvm_arch_nr_memslot_as_ids(kvm);
4880 		return KVM_MAX_NR_ADDRESS_SPACES;
4881 #endif
4882 	case KVM_CAP_NR_MEMSLOTS:
4883 		return KVM_USER_MEM_SLOTS;
4884 	case KVM_CAP_DIRTY_LOG_RING:
4885 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4886 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4887 #else
4888 		return 0;
4889 #endif
4890 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4891 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4892 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4893 #else
4894 		return 0;
4895 #endif
4896 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4897 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4898 #endif
4899 	case KVM_CAP_BINARY_STATS_FD:
4900 	case KVM_CAP_SYSTEM_EVENT_DATA:
4901 	case KVM_CAP_DEVICE_CTRL:
4902 		return 1;
4903 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4904 	case KVM_CAP_MEMORY_ATTRIBUTES:
4905 		return kvm_supported_mem_attributes(kvm);
4906 #endif
4907 #ifdef CONFIG_KVM_PRIVATE_MEM
4908 	case KVM_CAP_GUEST_MEMFD:
4909 		return !kvm || kvm_arch_has_private_mem(kvm);
4910 #endif
4911 	default:
4912 		break;
4913 	}
4914 	return kvm_vm_ioctl_check_extension(kvm, arg);
4915 }
4916 
4917 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4918 {
4919 	int r;
4920 
4921 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4922 		return -EINVAL;
4923 
4924 	/* the size should be power of 2 */
4925 	if (!size || (size & (size - 1)))
4926 		return -EINVAL;
4927 
4928 	/* Should be bigger to keep the reserved entries, or a page */
4929 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4930 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4931 		return -EINVAL;
4932 
4933 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4934 	    sizeof(struct kvm_dirty_gfn))
4935 		return -E2BIG;
4936 
4937 	/* We only allow it to set once */
4938 	if (kvm->dirty_ring_size)
4939 		return -EINVAL;
4940 
4941 	mutex_lock(&kvm->lock);
4942 
4943 	if (kvm->created_vcpus) {
4944 		/* We don't allow to change this value after vcpu created */
4945 		r = -EINVAL;
4946 	} else {
4947 		kvm->dirty_ring_size = size;
4948 		r = 0;
4949 	}
4950 
4951 	mutex_unlock(&kvm->lock);
4952 	return r;
4953 }
4954 
4955 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4956 {
4957 	unsigned long i;
4958 	struct kvm_vcpu *vcpu;
4959 	int cleared = 0;
4960 
4961 	if (!kvm->dirty_ring_size)
4962 		return -EINVAL;
4963 
4964 	mutex_lock(&kvm->slots_lock);
4965 
4966 	kvm_for_each_vcpu(i, vcpu, kvm)
4967 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4968 
4969 	mutex_unlock(&kvm->slots_lock);
4970 
4971 	if (cleared)
4972 		kvm_flush_remote_tlbs(kvm);
4973 
4974 	return cleared;
4975 }
4976 
4977 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4978 						  struct kvm_enable_cap *cap)
4979 {
4980 	return -EINVAL;
4981 }
4982 
4983 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4984 {
4985 	int i;
4986 
4987 	lockdep_assert_held(&kvm->slots_lock);
4988 
4989 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4990 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4991 			return false;
4992 	}
4993 
4994 	return true;
4995 }
4996 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4997 
4998 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4999 					   struct kvm_enable_cap *cap)
5000 {
5001 	switch (cap->cap) {
5002 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5003 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5004 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5005 
5006 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5007 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5008 
5009 		if (cap->flags || (cap->args[0] & ~allowed_options))
5010 			return -EINVAL;
5011 		kvm->manual_dirty_log_protect = cap->args[0];
5012 		return 0;
5013 	}
5014 #endif
5015 	case KVM_CAP_HALT_POLL: {
5016 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5017 			return -EINVAL;
5018 
5019 		kvm->max_halt_poll_ns = cap->args[0];
5020 
5021 		/*
5022 		 * Ensure kvm->override_halt_poll_ns does not become visible
5023 		 * before kvm->max_halt_poll_ns.
5024 		 *
5025 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5026 		 */
5027 		smp_wmb();
5028 		kvm->override_halt_poll_ns = true;
5029 
5030 		return 0;
5031 	}
5032 	case KVM_CAP_DIRTY_LOG_RING:
5033 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5034 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5035 			return -EINVAL;
5036 
5037 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5038 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5039 		int r = -EINVAL;
5040 
5041 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5042 		    !kvm->dirty_ring_size || cap->flags)
5043 			return r;
5044 
5045 		mutex_lock(&kvm->slots_lock);
5046 
5047 		/*
5048 		 * For simplicity, allow enabling ring+bitmap if and only if
5049 		 * there are no memslots, e.g. to ensure all memslots allocate
5050 		 * a bitmap after the capability is enabled.
5051 		 */
5052 		if (kvm_are_all_memslots_empty(kvm)) {
5053 			kvm->dirty_ring_with_bitmap = true;
5054 			r = 0;
5055 		}
5056 
5057 		mutex_unlock(&kvm->slots_lock);
5058 
5059 		return r;
5060 	}
5061 	default:
5062 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5063 	}
5064 }
5065 
5066 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5067 			      size_t size, loff_t *offset)
5068 {
5069 	struct kvm *kvm = file->private_data;
5070 
5071 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5072 				&kvm_vm_stats_desc[0], &kvm->stat,
5073 				sizeof(kvm->stat), user_buffer, size, offset);
5074 }
5075 
5076 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5077 {
5078 	struct kvm *kvm = file->private_data;
5079 
5080 	kvm_put_kvm(kvm);
5081 	return 0;
5082 }
5083 
5084 static const struct file_operations kvm_vm_stats_fops = {
5085 	.owner = THIS_MODULE,
5086 	.read = kvm_vm_stats_read,
5087 	.release = kvm_vm_stats_release,
5088 	.llseek = noop_llseek,
5089 };
5090 
5091 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5092 {
5093 	int fd;
5094 	struct file *file;
5095 
5096 	fd = get_unused_fd_flags(O_CLOEXEC);
5097 	if (fd < 0)
5098 		return fd;
5099 
5100 	file = anon_inode_getfile("kvm-vm-stats",
5101 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5102 	if (IS_ERR(file)) {
5103 		put_unused_fd(fd);
5104 		return PTR_ERR(file);
5105 	}
5106 
5107 	kvm_get_kvm(kvm);
5108 
5109 	file->f_mode |= FMODE_PREAD;
5110 	fd_install(fd, file);
5111 
5112 	return fd;
5113 }
5114 
5115 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5116 do {										\
5117 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5118 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5119 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5120 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5121 } while (0)
5122 
5123 static long kvm_vm_ioctl(struct file *filp,
5124 			   unsigned int ioctl, unsigned long arg)
5125 {
5126 	struct kvm *kvm = filp->private_data;
5127 	void __user *argp = (void __user *)arg;
5128 	int r;
5129 
5130 	if (kvm->mm != current->mm || kvm->vm_dead)
5131 		return -EIO;
5132 	switch (ioctl) {
5133 	case KVM_CREATE_VCPU:
5134 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5135 		break;
5136 	case KVM_ENABLE_CAP: {
5137 		struct kvm_enable_cap cap;
5138 
5139 		r = -EFAULT;
5140 		if (copy_from_user(&cap, argp, sizeof(cap)))
5141 			goto out;
5142 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5143 		break;
5144 	}
5145 	case KVM_SET_USER_MEMORY_REGION2:
5146 	case KVM_SET_USER_MEMORY_REGION: {
5147 		struct kvm_userspace_memory_region2 mem;
5148 		unsigned long size;
5149 
5150 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5151 			/*
5152 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5153 			 * accessed, but avoid leaking kernel memory in case of a bug.
