xref: /linux/virt/kvm/kvm_main.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	if (mutex_lock_killable(&vcpu->mutex))
139 		return -EINTR;
140 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 		/* The thread running this VCPU changed. */
142 		struct pid *oldpid = vcpu->pid;
143 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 		rcu_assign_pointer(vcpu->pid, newpid);
145 		synchronize_rcu();
146 		put_pid(oldpid);
147 	}
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 	preempt_disable();
158 	kvm_arch_vcpu_put(vcpu);
159 	preempt_notifier_unregister(&vcpu->preempt_notifier);
160 	preempt_enable();
161 	mutex_unlock(&vcpu->mutex);
162 }
163 
164 static void ack_flush(void *_completed)
165 {
166 }
167 
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 	int i, cpu, me;
171 	cpumask_var_t cpus;
172 	bool called = true;
173 	struct kvm_vcpu *vcpu;
174 
175 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176 
177 	me = get_cpu();
178 	kvm_for_each_vcpu(i, vcpu, kvm) {
179 		kvm_make_request(req, vcpu);
180 		cpu = vcpu->cpu;
181 
182 		/* Set ->requests bit before we read ->mode */
183 		smp_mb();
184 
185 		if (cpus != NULL && cpu != -1 && cpu != me &&
186 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 			cpumask_set_cpu(cpu, cpus);
188 	}
189 	if (unlikely(cpus == NULL))
190 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 	else if (!cpumask_empty(cpus))
192 		smp_call_function_many(cpus, ack_flush, NULL, 1);
193 	else
194 		called = false;
195 	put_cpu();
196 	free_cpumask_var(cpus);
197 	return called;
198 }
199 
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	long dirty_count = kvm->tlbs_dirty;
203 
204 	smp_mb();
205 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 		++kvm->stat.remote_tlb_flush;
207 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209 
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214 
215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
216 {
217 	struct page *page;
218 	int r;
219 
220 	mutex_init(&vcpu->mutex);
221 	vcpu->cpu = -1;
222 	vcpu->kvm = kvm;
223 	vcpu->vcpu_id = id;
224 	vcpu->pid = NULL;
225 	init_waitqueue_head(&vcpu->wq);
226 	kvm_async_pf_vcpu_init(vcpu);
227 
228 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
229 	if (!page) {
230 		r = -ENOMEM;
231 		goto fail;
232 	}
233 	vcpu->run = page_address(page);
234 
235 	kvm_vcpu_set_in_spin_loop(vcpu, false);
236 	kvm_vcpu_set_dy_eligible(vcpu, false);
237 
238 	r = kvm_arch_vcpu_init(vcpu);
239 	if (r < 0)
240 		goto fail_free_run;
241 	return 0;
242 
243 fail_free_run:
244 	free_page((unsigned long)vcpu->run);
245 fail:
246 	return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249 
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 	put_pid(vcpu->pid);
253 	kvm_arch_vcpu_uninit(vcpu);
254 	free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257 
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 	return container_of(mn, struct kvm, mmu_notifier);
262 }
263 
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 					     struct mm_struct *mm,
266 					     unsigned long address)
267 {
268 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 	int need_tlb_flush, idx;
270 
271 	/*
272 	 * When ->invalidate_page runs, the linux pte has been zapped
273 	 * already but the page is still allocated until
274 	 * ->invalidate_page returns. So if we increase the sequence
275 	 * here the kvm page fault will notice if the spte can't be
276 	 * established because the page is going to be freed. If
277 	 * instead the kvm page fault establishes the spte before
278 	 * ->invalidate_page runs, kvm_unmap_hva will release it
279 	 * before returning.
280 	 *
281 	 * The sequence increase only need to be seen at spin_unlock
282 	 * time, and not at spin_lock time.
283 	 *
284 	 * Increasing the sequence after the spin_unlock would be
285 	 * unsafe because the kvm page fault could then establish the
286 	 * pte after kvm_unmap_hva returned, without noticing the page
287 	 * is going to be freed.
288 	 */
289 	idx = srcu_read_lock(&kvm->srcu);
290 	spin_lock(&kvm->mmu_lock);
291 
292 	kvm->mmu_notifier_seq++;
293 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 	/* we've to flush the tlb before the pages can be freed */
295 	if (need_tlb_flush)
296 		kvm_flush_remote_tlbs(kvm);
297 
298 	spin_unlock(&kvm->mmu_lock);
299 	srcu_read_unlock(&kvm->srcu, idx);
300 }
301 
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 					struct mm_struct *mm,
304 					unsigned long address,
305 					pte_t pte)
306 {
307 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 	int idx;
309 
310 	idx = srcu_read_lock(&kvm->srcu);
311 	spin_lock(&kvm->mmu_lock);
312 	kvm->mmu_notifier_seq++;
313 	kvm_set_spte_hva(kvm, address, pte);
314 	spin_unlock(&kvm->mmu_lock);
315 	srcu_read_unlock(&kvm->srcu, idx);
316 }
317 
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 						    struct mm_struct *mm,
320 						    unsigned long start,
321 						    unsigned long end)
322 {
323 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 	int need_tlb_flush = 0, idx;
325 
326 	idx = srcu_read_lock(&kvm->srcu);
327 	spin_lock(&kvm->mmu_lock);
328 	/*
329 	 * The count increase must become visible at unlock time as no
330 	 * spte can be established without taking the mmu_lock and
331 	 * count is also read inside the mmu_lock critical section.
332 	 */
333 	kvm->mmu_notifier_count++;
334 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 	need_tlb_flush |= kvm->tlbs_dirty;
336 	/* we've to flush the tlb before the pages can be freed */
337 	if (need_tlb_flush)
338 		kvm_flush_remote_tlbs(kvm);
339 
340 	spin_unlock(&kvm->mmu_lock);
341 	srcu_read_unlock(&kvm->srcu, idx);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 						  struct mm_struct *mm,
346 						  unsigned long start,
347 						  unsigned long end)
348 {
349 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 
351 	spin_lock(&kvm->mmu_lock);
352 	/*
353 	 * This sequence increase will notify the kvm page fault that
354 	 * the page that is going to be mapped in the spte could have
355 	 * been freed.
356 	 */
357 	kvm->mmu_notifier_seq++;
358 	smp_wmb();
359 	/*
360 	 * The above sequence increase must be visible before the
361 	 * below count decrease, which is ensured by the smp_wmb above
362 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 	 */
364 	kvm->mmu_notifier_count--;
365 	spin_unlock(&kvm->mmu_lock);
366 
367 	BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369 
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 					      struct mm_struct *mm,
372 					      unsigned long address)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int young, idx;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 
380 	young = kvm_age_hva(kvm, address);
381 	if (young)
382 		kvm_flush_remote_tlbs(kvm);
383 
384 	spin_unlock(&kvm->mmu_lock);
385 	srcu_read_unlock(&kvm->srcu, idx);
386 
387 	return young;
388 }
389 
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 				       struct mm_struct *mm,
392 				       unsigned long address)
393 {
394 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 	int young, idx;
396 
397 	idx = srcu_read_lock(&kvm->srcu);
398 	spin_lock(&kvm->mmu_lock);
399 	young = kvm_test_age_hva(kvm, address);
400 	spin_unlock(&kvm->mmu_lock);
401 	srcu_read_unlock(&kvm->srcu, idx);
402 
403 	return young;
404 }
405 
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 				     struct mm_struct *mm)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int idx;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	kvm_arch_flush_shadow_all(kvm);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 }
416 
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
419 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
420 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
421 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
422 	.test_young		= kvm_mmu_notifier_test_young,
423 	.change_pte		= kvm_mmu_notifier_change_pte,
424 	.release		= kvm_mmu_notifier_release,
425 };
426 
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432 
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 	return 0;
438 }
439 
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 	int i;
445 	struct kvm_memslots *slots = kvm->memslots;
446 
447 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 		slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450 
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 	int r, i;
454 	struct kvm *kvm = kvm_arch_alloc_vm();
455 
456 	if (!kvm)
457 		return ERR_PTR(-ENOMEM);
458 
459 	r = kvm_arch_init_vm(kvm, type);
460 	if (r)
461 		goto out_err_nodisable;
462 
463 	r = hardware_enable_all();
464 	if (r)
465 		goto out_err_nodisable;
466 
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
469 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471 
472 	r = -ENOMEM;
473 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474 	if (!kvm->memslots)
475 		goto out_err_nosrcu;
476 	kvm_init_memslots_id(kvm);
477 	if (init_srcu_struct(&kvm->srcu))
478 		goto out_err_nosrcu;
479 	for (i = 0; i < KVM_NR_BUSES; i++) {
480 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
481 					GFP_KERNEL);
482 		if (!kvm->buses[i])
483 			goto out_err;
484 	}
485 
486 	spin_lock_init(&kvm->mmu_lock);
487 	kvm->mm = current->mm;
488 	atomic_inc(&kvm->mm->mm_count);
489 	kvm_eventfd_init(kvm);
490 	mutex_init(&kvm->lock);
491 	mutex_init(&kvm->irq_lock);
492 	mutex_init(&kvm->slots_lock);
493 	atomic_set(&kvm->users_count, 1);
494 
495 	r = kvm_init_mmu_notifier(kvm);
496 	if (r)
497 		goto out_err;
498 
499 	raw_spin_lock(&kvm_lock);
500 	list_add(&kvm->vm_list, &vm_list);
501 	raw_spin_unlock(&kvm_lock);
502 
503 	return kvm;
504 
505 out_err:
506 	cleanup_srcu_struct(&kvm->srcu);
507 out_err_nosrcu:
508 	hardware_disable_all();
509 out_err_nodisable:
510 	for (i = 0; i < KVM_NR_BUSES; i++)
511 		kfree(kvm->buses[i]);
512 	kfree(kvm->memslots);
513 	kvm_arch_free_vm(kvm);
514 	return ERR_PTR(r);
515 }
516 
517 /*
518  * Avoid using vmalloc for a small buffer.
