xref: /linux/virt/kvm/kvm_main.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine (KVM) Hypervisor
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  */
12 
13 #include <kvm/iodev.h>
14 
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61 
62 #include <trace/events/ipi.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76 
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81 
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86 
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91 
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96 
97 /*
98  * Allow direct access (from KVM or the CPU) without MMU notifier protection
99  * to unpinned pages.
100  */
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
103 
104 /*
105  * Ordering of locks:
106  *
107  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108  */
109 
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
112 
113 static struct kmem_cache *kvm_vcpu_cache;
114 
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117 
118 static struct dentry *kvm_debugfs_dir;
119 
120 static const struct file_operations stat_fops_per_vm;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int kvm_enable_virtualization(void);
147 static void kvm_disable_virtualization(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158 
159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
160 {
161 }
162 
163 /*
164  * Switches to specified vcpu, until a matching vcpu_put()
165  */
166 void vcpu_load(struct kvm_vcpu *vcpu)
167 {
168 	int cpu = get_cpu();
169 
170 	__this_cpu_write(kvm_running_vcpu, vcpu);
171 	preempt_notifier_register(&vcpu->preempt_notifier);
172 	kvm_arch_vcpu_load(vcpu, cpu);
173 	put_cpu();
174 }
175 EXPORT_SYMBOL_GPL(vcpu_load);
176 
177 void vcpu_put(struct kvm_vcpu *vcpu)
178 {
179 	preempt_disable();
180 	kvm_arch_vcpu_put(vcpu);
181 	preempt_notifier_unregister(&vcpu->preempt_notifier);
182 	__this_cpu_write(kvm_running_vcpu, NULL);
183 	preempt_enable();
184 }
185 EXPORT_SYMBOL_GPL(vcpu_put);
186 
187 /* TODO: merge with kvm_arch_vcpu_should_kick */
188 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
189 {
190 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
191 
192 	/*
193 	 * We need to wait for the VCPU to reenable interrupts and get out of
194 	 * READING_SHADOW_PAGE_TABLES mode.
195 	 */
196 	if (req & KVM_REQUEST_WAIT)
197 		return mode != OUTSIDE_GUEST_MODE;
198 
199 	/*
200 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
201 	 */
202 	return mode == IN_GUEST_MODE;
203 }
204 
205 static void ack_kick(void *_completed)
206 {
207 }
208 
209 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
210 {
211 	if (cpumask_empty(cpus))
212 		return false;
213 
214 	smp_call_function_many(cpus, ack_kick, NULL, wait);
215 	return true;
216 }
217 
218 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
219 				  struct cpumask *tmp, int current_cpu)
220 {
221 	int cpu;
222 
223 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
224 		__kvm_make_request(req, vcpu);
225 
226 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 		return;
228 
229 	/*
230 	 * Note, the vCPU could get migrated to a different pCPU at any point
231 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
232 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
233 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
234 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
235 	 * after this point is also OK, as the requirement is only that KVM wait
236 	 * for vCPUs that were reading SPTEs _before_ any changes were
237 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
238 	 */
239 	if (kvm_request_needs_ipi(vcpu, req)) {
240 		cpu = READ_ONCE(vcpu->cpu);
241 		if (cpu != -1 && cpu != current_cpu)
242 			__cpumask_set_cpu(cpu, tmp);
243 	}
244 }
245 
246 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
247 				 unsigned long *vcpu_bitmap)
248 {
249 	struct kvm_vcpu *vcpu;
250 	struct cpumask *cpus;
251 	int i, me;
252 	bool called;
253 
254 	me = get_cpu();
255 
256 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
257 	cpumask_clear(cpus);
258 
259 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
260 		vcpu = kvm_get_vcpu(kvm, i);
261 		if (!vcpu)
262 			continue;
263 		kvm_make_vcpu_request(vcpu, req, cpus, me);
264 	}
265 
266 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
267 	put_cpu();
268 
269 	return called;
270 }
271 
272 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
273 {
274 	struct kvm_vcpu *vcpu;
275 	struct cpumask *cpus;
276 	unsigned long i;
277 	bool called;
278 	int me;
279 
280 	me = get_cpu();
281 
282 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
283 	cpumask_clear(cpus);
284 
285 	kvm_for_each_vcpu(i, vcpu, kvm)
286 		kvm_make_vcpu_request(vcpu, req, cpus, me);
287 
288 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
289 	put_cpu();
290 
291 	return called;
292 }
293 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
294 
295 void kvm_flush_remote_tlbs(struct kvm *kvm)
296 {
297 	++kvm->stat.generic.remote_tlb_flush_requests;
298 
299 	/*
300 	 * We want to publish modifications to the page tables before reading
301 	 * mode. Pairs with a memory barrier in arch-specific code.
302 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
303 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
304 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
305 	 *
306 	 * There is already an smp_mb__after_atomic() before
307 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
308 	 * barrier here.
309 	 */
310 	if (!kvm_arch_flush_remote_tlbs(kvm)
311 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
312 		++kvm->stat.generic.remote_tlb_flush;
313 }
314 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
315 
316 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
317 {
318 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
319 		return;
320 
321 	/*
322 	 * Fall back to a flushing entire TLBs if the architecture range-based
323 	 * TLB invalidation is unsupported or can't be performed for whatever
324 	 * reason.
325 	 */
326 	kvm_flush_remote_tlbs(kvm);
327 }
328 
329 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
330 				   const struct kvm_memory_slot *memslot)
331 {
332 	/*
333 	 * All current use cases for flushing the TLBs for a specific memslot
334 	 * are related to dirty logging, and many do the TLB flush out of
335 	 * mmu_lock. The interaction between the various operations on memslot
336 	 * must be serialized by slots_locks to ensure the TLB flush from one
337 	 * operation is observed by any other operation on the same memslot.
338 	 */
339 	lockdep_assert_held(&kvm->slots_lock);
340 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
341 }
342 
343 static void kvm_flush_shadow_all(struct kvm *kvm)
344 {
345 	kvm_arch_flush_shadow_all(kvm);
346 	kvm_arch_guest_memory_reclaimed(kvm);
347 }
348 
349 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
350 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
351 					       gfp_t gfp_flags)
352 {
353 	void *page;
354 
355 	gfp_flags |= mc->gfp_zero;
356 
357 	if (mc->kmem_cache)
358 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
359 
360 	page = (void *)__get_free_page(gfp_flags);
361 	if (page && mc->init_value)
362 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
363 	return page;
364 }
365 
366 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
367 {
368 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
369 	void *obj;
370 
371 	if (mc->nobjs >= min)
372 		return 0;
373 
374 	if (unlikely(!mc->objects)) {
375 		if (WARN_ON_ONCE(!capacity))
376 			return -EIO;
377 
378 		/*
379 		 * Custom init values can be used only for page allocations,
380 		 * and obviously conflict with __GFP_ZERO.
381 		 */
382 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
383 			return -EIO;
384 
385 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
386 		if (!mc->objects)
387 			return -ENOMEM;
388 
389 		mc->capacity = capacity;
390 	}
391 
392 	/* It is illegal to request a different capacity across topups. */
393 	if (WARN_ON_ONCE(mc->capacity != capacity))
394 		return -EIO;
395 
396 	while (mc->nobjs < mc->capacity) {
397 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
398 		if (!obj)
399 			return mc->nobjs >= min ? 0 : -ENOMEM;
400 		mc->objects[mc->nobjs++] = obj;
401 	}
402 	return 0;
403 }
404 
405 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
406 {
407 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
408 }
409 
410 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
411 {
412 	return mc->nobjs;
413 }
414 
415 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
416 {
417 	while (mc->nobjs) {
418 		if (mc->kmem_cache)
419 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
420 		else
421 			free_page((unsigned long)mc->objects[--mc->nobjs]);
422 	}
423 
424 	kvfree(mc->objects);
425 
426 	mc->objects = NULL;
427 	mc->capacity = 0;
428 }
429 
430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
431 {
432 	void *p;
433 
434 	if (WARN_ON(!mc->nobjs))
435 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
436 	else
437 		p = mc->objects[--mc->nobjs];
438 	BUG_ON(!p);
439 	return p;
440 }
441 #endif
442 
443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
444 {
445 	mutex_init(&vcpu->mutex);
446 	vcpu->cpu = -1;
447 	vcpu->kvm = kvm;
448 	vcpu->vcpu_id = id;
449 	vcpu->pid = NULL;
450 	rwlock_init(&vcpu->pid_lock);
451 #ifndef __KVM_HAVE_ARCH_WQP
452 	rcuwait_init(&vcpu->wait);
453 #endif
454 	kvm_async_pf_vcpu_init(vcpu);
455 
456 	kvm_vcpu_set_in_spin_loop(vcpu, false);
457 	kvm_vcpu_set_dy_eligible(vcpu, false);
458 	vcpu->preempted = false;
459 	vcpu->ready = false;
460 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
461 	vcpu->last_used_slot = NULL;
462 
463 	/* Fill the stats id string for the vcpu */
464 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
465 		 task_pid_nr(current), id);
466 }
467 
468 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
469 {
470 	kvm_arch_vcpu_destroy(vcpu);
471 	kvm_dirty_ring_free(&vcpu->dirty_ring);
472 
473 	/*
474 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
475 	 * the vcpu->pid pointer, and at destruction time all file descriptors
476 	 * are already gone.
477 	 */
478 	put_pid(vcpu->pid);
479 
480 	free_page((unsigned long)vcpu->run);
481 	kmem_cache_free(kvm_vcpu_cache, vcpu);
482 }
483 
484 void kvm_destroy_vcpus(struct kvm *kvm)
485 {
486 	unsigned long i;
487 	struct kvm_vcpu *vcpu;
488 
489 	kvm_for_each_vcpu(i, vcpu, kvm) {
490 		kvm_vcpu_destroy(vcpu);
491 		xa_erase(&kvm->vcpu_array, i);
492 	}
493 
494 	atomic_set(&kvm->online_vcpus, 0);
495 }
496 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
497 
498 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
499 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
500 {
501 	return container_of(mn, struct kvm, mmu_notifier);
502 }
503 
504 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
505 
506 typedef void (*on_lock_fn_t)(struct kvm *kvm);
507 
508 struct kvm_mmu_notifier_range {
509 	/*
510 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
511 	 * addresses (unsigned long) and guest physical addresses (64-bit).
512 	 */
513 	u64 start;
514 	u64 end;
515 	union kvm_mmu_notifier_arg arg;
516 	gfn_handler_t handler;
517 	on_lock_fn_t on_lock;
518 	bool flush_on_ret;
519 	bool may_block;
520 };
521 
522 /*
523  * The inner-most helper returns a tuple containing the return value from the
524  * arch- and action-specific handler, plus a flag indicating whether or not at
525  * least one memslot was found, i.e. if the handler found guest memory.
526  *
527  * Note, most notifiers are averse to booleans, so even though KVM tracks the
528  * return from arch code as a bool, outer helpers will cast it to an int. :-(
529  */
530 typedef struct kvm_mmu_notifier_return {
531 	bool ret;
532 	bool found_memslot;
533 } kvm_mn_ret_t;
534 
535 /*
536  * Use a dedicated stub instead of NULL to indicate that there is no callback
537  * function/handler.  The compiler technically can't guarantee that a real
538  * function will have a non-zero address, and so it will generate code to
539  * check for !NULL, whereas comparing against a stub will be elided at compile
540  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
541  */
542 static void kvm_null_fn(void)
543 {
544 
545 }
546 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
547 
548 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
549 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
550 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
551 	     node;							     \
552 	     node = interval_tree_iter_next(node, start, last))	     \
553 
554 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
555 							   const struct kvm_mmu_notifier_range *range)
556 {
557 	struct kvm_mmu_notifier_return r = {
558 		.ret = false,
559 		.found_memslot = false,
560 	};
561 	struct kvm_gfn_range gfn_range;
562 	struct kvm_memory_slot *slot;
563 	struct kvm_memslots *slots;
564 	int i, idx;
565 
566 	if (WARN_ON_ONCE(range->end <= range->start))
567 		return r;
568 
569 	/* A null handler is allowed if and only if on_lock() is provided. */
570 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
571 			 IS_KVM_NULL_FN(range->handler)))
572 		return r;
573 
574 	idx = srcu_read_lock(&kvm->srcu);
575 
576 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
577 		struct interval_tree_node *node;
578 
579 		slots = __kvm_memslots(kvm, i);
580 		kvm_for_each_memslot_in_hva_range(node, slots,
581 						  range->start, range->end - 1) {
582 			unsigned long hva_start, hva_end;
583 
584 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
585 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
586 			hva_end = min_t(unsigned long, range->end,
587 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
588 
589 			/*
590 			 * To optimize for the likely case where the address
591 			 * range is covered by zero or one memslots, don't
592 			 * bother making these conditional (to avoid writes on
593 			 * the second or later invocation of the handler).
594 			 */
595 			gfn_range.arg = range->arg;
596 			gfn_range.may_block = range->may_block;
597 
598 			/*
599 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
600 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
601 			 */
602 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
603 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
604 			gfn_range.slot = slot;
605 
606 			if (!r.found_memslot) {
607 				r.found_memslot = true;
608 				KVM_MMU_LOCK(kvm);
609 				if (!IS_KVM_NULL_FN(range->on_lock))
610 					range->on_lock(kvm);
611 
612 				if (IS_KVM_NULL_FN(range->handler))
613 					goto mmu_unlock;
614 			}
615 			r.ret |= range->handler(kvm, &gfn_range);
616 		}
617 	}
618 
619 	if (range->flush_on_ret && r.ret)
620 		kvm_flush_remote_tlbs(kvm);
621 
622 mmu_unlock:
623 	if (r.found_memslot)
624 		KVM_MMU_UNLOCK(kvm);
625 
626 	srcu_read_unlock(&kvm->srcu, idx);
627 
628 	return r;
629 }
630 
631 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
632 						unsigned long start,
633 						unsigned long end,
634 						gfn_handler_t handler,
635 						bool flush_on_ret)
636 {
637 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
638 	const struct kvm_mmu_notifier_range range = {
639 		.start		= start,
640 		.end		= end,
641 		.handler	= handler,
642 		.on_lock	= (void *)kvm_null_fn,
643 		.flush_on_ret	= flush_on_ret,
644 		.may_block	= false,
645 	};
646 
647 	return __kvm_handle_hva_range(kvm, &range).ret;
648 }
649 
650 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
651 							 unsigned long start,
652 							 unsigned long end,
653 							 gfn_handler_t handler)
654 {
655 	return kvm_handle_hva_range(mn, start, end, handler, false);
656 }
657 
658 void kvm_mmu_invalidate_begin(struct kvm *kvm)
659 {
660 	lockdep_assert_held_write(&kvm->mmu_lock);
661 	/*
662 	 * The count increase must become visible at unlock time as no
663 	 * spte can be established without taking the mmu_lock and
664 	 * count is also read inside the mmu_lock critical section.
665 	 */
666 	kvm->mmu_invalidate_in_progress++;
667 
668 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
669 		kvm->mmu_invalidate_range_start = INVALID_GPA;
670 		kvm->mmu_invalidate_range_end = INVALID_GPA;
671 	}
672 }
673 
674 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
675 {
676 	lockdep_assert_held_write(&kvm->mmu_lock);
677 
678 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
679 
680 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
681 		kvm->mmu_invalidate_range_start = start;
682 		kvm->mmu_invalidate_range_end = end;
683 	} else {
684 		/*
685 		 * Fully tracking multiple concurrent ranges has diminishing
686 		 * returns. Keep things simple and just find the minimal range
687 		 * which includes the current and new ranges. As there won't be
688 		 * enough information to subtract a range after its invalidate
689 		 * completes, any ranges invalidated concurrently will
690 		 * accumulate and persist until all outstanding invalidates
691 		 * complete.
692 		 */
693 		kvm->mmu_invalidate_range_start =
694 			min(kvm->mmu_invalidate_range_start, start);
695 		kvm->mmu_invalidate_range_end =
696 			max(kvm->mmu_invalidate_range_end, end);
697 	}
698 }
699 
700 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
701 {
702 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
703 	return kvm_unmap_gfn_range(kvm, range);
704 }
705 
706 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
707 					const struct mmu_notifier_range *range)
708 {
709 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
710 	const struct kvm_mmu_notifier_range hva_range = {
711 		.start		= range->start,
712 		.end		= range->end,
713 		.handler	= kvm_mmu_unmap_gfn_range,
714 		.on_lock	= kvm_mmu_invalidate_begin,
715 		.flush_on_ret	= true,
716 		.may_block	= mmu_notifier_range_blockable(range),
717 	};
718 
719 	trace_kvm_unmap_hva_range(range->start, range->end);
720 
721 	/*
722 	 * Prevent memslot modification between range_start() and range_end()
723 	 * so that conditionally locking provides the same result in both
724 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
725 	 * adjustments will be imbalanced.
726 	 *
727 	 * Pairs with the decrement in range_end().
728 	 */
729 	spin_lock(&kvm->mn_invalidate_lock);
730 	kvm->mn_active_invalidate_count++;
731 	spin_unlock(&kvm->mn_invalidate_lock);
732 
733 	/*
734 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
735 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
736 	 * each cache's lock.  There are relatively few caches in existence at
737 	 * any given time, and the caches themselves can check for hva overlap,
738 	 * i.e. don't need to rely on memslot overlap checks for performance.
739 	 * Because this runs without holding mmu_lock, the pfn caches must use
740 	 * mn_active_invalidate_count (see above) instead of
741 	 * mmu_invalidate_in_progress.
742 	 */
743 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
744 
745 	/*
746 	 * If one or more memslots were found and thus zapped, notify arch code
747 	 * that guest memory has been reclaimed.  This needs to be done *after*
748 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
749 	 */
750 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
751 		kvm_arch_guest_memory_reclaimed(kvm);
752 
753 	return 0;
754 }
755 
756 void kvm_mmu_invalidate_end(struct kvm *kvm)
757 {
758 	lockdep_assert_held_write(&kvm->mmu_lock);
759 
760 	/*
761 	 * This sequence increase will notify the kvm page fault that
762 	 * the page that is going to be mapped in the spte could have
763 	 * been freed.
764 	 */
765 	kvm->mmu_invalidate_seq++;
766 	smp_wmb();
767 	/*
768 	 * The above sequence increase must be visible before the
769 	 * below count decrease, which is ensured by the smp_wmb above
770 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
771 	 */
772 	kvm->mmu_invalidate_in_progress--;
773 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
774 
775 	/*
776 	 * Assert that at least one range was added between start() and end().
777 	 * Not adding a range isn't fatal, but it is a KVM bug.
778 	 */
779 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
780 }
781 
782 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
783 					const struct mmu_notifier_range *range)
784 {
785 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
786 	const struct kvm_mmu_notifier_range hva_range = {
787 		.start		= range->start,
788 		.end		= range->end,
789 		.handler	= (void *)kvm_null_fn,
790 		.on_lock	= kvm_mmu_invalidate_end,
791 		.flush_on_ret	= false,
792 		.may_block	= mmu_notifier_range_blockable(range),
793 	};
794 	bool wake;
795 
796 	__kvm_handle_hva_range(kvm, &hva_range);
797 
798 	/* Pairs with the increment in range_start(). */
799 	spin_lock(&kvm->mn_invalidate_lock);
800 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
801 		--kvm->mn_active_invalidate_count;
802 	wake = !kvm->mn_active_invalidate_count;
803 	spin_unlock(&kvm->mn_invalidate_lock);
804 
805 	/*
806 	 * There can only be one waiter, since the wait happens under
807 	 * slots_lock.
808 	 */
809 	if (wake)
810 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
811 }
812 
813 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
814 					      struct mm_struct *mm,
815 					      unsigned long start,
816 					      unsigned long end)
817 {
818 	trace_kvm_age_hva(start, end);
819 
820 	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
821 				    !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
822 }
823 
824 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
825 					struct mm_struct *mm,
826 					unsigned long start,
827 					unsigned long end)
828 {
829 	trace_kvm_age_hva(start, end);
830 
831 	/*
832 	 * Even though we do not flush TLB, this will still adversely
833 	 * affect performance on pre-Haswell Intel EPT, where there is
834 	 * no EPT Access Bit to clear so that we have to tear down EPT
835 	 * tables instead. If we find this unacceptable, we can always
836 	 * add a parameter to kvm_age_hva so that it effectively doesn't
837 	 * do anything on clear_young.
838 	 *
839 	 * Also note that currently we never issue secondary TLB flushes
840 	 * from clear_young, leaving this job up to the regular system
841 	 * cadence. If we find this inaccurate, we might come up with a
842 	 * more sophisticated heuristic later.
843 	 */
844 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
845 }
846 
847 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
848 				       struct mm_struct *mm,
849 				       unsigned long address)
850 {
851 	trace_kvm_test_age_hva(address);
852 
853 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
854 					     kvm_test_age_gfn);
855 }
856 
857 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
858 				     struct mm_struct *mm)
859 {
860 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
861 	int idx;
862 
863 	idx = srcu_read_lock(&kvm->srcu);
864 	kvm_flush_shadow_all(kvm);
865 	srcu_read_unlock(&kvm->srcu, idx);
866 }
867 
868 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
869 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
870 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
871 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
872 	.clear_young		= kvm_mmu_notifier_clear_young,
873 	.test_young		= kvm_mmu_notifier_test_young,
874 	.release		= kvm_mmu_notifier_release,
875 };
876 
877 static int kvm_init_mmu_notifier(struct kvm *kvm)
878 {
879 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
880 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
881 }
882 
883 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
884 
885 static int kvm_init_mmu_notifier(struct kvm *kvm)
886 {
887 	return 0;
888 }
889 
890 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
891 
892 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
893 static int kvm_pm_notifier_call(struct notifier_block *bl,
894 				unsigned long state,
895 				void *unused)
896 {
897 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
898 
899 	return kvm_arch_pm_notifier(kvm, state);
900 }
901 
902 static void kvm_init_pm_notifier(struct kvm *kvm)
903 {
904 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
905 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
906 	kvm->pm_notifier.priority = INT_MAX;
907 	register_pm_notifier(&kvm->pm_notifier);
908 }
909 
910 static void kvm_destroy_pm_notifier(struct kvm *kvm)
911 {
912 	unregister_pm_notifier(&kvm->pm_notifier);
913 }
914 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
915 static void kvm_init_pm_notifier(struct kvm *kvm)
916 {
917 }
918 
919 static void kvm_destroy_pm_notifier(struct kvm *kvm)
920 {
921 }
922 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
923 
924 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
925 {
926 	if (!memslot->dirty_bitmap)
927 		return;
928 
929 	vfree(memslot->dirty_bitmap);
930 	memslot->dirty_bitmap = NULL;
931 }
932 
933 /* This does not remove the slot from struct kvm_memslots data structures */
934 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
935 {
936 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
937 		kvm_gmem_unbind(slot);
938 
939 	kvm_destroy_dirty_bitmap(slot);
940 
941 	kvm_arch_free_memslot(kvm, slot);
942 
943 	kfree(slot);
944 }
945 
946 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
947 {
948 	struct hlist_node *idnode;
949 	struct kvm_memory_slot *memslot;
950 	int bkt;
951 
952 	/*
953 	 * The same memslot objects live in both active and inactive sets,
954 	 * arbitrarily free using index '1' so the second invocation of this
955 	 * function isn't operating over a structure with dangling pointers
956 	 * (even though this function isn't actually touching them).
