1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 53 #include <asm/processor.h> 54 #include <asm/ioctl.h> 55 #include <linux/uaccess.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 #include "kvm_mm.h" 60 #include "vfio.h" 61 62 #include <trace/events/ipi.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 #include <linux/kvm_dirty_ring.h> 68 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 75 MODULE_LICENSE("GPL"); 76 77 /* Architectures should define their poll value according to the halt latency */ 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 79 module_param(halt_poll_ns, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns); 81 82 /* Default doubles per-vcpu halt_poll_ns. */ 83 unsigned int halt_poll_ns_grow = 2; 84 module_param(halt_poll_ns_grow, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 86 87 /* The start value to grow halt_poll_ns from */ 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 89 module_param(halt_poll_ns_grow_start, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 91 92 /* Default halves per-vcpu halt_poll_ns. */ 93 unsigned int halt_poll_ns_shrink = 2; 94 module_param(halt_poll_ns_shrink, uint, 0644); 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 96 97 /* 98 * Ordering of locks: 99 * 100 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 101 */ 102 103 DEFINE_MUTEX(kvm_lock); 104 LIST_HEAD(vm_list); 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 static struct dentry *kvm_debugfs_dir; 112 113 static const struct file_operations stat_fops_per_vm; 114 115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #ifdef CONFIG_KVM_COMPAT 118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #define KVM_COMPAT(c) .compat_ioctl = (c) 121 #else 122 /* 123 * For architectures that don't implement a compat infrastructure, 124 * adopt a double line of defense: 125 * - Prevent a compat task from opening /dev/kvm 126 * - If the open has been done by a 64bit task, and the KVM fd 127 * passed to a compat task, let the ioctls fail. 128 */ 129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 130 unsigned long arg) { return -EINVAL; } 131 132 static int kvm_no_compat_open(struct inode *inode, struct file *file) 133 { 134 return is_compat_task() ? -ENODEV : 0; 135 } 136 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 137 .open = kvm_no_compat_open 138 #endif 139 static int hardware_enable_all(void); 140 static void hardware_disable_all(void); 141 142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 143 144 #define KVM_EVENT_CREATE_VM 0 145 #define KVM_EVENT_DESTROY_VM 1 146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 147 static unsigned long long kvm_createvm_count; 148 static unsigned long long kvm_active_vms; 149 150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 151 152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 153 { 154 } 155 156 bool kvm_is_zone_device_page(struct page *page) 157 { 158 /* 159 * The metadata used by is_zone_device_page() to determine whether or 160 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 161 * the device has been pinned, e.g. by get_user_pages(). WARN if the 162 * page_count() is zero to help detect bad usage of this helper. 163 */ 164 if (WARN_ON_ONCE(!page_count(page))) 165 return false; 166 167 return is_zone_device_page(page); 168 } 169 170 /* 171 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 172 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 173 * is likely incomplete, it has been compiled purely through people wanting to 174 * back guest with a certain type of memory and encountering issues. 175 */ 176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 177 { 178 struct page *page; 179 180 if (!pfn_valid(pfn)) 181 return NULL; 182 183 page = pfn_to_page(pfn); 184 if (!PageReserved(page)) 185 return page; 186 187 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 188 if (is_zero_pfn(pfn)) 189 return page; 190 191 /* 192 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 193 * perspective they are "normal" pages, albeit with slightly different 194 * usage rules. 195 */ 196 if (kvm_is_zone_device_page(page)) 197 return page; 198 199 return NULL; 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_kick(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 249 { 250 if (cpumask_empty(cpus)) 251 return false; 252 253 smp_call_function_many(cpus, ack_kick, NULL, wait); 254 return true; 255 } 256 257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 258 struct cpumask *tmp, int current_cpu) 259 { 260 int cpu; 261 262 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 263 __kvm_make_request(req, vcpu); 264 265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 266 return; 267 268 /* 269 * Note, the vCPU could get migrated to a different pCPU at any point 270 * after kvm_request_needs_ipi(), which could result in sending an IPI 271 * to the previous pCPU. But, that's OK because the purpose of the IPI 272 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 273 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 274 * after this point is also OK, as the requirement is only that KVM wait 275 * for vCPUs that were reading SPTEs _before_ any changes were 276 * finalized. See kvm_vcpu_kick() for more details on handling requests. 277 */ 278 if (kvm_request_needs_ipi(vcpu, req)) { 279 cpu = READ_ONCE(vcpu->cpu); 280 if (cpu != -1 && cpu != current_cpu) 281 __cpumask_set_cpu(cpu, tmp); 282 } 283 } 284 285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 286 unsigned long *vcpu_bitmap) 287 { 288 struct kvm_vcpu *vcpu; 289 struct cpumask *cpus; 290 int i, me; 291 bool called; 292 293 me = get_cpu(); 294 295 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 296 cpumask_clear(cpus); 297 298 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 299 vcpu = kvm_get_vcpu(kvm, i); 300 if (!vcpu) 301 continue; 302 kvm_make_vcpu_request(vcpu, req, cpus, me); 303 } 304 305 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 306 put_cpu(); 307 308 return called; 309 } 310 311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 312 { 313 struct kvm_vcpu *vcpu; 314 struct cpumask *cpus; 315 unsigned long i; 316 bool called; 317 int me; 318 319 me = get_cpu(); 320 321 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 322 cpumask_clear(cpus); 323 324 kvm_for_each_vcpu(i, vcpu, kvm) 325 kvm_make_vcpu_request(vcpu, req, cpus, me); 326 327 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 328 put_cpu(); 329 330 return called; 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 void kvm_flush_remote_tlbs(struct kvm *kvm) 335 { 336 ++kvm->stat.generic.remote_tlb_flush_requests; 337 338 /* 339 * We want to publish modifications to the page tables before reading 340 * mode. Pairs with a memory barrier in arch-specific code. 341 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 342 * and smp_mb in walk_shadow_page_lockless_begin/end. 343 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 344 * 345 * There is already an smp_mb__after_atomic() before 346 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 347 * barrier here. 348 */ 349 if (!kvm_arch_flush_remote_tlbs(kvm) 350 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 351 ++kvm->stat.generic.remote_tlb_flush; 352 } 353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 354 355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 356 { 357 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 358 return; 359 360 /* 361 * Fall back to a flushing entire TLBs if the architecture range-based 362 * TLB invalidation is unsupported or can't be performed for whatever 363 * reason. 364 */ 365 kvm_flush_remote_tlbs(kvm); 366 } 367 368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 369 const struct kvm_memory_slot *memslot) 370 { 371 /* 372 * All current use cases for flushing the TLBs for a specific memslot 373 * are related to dirty logging, and many do the TLB flush out of 374 * mmu_lock. The interaction between the various operations on memslot 375 * must be serialized by slots_locks to ensure the TLB flush from one 376 * operation is observed by any other operation on the same memslot. 377 */ 378 lockdep_assert_held(&kvm->slots_lock); 379 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 380 } 381 382 static void kvm_flush_shadow_all(struct kvm *kvm) 383 { 384 kvm_arch_flush_shadow_all(kvm); 385 kvm_arch_guest_memory_reclaimed(kvm); 386 } 387 388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 390 gfp_t gfp_flags) 391 { 392 void *page; 393 394 gfp_flags |= mc->gfp_zero; 395 396 if (mc->kmem_cache) 397 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 398 399 page = (void *)__get_free_page(gfp_flags); 400 if (page && mc->init_value) 401 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 402 return page; 403 } 404 405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 406 { 407 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 408 void *obj; 409 410 if (mc->nobjs >= min) 411 return 0; 412 413 if (unlikely(!mc->objects)) { 414 if (WARN_ON_ONCE(!capacity)) 415 return -EIO; 416 417 /* 418 * Custom init values can be used only for page allocations, 419 * and obviously conflict with __GFP_ZERO. 420 */ 421 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 422 return -EIO; 423 424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 425 if (!mc->objects) 426 return -ENOMEM; 427 428 mc->capacity = capacity; 429 } 430 431 /* It is illegal to request a different capacity across topups. */ 432 if (WARN_ON_ONCE(mc->capacity != capacity)) 433 return -EIO; 434 435 while (mc->nobjs < mc->capacity) { 436 obj = mmu_memory_cache_alloc_obj(mc, gfp); 437 if (!obj) 438 return mc->nobjs >= min ? 0 : -ENOMEM; 439 mc->objects[mc->nobjs++] = obj; 440 } 441 return 0; 442 } 443 444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 445 { 446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 447 } 448 449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 450 { 451 return mc->nobjs; 452 } 453 454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 455 { 456 while (mc->nobjs) { 457 if (mc->kmem_cache) 458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 459 else 460 free_page((unsigned long)mc->objects[--mc->nobjs]); 461 } 462 463 kvfree(mc->objects); 464 465 mc->objects = NULL; 466 mc->capacity = 0; 467 } 468 469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 470 { 471 void *p; 472 473 if (WARN_ON(!mc->nobjs)) 474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 475 else 476 p = mc->objects[--mc->nobjs]; 477 BUG_ON(!p); 478 return p; 479 } 480 #endif 481 482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 483 { 484 mutex_init(&vcpu->mutex); 485 vcpu->cpu = -1; 486 vcpu->kvm = kvm; 487 vcpu->vcpu_id = id; 488 vcpu->pid = NULL; 489 #ifndef __KVM_HAVE_ARCH_WQP 490 rcuwait_init(&vcpu->wait); 491 #endif 492 kvm_async_pf_vcpu_init(vcpu); 493 494 kvm_vcpu_set_in_spin_loop(vcpu, false); 495 kvm_vcpu_set_dy_eligible(vcpu, false); 496 vcpu->preempted = false; 497 vcpu->ready = false; 498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 499 vcpu->last_used_slot = NULL; 500 501 /* Fill the stats id string for the vcpu */ 502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 503 task_pid_nr(current), id); 504 } 505 506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 507 { 508 kvm_arch_vcpu_destroy(vcpu); 509 kvm_dirty_ring_free(&vcpu->dirty_ring); 510 511 /* 512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 513 * the vcpu->pid pointer, and at destruction time all file descriptors 514 * are already gone. 515 */ 516 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 517 518 free_page((unsigned long)vcpu->run); 519 kmem_cache_free(kvm_vcpu_cache, vcpu); 520 } 521 522 void kvm_destroy_vcpus(struct kvm *kvm) 523 { 524 unsigned long i; 525 struct kvm_vcpu *vcpu; 526 527 kvm_for_each_vcpu(i, vcpu, kvm) { 528 kvm_vcpu_destroy(vcpu); 529 xa_erase(&kvm->vcpu_array, i); 530 } 531 532 atomic_set(&kvm->online_vcpus, 0); 533 } 534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 535 536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 538 { 539 return container_of(mn, struct kvm, mmu_notifier); 540 } 541 542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 543 544 typedef void (*on_lock_fn_t)(struct kvm *kvm); 545 546 struct kvm_mmu_notifier_range { 547 /* 548 * 64-bit addresses, as KVM notifiers can operate on host virtual 549 * addresses (unsigned long) and guest physical addresses (64-bit). 550 */ 551 u64 start; 552 u64 end; 553 union kvm_mmu_notifier_arg arg; 554 gfn_handler_t handler; 555 on_lock_fn_t on_lock; 556 bool flush_on_ret; 557 bool may_block; 558 }; 559 560 /* 561 * The inner-most helper returns a tuple containing the return value from the 562 * arch- and action-specific handler, plus a flag indicating whether or not at 563 * least one memslot was found, i.e. if the handler found guest memory. 564 * 565 * Note, most notifiers are averse to booleans, so even though KVM tracks the 566 * return from arch code as a bool, outer helpers will cast it to an int. :-( 567 */ 568 typedef struct kvm_mmu_notifier_return { 569 bool ret; 570 bool found_memslot; 571 } kvm_mn_ret_t; 572 573 /* 574 * Use a dedicated stub instead of NULL to indicate that there is no callback 575 * function/handler. The compiler technically can't guarantee that a real 576 * function will have a non-zero address, and so it will generate code to 577 * check for !NULL, whereas comparing against a stub will be elided at compile 578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 579 */ 580 static void kvm_null_fn(void) 581 { 582 583 } 584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 585 586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 588 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 589 node; \ 590 node = interval_tree_iter_next(node, start, last)) \ 591 592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm, 593 const struct kvm_mmu_notifier_range *range) 594 { 595 struct kvm_mmu_notifier_return r = { 596 .ret = false, 597 .found_memslot = false, 598 }; 599 struct kvm_gfn_range gfn_range; 600 struct kvm_memory_slot *slot; 601 struct kvm_memslots *slots; 602 int i, idx; 603 604 if (WARN_ON_ONCE(range->end <= range->start)) 605 return r; 606 607 /* A null handler is allowed if and only if on_lock() is provided. */ 608 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 609 IS_KVM_NULL_FN(range->handler))) 610 return r; 611 612 idx = srcu_read_lock(&kvm->srcu); 613 614 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 615 struct interval_tree_node *node; 616 617 slots = __kvm_memslots(kvm, i); 618 kvm_for_each_memslot_in_hva_range(node, slots, 619 range->start, range->end - 1) { 620 unsigned long hva_start, hva_end; 621 622 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 623 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 624 hva_end = min_t(unsigned long, range->end, 625 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 626 627 /* 628 * To optimize for the likely case where the address 629 * range is covered by zero or one memslots, don't 630 * bother making these conditional (to avoid writes on 631 * the second or later invocation of the handler). 632 */ 633 gfn_range.arg = range->arg; 634 gfn_range.may_block = range->may_block; 635 636 /* 637 * {gfn(page) | page intersects with [hva_start, hva_end)} = 638 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 639 */ 640 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 641 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 642 gfn_range.slot = slot; 643 644 if (!r.found_memslot) { 645 r.found_memslot = true; 646 KVM_MMU_LOCK(kvm); 647 if (!IS_KVM_NULL_FN(range->on_lock)) 648 range->on_lock(kvm); 649 650 if (IS_KVM_NULL_FN(range->handler)) 651 goto mmu_unlock; 652 } 653 r.ret |= range->handler(kvm, &gfn_range); 654 } 655 } 656 657 if (range->flush_on_ret && r.ret) 658 kvm_flush_remote_tlbs(kvm); 659 660 mmu_unlock: 661 if (r.found_memslot) 662 KVM_MMU_UNLOCK(kvm); 663 664 srcu_read_unlock(&kvm->srcu, idx); 665 666 return r; 667 } 668 669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 670 unsigned long start, 671 unsigned long end, 672 gfn_handler_t handler) 673 { 674 struct kvm *kvm = mmu_notifier_to_kvm(mn); 675 const struct kvm_mmu_notifier_range range = { 676 .start = start, 677 .end = end, 678 .handler = handler, 679 .on_lock = (void *)kvm_null_fn, 680 .flush_on_ret = true, 681 .may_block = false, 682 }; 683 684 return __kvm_handle_hva_range(kvm, &range).ret; 685 } 686 687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 688 unsigned long start, 689 unsigned long end, 690 gfn_handler_t handler) 691 { 692 struct kvm *kvm = mmu_notifier_to_kvm(mn); 693 const struct kvm_mmu_notifier_range range = { 694 .start = start, 695 .end = end, 696 .handler = handler, 697 .on_lock = (void *)kvm_null_fn, 698 .flush_on_ret = false, 699 .may_block = false, 700 }; 701 702 return __kvm_handle_hva_range(kvm, &range).ret; 703 } 704 705 void kvm_mmu_invalidate_begin(struct kvm *kvm) 706 { 707 lockdep_assert_held_write(&kvm->mmu_lock); 708 /* 709 * The count increase must become visible at unlock time as no 710 * spte can be established without taking the mmu_lock and 711 * count is also read inside the mmu_lock critical section. 712 */ 713 kvm->mmu_invalidate_in_progress++; 714 715 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 716 kvm->mmu_invalidate_range_start = INVALID_GPA; 717 kvm->mmu_invalidate_range_end = INVALID_GPA; 718 } 719 } 720 721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 722 { 723 lockdep_assert_held_write(&kvm->mmu_lock); 724 725 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 726 727 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 748 { 749 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 750 return kvm_unmap_gfn_range(kvm, range); 751 } 752 753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_mmu_notifier_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .handler = kvm_mmu_unmap_gfn_range, 761 .on_lock = kvm_mmu_invalidate_begin, 762 .flush_on_ret = true, 763 .may_block = mmu_notifier_range_blockable(range), 764 }; 765 766 trace_kvm_unmap_hva_range(range->start, range->end); 767 768 /* 769 * Prevent memslot modification between range_start() and range_end() 770 * so that conditionally locking provides the same result in both 771 * functions. Without that guarantee, the mmu_invalidate_in_progress 772 * adjustments will be imbalanced. 773 * 774 * Pairs with the decrement in range_end(). 775 */ 776 spin_lock(&kvm->mn_invalidate_lock); 777 kvm->mn_active_invalidate_count++; 778 spin_unlock(&kvm->mn_invalidate_lock); 779 780 /* 781 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 782 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 783 * each cache's lock. There are relatively few caches in existence at 784 * any given time, and the caches themselves can check for hva overlap, 785 * i.e. don't need to rely on memslot overlap checks for performance. 786 * Because this runs without holding mmu_lock, the pfn caches must use 787 * mn_active_invalidate_count (see above) instead of 788 * mmu_invalidate_in_progress. 789 */ 790 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 791 792 /* 793 * If one or more memslots were found and thus zapped, notify arch code 794 * that guest memory has been reclaimed. This needs to be done *after* 795 * dropping mmu_lock, as x86's reclaim path is slooooow. 796 */ 797 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot) 798 kvm_arch_guest_memory_reclaimed(kvm); 799 800 return 0; 801 } 802 803 void kvm_mmu_invalidate_end(struct kvm *kvm) 804 { 805 lockdep_assert_held_write(&kvm->mmu_lock); 806 807 /* 808 * This sequence increase will notify the kvm page fault that 809 * the page that is going to be mapped in the spte could have 810 * been freed. 811 */ 812 kvm->mmu_invalidate_seq++; 813 smp_wmb(); 814 /* 815 * The above sequence increase must be visible before the 816 * below count decrease, which is ensured by the smp_wmb above 817 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 818 */ 819 kvm->mmu_invalidate_in_progress--; 820 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 821 822 /* 823 * Assert that at least one range was added between start() and end(). 824 * Not adding a range isn't fatal, but it is a KVM bug. 825 */ 826 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 827 } 828 829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 830 const struct mmu_notifier_range *range) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 const struct kvm_mmu_notifier_range hva_range = { 834 .start = range->start, 835 .end = range->end, 836 .handler = (void *)kvm_null_fn, 837 .on_lock = kvm_mmu_invalidate_end, 838 .flush_on_ret = false, 839 .may_block = mmu_notifier_range_blockable(range), 840 }; 841 bool wake; 842 843 __kvm_handle_hva_range(kvm, &hva_range); 844 845 /* Pairs with the increment in range_start(). */ 846 spin_lock(&kvm->mn_invalidate_lock); 847 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 848 --kvm->mn_active_invalidate_count; 849 wake = !kvm->mn_active_invalidate_count; 850 spin_unlock(&kvm->mn_invalidate_lock); 851 852 /* 853 * There can only be one waiter, since the wait happens under 854 * slots_lock. 855 */ 856 if (wake) 857 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 858 } 859 860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 861 struct mm_struct *mm, 862 unsigned long start, 863 unsigned long end) 864 { 865 trace_kvm_age_hva(start, end); 866 867 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn); 868 } 869 870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 871 struct mm_struct *mm, 872 unsigned long start, 873 unsigned long end) 874 { 875 trace_kvm_age_hva(start, end); 876 877 /* 878 * Even though we do not flush TLB, this will still adversely 879 * affect performance on pre-Haswell Intel EPT, where there is 880 * no EPT Access Bit to clear so that we have to tear down EPT 881 * tables instead. If we find this unacceptable, we can always 882 * add a parameter to kvm_age_hva so that it effectively doesn't 883 * do anything on clear_young. 884 * 885 * Also note that currently we never issue secondary TLB flushes 886 * from clear_young, leaving this job up to the regular system 887 * cadence. If we find this inaccurate, we might come up with a 888 * more sophisticated heuristic later. 