519  * Should not be used when the size is statically known.
520  */
521 void *kvm_kvzalloc(unsigned long size)
522 {
523 	if (size > PAGE_SIZE)
524 		return vzalloc(size);
525 	else
526 		return kzalloc(size, GFP_KERNEL);
527 }
528 
529 void kvm_kvfree(const void *addr)
530 {
531 	if (is_vmalloc_addr(addr))
532 		vfree(addr);
533 	else
534 		kfree(addr);
535 }
536 
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539 	if (!memslot->dirty_bitmap)
540 		return;
541 
542 	kvm_kvfree(memslot->dirty_bitmap);
543 	memslot->dirty_bitmap = NULL;
544 }
545 
546 /*
547  * Free any memory in @free but not in @dont.
548  */
549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
550 				  struct kvm_memory_slot *dont)
551 {
552 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553 		kvm_destroy_dirty_bitmap(free);
554 
555 	kvm_arch_free_memslot(free, dont);
556 
557 	free->npages = 0;
558 }
559 
560 void kvm_free_physmem(struct kvm *kvm)
561 {
562 	struct kvm_memslots *slots = kvm->memslots;
563 	struct kvm_memory_slot *memslot;
564 
565 	kvm_for_each_memslot(memslot, slots)
566 		kvm_free_physmem_slot(memslot, NULL);
567 
568 	kfree(kvm->memslots);
569 }
570 
571 static void kvm_destroy_vm(struct kvm *kvm)
572 {
573 	int i;
574 	struct mm_struct *mm = kvm->mm;
575 
576 	kvm_arch_sync_events(kvm);
577 	raw_spin_lock(&kvm_lock);
578 	list_del(&kvm->vm_list);
579 	raw_spin_unlock(&kvm_lock);
580 	kvm_free_irq_routing(kvm);
581 	for (i = 0; i < KVM_NR_BUSES; i++)
582 		kvm_io_bus_destroy(kvm->buses[i]);
583 	kvm_coalesced_mmio_free(kvm);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
586 #else
587 	kvm_arch_flush_shadow_all(kvm);
588 #endif
589 	kvm_arch_destroy_vm(kvm);
590 	kvm_free_physmem(kvm);
591 	cleanup_srcu_struct(&kvm->srcu);
592 	kvm_arch_free_vm(kvm);
593 	hardware_disable_all();
594 	mmdrop(mm);
595 }
596 
597 void kvm_get_kvm(struct kvm *kvm)
598 {
599 	atomic_inc(&kvm->users_count);
600 }
601 EXPORT_SYMBOL_GPL(kvm_get_kvm);
602 
603 void kvm_put_kvm(struct kvm *kvm)
604 {
605 	if (atomic_dec_and_test(&kvm->users_count))
606 		kvm_destroy_vm(kvm);
607 }
608 EXPORT_SYMBOL_GPL(kvm_put_kvm);
609 
610 
611 static int kvm_vm_release(struct inode *inode, struct file *filp)
612 {
613 	struct kvm *kvm = filp->private_data;
614 
615 	kvm_irqfd_release(kvm);
616 
617 	kvm_put_kvm(kvm);
618 	return 0;
619 }
620 
621 /*
622  * Allocation size is twice as large as the actual dirty bitmap size.
623  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
624  */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 #ifndef CONFIG_S390
628 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
629 
630 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
631 	if (!memslot->dirty_bitmap)
632 		return -ENOMEM;
633 
634 #endif /* !CONFIG_S390 */
635 	return 0;
636 }
637 
638 static int cmp_memslot(const void *slot1, const void *slot2)
639 {
640 	struct kvm_memory_slot *s1, *s2;
641 
642 	s1 = (struct kvm_memory_slot *)slot1;
643 	s2 = (struct kvm_memory_slot *)slot2;
644 
645 	if (s1->npages < s2->npages)
646 		return 1;
647 	if (s1->npages > s2->npages)
648 		return -1;
649 
650 	return 0;
651 }
652 
653 /*
654  * Sort the memslots base on its size, so the larger slots
655  * will get better fit.
656  */
657 static void sort_memslots(struct kvm_memslots *slots)
658 {
659 	int i;
660 
661 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
662 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
663 
664 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
665 		slots->id_to_index[slots->memslots[i].id] = i;
666 }
667 
668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
669 {
670 	if (new) {
671 		int id = new->id;
672 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
673 		unsigned long npages = old->npages;
674 
675 		*old = *new;
676 		if (new->npages != npages)
677 			sort_memslots(slots);
678 	}
679 
680 	slots->generation++;
681 }
682 
683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
684 {
685 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
686 
687 #ifdef KVM_CAP_READONLY_MEM
688 	valid_flags |= KVM_MEM_READONLY;
689 #endif
690 
691 	if (mem->flags & ~valid_flags)
692 		return -EINVAL;
693 
694 	return 0;
695 }
696 
697 /*
698  * Allocate some memory and give it an address in the guest physical address
699  * space.
700  *
701  * Discontiguous memory is allowed, mostly for framebuffers.
702  *
703  * Must be called holding mmap_sem for write.
704  */
705 int __kvm_set_memory_region(struct kvm *kvm,
706 			    struct kvm_userspace_memory_region *mem,
707 			    int user_alloc)
708 {
709 	int r;
710 	gfn_t base_gfn;
711 	unsigned long npages;
712 	unsigned long i;
713 	struct kvm_memory_slot *memslot;
714 	struct kvm_memory_slot old, new;
715 	struct kvm_memslots *slots, *old_memslots;
716 
717 	r = check_memory_region_flags(mem);
718 	if (r)
719 		goto out;
720 
721 	r = -EINVAL;
722 	/* General sanity checks */
723 	if (mem->memory_size & (PAGE_SIZE - 1))
724 		goto out;
725 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726 		goto out;
727 	/* We can read the guest memory with __xxx_user() later on. */
728 	if (user_alloc &&
729 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730 	     !access_ok(VERIFY_WRITE,
731 			(void __user *)(unsigned long)mem->userspace_addr,
732 			mem->memory_size)))
733 		goto out;
734 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
735 		goto out;
736 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737 		goto out;
738 
739 	memslot = id_to_memslot(kvm->memslots, mem->slot);
740 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741 	npages = mem->memory_size >> PAGE_SHIFT;
742 
743 	r = -EINVAL;
744 	if (npages > KVM_MEM_MAX_NR_PAGES)
745 		goto out;
746 
747 	if (!npages)
748 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749 
750 	new = old = *memslot;
751 
752 	new.id = mem->slot;
753 	new.base_gfn = base_gfn;
754 	new.npages = npages;
755 	new.flags = mem->flags;
756 
757 	/* Disallow changing a memory slot's size. */
758 	r = -EINVAL;
759 	if (npages && old.npages && npages != old.npages)
760 		goto out_free;
761 
762 	/* Check for overlaps */
763 	r = -EEXIST;
764 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766 
767 		if (s == memslot || !s->npages)
768 			continue;
769 		if (!((base_gfn + npages <= s->base_gfn) ||
770 		      (base_gfn >= s->base_gfn + s->npages)))
771 			goto out_free;
772 	}
773 
774 	/* Free page dirty bitmap if unneeded */
775 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776 		new.dirty_bitmap = NULL;
777 
778 	r = -ENOMEM;
779 
780 	/* Allocate if a slot is being created */
781 	if (npages && !old.npages) {
782 		new.user_alloc = user_alloc;
783 		new.userspace_addr = mem->userspace_addr;
784 
785 		if (kvm_arch_create_memslot(&new, npages))
786 			goto out_free;
787 	}
788 
789 	/* Allocate page dirty bitmap if needed */
790 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
791 		if (kvm_create_dirty_bitmap(&new) < 0)
792 			goto out_free;
793 		/* destroy any largepage mappings for dirty tracking */
794 	}
795 
796 	if (!npages || base_gfn != old.base_gfn) {
797 		struct kvm_memory_slot *slot;
798 
799 		r = -ENOMEM;
800 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
801 				GFP_KERNEL);
802 		if (!slots)
803 			goto out_free;
804 		slot = id_to_memslot(slots, mem->slot);
805 		slot->flags |= KVM_MEMSLOT_INVALID;
806 
807 		update_memslots(slots, NULL);
808 
809 		old_memslots = kvm->memslots;
810 		rcu_assign_pointer(kvm->memslots, slots);
811 		synchronize_srcu_expedited(&kvm->srcu);
812 		/* From this point no new shadow pages pointing to a deleted,
813 		 * or moved, memslot will be created.