5154 			 */
5155 			memset(&mem, 0, sizeof(mem));
5156 			size = sizeof(struct kvm_userspace_memory_region);
5157 		} else {
5158 			size = sizeof(struct kvm_userspace_memory_region2);
5159 		}
5160 
5161 		/* Ensure the common parts of the two structs are identical. */
5162 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5163 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5164 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5165 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5166 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5167 
5168 		r = -EFAULT;
5169 		if (copy_from_user(&mem, argp, size))
5170 			goto out;
5171 
5172 		r = -EINVAL;
5173 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5174 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5175 			goto out;
5176 
5177 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5178 		break;
5179 	}
5180 	case KVM_GET_DIRTY_LOG: {
5181 		struct kvm_dirty_log log;
5182 
5183 		r = -EFAULT;
5184 		if (copy_from_user(&log, argp, sizeof(log)))
5185 			goto out;
5186 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5187 		break;
5188 	}
5189 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5190 	case KVM_CLEAR_DIRTY_LOG: {
5191 		struct kvm_clear_dirty_log log;
5192 
5193 		r = -EFAULT;
5194 		if (copy_from_user(&log, argp, sizeof(log)))
5195 			goto out;
5196 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5197 		break;
5198 	}
5199 #endif
5200 #ifdef CONFIG_KVM_MMIO
5201 	case KVM_REGISTER_COALESCED_MMIO: {
5202 		struct kvm_coalesced_mmio_zone zone;
5203 
5204 		r = -EFAULT;
5205 		if (copy_from_user(&zone, argp, sizeof(zone)))
5206 			goto out;
5207 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5208 		break;
5209 	}
5210 	case KVM_UNREGISTER_COALESCED_MMIO: {
5211 		struct kvm_coalesced_mmio_zone zone;
5212 
5213 		r = -EFAULT;
5214 		if (copy_from_user(&zone, argp, sizeof(zone)))
5215 			goto out;
5216 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5217 		break;
5218 	}
5219 #endif
5220 	case KVM_IRQFD: {
5221 		struct kvm_irqfd data;
5222 
5223 		r = -EFAULT;
5224 		if (copy_from_user(&data, argp, sizeof(data)))
5225 			goto out;
5226 		r = kvm_irqfd(kvm, &data);
5227 		break;
5228 	}
5229 	case KVM_IOEVENTFD: {
5230 		struct kvm_ioeventfd data;
5231 
5232 		r = -EFAULT;
5233 		if (copy_from_user(&data, argp, sizeof(data)))
5234 			goto out;
5235 		r = kvm_ioeventfd(kvm, &data);
5236 		break;
5237 	}
5238 #ifdef CONFIG_HAVE_KVM_MSI
5239 	case KVM_SIGNAL_MSI: {
5240 		struct kvm_msi msi;
5241 
5242 		r = -EFAULT;
5243 		if (copy_from_user(&msi, argp, sizeof(msi)))
5244 			goto out;
5245 		r = kvm_send_userspace_msi(kvm, &msi);
5246 		break;
5247 	}
5248 #endif
5249 #ifdef __KVM_HAVE_IRQ_LINE
5250 	case KVM_IRQ_LINE_STATUS:
5251 	case KVM_IRQ_LINE: {
5252 		struct kvm_irq_level irq_event;
5253 
5254 		r = -EFAULT;
5255 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5256 			goto out;
5257 
5258 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5259 					ioctl == KVM_IRQ_LINE_STATUS);
5260 		if (r)
5261 			goto out;
5262 
5263 		r = -EFAULT;
5264 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5265 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5266 				goto out;
5267 		}
5268 
5269 		r = 0;
5270 		break;
5271 	}
5272 #endif
5273 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5274 	case KVM_SET_GSI_ROUTING: {
5275 		struct kvm_irq_routing routing;
5276 		struct kvm_irq_routing __user *urouting;
5277 		struct kvm_irq_routing_entry *entries = NULL;
5278 
5279 		r = -EFAULT;
5280 		if (copy_from_user(&routing, argp, sizeof(routing)))
5281 			goto out;
5282 		r = -EINVAL;
5283 		if (!kvm_arch_can_set_irq_routing(kvm))
5284 			goto out;
5285 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5286 			goto out;
5287 		if (routing.flags)
5288 			goto out;
5289 		if (routing.nr) {
5290 			urouting = argp;
5291 			entries = vmemdup_array_user(urouting->entries,
5292 						     routing.nr, sizeof(*entries));
5293 			if (IS_ERR(entries)) {
5294 				r = PTR_ERR(entries);
5295 				goto out;
5296 			}
5297 		}
5298 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5299 					routing.flags);
5300 		kvfree(entries);
5301 		break;
5302 	}
5303 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5304 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5305 	case KVM_SET_MEMORY_ATTRIBUTES: {
5306 		struct kvm_memory_attributes attrs;
5307 
5308 		r = -EFAULT;
5309 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5310 			goto out;
5311 
5312 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5313 		break;