889 */ 890 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 891 } 892 893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 894 struct mm_struct *mm, 895 unsigned long address) 896 { 897 trace_kvm_test_age_hva(address); 898 899 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 900 kvm_test_age_gfn); 901 } 902 903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 904 struct mm_struct *mm) 905 { 906 struct kvm *kvm = mmu_notifier_to_kvm(mn); 907 int idx; 908 909 idx = srcu_read_lock(&kvm->srcu); 910 kvm_flush_shadow_all(kvm); 911 srcu_read_unlock(&kvm->srcu, idx); 912 } 913 914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 915 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 916 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 917 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 918 .clear_young = kvm_mmu_notifier_clear_young, 919 .test_young = kvm_mmu_notifier_test_young, 920 .release = kvm_mmu_notifier_release, 921 }; 922 923 static int kvm_init_mmu_notifier(struct kvm *kvm) 924 { 925 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 926 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 927 } 928 929 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 return 0; 934 } 935 936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 937 938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 939 static int kvm_pm_notifier_call(struct notifier_block *bl, 940 unsigned long state, 941 void *unused) 942 { 943 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 944 945 return kvm_arch_pm_notifier(kvm, state); 946 } 947 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 951 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 952 kvm->pm_notifier.priority = INT_MAX; 953 register_pm_notifier(&kvm->pm_notifier); 954 } 955 956 static void kvm_destroy_pm_notifier(struct kvm *kvm) 957 { 958 unregister_pm_notifier(&kvm->pm_notifier); 959 } 960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 961 static void kvm_init_pm_notifier(struct kvm *kvm) 962 { 963 } 964 965 static void kvm_destroy_pm_notifier(struct kvm *kvm) 966 { 967 } 968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 971 { 972 if (!memslot->dirty_bitmap) 973 return; 974 975 vfree(memslot->dirty_bitmap); 976 memslot->dirty_bitmap = NULL; 977 } 978 979 /* This does not remove the slot from struct kvm_memslots data structures */ 980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 981 { 982 if (slot->flags & KVM_MEM_GUEST_MEMFD) 983 kvm_gmem_unbind(slot); 984 985 kvm_destroy_dirty_bitmap(slot); 986 987 kvm_arch_free_memslot(kvm, slot); 988 989 kfree(slot); 990 } 991 992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 993 { 994 struct hlist_node *idnode; 995 struct kvm_memory_slot *memslot; 996 int bkt; 997 998 /* 999 * The same memslot objects live in both active and inactive sets, 1000 * arbitrarily free using index '1' so the second invocation of this 1001 * function isn't operating over a structure with dangling pointers 1002 * (even though this function isn't actually touching them). 1003 */ 1004 if (!slots->node_idx) 1005 return; 1006 1007 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1008 kvm_free_memslot(kvm, memslot); 1009 } 1010 1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1012 { 1013 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1014 case KVM_STATS_TYPE_INSTANT: 1015 return 0444; 1016 case KVM_STATS_TYPE_CUMULATIVE: 1017 case KVM_STATS_TYPE_PEAK: 1018 default: 1019 return 0644; 1020 } 1021 } 1022 1023 1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1025 { 1026 int i; 1027 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1028 kvm_vcpu_stats_header.num_desc; 1029 1030 if (IS_ERR(kvm->debugfs_dentry)) 1031 return; 1032 1033 debugfs_remove_recursive(kvm->debugfs_dentry); 1034 1035 if (kvm->debugfs_stat_data) { 1036 for (i = 0; i < kvm_debugfs_num_entries; i++) 1037 kfree(kvm->debugfs_stat_data[i]); 1038 kfree(kvm->debugfs_stat_data); 1039 } 1040 } 1041 1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1043 { 1044 static DEFINE_MUTEX(kvm_debugfs_lock); 1045 struct dentry *dent; 1046 char dir_name[ITOA_MAX_LEN * 2]; 1047 struct kvm_stat_data *stat_data; 1048 const struct _kvm_stats_desc *pdesc; 1049 int i, ret = -ENOMEM; 1050 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1051 kvm_vcpu_stats_header.num_desc; 1052 1053 if (!debugfs_initialized()) 1054 return 0; 1055 1056 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1057 mutex_lock(&kvm_debugfs_lock); 1058 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1059 if (dent) { 1060 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1061 dput(dent); 1062 mutex_unlock(&kvm_debugfs_lock); 1063 return 0; 1064 } 1065 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1066 mutex_unlock(&kvm_debugfs_lock); 1067 if (IS_ERR(dent)) 1068 return 0; 1069 1070 kvm->debugfs_dentry = dent; 1071 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1072 sizeof(*kvm->debugfs_stat_data), 1073 GFP_KERNEL_ACCOUNT); 1074 if (!kvm->debugfs_stat_data) 1075 goto out_err; 1076 1077 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1078 pdesc = &kvm_vm_stats_desc[i]; 1079 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1080 if (!stat_data) 1081 goto out_err; 1082 1083 stat_data->kvm = kvm; 1084 stat_data->desc = pdesc; 1085 stat_data->kind = KVM_STAT_VM; 1086 kvm->debugfs_stat_data[i] = stat_data; 1087 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1088 kvm->debugfs_dentry, stat_data, 1089 &stat_fops_per_vm); 1090 } 1091 1092 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1093 pdesc = &kvm_vcpu_stats_desc[i]; 1094 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1095 if (!stat_data) 1096 goto out_err; 1097 1098 stat_data->kvm = kvm; 1099 stat_data->desc = pdesc; 1100 stat_data->kind = KVM_STAT_VCPU; 1101 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1102 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1103 kvm->debugfs_dentry, stat_data, 1104 &stat_fops_per_vm); 1105 } 1106 1107 kvm_arch_create_vm_debugfs(kvm); 1108 return 0; 1109 out_err: 1110 kvm_destroy_vm_debugfs(kvm); 1111 return ret; 1112 } 1113 1114 /* 1115 * Called after the VM is otherwise initialized, but just before adding it to 1116 * the vm_list. 1117 */ 1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1119 { 1120 return 0; 1121 } 1122 1123 /* 1124 * Called just after removing the VM from the vm_list, but before doing any 1125 * other destruction. 1126 */ 1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1128 { 1129 } 1130 1131 /* 1132 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1133 * be setup already, so we can create arch-specific debugfs entries under it. 1134 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1135 * a per-arch destroy interface is not needed. 1136 */ 1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1138 { 1139 } 1140 1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1142 { 1143 struct kvm *kvm = kvm_arch_alloc_vm(); 1144 struct kvm_memslots *slots; 1145 int r, i, j; 1146 1147 if (!kvm) 1148 return ERR_PTR(-ENOMEM); 1149 1150 KVM_MMU_LOCK_INIT(kvm); 1151 mmgrab(current->mm); 1152 kvm->mm = current->mm; 1153 kvm_eventfd_init(kvm); 1154 mutex_init(&kvm->lock); 1155 mutex_init(&kvm->irq_lock); 1156 mutex_init(&kvm->slots_lock); 1157 mutex_init(&kvm->slots_arch_lock); 1158 spin_lock_init(&kvm->mn_invalidate_lock); 1159 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1160 xa_init(&kvm->vcpu_array); 1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1162 xa_init(&kvm->mem_attr_array); 1163 #endif 1164 1165 INIT_LIST_HEAD(&kvm->gpc_list); 1166 spin_lock_init(&kvm->gpc_lock); 1167 1168 INIT_LIST_HEAD(&kvm->devices); 1169 kvm->max_vcpus = KVM_MAX_VCPUS; 1170 1171 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1172 1173 /* 1174 * Force subsequent debugfs file creations to fail if the VM directory 1175 * is not created (by kvm_create_vm_debugfs()). 1176 */ 1177 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1178 1179 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1180 task_pid_nr(current)); 1181 1182 r = -ENOMEM; 1183 if (init_srcu_struct(&kvm->srcu)) 1184 goto out_err_no_srcu; 1185 if (init_srcu_struct(&kvm->irq_srcu)) 1186 goto out_err_no_irq_srcu; 1187 1188 r = kvm_init_irq_routing(kvm); 1189 if (r) 1190 goto out_err_no_irq_routing; 1191 1192 refcount_set(&kvm->users_count, 1); 1193 1194 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1195 for (j = 0; j < 2; j++) { 1196 slots = &kvm->__memslots[i][j]; 1197 1198 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1199 slots->hva_tree = RB_ROOT_CACHED; 1200 slots->gfn_tree = RB_ROOT; 1201 hash_init(slots->id_hash); 1202 slots->node_idx = j; 1203 1204 /* Generations must be different for each address space. */ 1205 slots->generation = i; 1206 } 1207 1208 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1209 } 1210 1211 r = -ENOMEM; 1212 for (i = 0; i < KVM_NR_BUSES; i++) { 1213 rcu_assign_pointer(kvm->buses[i], 1214 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1215 if (!kvm->buses[i]) 1216 goto out_err_no_arch_destroy_vm; 1217 } 1218 1219 r = kvm_arch_init_vm(kvm, type); 1220 if (r) 1221 goto out_err_no_arch_destroy_vm; 1222 1223 r = hardware_enable_all(); 1224 if (r) 1225 goto out_err_no_disable; 1226 1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1228 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1229 #endif 1230 1231 r = kvm_init_mmu_notifier(kvm); 1232 if (r) 1233 goto out_err_no_mmu_notifier; 1234 1235 r = kvm_coalesced_mmio_init(kvm); 1236 if (r < 0) 1237 goto out_no_coalesced_mmio; 1238 1239 r = kvm_create_vm_debugfs(kvm, fdname); 1240 if (r) 1241 goto out_err_no_debugfs; 1242 1243 r = kvm_arch_post_init_vm(kvm); 1244 if (r) 1245 goto out_err; 1246 1247 mutex_lock(&kvm_lock); 1248 list_add(&kvm->vm_list, &vm_list); 1249 mutex_unlock(&kvm_lock); 1250 1251 preempt_notifier_inc(); 1252 kvm_init_pm_notifier(kvm); 1253 1254 return kvm; 1255 1256 out_err: 1257 kvm_destroy_vm_debugfs(kvm); 1258 out_err_no_debugfs: 1259 kvm_coalesced_mmio_free(kvm); 1260 out_no_coalesced_mmio: 1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1262 if (kvm->mmu_notifier.ops) 1263 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1264 #endif 1265 out_err_no_mmu_notifier: 1266 hardware_disable_all(); 1267 out_err_no_disable: 1268 kvm_arch_destroy_vm(kvm); 1269 out_err_no_arch_destroy_vm: 1270 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1271 for (i = 0; i < KVM_NR_BUSES; i++) 1272 kfree(kvm_get_bus(kvm, i)); 1273 kvm_free_irq_routing(kvm); 1274 out_err_no_irq_routing: 1275 cleanup_srcu_struct(&kvm->irq_srcu); 1276 out_err_no_irq_srcu: 1277 cleanup_srcu_struct(&kvm->srcu); 1278 out_err_no_srcu: 1279 kvm_arch_free_vm(kvm); 1280 mmdrop(current->mm); 1281 return ERR_PTR(r); 1282 } 1283 1284 static void kvm_destroy_devices(struct kvm *kvm) 1285 { 1286 struct kvm_device *dev, *tmp; 1287 1288 /* 1289 * We do not need to take the kvm->lock here, because nobody else 1290 * has a reference to the struct kvm at this point and therefore 1291 * cannot access the devices list anyhow. 1292 * 1293 * The device list is generally managed as an rculist, but list_del() 1294 * is used intentionally here. If a bug in KVM introduced a reader that 1295 * was not backed by a reference on the kvm struct, the hope is that 1296 * it'd consume the poisoned forward pointer instead of suffering a 1297 * use-after-free, even though this cannot be guaranteed. 1298 */ 1299 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1300 list_del(&dev->vm_node); 1301 dev->ops->destroy(dev); 1302 } 1303 } 1304 1305 static void kvm_destroy_vm(struct kvm *kvm) 1306 { 1307 int i; 1308 struct mm_struct *mm = kvm->mm; 1309 1310 kvm_destroy_pm_notifier(kvm); 1311 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1312 kvm_destroy_vm_debugfs(kvm); 1313 kvm_arch_sync_events(kvm); 1314 mutex_lock(&kvm_lock); 1315 list_del(&kvm->vm_list); 1316 mutex_unlock(&kvm_lock); 1317 kvm_arch_pre_destroy_vm(kvm); 1318 1319 kvm_free_irq_routing(kvm); 1320 for (i = 0; i < KVM_NR_BUSES; i++) { 1321 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1322 1323 if (bus) 1324 kvm_io_bus_destroy(bus); 1325 kvm->buses[i] = NULL; 1326 } 1327 kvm_coalesced_mmio_free(kvm); 1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1329 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1330 /* 1331 * At this point, pending calls to invalidate_range_start() 1332 * have completed but no more MMU notifiers will run, so 1333 * mn_active_invalidate_count may remain unbalanced. 1334 * No threads can be waiting in kvm_swap_active_memslots() as the 1335 * last reference on KVM has been dropped, but freeing 1336 * memslots would deadlock without this manual intervention. 1337 * 1338 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1339 * notifier between a start() and end(), then there shouldn't be any 1340 * in-progress invalidations. 1341 */ 1342 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1343 if (kvm->mn_active_invalidate_count) 1344 kvm->mn_active_invalidate_count = 0; 1345 else 1346 WARN_ON(kvm->mmu_invalidate_in_progress); 1347 #else 1348 kvm_flush_shadow_all(kvm); 1349 #endif 1350 kvm_arch_destroy_vm(kvm); 1351 kvm_destroy_devices(kvm); 1352 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1353 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1354 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1355 } 1356 cleanup_srcu_struct(&kvm->irq_srcu); 1357 cleanup_srcu_struct(&kvm->srcu); 1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1359 xa_destroy(&kvm->mem_attr_array); 1360 #endif 1361 kvm_arch_free_vm(kvm); 1362 preempt_notifier_dec(); 1363 hardware_disable_all(); 1364 mmdrop(mm); 1365 } 1366 1367 void kvm_get_kvm(struct kvm *kvm) 1368 { 1369 refcount_inc(&kvm->users_count); 1370 } 1371 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1372 1373 /* 1374 * Make sure the vm is not during destruction, which is a safe version of 1375 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1376 */ 1377 bool kvm_get_kvm_safe(struct kvm *kvm) 1378 { 1379 return refcount_inc_not_zero(&kvm->users_count); 1380 } 1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1382 1383 void kvm_put_kvm(struct kvm *kvm) 1384 { 1385 if (refcount_dec_and_test(&kvm->users_count)) 1386 kvm_destroy_vm(kvm); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1389 1390 /* 1391 * Used to put a reference that was taken on behalf of an object associated 1392 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1393 * of the new file descriptor fails and the reference cannot be transferred to 1394 * its final owner. In such cases, the caller is still actively using @kvm and 1395 * will fail miserably if the refcount unexpectedly hits zero. 1396 */ 1397 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1398 { 1399 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1400 } 1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1402 1403 static int kvm_vm_release(struct inode *inode, struct file *filp) 1404 { 1405 struct kvm *kvm = filp->private_data; 1406 1407 kvm_irqfd_release(kvm); 1408 1409 kvm_put_kvm(kvm); 1410 return 0; 1411 } 1412 1413 /* 1414 * Allocation size is twice as large as the actual dirty bitmap size. 1415 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1416 */ 1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1418 { 1419 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1420 1421 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1422 if (!memslot->dirty_bitmap) 1423 return -ENOMEM; 1424 1425 return 0; 1426 } 1427 1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1429 { 1430 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1431 int node_idx_inactive = active->node_idx ^ 1; 1432 1433 return &kvm->__memslots[as_id][node_idx_inactive]; 1434 } 1435 1436 /* 1437 * Helper to get the address space ID when one of memslot pointers may be NULL. 1438 * This also serves as a sanity that at least one of the pointers is non-NULL, 1439 * and that their address space IDs don't diverge. 1440 */ 1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1442 struct kvm_memory_slot *b) 1443 { 1444 if (WARN_ON_ONCE(!a && !b)) 1445 return 0; 1446 1447 if (!a) 1448 return b->as_id; 1449 if (!b) 1450 return a->as_id; 1451 1452 WARN_ON_ONCE(a->as_id != b->as_id); 1453 return a->as_id; 1454 } 1455 1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1457 struct kvm_memory_slot *slot) 1458 { 1459 struct rb_root *gfn_tree = &slots->gfn_tree; 1460 struct rb_node **node, *parent; 1461 int idx = slots->node_idx; 1462 1463 parent = NULL; 1464 for (node = &gfn_tree->rb_node; *node; ) { 1465 struct kvm_memory_slot *tmp; 1466 1467 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1468 parent = *node; 1469 if (slot->base_gfn < tmp->base_gfn) 1470 node = &(*node)->rb_left; 1471 else if (slot->base_gfn > tmp->base_gfn) 1472 node = &(*node)->rb_right; 1473 else 1474 BUG(); 1475 } 1476 1477 rb_link_node(&slot->gfn_node[idx], parent, node); 1478 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1479 } 1480 1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1482 struct kvm_memory_slot *slot) 1483 { 1484 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1485 } 1486 1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1488 struct kvm_memory_slot *old, 1489 struct kvm_memory_slot *new) 1490 { 1491 int idx = slots->node_idx; 1492 1493 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1494 1495 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1496 &slots->gfn_tree); 1497 } 1498 1499 /* 1500 * Replace @old with @new in the inactive memslots. 1501 * 1502 * With NULL @old this simply adds @new. 1503 * With NULL @new this simply removes @old. 1504 * 1505 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1506 * appropriately. 1507 */ 1508 static void kvm_replace_memslot(struct kvm *kvm, 1509 struct kvm_memory_slot *old, 1510 struct kvm_memory_slot *new) 1511 { 1512 int as_id = kvm_memslots_get_as_id(old, new); 1513 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1514 int idx = slots->node_idx; 1515 1516 if (old) { 1517 hash_del(&old->id_node[idx]); 1518 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1519 1520 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1521 atomic_long_set(&slots->last_used_slot, (long)new); 1522 1523 if (!new) { 1524 kvm_erase_gfn_node(slots, old); 1525 return; 1526 } 1527 } 1528 1529 /* 1530 * Initialize @new's hva range. Do this even when replacing an @old 1531 * slot, kvm_copy_memslot() deliberately does not touch node data. 1532 */ 1533 new->hva_node[idx].start = new->userspace_addr; 1534 new->hva_node[idx].last = new->userspace_addr + 1535 (new->npages << PAGE_SHIFT) - 1; 1536 1537 /* 1538 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1539 * hva_node needs to be swapped with remove+insert even though hva can't 1540 * change when replacing an existing slot. 1541 */ 1542 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1543 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1544 1545 /* 1546 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1547 * switch the node in the gfn tree instead of removing the old and 1548 * inserting the new as two separate operations. Replacement is a 1549 * single O(1) operation versus two O(log(n)) operations for 1550 * remove+insert. 1551 */ 1552 if (old && old->base_gfn == new->base_gfn) { 1553 kvm_replace_gfn_node(slots, old, new); 1554 } else { 1555 if (old) 1556 kvm_erase_gfn_node(slots, old); 1557 kvm_insert_gfn_node(slots, new); 1558 } 1559 } 1560 1561 /* 1562 * Flags that do not access any of the extra space of struct 1563 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1564 * only allows these. 1565 */ 1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1567 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1568 1569 static int check_memory_region_flags(struct kvm *kvm, 1570 const struct kvm_userspace_memory_region2 *mem) 1571 { 1572 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1573 1574 if (kvm_arch_has_private_mem(kvm)) 1575 valid_flags |= KVM_MEM_GUEST_MEMFD; 1576 1577 /* Dirty logging private memory is not currently supported. */ 1578 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1579 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1580 1581 #ifdef CONFIG_HAVE_KVM_READONLY_MEM 1582 /* 1583 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1584 * read-only memslots have emulated MMIO, not page fault, semantics, 1585 * and KVM doesn't allow emulated MMIO for private memory. 1586 */ 1587 if (!(mem->flags & KVM_MEM_GUEST_MEMFD)) 1588 valid_flags |= KVM_MEM_READONLY; 1589 #endif 1590 1591 if (mem->flags & ~valid_flags) 1592 return -EINVAL; 1593 1594 return 0; 1595 } 1596 1597 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1598 { 1599 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1600 1601 /* Grab the generation from the activate memslots. */ 1602 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1603 1604 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1605 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1606 1607 /* 1608 * Do not store the new memslots while there are invalidations in 1609 * progress, otherwise the locking in invalidate_range_start and 1610 * invalidate_range_end will be unbalanced. 1611 */ 1612 spin_lock(&kvm->mn_invalidate_lock); 1613 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1614 while (kvm->mn_active_invalidate_count) { 1615 set_current_state(TASK_UNINTERRUPTIBLE); 1616 spin_unlock(&kvm->mn_invalidate_lock); 1617 schedule(); 1618 spin_lock(&kvm->mn_invalidate_lock); 1619 } 1620 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1621 rcu_assign_pointer(kvm->memslots[as_id], slots); 1622 spin_unlock(&kvm->mn_invalidate_lock); 1623 1624 /* 1625 * Acquired in kvm_set_memslot. Must be released before synchronize 1626 * SRCU below in order to avoid deadlock with another thread 1627 * acquiring the slots_arch_lock in an srcu critical section. 1628 */ 1629 mutex_unlock(&kvm->slots_arch_lock); 1630 1631 synchronize_srcu_expedited(&kvm->srcu); 1632 1633 /* 1634 * Increment the new memslot generation a second time, dropping the 1635 * update in-progress flag and incrementing the generation based on 1636 * the number of address spaces. This provides a unique and easily 1637 * identifiable generation number while the memslots are in flux. 1638 */ 1639 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1640 1641 /* 1642 * Generations must be unique even across address spaces. We do not need 1643 * a global counter for that, instead the generation space is evenly split 1644 * across address spaces. For example, with two address spaces, address 1645 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1646 * use generations 1, 3, 5, ... 1647 */ 1648 gen += kvm_arch_nr_memslot_as_ids(kvm); 1649 1650 kvm_arch_memslots_updated(kvm, gen); 1651 1652 slots->generation = gen; 1653 } 1654 1655 static int kvm_prepare_memory_region(struct kvm *kvm, 1656 const struct kvm_memory_slot *old, 1657 struct kvm_memory_slot *new, 1658 enum kvm_mr_change change) 1659 { 1660 int r; 1661 1662 /* 1663 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1664 * will be freed on "commit". If logging is enabled in both old and 1665 * new, reuse the existing bitmap. If logging is enabled only in the 1666 * new and KVM isn't using a ring buffer, allocate and initialize a 1667 * new bitmap. 1668 */ 1669 if (change != KVM_MR_DELETE) { 1670 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1671 new->dirty_bitmap = NULL; 1672 else if (old && old->dirty_bitmap) 1673 new->dirty_bitmap = old->dirty_bitmap; 1674 else if (kvm_use_dirty_bitmap(kvm)) { 1675 r = kvm_alloc_dirty_bitmap(new); 1676 if (r) 1677 return r; 1678 1679 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1680 bitmap_set(new->dirty_bitmap, 0, new->npages); 1681 } 1682 } 1683 1684 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1685 1686 /* Free the bitmap on failure if it was allocated above. */ 1687 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1688 kvm_destroy_dirty_bitmap(new); 1689 1690 return r; 1691 } 1692 1693 static void kvm_commit_memory_region(struct kvm *kvm, 1694 struct kvm_memory_slot *old, 1695 const struct kvm_memory_slot *new, 1696 enum kvm_mr_change change) 1697 { 1698 int old_flags = old ? old->flags : 0; 1699 int new_flags = new ? new->flags : 0; 1700 /* 1701 * Update the total number of memslot pages before calling the arch 1702 * hook so that architectures can consume the result directly. 