1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 #include <linux/rseq.h> 53 54 #include <asm/processor.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 #include "kvm_mm.h" 61 #include "vfio.h" 62 63 #include <trace/events/ipi.h> 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 71 /* Worst case buffer size needed for holding an integer. */ 72 #define ITOA_MAX_LEN 12 73 74 MODULE_AUTHOR("Qumranet"); 75 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 76 MODULE_LICENSE("GPL"); 77 78 /* Architectures should define their poll value according to the halt latency */ 79 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 80 module_param(halt_poll_ns, uint, 0644); 81 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns); 82 83 /* Default doubles per-vcpu halt_poll_ns. */ 84 unsigned int halt_poll_ns_grow = 2; 85 module_param(halt_poll_ns_grow, uint, 0644); 86 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow); 87 88 /* The start value to grow halt_poll_ns from */ 89 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 90 module_param(halt_poll_ns_grow_start, uint, 0644); 91 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start); 92 93 /* Default halves per-vcpu halt_poll_ns. */ 94 unsigned int halt_poll_ns_shrink = 2; 95 module_param(halt_poll_ns_shrink, uint, 0644); 96 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink); 97 98 /* 99 * Allow direct access (from KVM or the CPU) without MMU notifier protection 100 * to unpinned pages. 101 */ 102 static bool allow_unsafe_mappings; 103 module_param(allow_unsafe_mappings, bool, 0444); 104 105 /* 106 * Ordering of locks: 107 * 108 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 109 */ 110 111 DEFINE_MUTEX(kvm_lock); 112 LIST_HEAD(vm_list); 113 114 static struct kmem_cache *kvm_vcpu_cache; 115 116 static __read_mostly struct preempt_ops kvm_preempt_ops; 117 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 118 119 static struct dentry *kvm_debugfs_dir; 120 121 static const struct file_operations stat_fops_per_vm; 122 123 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #ifdef CONFIG_KVM_COMPAT 126 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 127 unsigned long arg); 128 #define KVM_COMPAT(c) .compat_ioctl = (c) 129 #else 130 /* 131 * For architectures that don't implement a compat infrastructure, 132 * adopt a double line of defense: 133 * - Prevent a compat task from opening /dev/kvm 134 * - If the open has been done by a 64bit task, and the KVM fd 135 * passed to a compat task, let the ioctls fail. 136 */ 137 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 138 unsigned long arg) { return -EINVAL; } 139 140 static int kvm_no_compat_open(struct inode *inode, struct file *file) 141 { 142 return is_compat_task() ? -ENODEV : 0; 143 } 144 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 145 .open = kvm_no_compat_open 146 #endif 147 148 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 149 150 #define KVM_EVENT_CREATE_VM 0 151 #define KVM_EVENT_DESTROY_VM 1 152 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 153 static unsigned long long kvm_createvm_count; 154 static unsigned long long kvm_active_vms; 155 156 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 157 158 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 159 { 160 } 161 162 /* 163 * Switches to specified vcpu, until a matching vcpu_put() 164 */ 165 void vcpu_load(struct kvm_vcpu *vcpu) 166 { 167 int cpu = get_cpu(); 168 169 __this_cpu_write(kvm_running_vcpu, vcpu); 170 preempt_notifier_register(&vcpu->preempt_notifier); 171 kvm_arch_vcpu_load(vcpu, cpu); 172 put_cpu(); 173 } 174 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load); 175 176 void vcpu_put(struct kvm_vcpu *vcpu) 177 { 178 preempt_disable(); 179 kvm_arch_vcpu_put(vcpu); 180 preempt_notifier_unregister(&vcpu->preempt_notifier); 181 __this_cpu_write(kvm_running_vcpu, NULL); 182 preempt_enable(); 183 } 184 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put); 185 186 /* TODO: merge with kvm_arch_vcpu_should_kick */ 187 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 188 { 189 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 190 191 /* 192 * We need to wait for the VCPU to reenable interrupts and get out of 193 * READING_SHADOW_PAGE_TABLES mode. 194 */ 195 if (req & KVM_REQUEST_WAIT) 196 return mode != OUTSIDE_GUEST_MODE; 197 198 /* 199 * Need to kick a running VCPU, but otherwise there is nothing to do. 200 */ 201 return mode == IN_GUEST_MODE; 202 } 203 204 static void ack_kick(void *_completed) 205 { 206 } 207 208 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 209 { 210 if (cpumask_empty(cpus)) 211 return false; 212 213 smp_call_function_many(cpus, ack_kick, NULL, wait); 214 return true; 215 } 216 217 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 218 struct cpumask *tmp, int current_cpu) 219 { 220 int cpu; 221 222 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 223 __kvm_make_request(req, vcpu); 224 225 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 226 return; 227 228 /* 229 * Note, the vCPU could get migrated to a different pCPU at any point 230 * after kvm_request_needs_ipi(), which could result in sending an IPI 231 * to the previous pCPU. But, that's OK because the purpose of the IPI 232 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 233 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 234 * after this point is also OK, as the requirement is only that KVM wait 235 * for vCPUs that were reading SPTEs _before_ any changes were 236 * finalized. See kvm_vcpu_kick() for more details on handling requests. 237 */ 238 if (kvm_request_needs_ipi(vcpu, req)) { 239 cpu = READ_ONCE(vcpu->cpu); 240 if (cpu != -1 && cpu != current_cpu) 241 __cpumask_set_cpu(cpu, tmp); 242 } 243 } 244 245 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 246 unsigned long *vcpu_bitmap) 247 { 248 struct kvm_vcpu *vcpu; 249 struct cpumask *cpus; 250 int i, me; 251 bool called; 252 253 me = get_cpu(); 254 255 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 256 cpumask_clear(cpus); 257 258 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 259 vcpu = kvm_get_vcpu(kvm, i); 260 if (!vcpu) 261 continue; 262 kvm_make_vcpu_request(vcpu, req, cpus, me); 263 } 264 265 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 266 put_cpu(); 267 268 return called; 269 } 270 271 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 272 { 273 struct kvm_vcpu *vcpu; 274 struct cpumask *cpus; 275 unsigned long i; 276 bool called; 277 int me; 278 279 me = get_cpu(); 280 281 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 282 cpumask_clear(cpus); 283 284 kvm_for_each_vcpu(i, vcpu, kvm) 285 kvm_make_vcpu_request(vcpu, req, cpus, me); 286 287 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 288 put_cpu(); 289 290 return called; 291 } 292 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request); 293 294 void kvm_flush_remote_tlbs(struct kvm *kvm) 295 { 296 ++kvm->stat.generic.remote_tlb_flush_requests; 297 298 /* 299 * We want to publish modifications to the page tables before reading 300 * mode. Pairs with a memory barrier in arch-specific code. 301 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 302 * and smp_mb in walk_shadow_page_lockless_begin/end. 303 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 304 * 305 * There is already an smp_mb__after_atomic() before 306 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 307 * barrier here. 308 */ 309 if (!kvm_arch_flush_remote_tlbs(kvm) 310 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 311 ++kvm->stat.generic.remote_tlb_flush; 312 } 313 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs); 314 315 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 316 { 317 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 318 return; 319 320 /* 321 * Fall back to a flushing entire TLBs if the architecture range-based 322 * TLB invalidation is unsupported or can't be performed for whatever 323 * reason. 324 */ 325 kvm_flush_remote_tlbs(kvm); 326 } 327 328 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 329 const struct kvm_memory_slot *memslot) 330 { 331 /* 332 * All current use cases for flushing the TLBs for a specific memslot 333 * are related to dirty logging, and many do the TLB flush out of 334 * mmu_lock. The interaction between the various operations on memslot 335 * must be serialized by slots_lock to ensure the TLB flush from one 336 * operation is observed by any other operation on the same memslot. 337 */ 338 lockdep_assert_held(&kvm->slots_lock); 339 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 340 } 341 342 static void kvm_flush_shadow_all(struct kvm *kvm) 343 { 344 kvm_arch_flush_shadow_all(kvm); 345 kvm_arch_guest_memory_reclaimed(kvm); 346 } 347 348 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 349 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 350 gfp_t gfp_flags) 351 { 352 void *page; 353 354 gfp_flags |= mc->gfp_zero; 355 356 if (mc->kmem_cache) 357 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 358 359 page = (void *)__get_free_page(gfp_flags); 360 if (page && mc->init_value) 361 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 362 return page; 363 } 364 365 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 366 { 367 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 368 void *obj; 369 370 if (mc->nobjs >= min) 371 return 0; 372 373 if (unlikely(!mc->objects)) { 374 if (WARN_ON_ONCE(!capacity)) 375 return -EIO; 376 377 /* 378 * Custom init values can be used only for page allocations, 379 * and obviously conflict with __GFP_ZERO. 380 */ 381 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 382 return -EIO; 383 384 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 385 if (!mc->objects) 386 return -ENOMEM; 387 388 mc->capacity = capacity; 389 } 390 391 /* It is illegal to request a different capacity across topups. */ 392 if (WARN_ON_ONCE(mc->capacity != capacity)) 393 return -EIO; 394 395 while (mc->nobjs < mc->capacity) { 396 obj = mmu_memory_cache_alloc_obj(mc, gfp); 397 if (!obj) 398 return mc->nobjs >= min ? 0 : -ENOMEM; 399 mc->objects[mc->nobjs++] = obj; 400 } 401 return 0; 402 } 403 404 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 405 { 406 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 407 } 408 409 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 410 { 411 return mc->nobjs; 412 } 413 414 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 415 { 416 while (mc->nobjs) { 417 if (mc->kmem_cache) 418 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 419 else 420 free_page((unsigned long)mc->objects[--mc->nobjs]); 421 } 422 423 kvfree(mc->objects); 424 425 mc->objects = NULL; 426 mc->capacity = 0; 427 } 428 429 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 430 { 431 void *p; 432 433 if (WARN_ON(!mc->nobjs)) 434 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 435 else 436 p = mc->objects[--mc->nobjs]; 437 BUG_ON(!p); 438 return p; 439 } 440 #endif 441 442 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 443 { 444 mutex_init(&vcpu->mutex); 445 vcpu->cpu = -1; 446 vcpu->kvm = kvm; 447 vcpu->vcpu_id = id; 448 vcpu->pid = NULL; 449 rwlock_init(&vcpu->pid_lock); 450 #ifndef __KVM_HAVE_ARCH_WQP 451 rcuwait_init(&vcpu->wait); 452 #endif 453 kvm_async_pf_vcpu_init(vcpu); 454 455 kvm_vcpu_set_in_spin_loop(vcpu, false); 456 kvm_vcpu_set_dy_eligible(vcpu, false); 457 vcpu->preempted = false; 458 vcpu->ready = false; 459 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 460 vcpu->last_used_slot = NULL; 461 462 /* Fill the stats id string for the vcpu */ 463 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 464 task_pid_nr(current), id); 465 } 466 467 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 468 { 469 kvm_arch_vcpu_destroy(vcpu); 470 kvm_dirty_ring_free(&vcpu->dirty_ring); 471 472 /* 473 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 474 * the vcpu->pid pointer, and at destruction time all file descriptors 475 * are already gone. 476 */ 477 put_pid(vcpu->pid); 478 479 free_page((unsigned long)vcpu->run); 480 kmem_cache_free(kvm_vcpu_cache, vcpu); 481 } 482 483 void kvm_destroy_vcpus(struct kvm *kvm) 484 { 485 unsigned long i; 486 struct kvm_vcpu *vcpu; 487 488 kvm_for_each_vcpu(i, vcpu, kvm) { 489 kvm_vcpu_destroy(vcpu); 490 xa_erase(&kvm->vcpu_array, i); 491 492 /* 493 * Assert that the vCPU isn't visible in any way, to ensure KVM 494 * doesn't trigger a use-after-free if destroying vCPUs results 495 * in VM-wide request, e.g. to flush remote TLBs when tearing 496 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires. 497 */ 498 WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i)); 499 } 500 501 atomic_set(&kvm->online_vcpus, 0); 502 } 503 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus); 504 505 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 506 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 507 { 508 return container_of(mn, struct kvm, mmu_notifier); 509 } 510 511 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 512 513 typedef void (*on_lock_fn_t)(struct kvm *kvm); 514 515 struct kvm_mmu_notifier_range { 516 /* 517 * 64-bit addresses, as KVM notifiers can operate on host virtual 518 * addresses (unsigned long) and guest physical addresses (64-bit). 519 */ 520 u64 start; 521 u64 end; 522 union kvm_mmu_notifier_arg arg; 523 gfn_handler_t handler; 524 on_lock_fn_t on_lock; 525 bool flush_on_ret; 526 bool may_block; 527 bool lockless; 528 }; 529 530 /* 531 * The inner-most helper returns a tuple containing the return value from the 532 * arch- and action-specific handler, plus a flag indicating whether or not at 533 * least one memslot was found, i.e. if the handler found guest memory. 534 * 535 * Note, most notifiers are averse to booleans, so even though KVM tracks the 536 * return from arch code as a bool, outer helpers will cast it to an int. :-( 537 */ 538 typedef struct kvm_mmu_notifier_return { 539 bool ret; 540 bool found_memslot; 541 } kvm_mn_ret_t; 542 543 /* 544 * Use a dedicated stub instead of NULL to indicate that there is no callback 545 * function/handler. The compiler technically can't guarantee that a real 546 * function will have a non-zero address, and so it will generate code to 547 * check for !NULL, whereas comparing against a stub will be elided at compile 548 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 549 */ 550 static void kvm_null_fn(void) 551 { 552 553 } 554 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 555 556 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 557 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 558 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 559 node; \ 560 node = interval_tree_iter_next(node, start, last)) \ 561 562 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm, 563 const struct kvm_mmu_notifier_range *range) 564 { 565 struct kvm_mmu_notifier_return r = { 566 .ret = false, 567 .found_memslot = false, 568 }; 569 struct kvm_gfn_range gfn_range; 570 struct kvm_memory_slot *slot; 571 struct kvm_memslots *slots; 572 int i, idx; 573 574 if (WARN_ON_ONCE(range->end <= range->start)) 575 return r; 576 577 /* A null handler is allowed if and only if on_lock() is provided. */ 578 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 579 IS_KVM_NULL_FN(range->handler))) 580 return r; 581 582 /* on_lock will never be called for lockless walks */ 583 if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock))) 584 return r; 585 586 idx = srcu_read_lock(&kvm->srcu); 587 588 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 589 struct interval_tree_node *node; 590 591 slots = __kvm_memslots(kvm, i); 592 kvm_for_each_memslot_in_hva_range(node, slots, 593 range->start, range->end - 1) { 594 unsigned long hva_start, hva_end; 595 596 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 597 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 598 hva_end = min_t(unsigned long, range->end, 599 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 600 601 /* 602 * To optimize for the likely case where the address 603 * range is covered by zero or one memslots, don't 604 * bother making these conditional (to avoid writes on 605 * the second or later invocation of the handler). 606 */ 607 gfn_range.arg = range->arg; 608 gfn_range.may_block = range->may_block; 609 /* 610 * HVA-based notifications aren't relevant to private 611 * mappings as they don't have a userspace mapping. 612 */ 613 gfn_range.attr_filter = KVM_FILTER_SHARED; 614 615 /* 616 * {gfn(page) | page intersects with [hva_start, hva_end)} = 617 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 618 */ 619 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 620 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 621 gfn_range.slot = slot; 622 gfn_range.lockless = range->lockless; 623 624 if (!r.found_memslot) { 625 r.found_memslot = true; 626 if (!range->lockless) { 627 KVM_MMU_LOCK(kvm); 628 if (!IS_KVM_NULL_FN(range->on_lock)) 629 range->on_lock(kvm); 630 631 if (IS_KVM_NULL_FN(range->handler)) 632 goto mmu_unlock; 633 } 634 } 635 r.ret |= range->handler(kvm, &gfn_range); 636 } 637 } 638 639 if (range->flush_on_ret && r.ret) 640 kvm_flush_remote_tlbs(kvm); 641 642 mmu_unlock: 643 if (r.found_memslot && !range->lockless) 644 KVM_MMU_UNLOCK(kvm); 645 646 srcu_read_unlock(&kvm->srcu, idx); 647 648 return r; 649 } 650 651 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn, 652 unsigned long start, 653 unsigned long end, 654 gfn_handler_t handler, 655 bool flush_on_ret) 656 { 657 struct kvm *kvm = mmu_notifier_to_kvm(mn); 658 const struct kvm_mmu_notifier_range range = { 659 .start = start, 660 .end = end, 661 .handler = handler, 662 .on_lock = (void *)kvm_null_fn, 663 .flush_on_ret = flush_on_ret, 664 .may_block = false, 665 .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING), 666 }; 667 668 return kvm_handle_hva_range(kvm, &range).ret; 669 } 670 671 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn, 672 unsigned long start, 673 unsigned long end, 674 gfn_handler_t handler) 675 { 676 return kvm_age_hva_range(mn, start, end, handler, false); 677 } 678 679 void kvm_mmu_invalidate_begin(struct kvm *kvm) 680 { 681 lockdep_assert_held_write(&kvm->mmu_lock); 682 /* 683 * The count increase must become visible at unlock time as no 684 * spte can be established without taking the mmu_lock and 685 * count is also read inside the mmu_lock critical section. 686 */ 687 kvm->mmu_invalidate_in_progress++; 688 689 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 690 kvm->mmu_invalidate_range_start = INVALID_GPA; 691 kvm->mmu_invalidate_range_end = INVALID_GPA; 692 } 693 } 694 695 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 696 { 697 lockdep_assert_held_write(&kvm->mmu_lock); 698 699 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 700 701 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 702 kvm->mmu_invalidate_range_start = start; 703 kvm->mmu_invalidate_range_end = end; 704 } else { 705 /* 706 * Fully tracking multiple concurrent ranges has diminishing 707 * returns. Keep things simple and just find the minimal range 708 * which includes the current and new ranges. As there won't be 709 * enough information to subtract a range after its invalidate 710 * completes, any ranges invalidated concurrently will 711 * accumulate and persist until all outstanding invalidates 712 * complete. 713 */ 714 kvm->mmu_invalidate_range_start = 715 min(kvm->mmu_invalidate_range_start, start); 716 kvm->mmu_invalidate_range_end = 717 max(kvm->mmu_invalidate_range_end, end); 718 } 719 } 720 721 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 722 { 723 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 724 return kvm_unmap_gfn_range(kvm, range); 725 } 726 727 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 728 const struct mmu_notifier_range *range) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const struct kvm_mmu_notifier_range hva_range = { 732 .start = range->start, 733 .end = range->end, 734 .handler = kvm_mmu_unmap_gfn_range, 735 .on_lock = kvm_mmu_invalidate_begin, 736 .flush_on_ret = true, 737 .may_block = mmu_notifier_range_blockable(range), 738 }; 739 740 trace_kvm_unmap_hva_range(range->start, range->end); 741 742 /* 743 * Prevent memslot modification between range_start() and range_end() 744 * so that conditionally locking provides the same result in both 745 * functions. Without that guarantee, the mmu_invalidate_in_progress 746 * adjustments will be imbalanced. 747 * 748 * Pairs with the decrement in range_end(). 749 */ 750 spin_lock(&kvm->mn_invalidate_lock); 751 kvm->mn_active_invalidate_count++; 752 spin_unlock(&kvm->mn_invalidate_lock); 753 754 /* 755 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 756 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 757 * each cache's lock. There are relatively few caches in existence at 758 * any given time, and the caches themselves can check for hva overlap, 759 * i.e. don't need to rely on memslot overlap checks for performance. 760 * Because this runs without holding mmu_lock, the pfn caches must use 761 * mn_active_invalidate_count (see above) instead of 762 * mmu_invalidate_in_progress. 763 */ 764 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 765 766 /* 767 * If one or more memslots were found and thus zapped, notify arch code 768 * that guest memory has been reclaimed. This needs to be done *after* 769 * dropping mmu_lock, as x86's reclaim path is slooooow. 770 */ 771 if (kvm_handle_hva_range(kvm, &hva_range).found_memslot) 772 kvm_arch_guest_memory_reclaimed(kvm); 773 774 return 0; 775 } 776 777 void kvm_mmu_invalidate_end(struct kvm *kvm) 778 { 779 lockdep_assert_held_write(&kvm->mmu_lock); 780 781 /* 782 * This sequence increase will notify the kvm page fault that 783 * the page that is going to be mapped in the spte could have 784 * been freed. 785 */ 786 kvm->mmu_invalidate_seq++; 787 smp_wmb(); 788 /* 789 * The above sequence increase must be visible before the 790 * below count decrease, which is ensured by the smp_wmb above 791 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 792 */ 793 kvm->mmu_invalidate_in_progress--; 794 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 795 796 /* 797 * Assert that at least one range was added between start() and end(). 798 * Not adding a range isn't fatal, but it is a KVM bug. 799 */ 800 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 801 } 802 803 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 804 const struct mmu_notifier_range *range) 805 { 806 struct kvm *kvm = mmu_notifier_to_kvm(mn); 807 const struct kvm_mmu_notifier_range hva_range = { 808 .start = range->start, 809 .end = range->end, 810 .handler = (void *)kvm_null_fn, 811 .on_lock = kvm_mmu_invalidate_end, 812 .flush_on_ret = false, 813 .may_block = mmu_notifier_range_blockable(range), 814 }; 815 bool wake; 816 817 kvm_handle_hva_range(kvm, &hva_range); 818 819 /* Pairs with the increment in range_start(). */ 820 spin_lock(&kvm->mn_invalidate_lock); 821 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 822 --kvm->mn_active_invalidate_count; 823 wake = !kvm->mn_active_invalidate_count; 824 spin_unlock(&kvm->mn_invalidate_lock); 825 826 /* 827 * There can only be one waiter, since the wait happens under 828 * slots_lock. 829 */ 830 if (wake) 831 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 832 } 833 834 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 835 struct mm_struct *mm, 836 unsigned long start, 837 unsigned long end) 838 { 839 trace_kvm_age_hva(start, end); 840 841 return kvm_age_hva_range(mn, start, end, kvm_age_gfn, 842 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); 843 } 844 845 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 846 struct mm_struct *mm, 847 unsigned long start, 848 unsigned long end) 849 { 850 trace_kvm_age_hva(start, end); 851 852 /* 853 * Even though we do not flush TLB, this will still adversely 854 * affect performance on pre-Haswell Intel EPT, where there is 855 * no EPT Access Bit to clear so that we have to tear down EPT 856 * tables instead. If we find this unacceptable, we can always 857 * add a parameter to kvm_age_hva so that it effectively doesn't 858 * do anything on clear_young. 