814 		 *
815 		 * validation of sp->gfn happens in:
816 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
818 		 */
819 		kvm_arch_flush_shadow_memslot(kvm, slot);
820 		kfree(old_memslots);
821 	}
822 
823 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
824 	if (r)
825 		goto out_free;
826 
827 	/* map/unmap the pages in iommu page table */
828 	if (npages) {
829 		r = kvm_iommu_map_pages(kvm, &new);
830 		if (r)
831 			goto out_free;
832 	} else
833 		kvm_iommu_unmap_pages(kvm, &old);
834 
835 	r = -ENOMEM;
836 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 			GFP_KERNEL);
838 	if (!slots)
839 		goto out_free;
840 
841 	/* actual memory is freed via old in kvm_free_physmem_slot below */
842 	if (!npages) {
843 		new.dirty_bitmap = NULL;
844 		memset(&new.arch, 0, sizeof(new.arch));
845 	}
846 
847 	update_memslots(slots, &new);
848 	old_memslots = kvm->memslots;
849 	rcu_assign_pointer(kvm->memslots, slots);
850 	synchronize_srcu_expedited(&kvm->srcu);
851 
852 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
853 
854 	kvm_free_physmem_slot(&old, &new);
855 	kfree(old_memslots);
856 
857 	return 0;
858 
859 out_free:
860 	kvm_free_physmem_slot(&new, &old);
861 out:
862 	return r;
863 
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866 
867 int kvm_set_memory_region(struct kvm *kvm,
868 			  struct kvm_userspace_memory_region *mem,
869 			  int user_alloc)
870 {
871 	int r;
872 
873 	mutex_lock(&kvm->slots_lock);
874 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
875 	mutex_unlock(&kvm->slots_lock);
876 	return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879 
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 				   struct
882 				   kvm_userspace_memory_region *mem,
883 				   int user_alloc)
884 {
885 	if (mem->slot >= KVM_MEMORY_SLOTS)
886 		return -EINVAL;
887 	return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889 
890 int kvm_get_dirty_log(struct kvm *kvm,
891 			struct kvm_dirty_log *log, int *is_dirty)
892 {
893 	struct kvm_memory_slot *memslot;
894 	int r, i;
895 	unsigned long n;
896 	unsigned long any = 0;
897 
898 	r = -EINVAL;
899 	if (log->slot >= KVM_MEMORY_SLOTS)
900 		goto out;
901 
902 	memslot = id_to_memslot(kvm->memslots, log->slot);
903 	r = -ENOENT;
904 	if (!memslot->dirty_bitmap)
905 		goto out;
906 
907 	n = kvm_dirty_bitmap_bytes(memslot);
908 
909 	for (i = 0; !any && i < n/sizeof(long); ++i)
910 		any = memslot->dirty_bitmap[i];
911 
912 	r = -EFAULT;
913 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914 		goto out;
915 
916 	if (any)
917 		*is_dirty = 1;
918 
919 	r = 0;
920 out:
921 	return r;
922 }
923 
924 bool kvm_largepages_enabled(void)
925 {
926 	return largepages_enabled;
927 }
928 
929 void kvm_disable_largepages(void)
930 {
931 	largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934 
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
938 }
939 EXPORT_SYMBOL_GPL(gfn_to_memslot);
940 
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
944 
945 	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
946 	      memslot->flags & KVM_MEMSLOT_INVALID)
947 		return 0;
948 
949 	return 1;
950 }
951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
952 
953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
954 {
955 	struct vm_area_struct *vma;
956 	unsigned long addr, size;
957 
958 	size = PAGE_SIZE;
959 
960 	addr = gfn_to_hva(kvm, gfn);
961 	if (kvm_is_error_hva(addr))
962 		return PAGE_SIZE;
963 
964 	down_read(&current->mm->mmap_sem);
965 	vma = find_vma(current->mm, addr);
966 	if (!vma)
967 		goto out;
968 
969 	size = vma_kernel_pagesize(vma);
970 
971 out:
972 	up_read(&current->mm->mmap_sem);
973 
974 	return size;
975 }
976 
977 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
978 {
979 	return slot->flags & KVM_MEM_READONLY;
980 }
981 
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
983 				       gfn_t *nr_pages, bool write)
984 {
985 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
986 		return KVM_HVA_ERR_BAD;
987 
988 	if (memslot_is_readonly(slot) && write)
989 		return KVM_HVA_ERR_RO_BAD;
990 
991 	if (nr_pages)
992 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
993 
994 	return __gfn_to_hva_memslot(slot, gfn);
995 }
996 
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
998 				     gfn_t *nr_pages)
999 {
1000 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1001 }
1002 
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1004 				 gfn_t gfn)
1005 {
1006 	return gfn_to_hva_many(slot, gfn, NULL);
1007 }
1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1009 
1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1011 {
1012 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_hva);
1015 
1016 /*
1017  * The hva returned by this function is only allowed to be read.
1018  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1019  */
1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1021 {
1022 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1023 }
1024 
1025 static int kvm_read_hva(void *data, void __user *hva, int len)
1026 {
1027 	return __copy_from_user(data, hva, len);
1028 }
1029 
1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1031 {
1032 	return __copy_from_user_inatomic(data, hva, len);
1033 }
1034 
1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1036 	unsigned long start, int write, struct page **page)
1037 {
1038 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1039 
1040 	if (write)
1041 		flags |= FOLL_WRITE;
1042 
1043 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1044 }
1045 
1046 static inline int check_user_page_hwpoison(unsigned long addr)
1047 {
1048 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1049 
1050 	rc = __get_user_pages(current, current->mm, addr, 1,
1051 			      flags, NULL, NULL, NULL);
1052 	return rc == -EHWPOISON;
1053 }
1054 
1055 /*
1056  * The atomic path to get the writable pfn which will be stored in @pfn,
1057  * true indicates success, otherwise false is returned.
1058  */
1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1060 			    bool write_fault, bool *writable, pfn_t *pfn)
1061 {
1062 	struct page *page[1];
1063 	int npages;
1064 
1065 	if (!(async || atomic))
1066 		return false;
1067 
1068 	/*
1069 	 * Fast pin a writable pfn only if it is a write fault request
1070 	 * or the caller allows to map a writable pfn for a read fault
1071 	 * request.
1072 	 */
1073 	if (!(write_fault || writable))
1074 		return false;
1075 
1076 	npages = __get_user_pages_fast(addr, 1, 1, page);
1077 	if (npages == 1) {
1078 		*pfn = page_to_pfn(page[0]);
1079 
1080 		if (writable)
1081 			*writable = true;
1082 		return true;
1083 	}
1084 
1085 	return false;
1086 }
1087 
1088 /*
1089  * The slow path to get the pfn of the specified host virtual address,
1090  * 1 indicates success, -errno is returned if error is detected.
1091  */
1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1093 			   bool *writable, pfn_t *pfn)
1094 {
1095 	struct page *page[1];
1096 	int npages = 0;
1097 
1098 	might_sleep();
1099 
1100 	if (writable)
1101 		*writable = write_fault;
1102 
1103 	if (async) {
1104 		down_read(&current->mm->mmap_sem);
1105 		npages = get_user_page_nowait(current, current->mm,
1106 					      addr, write_fault, page);
1107 		up_read(&current->mm->mmap_sem);
1108 	} else
1109 		npages = get_user_pages_fast(addr, 1, write_fault,
1110 					     page);
1111 	if (npages != 1)
1112 		return npages;
1113 
1114 	/* map read fault as writable if possible */
1115 	if (unlikely(!write_fault) && writable) {
1116 		struct page *wpage[1];
1117 
1118 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1119 		if (npages == 1) {
1120 			*writable = true;
1121 			put_page(page[0]);
1122 			page[0] = wpage[0];
1123 		}
1124 
1125 		npages = 1;
1126 	}
1127 	*pfn = page_to_pfn(page[0]);
1128 	return npages;
1129 }
1130 
1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1132 {
1133 	if (unlikely(!(vma->vm_flags & VM_READ)))
1134 		return false;
1135 
1136 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1137 		return false;
1138 
1139 	return true;
1140 }
1141 
1142 /*
1143  * Pin guest page in memory and return its pfn.
1144  * @addr: host virtual address which maps memory to the guest
1145  * @atomic: whether this function can sleep
1146  * @async: whether this function need to wait IO complete if the
1147  *         host page is not in the memory
1148  * @write_fault: whether we should get a writable host page
1149  * @writable: whether it allows to map a writable host page for !@write_fault
1150  *
1151  * The function will map a writable host page for these two cases:
1152  * 1): @write_fault = true
1153  * 2): @write_fault = false && @writable, @writable will tell the caller
1154  *     whether the mapping is writable.