957 	 */
958 	if (!slots->node_idx)
959 		return;
960 
961 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
962 		kvm_free_memslot(kvm, memslot);
963 }
964 
965 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
966 {
967 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
968 	case KVM_STATS_TYPE_INSTANT:
969 		return 0444;
970 	case KVM_STATS_TYPE_CUMULATIVE:
971 	case KVM_STATS_TYPE_PEAK:
972 	default:
973 		return 0644;
974 	}
975 }
976 
977 
978 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
979 {
980 	int i;
981 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
982 				      kvm_vcpu_stats_header.num_desc;
983 
984 	if (IS_ERR(kvm->debugfs_dentry))
985 		return;
986 
987 	debugfs_remove_recursive(kvm->debugfs_dentry);
988 
989 	if (kvm->debugfs_stat_data) {
990 		for (i = 0; i < kvm_debugfs_num_entries; i++)
991 			kfree(kvm->debugfs_stat_data[i]);
992 		kfree(kvm->debugfs_stat_data);
993 	}
994 }
995 
996 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
997 {
998 	static DEFINE_MUTEX(kvm_debugfs_lock);
999 	struct dentry *dent;
1000 	char dir_name[ITOA_MAX_LEN * 2];
1001 	struct kvm_stat_data *stat_data;
1002 	const struct _kvm_stats_desc *pdesc;
1003 	int i, ret = -ENOMEM;
1004 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1005 				      kvm_vcpu_stats_header.num_desc;
1006 
1007 	if (!debugfs_initialized())
1008 		return 0;
1009 
1010 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1011 	mutex_lock(&kvm_debugfs_lock);
1012 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1013 	if (dent) {
1014 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1015 		dput(dent);
1016 		mutex_unlock(&kvm_debugfs_lock);
1017 		return 0;
1018 	}
1019 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1020 	mutex_unlock(&kvm_debugfs_lock);
1021 	if (IS_ERR(dent))
1022 		return 0;
1023 
1024 	kvm->debugfs_dentry = dent;
1025 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1026 					 sizeof(*kvm->debugfs_stat_data),
1027 					 GFP_KERNEL_ACCOUNT);
1028 	if (!kvm->debugfs_stat_data)
1029 		goto out_err;
1030 
1031 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1032 		pdesc = &kvm_vm_stats_desc[i];
1033 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1034 		if (!stat_data)
1035 			goto out_err;
1036 
1037 		stat_data->kvm = kvm;
1038 		stat_data->desc = pdesc;
1039 		stat_data->kind = KVM_STAT_VM;
1040 		kvm->debugfs_stat_data[i] = stat_data;
1041 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1042 				    kvm->debugfs_dentry, stat_data,
1043 				    &stat_fops_per_vm);
1044 	}
1045 
1046 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1047 		pdesc = &kvm_vcpu_stats_desc[i];
1048 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1049 		if (!stat_data)
1050 			goto out_err;
1051 
1052 		stat_data->kvm = kvm;
1053 		stat_data->desc = pdesc;
1054 		stat_data->kind = KVM_STAT_VCPU;
1055 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1056 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1057 				    kvm->debugfs_dentry, stat_data,
1058 				    &stat_fops_per_vm);
1059 	}
1060 
1061 	kvm_arch_create_vm_debugfs(kvm);
1062 	return 0;
1063 out_err:
1064 	kvm_destroy_vm_debugfs(kvm);
1065 	return ret;
1066 }
1067 
1068 /*
1069  * Called after the VM is otherwise initialized, but just before adding it to
1070  * the vm_list.
1071  */
1072 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1073 {
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Called just after removing the VM from the vm_list, but before doing any
1079  * other destruction.
1080  */
1081 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1082 {
1083 }
1084 
1085 /*
1086  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1087  * be setup already, so we can create arch-specific debugfs entries under it.
1088  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1089  * a per-arch destroy interface is not needed.
1090  */
1091 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1092 {
1093 }
1094 
1095 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1096 {
1097 	struct kvm *kvm = kvm_arch_alloc_vm();
1098 	struct kvm_memslots *slots;
1099 	int r, i, j;
1100 
1101 	if (!kvm)
1102 		return ERR_PTR(-ENOMEM);
1103 
1104 	KVM_MMU_LOCK_INIT(kvm);
1105 	mmgrab(current->mm);
1106 	kvm->mm = current->mm;
1107 	kvm_eventfd_init(kvm);
1108 	mutex_init(&kvm->lock);
1109 	mutex_init(&kvm->irq_lock);
1110 	mutex_init(&kvm->slots_lock);
1111 	mutex_init(&kvm->slots_arch_lock);
1112 	spin_lock_init(&kvm->mn_invalidate_lock);
1113 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1114 	xa_init(&kvm->vcpu_array);
1115 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1116 	xa_init(&kvm->mem_attr_array);
1117 #endif
1118 
1119 	INIT_LIST_HEAD(&kvm->gpc_list);
1120 	spin_lock_init(&kvm->gpc_lock);
1121 
1122 	INIT_LIST_HEAD(&kvm->devices);
1123 	kvm->max_vcpus = KVM_MAX_VCPUS;
1124 
1125 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1126 
1127 	/*
1128 	 * Force subsequent debugfs file creations to fail if the VM directory
1129 	 * is not created (by kvm_create_vm_debugfs()).
1130 	 */
1131 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1132 
1133 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1134 		 task_pid_nr(current));
1135 
1136 	r = -ENOMEM;
1137 	if (init_srcu_struct(&kvm->srcu))
1138 		goto out_err_no_srcu;
1139 	if (init_srcu_struct(&kvm->irq_srcu))
1140 		goto out_err_no_irq_srcu;
1141 
1142 	r = kvm_init_irq_routing(kvm);
1143 	if (r)
1144 		goto out_err_no_irq_routing;
1145 
1146 	refcount_set(&kvm->users_count, 1);
1147 
1148 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1149 		for (j = 0; j < 2; j++) {
1150 			slots = &kvm->__memslots[i][j];
1151 
1152 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1153 			slots->hva_tree = RB_ROOT_CACHED;
1154 			slots->gfn_tree = RB_ROOT;
1155 			hash_init(slots->id_hash);
1156 			slots->node_idx = j;
1157 
1158 			/* Generations must be different for each address space. */
1159 			slots->generation = i;
1160 		}
1161 
1162 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1163 	}
1164 
1165 	r = -ENOMEM;
1166 	for (i = 0; i < KVM_NR_BUSES; i++) {
1167 		rcu_assign_pointer(kvm->buses[i],
1168 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1169 		if (!kvm->buses[i])
1170 			goto out_err_no_arch_destroy_vm;
1171 	}
1172 
1173 	r = kvm_arch_init_vm(kvm, type);
1174 	if (r)
1175 		goto out_err_no_arch_destroy_vm;
1176 
1177 	r = kvm_enable_virtualization();
1178 	if (r)
1179 		goto out_err_no_disable;
1180 
1181 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1182 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1183 #endif
1184 
1185 	r = kvm_init_mmu_notifier(kvm);
1186 	if (r)
1187 		goto out_err_no_mmu_notifier;
1188 
1189 	r = kvm_coalesced_mmio_init(kvm);
1190 	if (r < 0)
1191 		goto out_no_coalesced_mmio;
1192 
1193 	r = kvm_create_vm_debugfs(kvm, fdname);
1194 	if (r)
1195 		goto out_err_no_debugfs;
1196 
1197 	r = kvm_arch_post_init_vm(kvm);
1198 	if (r)
1199 		goto out_err;
1200 
1201 	mutex_lock(&kvm_lock);
1202 	list_add(&kvm->vm_list, &vm_list);
1203 	mutex_unlock(&kvm_lock);
1204 
1205 	preempt_notifier_inc();
1206 	kvm_init_pm_notifier(kvm);
1207 
1208 	return kvm;
1209 
1210 out_err:
1211 	kvm_destroy_vm_debugfs(kvm);
1212 out_err_no_debugfs:
1213 	kvm_coalesced_mmio_free(kvm);
1214 out_no_coalesced_mmio:
1215 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1216 	if (kvm->mmu_notifier.ops)
1217 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1218 #endif
1219 out_err_no_mmu_notifier:
1220 	kvm_disable_virtualization();
1221 out_err_no_disable:
1222 	kvm_arch_destroy_vm(kvm);
1223 out_err_no_arch_destroy_vm:
1224 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1225 	for (i = 0; i < KVM_NR_BUSES; i++)
1226 		kfree(kvm_get_bus(kvm, i));
1227 	kvm_free_irq_routing(kvm);
1228 out_err_no_irq_routing:
1229 	cleanup_srcu_struct(&kvm->irq_srcu);
1230 out_err_no_irq_srcu:
1231 	cleanup_srcu_struct(&kvm->srcu);
1232 out_err_no_srcu:
1233 	kvm_arch_free_vm(kvm);
1234 	mmdrop(current->mm);
1235 	return ERR_PTR(r);
1236 }
1237 
1238 static void kvm_destroy_devices(struct kvm *kvm)
1239 {
1240 	struct kvm_device *dev, *tmp;
1241 
1242 	/*
1243 	 * We do not need to take the kvm->lock here, because nobody else
1244 	 * has a reference to the struct kvm at this point and therefore
1245 	 * cannot access the devices list anyhow.
1246 	 *
1247 	 * The device list is generally managed as an rculist, but list_del()
1248 	 * is used intentionally here. If a bug in KVM introduced a reader that
1249 	 * was not backed by a reference on the kvm struct, the hope is that
1250 	 * it'd consume the poisoned forward pointer instead of suffering a
1251 	 * use-after-free, even though this cannot be guaranteed.
1252 	 */
1253 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1254 		list_del(&dev->vm_node);
1255 		dev->ops->destroy(dev);
1256 	}
1257 }
1258 
1259 static void kvm_destroy_vm(struct kvm *kvm)
1260 {
1261 	int i;
1262 	struct mm_struct *mm = kvm->mm;
1263 
1264 	kvm_destroy_pm_notifier(kvm);
1265 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1266 	kvm_destroy_vm_debugfs(kvm);
1267 	kvm_arch_sync_events(kvm);
1268 	mutex_lock(&kvm_lock);
1269 	list_del(&kvm->vm_list);
1270 	mutex_unlock(&kvm_lock);
1271 	kvm_arch_pre_destroy_vm(kvm);
1272 
1273 	kvm_free_irq_routing(kvm);
1274 	for (i = 0; i < KVM_NR_BUSES; i++) {
1275 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1276 
1277 		if (bus)
1278 			kvm_io_bus_destroy(bus);
1279 		kvm->buses[i] = NULL;
1280 	}
1281 	kvm_coalesced_mmio_free(kvm);
1282 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1283 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1284 	/*
1285 	 * At this point, pending calls to invalidate_range_start()
1286 	 * have completed but no more MMU notifiers will run, so
1287 	 * mn_active_invalidate_count may remain unbalanced.
1288 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1289 	 * last reference on KVM has been dropped, but freeing
1290 	 * memslots would deadlock without this manual intervention.
1291 	 *
1292 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1293 	 * notifier between a start() and end(), then there shouldn't be any
1294 	 * in-progress invalidations.
1295 	 */
1296 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1297 	if (kvm->mn_active_invalidate_count)
1298 		kvm->mn_active_invalidate_count = 0;
1299 	else
1300 		WARN_ON(kvm->mmu_invalidate_in_progress);
1301 #else
1302 	kvm_flush_shadow_all(kvm);
1303 #endif
1304 	kvm_arch_destroy_vm(kvm);
1305 	kvm_destroy_devices(kvm);
1306 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1307 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1308 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1309 	}
1310 	cleanup_srcu_struct(&kvm->irq_srcu);
1311 	cleanup_srcu_struct(&kvm->srcu);
1312 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1313 	xa_destroy(&kvm->mem_attr_array);
1314 #endif
1315 	kvm_arch_free_vm(kvm);
1316 	preempt_notifier_dec();
1317 	kvm_disable_virtualization();
1318 	mmdrop(mm);
1319 }
1320 
1321 void kvm_get_kvm(struct kvm *kvm)
1322 {
1323 	refcount_inc(&kvm->users_count);
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1326 
1327 /*
1328  * Make sure the vm is not during destruction, which is a safe version of
1329  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1330  */
1331 bool kvm_get_kvm_safe(struct kvm *kvm)
1332 {
1333 	return refcount_inc_not_zero(&kvm->users_count);
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1336 
1337 void kvm_put_kvm(struct kvm *kvm)
1338 {
1339 	if (refcount_dec_and_test(&kvm->users_count))
1340 		kvm_destroy_vm(kvm);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1343 
1344 /*
1345  * Used to put a reference that was taken on behalf of an object associated
1346  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1347  * of the new file descriptor fails and the reference cannot be transferred to
1348  * its final owner.  In such cases, the caller is still actively using @kvm and
1349  * will fail miserably if the refcount unexpectedly hits zero.
1350  */
1351 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1352 {
1353 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1356 
1357 static int kvm_vm_release(struct inode *inode, struct file *filp)
1358 {
1359 	struct kvm *kvm = filp->private_data;
1360 
1361 	kvm_irqfd_release(kvm);
1362 
1363 	kvm_put_kvm(kvm);
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Allocation size is twice as large as the actual dirty bitmap size.
1369  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1370  */
1371 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1372 {
1373 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1374 
1375 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1376 	if (!memslot->dirty_bitmap)
1377 		return -ENOMEM;
1378 
1379 	return 0;
1380 }
1381 
1382 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1383 {
1384 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1385 	int node_idx_inactive = active->node_idx ^ 1;
1386 
1387 	return &kvm->__memslots[as_id][node_idx_inactive];
1388 }
1389 
1390 /*
1391  * Helper to get the address space ID when one of memslot pointers may be NULL.
1392  * This also serves as a sanity that at least one of the pointers is non-NULL,
1393  * and that their address space IDs don't diverge.
1394  */
1395 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1396 				  struct kvm_memory_slot *b)
1397 {
1398 	if (WARN_ON_ONCE(!a && !b))
1399 		return 0;
1400 
1401 	if (!a)
1402 		return b->as_id;
1403 	if (!b)
1404 		return a->as_id;
1405 
1406 	WARN_ON_ONCE(a->as_id != b->as_id);
1407 	return a->as_id;
1408 }
1409 
1410 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1411 				struct kvm_memory_slot *slot)
1412 {
1413 	struct rb_root *gfn_tree = &slots->gfn_tree;
1414 	struct rb_node **node, *parent;
1415 	int idx = slots->node_idx;
1416 
1417 	parent = NULL;
1418 	for (node = &gfn_tree->rb_node; *node; ) {
1419 		struct kvm_memory_slot *tmp;
1420 
1421 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1422 		parent = *node;
1423 		if (slot->base_gfn < tmp->base_gfn)
1424 			node = &(*node)->rb_left;
1425 		else if (slot->base_gfn > tmp->base_gfn)
1426 			node = &(*node)->rb_right;
1427 		else
1428 			BUG();
1429 	}
1430 
1431 	rb_link_node(&slot->gfn_node[idx], parent, node);
1432 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1433 }
1434 
1435 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1436 			       struct kvm_memory_slot *slot)
1437 {
1438 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1439 }
1440 
1441 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1442 				 struct kvm_memory_slot *old,
1443 				 struct kvm_memory_slot *new)
1444 {
1445 	int idx = slots->node_idx;
1446 
1447 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1448 
1449 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1450 			&slots->gfn_tree);
1451 }
1452 
1453 /*
1454  * Replace @old with @new in the inactive memslots.
1455  *
1456  * With NULL @old this simply adds @new.
1457  * With NULL @new this simply removes @old.
1458  *
1459  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1460  * appropriately.
1461  */
1462 static void kvm_replace_memslot(struct kvm *kvm,
1463 				struct kvm_memory_slot *old,
1464 				struct kvm_memory_slot *new)
1465 {
1466 	int as_id = kvm_memslots_get_as_id(old, new);
1467 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1468 	int idx = slots->node_idx;
1469 
1470 	if (old) {
1471 		hash_del(&old->id_node[idx]);
1472 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1473 
1474 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1475 			atomic_long_set(&slots->last_used_slot, (long)new);
1476 
1477 		if (!new) {
1478 			kvm_erase_gfn_node(slots, old);
1479 			return;
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * Initialize @new's hva range.  Do this even when replacing an @old
1485 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1486 	 */
1487 	new->hva_node[idx].start = new->userspace_addr;
1488 	new->hva_node[idx].last = new->userspace_addr +
1489 				  (new->npages << PAGE_SHIFT) - 1;
1490 
1491 	/*
1492 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1493 	 * hva_node needs to be swapped with remove+insert even though hva can't
1494 	 * change when replacing an existing slot.
1495 	 */
1496 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1497 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1498 
1499 	/*
1500 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1501 	 * switch the node in the gfn tree instead of removing the old and
1502 	 * inserting the new as two separate operations. Replacement is a
1503 	 * single O(1) operation versus two O(log(n)) operations for
1504 	 * remove+insert.
1505 	 */
1506 	if (old && old->base_gfn == new->base_gfn) {
1507 		kvm_replace_gfn_node(slots, old, new);
1508 	} else {
1509 		if (old)
1510 			kvm_erase_gfn_node(slots, old);
1511 		kvm_insert_gfn_node(slots, new);
1512 	}
1513 }
1514 
1515 /*
1516  * Flags that do not access any of the extra space of struct
1517  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1518  * only allows these.
1519  */
1520 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1521 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1522 
1523 static int check_memory_region_flags(struct kvm *kvm,
1524 				     const struct kvm_userspace_memory_region2 *mem)
1525 {
1526 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1527 
1528 	if (kvm_arch_has_private_mem(kvm))
1529 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1530 
1531 	/* Dirty logging private memory is not currently supported. */
1532 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1533 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1534 
1535 	/*
1536 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1537 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1538 	 * and KVM doesn't allow emulated MMIO for private memory.
1539 	 */
1540 	if (kvm_arch_has_readonly_mem(kvm) &&
1541 	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1542 		valid_flags |= KVM_MEM_READONLY;
1543 
1544 	if (mem->flags & ~valid_flags)
1545 		return -EINVAL;
1546 
1547 	return 0;
1548 }
1549 
1550 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1551 {
1552 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1553 
1554 	/* Grab the generation from the activate memslots. */
1555 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1556 
1557 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1558 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1559 
1560 	/*
1561 	 * Do not store the new memslots while there are invalidations in
1562 	 * progress, otherwise the locking in invalidate_range_start and
1563 	 * invalidate_range_end will be unbalanced.
1564 	 */
1565 	spin_lock(&kvm->mn_invalidate_lock);
1566 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567 	while (kvm->mn_active_invalidate_count) {
1568 		set_current_state(TASK_UNINTERRUPTIBLE);
1569 		spin_unlock(&kvm->mn_invalidate_lock);
1570 		schedule();
1571 		spin_lock(&kvm->mn_invalidate_lock);
1572 	}
1573 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1574 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1575 	spin_unlock(&kvm->mn_invalidate_lock);
1576 
1577 	/*
1578 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1579 	 * SRCU below in order to avoid deadlock with another thread
1580 	 * acquiring the slots_arch_lock in an srcu critical section.
1581 	 */
1582 	mutex_unlock(&kvm->slots_arch_lock);
1583 
1584 	synchronize_srcu_expedited(&kvm->srcu);
1585 
1586 	/*
1587 	 * Increment the new memslot generation a second time, dropping the
1588 	 * update in-progress flag and incrementing the generation based on
1589 	 * the number of address spaces.  This provides a unique and easily
1590 	 * identifiable generation number while the memslots are in flux.
1591 	 */
1592 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1593 
1594 	/*
1595 	 * Generations must be unique even across address spaces.  We do not need
1596 	 * a global counter for that, instead the generation space is evenly split
1597 	 * across address spaces.  For example, with two address spaces, address
1598 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1599 	 * use generations 1, 3, 5, ...
1600 	 */
1601 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1602 
1603 	kvm_arch_memslots_updated(kvm, gen);
1604 
1605 	slots->generation = gen;
1606 }
1607 
1608 static int kvm_prepare_memory_region(struct kvm *kvm,
1609 				     const struct kvm_memory_slot *old,
1610 				     struct kvm_memory_slot *new,
1611 				     enum kvm_mr_change change)
1612 {
1613 	int r;
1614 
1615 	/*
1616 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1617 	 * will be freed on "commit".  If logging is enabled in both old and
1618 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1619 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1620 	 * new bitmap.
1621 	 */
1622 	if (change != KVM_MR_DELETE) {
1623 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1624 			new->dirty_bitmap = NULL;
1625 		else if (old && old->dirty_bitmap)
1626 			new->dirty_bitmap = old->dirty_bitmap;
1627 		else if (kvm_use_dirty_bitmap(kvm)) {
1628 			r = kvm_alloc_dirty_bitmap(new);
1629 			if (r)
1630 				return r;
1631 
1632 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1633 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1634 		}
1635 	}
1636 
1637 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1638 
1639 	/* Free the bitmap on failure if it was allocated above. */
1640 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1641 		kvm_destroy_dirty_bitmap(new);
1642 
1643 	return r;
1644 }
1645 
1646 static void kvm_commit_memory_region(struct kvm *kvm,
1647 				     struct kvm_memory_slot *old,
1648 				     const struct kvm_memory_slot *new,
1649 				     enum kvm_mr_change change)
1650 {
1651 	int old_flags = old ? old->flags : 0;
1652 	int new_flags = new ? new->flags : 0;
1653 	/*
1654 	 * Update the total number of memslot pages before calling the arch
1655 	 * hook so that architectures can consume the result directly.