1703 */ 1704 if (change == KVM_MR_DELETE) 1705 kvm->nr_memslot_pages -= old->npages; 1706 else if (change == KVM_MR_CREATE) 1707 kvm->nr_memslot_pages += new->npages; 1708 1709 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1710 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1711 atomic_set(&kvm->nr_memslots_dirty_logging, 1712 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1713 } 1714 1715 kvm_arch_commit_memory_region(kvm, old, new, change); 1716 1717 switch (change) { 1718 case KVM_MR_CREATE: 1719 /* Nothing more to do. */ 1720 break; 1721 case KVM_MR_DELETE: 1722 /* Free the old memslot and all its metadata. */ 1723 kvm_free_memslot(kvm, old); 1724 break; 1725 case KVM_MR_MOVE: 1726 case KVM_MR_FLAGS_ONLY: 1727 /* 1728 * Free the dirty bitmap as needed; the below check encompasses 1729 * both the flags and whether a ring buffer is being used) 1730 */ 1731 if (old->dirty_bitmap && !new->dirty_bitmap) 1732 kvm_destroy_dirty_bitmap(old); 1733 1734 /* 1735 * The final quirk. Free the detached, old slot, but only its 1736 * memory, not any metadata. Metadata, including arch specific 1737 * data, may be reused by @new. 1738 */ 1739 kfree(old); 1740 break; 1741 default: 1742 BUG(); 1743 } 1744 } 1745 1746 /* 1747 * Activate @new, which must be installed in the inactive slots by the caller, 1748 * by swapping the active slots and then propagating @new to @old once @old is 1749 * unreachable and can be safely modified. 1750 * 1751 * With NULL @old this simply adds @new to @active (while swapping the sets). 1752 * With NULL @new this simply removes @old from @active and frees it 1753 * (while also swapping the sets). 1754 */ 1755 static void kvm_activate_memslot(struct kvm *kvm, 1756 struct kvm_memory_slot *old, 1757 struct kvm_memory_slot *new) 1758 { 1759 int as_id = kvm_memslots_get_as_id(old, new); 1760 1761 kvm_swap_active_memslots(kvm, as_id); 1762 1763 /* Propagate the new memslot to the now inactive memslots. */ 1764 kvm_replace_memslot(kvm, old, new); 1765 } 1766 1767 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1768 const struct kvm_memory_slot *src) 1769 { 1770 dest->base_gfn = src->base_gfn; 1771 dest->npages = src->npages; 1772 dest->dirty_bitmap = src->dirty_bitmap; 1773 dest->arch = src->arch; 1774 dest->userspace_addr = src->userspace_addr; 1775 dest->flags = src->flags; 1776 dest->id = src->id; 1777 dest->as_id = src->as_id; 1778 } 1779 1780 static void kvm_invalidate_memslot(struct kvm *kvm, 1781 struct kvm_memory_slot *old, 1782 struct kvm_memory_slot *invalid_slot) 1783 { 1784 /* 1785 * Mark the current slot INVALID. As with all memslot modifications, 1786 * this must be done on an unreachable slot to avoid modifying the 1787 * current slot in the active tree. 1788 */ 1789 kvm_copy_memslot(invalid_slot, old); 1790 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1791 kvm_replace_memslot(kvm, old, invalid_slot); 1792 1793 /* 1794 * Activate the slot that is now marked INVALID, but don't propagate 1795 * the slot to the now inactive slots. The slot is either going to be 1796 * deleted or recreated as a new slot. 1797 */ 1798 kvm_swap_active_memslots(kvm, old->as_id); 1799 1800 /* 1801 * From this point no new shadow pages pointing to a deleted, or moved, 1802 * memslot will be created. Validation of sp->gfn happens in: 1803 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1804 * - kvm_is_visible_gfn (mmu_check_root) 1805 */ 1806 kvm_arch_flush_shadow_memslot(kvm, old); 1807 kvm_arch_guest_memory_reclaimed(kvm); 1808 1809 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1810 mutex_lock(&kvm->slots_arch_lock); 1811 1812 /* 1813 * Copy the arch-specific field of the newly-installed slot back to the 1814 * old slot as the arch data could have changed between releasing 1815 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1816 * above. Writers are required to retrieve memslots *after* acquiring 1817 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1818 */ 1819 old->arch = invalid_slot->arch; 1820 } 1821 1822 static void kvm_create_memslot(struct kvm *kvm, 1823 struct kvm_memory_slot *new) 1824 { 1825 /* Add the new memslot to the inactive set and activate. */ 1826 kvm_replace_memslot(kvm, NULL, new); 1827 kvm_activate_memslot(kvm, NULL, new); 1828 } 1829 1830 static void kvm_delete_memslot(struct kvm *kvm, 1831 struct kvm_memory_slot *old, 1832 struct kvm_memory_slot *invalid_slot) 1833 { 1834 /* 1835 * Remove the old memslot (in the inactive memslots) by passing NULL as 1836 * the "new" slot, and for the invalid version in the active slots. 1837 */ 1838 kvm_replace_memslot(kvm, old, NULL); 1839 kvm_activate_memslot(kvm, invalid_slot, NULL); 1840 } 1841 1842 static void kvm_move_memslot(struct kvm *kvm, 1843 struct kvm_memory_slot *old, 1844 struct kvm_memory_slot *new, 1845 struct kvm_memory_slot *invalid_slot) 1846 { 1847 /* 1848 * Replace the old memslot in the inactive slots, and then swap slots 1849 * and replace the current INVALID with the new as well. 1850 */ 1851 kvm_replace_memslot(kvm, old, new); 1852 kvm_activate_memslot(kvm, invalid_slot, new); 1853 } 1854 1855 static void kvm_update_flags_memslot(struct kvm *kvm, 1856 struct kvm_memory_slot *old, 1857 struct kvm_memory_slot *new) 1858 { 1859 /* 1860 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1861 * an intermediate step. Instead, the old memslot is simply replaced 1862 * with a new, updated copy in both memslot sets. 1863 */ 1864 kvm_replace_memslot(kvm, old, new); 1865 kvm_activate_memslot(kvm, old, new); 1866 } 1867 1868 static int kvm_set_memslot(struct kvm *kvm, 1869 struct kvm_memory_slot *old, 1870 struct kvm_memory_slot *new, 1871 enum kvm_mr_change change) 1872 { 1873 struct kvm_memory_slot *invalid_slot; 1874 int r; 1875 1876 /* 1877 * Released in kvm_swap_active_memslots(). 1878 * 1879 * Must be held from before the current memslots are copied until after 1880 * the new memslots are installed with rcu_assign_pointer, then 1881 * released before the synchronize srcu in kvm_swap_active_memslots(). 1882 * 1883 * When modifying memslots outside of the slots_lock, must be held 1884 * before reading the pointer to the current memslots until after all 1885 * changes to those memslots are complete. 1886 * 1887 * These rules ensure that installing new memslots does not lose 1888 * changes made to the previous memslots. 1889 */ 1890 mutex_lock(&kvm->slots_arch_lock); 1891 1892 /* 1893 * Invalidate the old slot if it's being deleted or moved. This is 1894 * done prior to actually deleting/moving the memslot to allow vCPUs to 1895 * continue running by ensuring there are no mappings or shadow pages 1896 * for the memslot when it is deleted/moved. Without pre-invalidation 1897 * (and without a lock), a window would exist between effecting the 1898 * delete/move and committing the changes in arch code where KVM or a 1899 * guest could access a non-existent memslot. 1900 * 1901 * Modifications are done on a temporary, unreachable slot. The old 1902 * slot needs to be preserved in case a later step fails and the 1903 * invalidation needs to be reverted. 1904 */ 1905 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1906 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1907 if (!invalid_slot) { 1908 mutex_unlock(&kvm->slots_arch_lock); 1909 return -ENOMEM; 1910 } 1911 kvm_invalidate_memslot(kvm, old, invalid_slot); 1912 } 1913 1914 r = kvm_prepare_memory_region(kvm, old, new, change); 1915 if (r) { 1916 /* 1917 * For DELETE/MOVE, revert the above INVALID change. No 1918 * modifications required since the original slot was preserved 1919 * in the inactive slots. Changing the active memslots also 1920 * release slots_arch_lock. 1921 */ 1922 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1923 kvm_activate_memslot(kvm, invalid_slot, old); 1924 kfree(invalid_slot); 1925 } else { 1926 mutex_unlock(&kvm->slots_arch_lock); 1927 } 1928 return r; 1929 } 1930 1931 /* 1932 * For DELETE and MOVE, the working slot is now active as the INVALID 1933 * version of the old slot. MOVE is particularly special as it reuses 1934 * the old slot and returns a copy of the old slot (in working_slot). 1935 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1936 * old slot is detached but otherwise preserved. 1937 */ 1938 if (change == KVM_MR_CREATE) 1939 kvm_create_memslot(kvm, new); 1940 else if (change == KVM_MR_DELETE) 1941 kvm_delete_memslot(kvm, old, invalid_slot); 1942 else if (change == KVM_MR_MOVE) 1943 kvm_move_memslot(kvm, old, new, invalid_slot); 1944 else if (change == KVM_MR_FLAGS_ONLY) 1945 kvm_update_flags_memslot(kvm, old, new); 1946 else 1947 BUG(); 1948 1949 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1950 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1951 kfree(invalid_slot); 1952 1953 /* 1954 * No need to refresh new->arch, changes after dropping slots_arch_lock 1955 * will directly hit the final, active memslot. Architectures are 1956 * responsible for knowing that new->arch may be stale. 1957 */ 1958 kvm_commit_memory_region(kvm, old, new, change); 1959 1960 return 0; 1961 } 1962 1963 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1964 gfn_t start, gfn_t end) 1965 { 1966 struct kvm_memslot_iter iter; 1967 1968 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1969 if (iter.slot->id != id) 1970 return true; 1971 } 1972 1973 return false; 1974 } 1975 1976 /* 1977 * Allocate some memory and give it an address in the guest physical address 1978 * space. 1979 * 1980 * Discontiguous memory is allowed, mostly for framebuffers. 1981 * 1982 * Must be called holding kvm->slots_lock for write. 1983 */ 1984 int __kvm_set_memory_region(struct kvm *kvm, 1985 const struct kvm_userspace_memory_region2 *mem) 1986 { 1987 struct kvm_memory_slot *old, *new; 1988 struct kvm_memslots *slots; 1989 enum kvm_mr_change change; 1990 unsigned long npages; 1991 gfn_t base_gfn; 1992 int as_id, id; 1993 int r; 1994 1995 r = check_memory_region_flags(kvm, mem); 1996 if (r) 1997 return r; 1998 1999 as_id = mem->slot >> 16; 2000 id = (u16)mem->slot; 2001 2002 /* General sanity checks */ 2003 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2004 (mem->memory_size != (unsigned long)mem->memory_size)) 2005 return -EINVAL; 2006 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2007 return -EINVAL; 2008 /* We can read the guest memory with __xxx_user() later on. */ 2009 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2010 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2011 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2012 mem->memory_size)) 2013 return -EINVAL; 2014 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2015 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2016 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2017 return -EINVAL; 2018 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2019 return -EINVAL; 2020 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2021 return -EINVAL; 2022 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2023 return -EINVAL; 2024 2025 slots = __kvm_memslots(kvm, as_id); 2026 2027 /* 2028 * Note, the old memslot (and the pointer itself!) may be invalidated 2029 * and/or destroyed by kvm_set_memslot(). 2030 */ 2031 old = id_to_memslot(slots, id); 2032 2033 if (!mem->memory_size) { 2034 if (!old || !old->npages) 2035 return -EINVAL; 2036 2037 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2038 return -EIO; 2039 2040 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2041 } 2042 2043 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2044 npages = (mem->memory_size >> PAGE_SHIFT); 2045 2046 if (!old || !old->npages) { 2047 change = KVM_MR_CREATE; 2048 2049 /* 2050 * To simplify KVM internals, the total number of pages across 2051 * all memslots must fit in an unsigned long. 2052 */ 2053 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2054 return -EINVAL; 2055 } else { /* Modify an existing slot. */ 2056 /* Private memslots are immutable, they can only be deleted. */ 2057 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2058 return -EINVAL; 2059 if ((mem->userspace_addr != old->userspace_addr) || 2060 (npages != old->npages) || 2061 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2062 return -EINVAL; 2063 2064 if (base_gfn != old->base_gfn) 2065 change = KVM_MR_MOVE; 2066 else if (mem->flags != old->flags) 2067 change = KVM_MR_FLAGS_ONLY; 2068 else /* Nothing to change. */ 2069 return 0; 2070 } 2071 2072 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2073 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2074 return -EEXIST; 2075 2076 /* Allocate a slot that will persist in the memslot. */ 2077 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2078 if (!new) 2079 return -ENOMEM; 2080 2081 new->as_id = as_id; 2082 new->id = id; 2083 new->base_gfn = base_gfn; 2084 new->npages = npages; 2085 new->flags = mem->flags; 2086 new->userspace_addr = mem->userspace_addr; 2087 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2088 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2089 if (r) 2090 goto out; 2091 } 2092 2093 r = kvm_set_memslot(kvm, old, new, change); 2094 if (r) 2095 goto out_unbind; 2096 2097 return 0; 2098 2099 out_unbind: 2100 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2101 kvm_gmem_unbind(new); 2102 out: 2103 kfree(new); 2104 return r; 2105 } 2106 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2107 2108 int kvm_set_memory_region(struct kvm *kvm, 2109 const struct kvm_userspace_memory_region2 *mem) 2110 { 2111 int r; 2112 2113 mutex_lock(&kvm->slots_lock); 2114 r = __kvm_set_memory_region(kvm, mem); 2115 mutex_unlock(&kvm->slots_lock); 2116 return r; 2117 } 2118 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2119 2120 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2121 struct kvm_userspace_memory_region2 *mem) 2122 { 2123 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2124 return -EINVAL; 2125 2126 return kvm_set_memory_region(kvm, mem); 2127 } 2128 2129 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2130 /** 2131 * kvm_get_dirty_log - get a snapshot of dirty pages 2132 * @kvm: pointer to kvm instance 2133 * @log: slot id and address to which we copy the log 2134 * @is_dirty: set to '1' if any dirty pages were found 2135 * @memslot: set to the associated memslot, always valid on success 2136 */ 2137 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2138 int *is_dirty, struct kvm_memory_slot **memslot) 2139 { 2140 struct kvm_memslots *slots; 2141 int i, as_id, id; 2142 unsigned long n; 2143 unsigned long any = 0; 2144 2145 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2146 if (!kvm_use_dirty_bitmap(kvm)) 2147 return -ENXIO; 2148 2149 *memslot = NULL; 2150 *is_dirty = 0; 2151 2152 as_id = log->slot >> 16; 2153 id = (u16)log->slot; 2154 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2155 return -EINVAL; 2156 2157 slots = __kvm_memslots(kvm, as_id); 2158 *memslot = id_to_memslot(slots, id); 2159 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2160 return -ENOENT; 2161 2162 kvm_arch_sync_dirty_log(kvm, *memslot); 2163 2164 n = kvm_dirty_bitmap_bytes(*memslot); 2165 2166 for (i = 0; !any && i < n/sizeof(long); ++i) 2167 any = (*memslot)->dirty_bitmap[i]; 2168 2169 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2170 return -EFAULT; 2171 2172 if (any) 2173 *is_dirty = 1; 2174 return 0; 2175 } 2176 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2177 2178 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2179 /** 2180 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2181 * and reenable dirty page tracking for the corresponding pages. 2182 * @kvm: pointer to kvm instance 2183 * @log: slot id and address to which we copy the log 2184 * 2185 * We need to keep it in mind that VCPU threads can write to the bitmap 2186 * concurrently. So, to avoid losing track of dirty pages we keep the 2187 * following order: 2188 * 2189 * 1. Take a snapshot of the bit and clear it if needed. 2190 * 2. Write protect the corresponding page. 2191 * 3. Copy the snapshot to the userspace. 2192 * 4. Upon return caller flushes TLB's if needed. 2193 * 2194 * Between 2 and 4, the guest may write to the page using the remaining TLB 2195 * entry. This is not a problem because the page is reported dirty using 2196 * the snapshot taken before and step 4 ensures that writes done after 2197 * exiting to userspace will be logged for the next call. 2198 * 2199 */ 2200 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2201 { 2202 struct kvm_memslots *slots; 2203 struct kvm_memory_slot *memslot; 2204 int i, as_id, id; 2205 unsigned long n; 2206 unsigned long *dirty_bitmap; 2207 unsigned long *dirty_bitmap_buffer; 2208 bool flush; 2209 2210 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2211 if (!kvm_use_dirty_bitmap(kvm)) 2212 return -ENXIO; 2213 2214 as_id = log->slot >> 16; 2215 id = (u16)log->slot; 2216 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2217 return -EINVAL; 2218 2219 slots = __kvm_memslots(kvm, as_id); 2220 memslot = id_to_memslot(slots, id); 2221 if (!memslot || !memslot->dirty_bitmap) 2222 return -ENOENT; 2223 2224 dirty_bitmap = memslot->dirty_bitmap; 2225 2226 kvm_arch_sync_dirty_log(kvm, memslot); 2227 2228 n = kvm_dirty_bitmap_bytes(memslot); 2229 flush = false; 2230 if (kvm->manual_dirty_log_protect) { 2231 /* 2232 * Unlike kvm_get_dirty_log, we always return false in *flush, 2233 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2234 * is some code duplication between this function and 2235 * kvm_get_dirty_log, but hopefully all architecture 2236 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2237 * can be eliminated. 2238 */ 2239 dirty_bitmap_buffer = dirty_bitmap; 2240 } else { 2241 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2242 memset(dirty_bitmap_buffer, 0, n); 2243 2244 KVM_MMU_LOCK(kvm); 2245 for (i = 0; i < n / sizeof(long); i++) { 2246 unsigned long mask; 2247 gfn_t offset; 2248 2249 if (!dirty_bitmap[i]) 2250 continue; 2251 2252 flush = true; 2253 mask = xchg(&dirty_bitmap[i], 0); 2254 dirty_bitmap_buffer[i] = mask; 2255 2256 offset = i * BITS_PER_LONG; 2257 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2258 offset, mask); 2259 } 2260 KVM_MMU_UNLOCK(kvm); 2261 } 2262 2263 if (flush) 2264 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2265 2266 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2267 return -EFAULT; 2268 return 0; 2269 } 2270 2271 2272 /** 2273 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2274 * @kvm: kvm instance 2275 * @log: slot id and address to which we copy the log 2276 * 2277 * Steps 1-4 below provide general overview of dirty page logging. See 2278 * kvm_get_dirty_log_protect() function description for additional details. 2279 * 2280 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2281 * always flush the TLB (step 4) even if previous step failed and the dirty 2282 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2283 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2284 * writes will be marked dirty for next log read. 2285 * 2286 * 1. Take a snapshot of the bit and clear it if needed. 2287 * 2. Write protect the corresponding page. 2288 * 3. Copy the snapshot to the userspace. 2289 * 4. Flush TLB's if needed. 2290 */ 2291 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2292 struct kvm_dirty_log *log) 2293 { 2294 int r; 2295 2296 mutex_lock(&kvm->slots_lock); 2297 2298 r = kvm_get_dirty_log_protect(kvm, log); 2299 2300 mutex_unlock(&kvm->slots_lock); 2301 return r; 2302 } 2303 2304 /** 2305 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2306 * and reenable dirty page tracking for the corresponding pages. 2307 * @kvm: pointer to kvm instance 2308 * @log: slot id and address from which to fetch the bitmap of dirty pages 2309 */ 2310 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2311 struct kvm_clear_dirty_log *log) 2312 { 2313 struct kvm_memslots *slots; 2314 struct kvm_memory_slot *memslot; 2315 int as_id, id; 2316 gfn_t offset; 2317 unsigned long i, n; 2318 unsigned long *dirty_bitmap; 2319 unsigned long *dirty_bitmap_buffer; 2320 bool flush; 2321 2322 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2323 if (!kvm_use_dirty_bitmap(kvm)) 2324 return -ENXIO; 2325 2326 as_id = log->slot >> 16; 2327 id = (u16)log->slot; 2328 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2329 return -EINVAL; 2330 2331 if (log->first_page & 63) 2332 return -EINVAL; 2333 2334 slots = __kvm_memslots(kvm, as_id); 2335 memslot = id_to_memslot(slots, id); 2336 if (!memslot || !memslot->dirty_bitmap) 2337 return -ENOENT; 2338 2339 dirty_bitmap = memslot->dirty_bitmap; 2340 2341 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2342 2343 if (log->first_page > memslot->npages || 2344 log->num_pages > memslot->npages - log->first_page || 2345 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2346 return -EINVAL; 2347 2348 kvm_arch_sync_dirty_log(kvm, memslot); 2349 2350 flush = false; 2351 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2352 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2353 return -EFAULT; 2354 2355 KVM_MMU_LOCK(kvm); 2356 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2357 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2358 i++, offset += BITS_PER_LONG) { 2359 unsigned long mask = *dirty_bitmap_buffer++; 2360 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2361 if (!mask) 2362 continue; 2363 2364 mask &= atomic_long_fetch_andnot(mask, p); 2365 2366 /* 2367 * mask contains the bits that really have been cleared. This 2368 * never includes any bits beyond the length of the memslot (if 2369 * the length is not aligned to 64 pages), therefore it is not 2370 * a problem if userspace sets them in log->dirty_bitmap. 2371 */ 2372 if (mask) { 2373 flush = true; 2374 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2375 offset, mask); 2376 } 2377 } 2378 KVM_MMU_UNLOCK(kvm); 2379 2380 if (flush) 2381 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2382 2383 return 0; 2384 } 2385 2386 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2387 struct kvm_clear_dirty_log *log) 2388 { 2389 int r; 2390 2391 mutex_lock(&kvm->slots_lock); 2392 2393 r = kvm_clear_dirty_log_protect(kvm, log); 2394 2395 mutex_unlock(&kvm->slots_lock); 2396 return r; 2397 } 2398 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2399 2400 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2401 /* 2402 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2403 * matching @attrs. 