859 * 860 * Also note that currently we never issue secondary TLB flushes 861 * from clear_young, leaving this job up to the regular system 862 * cadence. If we find this inaccurate, we might come up with a 863 * more sophisticated heuristic later. 864 */ 865 return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn); 866 } 867 868 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 869 struct mm_struct *mm, 870 unsigned long address) 871 { 872 trace_kvm_test_age_hva(address); 873 874 return kvm_age_hva_range_no_flush(mn, address, address + 1, 875 kvm_test_age_gfn); 876 } 877 878 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 879 struct mm_struct *mm) 880 { 881 struct kvm *kvm = mmu_notifier_to_kvm(mn); 882 int idx; 883 884 idx = srcu_read_lock(&kvm->srcu); 885 kvm_flush_shadow_all(kvm); 886 srcu_read_unlock(&kvm->srcu, idx); 887 } 888 889 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 890 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 891 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 892 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 893 .clear_young = kvm_mmu_notifier_clear_young, 894 .test_young = kvm_mmu_notifier_test_young, 895 .release = kvm_mmu_notifier_release, 896 }; 897 898 static int kvm_init_mmu_notifier(struct kvm *kvm) 899 { 900 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 901 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 902 } 903 904 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 905 906 static int kvm_init_mmu_notifier(struct kvm *kvm) 907 { 908 return 0; 909 } 910 911 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 912 913 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 914 static int kvm_pm_notifier_call(struct notifier_block *bl, 915 unsigned long state, 916 void *unused) 917 { 918 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 919 920 return kvm_arch_pm_notifier(kvm, state); 921 } 922 923 static void kvm_init_pm_notifier(struct kvm *kvm) 924 { 925 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 926 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 927 kvm->pm_notifier.priority = INT_MAX; 928 register_pm_notifier(&kvm->pm_notifier); 929 } 930 931 static void kvm_destroy_pm_notifier(struct kvm *kvm) 932 { 933 unregister_pm_notifier(&kvm->pm_notifier); 934 } 935 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 936 static void kvm_init_pm_notifier(struct kvm *kvm) 937 { 938 } 939 940 static void kvm_destroy_pm_notifier(struct kvm *kvm) 941 { 942 } 943 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 944 945 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 946 { 947 if (!memslot->dirty_bitmap) 948 return; 949 950 vfree(memslot->dirty_bitmap); 951 memslot->dirty_bitmap = NULL; 952 } 953 954 /* This does not remove the slot from struct kvm_memslots data structures */ 955 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 956 { 957 if (slot->flags & KVM_MEM_GUEST_MEMFD) 958 kvm_gmem_unbind(slot); 959 960 kvm_destroy_dirty_bitmap(slot); 961 962 kvm_arch_free_memslot(kvm, slot); 963 964 kfree(slot); 965 } 966 967 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 968 { 969 struct hlist_node *idnode; 970 struct kvm_memory_slot *memslot; 971 int bkt; 972 973 /* 974 * The same memslot objects live in both active and inactive sets, 975 * arbitrarily free using index '1' so the second invocation of this 976 * function isn't operating over a structure with dangling pointers 977 * (even though this function isn't actually touching them). 978 */ 979 if (!slots->node_idx) 980 return; 981 982 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 983 kvm_free_memslot(kvm, memslot); 984 } 985 986 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 987 { 988 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 989 case KVM_STATS_TYPE_INSTANT: 990 return 0444; 991 case KVM_STATS_TYPE_CUMULATIVE: 992 case KVM_STATS_TYPE_PEAK: 993 default: 994 return 0644; 995 } 996 } 997 998 999 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1000 { 1001 int i; 1002 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1003 kvm_vcpu_stats_header.num_desc; 1004 1005 if (IS_ERR(kvm->debugfs_dentry)) 1006 return; 1007 1008 debugfs_remove_recursive(kvm->debugfs_dentry); 1009 1010 if (kvm->debugfs_stat_data) { 1011 for (i = 0; i < kvm_debugfs_num_entries; i++) 1012 kfree(kvm->debugfs_stat_data[i]); 1013 kfree(kvm->debugfs_stat_data); 1014 } 1015 } 1016 1017 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1018 { 1019 static DEFINE_MUTEX(kvm_debugfs_lock); 1020 struct dentry *dent; 1021 char dir_name[ITOA_MAX_LEN * 2]; 1022 struct kvm_stat_data *stat_data; 1023 const struct _kvm_stats_desc *pdesc; 1024 int i, ret = -ENOMEM; 1025 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1026 kvm_vcpu_stats_header.num_desc; 1027 1028 if (!debugfs_initialized()) 1029 return 0; 1030 1031 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1032 mutex_lock(&kvm_debugfs_lock); 1033 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1034 if (dent) { 1035 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1036 dput(dent); 1037 mutex_unlock(&kvm_debugfs_lock); 1038 return 0; 1039 } 1040 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1041 mutex_unlock(&kvm_debugfs_lock); 1042 if (IS_ERR(dent)) 1043 return 0; 1044 1045 kvm->debugfs_dentry = dent; 1046 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1047 sizeof(*kvm->debugfs_stat_data), 1048 GFP_KERNEL_ACCOUNT); 1049 if (!kvm->debugfs_stat_data) 1050 goto out_err; 1051 1052 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1053 pdesc = &kvm_vm_stats_desc[i]; 1054 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1055 if (!stat_data) 1056 goto out_err; 1057 1058 stat_data->kvm = kvm; 1059 stat_data->desc = pdesc; 1060 stat_data->kind = KVM_STAT_VM; 1061 kvm->debugfs_stat_data[i] = stat_data; 1062 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1063 kvm->debugfs_dentry, stat_data, 1064 &stat_fops_per_vm); 1065 } 1066 1067 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1068 pdesc = &kvm_vcpu_stats_desc[i]; 1069 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1070 if (!stat_data) 1071 goto out_err; 1072 1073 stat_data->kvm = kvm; 1074 stat_data->desc = pdesc; 1075 stat_data->kind = KVM_STAT_VCPU; 1076 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1077 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1078 kvm->debugfs_dentry, stat_data, 1079 &stat_fops_per_vm); 1080 } 1081 1082 kvm_arch_create_vm_debugfs(kvm); 1083 return 0; 1084 out_err: 1085 kvm_destroy_vm_debugfs(kvm); 1086 return ret; 1087 } 1088 1089 /* 1090 * Called just after removing the VM from the vm_list, but before doing any 1091 * other destruction. 1092 */ 1093 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1094 { 1095 } 1096 1097 /* 1098 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1099 * be setup already, so we can create arch-specific debugfs entries under it. 1100 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1101 * a per-arch destroy interface is not needed. 1102 */ 1103 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1104 { 1105 } 1106 1107 /* Called only on cleanup and destruction paths when there are no users. */ 1108 static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm, 1109 enum kvm_bus idx) 1110 { 1111 return rcu_dereference_protected(kvm->buses[idx], 1112 !refcount_read(&kvm->users_count)); 1113 } 1114 1115 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1116 { 1117 struct kvm *kvm = kvm_arch_alloc_vm(); 1118 struct kvm_memslots *slots; 1119 int r, i, j; 1120 1121 if (!kvm) 1122 return ERR_PTR(-ENOMEM); 1123 1124 KVM_MMU_LOCK_INIT(kvm); 1125 mmgrab(current->mm); 1126 kvm->mm = current->mm; 1127 kvm_eventfd_init(kvm); 1128 mutex_init(&kvm->lock); 1129 mutex_init(&kvm->irq_lock); 1130 mutex_init(&kvm->slots_lock); 1131 mutex_init(&kvm->slots_arch_lock); 1132 spin_lock_init(&kvm->mn_invalidate_lock); 1133 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1134 xa_init(&kvm->vcpu_array); 1135 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1136 xa_init(&kvm->mem_attr_array); 1137 #endif 1138 1139 INIT_LIST_HEAD(&kvm->gpc_list); 1140 spin_lock_init(&kvm->gpc_lock); 1141 1142 INIT_LIST_HEAD(&kvm->devices); 1143 kvm->max_vcpus = KVM_MAX_VCPUS; 1144 1145 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1146 1147 /* 1148 * Force subsequent debugfs file creations to fail if the VM directory 1149 * is not created (by kvm_create_vm_debugfs()). 1150 */ 1151 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1152 1153 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1154 task_pid_nr(current)); 1155 1156 r = -ENOMEM; 1157 if (init_srcu_struct(&kvm->srcu)) 1158 goto out_err_no_srcu; 1159 if (init_srcu_struct(&kvm->irq_srcu)) 1160 goto out_err_no_irq_srcu; 1161 1162 r = kvm_init_irq_routing(kvm); 1163 if (r) 1164 goto out_err_no_irq_routing; 1165 1166 refcount_set(&kvm->users_count, 1); 1167 1168 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1169 for (j = 0; j < 2; j++) { 1170 slots = &kvm->__memslots[i][j]; 1171 1172 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1173 slots->hva_tree = RB_ROOT_CACHED; 1174 slots->gfn_tree = RB_ROOT; 1175 hash_init(slots->id_hash); 1176 slots->node_idx = j; 1177 1178 /* Generations must be different for each address space. */ 1179 slots->generation = i; 1180 } 1181 1182 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1183 } 1184 1185 r = -ENOMEM; 1186 for (i = 0; i < KVM_NR_BUSES; i++) { 1187 rcu_assign_pointer(kvm->buses[i], 1188 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1189 if (!kvm->buses[i]) 1190 goto out_err_no_arch_destroy_vm; 1191 } 1192 1193 r = kvm_arch_init_vm(kvm, type); 1194 if (r) 1195 goto out_err_no_arch_destroy_vm; 1196 1197 r = kvm_enable_virtualization(); 1198 if (r) 1199 goto out_err_no_disable; 1200 1201 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1202 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1203 #endif 1204 1205 r = kvm_init_mmu_notifier(kvm); 1206 if (r) 1207 goto out_err_no_mmu_notifier; 1208 1209 r = kvm_coalesced_mmio_init(kvm); 1210 if (r < 0) 1211 goto out_no_coalesced_mmio; 1212 1213 r = kvm_create_vm_debugfs(kvm, fdname); 1214 if (r) 1215 goto out_err_no_debugfs; 1216 1217 mutex_lock(&kvm_lock); 1218 list_add(&kvm->vm_list, &vm_list); 1219 mutex_unlock(&kvm_lock); 1220 1221 preempt_notifier_inc(); 1222 kvm_init_pm_notifier(kvm); 1223 1224 return kvm; 1225 1226 out_err_no_debugfs: 1227 kvm_coalesced_mmio_free(kvm); 1228 out_no_coalesced_mmio: 1229 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1230 if (kvm->mmu_notifier.ops) 1231 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1232 #endif 1233 out_err_no_mmu_notifier: 1234 kvm_disable_virtualization(); 1235 out_err_no_disable: 1236 kvm_arch_destroy_vm(kvm); 1237 out_err_no_arch_destroy_vm: 1238 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1239 for (i = 0; i < KVM_NR_BUSES; i++) 1240 kfree(kvm_get_bus_for_destruction(kvm, i)); 1241 kvm_free_irq_routing(kvm); 1242 out_err_no_irq_routing: 1243 cleanup_srcu_struct(&kvm->irq_srcu); 1244 out_err_no_irq_srcu: 1245 cleanup_srcu_struct(&kvm->srcu); 1246 out_err_no_srcu: 1247 kvm_arch_free_vm(kvm); 1248 mmdrop(current->mm); 1249 return ERR_PTR(r); 1250 } 1251 1252 static void kvm_destroy_devices(struct kvm *kvm) 1253 { 1254 struct kvm_device *dev, *tmp; 1255 1256 /* 1257 * We do not need to take the kvm->lock here, because nobody else 1258 * has a reference to the struct kvm at this point and therefore 1259 * cannot access the devices list anyhow. 1260 * 1261 * The device list is generally managed as an rculist, but list_del() 1262 * is used intentionally here. If a bug in KVM introduced a reader that 1263 * was not backed by a reference on the kvm struct, the hope is that 1264 * it'd consume the poisoned forward pointer instead of suffering a 1265 * use-after-free, even though this cannot be guaranteed. 1266 */ 1267 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1268 list_del(&dev->vm_node); 1269 dev->ops->destroy(dev); 1270 } 1271 } 1272 1273 static void kvm_destroy_vm(struct kvm *kvm) 1274 { 1275 int i; 1276 struct mm_struct *mm = kvm->mm; 1277 1278 kvm_destroy_pm_notifier(kvm); 1279 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1280 kvm_destroy_vm_debugfs(kvm); 1281 mutex_lock(&kvm_lock); 1282 list_del(&kvm->vm_list); 1283 mutex_unlock(&kvm_lock); 1284 kvm_arch_pre_destroy_vm(kvm); 1285 1286 kvm_free_irq_routing(kvm); 1287 for (i = 0; i < KVM_NR_BUSES; i++) { 1288 struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i); 1289 1290 if (bus) 1291 kvm_io_bus_destroy(bus); 1292 kvm->buses[i] = NULL; 1293 } 1294 kvm_coalesced_mmio_free(kvm); 1295 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1296 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1297 /* 1298 * At this point, pending calls to invalidate_range_start() 1299 * have completed but no more MMU notifiers will run, so 1300 * mn_active_invalidate_count may remain unbalanced. 1301 * No threads can be waiting in kvm_swap_active_memslots() as the 1302 * last reference on KVM has been dropped, but freeing 1303 * memslots would deadlock without this manual intervention. 1304 * 1305 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1306 * notifier between a start() and end(), then there shouldn't be any 1307 * in-progress invalidations. 1308 */ 1309 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1310 if (kvm->mn_active_invalidate_count) 1311 kvm->mn_active_invalidate_count = 0; 1312 else 1313 WARN_ON(kvm->mmu_invalidate_in_progress); 1314 #else 1315 kvm_flush_shadow_all(kvm); 1316 #endif 1317 kvm_arch_destroy_vm(kvm); 1318 kvm_destroy_devices(kvm); 1319 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1320 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1321 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1322 } 1323 cleanup_srcu_struct(&kvm->irq_srcu); 1324 srcu_barrier(&kvm->srcu); 1325 cleanup_srcu_struct(&kvm->srcu); 1326 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1327 xa_destroy(&kvm->mem_attr_array); 1328 #endif 1329 kvm_arch_free_vm(kvm); 1330 preempt_notifier_dec(); 1331 kvm_disable_virtualization(); 1332 mmdrop(mm); 1333 } 1334 1335 void kvm_get_kvm(struct kvm *kvm) 1336 { 1337 refcount_inc(&kvm->users_count); 1338 } 1339 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1340 1341 /* 1342 * Make sure the vm is not during destruction, which is a safe version of 1343 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1344 */ 1345 bool kvm_get_kvm_safe(struct kvm *kvm) 1346 { 1347 return refcount_inc_not_zero(&kvm->users_count); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1350 1351 void kvm_put_kvm(struct kvm *kvm) 1352 { 1353 if (refcount_dec_and_test(&kvm->users_count)) 1354 kvm_destroy_vm(kvm); 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1357 1358 /* 1359 * Used to put a reference that was taken on behalf of an object associated 1360 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1361 * of the new file descriptor fails and the reference cannot be transferred to 1362 * its final owner. In such cases, the caller is still actively using @kvm and 1363 * will fail miserably if the refcount unexpectedly hits zero. 1364 */ 1365 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1366 { 1367 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1368 } 1369 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy); 1370 1371 static int kvm_vm_release(struct inode *inode, struct file *filp) 1372 { 1373 struct kvm *kvm = filp->private_data; 1374 1375 kvm_irqfd_release(kvm); 1376 1377 kvm_put_kvm(kvm); 1378 return 0; 1379 } 1380 1381 int kvm_trylock_all_vcpus(struct kvm *kvm) 1382 { 1383 struct kvm_vcpu *vcpu; 1384 unsigned long i, j; 1385 1386 lockdep_assert_held(&kvm->lock); 1387 1388 kvm_for_each_vcpu(i, vcpu, kvm) 1389 if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock)) 1390 goto out_unlock; 1391 return 0; 1392 1393 out_unlock: 1394 kvm_for_each_vcpu(j, vcpu, kvm) { 1395 if (i == j) 1396 break; 1397 mutex_unlock(&vcpu->mutex); 1398 } 1399 return -EINTR; 1400 } 1401 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus); 1402 1403 int kvm_lock_all_vcpus(struct kvm *kvm) 1404 { 1405 struct kvm_vcpu *vcpu; 1406 unsigned long i, j; 1407 int r; 1408 1409 lockdep_assert_held(&kvm->lock); 1410 1411 kvm_for_each_vcpu(i, vcpu, kvm) { 1412 r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock); 1413 if (r) 1414 goto out_unlock; 1415 } 1416 return 0; 1417 1418 out_unlock: 1419 kvm_for_each_vcpu(j, vcpu, kvm) { 1420 if (i == j) 1421 break; 1422 mutex_unlock(&vcpu->mutex); 1423 } 1424 return r; 1425 } 1426 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus); 1427 1428 void kvm_unlock_all_vcpus(struct kvm *kvm) 1429 { 1430 struct kvm_vcpu *vcpu; 1431 unsigned long i; 1432 1433 lockdep_assert_held(&kvm->lock); 1434 1435 kvm_for_each_vcpu(i, vcpu, kvm) 1436 mutex_unlock(&vcpu->mutex); 1437 } 1438 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus); 1439 1440 /* 1441 * Allocation size is twice as large as the actual dirty bitmap size. 1442 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1443 */ 1444 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1445 { 1446 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1447 1448 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1449 if (!memslot->dirty_bitmap) 1450 return -ENOMEM; 1451 1452 return 0; 1453 } 1454 1455 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1456 { 1457 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1458 int node_idx_inactive = active->node_idx ^ 1; 1459 1460 return &kvm->__memslots[as_id][node_idx_inactive]; 1461 } 1462 1463 /* 1464 * Helper to get the address space ID when one of memslot pointers may be NULL. 1465 * This also serves as a sanity that at least one of the pointers is non-NULL, 1466 * and that their address space IDs don't diverge. 1467 */ 1468 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1469 struct kvm_memory_slot *b) 1470 { 1471 if (WARN_ON_ONCE(!a && !b)) 1472 return 0; 1473 1474 if (!a) 1475 return b->as_id; 1476 if (!b) 1477 return a->as_id; 1478 1479 WARN_ON_ONCE(a->as_id != b->as_id); 1480 return a->as_id; 1481 } 1482 1483 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1484 struct kvm_memory_slot *slot) 1485 { 1486 struct rb_root *gfn_tree = &slots->gfn_tree; 1487 struct rb_node **node, *parent; 1488 int idx = slots->node_idx; 1489 1490 parent = NULL; 1491 for (node = &gfn_tree->rb_node; *node; ) { 1492 struct kvm_memory_slot *tmp; 1493 1494 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1495 parent = *node; 1496 if (slot->base_gfn < tmp->base_gfn) 1497 node = &(*node)->rb_left; 1498 else if (slot->base_gfn > tmp->base_gfn) 1499 node = &(*node)->rb_right; 1500 else 1501 BUG(); 1502 } 1503 1504 rb_link_node(&slot->gfn_node[idx], parent, node); 1505 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1506 } 1507 1508 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1509 struct kvm_memory_slot *slot) 1510 { 1511 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1512 } 1513 1514 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1515 struct kvm_memory_slot *old, 1516 struct kvm_memory_slot *new) 1517 { 1518 int idx = slots->node_idx; 1519 1520 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1521 1522 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1523 &slots->gfn_tree); 1524 } 1525 1526 /* 1527 * Replace @old with @new in the inactive memslots. 1528 * 1529 * With NULL @old this simply adds @new. 1530 * With NULL @new this simply removes @old. 1531 * 1532 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1533 * appropriately. 1534 */ 1535 static void kvm_replace_memslot(struct kvm *kvm, 1536 struct kvm_memory_slot *old, 1537 struct kvm_memory_slot *new) 1538 { 1539 int as_id = kvm_memslots_get_as_id(old, new); 1540 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1541 int idx = slots->node_idx; 1542 1543 if (old) { 1544 hash_del(&old->id_node[idx]); 1545 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1546 1547 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1548 atomic_long_set(&slots->last_used_slot, (long)new); 1549 1550 if (!new) { 1551 kvm_erase_gfn_node(slots, old); 1552 return; 1553 } 1554 } 1555 1556 /* 1557 * Initialize @new's hva range. Do this even when replacing an @old 1558 * slot, kvm_copy_memslot() deliberately does not touch node data. 1559 */ 1560 new->hva_node[idx].start = new->userspace_addr; 1561 new->hva_node[idx].last = new->userspace_addr + 1562 (new->npages << PAGE_SHIFT) - 1; 1563 1564 /* 1565 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1566 * hva_node needs to be swapped with remove+insert even though hva can't 1567 * change when replacing an existing slot. 1568 */ 1569 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1570 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1571 1572 /* 1573 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1574 * switch the node in the gfn tree instead of removing the old and 1575 * inserting the new as two separate operations. Replacement is a 1576 * single O(1) operation versus two O(log(n)) operations for 1577 * remove+insert. 1578 */ 1579 if (old && old->base_gfn == new->base_gfn) { 1580 kvm_replace_gfn_node(slots, old, new); 1581 } else { 1582 if (old) 1583 kvm_erase_gfn_node(slots, old); 1584 kvm_insert_gfn_node(slots, new); 1585 } 1586 } 1587 1588 /* 1589 * Flags that do not access any of the extra space of struct 1590 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1591 * only allows these. 1592 */ 1593 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1594 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1595 1596 static int check_memory_region_flags(struct kvm *kvm, 1597 const struct kvm_userspace_memory_region2 *mem) 1598 { 1599 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1600 1601 if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) 1602 valid_flags |= KVM_MEM_GUEST_MEMFD; 1603 1604 /* Dirty logging private memory is not currently supported. */ 1605 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1606 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1607 1608 /* 1609 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1610 * read-only memslots have emulated MMIO, not page fault, semantics, 1611 * and KVM doesn't allow emulated MMIO for private memory. 