1656 	 */
1657 	if (change == KVM_MR_DELETE)
1658 		kvm->nr_memslot_pages -= old->npages;
1659 	else if (change == KVM_MR_CREATE)
1660 		kvm->nr_memslot_pages += new->npages;
1661 
1662 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1663 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1664 		atomic_set(&kvm->nr_memslots_dirty_logging,
1665 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1666 	}
1667 
1668 	kvm_arch_commit_memory_region(kvm, old, new, change);
1669 
1670 	switch (change) {
1671 	case KVM_MR_CREATE:
1672 		/* Nothing more to do. */
1673 		break;
1674 	case KVM_MR_DELETE:
1675 		/* Free the old memslot and all its metadata. */
1676 		kvm_free_memslot(kvm, old);
1677 		break;
1678 	case KVM_MR_MOVE:
1679 	case KVM_MR_FLAGS_ONLY:
1680 		/*
1681 		 * Free the dirty bitmap as needed; the below check encompasses
1682 		 * both the flags and whether a ring buffer is being used)
1683 		 */
1684 		if (old->dirty_bitmap && !new->dirty_bitmap)
1685 			kvm_destroy_dirty_bitmap(old);
1686 
1687 		/*
1688 		 * The final quirk.  Free the detached, old slot, but only its
1689 		 * memory, not any metadata.  Metadata, including arch specific
1690 		 * data, may be reused by @new.
1691 		 */
1692 		kfree(old);
1693 		break;
1694 	default:
1695 		BUG();
1696 	}
1697 }
1698 
1699 /*
1700  * Activate @new, which must be installed in the inactive slots by the caller,
1701  * by swapping the active slots and then propagating @new to @old once @old is
1702  * unreachable and can be safely modified.
1703  *
1704  * With NULL @old this simply adds @new to @active (while swapping the sets).
1705  * With NULL @new this simply removes @old from @active and frees it
1706  * (while also swapping the sets).
1707  */
1708 static void kvm_activate_memslot(struct kvm *kvm,
1709 				 struct kvm_memory_slot *old,
1710 				 struct kvm_memory_slot *new)
1711 {
1712 	int as_id = kvm_memslots_get_as_id(old, new);
1713 
1714 	kvm_swap_active_memslots(kvm, as_id);
1715 
1716 	/* Propagate the new memslot to the now inactive memslots. */
1717 	kvm_replace_memslot(kvm, old, new);
1718 }
1719 
1720 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1721 			     const struct kvm_memory_slot *src)
1722 {
1723 	dest->base_gfn = src->base_gfn;
1724 	dest->npages = src->npages;
1725 	dest->dirty_bitmap = src->dirty_bitmap;
1726 	dest->arch = src->arch;
1727 	dest->userspace_addr = src->userspace_addr;
1728 	dest->flags = src->flags;
1729 	dest->id = src->id;
1730 	dest->as_id = src->as_id;
1731 }
1732 
1733 static void kvm_invalidate_memslot(struct kvm *kvm,
1734 				   struct kvm_memory_slot *old,
1735 				   struct kvm_memory_slot *invalid_slot)
1736 {
1737 	/*
1738 	 * Mark the current slot INVALID.  As with all memslot modifications,
1739 	 * this must be done on an unreachable slot to avoid modifying the
1740 	 * current slot in the active tree.
1741 	 */
1742 	kvm_copy_memslot(invalid_slot, old);
1743 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1744 	kvm_replace_memslot(kvm, old, invalid_slot);
1745 
1746 	/*
1747 	 * Activate the slot that is now marked INVALID, but don't propagate
1748 	 * the slot to the now inactive slots. The slot is either going to be
1749 	 * deleted or recreated as a new slot.
1750 	 */
1751 	kvm_swap_active_memslots(kvm, old->as_id);
1752 
1753 	/*
1754 	 * From this point no new shadow pages pointing to a deleted, or moved,
1755 	 * memslot will be created.  Validation of sp->gfn happens in:
1756 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1757 	 *	- kvm_is_visible_gfn (mmu_check_root)
1758 	 */
1759 	kvm_arch_flush_shadow_memslot(kvm, old);
1760 	kvm_arch_guest_memory_reclaimed(kvm);
1761 
1762 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1763 	mutex_lock(&kvm->slots_arch_lock);
1764 
1765 	/*
1766 	 * Copy the arch-specific field of the newly-installed slot back to the
1767 	 * old slot as the arch data could have changed between releasing
1768 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1769 	 * above.  Writers are required to retrieve memslots *after* acquiring
1770 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1771 	 */
1772 	old->arch = invalid_slot->arch;
1773 }
1774 
1775 static void kvm_create_memslot(struct kvm *kvm,
1776 			       struct kvm_memory_slot *new)
1777 {
1778 	/* Add the new memslot to the inactive set and activate. */
1779 	kvm_replace_memslot(kvm, NULL, new);
1780 	kvm_activate_memslot(kvm, NULL, new);
1781 }
1782 
1783 static void kvm_delete_memslot(struct kvm *kvm,
1784 			       struct kvm_memory_slot *old,
1785 			       struct kvm_memory_slot *invalid_slot)
1786 {
1787 	/*
1788 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1789 	 * the "new" slot, and for the invalid version in the active slots.
1790 	 */
1791 	kvm_replace_memslot(kvm, old, NULL);
1792 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1793 }
1794 
1795 static void kvm_move_memslot(struct kvm *kvm,
1796 			     struct kvm_memory_slot *old,
1797 			     struct kvm_memory_slot *new,
1798 			     struct kvm_memory_slot *invalid_slot)
1799 {
1800 	/*
1801 	 * Replace the old memslot in the inactive slots, and then swap slots
1802 	 * and replace the current INVALID with the new as well.
1803 	 */
1804 	kvm_replace_memslot(kvm, old, new);
1805 	kvm_activate_memslot(kvm, invalid_slot, new);
1806 }
1807 
1808 static void kvm_update_flags_memslot(struct kvm *kvm,
1809 				     struct kvm_memory_slot *old,
1810 				     struct kvm_memory_slot *new)
1811 {
1812 	/*
1813 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1814 	 * an intermediate step. Instead, the old memslot is simply replaced
1815 	 * with a new, updated copy in both memslot sets.
1816 	 */
1817 	kvm_replace_memslot(kvm, old, new);
1818 	kvm_activate_memslot(kvm, old, new);
1819 }
1820 
1821 static int kvm_set_memslot(struct kvm *kvm,
1822 			   struct kvm_memory_slot *old,
1823 			   struct kvm_memory_slot *new,
1824 			   enum kvm_mr_change change)
1825 {
1826 	struct kvm_memory_slot *invalid_slot;
1827 	int r;
1828 
1829 	/*
1830 	 * Released in kvm_swap_active_memslots().
1831 	 *
1832 	 * Must be held from before the current memslots are copied until after
1833 	 * the new memslots are installed with rcu_assign_pointer, then
1834 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1835 	 *
1836 	 * When modifying memslots outside of the slots_lock, must be held
1837 	 * before reading the pointer to the current memslots until after all
1838 	 * changes to those memslots are complete.
1839 	 *
1840 	 * These rules ensure that installing new memslots does not lose
1841 	 * changes made to the previous memslots.
1842 	 */
1843 	mutex_lock(&kvm->slots_arch_lock);
1844 
1845 	/*
1846 	 * Invalidate the old slot if it's being deleted or moved.  This is
1847 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1848 	 * continue running by ensuring there are no mappings or shadow pages
1849 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1850 	 * (and without a lock), a window would exist between effecting the
1851 	 * delete/move and committing the changes in arch code where KVM or a
1852 	 * guest could access a non-existent memslot.
1853 	 *
1854 	 * Modifications are done on a temporary, unreachable slot.  The old
1855 	 * slot needs to be preserved in case a later step fails and the
1856 	 * invalidation needs to be reverted.
1857 	 */
1858 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1860 		if (!invalid_slot) {
1861 			mutex_unlock(&kvm->slots_arch_lock);
1862 			return -ENOMEM;
1863 		}
1864 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1865 	}
1866 
1867 	r = kvm_prepare_memory_region(kvm, old, new, change);
1868 	if (r) {
1869 		/*
1870 		 * For DELETE/MOVE, revert the above INVALID change.  No
1871 		 * modifications required since the original slot was preserved
1872 		 * in the inactive slots.  Changing the active memslots also
1873 		 * release slots_arch_lock.
1874 		 */
1875 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1876 			kvm_activate_memslot(kvm, invalid_slot, old);
1877 			kfree(invalid_slot);
1878 		} else {
1879 			mutex_unlock(&kvm->slots_arch_lock);
1880 		}
1881 		return r;
1882 	}
1883 
1884 	/*
1885 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1886 	 * version of the old slot.  MOVE is particularly special as it reuses
1887 	 * the old slot and returns a copy of the old slot (in working_slot).
1888 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1889 	 * old slot is detached but otherwise preserved.
1890 	 */
1891 	if (change == KVM_MR_CREATE)
1892 		kvm_create_memslot(kvm, new);
1893 	else if (change == KVM_MR_DELETE)
1894 		kvm_delete_memslot(kvm, old, invalid_slot);
1895 	else if (change == KVM_MR_MOVE)
1896 		kvm_move_memslot(kvm, old, new, invalid_slot);
1897 	else if (change == KVM_MR_FLAGS_ONLY)
1898 		kvm_update_flags_memslot(kvm, old, new);
1899 	else
1900 		BUG();
1901 
1902 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1903 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1904 		kfree(invalid_slot);
1905 
1906 	/*
1907 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1908 	 * will directly hit the final, active memslot.  Architectures are
1909 	 * responsible for knowing that new->arch may be stale.
1910 	 */
1911 	kvm_commit_memory_region(kvm, old, new, change);
1912 
1913 	return 0;
1914 }
1915 
1916 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1917 				      gfn_t start, gfn_t end)
1918 {
1919 	struct kvm_memslot_iter iter;
1920 
1921 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1922 		if (iter.slot->id != id)
1923 			return true;
1924 	}
1925 
1926 	return false;
1927 }
1928 
1929 /*
1930  * Allocate some memory and give it an address in the guest physical address
1931  * space.
1932  *
1933  * Discontiguous memory is allowed, mostly for framebuffers.
1934  *
1935  * Must be called holding kvm->slots_lock for write.
1936  */
1937 int __kvm_set_memory_region(struct kvm *kvm,
1938 			    const struct kvm_userspace_memory_region2 *mem)
1939 {
1940 	struct kvm_memory_slot *old, *new;
1941 	struct kvm_memslots *slots;
1942 	enum kvm_mr_change change;
1943 	unsigned long npages;
1944 	gfn_t base_gfn;
1945 	int as_id, id;
1946 	int r;
1947 
1948 	r = check_memory_region_flags(kvm, mem);
1949 	if (r)
1950 		return r;
1951 
1952 	as_id = mem->slot >> 16;
1953 	id = (u16)mem->slot;
1954 
1955 	/* General sanity checks */
1956 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1957 	    (mem->memory_size != (unsigned long)mem->memory_size))
1958 		return -EINVAL;
1959 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1960 		return -EINVAL;
1961 	/* We can read the guest memory with __xxx_user() later on. */
1962 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1963 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1964 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1965 			mem->memory_size))
1966 		return -EINVAL;
1967 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1968 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1969 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1970 		return -EINVAL;
1971 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1972 		return -EINVAL;
1973 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974 		return -EINVAL;
1975 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976 		return -EINVAL;
1977 
1978 	slots = __kvm_memslots(kvm, as_id);
1979 
1980 	/*
1981 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1982 	 * and/or destroyed by kvm_set_memslot().
1983 	 */
1984 	old = id_to_memslot(slots, id);
1985 
1986 	if (!mem->memory_size) {
1987 		if (!old || !old->npages)
1988 			return -EINVAL;
1989 
1990 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991 			return -EIO;
1992 
1993 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1994 	}
1995 
1996 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997 	npages = (mem->memory_size >> PAGE_SHIFT);
1998 
1999 	if (!old || !old->npages) {
2000 		change = KVM_MR_CREATE;
2001 
2002 		/*
2003 		 * To simplify KVM internals, the total number of pages across
2004 		 * all memslots must fit in an unsigned long.
2005 		 */
2006 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007 			return -EINVAL;
2008 	} else { /* Modify an existing slot. */
2009 		/* Private memslots are immutable, they can only be deleted. */
2010 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2011 			return -EINVAL;
2012 		if ((mem->userspace_addr != old->userspace_addr) ||
2013 		    (npages != old->npages) ||
2014 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2015 			return -EINVAL;
2016 
2017 		if (base_gfn != old->base_gfn)
2018 			change = KVM_MR_MOVE;
2019 		else if (mem->flags != old->flags)
2020 			change = KVM_MR_FLAGS_ONLY;
2021 		else /* Nothing to change. */
2022 			return 0;
2023 	}
2024 
2025 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2026 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2027 		return -EEXIST;
2028 
2029 	/* Allocate a slot that will persist in the memslot. */
2030 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2031 	if (!new)
2032 		return -ENOMEM;
2033 
2034 	new->as_id = as_id;
2035 	new->id = id;
2036 	new->base_gfn = base_gfn;
2037 	new->npages = npages;
2038 	new->flags = mem->flags;
2039 	new->userspace_addr = mem->userspace_addr;
2040 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2041 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2042 		if (r)
2043 			goto out;
2044 	}
2045 
2046 	r = kvm_set_memslot(kvm, old, new, change);
2047 	if (r)
2048 		goto out_unbind;
2049 
2050 	return 0;
2051 
2052 out_unbind:
2053 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2054 		kvm_gmem_unbind(new);
2055 out:
2056 	kfree(new);
2057 	return r;
2058 }
2059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2060 
2061 int kvm_set_memory_region(struct kvm *kvm,
2062 			  const struct kvm_userspace_memory_region2 *mem)
2063 {
2064 	int r;
2065 
2066 	mutex_lock(&kvm->slots_lock);
2067 	r = __kvm_set_memory_region(kvm, mem);
2068 	mutex_unlock(&kvm->slots_lock);
2069 	return r;
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2072 
2073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2074 					  struct kvm_userspace_memory_region2 *mem)
2075 {
2076 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2077 		return -EINVAL;
2078 
2079 	return kvm_set_memory_region(kvm, mem);
2080 }
2081 
2082 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2083 /**
2084  * kvm_get_dirty_log - get a snapshot of dirty pages
2085  * @kvm:	pointer to kvm instance
2086  * @log:	slot id and address to which we copy the log
2087  * @is_dirty:	set to '1' if any dirty pages were found
2088  * @memslot:	set to the associated memslot, always valid on success
2089  */
2090 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2091 		      int *is_dirty, struct kvm_memory_slot **memslot)
2092 {
2093 	struct kvm_memslots *slots;
2094 	int i, as_id, id;
2095 	unsigned long n;
2096 	unsigned long any = 0;
2097 
2098 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2099 	if (!kvm_use_dirty_bitmap(kvm))
2100 		return -ENXIO;
2101 
2102 	*memslot = NULL;
2103 	*is_dirty = 0;
2104 
2105 	as_id = log->slot >> 16;
2106 	id = (u16)log->slot;
2107 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2108 		return -EINVAL;
2109 
2110 	slots = __kvm_memslots(kvm, as_id);
2111 	*memslot = id_to_memslot(slots, id);
2112 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2113 		return -ENOENT;
2114 
2115 	kvm_arch_sync_dirty_log(kvm, *memslot);
2116 
2117 	n = kvm_dirty_bitmap_bytes(*memslot);
2118 
2119 	for (i = 0; !any && i < n/sizeof(long); ++i)
2120 		any = (*memslot)->dirty_bitmap[i];
2121 
2122 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2123 		return -EFAULT;
2124 
2125 	if (any)
2126 		*is_dirty = 1;
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2130 
2131 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2132 /**
2133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2134  *	and reenable dirty page tracking for the corresponding pages.
2135  * @kvm:	pointer to kvm instance
2136  * @log:	slot id and address to which we copy the log
2137  *
2138  * We need to keep it in mind that VCPU threads can write to the bitmap
2139  * concurrently. So, to avoid losing track of dirty pages we keep the
2140  * following order:
2141  *
2142  *    1. Take a snapshot of the bit and clear it if needed.
2143  *    2. Write protect the corresponding page.
2144  *    3. Copy the snapshot to the userspace.
2145  *    4. Upon return caller flushes TLB's if needed.
2146  *
2147  * Between 2 and 4, the guest may write to the page using the remaining TLB
2148  * entry.  This is not a problem because the page is reported dirty using
2149  * the snapshot taken before and step 4 ensures that writes done after
2150  * exiting to userspace will be logged for the next call.
2151  *
2152  */
2153 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2154 {
2155 	struct kvm_memslots *slots;
2156 	struct kvm_memory_slot *memslot;
2157 	int i, as_id, id;
2158 	unsigned long n;
2159 	unsigned long *dirty_bitmap;
2160 	unsigned long *dirty_bitmap_buffer;
2161 	bool flush;
2162 
2163 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2164 	if (!kvm_use_dirty_bitmap(kvm))
2165 		return -ENXIO;
2166 
2167 	as_id = log->slot >> 16;
2168 	id = (u16)log->slot;
2169 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2170 		return -EINVAL;
2171 
2172 	slots = __kvm_memslots(kvm, as_id);
2173 	memslot = id_to_memslot(slots, id);
2174 	if (!memslot || !memslot->dirty_bitmap)
2175 		return -ENOENT;
2176 
2177 	dirty_bitmap = memslot->dirty_bitmap;
2178 
2179 	kvm_arch_sync_dirty_log(kvm, memslot);
2180 
2181 	n = kvm_dirty_bitmap_bytes(memslot);
2182 	flush = false;
2183 	if (kvm->manual_dirty_log_protect) {
2184 		/*
2185 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2186 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2187 		 * is some code duplication between this function and
2188 		 * kvm_get_dirty_log, but hopefully all architecture
2189 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2190 		 * can be eliminated.
2191 		 */
2192 		dirty_bitmap_buffer = dirty_bitmap;
2193 	} else {
2194 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2195 		memset(dirty_bitmap_buffer, 0, n);
2196 
2197 		KVM_MMU_LOCK(kvm);
2198 		for (i = 0; i < n / sizeof(long); i++) {
2199 			unsigned long mask;
2200 			gfn_t offset;
2201 
2202 			if (!dirty_bitmap[i])
2203 				continue;
2204 
2205 			flush = true;
2206 			mask = xchg(&dirty_bitmap[i], 0);
2207 			dirty_bitmap_buffer[i] = mask;
2208 
2209 			offset = i * BITS_PER_LONG;
2210 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2211 								offset, mask);
2212 		}
2213 		KVM_MMU_UNLOCK(kvm);
2214 	}
2215 
2216 	if (flush)
2217 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2218 
2219 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2220 		return -EFAULT;
2221 	return 0;
2222 }
2223 
2224 
2225 /**
2226  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2227  * @kvm: kvm instance
2228  * @log: slot id and address to which we copy the log
2229  *
2230  * Steps 1-4 below provide general overview of dirty page logging. See
2231  * kvm_get_dirty_log_protect() function description for additional details.
2232  *
2233  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2234  * always flush the TLB (step 4) even if previous step failed  and the dirty
2235  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2236  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2237  * writes will be marked dirty for next log read.
2238  *
2239  *   1. Take a snapshot of the bit and clear it if needed.
2240  *   2. Write protect the corresponding page.
2241  *   3. Copy the snapshot to the userspace.
2242  *   4. Flush TLB's if needed.
2243  */
2244 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2245 				      struct kvm_dirty_log *log)
2246 {
2247 	int r;
2248 
2249 	mutex_lock(&kvm->slots_lock);
2250 
2251 	r = kvm_get_dirty_log_protect(kvm, log);
2252 
2253 	mutex_unlock(&kvm->slots_lock);
2254 	return r;
2255 }
2256 
2257 /**
2258  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2259  *	and reenable dirty page tracking for the corresponding pages.
2260  * @kvm:	pointer to kvm instance
2261  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2262  */
2263 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2264 				       struct kvm_clear_dirty_log *log)
2265 {
2266 	struct kvm_memslots *slots;
2267 	struct kvm_memory_slot *memslot;
2268 	int as_id, id;
2269 	gfn_t offset;
2270 	unsigned long i, n;
2271 	unsigned long *dirty_bitmap;
2272 	unsigned long *dirty_bitmap_buffer;
2273 	bool flush;
2274 
2275 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2276 	if (!kvm_use_dirty_bitmap(kvm))
2277 		return -ENXIO;
2278 
2279 	as_id = log->slot >> 16;
2280 	id = (u16)log->slot;
2281 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2282 		return -EINVAL;
2283 
2284 	if (log->first_page & 63)
2285 		return -EINVAL;
2286 
2287 	slots = __kvm_memslots(kvm, as_id);
2288 	memslot = id_to_memslot(slots, id);
2289 	if (!memslot || !memslot->dirty_bitmap)
2290 		return -ENOENT;
2291 
2292 	dirty_bitmap = memslot->dirty_bitmap;
2293 
2294 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2295 
2296 	if (log->first_page > memslot->npages ||
2297 	    log->num_pages > memslot->npages - log->first_page ||
2298 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2299 	    return -EINVAL;
2300 
2301 	kvm_arch_sync_dirty_log(kvm, memslot);
2302 
2303 	flush = false;
2304 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2305 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2306 		return -EFAULT;
2307 
2308 	KVM_MMU_LOCK(kvm);
2309 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2310 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2311 	     i++, offset += BITS_PER_LONG) {
2312 		unsigned long mask = *dirty_bitmap_buffer++;
2313 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2314 		if (!mask)
2315 			continue;
2316 
2317 		mask &= atomic_long_fetch_andnot(mask, p);
2318 
2319 		/*
2320 		 * mask contains the bits that really have been cleared.  This
2321 		 * never includes any bits beyond the length of the memslot (if
2322 		 * the length is not aligned to 64 pages), therefore it is not
2323 		 * a problem if userspace sets them in log->dirty_bitmap.
2324 		*/
2325 		if (mask) {
2326 			flush = true;
2327 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2328 								offset, mask);
2329 		}
2330 	}
2331 	KVM_MMU_UNLOCK(kvm);
2332 
2333 	if (flush)
2334 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2335 
2336 	return 0;
2337 }
2338 
2339 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2340 					struct kvm_clear_dirty_log *log)
2341 {
2342 	int r;
2343 
2344 	mutex_lock(&kvm->slots_lock);
2345 
2346 	r = kvm_clear_dirty_log_protect(kvm, log);
2347 
2348 	mutex_unlock(&kvm->slots_lock);
2349 	return r;
2350 }
2351 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2352 
2353 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2354 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2355 {
2356 	if (!kvm || kvm_arch_has_private_mem(kvm))
2357 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2358 
2359 	return 0;
2360 }
2361 
2362 /*
2363  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2364  * such that the bits in @mask match @attrs.