5314 	}
5315 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5316 	case KVM_CREATE_DEVICE: {
5317 		struct kvm_create_device cd;
5318 
5319 		r = -EFAULT;
5320 		if (copy_from_user(&cd, argp, sizeof(cd)))
5321 			goto out;
5322 
5323 		r = kvm_ioctl_create_device(kvm, &cd);
5324 		if (r)
5325 			goto out;
5326 
5327 		r = -EFAULT;
5328 		if (copy_to_user(argp, &cd, sizeof(cd)))
5329 			goto out;
5330 
5331 		r = 0;
5332 		break;
5333 	}
5334 	case KVM_CHECK_EXTENSION:
5335 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5336 		break;
5337 	case KVM_RESET_DIRTY_RINGS:
5338 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5339 		break;
5340 	case KVM_GET_STATS_FD:
5341 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5342 		break;
5343 #ifdef CONFIG_KVM_PRIVATE_MEM
5344 	case KVM_CREATE_GUEST_MEMFD: {
5345 		struct kvm_create_guest_memfd guest_memfd;
5346 
5347 		r = -EFAULT;
5348 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5349 			goto out;
5350 
5351 		r = kvm_gmem_create(kvm, &guest_memfd);
5352 		break;
5353 	}
5354 #endif
5355 	default:
5356 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5357 	}
5358 out:
5359 	return r;
5360 }
5361 
5362 #ifdef CONFIG_KVM_COMPAT
5363 struct compat_kvm_dirty_log {
5364 	__u32 slot;
5365 	__u32 padding1;
5366 	union {
5367 		compat_uptr_t dirty_bitmap; /* one bit per page */
5368 		__u64 padding2;
5369 	};
5370 };
5371 
5372 struct compat_kvm_clear_dirty_log {
5373 	__u32 slot;
5374 	__u32 num_pages;
5375 	__u64 first_page;
5376 	union {
5377 		compat_uptr_t dirty_bitmap; /* one bit per page */
5378 		__u64 padding2;
5379 	};
5380 };
5381 
5382 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5383 				     unsigned long arg)
5384 {
5385 	return -ENOTTY;
5386 }
5387 
5388 static long kvm_vm_compat_ioctl(struct file *filp,
5389 			   unsigned int ioctl, unsigned long arg)
5390 {
5391 	struct kvm *kvm = filp->private_data;
5392 	int r;
5393 
5394 	if (kvm->mm != current->mm || kvm->vm_dead)
5395 		return -EIO;
5396 
5397 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5398 	if (r != -ENOTTY)
5399 		return r;
5400 
5401 	switch (ioctl) {
5402 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5403 	case KVM_CLEAR_DIRTY_LOG: {
5404 		struct compat_kvm_clear_dirty_log compat_log;
5405 		struct kvm_clear_dirty_log log;
5406 
5407 		if (copy_from_user(&compat_log, (void __user *)arg,
5408 				   sizeof(compat_log)))
5409 			return -EFAULT;
5410 		log.slot	 = compat_log.slot;
5411 		log.num_pages	 = compat_log.num_pages;
5412 		log.first_page	 = compat_log.first_page;
5413 		log.padding2	 = compat_log.padding2;
5414 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5415 
5416 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5417 		break;
5418 	}
5419 #endif
5420 	case KVM_GET_DIRTY_LOG: {
5421 		struct compat_kvm_dirty_log compat_log;
5422 		struct kvm_dirty_log log;
5423 
5424 		if (copy_from_user(&compat_log, (void __user *)arg,
5425 				   sizeof(compat_log)))
5426 			return -EFAULT;
5427 		log.slot	 = compat_log.slot;
5428 		log.padding1	 = compat_log.padding1;
5429 		log.padding2	 = compat_log.padding2;
5430 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5431 
5432 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5433 		break;
5434 	}
5435 	default:
5436 		r = kvm_vm_ioctl(filp, ioctl, arg);
5437 	}
5438 	return r;
5439 }
5440 #endif
5441 
5442 static struct file_operations kvm_vm_fops = {
5443 	.release        = kvm_vm_release,
5444 	.unlocked_ioctl = kvm_vm_ioctl,
5445 	.llseek		= noop_llseek,
5446 	KVM_COMPAT(kvm_vm_compat_ioctl),
5447 };
5448 
5449 bool file_is_kvm(struct file *file)
5450 {
5451 	return file && file->f_op == &kvm_vm_fops;
5452 }
5453 EXPORT_SYMBOL_GPL(file_is_kvm);
5454 
5455 static int kvm_dev_ioctl_create_vm(unsigned long type)
5456 {
5457 	char fdname[ITOA_MAX_LEN + 1];
5458 	int r, fd;
5459 	struct kvm *kvm;
5460 	struct file *file;
5461 
5462 	fd = get_unused_fd_flags(O_CLOEXEC);
5463 	if (fd < 0)
5464 		return fd;
5465 
5466 	snprintf(fdname, sizeof(fdname), "%d", fd);
5467 
5468 	kvm = kvm_create_vm(type, fdname);
5469 	if (IS_ERR(kvm)) {
5470 		r = PTR_ERR(kvm);
5471 		goto put_fd;
5472 	}
5473 
5474 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5475 	if (IS_ERR(file)) {
5476 		r = PTR_ERR(file);
5477 		goto put_kvm;
5478 	}
5479 
5480 	/*
5481 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5482 	 * already set, with ->release() being kvm_vm_release().  In error
5483 	 * cases it will be called by the final fput(file) and will take
5484 	 * care of doing kvm_put_kvm(kvm).