1612 */ 1613 if (kvm_arch_has_readonly_mem(kvm) && 1614 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1615 valid_flags |= KVM_MEM_READONLY; 1616 1617 if (mem->flags & ~valid_flags) 1618 return -EINVAL; 1619 1620 return 0; 1621 } 1622 1623 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1624 { 1625 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1626 1627 /* Grab the generation from the activate memslots. */ 1628 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1629 1630 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1631 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1632 1633 /* 1634 * Do not store the new memslots while there are invalidations in 1635 * progress, otherwise the locking in invalidate_range_start and 1636 * invalidate_range_end will be unbalanced. 1637 */ 1638 spin_lock(&kvm->mn_invalidate_lock); 1639 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1640 while (kvm->mn_active_invalidate_count) { 1641 set_current_state(TASK_UNINTERRUPTIBLE); 1642 spin_unlock(&kvm->mn_invalidate_lock); 1643 schedule(); 1644 spin_lock(&kvm->mn_invalidate_lock); 1645 } 1646 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1647 rcu_assign_pointer(kvm->memslots[as_id], slots); 1648 spin_unlock(&kvm->mn_invalidate_lock); 1649 1650 /* 1651 * Acquired in kvm_set_memslot. Must be released before synchronize 1652 * SRCU below in order to avoid deadlock with another thread 1653 * acquiring the slots_arch_lock in an srcu critical section. 1654 */ 1655 mutex_unlock(&kvm->slots_arch_lock); 1656 1657 synchronize_srcu_expedited(&kvm->srcu); 1658 1659 /* 1660 * Increment the new memslot generation a second time, dropping the 1661 * update in-progress flag and incrementing the generation based on 1662 * the number of address spaces. This provides a unique and easily 1663 * identifiable generation number while the memslots are in flux. 1664 */ 1665 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1666 1667 /* 1668 * Generations must be unique even across address spaces. We do not need 1669 * a global counter for that, instead the generation space is evenly split 1670 * across address spaces. For example, with two address spaces, address 1671 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1672 * use generations 1, 3, 5, ... 1673 */ 1674 gen += kvm_arch_nr_memslot_as_ids(kvm); 1675 1676 kvm_arch_memslots_updated(kvm, gen); 1677 1678 slots->generation = gen; 1679 } 1680 1681 static int kvm_prepare_memory_region(struct kvm *kvm, 1682 const struct kvm_memory_slot *old, 1683 struct kvm_memory_slot *new, 1684 enum kvm_mr_change change) 1685 { 1686 int r; 1687 1688 /* 1689 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1690 * will be freed on "commit". If logging is enabled in both old and 1691 * new, reuse the existing bitmap. If logging is enabled only in the 1692 * new and KVM isn't using a ring buffer, allocate and initialize a 1693 * new bitmap. 1694 */ 1695 if (change != KVM_MR_DELETE) { 1696 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1697 new->dirty_bitmap = NULL; 1698 else if (old && old->dirty_bitmap) 1699 new->dirty_bitmap = old->dirty_bitmap; 1700 else if (kvm_use_dirty_bitmap(kvm)) { 1701 r = kvm_alloc_dirty_bitmap(new); 1702 if (r) 1703 return r; 1704 1705 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1706 bitmap_set(new->dirty_bitmap, 0, new->npages); 1707 } 1708 } 1709 1710 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1711 1712 /* Free the bitmap on failure if it was allocated above. */ 1713 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1714 kvm_destroy_dirty_bitmap(new); 1715 1716 return r; 1717 } 1718 1719 static void kvm_commit_memory_region(struct kvm *kvm, 1720 struct kvm_memory_slot *old, 1721 const struct kvm_memory_slot *new, 1722 enum kvm_mr_change change) 1723 { 1724 int old_flags = old ? old->flags : 0; 1725 int new_flags = new ? new->flags : 0; 1726 /* 1727 * Update the total number of memslot pages before calling the arch 1728 * hook so that architectures can consume the result directly. 1729 */ 1730 if (change == KVM_MR_DELETE) 1731 kvm->nr_memslot_pages -= old->npages; 1732 else if (change == KVM_MR_CREATE) 1733 kvm->nr_memslot_pages += new->npages; 1734 1735 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1736 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1737 atomic_set(&kvm->nr_memslots_dirty_logging, 1738 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1739 } 1740 1741 kvm_arch_commit_memory_region(kvm, old, new, change); 1742 1743 switch (change) { 1744 case KVM_MR_CREATE: 1745 /* Nothing more to do. */ 1746 break; 1747 case KVM_MR_DELETE: 1748 /* Free the old memslot and all its metadata. */ 1749 kvm_free_memslot(kvm, old); 1750 break; 1751 case KVM_MR_MOVE: 1752 case KVM_MR_FLAGS_ONLY: 1753 /* 1754 * Free the dirty bitmap as needed; the below check encompasses 1755 * both the flags and whether a ring buffer is being used) 1756 */ 1757 if (old->dirty_bitmap && !new->dirty_bitmap) 1758 kvm_destroy_dirty_bitmap(old); 1759 1760 /* 1761 * The final quirk. Free the detached, old slot, but only its 1762 * memory, not any metadata. Metadata, including arch specific 1763 * data, may be reused by @new. 1764 */ 1765 kfree(old); 1766 break; 1767 default: 1768 BUG(); 1769 } 1770 } 1771 1772 /* 1773 * Activate @new, which must be installed in the inactive slots by the caller, 1774 * by swapping the active slots and then propagating @new to @old once @old is 1775 * unreachable and can be safely modified. 1776 * 1777 * With NULL @old this simply adds @new to @active (while swapping the sets). 1778 * With NULL @new this simply removes @old from @active and frees it 1779 * (while also swapping the sets). 1780 */ 1781 static void kvm_activate_memslot(struct kvm *kvm, 1782 struct kvm_memory_slot *old, 1783 struct kvm_memory_slot *new) 1784 { 1785 int as_id = kvm_memslots_get_as_id(old, new); 1786 1787 kvm_swap_active_memslots(kvm, as_id); 1788 1789 /* Propagate the new memslot to the now inactive memslots. */ 1790 kvm_replace_memslot(kvm, old, new); 1791 } 1792 1793 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1794 const struct kvm_memory_slot *src) 1795 { 1796 dest->base_gfn = src->base_gfn; 1797 dest->npages = src->npages; 1798 dest->dirty_bitmap = src->dirty_bitmap; 1799 dest->arch = src->arch; 1800 dest->userspace_addr = src->userspace_addr; 1801 dest->flags = src->flags; 1802 dest->id = src->id; 1803 dest->as_id = src->as_id; 1804 } 1805 1806 static void kvm_invalidate_memslot(struct kvm *kvm, 1807 struct kvm_memory_slot *old, 1808 struct kvm_memory_slot *invalid_slot) 1809 { 1810 /* 1811 * Mark the current slot INVALID. As with all memslot modifications, 1812 * this must be done on an unreachable slot to avoid modifying the 1813 * current slot in the active tree. 1814 */ 1815 kvm_copy_memslot(invalid_slot, old); 1816 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1817 kvm_replace_memslot(kvm, old, invalid_slot); 1818 1819 /* 1820 * Activate the slot that is now marked INVALID, but don't propagate 1821 * the slot to the now inactive slots. The slot is either going to be 1822 * deleted or recreated as a new slot. 1823 */ 1824 kvm_swap_active_memslots(kvm, old->as_id); 1825 1826 /* 1827 * From this point no new shadow pages pointing to a deleted, or moved, 1828 * memslot will be created. Validation of sp->gfn happens in: 1829 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1830 * - kvm_is_visible_gfn (mmu_check_root) 1831 */ 1832 kvm_arch_flush_shadow_memslot(kvm, old); 1833 kvm_arch_guest_memory_reclaimed(kvm); 1834 1835 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1836 mutex_lock(&kvm->slots_arch_lock); 1837 1838 /* 1839 * Copy the arch-specific field of the newly-installed slot back to the 1840 * old slot as the arch data could have changed between releasing 1841 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1842 * above. Writers are required to retrieve memslots *after* acquiring 1843 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1844 */ 1845 old->arch = invalid_slot->arch; 1846 } 1847 1848 static void kvm_create_memslot(struct kvm *kvm, 1849 struct kvm_memory_slot *new) 1850 { 1851 /* Add the new memslot to the inactive set and activate. */ 1852 kvm_replace_memslot(kvm, NULL, new); 1853 kvm_activate_memslot(kvm, NULL, new); 1854 } 1855 1856 static void kvm_delete_memslot(struct kvm *kvm, 1857 struct kvm_memory_slot *old, 1858 struct kvm_memory_slot *invalid_slot) 1859 { 1860 /* 1861 * Remove the old memslot (in the inactive memslots) by passing NULL as 1862 * the "new" slot, and for the invalid version in the active slots. 1863 */ 1864 kvm_replace_memslot(kvm, old, NULL); 1865 kvm_activate_memslot(kvm, invalid_slot, NULL); 1866 } 1867 1868 static void kvm_move_memslot(struct kvm *kvm, 1869 struct kvm_memory_slot *old, 1870 struct kvm_memory_slot *new, 1871 struct kvm_memory_slot *invalid_slot) 1872 { 1873 /* 1874 * Replace the old memslot in the inactive slots, and then swap slots 1875 * and replace the current INVALID with the new as well. 1876 */ 1877 kvm_replace_memslot(kvm, old, new); 1878 kvm_activate_memslot(kvm, invalid_slot, new); 1879 } 1880 1881 static void kvm_update_flags_memslot(struct kvm *kvm, 1882 struct kvm_memory_slot *old, 1883 struct kvm_memory_slot *new) 1884 { 1885 /* 1886 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1887 * an intermediate step. Instead, the old memslot is simply replaced 1888 * with a new, updated copy in both memslot sets. 1889 */ 1890 kvm_replace_memslot(kvm, old, new); 1891 kvm_activate_memslot(kvm, old, new); 1892 } 1893 1894 static int kvm_set_memslot(struct kvm *kvm, 1895 struct kvm_memory_slot *old, 1896 struct kvm_memory_slot *new, 1897 enum kvm_mr_change change) 1898 { 1899 struct kvm_memory_slot *invalid_slot; 1900 int r; 1901 1902 /* 1903 * Released in kvm_swap_active_memslots(). 1904 * 1905 * Must be held from before the current memslots are copied until after 1906 * the new memslots are installed with rcu_assign_pointer, then 1907 * released before the synchronize srcu in kvm_swap_active_memslots(). 1908 * 1909 * When modifying memslots outside of the slots_lock, must be held 1910 * before reading the pointer to the current memslots until after all 1911 * changes to those memslots are complete. 1912 * 1913 * These rules ensure that installing new memslots does not lose 1914 * changes made to the previous memslots. 1915 */ 1916 mutex_lock(&kvm->slots_arch_lock); 1917 1918 /* 1919 * Invalidate the old slot if it's being deleted or moved. This is 1920 * done prior to actually deleting/moving the memslot to allow vCPUs to 1921 * continue running by ensuring there are no mappings or shadow pages 1922 * for the memslot when it is deleted/moved. Without pre-invalidation 1923 * (and without a lock), a window would exist between effecting the 1924 * delete/move and committing the changes in arch code where KVM or a 1925 * guest could access a non-existent memslot. 1926 * 1927 * Modifications are done on a temporary, unreachable slot. The old 1928 * slot needs to be preserved in case a later step fails and the 1929 * invalidation needs to be reverted. 1930 */ 1931 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1932 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1933 if (!invalid_slot) { 1934 mutex_unlock(&kvm->slots_arch_lock); 1935 return -ENOMEM; 1936 } 1937 kvm_invalidate_memslot(kvm, old, invalid_slot); 1938 } 1939 1940 r = kvm_prepare_memory_region(kvm, old, new, change); 1941 if (r) { 1942 /* 1943 * For DELETE/MOVE, revert the above INVALID change. No 1944 * modifications required since the original slot was preserved 1945 * in the inactive slots. Changing the active memslots also 1946 * release slots_arch_lock. 1947 */ 1948 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1949 kvm_activate_memslot(kvm, invalid_slot, old); 1950 kfree(invalid_slot); 1951 } else { 1952 mutex_unlock(&kvm->slots_arch_lock); 1953 } 1954 return r; 1955 } 1956 1957 /* 1958 * For DELETE and MOVE, the working slot is now active as the INVALID 1959 * version of the old slot. MOVE is particularly special as it reuses 1960 * the old slot and returns a copy of the old slot (in working_slot). 1961 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1962 * old slot is detached but otherwise preserved. 1963 */ 1964 if (change == KVM_MR_CREATE) 1965 kvm_create_memslot(kvm, new); 1966 else if (change == KVM_MR_DELETE) 1967 kvm_delete_memslot(kvm, old, invalid_slot); 1968 else if (change == KVM_MR_MOVE) 1969 kvm_move_memslot(kvm, old, new, invalid_slot); 1970 else if (change == KVM_MR_FLAGS_ONLY) 1971 kvm_update_flags_memslot(kvm, old, new); 1972 else 1973 BUG(); 1974 1975 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1976 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1977 kfree(invalid_slot); 1978 1979 /* 1980 * No need to refresh new->arch, changes after dropping slots_arch_lock 1981 * will directly hit the final, active memslot. Architectures are 1982 * responsible for knowing that new->arch may be stale. 1983 */ 1984 kvm_commit_memory_region(kvm, old, new, change); 1985 1986 return 0; 1987 } 1988 1989 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1990 gfn_t start, gfn_t end) 1991 { 1992 struct kvm_memslot_iter iter; 1993 1994 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1995 if (iter.slot->id != id) 1996 return true; 1997 } 1998 1999 return false; 2000 } 2001 2002 static int kvm_set_memory_region(struct kvm *kvm, 2003 const struct kvm_userspace_memory_region2 *mem) 2004 { 2005 struct kvm_memory_slot *old, *new; 2006 struct kvm_memslots *slots; 2007 enum kvm_mr_change change; 2008 unsigned long npages; 2009 gfn_t base_gfn; 2010 int as_id, id; 2011 int r; 2012 2013 lockdep_assert_held(&kvm->slots_lock); 2014 2015 r = check_memory_region_flags(kvm, mem); 2016 if (r) 2017 return r; 2018 2019 as_id = mem->slot >> 16; 2020 id = (u16)mem->slot; 2021 2022 /* General sanity checks */ 2023 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2024 (mem->memory_size != (unsigned long)mem->memory_size)) 2025 return -EINVAL; 2026 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2027 return -EINVAL; 2028 /* We can read the guest memory with __xxx_user() later on. */ 2029 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2030 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2031 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2032 mem->memory_size)) 2033 return -EINVAL; 2034 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2035 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2036 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2037 return -EINVAL; 2038 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2039 return -EINVAL; 2040 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2041 return -EINVAL; 2042 2043 /* 2044 * The size of userspace-defined memory regions is restricted in order 2045 * to play nice with dirty bitmap operations, which are indexed with an 2046 * "unsigned int". KVM's internal memory regions don't support dirty 2047 * logging, and so are exempt. 2048 */ 2049 if (id < KVM_USER_MEM_SLOTS && 2050 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2051 return -EINVAL; 2052 2053 slots = __kvm_memslots(kvm, as_id); 2054 2055 /* 2056 * Note, the old memslot (and the pointer itself!) may be invalidated 2057 * and/or destroyed by kvm_set_memslot(). 2058 */ 2059 old = id_to_memslot(slots, id); 2060 2061 if (!mem->memory_size) { 2062 if (!old || !old->npages) 2063 return -EINVAL; 2064 2065 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2066 return -EIO; 2067 2068 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2069 } 2070 2071 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2072 npages = (mem->memory_size >> PAGE_SHIFT); 2073 2074 if (!old || !old->npages) { 2075 change = KVM_MR_CREATE; 2076 2077 /* 2078 * To simplify KVM internals, the total number of pages across 2079 * all memslots must fit in an unsigned long. 2080 */ 2081 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2082 return -EINVAL; 2083 } else { /* Modify an existing slot. */ 2084 /* Private memslots are immutable, they can only be deleted. */ 2085 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2086 return -EINVAL; 2087 if ((mem->userspace_addr != old->userspace_addr) || 2088 (npages != old->npages) || 2089 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2090 return -EINVAL; 2091 2092 if (base_gfn != old->base_gfn) 2093 change = KVM_MR_MOVE; 2094 else if (mem->flags != old->flags) 2095 change = KVM_MR_FLAGS_ONLY; 2096 else /* Nothing to change. */ 2097 return 0; 2098 } 2099 2100 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2101 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2102 return -EEXIST; 2103 2104 /* Allocate a slot that will persist in the memslot. */ 2105 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2106 if (!new) 2107 return -ENOMEM; 2108 2109 new->as_id = as_id; 2110 new->id = id; 2111 new->base_gfn = base_gfn; 2112 new->npages = npages; 2113 new->flags = mem->flags; 2114 new->userspace_addr = mem->userspace_addr; 2115 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2116 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2117 if (r) 2118 goto out; 2119 } 2120 2121 r = kvm_set_memslot(kvm, old, new, change); 2122 if (r) 2123 goto out_unbind; 2124 2125 return 0; 2126 2127 out_unbind: 2128 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2129 kvm_gmem_unbind(new); 2130 out: 2131 kfree(new); 2132 return r; 2133 } 2134 2135 int kvm_set_internal_memslot(struct kvm *kvm, 2136 const struct kvm_userspace_memory_region2 *mem) 2137 { 2138 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS)) 2139 return -EINVAL; 2140 2141 if (WARN_ON_ONCE(mem->flags)) 2142 return -EINVAL; 2143 2144 return kvm_set_memory_region(kvm, mem); 2145 } 2146 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot); 2147 2148 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2149 struct kvm_userspace_memory_region2 *mem) 2150 { 2151 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2152 return -EINVAL; 2153 2154 guard(mutex)(&kvm->slots_lock); 2155 return kvm_set_memory_region(kvm, mem); 2156 } 2157 2158 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2159 /** 2160 * kvm_get_dirty_log - get a snapshot of dirty pages 2161 * @kvm: pointer to kvm instance 2162 * @log: slot id and address to which we copy the log 2163 * @is_dirty: set to '1' if any dirty pages were found 2164 * @memslot: set to the associated memslot, always valid on success 2165 */ 2166 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2167 int *is_dirty, struct kvm_memory_slot **memslot) 2168 { 2169 struct kvm_memslots *slots; 2170 int i, as_id, id; 2171 unsigned long n; 2172 unsigned long any = 0; 2173 2174 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2175 if (!kvm_use_dirty_bitmap(kvm)) 2176 return -ENXIO; 2177 2178 *memslot = NULL; 2179 *is_dirty = 0; 2180 2181 as_id = log->slot >> 16; 2182 id = (u16)log->slot; 2183 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2184 return -EINVAL; 2185 2186 slots = __kvm_memslots(kvm, as_id); 2187 *memslot = id_to_memslot(slots, id); 2188 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2189 return -ENOENT; 2190 2191 kvm_arch_sync_dirty_log(kvm, *memslot); 2192 2193 n = kvm_dirty_bitmap_bytes(*memslot); 2194 2195 for (i = 0; !any && i < n/sizeof(long); ++i) 2196 any = (*memslot)->dirty_bitmap[i]; 2197 2198 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2199 return -EFAULT; 2200 2201 if (any) 2202 *is_dirty = 1; 2203 return 0; 2204 } 2205 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log); 2206 2207 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2208 /** 2209 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2210 * and reenable dirty page tracking for the corresponding pages. 2211 * @kvm: pointer to kvm instance 2212 * @log: slot id and address to which we copy the log 2213 * 2214 * We need to keep it in mind that VCPU threads can write to the bitmap 2215 * concurrently. So, to avoid losing track of dirty pages we keep the 2216 * following order: 2217 * 2218 * 1. Take a snapshot of the bit and clear it if needed. 2219 * 2. Write protect the corresponding page. 2220 * 3. Copy the snapshot to the userspace. 2221 * 4. Upon return caller flushes TLB's if needed. 2222 * 2223 * Between 2 and 4, the guest may write to the page using the remaining TLB 2224 * entry. This is not a problem because the page is reported dirty using 2225 * the snapshot taken before and step 4 ensures that writes done after 2226 * exiting to userspace will be logged for the next call. 2227 * 2228 */ 2229 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2230 { 2231 struct kvm_memslots *slots; 2232 struct kvm_memory_slot *memslot; 2233 int i, as_id, id; 2234 unsigned long n; 2235 unsigned long *dirty_bitmap; 2236 unsigned long *dirty_bitmap_buffer; 2237 bool flush; 2238 2239 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2240 if (!kvm_use_dirty_bitmap(kvm)) 2241 return -ENXIO; 2242 2243 as_id = log->slot >> 16; 2244 id = (u16)log->slot; 2245 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2246 return -EINVAL; 2247 2248 slots = __kvm_memslots(kvm, as_id); 2249 memslot = id_to_memslot(slots, id); 2250 if (!memslot || !memslot->dirty_bitmap) 2251 return -ENOENT; 2252 2253 dirty_bitmap = memslot->dirty_bitmap; 2254 2255 kvm_arch_sync_dirty_log(kvm, memslot); 2256 2257 n = kvm_dirty_bitmap_bytes(memslot); 2258 flush = false; 2259 if (kvm->manual_dirty_log_protect) { 2260 /* 2261 * Unlike kvm_get_dirty_log, we always return false in *flush, 2262 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2263 * is some code duplication between this function and 2264 * kvm_get_dirty_log, but hopefully all architecture 2265 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2266 * can be eliminated. 2267 */ 2268 dirty_bitmap_buffer = dirty_bitmap; 2269 } else { 2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2271 memset(dirty_bitmap_buffer, 0, n); 2272 2273 KVM_MMU_LOCK(kvm); 2274 for (i = 0; i < n / sizeof(long); i++) { 2275 unsigned long mask; 2276 gfn_t offset; 2277 2278 if (!dirty_bitmap[i]) 2279 continue; 2280 2281 flush = true; 2282 mask = xchg(&dirty_bitmap[i], 0); 2283 dirty_bitmap_buffer[i] = mask; 2284 2285 offset = i * BITS_PER_LONG; 2286 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2287 offset, mask); 2288 } 2289 KVM_MMU_UNLOCK(kvm); 2290 } 2291 2292 if (flush) 2293 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2294 2295 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2296 return -EFAULT; 2297 return 0; 2298 } 2299 2300 2301 /** 2302 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2303 * @kvm: kvm instance 2304 * @log: slot id and address to which we copy the log 2305 * 2306 * Steps 1-4 below provide general overview of dirty page logging. See 2307 * kvm_get_dirty_log_protect() function description for additional details. 2308 * 2309 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2310 * always flush the TLB (step 4) even if previous step failed and the dirty 2311 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2312 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2313 * writes will be marked dirty for next log read. 2314 * 2315 * 1. Take a snapshot of the bit and clear it if needed. 2316 * 2. Write protect the corresponding page. 2317 * 3. Copy the snapshot to the userspace. 2318 * 4. Flush TLB's if needed. 