2365  */
2366 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2367 				     unsigned long mask, unsigned long attrs)
2368 {
2369 	XA_STATE(xas, &kvm->mem_attr_array, start);
2370 	unsigned long index;
2371 	void *entry;
2372 
2373 	mask &= kvm_supported_mem_attributes(kvm);
2374 	if (attrs & ~mask)
2375 		return false;
2376 
2377 	if (end == start + 1)
2378 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2379 
2380 	guard(rcu)();
2381 	if (!attrs)
2382 		return !xas_find(&xas, end - 1);
2383 
2384 	for (index = start; index < end; index++) {
2385 		do {
2386 			entry = xas_next(&xas);
2387 		} while (xas_retry(&xas, entry));
2388 
2389 		if (xas.xa_index != index ||
2390 		    (xa_to_value(entry) & mask) != attrs)
2391 			return false;
2392 	}
2393 
2394 	return true;
2395 }
2396 
2397 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2398 						 struct kvm_mmu_notifier_range *range)
2399 {
2400 	struct kvm_gfn_range gfn_range;
2401 	struct kvm_memory_slot *slot;
2402 	struct kvm_memslots *slots;
2403 	struct kvm_memslot_iter iter;
2404 	bool found_memslot = false;
2405 	bool ret = false;
2406 	int i;
2407 
2408 	gfn_range.arg = range->arg;
2409 	gfn_range.may_block = range->may_block;
2410 
2411 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2412 		slots = __kvm_memslots(kvm, i);
2413 
2414 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2415 			slot = iter.slot;
2416 			gfn_range.slot = slot;
2417 
2418 			gfn_range.start = max(range->start, slot->base_gfn);
2419 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2420 			if (gfn_range.start >= gfn_range.end)
2421 				continue;
2422 
2423 			if (!found_memslot) {
2424 				found_memslot = true;
2425 				KVM_MMU_LOCK(kvm);
2426 				if (!IS_KVM_NULL_FN(range->on_lock))
2427 					range->on_lock(kvm);
2428 			}
2429 
2430 			ret |= range->handler(kvm, &gfn_range);
2431 		}
2432 	}
2433 
2434 	if (range->flush_on_ret && ret)
2435 		kvm_flush_remote_tlbs(kvm);
2436 
2437 	if (found_memslot)
2438 		KVM_MMU_UNLOCK(kvm);
2439 }
2440 
2441 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2442 					  struct kvm_gfn_range *range)
2443 {
2444 	/*
2445 	 * Unconditionally add the range to the invalidation set, regardless of
2446 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2447 	 * if KVM supports RWX attributes in the future and the attributes are
2448 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2449 	 * adding the range allows KVM to require that MMU invalidations add at
2450 	 * least one range between begin() and end(), e.g. allows KVM to detect
2451 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2452 	 * but it's not obvious that allowing new mappings while the attributes
2453 	 * are in flux is desirable or worth the complexity.
2454 	 */
2455 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2456 
2457 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2458 }
2459 
2460 /* Set @attributes for the gfn range [@start, @end). */
2461 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2462 				     unsigned long attributes)
2463 {
2464 	struct kvm_mmu_notifier_range pre_set_range = {
2465 		.start = start,
2466 		.end = end,
2467 		.handler = kvm_pre_set_memory_attributes,
2468 		.on_lock = kvm_mmu_invalidate_begin,
2469 		.flush_on_ret = true,
2470 		.may_block = true,
2471 	};
2472 	struct kvm_mmu_notifier_range post_set_range = {
2473 		.start = start,
2474 		.end = end,
2475 		.arg.attributes = attributes,
2476 		.handler = kvm_arch_post_set_memory_attributes,
2477 		.on_lock = kvm_mmu_invalidate_end,
2478 		.may_block = true,
2479 	};
2480 	unsigned long i;
2481 	void *entry;
2482 	int r = 0;
2483 
2484 	entry = attributes ? xa_mk_value(attributes) : NULL;
2485 
2486 	mutex_lock(&kvm->slots_lock);
2487 
2488 	/* Nothing to do if the entire range as the desired attributes. */
2489 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2490 		goto out_unlock;
2491 
2492 	/*
2493 	 * Reserve memory ahead of time to avoid having to deal with failures
2494 	 * partway through setting the new attributes.
2495 	 */
2496 	for (i = start; i < end; i++) {
2497 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2498 		if (r)
2499 			goto out_unlock;
2500 	}
2501 
2502 	kvm_handle_gfn_range(kvm, &pre_set_range);
2503 
2504 	for (i = start; i < end; i++) {
2505 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2506 				    GFP_KERNEL_ACCOUNT));
2507 		KVM_BUG_ON(r, kvm);
2508 	}
2509 
2510 	kvm_handle_gfn_range(kvm, &post_set_range);
2511 
2512 out_unlock:
2513 	mutex_unlock(&kvm->slots_lock);
2514 
2515 	return r;
2516 }
2517 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2518 					   struct kvm_memory_attributes *attrs)
2519 {
2520 	gfn_t start, end;
2521 
2522 	/* flags is currently not used. */
2523 	if (attrs->flags)
2524 		return -EINVAL;
2525 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2526 		return -EINVAL;
2527 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2528 		return -EINVAL;
2529 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2530 		return -EINVAL;
2531 
2532 	start = attrs->address >> PAGE_SHIFT;
2533 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2534 
2535 	/*
2536 	 * xarray tracks data using "unsigned long", and as a result so does
2537 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2538 	 * architectures.
2539 	 */
2540 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2541 
2542 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2543 }
2544 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2545 
2546 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2547 {
2548 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2549 }
2550 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2551 
2552 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2553 {
2554 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2555 	u64 gen = slots->generation;
2556 	struct kvm_memory_slot *slot;
2557 
2558 	/*
2559 	 * This also protects against using a memslot from a different address space,
2560 	 * since different address spaces have different generation numbers.
2561 	 */
2562 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2563 		vcpu->last_used_slot = NULL;
2564 		vcpu->last_used_slot_gen = gen;
2565 	}
2566 
2567 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2568 	if (slot)
2569 		return slot;
2570 
2571 	/*
2572 	 * Fall back to searching all memslots. We purposely use
2573 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2574 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2575 	 */
2576 	slot = search_memslots(slots, gfn, false);
2577 	if (slot) {
2578 		vcpu->last_used_slot = slot;
2579 		return slot;
2580 	}
2581 
2582 	return NULL;
2583 }
2584 
2585 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2586 {
2587 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2588 
2589 	return kvm_is_visible_memslot(memslot);
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2592 
2593 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2594 {
2595 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2596 
2597 	return kvm_is_visible_memslot(memslot);
2598 }
2599 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2600 
2601 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2602 {
2603 	struct vm_area_struct *vma;
2604 	unsigned long addr, size;
2605 
2606 	size = PAGE_SIZE;
2607 
2608 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2609 	if (kvm_is_error_hva(addr))
2610 		return PAGE_SIZE;
2611 
2612 	mmap_read_lock(current->mm);
2613 	vma = find_vma(current->mm, addr);
2614 	if (!vma)
2615 		goto out;
2616 
2617 	size = vma_kernel_pagesize(vma);
2618 
2619 out:
2620 	mmap_read_unlock(current->mm);
2621 
2622 	return size;
2623 }
2624 
2625 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2626 {
2627 	return slot->flags & KVM_MEM_READONLY;
2628 }
2629 
2630 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2631 				       gfn_t *nr_pages, bool write)
2632 {
2633 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2634 		return KVM_HVA_ERR_BAD;
2635 
2636 	if (memslot_is_readonly(slot) && write)
2637 		return KVM_HVA_ERR_RO_BAD;
2638 
2639 	if (nr_pages)
2640 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2641 
2642 	return __gfn_to_hva_memslot(slot, gfn);
2643 }
2644 
2645 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2646 				     gfn_t *nr_pages)
2647 {
2648 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2649 }
2650 
2651 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2652 					gfn_t gfn)
2653 {
2654 	return gfn_to_hva_many(slot, gfn, NULL);
2655 }
2656 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2657 
2658 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2659 {
2660 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2661 }
2662 EXPORT_SYMBOL_GPL(gfn_to_hva);
2663 
2664 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2665 {
2666 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2667 }
2668 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2669 
2670 /*
2671  * Return the hva of a @gfn and the R/W attribute if possible.
2672  *
2673  * @slot: the kvm_memory_slot which contains @gfn
2674  * @gfn: the gfn to be translated
2675  * @writable: used to return the read/write attribute of the @slot if the hva
2676  * is valid and @writable is not NULL
2677  */
2678 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2679 				      gfn_t gfn, bool *writable)
2680 {
2681 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2682 
2683 	if (!kvm_is_error_hva(hva) && writable)
2684 		*writable = !memslot_is_readonly(slot);
2685 
2686 	return hva;
2687 }
2688 
2689 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2690 {
2691 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2692 
2693 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2694 }
2695 
2696 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2697 {
2698 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2699 
2700 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2701 }
2702 
2703 static bool kvm_is_ad_tracked_page(struct page *page)
2704 {
2705 	/*
2706 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2707 	 * touched (e.g. set dirty) except by its owner".
2708 	 */
2709 	return !PageReserved(page);
2710 }
2711 
2712 static void kvm_set_page_dirty(struct page *page)
2713 {
2714 	if (kvm_is_ad_tracked_page(page))
2715 		SetPageDirty(page);
2716 }
2717 
2718 static void kvm_set_page_accessed(struct page *page)
2719 {
2720 	if (kvm_is_ad_tracked_page(page))
2721 		mark_page_accessed(page);
2722 }
2723 
2724 void kvm_release_page_clean(struct page *page)
2725 {
2726 	if (!page)
2727 		return;
2728 
2729 	kvm_set_page_accessed(page);
2730 	put_page(page);
2731 }
2732 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2733 
2734 void kvm_release_page_dirty(struct page *page)
2735 {
2736 	if (!page)
2737 		return;
2738 
2739 	kvm_set_page_dirty(page);
2740 	kvm_release_page_clean(page);
2741 }
2742 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2743 
2744 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2745 				 struct follow_pfnmap_args *map, bool writable)
2746 {
2747 	kvm_pfn_t pfn;
2748 
2749 	WARN_ON_ONCE(!!page == !!map);
2750 
2751 	if (kfp->map_writable)
2752 		*kfp->map_writable = writable;
2753 
2754 	if (map)
2755 		pfn = map->pfn;
2756 	else
2757 		pfn = page_to_pfn(page);
2758 
2759 	*kfp->refcounted_page = page;
2760 
2761 	return pfn;
2762 }
2763 
2764 /*
2765  * The fast path to get the writable pfn which will be stored in @pfn,
2766  * true indicates success, otherwise false is returned.
2767  */
2768 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2769 {
2770 	struct page *page;
2771 	bool r;
2772 
2773 	/*
2774 	 * Try the fast-only path when the caller wants to pin/get the page for
2775 	 * writing.  If the caller only wants to read the page, KVM must go
2776 	 * down the full, slow path in order to avoid racing an operation that
2777 	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2778 	 * at the old, read-only page while mm/ points at a new, writable page.
2779 	 */
2780 	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2781 		return false;
2782 
2783 	if (kfp->pin)
2784 		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2785 	else
2786 		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2787 
2788 	if (r) {
2789 		*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2790 		return true;
2791 	}
2792 
2793 	return false;
2794 }
2795 
2796 /*
2797  * The slow path to get the pfn of the specified host virtual address,
2798  * 1 indicates success, -errno is returned if error is detected.
2799  */
2800 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2801 {
2802 	/*
2803 	 * When a VCPU accesses a page that is not mapped into the secondary
2804 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2805 	 * make progress. We always want to honor NUMA hinting faults in that
2806 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2807 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2808 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2809 	 *
2810 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2811 	 * implicitly honor NUMA hinting faults and don't need this flag.
2812 	 */
2813 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2814 	struct page *page, *wpage;
2815 	int npages;
2816 
2817 	if (kfp->pin)
2818 		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2819 	else
2820 		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2821 	if (npages != 1)
2822 		return npages;
2823 
2824 	/*
2825 	 * Pinning is mutually exclusive with opportunistically mapping a read
2826 	 * fault as writable, as KVM should never pin pages when mapping memory
2827 	 * into the guest (pinning is only for direct accesses from KVM).
2828 	 */
2829 	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2830 		goto out;
2831 
2832 	/* map read fault as writable if possible */
2833 	if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2834 	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2835 		put_page(page);
2836 		page = wpage;
2837 		flags |= FOLL_WRITE;
2838 	}
2839 
2840 out:
2841 	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2842 	return npages;
2843 }
2844 
2845 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2846 {
2847 	if (unlikely(!(vma->vm_flags & VM_READ)))
2848 		return false;
2849 
2850 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2851 		return false;
2852 
2853 	return true;
2854 }
2855 
2856 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2857 			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2858 {
2859 	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2860 	bool write_fault = kfp->flags & FOLL_WRITE;
2861 	int r;
2862 
2863 	/*
2864 	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if
2865 	 * the caller wants to pin the page, i.e. access the page outside of
2866 	 * MMU notifier protection, and unsafe umappings are disallowed.
2867 	 */
2868 	if (kfp->pin && !allow_unsafe_mappings)
2869 		return -EINVAL;
2870 
2871 	r = follow_pfnmap_start(&args);
2872 	if (r) {
2873 		/*
2874 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2875 		 * not call the fault handler, so do it here.
2876 		 */
2877 		bool unlocked = false;
2878 		r = fixup_user_fault(current->mm, kfp->hva,
2879 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2880 				     &unlocked);
2881 		if (unlocked)
2882 			return -EAGAIN;
2883 		if (r)
2884 			return r;
2885 
2886 		r = follow_pfnmap_start(&args);
2887 		if (r)
2888 			return r;
2889 	}
2890 
2891 	if (write_fault && !args.writable) {
2892 		*p_pfn = KVM_PFN_ERR_RO_FAULT;
2893 		goto out;
2894 	}
2895 
2896 	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2897 out:
2898 	follow_pfnmap_end(&args);
2899 	return r;
2900 }
2901 
2902 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2903 {
2904 	struct vm_area_struct *vma;
2905 	kvm_pfn_t pfn;
2906 	int npages, r;
2907 
2908 	might_sleep();
2909 
2910 	if (WARN_ON_ONCE(!kfp->refcounted_page))
2911 		return KVM_PFN_ERR_FAULT;
2912 
2913 	if (hva_to_pfn_fast(kfp, &pfn))
2914 		return pfn;
2915 
2916 	npages = hva_to_pfn_slow(kfp, &pfn);
2917 	if (npages == 1)
2918 		return pfn;
2919 	if (npages == -EINTR || npages == -EAGAIN)
2920 		return KVM_PFN_ERR_SIGPENDING;
2921 	if (npages == -EHWPOISON)
2922 		return KVM_PFN_ERR_HWPOISON;
2923 
2924 	mmap_read_lock(current->mm);
2925 retry:
2926 	vma = vma_lookup(current->mm, kfp->hva);
2927 
2928 	if (vma == NULL)
2929 		pfn = KVM_PFN_ERR_FAULT;
2930 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2931 		r = hva_to_pfn_remapped(vma, kfp, &pfn);
2932 		if (r == -EAGAIN)
2933 			goto retry;
2934 		if (r < 0)
2935 			pfn = KVM_PFN_ERR_FAULT;
2936 	} else {
2937 		if ((kfp->flags & FOLL_NOWAIT) &&
2938 		    vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2939 			pfn = KVM_PFN_ERR_NEEDS_IO;
2940 		else
2941 			pfn = KVM_PFN_ERR_FAULT;
2942 	}
2943 	mmap_read_unlock(current->mm);
2944 	return pfn;
2945 }
2946 
2947 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2948 {
2949 	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2950 				     kfp->flags & FOLL_WRITE);
2951 
2952 	if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2953 		return KVM_PFN_ERR_RO_FAULT;
2954 
2955 	if (kvm_is_error_hva(kfp->hva))
2956 		return KVM_PFN_NOSLOT;
2957 
2958 	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2959 		*kfp->map_writable = false;
2960 		kfp->map_writable = NULL;
2961 	}
2962 
2963 	return hva_to_pfn(kfp);
2964 }
2965 
2966 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2967 			    unsigned int foll, bool *writable,
2968 			    struct page **refcounted_page)
2969 {
2970 	struct kvm_follow_pfn kfp = {
2971 		.slot = slot,
2972 		.gfn = gfn,
2973 		.flags = foll,
2974 		.map_writable = writable,
2975 		.refcounted_page = refcounted_page,
2976 	};
2977 
2978 	if (WARN_ON_ONCE(!writable || !refcounted_page))
2979 		return KVM_PFN_ERR_FAULT;
2980 
2981 	*writable = false;
2982 	*refcounted_page = NULL;
2983 
2984 	return kvm_follow_pfn(&kfp);
2985 }
2986 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
2987 
2988 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
2989 		       struct page **pages, int nr_pages)
2990 {
2991 	unsigned long addr;
2992 	gfn_t entry = 0;
2993 
2994 	addr = gfn_to_hva_many(slot, gfn, &entry);
2995 	if (kvm_is_error_hva(addr))
2996 		return -1;
2997 
2998 	if (entry < nr_pages)
2999 		return 0;
3000 
3001 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3002 }
3003 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3004 
3005 /*
3006  * Don't use this API unless you are absolutely, positively certain that KVM
3007  * needs to get a struct page, e.g. to pin the page for firmware DMA.
3008  *
3009  * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3010  *	  its refcount.
3011  */
3012 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3013 {
3014 	struct page *refcounted_page = NULL;
3015 	struct kvm_follow_pfn kfp = {
3016 		.slot = gfn_to_memslot(kvm, gfn),
3017 		.gfn = gfn,
3018 		.flags = write ? FOLL_WRITE : 0,
3019 		.refcounted_page = &refcounted_page,
3020 	};
3021 
3022 	(void)kvm_follow_pfn(&kfp);
3023 	return refcounted_page;
3024 }
3025 EXPORT_SYMBOL_GPL(__gfn_to_page);
3026 
3027 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3028 		   bool writable)
3029 {
3030 	struct kvm_follow_pfn kfp = {
3031 		.slot = gfn_to_memslot(vcpu->kvm, gfn),
3032 		.gfn = gfn,
3033 		.flags = writable ? FOLL_WRITE : 0,
3034 		.refcounted_page = &map->pinned_page,
3035 		.pin = true,
3036 	};
3037 
3038 	map->pinned_page = NULL;
3039 	map->page = NULL;
3040 	map->hva = NULL;
3041 	map->gfn = gfn;
3042 	map->writable = writable;
3043 
3044 	map->pfn = kvm_follow_pfn(&kfp);
3045 	if (is_error_noslot_pfn(map->pfn))
3046 		return -EINVAL;
3047 
3048 	if (pfn_valid(map->pfn)) {
3049 		map->page = pfn_to_page(map->pfn);
3050 		map->hva = kmap(map->page);
3051 #ifdef CONFIG_HAS_IOMEM
3052 	} else {
3053 		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3054 #endif
3055 	}
3056 
3057 	return map->hva ? 0 : -EFAULT;
3058 }
3059 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3060 
3061 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3062 {
3063 	if (!map->hva)
3064 		return;
3065 
3066 	if (map->page)
3067 		kunmap(map->page);
3068 #ifdef CONFIG_HAS_IOMEM
3069 	else
3070 		memunmap(map->hva);
3071 #endif
3072 
3073 	if (map->writable)
3074 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3075 
3076 	if (map->pinned_page) {
3077 		if (map->writable)
3078 			kvm_set_page_dirty(map->pinned_page);
3079 		kvm_set_page_accessed(map->pinned_page);
3080 		unpin_user_page(map->pinned_page);
3081 	}
3082 
3083 	map->hva = NULL;
3084 	map->page = NULL;
3085 	map->pinned_page = NULL;
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3088 
3089 static int next_segment(unsigned long len, int offset)
3090 {
3091 	if (len > PAGE_SIZE - offset)
3092 		return PAGE_SIZE - offset;
3093 	else
3094 		return len;
3095 }
3096 
3097 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3098 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3099 				 void *data, int offset, int len)
3100 {
3101 	int r;
3102 	unsigned long addr;
3103 
3104 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3105 		return -EFAULT;
3106 
3107 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108 	if (kvm_is_error_hva(addr))
3109 		return -EFAULT;
3110 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3111 	if (r)
3112 		return -EFAULT;
3113 	return 0;
3114 }
3115 
3116 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3117 			int len)
3118 {
3119 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3120 
3121 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3122 }
3123 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3124 
3125 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3126 			     int offset, int len)
3127 {
3128 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3129 
3130 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3133 
3134 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3135 {
3136 	gfn_t gfn = gpa >> PAGE_SHIFT;
3137 	int seg;
3138 	int offset = offset_in_page(gpa);
3139 	int ret;
3140 
3141 	while ((seg = next_segment(len, offset)) != 0) {
3142 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3143 		if (ret < 0)
3144 			return ret;
3145 		offset = 0;
3146 		len -= seg;
3147 		data += seg;
3148 		++gfn;
3149 	}
3150 	return 0;
3151 }
3152 EXPORT_SYMBOL_GPL(kvm_read_guest);
3153 
3154 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3155 {
3156 	gfn_t gfn = gpa >> PAGE_SHIFT;
3157 	int seg;
3158 	int offset = offset_in_page(gpa);
3159 	int ret;
3160 
3161 	while ((seg = next_segment(len, offset)) != 0) {
3162 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3163 		if (ret < 0)
3164 			return ret;
3165 		offset = 0;
3166 		len -= seg;
3167 		data += seg;
3168 		++gfn;
3169 	}
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3173 
3174 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3175 			           void *data, int offset, unsigned long len)
3176 {
3177 	int r;
3178 	unsigned long addr;
3179 
3180 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3181 		return -EFAULT;
3182 
3183 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3184 	if (kvm_is_error_hva(addr))
3185 		return -EFAULT;
3186 	pagefault_disable();
3187 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3188 	pagefault_enable();
3189 	if (r)
3190 		return -EFAULT;
3191 	return 0;
3192 }
3193 
3194 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3195 			       void *data, unsigned long len)
3196 {
3197 	gfn_t gfn = gpa >> PAGE_SHIFT;
3198 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3199 	int offset = offset_in_page(gpa);
3200 
3201 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3204 
3205 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3206 static int __kvm_write_guest_page(struct kvm *kvm,
3207 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3208 			          const void *data, int offset, int len)
3209 {
3210 	int r;
3211 	unsigned long addr;
3212 
3213 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3214 		return -EFAULT;
3215 
3216 	addr = gfn_to_hva_memslot(memslot, gfn);
3217 	if (kvm_is_error_hva(addr))
3218 		return -EFAULT;
3219 	r = __copy_to_user((void __user *)addr + offset, data, len);
3220 	if (r)
3221 		return -EFAULT;
3222 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3223 	return 0;
3224 }
3225 
3226 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3227 			 const void *data, int offset, int len)
3228 {
3229 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3230 
3231 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3234 
3235 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3236 			      const void *data, int offset, int len)
3237 {
3238 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3239 
3240 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3241 }
3242 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3243 
3244 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3245 		    unsigned long len)
3246 {
3247 	gfn_t gfn = gpa >> PAGE_SHIFT;
3248 	int seg;
3249 	int offset = offset_in_page(gpa);
3250 	int ret;
3251 
3252 	while ((seg = next_segment(len, offset)) != 0) {
3253 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3254 		if (ret < 0)
3255 			return ret;
3256 		offset = 0;
3257 		len -= seg;
3258 		data += seg;
3259 		++gfn;
3260 	}
3261 	return 0;
3262 }
3263 EXPORT_SYMBOL_GPL(kvm_write_guest);
3264 
3265 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3266 		         unsigned long len)
3267 {
3268 	gfn_t gfn = gpa >> PAGE_SHIFT;
3269 	int seg;
3270 	int offset = offset_in_page(gpa);
3271 	int ret;
3272 
3273 	while ((seg = next_segment(len, offset)) != 0) {
3274 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3275 		if (ret < 0)
3276 			return ret;
3277 		offset = 0;
3278 		len -= seg;
3279 		data += seg;
3280 		++gfn;
3281 	}
3282 	return 0;
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3285 
3286 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3287 				       struct gfn_to_hva_cache *ghc,
3288 				       gpa_t gpa, unsigned long len)
3289 {
3290 	int offset = offset_in_page(gpa);
3291 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3292 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3293 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3294 	gfn_t nr_pages_avail;
3295 
3296 	/* Update ghc->generation before performing any error checks. */
3297 	ghc->generation = slots->generation;
3298 
3299 	if (start_gfn > end_gfn) {
3300 		ghc->hva = KVM_HVA_ERR_BAD;
3301 		return -EINVAL;
3302 	}
3303 
3304 	/*
3305 	 * If the requested region crosses two memslots, we still
3306 	 * verify that the entire region is valid here.