1155  */
1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1157 			bool write_fault, bool *writable)
1158 {
1159 	struct vm_area_struct *vma;
1160 	pfn_t pfn = 0;
1161 	int npages;
1162 
1163 	/* we can do it either atomically or asynchronously, not both */
1164 	BUG_ON(atomic && async);
1165 
1166 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1167 		return pfn;
1168 
1169 	if (atomic)
1170 		return KVM_PFN_ERR_FAULT;
1171 
1172 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1173 	if (npages == 1)
1174 		return pfn;
1175 
1176 	down_read(&current->mm->mmap_sem);
1177 	if (npages == -EHWPOISON ||
1178 	      (!async && check_user_page_hwpoison(addr))) {
1179 		pfn = KVM_PFN_ERR_HWPOISON;
1180 		goto exit;
1181 	}
1182 
1183 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1184 
1185 	if (vma == NULL)
1186 		pfn = KVM_PFN_ERR_FAULT;
1187 	else if ((vma->vm_flags & VM_PFNMAP)) {
1188 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1189 			vma->vm_pgoff;
1190 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1191 	} else {
1192 		if (async && vma_is_valid(vma, write_fault))
1193 			*async = true;
1194 		pfn = KVM_PFN_ERR_FAULT;
1195 	}
1196 exit:
1197 	up_read(&current->mm->mmap_sem);
1198 	return pfn;
1199 }
1200 
1201 static pfn_t
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1203 		     bool *async, bool write_fault, bool *writable)
1204 {
1205 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1206 
1207 	if (addr == KVM_HVA_ERR_RO_BAD)
1208 		return KVM_PFN_ERR_RO_FAULT;
1209 
1210 	if (kvm_is_error_hva(addr))
1211 		return KVM_PFN_ERR_BAD;
1212 
1213 	/* Do not map writable pfn in the readonly memslot. */
1214 	if (writable && memslot_is_readonly(slot)) {
1215 		*writable = false;
1216 		writable = NULL;
1217 	}
1218 
1219 	return hva_to_pfn(addr, atomic, async, write_fault,
1220 			  writable);
1221 }
1222 
1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1224 			  bool write_fault, bool *writable)
1225 {
1226 	struct kvm_memory_slot *slot;
1227 
1228 	if (async)
1229 		*async = false;
1230 
1231 	slot = gfn_to_memslot(kvm, gfn);
1232 
1233 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1234 				    writable);
1235 }
1236 
1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1238 {
1239 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1242 
1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1244 		       bool write_fault, bool *writable)
1245 {
1246 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1247 }
1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1249 
1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1251 {
1252 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1255 
1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1257 		      bool *writable)
1258 {
1259 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1260 }
1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1262 
1263 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1264 {
1265 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1266 }
1267 
1268 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1271 }
1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1273 
1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1275 								  int nr_pages)
1276 {
1277 	unsigned long addr;
1278 	gfn_t entry;
1279 
1280 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1281 	if (kvm_is_error_hva(addr))
1282 		return -1;
1283 
1284 	if (entry < nr_pages)
1285 		return 0;
1286 
1287 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1290 
1291 static struct page *kvm_pfn_to_page(pfn_t pfn)
1292 {
1293 	if (is_error_pfn(pfn))
1294 		return KVM_ERR_PTR_BAD_PAGE;
1295 
1296 	if (kvm_is_mmio_pfn(pfn)) {
1297 		WARN_ON(1);
1298 		return KVM_ERR_PTR_BAD_PAGE;
1299 	}
1300 
1301 	return pfn_to_page(pfn);
1302 }
1303 
1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1305 {
1306 	pfn_t pfn;
1307 
1308 	pfn = gfn_to_pfn(kvm, gfn);
1309 
1310 	return kvm_pfn_to_page(pfn);
1311 }
1312 
1313 EXPORT_SYMBOL_GPL(gfn_to_page);
1314 
1315 void kvm_release_page_clean(struct page *page)
1316 {
1317 	WARN_ON(is_error_page(page));
1318 
1319 	kvm_release_pfn_clean(page_to_pfn(page));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1322 
1323 void kvm_release_pfn_clean(pfn_t pfn)
1324 {
1325 	WARN_ON(is_error_pfn(pfn));
1326 
1327 	if (!kvm_is_mmio_pfn(pfn))
1328 		put_page(pfn_to_page(pfn));
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1331 
1332 void kvm_release_page_dirty(struct page *page)
1333 {
1334 	WARN_ON(is_error_page(page));
1335 
1336 	kvm_release_pfn_dirty(page_to_pfn(page));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1339 
1340 void kvm_release_pfn_dirty(pfn_t pfn)
1341 {
1342 	kvm_set_pfn_dirty(pfn);
1343 	kvm_release_pfn_clean(pfn);
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1346 
1347 void kvm_set_page_dirty(struct page *page)
1348 {
1349 	kvm_set_pfn_dirty(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1352 
1353 void kvm_set_pfn_dirty(pfn_t pfn)
1354 {
1355 	if (!kvm_is_mmio_pfn(pfn)) {
1356 		struct page *page = pfn_to_page(pfn);
1357 		if (!PageReserved(page))
1358 			SetPageDirty(page);
1359 	}
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1362 
1363 void kvm_set_pfn_accessed(pfn_t pfn)
1364 {
1365 	if (!kvm_is_mmio_pfn(pfn))
1366 		mark_page_accessed(pfn_to_page(pfn));
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1369 
1370 void kvm_get_pfn(pfn_t pfn)
1371 {
1372 	if (!kvm_is_mmio_pfn(pfn))
1373 		get_page(pfn_to_page(pfn));
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1376 
1377 static int next_segment(unsigned long len, int offset)
1378 {
1379 	if (len > PAGE_SIZE - offset)
1380 		return PAGE_SIZE - offset;
1381 	else
1382 		return len;
1383 }
1384 
1385 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1386 			int len)
1387 {
1388 	int r;
1389 	unsigned long addr;
1390 
1391 	addr = gfn_to_hva_read(kvm, gfn);
1392 	if (kvm_is_error_hva(addr))
1393 		return -EFAULT;
1394 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1395 	if (r)
1396 		return -EFAULT;
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1400 
1401 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1402 {
1403 	gfn_t gfn = gpa >> PAGE_SHIFT;
1404 	int seg;
1405 	int offset = offset_in_page(gpa);
1406 	int ret;
1407 
1408 	while ((seg = next_segment(len, offset)) != 0) {
1409 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1410 		if (ret < 0)
1411 			return ret;
1412 		offset = 0;
1413 		len -= seg;
1414 		data += seg;
1415 		++gfn;
1416 	}
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_read_guest);
1420 
1421 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1422 			  unsigned long len)
1423 {
1424 	int r;
1425 	unsigned long addr;
1426 	gfn_t gfn = gpa >> PAGE_SHIFT;
1427 	int offset = offset_in_page(gpa);
1428 
1429 	addr = gfn_to_hva_read(kvm, gfn);
1430 	if (kvm_is_error_hva(addr))
1431 		return -EFAULT;
1432 	pagefault_disable();
1433 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1434 	pagefault_enable();
1435 	if (r)
1436 		return -EFAULT;
1437 	return 0;
1438 }
1439 EXPORT_SYMBOL(kvm_read_guest_atomic);
1440 
1441 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1442 			 int offset, int len)
1443 {
1444 	int r;
1445 	unsigned long addr;
1446 
1447 	addr = gfn_to_hva(kvm, gfn);
1448 	if (kvm_is_error_hva(addr))
1449 		return -EFAULT;
1450 	r = __copy_to_user((void __user *)addr + offset, data, len);
1451 	if (r)
1452 		return -EFAULT;
1453 	mark_page_dirty(kvm, gfn);
1454 	return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1457 
1458 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1459 		    unsigned long len)
1460 {
1461 	gfn_t gfn = gpa >> PAGE_SHIFT;
1462 	int seg;
1463 	int offset = offset_in_page(gpa);
1464 	int ret;
1465 
1466 	while ((seg = next_segment(len, offset)) != 0) {
1467 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1468 		if (ret < 0)
1469 			return ret;
1470 		offset = 0;
1471 		len -= seg;
1472 		data += seg;
1473 		++gfn;
1474 	}
1475 	return 0;
1476 }
1477 
1478 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1479 			      gpa_t gpa)
1480 {
1481 	struct kvm_memslots *slots = kvm_memslots(kvm);
1482 	int offset = offset_in_page(gpa);
1483 	gfn_t gfn = gpa >> PAGE_SHIFT;
1484 
1485 	ghc->gpa = gpa;
1486 	ghc->generation = slots->generation;
1487 	ghc->memslot = gfn_to_memslot(kvm, gfn);
1488 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1489 	if (!kvm_is_error_hva(ghc->hva))
1490 		ghc->hva += offset;
1491 	else
1492 		return -EFAULT;
1493 
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1497 
1498 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1499 			   void *data, unsigned long len)
1500 {
1501 	struct kvm_memslots *slots = kvm_memslots(kvm);
1502 	int r;
1503 
1504 	if (slots->generation != ghc->generation)
1505 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1506 
1507 	if (kvm_is_error_hva(ghc->hva))
1508 		return -EFAULT;
1509 
1510 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1511 	if (r)
1512 		return -EFAULT;
1513 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1518 
1519 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1520 			   void *data, unsigned long len)
1521 {
1522 	struct kvm_memslots *slots = kvm_memslots(kvm);
1523 	int r;
1524 
1525 	if (slots->generation != ghc->generation)
1526 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1527 
1528 	if (kvm_is_error_hva(ghc->hva))
1529 		return -EFAULT;
1530 
1531 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1532 	if (r)
1533 		return -EFAULT;
1534 
1535 	return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1538 
1539 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1540 {
1541 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1542 				    offset, len);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1545 
1546 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1547 {
1548 	gfn_t gfn = gpa >> PAGE_SHIFT;
1549 	int seg;
1550 	int offset = offset_in_page(gpa);
1551 	int ret;
1552 
1553         while ((seg = next_segment(len, offset)) != 0) {
1554 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1555 		if (ret < 0)
1556 			return ret;
1557 		offset = 0;
1558 		len -= seg;
1559 		++gfn;
1560 	}
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1564 
1565 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1566 			     gfn_t gfn)
1567 {
1568 	if (memslot && memslot->dirty_bitmap) {
1569 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1570 
1571 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1572 	}
1573 }
1574 
1575 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1576 {
1577 	struct kvm_memory_slot *memslot;
1578 
1579 	memslot = gfn_to_memslot(kvm, gfn);
1580 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1581 }
1582 
1583 /*
1584  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1585  */
1586 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1587 {
1588 	DEFINE_WAIT(wait);
1589 
1590 	for (;;) {
1591 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1592 
1593 		if (kvm_arch_vcpu_runnable(vcpu)) {
1594 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1595 			break;
1596 		}
1597 		if (kvm_cpu_has_pending_timer(vcpu))
1598 			break;
1599 		if (signal_pending(current))
1600 			break;
1601 
1602 		schedule();
1603 	}
1604 
1605 	finish_wait(&vcpu->wq, &wait);
1606 }
1607 
1608 #ifndef CONFIG_S390
1609 /*
1610  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1611  */
1612 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1613 {
1614 	int me;
1615 	int cpu = vcpu->cpu;
1616 	wait_queue_head_t *wqp;
1617 
1618 	wqp = kvm_arch_vcpu_wq(vcpu);
1619 	if (waitqueue_active(wqp)) {
1620 		wake_up_interruptible(wqp);
1621 		++vcpu->stat.halt_wakeup;
1622 	}
1623 
1624 	me = get_cpu();
1625 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1626 		if (kvm_arch_vcpu_should_kick(vcpu))
1627 			smp_send_reschedule(cpu);
1628 	put_cpu();
1629 }
1630 #endif /* !CONFIG_S390 */
1631 
1632 void kvm_resched(struct kvm_vcpu *vcpu)
1633 {
1634 	if (!need_resched())
1635 		return;
1636 	cond_resched();
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_resched);
1639 
1640 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1641 {
1642 	struct pid *pid;
1643 	struct task_struct *task = NULL;
1644 
1645 	rcu_read_lock();
1646 	pid = rcu_dereference(target->pid);
1647 	if (pid)
1648 		task = get_pid_task(target->pid, PIDTYPE_PID);
1649 	rcu_read_unlock();
1650 	if (!task)
1651 		return false;
1652 	if (task->flags & PF_VCPU) {
1653 		put_task_struct(task);
1654 		return false;
1655 	}
1656 	if (yield_to(task, 1)) {
1657 		put_task_struct(task);
1658 		return true;
1659 	}
1660 	put_task_struct(task);
1661 	return false;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1664 
1665 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1666 /*
1667  * Helper that checks whether a VCPU is eligible for directed yield.