5485 	 */
5486 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5487 
5488 	fd_install(fd, file);
5489 	return fd;
5490 
5491 put_kvm:
5492 	kvm_put_kvm(kvm);
5493 put_fd:
5494 	put_unused_fd(fd);
5495 	return r;
5496 }
5497 
5498 static long kvm_dev_ioctl(struct file *filp,
5499 			  unsigned int ioctl, unsigned long arg)
5500 {
5501 	int r = -EINVAL;
5502 
5503 	switch (ioctl) {
5504 	case KVM_GET_API_VERSION:
5505 		if (arg)
5506 			goto out;
5507 		r = KVM_API_VERSION;
5508 		break;
5509 	case KVM_CREATE_VM:
5510 		r = kvm_dev_ioctl_create_vm(arg);
5511 		break;
5512 	case KVM_CHECK_EXTENSION:
5513 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5514 		break;
5515 	case KVM_GET_VCPU_MMAP_SIZE:
5516 		if (arg)
5517 			goto out;
5518 		r = PAGE_SIZE;     /* struct kvm_run */
5519 #ifdef CONFIG_X86
5520 		r += PAGE_SIZE;    /* pio data page */
5521 #endif
5522 #ifdef CONFIG_KVM_MMIO
5523 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5524 #endif
5525 		break;
5526 	default:
5527 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5528 	}
5529 out:
5530 	return r;
5531 }
5532 
5533 static struct file_operations kvm_chardev_ops = {
5534 	.unlocked_ioctl = kvm_dev_ioctl,
5535 	.llseek		= noop_llseek,
5536 	KVM_COMPAT(kvm_dev_ioctl),
5537 };
5538 
5539 static struct miscdevice kvm_dev = {
5540 	KVM_MINOR,
5541 	"kvm",
5542 	&kvm_chardev_ops,
5543 };
5544 
5545 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5546 __visible bool kvm_rebooting;
5547 EXPORT_SYMBOL_GPL(kvm_rebooting);
5548 
5549 static DEFINE_PER_CPU(bool, hardware_enabled);
5550 static int kvm_usage_count;
5551 
5552 static int __hardware_enable_nolock(void)
5553 {
5554 	if (__this_cpu_read(hardware_enabled))
5555 		return 0;
5556 
5557 	if (kvm_arch_hardware_enable()) {
5558 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5559 			raw_smp_processor_id());
5560 		return -EIO;
5561 	}
5562 
5563 	__this_cpu_write(hardware_enabled, true);
5564 	return 0;
5565 }
5566 
5567 static void hardware_enable_nolock(void *failed)
5568 {
5569 	if (__hardware_enable_nolock())
5570 		atomic_inc(failed);
5571 }
5572 
5573 static int kvm_online_cpu(unsigned int cpu)
5574 {
5575 	int ret = 0;
5576 
5577 	/*
5578 	 * Abort the CPU online process if hardware virtualization cannot
5579 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5580 	 * errors when scheduled to this CPU.
5581 	 */
5582 	mutex_lock(&kvm_lock);
5583 	if (kvm_usage_count)
5584 		ret = __hardware_enable_nolock();
5585 	mutex_unlock(&kvm_lock);
5586 	return ret;
5587 }
5588 
5589 static void hardware_disable_nolock(void *junk)
5590 {
5591 	/*
5592 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5593 	 * hardware, not just CPUs that successfully enabled hardware!
5594 	 */
5595 	if (!__this_cpu_read(hardware_enabled))
5596 		return;
5597 
5598 	kvm_arch_hardware_disable();
5599 
5600 	__this_cpu_write(hardware_enabled, false);
5601 }
5602 
5603 static int kvm_offline_cpu(unsigned int cpu)
5604 {
5605 	mutex_lock(&kvm_lock);
5606 	if (kvm_usage_count)
5607 		hardware_disable_nolock(NULL);
5608 	mutex_unlock(&kvm_lock);
5609 	return 0;
5610 }
5611 
5612 static void hardware_disable_all_nolock(void)
5613 {
5614 	BUG_ON(!kvm_usage_count);
5615 
5616 	kvm_usage_count--;
5617 	if (!kvm_usage_count)
5618 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5619 }
5620 
5621 static void hardware_disable_all(void)
5622 {
5623 	cpus_read_lock();
5624 	mutex_lock(&kvm_lock);
5625 	hardware_disable_all_nolock();
5626 	mutex_unlock(&kvm_lock);
5627 	cpus_read_unlock();
5628 }
5629 
5630 static int hardware_enable_all(void)
5631 {
5632 	atomic_t failed = ATOMIC_INIT(0);
5633 	int r;
5634 
5635 	/*
5636 	 * Do not enable hardware virtualization if the system is going down.
5637 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5638 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5639 	 * after kvm_reboot() is called.  Note, this relies on system_state
5640 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5641 	 * hook instead of registering a dedicated reboot notifier (the latter
5642 	 * runs before system_state is updated).
5643 	 */
5644 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5645 	    system_state == SYSTEM_RESTART)
5646 		return -EBUSY;
5647 
5648 	/*
5649 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5650 	 * is called, and so on_each_cpu() between them includes the CPU that
5651 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5652 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5653 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5654 	 * enable hardware multiple times.
5655 	 */
5656 	cpus_read_lock();
5657 	mutex_lock(&kvm_lock);
5658 
5659 	r = 0;
5660 
5661 	kvm_usage_count++;
5662 	if (kvm_usage_count == 1) {
5663 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5664 
5665 		if (atomic_read(&failed)) {
5666 			hardware_disable_all_nolock();
5667 			r = -EBUSY;
5668 		}
5669 	}
5670 
5671 	mutex_unlock(&kvm_lock);
5672 	cpus_read_unlock();
5673 
5674 	return r;
5675 }
5676 
5677 static void kvm_shutdown(void)
5678 {
5679 	/*
5680 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5681 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5682 	 * that relevant errors and exceptions aren't entirely unexpected.
5683 	 * Some flavors of hardware virtualization need to be disabled before
5684 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5685 	 * on x86, virtualization can block INIT interrupts, which are used by
5686 	 * firmware to pull APs back under firmware control.  Note, this path
5687 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5688 	 * 100% comprehensive.
5689 	 */
5690 	pr_info("kvm: exiting hardware virtualization\n");
5691 	kvm_rebooting = true;
5692 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5693 }
5694 
5695 static int kvm_suspend(void)
5696 {
5697 	/*
5698 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5699 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5700 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5701 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5702 	 * can be preempted, but the task cannot be frozen until it has dropped
5703 	 * all locks (userspace tasks are frozen via a fake signal).
5704 	 */
5705 	lockdep_assert_not_held(&kvm_lock);
5706 	lockdep_assert_irqs_disabled();
5707 
5708 	if (kvm_usage_count)
5709 		hardware_disable_nolock(NULL);
5710 	return 0;
5711 }
5712 
5713 static void kvm_resume(void)
5714 {
5715 	lockdep_assert_not_held(&kvm_lock);
5716 	lockdep_assert_irqs_disabled();
5717 
5718 	if (kvm_usage_count)
5719 		WARN_ON_ONCE(__hardware_enable_nolock());
5720 }
5721 
5722 static struct syscore_ops kvm_syscore_ops = {
5723 	.suspend = kvm_suspend,
5724 	.resume = kvm_resume,
5725 	.shutdown = kvm_shutdown,
5726 };
5727 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5728 static int hardware_enable_all(void)
5729 {
5730 	return 0;
5731 }
5732 
5733 static void hardware_disable_all(void)
5734 {
5735 
5736 }
5737 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5738 
5739 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5740 {
5741 	if (dev->ops->destructor)
5742 		dev->ops->destructor(dev);
5743 }
5744 
5745 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5746 {
5747 	int i;
5748 
5749 	for (i = 0; i < bus->dev_count; i++) {
5750 		struct kvm_io_device *pos = bus->range[i].dev;
5751 
5752 		kvm_iodevice_destructor(pos);
5753 	}
5754 	kfree(bus);
5755 }
5756 
5757 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5758 				 const struct kvm_io_range *r2)
5759 {
5760 	gpa_t addr1 = r1->addr;
5761 	gpa_t addr2 = r2->addr;
5762 
5763 	if (addr1 < addr2)
5764 		return -1;
5765 
5766 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5767 	 * accept any overlapping write.  Any order is acceptable for
5768 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5769 	 * we process all of them.