3307 	 */
3308 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3309 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3310 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3311 					   &nr_pages_avail);
3312 		if (kvm_is_error_hva(ghc->hva))
3313 			return -EFAULT;
3314 	}
3315 
3316 	/* Use the slow path for cross page reads and writes. */
3317 	if (nr_pages_needed == 1)
3318 		ghc->hva += offset;
3319 	else
3320 		ghc->memslot = NULL;
3321 
3322 	ghc->gpa = gpa;
3323 	ghc->len = len;
3324 	return 0;
3325 }
3326 
3327 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3328 			      gpa_t gpa, unsigned long len)
3329 {
3330 	struct kvm_memslots *slots = kvm_memslots(kvm);
3331 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3332 }
3333 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3334 
3335 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3336 				  void *data, unsigned int offset,
3337 				  unsigned long len)
3338 {
3339 	struct kvm_memslots *slots = kvm_memslots(kvm);
3340 	int r;
3341 	gpa_t gpa = ghc->gpa + offset;
3342 
3343 	if (WARN_ON_ONCE(len + offset > ghc->len))
3344 		return -EINVAL;
3345 
3346 	if (slots->generation != ghc->generation) {
3347 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3348 			return -EFAULT;
3349 	}
3350 
3351 	if (kvm_is_error_hva(ghc->hva))
3352 		return -EFAULT;
3353 
3354 	if (unlikely(!ghc->memslot))
3355 		return kvm_write_guest(kvm, gpa, data, len);
3356 
3357 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3358 	if (r)
3359 		return -EFAULT;
3360 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3361 
3362 	return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3365 
3366 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3367 			   void *data, unsigned long len)
3368 {
3369 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3370 }
3371 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3372 
3373 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3374 				 void *data, unsigned int offset,
3375 				 unsigned long len)
3376 {
3377 	struct kvm_memslots *slots = kvm_memslots(kvm);
3378 	int r;
3379 	gpa_t gpa = ghc->gpa + offset;
3380 
3381 	if (WARN_ON_ONCE(len + offset > ghc->len))
3382 		return -EINVAL;
3383 
3384 	if (slots->generation != ghc->generation) {
3385 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3386 			return -EFAULT;
3387 	}
3388 
3389 	if (kvm_is_error_hva(ghc->hva))
3390 		return -EFAULT;
3391 
3392 	if (unlikely(!ghc->memslot))
3393 		return kvm_read_guest(kvm, gpa, data, len);
3394 
3395 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3396 	if (r)
3397 		return -EFAULT;
3398 
3399 	return 0;
3400 }
3401 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3402 
3403 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3404 			  void *data, unsigned long len)
3405 {
3406 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3407 }
3408 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3409 
3410 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3411 {
3412 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3413 	gfn_t gfn = gpa >> PAGE_SHIFT;
3414 	int seg;
3415 	int offset = offset_in_page(gpa);
3416 	int ret;
3417 
3418 	while ((seg = next_segment(len, offset)) != 0) {
3419 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3420 		if (ret < 0)
3421 			return ret;
3422 		offset = 0;
3423 		len -= seg;
3424 		++gfn;
3425 	}
3426 	return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3429 
3430 void mark_page_dirty_in_slot(struct kvm *kvm,
3431 			     const struct kvm_memory_slot *memslot,
3432 		 	     gfn_t gfn)
3433 {
3434 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3435 
3436 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3437 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3438 		return;
3439 
3440 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3441 #endif
3442 
3443 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3444 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3445 		u32 slot = (memslot->as_id << 16) | memslot->id;
3446 
3447 		if (kvm->dirty_ring_size && vcpu)
3448 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3449 		else if (memslot->dirty_bitmap)
3450 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3451 	}
3452 }
3453 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3454 
3455 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3456 {
3457 	struct kvm_memory_slot *memslot;
3458 
3459 	memslot = gfn_to_memslot(kvm, gfn);
3460 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3461 }
3462 EXPORT_SYMBOL_GPL(mark_page_dirty);
3463 
3464 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3465 {
3466 	struct kvm_memory_slot *memslot;
3467 
3468 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3469 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3470 }
3471 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3472 
3473 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3474 {
3475 	if (!vcpu->sigset_active)
3476 		return;
3477 
3478 	/*
3479 	 * This does a lockless modification of ->real_blocked, which is fine
3480 	 * because, only current can change ->real_blocked and all readers of
3481 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3482 	 * of ->blocked.
3483 	 */
3484 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3485 }
3486 
3487 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3488 {
3489 	if (!vcpu->sigset_active)
3490 		return;
3491 
3492 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3493 	sigemptyset(&current->real_blocked);
3494 }
3495 
3496 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3497 {
3498 	unsigned int old, val, grow, grow_start;
3499 
3500 	old = val = vcpu->halt_poll_ns;
3501 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3502 	grow = READ_ONCE(halt_poll_ns_grow);
3503 	if (!grow)
3504 		goto out;
3505 
3506 	val *= grow;
3507 	if (val < grow_start)
3508 		val = grow_start;
3509 
3510 	vcpu->halt_poll_ns = val;
3511 out:
3512 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3513 }
3514 
3515 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3516 {
3517 	unsigned int old, val, shrink, grow_start;
3518 
3519 	old = val = vcpu->halt_poll_ns;
3520 	shrink = READ_ONCE(halt_poll_ns_shrink);
3521 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3522 	if (shrink == 0)
3523 		val = 0;
3524 	else
3525 		val /= shrink;
3526 
3527 	if (val < grow_start)
3528 		val = 0;
3529 
3530 	vcpu->halt_poll_ns = val;
3531 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3532 }
3533 
3534 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3535 {
3536 	int ret = -EINTR;
3537 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3538 
3539 	if (kvm_arch_vcpu_runnable(vcpu))
3540 		goto out;
3541 	if (kvm_cpu_has_pending_timer(vcpu))
3542 		goto out;
3543 	if (signal_pending(current))
3544 		goto out;
3545 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3546 		goto out;
3547 
3548 	ret = 0;
3549 out:
3550 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3551 	return ret;
3552 }
3553 
3554 /*
3555  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3556  * pending.  This is mostly used when halting a vCPU, but may also be used
3557  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3558  */
3559 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3560 {
3561 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3562 	bool waited = false;
3563 
3564 	vcpu->stat.generic.blocking = 1;
3565 
3566 	preempt_disable();
3567 	kvm_arch_vcpu_blocking(vcpu);
3568 	prepare_to_rcuwait(wait);
3569 	preempt_enable();
3570 
3571 	for (;;) {
3572 		set_current_state(TASK_INTERRUPTIBLE);
3573 
3574 		if (kvm_vcpu_check_block(vcpu) < 0)
3575 			break;
3576 
3577 		waited = true;
3578 		schedule();
3579 	}
3580 
3581 	preempt_disable();
3582 	finish_rcuwait(wait);
3583 	kvm_arch_vcpu_unblocking(vcpu);
3584 	preempt_enable();
3585 
3586 	vcpu->stat.generic.blocking = 0;
3587 
3588 	return waited;
3589 }
3590 
3591 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3592 					  ktime_t end, bool success)
3593 {
3594 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3595 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3596 
3597 	++vcpu->stat.generic.halt_attempted_poll;
3598 
3599 	if (success) {
3600 		++vcpu->stat.generic.halt_successful_poll;
3601 
3602 		if (!vcpu_valid_wakeup(vcpu))
3603 			++vcpu->stat.generic.halt_poll_invalid;
3604 
3605 		stats->halt_poll_success_ns += poll_ns;
3606 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3607 	} else {
3608 		stats->halt_poll_fail_ns += poll_ns;
3609 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3610 	}
3611 }
3612 
3613 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3614 {
3615 	struct kvm *kvm = vcpu->kvm;
3616 
3617 	if (kvm->override_halt_poll_ns) {
3618 		/*
3619 		 * Ensure kvm->max_halt_poll_ns is not read before
3620 		 * kvm->override_halt_poll_ns.
3621 		 *
3622 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3623 		 */
3624 		smp_rmb();
3625 		return READ_ONCE(kvm->max_halt_poll_ns);
3626 	}
3627 
3628 	return READ_ONCE(halt_poll_ns);
3629 }
3630 
3631 /*
3632  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3633  * polling is enabled, busy wait for a short time before blocking to avoid the
3634  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3635  * is halted.
3636  */
3637 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3638 {
3639 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3640 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3641 	ktime_t start, cur, poll_end;
3642 	bool waited = false;
3643 	bool do_halt_poll;
3644 	u64 halt_ns;
3645 
3646 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3647 		vcpu->halt_poll_ns = max_halt_poll_ns;
3648 
3649 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3650 
3651 	start = cur = poll_end = ktime_get();
3652 	if (do_halt_poll) {
3653 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3654 
3655 		do {
3656 			if (kvm_vcpu_check_block(vcpu) < 0)
3657 				goto out;
3658 			cpu_relax();
3659 			poll_end = cur = ktime_get();
3660 		} while (kvm_vcpu_can_poll(cur, stop));
3661 	}
3662 
3663 	waited = kvm_vcpu_block(vcpu);
3664 
3665 	cur = ktime_get();
3666 	if (waited) {
3667 		vcpu->stat.generic.halt_wait_ns +=
3668 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3669 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3670 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3671 	}
3672 out:
3673 	/* The total time the vCPU was "halted", including polling time. */
3674 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3675 
3676 	/*
3677 	 * Note, halt-polling is considered successful so long as the vCPU was
3678 	 * never actually scheduled out, i.e. even if the wake event arrived
3679 	 * after of the halt-polling loop itself, but before the full wait.
3680 	 */
3681 	if (do_halt_poll)
3682 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3683 
3684 	if (halt_poll_allowed) {
3685 		/* Recompute the max halt poll time in case it changed. */
3686 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3687 
3688 		if (!vcpu_valid_wakeup(vcpu)) {
3689 			shrink_halt_poll_ns(vcpu);
3690 		} else if (max_halt_poll_ns) {
3691 			if (halt_ns <= vcpu->halt_poll_ns)
3692 				;
3693 			/* we had a long block, shrink polling */
3694 			else if (vcpu->halt_poll_ns &&
3695 				 halt_ns > max_halt_poll_ns)
3696 				shrink_halt_poll_ns(vcpu);
3697 			/* we had a short halt and our poll time is too small */
3698 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3699 				 halt_ns < max_halt_poll_ns)
3700 				grow_halt_poll_ns(vcpu);
3701 		} else {
3702 			vcpu->halt_poll_ns = 0;
3703 		}
3704 	}
3705 
3706 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3707 }
3708 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3709 
3710 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3711 {
3712 	if (__kvm_vcpu_wake_up(vcpu)) {
3713 		WRITE_ONCE(vcpu->ready, true);
3714 		++vcpu->stat.generic.halt_wakeup;
3715 		return true;
3716 	}
3717 
3718 	return false;
3719 }
3720 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3721 
3722 #ifndef CONFIG_S390
3723 /*
3724  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3725  */
3726 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3727 {
3728 	int me, cpu;
3729 
3730 	if (kvm_vcpu_wake_up(vcpu))
3731 		return;
3732 
3733 	me = get_cpu();
3734 	/*
3735 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3736 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3737 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3738 	 * within the vCPU thread itself.
3739 	 */
3740 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3741 		if (vcpu->mode == IN_GUEST_MODE)
3742 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3743 		goto out;
3744 	}
3745 
3746 	/*
3747 	 * Note, the vCPU could get migrated to a different pCPU at any point
3748 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3749 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3750 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3751 	 * vCPU also requires it to leave IN_GUEST_MODE.
3752 	 */
3753 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3754 		cpu = READ_ONCE(vcpu->cpu);
3755 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3756 			smp_send_reschedule(cpu);
3757 	}
3758 out:
3759 	put_cpu();
3760 }
3761 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3762 #endif /* !CONFIG_S390 */
3763 
3764 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3765 {
3766 	struct task_struct *task = NULL;
3767 	int ret;
3768 
3769 	if (!read_trylock(&target->pid_lock))
3770 		return 0;
3771 
3772 	if (target->pid)
3773 		task = get_pid_task(target->pid, PIDTYPE_PID);
3774 
3775 	read_unlock(&target->pid_lock);
3776 
3777 	if (!task)
3778 		return 0;
3779 	ret = yield_to(task, 1);
3780 	put_task_struct(task);
3781 
3782 	return ret;
3783 }
3784 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3785 
3786 /*
3787  * Helper that checks whether a VCPU is eligible for directed yield.
3788  * Most eligible candidate to yield is decided by following heuristics:
3789  *
3790  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3791  *  (preempted lock holder), indicated by @in_spin_loop.
3792  *  Set at the beginning and cleared at the end of interception/PLE handler.
3793  *
3794  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3795  *  chance last time (mostly it has become eligible now since we have probably
3796  *  yielded to lockholder in last iteration. This is done by toggling
3797  *  @dy_eligible each time a VCPU checked for eligibility.)
3798  *
3799  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3800  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3801  *  burning. Giving priority for a potential lock-holder increases lock
3802  *  progress.
3803  *
3804  *  Since algorithm is based on heuristics, accessing another VCPU data without
3805  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3806  *  and continue with next VCPU and so on.
3807  */
3808 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3809 {
3810 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3811 	bool eligible;
3812 
3813 	eligible = !vcpu->spin_loop.in_spin_loop ||
3814 		    vcpu->spin_loop.dy_eligible;
3815 
3816 	if (vcpu->spin_loop.in_spin_loop)
3817 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3818 
3819 	return eligible;
3820 #else
3821 	return true;
3822 #endif
3823 }
3824 
3825 /*
3826  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3827  * a vcpu_load/vcpu_put pair.  However, for most architectures
3828  * kvm_arch_vcpu_runnable does not require vcpu_load.
3829  */
3830 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3831 {
3832 	return kvm_arch_vcpu_runnable(vcpu);
3833 }
3834 
3835 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3836 {
3837 	if (kvm_arch_dy_runnable(vcpu))
3838 		return true;
3839 
3840 #ifdef CONFIG_KVM_ASYNC_PF
3841 	if (!list_empty_careful(&vcpu->async_pf.done))
3842 		return true;
3843 #endif
3844 
3845 	return false;
3846 }
3847 
3848 /*
3849  * By default, simply query the target vCPU's current mode when checking if a
3850  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
3851  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3852  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3853  * directly for cross-vCPU checks is functionally correct and accurate.
3854  */
3855 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3856 {
3857 	return kvm_arch_vcpu_in_kernel(vcpu);
3858 }
3859 
3860 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3861 {
3862 	return false;
3863 }
3864 
3865 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3866 {
3867 	int nr_vcpus, start, i, idx, yielded;
3868 	struct kvm *kvm = me->kvm;
3869 	struct kvm_vcpu *vcpu;
3870 	int try = 3;
3871 
3872 	nr_vcpus = atomic_read(&kvm->online_vcpus);
3873 	if (nr_vcpus < 2)
3874 		return;
3875 
3876 	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3877 	smp_rmb();
3878 
3879 	kvm_vcpu_set_in_spin_loop(me, true);
3880 
3881 	/*
3882 	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3883 	 * waiting for a resource to become available.  Attempt to yield to a
3884 	 * vCPU that is runnable, but not currently running, e.g. because the
3885 	 * vCPU was preempted by a higher priority task.  With luck, the vCPU
3886 	 * that was preempted is holding a lock or some other resource that the
3887 	 * current vCPU is waiting to acquire, and yielding to the other vCPU
3888 	 * will allow it to make forward progress and release the lock (or kick
3889 	 * the spinning vCPU, etc).
3890 	 *
3891 	 * Since KVM has no insight into what exactly the guest is doing,
3892 	 * approximate a round-robin selection by iterating over all vCPUs,
3893 	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu,
3894 	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3895 	 *
3896 	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3897 	 * they may all try to yield to the same vCPU(s).  But as above, this
3898 	 * is all best effort due to KVM's lack of visibility into the guest.
3899 	 */
3900 	start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3901 	for (i = 0; i < nr_vcpus; i++) {
3902 		idx = (start + i) % nr_vcpus;
3903 		if (idx == me->vcpu_idx)
3904 			continue;
3905 
3906 		vcpu = xa_load(&kvm->vcpu_array, idx);
3907 		if (!READ_ONCE(vcpu->ready))
3908 			continue;
3909 		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3910 			continue;
3911 
3912 		/*
3913 		 * Treat the target vCPU as being in-kernel if it has a pending
3914 		 * interrupt, as the vCPU trying to yield may be spinning
3915 		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3916 		 * for the purposes of directed yield.
3917 		 */
3918 		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3919 		    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3920 		    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3921 			continue;
3922 
3923 		if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3924 			continue;
3925 
3926 		yielded = kvm_vcpu_yield_to(vcpu);
3927 		if (yielded > 0) {
3928 			WRITE_ONCE(kvm->last_boosted_vcpu, i);
3929 			break;
3930 		} else if (yielded < 0 && !--try) {
3931 			break;
3932 		}
3933 	}
3934 	kvm_vcpu_set_in_spin_loop(me, false);
3935 
3936 	/* Ensure vcpu is not eligible during next spinloop */
3937 	kvm_vcpu_set_dy_eligible(me, false);
3938 }
3939 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3940 
3941 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3942 {
3943 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3944 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3945 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3946 	     kvm->dirty_ring_size / PAGE_SIZE);
3947 #else
3948 	return false;
3949 #endif
3950 }
3951 
3952 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3953 {
3954 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3955 	struct page *page;
3956 
3957 	if (vmf->pgoff == 0)
3958 		page = virt_to_page(vcpu->run);
3959 #ifdef CONFIG_X86
3960 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3961 		page = virt_to_page(vcpu->arch.pio_data);
3962 #endif
3963 #ifdef CONFIG_KVM_MMIO
3964 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3965 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3966 #endif
3967 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3968 		page = kvm_dirty_ring_get_page(
3969 		    &vcpu->dirty_ring,
3970 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3971 	else
3972 		return kvm_arch_vcpu_fault(vcpu, vmf);
3973 	get_page(page);
3974 	vmf->page = page;
3975 	return 0;
3976 }
3977 
3978 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3979 	.fault = kvm_vcpu_fault,
3980 };
3981 
3982 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3983 {
3984 	struct kvm_vcpu *vcpu = file->private_data;
3985 	unsigned long pages = vma_pages(vma);
3986 
3987 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3988 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3989 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3990 		return -EINVAL;
3991 
3992 	vma->vm_ops = &kvm_vcpu_vm_ops;
3993 	return 0;
3994 }
3995 
3996 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3997 {
3998 	struct kvm_vcpu *vcpu = filp->private_data;
3999 
4000 	kvm_put_kvm(vcpu->kvm);
4001 	return 0;
4002 }
4003 
4004 static struct file_operations kvm_vcpu_fops = {
4005 	.release        = kvm_vcpu_release,
4006 	.unlocked_ioctl = kvm_vcpu_ioctl,
4007 	.mmap           = kvm_vcpu_mmap,
4008 	.llseek		= noop_llseek,
4009 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4010 };
4011 
4012 /*
4013  * Allocates an inode for the vcpu.
4014  */
4015 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4016 {
4017 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4018 
4019 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4020 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4021 }
4022 
4023 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4024 static int vcpu_get_pid(void *data, u64 *val)
4025 {
4026 	struct kvm_vcpu *vcpu = data;
4027 
4028 	read_lock(&vcpu->pid_lock);
4029 	*val = pid_nr(vcpu->pid);
4030 	read_unlock(&vcpu->pid_lock);
4031 	return 0;
4032 }
4033 
4034 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4035 
4036 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4037 {
4038 	struct dentry *debugfs_dentry;
4039 	char dir_name[ITOA_MAX_LEN * 2];
4040 
4041 	if (!debugfs_initialized())
4042 		return;
4043 
4044 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4045 	debugfs_dentry = debugfs_create_dir(dir_name,
4046 					    vcpu->kvm->debugfs_dentry);
4047 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4048 			    &vcpu_get_pid_fops);
4049 
4050 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4051 }
4052 #endif
4053 
4054 /*
4055  * Creates some virtual cpus.  Good luck creating more than one.