2404 */ 2405 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2406 unsigned long attrs) 2407 { 2408 XA_STATE(xas, &kvm->mem_attr_array, start); 2409 unsigned long index; 2410 bool has_attrs; 2411 void *entry; 2412 2413 rcu_read_lock(); 2414 2415 if (!attrs) { 2416 has_attrs = !xas_find(&xas, end - 1); 2417 goto out; 2418 } 2419 2420 has_attrs = true; 2421 for (index = start; index < end; index++) { 2422 do { 2423 entry = xas_next(&xas); 2424 } while (xas_retry(&xas, entry)); 2425 2426 if (xas.xa_index != index || xa_to_value(entry) != attrs) { 2427 has_attrs = false; 2428 break; 2429 } 2430 } 2431 2432 out: 2433 rcu_read_unlock(); 2434 return has_attrs; 2435 } 2436 2437 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2438 { 2439 if (!kvm || kvm_arch_has_private_mem(kvm)) 2440 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2441 2442 return 0; 2443 } 2444 2445 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2446 struct kvm_mmu_notifier_range *range) 2447 { 2448 struct kvm_gfn_range gfn_range; 2449 struct kvm_memory_slot *slot; 2450 struct kvm_memslots *slots; 2451 struct kvm_memslot_iter iter; 2452 bool found_memslot = false; 2453 bool ret = false; 2454 int i; 2455 2456 gfn_range.arg = range->arg; 2457 gfn_range.may_block = range->may_block; 2458 2459 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2460 slots = __kvm_memslots(kvm, i); 2461 2462 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2463 slot = iter.slot; 2464 gfn_range.slot = slot; 2465 2466 gfn_range.start = max(range->start, slot->base_gfn); 2467 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2468 if (gfn_range.start >= gfn_range.end) 2469 continue; 2470 2471 if (!found_memslot) { 2472 found_memslot = true; 2473 KVM_MMU_LOCK(kvm); 2474 if (!IS_KVM_NULL_FN(range->on_lock)) 2475 range->on_lock(kvm); 2476 } 2477 2478 ret |= range->handler(kvm, &gfn_range); 2479 } 2480 } 2481 2482 if (range->flush_on_ret && ret) 2483 kvm_flush_remote_tlbs(kvm); 2484 2485 if (found_memslot) 2486 KVM_MMU_UNLOCK(kvm); 2487 } 2488 2489 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2490 struct kvm_gfn_range *range) 2491 { 2492 /* 2493 * Unconditionally add the range to the invalidation set, regardless of 2494 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2495 * if KVM supports RWX attributes in the future and the attributes are 2496 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2497 * adding the range allows KVM to require that MMU invalidations add at 2498 * least one range between begin() and end(), e.g. allows KVM to detect 2499 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2500 * but it's not obvious that allowing new mappings while the attributes 2501 * are in flux is desirable or worth the complexity. 2502 */ 2503 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2504 2505 return kvm_arch_pre_set_memory_attributes(kvm, range); 2506 } 2507 2508 /* Set @attributes for the gfn range [@start, @end). */ 2509 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2510 unsigned long attributes) 2511 { 2512 struct kvm_mmu_notifier_range pre_set_range = { 2513 .start = start, 2514 .end = end, 2515 .handler = kvm_pre_set_memory_attributes, 2516 .on_lock = kvm_mmu_invalidate_begin, 2517 .flush_on_ret = true, 2518 .may_block = true, 2519 }; 2520 struct kvm_mmu_notifier_range post_set_range = { 2521 .start = start, 2522 .end = end, 2523 .arg.attributes = attributes, 2524 .handler = kvm_arch_post_set_memory_attributes, 2525 .on_lock = kvm_mmu_invalidate_end, 2526 .may_block = true, 2527 }; 2528 unsigned long i; 2529 void *entry; 2530 int r = 0; 2531 2532 entry = attributes ? xa_mk_value(attributes) : NULL; 2533 2534 mutex_lock(&kvm->slots_lock); 2535 2536 /* Nothing to do if the entire range as the desired attributes. */ 2537 if (kvm_range_has_memory_attributes(kvm, start, end, attributes)) 2538 goto out_unlock; 2539 2540 /* 2541 * Reserve memory ahead of time to avoid having to deal with failures 2542 * partway through setting the new attributes. 2543 */ 2544 for (i = start; i < end; i++) { 2545 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2546 if (r) 2547 goto out_unlock; 2548 } 2549 2550 kvm_handle_gfn_range(kvm, &pre_set_range); 2551 2552 for (i = start; i < end; i++) { 2553 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2554 GFP_KERNEL_ACCOUNT)); 2555 KVM_BUG_ON(r, kvm); 2556 } 2557 2558 kvm_handle_gfn_range(kvm, &post_set_range); 2559 2560 out_unlock: 2561 mutex_unlock(&kvm->slots_lock); 2562 2563 return r; 2564 } 2565 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2566 struct kvm_memory_attributes *attrs) 2567 { 2568 gfn_t start, end; 2569 2570 /* flags is currently not used. */ 2571 if (attrs->flags) 2572 return -EINVAL; 2573 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2574 return -EINVAL; 2575 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2576 return -EINVAL; 2577 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2578 return -EINVAL; 2579 2580 start = attrs->address >> PAGE_SHIFT; 2581 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2582 2583 /* 2584 * xarray tracks data using "unsigned long", and as a result so does 2585 * KVM. For simplicity, supports generic attributes only on 64-bit 2586 * architectures. 2587 */ 2588 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2589 2590 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2591 } 2592 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2593 2594 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2595 { 2596 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2597 } 2598 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2599 2600 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2601 { 2602 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2603 u64 gen = slots->generation; 2604 struct kvm_memory_slot *slot; 2605 2606 /* 2607 * This also protects against using a memslot from a different address space, 2608 * since different address spaces have different generation numbers. 2609 */ 2610 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2611 vcpu->last_used_slot = NULL; 2612 vcpu->last_used_slot_gen = gen; 2613 } 2614 2615 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2616 if (slot) 2617 return slot; 2618 2619 /* 2620 * Fall back to searching all memslots. We purposely use 2621 * search_memslots() instead of __gfn_to_memslot() to avoid 2622 * thrashing the VM-wide last_used_slot in kvm_memslots. 2623 */ 2624 slot = search_memslots(slots, gfn, false); 2625 if (slot) { 2626 vcpu->last_used_slot = slot; 2627 return slot; 2628 } 2629 2630 return NULL; 2631 } 2632 2633 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2634 { 2635 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2636 2637 return kvm_is_visible_memslot(memslot); 2638 } 2639 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2640 2641 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2642 { 2643 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2644 2645 return kvm_is_visible_memslot(memslot); 2646 } 2647 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2648 2649 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2650 { 2651 struct vm_area_struct *vma; 2652 unsigned long addr, size; 2653 2654 size = PAGE_SIZE; 2655 2656 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2657 if (kvm_is_error_hva(addr)) 2658 return PAGE_SIZE; 2659 2660 mmap_read_lock(current->mm); 2661 vma = find_vma(current->mm, addr); 2662 if (!vma) 2663 goto out; 2664 2665 size = vma_kernel_pagesize(vma); 2666 2667 out: 2668 mmap_read_unlock(current->mm); 2669 2670 return size; 2671 } 2672 2673 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2674 { 2675 return slot->flags & KVM_MEM_READONLY; 2676 } 2677 2678 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2679 gfn_t *nr_pages, bool write) 2680 { 2681 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2682 return KVM_HVA_ERR_BAD; 2683 2684 if (memslot_is_readonly(slot) && write) 2685 return KVM_HVA_ERR_RO_BAD; 2686 2687 if (nr_pages) 2688 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2689 2690 return __gfn_to_hva_memslot(slot, gfn); 2691 } 2692 2693 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2694 gfn_t *nr_pages) 2695 { 2696 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2697 } 2698 2699 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2700 gfn_t gfn) 2701 { 2702 return gfn_to_hva_many(slot, gfn, NULL); 2703 } 2704 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2705 2706 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2707 { 2708 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2709 } 2710 EXPORT_SYMBOL_GPL(gfn_to_hva); 2711 2712 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2713 { 2714 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2715 } 2716 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2717 2718 /* 2719 * Return the hva of a @gfn and the R/W attribute if possible. 2720 * 2721 * @slot: the kvm_memory_slot which contains @gfn 2722 * @gfn: the gfn to be translated 2723 * @writable: used to return the read/write attribute of the @slot if the hva 2724 * is valid and @writable is not NULL 2725 */ 2726 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2727 gfn_t gfn, bool *writable) 2728 { 2729 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2730 2731 if (!kvm_is_error_hva(hva) && writable) 2732 *writable = !memslot_is_readonly(slot); 2733 2734 return hva; 2735 } 2736 2737 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2738 { 2739 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2740 2741 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2742 } 2743 2744 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2745 { 2746 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2747 2748 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2749 } 2750 2751 static inline int check_user_page_hwpoison(unsigned long addr) 2752 { 2753 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2754 2755 rc = get_user_pages(addr, 1, flags, NULL); 2756 return rc == -EHWPOISON; 2757 } 2758 2759 /* 2760 * The fast path to get the writable pfn which will be stored in @pfn, 2761 * true indicates success, otherwise false is returned. It's also the 2762 * only part that runs if we can in atomic context. 2763 */ 2764 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2765 bool *writable, kvm_pfn_t *pfn) 2766 { 2767 struct page *page[1]; 2768 2769 /* 2770 * Fast pin a writable pfn only if it is a write fault request 2771 * or the caller allows to map a writable pfn for a read fault 2772 * request. 2773 */ 2774 if (!(write_fault || writable)) 2775 return false; 2776 2777 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2778 *pfn = page_to_pfn(page[0]); 2779 2780 if (writable) 2781 *writable = true; 2782 return true; 2783 } 2784 2785 return false; 2786 } 2787 2788 /* 2789 * The slow path to get the pfn of the specified host virtual address, 2790 * 1 indicates success, -errno is returned if error is detected. 2791 */ 2792 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2793 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2794 { 2795 /* 2796 * When a VCPU accesses a page that is not mapped into the secondary 2797 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2798 * make progress. We always want to honor NUMA hinting faults in that 2799 * case, because GUP usage corresponds to memory accesses from the VCPU. 2800 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2801 * mapped into the secondary MMU and gets accessed by a VCPU. 2802 * 2803 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2804 * implicitly honor NUMA hinting faults and don't need this flag. 2805 */ 2806 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2807 struct page *page; 2808 int npages; 2809 2810 might_sleep(); 2811 2812 if (writable) 2813 *writable = write_fault; 2814 2815 if (write_fault) 2816 flags |= FOLL_WRITE; 2817 if (async) 2818 flags |= FOLL_NOWAIT; 2819 if (interruptible) 2820 flags |= FOLL_INTERRUPTIBLE; 2821 2822 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2823 if (npages != 1) 2824 return npages; 2825 2826 /* map read fault as writable if possible */ 2827 if (unlikely(!write_fault) && writable) { 2828 struct page *wpage; 2829 2830 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2831 *writable = true; 2832 put_page(page); 2833 page = wpage; 2834 } 2835 } 2836 *pfn = page_to_pfn(page); 2837 return npages; 2838 } 2839 2840 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2841 { 2842 if (unlikely(!(vma->vm_flags & VM_READ))) 2843 return false; 2844 2845 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2846 return false; 2847 2848 return true; 2849 } 2850 2851 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2852 { 2853 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2854 2855 if (!page) 2856 return 1; 2857 2858 return get_page_unless_zero(page); 2859 } 2860 2861 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2862 unsigned long addr, bool write_fault, 2863 bool *writable, kvm_pfn_t *p_pfn) 2864 { 2865 kvm_pfn_t pfn; 2866 pte_t *ptep; 2867 pte_t pte; 2868 spinlock_t *ptl; 2869 int r; 2870 2871 r = follow_pte(vma, addr, &ptep, &ptl); 2872 if (r) { 2873 /* 2874 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2875 * not call the fault handler, so do it here. 2876 */ 2877 bool unlocked = false; 2878 r = fixup_user_fault(current->mm, addr, 2879 (write_fault ? FAULT_FLAG_WRITE : 0), 2880 &unlocked); 2881 if (unlocked) 2882 return -EAGAIN; 2883 if (r) 2884 return r; 2885 2886 r = follow_pte(vma, addr, &ptep, &ptl); 2887 if (r) 2888 return r; 2889 } 2890 2891 pte = ptep_get(ptep); 2892 2893 if (write_fault && !pte_write(pte)) { 2894 pfn = KVM_PFN_ERR_RO_FAULT; 2895 goto out; 2896 } 2897 2898 if (writable) 2899 *writable = pte_write(pte); 2900 pfn = pte_pfn(pte); 2901 2902 /* 2903 * Get a reference here because callers of *hva_to_pfn* and 2904 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2905 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2906 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2907 * simply do nothing for reserved pfns. 2908 * 2909 * Whoever called remap_pfn_range is also going to call e.g. 2910 * unmap_mapping_range before the underlying pages are freed, 2911 * causing a call to our MMU notifier. 2912 * 2913 * Certain IO or PFNMAP mappings can be backed with valid 2914 * struct pages, but be allocated without refcounting e.g., 2915 * tail pages of non-compound higher order allocations, which 2916 * would then underflow the refcount when the caller does the 2917 * required put_page. Don't allow those pages here. 2918 */ 2919 if (!kvm_try_get_pfn(pfn)) 2920 r = -EFAULT; 2921 2922 out: 2923 pte_unmap_unlock(ptep, ptl); 2924 *p_pfn = pfn; 2925 2926 return r; 2927 } 2928 2929 /* 2930 * Pin guest page in memory and return its pfn. 2931 * @addr: host virtual address which maps memory to the guest 2932 * @atomic: whether this function is forbidden from sleeping 2933 * @interruptible: whether the process can be interrupted by non-fatal signals 2934 * @async: whether this function need to wait IO complete if the 2935 * host page is not in the memory 2936 * @write_fault: whether we should get a writable host page 2937 * @writable: whether it allows to map a writable host page for !@write_fault 2938 * 2939 * The function will map a writable host page for these two cases: 2940 * 1): @write_fault = true 2941 * 2): @write_fault = false && @writable, @writable will tell the caller 2942 * whether the mapping is writable. 2943 */ 2944 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2945 bool *async, bool write_fault, bool *writable) 2946 { 2947 struct vm_area_struct *vma; 2948 kvm_pfn_t pfn; 2949 int npages, r; 2950 2951 /* we can do it either atomically or asynchronously, not both */ 2952 BUG_ON(atomic && async); 2953 2954 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2955 return pfn; 2956 2957 if (atomic) 2958 return KVM_PFN_ERR_FAULT; 2959 2960 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2961 writable, &pfn); 2962 if (npages == 1) 2963 return pfn; 2964 if (npages == -EINTR) 2965 return KVM_PFN_ERR_SIGPENDING; 2966 2967 mmap_read_lock(current->mm); 2968 if (npages == -EHWPOISON || 2969 (!async && check_user_page_hwpoison(addr))) { 2970 pfn = KVM_PFN_ERR_HWPOISON; 2971 goto exit; 2972 } 2973 2974 retry: 2975 vma = vma_lookup(current->mm, addr); 2976 2977 if (vma == NULL) 2978 pfn = KVM_PFN_ERR_FAULT; 2979 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2980 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2981 if (r == -EAGAIN) 2982 goto retry; 2983 if (r < 0) 2984 pfn = KVM_PFN_ERR_FAULT; 2985 } else { 2986 if (async && vma_is_valid(vma, write_fault)) 2987 *async = true; 2988 pfn = KVM_PFN_ERR_FAULT; 2989 } 2990 exit: 2991 mmap_read_unlock(current->mm); 2992 return pfn; 2993 } 2994 2995 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2996 bool atomic, bool interruptible, bool *async, 2997 bool write_fault, bool *writable, hva_t *hva) 2998 { 2999 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 3000 3001 if (hva) 3002 *hva = addr; 3003 3004 if (kvm_is_error_hva(addr)) { 3005 if (writable) 3006 *writable = false; 3007 3008 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT : 3009 KVM_PFN_NOSLOT; 3010 } 3011 3012 /* Do not map writable pfn in the readonly memslot. */ 3013 if (writable && memslot_is_readonly(slot)) { 3014 *writable = false; 3015 writable = NULL; 3016 } 3017 3018 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 3019 writable); 3020 } 3021 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 3022 3023 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 3024 bool *writable) 3025 { 3026 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 3027 NULL, write_fault, writable, NULL); 3028 } 3029 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 3030 3031 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 3032 { 3033 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 3034 NULL, NULL); 3035 } 3036 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 3037 3038 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 3039 { 3040 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 3041 NULL, NULL); 3042 } 3043 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 3044 3045 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 3046 { 3047 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3048 } 3049 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 3050 3051 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 3052 { 3053 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 3054 } 3055 EXPORT_SYMBOL_GPL(gfn_to_pfn); 3056 3057 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 3058 { 3059 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 3060 } 3061 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 3062 3063 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3064 struct page **pages, int nr_pages) 3065 { 3066 unsigned long addr; 3067 gfn_t entry = 0; 3068 3069 addr = gfn_to_hva_many(slot, gfn, &entry); 3070 if (kvm_is_error_hva(addr)) 3071 return -1; 3072 3073 if (entry < nr_pages) 3074 return 0; 3075 3076 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3077 } 3078 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 3079 3080 /* 3081 * Do not use this helper unless you are absolutely certain the gfn _must_ be 3082 * backed by 'struct page'. A valid example is if the backing memslot is 3083 * controlled by KVM. Note, if the returned page is valid, it's refcount has 3084 * been elevated by gfn_to_pfn(). 3085 */ 3086 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 3087 { 3088 struct page *page; 3089 kvm_pfn_t pfn; 3090 3091 pfn = gfn_to_pfn(kvm, gfn); 3092 3093 if (is_error_noslot_pfn(pfn)) 3094 return KVM_ERR_PTR_BAD_PAGE; 3095 3096 page = kvm_pfn_to_refcounted_page(pfn); 3097 if (!page) 3098 return KVM_ERR_PTR_BAD_PAGE; 3099 3100 return page; 3101 } 3102 EXPORT_SYMBOL_GPL(gfn_to_page); 3103 3104 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 3105 { 3106 if (dirty) 3107 kvm_release_pfn_dirty(pfn); 3108 else 3109 kvm_release_pfn_clean(pfn); 3110 } 3111 3112 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 3113 { 3114 kvm_pfn_t pfn; 3115 void *hva = NULL; 3116 struct page *page = KVM_UNMAPPED_PAGE; 3117 3118 if (!map) 3119 return -EINVAL; 3120 3121 pfn = gfn_to_pfn(vcpu->kvm, gfn); 3122 if (is_error_noslot_pfn(pfn)) 3123 return -EINVAL; 3124 3125 if (pfn_valid(pfn)) { 3126 page = pfn_to_page(pfn); 3127 hva = kmap(page); 3128 #ifdef CONFIG_HAS_IOMEM 3129 } else { 3130 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 3131 #endif 3132 } 3133 3134 if (!hva) 3135 return -EFAULT; 3136 3137 map->page = page; 3138 map->hva = hva; 3139 map->pfn = pfn; 3140 map->gfn = gfn; 3141 3142 return 0; 3143 } 3144 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 3145 3146 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 3147 { 3148 if (!map) 3149 return; 3150 3151 if (!map->hva) 3152 return; 3153 3154 if (map->page != KVM_UNMAPPED_PAGE) 3155 kunmap(map->page); 3156 #ifdef CONFIG_HAS_IOMEM 3157 else 3158 memunmap(map->hva); 3159 #endif 3160 3161 if (dirty) 3162 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3163 3164 kvm_release_pfn(map->pfn, dirty); 3165 3166 map->hva = NULL; 3167 map->page = NULL; 3168 } 3169 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 3170 3171 static bool kvm_is_ad_tracked_page(struct page *page) 3172 { 3173 /* 3174 * Per page-flags.h, pages tagged PG_reserved "should in general not be 3175 * touched (e.g. set dirty) except by its owner". 3176 */ 3177 return !PageReserved(page); 3178 } 3179 3180 static void kvm_set_page_dirty(struct page *page) 3181 { 3182 if (kvm_is_ad_tracked_page(page)) 3183 SetPageDirty(page); 3184 } 3185 3186 static void kvm_set_page_accessed(struct page *page) 3187 { 3188 if (kvm_is_ad_tracked_page(page)) 3189 mark_page_accessed(page); 3190 } 3191 3192 void kvm_release_page_clean(struct page *page) 3193 { 3194 WARN_ON(is_error_page(page)); 3195 3196 kvm_set_page_accessed(page); 3197 put_page(page); 3198 } 3199 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 3200 3201 void kvm_release_pfn_clean(kvm_pfn_t pfn) 3202 { 3203 struct page *page; 3204 3205 if (is_error_noslot_pfn(pfn)) 3206 return; 3207 3208 page = kvm_pfn_to_refcounted_page(pfn); 3209 if (!page) 3210 return; 3211 3212 kvm_release_page_clean(page); 3213 } 3214 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 3215 3216 void kvm_release_page_dirty(struct page *page) 3217 { 3218 WARN_ON(is_error_page(page)); 3219 3220 kvm_set_page_dirty(page); 3221 kvm_release_page_clean(page); 3222 } 3223 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 3224 3225 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 3226 { 3227 struct page *page; 3228 3229 if (is_error_noslot_pfn(pfn)) 3230 return; 3231 3232 page = kvm_pfn_to_refcounted_page(pfn); 3233 if (!page) 3234 return; 3235 3236 kvm_release_page_dirty(page); 3237 } 3238 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 3239 3240 /* 3241 * Note, checking for an error/noslot pfn is the caller's responsibility when 3242 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 3243 * "set" helpers are not to be used when the pfn might point at garbage. 