2319 */ 2320 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2321 struct kvm_dirty_log *log) 2322 { 2323 int r; 2324 2325 mutex_lock(&kvm->slots_lock); 2326 2327 r = kvm_get_dirty_log_protect(kvm, log); 2328 2329 mutex_unlock(&kvm->slots_lock); 2330 return r; 2331 } 2332 2333 /** 2334 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2335 * and reenable dirty page tracking for the corresponding pages. 2336 * @kvm: pointer to kvm instance 2337 * @log: slot id and address from which to fetch the bitmap of dirty pages 2338 */ 2339 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2340 struct kvm_clear_dirty_log *log) 2341 { 2342 struct kvm_memslots *slots; 2343 struct kvm_memory_slot *memslot; 2344 int as_id, id; 2345 gfn_t offset; 2346 unsigned long i, n; 2347 unsigned long *dirty_bitmap; 2348 unsigned long *dirty_bitmap_buffer; 2349 bool flush; 2350 2351 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2352 if (!kvm_use_dirty_bitmap(kvm)) 2353 return -ENXIO; 2354 2355 as_id = log->slot >> 16; 2356 id = (u16)log->slot; 2357 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2358 return -EINVAL; 2359 2360 if (log->first_page & 63) 2361 return -EINVAL; 2362 2363 slots = __kvm_memslots(kvm, as_id); 2364 memslot = id_to_memslot(slots, id); 2365 if (!memslot || !memslot->dirty_bitmap) 2366 return -ENOENT; 2367 2368 dirty_bitmap = memslot->dirty_bitmap; 2369 2370 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2371 2372 if (log->first_page > memslot->npages || 2373 log->num_pages > memslot->npages - log->first_page || 2374 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2375 return -EINVAL; 2376 2377 kvm_arch_sync_dirty_log(kvm, memslot); 2378 2379 flush = false; 2380 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2381 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2382 return -EFAULT; 2383 2384 KVM_MMU_LOCK(kvm); 2385 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2386 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2387 i++, offset += BITS_PER_LONG) { 2388 unsigned long mask = *dirty_bitmap_buffer++; 2389 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2390 if (!mask) 2391 continue; 2392 2393 mask &= atomic_long_fetch_andnot(mask, p); 2394 2395 /* 2396 * mask contains the bits that really have been cleared. This 2397 * never includes any bits beyond the length of the memslot (if 2398 * the length is not aligned to 64 pages), therefore it is not 2399 * a problem if userspace sets them in log->dirty_bitmap. 2400 */ 2401 if (mask) { 2402 flush = true; 2403 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2404 offset, mask); 2405 } 2406 } 2407 KVM_MMU_UNLOCK(kvm); 2408 2409 if (flush) 2410 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2411 2412 return 0; 2413 } 2414 2415 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2416 struct kvm_clear_dirty_log *log) 2417 { 2418 int r; 2419 2420 mutex_lock(&kvm->slots_lock); 2421 2422 r = kvm_clear_dirty_log_protect(kvm, log); 2423 2424 mutex_unlock(&kvm->slots_lock); 2425 return r; 2426 } 2427 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2428 2429 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2430 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2431 { 2432 if (!kvm || kvm_arch_has_private_mem(kvm)) 2433 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2434 2435 return 0; 2436 } 2437 2438 /* 2439 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2440 * such that the bits in @mask match @attrs. 2441 */ 2442 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2443 unsigned long mask, unsigned long attrs) 2444 { 2445 XA_STATE(xas, &kvm->mem_attr_array, start); 2446 unsigned long index; 2447 void *entry; 2448 2449 mask &= kvm_supported_mem_attributes(kvm); 2450 if (attrs & ~mask) 2451 return false; 2452 2453 if (end == start + 1) 2454 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2455 2456 guard(rcu)(); 2457 if (!attrs) 2458 return !xas_find(&xas, end - 1); 2459 2460 for (index = start; index < end; index++) { 2461 do { 2462 entry = xas_next(&xas); 2463 } while (xas_retry(&xas, entry)); 2464 2465 if (xas.xa_index != index || 2466 (xa_to_value(entry) & mask) != attrs) 2467 return false; 2468 } 2469 2470 return true; 2471 } 2472 2473 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2474 struct kvm_mmu_notifier_range *range) 2475 { 2476 struct kvm_gfn_range gfn_range; 2477 struct kvm_memory_slot *slot; 2478 struct kvm_memslots *slots; 2479 struct kvm_memslot_iter iter; 2480 bool found_memslot = false; 2481 bool ret = false; 2482 int i; 2483 2484 gfn_range.arg = range->arg; 2485 gfn_range.may_block = range->may_block; 2486 2487 /* 2488 * If/when KVM supports more attributes beyond private .vs shared, this 2489 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target 2490 * range already has the desired private vs. shared state (it's unclear 2491 * if that is a net win). For now, KVM reaches this point if and only 2492 * if the private flag is being toggled, i.e. all mappings are in play. 2493 */ 2494 2495 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2496 slots = __kvm_memslots(kvm, i); 2497 2498 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2499 slot = iter.slot; 2500 gfn_range.slot = slot; 2501 2502 gfn_range.start = max(range->start, slot->base_gfn); 2503 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2504 if (gfn_range.start >= gfn_range.end) 2505 continue; 2506 2507 if (!found_memslot) { 2508 found_memslot = true; 2509 KVM_MMU_LOCK(kvm); 2510 if (!IS_KVM_NULL_FN(range->on_lock)) 2511 range->on_lock(kvm); 2512 } 2513 2514 ret |= range->handler(kvm, &gfn_range); 2515 } 2516 } 2517 2518 if (range->flush_on_ret && ret) 2519 kvm_flush_remote_tlbs(kvm); 2520 2521 if (found_memslot) 2522 KVM_MMU_UNLOCK(kvm); 2523 } 2524 2525 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2526 struct kvm_gfn_range *range) 2527 { 2528 /* 2529 * Unconditionally add the range to the invalidation set, regardless of 2530 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2531 * if KVM supports RWX attributes in the future and the attributes are 2532 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2533 * adding the range allows KVM to require that MMU invalidations add at 2534 * least one range between begin() and end(), e.g. allows KVM to detect 2535 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2536 * but it's not obvious that allowing new mappings while the attributes 2537 * are in flux is desirable or worth the complexity. 2538 */ 2539 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2540 2541 return kvm_arch_pre_set_memory_attributes(kvm, range); 2542 } 2543 2544 /* Set @attributes for the gfn range [@start, @end). */ 2545 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2546 unsigned long attributes) 2547 { 2548 struct kvm_mmu_notifier_range pre_set_range = { 2549 .start = start, 2550 .end = end, 2551 .arg.attributes = attributes, 2552 .handler = kvm_pre_set_memory_attributes, 2553 .on_lock = kvm_mmu_invalidate_begin, 2554 .flush_on_ret = true, 2555 .may_block = true, 2556 }; 2557 struct kvm_mmu_notifier_range post_set_range = { 2558 .start = start, 2559 .end = end, 2560 .arg.attributes = attributes, 2561 .handler = kvm_arch_post_set_memory_attributes, 2562 .on_lock = kvm_mmu_invalidate_end, 2563 .may_block = true, 2564 }; 2565 unsigned long i; 2566 void *entry; 2567 int r = 0; 2568 2569 entry = attributes ? xa_mk_value(attributes) : NULL; 2570 2571 trace_kvm_vm_set_mem_attributes(start, end, attributes); 2572 2573 mutex_lock(&kvm->slots_lock); 2574 2575 /* Nothing to do if the entire range has the desired attributes. */ 2576 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2577 goto out_unlock; 2578 2579 /* 2580 * Reserve memory ahead of time to avoid having to deal with failures 2581 * partway through setting the new attributes. 2582 */ 2583 for (i = start; i < end; i++) { 2584 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2585 if (r) 2586 goto out_unlock; 2587 2588 cond_resched(); 2589 } 2590 2591 kvm_handle_gfn_range(kvm, &pre_set_range); 2592 2593 for (i = start; i < end; i++) { 2594 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2595 GFP_KERNEL_ACCOUNT)); 2596 KVM_BUG_ON(r, kvm); 2597 cond_resched(); 2598 } 2599 2600 kvm_handle_gfn_range(kvm, &post_set_range); 2601 2602 out_unlock: 2603 mutex_unlock(&kvm->slots_lock); 2604 2605 return r; 2606 } 2607 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2608 struct kvm_memory_attributes *attrs) 2609 { 2610 gfn_t start, end; 2611 2612 /* flags is currently not used. */ 2613 if (attrs->flags) 2614 return -EINVAL; 2615 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2616 return -EINVAL; 2617 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2618 return -EINVAL; 2619 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2620 return -EINVAL; 2621 2622 start = attrs->address >> PAGE_SHIFT; 2623 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2624 2625 /* 2626 * xarray tracks data using "unsigned long", and as a result so does 2627 * KVM. For simplicity, supports generic attributes only on 64-bit 2628 * architectures. 2629 */ 2630 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2631 2632 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2633 } 2634 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2635 2636 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2637 { 2638 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2639 } 2640 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot); 2641 2642 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2643 { 2644 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2645 u64 gen = slots->generation; 2646 struct kvm_memory_slot *slot; 2647 2648 /* 2649 * This also protects against using a memslot from a different address space, 2650 * since different address spaces have different generation numbers. 2651 */ 2652 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2653 vcpu->last_used_slot = NULL; 2654 vcpu->last_used_slot_gen = gen; 2655 } 2656 2657 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2658 if (slot) 2659 return slot; 2660 2661 /* 2662 * Fall back to searching all memslots. We purposely use 2663 * search_memslots() instead of __gfn_to_memslot() to avoid 2664 * thrashing the VM-wide last_used_slot in kvm_memslots. 2665 */ 2666 slot = search_memslots(slots, gfn, false); 2667 if (slot) { 2668 vcpu->last_used_slot = slot; 2669 return slot; 2670 } 2671 2672 return NULL; 2673 } 2674 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot); 2675 2676 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2677 { 2678 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2679 2680 return kvm_is_visible_memslot(memslot); 2681 } 2682 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn); 2683 2684 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2685 { 2686 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2687 2688 return kvm_is_visible_memslot(memslot); 2689 } 2690 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn); 2691 2692 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2693 { 2694 struct vm_area_struct *vma; 2695 unsigned long addr, size; 2696 2697 size = PAGE_SIZE; 2698 2699 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2700 if (kvm_is_error_hva(addr)) 2701 return PAGE_SIZE; 2702 2703 mmap_read_lock(current->mm); 2704 vma = find_vma(current->mm, addr); 2705 if (!vma) 2706 goto out; 2707 2708 size = vma_kernel_pagesize(vma); 2709 2710 out: 2711 mmap_read_unlock(current->mm); 2712 2713 return size; 2714 } 2715 2716 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2717 { 2718 return slot->flags & KVM_MEM_READONLY; 2719 } 2720 2721 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2722 gfn_t *nr_pages, bool write) 2723 { 2724 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2725 return KVM_HVA_ERR_BAD; 2726 2727 if (memslot_is_readonly(slot) && write) 2728 return KVM_HVA_ERR_RO_BAD; 2729 2730 if (nr_pages) 2731 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2732 2733 return __gfn_to_hva_memslot(slot, gfn); 2734 } 2735 2736 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2737 gfn_t *nr_pages) 2738 { 2739 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2740 } 2741 2742 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2743 gfn_t gfn) 2744 { 2745 return gfn_to_hva_many(slot, gfn, NULL); 2746 } 2747 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot); 2748 2749 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2750 { 2751 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2752 } 2753 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva); 2754 2755 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2756 { 2757 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2758 } 2759 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva); 2760 2761 /* 2762 * Return the hva of a @gfn and the R/W attribute if possible. 2763 * 2764 * @slot: the kvm_memory_slot which contains @gfn 2765 * @gfn: the gfn to be translated 2766 * @writable: used to return the read/write attribute of the @slot if the hva 2767 * is valid and @writable is not NULL 2768 */ 2769 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2770 gfn_t gfn, bool *writable) 2771 { 2772 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2773 2774 if (!kvm_is_error_hva(hva) && writable) 2775 *writable = !memslot_is_readonly(slot); 2776 2777 return hva; 2778 } 2779 2780 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2781 { 2782 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2783 2784 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2785 } 2786 2787 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2788 { 2789 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2790 2791 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2792 } 2793 2794 static bool kvm_is_ad_tracked_page(struct page *page) 2795 { 2796 /* 2797 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2798 * touched (e.g. set dirty) except by its owner". 2799 */ 2800 return !PageReserved(page); 2801 } 2802 2803 static void kvm_set_page_dirty(struct page *page) 2804 { 2805 if (kvm_is_ad_tracked_page(page)) 2806 SetPageDirty(page); 2807 } 2808 2809 static void kvm_set_page_accessed(struct page *page) 2810 { 2811 if (kvm_is_ad_tracked_page(page)) 2812 mark_page_accessed(page); 2813 } 2814 2815 void kvm_release_page_clean(struct page *page) 2816 { 2817 if (!page) 2818 return; 2819 2820 kvm_set_page_accessed(page); 2821 put_page(page); 2822 } 2823 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean); 2824 2825 void kvm_release_page_dirty(struct page *page) 2826 { 2827 if (!page) 2828 return; 2829 2830 kvm_set_page_dirty(page); 2831 kvm_release_page_clean(page); 2832 } 2833 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty); 2834 2835 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, 2836 struct follow_pfnmap_args *map, bool writable) 2837 { 2838 kvm_pfn_t pfn; 2839 2840 WARN_ON_ONCE(!!page == !!map); 2841 2842 if (kfp->map_writable) 2843 *kfp->map_writable = writable; 2844 2845 if (map) 2846 pfn = map->pfn; 2847 else 2848 pfn = page_to_pfn(page); 2849 2850 *kfp->refcounted_page = page; 2851 2852 return pfn; 2853 } 2854 2855 /* 2856 * The fast path to get the writable pfn which will be stored in @pfn, 2857 * true indicates success, otherwise false is returned. 2858 */ 2859 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2860 { 2861 struct page *page; 2862 bool r; 2863 2864 /* 2865 * Try the fast-only path when the caller wants to pin/get the page for 2866 * writing. If the caller only wants to read the page, KVM must go 2867 * down the full, slow path in order to avoid racing an operation that 2868 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing 2869 * at the old, read-only page while mm/ points at a new, writable page. 2870 */ 2871 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) 2872 return false; 2873 2874 if (kfp->pin) 2875 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; 2876 else 2877 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); 2878 2879 if (r) { 2880 *pfn = kvm_resolve_pfn(kfp, page, NULL, true); 2881 return true; 2882 } 2883 2884 return false; 2885 } 2886 2887 /* 2888 * The slow path to get the pfn of the specified host virtual address, 2889 * 1 indicates success, -errno is returned if error is detected. 2890 */ 2891 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2892 { 2893 /* 2894 * When a VCPU accesses a page that is not mapped into the secondary 2895 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2896 * make progress. We always want to honor NUMA hinting faults in that 2897 * case, because GUP usage corresponds to memory accesses from the VCPU. 2898 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2899 * mapped into the secondary MMU and gets accessed by a VCPU. 2900 * 2901 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2902 * implicitly honor NUMA hinting faults and don't need this flag. 2903 */ 2904 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; 2905 struct page *page, *wpage; 2906 int npages; 2907 2908 if (kfp->pin) 2909 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); 2910 else 2911 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); 2912 if (npages != 1) 2913 return npages; 2914 2915 /* 2916 * Pinning is mutually exclusive with opportunistically mapping a read 2917 * fault as writable, as KVM should never pin pages when mapping memory 2918 * into the guest (pinning is only for direct accesses from KVM). 2919 */ 2920 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) 2921 goto out; 2922 2923 /* map read fault as writable if possible */ 2924 if (!(flags & FOLL_WRITE) && kfp->map_writable && 2925 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { 2926 put_page(page); 2927 page = wpage; 2928 flags |= FOLL_WRITE; 2929 } 2930 2931 out: 2932 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); 2933 return npages; 2934 } 2935 2936 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2937 { 2938 if (unlikely(!(vma->vm_flags & VM_READ))) 2939 return false; 2940 2941 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2942 return false; 2943 2944 return true; 2945 } 2946 2947 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2948 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) 2949 { 2950 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; 2951 bool write_fault = kfp->flags & FOLL_WRITE; 2952 int r; 2953 2954 /* 2955 * Remapped memory cannot be pinned in any meaningful sense. Bail if 2956 * the caller wants to pin the page, i.e. access the page outside of 2957 * MMU notifier protection, and unsafe umappings are disallowed. 2958 */ 2959 if (kfp->pin && !allow_unsafe_mappings) 2960 return -EINVAL; 2961 2962 r = follow_pfnmap_start(&args); 2963 if (r) { 2964 /* 2965 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2966 * not call the fault handler, so do it here. 2967 */ 2968 bool unlocked = false; 2969 r = fixup_user_fault(current->mm, kfp->hva, 2970 (write_fault ? FAULT_FLAG_WRITE : 0), 2971 &unlocked); 2972 if (unlocked) 2973 return -EAGAIN; 2974 if (r) 2975 return r; 2976 2977 r = follow_pfnmap_start(&args); 2978 if (r) 2979 return r; 2980 } 2981 2982 if (write_fault && !args.writable) { 2983 *p_pfn = KVM_PFN_ERR_RO_FAULT; 2984 goto out; 2985 } 2986 2987 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); 2988 out: 2989 follow_pfnmap_end(&args); 2990 return r; 2991 } 2992 2993 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) 2994 { 2995 struct vm_area_struct *vma; 2996 kvm_pfn_t pfn; 2997 int npages, r; 2998 2999 might_sleep(); 3000 3001 if (WARN_ON_ONCE(!kfp->refcounted_page)) 3002 return KVM_PFN_ERR_FAULT; 3003 3004 if (hva_to_pfn_fast(kfp, &pfn)) 3005 return pfn; 3006 3007 npages = hva_to_pfn_slow(kfp, &pfn); 3008 if (npages == 1) 3009 return pfn; 3010 if (npages == -EINTR || npages == -EAGAIN) 3011 return KVM_PFN_ERR_SIGPENDING; 3012 if (npages == -EHWPOISON) 3013 return KVM_PFN_ERR_HWPOISON; 3014 3015 mmap_read_lock(current->mm); 3016 retry: 3017 vma = vma_lookup(current->mm, kfp->hva); 3018 3019 if (vma == NULL) 3020 pfn = KVM_PFN_ERR_FAULT; 3021 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3022 r = hva_to_pfn_remapped(vma, kfp, &pfn); 3023 if (r == -EAGAIN) 3024 goto retry; 3025 if (r < 0) 3026 pfn = KVM_PFN_ERR_FAULT; 3027 } else { 3028 if ((kfp->flags & FOLL_NOWAIT) && 3029 vma_is_valid(vma, kfp->flags & FOLL_WRITE)) 3030 pfn = KVM_PFN_ERR_NEEDS_IO; 3031 else 3032 pfn = KVM_PFN_ERR_FAULT; 3033 } 3034 mmap_read_unlock(current->mm); 3035 return pfn; 3036 } 3037 3038 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) 3039 { 3040 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, 3041 kfp->flags & FOLL_WRITE); 3042 3043 if (kfp->hva == KVM_HVA_ERR_RO_BAD) 3044 return KVM_PFN_ERR_RO_FAULT; 3045 3046 if (kvm_is_error_hva(kfp->hva)) 3047 return KVM_PFN_NOSLOT; 3048 3049 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { 3050 *kfp->map_writable = false; 3051 kfp->map_writable = NULL; 3052 } 3053 3054 return hva_to_pfn(kfp); 3055 } 3056 3057 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 3058 unsigned int foll, bool *writable, 3059 struct page **refcounted_page) 3060 { 3061 struct kvm_follow_pfn kfp = { 3062 .slot = slot, 3063 .gfn = gfn, 3064 .flags = foll, 3065 .map_writable = writable, 3066 .refcounted_page = refcounted_page, 3067 }; 3068 3069 if (WARN_ON_ONCE(!writable || !refcounted_page)) 3070 return KVM_PFN_ERR_FAULT; 3071 3072 *writable = false; 3073 *refcounted_page = NULL; 3074 3075 return kvm_follow_pfn(&kfp); 3076 } 3077 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn); 3078 3079 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 3080 struct page **pages, int nr_pages) 3081 { 3082 unsigned long addr; 3083 gfn_t entry = 0; 3084 3085 addr = gfn_to_hva_many(slot, gfn, &entry); 3086 if (kvm_is_error_hva(addr)) 3087 return -1; 3088 3089 if (entry < nr_pages) 3090 return 0; 3091 3092 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3093 } 3094 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages); 3095 3096 /* 3097 * Don't use this API unless you are absolutely, positively certain that KVM 3098 * needs to get a struct page, e.g. to pin the page for firmware DMA. 3099 * 3100 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate 3101 * its refcount. 3102 */ 3103 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) 3104 { 3105 struct page *refcounted_page = NULL; 3106 struct kvm_follow_pfn kfp = { 3107 .slot = gfn_to_memslot(kvm, gfn), 3108 .gfn = gfn, 3109 .flags = write ? FOLL_WRITE : 0, 3110 .refcounted_page = &refcounted_page, 3111 }; 3112 3113 (void)kvm_follow_pfn(&kfp); 3114 return refcounted_page; 3115 } 3116 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page); 3117 3118 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 3119 bool writable) 3120 { 3121 struct kvm_follow_pfn kfp = { 3122 .slot = gfn_to_memslot(vcpu->kvm, gfn), 3123 .gfn = gfn, 3124 .flags = writable ? FOLL_WRITE : 0, 3125 .refcounted_page = &map->pinned_page, 3126 .pin = true, 3127 }; 3128 3129 map->pinned_page = NULL; 3130 map->page = NULL; 3131 map->hva = NULL; 3132 map->gfn = gfn; 3133 map->writable = writable; 3134 3135 map->pfn = kvm_follow_pfn(&kfp); 3136 if (is_error_noslot_pfn(map->pfn)) 3137 return -EINVAL; 3138 3139 if (pfn_valid(map->pfn)) { 3140 map->page = pfn_to_page(map->pfn); 3141 map->hva = kmap(map->page); 3142 #ifdef CONFIG_HAS_IOMEM 3143 } else { 3144 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); 3145 #endif 3146 } 3147 3148 return map->hva ? 