4056  */
4057 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4058 {
4059 	int r;
4060 	struct kvm_vcpu *vcpu;
4061 	struct page *page;
4062 
4063 	/*
4064 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4065 	 * too-large values instead of silently truncating.
4066 	 *
4067 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4068 	 * changing the storage type (at the very least, IDs should be tracked
4069 	 * as unsigned ints).
4070 	 */
4071 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4072 	if (id >= KVM_MAX_VCPU_IDS)
4073 		return -EINVAL;
4074 
4075 	mutex_lock(&kvm->lock);
4076 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4077 		mutex_unlock(&kvm->lock);
4078 		return -EINVAL;
4079 	}
4080 
4081 	r = kvm_arch_vcpu_precreate(kvm, id);
4082 	if (r) {
4083 		mutex_unlock(&kvm->lock);
4084 		return r;
4085 	}
4086 
4087 	kvm->created_vcpus++;
4088 	mutex_unlock(&kvm->lock);
4089 
4090 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4091 	if (!vcpu) {
4092 		r = -ENOMEM;
4093 		goto vcpu_decrement;
4094 	}
4095 
4096 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4097 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4098 	if (!page) {
4099 		r = -ENOMEM;
4100 		goto vcpu_free;
4101 	}
4102 	vcpu->run = page_address(page);
4103 
4104 	kvm_vcpu_init(vcpu, kvm, id);
4105 
4106 	r = kvm_arch_vcpu_create(vcpu);
4107 	if (r)
4108 		goto vcpu_free_run_page;
4109 
4110 	if (kvm->dirty_ring_size) {
4111 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4112 					 id, kvm->dirty_ring_size);
4113 		if (r)
4114 			goto arch_vcpu_destroy;
4115 	}
4116 
4117 	mutex_lock(&kvm->lock);
4118 
4119 #ifdef CONFIG_LOCKDEP
4120 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4121 	mutex_lock(&vcpu->mutex);
4122 	mutex_unlock(&vcpu->mutex);
4123 #endif
4124 
4125 	if (kvm_get_vcpu_by_id(kvm, id)) {
4126 		r = -EEXIST;
4127 		goto unlock_vcpu_destroy;
4128 	}
4129 
4130 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4131 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4132 	if (r)
4133 		goto unlock_vcpu_destroy;
4134 
4135 	/* Now it's all set up, let userspace reach it */
4136 	kvm_get_kvm(kvm);
4137 	r = create_vcpu_fd(vcpu);
4138 	if (r < 0)
4139 		goto kvm_put_xa_release;
4140 
4141 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4142 		r = -EINVAL;
4143 		goto kvm_put_xa_release;
4144 	}
4145 
4146 	/*
4147 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4148 	 * pointer before kvm->online_vcpu's incremented value.
4149 	 */
4150 	smp_wmb();
4151 	atomic_inc(&kvm->online_vcpus);
4152 
4153 	mutex_unlock(&kvm->lock);
4154 	kvm_arch_vcpu_postcreate(vcpu);
4155 	kvm_create_vcpu_debugfs(vcpu);
4156 	return r;
4157 
4158 kvm_put_xa_release:
4159 	kvm_put_kvm_no_destroy(kvm);
4160 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4161 unlock_vcpu_destroy:
4162 	mutex_unlock(&kvm->lock);
4163 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4164 arch_vcpu_destroy:
4165 	kvm_arch_vcpu_destroy(vcpu);
4166 vcpu_free_run_page:
4167 	free_page((unsigned long)vcpu->run);
4168 vcpu_free:
4169 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4170 vcpu_decrement:
4171 	mutex_lock(&kvm->lock);
4172 	kvm->created_vcpus--;
4173 	mutex_unlock(&kvm->lock);
4174 	return r;
4175 }
4176 
4177 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4178 {
4179 	if (sigset) {
4180 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4181 		vcpu->sigset_active = 1;
4182 		vcpu->sigset = *sigset;
4183 	} else
4184 		vcpu->sigset_active = 0;
4185 	return 0;
4186 }
4187 
4188 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4189 			      size_t size, loff_t *offset)
4190 {
4191 	struct kvm_vcpu *vcpu = file->private_data;
4192 
4193 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4194 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4195 			sizeof(vcpu->stat), user_buffer, size, offset);
4196 }
4197 
4198 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4199 {
4200 	struct kvm_vcpu *vcpu = file->private_data;
4201 
4202 	kvm_put_kvm(vcpu->kvm);
4203 	return 0;
4204 }
4205 
4206 static const struct file_operations kvm_vcpu_stats_fops = {
4207 	.owner = THIS_MODULE,
4208 	.read = kvm_vcpu_stats_read,
4209 	.release = kvm_vcpu_stats_release,
4210 	.llseek = noop_llseek,
4211 };
4212 
4213 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4214 {
4215 	int fd;
4216 	struct file *file;
4217 	char name[15 + ITOA_MAX_LEN + 1];
4218 
4219 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4220 
4221 	fd = get_unused_fd_flags(O_CLOEXEC);
4222 	if (fd < 0)
4223 		return fd;
4224 
4225 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4226 	if (IS_ERR(file)) {
4227 		put_unused_fd(fd);
4228 		return PTR_ERR(file);
4229 	}
4230 
4231 	kvm_get_kvm(vcpu->kvm);
4232 
4233 	file->f_mode |= FMODE_PREAD;
4234 	fd_install(fd, file);
4235 
4236 	return fd;
4237 }
4238 
4239 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4240 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4241 				     struct kvm_pre_fault_memory *range)
4242 {
4243 	int idx;
4244 	long r;
4245 	u64 full_size;
4246 
4247 	if (range->flags)
4248 		return -EINVAL;
4249 
4250 	if (!PAGE_ALIGNED(range->gpa) ||
4251 	    !PAGE_ALIGNED(range->size) ||
4252 	    range->gpa + range->size <= range->gpa)
4253 		return -EINVAL;
4254 
4255 	vcpu_load(vcpu);
4256 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4257 
4258 	full_size = range->size;
4259 	do {
4260 		if (signal_pending(current)) {
4261 			r = -EINTR;
4262 			break;
4263 		}
4264 
4265 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4266 		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4267 			break;
4268 
4269 		if (r < 0)
4270 			break;
4271 
4272 		range->size -= r;
4273 		range->gpa += r;
4274 		cond_resched();
4275 	} while (range->size);
4276 
4277 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4278 	vcpu_put(vcpu);
4279 
4280 	/* Return success if at least one page was mapped successfully.  */
4281 	return full_size == range->size ? r : 0;
4282 }
4283 #endif
4284 
4285 static long kvm_vcpu_ioctl(struct file *filp,
4286 			   unsigned int ioctl, unsigned long arg)
4287 {
4288 	struct kvm_vcpu *vcpu = filp->private_data;
4289 	void __user *argp = (void __user *)arg;
4290 	int r;
4291 	struct kvm_fpu *fpu = NULL;
4292 	struct kvm_sregs *kvm_sregs = NULL;
4293 
4294 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4295 		return -EIO;
4296 
4297 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4298 		return -EINVAL;
4299 
4300 	/*
4301 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4302 	 * execution; mutex_lock() would break them.
4303 	 */
4304 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4305 	if (r != -ENOIOCTLCMD)
4306 		return r;
4307 
4308 	if (mutex_lock_killable(&vcpu->mutex))
4309 		return -EINTR;
4310 	switch (ioctl) {
4311 	case KVM_RUN: {
4312 		struct pid *oldpid;
4313 		r = -EINVAL;
4314 		if (arg)
4315 			goto out;
4316 
4317 		/*
4318 		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4319 		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4320 		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4321 		 * directly to this vCPU
4322 		 */
4323 		oldpid = vcpu->pid;
4324 		if (unlikely(oldpid != task_pid(current))) {
4325 			/* The thread running this VCPU changed. */
4326 			struct pid *newpid;
4327 
4328 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4329 			if (r)
4330 				break;
4331 
4332 			newpid = get_task_pid(current, PIDTYPE_PID);
4333 			write_lock(&vcpu->pid_lock);
4334 			vcpu->pid = newpid;
4335 			write_unlock(&vcpu->pid_lock);
4336 
4337 			put_pid(oldpid);
4338 		}
4339 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4340 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4341 		vcpu->wants_to_run = false;
4342 
4343 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4344 		break;
4345 	}
4346 	case KVM_GET_REGS: {
4347 		struct kvm_regs *kvm_regs;
4348 
4349 		r = -ENOMEM;
4350 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4351 		if (!kvm_regs)
4352 			goto out;
4353 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4354 		if (r)
4355 			goto out_free1;
4356 		r = -EFAULT;
4357 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4358 			goto out_free1;
4359 		r = 0;
4360 out_free1:
4361 		kfree(kvm_regs);
4362 		break;
4363 	}
4364 	case KVM_SET_REGS: {
4365 		struct kvm_regs *kvm_regs;
4366 
4367 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4368 		if (IS_ERR(kvm_regs)) {
4369 			r = PTR_ERR(kvm_regs);
4370 			goto out;
4371 		}
4372 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4373 		kfree(kvm_regs);
4374 		break;
4375 	}
4376 	case KVM_GET_SREGS: {
4377 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4378 		r = -ENOMEM;
4379 		if (!kvm_sregs)
4380 			goto out;
4381 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4382 		if (r)
4383 			goto out;
4384 		r = -EFAULT;
4385 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4386 			goto out;
4387 		r = 0;
4388 		break;
4389 	}
4390 	case KVM_SET_SREGS: {
4391 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4392 		if (IS_ERR(kvm_sregs)) {
4393 			r = PTR_ERR(kvm_sregs);
4394 			kvm_sregs = NULL;
4395 			goto out;
4396 		}
4397 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4398 		break;
4399 	}
4400 	case KVM_GET_MP_STATE: {
4401 		struct kvm_mp_state mp_state;
4402 
4403 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4404 		if (r)
4405 			goto out;
4406 		r = -EFAULT;
4407 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4408 			goto out;
4409 		r = 0;
4410 		break;
4411 	}
4412 	case KVM_SET_MP_STATE: {
4413 		struct kvm_mp_state mp_state;
4414 
4415 		r = -EFAULT;
4416 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4417 			goto out;
4418 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4419 		break;
4420 	}
4421 	case KVM_TRANSLATE: {
4422 		struct kvm_translation tr;
4423 
4424 		r = -EFAULT;
4425 		if (copy_from_user(&tr, argp, sizeof(tr)))
4426 			goto out;
4427 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4428 		if (r)
4429 			goto out;
4430 		r = -EFAULT;
4431 		if (copy_to_user(argp, &tr, sizeof(tr)))
4432 			goto out;
4433 		r = 0;
4434 		break;
4435 	}
4436 	case KVM_SET_GUEST_DEBUG: {
4437 		struct kvm_guest_debug dbg;
4438 
4439 		r = -EFAULT;
4440 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4441 			goto out;
4442 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4443 		break;
4444 	}
4445 	case KVM_SET_SIGNAL_MASK: {
4446 		struct kvm_signal_mask __user *sigmask_arg = argp;
4447 		struct kvm_signal_mask kvm_sigmask;
4448 		sigset_t sigset, *p;
4449 
4450 		p = NULL;
4451 		if (argp) {
4452 			r = -EFAULT;
4453 			if (copy_from_user(&kvm_sigmask, argp,
4454 					   sizeof(kvm_sigmask)))
4455 				goto out;
4456 			r = -EINVAL;
4457 			if (kvm_sigmask.len != sizeof(sigset))
4458 				goto out;
4459 			r = -EFAULT;
4460 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4461 					   sizeof(sigset)))
4462 				goto out;
4463 			p = &sigset;
4464 		}
4465 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4466 		break;
4467 	}
4468 	case KVM_GET_FPU: {
4469 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4470 		r = -ENOMEM;
4471 		if (!fpu)
4472 			goto out;
4473 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4474 		if (r)
4475 			goto out;
4476 		r = -EFAULT;
4477 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4478 			goto out;
4479 		r = 0;
4480 		break;
4481 	}
4482 	case KVM_SET_FPU: {
4483 		fpu = memdup_user(argp, sizeof(*fpu));
4484 		if (IS_ERR(fpu)) {
4485 			r = PTR_ERR(fpu);
4486 			fpu = NULL;
4487 			goto out;
4488 		}
4489 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4490 		break;
4491 	}
4492 	case KVM_GET_STATS_FD: {
4493 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4494 		break;
4495 	}
4496 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4497 	case KVM_PRE_FAULT_MEMORY: {
4498 		struct kvm_pre_fault_memory range;
4499 
4500 		r = -EFAULT;
4501 		if (copy_from_user(&range, argp, sizeof(range)))
4502 			break;
4503 		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4504 		/* Pass back leftover range. */
4505 		if (copy_to_user(argp, &range, sizeof(range)))
4506 			r = -EFAULT;
4507 		break;
4508 	}
4509 #endif
4510 	default:
4511 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4512 	}
4513 out:
4514 	mutex_unlock(&vcpu->mutex);
4515 	kfree(fpu);
4516 	kfree(kvm_sregs);
4517 	return r;
4518 }
4519 
4520 #ifdef CONFIG_KVM_COMPAT
4521 static long kvm_vcpu_compat_ioctl(struct file *filp,
4522 				  unsigned int ioctl, unsigned long arg)
4523 {
4524 	struct kvm_vcpu *vcpu = filp->private_data;
4525 	void __user *argp = compat_ptr(arg);
4526 	int r;
4527 
4528 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4529 		return -EIO;
4530 
4531 	switch (ioctl) {
4532 	case KVM_SET_SIGNAL_MASK: {
4533 		struct kvm_signal_mask __user *sigmask_arg = argp;
4534 		struct kvm_signal_mask kvm_sigmask;
4535 		sigset_t sigset;
4536 
4537 		if (argp) {
4538 			r = -EFAULT;
4539 			if (copy_from_user(&kvm_sigmask, argp,
4540 					   sizeof(kvm_sigmask)))
4541 				goto out;
4542 			r = -EINVAL;
4543 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4544 				goto out;
4545 			r = -EFAULT;
4546 			if (get_compat_sigset(&sigset,
4547 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4548 				goto out;
4549 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4550 		} else
4551 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4552 		break;
4553 	}
4554 	default:
4555 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4556 	}
4557 
4558 out:
4559 	return r;
4560 }
4561 #endif
4562 
4563 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4564 {
4565 	struct kvm_device *dev = filp->private_data;
4566 
4567 	if (dev->ops->mmap)
4568 		return dev->ops->mmap(dev, vma);
4569 
4570 	return -ENODEV;
4571 }
4572 
4573 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4574 				 int (*accessor)(struct kvm_device *dev,
4575 						 struct kvm_device_attr *attr),
4576 				 unsigned long arg)
4577 {
4578 	struct kvm_device_attr attr;
4579 
4580 	if (!accessor)
4581 		return -EPERM;
4582 
4583 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4584 		return -EFAULT;
4585 
4586 	return accessor(dev, &attr);
4587 }
4588 
4589 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4590 			     unsigned long arg)
4591 {
4592 	struct kvm_device *dev = filp->private_data;
4593 
4594 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4595 		return -EIO;
4596 
4597 	switch (ioctl) {
4598 	case KVM_SET_DEVICE_ATTR:
4599 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4600 	case KVM_GET_DEVICE_ATTR:
4601 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4602 	case KVM_HAS_DEVICE_ATTR:
4603 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4604 	default:
4605 		if (dev->ops->ioctl)
4606 			return dev->ops->ioctl(dev, ioctl, arg);
4607 
4608 		return -ENOTTY;
4609 	}
4610 }
4611 
4612 static int kvm_device_release(struct inode *inode, struct file *filp)
4613 {
4614 	struct kvm_device *dev = filp->private_data;
4615 	struct kvm *kvm = dev->kvm;
4616 
4617 	if (dev->ops->release) {
4618 		mutex_lock(&kvm->lock);
4619 		list_del_rcu(&dev->vm_node);
4620 		synchronize_rcu();
4621 		dev->ops->release(dev);
4622 		mutex_unlock(&kvm->lock);
4623 	}
4624 
4625 	kvm_put_kvm(kvm);
4626 	return 0;
4627 }
4628 
4629 static struct file_operations kvm_device_fops = {
4630 	.unlocked_ioctl = kvm_device_ioctl,
4631 	.release = kvm_device_release,
4632 	KVM_COMPAT(kvm_device_ioctl),
4633 	.mmap = kvm_device_mmap,
4634 };
4635 
4636 struct kvm_device *kvm_device_from_filp(struct file *filp)
4637 {
4638 	if (filp->f_op != &kvm_device_fops)
4639 		return NULL;
4640 
4641 	return filp->private_data;
4642 }
4643 
4644 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4645 #ifdef CONFIG_KVM_MPIC
4646 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4647 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4648 #endif
4649 };
4650 
4651 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4652 {
4653 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4654 		return -ENOSPC;
4655 
4656 	if (kvm_device_ops_table[type] != NULL)
4657 		return -EEXIST;
4658 
4659 	kvm_device_ops_table[type] = ops;
4660 	return 0;
4661 }
4662 
4663 void kvm_unregister_device_ops(u32 type)
4664 {
4665 	if (kvm_device_ops_table[type] != NULL)
4666 		kvm_device_ops_table[type] = NULL;
4667 }
4668 
4669 static int kvm_ioctl_create_device(struct kvm *kvm,
4670 				   struct kvm_create_device *cd)
4671 {
4672 	const struct kvm_device_ops *ops;
4673 	struct kvm_device *dev;
4674 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4675 	int type;
4676 	int ret;
4677 
4678 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4679 		return -ENODEV;
4680 
4681 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4682 	ops = kvm_device_ops_table[type];
4683 	if (ops == NULL)
4684 		return -ENODEV;
4685 
4686 	if (test)
4687 		return 0;
4688 
4689 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4690 	if (!dev)
4691 		return -ENOMEM;
4692 
4693 	dev->ops = ops;
4694 	dev->kvm = kvm;
4695 
4696 	mutex_lock(&kvm->lock);
4697 	ret = ops->create(dev, type);
4698 	if (ret < 0) {
4699 		mutex_unlock(&kvm->lock);
4700 		kfree(dev);
4701 		return ret;
4702 	}
4703 	list_add_rcu(&dev->vm_node, &kvm->devices);
4704 	mutex_unlock(&kvm->lock);
4705 
4706 	if (ops->init)
4707 		ops->init(dev);
4708 
4709 	kvm_get_kvm(kvm);
4710 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4711 	if (ret < 0) {
4712 		kvm_put_kvm_no_destroy(kvm);
4713 		mutex_lock(&kvm->lock);
4714 		list_del_rcu(&dev->vm_node);
4715 		synchronize_rcu();
4716 		if (ops->release)
4717 			ops->release(dev);
4718 		mutex_unlock(&kvm->lock);
4719 		if (ops->destroy)
4720 			ops->destroy(dev);
4721 		return ret;
4722 	}
4723 
4724 	cd->fd = ret;
4725 	return 0;
4726 }
4727 
4728 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4729 {
4730 	switch (arg) {
4731 	case KVM_CAP_USER_MEMORY:
4732 	case KVM_CAP_USER_MEMORY2:
4733 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4734 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4735 	case KVM_CAP_INTERNAL_ERROR_DATA:
4736 #ifdef CONFIG_HAVE_KVM_MSI
4737 	case KVM_CAP_SIGNAL_MSI:
4738 #endif
4739 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4740 	case KVM_CAP_IRQFD:
4741 #endif
4742 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4743 	case KVM_CAP_CHECK_EXTENSION_VM:
4744 	case KVM_CAP_ENABLE_CAP_VM:
4745 	case KVM_CAP_HALT_POLL:
4746 		return 1;
4747 #ifdef CONFIG_KVM_MMIO
4748 	case KVM_CAP_COALESCED_MMIO:
4749 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4750 	case KVM_CAP_COALESCED_PIO:
4751 		return 1;
4752 #endif
4753 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4754 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4755 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4756 #endif
4757 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4758 	case KVM_CAP_IRQ_ROUTING:
4759 		return KVM_MAX_IRQ_ROUTES;
4760 #endif
4761 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4762 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4763 		if (kvm)
4764 			return kvm_arch_nr_memslot_as_ids(kvm);
4765 		return KVM_MAX_NR_ADDRESS_SPACES;
4766 #endif
4767 	case KVM_CAP_NR_MEMSLOTS:
4768 		return KVM_USER_MEM_SLOTS;
4769 	case KVM_CAP_DIRTY_LOG_RING:
4770 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4771 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4772 #else
4773 		return 0;
4774 #endif
4775 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4776 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4777 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4778 #else
4779 		return 0;
4780 #endif
4781 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4782 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4783 #endif
4784 	case KVM_CAP_BINARY_STATS_FD:
4785 	case KVM_CAP_SYSTEM_EVENT_DATA:
4786 	case KVM_CAP_DEVICE_CTRL:
4787 		return 1;
4788 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4789 	case KVM_CAP_MEMORY_ATTRIBUTES:
4790 		return kvm_supported_mem_attributes(kvm);
4791 #endif
4792 #ifdef CONFIG_KVM_PRIVATE_MEM
4793 	case KVM_CAP_GUEST_MEMFD:
4794 		return !kvm || kvm_arch_has_private_mem(kvm);
4795 #endif
4796 	default:
4797 		break;
4798 	}
4799 	return kvm_vm_ioctl_check_extension(kvm, arg);
4800 }
4801 
4802 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4803 {
4804 	int r;
4805 
4806 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4807 		return -EINVAL;
4808 
4809 	/* the size should be power of 2 */
4810 	if (!size || (size & (size - 1)))
4811 		return -EINVAL;
4812 
4813 	/* Should be bigger to keep the reserved entries, or a page */
4814 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4815 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4816 		return -EINVAL;
4817 
4818 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4819 	    sizeof(struct kvm_dirty_gfn))
4820 		return -E2BIG;
4821 
4822 	/* We only allow it to set once */
4823 	if (kvm->dirty_ring_size)
4824 		return -EINVAL;
4825 
4826 	mutex_lock(&kvm->lock);
4827 
4828 	if (kvm->created_vcpus) {
4829 		/* We don't allow to change this value after vcpu created */
4830 		r = -EINVAL;
4831 	} else {
4832 		kvm->dirty_ring_size = size;
4833 		r = 0;
4834 	}
4835 
4836 	mutex_unlock(&kvm->lock);
4837 	return r;
4838 }
4839 
4840 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4841 {
4842 	unsigned long i;
4843 	struct kvm_vcpu *vcpu;
4844 	int cleared = 0;
4845 
4846 	if (!kvm->dirty_ring_size)
4847 		return -EINVAL;
4848 
4849 	mutex_lock(&kvm->slots_lock);
4850 
4851 	kvm_for_each_vcpu(i, vcpu, kvm)
4852 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4853 
4854 	mutex_unlock(&kvm->slots_lock);
4855 
4856 	if (cleared)
4857 		kvm_flush_remote_tlbs(kvm);
4858 
4859 	return cleared;
4860 }
4861 
4862 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4863 						  struct kvm_enable_cap *cap)
4864 {
4865 	return -EINVAL;
4866 }
4867 
4868 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4869 {
4870 	int i;
4871 
4872 	lockdep_assert_held(&kvm->slots_lock);
4873 
4874 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4875 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4876 			return false;
4877 	}
4878 
4879 	return true;
4880 }
4881 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4882 
4883 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4884 					   struct kvm_enable_cap *cap)
4885 {
4886 	switch (cap->cap) {
4887 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4888 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4889 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4890 
4891 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4892 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4893 
4894 		if (cap->flags || (cap->args[0] & ~allowed_options))
4895 			return -EINVAL;
4896 		kvm->manual_dirty_log_protect = cap->args[0];
4897 		return 0;
4898 	}
4899 #endif
4900 	case KVM_CAP_HALT_POLL: {
4901 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4902 			return -EINVAL;
4903 
4904 		kvm->max_halt_poll_ns = cap->args[0];
4905 
4906 		/*
4907 		 * Ensure kvm->override_halt_poll_ns does not become visible
4908 		 * before kvm->max_halt_poll_ns.