5770 	 */
5771 	if (r2->len) {
5772 		addr1 += r1->len;
5773 		addr2 += r2->len;
5774 	}
5775 
5776 	if (addr1 > addr2)
5777 		return 1;
5778 
5779 	return 0;
5780 }
5781 
5782 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5783 {
5784 	return kvm_io_bus_cmp(p1, p2);
5785 }
5786 
5787 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5788 			     gpa_t addr, int len)
5789 {
5790 	struct kvm_io_range *range, key;
5791 	int off;
5792 
5793 	key = (struct kvm_io_range) {
5794 		.addr = addr,
5795 		.len = len,
5796 	};
5797 
5798 	range = bsearch(&key, bus->range, bus->dev_count,
5799 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5800 	if (range == NULL)
5801 		return -ENOENT;
5802 
5803 	off = range - bus->range;
5804 
5805 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5806 		off--;
5807 
5808 	return off;
5809 }
5810 
5811 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5812 			      struct kvm_io_range *range, const void *val)
5813 {
5814 	int idx;
5815 
5816 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5817 	if (idx < 0)
5818 		return -EOPNOTSUPP;
5819 
5820 	while (idx < bus->dev_count &&
5821 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5822 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5823 					range->len, val))
5824 			return idx;
5825 		idx++;
5826 	}
5827 
5828 	return -EOPNOTSUPP;
5829 }
5830 
5831 /* kvm_io_bus_write - called under kvm->slots_lock */
5832 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5833 		     int len, const void *val)
5834 {
5835 	struct kvm_io_bus *bus;
5836 	struct kvm_io_range range;
5837 	int r;
5838 
5839 	range = (struct kvm_io_range) {
5840 		.addr = addr,
5841 		.len = len,
5842 	};
5843 
5844 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5845 	if (!bus)
5846 		return -ENOMEM;
5847 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5848 	return r < 0 ? r : 0;
5849 }
5850 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5851 
5852 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5853 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5854 			    gpa_t addr, int len, const void *val, long cookie)
5855 {
5856 	struct kvm_io_bus *bus;
5857 	struct kvm_io_range range;
5858 
5859 	range = (struct kvm_io_range) {
5860 		.addr = addr,
5861 		.len = len,
5862 	};
5863 
5864 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5865 	if (!bus)
5866 		return -ENOMEM;
5867 
5868 	/* First try the device referenced by cookie. */
5869 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5870 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5871 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5872 					val))
5873 			return cookie;
5874 
5875 	/*
5876 	 * cookie contained garbage; fall back to search and return the
5877 	 * correct cookie value.
5878 	 */
5879 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5880 }
5881 
5882 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5883 			     struct kvm_io_range *range, void *val)
5884 {
5885 	int idx;
5886 
5887 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5888 	if (idx < 0)
5889 		return -EOPNOTSUPP;
5890 
5891 	while (idx < bus->dev_count &&
5892 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5893 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5894 				       range->len, val))
5895 			return idx;
5896 		idx++;
5897 	}
5898 
5899 	return -EOPNOTSUPP;
5900 }
5901 
5902 /* kvm_io_bus_read - called under kvm->slots_lock */
5903 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5904 		    int len, void *val)
5905 {
5906 	struct kvm_io_bus *bus;
5907 	struct kvm_io_range range;
5908 	int r;
5909 
5910 	range = (struct kvm_io_range) {
5911 		.addr = addr,
5912 		.len = len,
5913 	};
5914 
5915 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5916 	if (!bus)
5917 		return -ENOMEM;
5918 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5919 	return r < 0 ? r : 0;
5920 }
5921 
5922 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5923 			    int len, struct kvm_io_device *dev)
5924 {
5925 	int i;
5926 	struct kvm_io_bus *new_bus, *bus;
5927 	struct kvm_io_range range;
5928 
5929 	lockdep_assert_held(&kvm->slots_lock);
5930 
5931 	bus = kvm_get_bus(kvm, bus_idx);
5932 	if (!bus)
5933 		return -ENOMEM;
5934 
5935 	/* exclude ioeventfd which is limited by maximum fd */
5936 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5937 		return -ENOSPC;
5938 
5939 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5940 			  GFP_KERNEL_ACCOUNT);
5941 	if (!new_bus)
5942 		return -ENOMEM;
5943 
5944 	range = (struct kvm_io_range) {
5945 		.addr = addr,
5946 		.len = len,
5947 		.dev = dev,
5948 	};
5949 
5950 	for (i = 0; i < bus->dev_count; i++)
5951 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5952 			break;
5953 
5954 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5955 	new_bus->dev_count++;
5956 	new_bus->range[i] = range;
5957 	memcpy(new_bus->range + i + 1, bus->range + i,
5958 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5959 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5960 	synchronize_srcu_expedited(&kvm->srcu);
5961 	kfree(bus);
5962 
5963 	return 0;
5964 }
5965 
5966 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5967 			      struct kvm_io_device *dev)
5968 {
5969 	int i;
5970 	struct kvm_io_bus *new_bus, *bus;
5971 
5972 	lockdep_assert_held(&kvm->slots_lock);
5973 
5974 	bus = kvm_get_bus(kvm, bus_idx);
5975 	if (!bus)
5976 		return 0;
5977 
5978 	for (i = 0; i < bus->dev_count; i++) {
5979 		if (bus->range[i].dev == dev) {
5980 			break;
5981 		}
5982 	}
5983 
5984 	if (i == bus->dev_count)
5985 		return 0;
5986 
5987 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5988 			  GFP_KERNEL_ACCOUNT);
5989 	if (new_bus) {
5990 		memcpy(new_bus, bus, struct_size(bus, range, i));
5991 		new_bus->dev_count--;
5992 		memcpy(new_bus->range + i, bus->range + i + 1,
5993 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5994 	}
5995 
5996 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5997 	synchronize_srcu_expedited(&kvm->srcu);
5998 
5999 	/*
6000 	 * If NULL bus is installed, destroy the old bus, including all the
6001 	 * attached devices. Otherwise, destroy the caller's device only.