1668  * Most eligible candidate to yield is decided by following heuristics:
1669  *
1670  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1671  *  (preempted lock holder), indicated by @in_spin_loop.
1672  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1673  *
1674  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1675  *  chance last time (mostly it has become eligible now since we have probably
1676  *  yielded to lockholder in last iteration. This is done by toggling
1677  *  @dy_eligible each time a VCPU checked for eligibility.)
1678  *
1679  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1680  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1681  *  burning. Giving priority for a potential lock-holder increases lock
1682  *  progress.
1683  *
1684  *  Since algorithm is based on heuristics, accessing another VCPU data without
1685  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1686  *  and continue with next VCPU and so on.
1687  */
1688 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1689 {
1690 	bool eligible;
1691 
1692 	eligible = !vcpu->spin_loop.in_spin_loop ||
1693 			(vcpu->spin_loop.in_spin_loop &&
1694 			 vcpu->spin_loop.dy_eligible);
1695 
1696 	if (vcpu->spin_loop.in_spin_loop)
1697 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1698 
1699 	return eligible;
1700 }
1701 #endif
1702 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1703 {
1704 	struct kvm *kvm = me->kvm;
1705 	struct kvm_vcpu *vcpu;
1706 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1707 	int yielded = 0;
1708 	int pass;
1709 	int i;
1710 
1711 	kvm_vcpu_set_in_spin_loop(me, true);
1712 	/*
1713 	 * We boost the priority of a VCPU that is runnable but not
1714 	 * currently running, because it got preempted by something
1715 	 * else and called schedule in __vcpu_run.  Hopefully that
1716 	 * VCPU is holding the lock that we need and will release it.
1717 	 * We approximate round-robin by starting at the last boosted VCPU.
1718 	 */
1719 	for (pass = 0; pass < 2 && !yielded; pass++) {
1720 		kvm_for_each_vcpu(i, vcpu, kvm) {
1721 			if (!pass && i <= last_boosted_vcpu) {
1722 				i = last_boosted_vcpu;
1723 				continue;
1724 			} else if (pass && i > last_boosted_vcpu)
1725 				break;
1726 			if (vcpu == me)
1727 				continue;
1728 			if (waitqueue_active(&vcpu->wq))
1729 				continue;
1730 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1731 				continue;
1732 			if (kvm_vcpu_yield_to(vcpu)) {
1733 				kvm->last_boosted_vcpu = i;
1734 				yielded = 1;
1735 				break;
1736 			}
1737 		}
1738 	}
1739 	kvm_vcpu_set_in_spin_loop(me, false);
1740 
1741 	/* Ensure vcpu is not eligible during next spinloop */
1742 	kvm_vcpu_set_dy_eligible(me, false);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1745 
1746 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1747 {
1748 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1749 	struct page *page;
1750 
1751 	if (vmf->pgoff == 0)
1752 		page = virt_to_page(vcpu->run);
1753 #ifdef CONFIG_X86
1754 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1755 		page = virt_to_page(vcpu->arch.pio_data);
1756 #endif
1757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1758 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1759 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1760 #endif
1761 	else
1762 		return kvm_arch_vcpu_fault(vcpu, vmf);
1763 	get_page(page);
1764 	vmf->page = page;
1765 	return 0;
1766 }
1767 
1768 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1769 	.fault = kvm_vcpu_fault,
1770 };
1771 
1772 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1773 {
1774 	vma->vm_ops = &kvm_vcpu_vm_ops;
1775 	return 0;
1776 }
1777 
1778 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1779 {
1780 	struct kvm_vcpu *vcpu = filp->private_data;
1781 
1782 	kvm_put_kvm(vcpu->kvm);
1783 	return 0;
1784 }
1785 
1786 static struct file_operations kvm_vcpu_fops = {
1787 	.release        = kvm_vcpu_release,
1788 	.unlocked_ioctl = kvm_vcpu_ioctl,
1789 #ifdef CONFIG_COMPAT
1790 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1791 #endif
1792 	.mmap           = kvm_vcpu_mmap,
1793 	.llseek		= noop_llseek,
1794 };
1795 
1796 /*
1797  * Allocates an inode for the vcpu.
1798  */
1799 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1800 {
1801 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1802 }
1803 
1804 /*
1805  * Creates some virtual cpus.  Good luck creating more than one.
1806  */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1808 {
1809 	int r;
1810 	struct kvm_vcpu *vcpu, *v;
1811 
1812 	vcpu = kvm_arch_vcpu_create(kvm, id);
1813 	if (IS_ERR(vcpu))
1814 		return PTR_ERR(vcpu);
1815 
1816 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1817 
1818 	r = kvm_arch_vcpu_setup(vcpu);
1819 	if (r)
1820 		goto vcpu_destroy;
1821 
1822 	mutex_lock(&kvm->lock);
1823 	if (!kvm_vcpu_compatible(vcpu)) {
1824 		r = -EINVAL;
1825 		goto unlock_vcpu_destroy;
1826 	}
1827 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1828 		r = -EINVAL;
1829 		goto unlock_vcpu_destroy;
1830 	}
1831 
1832 	kvm_for_each_vcpu(r, v, kvm)
1833 		if (v->vcpu_id == id) {
1834 			r = -EEXIST;
1835 			goto unlock_vcpu_destroy;
1836 		}
1837 
1838 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1839 
1840 	/* Now it's all set up, let userspace reach it */
1841 	kvm_get_kvm(kvm);
1842 	r = create_vcpu_fd(vcpu);
1843 	if (r < 0) {
1844 		kvm_put_kvm(kvm);
1845 		goto unlock_vcpu_destroy;
1846 	}
1847 
1848 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1849 	smp_wmb();
1850 	atomic_inc(&kvm->online_vcpus);
1851 
1852 	mutex_unlock(&kvm->lock);
1853 	return r;
1854 
1855 unlock_vcpu_destroy:
1856 	mutex_unlock(&kvm->lock);
1857 vcpu_destroy:
1858 	kvm_arch_vcpu_destroy(vcpu);
1859 	return r;
1860 }
1861 
1862 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1863 {
1864 	if (sigset) {
1865 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1866 		vcpu->sigset_active = 1;
1867 		vcpu->sigset = *sigset;
1868 	} else
1869 		vcpu->sigset_active = 0;
1870 	return 0;
1871 }
1872 
1873 static long kvm_vcpu_ioctl(struct file *filp,
1874 			   unsigned int ioctl, unsigned long arg)
1875 {
1876 	struct kvm_vcpu *vcpu = filp->private_data;
1877 	void __user *argp = (void __user *)arg;
1878 	int r;
1879 	struct kvm_fpu *fpu = NULL;
1880 	struct kvm_sregs *kvm_sregs = NULL;
1881 
1882 	if (vcpu->kvm->mm != current->mm)
1883 		return -EIO;
1884 
1885 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1886 	/*
1887 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1888 	 * so vcpu_load() would break it.