4909 		 *
4910 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4911 		 */
4912 		smp_wmb();
4913 		kvm->override_halt_poll_ns = true;
4914 
4915 		return 0;
4916 	}
4917 	case KVM_CAP_DIRTY_LOG_RING:
4918 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4920 			return -EINVAL;
4921 
4922 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4923 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4924 		int r = -EINVAL;
4925 
4926 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4927 		    !kvm->dirty_ring_size || cap->flags)
4928 			return r;
4929 
4930 		mutex_lock(&kvm->slots_lock);
4931 
4932 		/*
4933 		 * For simplicity, allow enabling ring+bitmap if and only if
4934 		 * there are no memslots, e.g. to ensure all memslots allocate
4935 		 * a bitmap after the capability is enabled.
4936 		 */
4937 		if (kvm_are_all_memslots_empty(kvm)) {
4938 			kvm->dirty_ring_with_bitmap = true;
4939 			r = 0;
4940 		}
4941 
4942 		mutex_unlock(&kvm->slots_lock);
4943 
4944 		return r;
4945 	}
4946 	default:
4947 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4948 	}
4949 }
4950 
4951 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4952 			      size_t size, loff_t *offset)
4953 {
4954 	struct kvm *kvm = file->private_data;
4955 
4956 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4957 				&kvm_vm_stats_desc[0], &kvm->stat,
4958 				sizeof(kvm->stat), user_buffer, size, offset);
4959 }
4960 
4961 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4962 {
4963 	struct kvm *kvm = file->private_data;
4964 
4965 	kvm_put_kvm(kvm);
4966 	return 0;
4967 }
4968 
4969 static const struct file_operations kvm_vm_stats_fops = {
4970 	.owner = THIS_MODULE,
4971 	.read = kvm_vm_stats_read,
4972 	.release = kvm_vm_stats_release,
4973 	.llseek = noop_llseek,
4974 };
4975 
4976 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4977 {
4978 	int fd;
4979 	struct file *file;
4980 
4981 	fd = get_unused_fd_flags(O_CLOEXEC);
4982 	if (fd < 0)
4983 		return fd;
4984 
4985 	file = anon_inode_getfile("kvm-vm-stats",
4986 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4987 	if (IS_ERR(file)) {
4988 		put_unused_fd(fd);
4989 		return PTR_ERR(file);
4990 	}
4991 
4992 	kvm_get_kvm(kvm);
4993 
4994 	file->f_mode |= FMODE_PREAD;
4995 	fd_install(fd, file);
4996 
4997 	return fd;
4998 }
4999 
5000 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5001 do {										\
5002 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5003 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5004 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5005 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5006 } while (0)
5007 
5008 static long kvm_vm_ioctl(struct file *filp,
5009 			   unsigned int ioctl, unsigned long arg)
5010 {
5011 	struct kvm *kvm = filp->private_data;
5012 	void __user *argp = (void __user *)arg;
5013 	int r;
5014 
5015 	if (kvm->mm != current->mm || kvm->vm_dead)
5016 		return -EIO;
5017 	switch (ioctl) {
5018 	case KVM_CREATE_VCPU:
5019 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5020 		break;
5021 	case KVM_ENABLE_CAP: {
5022 		struct kvm_enable_cap cap;
5023 
5024 		r = -EFAULT;
5025 		if (copy_from_user(&cap, argp, sizeof(cap)))
5026 			goto out;
5027 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5028 		break;
5029 	}
5030 	case KVM_SET_USER_MEMORY_REGION2:
5031 	case KVM_SET_USER_MEMORY_REGION: {
5032 		struct kvm_userspace_memory_region2 mem;
5033 		unsigned long size;
5034 
5035 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5036 			/*
5037 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5038 			 * accessed, but avoid leaking kernel memory in case of a bug.
5039 			 */
5040 			memset(&mem, 0, sizeof(mem));
5041 			size = sizeof(struct kvm_userspace_memory_region);
5042 		} else {
5043 			size = sizeof(struct kvm_userspace_memory_region2);
5044 		}
5045 
5046 		/* Ensure the common parts of the two structs are identical. */
5047 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5048 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5049 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5050 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5051 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5052 
5053 		r = -EFAULT;
5054 		if (copy_from_user(&mem, argp, size))
5055 			goto out;
5056 
5057 		r = -EINVAL;
5058 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5059 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5060 			goto out;
5061 
5062 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5063 		break;
5064 	}
5065 	case KVM_GET_DIRTY_LOG: {
5066 		struct kvm_dirty_log log;
5067 
5068 		r = -EFAULT;
5069 		if (copy_from_user(&log, argp, sizeof(log)))
5070 			goto out;
5071 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5072 		break;
5073 	}
5074 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5075 	case KVM_CLEAR_DIRTY_LOG: {
5076 		struct kvm_clear_dirty_log log;
5077 
5078 		r = -EFAULT;
5079 		if (copy_from_user(&log, argp, sizeof(log)))
5080 			goto out;
5081 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5082 		break;
5083 	}
5084 #endif
5085 #ifdef CONFIG_KVM_MMIO
5086 	case KVM_REGISTER_COALESCED_MMIO: {
5087 		struct kvm_coalesced_mmio_zone zone;
5088 
5089 		r = -EFAULT;
5090 		if (copy_from_user(&zone, argp, sizeof(zone)))
5091 			goto out;
5092 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5093 		break;
5094 	}
5095 	case KVM_UNREGISTER_COALESCED_MMIO: {
5096 		struct kvm_coalesced_mmio_zone zone;
5097 
5098 		r = -EFAULT;
5099 		if (copy_from_user(&zone, argp, sizeof(zone)))
5100 			goto out;
5101 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5102 		break;
5103 	}
5104 #endif
5105 	case KVM_IRQFD: {
5106 		struct kvm_irqfd data;
5107 
5108 		r = -EFAULT;
5109 		if (copy_from_user(&data, argp, sizeof(data)))
5110 			goto out;
5111 		r = kvm_irqfd(kvm, &data);
5112 		break;
5113 	}
5114 	case KVM_IOEVENTFD: {
5115 		struct kvm_ioeventfd data;
5116 
5117 		r = -EFAULT;
5118 		if (copy_from_user(&data, argp, sizeof(data)))
5119 			goto out;
5120 		r = kvm_ioeventfd(kvm, &data);
5121 		break;
5122 	}
5123 #ifdef CONFIG_HAVE_KVM_MSI
5124 	case KVM_SIGNAL_MSI: {
5125 		struct kvm_msi msi;
5126 
5127 		r = -EFAULT;
5128 		if (copy_from_user(&msi, argp, sizeof(msi)))
5129 			goto out;
5130 		r = kvm_send_userspace_msi(kvm, &msi);
5131 		break;
5132 	}
5133 #endif
5134 #ifdef __KVM_HAVE_IRQ_LINE
5135 	case KVM_IRQ_LINE_STATUS:
5136 	case KVM_IRQ_LINE: {
5137 		struct kvm_irq_level irq_event;
5138 
5139 		r = -EFAULT;
5140 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5141 			goto out;
5142 
5143 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5144 					ioctl == KVM_IRQ_LINE_STATUS);
5145 		if (r)
5146 			goto out;
5147 
5148 		r = -EFAULT;
5149 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5150 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5151 				goto out;
5152 		}
5153 
5154 		r = 0;
5155 		break;
5156 	}
5157 #endif
5158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5159 	case KVM_SET_GSI_ROUTING: {
5160 		struct kvm_irq_routing routing;
5161 		struct kvm_irq_routing __user *urouting;
5162 		struct kvm_irq_routing_entry *entries = NULL;
5163 
5164 		r = -EFAULT;
5165 		if (copy_from_user(&routing, argp, sizeof(routing)))
5166 			goto out;
5167 		r = -EINVAL;
5168 		if (!kvm_arch_can_set_irq_routing(kvm))
5169 			goto out;
5170 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5171 			goto out;
5172 		if (routing.flags)
5173 			goto out;
5174 		if (routing.nr) {
5175 			urouting = argp;
5176 			entries = vmemdup_array_user(urouting->entries,
5177 						     routing.nr, sizeof(*entries));
5178 			if (IS_ERR(entries)) {
5179 				r = PTR_ERR(entries);
5180 				goto out;
5181 			}
5182 		}
5183 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5184 					routing.flags);
5185 		kvfree(entries);
5186 		break;
5187 	}
5188 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5189 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5190 	case KVM_SET_MEMORY_ATTRIBUTES: {
5191 		struct kvm_memory_attributes attrs;
5192 
5193 		r = -EFAULT;
5194 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5195 			goto out;
5196 
5197 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5198 		break;
5199 	}
5200 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5201 	case KVM_CREATE_DEVICE: {
5202 		struct kvm_create_device cd;
5203 
5204 		r = -EFAULT;
5205 		if (copy_from_user(&cd, argp, sizeof(cd)))
5206 			goto out;
5207 
5208 		r = kvm_ioctl_create_device(kvm, &cd);
5209 		if (r)
5210 			goto out;
5211 
5212 		r = -EFAULT;
5213 		if (copy_to_user(argp, &cd, sizeof(cd)))
5214 			goto out;
5215 
5216 		r = 0;
5217 		break;
5218 	}
5219 	case KVM_CHECK_EXTENSION:
5220 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5221 		break;
5222 	case KVM_RESET_DIRTY_RINGS:
5223 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5224 		break;
5225 	case KVM_GET_STATS_FD:
5226 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5227 		break;
5228 #ifdef CONFIG_KVM_PRIVATE_MEM
5229 	case KVM_CREATE_GUEST_MEMFD: {
5230 		struct kvm_create_guest_memfd guest_memfd;
5231 
5232 		r = -EFAULT;
5233 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5234 			goto out;
5235 
5236 		r = kvm_gmem_create(kvm, &guest_memfd);
5237 		break;
5238 	}
5239 #endif
5240 	default:
5241 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5242 	}
5243 out:
5244 	return r;
5245 }
5246 
5247 #ifdef CONFIG_KVM_COMPAT
5248 struct compat_kvm_dirty_log {
5249 	__u32 slot;
5250 	__u32 padding1;
5251 	union {
5252 		compat_uptr_t dirty_bitmap; /* one bit per page */
5253 		__u64 padding2;
5254 	};
5255 };
5256 
5257 struct compat_kvm_clear_dirty_log {
5258 	__u32 slot;
5259 	__u32 num_pages;
5260 	__u64 first_page;
5261 	union {
5262 		compat_uptr_t dirty_bitmap; /* one bit per page */
5263 		__u64 padding2;
5264 	};
5265 };
5266 
5267 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5268 				     unsigned long arg)
5269 {
5270 	return -ENOTTY;
5271 }
5272 
5273 static long kvm_vm_compat_ioctl(struct file *filp,
5274 			   unsigned int ioctl, unsigned long arg)
5275 {
5276 	struct kvm *kvm = filp->private_data;
5277 	int r;
5278 
5279 	if (kvm->mm != current->mm || kvm->vm_dead)
5280 		return -EIO;
5281 
5282 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5283 	if (r != -ENOTTY)
5284 		return r;
5285 
5286 	switch (ioctl) {
5287 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5288 	case KVM_CLEAR_DIRTY_LOG: {
5289 		struct compat_kvm_clear_dirty_log compat_log;
5290 		struct kvm_clear_dirty_log log;
5291 
5292 		if (copy_from_user(&compat_log, (void __user *)arg,
5293 				   sizeof(compat_log)))
5294 			return -EFAULT;
5295 		log.slot	 = compat_log.slot;
5296 		log.num_pages	 = compat_log.num_pages;
5297 		log.first_page	 = compat_log.first_page;
5298 		log.padding2	 = compat_log.padding2;
5299 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5300 
5301 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5302 		break;
5303 	}
5304 #endif
5305 	case KVM_GET_DIRTY_LOG: {
5306 		struct compat_kvm_dirty_log compat_log;
5307 		struct kvm_dirty_log log;
5308 
5309 		if (copy_from_user(&compat_log, (void __user *)arg,
5310 				   sizeof(compat_log)))
5311 			return -EFAULT;
5312 		log.slot	 = compat_log.slot;
5313 		log.padding1	 = compat_log.padding1;
5314 		log.padding2	 = compat_log.padding2;
5315 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5316 
5317 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5318 		break;
5319 	}
5320 	default:
5321 		r = kvm_vm_ioctl(filp, ioctl, arg);
5322 	}
5323 	return r;
5324 }
5325 #endif
5326 
5327 static struct file_operations kvm_vm_fops = {
5328 	.release        = kvm_vm_release,
5329 	.unlocked_ioctl = kvm_vm_ioctl,
5330 	.llseek		= noop_llseek,
5331 	KVM_COMPAT(kvm_vm_compat_ioctl),
5332 };
5333 
5334 bool file_is_kvm(struct file *file)
5335 {
5336 	return file && file->f_op == &kvm_vm_fops;
5337 }
5338 EXPORT_SYMBOL_GPL(file_is_kvm);
5339 
5340 static int kvm_dev_ioctl_create_vm(unsigned long type)
5341 {
5342 	char fdname[ITOA_MAX_LEN + 1];
5343 	int r, fd;
5344 	struct kvm *kvm;
5345 	struct file *file;
5346 
5347 	fd = get_unused_fd_flags(O_CLOEXEC);
5348 	if (fd < 0)
5349 		return fd;
5350 
5351 	snprintf(fdname, sizeof(fdname), "%d", fd);
5352 
5353 	kvm = kvm_create_vm(type, fdname);
5354 	if (IS_ERR(kvm)) {
5355 		r = PTR_ERR(kvm);
5356 		goto put_fd;
5357 	}
5358 
5359 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5360 	if (IS_ERR(file)) {
5361 		r = PTR_ERR(file);
5362 		goto put_kvm;
5363 	}
5364 
5365 	/*
5366 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5367 	 * already set, with ->release() being kvm_vm_release().  In error
5368 	 * cases it will be called by the final fput(file) and will take
5369 	 * care of doing kvm_put_kvm(kvm).
5370 	 */
5371 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5372 
5373 	fd_install(fd, file);
5374 	return fd;
5375 
5376 put_kvm:
5377 	kvm_put_kvm(kvm);
5378 put_fd:
5379 	put_unused_fd(fd);
5380 	return r;
5381 }
5382 
5383 static long kvm_dev_ioctl(struct file *filp,
5384 			  unsigned int ioctl, unsigned long arg)
5385 {
5386 	int r = -EINVAL;
5387 
5388 	switch (ioctl) {
5389 	case KVM_GET_API_VERSION:
5390 		if (arg)
5391 			goto out;
5392 		r = KVM_API_VERSION;
5393 		break;
5394 	case KVM_CREATE_VM:
5395 		r = kvm_dev_ioctl_create_vm(arg);
5396 		break;
5397 	case KVM_CHECK_EXTENSION:
5398 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5399 		break;
5400 	case KVM_GET_VCPU_MMAP_SIZE:
5401 		if (arg)
5402 			goto out;
5403 		r = PAGE_SIZE;     /* struct kvm_run */
5404 #ifdef CONFIG_X86
5405 		r += PAGE_SIZE;    /* pio data page */
5406 #endif
5407 #ifdef CONFIG_KVM_MMIO
5408 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5409 #endif
5410 		break;
5411 	default:
5412 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5413 	}
5414 out:
5415 	return r;
5416 }
5417 
5418 static struct file_operations kvm_chardev_ops = {
5419 	.unlocked_ioctl = kvm_dev_ioctl,
5420 	.llseek		= noop_llseek,
5421 	KVM_COMPAT(kvm_dev_ioctl),
5422 };
5423 
5424 static struct miscdevice kvm_dev = {
5425 	KVM_MINOR,
5426 	"kvm",
5427 	&kvm_chardev_ops,
5428 };
5429 
5430 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5431 static bool enable_virt_at_load = true;
5432 module_param(enable_virt_at_load, bool, 0444);
5433 
5434 __visible bool kvm_rebooting;
5435 EXPORT_SYMBOL_GPL(kvm_rebooting);
5436 
5437 static DEFINE_PER_CPU(bool, virtualization_enabled);
5438 static DEFINE_MUTEX(kvm_usage_lock);
5439 static int kvm_usage_count;
5440 
5441 __weak void kvm_arch_enable_virtualization(void)
5442 {
5443 
5444 }
5445 
5446 __weak void kvm_arch_disable_virtualization(void)
5447 {
5448 
5449 }
5450 
5451 static int kvm_enable_virtualization_cpu(void)
5452 {
5453 	if (__this_cpu_read(virtualization_enabled))
5454 		return 0;
5455 
5456 	if (kvm_arch_enable_virtualization_cpu()) {
5457 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5458 			raw_smp_processor_id());
5459 		return -EIO;
5460 	}
5461 
5462 	__this_cpu_write(virtualization_enabled, true);
5463 	return 0;
5464 }
5465 
5466 static int kvm_online_cpu(unsigned int cpu)
5467 {
5468 	/*
5469 	 * Abort the CPU online process if hardware virtualization cannot
5470 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5471 	 * errors when scheduled to this CPU.
5472 	 */
5473 	return kvm_enable_virtualization_cpu();
5474 }
5475 
5476 static void kvm_disable_virtualization_cpu(void *ign)
5477 {
5478 	if (!__this_cpu_read(virtualization_enabled))
5479 		return;
5480 
5481 	kvm_arch_disable_virtualization_cpu();
5482 
5483 	__this_cpu_write(virtualization_enabled, false);
5484 }
5485 
5486 static int kvm_offline_cpu(unsigned int cpu)
5487 {
5488 	kvm_disable_virtualization_cpu(NULL);
5489 	return 0;
5490 }
5491 
5492 static void kvm_shutdown(void)
5493 {
5494 	/*
5495 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5496 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5497 	 * that relevant errors and exceptions aren't entirely unexpected.
5498 	 * Some flavors of hardware virtualization need to be disabled before
5499 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5500 	 * on x86, virtualization can block INIT interrupts, which are used by
5501 	 * firmware to pull APs back under firmware control.  Note, this path
5502 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5503 	 * 100% comprehensive.
5504 	 */
5505 	pr_info("kvm: exiting hardware virtualization\n");
5506 	kvm_rebooting = true;
5507 	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5508 }
5509 
5510 static int kvm_suspend(void)
5511 {
5512 	/*
5513 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5514 	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5515 	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5516 	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5517 	 * enabling can be preempted, but the task cannot be frozen until it has
5518 	 * dropped all locks (userspace tasks are frozen via a fake signal).
5519 	 */
5520 	lockdep_assert_not_held(&kvm_usage_lock);
5521 	lockdep_assert_irqs_disabled();
5522 
5523 	kvm_disable_virtualization_cpu(NULL);
5524 	return 0;
5525 }
5526 
5527 static void kvm_resume(void)
5528 {
5529 	lockdep_assert_not_held(&kvm_usage_lock);
5530 	lockdep_assert_irqs_disabled();
5531 
5532 	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5533 }
5534 
5535 static struct syscore_ops kvm_syscore_ops = {
5536 	.suspend = kvm_suspend,
5537 	.resume = kvm_resume,
5538 	.shutdown = kvm_shutdown,
5539 };
5540 
5541 static int kvm_enable_virtualization(void)
5542 {
5543 	int r;
5544 
5545 	guard(mutex)(&kvm_usage_lock);
5546 
5547 	if (kvm_usage_count++)
5548 		return 0;
5549 
5550 	kvm_arch_enable_virtualization();
5551 
5552 	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5553 			      kvm_online_cpu, kvm_offline_cpu);
5554 	if (r)
5555 		goto err_cpuhp;
5556 
5557 	register_syscore_ops(&kvm_syscore_ops);
5558 
5559 	/*
5560 	 * Undo virtualization enabling and bail if the system is going down.
5561 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5562 	 * possible for an in-flight operation to enable virtualization after
5563 	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5564 	 * invoked.  Note, this relies on system_state being set _before_
5565 	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5566 	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5567 	 * a syscore ops hook instead of registering a dedicated reboot
5568 	 * notifier (the latter runs before system_state is updated).