6002 	 */
6003 	if (!new_bus) {
6004 		pr_err("kvm: failed to shrink bus, removing it completely\n");
6005 		kvm_io_bus_destroy(bus);
6006 		return -ENOMEM;
6007 	}
6008 
6009 	kvm_iodevice_destructor(dev);
6010 	kfree(bus);
6011 	return 0;
6012 }
6013 
6014 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6015 					 gpa_t addr)
6016 {
6017 	struct kvm_io_bus *bus;
6018 	int dev_idx, srcu_idx;
6019 	struct kvm_io_device *iodev = NULL;
6020 
6021 	srcu_idx = srcu_read_lock(&kvm->srcu);
6022 
6023 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6024 	if (!bus)
6025 		goto out_unlock;
6026 
6027 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6028 	if (dev_idx < 0)
6029 		goto out_unlock;
6030 
6031 	iodev = bus->range[dev_idx].dev;
6032 
6033 out_unlock:
6034 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6035 
6036 	return iodev;
6037 }
6038 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6039 
6040 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6041 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6042 			   const char *fmt)
6043 {
6044 	int ret;
6045 	struct kvm_stat_data *stat_data = inode->i_private;
6046 
6047 	/*
6048 	 * The debugfs files are a reference to the kvm struct which
6049         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6050         * avoids the race between open and the removal of the debugfs directory.
6051 	 */
6052 	if (!kvm_get_kvm_safe(stat_data->kvm))
6053 		return -ENOENT;
6054 
6055 	ret = simple_attr_open(inode, file, get,
6056 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6057 			       ? set : NULL, fmt);
6058 	if (ret)
6059 		kvm_put_kvm(stat_data->kvm);
6060 
6061 	return ret;
6062 }
6063 
6064 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6065 {
6066 	struct kvm_stat_data *stat_data = inode->i_private;
6067 
6068 	simple_attr_release(inode, file);
6069 	kvm_put_kvm(stat_data->kvm);
6070 
6071 	return 0;
6072 }
6073 
6074 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6075 {
6076 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6077 
6078 	return 0;
6079 }
6080 
6081 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6082 {
6083 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6084 
6085 	return 0;
6086 }
6087 
6088 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6089 {
6090 	unsigned long i;
6091 	struct kvm_vcpu *vcpu;
6092 
6093 	*val = 0;
6094 
6095 	kvm_for_each_vcpu(i, vcpu, kvm)
6096 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6097 
6098 	return 0;
6099 }
6100 
6101 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6102 {
6103 	unsigned long i;
6104 	struct kvm_vcpu *vcpu;
6105 
6106 	kvm_for_each_vcpu(i, vcpu, kvm)
6107 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6108 
6109 	return 0;
6110 }
6111 
6112 static int kvm_stat_data_get(void *data, u64 *val)
6113 {
6114 	int r = -EFAULT;
6115 	struct kvm_stat_data *stat_data = data;
6116 
6117 	switch (stat_data->kind) {
6118 	case KVM_STAT_VM:
6119 		r = kvm_get_stat_per_vm(stat_data->kvm,
6120 					stat_data->desc->desc.offset, val);
6121 		break;
6122 	case KVM_STAT_VCPU:
6123 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6124 					  stat_data->desc->desc.offset, val);
6125 		break;
6126 	}
6127 
6128 	return r;
6129 }
6130 
6131 static int kvm_stat_data_clear(void *data, u64 val)
6132 {
6133 	int r = -EFAULT;
6134 	struct kvm_stat_data *stat_data = data;
6135 
6136 	if (val)
6137 		return -EINVAL;
6138 
6139 	switch (stat_data->kind) {
6140 	case KVM_STAT_VM:
6141 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6142 					  stat_data->desc->desc.offset);
6143 		break;
6144 	case KVM_STAT_VCPU:
6145 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6146 					    stat_data->desc->desc.offset);
6147 		break;
6148 	}
6149 
6150 	return r;
6151 }
6152 
6153 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6154 {
6155 	__simple_attr_check_format("%llu\n", 0ull);
6156 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6157 				kvm_stat_data_clear, "%llu\n");
6158 }
6159 
6160 static const struct file_operations stat_fops_per_vm = {
6161 	.owner = THIS_MODULE,
6162 	.open = kvm_stat_data_open,
6163 	.release = kvm_debugfs_release,
6164 	.read = simple_attr_read,
6165 	.write = simple_attr_write,
6166 	.llseek = no_llseek,
6167 };
6168 
6169 static int vm_stat_get(void *_offset, u64 *val)
6170 {
6171 	unsigned offset = (long)_offset;
6172 	struct kvm *kvm;
6173 	u64 tmp_val;
6174 
6175 	*val = 0;
6176 	mutex_lock(&kvm_lock);
6177 	list_for_each_entry(kvm, &vm_list, vm_list) {
6178 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6179 		*val += tmp_val;
6180 	}
6181 	mutex_unlock(&kvm_lock);
6182 	return 0;
6183 }
6184 
6185 static int vm_stat_clear(void *_offset, u64 val)
6186 {
6187 	unsigned offset = (long)_offset;
6188 	struct kvm *kvm;
6189 
6190 	if (val)
6191 		return -EINVAL;
6192 
6193 	mutex_lock(&kvm_lock);
6194 	list_for_each_entry(kvm, &vm_list, vm_list) {
6195 		kvm_clear_stat_per_vm(kvm, offset);
6196 	}
6197 	mutex_unlock(&kvm_lock);
6198 
6199 	return 0;
6200 }
6201 
6202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6203 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6204 
6205 static int vcpu_stat_get(void *_offset, u64 *val)
6206 {
6207 	unsigned offset = (long)_offset;
6208 	struct kvm *kvm;
6209 	u64 tmp_val;
6210 
6211 	*val = 0;
6212 	mutex_lock(&kvm_lock);
6213 	list_for_each_entry(kvm, &vm_list, vm_list) {
6214 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6215 		*val += tmp_val;
6216 	}
6217 	mutex_unlock(&kvm_lock);
6218 	return 0;
6219 }
6220 
6221 static int vcpu_stat_clear(void *_offset, u64 val)
6222 {
6223 	unsigned offset = (long)_offset;
6224 	struct kvm *kvm;
6225 
6226 	if (val)
6227 		return -EINVAL;
6228 
6229 	mutex_lock(&kvm_lock);
6230 	list_for_each_entry(kvm, &vm_list, vm_list) {
6231 		kvm_clear_stat_per_vcpu(kvm, offset);
6232 	}
6233 	mutex_unlock(&kvm_lock);
6234 
6235 	return 0;
6236 }
6237 
6238 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6239 			"%llu\n");