1889 	 */
1890 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1891 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1892 #endif
1893 
1894 
1895 	r = vcpu_load(vcpu);
1896 	if (r)
1897 		return r;
1898 	switch (ioctl) {
1899 	case KVM_RUN:
1900 		r = -EINVAL;
1901 		if (arg)
1902 			goto out;
1903 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1904 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1905 		break;
1906 	case KVM_GET_REGS: {
1907 		struct kvm_regs *kvm_regs;
1908 
1909 		r = -ENOMEM;
1910 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1911 		if (!kvm_regs)
1912 			goto out;
1913 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1914 		if (r)
1915 			goto out_free1;
1916 		r = -EFAULT;
1917 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1918 			goto out_free1;
1919 		r = 0;
1920 out_free1:
1921 		kfree(kvm_regs);
1922 		break;
1923 	}
1924 	case KVM_SET_REGS: {
1925 		struct kvm_regs *kvm_regs;
1926 
1927 		r = -ENOMEM;
1928 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1929 		if (IS_ERR(kvm_regs)) {
1930 			r = PTR_ERR(kvm_regs);
1931 			goto out;
1932 		}
1933 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1934 		if (r)
1935 			goto out_free2;
1936 		r = 0;
1937 out_free2:
1938 		kfree(kvm_regs);
1939 		break;
1940 	}
1941 	case KVM_GET_SREGS: {
1942 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1943 		r = -ENOMEM;
1944 		if (!kvm_sregs)
1945 			goto out;
1946 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1947 		if (r)
1948 			goto out;
1949 		r = -EFAULT;
1950 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1951 			goto out;
1952 		r = 0;
1953 		break;
1954 	}
1955 	case KVM_SET_SREGS: {
1956 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1957 		if (IS_ERR(kvm_sregs)) {
1958 			r = PTR_ERR(kvm_sregs);
1959 			goto out;
1960 		}
1961 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1962 		if (r)
1963 			goto out;
1964 		r = 0;
1965 		break;
1966 	}
1967 	case KVM_GET_MP_STATE: {
1968 		struct kvm_mp_state mp_state;
1969 
1970 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1971 		if (r)
1972 			goto out;
1973 		r = -EFAULT;
1974 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1975 			goto out;
1976 		r = 0;
1977 		break;
1978 	}
1979 	case KVM_SET_MP_STATE: {
1980 		struct kvm_mp_state mp_state;
1981 
1982 		r = -EFAULT;
1983 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1984 			goto out;
1985 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1986 		if (r)
1987 			goto out;
1988 		r = 0;
1989 		break;
1990 	}
1991 	case KVM_TRANSLATE: {
1992 		struct kvm_translation tr;
1993 
1994 		r = -EFAULT;
1995 		if (copy_from_user(&tr, argp, sizeof tr))
1996 			goto out;
1997 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1998 		if (r)
1999 			goto out;
2000 		r = -EFAULT;
2001 		if (copy_to_user(argp, &tr, sizeof tr))
2002 			goto out;
2003 		r = 0;
2004 		break;
2005 	}
2006 	case KVM_SET_GUEST_DEBUG: {
2007 		struct kvm_guest_debug dbg;
2008 
2009 		r = -EFAULT;
2010 		if (copy_from_user(&dbg, argp, sizeof dbg))
2011 			goto out;
2012 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2013 		if (r)
2014 			goto out;
2015 		r = 0;
2016 		break;
2017 	}
2018 	case KVM_SET_SIGNAL_MASK: {
2019 		struct kvm_signal_mask __user *sigmask_arg = argp;
2020 		struct kvm_signal_mask kvm_sigmask;
2021 		sigset_t sigset, *p;
2022 
2023 		p = NULL;
2024 		if (argp) {
2025 			r = -EFAULT;
2026 			if (copy_from_user(&kvm_sigmask, argp,
2027 					   sizeof kvm_sigmask))
2028 				goto out;
2029 			r = -EINVAL;
2030 			if (kvm_sigmask.len != sizeof sigset)
2031 				goto out;
2032 			r = -EFAULT;
2033 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2034 					   sizeof sigset))
2035 				goto out;
2036 			p = &sigset;
2037 		}
2038 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2039 		break;
2040 	}
2041 	case KVM_GET_FPU: {
2042 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2043 		r = -ENOMEM;
2044 		if (!fpu)
2045 			goto out;
2046 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2047 		if (r)
2048 			goto out;
2049 		r = -EFAULT;
2050 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2051 			goto out;
2052 		r = 0;
2053 		break;
2054 	}
2055 	case KVM_SET_FPU: {
2056 		fpu = memdup_user(argp, sizeof(*fpu));
2057 		if (IS_ERR(fpu)) {
2058 			r = PTR_ERR(fpu);
2059 			goto out;
2060 		}
2061 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2062 		if (r)
2063 			goto out;
2064 		r = 0;
2065 		break;
2066 	}
2067 	default:
2068 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2069 	}
2070 out:
2071 	vcpu_put(vcpu);
2072 	kfree(fpu);
2073 	kfree(kvm_sregs);
2074 	return r;
2075 }
2076 
2077 #ifdef CONFIG_COMPAT
2078 static long kvm_vcpu_compat_ioctl(struct file *filp,
2079 				  unsigned int ioctl, unsigned long arg)
2080 {
2081 	struct kvm_vcpu *vcpu = filp->private_data;
2082 	void __user *argp = compat_ptr(arg);
2083 	int r;
2084 
2085 	if (vcpu->kvm->mm != current->mm)
2086 		return -EIO;
2087 
2088 	switch (ioctl) {
2089 	case KVM_SET_SIGNAL_MASK: {
2090 		struct kvm_signal_mask __user *sigmask_arg = argp;
2091 		struct kvm_signal_mask kvm_sigmask;
2092 		compat_sigset_t csigset;
2093 		sigset_t sigset;
2094 
2095 		if (argp) {
2096 			r = -EFAULT;
2097 			if (copy_from_user(&kvm_sigmask, argp,
2098 					   sizeof kvm_sigmask))
2099 				goto out;
2100 			r = -EINVAL;
2101 			if (kvm_sigmask.len != sizeof csigset)
2102 				goto out;
2103 			r = -EFAULT;
2104 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2105 					   sizeof csigset))
2106 				goto out;
2107 			sigset_from_compat(&sigset, &csigset);
2108 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2109 		} else
2110 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2111 		break;
2112 	}
2113 	default:
2114 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2115 	}
2116 
2117 out:
2118 	return r;
2119 }
2120 #endif
2121 
2122 static long kvm_vm_ioctl(struct file *filp,
2123 			   unsigned int ioctl, unsigned long arg)
2124 {
2125 	struct kvm *kvm = filp->private_data;
2126 	void __user *argp = (void __user *)arg;
2127 	int r;
2128 
2129 	if (kvm->mm != current->mm)
2130 		return -EIO;
2131 	switch (ioctl) {
2132 	case KVM_CREATE_VCPU:
2133 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2134 		if (r < 0)
2135 			goto out;
2136 		break;
2137 	case KVM_SET_USER_MEMORY_REGION: {
2138 		struct kvm_userspace_memory_region kvm_userspace_mem;
2139 
2140 		r = -EFAULT;
2141 		if (copy_from_user(&kvm_userspace_mem, argp,
2142 						sizeof kvm_userspace_mem))
2143 			goto out;
2144 
2145 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2146 		if (r)
2147 			goto out;
2148 		break;
2149 	}
2150 	case KVM_GET_DIRTY_LOG: {
2151 		struct kvm_dirty_log log;
2152 
2153 		r = -EFAULT;
2154 		if (copy_from_user(&log, argp, sizeof log))
2155 			goto out;
2156 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2157 		if (r)
2158 			goto out;
2159 		break;
2160 	}
2161 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2162 	case KVM_REGISTER_COALESCED_MMIO: {
2163 		struct kvm_coalesced_mmio_zone zone;
2164 		r = -EFAULT;
2165 		if (copy_from_user(&zone, argp, sizeof zone))
2166 			goto out;
2167 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2168 		if (r)
2169 			goto out;
2170 		r = 0;
2171 		break;
2172 	}
2173 	case KVM_UNREGISTER_COALESCED_MMIO: {
2174 		struct kvm_coalesced_mmio_zone zone;
2175 		r = -EFAULT;
2176 		if (copy_from_user(&zone, argp, sizeof zone))
2177 			goto out;
2178 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2179 		if (r)
2180 			goto out;
2181 		r = 0;
2182 		break;
2183 	}
2184 #endif
2185 	case KVM_IRQFD: {
2186 		struct kvm_irqfd data;
2187 
2188 		r = -EFAULT;
2189 		if (copy_from_user(&data, argp, sizeof data))
2190 			goto out;
2191 		r = kvm_irqfd(kvm, &data);
2192 		break;
2193 	}
2194 	case KVM_IOEVENTFD: {
2195 		struct kvm_ioeventfd data;
2196 
2197 		r = -EFAULT;
2198 		if (copy_from_user(&data, argp, sizeof data))
2199 			goto out;
2200 		r = kvm_ioeventfd(kvm, &data);
2201 		break;
2202 	}
2203 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2204 	case KVM_SET_BOOT_CPU_ID:
2205 		r = 0;
2206 		mutex_lock(&kvm->lock);
2207 		if (atomic_read(&kvm->online_vcpus) != 0)
2208 			r = -EBUSY;
2209 		else
2210 			kvm->bsp_vcpu_id = arg;
2211 		mutex_unlock(&kvm->lock);
2212 		break;
2213 #endif
2214 #ifdef CONFIG_HAVE_KVM_MSI
2215 	case KVM_SIGNAL_MSI: {
2216 		struct kvm_msi msi;
2217 
2218 		r = -EFAULT;
2219 		if (copy_from_user(&msi, argp, sizeof msi))
2220 			goto out;