5569 	 */
5570 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5571 	    system_state == SYSTEM_RESTART) {
5572 		r = -EBUSY;
5573 		goto err_rebooting;
5574 	}
5575 
5576 	return 0;
5577 
5578 err_rebooting:
5579 	unregister_syscore_ops(&kvm_syscore_ops);
5580 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5581 err_cpuhp:
5582 	kvm_arch_disable_virtualization();
5583 	--kvm_usage_count;
5584 	return r;
5585 }
5586 
5587 static void kvm_disable_virtualization(void)
5588 {
5589 	guard(mutex)(&kvm_usage_lock);
5590 
5591 	if (--kvm_usage_count)
5592 		return;
5593 
5594 	unregister_syscore_ops(&kvm_syscore_ops);
5595 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5596 	kvm_arch_disable_virtualization();
5597 }
5598 
5599 static int kvm_init_virtualization(void)
5600 {
5601 	if (enable_virt_at_load)
5602 		return kvm_enable_virtualization();
5603 
5604 	return 0;
5605 }
5606 
5607 static void kvm_uninit_virtualization(void)
5608 {
5609 	if (enable_virt_at_load)
5610 		kvm_disable_virtualization();
5611 }
5612 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5613 static int kvm_enable_virtualization(void)
5614 {
5615 	return 0;
5616 }
5617 
5618 static int kvm_init_virtualization(void)
5619 {
5620 	return 0;
5621 }
5622 
5623 static void kvm_disable_virtualization(void)
5624 {
5625 
5626 }
5627 
5628 static void kvm_uninit_virtualization(void)
5629 {
5630 
5631 }
5632 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5633 
5634 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5635 {
5636 	if (dev->ops->destructor)
5637 		dev->ops->destructor(dev);
5638 }
5639 
5640 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5641 {
5642 	int i;
5643 
5644 	for (i = 0; i < bus->dev_count; i++) {
5645 		struct kvm_io_device *pos = bus->range[i].dev;
5646 
5647 		kvm_iodevice_destructor(pos);
5648 	}
5649 	kfree(bus);
5650 }
5651 
5652 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5653 				 const struct kvm_io_range *r2)
5654 {
5655 	gpa_t addr1 = r1->addr;
5656 	gpa_t addr2 = r2->addr;
5657 
5658 	if (addr1 < addr2)
5659 		return -1;
5660 
5661 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5662 	 * accept any overlapping write.  Any order is acceptable for
5663 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5664 	 * we process all of them.
5665 	 */
5666 	if (r2->len) {
5667 		addr1 += r1->len;
5668 		addr2 += r2->len;
5669 	}
5670 
5671 	if (addr1 > addr2)
5672 		return 1;
5673 
5674 	return 0;
5675 }
5676 
5677 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5678 {
5679 	return kvm_io_bus_cmp(p1, p2);
5680 }
5681 
5682 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5683 			     gpa_t addr, int len)
5684 {
5685 	struct kvm_io_range *range, key;
5686 	int off;
5687 
5688 	key = (struct kvm_io_range) {
5689 		.addr = addr,
5690 		.len = len,
5691 	};
5692 
5693 	range = bsearch(&key, bus->range, bus->dev_count,
5694 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5695 	if (range == NULL)
5696 		return -ENOENT;
5697 
5698 	off = range - bus->range;
5699 
5700 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5701 		off--;
5702 
5703 	return off;
5704 }
5705 
5706 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5707 			      struct kvm_io_range *range, const void *val)
5708 {
5709 	int idx;
5710 
5711 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5712 	if (idx < 0)
5713 		return -EOPNOTSUPP;
5714 
5715 	while (idx < bus->dev_count &&
5716 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5717 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5718 					range->len, val))
5719 			return idx;
5720 		idx++;
5721 	}
5722 
5723 	return -EOPNOTSUPP;
5724 }
5725 
5726 /* kvm_io_bus_write - called under kvm->slots_lock */
5727 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5728 		     int len, const void *val)
5729 {
5730 	struct kvm_io_bus *bus;
5731 	struct kvm_io_range range;
5732 	int r;
5733 
5734 	range = (struct kvm_io_range) {
5735 		.addr = addr,
5736 		.len = len,
5737 	};
5738 
5739 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5740 	if (!bus)
5741 		return -ENOMEM;
5742 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5743 	return r < 0 ? r : 0;
5744 }
5745 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5746 
5747 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5748 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5749 			    gpa_t addr, int len, const void *val, long cookie)
5750 {
5751 	struct kvm_io_bus *bus;
5752 	struct kvm_io_range range;
5753 
5754 	range = (struct kvm_io_range) {
5755 		.addr = addr,
5756 		.len = len,
5757 	};
5758 
5759 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5760 	if (!bus)
5761 		return -ENOMEM;
5762 
5763 	/* First try the device referenced by cookie. */
5764 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5765 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5766 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5767 					val))
5768 			return cookie;
5769 
5770 	/*
5771 	 * cookie contained garbage; fall back to search and return the
5772 	 * correct cookie value.
5773 	 */
5774 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5775 }
5776 
5777 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5778 			     struct kvm_io_range *range, void *val)
5779 {
5780 	int idx;
5781 
5782 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5783 	if (idx < 0)
5784 		return -EOPNOTSUPP;
5785 
5786 	while (idx < bus->dev_count &&
5787 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5788 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5789 				       range->len, val))
5790 			return idx;
5791 		idx++;
5792 	}
5793 
5794 	return -EOPNOTSUPP;
5795 }
5796 
5797 /* kvm_io_bus_read - called under kvm->slots_lock */
5798 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5799 		    int len, void *val)
5800 {
5801 	struct kvm_io_bus *bus;
5802 	struct kvm_io_range range;
5803 	int r;
5804 
5805 	range = (struct kvm_io_range) {
5806 		.addr = addr,
5807 		.len = len,
5808 	};
5809 
5810 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5811 	if (!bus)
5812 		return -ENOMEM;
5813 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5814 	return r < 0 ? r : 0;
5815 }
5816 
5817 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5818 			    int len, struct kvm_io_device *dev)
5819 {
5820 	int i;
5821 	struct kvm_io_bus *new_bus, *bus;
5822 	struct kvm_io_range range;
5823 
5824 	lockdep_assert_held(&kvm->slots_lock);
5825 
5826 	bus = kvm_get_bus(kvm, bus_idx);
5827 	if (!bus)
5828 		return -ENOMEM;
5829 
5830 	/* exclude ioeventfd which is limited by maximum fd */
5831 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5832 		return -ENOSPC;
5833 
5834 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5835 			  GFP_KERNEL_ACCOUNT);
5836 	if (!new_bus)
5837 		return -ENOMEM;
5838 
5839 	range = (struct kvm_io_range) {
5840 		.addr = addr,
5841 		.len = len,
5842 		.dev = dev,
5843 	};
5844 
5845 	for (i = 0; i < bus->dev_count; i++)
5846 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5847 			break;
5848 
5849 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5850 	new_bus->dev_count++;
5851 	new_bus->range[i] = range;
5852 	memcpy(new_bus->range + i + 1, bus->range + i,
5853 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5854 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5855 	synchronize_srcu_expedited(&kvm->srcu);
5856 	kfree(bus);
5857 
5858 	return 0;
5859 }
5860 
5861 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5862 			      struct kvm_io_device *dev)
5863 {
5864 	int i;
5865 	struct kvm_io_bus *new_bus, *bus;
5866 
5867 	lockdep_assert_held(&kvm->slots_lock);
5868 
5869 	bus = kvm_get_bus(kvm, bus_idx);
5870 	if (!bus)
5871 		return 0;
5872 
5873 	for (i = 0; i < bus->dev_count; i++) {
5874 		if (bus->range[i].dev == dev) {
5875 			break;
5876 		}
5877 	}
5878 
5879 	if (i == bus->dev_count)
5880 		return 0;
5881 
5882 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5883 			  GFP_KERNEL_ACCOUNT);
5884 	if (new_bus) {
5885 		memcpy(new_bus, bus, struct_size(bus, range, i));
5886 		new_bus->dev_count--;
5887 		memcpy(new_bus->range + i, bus->range + i + 1,
5888 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5889 	}
5890 
5891 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5892 	synchronize_srcu_expedited(&kvm->srcu);
5893 
5894 	/*
5895 	 * If NULL bus is installed, destroy the old bus, including all the
5896 	 * attached devices. Otherwise, destroy the caller's device only.
5897 	 */
5898 	if (!new_bus) {
5899 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5900 		kvm_io_bus_destroy(bus);
5901 		return -ENOMEM;
5902 	}
5903 
5904 	kvm_iodevice_destructor(dev);
5905 	kfree(bus);
5906 	return 0;
5907 }
5908 
5909 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5910 					 gpa_t addr)
5911 {
5912 	struct kvm_io_bus *bus;
5913 	int dev_idx, srcu_idx;
5914 	struct kvm_io_device *iodev = NULL;
5915 
5916 	srcu_idx = srcu_read_lock(&kvm->srcu);
5917 
5918 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5919 	if (!bus)
5920 		goto out_unlock;
5921 
5922 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5923 	if (dev_idx < 0)
5924 		goto out_unlock;
5925 
5926 	iodev = bus->range[dev_idx].dev;
5927 
5928 out_unlock:
5929 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5930 
5931 	return iodev;
5932 }
5933 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5934 
5935 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5936 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5937 			   const char *fmt)
5938 {
5939 	int ret;
5940 	struct kvm_stat_data *stat_data = inode->i_private;
5941 
5942 	/*
5943 	 * The debugfs files are a reference to the kvm struct which
5944         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5945         * avoids the race between open and the removal of the debugfs directory.
5946 	 */
5947 	if (!kvm_get_kvm_safe(stat_data->kvm))
5948 		return -ENOENT;
5949 
5950 	ret = simple_attr_open(inode, file, get,
5951 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5952 			       ? set : NULL, fmt);
5953 	if (ret)
5954 		kvm_put_kvm(stat_data->kvm);
5955 
5956 	return ret;
5957 }
5958 
5959 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5960 {
5961 	struct kvm_stat_data *stat_data = inode->i_private;
5962 
5963 	simple_attr_release(inode, file);
5964 	kvm_put_kvm(stat_data->kvm);
5965 
5966 	return 0;
5967 }
5968 
5969 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5970 {
5971 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5972 
5973 	return 0;
5974 }
5975 
5976 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5977 {
5978 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5979 
5980 	return 0;
5981 }
5982 
5983 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5984 {
5985 	unsigned long i;
5986 	struct kvm_vcpu *vcpu;
5987 
5988 	*val = 0;
5989 
5990 	kvm_for_each_vcpu(i, vcpu, kvm)
5991 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5992 
5993 	return 0;
5994 }
5995 
5996 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5997 {
5998 	unsigned long i;
5999 	struct kvm_vcpu *vcpu;
6000 
6001 	kvm_for_each_vcpu(i, vcpu, kvm)
6002 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6003 
6004 	return 0;
6005 }
6006 
6007 static int kvm_stat_data_get(void *data, u64 *val)
6008 {
6009 	int r = -EFAULT;
6010 	struct kvm_stat_data *stat_data = data;
6011 
6012 	switch (stat_data->kind) {
6013 	case KVM_STAT_VM:
6014 		r = kvm_get_stat_per_vm(stat_data->kvm,
6015 					stat_data->desc->desc.offset, val);
6016 		break;
6017 	case KVM_STAT_VCPU:
6018 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6019 					  stat_data->desc->desc.offset, val);
6020 		break;
6021 	}
6022 
6023 	return r;
6024 }
6025 
6026 static int kvm_stat_data_clear(void *data, u64 val)
6027 {
6028 	int r = -EFAULT;
6029 	struct kvm_stat_data *stat_data = data;
6030 
6031 	if (val)
6032 		return -EINVAL;
6033 
6034 	switch (stat_data->kind) {
6035 	case KVM_STAT_VM:
6036 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6037 					  stat_data->desc->desc.offset);
6038 		break;
6039 	case KVM_STAT_VCPU:
6040 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6041 					    stat_data->desc->desc.offset);
6042 		break;
6043 	}
6044 
6045 	return r;
6046 }
6047 
6048 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6049 {
6050 	__simple_attr_check_format("%llu\n", 0ull);
6051 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6052 				kvm_stat_data_clear, "%llu\n");
6053 }
6054 
6055 static const struct file_operations stat_fops_per_vm = {
6056 	.owner = THIS_MODULE,
6057 	.open = kvm_stat_data_open,
6058 	.release = kvm_debugfs_release,
6059 	.read = simple_attr_read,
6060 	.write = simple_attr_write,
6061 };
6062 
6063 static int vm_stat_get(void *_offset, u64 *val)
6064 {
6065 	unsigned offset = (long)_offset;
6066 	struct kvm *kvm;
6067 	u64 tmp_val;
6068 
6069 	*val = 0;
6070 	mutex_lock(&kvm_lock);
6071 	list_for_each_entry(kvm, &vm_list, vm_list) {
6072 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6073 		*val += tmp_val;
6074 	}
6075 	mutex_unlock(&kvm_lock);
6076 	return 0;
6077 }
6078 
6079 static int vm_stat_clear(void *_offset, u64 val)
6080 {
6081 	unsigned offset = (long)_offset;
6082 	struct kvm *kvm;
6083 
6084 	if (val)
6085 		return -EINVAL;
6086 
6087 	mutex_lock(&kvm_lock);
6088 	list_for_each_entry(kvm, &vm_list, vm_list) {
6089 		kvm_clear_stat_per_vm(kvm, offset);
6090 	}
6091 	mutex_unlock(&kvm_lock);
6092 
6093 	return 0;
6094 }
6095 
6096 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6097 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6098 
6099 static int vcpu_stat_get(void *_offset, u64 *val)
6100 {
6101 	unsigned offset = (long)_offset;
6102 	struct kvm *kvm;
6103 	u64 tmp_val;
6104 
6105 	*val = 0;
6106 	mutex_lock(&kvm_lock);
6107 	list_for_each_entry(kvm, &vm_list, vm_list) {
6108 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6109 		*val += tmp_val;
6110 	}
6111 	mutex_unlock(&kvm_lock);
6112 	return 0;
6113 }
6114 
6115 static int vcpu_stat_clear(void *_offset, u64 val)
6116 {
6117 	unsigned offset = (long)_offset;
6118 	struct kvm *kvm;
6119 
6120 	if (val)
6121 		return -EINVAL;
6122 
6123 	mutex_lock(&kvm_lock);
6124 	list_for_each_entry(kvm, &vm_list, vm_list) {
6125 		kvm_clear_stat_per_vcpu(kvm, offset);
6126 	}
6127 	mutex_unlock(&kvm_lock);
6128 
6129 	return 0;
6130 }
6131 
6132 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6133 			"%llu\n");
6134 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6135 
6136 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6137 {
6138 	struct kobj_uevent_env *env;
6139 	unsigned long long created, active;
6140 
6141 	if (!kvm_dev.this_device || !kvm)
6142 		return;
6143 
6144 	mutex_lock(&kvm_lock);
6145 	if (type == KVM_EVENT_CREATE_VM) {
6146 		kvm_createvm_count++;
6147 		kvm_active_vms++;
6148 	} else if (type == KVM_EVENT_DESTROY_VM) {
6149 		kvm_active_vms--;
6150 	}
6151 	created = kvm_createvm_count;
6152 	active = kvm_active_vms;
6153 	mutex_unlock(&kvm_lock);
6154 
6155 	env = kzalloc(sizeof(*env), GFP_KERNEL);
6156 	if (!env)
6157 		return;
6158 
6159 	add_uevent_var(env, "CREATED=%llu", created);
6160 	add_uevent_var(env, "COUNT=%llu", active);
6161 
6162 	if (type == KVM_EVENT_CREATE_VM) {
6163 		add_uevent_var(env, "EVENT=create");
6164 		kvm->userspace_pid = task_pid_nr(current);
6165 	} else if (type == KVM_EVENT_DESTROY_VM) {
6166 		add_uevent_var(env, "EVENT=destroy");
6167 	}
6168 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6169 
6170 	if (!IS_ERR(kvm->debugfs_dentry)) {
6171 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6172 
6173 		if (p) {
6174 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6175 			if (!IS_ERR(tmp))
6176 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6177 			kfree(p);
6178 		}
6179 	}
6180 	/* no need for checks, since we are adding at most only 5 keys */
6181 	env->envp[env->envp_idx++] = NULL;
6182 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6183 	kfree(env);
6184 }
6185 
6186 static void kvm_init_debug(void)
6187 {
6188 	const struct file_operations *fops;
6189 	const struct _kvm_stats_desc *pdesc;
6190 	int i;
6191 
6192 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6193 
6194 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6195 		pdesc = &kvm_vm_stats_desc[i];
6196 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6197 			fops = &vm_stat_fops;
6198 		else
6199 			fops = &vm_stat_readonly_fops;
6200 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6201 				kvm_debugfs_dir,
6202 				(void *)(long)pdesc->desc.offset, fops);
6203 	}
6204 
6205 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6206 		pdesc = &kvm_vcpu_stats_desc[i];
6207 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6208 			fops = &vcpu_stat_fops;
6209 		else
6210 			fops = &vcpu_stat_readonly_fops;
6211 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6212 				kvm_debugfs_dir,
6213 				(void *)(long)pdesc->desc.offset, fops);
6214 	}
6215 }
6216 
6217 static inline
6218 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6219 {
6220 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6221 }
6222 
6223 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6224 {
6225 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6226 
6227 	WRITE_ONCE(vcpu->preempted, false);
6228 	WRITE_ONCE(vcpu->ready, false);
6229 
6230 	__this_cpu_write(kvm_running_vcpu, vcpu);
6231 	kvm_arch_vcpu_load(vcpu, cpu);
6232 
6233 	WRITE_ONCE(vcpu->scheduled_out, false);
6234 }
6235 
6236 static void kvm_sched_out(struct preempt_notifier *pn,
6237 			  struct task_struct *next)
6238 {
6239 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6240 
6241 	WRITE_ONCE(vcpu->scheduled_out, true);
6242 
6243 	if (task_is_runnable(current) && vcpu->wants_to_run) {
6244 		WRITE_ONCE(vcpu->preempted, true);
6245 		WRITE_ONCE(vcpu->ready, true);
6246 	}
6247 	kvm_arch_vcpu_put(vcpu);
6248 	__this_cpu_write(kvm_running_vcpu, NULL);
6249 }
6250 
6251 /**
6252  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6253  *
6254  * We can disable preemption locally around accessing the per-CPU variable,
6255  * and use the resolved vcpu pointer after enabling preemption again,
6256  * because even if the current thread is migrated to another CPU, reading
6257  * the per-CPU value later will give us the same value as we update the
6258  * per-CPU variable in the preempt notifier handlers.
6259  */
6260 struct kvm_vcpu *kvm_get_running_vcpu(void)
6261 {
6262 	struct kvm_vcpu *vcpu;
6263 
6264 	preempt_disable();
6265 	vcpu = __this_cpu_read(kvm_running_vcpu);
6266 	preempt_enable();
6267 
6268 	return vcpu;
6269 }
6270 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6271 
6272 /**
6273  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6274  */
6275 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6276 {
6277         return &kvm_running_vcpu;
6278 }
6279 
6280 #ifdef CONFIG_GUEST_PERF_EVENTS
6281 static unsigned int kvm_guest_state(void)
6282 {
6283 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6284 	unsigned int state;
6285 
6286 	if (!kvm_arch_pmi_in_guest(vcpu))
6287 		return 0;
6288 
6289 	state = PERF_GUEST_ACTIVE;
6290 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6291 		state |= PERF_GUEST_USER;
6292 
6293 	return state;
6294 }
6295 
6296 static unsigned long kvm_guest_get_ip(void)
6297 {
6298 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6299 
6300 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6301 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6302 		return 0;
6303 
6304 	return kvm_arch_vcpu_get_ip(vcpu);
6305 }
6306 
6307 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6308 	.state			= kvm_guest_state,
6309 	.get_ip			= kvm_guest_get_ip,
6310 	.handle_intel_pt_intr	= NULL,
6311 };
6312 
6313 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6314 {
6315 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6316 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6317 }
6318 void kvm_unregister_perf_callbacks(void)
6319 {
6320 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6321 }
6322 #endif
6323 
6324 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6325 {
6326 	int r;
6327 	int cpu;
6328 
6329 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6330 	if (!vcpu_align)
6331 		vcpu_align = __alignof__(struct kvm_vcpu);
6332 	kvm_vcpu_cache =
6333 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6334 					   SLAB_ACCOUNT,
6335 					   offsetof(struct kvm_vcpu, arch),
6336 					   offsetofend(struct kvm_vcpu, stats_id)
6337 					   - offsetof(struct kvm_vcpu, arch),
6338 					   NULL);
6339 	if (!kvm_vcpu_cache)
6340 		return -ENOMEM;
6341 
6342 	for_each_possible_cpu(cpu) {
6343 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6344 					    GFP_KERNEL, cpu_to_node(cpu))) {
6345 			r = -ENOMEM;
6346 			goto err_cpu_kick_mask;
6347 		}
6348 	}
6349 
6350 	r = kvm_irqfd_init();
6351 	if (r)
6352 		goto err_irqfd;
6353 
6354 	r = kvm_async_pf_init();
6355 	if (r)
6356 		goto err_async_pf;
6357 
6358 	kvm_chardev_ops.owner = module;
6359 	kvm_vm_fops.owner = module;
6360 	kvm_vcpu_fops.owner = module;
6361 	kvm_device_fops.owner = module;
6362 
6363 	kvm_preempt_ops.sched_in = kvm_sched_in;
6364 	kvm_preempt_ops.sched_out = kvm_sched_out;
6365 
6366 	kvm_init_debug();
6367 
6368 	r = kvm_vfio_ops_init();
6369 	if (WARN_ON_ONCE(r))
6370 		goto err_vfio;
6371 
6372 	kvm_gmem_init(module);
6373 
6374 	r = kvm_init_virtualization();
6375 	if (r)
6376 		goto err_virt;
6377 
6378 	/*
6379 	 * Registration _must_ be the very last thing done, as this exposes
6380 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6381 	 */
6382 	r = misc_register(&kvm_dev);
6383 	if (r) {
6384 		pr_err("kvm: misc device register failed\n");
6385 		goto err_register;
6386 	}
6387 
6388 	return 0;
6389 
6390 err_register:
6391 	kvm_uninit_virtualization();
6392 err_virt:
6393 	kvm_vfio_ops_exit();
6394 err_vfio:
6395 	kvm_async_pf_deinit();
6396 err_async_pf:
6397 	kvm_irqfd_exit();
6398 err_irqfd:
6399 err_cpu_kick_mask:
6400 	for_each_possible_cpu(cpu)
6401 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6402 	kmem_cache_destroy(kvm_vcpu_cache);
6403 	return r;
6404 }
6405 EXPORT_SYMBOL_GPL(kvm_init);
6406 
6407 void kvm_exit(void)
6408 {
6409 	int cpu;
6410 
6411 	/*
6412 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6413 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6414 	 * to KVM while the module is being stopped.
6415 	 */
6416 	misc_deregister(&kvm_dev);
6417 
6418 	kvm_uninit_virtualization();
6419 
6420 	debugfs_remove_recursive(kvm_debugfs_dir);
6421 	for_each_possible_cpu(cpu)
6422 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6423 	kmem_cache_destroy(kvm_vcpu_cache);
6424 	kvm_vfio_ops_exit();
6425 	kvm_async_pf_deinit();
6426 	kvm_irqfd_exit();
6427 }
6428 EXPORT_SYMBOL_GPL(kvm_exit);
6429