6240 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6241 
6242 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6243 {
6244 	struct kobj_uevent_env *env;
6245 	unsigned long long created, active;
6246 
6247 	if (!kvm_dev.this_device || !kvm)
6248 		return;
6249 
6250 	mutex_lock(&kvm_lock);
6251 	if (type == KVM_EVENT_CREATE_VM) {
6252 		kvm_createvm_count++;
6253 		kvm_active_vms++;
6254 	} else if (type == KVM_EVENT_DESTROY_VM) {
6255 		kvm_active_vms--;
6256 	}
6257 	created = kvm_createvm_count;
6258 	active = kvm_active_vms;
6259 	mutex_unlock(&kvm_lock);
6260 
6261 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6262 	if (!env)
6263 		return;
6264 
6265 	add_uevent_var(env, "CREATED=%llu", created);
6266 	add_uevent_var(env, "COUNT=%llu", active);
6267 
6268 	if (type == KVM_EVENT_CREATE_VM) {
6269 		add_uevent_var(env, "EVENT=create");
6270 		kvm->userspace_pid = task_pid_nr(current);
6271 	} else if (type == KVM_EVENT_DESTROY_VM) {
6272 		add_uevent_var(env, "EVENT=destroy");
6273 	}
6274 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6275 
6276 	if (!IS_ERR(kvm->debugfs_dentry)) {
6277 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6278 
6279 		if (p) {
6280 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6281 			if (!IS_ERR(tmp))
6282 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6283 			kfree(p);
6284 		}
6285 	}
6286 	/* no need for checks, since we are adding at most only 5 keys */
6287 	env->envp[env->envp_idx++] = NULL;
6288 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6289 	kfree(env);
6290 }
6291 
6292 static void kvm_init_debug(void)
6293 {
6294 	const struct file_operations *fops;
6295 	const struct _kvm_stats_desc *pdesc;
6296 	int i;
6297 
6298 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6299 
6300 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6301 		pdesc = &kvm_vm_stats_desc[i];
6302 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6303 			fops = &vm_stat_fops;
6304 		else
6305 			fops = &vm_stat_readonly_fops;
6306 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6307 				kvm_debugfs_dir,
6308 				(void *)(long)pdesc->desc.offset, fops);
6309 	}
6310 
6311 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6312 		pdesc = &kvm_vcpu_stats_desc[i];
6313 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6314 			fops = &vcpu_stat_fops;
6315 		else
6316 			fops = &vcpu_stat_readonly_fops;
6317 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6318 				kvm_debugfs_dir,
6319 				(void *)(long)pdesc->desc.offset, fops);
6320 	}
6321 }
6322 
6323 static inline
6324 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6325 {
6326 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6327 }
6328 
6329 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6330 {
6331 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6332 
6333 	WRITE_ONCE(vcpu->preempted, false);
6334 	WRITE_ONCE(vcpu->ready, false);
6335 
6336 	__this_cpu_write(kvm_running_vcpu, vcpu);
6337 	kvm_arch_sched_in(vcpu, cpu);
6338 	kvm_arch_vcpu_load(vcpu, cpu);
6339 }
6340 
6341 static void kvm_sched_out(struct preempt_notifier *pn,
6342 			  struct task_struct *next)
6343 {
6344 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6345 
6346 	if (current->on_rq) {
6347 		WRITE_ONCE(vcpu->preempted, true);
6348 		WRITE_ONCE(vcpu->ready, true);
6349 	}
6350 	kvm_arch_vcpu_put(vcpu);
6351 	__this_cpu_write(kvm_running_vcpu, NULL);
6352 }
6353 
6354 /**
6355  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6356  *
6357  * We can disable preemption locally around accessing the per-CPU variable,
6358  * and use the resolved vcpu pointer after enabling preemption again,
6359  * because even if the current thread is migrated to another CPU, reading
6360  * the per-CPU value later will give us the same value as we update the
6361  * per-CPU variable in the preempt notifier handlers.
6362  */
6363 struct kvm_vcpu *kvm_get_running_vcpu(void)
6364 {
6365 	struct kvm_vcpu *vcpu;
6366 
6367 	preempt_disable();
6368 	vcpu = __this_cpu_read(kvm_running_vcpu);
6369 	preempt_enable();
6370 
6371 	return vcpu;
6372 }
6373 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6374 
6375 /**
6376  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6377  */
6378 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6379 {
6380         return &kvm_running_vcpu;
6381 }
6382 
6383 #ifdef CONFIG_GUEST_PERF_EVENTS
6384 static unsigned int kvm_guest_state(void)
6385 {
6386 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6387 	unsigned int state;
6388 
6389 	if (!kvm_arch_pmi_in_guest(vcpu))
6390 		return 0;
6391 
6392 	state = PERF_GUEST_ACTIVE;
6393 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6394 		state |= PERF_GUEST_USER;
6395 
6396 	return state;
6397 }
6398 
6399 static unsigned long kvm_guest_get_ip(void)
6400 {
6401 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6402 
6403 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6404 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6405 		return 0;
6406 
6407 	return kvm_arch_vcpu_get_ip(vcpu);
6408 }
6409 
6410 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6411 	.state			= kvm_guest_state,
6412 	.get_ip			= kvm_guest_get_ip,
6413 	.handle_intel_pt_intr	= NULL,
6414 };
6415 
6416 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6417 {
6418 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6419 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6420 }
6421 void kvm_unregister_perf_callbacks(void)
6422 {
6423 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6424 }
6425 #endif
6426 
6427 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6428 {
6429 	int r;
6430 	int cpu;
6431 
6432 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6433 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6434 				      kvm_online_cpu, kvm_offline_cpu);
6435 	if (r)
6436 		return r;
6437 
6438 	register_syscore_ops(&kvm_syscore_ops);
6439 #endif
6440 
6441 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6442 	if (!vcpu_align)