3244 */ 3245 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3246 { 3247 if (WARN_ON(is_error_noslot_pfn(pfn))) 3248 return; 3249 3250 if (pfn_valid(pfn)) 3251 kvm_set_page_dirty(pfn_to_page(pfn)); 3252 } 3253 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3254 3255 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3256 { 3257 if (WARN_ON(is_error_noslot_pfn(pfn))) 3258 return; 3259 3260 if (pfn_valid(pfn)) 3261 kvm_set_page_accessed(pfn_to_page(pfn)); 3262 } 3263 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3264 3265 static int next_segment(unsigned long len, int offset) 3266 { 3267 if (len > PAGE_SIZE - offset) 3268 return PAGE_SIZE - offset; 3269 else 3270 return len; 3271 } 3272 3273 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3274 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3275 void *data, int offset, int len) 3276 { 3277 int r; 3278 unsigned long addr; 3279 3280 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3281 if (kvm_is_error_hva(addr)) 3282 return -EFAULT; 3283 r = __copy_from_user(data, (void __user *)addr + offset, len); 3284 if (r) 3285 return -EFAULT; 3286 return 0; 3287 } 3288 3289 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3290 int len) 3291 { 3292 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3293 3294 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3295 } 3296 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3297 3298 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3299 int offset, int len) 3300 { 3301 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3302 3303 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3304 } 3305 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3306 3307 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3308 { 3309 gfn_t gfn = gpa >> PAGE_SHIFT; 3310 int seg; 3311 int offset = offset_in_page(gpa); 3312 int ret; 3313 3314 while ((seg = next_segment(len, offset)) != 0) { 3315 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3316 if (ret < 0) 3317 return ret; 3318 offset = 0; 3319 len -= seg; 3320 data += seg; 3321 ++gfn; 3322 } 3323 return 0; 3324 } 3325 EXPORT_SYMBOL_GPL(kvm_read_guest); 3326 3327 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3328 { 3329 gfn_t gfn = gpa >> PAGE_SHIFT; 3330 int seg; 3331 int offset = offset_in_page(gpa); 3332 int ret; 3333 3334 while ((seg = next_segment(len, offset)) != 0) { 3335 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3336 if (ret < 0) 3337 return ret; 3338 offset = 0; 3339 len -= seg; 3340 data += seg; 3341 ++gfn; 3342 } 3343 return 0; 3344 } 3345 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3346 3347 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3348 void *data, int offset, unsigned long len) 3349 { 3350 int r; 3351 unsigned long addr; 3352 3353 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3354 if (kvm_is_error_hva(addr)) 3355 return -EFAULT; 3356 pagefault_disable(); 3357 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3358 pagefault_enable(); 3359 if (r) 3360 return -EFAULT; 3361 return 0; 3362 } 3363 3364 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3365 void *data, unsigned long len) 3366 { 3367 gfn_t gfn = gpa >> PAGE_SHIFT; 3368 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3369 int offset = offset_in_page(gpa); 3370 3371 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3372 } 3373 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3374 3375 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3376 static int __kvm_write_guest_page(struct kvm *kvm, 3377 struct kvm_memory_slot *memslot, gfn_t gfn, 3378 const void *data, int offset, int len) 3379 { 3380 int r; 3381 unsigned long addr; 3382 3383 addr = gfn_to_hva_memslot(memslot, gfn); 3384 if (kvm_is_error_hva(addr)) 3385 return -EFAULT; 3386 r = __copy_to_user((void __user *)addr + offset, data, len); 3387 if (r) 3388 return -EFAULT; 3389 mark_page_dirty_in_slot(kvm, memslot, gfn); 3390 return 0; 3391 } 3392 3393 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3394 const void *data, int offset, int len) 3395 { 3396 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3397 3398 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3399 } 3400 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3401 3402 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3403 const void *data, int offset, int len) 3404 { 3405 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3406 3407 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3408 } 3409 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3410 3411 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3412 unsigned long len) 3413 { 3414 gfn_t gfn = gpa >> PAGE_SHIFT; 3415 int seg; 3416 int offset = offset_in_page(gpa); 3417 int ret; 3418 3419 while ((seg = next_segment(len, offset)) != 0) { 3420 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3421 if (ret < 0) 3422 return ret; 3423 offset = 0; 3424 len -= seg; 3425 data += seg; 3426 ++gfn; 3427 } 3428 return 0; 3429 } 3430 EXPORT_SYMBOL_GPL(kvm_write_guest); 3431 3432 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3433 unsigned long len) 3434 { 3435 gfn_t gfn = gpa >> PAGE_SHIFT; 3436 int seg; 3437 int offset = offset_in_page(gpa); 3438 int ret; 3439 3440 while ((seg = next_segment(len, offset)) != 0) { 3441 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3442 if (ret < 0) 3443 return ret; 3444 offset = 0; 3445 len -= seg; 3446 data += seg; 3447 ++gfn; 3448 } 3449 return 0; 3450 } 3451 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3452 3453 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3454 struct gfn_to_hva_cache *ghc, 3455 gpa_t gpa, unsigned long len) 3456 { 3457 int offset = offset_in_page(gpa); 3458 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3459 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3460 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3461 gfn_t nr_pages_avail; 3462 3463 /* Update ghc->generation before performing any error checks. */ 3464 ghc->generation = slots->generation; 3465 3466 if (start_gfn > end_gfn) { 3467 ghc->hva = KVM_HVA_ERR_BAD; 3468 return -EINVAL; 3469 } 3470 3471 /* 3472 * If the requested region crosses two memslots, we still 3473 * verify that the entire region is valid here. 3474 */ 3475 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3476 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3477 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3478 &nr_pages_avail); 3479 if (kvm_is_error_hva(ghc->hva)) 3480 return -EFAULT; 3481 } 3482 3483 /* Use the slow path for cross page reads and writes. */ 3484 if (nr_pages_needed == 1) 3485 ghc->hva += offset; 3486 else 3487 ghc->memslot = NULL; 3488 3489 ghc->gpa = gpa; 3490 ghc->len = len; 3491 return 0; 3492 } 3493 3494 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3495 gpa_t gpa, unsigned long len) 3496 { 3497 struct kvm_memslots *slots = kvm_memslots(kvm); 3498 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3499 } 3500 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3501 3502 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3503 void *data, unsigned int offset, 3504 unsigned long len) 3505 { 3506 struct kvm_memslots *slots = kvm_memslots(kvm); 3507 int r; 3508 gpa_t gpa = ghc->gpa + offset; 3509 3510 if (WARN_ON_ONCE(len + offset > ghc->len)) 3511 return -EINVAL; 3512 3513 if (slots->generation != ghc->generation) { 3514 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3515 return -EFAULT; 3516 } 3517 3518 if (kvm_is_error_hva(ghc->hva)) 3519 return -EFAULT; 3520 3521 if (unlikely(!ghc->memslot)) 3522 return kvm_write_guest(kvm, gpa, data, len); 3523 3524 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3525 if (r) 3526 return -EFAULT; 3527 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3528 3529 return 0; 3530 } 3531 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3532 3533 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3534 void *data, unsigned long len) 3535 { 3536 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3537 } 3538 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3539 3540 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3541 void *data, unsigned int offset, 3542 unsigned long len) 3543 { 3544 struct kvm_memslots *slots = kvm_memslots(kvm); 3545 int r; 3546 gpa_t gpa = ghc->gpa + offset; 3547 3548 if (WARN_ON_ONCE(len + offset > ghc->len)) 3549 return -EINVAL; 3550 3551 if (slots->generation != ghc->generation) { 3552 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3553 return -EFAULT; 3554 } 3555 3556 if (kvm_is_error_hva(ghc->hva)) 3557 return -EFAULT; 3558 3559 if (unlikely(!ghc->memslot)) 3560 return kvm_read_guest(kvm, gpa, data, len); 3561 3562 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3563 if (r) 3564 return -EFAULT; 3565 3566 return 0; 3567 } 3568 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3569 3570 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3571 void *data, unsigned long len) 3572 { 3573 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3574 } 3575 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3576 3577 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3578 { 3579 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3580 gfn_t gfn = gpa >> PAGE_SHIFT; 3581 int seg; 3582 int offset = offset_in_page(gpa); 3583 int ret; 3584 3585 while ((seg = next_segment(len, offset)) != 0) { 3586 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3587 if (ret < 0) 3588 return ret; 3589 offset = 0; 3590 len -= seg; 3591 ++gfn; 3592 } 3593 return 0; 3594 } 3595 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3596 3597 void mark_page_dirty_in_slot(struct kvm *kvm, 3598 const struct kvm_memory_slot *memslot, 3599 gfn_t gfn) 3600 { 3601 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3602 3603 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3604 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3605 return; 3606 3607 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3608 #endif 3609 3610 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3611 unsigned long rel_gfn = gfn - memslot->base_gfn; 3612 u32 slot = (memslot->as_id << 16) | memslot->id; 3613 3614 if (kvm->dirty_ring_size && vcpu) 3615 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3616 else if (memslot->dirty_bitmap) 3617 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3618 } 3619 } 3620 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3621 3622 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3623 { 3624 struct kvm_memory_slot *memslot; 3625 3626 memslot = gfn_to_memslot(kvm, gfn); 3627 mark_page_dirty_in_slot(kvm, memslot, gfn); 3628 } 3629 EXPORT_SYMBOL_GPL(mark_page_dirty); 3630 3631 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3632 { 3633 struct kvm_memory_slot *memslot; 3634 3635 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3636 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3637 } 3638 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3639 3640 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3641 { 3642 if (!vcpu->sigset_active) 3643 return; 3644 3645 /* 3646 * This does a lockless modification of ->real_blocked, which is fine 3647 * because, only current can change ->real_blocked and all readers of 3648 * ->real_blocked don't care as long ->real_blocked is always a subset 3649 * of ->blocked. 3650 */ 3651 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3652 } 3653 3654 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3655 { 3656 if (!vcpu->sigset_active) 3657 return; 3658 3659 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3660 sigemptyset(¤t->real_blocked); 3661 } 3662 3663 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3664 { 3665 unsigned int old, val, grow, grow_start; 3666 3667 old = val = vcpu->halt_poll_ns; 3668 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3669 grow = READ_ONCE(halt_poll_ns_grow); 3670 if (!grow) 3671 goto out; 3672 3673 val *= grow; 3674 if (val < grow_start) 3675 val = grow_start; 3676 3677 vcpu->halt_poll_ns = val; 3678 out: 3679 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3680 } 3681 3682 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3683 { 3684 unsigned int old, val, shrink, grow_start; 3685 3686 old = val = vcpu->halt_poll_ns; 3687 shrink = READ_ONCE(halt_poll_ns_shrink); 3688 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3689 if (shrink == 0) 3690 val = 0; 3691 else 3692 val /= shrink; 3693 3694 if (val < grow_start) 3695 val = 0; 3696 3697 vcpu->halt_poll_ns = val; 3698 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3699 } 3700 3701 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3702 { 3703 int ret = -EINTR; 3704 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3705 3706 if (kvm_arch_vcpu_runnable(vcpu)) 3707 goto out; 3708 if (kvm_cpu_has_pending_timer(vcpu)) 3709 goto out; 3710 if (signal_pending(current)) 3711 goto out; 3712 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3713 goto out; 3714 3715 ret = 0; 3716 out: 3717 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3718 return ret; 3719 } 3720 3721 /* 3722 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3723 * pending. This is mostly used when halting a vCPU, but may also be used 3724 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3725 */ 3726 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3727 { 3728 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3729 bool waited = false; 3730 3731 vcpu->stat.generic.blocking = 1; 3732 3733 preempt_disable(); 3734 kvm_arch_vcpu_blocking(vcpu); 3735 prepare_to_rcuwait(wait); 3736 preempt_enable(); 3737 3738 for (;;) { 3739 set_current_state(TASK_INTERRUPTIBLE); 3740 3741 if (kvm_vcpu_check_block(vcpu) < 0) 3742 break; 3743 3744 waited = true; 3745 schedule(); 3746 } 3747 3748 preempt_disable(); 3749 finish_rcuwait(wait); 3750 kvm_arch_vcpu_unblocking(vcpu); 3751 preempt_enable(); 3752 3753 vcpu->stat.generic.blocking = 0; 3754 3755 return waited; 3756 } 3757 3758 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3759 ktime_t end, bool success) 3760 { 3761 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3762 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3763 3764 ++vcpu->stat.generic.halt_attempted_poll; 3765 3766 if (success) { 3767 ++vcpu->stat.generic.halt_successful_poll; 3768 3769 if (!vcpu_valid_wakeup(vcpu)) 3770 ++vcpu->stat.generic.halt_poll_invalid; 3771 3772 stats->halt_poll_success_ns += poll_ns; 3773 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3774 } else { 3775 stats->halt_poll_fail_ns += poll_ns; 3776 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3777 } 3778 } 3779 3780 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3781 { 3782 struct kvm *kvm = vcpu->kvm; 3783 3784 if (kvm->override_halt_poll_ns) { 3785 /* 3786 * Ensure kvm->max_halt_poll_ns is not read before 3787 * kvm->override_halt_poll_ns. 3788 * 3789 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3790 */ 3791 smp_rmb(); 3792 return READ_ONCE(kvm->max_halt_poll_ns); 3793 } 3794 3795 return READ_ONCE(halt_poll_ns); 3796 } 3797 3798 /* 3799 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3800 * polling is enabled, busy wait for a short time before blocking to avoid the 3801 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3802 * is halted. 3803 */ 3804 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3805 { 3806 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3807 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3808 ktime_t start, cur, poll_end; 3809 bool waited = false; 3810 bool do_halt_poll; 3811 u64 halt_ns; 3812 3813 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3814 vcpu->halt_poll_ns = max_halt_poll_ns; 3815 3816 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3817 3818 start = cur = poll_end = ktime_get(); 3819 if (do_halt_poll) { 3820 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3821 3822 do { 3823 if (kvm_vcpu_check_block(vcpu) < 0) 3824 goto out; 3825 cpu_relax(); 3826 poll_end = cur = ktime_get(); 3827 } while (kvm_vcpu_can_poll(cur, stop)); 3828 } 3829 3830 waited = kvm_vcpu_block(vcpu); 3831 3832 cur = ktime_get(); 3833 if (waited) { 3834 vcpu->stat.generic.halt_wait_ns += 3835 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3836 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3837 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3838 } 3839 out: 3840 /* The total time the vCPU was "halted", including polling time. */ 3841 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3842 3843 /* 3844 * Note, halt-polling is considered successful so long as the vCPU was 3845 * never actually scheduled out, i.e. even if the wake event arrived 3846 * after of the halt-polling loop itself, but before the full wait. 3847 */ 3848 if (do_halt_poll) 3849 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3850 3851 if (halt_poll_allowed) { 3852 /* Recompute the max halt poll time in case it changed. */ 3853 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3854 3855 if (!vcpu_valid_wakeup(vcpu)) { 3856 shrink_halt_poll_ns(vcpu); 3857 } else if (max_halt_poll_ns) { 3858 if (halt_ns <= vcpu->halt_poll_ns) 3859 ; 3860 /* we had a long block, shrink polling */ 3861 else if (vcpu->halt_poll_ns && 3862 halt_ns > max_halt_poll_ns) 3863 shrink_halt_poll_ns(vcpu); 3864 /* we had a short halt and our poll time is too small */ 3865 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3866 halt_ns < max_halt_poll_ns) 3867 grow_halt_poll_ns(vcpu); 3868 } else { 3869 vcpu->halt_poll_ns = 0; 3870 } 3871 } 3872 3873 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3874 } 3875 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3876 3877 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3878 { 3879 if (__kvm_vcpu_wake_up(vcpu)) { 3880 WRITE_ONCE(vcpu->ready, true); 3881 ++vcpu->stat.generic.halt_wakeup; 3882 return true; 3883 } 3884 3885 return false; 3886 } 3887 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3888 3889 #ifndef CONFIG_S390 3890 /* 3891 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3892 */ 3893 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3894 { 3895 int me, cpu; 3896 3897 if (kvm_vcpu_wake_up(vcpu)) 3898 return; 3899 3900 me = get_cpu(); 3901 /* 3902 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3903 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3904 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3905 * within the vCPU thread itself. 3906 */ 3907 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3908 if (vcpu->mode == IN_GUEST_MODE) 3909 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3910 goto out; 3911 } 3912 3913 /* 3914 * Note, the vCPU could get migrated to a different pCPU at any point 3915 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3916 * IPI to the previous pCPU. But, that's ok because the purpose of the 3917 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3918 * vCPU also requires it to leave IN_GUEST_MODE. 3919 */ 3920 if (kvm_arch_vcpu_should_kick(vcpu)) { 3921 cpu = READ_ONCE(vcpu->cpu); 3922 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3923 smp_send_reschedule(cpu); 3924 } 3925 out: 3926 put_cpu(); 3927 } 3928 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3929 #endif /* !CONFIG_S390 */ 3930 3931 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3932 { 3933 struct pid *pid; 3934 struct task_struct *task = NULL; 3935 int ret = 0; 3936 3937 rcu_read_lock(); 3938 pid = rcu_dereference(target->pid); 3939 if (pid) 3940 task = get_pid_task(pid, PIDTYPE_PID); 3941 rcu_read_unlock(); 3942 if (!task) 3943 return ret; 3944 ret = yield_to(task, 1); 3945 put_task_struct(task); 3946 3947 return ret; 3948 } 3949 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3950 3951 /* 3952 * Helper that checks whether a VCPU is eligible for directed yield. 3953 * Most eligible candidate to yield is decided by following heuristics: 3954 * 3955 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3956 * (preempted lock holder), indicated by @in_spin_loop. 3957 * Set at the beginning and cleared at the end of interception/PLE handler. 3958 * 3959 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3960 * chance last time (mostly it has become eligible now since we have probably 3961 * yielded to lockholder in last iteration. This is done by toggling 3962 * @dy_eligible each time a VCPU checked for eligibility.) 3963 * 3964 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3965 * to preempted lock-holder could result in wrong VCPU selection and CPU 3966 * burning. Giving priority for a potential lock-holder increases lock 3967 * progress. 3968 * 3969 * Since algorithm is based on heuristics, accessing another VCPU data without 3970 * locking does not harm. It may result in trying to yield to same VCPU, fail 3971 * and continue with next VCPU and so on. 3972 */ 3973 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3974 { 3975 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3976 bool eligible; 3977 3978 eligible = !vcpu->spin_loop.in_spin_loop || 3979 vcpu->spin_loop.dy_eligible; 3980 3981 if (vcpu->spin_loop.in_spin_loop) 3982 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3983 3984 return eligible; 3985 #else 3986 return true; 3987 #endif 3988 } 3989 3990 /* 3991 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3992 * a vcpu_load/vcpu_put pair. However, for most architectures 3993 * kvm_arch_vcpu_runnable does not require vcpu_load. 3994 */ 3995 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3996 { 3997 return kvm_arch_vcpu_runnable(vcpu); 3998 } 3999 4000 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 4001 { 4002 if (kvm_arch_dy_runnable(vcpu)) 4003 return true; 4004 4005 #ifdef CONFIG_KVM_ASYNC_PF 4006 if (!list_empty_careful(&vcpu->async_pf.done)) 4007 return true; 4008 #endif 4009 4010 return false; 4011 } 4012 4013 /* 4014 * By default, simply query the target vCPU's current mode when checking if a 4015 * vCPU was preempted in kernel mode. All architectures except x86 (or more 4016 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 4017 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 4018 * directly for cross-vCPU checks is functionally correct and accurate. 4019 */ 4020 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 4021 { 4022 return kvm_arch_vcpu_in_kernel(vcpu); 4023 } 4024 4025 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 4026 { 4027 return false; 4028 } 4029 4030 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 4031 { 4032 struct kvm *kvm = me->kvm; 4033 struct kvm_vcpu *vcpu; 4034 int last_boosted_vcpu; 4035 unsigned long i; 4036 int yielded = 0; 4037 int try = 3; 4038 int pass; 4039 4040 last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu); 4041 kvm_vcpu_set_in_spin_loop(me, true); 4042 /* 4043 * We boost the priority of a VCPU that is runnable but not 4044 * currently running, because it got preempted by something 4045 * else and called schedule in __vcpu_run. Hopefully that 4046 * VCPU is holding the lock that we need and will release it. 4047 * We approximate round-robin by starting at the last boosted VCPU. 4048 */ 4049 for (pass = 0; pass < 2 && !yielded && try; pass++) { 4050 kvm_for_each_vcpu(i, vcpu, kvm) { 4051 if (!pass && i <= last_boosted_vcpu) { 4052 i = last_boosted_vcpu; 4053 continue; 4054 } else if (pass && i > last_boosted_vcpu) 4055 break; 4056 if (!READ_ONCE(vcpu->ready)) 4057 continue; 4058 if (vcpu == me) 4059 continue; 4060 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4061 continue; 4062 4063 /* 4064 * Treat the target vCPU as being in-kernel if it has a 4065 * pending interrupt, as the vCPU trying to yield may 4066 * be spinning waiting on IPI delivery, i.e. the target 4067 * vCPU is in-kernel for the purposes of directed yield. 