2221 		r = kvm_send_userspace_msi(kvm, &msi);
2222 		break;
2223 	}
2224 #endif
2225 #ifdef __KVM_HAVE_IRQ_LINE
2226 	case KVM_IRQ_LINE_STATUS:
2227 	case KVM_IRQ_LINE: {
2228 		struct kvm_irq_level irq_event;
2229 
2230 		r = -EFAULT;
2231 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2232 			goto out;
2233 
2234 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2235 		if (r)
2236 			goto out;
2237 
2238 		r = -EFAULT;
2239 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2240 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2241 				goto out;
2242 		}
2243 
2244 		r = 0;
2245 		break;
2246 	}
2247 #endif
2248 	default:
2249 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2250 		if (r == -ENOTTY)
2251 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2252 	}
2253 out:
2254 	return r;
2255 }
2256 
2257 #ifdef CONFIG_COMPAT
2258 struct compat_kvm_dirty_log {
2259 	__u32 slot;
2260 	__u32 padding1;
2261 	union {
2262 		compat_uptr_t dirty_bitmap; /* one bit per page */
2263 		__u64 padding2;
2264 	};
2265 };
2266 
2267 static long kvm_vm_compat_ioctl(struct file *filp,
2268 			   unsigned int ioctl, unsigned long arg)
2269 {
2270 	struct kvm *kvm = filp->private_data;
2271 	int r;
2272 
2273 	if (kvm->mm != current->mm)
2274 		return -EIO;
2275 	switch (ioctl) {
2276 	case KVM_GET_DIRTY_LOG: {
2277 		struct compat_kvm_dirty_log compat_log;
2278 		struct kvm_dirty_log log;
2279 
2280 		r = -EFAULT;
2281 		if (copy_from_user(&compat_log, (void __user *)arg,
2282 				   sizeof(compat_log)))
2283 			goto out;
2284 		log.slot	 = compat_log.slot;
2285 		log.padding1	 = compat_log.padding1;
2286 		log.padding2	 = compat_log.padding2;
2287 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2288 
2289 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2290 		if (r)
2291 			goto out;
2292 		break;
2293 	}
2294 	default:
2295 		r = kvm_vm_ioctl(filp, ioctl, arg);
2296 	}
2297 
2298 out:
2299 	return r;
2300 }
2301 #endif
2302 
2303 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2304 {
2305 	struct page *page[1];
2306 	unsigned long addr;
2307 	int npages;
2308 	gfn_t gfn = vmf->pgoff;
2309 	struct kvm *kvm = vma->vm_file->private_data;
2310 
2311 	addr = gfn_to_hva(kvm, gfn);
2312 	if (kvm_is_error_hva(addr))
2313 		return VM_FAULT_SIGBUS;
2314 
2315 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2316 				NULL);
2317 	if (unlikely(npages != 1))
2318 		return VM_FAULT_SIGBUS;
2319 
2320 	vmf->page = page[0];
2321 	return 0;
2322 }
2323 
2324 static const struct vm_operations_struct kvm_vm_vm_ops = {
2325 	.fault = kvm_vm_fault,
2326 };
2327 
2328 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2329 {
2330 	vma->vm_ops = &kvm_vm_vm_ops;
2331 	return 0;
2332 }
2333 
2334 static struct file_operations kvm_vm_fops = {
2335 	.release        = kvm_vm_release,
2336 	.unlocked_ioctl = kvm_vm_ioctl,
2337 #ifdef CONFIG_COMPAT
2338 	.compat_ioctl   = kvm_vm_compat_ioctl,
2339 #endif
2340 	.mmap           = kvm_vm_mmap,
2341 	.llseek		= noop_llseek,
2342 };
2343 
2344 static int kvm_dev_ioctl_create_vm(unsigned long type)
2345 {
2346 	int r;
2347 	struct kvm *kvm;
2348 
2349 	kvm = kvm_create_vm(type);
2350 	if (IS_ERR(kvm))
2351 		return PTR_ERR(kvm);
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 	r = kvm_coalesced_mmio_init(kvm);
2354 	if (r < 0) {
2355 		kvm_put_kvm(kvm);
2356 		return r;
2357 	}
2358 #endif
2359 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2360 	if (r < 0)
2361 		kvm_put_kvm(kvm);
2362 
2363 	return r;
2364 }
2365 
2366 static long kvm_dev_ioctl_check_extension_generic(long arg)
2367 {
2368 	switch (arg) {
2369 	case KVM_CAP_USER_MEMORY:
2370 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2371 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2372 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2373 	case KVM_CAP_SET_BOOT_CPU_ID:
2374 #endif
2375 	case KVM_CAP_INTERNAL_ERROR_DATA:
2376 #ifdef CONFIG_HAVE_KVM_MSI
2377 	case KVM_CAP_SIGNAL_MSI:
2378 #endif
2379 		return 1;
2380 #ifdef KVM_CAP_IRQ_ROUTING
2381 	case KVM_CAP_IRQ_ROUTING:
2382 		return KVM_MAX_IRQ_ROUTES;
2383 #endif
2384 	default:
2385 		break;
2386 	}
2387 	return kvm_dev_ioctl_check_extension(arg);
2388 }
2389 
2390 static long kvm_dev_ioctl(struct file *filp,
2391 			  unsigned int ioctl, unsigned long arg)
2392 {
2393 	long r = -EINVAL;
2394 
2395 	switch (ioctl) {
2396 	case KVM_GET_API_VERSION:
2397 		r = -EINVAL;
2398 		if (arg)
2399 			goto out;
2400 		r = KVM_API_VERSION;
2401 		break;
2402 	case KVM_CREATE_VM:
2403 		r = kvm_dev_ioctl_create_vm(arg);
2404 		break;
2405 	case KVM_CHECK_EXTENSION:
2406 		r = kvm_dev_ioctl_check_extension_generic(arg);
2407 		break;
2408 	case KVM_GET_VCPU_MMAP_SIZE:
2409 		r = -EINVAL;
2410 		if (arg)
2411 			goto out;
2412 		r = PAGE_SIZE;     /* struct kvm_run */
2413 #ifdef CONFIG_X86
2414 		r += PAGE_SIZE;    /* pio data page */
2415 #endif
2416 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2417 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2418 #endif
2419 		break;
2420 	case KVM_TRACE_ENABLE:
2421 	case KVM_TRACE_PAUSE:
2422 	case KVM_TRACE_DISABLE:
2423 		r = -EOPNOTSUPP;
2424 		break;
2425 	default:
2426 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2427 	}
2428 out:
2429 	return r;
2430 }
2431 
2432 static struct file_operations kvm_chardev_ops = {
2433 	.unlocked_ioctl = kvm_dev_ioctl,
2434 	.compat_ioctl   = kvm_dev_ioctl,
2435 	.llseek		= noop_llseek,
2436 };
2437 
2438 static struct miscdevice kvm_dev = {
2439 	KVM_MINOR,
2440 	"kvm",
2441 	&kvm_chardev_ops,
2442 };
2443 
2444 static void hardware_enable_nolock(void *junk)
2445 {
2446 	int cpu = raw_smp_processor_id();
2447 	int r;
2448 
2449 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2450 		return;
2451 
2452 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2453 
2454 	r = kvm_arch_hardware_enable(NULL);
2455 
2456 	if (r) {
2457 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2458 		atomic_inc(&hardware_enable_failed);
2459 		printk(KERN_INFO "kvm: enabling virtualization on "
2460 				 "CPU%d failed\n", cpu);
2461 	}
2462 }
2463 
2464 static void hardware_enable(void *junk)
2465 {
2466 	raw_spin_lock(&kvm_lock);
2467 	hardware_enable_nolock(junk);
2468 	raw_spin_unlock(&kvm_lock);
2469 }
2470 
2471 static void hardware_disable_nolock(void *junk)
2472 {
2473 	int cpu = raw_smp_processor_id();
2474 
2475 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2476 		return;
2477 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2478 	kvm_arch_hardware_disable(NULL);
2479 }
2480 
2481 static void hardware_disable(void *junk)
2482 {
2483 	raw_spin_lock(&kvm_lock);
2484 	hardware_disable_nolock(junk);
2485 	raw_spin_unlock(&kvm_lock);
2486 }
2487 
2488 static void hardware_disable_all_nolock(void)
2489 {
2490 	BUG_ON(!kvm_usage_count);
2491 
2492 	kvm_usage_count--;
2493 	if (!kvm_usage_count)
2494 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2495 }
2496 
2497 static void hardware_disable_all(void)
2498 {
2499 	raw_spin_lock(&kvm_lock);
2500 	hardware_disable_all_nolock();
2501 	raw_spin_unlock(&kvm_lock);
2502 }
2503 
2504 static int hardware_enable_all(void)
2505 {
2506 	int r = 0;
2507 
2508 	raw_spin_lock(&kvm_lock);
2509 
2510 	kvm_usage_count++;
2511 	if (kvm_usage_count == 1) {
2512 		atomic_set(&hardware_enable_failed, 0);
2513 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2514 
2515 		if (atomic_read(&hardware_enable_failed)) {
2516 			hardware_disable_all_nolock();
2517 			r = -EBUSY;
2518 		}
2519 	}
2520 
2521 	raw_spin_unlock(&kvm_lock);
2522 
2523 	return r;
2524 }
2525 
2526 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2527 			   void *v)
2528 {
2529 	int cpu = (long)v;
2530 
2531 	if (!kvm_usage_count)
2532 		return NOTIFY_OK;
2533 
2534 	val &= ~CPU_TASKS_FROZEN;
2535 	switch (val) {
2536 	case CPU_DYING:
2537 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2538 		       cpu);
2539 		hardware_disable(NULL);
2540 		break;
2541 	case CPU_STARTING:
2542 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2543 		       cpu);
2544 		hardware_enable(NULL);
2545 		break;
2546 	}
2547 	return NOTIFY_OK;
2548 }
2549 
2550 
2551 asmlinkage void kvm_spurious_fault(void)
2552 {
2553 	/* Fault while not rebooting.  We want the trace. */
2554 	BUG();
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2557 
2558 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2559 		      void *v)
2560 {
2561 	/*
2562 	 * Some (well, at least mine) BIOSes hang on reboot if
2563 	 * in vmx root mode.