0 : -EFAULT; 3149 } 3150 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map); 3151 3152 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) 3153 { 3154 if (!map->hva) 3155 return; 3156 3157 if (map->page) 3158 kunmap(map->page); 3159 #ifdef CONFIG_HAS_IOMEM 3160 else 3161 memunmap(map->hva); 3162 #endif 3163 3164 if (map->writable) 3165 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3166 3167 if (map->pinned_page) { 3168 if (map->writable) 3169 kvm_set_page_dirty(map->pinned_page); 3170 kvm_set_page_accessed(map->pinned_page); 3171 unpin_user_page(map->pinned_page); 3172 } 3173 3174 map->hva = NULL; 3175 map->page = NULL; 3176 map->pinned_page = NULL; 3177 } 3178 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap); 3179 3180 static int next_segment(unsigned long len, int offset) 3181 { 3182 if (len > PAGE_SIZE - offset) 3183 return PAGE_SIZE - offset; 3184 else 3185 return len; 3186 } 3187 3188 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3189 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3190 void *data, int offset, int len) 3191 { 3192 int r; 3193 unsigned long addr; 3194 3195 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3196 return -EFAULT; 3197 3198 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3199 if (kvm_is_error_hva(addr)) 3200 return -EFAULT; 3201 r = __copy_from_user(data, (void __user *)addr + offset, len); 3202 if (r) 3203 return -EFAULT; 3204 return 0; 3205 } 3206 3207 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3208 int len) 3209 { 3210 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3211 3212 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3213 } 3214 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page); 3215 3216 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3217 int offset, int len) 3218 { 3219 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3220 3221 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3222 } 3223 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page); 3224 3225 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3226 { 3227 gfn_t gfn = gpa >> PAGE_SHIFT; 3228 int seg; 3229 int offset = offset_in_page(gpa); 3230 int ret; 3231 3232 while ((seg = next_segment(len, offset)) != 0) { 3233 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3234 if (ret < 0) 3235 return ret; 3236 offset = 0; 3237 len -= seg; 3238 data += seg; 3239 ++gfn; 3240 } 3241 return 0; 3242 } 3243 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest); 3244 3245 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3246 { 3247 gfn_t gfn = gpa >> PAGE_SHIFT; 3248 int seg; 3249 int offset = offset_in_page(gpa); 3250 int ret; 3251 3252 while ((seg = next_segment(len, offset)) != 0) { 3253 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3254 if (ret < 0) 3255 return ret; 3256 offset = 0; 3257 len -= seg; 3258 data += seg; 3259 ++gfn; 3260 } 3261 return 0; 3262 } 3263 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest); 3264 3265 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3266 void *data, int offset, unsigned long len) 3267 { 3268 int r; 3269 unsigned long addr; 3270 3271 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3272 return -EFAULT; 3273 3274 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3275 if (kvm_is_error_hva(addr)) 3276 return -EFAULT; 3277 pagefault_disable(); 3278 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3279 pagefault_enable(); 3280 if (r) 3281 return -EFAULT; 3282 return 0; 3283 } 3284 3285 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3286 void *data, unsigned long len) 3287 { 3288 gfn_t gfn = gpa >> PAGE_SHIFT; 3289 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3290 int offset = offset_in_page(gpa); 3291 3292 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3293 } 3294 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic); 3295 3296 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3297 static int __kvm_write_guest_page(struct kvm *kvm, 3298 struct kvm_memory_slot *memslot, gfn_t gfn, 3299 const void *data, int offset, int len) 3300 { 3301 int r; 3302 unsigned long addr; 3303 3304 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3305 return -EFAULT; 3306 3307 addr = gfn_to_hva_memslot(memslot, gfn); 3308 if (kvm_is_error_hva(addr)) 3309 return -EFAULT; 3310 r = __copy_to_user((void __user *)addr + offset, data, len); 3311 if (r) 3312 return -EFAULT; 3313 mark_page_dirty_in_slot(kvm, memslot, gfn); 3314 return 0; 3315 } 3316 3317 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3318 const void *data, int offset, int len) 3319 { 3320 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3321 3322 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3323 } 3324 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page); 3325 3326 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3327 const void *data, int offset, int len) 3328 { 3329 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3330 3331 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3332 } 3333 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page); 3334 3335 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3336 unsigned long len) 3337 { 3338 gfn_t gfn = gpa >> PAGE_SHIFT; 3339 int seg; 3340 int offset = offset_in_page(gpa); 3341 int ret; 3342 3343 while ((seg = next_segment(len, offset)) != 0) { 3344 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3345 if (ret < 0) 3346 return ret; 3347 offset = 0; 3348 len -= seg; 3349 data += seg; 3350 ++gfn; 3351 } 3352 return 0; 3353 } 3354 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest); 3355 3356 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3357 unsigned long len) 3358 { 3359 gfn_t gfn = gpa >> PAGE_SHIFT; 3360 int seg; 3361 int offset = offset_in_page(gpa); 3362 int ret; 3363 3364 while ((seg = next_segment(len, offset)) != 0) { 3365 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3366 if (ret < 0) 3367 return ret; 3368 offset = 0; 3369 len -= seg; 3370 data += seg; 3371 ++gfn; 3372 } 3373 return 0; 3374 } 3375 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest); 3376 3377 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3378 struct gfn_to_hva_cache *ghc, 3379 gpa_t gpa, unsigned long len) 3380 { 3381 int offset = offset_in_page(gpa); 3382 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3383 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3384 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3385 gfn_t nr_pages_avail; 3386 3387 /* Update ghc->generation before performing any error checks. */ 3388 ghc->generation = slots->generation; 3389 3390 if (start_gfn > end_gfn) { 3391 ghc->hva = KVM_HVA_ERR_BAD; 3392 return -EINVAL; 3393 } 3394 3395 /* 3396 * If the requested region crosses two memslots, we still 3397 * verify that the entire region is valid here. 3398 */ 3399 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3400 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3401 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3402 &nr_pages_avail); 3403 if (kvm_is_error_hva(ghc->hva)) 3404 return -EFAULT; 3405 } 3406 3407 /* Use the slow path for cross page reads and writes. */ 3408 if (nr_pages_needed == 1) 3409 ghc->hva += offset; 3410 else 3411 ghc->memslot = NULL; 3412 3413 ghc->gpa = gpa; 3414 ghc->len = len; 3415 return 0; 3416 } 3417 3418 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3419 gpa_t gpa, unsigned long len) 3420 { 3421 struct kvm_memslots *slots = kvm_memslots(kvm); 3422 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3423 } 3424 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init); 3425 3426 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3427 void *data, unsigned int offset, 3428 unsigned long len) 3429 { 3430 struct kvm_memslots *slots = kvm_memslots(kvm); 3431 int r; 3432 gpa_t gpa = ghc->gpa + offset; 3433 3434 if (WARN_ON_ONCE(len + offset > ghc->len)) 3435 return -EINVAL; 3436 3437 if (slots->generation != ghc->generation) { 3438 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3439 return -EFAULT; 3440 } 3441 3442 if (kvm_is_error_hva(ghc->hva)) 3443 return -EFAULT; 3444 3445 if (unlikely(!ghc->memslot)) 3446 return kvm_write_guest(kvm, gpa, data, len); 3447 3448 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3449 if (r) 3450 return -EFAULT; 3451 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3452 3453 return 0; 3454 } 3455 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached); 3456 3457 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3458 void *data, unsigned long len) 3459 { 3460 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3461 } 3462 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached); 3463 3464 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3465 void *data, unsigned int offset, 3466 unsigned long len) 3467 { 3468 struct kvm_memslots *slots = kvm_memslots(kvm); 3469 int r; 3470 gpa_t gpa = ghc->gpa + offset; 3471 3472 if (WARN_ON_ONCE(len + offset > ghc->len)) 3473 return -EINVAL; 3474 3475 if (slots->generation != ghc->generation) { 3476 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3477 return -EFAULT; 3478 } 3479 3480 if (kvm_is_error_hva(ghc->hva)) 3481 return -EFAULT; 3482 3483 if (unlikely(!ghc->memslot)) 3484 return kvm_read_guest(kvm, gpa, data, len); 3485 3486 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3487 if (r) 3488 return -EFAULT; 3489 3490 return 0; 3491 } 3492 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached); 3493 3494 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3495 void *data, unsigned long len) 3496 { 3497 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3498 } 3499 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached); 3500 3501 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3502 { 3503 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3504 gfn_t gfn = gpa >> PAGE_SHIFT; 3505 int seg; 3506 int offset = offset_in_page(gpa); 3507 int ret; 3508 3509 while ((seg = next_segment(len, offset)) != 0) { 3510 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); 3511 if (ret < 0) 3512 return ret; 3513 offset = 0; 3514 len -= seg; 3515 ++gfn; 3516 } 3517 return 0; 3518 } 3519 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest); 3520 3521 void mark_page_dirty_in_slot(struct kvm *kvm, 3522 const struct kvm_memory_slot *memslot, 3523 gfn_t gfn) 3524 { 3525 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3526 3527 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3528 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3529 return; 3530 3531 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3532 #endif 3533 3534 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3535 unsigned long rel_gfn = gfn - memslot->base_gfn; 3536 u32 slot = (memslot->as_id << 16) | memslot->id; 3537 3538 if (kvm->dirty_ring_size && vcpu) 3539 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3540 else if (memslot->dirty_bitmap) 3541 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3542 } 3543 } 3544 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot); 3545 3546 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3547 { 3548 struct kvm_memory_slot *memslot; 3549 3550 memslot = gfn_to_memslot(kvm, gfn); 3551 mark_page_dirty_in_slot(kvm, memslot, gfn); 3552 } 3553 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty); 3554 3555 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3556 { 3557 struct kvm_memory_slot *memslot; 3558 3559 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3560 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3561 } 3562 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty); 3563 3564 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3565 { 3566 if (!vcpu->sigset_active) 3567 return; 3568 3569 /* 3570 * This does a lockless modification of ->real_blocked, which is fine 3571 * because, only current can change ->real_blocked and all readers of 3572 * ->real_blocked don't care as long ->real_blocked is always a subset 3573 * of ->blocked. 3574 */ 3575 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3576 } 3577 3578 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3579 { 3580 if (!vcpu->sigset_active) 3581 return; 3582 3583 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3584 sigemptyset(¤t->real_blocked); 3585 } 3586 3587 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3588 { 3589 unsigned int old, val, grow, grow_start; 3590 3591 old = val = vcpu->halt_poll_ns; 3592 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3593 grow = READ_ONCE(halt_poll_ns_grow); 3594 if (!grow) 3595 goto out; 3596 3597 val *= grow; 3598 if (val < grow_start) 3599 val = grow_start; 3600 3601 vcpu->halt_poll_ns = val; 3602 out: 3603 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3604 } 3605 3606 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3607 { 3608 unsigned int old, val, shrink, grow_start; 3609 3610 old = val = vcpu->halt_poll_ns; 3611 shrink = READ_ONCE(halt_poll_ns_shrink); 3612 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3613 if (shrink == 0) 3614 val = 0; 3615 else 3616 val /= shrink; 3617 3618 if (val < grow_start) 3619 val = 0; 3620 3621 vcpu->halt_poll_ns = val; 3622 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3623 } 3624 3625 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3626 { 3627 int ret = -EINTR; 3628 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3629 3630 if (kvm_arch_vcpu_runnable(vcpu)) 3631 goto out; 3632 if (kvm_cpu_has_pending_timer(vcpu)) 3633 goto out; 3634 if (signal_pending(current)) 3635 goto out; 3636 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3637 goto out; 3638 3639 ret = 0; 3640 out: 3641 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3642 return ret; 3643 } 3644 3645 /* 3646 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3647 * pending. This is mostly used when halting a vCPU, but may also be used 3648 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3649 */ 3650 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3651 { 3652 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3653 bool waited = false; 3654 3655 vcpu->stat.generic.blocking = 1; 3656 3657 preempt_disable(); 3658 kvm_arch_vcpu_blocking(vcpu); 3659 prepare_to_rcuwait(wait); 3660 preempt_enable(); 3661 3662 for (;;) { 3663 set_current_state(TASK_INTERRUPTIBLE); 3664 3665 if (kvm_vcpu_check_block(vcpu) < 0) 3666 break; 3667 3668 waited = true; 3669 schedule(); 3670 } 3671 3672 preempt_disable(); 3673 finish_rcuwait(wait); 3674 kvm_arch_vcpu_unblocking(vcpu); 3675 preempt_enable(); 3676 3677 vcpu->stat.generic.blocking = 0; 3678 3679 return waited; 3680 } 3681 3682 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3683 ktime_t end, bool success) 3684 { 3685 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3686 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3687 3688 ++vcpu->stat.generic.halt_attempted_poll; 3689 3690 if (success) { 3691 ++vcpu->stat.generic.halt_successful_poll; 3692 3693 if (!vcpu_valid_wakeup(vcpu)) 3694 ++vcpu->stat.generic.halt_poll_invalid; 3695 3696 stats->halt_poll_success_ns += poll_ns; 3697 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3698 } else { 3699 stats->halt_poll_fail_ns += poll_ns; 3700 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3701 } 3702 } 3703 3704 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3705 { 3706 struct kvm *kvm = vcpu->kvm; 3707 3708 if (kvm->override_halt_poll_ns) { 3709 /* 3710 * Ensure kvm->max_halt_poll_ns is not read before 3711 * kvm->override_halt_poll_ns. 3712 * 3713 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3714 */ 3715 smp_rmb(); 3716 return READ_ONCE(kvm->max_halt_poll_ns); 3717 } 3718 3719 return READ_ONCE(halt_poll_ns); 3720 } 3721 3722 /* 3723 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3724 * polling is enabled, busy wait for a short time before blocking to avoid the 3725 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3726 * is halted. 3727 */ 3728 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3729 { 3730 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3731 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3732 ktime_t start, cur, poll_end; 3733 bool waited = false; 3734 bool do_halt_poll; 3735 u64 halt_ns; 3736 3737 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3738 vcpu->halt_poll_ns = max_halt_poll_ns; 3739 3740 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3741 3742 start = cur = poll_end = ktime_get(); 3743 if (do_halt_poll) { 3744 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3745 3746 do { 3747 if (kvm_vcpu_check_block(vcpu) < 0) 3748 goto out; 3749 cpu_relax(); 3750 poll_end = cur = ktime_get(); 3751 } while (kvm_vcpu_can_poll(cur, stop)); 3752 } 3753 3754 waited = kvm_vcpu_block(vcpu); 3755 3756 cur = ktime_get(); 3757 if (waited) { 3758 vcpu->stat.generic.halt_wait_ns += 3759 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3760 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3761 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3762 } 3763 out: 3764 /* The total time the vCPU was "halted", including polling time. */ 3765 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3766 3767 /* 3768 * Note, halt-polling is considered successful so long as the vCPU was 3769 * never actually scheduled out, i.e. even if the wake event arrived 3770 * after of the halt-polling loop itself, but before the full wait. 3771 */ 3772 if (do_halt_poll) 3773 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3774 3775 if (halt_poll_allowed) { 3776 /* Recompute the max halt poll time in case it changed. */ 3777 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3778 3779 if (!vcpu_valid_wakeup(vcpu)) { 3780 shrink_halt_poll_ns(vcpu); 3781 } else if (max_halt_poll_ns) { 3782 if (halt_ns <= vcpu->halt_poll_ns) 3783 ; 3784 /* we had a long block, shrink polling */ 3785 else if (vcpu->halt_poll_ns && 3786 halt_ns > max_halt_poll_ns) 3787 shrink_halt_poll_ns(vcpu); 3788 /* we had a short halt and our poll time is too small */ 3789 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3790 halt_ns < max_halt_poll_ns) 3791 grow_halt_poll_ns(vcpu); 3792 } else { 3793 vcpu->halt_poll_ns = 0; 3794 } 3795 } 3796 3797 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3798 } 3799 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt); 3800 3801 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3802 { 3803 if (__kvm_vcpu_wake_up(vcpu)) { 3804 WRITE_ONCE(vcpu->ready, true); 3805 ++vcpu->stat.generic.halt_wakeup; 3806 return true; 3807 } 3808 3809 return false; 3810 } 3811 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up); 3812 3813 #ifndef CONFIG_S390 3814 /* 3815 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3816 */ 3817 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait) 3818 { 3819 int me, cpu; 3820 3821 if (kvm_vcpu_wake_up(vcpu)) 3822 return; 3823 3824 me = get_cpu(); 3825 /* 3826 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3827 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3828 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3829 * within the vCPU thread itself. 3830 */ 3831 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3832 if (vcpu->mode == IN_GUEST_MODE) 3833 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3834 goto out; 3835 } 3836 3837 /* 3838 * Note, the vCPU could get migrated to a different pCPU at any point 3839 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3840 * IPI to the previous pCPU. But, that's ok because the purpose of the 3841 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3842 * vCPU also requires it to leave IN_GUEST_MODE. 3843 */ 3844 if (kvm_arch_vcpu_should_kick(vcpu)) { 3845 cpu = READ_ONCE(vcpu->cpu); 3846 if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) { 3847 /* 3848 * Use a reschedule IPI to kick the vCPU if the caller 3849 * doesn't need to wait for a response, as KVM allows 3850 * kicking vCPUs while IRQs are disabled, but using the 3851 * SMP function call framework with IRQs disabled can 3852 * deadlock due to taking cross-CPU locks. 3853 */ 3854 if (wait) 3855 smp_call_function_single(cpu, ack_kick, NULL, wait); 3856 else 3857 smp_send_reschedule(cpu); 3858 } 3859 } 3860 out: 3861 put_cpu(); 3862 } 3863 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick); 3864 #endif /* !CONFIG_S390 */ 3865 3866 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3867 { 3868 struct task_struct *task = NULL; 3869 int ret; 3870 3871 if (!read_trylock(&target->pid_lock)) 3872 return 0; 3873 3874 if (target->pid) 3875 task = get_pid_task(target->pid, PIDTYPE_PID); 3876 3877 read_unlock(&target->pid_lock); 3878 3879 if (!task) 3880 return 0; 3881 ret = yield_to(task, 1); 3882 put_task_struct(task); 3883 3884 return ret; 3885 } 3886 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to); 3887 3888 /* 3889 * Helper that checks whether a VCPU is eligible for directed yield. 3890 * Most eligible candidate to yield is decided by following heuristics: 3891 * 3892 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3893 * (preempted lock holder), indicated by @in_spin_loop. 3894 * Set at the beginning and cleared at the end of interception/PLE handler. 3895 * 3896 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3897 * chance last time (mostly it has become eligible now since we have probably 3898 * yielded to lockholder in last iteration. This is done by toggling 3899 * @dy_eligible each time a VCPU checked for eligibility.) 3900 * 3901 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3902 * to preempted lock-holder could result in wrong VCPU selection and CPU 3903 * burning. Giving priority for a potential lock-holder increases lock 3904 * progress. 3905 * 3906 * Since algorithm is based on heuristics, accessing another VCPU data without 3907 * locking does not harm. It may result in trying to yield to same VCPU, fail 3908 * and continue with next VCPU and so on. 3909 */ 3910 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3911 { 3912 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3913 bool eligible; 3914 3915 eligible = !vcpu->spin_loop.in_spin_loop || 3916 vcpu->spin_loop.dy_eligible; 3917 3918 if (vcpu->spin_loop.in_spin_loop) 3919 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3920 3921 return eligible; 3922 #else 3923 return true; 3924 #endif 3925 } 3926 3927 /* 3928 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3929 * a vcpu_load/vcpu_put pair. However, for most architectures 3930 * kvm_arch_vcpu_runnable does not require vcpu_load. 3931 */ 3932 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3933 { 3934 return kvm_arch_vcpu_runnable(vcpu); 3935 } 3936 3937 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3938 { 3939 if (kvm_arch_dy_runnable(vcpu)) 3940 return true; 3941 3942 #ifdef CONFIG_KVM_ASYNC_PF 3943 if (!list_empty_careful(&vcpu->async_pf.done)) 3944 return true; 3945 #endif 3946 3947 return false; 3948 } 3949 3950 /* 3951 * By default, simply query the target vCPU's current mode when checking if a 3952 * vCPU was preempted in kernel mode. All architectures except x86 (or more 3953 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 3954 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 3955 * directly for cross-vCPU checks is functionally correct and accurate. 