4068 */ 4069 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4070 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4071 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4072 continue; 4073 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4074 continue; 4075 4076 yielded = kvm_vcpu_yield_to(vcpu); 4077 if (yielded > 0) { 4078 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4079 break; 4080 } else if (yielded < 0) { 4081 try--; 4082 if (!try) 4083 break; 4084 } 4085 } 4086 } 4087 kvm_vcpu_set_in_spin_loop(me, false); 4088 4089 /* Ensure vcpu is not eligible during next spinloop */ 4090 kvm_vcpu_set_dy_eligible(me, false); 4091 } 4092 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 4093 4094 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4095 { 4096 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4097 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4098 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4099 kvm->dirty_ring_size / PAGE_SIZE); 4100 #else 4101 return false; 4102 #endif 4103 } 4104 4105 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4106 { 4107 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4108 struct page *page; 4109 4110 if (vmf->pgoff == 0) 4111 page = virt_to_page(vcpu->run); 4112 #ifdef CONFIG_X86 4113 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4114 page = virt_to_page(vcpu->arch.pio_data); 4115 #endif 4116 #ifdef CONFIG_KVM_MMIO 4117 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4118 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4119 #endif 4120 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4121 page = kvm_dirty_ring_get_page( 4122 &vcpu->dirty_ring, 4123 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4124 else 4125 return kvm_arch_vcpu_fault(vcpu, vmf); 4126 get_page(page); 4127 vmf->page = page; 4128 return 0; 4129 } 4130 4131 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4132 .fault = kvm_vcpu_fault, 4133 }; 4134 4135 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4136 { 4137 struct kvm_vcpu *vcpu = file->private_data; 4138 unsigned long pages = vma_pages(vma); 4139 4140 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4141 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4142 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4143 return -EINVAL; 4144 4145 vma->vm_ops = &kvm_vcpu_vm_ops; 4146 return 0; 4147 } 4148 4149 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4150 { 4151 struct kvm_vcpu *vcpu = filp->private_data; 4152 4153 kvm_put_kvm(vcpu->kvm); 4154 return 0; 4155 } 4156 4157 static struct file_operations kvm_vcpu_fops = { 4158 .release = kvm_vcpu_release, 4159 .unlocked_ioctl = kvm_vcpu_ioctl, 4160 .mmap = kvm_vcpu_mmap, 4161 .llseek = noop_llseek, 4162 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4163 }; 4164 4165 /* 4166 * Allocates an inode for the vcpu. 4167 */ 4168 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4169 { 4170 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4171 4172 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4173 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4174 } 4175 4176 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4177 static int vcpu_get_pid(void *data, u64 *val) 4178 { 4179 struct kvm_vcpu *vcpu = data; 4180 4181 rcu_read_lock(); 4182 *val = pid_nr(rcu_dereference(vcpu->pid)); 4183 rcu_read_unlock(); 4184 return 0; 4185 } 4186 4187 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4188 4189 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4190 { 4191 struct dentry *debugfs_dentry; 4192 char dir_name[ITOA_MAX_LEN * 2]; 4193 4194 if (!debugfs_initialized()) 4195 return; 4196 4197 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4198 debugfs_dentry = debugfs_create_dir(dir_name, 4199 vcpu->kvm->debugfs_dentry); 4200 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4201 &vcpu_get_pid_fops); 4202 4203 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4204 } 4205 #endif 4206 4207 /* 4208 * Creates some virtual cpus. Good luck creating more than one. 4209 */ 4210 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4211 { 4212 int r; 4213 struct kvm_vcpu *vcpu; 4214 struct page *page; 4215 4216 /* 4217 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4218 * too-large values instead of silently truncating. 4219 * 4220 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4221 * changing the storage type (at the very least, IDs should be tracked 4222 * as unsigned ints). 4223 */ 4224 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4225 if (id >= KVM_MAX_VCPU_IDS) 4226 return -EINVAL; 4227 4228 mutex_lock(&kvm->lock); 4229 if (kvm->created_vcpus >= kvm->max_vcpus) { 4230 mutex_unlock(&kvm->lock); 4231 return -EINVAL; 4232 } 4233 4234 r = kvm_arch_vcpu_precreate(kvm, id); 4235 if (r) { 4236 mutex_unlock(&kvm->lock); 4237 return r; 4238 } 4239 4240 kvm->created_vcpus++; 4241 mutex_unlock(&kvm->lock); 4242 4243 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4244 if (!vcpu) { 4245 r = -ENOMEM; 4246 goto vcpu_decrement; 4247 } 4248 4249 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4250 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4251 if (!page) { 4252 r = -ENOMEM; 4253 goto vcpu_free; 4254 } 4255 vcpu->run = page_address(page); 4256 4257 kvm_vcpu_init(vcpu, kvm, id); 4258 4259 r = kvm_arch_vcpu_create(vcpu); 4260 if (r) 4261 goto vcpu_free_run_page; 4262 4263 if (kvm->dirty_ring_size) { 4264 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 4265 id, kvm->dirty_ring_size); 4266 if (r) 4267 goto arch_vcpu_destroy; 4268 } 4269 4270 mutex_lock(&kvm->lock); 4271 4272 #ifdef CONFIG_LOCKDEP 4273 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 4274 mutex_lock(&vcpu->mutex); 4275 mutex_unlock(&vcpu->mutex); 4276 #endif 4277 4278 if (kvm_get_vcpu_by_id(kvm, id)) { 4279 r = -EEXIST; 4280 goto unlock_vcpu_destroy; 4281 } 4282 4283 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4284 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4285 if (r) 4286 goto unlock_vcpu_destroy; 4287 4288 /* Now it's all set up, let userspace reach it */ 4289 kvm_get_kvm(kvm); 4290 r = create_vcpu_fd(vcpu); 4291 if (r < 0) 4292 goto kvm_put_xa_release; 4293 4294 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4295 r = -EINVAL; 4296 goto kvm_put_xa_release; 4297 } 4298 4299 /* 4300 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4301 * pointer before kvm->online_vcpu's incremented value. 4302 */ 4303 smp_wmb(); 4304 atomic_inc(&kvm->online_vcpus); 4305 4306 mutex_unlock(&kvm->lock); 4307 kvm_arch_vcpu_postcreate(vcpu); 4308 kvm_create_vcpu_debugfs(vcpu); 4309 return r; 4310 4311 kvm_put_xa_release: 4312 kvm_put_kvm_no_destroy(kvm); 4313 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4314 unlock_vcpu_destroy: 4315 mutex_unlock(&kvm->lock); 4316 kvm_dirty_ring_free(&vcpu->dirty_ring); 4317 arch_vcpu_destroy: 4318 kvm_arch_vcpu_destroy(vcpu); 4319 vcpu_free_run_page: 4320 free_page((unsigned long)vcpu->run); 4321 vcpu_free: 4322 kmem_cache_free(kvm_vcpu_cache, vcpu); 4323 vcpu_decrement: 4324 mutex_lock(&kvm->lock); 4325 kvm->created_vcpus--; 4326 mutex_unlock(&kvm->lock); 4327 return r; 4328 } 4329 4330 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4331 { 4332 if (sigset) { 4333 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4334 vcpu->sigset_active = 1; 4335 vcpu->sigset = *sigset; 4336 } else 4337 vcpu->sigset_active = 0; 4338 return 0; 4339 } 4340 4341 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4342 size_t size, loff_t *offset) 4343 { 4344 struct kvm_vcpu *vcpu = file->private_data; 4345 4346 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4347 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4348 sizeof(vcpu->stat), user_buffer, size, offset); 4349 } 4350 4351 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4352 { 4353 struct kvm_vcpu *vcpu = file->private_data; 4354 4355 kvm_put_kvm(vcpu->kvm); 4356 return 0; 4357 } 4358 4359 static const struct file_operations kvm_vcpu_stats_fops = { 4360 .owner = THIS_MODULE, 4361 .read = kvm_vcpu_stats_read, 4362 .release = kvm_vcpu_stats_release, 4363 .llseek = noop_llseek, 4364 }; 4365 4366 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4367 { 4368 int fd; 4369 struct file *file; 4370 char name[15 + ITOA_MAX_LEN + 1]; 4371 4372 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4373 4374 fd = get_unused_fd_flags(O_CLOEXEC); 4375 if (fd < 0) 4376 return fd; 4377 4378 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4379 if (IS_ERR(file)) { 4380 put_unused_fd(fd); 4381 return PTR_ERR(file); 4382 } 4383 4384 kvm_get_kvm(vcpu->kvm); 4385 4386 file->f_mode |= FMODE_PREAD; 4387 fd_install(fd, file); 4388 4389 return fd; 4390 } 4391 4392 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4393 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4394 struct kvm_pre_fault_memory *range) 4395 { 4396 int idx; 4397 long r; 4398 u64 full_size; 4399 4400 if (range->flags) 4401 return -EINVAL; 4402 4403 if (!PAGE_ALIGNED(range->gpa) || 4404 !PAGE_ALIGNED(range->size) || 4405 range->gpa + range->size <= range->gpa) 4406 return -EINVAL; 4407 4408 vcpu_load(vcpu); 4409 idx = srcu_read_lock(&vcpu->kvm->srcu); 4410 4411 full_size = range->size; 4412 do { 4413 if (signal_pending(current)) { 4414 r = -EINTR; 4415 break; 4416 } 4417 4418 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4419 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4420 break; 4421 4422 if (r < 0) 4423 break; 4424 4425 range->size -= r; 4426 range->gpa += r; 4427 cond_resched(); 4428 } while (range->size); 4429 4430 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4431 vcpu_put(vcpu); 4432 4433 /* Return success if at least one page was mapped successfully. */ 4434 return full_size == range->size ? r : 0; 4435 } 4436 #endif 4437 4438 static long kvm_vcpu_ioctl(struct file *filp, 4439 unsigned int ioctl, unsigned long arg) 4440 { 4441 struct kvm_vcpu *vcpu = filp->private_data; 4442 void __user *argp = (void __user *)arg; 4443 int r; 4444 struct kvm_fpu *fpu = NULL; 4445 struct kvm_sregs *kvm_sregs = NULL; 4446 4447 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4448 return -EIO; 4449 4450 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4451 return -EINVAL; 4452 4453 /* 4454 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4455 * execution; mutex_lock() would break them. 4456 */ 4457 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4458 if (r != -ENOIOCTLCMD) 4459 return r; 4460 4461 if (mutex_lock_killable(&vcpu->mutex)) 4462 return -EINTR; 4463 switch (ioctl) { 4464 case KVM_RUN: { 4465 struct pid *oldpid; 4466 r = -EINVAL; 4467 if (arg) 4468 goto out; 4469 oldpid = rcu_access_pointer(vcpu->pid); 4470 if (unlikely(oldpid != task_pid(current))) { 4471 /* The thread running this VCPU changed. */ 4472 struct pid *newpid; 4473 4474 r = kvm_arch_vcpu_run_pid_change(vcpu); 4475 if (r) 4476 break; 4477 4478 newpid = get_task_pid(current, PIDTYPE_PID); 4479 rcu_assign_pointer(vcpu->pid, newpid); 4480 if (oldpid) 4481 synchronize_rcu(); 4482 put_pid(oldpid); 4483 } 4484 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4485 r = kvm_arch_vcpu_ioctl_run(vcpu); 4486 vcpu->wants_to_run = false; 4487 4488 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4489 break; 4490 } 4491 case KVM_GET_REGS: { 4492 struct kvm_regs *kvm_regs; 4493 4494 r = -ENOMEM; 4495 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4496 if (!kvm_regs) 4497 goto out; 4498 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4499 if (r) 4500 goto out_free1; 4501 r = -EFAULT; 4502 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4503 goto out_free1; 4504 r = 0; 4505 out_free1: 4506 kfree(kvm_regs); 4507 break; 4508 } 4509 case KVM_SET_REGS: { 4510 struct kvm_regs *kvm_regs; 4511 4512 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4513 if (IS_ERR(kvm_regs)) { 4514 r = PTR_ERR(kvm_regs); 4515 goto out; 4516 } 4517 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4518 kfree(kvm_regs); 4519 break; 4520 } 4521 case KVM_GET_SREGS: { 4522 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4523 r = -ENOMEM; 4524 if (!kvm_sregs) 4525 goto out; 4526 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4527 if (r) 4528 goto out; 4529 r = -EFAULT; 4530 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4531 goto out; 4532 r = 0; 4533 break; 4534 } 4535 case KVM_SET_SREGS: { 4536 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4537 if (IS_ERR(kvm_sregs)) { 4538 r = PTR_ERR(kvm_sregs); 4539 kvm_sregs = NULL; 4540 goto out; 4541 } 4542 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4543 break; 4544 } 4545 case KVM_GET_MP_STATE: { 4546 struct kvm_mp_state mp_state; 4547 4548 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4549 if (r) 4550 goto out; 4551 r = -EFAULT; 4552 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4553 goto out; 4554 r = 0; 4555 break; 4556 } 4557 case KVM_SET_MP_STATE: { 4558 struct kvm_mp_state mp_state; 4559 4560 r = -EFAULT; 4561 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4562 goto out; 4563 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4564 break; 4565 } 4566 case KVM_TRANSLATE: { 4567 struct kvm_translation tr; 4568 4569 r = -EFAULT; 4570 if (copy_from_user(&tr, argp, sizeof(tr))) 4571 goto out; 4572 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4573 if (r) 4574 goto out; 4575 r = -EFAULT; 4576 if (copy_to_user(argp, &tr, sizeof(tr))) 4577 goto out; 4578 r = 0; 4579 break; 4580 } 4581 case KVM_SET_GUEST_DEBUG: { 4582 struct kvm_guest_debug dbg; 4583 4584 r = -EFAULT; 4585 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4586 goto out; 4587 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4588 break; 4589 } 4590 case KVM_SET_SIGNAL_MASK: { 4591 struct kvm_signal_mask __user *sigmask_arg = argp; 4592 struct kvm_signal_mask kvm_sigmask; 4593 sigset_t sigset, *p; 4594 4595 p = NULL; 4596 if (argp) { 4597 r = -EFAULT; 4598 if (copy_from_user(&kvm_sigmask, argp, 4599 sizeof(kvm_sigmask))) 4600 goto out; 4601 r = -EINVAL; 4602 if (kvm_sigmask.len != sizeof(sigset)) 4603 goto out; 4604 r = -EFAULT; 4605 if (copy_from_user(&sigset, sigmask_arg->sigset, 4606 sizeof(sigset))) 4607 goto out; 4608 p = &sigset; 4609 } 4610 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4611 break; 4612 } 4613 case KVM_GET_FPU: { 4614 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4615 r = -ENOMEM; 4616 if (!fpu) 4617 goto out; 4618 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4619 if (r) 4620 goto out; 4621 r = -EFAULT; 4622 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4623 goto out; 4624 r = 0; 4625 break; 4626 } 4627 case KVM_SET_FPU: { 4628 fpu = memdup_user(argp, sizeof(*fpu)); 4629 if (IS_ERR(fpu)) { 4630 r = PTR_ERR(fpu); 4631 fpu = NULL; 4632 goto out; 4633 } 4634 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4635 break; 4636 } 4637 case KVM_GET_STATS_FD: { 4638 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4639 break; 4640 } 4641 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4642 case KVM_PRE_FAULT_MEMORY: { 4643 struct kvm_pre_fault_memory range; 4644 4645 r = -EFAULT; 4646 if (copy_from_user(&range, argp, sizeof(range))) 4647 break; 4648 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4649 /* Pass back leftover range. */ 4650 if (copy_to_user(argp, &range, sizeof(range))) 4651 r = -EFAULT; 4652 break; 4653 } 4654 #endif 4655 default: 4656 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4657 } 4658 out: 4659 mutex_unlock(&vcpu->mutex); 4660 kfree(fpu); 4661 kfree(kvm_sregs); 4662 return r; 4663 } 4664 4665 #ifdef CONFIG_KVM_COMPAT 4666 static long kvm_vcpu_compat_ioctl(struct file *filp, 4667 unsigned int ioctl, unsigned long arg) 4668 { 4669 struct kvm_vcpu *vcpu = filp->private_data; 4670 void __user *argp = compat_ptr(arg); 4671 int r; 4672 4673 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4674 return -EIO; 4675 4676 switch (ioctl) { 4677 case KVM_SET_SIGNAL_MASK: { 4678 struct kvm_signal_mask __user *sigmask_arg = argp; 4679 struct kvm_signal_mask kvm_sigmask; 4680 sigset_t sigset; 4681 4682 if (argp) { 4683 r = -EFAULT; 4684 if (copy_from_user(&kvm_sigmask, argp, 4685 sizeof(kvm_sigmask))) 4686 goto out; 4687 r = -EINVAL; 4688 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4689 goto out; 4690 r = -EFAULT; 4691 if (get_compat_sigset(&sigset, 4692 (compat_sigset_t __user *)sigmask_arg->sigset)) 4693 goto out; 4694 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4695 } else 4696 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4697 break; 4698 } 4699 default: 4700 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4701 } 4702 4703 out: 4704 return r; 4705 } 4706 #endif 4707 4708 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4709 { 4710 struct kvm_device *dev = filp->private_data; 4711 4712 if (dev->ops->mmap) 4713 return dev->ops->mmap(dev, vma); 4714 4715 return -ENODEV; 4716 } 4717 4718 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4719 int (*accessor)(struct kvm_device *dev, 4720 struct kvm_device_attr *attr), 4721 unsigned long arg) 4722 { 4723 struct kvm_device_attr attr; 4724 4725 if (!accessor) 4726 return -EPERM; 4727 4728 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4729 return -EFAULT; 4730 4731 return accessor(dev, &attr); 4732 } 4733 4734 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4735 unsigned long arg) 4736 { 4737 struct kvm_device *dev = filp->private_data; 4738 4739 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4740 return -EIO; 4741 4742 switch (ioctl) { 4743 case KVM_SET_DEVICE_ATTR: 4744 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4745 case KVM_GET_DEVICE_ATTR: 4746 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4747 case KVM_HAS_DEVICE_ATTR: 4748 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4749 default: 4750 if (dev->ops->ioctl) 4751 return dev->ops->ioctl(dev, ioctl, arg); 4752 4753 return -ENOTTY; 4754 } 4755 } 4756 4757 static int kvm_device_release(struct inode *inode, struct file *filp) 4758 { 4759 struct kvm_device *dev = filp->private_data; 4760 struct kvm *kvm = dev->kvm; 4761 4762 if (dev->ops->release) { 4763 mutex_lock(&kvm->lock); 4764 list_del_rcu(&dev->vm_node); 4765 synchronize_rcu(); 4766 dev->ops->release(dev); 4767 mutex_unlock(&kvm->lock); 4768 } 4769 4770 kvm_put_kvm(kvm); 4771 return 0; 4772 } 4773 4774 static struct file_operations kvm_device_fops = { 4775 .unlocked_ioctl = kvm_device_ioctl, 4776 .release = kvm_device_release, 4777 KVM_COMPAT(kvm_device_ioctl), 4778 .mmap = kvm_device_mmap, 4779 }; 4780 4781 struct kvm_device *kvm_device_from_filp(struct file *filp) 4782 { 4783 if (filp->f_op != &kvm_device_fops) 4784 return NULL; 4785 4786 return filp->private_data; 4787 } 4788 4789 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4790 #ifdef CONFIG_KVM_MPIC 4791 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4792 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4793 #endif 4794 }; 4795 4796 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4797 { 4798 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4799 return -ENOSPC; 4800 4801 if (kvm_device_ops_table[type] != NULL) 4802 return -EEXIST; 4803 4804 kvm_device_ops_table[type] = ops; 4805 return 0; 4806 } 4807 4808 void kvm_unregister_device_ops(u32 type) 4809 { 4810 if (kvm_device_ops_table[type] != NULL) 4811 kvm_device_ops_table[type] = NULL; 4812 } 4813 4814 static int kvm_ioctl_create_device(struct kvm *kvm, 4815 struct kvm_create_device *cd) 4816 { 4817 const struct kvm_device_ops *ops; 4818 struct kvm_device *dev; 4819 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4820 int type; 4821 int ret; 4822 4823 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4824 return -ENODEV; 4825 4826 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4827 ops = kvm_device_ops_table[type]; 4828 if (ops == NULL) 4829 return -ENODEV; 4830 4831 if (test) 4832 return 0; 4833 4834 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4835 if (!dev) 4836 return -ENOMEM; 4837 4838 dev->ops = ops; 4839 dev->kvm = kvm; 4840 4841 mutex_lock(&kvm->lock); 4842 ret = ops->create(dev, type); 4843 if (ret < 0) { 4844 mutex_unlock(&kvm->lock); 4845 kfree(dev); 4846 return ret; 4847 } 4848 list_add_rcu(&dev->vm_node, &kvm->devices); 4849 mutex_unlock(&kvm->lock); 4850 4851 if (ops->init) 4852 ops->init(dev); 4853 4854 kvm_get_kvm(kvm); 4855 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4856 if (ret < 0) { 4857 kvm_put_kvm_no_destroy(kvm); 4858 mutex_lock(&kvm->lock); 4859 list_del_rcu(&dev->vm_node); 4860 synchronize_rcu(); 4861 if (ops->release) 4862 ops->release(dev); 4863 mutex_unlock(&kvm->lock); 4864 if (ops->destroy) 4865 ops->destroy(dev); 4866 return ret; 4867 } 4868 4869 cd->fd = ret; 4870 return 0; 4871 } 4872 4873 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4874 { 4875 switch (arg) { 4876 case KVM_CAP_USER_MEMORY: 4877 case KVM_CAP_USER_MEMORY2: 4878 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4879 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4880 case KVM_CAP_INTERNAL_ERROR_DATA: 4881 #ifdef CONFIG_HAVE_KVM_MSI 4882 case KVM_CAP_SIGNAL_MSI: 4883 #endif 4884 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4885 case KVM_CAP_IRQFD: 4886 #endif 4887 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4888 case KVM_CAP_CHECK_EXTENSION_VM: 4889 case KVM_CAP_ENABLE_CAP_VM: 4890 case KVM_CAP_HALT_POLL: 4891 return 1; 4892 #ifdef CONFIG_KVM_MMIO 4893 case KVM_CAP_COALESCED_MMIO: 4894 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4895 case KVM_CAP_COALESCED_PIO: 4896 return 1; 4897 #endif 4898 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4899 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4900 return KVM_DIRTY_LOG_MANUAL_CAPS; 4901 #endif 4902 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4903 case KVM_CAP_IRQ_ROUTING: 4904 return KVM_MAX_IRQ_ROUTES; 4905 #endif 4906 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4907 case KVM_CAP_MULTI_ADDRESS_SPACE: 4908 if (kvm) 4909 return kvm_arch_nr_memslot_as_ids(kvm); 4910 return KVM_MAX_NR_ADDRESS_SPACES; 4911 #endif 4912 case KVM_CAP_NR_MEMSLOTS: 4913 return KVM_USER_MEM_SLOTS; 4914 case KVM_CAP_DIRTY_LOG_RING: 4915 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4916 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4917 #else 4918 return 0; 4919 #endif 4920 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4921 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4922 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4923 #else 4924 return 0; 4925 #endif 4926 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4927 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4928 #endif 4929 case KVM_CAP_BINARY_STATS_FD: 4930 case KVM_CAP_SYSTEM_EVENT_DATA: 4931 case KVM_CAP_DEVICE_CTRL: 4932 return 1; 4933 