6443 		vcpu_align = __alignof__(struct kvm_vcpu);
6444 	kvm_vcpu_cache =
6445 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6446 					   SLAB_ACCOUNT,
6447 					   offsetof(struct kvm_vcpu, arch),
6448 					   offsetofend(struct kvm_vcpu, stats_id)
6449 					   - offsetof(struct kvm_vcpu, arch),
6450 					   NULL);
6451 	if (!kvm_vcpu_cache) {
6452 		r = -ENOMEM;
6453 		goto err_vcpu_cache;
6454 	}
6455 
6456 	for_each_possible_cpu(cpu) {
6457 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6458 					    GFP_KERNEL, cpu_to_node(cpu))) {
6459 			r = -ENOMEM;
6460 			goto err_cpu_kick_mask;
6461 		}
6462 	}
6463 
6464 	r = kvm_irqfd_init();
6465 	if (r)
6466 		goto err_irqfd;
6467 
6468 	r = kvm_async_pf_init();
6469 	if (r)
6470 		goto err_async_pf;
6471 
6472 	kvm_chardev_ops.owner = module;
6473 	kvm_vm_fops.owner = module;
6474 	kvm_vcpu_fops.owner = module;
6475 	kvm_device_fops.owner = module;
6476 
6477 	kvm_preempt_ops.sched_in = kvm_sched_in;
6478 	kvm_preempt_ops.sched_out = kvm_sched_out;
6479 
6480 	kvm_init_debug();
6481 
6482 	r = kvm_vfio_ops_init();
6483 	if (WARN_ON_ONCE(r))
6484 		goto err_vfio;
6485 
6486 	kvm_gmem_init(module);
6487 
6488 	/*
6489 	 * Registration _must_ be the very last thing done, as this exposes
6490 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6491 	 */
6492 	r = misc_register(&kvm_dev);
6493 	if (r) {
6494 		pr_err("kvm: misc device register failed\n");
6495 		goto err_register;
6496 	}
6497 
6498 	return 0;
6499 
6500 err_register:
6501 	kvm_vfio_ops_exit();
6502 err_vfio:
6503 	kvm_async_pf_deinit();
6504 err_async_pf:
6505 	kvm_irqfd_exit();
6506 err_irqfd:
6507 err_cpu_kick_mask:
6508 	for_each_possible_cpu(cpu)
6509 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6510 	kmem_cache_destroy(kvm_vcpu_cache);
6511 err_vcpu_cache:
6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6513 	unregister_syscore_ops(&kvm_syscore_ops);
6514 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6515 #endif
6516 	return r;
6517 }
6518 EXPORT_SYMBOL_GPL(kvm_init);
6519 
6520 void kvm_exit(void)
6521 {
6522 	int cpu;
6523 
6524 	/*
6525 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6526 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6527 	 * to KVM while the module is being stopped.
6528 	 */
6529 	misc_deregister(&kvm_dev);
6530 
6531 	debugfs_remove_recursive(kvm_debugfs_dir);
6532 	for_each_possible_cpu(cpu)
6533 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6534 	kmem_cache_destroy(kvm_vcpu_cache);
6535 	kvm_vfio_ops_exit();
6536 	kvm_async_pf_deinit();
6537 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6538 	unregister_syscore_ops(&kvm_syscore_ops);
6539 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6540 #endif
6541 	kvm_irqfd_exit();
6542 }
6543 EXPORT_SYMBOL_GPL(kvm_exit);
6544 
6545 struct kvm_vm_worker_thread_context {
6546 	struct kvm *kvm;
6547 	struct task_struct *parent;
6548 	struct completion init_done;
6549 	kvm_vm_thread_fn_t thread_fn;
6550 	uintptr_t data;
6551 	int err;
6552 };
6553 
6554 static int kvm_vm_worker_thread(void *context)
6555 {
6556 	/*
6557 	 * The init_context is allocated on the stack of the parent thread, so
6558 	 * we have to locally copy anything that is needed beyond initialization
6559 	 */
6560 	struct kvm_vm_worker_thread_context *init_context = context;
6561 	struct task_struct *parent;
6562 	struct kvm *kvm = init_context->kvm;
6563 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6564 	uintptr_t data = init_context->data;
6565 	int err;
6566 
6567 	err = kthread_park(current);
6568 	/* kthread_park(current) is never supposed to return an error */
6569 	WARN_ON(err != 0);
6570 	if (err)
6571 		goto init_complete;
6572 
6573 	err = cgroup_attach_task_all(init_context->parent, current);
6574 	if (err) {
6575 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6576 			__func__, err);
6577 		goto init_complete;
6578 	}
6579 
6580 	set_user_nice(current, task_nice(init_context->parent));
6581 
6582 init_complete:
6583 	init_context->err = err;
6584 	complete(&init_context->init_done);
6585 	init_context = NULL;
6586 
6587 	if (err)
6588 		goto out;
6589 
6590 	/* Wait to be woken up by the spawner before proceeding. */
6591 	kthread_parkme();
6592 
6593 	if (!kthread_should_stop())
6594 		err = thread_fn(kvm, data);
6595 
6596 out:
6597 	/*
6598 	 * Move kthread back to its original cgroup to prevent it lingering in
6599 	 * the cgroup of the VM process, after the latter finishes its
6600 	 * execution.
6601 	 *
6602 	 * kthread_stop() waits on the 'exited' completion condition which is
6603 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6604 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6605 	 * called after the exit_mm(). This causes the kthread_stop() to return
6606 	 * before the kthread actually quits the cgroup.
6607 	 */
6608 	rcu_read_lock();
6609 	parent = rcu_dereference(current->real_parent);
6610 	get_task_struct(parent);
6611 	rcu_read_unlock();
6612 	cgroup_attach_task_all(parent, current);
6613 	put_task_struct(parent);
6614 
6615 	return err;
6616 }
6617 
6618 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6619 				uintptr_t data, const char *name,
6620 				struct task_struct **thread_ptr)
6621 {
6622 	struct kvm_vm_worker_thread_context init_context = {};
6623 	struct task_struct *thread;
6624 
6625 	*thread_ptr = NULL;
6626 	init_context.kvm = kvm;
6627 	init_context.parent = current;
6628 	init_context.thread_fn = thread_fn;
6629 	init_context.data = data;
6630 	init_completion(&init_context.init_done);
6631 
6632 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6633 			     "%s-%d", name, task_pid_nr(current));
6634 	if (IS_ERR(thread))
6635 		return PTR_ERR(thread);
6636 
6637 	/* kthread_run is never supposed to return NULL */
6638 	WARN_ON(thread == NULL);
6639 
6640 	wait_for_completion(&init_context.init_done);
6641 
6642 	if (!init_context.err)
6643 		*thread_ptr = thread;
6644 
6645 	return init_context.err;
6646 }
6647