3956 */ 3957 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 3958 { 3959 return kvm_arch_vcpu_in_kernel(vcpu); 3960 } 3961 3962 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3963 { 3964 return false; 3965 } 3966 3967 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3968 { 3969 int nr_vcpus, start, i, idx, yielded; 3970 struct kvm *kvm = me->kvm; 3971 struct kvm_vcpu *vcpu; 3972 int try = 3; 3973 3974 nr_vcpus = atomic_read(&kvm->online_vcpus); 3975 if (nr_vcpus < 2) 3976 return; 3977 3978 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ 3979 smp_rmb(); 3980 3981 kvm_vcpu_set_in_spin_loop(me, true); 3982 3983 /* 3984 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely 3985 * waiting for a resource to become available. Attempt to yield to a 3986 * vCPU that is runnable, but not currently running, e.g. because the 3987 * vCPU was preempted by a higher priority task. With luck, the vCPU 3988 * that was preempted is holding a lock or some other resource that the 3989 * current vCPU is waiting to acquire, and yielding to the other vCPU 3990 * will allow it to make forward progress and release the lock (or kick 3991 * the spinning vCPU, etc). 3992 * 3993 * Since KVM has no insight into what exactly the guest is doing, 3994 * approximate a round-robin selection by iterating over all vCPUs, 3995 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu, 3996 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. 3997 * 3998 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, 3999 * they may all try to yield to the same vCPU(s). But as above, this 4000 * is all best effort due to KVM's lack of visibility into the guest. 4001 */ 4002 start = READ_ONCE(kvm->last_boosted_vcpu) + 1; 4003 for (i = 0; i < nr_vcpus; i++) { 4004 idx = (start + i) % nr_vcpus; 4005 if (idx == me->vcpu_idx) 4006 continue; 4007 4008 vcpu = xa_load(&kvm->vcpu_array, idx); 4009 if (!READ_ONCE(vcpu->ready)) 4010 continue; 4011 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4012 continue; 4013 4014 /* 4015 * Treat the target vCPU as being in-kernel if it has a pending 4016 * interrupt, as the vCPU trying to yield may be spinning 4017 * waiting on IPI delivery, i.e. the target vCPU is in-kernel 4018 * for the purposes of directed yield. 4019 */ 4020 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4021 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4022 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4023 continue; 4024 4025 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4026 continue; 4027 4028 yielded = kvm_vcpu_yield_to(vcpu); 4029 if (yielded > 0) { 4030 WRITE_ONCE(kvm->last_boosted_vcpu, i); 4031 break; 4032 } else if (yielded < 0 && !--try) { 4033 break; 4034 } 4035 } 4036 kvm_vcpu_set_in_spin_loop(me, false); 4037 4038 /* Ensure vcpu is not eligible during next spinloop */ 4039 kvm_vcpu_set_dy_eligible(me, false); 4040 } 4041 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin); 4042 4043 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4044 { 4045 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4046 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4047 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4048 kvm->dirty_ring_size / PAGE_SIZE); 4049 #else 4050 return false; 4051 #endif 4052 } 4053 4054 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4055 { 4056 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4057 struct page *page; 4058 4059 if (vmf->pgoff == 0) 4060 page = virt_to_page(vcpu->run); 4061 #ifdef CONFIG_X86 4062 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4063 page = virt_to_page(vcpu->arch.pio_data); 4064 #endif 4065 #ifdef CONFIG_KVM_MMIO 4066 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4067 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4068 #endif 4069 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4070 page = kvm_dirty_ring_get_page( 4071 &vcpu->dirty_ring, 4072 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4073 else 4074 return kvm_arch_vcpu_fault(vcpu, vmf); 4075 get_page(page); 4076 vmf->page = page; 4077 return 0; 4078 } 4079 4080 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4081 .fault = kvm_vcpu_fault, 4082 }; 4083 4084 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4085 { 4086 struct kvm_vcpu *vcpu = file->private_data; 4087 unsigned long pages = vma_pages(vma); 4088 4089 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4090 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4091 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4092 return -EINVAL; 4093 4094 vma->vm_ops = &kvm_vcpu_vm_ops; 4095 return 0; 4096 } 4097 4098 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4099 { 4100 struct kvm_vcpu *vcpu = filp->private_data; 4101 4102 kvm_put_kvm(vcpu->kvm); 4103 return 0; 4104 } 4105 4106 static struct file_operations kvm_vcpu_fops = { 4107 .release = kvm_vcpu_release, 4108 .unlocked_ioctl = kvm_vcpu_ioctl, 4109 .mmap = kvm_vcpu_mmap, 4110 .llseek = noop_llseek, 4111 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4112 }; 4113 4114 /* 4115 * Allocates an inode for the vcpu. 4116 */ 4117 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4118 { 4119 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4120 4121 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4122 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4123 } 4124 4125 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4126 static int vcpu_get_pid(void *data, u64 *val) 4127 { 4128 struct kvm_vcpu *vcpu = data; 4129 4130 read_lock(&vcpu->pid_lock); 4131 *val = pid_nr(vcpu->pid); 4132 read_unlock(&vcpu->pid_lock); 4133 return 0; 4134 } 4135 4136 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4137 4138 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4139 { 4140 struct dentry *debugfs_dentry; 4141 char dir_name[ITOA_MAX_LEN * 2]; 4142 4143 if (!debugfs_initialized()) 4144 return; 4145 4146 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4147 debugfs_dentry = debugfs_create_dir(dir_name, 4148 vcpu->kvm->debugfs_dentry); 4149 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4150 &vcpu_get_pid_fops); 4151 4152 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4153 } 4154 #endif 4155 4156 /* 4157 * Creates some virtual cpus. Good luck creating more than one. 4158 */ 4159 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4160 { 4161 int r; 4162 struct kvm_vcpu *vcpu; 4163 struct page *page; 4164 4165 /* 4166 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4167 * too-large values instead of silently truncating. 4168 * 4169 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4170 * changing the storage type (at the very least, IDs should be tracked 4171 * as unsigned ints). 4172 */ 4173 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4174 if (id >= KVM_MAX_VCPU_IDS) 4175 return -EINVAL; 4176 4177 mutex_lock(&kvm->lock); 4178 if (kvm->created_vcpus >= kvm->max_vcpus) { 4179 mutex_unlock(&kvm->lock); 4180 return -EINVAL; 4181 } 4182 4183 r = kvm_arch_vcpu_precreate(kvm, id); 4184 if (r) { 4185 mutex_unlock(&kvm->lock); 4186 return r; 4187 } 4188 4189 kvm->created_vcpus++; 4190 mutex_unlock(&kvm->lock); 4191 4192 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4193 if (!vcpu) { 4194 r = -ENOMEM; 4195 goto vcpu_decrement; 4196 } 4197 4198 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4199 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4200 if (!page) { 4201 r = -ENOMEM; 4202 goto vcpu_free; 4203 } 4204 vcpu->run = page_address(page); 4205 4206 kvm_vcpu_init(vcpu, kvm, id); 4207 4208 r = kvm_arch_vcpu_create(vcpu); 4209 if (r) 4210 goto vcpu_free_run_page; 4211 4212 if (kvm->dirty_ring_size) { 4213 r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring, 4214 id, kvm->dirty_ring_size); 4215 if (r) 4216 goto arch_vcpu_destroy; 4217 } 4218 4219 mutex_lock(&kvm->lock); 4220 4221 if (kvm_get_vcpu_by_id(kvm, id)) { 4222 r = -EEXIST; 4223 goto unlock_vcpu_destroy; 4224 } 4225 4226 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4227 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 4228 WARN_ON_ONCE(r == -EBUSY); 4229 if (r) 4230 goto unlock_vcpu_destroy; 4231 4232 /* 4233 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex 4234 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully 4235 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked 4236 * into a NULL-pointer dereference because KVM thinks the _current_ 4237 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep 4238 * knows it's taken *inside* kvm->lock. 4239 */ 4240 mutex_lock(&vcpu->mutex); 4241 kvm_get_kvm(kvm); 4242 r = create_vcpu_fd(vcpu); 4243 if (r < 0) 4244 goto kvm_put_xa_erase; 4245 4246 /* 4247 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4248 * pointer before kvm->online_vcpu's incremented value. 4249 */ 4250 smp_wmb(); 4251 atomic_inc(&kvm->online_vcpus); 4252 mutex_unlock(&vcpu->mutex); 4253 4254 mutex_unlock(&kvm->lock); 4255 kvm_arch_vcpu_postcreate(vcpu); 4256 kvm_create_vcpu_debugfs(vcpu); 4257 return r; 4258 4259 kvm_put_xa_erase: 4260 mutex_unlock(&vcpu->mutex); 4261 kvm_put_kvm_no_destroy(kvm); 4262 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 4263 unlock_vcpu_destroy: 4264 mutex_unlock(&kvm->lock); 4265 kvm_dirty_ring_free(&vcpu->dirty_ring); 4266 arch_vcpu_destroy: 4267 kvm_arch_vcpu_destroy(vcpu); 4268 vcpu_free_run_page: 4269 free_page((unsigned long)vcpu->run); 4270 vcpu_free: 4271 kmem_cache_free(kvm_vcpu_cache, vcpu); 4272 vcpu_decrement: 4273 mutex_lock(&kvm->lock); 4274 kvm->created_vcpus--; 4275 mutex_unlock(&kvm->lock); 4276 return r; 4277 } 4278 4279 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4280 { 4281 if (sigset) { 4282 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4283 vcpu->sigset_active = 1; 4284 vcpu->sigset = *sigset; 4285 } else 4286 vcpu->sigset_active = 0; 4287 return 0; 4288 } 4289 4290 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4291 size_t size, loff_t *offset) 4292 { 4293 struct kvm_vcpu *vcpu = file->private_data; 4294 4295 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4296 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4297 sizeof(vcpu->stat), user_buffer, size, offset); 4298 } 4299 4300 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4301 { 4302 struct kvm_vcpu *vcpu = file->private_data; 4303 4304 kvm_put_kvm(vcpu->kvm); 4305 return 0; 4306 } 4307 4308 static const struct file_operations kvm_vcpu_stats_fops = { 4309 .owner = THIS_MODULE, 4310 .read = kvm_vcpu_stats_read, 4311 .release = kvm_vcpu_stats_release, 4312 .llseek = noop_llseek, 4313 }; 4314 4315 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4316 { 4317 int fd; 4318 struct file *file; 4319 char name[15 + ITOA_MAX_LEN + 1]; 4320 4321 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4322 4323 fd = get_unused_fd_flags(O_CLOEXEC); 4324 if (fd < 0) 4325 return fd; 4326 4327 file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu, 4328 O_RDONLY, FMODE_PREAD); 4329 if (IS_ERR(file)) { 4330 put_unused_fd(fd); 4331 return PTR_ERR(file); 4332 } 4333 4334 kvm_get_kvm(vcpu->kvm); 4335 fd_install(fd, file); 4336 4337 return fd; 4338 } 4339 4340 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4341 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4342 struct kvm_pre_fault_memory *range) 4343 { 4344 int idx; 4345 long r; 4346 u64 full_size; 4347 4348 if (range->flags) 4349 return -EINVAL; 4350 4351 if (!PAGE_ALIGNED(range->gpa) || 4352 !PAGE_ALIGNED(range->size) || 4353 range->gpa + range->size <= range->gpa) 4354 return -EINVAL; 4355 4356 vcpu_load(vcpu); 4357 idx = srcu_read_lock(&vcpu->kvm->srcu); 4358 4359 full_size = range->size; 4360 do { 4361 if (signal_pending(current)) { 4362 r = -EINTR; 4363 break; 4364 } 4365 4366 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4367 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4368 break; 4369 4370 if (r < 0) 4371 break; 4372 4373 range->size -= r; 4374 range->gpa += r; 4375 cond_resched(); 4376 } while (range->size); 4377 4378 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4379 vcpu_put(vcpu); 4380 4381 /* Return success if at least one page was mapped successfully. */ 4382 return full_size == range->size ? r : 0; 4383 } 4384 #endif 4385 4386 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu) 4387 { 4388 struct kvm *kvm = vcpu->kvm; 4389 4390 /* 4391 * In practice, this happy path will always be taken, as a well-behaved 4392 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns. 4393 */ 4394 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus))) 4395 return 0; 4396 4397 /* 4398 * Acquire and release the vCPU's mutex to wait for vCPU creation to 4399 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU 4400 * is fully online). 4401 */ 4402 if (mutex_lock_killable(&vcpu->mutex)) 4403 return -EINTR; 4404 4405 mutex_unlock(&vcpu->mutex); 4406 4407 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx))) 4408 return -EIO; 4409 4410 return 0; 4411 } 4412 4413 static long kvm_vcpu_ioctl(struct file *filp, 4414 unsigned int ioctl, unsigned long arg) 4415 { 4416 struct kvm_vcpu *vcpu = filp->private_data; 4417 void __user *argp = (void __user *)arg; 4418 int r; 4419 struct kvm_fpu *fpu = NULL; 4420 struct kvm_sregs *kvm_sregs = NULL; 4421 4422 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4423 return -EIO; 4424 4425 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4426 return -EINVAL; 4427 4428 /* 4429 * Wait for the vCPU to be online before handling the ioctl(), as KVM 4430 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference 4431 * a NULL pointer if userspace invokes an ioctl() before KVM is ready. 4432 */ 4433 r = kvm_wait_for_vcpu_online(vcpu); 4434 if (r) 4435 return r; 4436 4437 /* 4438 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4439 * execution; mutex_lock() would break them. 4440 */ 4441 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4442 if (r != -ENOIOCTLCMD) 4443 return r; 4444 4445 if (mutex_lock_killable(&vcpu->mutex)) 4446 return -EINTR; 4447 switch (ioctl) { 4448 case KVM_RUN: { 4449 struct pid *oldpid; 4450 r = -EINVAL; 4451 if (arg) 4452 goto out; 4453 4454 /* 4455 * Note, vcpu->pid is primarily protected by vcpu->mutex. The 4456 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to 4457 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield 4458 * directly to this vCPU 4459 */ 4460 oldpid = vcpu->pid; 4461 if (unlikely(oldpid != task_pid(current))) { 4462 /* The thread running this VCPU changed. */ 4463 struct pid *newpid; 4464 4465 r = kvm_arch_vcpu_run_pid_change(vcpu); 4466 if (r) 4467 break; 4468 4469 newpid = get_task_pid(current, PIDTYPE_PID); 4470 write_lock(&vcpu->pid_lock); 4471 vcpu->pid = newpid; 4472 write_unlock(&vcpu->pid_lock); 4473 4474 put_pid(oldpid); 4475 } 4476 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4477 r = kvm_arch_vcpu_ioctl_run(vcpu); 4478 vcpu->wants_to_run = false; 4479 4480 /* 4481 * FIXME: Remove this hack once all KVM architectures 4482 * support the generic TIF bits, i.e. a dedicated TIF_RSEQ. 4483 */ 4484 rseq_virt_userspace_exit(); 4485 4486 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4487 break; 4488 } 4489 case KVM_GET_REGS: { 4490 struct kvm_regs *kvm_regs; 4491 4492 r = -ENOMEM; 4493 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4494 if (!kvm_regs) 4495 goto out; 4496 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4497 if (r) 4498 goto out_free1; 4499 r = -EFAULT; 4500 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4501 goto out_free1; 4502 r = 0; 4503 out_free1: 4504 kfree(kvm_regs); 4505 break; 4506 } 4507 case KVM_SET_REGS: { 4508 struct kvm_regs *kvm_regs; 4509 4510 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4511 if (IS_ERR(kvm_regs)) { 4512 r = PTR_ERR(kvm_regs); 4513 goto out; 4514 } 4515 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4516 kfree(kvm_regs); 4517 break; 4518 } 4519 case KVM_GET_SREGS: { 4520 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4521 r = -ENOMEM; 4522 if (!kvm_sregs) 4523 goto out; 4524 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4525 if (r) 4526 goto out; 4527 r = -EFAULT; 4528 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4529 goto out; 4530 r = 0; 4531 break; 4532 } 4533 case KVM_SET_SREGS: { 4534 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4535 if (IS_ERR(kvm_sregs)) { 4536 r = PTR_ERR(kvm_sregs); 4537 kvm_sregs = NULL; 4538 goto out; 4539 } 4540 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4541 break; 4542 } 4543 case KVM_GET_MP_STATE: { 4544 struct kvm_mp_state mp_state; 4545 4546 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4547 if (r) 4548 goto out; 4549 r = -EFAULT; 4550 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4551 goto out; 4552 r = 0; 4553 break; 4554 } 4555 case KVM_SET_MP_STATE: { 4556 struct kvm_mp_state mp_state; 4557 4558 r = -EFAULT; 4559 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4560 goto out; 4561 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4562 break; 4563 } 4564 case KVM_TRANSLATE: { 4565 struct kvm_translation tr; 4566 4567 r = -EFAULT; 4568 if (copy_from_user(&tr, argp, sizeof(tr))) 4569 goto out; 4570 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4571 if (r) 4572 goto out; 4573 r = -EFAULT; 4574 if (copy_to_user(argp, &tr, sizeof(tr))) 4575 goto out; 4576 r = 0; 4577 break; 4578 } 4579 case KVM_SET_GUEST_DEBUG: { 4580 struct kvm_guest_debug dbg; 4581 4582 r = -EFAULT; 4583 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4584 goto out; 4585 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4586 break; 4587 } 4588 case KVM_SET_SIGNAL_MASK: { 4589 struct kvm_signal_mask __user *sigmask_arg = argp; 4590 struct kvm_signal_mask kvm_sigmask; 4591 sigset_t sigset, *p; 4592 4593 p = NULL; 4594 if (argp) { 4595 r = -EFAULT; 4596 if (copy_from_user(&kvm_sigmask, argp, 4597 sizeof(kvm_sigmask))) 4598 goto out; 4599 r = -EINVAL; 4600 if (kvm_sigmask.len != sizeof(sigset)) 4601 goto out; 4602 r = -EFAULT; 4603 if (copy_from_user(&sigset, sigmask_arg->sigset, 4604 sizeof(sigset))) 4605 goto out; 4606 p = &sigset; 4607 } 4608 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4609 break; 4610 } 4611 case KVM_GET_FPU: { 4612 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4613 r = -ENOMEM; 4614 if (!fpu) 4615 goto out; 4616 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4617 if (r) 4618 goto out; 4619 r = -EFAULT; 4620 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4621 goto out; 4622 r = 0; 4623 break; 4624 } 4625 case KVM_SET_FPU: { 4626 fpu = memdup_user(argp, sizeof(*fpu)); 4627 if (IS_ERR(fpu)) { 4628 r = PTR_ERR(fpu); 4629 fpu = NULL; 4630 goto out; 4631 } 4632 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4633 break; 4634 } 4635 case KVM_GET_STATS_FD: { 4636 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4637 break; 4638 } 4639 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4640 case KVM_PRE_FAULT_MEMORY: { 4641 struct kvm_pre_fault_memory range; 4642 4643 r = -EFAULT; 4644 if (copy_from_user(&range, argp, sizeof(range))) 4645 break; 4646 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4647 /* Pass back leftover range. */ 4648 if (copy_to_user(argp, &range, sizeof(range))) 4649 r = -EFAULT; 4650 break; 4651 } 4652 #endif 4653 default: 4654 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4655 } 4656 out: 4657 mutex_unlock(&vcpu->mutex); 4658 kfree(fpu); 4659 kfree(kvm_sregs); 4660 return r; 4661 } 4662 4663 #ifdef CONFIG_KVM_COMPAT 4664 static long kvm_vcpu_compat_ioctl(struct file *filp, 4665 unsigned int ioctl, unsigned long arg) 4666 { 4667 struct kvm_vcpu *vcpu = filp->private_data; 4668 void __user *argp = compat_ptr(arg); 4669 int r; 4670 4671 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4672 return -EIO; 4673 4674 switch (ioctl) { 4675 case KVM_SET_SIGNAL_MASK: { 4676 struct kvm_signal_mask __user *sigmask_arg = argp; 4677 struct kvm_signal_mask kvm_sigmask; 4678 sigset_t sigset; 4679 4680 if (argp) { 4681 r = -EFAULT; 4682 if (copy_from_user(&kvm_sigmask, argp, 4683 sizeof(kvm_sigmask))) 4684 goto out; 4685 r = -EINVAL; 4686 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4687 goto out; 4688 r = -EFAULT; 4689 if (get_compat_sigset(&sigset, 4690 (compat_sigset_t __user *)sigmask_arg->sigset)) 4691 goto out; 4692 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4693 } else 4694 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4695 break; 4696 } 4697 default: 4698 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4699 } 4700 4701 out: 4702 return r; 4703 } 4704 #endif 4705 4706 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4707 { 4708 struct kvm_device *dev = filp->private_data; 4709 4710 if (dev->ops->mmap) 4711 return dev->ops->mmap(dev, vma); 4712 4713 return -ENODEV; 4714 } 4715 4716 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4717 int (*accessor)(struct kvm_device *dev, 4718 struct kvm_device_attr *attr), 4719 unsigned long arg) 4720 { 4721 struct kvm_device_attr attr; 4722 4723 if (!accessor) 4724 return -EPERM; 4725 4726 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4727 return -EFAULT; 4728 4729 return accessor(dev, &attr); 4730 } 4731 4732 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4733 unsigned long arg) 4734 { 4735 struct kvm_device *dev = filp->private_data; 4736 4737 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4738 return -EIO; 4739 4740 switch (ioctl) { 4741 case KVM_SET_DEVICE_ATTR: 4742 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4743 case KVM_GET_DEVICE_ATTR: 4744 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4745 case KVM_HAS_DEVICE_ATTR: 4746 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4747 default: 4748 if (dev->ops->ioctl) 4749 return dev->ops->ioctl(dev, ioctl, arg); 4750 4751 return -ENOTTY; 4752 } 4753 } 4754 4755 static int kvm_device_release(struct inode *inode, struct file *filp) 4756 { 4757 struct kvm_device *dev = filp->private_data; 4758 struct kvm *kvm = dev->kvm; 4759 4760 if (dev->ops->release) { 4761 mutex_lock(&kvm->lock); 4762 list_del_rcu(&dev->vm_node); 4763 synchronize_rcu(); 4764 dev->ops->release(dev); 4765 mutex_unlock(&kvm->lock); 4766 } 4767 4768 kvm_put_kvm(kvm); 4769 return 0; 4770 } 4771 4772 static struct file_operations kvm_device_fops = { 4773 .unlocked_ioctl = kvm_device_ioctl, 4774 .release = kvm_device_release, 4775 KVM_COMPAT(kvm_device_ioctl), 4776 .mmap = kvm_device_mmap, 4777 }; 4778 4779 struct kvm_device *kvm_device_from_filp(struct file *filp) 4780 { 4781 if (filp->f_op != &kvm_device_fops) 4782 return NULL; 4783 4784 return filp->private_data; 4785 } 4786 4787 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4788 #ifdef CONFIG_KVM_MPIC 4789 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4790 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4791 #endif 4792 }; 4793 4794 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4795 { 4796 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4797 return -ENOSPC; 4798 4799 if (kvm_device_ops_table[type] != NULL) 4800 return -EEXIST; 4801 4802 kvm_device_ops_table[type] = ops; 4803 return 0; 4804 } 4805 4806 void kvm_unregister_device_ops(u32 type) 4807 { 4808 if (kvm_device_ops_table[type] != NULL) 4809 kvm_device_ops_table[type] = NULL; 4810 } 4811 4812 static int kvm_ioctl_create_device(struct kvm *kvm, 4813 struct kvm_create_device *cd) 4814 { 4815 const struct kvm_device_ops *ops; 4816 struct kvm_device *dev; 4817 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4818 int type; 4819 int ret; 4820 4821 