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4934 case KVM_CAP_MEMORY_ATTRIBUTES: 4935 return kvm_supported_mem_attributes(kvm); 4936 #endif 4937 #ifdef CONFIG_KVM_PRIVATE_MEM 4938 case KVM_CAP_GUEST_MEMFD: 4939 return !kvm || kvm_arch_has_private_mem(kvm); 4940 #endif 4941 default: 4942 break; 4943 } 4944 return kvm_vm_ioctl_check_extension(kvm, arg); 4945 } 4946 4947 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4948 { 4949 int r; 4950 4951 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4952 return -EINVAL; 4953 4954 /* the size should be power of 2 */ 4955 if (!size || (size & (size - 1))) 4956 return -EINVAL; 4957 4958 /* Should be bigger to keep the reserved entries, or a page */ 4959 if (size < kvm_dirty_ring_get_rsvd_entries() * 4960 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4961 return -EINVAL; 4962 4963 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4964 sizeof(struct kvm_dirty_gfn)) 4965 return -E2BIG; 4966 4967 /* We only allow it to set once */ 4968 if (kvm->dirty_ring_size) 4969 return -EINVAL; 4970 4971 mutex_lock(&kvm->lock); 4972 4973 if (kvm->created_vcpus) { 4974 /* We don't allow to change this value after vcpu created */ 4975 r = -EINVAL; 4976 } else { 4977 kvm->dirty_ring_size = size; 4978 r = 0; 4979 } 4980 4981 mutex_unlock(&kvm->lock); 4982 return r; 4983 } 4984 4985 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4986 { 4987 unsigned long i; 4988 struct kvm_vcpu *vcpu; 4989 int cleared = 0; 4990 4991 if (!kvm->dirty_ring_size) 4992 return -EINVAL; 4993 4994 mutex_lock(&kvm->slots_lock); 4995 4996 kvm_for_each_vcpu(i, vcpu, kvm) 4997 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4998 4999 mutex_unlock(&kvm->slots_lock); 5000 5001 if (cleared) 5002 kvm_flush_remote_tlbs(kvm); 5003 5004 return cleared; 5005 } 5006 5007 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5008 struct kvm_enable_cap *cap) 5009 { 5010 return -EINVAL; 5011 } 5012 5013 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5014 { 5015 int i; 5016 5017 lockdep_assert_held(&kvm->slots_lock); 5018 5019 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5020 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5021 return false; 5022 } 5023 5024 return true; 5025 } 5026 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 5027 5028 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5029 struct kvm_enable_cap *cap) 5030 { 5031 switch (cap->cap) { 5032 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5033 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5034 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5035 5036 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5037 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5038 5039 if (cap->flags || (cap->args[0] & ~allowed_options)) 5040 return -EINVAL; 5041 kvm->manual_dirty_log_protect = cap->args[0]; 5042 return 0; 5043 } 5044 #endif 5045 case KVM_CAP_HALT_POLL: { 5046 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5047 return -EINVAL; 5048 5049 kvm->max_halt_poll_ns = cap->args[0]; 5050 5051 /* 5052 * Ensure kvm->override_halt_poll_ns does not become visible 5053 * before kvm->max_halt_poll_ns. 5054 * 5055 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5056 */ 5057 smp_wmb(); 5058 kvm->override_halt_poll_ns = true; 5059 5060 return 0; 5061 } 5062 case KVM_CAP_DIRTY_LOG_RING: 5063 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5064 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5065 return -EINVAL; 5066 5067 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5068 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5069 int r = -EINVAL; 5070 5071 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5072 !kvm->dirty_ring_size || cap->flags) 5073 return r; 5074 5075 mutex_lock(&kvm->slots_lock); 5076 5077 /* 5078 * For simplicity, allow enabling ring+bitmap if and only if 5079 * there are no memslots, e.g. to ensure all memslots allocate 5080 * a bitmap after the capability is enabled. 5081 */ 5082 if (kvm_are_all_memslots_empty(kvm)) { 5083 kvm->dirty_ring_with_bitmap = true; 5084 r = 0; 5085 } 5086 5087 mutex_unlock(&kvm->slots_lock); 5088 5089 return r; 5090 } 5091 default: 5092 return kvm_vm_ioctl_enable_cap(kvm, cap); 5093 } 5094 } 5095 5096 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5097 size_t size, loff_t *offset) 5098 { 5099 struct kvm *kvm = file->private_data; 5100 5101 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5102 &kvm_vm_stats_desc[0], &kvm->stat, 5103 sizeof(kvm->stat), user_buffer, size, offset); 5104 } 5105 5106 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5107 { 5108 struct kvm *kvm = file->private_data; 5109 5110 kvm_put_kvm(kvm); 5111 return 0; 5112 } 5113 5114 static const struct file_operations kvm_vm_stats_fops = { 5115 .owner = THIS_MODULE, 5116 .read = kvm_vm_stats_read, 5117 .release = kvm_vm_stats_release, 5118 .llseek = noop_llseek, 5119 }; 5120 5121 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5122 { 5123 int fd; 5124 struct file *file; 5125 5126 fd = get_unused_fd_flags(O_CLOEXEC); 5127 if (fd < 0) 5128 return fd; 5129 5130 file = anon_inode_getfile("kvm-vm-stats", 5131 &kvm_vm_stats_fops, kvm, O_RDONLY); 5132 if (IS_ERR(file)) { 5133 put_unused_fd(fd); 5134 return PTR_ERR(file); 5135 } 5136 5137 kvm_get_kvm(kvm); 5138 5139 file->f_mode |= FMODE_PREAD; 5140 fd_install(fd, file); 5141 5142 return fd; 5143 } 5144 5145 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5146 do { \ 5147 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5148 offsetof(struct kvm_userspace_memory_region2, field)); \ 5149 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5150 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5151 } while (0) 5152 5153 static long kvm_vm_ioctl(struct file *filp, 5154 unsigned int ioctl, unsigned long arg) 5155 { 5156 struct kvm *kvm = filp->private_data; 5157 void __user *argp = (void __user *)arg; 5158 int r; 5159 5160 if (kvm->mm != current->mm || kvm->vm_dead) 5161 return -EIO; 5162 switch (ioctl) { 5163 case KVM_CREATE_VCPU: 5164 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5165 break; 5166 case KVM_ENABLE_CAP: { 5167 struct kvm_enable_cap cap; 5168 5169 r = -EFAULT; 5170 if (copy_from_user(&cap, argp, sizeof(cap))) 5171 goto out; 5172 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5173 break; 5174 } 5175 case KVM_SET_USER_MEMORY_REGION2: 5176 case KVM_SET_USER_MEMORY_REGION: { 5177 struct kvm_userspace_memory_region2 mem; 5178 unsigned long size; 5179 5180 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5181 /* 5182 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5183 * accessed, but avoid leaking kernel memory in case of a bug. 5184 */ 5185 memset(&mem, 0, sizeof(mem)); 5186 size = sizeof(struct kvm_userspace_memory_region); 5187 } else { 5188 size = sizeof(struct kvm_userspace_memory_region2); 5189 } 5190 5191 /* Ensure the common parts of the two structs are identical. */ 5192 SANITY_CHECK_MEM_REGION_FIELD(slot); 5193 SANITY_CHECK_MEM_REGION_FIELD(flags); 5194 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5195 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5196 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5197 5198 r = -EFAULT; 5199 if (copy_from_user(&mem, argp, size)) 5200 goto out; 5201 5202 r = -EINVAL; 5203 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5204 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5205 goto out; 5206 5207 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5208 break; 5209 } 5210 case KVM_GET_DIRTY_LOG: { 5211 struct kvm_dirty_log log; 5212 5213 r = -EFAULT; 5214 if (copy_from_user(&log, argp, sizeof(log))) 5215 goto out; 5216 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5217 break; 5218 } 5219 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5220 case KVM_CLEAR_DIRTY_LOG: { 5221 struct kvm_clear_dirty_log log; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&log, argp, sizeof(log))) 5225 goto out; 5226 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5227 break; 5228 } 5229 #endif 5230 #ifdef CONFIG_KVM_MMIO 5231 case KVM_REGISTER_COALESCED_MMIO: { 5232 struct kvm_coalesced_mmio_zone zone; 5233 5234 r = -EFAULT; 5235 if (copy_from_user(&zone, argp, sizeof(zone))) 5236 goto out; 5237 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5238 break; 5239 } 5240 case KVM_UNREGISTER_COALESCED_MMIO: { 5241 struct kvm_coalesced_mmio_zone zone; 5242 5243 r = -EFAULT; 5244 if (copy_from_user(&zone, argp, sizeof(zone))) 5245 goto out; 5246 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5247 break; 5248 } 5249 #endif 5250 case KVM_IRQFD: { 5251 struct kvm_irqfd data; 5252 5253 r = -EFAULT; 5254 if (copy_from_user(&data, argp, sizeof(data))) 5255 goto out; 5256 r = kvm_irqfd(kvm, &data); 5257 break; 5258 } 5259 case KVM_IOEVENTFD: { 5260 struct kvm_ioeventfd data; 5261 5262 r = -EFAULT; 5263 if (copy_from_user(&data, argp, sizeof(data))) 5264 goto out; 5265 r = kvm_ioeventfd(kvm, &data); 5266 break; 5267 } 5268 #ifdef CONFIG_HAVE_KVM_MSI 5269 case KVM_SIGNAL_MSI: { 5270 struct kvm_msi msi; 5271 5272 r = -EFAULT; 5273 if (copy_from_user(&msi, argp, sizeof(msi))) 5274 goto out; 5275 r = kvm_send_userspace_msi(kvm, &msi); 5276 break; 5277 } 5278 #endif 5279 #ifdef __KVM_HAVE_IRQ_LINE 5280 case KVM_IRQ_LINE_STATUS: 5281 case KVM_IRQ_LINE: { 5282 struct kvm_irq_level irq_event; 5283 5284 r = -EFAULT; 5285 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5286 goto out; 5287 5288 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5289 ioctl == KVM_IRQ_LINE_STATUS); 5290 if (r) 5291 goto out; 5292 5293 r = -EFAULT; 5294 if (ioctl == KVM_IRQ_LINE_STATUS) { 5295 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5296 goto out; 5297 } 5298 5299 r = 0; 5300 break; 5301 } 5302 #endif 5303 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5304 case KVM_SET_GSI_ROUTING: { 5305 struct kvm_irq_routing routing; 5306 struct kvm_irq_routing __user *urouting; 5307 struct kvm_irq_routing_entry *entries = NULL; 5308 5309 r = -EFAULT; 5310 if (copy_from_user(&routing, argp, sizeof(routing))) 5311 goto out; 5312 r = -EINVAL; 5313 if (!kvm_arch_can_set_irq_routing(kvm)) 5314 goto out; 5315 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5316 goto out; 5317 if (routing.flags) 5318 goto out; 5319 if (routing.nr) { 5320 urouting = argp; 5321 entries = vmemdup_array_user(urouting->entries, 5322 routing.nr, sizeof(*entries)); 5323 if (IS_ERR(entries)) { 5324 r = PTR_ERR(entries); 5325 goto out; 5326 } 5327 } 5328 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5329 routing.flags); 5330 kvfree(entries); 5331 break; 5332 } 5333 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5334 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5335 case KVM_SET_MEMORY_ATTRIBUTES: { 5336 struct kvm_memory_attributes attrs; 5337 5338 r = -EFAULT; 5339 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5340 goto out; 5341 5342 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5343 break; 5344 } 5345 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5346 case KVM_CREATE_DEVICE: { 5347 struct kvm_create_device cd; 5348 5349 r = -EFAULT; 5350 if (copy_from_user(&cd, argp, sizeof(cd))) 5351 goto out; 5352 5353 r = kvm_ioctl_create_device(kvm, &cd); 5354 if (r) 5355 goto out; 5356 5357 r = -EFAULT; 5358 if (copy_to_user(argp, &cd, sizeof(cd))) 5359 goto out; 5360 5361 r = 0; 5362 break; 5363 } 5364 case KVM_CHECK_EXTENSION: 5365 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5366 break; 5367 case KVM_RESET_DIRTY_RINGS: 5368 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5369 break; 5370 case KVM_GET_STATS_FD: 5371 r = kvm_vm_ioctl_get_stats_fd(kvm); 5372 break; 5373 #ifdef CONFIG_KVM_PRIVATE_MEM 5374 case KVM_CREATE_GUEST_MEMFD: { 5375 struct kvm_create_guest_memfd guest_memfd; 5376 5377 r = -EFAULT; 5378 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5379 goto out; 5380 5381 r = kvm_gmem_create(kvm, &guest_memfd); 5382 break; 5383 } 5384 #endif 5385 default: 5386 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5387 } 5388 out: 5389 return r; 5390 } 5391 5392 #ifdef CONFIG_KVM_COMPAT 5393 struct compat_kvm_dirty_log { 5394 __u32 slot; 5395 __u32 padding1; 5396 union { 5397 compat_uptr_t dirty_bitmap; /* one bit per page */ 5398 __u64 padding2; 5399 }; 5400 }; 5401 5402 struct compat_kvm_clear_dirty_log { 5403 __u32 slot; 5404 __u32 num_pages; 5405 __u64 first_page; 5406 union { 5407 compat_uptr_t dirty_bitmap; /* one bit per page */ 5408 __u64 padding2; 5409 }; 5410 }; 5411 5412 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5413 unsigned long arg) 5414 { 5415 return -ENOTTY; 5416 } 5417 5418 static long kvm_vm_compat_ioctl(struct file *filp, 5419 unsigned int ioctl, unsigned long arg) 5420 { 5421 struct kvm *kvm = filp->private_data; 5422 int r; 5423 5424 if (kvm->mm != current->mm || kvm->vm_dead) 5425 return -EIO; 5426 5427 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5428 if (r != -ENOTTY) 5429 return r; 5430 5431 switch (ioctl) { 5432 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5433 case KVM_CLEAR_DIRTY_LOG: { 5434 struct compat_kvm_clear_dirty_log compat_log; 5435 struct kvm_clear_dirty_log log; 5436 5437 if (copy_from_user(&compat_log, (void __user *)arg, 5438 sizeof(compat_log))) 5439 return -EFAULT; 5440 log.slot = compat_log.slot; 5441 log.num_pages = compat_log.num_pages; 5442 log.first_page = compat_log.first_page; 5443 log.padding2 = compat_log.padding2; 5444 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5445 5446 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5447 break; 5448 } 5449 #endif 5450 case KVM_GET_DIRTY_LOG: { 5451 struct compat_kvm_dirty_log compat_log; 5452 struct kvm_dirty_log log; 5453 5454 if (copy_from_user(&compat_log, (void __user *)arg, 5455 sizeof(compat_log))) 5456 return -EFAULT; 5457 log.slot = compat_log.slot; 5458 log.padding1 = compat_log.padding1; 5459 log.padding2 = compat_log.padding2; 5460 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5461 5462 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5463 break; 5464 } 5465 default: 5466 r = kvm_vm_ioctl(filp, ioctl, arg); 5467 } 5468 return r; 5469 } 5470 #endif 5471 5472 static struct file_operations kvm_vm_fops = { 5473 .release = kvm_vm_release, 5474 .unlocked_ioctl = kvm_vm_ioctl, 5475 .llseek = noop_llseek, 5476 KVM_COMPAT(kvm_vm_compat_ioctl), 5477 }; 5478 5479 bool file_is_kvm(struct file *file) 5480 { 5481 return file && file->f_op == &kvm_vm_fops; 5482 } 5483 EXPORT_SYMBOL_GPL(file_is_kvm); 5484 5485 static int kvm_dev_ioctl_create_vm(unsigned long type) 5486 { 5487 char fdname[ITOA_MAX_LEN + 1]; 5488 int r, fd; 5489 struct kvm *kvm; 5490 struct file *file; 5491 5492 fd = get_unused_fd_flags(O_CLOEXEC); 5493 if (fd < 0) 5494 return fd; 5495 5496 snprintf(fdname, sizeof(fdname), "%d", fd); 5497 5498 kvm = kvm_create_vm(type, fdname); 5499 if (IS_ERR(kvm)) { 5500 r = PTR_ERR(kvm); 5501 goto put_fd; 5502 } 5503 5504 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5505 if (IS_ERR(file)) { 5506 r = PTR_ERR(file); 5507 goto put_kvm; 5508 } 5509 5510 /* 5511 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5512 * already set, with ->release() being kvm_vm_release(). In error 5513 * cases it will be called by the final fput(file) and will take 5514 * care of doing kvm_put_kvm(kvm). 5515 */ 5516 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5517 5518 fd_install(fd, file); 5519 return fd; 5520 5521 put_kvm: 5522 kvm_put_kvm(kvm); 5523 put_fd: 5524 put_unused_fd(fd); 5525 return r; 5526 } 5527 5528 static long kvm_dev_ioctl(struct file *filp, 5529 unsigned int ioctl, unsigned long arg) 5530 { 5531 int r = -EINVAL; 5532 5533 switch (ioctl) { 5534 case KVM_GET_API_VERSION: 5535 if (arg) 5536 goto out; 5537 r = KVM_API_VERSION; 5538 break; 5539 case KVM_CREATE_VM: 5540 r = kvm_dev_ioctl_create_vm(arg); 5541 break; 5542 case KVM_CHECK_EXTENSION: 5543 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5544 break; 5545 case KVM_GET_VCPU_MMAP_SIZE: 5546 if (arg) 5547 goto out; 5548 r = PAGE_SIZE; /* struct kvm_run */ 5549 #ifdef CONFIG_X86 5550 r += PAGE_SIZE; /* pio data page */ 5551 #endif 5552 #ifdef CONFIG_KVM_MMIO 5553 r += PAGE_SIZE; /* coalesced mmio ring page */ 5554 #endif 5555 break; 5556 default: 5557 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5558 } 5559 out: 5560 return r; 5561 } 5562 5563 static struct file_operations kvm_chardev_ops = { 5564 .unlocked_ioctl = kvm_dev_ioctl, 5565 .llseek = noop_llseek, 5566 KVM_COMPAT(kvm_dev_ioctl), 5567 }; 5568 5569 static struct miscdevice kvm_dev = { 5570 KVM_MINOR, 5571 "kvm", 5572 &kvm_chardev_ops, 5573 }; 5574 5575 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5576 __visible bool kvm_rebooting; 5577 EXPORT_SYMBOL_GPL(kvm_rebooting); 5578 5579 static DEFINE_PER_CPU(bool, hardware_enabled); 5580 static int kvm_usage_count; 5581 5582 static int __hardware_enable_nolock(void) 5583 { 5584 if (__this_cpu_read(hardware_enabled)) 5585 return 0; 5586 5587 if (kvm_arch_hardware_enable()) { 5588 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5589 raw_smp_processor_id()); 5590 return -EIO; 5591 } 5592 5593 __this_cpu_write(hardware_enabled, true); 5594 return 0; 5595 } 5596 5597 static void hardware_enable_nolock(void *failed) 5598 { 5599 if (__hardware_enable_nolock()) 5600 atomic_inc(failed); 5601 } 5602 5603 static int kvm_online_cpu(unsigned int cpu) 5604 { 5605 int ret = 0; 5606 5607 /* 5608 * Abort the CPU online process if hardware virtualization cannot 5609 * be enabled. Otherwise running VMs would encounter unrecoverable 5610 * errors when scheduled to this CPU. 5611 */ 5612 mutex_lock(&kvm_lock); 5613 if (kvm_usage_count) 5614 ret = __hardware_enable_nolock(); 5615 mutex_unlock(&kvm_lock); 5616 return ret; 5617 } 5618 5619 static void hardware_disable_nolock(void *junk) 5620 { 5621 /* 5622 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5623 * hardware, not just CPUs that successfully enabled hardware! 5624 */ 5625 if (!__this_cpu_read(hardware_enabled)) 5626 return; 5627 5628 kvm_arch_hardware_disable(); 5629 5630 __this_cpu_write(hardware_enabled, false); 5631 } 5632 5633 static int kvm_offline_cpu(unsigned int cpu) 5634 { 5635 mutex_lock(&kvm_lock); 5636 if (kvm_usage_count) 5637 hardware_disable_nolock(NULL); 5638 mutex_unlock(&kvm_lock); 5639 return 0; 5640 } 5641 5642 static void hardware_disable_all_nolock(void) 5643 { 5644 BUG_ON(!kvm_usage_count); 5645 5646 kvm_usage_count--; 5647 if (!kvm_usage_count) 5648 on_each_cpu(hardware_disable_nolock, NULL, 1); 5649 } 5650 5651 static void hardware_disable_all(void) 5652 { 5653 cpus_read_lock(); 5654 mutex_lock(&kvm_lock); 5655 hardware_disable_all_nolock(); 5656 mutex_unlock(&kvm_lock); 5657 cpus_read_unlock(); 5658 } 5659 5660 static int hardware_enable_all(void) 5661 { 5662 atomic_t failed = ATOMIC_INIT(0); 5663 int r; 5664 5665 /* 5666 * Do not enable hardware virtualization if the system is going down. 5667 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5668 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5669 * after kvm_reboot() is called. Note, this relies on system_state 5670 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5671 * hook instead of registering a dedicated reboot notifier (the latter 5672 * runs before system_state is updated). 5673 */ 5674 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5675 system_state == SYSTEM_RESTART) 5676 return -EBUSY; 5677 5678 /* 5679 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5680 * is called, and so on_each_cpu() between them includes the CPU that 5681 * is being onlined. As a result, hardware_enable_nolock() may get 5682 * invoked before kvm_online_cpu(), which also enables hardware if the 5683 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5684 * enable hardware multiple times. 5685 */ 5686 cpus_read_lock(); 5687 mutex_lock(&kvm_lock); 5688 5689 r = 0; 5690 5691 kvm_usage_count++; 5692 if (kvm_usage_count == 1) { 5693 on_each_cpu(hardware_enable_nolock, &failed, 1); 5694 5695 if (atomic_read(&failed)) { 5696 hardware_disable_all_nolock(); 5697 r = -EBUSY; 5698 } 5699 } 5700 5701 mutex_unlock(&kvm_lock); 5702 cpus_read_unlock(); 5703 5704 return r; 5705 } 5706 5707 static void kvm_shutdown(void) 5708 { 5709 /* 5710 * Disable hardware virtualization and set kvm_rebooting to indicate 5711 * that KVM has asynchronously disabled hardware virtualization, i.e. 5712 * that relevant errors and exceptions aren't entirely unexpected. 5713 * Some flavors of hardware virtualization need to be disabled before 5714 * transferring control to firmware (to perform shutdown/reboot), e.g. 5715 * on x86, virtualization can block INIT interrupts, which are used by 5716 * firmware to pull APs back under firmware control. Note, this path 5717 * is used for both shutdown and reboot scenarios, i.e. neither name is 5718 * 100% comprehensive. 5719 */ 5720 pr_info("kvm: exiting hardware virtualization\n"); 5721 kvm_rebooting = true; 5722 on_each_cpu(hardware_disable_nolock, NULL, 1); 5723 } 5724 5725 static int kvm_suspend(void) 5726 { 5727 /* 5728 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5729 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5730 * is stable. Assert that kvm_lock is not held to ensure the system 5731 * isn't suspended while KVM is enabling hardware. Hardware enabling 5732 * can be preempted, but the task cannot be frozen until it has dropped 5733 * all locks (userspace tasks are frozen via a fake signal). 