2564 	 *
2565 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2566 	 */
2567 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2568 	kvm_rebooting = true;
2569 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2570 	return NOTIFY_OK;
2571 }
2572 
2573 static struct notifier_block kvm_reboot_notifier = {
2574 	.notifier_call = kvm_reboot,
2575 	.priority = 0,
2576 };
2577 
2578 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2579 {
2580 	int i;
2581 
2582 	for (i = 0; i < bus->dev_count; i++) {
2583 		struct kvm_io_device *pos = bus->range[i].dev;
2584 
2585 		kvm_iodevice_destructor(pos);
2586 	}
2587 	kfree(bus);
2588 }
2589 
2590 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2591 {
2592 	const struct kvm_io_range *r1 = p1;
2593 	const struct kvm_io_range *r2 = p2;
2594 
2595 	if (r1->addr < r2->addr)
2596 		return -1;
2597 	if (r1->addr + r1->len > r2->addr + r2->len)
2598 		return 1;
2599 	return 0;
2600 }
2601 
2602 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2603 			  gpa_t addr, int len)
2604 {
2605 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2606 		.addr = addr,
2607 		.len = len,
2608 		.dev = dev,
2609 	};
2610 
2611 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2612 		kvm_io_bus_sort_cmp, NULL);
2613 
2614 	return 0;
2615 }
2616 
2617 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2618 			     gpa_t addr, int len)
2619 {
2620 	struct kvm_io_range *range, key;
2621 	int off;
2622 
2623 	key = (struct kvm_io_range) {
2624 		.addr = addr,
2625 		.len = len,
2626 	};
2627 
2628 	range = bsearch(&key, bus->range, bus->dev_count,
2629 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2630 	if (range == NULL)
2631 		return -ENOENT;
2632 
2633 	off = range - bus->range;
2634 
2635 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2636 		off--;
2637 
2638 	return off;
2639 }
2640 
2641 /* kvm_io_bus_write - called under kvm->slots_lock */
2642 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2643 		     int len, const void *val)
2644 {
2645 	int idx;
2646 	struct kvm_io_bus *bus;
2647 	struct kvm_io_range range;
2648 
2649 	range = (struct kvm_io_range) {
2650 		.addr = addr,
2651 		.len = len,
2652 	};
2653 
2654 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2655 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2656 	if (idx < 0)
2657 		return -EOPNOTSUPP;
2658 
2659 	while (idx < bus->dev_count &&
2660 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2661 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2662 			return 0;
2663 		idx++;
2664 	}
2665 
2666 	return -EOPNOTSUPP;
2667 }
2668 
2669 /* kvm_io_bus_read - called under kvm->slots_lock */
2670 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2671 		    int len, void *val)
2672 {
2673 	int idx;
2674 	struct kvm_io_bus *bus;
2675 	struct kvm_io_range range;
2676 
2677 	range = (struct kvm_io_range) {
2678 		.addr = addr,
2679 		.len = len,
2680 	};
2681 
2682 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2683 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2684 	if (idx < 0)
2685 		return -EOPNOTSUPP;
2686 
2687 	while (idx < bus->dev_count &&
2688 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2689 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2690 			return 0;
2691 		idx++;
2692 	}
2693 
2694 	return -EOPNOTSUPP;
2695 }
2696 
2697 /* Caller must hold slots_lock. */
2698 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2699 			    int len, struct kvm_io_device *dev)
2700 {
2701 	struct kvm_io_bus *new_bus, *bus;
2702 
2703 	bus = kvm->buses[bus_idx];
2704 	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2705 		return -ENOSPC;
2706 
2707 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2708 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2709 	if (!new_bus)
2710 		return -ENOMEM;
2711 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2712 	       sizeof(struct kvm_io_range)));
2713 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2714 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2715 	synchronize_srcu_expedited(&kvm->srcu);
2716 	kfree(bus);
2717 
2718 	return 0;
2719 }
2720 
2721 /* Caller must hold slots_lock. */
2722 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2723 			      struct kvm_io_device *dev)
2724 {
2725 	int i, r;
2726 	struct kvm_io_bus *new_bus, *bus;
2727 
2728 	bus = kvm->buses[bus_idx];
2729 	r = -ENOENT;
2730 	for (i = 0; i < bus->dev_count; i++)
2731 		if (bus->range[i].dev == dev) {
2732 			r = 0;
2733 			break;
2734 		}
2735 
2736 	if (r)
2737 		return r;
2738 
2739 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2740 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2741 	if (!new_bus)
2742 		return -ENOMEM;
2743 
2744 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2745 	new_bus->dev_count--;
2746 	memcpy(new_bus->range + i, bus->range + i + 1,
2747 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2748 
2749 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2750 	synchronize_srcu_expedited(&kvm->srcu);
2751 	kfree(bus);
2752 	return r;
2753 }
2754 
2755 static struct notifier_block kvm_cpu_notifier = {
2756 	.notifier_call = kvm_cpu_hotplug,
2757 };
2758 
2759 static int vm_stat_get(void *_offset, u64 *val)
2760 {
2761 	unsigned offset = (long)_offset;
2762 	struct kvm *kvm;
2763 
2764 	*val = 0;
2765 	raw_spin_lock(&kvm_lock);
2766 	list_for_each_entry(kvm, &vm_list, vm_list)
2767 		*val += *(u32 *)((void *)kvm + offset);
2768 	raw_spin_unlock(&kvm_lock);
2769 	return 0;
2770 }
2771 
2772 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2773 
2774 static int vcpu_stat_get(void *_offset, u64 *val)
2775 {
2776 	unsigned offset = (long)_offset;
2777 	struct kvm *kvm;
2778 	struct kvm_vcpu *vcpu;
2779 	int i;
2780 
2781 	*val = 0;
2782 	raw_spin_lock(&kvm_lock);
2783 	list_for_each_entry(kvm, &vm_list, vm_list)
2784 		kvm_for_each_vcpu(i, vcpu, kvm)
2785 			*val += *(u32 *)((void *)vcpu + offset);
2786 
2787 	raw_spin_unlock(&kvm_lock);
2788 	return 0;
2789 }
2790 
2791 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2792 
2793 static const struct file_operations *stat_fops[] = {
2794 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2795 	[KVM_STAT_VM]   = &vm_stat_fops,
2796 };
2797 
2798 static int kvm_init_debug(void)
2799 {
2800 	int r = -EFAULT;
2801 	struct kvm_stats_debugfs_item *p;
2802 
2803 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2804 	if (kvm_debugfs_dir == NULL)
2805 		goto out;
2806 
2807 	for (p = debugfs_entries; p->name; ++p) {
2808 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2809 						(void *)(long)p->offset,
2810 						stat_fops[p->kind]);
2811 		if (p->dentry == NULL)
2812 			goto out_dir;
2813 	}
2814 
2815 	return 0;
2816 
2817 out_dir:
2818 	debugfs_remove_recursive(kvm_debugfs_dir);
2819 out:
2820 	return r;
2821 }
2822 
2823 static void kvm_exit_debug(void)
2824 {
2825 	struct kvm_stats_debugfs_item *p;
2826 
2827 	for (p = debugfs_entries; p->name; ++p)
2828 		debugfs_remove(p->dentry);
2829 	debugfs_remove(kvm_debugfs_dir);
2830 }
2831 
2832 static int kvm_suspend(void)
2833 {
2834 	if (kvm_usage_count)
2835 		hardware_disable_nolock(NULL);
2836 	return 0;
2837 }
2838 
2839 static void kvm_resume(void)
2840 {
2841 	if (kvm_usage_count) {
2842 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2843 		hardware_enable_nolock(NULL);
2844 	}
2845 }
2846 
2847 static struct syscore_ops kvm_syscore_ops = {
2848 	.suspend = kvm_suspend,
2849 	.resume = kvm_resume,
2850 };
2851 
2852 static inline
2853 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2854 {
2855 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2856 }
2857 
2858 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2859 {
2860 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2861 
2862 	kvm_arch_vcpu_load(vcpu, cpu);
2863 }
2864 
2865 static void kvm_sched_out(struct preempt_notifier *pn,
2866 			  struct task_struct *next)
2867 {
2868 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2869 
2870 	kvm_arch_vcpu_put(vcpu);
2871 }
2872 
2873 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2874 		  struct module *module)
2875 {
2876 	int r;
2877 	int cpu;
2878 
2879 	r = kvm_arch_init(opaque);
2880 	if (r)
2881 		goto out_fail;
2882 
2883 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2884 		r = -ENOMEM;
2885 		goto out_free_0;
2886 	}
2887 
2888 	r = kvm_arch_hardware_setup();
2889 	if (r < 0)
2890 		goto out_free_0a;
2891 
2892 	for_each_online_cpu(cpu) {
2893 		smp_call_function_single(cpu,
2894 				kvm_arch_check_processor_compat,
2895 				&r, 1);
2896 		if (r < 0)
2897 			goto out_free_1;
2898 	}
2899 
2900 	r = register_cpu_notifier(&kvm_cpu_notifier);
2901 	if (r)
2902 		goto out_free_2;
2903 	register_reboot_notifier(&kvm_reboot_notifier);
2904 
2905 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2906 	if (!vcpu_align)
2907 		vcpu_align = __alignof__(struct kvm_vcpu);
2908 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2909 					   0, NULL);
2910 	if (!kvm_vcpu_cache) {
2911 		r = -ENOMEM;
2912 		goto out_free_3;
2913 	}
2914 
2915 	r = kvm_async_pf_init();
2916 	if (r)
2917 		goto out_free;
2918 
2919 	kvm_chardev_ops.owner = module;
2920 	kvm_vm_fops.owner = module;
2921 	kvm_vcpu_fops.owner = module;
2922 
2923 	r = misc_register(&kvm_dev);
2924 	if (r) {
2925 		printk(KERN_ERR "kvm: misc device register failed\n");
2926 		goto out_unreg;
2927 	}
2928 
2929 	register_syscore_ops(&kvm_syscore_ops);
2930 
2931 	kvm_preempt_ops.sched_in = kvm_sched_in;
2932 	kvm_preempt_ops.sched_out = kvm_sched_out;
2933 
2934 	r = kvm_init_debug();
2935 	if (r) {
2936 		printk(KERN_ERR "kvm: create debugfs files failed\n");
2937 		goto out_undebugfs;
2938 	}
2939 
2940 	return 0;
2941 
2942 out_undebugfs:
2943 	unregister_syscore_ops(&kvm_syscore_ops);
2944 out_unreg:
2945 	kvm_async_pf_deinit();
2946 out_free:
2947 	kmem_cache_destroy(kvm_vcpu_cache);
2948 out_free_3:
2949 	unregister_reboot_notifier(&kvm_reboot_notifier);
2950 	unregister_cpu_notifier(&kvm_cpu_notifier);
2951 out_free_2:
2952 out_free_1:
2953 	kvm_arch_hardware_unsetup();
2954 out_free_0a:
2955 	free_cpumask_var(cpus_hardware_enabled);
2956 out_free_0:
2957 	kvm_arch_exit();
2958 out_fail:
2959 	return r;
2960 }
2961 EXPORT_SYMBOL_GPL(kvm_init);
2962 
2963 void kvm_exit(void)
2964 {
2965 	kvm_exit_debug();
2966 	misc_deregister(&kvm_dev);
2967 	kmem_cache_destroy(kvm_vcpu_cache);
2968 	kvm_async_pf_deinit();
2969 	unregister_syscore_ops(&kvm_syscore_ops);
2970 	unregister_reboot_notifier(&kvm_reboot_notifier);
2971 	unregister_cpu_notifier(&kvm_cpu_notifier);
2972 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2973 	kvm_arch_hardware_unsetup();
2974 	kvm_arch_exit();
2975 	free_cpumask_var(cpus_hardware_enabled);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_exit);
2978