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4822 return -ENODEV; 4823 4824 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4825 ops = kvm_device_ops_table[type]; 4826 if (ops == NULL) 4827 return -ENODEV; 4828 4829 if (test) 4830 return 0; 4831 4832 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4833 if (!dev) 4834 return -ENOMEM; 4835 4836 dev->ops = ops; 4837 dev->kvm = kvm; 4838 4839 mutex_lock(&kvm->lock); 4840 ret = ops->create(dev, type); 4841 if (ret < 0) { 4842 mutex_unlock(&kvm->lock); 4843 kfree(dev); 4844 return ret; 4845 } 4846 list_add_rcu(&dev->vm_node, &kvm->devices); 4847 mutex_unlock(&kvm->lock); 4848 4849 if (ops->init) 4850 ops->init(dev); 4851 4852 kvm_get_kvm(kvm); 4853 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4854 if (ret < 0) { 4855 kvm_put_kvm_no_destroy(kvm); 4856 mutex_lock(&kvm->lock); 4857 list_del_rcu(&dev->vm_node); 4858 synchronize_rcu(); 4859 if (ops->release) 4860 ops->release(dev); 4861 mutex_unlock(&kvm->lock); 4862 if (ops->destroy) 4863 ops->destroy(dev); 4864 return ret; 4865 } 4866 4867 cd->fd = ret; 4868 return 0; 4869 } 4870 4871 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4872 { 4873 switch (arg) { 4874 case KVM_CAP_USER_MEMORY: 4875 case KVM_CAP_USER_MEMORY2: 4876 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4877 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4878 case KVM_CAP_INTERNAL_ERROR_DATA: 4879 #ifdef CONFIG_HAVE_KVM_MSI 4880 case KVM_CAP_SIGNAL_MSI: 4881 #endif 4882 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4883 case KVM_CAP_IRQFD: 4884 #endif 4885 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4886 case KVM_CAP_CHECK_EXTENSION_VM: 4887 case KVM_CAP_ENABLE_CAP_VM: 4888 case KVM_CAP_HALT_POLL: 4889 return 1; 4890 #ifdef CONFIG_KVM_MMIO 4891 case KVM_CAP_COALESCED_MMIO: 4892 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4893 case KVM_CAP_COALESCED_PIO: 4894 return 1; 4895 #endif 4896 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4897 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4898 return KVM_DIRTY_LOG_MANUAL_CAPS; 4899 #endif 4900 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4901 case KVM_CAP_IRQ_ROUTING: 4902 return KVM_MAX_IRQ_ROUTES; 4903 #endif 4904 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4905 case KVM_CAP_MULTI_ADDRESS_SPACE: 4906 if (kvm) 4907 return kvm_arch_nr_memslot_as_ids(kvm); 4908 return KVM_MAX_NR_ADDRESS_SPACES; 4909 #endif 4910 case KVM_CAP_NR_MEMSLOTS: 4911 return KVM_USER_MEM_SLOTS; 4912 case KVM_CAP_DIRTY_LOG_RING: 4913 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4914 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4915 #else 4916 return 0; 4917 #endif 4918 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4919 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4920 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4921 #else 4922 return 0; 4923 #endif 4924 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4925 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4926 #endif 4927 case KVM_CAP_BINARY_STATS_FD: 4928 case KVM_CAP_SYSTEM_EVENT_DATA: 4929 case KVM_CAP_DEVICE_CTRL: 4930 return 1; 4931 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4932 case KVM_CAP_MEMORY_ATTRIBUTES: 4933 return kvm_supported_mem_attributes(kvm); 4934 #endif 4935 #ifdef CONFIG_KVM_GUEST_MEMFD 4936 case KVM_CAP_GUEST_MEMFD: 4937 return 1; 4938 case KVM_CAP_GUEST_MEMFD_FLAGS: 4939 return kvm_gmem_get_supported_flags(kvm); 4940 #endif 4941 default: 4942 break; 4943 } 4944 return kvm_vm_ioctl_check_extension(kvm, arg); 4945 } 4946 4947 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4948 { 4949 int r; 4950 4951 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4952 return -EINVAL; 4953 4954 /* the size should be power of 2 */ 4955 if (!size || (size & (size - 1))) 4956 return -EINVAL; 4957 4958 /* Should be bigger to keep the reserved entries, or a page */ 4959 if (size < kvm_dirty_ring_get_rsvd_entries(kvm) * 4960 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4961 return -EINVAL; 4962 4963 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4964 sizeof(struct kvm_dirty_gfn)) 4965 return -E2BIG; 4966 4967 /* We only allow it to set once */ 4968 if (kvm->dirty_ring_size) 4969 return -EINVAL; 4970 4971 mutex_lock(&kvm->lock); 4972 4973 if (kvm->created_vcpus) { 4974 /* We don't allow to change this value after vcpu created */ 4975 r = -EINVAL; 4976 } else { 4977 kvm->dirty_ring_size = size; 4978 r = 0; 4979 } 4980 4981 mutex_unlock(&kvm->lock); 4982 return r; 4983 } 4984 4985 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4986 { 4987 unsigned long i; 4988 struct kvm_vcpu *vcpu; 4989 int cleared = 0, r; 4990 4991 if (!kvm->dirty_ring_size) 4992 return -EINVAL; 4993 4994 mutex_lock(&kvm->slots_lock); 4995 4996 kvm_for_each_vcpu(i, vcpu, kvm) { 4997 r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared); 4998 if (r) 4999 break; 5000 } 5001 5002 mutex_unlock(&kvm->slots_lock); 5003 5004 if (cleared) 5005 kvm_flush_remote_tlbs(kvm); 5006 5007 return cleared; 5008 } 5009 5010 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5011 struct kvm_enable_cap *cap) 5012 { 5013 return -EINVAL; 5014 } 5015 5016 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5017 { 5018 int i; 5019 5020 lockdep_assert_held(&kvm->slots_lock); 5021 5022 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5023 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5024 return false; 5025 } 5026 5027 return true; 5028 } 5029 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty); 5030 5031 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5032 struct kvm_enable_cap *cap) 5033 { 5034 switch (cap->cap) { 5035 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5036 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5037 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5038 5039 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5040 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5041 5042 if (cap->flags || (cap->args[0] & ~allowed_options)) 5043 return -EINVAL; 5044 kvm->manual_dirty_log_protect = cap->args[0]; 5045 return 0; 5046 } 5047 #endif 5048 case KVM_CAP_HALT_POLL: { 5049 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5050 return -EINVAL; 5051 5052 kvm->max_halt_poll_ns = cap->args[0]; 5053 5054 /* 5055 * Ensure kvm->override_halt_poll_ns does not become visible 5056 * before kvm->max_halt_poll_ns. 5057 * 5058 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5059 */ 5060 smp_wmb(); 5061 kvm->override_halt_poll_ns = true; 5062 5063 return 0; 5064 } 5065 case KVM_CAP_DIRTY_LOG_RING: 5066 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5067 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5068 return -EINVAL; 5069 5070 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5071 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5072 int r = -EINVAL; 5073 5074 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5075 !kvm->dirty_ring_size || cap->flags) 5076 return r; 5077 5078 mutex_lock(&kvm->slots_lock); 5079 5080 /* 5081 * For simplicity, allow enabling ring+bitmap if and only if 5082 * there are no memslots, e.g. to ensure all memslots allocate 5083 * a bitmap after the capability is enabled. 5084 */ 5085 if (kvm_are_all_memslots_empty(kvm)) { 5086 kvm->dirty_ring_with_bitmap = true; 5087 r = 0; 5088 } 5089 5090 mutex_unlock(&kvm->slots_lock); 5091 5092 return r; 5093 } 5094 default: 5095 return kvm_vm_ioctl_enable_cap(kvm, cap); 5096 } 5097 } 5098 5099 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5100 size_t size, loff_t *offset) 5101 { 5102 struct kvm *kvm = file->private_data; 5103 5104 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5105 &kvm_vm_stats_desc[0], &kvm->stat, 5106 sizeof(kvm->stat), user_buffer, size, offset); 5107 } 5108 5109 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5110 { 5111 struct kvm *kvm = file->private_data; 5112 5113 kvm_put_kvm(kvm); 5114 return 0; 5115 } 5116 5117 static const struct file_operations kvm_vm_stats_fops = { 5118 .owner = THIS_MODULE, 5119 .read = kvm_vm_stats_read, 5120 .release = kvm_vm_stats_release, 5121 .llseek = noop_llseek, 5122 }; 5123 5124 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5125 { 5126 int fd; 5127 struct file *file; 5128 5129 fd = get_unused_fd_flags(O_CLOEXEC); 5130 if (fd < 0) 5131 return fd; 5132 5133 file = anon_inode_getfile_fmode("kvm-vm-stats", 5134 &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD); 5135 if (IS_ERR(file)) { 5136 put_unused_fd(fd); 5137 return PTR_ERR(file); 5138 } 5139 5140 kvm_get_kvm(kvm); 5141 fd_install(fd, file); 5142 5143 return fd; 5144 } 5145 5146 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5147 do { \ 5148 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5149 offsetof(struct kvm_userspace_memory_region2, field)); \ 5150 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5151 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5152 } while (0) 5153 5154 static long kvm_vm_ioctl(struct file *filp, 5155 unsigned int ioctl, unsigned long arg) 5156 { 5157 struct kvm *kvm = filp->private_data; 5158 void __user *argp = (void __user *)arg; 5159 int r; 5160 5161 if (kvm->mm != current->mm || kvm->vm_dead) 5162 return -EIO; 5163 switch (ioctl) { 5164 case KVM_CREATE_VCPU: 5165 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5166 break; 5167 case KVM_ENABLE_CAP: { 5168 struct kvm_enable_cap cap; 5169 5170 r = -EFAULT; 5171 if (copy_from_user(&cap, argp, sizeof(cap))) 5172 goto out; 5173 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5174 break; 5175 } 5176 case KVM_SET_USER_MEMORY_REGION2: 5177 case KVM_SET_USER_MEMORY_REGION: { 5178 struct kvm_userspace_memory_region2 mem; 5179 unsigned long size; 5180 5181 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5182 /* 5183 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5184 * accessed, but avoid leaking kernel memory in case of a bug. 5185 */ 5186 memset(&mem, 0, sizeof(mem)); 5187 size = sizeof(struct kvm_userspace_memory_region); 5188 } else { 5189 size = sizeof(struct kvm_userspace_memory_region2); 5190 } 5191 5192 /* Ensure the common parts of the two structs are identical. */ 5193 SANITY_CHECK_MEM_REGION_FIELD(slot); 5194 SANITY_CHECK_MEM_REGION_FIELD(flags); 5195 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5196 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5197 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5198 5199 r = -EFAULT; 5200 if (copy_from_user(&mem, argp, size)) 5201 goto out; 5202 5203 r = -EINVAL; 5204 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5205 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5206 goto out; 5207 5208 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5209 break; 5210 } 5211 case KVM_GET_DIRTY_LOG: { 5212 struct kvm_dirty_log log; 5213 5214 r = -EFAULT; 5215 if (copy_from_user(&log, argp, sizeof(log))) 5216 goto out; 5217 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5218 break; 5219 } 5220 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5221 case KVM_CLEAR_DIRTY_LOG: { 5222 struct kvm_clear_dirty_log log; 5223 5224 r = -EFAULT; 5225 if (copy_from_user(&log, argp, sizeof(log))) 5226 goto out; 5227 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5228 break; 5229 } 5230 #endif 5231 #ifdef CONFIG_KVM_MMIO 5232 case KVM_REGISTER_COALESCED_MMIO: { 5233 struct kvm_coalesced_mmio_zone zone; 5234 5235 r = -EFAULT; 5236 if (copy_from_user(&zone, argp, sizeof(zone))) 5237 goto out; 5238 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5239 break; 5240 } 5241 case KVM_UNREGISTER_COALESCED_MMIO: { 5242 struct kvm_coalesced_mmio_zone zone; 5243 5244 r = -EFAULT; 5245 if (copy_from_user(&zone, argp, sizeof(zone))) 5246 goto out; 5247 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5248 break; 5249 } 5250 #endif 5251 case KVM_IRQFD: { 5252 struct kvm_irqfd data; 5253 5254 r = -EFAULT; 5255 if (copy_from_user(&data, argp, sizeof(data))) 5256 goto out; 5257 r = kvm_irqfd(kvm, &data); 5258 break; 5259 } 5260 case KVM_IOEVENTFD: { 5261 struct kvm_ioeventfd data; 5262 5263 r = -EFAULT; 5264 if (copy_from_user(&data, argp, sizeof(data))) 5265 goto out; 5266 r = kvm_ioeventfd(kvm, &data); 5267 break; 5268 } 5269 #ifdef CONFIG_HAVE_KVM_MSI 5270 case KVM_SIGNAL_MSI: { 5271 struct kvm_msi msi; 5272 5273 r = -EFAULT; 5274 if (copy_from_user(&msi, argp, sizeof(msi))) 5275 goto out; 5276 r = kvm_send_userspace_msi(kvm, &msi); 5277 break; 5278 } 5279 #endif 5280 #ifdef __KVM_HAVE_IRQ_LINE 5281 case KVM_IRQ_LINE_STATUS: 5282 case KVM_IRQ_LINE: { 5283 struct kvm_irq_level irq_event; 5284 5285 r = -EFAULT; 5286 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5287 goto out; 5288 5289 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5290 ioctl == KVM_IRQ_LINE_STATUS); 5291 if (r) 5292 goto out; 5293 5294 r = -EFAULT; 5295 if (ioctl == KVM_IRQ_LINE_STATUS) { 5296 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5297 goto out; 5298 } 5299 5300 r = 0; 5301 break; 5302 } 5303 #endif 5304 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5305 case KVM_SET_GSI_ROUTING: { 5306 struct kvm_irq_routing routing; 5307 struct kvm_irq_routing __user *urouting; 5308 struct kvm_irq_routing_entry *entries = NULL; 5309 5310 r = -EFAULT; 5311 if (copy_from_user(&routing, argp, sizeof(routing))) 5312 goto out; 5313 r = -EINVAL; 5314 if (!kvm_arch_can_set_irq_routing(kvm)) 5315 goto out; 5316 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5317 goto out; 5318 if (routing.flags) 5319 goto out; 5320 if (routing.nr) { 5321 urouting = argp; 5322 entries = vmemdup_array_user(urouting->entries, 5323 routing.nr, sizeof(*entries)); 5324 if (IS_ERR(entries)) { 5325 r = PTR_ERR(entries); 5326 goto out; 5327 } 5328 } 5329 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5330 routing.flags); 5331 kvfree(entries); 5332 break; 5333 } 5334 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5335 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5336 case KVM_SET_MEMORY_ATTRIBUTES: { 5337 struct kvm_memory_attributes attrs; 5338 5339 r = -EFAULT; 5340 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5341 goto out; 5342 5343 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5344 break; 5345 } 5346 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5347 case KVM_CREATE_DEVICE: { 5348 struct kvm_create_device cd; 5349 5350 r = -EFAULT; 5351 if (copy_from_user(&cd, argp, sizeof(cd))) 5352 goto out; 5353 5354 r = kvm_ioctl_create_device(kvm, &cd); 5355 if (r) 5356 goto out; 5357 5358 r = -EFAULT; 5359 if (copy_to_user(argp, &cd, sizeof(cd))) 5360 goto out; 5361 5362 r = 0; 5363 break; 5364 } 5365 case KVM_CHECK_EXTENSION: 5366 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5367 break; 5368 case KVM_RESET_DIRTY_RINGS: 5369 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5370 break; 5371 case KVM_GET_STATS_FD: 5372 r = kvm_vm_ioctl_get_stats_fd(kvm); 5373 break; 5374 #ifdef CONFIG_KVM_GUEST_MEMFD 5375 case KVM_CREATE_GUEST_MEMFD: { 5376 struct kvm_create_guest_memfd guest_memfd; 5377 5378 r = -EFAULT; 5379 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5380 goto out; 5381 5382 r = kvm_gmem_create(kvm, &guest_memfd); 5383 break; 5384 } 5385 #endif 5386 default: 5387 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5388 } 5389 out: 5390 return r; 5391 } 5392 5393 #ifdef CONFIG_KVM_COMPAT 5394 struct compat_kvm_dirty_log { 5395 __u32 slot; 5396 __u32 padding1; 5397 union { 5398 compat_uptr_t dirty_bitmap; /* one bit per page */ 5399 __u64 padding2; 5400 }; 5401 }; 5402 5403 struct compat_kvm_clear_dirty_log { 5404 __u32 slot; 5405 __u32 num_pages; 5406 __u64 first_page; 5407 union { 5408 compat_uptr_t dirty_bitmap; /* one bit per page */ 5409 __u64 padding2; 5410 }; 5411 }; 5412 5413 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5414 unsigned long arg) 5415 { 5416 return -ENOTTY; 5417 } 5418 5419 static long kvm_vm_compat_ioctl(struct file *filp, 5420 unsigned int ioctl, unsigned long arg) 5421 { 5422 struct kvm *kvm = filp->private_data; 5423 int r; 5424 5425 if (kvm->mm != current->mm || kvm->vm_dead) 5426 return -EIO; 5427 5428 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5429 if (r != -ENOTTY) 5430 return r; 5431 5432 switch (ioctl) { 5433 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5434 case KVM_CLEAR_DIRTY_LOG: { 5435 struct compat_kvm_clear_dirty_log compat_log; 5436 struct kvm_clear_dirty_log log; 5437 5438 if (copy_from_user(&compat_log, (void __user *)arg, 5439 sizeof(compat_log))) 5440 return -EFAULT; 5441 log.slot = compat_log.slot; 5442 log.num_pages = compat_log.num_pages; 5443 log.first_page = compat_log.first_page; 5444 log.padding2 = compat_log.padding2; 5445 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5446 5447 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5448 break; 5449 } 5450 #endif 5451 case KVM_GET_DIRTY_LOG: { 5452 struct compat_kvm_dirty_log compat_log; 5453 struct kvm_dirty_log log; 5454 5455 if (copy_from_user(&compat_log, (void __user *)arg, 5456 sizeof(compat_log))) 5457 return -EFAULT; 5458 log.slot = compat_log.slot; 5459 log.padding1 = compat_log.padding1; 5460 log.padding2 = compat_log.padding2; 5461 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5462 5463 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5464 break; 5465 } 5466 default: 5467 r = kvm_vm_ioctl(filp, ioctl, arg); 5468 } 5469 return r; 5470 } 5471 #endif 5472 5473 static struct file_operations kvm_vm_fops = { 5474 .release = kvm_vm_release, 5475 .unlocked_ioctl = kvm_vm_ioctl, 5476 .llseek = noop_llseek, 5477 KVM_COMPAT(kvm_vm_compat_ioctl), 5478 }; 5479 5480 bool file_is_kvm(struct file *file) 5481 { 5482 return file && file->f_op == &kvm_vm_fops; 5483 } 5484 EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm); 5485 5486 static int kvm_dev_ioctl_create_vm(unsigned long type) 5487 { 5488 char fdname[ITOA_MAX_LEN + 1]; 5489 int r, fd; 5490 struct kvm *kvm; 5491 struct file *file; 5492 5493 fd = get_unused_fd_flags(O_CLOEXEC); 5494 if (fd < 0) 5495 return fd; 5496 5497 snprintf(fdname, sizeof(fdname), "%d", fd); 5498 5499 kvm = kvm_create_vm(type, fdname); 5500 if (IS_ERR(kvm)) { 5501 r = PTR_ERR(kvm); 5502 goto put_fd; 5503 } 5504 5505 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5506 if (IS_ERR(file)) { 5507 r = PTR_ERR(file); 5508 goto put_kvm; 5509 } 5510 5511 /* 5512 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5513 * already set, with ->release() being kvm_vm_release(). In error 5514 * cases it will be called by the final fput(file) and will take 5515 * care of doing kvm_put_kvm(kvm). 5516 */ 5517 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5518 5519 fd_install(fd, file); 5520 return fd; 5521 5522 put_kvm: 5523 kvm_put_kvm(kvm); 5524 put_fd: 5525 put_unused_fd(fd); 5526 return r; 5527 } 5528 5529 static long kvm_dev_ioctl(struct file *filp, 5530 unsigned int ioctl, unsigned long arg) 5531 { 5532 int r = -EINVAL; 5533 5534 switch (ioctl) { 5535 case KVM_GET_API_VERSION: 5536 if (arg) 5537 goto out; 5538 r = KVM_API_VERSION; 5539 break; 5540 case KVM_CREATE_VM: 5541 r = kvm_dev_ioctl_create_vm(arg); 5542 break; 5543 case KVM_CHECK_EXTENSION: 5544 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5545 break; 5546 case KVM_GET_VCPU_MMAP_SIZE: 5547 if (arg) 5548 goto out; 5549 r = PAGE_SIZE; /* struct kvm_run */ 5550 #ifdef CONFIG_X86 5551 r += PAGE_SIZE; /* pio data page */ 5552 #endif 5553 #ifdef CONFIG_KVM_MMIO 5554 r += PAGE_SIZE; /* coalesced mmio ring page */ 5555 #endif 5556 break; 5557 default: 5558 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5559 } 5560 out: 5561 return r; 5562 } 5563 5564 static struct file_operations kvm_chardev_ops = { 5565 .unlocked_ioctl = kvm_dev_ioctl, 5566 .llseek = noop_llseek, 5567 KVM_COMPAT(kvm_dev_ioctl), 5568 }; 5569 5570 static struct miscdevice kvm_dev = { 5571 KVM_MINOR, 5572 "kvm", 5573 &kvm_chardev_ops, 5574 }; 5575 5576 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5577 bool enable_virt_at_load = true; 5578 module_param(enable_virt_at_load, bool, 0444); 5579 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load); 5580 5581 __visible bool kvm_rebooting; 5582 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting); 5583 5584 static DEFINE_PER_CPU(bool, virtualization_enabled); 5585 static DEFINE_MUTEX(kvm_usage_lock); 5586 static int kvm_usage_count; 5587 5588 __weak void kvm_arch_enable_virtualization(void) 5589 { 5590 5591 } 5592 5593 __weak void kvm_arch_disable_virtualization(void) 5594 { 5595 5596 } 5597 5598 static int kvm_enable_virtualization_cpu(void) 5599 { 5600 if (__this_cpu_read(virtualization_enabled)) 5601 return 0; 5602 5603 if (kvm_arch_enable_virtualization_cpu()) { 5604 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5605 raw_smp_processor_id()); 5606 return -EIO; 5607 } 5608 5609 __this_cpu_write(virtualization_enabled, true); 5610 return 0; 5611 } 5612 5613 static int kvm_online_cpu(unsigned int cpu) 5614 { 5615 /* 5616 * Abort the CPU online process if hardware virtualization cannot 5617 * be enabled. Otherwise running VMs would encounter unrecoverable 5618 * errors when scheduled to this CPU. 5619 */ 5620 return kvm_enable_virtualization_cpu(); 5621 } 5622 5623 static void kvm_disable_virtualization_cpu(void *ign) 5624 { 5625 if (!__this_cpu_read(virtualization_enabled)) 5626 return; 5627 5628 kvm_arch_disable_virtualization_cpu(); 5629 5630 __this_cpu_write(virtualization_enabled, false); 5631 } 5632 5633 static int kvm_offline_cpu(unsigned int cpu) 5634 { 5635 kvm_disable_virtualization_cpu(NULL); 5636 return 0; 5637 } 5638 5639 static void kvm_shutdown(void) 5640 { 5641 /* 5642 * Disable hardware virtualization and set kvm_rebooting to indicate 5643 * that KVM has asynchronously disabled hardware virtualization, i.e. 5644 * that relevant errors and exceptions aren't entirely unexpected. 5645 * Some flavors of hardware virtualization need to be disabled before 5646 * transferring control to firmware (to perform shutdown/reboot), e.g. 5647 * on x86, virtualization can block INIT interrupts, which are used by 5648 * firmware to pull APs back under firmware control. Note, this path 5649 * is used for both shutdown and reboot scenarios, i.e. neither name is 5650 * 100% comprehensive. 5651 */ 5652 pr_info("kvm: exiting hardware virtualization\n"); 5653 kvm_rebooting = true; 5654 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); 5655 } 5656 5657 static int kvm_suspend(void) 5658 { 5659 /* 5660 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5661 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5662 * count is stable. Assert that kvm_usage_lock is not held to ensure 5663 * the system isn't suspended while KVM is enabling hardware. Hardware 5664 * enabling can be preempted, but the task cannot be frozen until it has 5665 * dropped all locks (userspace tasks are frozen via a fake signal). 