5734 */ 5735 lockdep_assert_not_held(&kvm_lock); 5736 lockdep_assert_irqs_disabled(); 5737 5738 if (kvm_usage_count) 5739 hardware_disable_nolock(NULL); 5740 return 0; 5741 } 5742 5743 static void kvm_resume(void) 5744 { 5745 lockdep_assert_not_held(&kvm_lock); 5746 lockdep_assert_irqs_disabled(); 5747 5748 if (kvm_usage_count) 5749 WARN_ON_ONCE(__hardware_enable_nolock()); 5750 } 5751 5752 static struct syscore_ops kvm_syscore_ops = { 5753 .suspend = kvm_suspend, 5754 .resume = kvm_resume, 5755 .shutdown = kvm_shutdown, 5756 }; 5757 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5758 static int hardware_enable_all(void) 5759 { 5760 return 0; 5761 } 5762 5763 static void hardware_disable_all(void) 5764 { 5765 5766 } 5767 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5768 5769 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5770 { 5771 if (dev->ops->destructor) 5772 dev->ops->destructor(dev); 5773 } 5774 5775 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5776 { 5777 int i; 5778 5779 for (i = 0; i < bus->dev_count; i++) { 5780 struct kvm_io_device *pos = bus->range[i].dev; 5781 5782 kvm_iodevice_destructor(pos); 5783 } 5784 kfree(bus); 5785 } 5786 5787 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5788 const struct kvm_io_range *r2) 5789 { 5790 gpa_t addr1 = r1->addr; 5791 gpa_t addr2 = r2->addr; 5792 5793 if (addr1 < addr2) 5794 return -1; 5795 5796 /* If r2->len == 0, match the exact address. If r2->len != 0, 5797 * accept any overlapping write. Any order is acceptable for 5798 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5799 * we process all of them. 5800 */ 5801 if (r2->len) { 5802 addr1 += r1->len; 5803 addr2 += r2->len; 5804 } 5805 5806 if (addr1 > addr2) 5807 return 1; 5808 5809 return 0; 5810 } 5811 5812 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5813 { 5814 return kvm_io_bus_cmp(p1, p2); 5815 } 5816 5817 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5818 gpa_t addr, int len) 5819 { 5820 struct kvm_io_range *range, key; 5821 int off; 5822 5823 key = (struct kvm_io_range) { 5824 .addr = addr, 5825 .len = len, 5826 }; 5827 5828 range = bsearch(&key, bus->range, bus->dev_count, 5829 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5830 if (range == NULL) 5831 return -ENOENT; 5832 5833 off = range - bus->range; 5834 5835 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5836 off--; 5837 5838 return off; 5839 } 5840 5841 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5842 struct kvm_io_range *range, const void *val) 5843 { 5844 int idx; 5845 5846 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5847 if (idx < 0) 5848 return -EOPNOTSUPP; 5849 5850 while (idx < bus->dev_count && 5851 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5852 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5853 range->len, val)) 5854 return idx; 5855 idx++; 5856 } 5857 5858 return -EOPNOTSUPP; 5859 } 5860 5861 /* kvm_io_bus_write - called under kvm->slots_lock */ 5862 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5863 int len, const void *val) 5864 { 5865 struct kvm_io_bus *bus; 5866 struct kvm_io_range range; 5867 int r; 5868 5869 range = (struct kvm_io_range) { 5870 .addr = addr, 5871 .len = len, 5872 }; 5873 5874 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5875 if (!bus) 5876 return -ENOMEM; 5877 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5878 return r < 0 ? r : 0; 5879 } 5880 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5881 5882 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5883 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5884 gpa_t addr, int len, const void *val, long cookie) 5885 { 5886 struct kvm_io_bus *bus; 5887 struct kvm_io_range range; 5888 5889 range = (struct kvm_io_range) { 5890 .addr = addr, 5891 .len = len, 5892 }; 5893 5894 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5895 if (!bus) 5896 return -ENOMEM; 5897 5898 /* First try the device referenced by cookie. */ 5899 if ((cookie >= 0) && (cookie < bus->dev_count) && 5900 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5901 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5902 val)) 5903 return cookie; 5904 5905 /* 5906 * cookie contained garbage; fall back to search and return the 5907 * correct cookie value. 5908 */ 5909 return __kvm_io_bus_write(vcpu, bus, &range, val); 5910 } 5911 5912 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5913 struct kvm_io_range *range, void *val) 5914 { 5915 int idx; 5916 5917 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5918 if (idx < 0) 5919 return -EOPNOTSUPP; 5920 5921 while (idx < bus->dev_count && 5922 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5923 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5924 range->len, val)) 5925 return idx; 5926 idx++; 5927 } 5928 5929 return -EOPNOTSUPP; 5930 } 5931 5932 /* kvm_io_bus_read - called under kvm->slots_lock */ 5933 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5934 int len, void *val) 5935 { 5936 struct kvm_io_bus *bus; 5937 struct kvm_io_range range; 5938 int r; 5939 5940 range = (struct kvm_io_range) { 5941 .addr = addr, 5942 .len = len, 5943 }; 5944 5945 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5946 if (!bus) 5947 return -ENOMEM; 5948 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5949 return r < 0 ? r : 0; 5950 } 5951 5952 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5953 int len, struct kvm_io_device *dev) 5954 { 5955 int i; 5956 struct kvm_io_bus *new_bus, *bus; 5957 struct kvm_io_range range; 5958 5959 lockdep_assert_held(&kvm->slots_lock); 5960 5961 bus = kvm_get_bus(kvm, bus_idx); 5962 if (!bus) 5963 return -ENOMEM; 5964 5965 /* exclude ioeventfd which is limited by maximum fd */ 5966 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5967 return -ENOSPC; 5968 5969 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5970 GFP_KERNEL_ACCOUNT); 5971 if (!new_bus) 5972 return -ENOMEM; 5973 5974 range = (struct kvm_io_range) { 5975 .addr = addr, 5976 .len = len, 5977 .dev = dev, 5978 }; 5979 5980 for (i = 0; i < bus->dev_count; i++) 5981 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5982 break; 5983 5984 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5985 new_bus->dev_count++; 5986 new_bus->range[i] = range; 5987 memcpy(new_bus->range + i + 1, bus->range + i, 5988 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5989 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5990 synchronize_srcu_expedited(&kvm->srcu); 5991 kfree(bus); 5992 5993 return 0; 5994 } 5995 5996 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5997 struct kvm_io_device *dev) 5998 { 5999 int i; 6000 struct kvm_io_bus *new_bus, *bus; 6001 6002 lockdep_assert_held(&kvm->slots_lock); 6003 6004 bus = kvm_get_bus(kvm, bus_idx); 6005 if (!bus) 6006 return 0; 6007 6008 for (i = 0; i < bus->dev_count; i++) { 6009 if (bus->range[i].dev == dev) { 6010 break; 6011 } 6012 } 6013 6014 if (i == bus->dev_count) 6015 return 0; 6016 6017 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6018 GFP_KERNEL_ACCOUNT); 6019 if (new_bus) { 6020 memcpy(new_bus, bus, struct_size(bus, range, i)); 6021 new_bus->dev_count--; 6022 memcpy(new_bus->range + i, bus->range + i + 1, 6023 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6024 } 6025 6026 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6027 synchronize_srcu_expedited(&kvm->srcu); 6028 6029 /* 6030 * If NULL bus is installed, destroy the old bus, including all the 6031 * attached devices. Otherwise, destroy the caller's device only. 6032 */ 6033 if (!new_bus) { 6034 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6035 kvm_io_bus_destroy(bus); 6036 return -ENOMEM; 6037 } 6038 6039 kvm_iodevice_destructor(dev); 6040 kfree(bus); 6041 return 0; 6042 } 6043 6044 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6045 gpa_t addr) 6046 { 6047 struct kvm_io_bus *bus; 6048 int dev_idx, srcu_idx; 6049 struct kvm_io_device *iodev = NULL; 6050 6051 srcu_idx = srcu_read_lock(&kvm->srcu); 6052 6053 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 6054 if (!bus) 6055 goto out_unlock; 6056 6057 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6058 if (dev_idx < 0) 6059 goto out_unlock; 6060 6061 iodev = bus->range[dev_idx].dev; 6062 6063 out_unlock: 6064 srcu_read_unlock(&kvm->srcu, srcu_idx); 6065 6066 return iodev; 6067 } 6068 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 6069 6070 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6071 int (*get)(void *, u64 *), int (*set)(void *, u64), 6072 const char *fmt) 6073 { 6074 int ret; 6075 struct kvm_stat_data *stat_data = inode->i_private; 6076 6077 /* 6078 * The debugfs files are a reference to the kvm struct which 6079 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6080 * avoids the race between open and the removal of the debugfs directory. 6081 */ 6082 if (!kvm_get_kvm_safe(stat_data->kvm)) 6083 return -ENOENT; 6084 6085 ret = simple_attr_open(inode, file, get, 6086 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6087 ? set : NULL, fmt); 6088 if (ret) 6089 kvm_put_kvm(stat_data->kvm); 6090 6091 return ret; 6092 } 6093 6094 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6095 { 6096 struct kvm_stat_data *stat_data = inode->i_private; 6097 6098 simple_attr_release(inode, file); 6099 kvm_put_kvm(stat_data->kvm); 6100 6101 return 0; 6102 } 6103 6104 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6105 { 6106 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6107 6108 return 0; 6109 } 6110 6111 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6112 { 6113 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6114 6115 return 0; 6116 } 6117 6118 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6119 { 6120 unsigned long i; 6121 struct kvm_vcpu *vcpu; 6122 6123 *val = 0; 6124 6125 kvm_for_each_vcpu(i, vcpu, kvm) 6126 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6127 6128 return 0; 6129 } 6130 6131 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6132 { 6133 unsigned long i; 6134 struct kvm_vcpu *vcpu; 6135 6136 kvm_for_each_vcpu(i, vcpu, kvm) 6137 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6138 6139 return 0; 6140 } 6141 6142 static int kvm_stat_data_get(void *data, u64 *val) 6143 { 6144 int r = -EFAULT; 6145 struct kvm_stat_data *stat_data = data; 6146 6147 switch (stat_data->kind) { 6148 case KVM_STAT_VM: 6149 r = kvm_get_stat_per_vm(stat_data->kvm, 6150 stat_data->desc->desc.offset, val); 6151 break; 6152 case KVM_STAT_VCPU: 6153 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6154 stat_data->desc->desc.offset, val); 6155 break; 6156 } 6157 6158 return r; 6159 } 6160 6161 static int kvm_stat_data_clear(void *data, u64 val) 6162 { 6163 int r = -EFAULT; 6164 struct kvm_stat_data *stat_data = data; 6165 6166 if (val) 6167 return -EINVAL; 6168 6169 switch (stat_data->kind) { 6170 case KVM_STAT_VM: 6171 r = kvm_clear_stat_per_vm(stat_data->kvm, 6172 stat_data->desc->desc.offset); 6173 break; 6174 case KVM_STAT_VCPU: 6175 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6176 stat_data->desc->desc.offset); 6177 break; 6178 } 6179 6180 return r; 6181 } 6182 6183 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6184 { 6185 __simple_attr_check_format("%llu\n", 0ull); 6186 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6187 kvm_stat_data_clear, "%llu\n"); 6188 } 6189 6190 static const struct file_operations stat_fops_per_vm = { 6191 .owner = THIS_MODULE, 6192 .open = kvm_stat_data_open, 6193 .release = kvm_debugfs_release, 6194 .read = simple_attr_read, 6195 .write = simple_attr_write, 6196 .llseek = no_llseek, 6197 }; 6198 6199 static int vm_stat_get(void *_offset, u64 *val) 6200 { 6201 unsigned offset = (long)_offset; 6202 struct kvm *kvm; 6203 u64 tmp_val; 6204 6205 *val = 0; 6206 mutex_lock(&kvm_lock); 6207 list_for_each_entry(kvm, &vm_list, vm_list) { 6208 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6209 *val += tmp_val; 6210 } 6211 mutex_unlock(&kvm_lock); 6212 return 0; 6213 } 6214 6215 static int vm_stat_clear(void *_offset, u64 val) 6216 { 6217 unsigned offset = (long)_offset; 6218 struct kvm *kvm; 6219 6220 if (val) 6221 return -EINVAL; 6222 6223 mutex_lock(&kvm_lock); 6224 list_for_each_entry(kvm, &vm_list, vm_list) { 6225 kvm_clear_stat_per_vm(kvm, offset); 6226 } 6227 mutex_unlock(&kvm_lock); 6228 6229 return 0; 6230 } 6231 6232 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6233 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6234 6235 static int vcpu_stat_get(void *_offset, u64 *val) 6236 { 6237 unsigned offset = (long)_offset; 6238 struct kvm *kvm; 6239 u64 tmp_val; 6240 6241 *val = 0; 6242 mutex_lock(&kvm_lock); 6243 list_for_each_entry(kvm, &vm_list, vm_list) { 6244 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6245 *val += tmp_val; 6246 } 6247 mutex_unlock(&kvm_lock); 6248 return 0; 6249 } 6250 6251 static int vcpu_stat_clear(void *_offset, u64 val) 6252 { 6253 unsigned offset = (long)_offset; 6254 struct kvm *kvm; 6255 6256 if (val) 6257 return -EINVAL; 6258 6259 mutex_lock(&kvm_lock); 6260 list_for_each_entry(kvm, &vm_list, vm_list) { 6261 kvm_clear_stat_per_vcpu(kvm, offset); 6262 } 6263 mutex_unlock(&kvm_lock); 6264 6265 return 0; 6266 } 6267 6268 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6269 "%llu\n"); 6270 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6271 6272 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6273 { 6274 struct kobj_uevent_env *env; 6275 unsigned long long created, active; 6276 6277 if (!kvm_dev.this_device || !kvm) 6278 return; 6279 6280 mutex_lock(&kvm_lock); 6281 if (type == KVM_EVENT_CREATE_VM) { 6282 kvm_createvm_count++; 6283 kvm_active_vms++; 6284 } else if (type == KVM_EVENT_DESTROY_VM) { 6285 kvm_active_vms--; 6286 } 6287 created = kvm_createvm_count; 6288 active = kvm_active_vms; 6289 mutex_unlock(&kvm_lock); 6290 6291 env = kzalloc(sizeof(*env), GFP_KERNEL); 6292 if (!env) 6293 return; 6294 6295 add_uevent_var(env, "CREATED=%llu", created); 6296 add_uevent_var(env, "COUNT=%llu", active); 6297 6298 if (type == KVM_EVENT_CREATE_VM) { 6299 add_uevent_var(env, "EVENT=create"); 6300 kvm->userspace_pid = task_pid_nr(current); 6301 } else if (type == KVM_EVENT_DESTROY_VM) { 6302 add_uevent_var(env, "EVENT=destroy"); 6303 } 6304 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6305 6306 if (!IS_ERR(kvm->debugfs_dentry)) { 6307 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6308 6309 if (p) { 6310 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6311 if (!IS_ERR(tmp)) 6312 add_uevent_var(env, "STATS_PATH=%s", tmp); 6313 kfree(p); 6314 } 6315 } 6316 /* no need for checks, since we are adding at most only 5 keys */ 6317 env->envp[env->envp_idx++] = NULL; 6318 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6319 kfree(env); 6320 } 6321 6322 static void kvm_init_debug(void) 6323 { 6324 const struct file_operations *fops; 6325 const struct _kvm_stats_desc *pdesc; 6326 int i; 6327 6328 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6329 6330 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6331 pdesc = &kvm_vm_stats_desc[i]; 6332 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6333 fops = &vm_stat_fops; 6334 else 6335 fops = &vm_stat_readonly_fops; 6336 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6337 kvm_debugfs_dir, 6338 (void *)(long)pdesc->desc.offset, fops); 6339 } 6340 6341 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6342 pdesc = &kvm_vcpu_stats_desc[i]; 6343 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6344 fops = &vcpu_stat_fops; 6345 else 6346 fops = &vcpu_stat_readonly_fops; 6347 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6348 kvm_debugfs_dir, 6349 (void *)(long)pdesc->desc.offset, fops); 6350 } 6351 } 6352 6353 static inline 6354 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6355 { 6356 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6357 } 6358 6359 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6360 { 6361 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6362 6363 WRITE_ONCE(vcpu->preempted, false); 6364 WRITE_ONCE(vcpu->ready, false); 6365 6366 __this_cpu_write(kvm_running_vcpu, vcpu); 6367 kvm_arch_vcpu_load(vcpu, cpu); 6368 6369 WRITE_ONCE(vcpu->scheduled_out, false); 6370 } 6371 6372 static void kvm_sched_out(struct preempt_notifier *pn, 6373 struct task_struct *next) 6374 { 6375 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6376 6377 WRITE_ONCE(vcpu->scheduled_out, true); 6378 6379 if (current->on_rq && vcpu->wants_to_run) { 6380 WRITE_ONCE(vcpu->preempted, true); 6381 WRITE_ONCE(vcpu->ready, true); 6382 } 6383 kvm_arch_vcpu_put(vcpu); 6384 __this_cpu_write(kvm_running_vcpu, NULL); 6385 } 6386 6387 /** 6388 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6389 * 6390 * We can disable preemption locally around accessing the per-CPU variable, 6391 * and use the resolved vcpu pointer after enabling preemption again, 6392 * because even if the current thread is migrated to another CPU, reading 6393 * the per-CPU value later will give us the same value as we update the 6394 * per-CPU variable in the preempt notifier handlers. 6395 */ 6396 struct kvm_vcpu *kvm_get_running_vcpu(void) 6397 { 6398 struct kvm_vcpu *vcpu; 6399 6400 preempt_disable(); 6401 vcpu = __this_cpu_read(kvm_running_vcpu); 6402 preempt_enable(); 6403 6404 return vcpu; 6405 } 6406 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6407 6408 /** 6409 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6410 */ 6411 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6412 { 6413 return &kvm_running_vcpu; 6414 } 6415 6416 #ifdef CONFIG_GUEST_PERF_EVENTS 6417 static unsigned int kvm_guest_state(void) 6418 { 6419 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6420 unsigned int state; 6421 6422 if (!kvm_arch_pmi_in_guest(vcpu)) 6423 return 0; 6424 6425 state = PERF_GUEST_ACTIVE; 6426 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6427 state |= PERF_GUEST_USER; 6428 6429 return state; 6430 } 6431 6432 static unsigned long kvm_guest_get_ip(void) 6433 { 6434 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6435 6436 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6437 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6438 return 0; 6439 6440 return kvm_arch_vcpu_get_ip(vcpu); 6441 } 6442 6443 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6444 .state = kvm_guest_state, 6445 .get_ip = kvm_guest_get_ip, 6446 .handle_intel_pt_intr = NULL, 6447 }; 6448 6449 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6450 { 6451 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6452 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6453 } 6454 void kvm_unregister_perf_callbacks(void) 6455 { 6456 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6457 } 6458 #endif 6459 6460 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6461 { 6462 int r; 6463 int cpu; 6464 6465 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6466 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6467 kvm_online_cpu, kvm_offline_cpu); 6468 if (r) 6469 return r; 6470 6471 register_syscore_ops(&kvm_syscore_ops); 6472 #endif 6473 6474 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6475 if (!vcpu_align) 6476 vcpu_align = __alignof__(struct kvm_vcpu); 6477 kvm_vcpu_cache = 6478 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6479 SLAB_ACCOUNT, 6480 offsetof(struct kvm_vcpu, arch), 6481 offsetofend(struct kvm_vcpu, stats_id) 6482 - offsetof(struct kvm_vcpu, arch), 6483 NULL); 6484 if (!kvm_vcpu_cache) { 6485 r = -ENOMEM; 6486 goto err_vcpu_cache; 6487 } 6488 6489 for_each_possible_cpu(cpu) { 6490 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6491 GFP_KERNEL, cpu_to_node(cpu))) { 6492 r = -ENOMEM; 6493 goto err_cpu_kick_mask; 6494 } 6495 } 6496 6497 r = kvm_irqfd_init(); 6498 if (r) 6499 goto err_irqfd; 6500 6501 r = kvm_async_pf_init(); 6502 if (r) 6503 goto err_async_pf; 6504 6505 kvm_chardev_ops.owner = module; 6506 kvm_vm_fops.owner = module; 6507 kvm_vcpu_fops.owner = module; 6508 kvm_device_fops.owner = module; 6509 6510 kvm_preempt_ops.sched_in = kvm_sched_in; 6511 kvm_preempt_ops.sched_out = kvm_sched_out; 6512 6513 kvm_init_debug(); 6514 6515 r = kvm_vfio_ops_init(); 6516 if (WARN_ON_ONCE(r)) 6517 goto err_vfio; 6518 6519 kvm_gmem_init(module); 6520 6521 /* 6522 * Registration _must_ be the very last thing done, as this exposes 6523 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6524 */ 6525 r = misc_register(&kvm_dev); 6526 if (r) { 6527 pr_err("kvm: misc device register failed\n"); 6528 goto err_register; 6529 } 6530 6531 return 0; 6532 6533 err_register: 6534 kvm_vfio_ops_exit(); 6535 err_vfio: 6536 kvm_async_pf_deinit(); 6537 err_async_pf: 6538 kvm_irqfd_exit(); 6539 err_irqfd: 6540 err_cpu_kick_mask: 6541 for_each_possible_cpu(cpu) 6542 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6543 kmem_cache_destroy(kvm_vcpu_cache); 6544 err_vcpu_cache: 6545 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6546 unregister_syscore_ops(&kvm_syscore_ops); 6547 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6548 #endif 6549 return r; 6550 } 6551 EXPORT_SYMBOL_GPL(kvm_init); 6552 6553 void kvm_exit(void) 6554 { 6555 int cpu; 6556 6557 /* 6558 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6559 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6560 * to KVM while the module is being stopped. 6561 */ 6562 misc_deregister(&kvm_dev); 6563 6564 debugfs_remove_recursive(kvm_debugfs_dir); 6565 for_each_possible_cpu(cpu) 6566 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6567 kmem_cache_destroy(kvm_vcpu_cache); 6568 kvm_vfio_ops_exit(); 6569 kvm_async_pf_deinit(); 6570 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6571 unregister_syscore_ops(&kvm_syscore_ops); 6572 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6573 #endif 6574 kvm_irqfd_exit(); 6575 } 6576 EXPORT_SYMBOL_GPL(kvm_exit); 6577 6578 struct kvm_vm_worker_thread_context { 6579 struct kvm *kvm; 6580 struct task_struct *parent; 6581 struct completion init_done; 6582 kvm_vm_thread_fn_t thread_fn; 6583 uintptr_t data; 6584 int err; 6585 }; 6586 6587 static int kvm_vm_worker_thread(void *context) 6588 { 6589 /* 6590 * The init_context is allocated on the stack of the parent thread, so 6591 * we have to locally copy anything that is needed beyond initialization 6592 */ 6593 struct kvm_vm_worker_thread_context *init_context = context; 6594 struct task_struct *parent; 6595 struct kvm *kvm = init_context->kvm; 6596 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6597 uintptr_t data = init_context->data; 6598 int err; 6599 6600 err = kthread_park(current); 6601 /* kthread_park(current) is never supposed to return an error */ 6602 WARN_ON(err != 0); 6603 if (err) 6604 goto init_complete; 6605 6606 err = cgroup_attach_task_all(init_context->parent, current); 6607 if (err) { 6608 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6609 __func__, err); 6610 goto init_complete; 6611 } 6612 6613 set_user_nice(current, task_nice(init_context->parent)); 6614 6615 init_complete: 6616 init_context->err = err; 6617 complete(&init_context->init_done); 6618 init_context = NULL; 6619 6620 if (err) 6621 goto out; 6622 6623 /* Wait to be woken up by the spawner before proceeding. */ 6624 kthread_parkme(); 6625 6626 if (!kthread_should_stop()) 6627 err = thread_fn(kvm, data); 6628 6629 out: 6630 /* 6631 * Move kthread back to its original cgroup to prevent it lingering in 6632 * the cgroup of the VM process, after the latter finishes its 6633 * execution. 6634 * 6635 * kthread_stop() waits on the 'exited' completion condition which is 6636 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6637 * kthread is removed from the cgroup in the cgroup_exit() which is 6638 * called after the exit_mm(). This causes the kthread_stop() to return 6639 * before the kthread actually quits the cgroup. 6640 */ 6641 rcu_read_lock(); 6642 parent = rcu_dereference(current->real_parent); 6643 get_task_struct(parent); 6644 rcu_read_unlock(); 6645 cgroup_attach_task_all(parent, current); 6646 put_task_struct(parent); 6647 6648 return err; 6649 } 6650 6651 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6652 uintptr_t data, const char *name, 6653 struct task_struct **thread_ptr) 6654 { 6655 struct kvm_vm_worker_thread_context init_context = {}; 6656 struct task_struct *thread; 6657 6658 *thread_ptr = NULL; 6659 init_context.kvm = kvm; 6660 init_context.parent = current; 6661 init_context.thread_fn = thread_fn; 6662 init_context.data = data; 6663 init_completion(&init_context.init_done); 6664 6665 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6666 "%s-%d", name, task_pid_nr(current)); 6667 if (IS_ERR(thread)) 6668 return PTR_ERR(thread); 6669 6670 /* kthread_run is never supposed to return NULL */ 6671 WARN_ON(thread == NULL); 6672 6673 wait_for_completion(&init_context.init_done); 6674 6675 if (!init_context.err) 6676 *thread_ptr = thread; 6677 6678 return init_context.err; 6679 } 6680