5666 */ 5667 lockdep_assert_not_held(&kvm_usage_lock); 5668 lockdep_assert_irqs_disabled(); 5669 5670 kvm_disable_virtualization_cpu(NULL); 5671 return 0; 5672 } 5673 5674 static void kvm_resume(void) 5675 { 5676 lockdep_assert_not_held(&kvm_usage_lock); 5677 lockdep_assert_irqs_disabled(); 5678 5679 WARN_ON_ONCE(kvm_enable_virtualization_cpu()); 5680 } 5681 5682 static struct syscore_ops kvm_syscore_ops = { 5683 .suspend = kvm_suspend, 5684 .resume = kvm_resume, 5685 .shutdown = kvm_shutdown, 5686 }; 5687 5688 int kvm_enable_virtualization(void) 5689 { 5690 int r; 5691 5692 guard(mutex)(&kvm_usage_lock); 5693 5694 if (kvm_usage_count++) 5695 return 0; 5696 5697 kvm_arch_enable_virtualization(); 5698 5699 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5700 kvm_online_cpu, kvm_offline_cpu); 5701 if (r) 5702 goto err_cpuhp; 5703 5704 register_syscore_ops(&kvm_syscore_ops); 5705 5706 /* 5707 * Undo virtualization enabling and bail if the system is going down. 5708 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5709 * possible for an in-flight operation to enable virtualization after 5710 * syscore_shutdown() is called, i.e. without kvm_shutdown() being 5711 * invoked. Note, this relies on system_state being set _before_ 5712 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked 5713 * or this CPU observes the impending shutdown. Which is why KVM uses 5714 * a syscore ops hook instead of registering a dedicated reboot 5715 * notifier (the latter runs before system_state is updated). 5716 */ 5717 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5718 system_state == SYSTEM_RESTART) { 5719 r = -EBUSY; 5720 goto err_rebooting; 5721 } 5722 5723 return 0; 5724 5725 err_rebooting: 5726 unregister_syscore_ops(&kvm_syscore_ops); 5727 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5728 err_cpuhp: 5729 kvm_arch_disable_virtualization(); 5730 --kvm_usage_count; 5731 return r; 5732 } 5733 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization); 5734 5735 void kvm_disable_virtualization(void) 5736 { 5737 guard(mutex)(&kvm_usage_lock); 5738 5739 if (--kvm_usage_count) 5740 return; 5741 5742 unregister_syscore_ops(&kvm_syscore_ops); 5743 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5744 kvm_arch_disable_virtualization(); 5745 } 5746 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization); 5747 5748 static int kvm_init_virtualization(void) 5749 { 5750 if (enable_virt_at_load) 5751 return kvm_enable_virtualization(); 5752 5753 return 0; 5754 } 5755 5756 static void kvm_uninit_virtualization(void) 5757 { 5758 if (enable_virt_at_load) 5759 kvm_disable_virtualization(); 5760 } 5761 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5762 static int kvm_init_virtualization(void) 5763 { 5764 return 0; 5765 } 5766 5767 static void kvm_uninit_virtualization(void) 5768 { 5769 5770 } 5771 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5772 5773 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5774 { 5775 if (dev->ops->destructor) 5776 dev->ops->destructor(dev); 5777 } 5778 5779 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5780 { 5781 int i; 5782 5783 for (i = 0; i < bus->dev_count; i++) { 5784 struct kvm_io_device *pos = bus->range[i].dev; 5785 5786 kvm_iodevice_destructor(pos); 5787 } 5788 kfree(bus); 5789 } 5790 5791 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5792 const struct kvm_io_range *r2) 5793 { 5794 gpa_t addr1 = r1->addr; 5795 gpa_t addr2 = r2->addr; 5796 5797 if (addr1 < addr2) 5798 return -1; 5799 5800 /* If r2->len == 0, match the exact address. If r2->len != 0, 5801 * accept any overlapping write. Any order is acceptable for 5802 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5803 * we process all of them. 5804 */ 5805 if (r2->len) { 5806 addr1 += r1->len; 5807 addr2 += r2->len; 5808 } 5809 5810 if (addr1 > addr2) 5811 return 1; 5812 5813 return 0; 5814 } 5815 5816 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5817 { 5818 return kvm_io_bus_cmp(p1, p2); 5819 } 5820 5821 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5822 gpa_t addr, int len) 5823 { 5824 struct kvm_io_range *range, key; 5825 int off; 5826 5827 key = (struct kvm_io_range) { 5828 .addr = addr, 5829 .len = len, 5830 }; 5831 5832 range = bsearch(&key, bus->range, bus->dev_count, 5833 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5834 if (range == NULL) 5835 return -ENOENT; 5836 5837 off = range - bus->range; 5838 5839 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5840 off--; 5841 5842 return off; 5843 } 5844 5845 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5846 struct kvm_io_range *range, const void *val) 5847 { 5848 int idx; 5849 5850 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5851 if (idx < 0) 5852 return -EOPNOTSUPP; 5853 5854 while (idx < bus->dev_count && 5855 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5856 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5857 range->len, val)) 5858 return idx; 5859 idx++; 5860 } 5861 5862 return -EOPNOTSUPP; 5863 } 5864 5865 static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx) 5866 { 5867 /* 5868 * Ensure that any updates to kvm_buses[] observed by the previous vCPU 5869 * machine instruction are also visible to the vCPU machine instruction 5870 * that triggered this call. 5871 */ 5872 smp_mb__after_srcu_read_lock(); 5873 5874 return srcu_dereference(kvm->buses[idx], &kvm->srcu); 5875 } 5876 5877 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5878 int len, const void *val) 5879 { 5880 struct kvm_io_bus *bus; 5881 struct kvm_io_range range; 5882 int r; 5883 5884 range = (struct kvm_io_range) { 5885 .addr = addr, 5886 .len = len, 5887 }; 5888 5889 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5890 if (!bus) 5891 return -ENOMEM; 5892 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5893 return r < 0 ? r : 0; 5894 } 5895 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write); 5896 5897 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5898 gpa_t addr, int len, const void *val, long cookie) 5899 { 5900 struct kvm_io_bus *bus; 5901 struct kvm_io_range range; 5902 5903 range = (struct kvm_io_range) { 5904 .addr = addr, 5905 .len = len, 5906 }; 5907 5908 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5909 if (!bus) 5910 return -ENOMEM; 5911 5912 /* First try the device referenced by cookie. */ 5913 if ((cookie >= 0) && (cookie < bus->dev_count) && 5914 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5915 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5916 val)) 5917 return cookie; 5918 5919 /* 5920 * cookie contained garbage; fall back to search and return the 5921 * correct cookie value. 5922 */ 5923 return __kvm_io_bus_write(vcpu, bus, &range, val); 5924 } 5925 5926 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5927 struct kvm_io_range *range, void *val) 5928 { 5929 int idx; 5930 5931 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5932 if (idx < 0) 5933 return -EOPNOTSUPP; 5934 5935 while (idx < bus->dev_count && 5936 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5937 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5938 range->len, val)) 5939 return idx; 5940 idx++; 5941 } 5942 5943 return -EOPNOTSUPP; 5944 } 5945 5946 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5947 int len, void *val) 5948 { 5949 struct kvm_io_bus *bus; 5950 struct kvm_io_range range; 5951 int r; 5952 5953 range = (struct kvm_io_range) { 5954 .addr = addr, 5955 .len = len, 5956 }; 5957 5958 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5959 if (!bus) 5960 return -ENOMEM; 5961 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5962 return r < 0 ? r : 0; 5963 } 5964 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read); 5965 5966 static void __free_bus(struct rcu_head *rcu) 5967 { 5968 struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu); 5969 5970 kfree(bus); 5971 } 5972 5973 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5974 int len, struct kvm_io_device *dev) 5975 { 5976 int i; 5977 struct kvm_io_bus *new_bus, *bus; 5978 struct kvm_io_range range; 5979 5980 lockdep_assert_held(&kvm->slots_lock); 5981 5982 bus = kvm_get_bus(kvm, bus_idx); 5983 if (!bus) 5984 return -ENOMEM; 5985 5986 /* exclude ioeventfd which is limited by maximum fd */ 5987 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5988 return -ENOSPC; 5989 5990 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5991 GFP_KERNEL_ACCOUNT); 5992 if (!new_bus) 5993 return -ENOMEM; 5994 5995 range = (struct kvm_io_range) { 5996 .addr = addr, 5997 .len = len, 5998 .dev = dev, 5999 }; 6000 6001 for (i = 0; i < bus->dev_count; i++) 6002 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 6003 break; 6004 6005 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 6006 new_bus->dev_count++; 6007 new_bus->range[i] = range; 6008 memcpy(new_bus->range + i + 1, bus->range + i, 6009 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 6010 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6011 call_srcu(&kvm->srcu, &bus->rcu, __free_bus); 6012 6013 return 0; 6014 } 6015 6016 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6017 struct kvm_io_device *dev) 6018 { 6019 int i; 6020 struct kvm_io_bus *new_bus, *bus; 6021 6022 lockdep_assert_held(&kvm->slots_lock); 6023 6024 bus = kvm_get_bus(kvm, bus_idx); 6025 if (!bus) 6026 return 0; 6027 6028 for (i = 0; i < bus->dev_count; i++) { 6029 if (bus->range[i].dev == dev) { 6030 break; 6031 } 6032 } 6033 6034 if (i == bus->dev_count) 6035 return 0; 6036 6037 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6038 GFP_KERNEL_ACCOUNT); 6039 if (new_bus) { 6040 memcpy(new_bus, bus, struct_size(bus, range, i)); 6041 new_bus->dev_count--; 6042 memcpy(new_bus->range + i, bus->range + i + 1, 6043 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6044 } 6045 6046 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6047 synchronize_srcu_expedited(&kvm->srcu); 6048 6049 /* 6050 * If NULL bus is installed, destroy the old bus, including all the 6051 * attached devices. Otherwise, destroy the caller's device only. 6052 */ 6053 if (!new_bus) { 6054 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6055 kvm_io_bus_destroy(bus); 6056 return -ENOMEM; 6057 } 6058 6059 kvm_iodevice_destructor(dev); 6060 kfree(bus); 6061 return 0; 6062 } 6063 6064 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6065 gpa_t addr) 6066 { 6067 struct kvm_io_bus *bus; 6068 int dev_idx, srcu_idx; 6069 struct kvm_io_device *iodev = NULL; 6070 6071 srcu_idx = srcu_read_lock(&kvm->srcu); 6072 6073 bus = kvm_get_bus_srcu(kvm, bus_idx); 6074 if (!bus) 6075 goto out_unlock; 6076 6077 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6078 if (dev_idx < 0) 6079 goto out_unlock; 6080 6081 iodev = bus->range[dev_idx].dev; 6082 6083 out_unlock: 6084 srcu_read_unlock(&kvm->srcu, srcu_idx); 6085 6086 return iodev; 6087 } 6088 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev); 6089 6090 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6091 int (*get)(void *, u64 *), int (*set)(void *, u64), 6092 const char *fmt) 6093 { 6094 int ret; 6095 struct kvm_stat_data *stat_data = inode->i_private; 6096 6097 /* 6098 * The debugfs files are a reference to the kvm struct which 6099 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6100 * avoids the race between open and the removal of the debugfs directory. 6101 */ 6102 if (!kvm_get_kvm_safe(stat_data->kvm)) 6103 return -ENOENT; 6104 6105 ret = simple_attr_open(inode, file, get, 6106 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6107 ? set : NULL, fmt); 6108 if (ret) 6109 kvm_put_kvm(stat_data->kvm); 6110 6111 return ret; 6112 } 6113 6114 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6115 { 6116 struct kvm_stat_data *stat_data = inode->i_private; 6117 6118 simple_attr_release(inode, file); 6119 kvm_put_kvm(stat_data->kvm); 6120 6121 return 0; 6122 } 6123 6124 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6125 { 6126 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6127 6128 return 0; 6129 } 6130 6131 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6132 { 6133 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6134 6135 return 0; 6136 } 6137 6138 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6139 { 6140 unsigned long i; 6141 struct kvm_vcpu *vcpu; 6142 6143 *val = 0; 6144 6145 kvm_for_each_vcpu(i, vcpu, kvm) 6146 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6147 6148 return 0; 6149 } 6150 6151 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6152 { 6153 unsigned long i; 6154 struct kvm_vcpu *vcpu; 6155 6156 kvm_for_each_vcpu(i, vcpu, kvm) 6157 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6158 6159 return 0; 6160 } 6161 6162 static int kvm_stat_data_get(void *data, u64 *val) 6163 { 6164 int r = -EFAULT; 6165 struct kvm_stat_data *stat_data = data; 6166 6167 switch (stat_data->kind) { 6168 case KVM_STAT_VM: 6169 r = kvm_get_stat_per_vm(stat_data->kvm, 6170 stat_data->desc->desc.offset, val); 6171 break; 6172 case KVM_STAT_VCPU: 6173 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6174 stat_data->desc->desc.offset, val); 6175 break; 6176 } 6177 6178 return r; 6179 } 6180 6181 static int kvm_stat_data_clear(void *data, u64 val) 6182 { 6183 int r = -EFAULT; 6184 struct kvm_stat_data *stat_data = data; 6185 6186 if (val) 6187 return -EINVAL; 6188 6189 switch (stat_data->kind) { 6190 case KVM_STAT_VM: 6191 r = kvm_clear_stat_per_vm(stat_data->kvm, 6192 stat_data->desc->desc.offset); 6193 break; 6194 case KVM_STAT_VCPU: 6195 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6196 stat_data->desc->desc.offset); 6197 break; 6198 } 6199 6200 return r; 6201 } 6202 6203 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6204 { 6205 __simple_attr_check_format("%llu\n", 0ull); 6206 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6207 kvm_stat_data_clear, "%llu\n"); 6208 } 6209 6210 static const struct file_operations stat_fops_per_vm = { 6211 .owner = THIS_MODULE, 6212 .open = kvm_stat_data_open, 6213 .release = kvm_debugfs_release, 6214 .read = simple_attr_read, 6215 .write = simple_attr_write, 6216 }; 6217 6218 static int vm_stat_get(void *_offset, u64 *val) 6219 { 6220 unsigned offset = (long)_offset; 6221 struct kvm *kvm; 6222 u64 tmp_val; 6223 6224 *val = 0; 6225 mutex_lock(&kvm_lock); 6226 list_for_each_entry(kvm, &vm_list, vm_list) { 6227 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6228 *val += tmp_val; 6229 } 6230 mutex_unlock(&kvm_lock); 6231 return 0; 6232 } 6233 6234 static int vm_stat_clear(void *_offset, u64 val) 6235 { 6236 unsigned offset = (long)_offset; 6237 struct kvm *kvm; 6238 6239 if (val) 6240 return -EINVAL; 6241 6242 mutex_lock(&kvm_lock); 6243 list_for_each_entry(kvm, &vm_list, vm_list) { 6244 kvm_clear_stat_per_vm(kvm, offset); 6245 } 6246 mutex_unlock(&kvm_lock); 6247 6248 return 0; 6249 } 6250 6251 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6252 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6253 6254 static int vcpu_stat_get(void *_offset, u64 *val) 6255 { 6256 unsigned offset = (long)_offset; 6257 struct kvm *kvm; 6258 u64 tmp_val; 6259 6260 *val = 0; 6261 mutex_lock(&kvm_lock); 6262 list_for_each_entry(kvm, &vm_list, vm_list) { 6263 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6264 *val += tmp_val; 6265 } 6266 mutex_unlock(&kvm_lock); 6267 return 0; 6268 } 6269 6270 static int vcpu_stat_clear(void *_offset, u64 val) 6271 { 6272 unsigned offset = (long)_offset; 6273 struct kvm *kvm; 6274 6275 if (val) 6276 return -EINVAL; 6277 6278 mutex_lock(&kvm_lock); 6279 list_for_each_entry(kvm, &vm_list, vm_list) { 6280 kvm_clear_stat_per_vcpu(kvm, offset); 6281 } 6282 mutex_unlock(&kvm_lock); 6283 6284 return 0; 6285 } 6286 6287 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6288 "%llu\n"); 6289 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6290 6291 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6292 { 6293 struct kobj_uevent_env *env; 6294 unsigned long long created, active; 6295 6296 if (!kvm_dev.this_device || !kvm) 6297 return; 6298 6299 mutex_lock(&kvm_lock); 6300 if (type == KVM_EVENT_CREATE_VM) { 6301 kvm_createvm_count++; 6302 kvm_active_vms++; 6303 } else if (type == KVM_EVENT_DESTROY_VM) { 6304 kvm_active_vms--; 6305 } 6306 created = kvm_createvm_count; 6307 active = kvm_active_vms; 6308 mutex_unlock(&kvm_lock); 6309 6310 env = kzalloc(sizeof(*env), GFP_KERNEL); 6311 if (!env) 6312 return; 6313 6314 add_uevent_var(env, "CREATED=%llu", created); 6315 add_uevent_var(env, "COUNT=%llu", active); 6316 6317 if (type == KVM_EVENT_CREATE_VM) { 6318 add_uevent_var(env, "EVENT=create"); 6319 kvm->userspace_pid = task_pid_nr(current); 6320 } else if (type == KVM_EVENT_DESTROY_VM) { 6321 add_uevent_var(env, "EVENT=destroy"); 6322 } 6323 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6324 6325 if (!IS_ERR(kvm->debugfs_dentry)) { 6326 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6327 6328 if (p) { 6329 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6330 if (!IS_ERR(tmp)) 6331 add_uevent_var(env, "STATS_PATH=%s", tmp); 6332 kfree(p); 6333 } 6334 } 6335 /* no need for checks, since we are adding at most only 5 keys */ 6336 env->envp[env->envp_idx++] = NULL; 6337 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6338 kfree(env); 6339 } 6340 6341 static void kvm_init_debug(void) 6342 { 6343 const struct file_operations *fops; 6344 const struct _kvm_stats_desc *pdesc; 6345 int i; 6346 6347 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6348 6349 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6350 pdesc = &kvm_vm_stats_desc[i]; 6351 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6352 fops = &vm_stat_fops; 6353 else 6354 fops = &vm_stat_readonly_fops; 6355 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6356 kvm_debugfs_dir, 6357 (void *)(long)pdesc->desc.offset, fops); 6358 } 6359 6360 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6361 pdesc = &kvm_vcpu_stats_desc[i]; 6362 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6363 fops = &vcpu_stat_fops; 6364 else 6365 fops = &vcpu_stat_readonly_fops; 6366 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6367 kvm_debugfs_dir, 6368 (void *)(long)pdesc->desc.offset, fops); 6369 } 6370 } 6371 6372 static inline 6373 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6374 { 6375 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6376 } 6377 6378 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6379 { 6380 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6381 6382 WRITE_ONCE(vcpu->preempted, false); 6383 WRITE_ONCE(vcpu->ready, false); 6384 6385 __this_cpu_write(kvm_running_vcpu, vcpu); 6386 kvm_arch_vcpu_load(vcpu, cpu); 6387 6388 WRITE_ONCE(vcpu->scheduled_out, false); 6389 } 6390 6391 static void kvm_sched_out(struct preempt_notifier *pn, 6392 struct task_struct *next) 6393 { 6394 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6395 6396 WRITE_ONCE(vcpu->scheduled_out, true); 6397 6398 if (task_is_runnable(current) && vcpu->wants_to_run) { 6399 WRITE_ONCE(vcpu->preempted, true); 6400 WRITE_ONCE(vcpu->ready, true); 6401 } 6402 kvm_arch_vcpu_put(vcpu); 6403 __this_cpu_write(kvm_running_vcpu, NULL); 6404 } 6405 6406 /** 6407 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6408 * 6409 * We can disable preemption locally around accessing the per-CPU variable, 6410 * and use the resolved vcpu pointer after enabling preemption again, 6411 * because even if the current thread is migrated to another CPU, reading 6412 * the per-CPU value later will give us the same value as we update the 6413 * per-CPU variable in the preempt notifier handlers. 6414 */ 6415 struct kvm_vcpu *kvm_get_running_vcpu(void) 6416 { 6417 struct kvm_vcpu *vcpu; 6418 6419 preempt_disable(); 6420 vcpu = __this_cpu_read(kvm_running_vcpu); 6421 preempt_enable(); 6422 6423 return vcpu; 6424 } 6425 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu); 6426 6427 /** 6428 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6429 */ 6430 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6431 { 6432 return &kvm_running_vcpu; 6433 } 6434 6435 #ifdef CONFIG_GUEST_PERF_EVENTS 6436 static unsigned int kvm_guest_state(void) 6437 { 6438 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6439 unsigned int state; 6440 6441 if (!kvm_arch_pmi_in_guest(vcpu)) 6442 return 0; 6443 6444 state = PERF_GUEST_ACTIVE; 6445 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6446 state |= PERF_GUEST_USER; 6447 6448 return state; 6449 } 6450 6451 static unsigned long kvm_guest_get_ip(void) 6452 { 6453 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6454 6455 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6456 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6457 return 0; 6458 6459 return kvm_arch_vcpu_get_ip(vcpu); 6460 } 6461 6462 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6463 .state = kvm_guest_state, 6464 .get_ip = kvm_guest_get_ip, 6465 .handle_intel_pt_intr = NULL, 6466 }; 6467 6468 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6469 { 6470 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6471 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6472 } 6473 void kvm_unregister_perf_callbacks(void) 6474 { 6475 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6476 } 6477 #endif 6478 6479 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6480 { 6481 int r; 6482 int cpu; 6483 6484 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6485 if (!vcpu_align) 6486 vcpu_align = __alignof__(struct kvm_vcpu); 6487 kvm_vcpu_cache = 6488 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6489 SLAB_ACCOUNT, 6490 offsetof(struct kvm_vcpu, arch), 6491 offsetofend(struct kvm_vcpu, stats_id) 6492 - offsetof(struct kvm_vcpu, arch), 6493 NULL); 6494 if (!kvm_vcpu_cache) 6495 return -ENOMEM; 6496 6497 for_each_possible_cpu(cpu) { 6498 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6499 GFP_KERNEL, cpu_to_node(cpu))) { 6500 r = -ENOMEM; 6501 goto err_cpu_kick_mask; 6502 } 6503 } 6504 6505 r = kvm_irqfd_init(); 6506 if (r) 6507 goto err_irqfd; 6508 6509 r = kvm_async_pf_init(); 6510 if (r) 6511 goto err_async_pf; 6512 6513 kvm_chardev_ops.owner = module; 6514 kvm_vm_fops.owner = module; 6515 kvm_vcpu_fops.owner = module; 6516 kvm_device_fops.owner = module; 6517 6518 kvm_preempt_ops.sched_in = kvm_sched_in; 6519 kvm_preempt_ops.sched_out = kvm_sched_out; 6520 6521 kvm_init_debug(); 6522 6523 r = kvm_vfio_ops_init(); 6524 if (WARN_ON_ONCE(r)) 6525 goto err_vfio; 6526 6527 kvm_gmem_init(module); 6528 6529 r = kvm_init_virtualization(); 6530 if (r) 6531 goto err_virt; 6532 6533 /* 6534 * Registration _must_ be the very last thing done, as this exposes 6535 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6536 */ 6537 r = misc_register(&kvm_dev); 6538 if (r) { 6539 pr_err("kvm: misc device register failed\n"); 6540 goto err_register; 6541 } 6542 6543 return 0; 6544 6545 err_register: 6546 kvm_uninit_virtualization(); 6547 err_virt: 6548 kvm_vfio_ops_exit(); 6549 err_vfio: 6550 kvm_async_pf_deinit(); 6551 err_async_pf: 6552 kvm_irqfd_exit(); 6553 err_irqfd: 6554 err_cpu_kick_mask: 6555 for_each_possible_cpu(cpu) 6556 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6557 kmem_cache_destroy(kvm_vcpu_cache); 6558 return r; 6559 } 6560 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init); 6561 6562 void kvm_exit(void) 6563 { 6564 int cpu; 6565 6566 /* 6567 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6568 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6569 * to KVM while the module is being stopped. 6570 */ 6571 misc_deregister(&kvm_dev); 6572 6573 kvm_uninit_virtualization(); 6574 6575 debugfs_remove_recursive(kvm_debugfs_dir); 6576 for_each_possible_cpu(cpu) 6577 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6578 kmem_cache_destroy(kvm_vcpu_cache); 6579 kvm_vfio_ops_exit(); 6580 kvm_async_pf_deinit(); 6581 kvm_irqfd_exit(); 6582 } 6583 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit); 6584